
MASTER THESIS

Roland Púček
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Abstract: In Riemannian geometry, the fundamental fact is that there exists
a unique torsion-free connection (called the Levi-Civita connection) compatible
with the Riemannian metric g, i.e. having the property ∇g = 0. In projective
geometry, the class of covariant derivatives defining the geometry is fixed and all
these covariant derivatives have the same class of (non-parametrized) geodesics.
Old (and non-trivial) problem is to find whether these curves are geodesics of a
(pseudo-)Riemannian metric. Such projective structures are called metrizable.
Surprisingly enough, U. Dini and R. Liuoville found in 19th century that the
metrizability problem leads to a system of linear PDE’s. In the last years, there
were several papers dealing with these problems. The projective geometry is a
representative example of the so called parabolic geometries (for full description,
see the recent monograph by A. Čap and J. Slovák). It was realized recently
that the corresponding linear metrizability operator is a special example of the
so called first BGG operator. The flat model of projective geometry is the (real)
projective space.

In this more general context, the metrizability problem for (pseudo-)Riemannian
geometries is naturally generalized to the sub-Riemannian situation. In the recent
preprint, D.Calderbank, J. Slovák and V. Souček are discussing the classification
of (real) irreducible parabolic geometries for which the linearisation method can
be applied. A part of the classification is the case of complex simple Lie algebras
considered as real Lie algebras.

The aim of this thesis is to formulate the linearisation method in a full generality
and to classify completely the cases of complex simple Lie algebras where the
linearisation method is applicable. In Sect. 2, there is a summary of description
of invariant differential operators on parabolic geometries and comments how to
use it for real cases. A general discussion of the linearisation method is contained
in Sect.3. The classification result for the case of complex simple Lie algebras is
presented in Sect.5. Some examples of explicit solutions are contained in Sect. 6.
There are several Appendices summarizing results used in the thesis.
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1. Introduction

1.1 Motivation

In Riemannian geometry, the fundamental fact is that there exists a unique
torsion-free connection ∇ (called the Levi-Civita connection) compatible with the
Riemannian metric g, i.e., having the property ∇g = 0. Projective geometry is an
old and classical subject. In its modern form, projective structure on a smooth
manifold is an equivalence class [∇] of torsion-free covariant derivatives having
the same geodesic curves. It can be shown that two covariant derivatives ∇ and
∇̃ are in the same equivalence class if and only if ∇̃aXb = ∇aXb +ΥaXb + δbaΥcXc

for some one-form Υ and for all vector fields X, [14].
Old (and non-trivial) problem is to find whether these curves are geodesics of

Levi-Civita connection of (pseudo-)Riemannian metric. Such a projective struc-
tures are called metrizable. Surprisingly enough, U. Dini ([13]) and R. Liouville
([20]) found in 19th century that the metrizability problem leads to a system
of linear PDE’s. In the last years, there were (among others) papers [15], [24],
[21] which dealt with these problems. Similar problems in dimension two were
considered in [5].

It is well known that projective geometry is a representative example of the
so called parabolic geometries (for full description, see [10]). It was realized re-
cently that the corresponding linear metrizability operator is a special example
of the so called first BGG operator. The flat model of projective geometry is
the (real) projective space. A broader class of projective geometries (having as
a model complex, quaternionic projective spaces, the Cayley octonian plane and
the conformal sphere) were studied recently by D. Calderbank and G. Frost. It
contained a systematic description of this class of parabolic geometries and the
system of linear PDE’s describing the non-degenerate solutions of the metrizabil-
ity problem.

The method of linearisation of the metrizability problem used by D. Calder-
bank and G. Frost is not limited to the class of projective geometries. Here the
class of the preferred covariant derivatives giving the projective structure is re-
placed by the class of Weyl covariant derivatives canonically associated with given
parabolic geometry. In this more general context, the metrizability problem for
parabolic geometries is naturally generalized to the sub-Riemannian situation in
the sense of metrizability of subbundles. This is closely connected with the fact
that invariant first order differential operators on parabolic geometries factorize
through restricted jets (see chapter two for a more detailed discussion). Such a
generalization of the problem has a very good potential for applications to optimal
control theory (see [1], [2]).

In the recent preprint, D. Calderbank, J. Slovák and V. Souček are discussing
the classification of (real) irreducible parabolic geometries for which the lineari-
sation method can be applied. A part of the classification is the case of complex
simple Lie algebras considered as real Lie algebras. The first example of such
parabolic geometry treated with full details is the case of c-projective structure
[8].

The aim of this thesis is to formulate the linearisation method in a full gen-
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erality and to classify completely the cases of complex simple Lie algebras where
the linearisation method is applicable. A general discussion of the linearisation
method is contained in chapter three. The classification result for the case of
complex simple Lie algebras is presented in chapter five.

1.2 Formulation of the problem

Now we will formulate the main problem of this thesis. Let g = ⊕ki=−kgi be a graded
Lie algebra of G and let (G →M) be a P -principal bundle over M , where P is a
parabolic subgroup in G and let ω ∈ Ω1(G,g) be the Cartan connection. Let E
be the bundle which is associated to a P -representation E and let us write H∗ for
the bundle G×P g1. We are looking for a sections ρ ∈ Γ(E) such that there exists a
Weyl covariant derivative ∇ for which ∇∣Hρ = 0, where H = G ×P g−1 by definition
and ∇∣H is the covariant derivative induced by a Weyl covariant derivative which
acts in directions of H or more formally ∇∣H ∶ Γ(E) → Γ(H∗ ⊗ E) instead of
∇ ∶ Γ(E) → Γ(T ∗M ⊗E).

1.3 Method of finding a solution

In this chapter we describe the method we use to find a covariantly constant
tensor fields.

Let us suppose E and F are vector bundles. We are looking for a Weyl covari-
ant derivative ∇W or equivalently a Weyl structure such that there are η ∈ Γ(E)
satisfying ∇W ∣Hη = 0. For this purpose we use invariant first order differential
operators. These operators are of the form D ∶= πF ○ ∇W ∶ Γ(E) → Γ(F ) and do
not depend on a choice of Weyl covariant derivative, where E ⊗H∗ = F ⊕F ′. To
say η ∈ KerD, which means πF ○ ∇η = 0, is equivalent to existence an element
X∇ ∈ Γ(F ′) such that ∇∣Hη = ι(X∇), where ι ∶ Γ(F ′) → Γ(E⊗H∗) is the inclusion.
Our aim is to choose a covariant derivative ∇ in such a way that ∇∣Hη = 0. From
appendix C we know the effect of change of Weyl strucure on covariant derivative.
Two covariant derivatives ∇, ∇̃ are related as ∇̃Zη = ∇Zη+ JΥ, ZKη, where Υ ∈ H∗

and Z ∈ H. This bracket J, K is linear in second input hence we can define map
Fη ∶ H∗ → E ⊗H∗ as Υ ↦ JΥ, ⋅Kη. If we suppose Im(Fη) ⊃ F ′ then there exists
a Weyl covariant derivative ∇ such that ∇∣Hη = 0. If we suppose Fη is linear,
which is natural, we get necessary condition dim(H∗) ≥ dim(F ′). In this pro-
cedure we are looking for a big F , where the best choice is the Cartan component.

Example:
Now suppose E ⊂ G ×P ⊙2g1 which corresponds to sub-Riemannian metrics. By
an easy example we show that previous procedure will fail but there is a way
how to use this procedure to obtain good results in the same example of sub-
Riemannian metrics. We will compute with representations only and we consider
associated natural bundles and their sections. Consider complex projective ge-
ometry and let g has rank n. In this case gss0 acts on g1 with the highest weight
ωn−1. The space ⊙2g1 consist of one component only. This component has the
highest weight 2ωn−1, hence we put E = E2ωn−1 . Now we look at decomposition
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of E ⊗H∗. On the level of representations it decomposes into Cartan component
and the representation which is given by the highest weight ωn−2 + ωn−1. This
representation is bigger then g1 hence we can not use previous procedure.

An important idea is to consider nondegenerated metrics and to go to the
inverse metrics. Let us consider an inverse metric. If κ is a metric, the inverse
metric η is defined by the equation κabηbc = δca. The metric is nondegenerated
if and only if the inverse metric is nondegenerated. Therefore we can transform
the problem of finding covariantly constant metric to the problem of finding co-
variantly constant inverse metric in nondegenerated case. So we are interested
in bundles E ⊂ G ×P ⊙2g−1. Let us compute the example with complex projec-
tive geometry. The gss0 acts on g−1 by the highest weight ω1 and on the one-piece
symmetric part of ⊗2g−1 by 2ω1. Decomposition of E⊗H∗ on the level of represen-
tations is Cartan component and representation with the highest weight ω1 which
is exactly the highest weight for g−1. Let us note the Cartan component give rise
to bundle F and the other representation give rise to F ′. In this situation we can
use the contraction (raising indices by the inverse metric) E ⊗H∗ → H given by
ηabΥb to get isomorphism between H∗ and H = F ′. Therefore Im(Fη) = F ′.

There is one complication with the last paragraph. Every bundle E is given
by a g0-representation but we can construct an invariant first order differential
operator for special action of z(g0) only. We need slightly deform the bundle E
in the following sense. We multiply E by a line bundle L in such way that final
bundle E⊗L will have correct action of center z(g0). In this case we constructed
covariantly constant section η of E⊗L which is not an inverse metric. So we need
to find covariantly constant section σ of the line bundle L−1 such that product
η with σ is the inverse metric. The bundle L−1 can be constructed by using
wedge product on the bundle E ⊗ L until we get a line bundle L̂ and then by
manipulating with L̂. Sections of this bundle have to be covariantly constant, by
Leibniz rule.

1.4 Contents

In the second chapter, we recall construction of an invariant first order differ-
ential operators on parabolic geometries. We follow [25]. First section deals with
characterization of an invariant operators in complex case. In the second section,
we are investigating an invariant operators on real geometries.

Chapter three describes the algebraic linearisation condition (ALC) mainly.
This chapter contains an important lemma which deals with structure of g0-
representations g±1.

In the chapter four, we prove theorem on classification of parabolic geometries
of (G,P )-type for irreducible g−1-part, where the Lie algebra g of G is of A-type.
This theorem is proved with many details and it serves as leading example through
classification of all parabolic geometries with irreducible g−1-part which can be
found in preprint of D. Calderbank, J. Slovák and V. Souček.

The fifth chapter is the core of this thesis. It contains new results. We classify
all parabolic geometries of (G,P )-type with irreducible g−1-part which satisfy the
ALC, where the Lie algebra g of G is complex Lie algebra which is considered as
the real Lie algebra.
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In the sixth chapter, we compute four examples of metric bundles, solutions
of the first BGG equations and covariantly constant metrics.

The last chapter is dealing with generalization of the ALC to the case of
parabolic geometries with reducible g−1-part. First, we describe a way how the
ALC can be generalized and then we illustrate this method on a few examples.
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2. Invariant differential operators
of first order

In this chapter we recall construction of an invariant differential operators on
parabolic geometries. We will follow [25].

2.1 Complex case

In complex situation, standard parabolic subalgebras are in bijective correspon-
dence with ∣k∣-graded algebras which are in bijective correspondence with subsets
of nodes in Dynkin diagram. We indicate these subsets as crosses in diagram.
By a complex geometry with one cross or one-cross complex geometry, we always
mean a complex parabolic geometry (G → M,ω) of a type (G,P ) for which g
is the Lie algebra of G and P corresponds to a cross. By a real one-cross ge-
ometry we mean a real parabolic geometry such that in the complexification it
is one-cross complex geometry. When it can not cause confusion we omit prefix
real/complex. We use similar notions for geometries which arise from k-crosses
in Dynkin diagram and its real versions.

Definition 1. Let Vλ be a P -representation with the highest weight λ. We define
the p-module J1Vλ as Vλ ⊕ (g∗− ⊗ Vλ) with the action given by

Z ⋅ (v, φ) = (λ(Z)v, λ(Z) ○ φ − φ ○ ad−(Z) + λ(adp(Z)(⋅))v) (2.1)

Now consider an arbitrary principal P -bundle G with Cartan connection ω.
The P -module Vλ gives rise to the associated bundle V(λ) ∶= G ×P Vλ and its first
jet prolongation J1V(λ).
Theorem 1. The invariant differentiation ∇ω defines the mapping

ι ∶ C∞(G, Vλ)P → C∞(G, J1Vλ)P , ι(s)(u) = (s(u), (X ↦ ∇ωs(u)(X))),
which yields diffeomorphism J1V(λ) ≃ G ×P J1Vλ.

In J1Vλ there is p-invariant subspace {0}⊕ (p2+⊗Vλ), where p2+ = [p+,p+]. We
define the restricted jets J1

RVλ as factor p-module J1Vλ/({0}⊕ (p2+ ⊗ Vλ)). These
jets are describing partial derivatives in some directions only.

According to appendix C, we can use a Weyl structure to get a linear connec-
tion on TM . A choice of the Weyl structure is not canonical.

Definition 2. A differential operator which does not depend on a choice of Weyl
structure will be called an invariant differential operator.

Lemma 2. Let E and F be irreducible P -modules. Then a G0-module homo-
morphism Ψ ∶ J1E → F is a P -module homomorphism if and only if Ψ factors
through J1

RE and for all Z ∈ g1

Ψ(∑
α

ηα ⊗ [Z, ξα] ⋅ v0) = 0,

where ηα, ξα is dual basis of g±1.
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Consider the endomorphism Φ(Z ⊗ v) ∶= ∑α ηα⊗[Z, ξα] ⋅ v0 on g1 ⊗E. By the
lemma above we are interested in image of Φ.

Lemma 3. Let E be an irreducible complex representation of g0 characterized by
λ ∈ h∗ and let g1 = ⊕j g

j
1 be a decomposition of g1 into irreducible g0-modules.

Highest weights of individual components gj1 will be denoted by αj. Suppose that
g1 ⊗ E = ⊕j⊕µi(j)E

j
µi(j) be a decomposition of the product into irreducible g0-

modules and πλ,µi be the corresponding projections. Let ρ0 be the half sum of
positive roots for gss0 .

Then for all v ∈ E,

Φ(Z ⊗ v)(X) = [Z,X] ⋅ v = ∑
j

∑
µi

cλ,µi,αj
πλ,µi(Z ⊗ v)(X),

where

cλ,µi,αj
= 1

2
[(µi(j), µi(j) + 2ρ0) − (λ,λ + 2ρ0) − (αj, αj + 2ρ0)].

Now we are able to characterize first order invariant differential operators.

