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parametr̊u, které byly źıskány pomoćı ab-initio metod.
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1. Introduction

Due to many interesting and specific properties which can lead to applications in
industry and engineering as well as to new developments of the theory, the study
of lanthanide and actinide based intermetallic compounds and their magnetic
properties became one of the standard topics in the broad field of condensed
matter physics. The contrast between the localized 4f electrons residing deep in
the atomic shell and the itinerant character of the d electrons symbolizes one of
the main difficulties of the theory of magnetism. This thesis deals mostly with
the first aspect as, in our case, it was the adequate framework to describe the
magnetic phenomena in the studied compounds.

In this work I present a study of sample preparation and measurements of
physical properties of tetragonal Nd-based intermetalic compounds Nd2RhIn8

and Nd2IrIn8. Nd-based compounds were chosen due to a close relation between
neodymium and cerium. The compounds belong to a large structurally related
compound family whose formula can be written as RmTnX2n+3m.

After the introductory chapter, a brief overview of the theoretical description
of the observed physical phenomena is presented in the second chapter. The third
chapter is an introduction to the methods and techniques that were used for the
calculations and measurements. The main part of the thesis, the fourth chapter,
then gives a presentation of the results obtained during the experiments, derived
results and their discussion which is followed by a short conclusion chapter.

1.1 RmTnX2n+3m compounds

RmTnX2n+3m (R = rare earth, T = late transition metal, X = In or Ga) form a
large group of compounds whose structure consists of m RX3 and n TX2 building
blocks stacked sequentially along the c-axis. The most studied members of the
group have the stoichiometries of 1-3 (1-0-3), 1-1-5 and 2-1-81. The number of
TX2 layers has a profound effect on the dimensionality of the rare earth ions which
moves from purely 3D in 1-3 to a partially quasi-2D character in the other variants
and provides a great possibility for a systematic study of physical properties as a
function of both composition and dimensionality. The structure of the compounds
is shown in Fig. 1.1. The 1-1-5 and 2-1-8 compounds crystallize in the HoCoGa5

and Ho2CoGa8 tetragonal structures, space group P4/mmm (No. 123). The 1-3
compound in the AuCu3 cubic structure, Pm3̄m (No. 221).

The cerium (R = Ce) based RmTnX2n+3m compounds have been studied dur-
ing recent years due to their unique and intriguing properties such as heavy-
fermion (HF) superconductivity, interplay between magnetic order and super-
conductivity or quantum criticality [3, 4]. As it is believed that those properties
have a close relation to the magnetic interactions of the systems, studies which
replace cerium with another rare-earth ion are often used to separately study the
underlying RKKY interaction and crystalline electric field (CEF or CF). In next
paragraph I give an overview of related Ce-based compounds with a mention of
their main properties.

1other known stoichiometries are 3-1-11, 5-2-19 [1] or 1-2-7 [2].
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Figure 1.1: Structure of the ’1-3’, ’1-1-5’ and ’2-1-8’ compounds. The structure
is built by repeating RX3 and TX2 blocks. The ’2-1-8’ structure can be viewed
as a RX3 unit cell sandwitched between two TX2 layers.

Ce2RhIn8 and CeRhIn5 are antiferromagnets with TN = 2.8 K and TN = 3.8 K
and become superconducting at TSC = 0.4 K and TSC = 2.2 K under applied pres-
sures of 1.1 GPa and 1.63 GPa respectively [5, 6]. Ce2IrIn8 is a HF paramagnet
and does not undergo any superconducting transition at known temperatures [7].
CeIrIn5 is a HF superconductor with transition temperature of TSC = 0.4 K [8].
The cubic relative, CeIn3 is an antiferromagnet with TN = 10 K [9] that becomes
superconductive at TSC = 0.18 K under the applied pressure of 2.8 GPa [10].

Evolution of the Néel temperature across the rare earth group for the 1-3, 1-1-
5 and 2-1-8 compounds with T = Rh and X = In is shown in Fig 1.2 and visually
compared to the scalling proportional to the de Gennes factor (g − 1)2 J (J + 1).
The effect of the so called lanthanide contraction is visible in Fig 1.3 which shows
the dimensions of the unit cells of the R2RhIn8 compounds.

The commonly observed behaviour of magnetic properties in the compound
family is shown in Figs. 1.4 and 1.5 which show the characteristic step-like tran-
sitions often present in magnetization curves and the influence of the crystal field
on the curvature of the susceptibility curves. Fig. 1.5 shows the magnetiza-
tion curves of Ho2RhIn8 and Er2RhIn8 which differ in the orientation of the easy
magnetization direction ([001] for R = Ho, [110] for R = Er).
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Figure 1.2: Néel temperature scalling among the compound family for T = Rh,
X = In compared to the size of the de Gennes factor. The line is a guide to the
eye. Sources: [5, 6, 9] (Ce), [11, 12] (Nd), [13, 14] (Sm), [13, 14] (Gd), [15, 16]
(Tb), [16–18] (Dy), [16, 17, 19] (Ho), [16, 17, 19] (Er), [16, 17, 20] (Tm)
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Figure 1.4: Characteristic curves for RmTnX2n+3m - step-like transitions and
influence of the crystal field. Taken from Ref. [17].

Figure 1.5: Characteristic step-like transitions at low temperatures in the mag-
netization of RmTnX2n+3m compounds. Taken from Ref. [16].
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2. The Physics of Rare-earth
Intermetallic Compounds

2.1 Magnetism

2.1.1 Main concepts

Classical physics defines the magnetic dipole moment as

m =
1

2

∫
V

[r′ × j (r′)] dV , (2.1)

where r′ is the position vector, j is the current density and the integration is
over volume V . In the case of a small current loop with current I and area S,
this can be written as m = IS. The SI unit is Am2 but as we will see later it
is more convenient to use the Bohr magneton µB = e~

2me
= 9.274 · 10−24 JT−1 as

the unit on the atomic scale1. Looking at the value of the Bohr magneton2 from
the energy point of view, it is possible to presume a certain delicacy in localised-
magnetism phenomena, often requiring low temperatures and/or relatively high
magnetic fields.

Magnetization M is then defined as the sum of magnetic moments per unit
volume, mass or formula.

Susceptibility χ, the quantity which relates the magnetic response of a system
to the applied field H is defined by

χ =
∂M

∂H
. (2.2)

For laboratory magnetic fields3, the M(H) dependence tends to be linear over
a broad region so usually one can write M = χH.

As follows from the Bohr-van Leeuven theorem4, the combination of classical
mechanics and statistical physics does not allow for magnetic phenomena, ie. a
thermally averaged moment is always zero according to classical physics. This
forces us to move from the classical description to a quantum one.

The magnetic moment of a free atom or ion is caused mainly by the spin of
its electrons and by their angular momentum. One can easily derive that a new
term ∆Ĥ emerges in the atomic Hamiltonian when a magnetic field of induction
B = µ0H is applied:

∆Ĥ = µB

(
L̂ + gŜ

)
·B +

e2

8me

n∑
i=1

(B × r̂i) , (2.3)

where g ≈ 2 is the electron g-factor and Ŝ, L̂ is the total spin and angular
momentum operator respectively. In this thesis, the dimensionless5 Ŝ, L̂ and

1e is the elem. charge, me mass of electron, ~ reduced Planck constant
2µB

.
= 0.1 meV.T-1, 1meV

kB

.
= 11 K

3up to roughly 10 T.
4from 1911.
5with integral or half-integral eigenvalues
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Ĵ = Ŝ+ L̂ [23] are used instead of the conventional definition. Using the second-
order perturbation theory and its adjustment of the energy levels

∆En =
〈
n|∆Ĥ|n

〉
+
∑
n′ 6=n

〈
n|∆Ĥ|n′

〉2

En − En′
(2.4)

(|n〉, En denote unperturbed eigenstates and their energies) we arrive at an
important result of the theory of susceptibility of an individual or weakly inter-
acting atom, ion or molecule:

∆En = µBB ·
〈
n|L̂ + gŜ|n

〉
+
∑
n′ 6=n

〈
n|µBB ·

(
L̂ + gŜ

)
|n′
〉2

En − En′

+
e2

8me

B2
〈
n|
∑
i

(
x̂2
i + ŷ2

i

)
|n
〉
.

(2.5)

With the energy levels, the susceptibility can be calculated using the statistical
mechanics as

χ = − 1

V

∂2F

∂H2
, (2.6)

where V is the volume and F is the Helmholz free energy of the system defined
as

F = −kBT · lnZ , (2.7)

Z being the partition function of the system Z =
∑

n e
−En(H)

kBT and kB the
Boltzmann constant.

Diamagnetism

In the case of an ion with all electronic shells filled, the ground state
∣∣0〉 of such

ion is characterised by zero total, angular and spin moment

Ĵ
∣∣0〉 = L̂

∣∣0〉 = Ŝ
∣∣0〉 = 0. (2.8)

Then from the last part of the formula (2.5), one can derive the susceptibility

χdia = −N
V

e2µ0

6me

n∑
i=1

〈
r2
i

〉
, (2.9)

which will always be negative. The N , V denote number of ions and vol-
ume, µ0 is the vacuum permeability. Such mode of behavior that a substance is
nonmagnetic in the absence of field and has a negative susceptibility in applied
field is called diamagnetism. Examples of diamagnetism are represented by inert
gasses, Cu or H20 with χSIdia

.
= 10−5. Due to the Meissner effect of the expulsion of

the magnetic field, materials in superconductive state can be regarded as perfect
diamagnets with χdia = −1. Apart from those, the most diamagnetic material
known is the pyrolitic6 graphite with χdia

.
= 10−4, one of the few substances which

can be used to demonstrate diamagnetic levitation without superconductors.

6graphite produced under high temperatures and pressures.

7



Paramagnetism

Ions with unfilled shells will have non-zero L or S. This means that the ion
can have nonzero J and its own magnetic moment. If we do not consider any
interaction between individual ions, the net magnetization of a material will be
determined only by the temperature and the applied field: in zero field the mo-
ments will be randomly oriented generating a zero total magnetization. The
higher the applied field will be, the more of them will orient themselves along
its direction, while higher temperatures will have the opposite effect on magne-
tization by randomizing the orientations of the moments and lowering their net
sum. Taking the quantum-mechanical nature of the effect into account and using
statistical mechanics, one arrives at the formula for magnetization of n moments
per unit volume

M = ngJµBJBJ (y) , (2.10)

given by the Brillouin function BJ (y)

BJ =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

y

2J
(2.11)

(Fig. 2.1) with a parameter

y =
gJµBJB

kBT
, (2.12)

where gJ is the Landé g-factor

gJ =
3

2
+
S (S + 1)− L (L+ 1)

2J (J + 1)
, (2.13)

where S, L and J denote corresponding quantum numbers. The factor orig-
inates from the fact that the spin and angular momentum of an electron have
different gyromagnetic ratios so the ion’s magnetic moment is not parallel to the
total moment J and has to be projected to it and, subsequently, to the direction
of the applied field to get its contribution to the magnetization. For small values
of y, the Brillouin function can be aproximated as linear and the susceptibility
becomes

χpara =
C

T
, (2.14)

where

C =
nµ0µ

2
eff

3kB

. (2.15)

The µeff used in the equation is the effective magnetic moment defined by

µeff = gJµB

√
J (J + 1) (2.16)

Further increasing of the magnetic field results in a maximal orientation of all
moments along the field direction and reaching the saturation magnetization Ms:

Ms = ngJµBJ. (2.17)
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Figure 2.1: Brillouin function for different values of J .

2.1.2 Localised and Itinerant Limits of Behavior

Localised Magnetism Model

The 4f electrons’ wave functions are localised deep in the atomic shell and have
only a negligible overlap which means that they take little part in chemical bond-
ing or contribute to conduction electrons. The important effects which affect the
behavior of the 4f electrons can be written in the free-ion Hamiltonian Ĥ and
can be understood as gradual7 corrections

Ĥ = Ĥ0 + Ĝ + ĤSO + ĤCF, (2.18)

where

Ĥ0 =
N∑
i=i

(
− ~2

2me

∇2
i − Z

e′2

ri
+ Vef (ri)

)
, e′2 =

e2

4πε0
(2.19)

(ε0 is the vacuum permitivity) represents the kinetic energy of the electrons,
the potential energy of the electron-nucleus system and the effective one-electron
potential arising from the Coulomb and exchange interaction. The one-electron
solutions of this Hamiltonian are

ψnlm (r) = Rnl (r)Ylm (ϑ, ϕ) , (2.20)

where Rnl is a radial function and Ylm is a spherical harmonic and n, l, m
denote the principal, orbital angular momentum and magnetic quantum numbers.

7assuming the Russel-Saunders approximation and weak crystal field.
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R Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

4fN 4f1 4f2 4f3 4f4 4f5 4f6 4f7 4f8 4f9 4f10 4f11 4f12 4f13

ground state 2F 5
2

3H4
4I 9

2

5I4
6H 5

2

7F0
8S 7

2

7F6
6H 15

2

5I8
6I 15

2

3H6
2F 7

2

gJ
6
7

4
5

8
11

3
5

2
7

0 2 3
2

4
3

5
4

6
5

7
6

8
7

µcalc
eff 2.54 3.56 3.62 2.68 0.84 0 7.94 9.72 10.63 10.60 9.59 7.57 4.54

Table 2.1: Ground state multiplets obtained by Hund’s rules for the R3+ ions.

The solutions8 form a Slater determinant and in case of 4f electrons the ground
state has a degeneration of

(
14
N

)
where N is the number of electrons in the shell.

The next term Ĝ

Ĝ =
N∑
i<j

e′2

|ri − rj|
−

N∑
i=1

Vef (ri) , (2.21)

represents the correlation energy of the electrons’ movement and can be
treated as a perturbation and causes the energy levels split into terms, defined
by a combination of S and L. As the energy does not depend on quantum num-
bers Lz or Sz, the (2S + 1)(2L + 1) degenerate microstates are characterised by
quantum numbers L, S, Lz and Sz.

If we assume a small spin-orbit interaction compared to the correlation, the
orbital as well as the spin momenta can be summed into L, S and the interaction
written as

ĤSO = λ(LS)L̂Ŝ, (2.22)

where λ(LS) is the spin-orbit constant. The s.-o. interaction ĤSO again lowers
the degeneracy by splitting the terms into multiplets denoted by 2S+1LJ

9 where
letters S, P, D, F, G, H, I are used instead of the numeric value of L. The ground
state multiplets are determined by the rules formulated by Friedrich Hund stating
that

• the term with maximum S has the lowest energy

• for a given S, the term with the largest L lies lowest in energy

• J = |L+ S| for more then half filled shells; J = |L− S| for the less then
half filled shells

The ground state multiplets of the R3+ ions as well as the gJ and the theoretical
µeff values can be found in Tab. 2.1.