Theorem 4. The operator Dj,µi = πλ,µi○∇ω is an invariant differential operator of
first order if and only if cλ,µi,αj

= 0. Moreover, all first order invariant operators
acting on sections of E are obtained in such way.

The condition cλ,µ,α = 0 can be slightly reformulated. Every weight θ on g0

decomposes into weight θ′ on gss0 and weight θ0 on z(g0). If we split definition
of cλ,µ,α into weights on semisimple part and on commutative part we get 0 =
cλ,µ,α = cλ′,µ′α′ + (λ0, α0) by orthogonality of Killing form on a reductive algebra.
Therefore, if we have k-cross geometry with dim z(g0) = k, we can construct k
invariant first order differential operators. There are k linear equations on a
central weights.

Remark. Let us note one more remark about number of invariant first order
differential operators. Since simple roots αi of g form a basis of Cartan subalgebra
in g0, their parts α0

i form a basis on z(g0). Therefore the linear equations 0 =
cλ′,µ′α′i + (λ0, α0

i ) have unique solution for λ0. So, if Bλ′ is gss0 -representation and

g1 = ⊕k gj1 and let Vµi ⊂ B ⊗ gi1 be an irreducible component then there exist
unique central weight λ0 such that there exists a first order invariant differential
operator acting from Bλ′+λ0 to sum ⊕k Vµi .

An invariant differential operator of first order is composition of following
maps: ∇ω ∶ Γ(G ×P B) → Γ(G ×P J1B), π1 ∶ Γ(G ×P J1B) → Γ(G ×P (g1 ⊗ B)),
π2 ∶ Γ(G ×P (g1 ⊗ B)) → Γ(G ×P Eµ), where Eµ is an irreducible component
in g1 ⊗ B. Shortly, invariant first order differential operators are of the form
πµ ○ ∇ω ∶ Γ(G ×P B) → Γ(G ×P Eµ) ⊂ Γ(G ×P (g1 ⊗B)).

Now we explain the convention of dual weights. Let V be irreducible rep-
resentation with the highest weight λ. This representation will be denoted by
Vµ, where µ is the highest weight of dual representation V ∗. Now consider the
highest weight λ as n-tuple (λ1,⋯, λn) over Dynkin diagram. In dual conven-
tion, the highest weight λ = (λ1,⋯, λn) will be displayed over Dynkin diagram
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as n-tuple (µ1,⋯, µn), where µ = (µ1,⋯, µn) is the highest weight of dual mod-
ule. As an illustration, let us consider g ≃ sl(n + 1,C). Let V be the irreducible
g-representation with the highest weight ω1. In convention of dual weights, we
denote this representation as Vωn .

Lemma 5. Let D be the first BGG operator given by a representation B. The op-
erator D is of first order if and only if the number over crosses in g0-representation
B are zero.

Proof. First we will analyse the case of one-cross geometry. We will use conven-
tion of dual weights. Denote by λ the highest weight of the g0-representation
B. Consider first cohomology group which is given by representation above.
From the Kostant’s version of Bott-Borel-Weil theorem we know how this group
looks. Clearly it has only one irreducible component for which we compute
the highest weight. In the Hasse diagram W p there is the unique element w
of height one and w = sαk

, where αk corresponds to a crossed node. Now,
w ⋅ λ = sαk

(λ + δ) − δ = λ + δ − (λk + 1)αk − δ = λ − (λk + 1)αk = λ + (λk + 1)(−αk).
We see the weight w ⋅ λ corresponds to (λk + 1)-th Cartan product of V with g1,
by the remark above theorem 7 in chapter three. If we want an operator of first
order we need λk = 0. Otherwise a values of an operator will be at least in the
associated bundle given by the representation (B ⊚ g1) ⊚ g1 which can not be an
invariant subspace in B ⊗ g1. We see if the first BGG operator has order one it
is an invariant first order differential operator with values in Cartan product and
vice versa. It works similarly in k-cross geometry.

The advantage of the first BGG operator is that its values are in the biggest
component, the Cartan component. The first BGG equation is the overdeter-
mined system of PDEs. In the case of homogeneous model the dimension of
solutions of the first BGG equation is finite and nonzero but in the case of curved
geometries it may happen there is only a trivial solution.

Now we explain how to obtain an invariant first order differential operator
on vector bundle G ×P Vλ, where Vλ is an irreducible g0-module. For simplicity
we suppose g0 is an reductive algebra with dimension of centre z(g0) equal to
one. Typically, centre z(g0) of g0 acts nontrivialy in the sense that a number
over a cross in Dynkin diagram is nonzero. If we want to get an invariant first
order differential operator with values in natural bundle given by representation
Vλ⊚ g1, we need such a weight λ which has zero over a cross. This can be ensure
by multiplying bundle G ×P Vλ by a natural line bundle L, which is induced by
a representation L such that z(g0) acts on L by the opposite number as in Vλ.
This procedure works similarly in the real case.

Example: Let g ≃ sl(n + 1,C) and consider the first node to be crossed. This
is complex projective geometry. Let λ = δ = ∑n ωi where ωi are the funda-
mental weights. If we want to find an invariant first order differential operator
D ∶ Γ(G ×P Vλ) → Γ(G ×P (Vλ ⊚ g1)) we need to construct a line bundle G ×P Lµ
given by representation Lµ where µ = −ω1. Then there exists an invariant first
order differential operator D′ ∶ Γ(G ×P (Vλ ⊗Lµ)) → Γ(G ×P ((Vλ ⊗Lµ) ⊚ g1)).
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2.2 Real case

There is an obvious way how to define an invariant operator in a real geometry.
First we look at complexified version of the geometry and then we find an operator
in such a way that bundles on which it acts are complexified versions of a real
bundles.

Let V be a real gss0 -irreducible representation and let G ×P V be real natural
bundle induced by V . We are looking for a real invariant first order differential
operator. Consider the complexification of the underlying representations and al-
gebras. The natural bundle given by the representation V goes to G ×P V C. Now
it depends on the complexification V C and number of crosses in geometry how we
will proceed. We will explain one and two cross real geometry only because the
other cases are simple consequences of these types. There are two possibilities.
Complexification of a real irreducible representation V is either one irreducible
complex representation V0 or a sum of two irreducible complex representations
V1 ⊕V2. We denote the real representation V as [V0]R or [V1 ⊕V2]R, respectively.
In other words, V = [V0]R or V = [V1⊕V2]R if and only if V C = V0 or V C = V1⊕V2,
respectively.

Let us note that complex Lie algebras which are considered as real Lie alge-
bras are two-cross real geometries. In the following we discuss possibilities how
to construct real invariant first order differential operators. We relax notation in
the following sense. An operator D ∶ Γ(G ×P V ) → Γ(G ×P W ) will be denoted by
D ∶ Γ(V ) → Γ(W ). In the following, by the existence of an invariant operator D
which acts on sections of natural bundle given by gss0 -representation Vλ′ we mean
that there exists weight λ0 on the center z(g0) such that D acts on sections of
natural bundle given by Vλ′+λ0 .

The one-cross geometry case is almost same as the complex case. First,
suppose V C = V0. In this geometry g±1 and gC±1 are irreducible real and complex
representations, respectively. Let V0⊗gC1 decomposes as⊕mUi. Then there exists
a real invariant differential operator Di ∶ Γ(V ) → Γ([Ui]R) for such an i that Ui
is the complexification of real irreducible representation.

Second, suppose V C = V1⊕V2. In this situation V C⊗gC1 = V1⊗gC1 ⊕V2⊗gC1 and
suppose further decompositions V1⊗gC1 = ⊕mU1

i , V2⊗gC1 = ⊕mU2
i . Clearly, there

is always a pair of representations which together form one irreducible real rep-
resentation. A pair of representations consists of either the same representations
or it consists of complex conjugated representations. For i ∈ {1,2}, j ∈ {1,⋯,m}
there exists a complex invariant first order differential operator Di,j ∶ Γ(Vi) →
Γ(U i

j). Let U1
r ⊕ U2

p be the complexification of a real representation. There
exists real invariant operator Dr,p ∶ Γ(V ) → Γ([U1

r ⊕ U2
p ]R) which is defined as

Dr,p = [D1,r ⊕ D2,p]R. Let us note, if η ∈ Γ(G ×P V1) and η̄ ∈ Γ(G ×P V2) then
η ∈Ker D1,r if and only if η̄ ∈Ker D2,p, by the argument that representations Vi
are either the same or dual.

In two-cross geometry, the gC±1-part has two components g1
±1 ⊕ g2

±1, by the
Kostant’s version of Bott-Borel-Weil theorem or by lemma 6 in chapter three.
These are either the complexification of one irreducible real representation or the
complexification of two irreducible real representations. Again, there are two pos-
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sibilities how an irreducible real representation V occurs in the complexification.
We will use the notation from one-cross geometry case.

First, suppose V C = V0 and V0 ⊗ gC1 = V0 ⊗ g1
1 ⊕ V0 ⊗ g2

1 = ⊕mU1
i ⊕⊕nU2

j . Let
g1

1⊕g2
1 come from two real irreducible representations. If U i

j is the complexification
of real representation, then there exists real invariant operator Di,j ∶ Γ(V ) →
Γ([U i

j]R). And if U1
l and U2

l′ are the complexification of two real representations,
then there exists real invariant operator Dl,l′ ∶ Γ(V ) → Γ([U1

l ]R ⊕ [U2
l′]R). Now

let g1
1 ⊕ g2

1 come from one real irreducible representation. Then we have the
decomposition V0⊗gC1 = ⊕mU1

i ⊕⊕mU2
j in which a real irreducible representation

occurs as a sum of two complex irreducible representations. There exists a real
invariant first order differential operator Di ∶ Γ(V ) → Γ([U1

i ⊕ U2
j(i)]R) for every

i ∈ {1,⋯,m}.
Second, suppose V C = V1⊕V2 and V C⊗gC1 = (V1⊕V2)⊗(g1

1⊕g2
1) = V1⊗g1

1⊕V2⊗
g1

1⊕V1⊗g2
1⊕V2⊗g2

1 = (⊕mU1
j )⊕(⊕nU2

j )⊕(⊕rW 1
j )⊕(⊕pW 2

j ). Let g1
1⊕g2

1 come
from two real irreducible representations. Then m = n, r = p and without loss
of generality we can suppose U1

j ⊕U2
j is the complexification of a real irreducible

representation and similarly W 1
j ⊕W 2

j . There are following ways how to a real
operators arise:

� Di ∶ Γ(V ) → Γ([U1
i ⊕U2

i ]R)

� Di ∶ Γ(V ) → Γ([W 1
i ⊕W 2

i ]R)

� Di,j ⊕ D′i,j ∶ Γ(V ) → Γ(R), where Di,j ∶ Γ(V1) → Γ(U1
i ⊕W 1

j ) and D′i,j ∶
Γ(V2) → Γ(U2

i ⊕W 2
j ) and R ∶= [U1

i ⊕U2
i ]R ⊕ [W 1

j ⊕W 2
j ]R.

Now suppose g1
1 ⊕ g2

1 come from one real irreducible representation. If we want
to make real operator we need both components g1

1 ⊕ g2
1. In this case, we can use

last node above to get real invariant operator.

10



3. Algebraic linearisation
condition - irreducible g−1-part

We state and derive the algebraic linearisation condition (ALC) in the case of
parabolic geometries with irreducible g−1-part.

Metric and algebraic linearisation condition

Definition 3. Let us use the symbol ⊚ between complex representations for usual
Cartan product. Let V,W be an irreducible real representations of real reductive
Lie algebra g. We define a real Cartan component V ⊚W of tensor product V ⊗W
in the following cases:

� The complefixications of V and W are irreducible complex representations
VC and WC. We define a real Cartan component as [VC ⊚WC]R.

� One of the representations occurs in the complexification as a sum of two
irreducible modules, say VC = V1 ⊕ V2, and the second representation is in
complexification one irreducible module WC. Then we define a real Cartan
component as a [V1 ⊚WC ⊕ V2 ⊚WC]R.

� Both of the representations are in the complexification sum of two irreducible
pieces, VC = V1⊕V2 and WC =W1⊕W2. We define a real Cartan component
as [V1 ⊚W2 ⊕ V2 ⊚W1]R ⊕ [V1 ⊚W1 ⊕ V2 ⊚W2]R.

Now we state the ALC in the case of geometries with irreducible g−1-part.

Definition 4. Let (G → M,ω) be a real parabolic geometry of a type (G,P )
and g be the Lie algebra of G. Let g1 be irreducible g0-module and B be g0-
irreducible subspace of ⊙2g−1 and let it contain nondegenerate elements. An in-
variant subspace B satisfies the algebraic linearisation condition if and only if
B ⊗ g1 ≃ B ⊚ g1 ⊕ g−1.

First we will analyse g±1-component for complex geometries. From appendix
B we know both g±1 are isomorphic to the first cohomology group with trivial
coefficients H1(g−,C). Kostant’s version of Bott-Borel-Weil theorem gives us
that the number of an irreducible components of H∗(p+,C) ≃ H∗(g−,C) is the
same as cardinality of the set W p and the isotypical component of a weight νw
is contained in cohomology group of `(w)-order. We see that in the cohomology
groupH1(p+,C), there can be only isotypical components corresponding to simple
reflections which lie in W p, because only these reflections have order one.

Lemma 6. Let g be a complex ∣k∣-graded semisimple Lie algebra.

� The number of irreducible components of g±1 is exactly the number of crossed
nodes in Dynkin diagram.

� Consider the adjoint representation of g0 on g−1. The highest weights of
an irreducible components of g−1 are exactly minus the simple roots which
correspond to the crossed nodes.

11



Proof. According to considerations above the lemma, for the first part of the
lemma it is sufficient to prove that in W p there is exactly m reflections with
length one, where m is the number of crossed nodes. If we use theorem 20 on
Hasse diagram in appendix B we need to find the orbit of δp but for the proof it is
enough to find a weights on orbit which are on the first level. So we are interesting
in mappings sαi

(λ) = λ − 2<λ,αi>
<αi,αi>αi. The result follows from the computations

sαi
(λ) = λ − 2<λ,αi>

<αi,αi>αi = λ − λiαi, by definition of fundamental weights ωj, where
λ = ∑n λiωi. From this it is easy to see every such reflection is not identity if and
only if the i-th node is crossed. This can be easily generalized to an arbitrary
number of crosses in Dynkin diagram.

Now we prove the second part of the lemma. From the gradation by Σ-height,
minus simple roots which correspond to the crossed nodes have eigenspaces in
g−1-component. So, these generate isotypical components which are irreducible
by Kostant theorem. From the first part, we know the number of components is
exactly the number of crosses.

Remark. One more observation about representation of g0 on g±1 in the case of
complex simple Lie algebra g. Obviously these two representations are dual. The
fact is if we express j-th simple root as linear combination of fundamental weights
the coefficients in this expression are exactly the coefficients in j-th column in
Cartan matrix (or row, depending on definition of Cartan matrix). So if the
highest weight of a representation is given by a simple root coefficients can be
found in a Cartan matrix. Indeed, if we write αj = ∑ lkωk for αj a simple root
where ωk are a fundamental weights and lk ∈ C, and multiply 2αi

<αi,αi> by αj

aij =
2 < αi, αj >
< αi, αi >

= ∑2l̄k
< αi, ωk >
< αi, αi >

= ∑ l̄kδik = l̄i = li

by definition of a term aij in Cartan matrix and by definition of a fundamental
weights.

Theorem 7. Let B enjoys the ALC. Then there exists a line bundle L associated
to a 1-dimensional module L such that there is a first order invariant operator D
from Γ(G×P (B⊗g1⊗L)) to Γ(G×P (B⊚g1⊗L)). Moreover, for any nondegenerate
solution η of this equation, there exists a Weyl covariant derivative ∇ such that
∇∣Hη = 0. The operator D is the first operator in BGG complex which is given
by g-representation B, where B is obtained from B in such way that we put zeros
over crosses in Dynkin diagram which correspond to g0-representation B. In
homogeneous case, dim(Ker D) = dim(B).

Proof. Result about the dimension of the kernel of the operator in homogeneous
models is stated in appendix D. Discussion about BGG operators can be found
there, too.

First we show the theorem holds in one-cross complex geometries.
Let c ∶ g1 ⊗⊙2g−1 → g−1 be the natural contraction and let B be an invariant

subspace of ⊙2g−1 which contains nondegenerate elements. Let b ∶ g1⊗B → g−1 be
the restriction of c. If the ALC is satisfied we may write g1⊗B =Ker b⊕ζ(g−1) ≃
(B ⊚ g1) ⊕ g−1 where ζ ∶ g−1 → g1 ⊗B is a g0-invariant map with b ○ ζ = idg−1 .

We want to consider invariant operator on natural bundle which is given by
B with values in natural bundle which is given by representation B ⊚ g1. It is

12



shown in the chapter two, we get such an operator if and only if the number over
a crossed node in a defining representation for the first order invariant differential
operator is zero. The way how to do this is to multiply the bundle G ×P B by a
line bundle L which is associated to the chosen central weight as we explain in
chapter two (above real case - 2.1). So there is an invariant first order differential
operator D ∶ Γ((G ×P B)⊗L) → Γ((G ×P (B⊚g1))⊗L), where D = π ○∇∣H for any
Weyl covariant derivative ∇. According to these considerations we are working
with tensor field η as with sections of (G ×P B) ⊗ L. Let us note the number
of an irreducible components of B ⊗ g1 ⊗ L, where L is a representation which
induces the bundle L, is the same as the number of components of B⊗g1 because
dim(L) = 1.

Now, it is obvious that solutions of Dη = 0 can be characterized by an existence
of a section X∇ of H⊗L such that ∇∣Hη = ζ(X∇). Let ∇̃∣H = ∇∣H +Υ be another
covariant derivative, where Υ ∈ H∗. Then for any Z ∈ Γ(H), ∇̃Zη = ∇Zη+JΥ, ZK ⋅η
and JΥ, ⋅K⋅η is nonzero only on image of ζ by the invariance of D, where the bracket
J, K is as in appendix C.

Let us note, there is a map

A ∶ H∗ ⊗ (G ×P B) → H∗ ⊗ (G ×P B)

Υ⊗ η ↦ (Z ↦ JΥ, ZK ⋅ η)
and by Schur’s lemma we get

JΥ, ⋅K ⋅ η = (ζ ○ b)(JΥ, ⋅K ⋅ η) = (ζ ○ b)(`Υ⊗ η)

where ` is a scalar. Note that non-degeneration of η implies that the contraction

♯η(Υ) = b(`Υ ⊗ η) is surjective. We get ∇̃∣H = ∇∣H + ζ(♯η(Υ)). Now if η is a
nondegenerate solution of Dη = 0, with ∇∣Hη = ζ(X∇) for some Weyl covariant
derivative ∇ and X∇ ∈ Γ(H ⊗ L), we may take Υ = − ♯−1

η (X∇) to obtain ∇̃∣Hη =
ζ(X∇) − ζ(♯η(Υ)) = 0. Hence η is a covariantly constant tensor field.

Now we consider one-cross real geometry which satisfy the ALC. Almost whole
procedure is same up to one exception. There was a step where we use Schur
lemma. But if the equation holds in complex case it must be true for any real
form.

In the following we suppose two-cross real geometry which satisfy the ALC. In
the complexification there is the isomorphism BC⊗gC1 ≃ BC⊚g1

1⊕BC⊚g2
1⊕g1

−1⊕g2
−1,

where gC±1 = g1
±1 ⊕ g2

±1 and BC decomposes into either one complex irreducible
representation or into two irreducible complex representations.

Let us consider the case in which BC is one irreducible complex component,
therefore it is self-dual representation. Clearly, BC ⊚ g1

1 and BC ⊚ g2
1 are dual

representations. We have invariant operator D acting between sections of natural
bundles which are given by representations BC → BC ⊚ g1

1. This operator can
be corrected (in the sense above) on g2

−1-component. Hence, there exists Weyl
covariant derivative ∇ such that π ○ ∇η = 0 if η ∈ Ker D, where π is the bundle
map induced by natural projection BC ⊗ g1 → BC ⊚ g1

1 ⊕ g2
−1. Because of duality

between representations, the equation ∇η = 0 holds for every η ∈Ker D. In other
words, there is dual operator between sections of natural bundles which are given
by BC → BC ⊚ g2

1 ⊕ g1
−1 as we explain in section 2.2.

Next, let BC = B1⊕B2 and let B1 ⊂ ⊙2g1
−1 and B2 ⊂ ⊙2g2

−1. We choose invariant
operator which corresponds to B1 → B1⊚g1

1⊕B1⊚g2
1. According to the ALC, we

13



make correction of the operator on g1
−1-part. Again, we consider dual operator

which corresponds to representations B2 → B2 ⊚ g1
1 ⊕B2 ⊚ g2

1 ⊕ g2
−1.
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4. Verification of the ALC for
some geometries with irreducible
g−1-part

In this chapter we will verify the ALC for some parabolic geometries with irre-
ducible g−1-part. Whole classification of parabolic geometries which satisfy the
ALC can be found in preprint of D. Calderbank, J. Slovák and V. Souček.

First we will study a complexified versions of these geometries and then we
discuss its real forms. By convention we display a dual weights over a Dynkin
diagrams. Computation algorithms using in this chapter can be found in the
book [12].

We will consider geometries with at most two crosses in a Dynkin diagram
only. In the case of two crosses they have to be placed in a symmetric way in
a diagram. There is a reason for these two restrictions. One way how to obtain
irreducible g−1-part is to take only one cross in diagram. Now, if we make two
crosses in a diagram in a symmetric way it makes it possible to turn g−1-part
into an irreducible real component. In the complexification gC−1 has two complex
irreducible components. These components could come from one real irreducible
representation only if they have same dimensions. This can be ensure by placed
crosses in a symmetric way. An assymetric position of crosses will never result in
one real irreducible representation. More than two crosses creates more than one
real irreducible component.

Now we start study the ALC in An-algebra case.

An case

We will study the ALC in the case when k-th node in Dynkin diagram of An-type
is crossed or when two nodes in a symmetric way are crossed in diagram. The
grading of the algebra looks like

k n−k+1

( )k 0 1

n−k+1 −1 0

in the case of one cross. And in the case of two crosses the gradation can be
obtained by superposition of a two gradations

k n−k+1

( )k 0 1

n−k+1 −1 0
+

n−k+1 k

( )n−k+1 0 1

k −1 0
=

⎛
⎝

⎞
⎠

0 1 2
−1 0 1
−2 −1 0

,

where k is in {1, ..., n/2}, if n is even, and in {1, ..., (n + 1)/2}, if n is odd.
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In the following theorem, the first part will be proved in theorem 11, chapter
5.

Theorem 8. Let g be a Lie algebra of An-type with irreducible g−1-part and let
a B ⊆ ⊙2g−1 satisfies the ALC. The following list gives us a classification of all
such cases.

1. , g = sl(n+1,C), n > 1 where g is considered as the real Lie algebra.
The geometry is called c-projective geometry.

2. , g = sl(n + 1,R), n > 1. This is the case of projective geometry on
n-dimensional manifold M and B is the space of all (pseudo) Riemannian
metrics on M .

3. , g = sl(n + 1,R), n ≥ 4. The geometry is the almost Grass-
mannian structure on 2n-manifold M . The tangent space H = TM can be
identified with the tensor product E ⊗F of auxiliary bundles E and F with
dimensions 2 and n respectively. The metrics are of the form of tensor
products of volume form on E and antisymmetric forms on F .

4. , g = sl(p,H), n + 1 = 2p, n ≥ 5. The geometry is the almost
quaternionic geometry on manifold of dimension 4n. The metrics are real
parts of quaternionic hermitian forms.

5. , g ≃ su(p, q),1 ≤ p ≤ q, p + q = n + 1, n ≥ 3. These are CR
geometries.

6. g ≃ su(p, q), k ≤ p ≤ q, p + q = n + 1, where the
first cross is at the k-th place and the second in the symmetric position.

7. g ≃ su(p, p + 1),2p = n, where the first cross is at p-th
place. These geometries are CR geometries.

Proof. One cross
Now we compute the highest weights of the dual adjoint representations of semi-
simple part gss0 on g1 and g−1. To aim that we compute

[( A 0
0 B

) ,( 0 C
0 0

)] = ( 0 AC −CB
0 0

)

We skip the case k = 1. In that case gss0 reduces to a simple algebra and
verification of the ALC is a little bit easier. Let k ∈ {2, ..., n/2} if n is even or
k ∈ {2, ..., (n + 1)/2} if n is odd. We can consider C = u ⊗ v where u and v
are column and row, respectively. If we define a representations of sl(k,C) and
sl(n − k + 1,C) as A ⋅ u = Au and B ⋅ v = −vB, respectively, it follows that the
representation of sl(k,C) ⊕ sl(n − k + 1,C) is exactly what we are looking for.
Now we see the representation of A on u is the first fundamental representation
of sl(k,C) therefore the highest weight is the first fundamental weight. It is
easily seen that the representation of B-term is dual representation of the first
fundamental representation of sl(n − k + 1,C), so the highest weight is the last
fundamental weight. As we mentioned in the beginning of this chapter, we are
displaying a highest weights of a dual representations over Dynkin diagrams.
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According to these considerations, the representation of gss0 on g1 is given by

1 1
. Analogously we can find representation of gss0 on g−1, which is

given by
1 1

.
We just note changes in the case k = 2. Representations of gss0 on g1 and g−1

are
1 1

and
1 1

respectively.
Now we would like to find a decomposition of the second symmetric tensor

power of g−1. Again, let us consider the g−1-part as product u⊗ v.
We begin with a computations about decomposition of a representations of

sl(k,C) and sl(n − k + 1,C) on the tensor product v ⊗ v and u⊗ u, respectively,

given by 1 and 1 respectively. We claim that the representation of

sl(k,C) on v ⊗ v given by 1 decomposes to 2 ⊕ 1 . For the
verification we use Klimyk’s formula, theorem 32 in appendix E. Let us try if
these weights, namely 2ωk−1 and ωk−2, are included in the Klimyk’s sum. For this
purpose we have to compute these two equations,

{µ1 + ωk−1 + ρ} = ρ + 2ωk−1

{µ2 + ωk−1 + ρ} = ρ + ωk−2

In both equations on the right side we have dominant weights. So, on the left side
there had to be dominant weights. By argument, if two dominant weights are
conjugate by an element of a Weyl group they are same, we get simplifications,

µ1 + ωk−1 + ρ = ρ + 2ωk−1

µ2 + ωk−1 + ρ = ρ + ωk−2,

which are equivalent to
µ1 = ωk−1

µ2 = ωk−2 − ωk−1

Now we compute multiplicities of these weights in original representation of

sl(k,C) on vector v characterized by 1 . Let us note that weights which
are conjugate by an element of a Weyl group have same multiplicities. In gen-
eral, we can focus on a dominant weights of a representation only and compute
their multiplicities by Freudental’s formula. As we see, the weight µ1 is dominant
and in fact the highest weight, so it has multiplicity one. To obtain a result about
multiplicity of µ2 we will find the dominant weight to which is conjugate.

ωk−2 − ωk−1 = µ2 ↦ µ2 + αk−1 = ωk−1

So the multiplicity for µ2 is same as for ωk−1 = µ1 and thus one. We proceed to
evaluation of the function s from the Klimyk’s sum. We use the fact, stabilizer
Wλ of a weight λ in the Weyl group W is generated by a simple reflections rαi

,
where αi ∈ ∆ (set of simple roots) satisfies < λ,αi >= 0. Our aim is to show
s(µi + ωk−1 + ρ) ≠ 0, i ∈ {1,2}. We compute

< 2ωk−1 + ρ,αj >= 1
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< ωk−2 + ρ,αj >=
⎧⎪⎪⎨⎪⎪⎩

1, if j + 1 < k − 1

2, if j + 1 = k − 1

where j ∈ {1, ..., k − 1}. Thus terms with the weights 2ωk−1 and ωk−2 are included
in Klimyk’s sum. By dimensionality issues, using Weyl dimension formula, it can

be proved decomposition of v ⊗ v is exactly 2 ⊕ 1 . Finally we use
the fact that characters in this Klimik’s sum are different. The representation

1 is (k − 2)-th fundamental representation and thus antisymmetric.
By an analogous approach it can be shown the representation of sl(n−k+1,C)

on space u⊗u given by 1 decomposes into 2 ⊕ 1 . , where again
1 is antisymmetric part.

We have representation of sl(k,C)⊕sl(n−k+1,C) on (v⊗v)⊗(u⊗u) ≅ ⊗2g−1.
Obviously this representation decomposes to

2 2 ⊕ 2 1 ⊕

1 2 ⊕ 1 1

Now again by dimensionality issues one obtain

⊙2g−1 = 2 2 ⊕ 1 1 =∶ B′ ⊕B

The last procedure of verification of the ALC is to know the number of a
components of B′ ⊗ g1 and B ⊗ g1. Let k > 2. For instance, we take B′ ⊗ g1.