The crystal field Hamiltonian ĤCF describes the effect of electrostatic field
of the charges surrounding the rare-earth ion. The model is based on a sim-
ple coulombic interaction of the electrons with their neighbouring point charges,
whose electric potential can be expanded into so-called tesseral harmonics and
subsequently the evaluation of the matrix elements of the Hamiltonian can make
use of the Stevens’ operator equivalents [24] Ô m

n . The Hamiltonian can then be
written as

8with spin
9both 2S+1L and 2S+1LJ are called term symbols

10



ĤCF =
∑
n,m

B m
n Ô m

n , (2.23)

where B m
n are the crystal-field parameters, which can be either fitted from

the experimental data or calculated ab initio. The crystal field adopts the sym-
metry of the lattice which often reduces the number of the parameters for cubic,
tetragonal, etc. solids. The Stevens’ operators Ô m

n are a function of Ĵz, Ĵ+, Ĵ−
and the squared magnitude of total momentum. For example

O 0
2 = 3J2

z − J (J + 1)

O 0
4 = 35J4

z − 30J (J + 1) J2
z + 25J2

z − 6J (J + 1) + 3J2 (J + 1)2 (2.24)

The matrix elements of the operators are tabulated for all available values of J
in rare earth multiplets or can be simply calculated from definition.

Itinerant Magnetism Model

In the absence of the magnetic field, the one-electron states with sz = ±1
2

are
equivalent in terms of energy. The applied field B removes this degeneracy and
splits the electrons into two sub-bands with n↑ and n↓ electrons. The magnetiza-
tion is then given by

M = µB (n↑ − n↓) = µ2
BBD(EF) =

3Nµ2
BB

2kBTF
(2.25)

and the corresponding phenomenon, that is the positive susceptibility χPauli

of Fermi gas is called Pauli paramagnetism. D(EF) here denotes the density of
states at the Fermi level and TF is the Fermi temperature.

The ferromagnetism of metals such as Fe, Ni or Co can be explained by a
condition for a spontaneous spin splitting of bands known as the Stoner criterion

UD(EF ) > 1 (2.26)

U denotes the interaction energy. One can arrive at this requirement by taking
into account the energetic balance of the splitting the sub-bands at the Fermi level
by δE. The changes in the kinetic and potential energy of the system caused by
the splitting are

∆Ek =
1

2
D (EF ) (δE)2

∆Ep = −1

2
U (D (EF ) δE)2

(2.27)

The overall change in energy is then

∆E =
1

2
D (EF ) δE2 (1− UD (EF )) (2.28)

and the Stoner criterion gives out when the splitting is energetically favorable.
Even if the criterion is not met, the energy balance causes an enhancement to
the Pauli paramagnetism in the interacting electron gas

χ =
χPauli

1− UD (EF )
. (2.29)
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Landau gave a correction to the paramagnetism of free electron gas caused by
a change of the character of motion of the electrons in magnetic field

χLandau = −1

3
χPauli. (2.30)

This effect is known as Landau diamagnetism.

2.1.3 Exchange interactions

The exchange interaction, the main origin of the effective field and long-range
magnetic order, is caused by the Pauli principle acting together with the Coulomb
repulsion. The result for the simple system of the H2 molecule was generalized
by Heisenberg and can be, in the case of a lattice, written as a sum

HHeisenberg = −
∑
i,j

JijŜiŜj (2.31)

between atomic spins Ŝi and Ŝj. Jij is the exchange constant and has units
of energy.

The 4f electrons of rare-earth ions in intermetallics are localized deep in the
atomic shell, ie. without direct overlap, and interact via electrons in the 5d/6s
conduction band. This mechanism is called RKKY interaction after Ruderman,
Kittel, Kasuya and Yosida who showed the long-range oscillatory nature of this
type of spin coupling. In the rare-earth ion group, only gadolinium has S = J .
For the rest of the group it is needed to project S onto J first to be able to
calculate the exchange coupling. This brings a factor

G = (gJ − 1)2 J (J + 1) (2.32)

as J = L + S and gJJ = L + 2S and the Heisenberg hamiltonian is a square
expression in S. The effective coupling constant is then proportional to G and the
magnetic ordering temperatures for series of rare-earth compounds with similar
lattice spacings and conduction-band structure should scale with G, known as
the de Gennes factor [25].

The other basic types of exchange interactions include the direct interaction
in metals and the superexchange in insulators. Direct interaction involves over-
lapping d-orbitals in 3d metals and is short-range. The direct interaction can
explain why half-filled bands such as in Cr and Mn tend to be anti-ferromagnetic
while nearly-filled or nearly-empty bands are ferromagnetic as in iron [25]. In
insulators, there is no direct 3d-3d orbital overlap but the interaction is mediated
by the hybridized ligand orbitals sitting between the magnetic sites.

2.1.4 Types of magnetic ordering

From the phenomenological point of view, it has been observed that many materi-
als go through a change of the nature of their magnetic properties - a phase tran-
sition - at a certain temperature when being cooled from the high-temperature10

paramagnetic region. When the interactions between magnetic sites become

10or room-temperature
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stronger than thermal fluctuations, the ordered state is energetically favorable
and the magnetic order appears. In this paragraph I will give a short overview
of the two basic types of magnetic ordering:

A ferromagnet has a non-zero spontaneous magnetization at temperatures
T < TC, where TC is its Curie temperature and all microscopic moments are,
in the simpliest picture, pointing in the same direction. Ferromagnetism can be
explained by a positive contribution of the Weiss molecular field BE = λM and
a self-consistent solution of Eq. 2.10 without external field. The influence of the
molecular field leads to a shifting of the susceptibility in the paramagnetic region.

The antiferromagnets also exhibit a long-range order, as shown, for example,
by new peaks on the neutron diffractogram, but the spontaneous magnetization
does not appear. This case can, also in the simpliest picture, be perceived as
presence of two ferromagnetic sublattices with moments pointing in opposite di-
rections. The critical temperature TN for an antiferromagnet is called the Néel
temperature.

The behavior of the susceptibility of both ferromagnets and antiferromagnets
can be described by the modified Curie-Weiss law

χ =
C

T − θp

+ χ0, (2.33)

where χ0 is the temperature-independent contribution to χ, C is a constant
and θp is the Weiss temperature while θp > 0 for ferromagnets and θp < 0 for
antiferromagnets.

2.2 X-ray diffraction on crystal structure

X-ray diffraction is one of the most basic and widely available tools in condensed
matter physics and is regularly used to determine the details of the atomic struc-
ture of a studied compound. An ideal crystal is created by attaching a set of
atoms identically to every lattice point r, r′ defined as

r′ = r + u1a1 + u2a2 + u3a3, ui ∈ Z (2.34)

where ai are linearly independent translation vectors. If all points that have
the same surrounding arrangement of atoms are defined by Eq. (2.34), we have
a primitive unit cell. Often it is convenient to define a bigger cell which has
a simpler relation to the point symmetry of the structure. Such cell is called
an elementary unit cell and can be centered, ie. it may contain more than one
primitive lattice point. For the description of crystal planes, either diffraction
indices or the so-called Miller indices (incommensurable), both using the (hkl)
notation are used. Brackets are used to describe crystal directions, for example
H || [001] means magnetic field along the c-axis.