We know sl(k,C) ⊕ sl(n − k + 1,C) acts on B′ ⊗ g1 as
2 2 ⊗

1 1
, where the left parts of the crossed diagrams correspond to a

representations of sl(k,C) and right parts to sl(n − k + 1,C). We claim both of
these representations (left parts and right parts in diagram) decompose into two
components. So representation of gss0 on B′ ⊗ g1 has four irreducible components
and it is too many to satisfy the ALC. In the same way it can be proved the
representation of gss0 on B ⊗ g1 has four components. So ALC is not satisfied in
a case of crossed k-th node in Dynkin diagram of An-type for k > 2.

Let us show the decomposition in the case k = 2. For the algebra of rank n = 3
there are too many components in decomposition of B ⊗ g1. For n ≥ 4 we get
one B which satisfy the ALC. Representation of gss0 on B is given by diagram

1
. The real forms of the algebra corresponds either to sl(n,R) or

sl(n,H). In the case of Grassmannian geometry (g = sl(n + 1,R)), it is easy to
see metrics are tensor product of volume form with antisymmetric forms.

Two crosses
According to observations and remark in chapter 3 above theorem 7, it is easy to
see that gss0 = sl(k,C) ⊕ sl(n − 2k + 1,C) ⊕ sl(k,C) acts on g1 as

1 1 ⊕ 1 1
and on g−1 as

1 1 ⊕ 1 1
. A computations

are straightforward but long. Everything can be computed as in one-cross case.
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We state only important results.

⊙2(g−1) ⊃ B = 1 1

B ⊗ g1 = (
1 11 1 ⊕ 1 111

)⊕
⊕ (

1 1 ⊕ 1 1
)

The representations in brackets comes from one real irreducible representation.
We see that ALC is satisfied.

Let us make a note about cases which we skipped. Representations of a
semisimple part gss0 on spaces g±1 are clear. For the geometry which arise from

the ALC is satisfied for B = 1 1
. For the

geometry of the type the ALC is satisfied for B = 1 1

Remark. Let us make a remark about case k = 1 in one-cross geometry. The real
form of sl(n,C) can be sl(n,R) only and there is exactly one component B and

it satisfies ALC. The component B has representation
2

. Obviously
metrics corresponds to Riemannian metric.
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5. Complex Lie algebras as real
Lie algebras

Every complex Lie algebra g can be considered as a real Lie algebra g(R). For
such algebras, we will compute the ALC for an irreducible g−1(R)-part. First we
focus on some observations, which will be helpful in the sequel.

Representation theory for real simple Lie algebras can be found in [23]. Let
g(R) be one of algebras from the previous paragraph. The complexification
(g(R))C of g(R) is isomorphic to g ⊕ ḡ. Similarly, complexification of complex
vector space W , which is considered as a real vector space W (R) is isomorphic
to W ⊕ W̄ . Irreducible real representations V of g(R) are of two types: either
the complexification V C is irreducible and has form VλV̄λ ∶= Vλ ⊗ V̄λ, or it is a
sum of two dual representations VλV̄µ ⊕ VµV̄λ, where unbarred representations
correspond to algebra g and barred representations correspond to algebra ḡ. In
the notation from previous chapter, V = [VλV̄λ]R or V = [VλV̄µ ⊕ VµV̄λ]R. We
will denote these representation by a double Dynkin diagram with corresponding
highest weights. For example, let g ≃ sl(n + 1,C) considered as real Lie algebra
g(R), the complexification of a real irreducible representation is either of the form

µ1

λ1 λn

µn
⊕

µ1 µn

λ1 λn
=∶ VµV̄λ ⊕ VλV̄µ

,

or

λ1

λ1

λn

λn
=∶ VλV̄λ

.

A real irreducible g−1(R)-part occurs in the complexification as a sum of two
complex representations, namely g−1 ⊕ g−1. We will always consider geometries
with one cross only. The reason for this restriction is the following. If we consider
geometries with two or more crosses the g−1(R)-part will not be irreducible. If
we want to check the ALC we need to find ⊙2(g−1 ⊕ g−1) = ⊙2(g−1) ⊕ [g−1 ⊗
g−1] ⊕ ⊙2(g−1). The first and the last components decompose into irreducible
parts in such a way that together (in pairs) give complexification of irreducible
real representations. The middle component is always complexification of a real
irreducible representation. So a choices for BC (from the ALC) are either g−1⊗g−1

or sum of two conjugated representations.

Lemma 9. Let BC ≃ g−1⊗g−1. The ALC is satisfied if and only if g1⊗g−1 = C⊕C,
where C is the Cartan component and C is the trivial representation.

Proof. We work with complexified representations. Let us look at decomposition

BC ⊗ (g1 ⊕ g1) = [g−1 ⊗ g−1 ⊗ g1] ⊕ [g−1 ⊗ g−1 ⊗ g1] (5.1)

Clearly, first and second summands have the same decompositions up to conjuga-
tion. These representations are nontrivial hence decomposition of every summand
is nontrivial.
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Suppose the ALC is satisfied. We get BC ⊗ gC1 = BC ⊚ (g1 ⊕ g1) ⊕ g−1 ⊕ g−1 =
(g−1 ⊗ g−1) ⊚ (g1 ⊕ g1) ⊕ g−1 ⊕ g−1 = (g−1 ⊚ g1 ⊕ C) ⊗ ḡ−1 ⊕ g−1 ⊗ (C ⊕ ḡ−1 ⊚ ḡ1).
Comparing with previous decomposition, it follows that g1 ⊗ g−1 = C ⊕C.

The opposite direction is trivial. It can be seen from the decomposition (5.1)
at the beginning of the proof.

Remark. Defining bilinear form for a Lie algebras of Bn-type and Dn-type is
symmetric and Bn-algebra is self-dual which implies that contracted tensors in
second tensor power ⊗2V of a representation V are in symmetric part ⊙2V of
decomposition of this second tensor power. This result holds in the case of D2n-
algebras and for self-dual representations of D2n+1 too. Together with Cartan
component the contracted tensors are in symmetric part of ⊗2V , hence something
else must be in antisymmetric part ∧2V . Dimension of a space of contracted
tensors is one and there is only one representation with dimension one, the trivial
representation. It is easy consequence of the Weyl dimension formula.

All together, for these algebras second tensor power of representations decom-
poses into at least three components. Actually, decomposition of second tensor
power for self-dual algebras contains at least three components, because of con-
tracted tensors. If we consider Cn-algebras these are self-dual and their defining
bilinear form is anti-symmetric so contracted tensors are in anti-symmetric part
∧2V of tensor product ⊗2V for arbitrary irreducible representation V . By dimen-
sionality issues product ⊗2V always decomposes into at least three components.
Obviously, this holds for every selfdual representation.

Corollary. If the decomposition g1 ⊗ g−1 = C ⊕ C holds then semisimple part of
the Levi part g0 is simple and of A,D2n+1,E6 - type.

Proof. We prove this corollary by contradiction. Suppose that the algebra g0 is
not simple, then it acts nontrivialy by its simple subalgebras on g±1. Therefore in
decomposition of g1⊗g−1 there is at least four components hence the algebra has
to be simple. If g0 is of different type then A,D2n+1,E6 then it is self-dual and
decomposition of g1⊗g−1 has at least three components, by the remark above.

Lemma 10. Let the complexification BC of B be a sum of two conjugated repre-
sentations, BC = B1 ⊕B2. The ALC holds if and only if B1 ⊗ g1 = C ⊕ g−1.

� Let g0 be a semisimple Lie algebra and not simple. In this case g0 contains
two or three simple algebras. If the ALC is satisfied then only one of simple
algebras of g0 acts nontrivialy on B.

Proof. The first statement on equivalence of the ALC and decomposition B1⊗g1

is clear from definition of the ALC.

� Let g0 = ⊕3
i g

i
0 be semisimple and not simple Lie algebra. If at least two

subalgebras gi0 acts on B nontrivialy then B1 ⊗ g1 decomposes into at least
four components.
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Let us introduce a new notation. In the following it will be important to
know where a cross in Dynkin diagram is placed. Naturally, all representations
are considered to be gss0 -representations. Hence every complex irreducible rep-
resentation is characterized by `-tuple of highest weights which correspond to
simple subalgebras in the Levi part. Let g0 = ⊕` rj be decomposition of Levi part
into simple subalgebras. Let g0 corresponds to cross at the k-place in Dynkin
diagram and let V be gss0 -representation. By superscript V k we denote position
of cross in Dynkin diagram. By subscripts V k

(λ1,⋯,λ`) we denote highest weights
which corresponds to simple algebras rj.

We illustrate the notation using following example. Let g be a complex Lie
algebra of An-type which is considered as a real Lie algebra and let parabolic
subalgebra corresponds to crossed second node in Dynkin diagram. The repre-
sentation V 2

(0,ω2)V̄
2
(0,0) ⊕ V 2

(0,0)V̄
2
(0,ω2) corresponds to

1
⊕

1

Remark. Let us make one more remark about D2n+1. Let gss0 be of D2n+1-type.
Up to two exceptions, g0-representations g±1 are self-dual. The exceptions are in
E6 and E8 algebras, when the fifth and seventh node is crossed, respectively.

We proceed to find geometries which satisfy the ALC. The labelling of roots
is as in [10].

Theorem 11. Let g be a complex simple Lie algebra considered as the real Lie
algebra. The ALC is satisfied in the following cases:

1. An-type

� BC = V 1
ω1
V̄ 1
ω1

, so called c-projective geometry.

� BC = V 2
(0,ω2)V̄

2
(0,0) ⊕ V 2

(0,0)V̄
2
(0,ω2)

� BC = V 1
2ω1
V̄ 1

0 ⊕ V 1
0 V̄

1
2ω1

2. Bn-type

� BC = V n
ωn−1

V̄ n
ωn−1

� BC = V k
(2ωk−1,0)V̄

k
(0,0) ⊕ V k

(0,0)V̄
k
(2ωk−1,0) for 2 ≤ k ≤ n

3. C4-type

� BC = V 2
(0,ω2)V̄

2
(0,0) ⊕ V 2

(0,0)V̄
2
(0,ω2)

4. Cn-type

� BC = V k
(ωk−2,0)V̄

k
(0,0) ⊕ V k

(0,0)V̄
k
(ωk−2,0) for 3 ≤ 2k ≤ n − 1

5. Dn-type

� BC = V k
(2ωk−1,0)V̄

k
(0,0) ⊕ V k

(0,0)V̄
k
(2ωk−1,0) for 2 ≤ k ≤ n − 3
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� BC = V n−2
(2ωn−3,0,0)V̄

n−2
(0,0,0) ⊕ V n−2

(0,0,0)V̄
n−2
(2ωn−3,0,0)

6. E6-type

� BC = V 1
ω1
V̄ 1

0 ⊕ V 1
0 V̄

1
ω1

7. G2-type

� BC = V 1
ω1
V̄ 1
ω1

� BC = V 1
2ω1
V̄ 1

0 ⊕ V 1
0 V̄

1
2ω1

Proof. First, we make some restrictions. According to previous lemmas and con-
siderations we should consider one cross only. If we choose BC = g−1 ⊗ g−1 nec-
essary condition to satisfy the ALC is g−1 ⊗ g1 = C ⊕ C. The only way how to
get this decomposition is that g0 is simple and is of correct type. Restrictions for
BC = B1 ⊕B2 are clear from the lemma 10 above.

We start with BC = g−1 ⊗ ḡ−1. In each case we describe which node is crossed.
From now, we work with weights instead of vector spaces labelled by weights.

� An - first node: g−1 ⊗ g1 ≃ ω1 ⊗ ωn−1 = C ⊕ 0 The ALC is satisfied.

� Bn - last node: g−1 ⊗ g1 ≃ ωn−1 ⊗ ω1. The ALC is satisfied.

� Cn - last node: g−1 ⊗ g1 ≃ 2ωn−1 ⊗ 2ω1 = C ⊕ (ω1 + ωn−1) ⊕ 0

� Dn - last node: g−1 ⊗ g1 ≃ ωn−2 ⊗ ω2 = C ⊕ (ω1 + ωn−1) ⊕ 0

� E6 - last node: g−1 ⊗ g1 ≃ ω3 ⊗ ω3 = C ⊕ (ω1 + ω5) ⊕ (ω2 + ω4) ⊕ 0

� E6 - first node: g−1 ⊗ g1 ≃ ω4 ⊗ ω5 = C ⊕ ω2 ⊕ 0

� E7 - last node: g−1 ⊗ g1 ≃ ω4 ⊗ ω3 = C ⊕ (ω2 + ω5) ⊕ (ω1 + ω6) ⊕ 0

� E7 - first node: g−1 ⊗ g1 ≃ ω1 ⊗ ω5 = C ⊕ ω6 ⊕ 0

� E8 - last node: g−1 ⊗ g1 ≃ ω3 ⊗ ω5 = C ⊕ (ω2 + ω6) ⊕ (ω1 + ω7) ⊕ 0

� E8 - seventh node: g−1 ⊗ g1 ≃ ω7 ⊗ ω8 = C ⊕ ω4 ⊕ ω2 ⊕ 0

� G2 - first node: g−1 ⊗ g1 ≃ ω1 ⊗ ω1 = C ⊕ 0 The ALC is satisfied.

� G2 - last node: g−1 ⊗ g1 ≃ 3ω1 ⊗ 3ω1 = C ⊕ 4ω1 ⊕ 2ω1 ⊕ 0

Now we proceed to BC = B1 ⊕ B2. Because B1 and B2 are conjugated it is
sufficient to consider only one part, say B1. We split choice of B into two cases.
First, when g0 is simple algebra and second when it is not simple.
Let g0 be a simple Lie algebra.

� An - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1, B1 ⊗ g1 ≃ 2ω1 ⊗ ωn−1 = C ⊕ ω1 The
ALC is satisfied.

� Bn - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1⊕0, B1⊗g1 ≃ 2ω1⊗ω1 = C⊕(ω1+ω2)⊕ω1
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� Bn - last node: ⊙2g−1 ≃ ⊙2ωn−1 = 2ωn−1, B1⊗ g1 ≃ 2ωn−1⊗ω1 = C ⊕ω1 The
ALC is satisfied.