Using a simple idea of constructive interference of the x-rays on succesive
crystallographic planes, one can arrive at the condition known as Bragg’s law11

2dhkl sin θhkl = λ, (2.35)

11diffraction indices (hkl) used
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where dhkl is the inter-planar distance of the planes, 2θhkl is the diffraction angle
and λ is the wavelength of the incident x-ray beam.

The diffracted intensity I is proportional to the structure factor Fhkl

I ∝ |Fhkl|2 , (2.36)

defined as
Fhkl =

∑
i

fi (q) e−iqrie−Wi , (2.37)

where the sum goes over atoms in the unit cell. The atomic scattering factor
fi(q) is defined as the Fourier transform of the charge density of a corresponding
atom and is a function of the scattering vector q. The last term in formula, the
Debye-Waller (or B) factor accounts for the thermal vibrations of atoms in the
unit cell.

2.3 Termodynamic properties

Heat capacity at constant pressure (volume) is defined as

CP, V = T

(
∂S

∂T

)
p, V

, (2.38)

where S denotes the entropy. The value of CP can be measured rather easily -
it is much easier to monitor the pressure in the sample chamber during experi-
ment than to monitor changes in volume - whereas theoretical calculations are
mostly operating with CV because it does not incorporate the work done through
expanding the volume of the sample. The relation [26]

CP − CV = V T
α2

κT
(2.39)

holds. Here α denotes the thermal expansion coefficient and κT the isothermal
compressibility. According to [26] the difference can be neglected at temperatures
well below the room temperature, eg. for T < 100 K.

Phase transitions

According to the Ehrenfest classification, phase transitions are described by the
lowest derivative of the Gibbs free energy

G (p, T ) = U + pV − TS (2.40)

that is discontinuous at the transition temperature. For the first-order transitions
this means that a discontinuity in volume and entropy(

∂G

∂T

)
= −S,

(
∂G

∂p

)
= V, (2.41)

are observed. The change in entropy is related to the latent (”hidden”) heat
absorbed or released during the transition.

14



Magnetic phase transitions are most often second-order transitions and bring
a discontinuity in heat capacity

Cp = −T
(
∂2G

∂T 2

)
p

(2.42)

while there is no discontinuity in S.

Specific heat, Magnetic Entropy

In the following sections, we will be relating thermodynamic quantities to one
mole of a substance, ie. the definition in Eq. (2.38) will turn into a (molar)
specific heat.

The specific heat is an additive quantity and can be written as a sum of
contributions of phonons, conduction electrons (for conductive materials) and
the magnetic contribution (when there is a magnetic phase transition or the
Schottky contribution); the Cetc term stands for the aggregate value of other
contributions12:

C = Cph + Ce + Cmag + Cetc (2.43)

The lattice vibrations (phonons) are responsible for both the high-temperature
behavior of solids known as the Dulong-Petit law and the T 3 dependence observed
at low temperatures. A solid with p atoms in a primitive cell will have 3 acustic
phonon modes and 3p − 3 optical modes which differ in the ω (k) relation. The
Einstein model describes well the optical modes as oscillators with a constant ω
independent of the wave vector k. The characteristic parameter of this model is
the Einstein temperature

θE =
hω

kB

(2.44)

and the contribution to specific heat predicted within this model is

CEinstein
ph = 3R

(
θE
T

)2
eθE/T

(eθE/T − 1)
2 . (2.45)

R denotes the gas constant. The Debye model which is suitable for description
of the acustic phonons is based on the assumption of a linear dependence of ω on
k and prescribes

CDebye
ph = 9R

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2 dx, (2.46)

where the parameter, the Debye temperature, is defined as

θD =
hω

kB

. (2.47)

In materials which are conductive there will be an electron contribution to the
total specific heat

Cel =
1

2
π2NAkB

T

EF

= γT. (2.48)

12such as the nuclear hyperfine contribution.
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Figure 2.2: CSchottky for a two level system with ∆
kB

= 100 K with the maximum
at around 40 K.

This contribution is important mostly for temperatures below 5-10 K. The coef-
ficient γ of the linear dependence is related to the effective electron mass of the
conduction electrons and is known as the Sommerfeld coefficient.

For a system with energetic levels εi (in K) arising from the crystal field, the
magnetic contribution to the total C is known as the Schottky specific heat

CSchottky =
R

T 2

(∑
ε2
i pi −

(∑
εipi

)2
)
, (2.49)

where

pi =
e−εi/T

Z
, Z =

∑
e−εi/T . (2.50)

An example of a Schottky specific heat for a system with two levels is schemati-
cally shown in Fig. 2.2.

At a sufficiently high temperature all (2J + 1) energy levels, on some of which
is the degeneracy lifted by crystal field, will be equally populated, leading to the
high-temperature magnetic entropy

Smag = R ln (2J + 1) , (2.51)

while at the temperature of the phase transition TN only two levels are usually
considered which results in

Smag (TN) ≈ R ln 2. (2.52)

2.3.1 Magnetic specific heat below TN (TC)

At temperatures below TN (TC), the main part of Cmag is caused by magnetic
excitations or magnons. The basic textbook models [26] expect Cmag ∝ T n where
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n = 3 for anti-ferromagnetics (n = 3
2

for ferromagnetics). Due to magnetic
anisotropy a gap in the magnon dispersion curve can emerge, introducing a factor
exp

(
− δ
T

)
, where δ is the size of the gap [27]. The summarizing formula then looks

Cmag ∝ T
d
m e−

δ
T (2.53)

where d is the dimensionality of the excitation and m = 1 for an antiferromagnet
(2 for ferromagnet).
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3. Experimental and
Computational Techniques Used

3.1 Crystal preparation

If we want to study the anisotropy of physical properties of a compound as a
function of a (magnetic) field orientation to the main crystal axes, it is needed to
grow the compound in the single-crystaline form. Otherwise one would get only
an averaged value of the, for example, paramagnetic Curie temperature from a
poly-crystalline sample. For properties which are not orientationally dependent
such as the Neél temperature the use of a single crystal is not so important.
The methods for crystal growing are essentially very simple in theory but rather
demanding when it comes to the technical realization and the demands of the
process such as ensuring the purity of the used elements or chemical inertness of
the containers, atmosphere and tools. The temperature stability of the growth
process is also a vital element of a sucessful growth. Apart from growth from
vapour phase, the typology of single-crystal growth is divided between growth
from solution (so called flux ) and from melt which is usually used for congruently
melting solids with no change of composition between the solid and liquid phase.

The mostly used methods for growth from melt are the Bridgman method
where the growth is due to a temperature gradient in the melt, zone melting
or the Czochralski process and similar crystal-pulling methods. The last two
methods are widely used for industrial production of large ingots of silicon.

For the solution growth, a solvent with a relatively low melting temperature
such as Ga (30 ◦C), In (157 ◦C), Sb (232 ◦C) or Al (660 ◦C). If the element used as
a solvent is a part of the compound formula we speak of a self-flux. The solvent
with the solute is heated up to a sufficiently high temperature and then slowly
cooled allowing for creation of a saturated solution in which the single crystals
grow. The cooling usually has to stop at some point and the crystals are decanted
to prevent formation of an unwanted phase or phases which would emerge if the
cooling continued to room temperature.

3.2 Sample Phase Analysis

The crystals obtained by growth from flux needed to be analysed for chemical
composition and single crystal quality. The structural and phase analysis also
needed to be done to ensure that the crystals represent well the studied com-
pounds.

For our study we used the scanning electron microscope (SEM) equipped with
an energy-dispersive X-ray spectrometry (EDX) probe.