� Cn - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1, B1⊗g1 = 2ω1⊗ω1 = C⊕(ω1+ω2)⊕ω1

� Cn - last node: ⊙2g−1 ≃ ⊙22ωn−1 = 4ωn−1 ⊕ 2ωn−2,

1. B1 ⊗ g1 ≃ 4ωn−1 ⊗ 2ω1 = C ⊕ (ω1 + 3ωn−1) ⊕ 2ωn−1

2. B1⊗g1 ≃ 2ωn−2⊗2ω1 = C⊕(ω1+ωn−2+ωn−1)⊕2ωn−1. It works similarly
for C3-algebra.

� Dn - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1⊕0, B1⊗g1 ≃ 2ω1⊗ω1 = C⊕(ω1+ω2)⊕ω1

� Dn - last node: ⊙2g−1 ≃ ⊙2ωn−2 = 2ωn−2 ⊕ ωn−4,

1. B1 ⊗ g1 ≃ 2ωn−2 ⊗ ω2 = C ⊕ (ω1 + ωn−2 + ωn−1) ⊕ ωn−2

2. B1 ⊗ g1 ≃ ωn−4 ⊗ ω2 = C ⊕ (ω1 + ωn−3) ⊕ ωn−2

� E6 - first node: ⊙2g−1 ≃ ⊙2ω4 = 2ω4 ⊕ ω1,

1. B1 ⊗ g1 ≃ 2ω4 ⊗ ω5 = C ⊕ (ω2 + ω4) ⊕ ω4

2. B1 ⊗ g1 ≃ ω1 ⊗ ω5 = C ⊕ ω4. The ALC is satisfied.

� E6 - last node: ⊙2g−1 ≃ ⊙2ω3 = 2ω3 ⊕ (ω1 + ω5),

1. B1 ⊗ g1 ≃ 2ω3 ⊗ ω3 = C ⊕ (ω2 + ω3 + ω4) ⊕ (ω1 + ω3 + ω5) ⊕ ω3

2. B1 ⊗ g1 ≃ (ω1 + ω5) ⊗ ω3 = C ⊕ (ω1 + ω2) ⊕ (ω4 + ω5) ⊕ ω3

� E7 - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1 ⊕ ω5

1. B1 ⊗ g1 ≃ 2ω1 ⊗ ω5 = C ⊕ (ω1 + ω6) ⊕ ω1

2. B1 ⊗ g1 ≃ ω5 ⊗ ω5 = C ⊕ ω4 ⊕ ω1

� E7 - sixth node: ⊙2g−1 ≃ ⊙2ω5 = 2ω5 ⊕ ω2

1. B1 ⊗ g1 ≃ 2ω5 ⊗ ω5 = C ⊕ (ω4 + ω5) ⊕ (ω2 + ω5) ⊕ ω5

2. B1 ⊗ g1 ≃ ω2 ⊗ ω5 = C ⊕ (ω1 + ω6) ⊕ ω5

� E7 - last node: ⊙2g−1 ≃ ⊙2ω3 = 2ω3 ⊕ (ω1 + ω5)

1. B1 ⊗ g1 ≃ 2ω3 ⊗ ω4 = C ⊕ (ω2 + ω3 + ω5) ⊕ (ω1 + ω3 + ω6) ⊕ ω3

2. B1⊗g1 ≃ (ω1+ω5)⊗ω4 = C⊕(ω1+ω3+ω6)⊕2ω5⊕(ω4+ω6)⊕(ω1+ω2)⊕ω3

� E8 - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1 ⊕ ω6

1. B1 ⊗ g1 ≃ 2ω1 ⊗ ω1 = C ⊕ (ω1 + ω2) ⊕ (ω1 + ω6) ⊕ ω1

2. B1 ⊗ g1 ≃ ω1 ⊗ ω6 = C ⊕ ω7 ⊕ ω1

� E8 - sevent node: ⊙2g−1 ≃ ⊙2ω6 = 2ω6 ⊕ ω3

1. B1 ⊗ g1 ≃ 2ω6 ⊗ ω7 = C ⊕ (ω4 + ω6) ⊕ (ω2 + ω6) ⊕ ω6

2. B1 ⊗ g1 ≃ ω3 ⊗ ω7 = C ⊕ (ω2 + ω6) ⊕ (ω1 + ω7) ⊕ ω6
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� E8 - last node: ⊙2g−1 ≃ ⊙2ω5 = 2ω5 ⊕ (ω3 + ω7)

1. B1 ⊗ g1 ≃ 2ω5 ⊗ ω3 = C ⊕ (ω2 + ω5 + ω6) ⊕ (ω1 + ω5 + ω7) ⊕ ω5

2. B1 ⊗ g1 ≃ (ω3 + ω7) ⊗ ω3 = C ⊕ (ω2 + ω4 + ω7) ⊕ (ω1 + ω5 + ω7) ⊕ (ω2 +
ω3) ⊕ (ω1 + ω4) ⊕ (ω6 + ω7) ⊕ ω5

� G2 - first node: ⊙2g−1 ≃ ⊙2ω1 = 2ω1, B1 ⊗ g1 ≃ 2ω1 ⊗ ω1 = 3ω1 ⊕ ω1 The
ALC is satisfied.

� G2 - last node: ⊙2g−1 ≃ ⊙23ω1 = 6ω1 ⊕ 2ω1

1. B1 ⊗ g1 ≃ 6ω1 ⊗ 3ω1 = 9ω1 ⊕ 7ω1 ⊕ 5ω1 ⊕ 3ω1

2. B1 ⊗ g1 ≃ 2ω1 ⊗ 3ω1 = 5ω1 ⊕ 3ω1 ⊕ ω1

Now suppose g0 is not simple. In this case, irreducible representations of gss0
are tensor product of irreducible representations of simple algebras from which
gss0 consist of. Let us suppose, gss0 consist of two simple algebras. Following fact
will be helpful in some computations, ⊙2(A ⊗ B) = ⊙2(A) ⊗ ⊙2(B) ⊕ ∧2(A) ⊗
∧2(B), where A and B are irreducible representations of simple factors. By this
decomposition one can easily find whether admissible representation occurs in
⊙2(A ⊗B), where by an admissible representation we mean a representation on
which one simple subalgebra acts nontrivialy only.

� An - second node: ⊙2g−1 ≃ ⊙2(ω1, ω1) = (2ω1,2ω1) ⊕ (0, ω2), B1 ⊗ g1 ≃
(0, ω2) ⊗ (ω1, ωn−2) = (ω1,C) ⊕ (ω1, ω1) The ALC is satisfied.

� An - k-th node: ⊙2g−1 ≃ ⊙2(ωk−1, ω1) = (2ωk−1,2ω1) ⊕ (ωk−2, ω2)

� Bn - second node: ⊙2g−1 ≃ ⊙2(ω1, ω1) = (2ω1,2ω1) ⊕ (2ω1,0) ⊕ (0, ω2),

1. B1 ⊗ g1 ≃ (2ω1,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ω1, ω1) The ALC is satisfied.

2. B1 ⊗ g1 ≃ (0, ω2) ⊗ (ω1, ω1) = (ω1,C) ⊕ (ω1, ω3) ⊕ (ω1, ω1)

� Bn - k-th node: ⊙2g−1 ≃ ⊙2(ωk−1, ω1) = (2ωk−1,2ω1)⊕(2ωk−1,0)⊕(ωk−2, ω2),
B1 ⊗ g1 ≃ (2ωk−1,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ωk−1, ω1). The ALC is satisfied.

� Bn - (n − 1)-th node: ⊙2g−1 ≃ ⊙2(ωn−2,2ω1) = (2ωn−2,4ω1) ⊕ (2ωn−2,0) ⊕
(ωn−3,2ω1)
B1⊗g1 ≃ (2ωn−2,0)⊗(ω1,2ω1) = (C,2ω1)⊕(ωn−2,2ω1). The ALC is satisfied.

� Cn - second node: ⊙2g−1 ≃ ⊙2(ω1, ω1) = (2ω1,2ω1) ⊕ (0, ω2) ⊕ (0,0), B1 ⊗
g1 ≃ (0, ω2)⊗(ω1, ω1) = (ω1,C)⊕(ω1, ω3)⊕(ω1, ω1). The ALC is satisfied in
the case of C4-algebra because of decomposition B1⊗g1 ≃ (0, ω2)⊗(ω1, ω1) =
(ω1, ω2 + ω1) ⊕ (ω1, ω1).

� Cn - k-th node: ⊙2g−1 ≃ ⊙2(ωk−1, ω1) = (2ωk−1,2ω1)⊕(ωk−2, ω2)⊕(ωk−2,0),
B1 ⊗ g1 ≃ (ωk−2,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ωk−1, ω1). According to the fact
above, we choose ∧2(A) ⊗ ∧2(B). In the case k = 2l + 1, there is no nonde-
generated antisymmetric metric.

� Cn - (n − 1)-th node: ⊙2g−1 ≃ ⊙2(ωn−2, ω1) = (2ωn−2,2ω1) ⊕ (ωn−3,0),
B1 ⊗ g1 ≃ (ωn−3,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ωn−2, ω1). The ALC is satisfied.
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� Dn - second node: ⊙2g−1 ≃ ⊙2(ω1, ω1) = (2ω1,2ω1) ⊕ (2ω1,0) ⊕ (0, ω2),
B1 ⊗ g1 ≃ (2ω1,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ω1, ω1). The ALC is satisfied.

� Dn - k-th node: ⊙2g−1 ≃ ⊙2(ωk−1, ω1) = (2ωk−1,2ω1)⊕(2ωk−1,0)⊕(ωk−2, ω2)
B1 ⊗ g1 ≃ (2ωk−1,0) ⊗ (ω1, ω1) = (C,ω1) ⊕ (ωk−1, ω1). The ALC is satisfied.

� Dn - (n − 2)-th node: ⊙2g−1 ≃ ⊙2(ωn−3, ω1, ω1) = (2ωn−3,2ω1,2ω1) ⊕
(2ωn−3,0,0) ⊕ (ωn−4,2ω1,0) ⊕ (ωn−4,0,2ω1). Clearly, if more that one al-
gebra acts nontrivialy there will be too many components.
B1 ⊗ g1 ≃ (2ωn−3,0,0) ⊗ (ω1, ω1, ω1) = (C,ω1, ω1) ⊕ (ωn−3, ω1, ω1). The ALC
is satisfied.

� E6 - second node: ⊙2g−1 ≃ ⊙2(ω1, ω3) = (2ω1,2ω3)⊕(2ω1, ω1)⊕(0, ω2+ω4),
B1⊗g1 ≃ (0, ω2 +ω4)⊗(ω1, ω2) = (ω1,C)⊕(ω1, ω1 +ω3 +ω4)⊕(ω1, ω1 +ω2)⊕
(ω1,2ω4) ⊕ (ω1, ω3)

� E6 - third node: ⊙2g−1 ≃ ⊙2(ω2, ω1, ω2) = (2ω2,2ω1,2ω2) ⊕ (2ω2,0, ω1) ⊕
(ω1,0,2ω2) ⊕ (ω1,2ω1, ω1)

� E7 - second node: ⊙2g−1 ≃ ⊙2(ω1, ω4) = (2ω1,2ω4) ⊕ (2ω1, ω1) ⊕ (0, ω3)
B1⊗g1 ≃ (0, ω3)⊗(ω1, ω5) = (ω1, ω3+ω5)⊕(ω1, ω2+ω4)⊕(ω1, ω1+ω5)⊕(ω1, ω4)

� E7 - third node: ⊙2g−1 ≃ ⊙2(ω2, ω3) = (2ω2,2ω3)⊕(2ω2, ω1)⊕(ω1, ω2+ω4)

� E7 - fourth node: ⊙2g−1 ≃ ⊙2(ω3, ω1, ω2) = (2ω3,2ω1,2ω2) ⊕ (2ω3,0, ω1) ⊕
(ω2,2ω1, ω1) ⊕ (ω2,0,2ω2)

� E7 - fifth node: ⊙2g−1 ≃ ⊙2(ω4, ω1) = (2ω4,2ω1) ⊕ (ω2,2ω1) ⊕ (ω3 + ω5,0),
B1⊗g1 ≃ (ω3+ω5,0)⊗(ω2, ω1) = (ω2+ω3+ω5, ω1)⊕(ω1+ω4+ω5, ω1)⊕(ω1+
ω3, ω1) ⊕ (2ω5, ω1) ⊕ (ω4, ω1)

� E8 - sixth node: ⊙2g−1 ≃ ⊙2(ω1, ω5) = (2ω1,2ω5) ⊕ (2ω1, ω3) ⊕ (0, ω4 + ω6)
B1⊗g1 ≃ (0, ω4 +ω6)⊗(ω1, ω2) = (ω1,C)⊕(ω1, ω1 +ω5 +ω6)⊕(ω1, ω1 +ω4)⊕
(ω1,2ω6) ⊕ (ω1, ω5)

� E8 - fifth node: ⊙2g−1 ≃ ⊙2(ω2, ω1, ω4) = (2ω2,2ω1,2ω4) ⊕ (2ω2,0,2ω4) ⊕
(2ω2,0, ω3) ⊕ (ω1,0,2ω4)

� E8 - fourth node: ⊙2g−1 ≃ ⊙2(ω3, ω3) = (2ω3,2ω3)⊕(ω2+ω4, ω2)⊕(ω1,2ω3)

� E8 - third node: ⊙2g−1 ≃ ⊙2(ω4, ω2) = (2ω4,2ω2) ⊕ (ω3, ω1) ⊕ (ω1,2ω2)

� E8 - second node: ⊙2g−1 ≃ ⊙2(ω5, ω1) = (2ω5,2ω1) ⊕ (ω1,2ω1) ⊕ (ω4,0)
B ⊗ g1 ≃ (ω4,0)⊗ (ω1, ω1) = (ω1 +ω4, ω1)⊕ (ω5 +ω6, ω1)⊕ (ω2, ω1)⊕ (ω5, ω1)

� F4 - second node: ⊙2g−1 ≃ ⊙2(ω1, ω2) = (2ω1,2ω2) ⊕ (0, ω1)
B1 ⊗ g1 ≃ (0, ω1) ⊗ (ω1, ω1) = (ω1,C) ⊕ (ω1, ω2). There is a complication
with this result. Clearly, B corresponds to ∧2(A)⊗∧2(B), according to the
fact above. Since dim(B) is three, as g0-representation, all antisymmetric
forms are degenerated.

� F4 - third node: ⊙2g−1 ≃ ⊙2(2ω2, ω1) = (4ω2,2ω1)⊕(ω1+2ω2,0)⊕(2ω1,2ω1)
B1⊗g1 ≃ (ω1+2ω2,0)⊗(2ω1, ω1) = (C,ω1)⊕(ω1+3ω2, ω1)⊕(2ω1+ω2, ω1)⊕
(2ω2, ω1) ⊕ (ω1, ω1)
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Some decompositions can be computed by LiE online service.
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6. Examples of metric bundles,
solutions and metrics

In this chapter we show a few examples how to compute metric tractor bundle and
its gss0 -decomposition, solutions of the first BGG equation and the corresponding
metric.