3.2.1 SEM and EDX

Scanning electron microscopy uses a focused beam of electrons to obtain informa-
tion about the topography and composition of a sample. The primary electrons
with energies 10–100 keV hit the surface of a sample giving rise to the response
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in form of secondary electrons, back-scattered electrons and characteristic X-ray
radiation. The electron beam moves in the raster scan pattern which enables to
obtain images that are visually similar to ones from the optical microscope. With
SEM it is possible to achieve resolution up to few nm. The conventional SEM
uses works with conductive samples which are put into a sample chamber and
pumped to high vacuum. Any non-conductive part or for example piece of dirt
on the sample surface would lead to accumulation of negative charge on it and
subsequently to distortion of the image.

In the SE (secondary electrons) mode, the microscope detects low-energy elec-
trons (< 50 eV) that were ejected from atoms in the sample by inelastic scat-
tering. Depending on the angle between the normal to the sample surface and
the electron beam, a different amount of the surface is irradiated resulting in
different number of ejected secondary electrons. This makes the SE mode good
for mapping the surface topography.

The BSE (back-scattered) electrons, on the other hand, are primary electrons
that were deflected from the sample by a series of elastic collisions. Here the
intensity is proportional to the local atomic number Z and the resultant image
gives the qualitative information about 2D distribution of chemical composition.

The quantitative information about the composition can be obtained by a-
nalysing the characteristic X-ray spectra coming out of the sample, or the EDX
(energy-dispersive X-ray analysis). These EDX spectra are generated when an
electron hole is created in an inner shell of an atom by exciting the electron with
the primary incident beam. An electron from a higher shell then jumps into
this hole emitting the energy difference in form of an X-ray. The energy levels
are characteristic for individual atoms so a spectrum can be fitted to obtain the
elemental composition within an error of 1-2 %

3.3 X-ray scattering

Diffraction experiments were performed using the equipment of the Department
of Condensed Matter Physics of Charles university in Prague.

Laue diffraction

For the analysis of a single-crystal and its orientation, the Laue method is widely
used. It consists of irradiation of the sample by X-rays with a continuous ‘white’
spectrum. The diffraction maxima from either back-reflection or transmission
geometry are collected on an image plate which is positioned perpendicularly to
the incoming beam. For a given orientation, the Bragg condition is satisfied only
for certain directions which will create a pattern that is visible on the image plate.
Usually the method is used to orient the single crystal into one of its prominent
crystal direction. In such case the Lauegram (the pattern collected via the Laue
method) shows a symmetry which is directly relatable to the point group of the
crystal. The presence of twinned points or circles would suggest that there are
two crystals in the sample or that the sample is polycrystalline.

19



Powder diffraction

Powder diffraction (PDF) experiments on the samples obtained by single-crystal
growth were performed using the conventional Bragg-Brentano θ − 2θ geometry.
Data were collected at room temperature using the Cu Kα spectral line and the
obtained diffraction patterns were refined by Rietveld analysis using the Fullprof
software suite [28].

3.4 Measurements of bulk physical properties

The magnetic and thermodynamical properties of studied samples were measured
during experiments in the Joint Laboratory for Magnetic Studies, a joint facility
of the Charles University (represented by the Department of Condensed Matter
Physics) and the Institute of Physics of the Czech Academy of Sciences. The
used equipment consisted of the Physical and Magnetic Property Measurement
Systems (PPMS, MPMS) manufactured by Quantum Design). The PPMS is a
versatile system for measuring heat capacity, magnetization or resistivity in the
magnetic field range of 0 - 14(9) T and temperatures down to 1.8 K. Using the
Helium 3 option lowers the minimal attainable temperature to 0.35 K.

3.4.1 Magnetization

Magnetization of samples was measured using the superconducting quantum in-
terference device (SQUID) on MPMS or using one of the DC Extraction (ACMS)
or Vibrating sample measurement (VSM) modules on PPMS. The latter two
methods use the basic principle of inducing voltage in a coil by moving a magne-
tized sample while SQUID measures is based on the phenomenon of flux quanti-
zation and the use of Josephson junctions.

Internal field

In a regular experimental setup, the magnetization distribution in a sample pro-
duces a demagnetizing field which subtracts itself from the external applied field
H0. Practically, the correction

H = H0 −DM (3.1)

is used albeit mathematically it is valid only for few special sample shapes where
a uniform field produces uniform sample magnetization. For example, the sphere
has D = 1

3
or for thin films we have D = 1 when the field is applied perpendic-

ularly to the surface [25]. The demagnetization correction is important when D
or/and M is large1, otherwise it has hardly a noticeable effect on the measured
curves.

Useful formulas

The measurement systems and user software by Quantum Design use CGS units
instead of SI. Thus, the applied field is measured in Oersteds and the sample

1often at high fields

20



magnetic moment has emu units which can easily become a source of confusion.
To transform the results to units used in the scientific community, it is useful
to consider following relationships and formulas, based on the correspondence of
1 Oe to 103

4π
Am−1 (and to B = 10−4 T in vacuum) and 1 emu to 10−3 Am2, during

numerical calculations.

M [
µB
f.u.

] = m [emu] · 1

9, 274 · 10−21
·
(

m[mg]

mf.u.[mg]

)−1

χ [
m3

mol
] = M [

µB
f.u.

] · 5, 585 · 4π · 10−6

H [kOe]

M [Am−1] =
10−3 ·m [emu]

V [m3]

H [Am−1] =
103

4π
·H [Oe]

H [Oe] =
4π

103
·H [Am−1]

H [Oe] = H0 [Oe]−D · 4π

106
· m [emu]

V [m3]

where A [B] stands for value of quantity A in units of B. The µB
f.u.

represents num-
ber of Bohr magnetons per formula unit. The numerical values used in formulas
are directly related to values of µB and NAµB while their use is justified by the
measurement itself having a few orders of magnitude larger relative error.

3.4.2 Specific heat

The sample specific heat was measured using the relaxation method on PPMS
14 T. Apiezon N grease was used for good thermal contact of a sample with
the platform on the puck. The PPMS first stabilizes the platform temperature,
then applies power to the platform heater to achieve a certain temperature rise.
The heater is then turned off and the temperature falls to its initial value. The
changes in platform temperature are governed by simple differential equations.
Depending on the quality of thermal contact between the sample and platform,
a model with one or two relaxation coefficients has to be used.

3.5 Calculations

Octave [29] was used for calculations in this thesis. The used functions can be
found in the last section of the thesis.

Octave is a free multi-platform interpreted programming and data manipula-
tion language suitable for numerical calculations. It can be used interactively via
a user interface just like an ordinary, yet advanced calculator or through writing
user’s own scripts and functions, while the built-in operators make matrix calcula-
tions easy. It can be used for solving various linear and nonlinear problems or for
any thinkable numerical experiments. Octave allows double-precision2 complex
linear algebra. The language has a high degree of compatibility with MATLAB.

2approximately 16 decimal digits precision
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Y2RhIn8 La2RhIn8 Lu2RhIn8

γ (mJ ·mol−1 ·K−2) 8.4 9.9 21.1
θD (K) 3× 97 3× 102 3× 83
θE1 (K) 3× 80 3× 71 3× 78
θE2 (K) 15× 140 15× 133 6× 110
θE3 (K) 12× 243 12× 224 18× 158
θE4 (K) 3× 409
α (K−1) 1× 10−4 1× 10−4 1× 10−4

Table 3.1: Coefficients used for calculation of the specific heat of a non-magnetic
analogue from Ref. [31]. The numbers of corresponding phonon branches are
given before values.