Definition 5. By a metric tractor bundle we understand a tractor bundle on
which an invariant operator of first order acts.

Remark. Let the ALC holds, B ⊗ g1 ≃ B ⊚ g1 ⊕ g−1. According to construction of
the ALC, the invariant operator goes from B to B ⊚ g1 hence it is the first BGG
operator.

Remark. Suppose a reductive algebra g0 acts on V by the highest weight λ =
λ′ + λ0, where decomposition is into action of semisimple part and commutative
part. An action of one-dimensional center z(g0) on l-th tensor power of represen-
tation Vλ is given by lλ0.

Suppose, D ∶ Γ(G ×P B) → Γ(G ×P V ) is an invariant operator and let η ∈
KerD. If z(g0) acts nontrivialy on B, then by using exterior powers we can
find covariantly constant section ∧dim(B)η of a line bundle on which z(g0) acts
nontrivialy. Then by operations with line bundles we can construct a line bundle
L with covariantly constant sections such that action of z(g0) on L is as prescribed.

Let us suppose that η ∈ KerD, where D ∶ Γ(G ×P (Bλ ⊗ Lc)) → Γ(G ×P V )
and Lc is one dimensional representation described by action of grading element
E ∈ z(g0) on L, E ⋅ ` = c`, ` ∈ L. If we find a line bundle L−c with covariantly
constant section σ we can form covariantly constant section η ⊗ σ ∈ Γ(G ×P B).
The last section is covariantly constant inverse metric if B is as in the ALC.

We use a symbol V for g-representation and V for g0-representation.

Example 1 - projective geometry
Let us consider the projective geometry, g ≃ sl(n + 1,R) with first crossed node.
An invariant differential operator of first order is acting on natural bundle which

is given by the g-representation B = 2 as the first BGG operator. If we
consider this representation as g0-representation it is given by the highest weight
λ = −4ω1 + 2ω2. It is symmetric part of second tensor power of defining represen-
tation. We compute its gss0 -decomposition. Let us start with defining representa-
tions and their decompositions:

Vω1 ⊗Vω1 = ( c1

Vα
) ⊗ ( c2

Vβ
) =

⎛
⎜
⎝

c
Vα ⊕ Vβ
Vαβ

⎞
⎟
⎠

Now we can define coordinates on metric tractor bundle VB =
⎛
⎜
⎝

c
va

τab

⎞
⎟
⎠

, where

τab = τ (ab) and va is in symmetric part. We know from appendix D how to
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find normal solutions in normal coordinates. In a suitable chart a solution is
the algebraic projection of R from metric tractor bundle to the zeroth cohomol-
ogy, where R ∶= f(φ(X)) = exp(−X) ⋅ v0 and X ∈ g− by appendix D. In our
case R = v − ρ(X)v + ρ(X)2v/2, where v ∈ VB and ρ is standard representation
on symmetric tensor power given by defining representation. An easy computa-

tion shows ρ(X)v =
⎛
⎜
⎝

0
2cXa

Xavb

⎞
⎟
⎠

and ρ(X)2v = 2
⎛
⎜
⎝

0
0

cXaXb

⎞
⎟
⎠

. Now the solution is

ηab(X) = τab −X(avb) + cX(aXb).

In the following we want to show that there exists the inverse metric which
correspond to η. To aim this it is sufficient to show the grading element E acts
nontrivialy on Bλ which is equivalent to evaluation λ(E) ≠ 0. From definition of
grading element E it is easy to show

E =
⎛
⎜⎜⎜
⎝

n
n+1 0 ⋯ 0
0 −1

n+1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ −1

n+1

⎞
⎟⎟⎟
⎠

Since λ(E) = −2 there exists the metric which correspond to solution η.

Example 2. - 2-Grassmannian geometry
Similarly we do this process for 2-Grassmannian and almost quaternion geom-

etry. Let us recall that the metric bundle is given by B = 1 and as
g0-representation its weight is the λ = −4ω2 + ω4. It is the second fundamental
representation hence antisymmetric part of second tensor power. Again, we start
with defining representations:

Vω1 ⊗Vω1 = ( Uα
Vα

) ⊗ ( Uβ
Vβ

) =
⎛
⎜
⎝

Uαβ
UαVβ ⊕ VαUβ

Vαβ

⎞
⎟
⎠

We define coordinates as VB =
⎛
⎜
⎝

ν
τAA

′

ζAB

⎞
⎟
⎠

, where ζAB = ζ[AB] and τab is in

antisymmetric part. Again by an elementary computations, we get ρ(X)v =
⎛
⎜
⎝

0
−

τA
′[AXK]

A′

⎞
⎟
⎠

and ρ(X)2v = 2

⎛
⎜⎜
⎝

0
0

X
[K
[L X

K′]
L′] ν

⎞
⎟⎟
⎠

. So solutions will have the form

ηAB(X) = ζAB − τA′[AXB]
A′ +X

[A
[A′X

B]
B′]ν.

The grading element E = diag(n−1
n+1 ,

n−1
n+1 ,

2
n+1 ,⋯, 2

n+1) gives us λ(E) = −6n+2
n+1 ,

hence there exists the metric which correspond to solution η.

Example 3. - almost quaternionic geometry
If we consider an almost quaternionic geometry computations will be similar. The
only difference is that index A′ disappear. It is caused by dimension of complex-

ified quaternions. Coordinates on metric tractor bundle will be VB =
⎛
⎜
⎝

ν
τA

ζAB

⎞
⎟
⎠
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where ν is a quaternion τA is a quaternionic vector which lies in antisymmetric
part and ζAB = ζ[AB]. Solution is ηAB(X) = ζAB − τ [AXB] + 2X[AXB]ν.

Example 4. - c-projective geometry.
Let us look at metric tractor bundle. It is An-algebra with representation which
is given by diagram:

1

1

= Vω1ω1

It is tensor product of conjugated defining representations, so

Vω1ω1 = Vω1 ⊗Vω1 = ( c1

Vα
) ⊗ ( c2

Vᾱ
) =

⎛
⎜
⎝

c
Vα ⊕ Vᾱ
Vαᾱ

⎞
⎟
⎠

In the metric tractor bundle VB, we will use following coordinates
⎛
⎜
⎝

c
va

τab

⎞
⎟
⎠
. Now

we want to describe solutions of the corresponding equation Dη = 0 for D ∶ G ×P
B → G ×P (B ⊚ g1). Computations are identical with projective case, ρ(X)u =
⎛
⎜
⎝

0
(c1 + c2)Xa

vaXb

⎞
⎟
⎠

and ρ2(X)u =
⎛
⎜
⎝

0
0

2cXab

⎞
⎟
⎠

, where u ∈ VB. Therefore ηab(X) =

τab − vaXb + cXab.
Computations for nontrivial action of the center is almost the same as in pro-

jective case. The only exception is that in c-projective geometry we use semisim-
ple algebra g⊕ ḡ instead of simple algebra, hence grading element is of the form
(E,E).
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7. Reducible g−1-cases

In this chapter, we show a way how to the ALC can be generalized to reducible
g±1-part. This procedure is similar to the end of the proof of theorem 7 in chapter
3 and to construction of invariant operators in section 2.2.

Let us suppose complex k-cross geometry. In this case we have decomposi-
tions of g±1-parts into ⊕k

i=1 g
i
±1, by the Kostant’s version of the Bott-Borel-Weil

theorem. Let V be complex irreducible g0-representation. We can find an invari-
ant first order differential operator D ∶ Γ(G ×P V ) → Γ(G ×P ⊕k

i (V ⊚ gi1)). Let us
recall ∇∣H ∶ Γ(G ×P V ) → Γ(G ×P (V ⊗ g1)). If we consider η ∈ Ker D we have
π○∇∣Hη = 0 for every Weyl covariant derivative ∇, where π is bundle map between
natural bundles which arise from natural projection V ⊗ g1 → ⊕k

i (V ⊚ gi1) and
H = G ×P g−1. If we suppose that V is not trivial representation and V ⊂ ⊙2gi0−1

for some i0 ∈ {1,⋯, k}, then it is possible to choose Weyl covariant derivative
∇ in such a way that π′ ○ ∇∣Hη = 0 for η ∈ Ker D, where π′ is the map between
natural bundles which is induced by natural projection V ⊗g1 →⊕k

i (V ⊚gi1)⊕gi0−1.

Now, we suppose Bl ⊂ ⊙2gl−1 is nontrivial irreducible g0-representation and
Bl ⊗ g1 = ⊕k

i (Bl ⊚ gi1) ⊕ gl−1 for all l ∈ {1,⋯, k}. Clearly, B ∶= ⊕k
i Bi corresponds

to nondegenerated inverse metrics. By symbol Dl we denote first order invariant
differential operator which corresponds to Bl in the sense as above. If η ∈Ker D
then there exists Weyl covariant derivative ∇ such that ∇∣Hη = 0, where D = ⊕Dl.
Let us mention, if decomposition of Bl⊗g1 has less then k+1 components it does
not make a problem. These operators exist after a suitable choice of action of
z(g0) which was explained in chapter 2. Therefore we skip details concerning
manipulation with suitable line bundles.

By appropriate manipulation with invariant operators, this construction can
be applied in real k-cross geometries, too.

Now, we illustrate this method in a few examples. We will consider gss0 -
representations only. In the following, it is easy to see that gss0 -representation B
which is trivial has nontrivial action of center z(g0).

An-case:
Let g be a Lie algebra of An-type for n ≥ 3. Let us consider complex two-
cross geometry, which arise from two crosses placed together in the left of Dynkin
diagram. For n = 3 both g±1-parts have the highest weight 0⊕ω1. Clearly, ⊙2g−1 =
0⊕2ω1⊕ω1. According to the considerations above, we have B = B1⊕B2 = 0⊕2ω1

and B corresponds to nondegenerated metrics. Tensor product B⊗g1 = (B1⊗g1)⊕
(B2⊗g1) decomposes to (0⊕ω1)⊕ (2ω1⊕ 3ω1⊕ω1). Therefore, we can construct
two invariant operators D1 ∶ Γ(G ×P B1) → Γ(G ×P Vω1) and D2 ∶ Γ(G ×P B2) →
Γ(G ×P (V2ω1 ⊕ V3ω1)) such that D1 can be corrected on bundle which is given
by the trivial representation and D2 can be corrected on Γ(G ×P Vω1). So, there
exists a Weyl covariant derivative ∇ such that ∇∣Hη = 0 for η ∈Ker (D1 ⊕D2).

The case n > 3 is similar but with different representations. Namely, represen-
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tation g−1 has the highest weight 0⊕ω1 and the highest weight of representation
g1 is 0⊕ωn−2. Second symmetric power of g−1 decomposes into 0⊕ 2ω1 ⊕ω1. We
choose B = B1⊕B2 = 0⊕ 2ω1. Now, tensor product B⊗g1 = (B1⊗g1)⊕ (B2⊗ g1)
decomposes into (0 ⊕ ωn−2) ⊕ (2ω1 ⊕ (2ω1 + ωn−2) ⊕ ω1). Again, we see there are
two invariant operators which can be corrected.
Now, suppose that geometry arise from Dynkin diagram in which two crosses are
placed together in such a way that gss0 is of (Ak ⊕ An−k−2)-type. First nonsym-
metric position is in Dynkin diagram of An-type with k = 1 and n ≥ 5. In this
case we have following list of informations:

� g−1 ≃ (ω1,0) ⊕ (0, ω1)

� g1 ≃ (ω1,0) ⊕ (0, ωn−3)

� ⊙2g−1 ≃ (2ω1,0) ⊕ (ω1, ω1) ⊕ (0,2ω1), B = B1 ⊕B2 ≃ (2ω1,0) ⊕ (0,2ω1)

� B⊗g1 = [B1⊗g1]⊕[B2⊗g1] ≃ [(3ω1,0)⊕(ω1,0)⊕(2ω1, ωn−3)]⊕[(ω1,2ω1)⊕
(0,2ω1 + ωn−3) ⊕ (0, ω1)]

We can get two invariant operators and make corrections of both operators on
components of g−1-part.

Last way how to obtain reducible g−1-part is to put pair of crosses together
in Dynkin diagram in such a way that k ≥ 2, n − k − 2 ≥ 2 and k ≠ n − k − 2. The
first example of such diagram is A7 with k = 2. Again, we compute generalized
ALC for geometries which arise from diagrams as described above. We have the
following list:

� g−1 ≃ (ωk,0) ⊕ (0, ω1)

� g1 ≃ (ω1,0) ⊕ (0, ωn−k−2)

� ⊙2g−1 ≃ (2ωk,0) ⊕ (ωk, ω1) ⊕ (0,2ω1), B = B1 ⊕B2 ≃ (2ωk,0) ⊕ (0,2ω1)

� B ⊗ g1 = [B1 ⊗ g1] ⊕ [B2 ⊗ g1] ≃ [(ω1 + 2ωk,0) ⊕ (ωk,0) ⊕ (2ωk, ωn−k−2)] ⊕
[(ω1,2ω1) ⊕ (0,2ω1 + ωn−k−2) ⊕ (0, ω1)]

As in previous case, we can form two invariant operators which can be corrected
on components of g−1-part.

This procedure can be mimic in different types of parabolic geometries, i.e.
we can consider Dynkin diagram of different type than A and make crosses as
above.
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8. Appendix A - Homogeneous
spaces

All definitions and informations in this appendix can be found in [10]. So proofs
and more careful descriptions are contained there.

Klein geometry

Let G be a Lie group and let H ⊂ G be a closed subgroup. Then H is a Lie
subgroup of G and a space of a cosets G/H is canonically a smooth manifold
endowed with a transitive left action of G.

Definition 6. Let G be a Lie group and let H ⊂ G be a closed subgroup. Let g
be the Lie algebra of G and let h be the Lie algebra of H. The pair (G,H) is
called Klein geometry if the group of the automorphisms of G/H is exactly the
set {`g ∣ g ∈ G} where `g is a left action by an element of G. The kernel K ⊂ G of
the Klein geometry is the set {g ∈ G∣ `g = idG/H}. A Klein geometry is called

� effective, if the action of G on G/H is effective.

� infinitesimally effective, if the kernel K is discrete.

� reductive, if there is an H-invariant subspace n ⊂ g such that g = n ⊕ h as
an H-module.

� split, if there is a Lie algebra g− ⊂ g such that g = g− ⊕ h as vector spaces.

It is easy to see that K ⊂H and K is normal subgroup of G.

Lemma 12. Let (G,H) be a Klein geometry. Then the kernel K is the maximal
normal subgroup of G which is contained in H. Moreover, the Klein geometry
is effective if and only if there is no nontrivial normal subgroup of G which is
contained in H.

Homogeneous bundles

A homogeneous bundles are objects associated to homogeneous spaces in the sense
of a Klein geometries. Let (G,H) be a Klein geometry. There is the canonical
projection p ∶ G → G/H which is an H-principal bundle. By ` ∶ G ×G/H → G/H
we denote the canonical left action `(g, g′H) ∶= gg′H.

Definition 7. � A homogeneous bundle over G/H is a locally trivial fiber
bundle π ∶ E → G/H together with a left G-action ˜̀ ∶ G ×E → E which lifts
the action on G/H.

� A homogeneous vector bundle over G/H is a homogeneous bundle π ∶ E →
G/H, which is a vector bundle and such that for each element g ∈ G the
bundle map ˜̀

g ∶ E → E is a vector bundle homomorphism.
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� A homogeneous principal bundle is a homogeneous bundle π ∶ E → G/H
which is a principal bundle and such that for all g ∈ G the bundle map ˜̀

g is
a homomorphism of principle bundles.

� A morphism of homogeneous bundles (respectively homogeneous vector bun-
dles or homogeneous principal bundles) is a G-equivariant bundle map (re-
spectively G-equivariant homomorphism of vector bundles or principal bun-
dles) which covers the identity on G/H. This property is sometimes called
intertwining property and morphism is called intertwining operator on ho-
mogeneous bundles.

Theorem 13. Every associated bundle to a homogeneous (vector) bundle is again
a homogeneous (vector) bundle, respectively.

As an example of the last theorem the tangent bundle T (G/H) of G/H is the
homogeneous vector bundle corresponding to a H-representation on g/h. This
H-representation is the restriction of the adjoint representation of G. By the
naturality of the correspondence between homogeneous vector bundles and H-
representations, this implies that the cotangent space T ∗(G/H) corresponds to
the dual representation (g/h)∗. Again, by naturality, the tensor bundle ⊗kT (G/H)
⊗ ⊗lT ∗(G/H) corresponds to the representation ⊗kg/h⊗⊗l(g/h)∗.

There is a way how to describe the tangent bundle T (G/H) as a first order
G-structure which use the Maurer-Cartan form as a fundamental tool. This
description leads to the notion of the Cartan geometry. But first we state a
special case of the geometric version of Frobenius reciprocity, which connect a
sections of homogeneous bundles and an invariant elements.

Theorem 14. Let E → G/H be a homogeneous bundle with a standard fiber E0

(viewed as H-space). Then there is a natural bijection between the set Γ(E)G
of G-invariant sections of E and the set (E0)H of H-invariant elements in the
standard fiber.

There is at least one interesting example as a consequence of the theorem.
Namely, it allows us to reduce questions about the existence of an invariant
tensor fields (e.g. Riemannian metric) to problems of finite-dimensional repre-
sentation theory. Since ⊗kT (G/H) ⊗ ⊗lT ∗(G/H) is homogeneous vector bundle
with standard fibre ⊗kg/h ⊗ ⊗l(g/h)∗, it follows from the Frobenius reciprocity
theorem that G-invariant tensors fields are in bijective correspondence with H-
invariant elements of ⊗kg/h⊗⊗l(g/h)∗.

The following theorem is a result on classification of homogeneous principal
bundles.

Theorem 15. Let G and K be a Lie groups and let H ⊂ G be a closed subgroup.
Let P → G/H be a homogeneous principal bundle with structure group K. Then
there is a smooth homomorphism i ∶ H → K such that P ≃ G ×H K, where the
action of H on K is given by h ⋅ k = i(h)k for h ∈H and k ∈K.

The bundles corresponding to two homomorphisms i, î ∶H →K are isomorphic
(over idG/H) if and only if i and î are conjugate, i.e., î(h) = ki(h)k−1 for some
fixed k ∈K and for all h ∈H.

Let us recall the definition of an invariant differential operators in the case of
a homogeneous spaces.
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Definition 8. Let E,F be a homogeneous vector bundles over G/H. An in-
variant differential operator is a differential operator D ∶ Γ(E) → Γ(F ) which is
G-equivariant, i.e. such that D(g ⋅ s) = g ⋅ D(s) for all g ∈ G and for all s ∈ Γ(E).

Now we explain how jet prolongation help us to characterize linear differential
operators. Let E → M be arbitrary vector bundle over smooth manifold M ,
then for k ∈ N we have the k-jet prolongation JkE which is again vector bundle
over M . If F is another vector bundle over M , then a differential operator
D ∶ Γ(E) → Γ(F ) is of order ≤ k if and only if for any two sections s, t ∈ Γ(E)
and any point x ∈ M , the equation jkxs = jkxt implies D(s)(x) = D(t)(x). If
D is such an operator, then we get an iduced bundle map D̃kJE → F over the

identity on M , defined by D̃(jkxs) ∶= D(s)(x). Conversely, this formula associates
a differential operator to any bundle map D̃ D. Clearly, D is linear if and only if
D̃ is a homomorphism of vector bundles.

35



9. Appendix B - Parabolic
geometry

First we need a few concepts concerning on the Cartan geometry and then we
will define a parabolic geometry. We are following the book [10].

Cartan geometry

Definition 9. Let H ⊂ G be a Lie subgroup of a Lie group G and let g and h
be a Lie algebra of G and H, respectively. A Cartan geometry of type (G,H) on
manifold M is a principal fibre bundle p ∶ P →M with structure group H which is
endowed with a g-valued one-form ω ∈ Ω1(M,g), called Cartan connection, such
that:

(rh)∗ω = Ad(h−1) ○ ω, ∀h ∈H
ω(ζX(u)) =X, ∀X ∈ h

ω(u) ∶ TuP → g is a linear isomorphism for all u ∈ P
where ζX are fundamental vector fields.

The homogeneous model for the Cartan geometry of type (G,H) is the Klein
geometry of type (G,H) endowed with canonical Cartan connection which is
Maurer-Cartan form.

Parabolic geometry

Before we define a parabolic geometry we need a few notions and relations. In
a parabolic geometries there is an important notion of ∣k∣-graded semisimple Lie
algebra.

Definition 10. Let g be a semisimple Lie algebra and let k > 0 be an integer.
A ∣k∣-grading on g is a decomposition g = g−k ⊕ ⋯ ⊕ gk of g into direct sum of
subspaces such that

� [gi,gj] ⊂ gi+j, where gi = {0} if ∣i∣ > k

� the subalgebra g− ∶= g−k ⊕⋯⊕ g−1 is generated (as a Lie algebra) by g−1

� g−k ≠ {0} and gk ≠ {0}

Lemma 16. Let g be a ∣k∣-graded semisimple Lie algebra. Then p ∶= g0 ⊕⋯⊕ gk
is a subalgebra of g and p+ ∶= g1 ⊕ ⋯ ⊕ gk is nilpotent ideal in p. Similarly, the
subalgebra g− ∶= g−k ⊕⋯⊕ g−1 is nilpotent.

The g0-part is a subalgebra and the adjoint action makes each gi into a g0-
module such that the bracket [, ] ∶ gi ⊗ gj → gi+j is a g0-homomorphism.

Parallel important notion with grading is filtration.

Definition 11. Let g be a ∣k∣-graded semisimple Lie algebra. We define filtration
of g by gi = ⊕j≥i gj.
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Among other things there is one important element in the centre of g0.

Lemma 17. Let g be a ∣k∣-graded semisimple Lie algebra over K = R or C and
let B ∶ g × g→ K be nondegenerate invariant bilinear form. Then

� There is a unique element E ∈ g, called the grading element, such that
[E,X] = jX for all X ∈ gj, j = −k,⋯, k. The element E lies in the center
of the subalgebra g0.

� The isomorphism g→ g∗ provided by B is compatible with the filtration and
the grading of g. In particular, B induces dualities of g0-modules between
gi and g−i and the filtration component gi is exactly the annihilator (with
respect to B) of g−i+1. Hence, B induces a duality of p-modules between
g/g−i+1 and gi and in particular between g/p and p+.

Now we recall some consequences on the group level.

Lemma 18. � The Lie subalgebras g0 ⊂ p ⊂ g can be characterized as

g0 = {X ∈ g∣ ad(X)(gi) ⊂ gi for all i = −k,⋯, k},

p = {X ∈ g∣ ad(X)(gi) ⊂ gi for all i = −k,⋯, k},

� Let G be a Lie group with a Lie algebra g. Then P ∶= ∩ki=−kNG(gi) ⊂ G is a
closed subgroup with a Lie algebra p, where NG(A) ∶= {g ∈ G∣Ad(g)(A) ⊂ A}
is a stabilizer.

Definition 12. Let g be a ∣k∣-graded semisimple Lie algebra and let G be a Lie
group with Lie algebra g.

� A parabolic subgroup of G corresponding to the given ∣k∣-grading is a sub-
group P ⊂ G which lies between ∩ki=−kNG(gi) and its connected component
of the identity.

� Given a parabolic subgroup P ⊂ G, we define the Levi subgroup G0 ⊂ P by

G0 = {g ∈ P ∣Ad(g)(gi) ⊂ gi for all i = −k,⋯, k}

Note that any parabolic subgroup has Lie algebra p and by definition it is a
closed subgroup. Finally we can state the definition of parabolic geometry.

Definition 13. A parabolic geometry is a Cartan geometry of type (G,P ), where
G is a semisimple Lie group and P ⊂ G is a parabolic subgroup corresponding to
some ∣k∣-grading of the Lie algebra g of G.

Obviously, a homogeneous model for parabolic geometries are Klein geome-
tries of a given type. Namely if we have a parabolic geometry of type (G,P ), the
Klein geometry of type (G,P ) is homogeneous bundle with semisimple group G
and parabolic subgroup P and on algebra level we have corresponding grading.
So we can use theory of homogeneous spaces in the case of homogeneous model
for parabolic geometry.

Now we state a few theorems about representation theory which are closely
related to parabolic geometries.
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Definition 14. Let g be a complex semisimple Lie algebra. A standard parabolic
subalgebra p of g is a Lie algebra that contains a Borel subalgebra b which can be
characterized as b = h ⊕⊕α∈∆+ gα where h is a Cartan subalgebra and ∆+ is the
set of positive roots.

There is a natural question how to describe all standard parabolic subalgebras
of g.

Theorem 19. Let g be a complex semisimple Lie algebra, h be a Cartan sub-
algebra, ∆ the corresponding system of roots and ∆0 the set of simple roots.
Then standard parabolic subalgebras p are in bijective correspondence with sub-
sets Σ ⊂ ∆0.

Similar theorems hold in real versions but there is a few complications with
real representation theory. Now we state theorem about p-dominant weights.
These are important in constructing Hasse diagram which in turn is important
for BGG operators. First, let us explain notation. The Weyl group of g will be
denoted by Wg. The set of those elements of Wg which send g-dominant weights
to p-dominant weights is denoted by W p.

Theorem 20. Let g be a complex semisimple Lie algebra and let p be the standard
parabolic subalgebra corresponding to a set Σ of simple roots. Let δp be the sum
of all fundamental weights corresponding to elements of Σ. Then the map ω ↦
ω−1(δp) restricts to a bijection between W p and the orbit of δp under Wg.

There is a fundamental theorem which has key consequences to our compu-
tations. It is Kostant’s version of the Bott-Borel-Weil theorem.

Theorem 21. Let g be a complex semisimple Lie algebra, p = g0 ⊕ p+ a standard
parabolic subalgebra, W the Weyl group of g, W p the set of the elements of W
which send g-dominant weights to p-dominant weights and δ the sum of all funda-
mental weights of g. For a finite-dimensional complex irreducible representation
V of g with highest weight λ, consider the Lie algebra cohomolohy H∗(p+, V ) and
for g0-dominant weight ν, let H∗(p+, V )ν be the isotypical component of highest
weight ν for the natural g0-representation on the cohomology. Then we have:

1. H∗(p+, V )ν ≠ {0} if and only if there is an element w ∈ W p such that
ν = νw ∶= w(λ + δ) − δ.

2. For any w ∈ W p, the isotypical component H∗(p+, V )νw is irreducible and
even the multiplicity of νw as a weight of C∗(p+, V ) is one, where C∗(p+, V )
stands for co-chains in cohomology. In particular, the set of irreducible
components of H∗(p+, V ) is in bijective correspondence with W p.

3. For w ∈W p, the isotypical component H∗(p+, V )νw is contained in the space
H`(w)(p+, V ) where `(w) is the length of w.

A simple computation shows H1(g−,K) ≃ (g−1)∗ ≃ g1 where K is a field of
complex or real numbers.
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10. Appendix C - Weyl
structures

Here we describe a notion of a Weyl structure and a Weyl connection. Again,
more details are in [10].

Let g be a ∣k∣-graded semisimple Lie algebra, G a Lie group with Lie algebra
g, let P ⊂ G be a parabolic subgroup for the given grading and G0 ⊂ P the
Levi subgroup. Let (p ∶ G → M,ω) be a parabolic geometry of type (G,P ) and
consider the underlying principal G0-bundle p0 ∶ G0 → M , which is by definition
G/P+. So there is a natural projection π ∶ G → G0 which is a principal bundle with
structure group P+.

Definition 15. A (local) Weyl structure for the parabolic geometry (p ∶ G →
M,ω) is a (local) smooth G0-equivariant section of σ ∶ G0 → G of the projection
π ∶ G → G0.

Fundamental result about Weyl structures is that there always exists a global
Weyl structure. Moreover the space of all Weyl structures is in bijective cor-
respondence with sections of graded cotangent space. This result is similar to
properties of covariant derivatives and affine vector spaces.

Theorem 22. For any parabolic geometry (p ∶ G → M,ω) there exists a global
Weyl structure σ ∶ G0 → G.

Fixing one Weyl structure σ there is a bijective correspondence between the
set of all Weyl structures and the space Γ(gr(T ∗M)) of smooth sections of the
associated graded of the cotangent bundle. Explicitly, this correspondence is given
by mapping Υ ∈ Γ(gr(T ∗M)) with corresponding functions Υi ∶ G0 → gi for i =
1,⋯, k to the Weyl structure σ̂(u) ∶= σ(u)exp(Υ1(u))⋯exp(Υk(u)).

There is a obvious way how to connect a Cartan connection ω and a Weyl
structure σ. We can consider pullback σ∗ω ∈ Ω(G0,g). Now we can use the
grading of algebra g and decompose this one-form according to grading, namely
σ∗ω = σ∗ω−k + ⋯ + σ∗ωk. Let us note every component of this one-form is G0-
equivariant.