3.5.1 Specific heat

The specific heat of La2RhIn8 that was used as a non-magnetic analogue to the
studied compound Nd2IrIn8 was calculated using both Debye and Einstein models
with a correction for anharmonicity [30] from values in [31] (shown in Tab. 3.1)
as

C = Ce + Cph = γT +
1

1− αT

(
3CD (T, θD) +

n∑
i=1

CEi (T, θEi)

)
, (3.2)

where α is the anharmonicity coefficient. n (and 3) here denotes the number of
phonon branches.

The calculated curves for R2RhIn8, R =Y, La, Lu are shown in Fig. 3.3.

3.5.2 CEF susceptibility and Schottky specific heat

The crystal-field Hamiltonian for tetragonal symmetry is given by

HCEF = B 0
2 Ô

0
2 +B 0

4 Ô
0

4 +B 4
4 Ô

4
4 +B 0

6 Ô
0

6 +B 4
6 Ô

4
6 (3.3)

with Stevens operators Ô m
n and corresponding CEF parameters B m

n . The
operators can be found in Tab. 3.2. Based on this model Hamiltonian, the
theoretical susceptibility (for H → 0) obtained by the second-order perturbation
theory [17, 32, 33] is

χiCF = N
(gJµB)2

Z

[∑
n

∣∣∣〈n|Ĵi|n〉∣∣∣2
kBT

exp

(
− En
kBT

)

+
∑
n 6=m

∣∣∣〈m|Ĵi|n〉∣∣∣2 exp
(
− En
kBT

)
− exp

(
− Em
kBT

)
Em − En

]
,

(3.4)

where i ∈ {x, y, z} is the direction of applied field and

Z =
∑
n

exp

(
− En
kBT

)
(3.5)
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operator

Ô 0
2 3Ĵ2

z − J (J + 1)

Ô 0
4 35Ĵ4

z − 30J (J + 1) Ĵ2
z + 25Ĵ2

z

−6J (J + 1) + 3J2 (J + 1)2

Ô 4
4

1
2

[
Ĵ4

+ + Ĵ4
−

]
Ô 0

6 231Ĵ6
z − 315J (J + 1) Ĵ4

z + 735Ĵ4
z

+105J2 (J + 1)2 Ĵ2
z − 525J (J + 1) Ĵ2

z + 294Ĵ2
z

−5J3 (J + 1)3 + 40J2 (J + 1)2 − 60J (J + 1)

Ô 4
6

1
4

[(
11Ĵ2

z − J (J + 1)− 38
)(

Ĵ4
+ + Ĵ4

−

)
+
(
Ĵ4

+ + Ĵ4
−

)(
11Ĵ2

z − J (J + 1)− 38
)]

Table 3.2: Operators

is the partition function. The equation (3.4) was used to compare measured
data to calculated curves. The matrix elements of Stevens operators in the |J, Jz〉
basis are tabulated in [34] for all l,m and J . An example of the notation used
there is in Tab. 3.3. With Octave, it is more convenient to construct the operators
directly from definition (Tab. 3.2) from the Ĵz, Ĵ+,Ĵ− operators which can be
calculated in a simple way. Examples of the matrices of Stevens operators for the
Nd3+ (J = 9

2
) ion are shown in Figs. 3.1 and 3.2. in the

∣∣9
2
, 9

2

〉
,
∣∣9

2
, 7

2

〉
,. . .,

∣∣9
2
,−9

2

〉
basis.

Very often the measured susceptibility is fitted to

χi =
1

1
χiCEF

− λi
+ χi0, (3.6)

where λi denotes the molecular field coefficient for the relevant direction. In
addition to this, if someone wanted to calculate an estimate of the magnetization
on applied field, they would have to solve the equation

Mi =
1

Z

∑
n

∣∣∣〈n|Ĵi|n〉∣∣∣ e− En
kBT (3.7)

with the total Hamiltonian3

Ĥ = ĤCEF − gJµBĴi (H + λiMi) (3.8)

self-consistently [17].

3in CGS
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F ±1/2 ±3/2 ±5/2 ±7/2 ±9/2

Ô 0
2 6 -4 -3 -1 2 6

Ô 0
4 84 18 3 -17 -22 18

Ô 0
6 5040 -8 6 10 -11 3

F
〈

5
2
|| − 3

2

〉 〈
7
2
|| − 1

2

〉 〈
9
2
||1

2

〉
- -

Ô 4
4 12

√
7 5

√
3 5

√
2 3

√
2 - -

Ô 4
6 60

√
7 −16

√
3 6

√
2 30

√
2 - -

Table 3.3: Values of operators



36 0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 0 0
0 0 −6 0 0 0 0 0 0 0
0 0 0 −18 0 0 0 0 0 0
0 0 0 0 −24 0 0 0 0 0
0 0 0 0 0 −24 0 0 0 0
0 0 0 0 0 0 −18 0 0 0
0 0 0 0 0 0 0 −6 0 0
0 0 0 0 0 0 0 0 12 0
0 0 0 0 0 0 0 0 0 36


Figure 3.1: Diagonal Ô 0

2 operator for a J = 9
2
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√
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Figure 3.2: Non-diagonal Ô 4
6 operator for a J = 9

2
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Figure 3.3: Specific heat of non-magnetic analogues in the relevant temperature
region. La2RhIn8 was chosen as the closest non-magnetic analogue to Nd2IrIn8.
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4. Results and Discussion

The results of the research done in the course of this thesis have been published
in [35] and [36]. All data in the thesis was measured by the autor except for the
specific heat of Nd2IrIn8 (measured by K. Vlášková).

4.1 Previous Results

Nd2RhIn8 and Nd2IrIn8 were previously studied by Pagliuso et al. [12] and Duque
et al. [37] by means of magnetization and specific heat measurements. The Néel
temperatures and polycrystalline average of µeff and θP obtained by Pagliuso et
al. [12] are given in Tab. 4.1. Duque et al. [37] were able to derive a small part
of the phase diagram for Nd2RhIn8 for field between 7 and 9 T which is shown
in Fig. 4.1.

The physical properties of RmTnX3m+2n compounds have been systematically
studied in [16, 17, 38] and a few complete phase diagrams are already known.
As examples I show the phase diagrams of Dy2CoGa8, Dy2RhIn8 and NdRhIn5

together with the measured curves, magnetization or specific heat, from which
the diagrams were obtained in Figs. 4.2 and 4.3.

4.2 Crystal Growth

Single-crystalline samples of the studied compounds Nd2RhIn8 and Nd2IrIn8 were
grown from an indium self-flux. High purity elements were used for the synthesis:
5N = 99.999% purity for In, 3N5 = 99.95% for the other elements. Multiple
attempts with different starting stiochiometries ranging from 2:1:15 to 2:1:55 were
needed to obtain satisfactory results. The temperature program consisted of a
quick heating up to 1000 ◦C, 6h at the temperature for a proper homogenization
of the solution, and slow cooling phase which reached 300 ◦C at a uniform rate
of 3 ◦C/h. At 300 ◦C, the residual flux was removed using a centrifuge and the
samples were collected. The same process and temperature program was used
for both the Nd2RhIn8 and Nd2IrIn8 samples. Tab. 4.2 shows which starting
compositions led to successful results.

The obtained crystals had the form of thin plates with thickness less than 0.5
mm and diameter of several mm. The weight of the resulting crystals was from 5
to 15 mg. Due to the shape of the single crystals, the data for H||c were adjusted
for a demagnetization factor estimated as D = 0.9.

a (Å) c (Å) TN (K) µeff (µB/Nd3+) θp (K)

Nd2RhIn8 4.640(3) 12.171(6) 10.7 3.57(3) 14
Nd2IrIn8 4.647(3) 12.139 12.3 3.60(3) 13

Table 4.1: Experimental parameters by Pagliuso et al. [12]
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Figure 4.1: Phase diagram of Nd2RhIn8 by Duque et al. [37]

Compound Starting stoichiometry Result

Nd2RhIn8 2:1:25 Unsuccessfull
2:1:40 Single crystals
2:1:55 Unsuccessfull

Nd2IrIn8 2:1:15 Single crystals
2:1:25 Unsuccessfull
2:1:40 Unsuccessfull

Table 4.2: Results of the crystal growth as a function of the starting composition.
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Figure 4.2: Phase diagrams of Dy2CoGa8 and Dy2RhIn8 and the curves used to
determine the diagrams from Refs. [16] and [38]

Figure 4.3: Phase diagram of NdRhIn5 by Hieu et al. [17].
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Figure 4.4: Nd2IrIn8 sample

Nd2RhIn8 Nd2IrIn8 I. r. 2:1:8 I. r. 1:1:5 I. r. 1:3

R [at. %] 19.1(9) 17(1) 18.2 % 14.3 % 25 %
T [at. %] 8.9(8) 8(1) 9.1 % 14.3 % 0 %
X [at. %] 72(2) 75(3) 72.3 % 71.4 % 75 %

Table 4.3: Comparison of chemical compositions obtained by EDX to their ideal
values. I. r. = Ideal (atomic) ratio.

4.3 Structure and Phase Analysis

The chemical composition was investigated by the energy-dispersive X-ray spec-
trometry (EDX) during scanning electron microprobe analysis. The surface of
the crystals had to be polished before the EDX analysis.

A small amount of a Nd-In binaries NdIn2.0(2) and NdIn3
1 was found on the

crystal surface of the best Nd2IrIn8 sample that was used for measurements. The
presence of a small amount (< 10 %) of a foreign phase could account for slight
low-temperature anomalies in susceptibility and specific heat but its overall effect
on phase diagrams determination is negligible.

Single crystals were oriented using the Laue method. The crystals of both
compounds were thin plates with the c-axis perpendicular to the surface of the
plate. Few single crystals from every batch were pulverized and analysed by X-
ray powder diffraction. Apart from a single peak coming from the indium flux
all peaks in the diffractogram could be described by the Ho2CoGa8 structure
type of the compounds. The obtained unit cell parameters are shown in Tab.
4.5 compared to the other studies. Figs. 4.3, 4.3 and 4.3 show obtained Laue
patterns, a simulated Laue pattern and the results of PDF on Nd2IrIn8.

1The existence of NdIn2 has not yet been reported in literature.
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Atom Site symmetry x y z

Nd 2g 0 0 z(Nd)
T 1a 0 0 0

In 1 2e 0 0.5 0.5
In 2 2h 0.5 0.5 z(In 2)
In 3 4i 0 0.5 z(In 3)

Table 4.4: Wyckoff positions in the unit cell. See Fig. 1.1 for the structure.

Nd2RhIn8 Nd2IrIn8 Nd2RhIn8 [39] Nd2RhIn8 [12] Nd2IrIn8 [12]

a (A) 4.641(4) 4.650(3) 4.6213(9) 4.640(3) 4.647(3)

c (A) 12.167(6) 12.133(7) 12.113(3) 12.171(6) 12.139(6)

z(Nd) 0.308(2) 0.309(3) 0.3083(3) - -

z(In 2) 0.306(4) 0.309(3) 0.3059(6) - -

z(In 3) 0.120(2) 0.120(2) 0.1212(4) - -

Table 4.5: Comparison of measured structural parameters to studies by Čermák
et al. [39] and Pagliuso et al. [12]. Data Ref. [39] were measured at T = 2 K
on the same single crystal as was used in this work. See Tab. 4.4 for the atomic
positions inside the unit cell.

Figure 4.5: Laue patterns (inverted color) of crystals oriented with the plate
surface perpendicular to the X-ray source. The four-fold symmetry and mirror
planes are visible. The image on the left (right) is from the Nd2RhIn8 (Nd2IrIn8)
sample. On the right, the c-axis of the crystal was precisely along the beam
whereas on the left the crystal was slightly tilted.

Figure 4.6: Software generated Laue pattern (”LauePt” suite used).
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Figure 4.7: Rietveld refinement of the powder diffraction pattern on Nd2IrIn8

crystals. The difference around 40 ◦ is caused by a significant texture in the
sample.
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4.4 Measurements and results discussion

4.4.1 Nd2RhIn8

Curie-Weiss law and low temperature susceptibility

As the first step, the susceptibility curves were measured for field directions H
along a and c. Measured values are presented in Fig. 4.8. The inverse suscepti-
bility curves were fitted to the Curie-Weiss law. The fit yields -28(2) K and -9(1)
K for the a- and c-axis. The value of the effective magnetic moments 3.75(5) was
obtained. The curvature of the dependencies needed to use the χ0 at -0.031(5)
and -0.016(4) respectively. The relatively high diamagnetic contribution χ0 for
the a direction which resulted from the fit causes the reciprocal susceptibility
curve to be bent upwards in higher temperatures and could be caused by a dia-
magnetic impurity in the sample or by an effect during the measurement such as
sample holder or the glue used.

The Neel temperature TN = 10.8(2)K was derived from the low temperature
susceptibility curves, which are displayed in Fig. 4.9. No difference was measured
between zero-field cooled and field cooled curves. Contrary to the basic theory
of antiferromagnetics, the susceptibility in the ordered moments’ direction does
not go to zero. Instead, an upturn at temperatures below 4 K is observed with-
out a satisfactory explanation, as the high quality of the sample minimized the
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Figure 4.9: Low temperature susceptibility.

possibility of higher amount of impurities present and there is no other evidence
which would indicate an additional phase transition in this temperature and field
region.

Magnetization and construction of phase diagram

Multiple magnetization curves were measured both below and above the Néel
temperature TN. At 2 K, the curve has two sharp steps that are an indication of a
transition into another magnetic phase. At higher temperatures a gradual change
of shape and blurring of the steps is observed. The evolution of the magnetization
is shown in Fig 4.10 and the comparison of the two main directions in Fig. 4.11.

Numerical derivative of the measured data was used to determine the phase
diagram of the compound. Due to a large amount of noise, the measured curves
had to be smoothed (and interpolated) with cubic splines before calculation of
the derivative. The curves are displayed in Figs 4.12 and 4.13 together with their
derivatives. For temperatures up to 5 K, two peaks are visible on the derivative.
At 5.5 K the peaks had merged and it is possible to deduce only one transition
temperature. The data were used to obtain the phase diagram of Nd2RhIn8 which
can be found in Fig. 4.14. The phase diagram consists of two phases and bears
clear similarity to phase diagrams of other members of the compound family. In
comparison with [37] as shown in the figure, our measurements did not confirm
an additional phase transition in the region µ0H < 8 T which is probably caused
by a misinterpretation of broad anomalies in Cp as seen in Fig. 4.1 for H = 7 kOe.
Continuing, we were not able to reproduce the exact border between phase I and
II. This can have many causes ([37] does not offer error bars), but, taking into
consideration that we have larger error in determination of transition field and
[37] have error in deriving the transition temperature we believe that the phase
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border goes somewhere between the sets of points, as shown with the line in the
Fig. 4.14. There was no indication in the measured date for existence of another
phase between phases I and II.