Theorem 23. Let σ ∶ G0 → G be a Weyl structure on a parabolic geometry (p ∶
G →M,ω). Then we have:

� The component σ∗ω0 ∈ Ω(G0,g0) defines a principal connection on the bun-
dle p0 ∶ G0 →M .

� The components σ∗ω−k,⋯, σ∗ω−1 can be interpreted as defining element of
Ω(M,gr(TM)). This form determines an isomorphism TM → gr(TM)
which is a splitting of the filtration of TM . This means that for each i =
−k,⋯,−1 the subbundle T iM is mapped to⊕j≥i grj(TM) and the component
in gri(TM) is given by the canonical surjection T iM → T iM/T i+1M .

� The components σ∗ω1,⋯, σ∗ωk can be interpreted as a one-form
P ∈ Ω(M,gr(T ∗M)).
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Definition 16. Let σ ∶ G0 → G be a Weyl structure on a parabolic geometry
(p ∶ G →M,ω).

� The principal connection σ∗ω0 on the bundle G0 → M is called the Weyl
connection associated to the Weyl structure σ.

� The gr(TM)-valued one-form on M determined by the negative components
of σ∗ω is called soldering form associated to the Weyl structure σ.

� The one-form P ∈ Ω(M,gr(T ∗M)) induced by the positive components of
σ∗ω is called the Rho tensor associated to the Weyl structure σ.

Now we will proceed to the theorem about Weyl connections on associated
natural bundles.

Let (p ∶ G →M,ω) be a parabolic geometry of type (G,P ) and let ` ∶ P ×S →
S be a smooth left action of the group P on a smooth manifold S. We can
restrict this action to a smooth left action ` ∶ G0 × S → S. We can form the
associated bundle G×P S →M via the action `, while ` gives rise to a fiber bundle
G0×G0S →M . We know that we have a Weyl connection on the associated bundle
G0 ×G0 S →M .

Theorem 24. Let (p ∶ G →M,ω) be a parabolic geometry of type (G,P ) and let
S be a smooth manifold endowed with a smooth left P -action. Then choosing a
Weyl structure σ ∶ G0 → G induces an isomorphism G ×P S ≃ G0 ×G0 S and thus
gives rise to a connection on the natural bundle G ×P S. In the case of a natural
vector bundle this connection is automatically earilinear.

We need last observation about effect of a change of a Weyl structures on Weyl
connection. First we need a few new notions. A tractor bundle is an associated
bundle which correspond to restricted representation of G to P . Let V be a G-
module then it is P -module too and we can form an associated bundle G ×P V
which is a tractor bundle. There is one tractor bundle, called the adjoint tractor
bundle AM = G ×P g, which is of great importance, where the action of P on
g is the restricted adjoint action of G. There is an action AM × VM → VM
which is realized by derivative ρ′ if ρ ∶ G → GL(V ) is a representation. There
is an obvious filtration on AM which rise from the filtration of the Lie algebra
g, namely AM = A−kM ⊃ ⋯ ⊃ AkM . As usual we have a grading of the adjoint
tractor bundle, gri(AM) = AiM/Ai+1M .

Now we focus on slightly different set-up. Let V be a complete reducible
representation of P and let VM = G ×P V = G0 ×G0 V . From the above there is an
action gr0(AM) × VM → VM which we denote by ⋅. Let i = (i1,⋯, ik) where ij
are nonnegative integers for j = 1,⋯, k. Let us denote ∣∣i∣∣ ∶= i1 + 2i2 +⋯+ kik and
(−1)i ∶= (−1)i1+⋯+ik and i! ∶= i1!⋯ik!.

Theorem 25. Let σ and σ̂ be two Weyl structures related by

σ̂(u) = σ(u)exp(Υ1(u))⋯ exp(Υk(u)),

with corresponding section Υ = (Υ1,⋯,Υk) of gr(T ∗M). For a smooth section
ν of a bundle VM associated to a completely reducible representation of P , the
Weyl covariant derivatives ∇ and ∇̂ are related by

∇̂ξν = ∇ξν + JΥ, ξK ⋅ ν

40



where (ξ)σ = (ξ−k,⋯, ξ−1) and

JΥ, ξK ⋅ ν = ∑
∣∣i∣∣+j=0

(−1)i
i!

(ad(Υk)ik ○ ⋯ ○ ad(Υ1)i1(ξj)) ⋅ ν

41



11. Appendix D - BGG
resolutions

In this appendix we use constructions of [6],16, [9].

Lie algebra p+-homology with values in W

Let us consider a decomposition of a Lie algebra g = g−⊕g0⊕p+ as vector spaces.
Now we define the space Ck(p+,W ) = ∧kp+ ⊗W of k-chains on p+ with values in
W where W is a g-module. This spaces carries a natural action of p, the action
on W is the restriction of the g action and ξ ∈ p acts on β ∈ W ordinary as
ξ ⋅ β = ∑i[ξ, ei] ∧ (ei⨼β) where ei is a basis of p+ and ei is dual basis.

Now we define the boundary operator or codifferential
δ ∶ Ck(p+,W ) → Ck−1(p+,W ) as δ(β ⊗w) = ∑i(1

2e
i ⋅ (ei⨼β) ⊗w + ei⨼β ⊗ ei ⋅w).

Lemma 26. The boundary operator δ has property δ2 = 0 and for α ∈ p+, c ∈
Ck(p+,W ) δ(α ⋅ c) = α ⋅ δ(c) holds.

Definition 17. The cycles Zk, boundaries Bk and homology Hk of δ ∶ Ck(p+) →
Ck−1(p+,W ) are given by:

Zk(p+,W ) ∶=Ker δ
Bk(p+,W ) ∶= Im δ

Hk(p+,W ) ∶= Zk(p+,W )/Bk(p+,W )

All these spaces are p-modules by construction. It can be shown p+ maps
Zk(p+,W ) into Bk(p+,W ) and hence acts trivially on the homology Hk(p+,W ).

Lie algebra g−-cohomology with values in W

Now denote Ck(g−,W ) = ∧kp+ ⊗W the space of k-cochains on g− with values
in W . It carries a natural p∗-action where the action of χ ∈ p∗ on β ∈ ∧kp+ is
χ ⋅β = ∑i ei∧([ei, χ]⨼β) = ∑i[χ, ei]p+ ∧(ei⨼β) where [, ]p+ is Lie bracket projected
to p+ part. The coboundary operator or differential d ∶ Ck(g−,W ) → Ck+1(g−,W )
is defined by d(β ⊗w) = ∑i(1

2e
i ∧ (ei ⋅ β) ⊗w + ei ∧ β ⊗ ei ⋅w).

Lemma 27. The equation d = −(δ)∗ holds for δ as above for which k-chains are
Ck(g−,W ∗) = Ck(g−,W )∗.

There is possibility to define quabla operator ◻ = dδ + δd which provides
g0-isomorphisms Hk(g−,W ) ≃ Ker ◻ ≃ Hk(p+,W ). Let us remind cohomology
spaces are naturally p∗-modules but with trivial action of g−.

Bernstein-Gělfand-Gělfand (BGG) sequences

Let (G,M) be a Cartan geometry of a type (G,P ) and let V be a tractor bundle
(corresponding to g-module V) over M with a covariant derivative ∇ and the
exterior covariant derivative d∇ ∶ Ωk(V ) → Ωk+1(V ) where space Ωk(V ) stands for
k-forms on M with values in bundle V . This space is isomorphic to the natural
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bundle which is generated by P -module ∧kp+ ⊗ V . It allows us to construct
sequence of bundles which are derived from homology.

Theorem 28. Let (Ωk(V ))j denote the filtration on Ωk(V ) and let gr(Ωk(V ))
denote the associated graded bundle, similarly for Ωk+1(V ). Let Ek be a filtration
preserving differential operator from Ωk(V ) → Ωk+1(V ) with the property that the
associated graded map coincides with gr(d).

Then for every σ ∈Hk, there exists a unique element s ∈Ker δ with properties:

1. Πk(s) = σ, where Πk ∶Ker δ ⊂ Ωk(V ) →Hk is the natural projection

2. Ek(s) ∈Ker δ.

Moreover, the mapping Lk defined by σ ↦ Lk(σ) ∶= s is given by a differential
operator. The corresponding operator Dk is the defined by Dk ∶= Πk+1 ○Ek ○ Lk ∶
Hk →Hk+1.

The sequence of operators {Dk} is called the BGG sequence determined by
g-module V and the equation D0(σ) = 0 is called the first BGG equation.

Theorem 29. Let Lk+1 ○Dk = Ek ○Lk holds. Then Πk and Lk restrict to inverse
isomorphisms between Ker Ek ∩Ker δ and KerDk. In particular, if E0 = ∇ and
E1 = d∇ we have isomorphism between parallel sections of ∇ and kernel of the
first BGG operator D0.

Let (G,P ) be a parabolic Klein geometry and let D be the first BGG operator
given by a representation V. We claim dim(KerD) = dim(V). According to
theorem there is an isomorphism between KerD and parallel sections. Covariant
constant sections are given by a value in one point, by the invariance of an
operator. Therefore the result about equality of dimensions.

Now we define a special class of solutions of a first BGG equation.

Definition 18. Let V be the tractor bundle associated to a g-module V. Let
{Dk} be the BGG sequence determined by V and let Π ∶ V → H0 be the natural
projection, where the bundle H0 is the associated bundle to the zeroth cohomology.
A solution of the first BGG equation determined by V is called normal if it is of
the form Π(s) for a parallel section s of the tractor bundle V.

The following theorems ensure in some chart a normal solution of a first BGG
equation can be written as a polynomial. But first we need more considerations
and definitions.

Let (p ∶ G → M,ω) be a parabolic geometry of a type (G,P ). Fix a point
u0 ∈ G and put x0 ∶= p(u0) ∈M . For X ∈ g− we can consider the constant vector
field X̃ ∈ X(G) which is characterized by ω(X̃)(u) = X for all u ∈ G. There is
an open neighbourhood V ⊂ g− of zero such that the flow FlX̃t (u0) through u0 is
defined up to time t = 1 for all X ∈ V . Then Φ(X) ∶= FlX̃1 (u0) defines a smooth
map Φ ∶ V → G and we define φ = p ○Φ ∶ V →M .

By construction, φ(0) = x0 and the derivative T0φ ∶ g− → Tx0M is given by
X ↦ Tu0pω

−1
u0 (X). Since g− is complementary to p this is a linear isomorphism

by defining properties of a Cartan connection. Hence we can shrink V in such a
way that φ defines a diffeomorphism from V onto an open neighbourhood U of
x0 in M .
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Definition 19. Let (p ∶ G →M,ω) be a parabolic geometry of a type (G,P ) and
let W be a P -representation. We will use notation of previous two paragraphs.

� The normal chart determined by u0 is the diffeomorphism φ−1 ∶ U → V ⊂ g−.
Choosing a basis in g− we get induced local coordinates on M called the
normal coordinates determined by u0.

� The normal section σ of G determined by u0 is the smooth map σ ∶ U → G
characterized by σ(p(Φ(X))) = Φ(X) for all X ∈ V .

� The normal trivialisation of the associated bundle G ×P W determined by u0

is the trivialisation induced by the normal section determined by u0.

� A normal frame for G ×P W determined by u0 is a frame obtained from a
basis of W via a normal trivialisation.

There is a useful description of the trivialisations determined by σ in terms of
smooth functions. Recall that smooth sections of the bundle G ×P W → M over
U ⊂M are in bijective correspondence with smooth maps f ∶ p−1(U) →W which
are P -equivariant. In the local trivialisation determined by σ this section is given
by x→ (x, f(σ(x))). So it corresponds to the function f ○ σ ∶ U →W.

Lemma 30. Let (p ∶ G →M,ω) be a parabolic geometry of some fixed type (G,P )
and consider tractor bundle V →M corresponding to a representation V of G. Fix
a point u0 ∈ G, write x0 = p(u0) ∈ M and consider the normal section σ ∶ U → G
centred at x0 which is determined by u0.

If s ∈ Γ(V) is parallel for the canonical tractor connection, then the function f ∶
U → V which describes s in the given normal trivialisation is given by f(φ(X)) =
exp(−X) ⋅ (x0).

Theorem 31. Let (p ∶ G → M,ω) be a parabolic geometry of a type (G,P ) and
let V be a representation of G with natural grading V = V0⊕⋯⊕VN , and suppose
that α ∈ Γ(H0) is a normal solution to the first BGG operator determined by V.

Then for any normal section σ, the coefficients of α in a normal frame are
polynomials of degree at most N in the normal coordinates determined by σ.

Because of grading property and construction of normal coordinates for any
element X ∈ gi with i < 0, the corresponding linear map ρ(X) ∶ V → V has
the property ρ(X)N+1 = 0, where ρ is the representation of G on V. It follows,

f(φ(X)) = exp(−X) ⋅ v0 = ∑Nk=0
(−1)k
k! ρ(X)kv0.
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12. Appendix E - Representation
theory

We state a few theorems which we use in the thesis with references.

Let us define a function s ∶ P → {0,±1}, where P stands for an integral
functions on dual of Cartan subalgebra.

s(µ) =
⎧⎪⎪⎨⎪⎪⎩

0 , if there exists 1 ≠ g ∈W such that g(µ) = µ
sgn(g) ,where g ∈W is unique element such that g(µ) ∈ P+ ,

where we denote ordinary Weyl group by symbol W and P+ are those functions
from P which are dominant. For µ ∈ P we denote the unique element of P+ to
which µ is conjugate by {µ}.

Theorem 32 (Klimyk’s formula, [12]). Let λ1, λ2 be the highest weights of the
irreducible highest-weight modules V1 and V2 respectively. Len χ1, χ2 be the char-
acters of V1, V2 respectively. Let m1

µ denote the multiplicity of µ in V1. Then

χ1χ2 = ∑
µ∈P

m1
µs(µ + λ2 + ρ)χ{µ+λ2+ρ}−ρ

where ρ is the Weyl vector.

Now we state the PRV theorem.

Theorem 33 (PRV theorem). For any dominant weights λ,µ the irreducible
module V{λ+w0µ} occurs with multiplicity one in the tensor product Vλ ⊗ Vµ where
w0 is the longest element of Weyl group W and notation {λ + w0µ} stands for
unique dominant weight which is on the orbit of λ +w0µ.

Proof. Proof can be found in [19], Theorem 5.1.

In particular, loosely speaking decomposition of tensor product has at least
two components.
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matical Society (EMS), Zürich, 2004. ISBN 3-03719-002-7. doi: 10.4171/002.
URL http://dx.doi.org/10.4171/002.

[24] N. S. Sinjukov. Geodezicheskie otobrazheniya rimanovykh prostranstv.
“Nauka”, Moscow, 1979.
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