The single crystal of Nd2RhIn8 prepared during this work was later used by
Petr Čermak in his study of magnetic structures of R2RhIn8 (R = Nd, Dy and Er)
[39] which revealed the magnetic propagation vector k =

(
1
2
, 1

2
, 1

2

)
in Nd2RhIn8

and moments ordering along the c axis at temperatures below TN which is in
agreement with the compound’s easy axis. The result of his work is shown in
Fig. 4.15. Similarly, we also present the high-field magnetization data obtained
by Prof. A.V. Andreev on our Nd2RhIn8 sample as an inset to Fig. 4.11. This
inset can explain why at 2 K and 14 T, the observed moment (≈ 2.5 µB

Nd3+
) is

significantly lower than the theoretical value of the saturated moment Eq. ()
3.27 µB, that is the saturation sets in at even higher fields.

4.4.2 Nd2IrIn8

Susceptibility, Curie-Weiss law and CF susceptibility

The measured dependencies of the magnetization on temperature of Nd2IrIn8

single crystal are shown in Fig. 4.17. The H/M curves are linear in the para-
magnetic region and exhibit Curie-Weiss behavior with a small deviation for H
along c at high temperatures. The data indicate a transition to the antiferromag-
netic state at TN = 12.5(2)K (temperature obtained from specific-heat data, as
indicated in next section) in good agreement with Ref. [12]. We observe a mini-
mum of the magnetization and an increase below 6 K which might be attributed
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Figure 4.11: Comparison of magnetization curves for the a and c directions at
temperatures below and above the Néel temperature TN. The inset shows the
high-field magnetization measured by Prof. Andreev [36] where it is possible to
see the continuation of the bend on the H||a curve at 2 K.
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Figure 4.12: Nd2RhIn8 magnetization curves (part 1) with derivatives (ordered
state) for T = 2.0 K to 7.0 K. Two transitions are visible at low temperatures
and become blurred at higher temperatures.
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Figure 4.13: Nd2IrIn8 magnetization curves (part 2) with derivatives (ordered
state) for T = 8 K, 9 K, 10 K, 15 K and 30 K. It is possible to detect one
transition at T < TN.
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Figure 4.15: Magnetic structure of the I phase in Nd2RhIn8 obtained by Petr
Čermák [39].
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parameter B 0
2 B 0

4 B 4
4 B 0

6 B 4
6

value (10−3K) -19.93 -2.89 -3.06 -0.304 10.25

Table 4.6: CF parameters from ab initio calculations.

to the presence of traces of NdIn3 which orders magnetically just below 6 K [11].
The inverse susceptibility curves were fitted to the Curie-Weiss law which gives
θp = -23(4) K and 4(4) K for the a- and c-axis, respectively. The effective mag-
netic moment per Nd3+ ion µeff = 3.61(8)µB is in agreement with the theoretical
free-ion value of 3.62 µB/Nd3+ ion. If the temperature independent χ0 was fitted,
it acquired values of 0.000(3) and -0.010(2) for the a and c directions, with a
neglligible change in θp (within the error bars).

For the calculations on Nd2IrIn8, I used CF parameters obtained by Doc.
Divǐs from the first-principles calculation using the full potential augmented plane
waves plus local orbitals (APW+lo) method [40, 41]. The CF parameters then
originated from the aspherical part of the (total) single-particle potential.

The susceptibility calculated from the CF parameters (see Tab. 4.6) predicts
c as the easy-axis. This is in agreement with the measurement yet the calculated
curves exhibit only a minimal anisotropy between the a and c directions in com-
parison to the measured H/M curves (Fig. 4.18). This discrepancy is probably
due to anisotropy of the molecular field acting on the Nd3+ ions.

Magnetization curves, M(T ) curves, phase diagram

The M(H) curves are presented in Figs. 4.19 and 4.20. Two transitions are
clearly visible at 2 K when the field is applied along the c-axis. Figure 4.19
shows the evolution of the metamagnetic transitions in a temperature range of
2 – 10 K. The transitions gradually blur and merge at about 6 K. Comparison
of the magnetization curves measured for the magnetic field oriented along the
c-axis and perpendicular to it, both in the ordered and the paramagnetic state,
is presented in Fig. 4.20. The magnetic moment per one ion at 2 K and 14 T
is again lower than the theoretical value but we believe this can be explained in
a similar way as in Nd2RhIn8, that is the moments need more than 14 T to be
fully saturated.

The magnetization was measured also as a function of temperature in mag-
netic fields up to 14 T. Representative data are shown in Fig. 4.21 for several
values of the magnetic field. The individual curves are discussed below in con-
nection with the magnetic phase diagram.

The measured M(H) and M(T ) curves have been used to construct the mag-
netic phase diagram (Fig. 4.22) for H||c. The phase diagram is divided into
two magnetic phases and has the same structure as has been reported for other
R2IrIn8 compounds in which the magnetic moments are aligned along the c-axis
[16, 39]. All parts of this phase diagram are well reflected in the M(T ) depen-
dencies shown in Fig. 4.21. In fields below 7 T, only a magnetic transition from
the paramagnetic to the antiferromagnetic phase I is seen. The data measured
at 7.5 T and 8 T show the same transition to phase I as in lower fields but, in
addition, the transition from phase I to phase II is reflected by a sharp increase
of M. At 11 T, only the transition to phase-II is observed and the 12 T data show
behavior of a field-induced ferromagnetic order. In analogy to recently studied
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Figure 4.18: Comparison of the measured H/M curves of Nd2IrIn8 to the inverse
susceptibility calculated from parameters in Tab. 4.6 by using .

Ho2RhIn8 [33] it is probable that in phase-II, half of the Nd moment value prob-
ably orders ferromagnetically. The magnetic structure of phase II in Ho2RhIn8

has been studied by neutron diffraction and revealed a non-trivial multi-k mag-
netic structure described by four propagation vectors including a ferromagnetic
component k = (0, 0, 0). The transition between phases I and II can be seen
also as the flipping of a quarter of the magnetic moments which causes the total
magnetization to be half of the field-induced ferromagnetic state value. Due to
the similarities in the shape of the phase diagrams and the magnetization curves,
it is possible to presume an analogous mechanism to be present in Nd2IrIn8.

Specific heat analysis

As the last step, the heat capacity of Nd2IrIn8 was analyzed. The Cp(T ) curve
was used to determine the value of TN. The low-temperature part of Cp(T ) is
presented in Fig. 4.27. La2RhIn8 (data from Ref. [31], see Fig. 3.3) was used as
the closest available non-magnetic analogue to enable us to calculate the magnetic
heat capacity, the magnetic entropy and to estimate the Schottky specific heat
above TN. From Fig. 4.27 can be seen that only the R=La analogue has an
acceptable entropy at higher temperature limit.

In the temperature range below TN, the phonon contribution is rather small
and the uncertainty introduced by the different masses of Ir and Rh is acceptably
low. Cmag follows approximately the T 3 dependency expected for 3D antiferro-
magnetic magnons below TN, except for the region below 6 K where it deviates
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Figure 4.19: Nd2IrIn8 magnetization curves for H along c. Evolution of the
transitions in temperatures up to 10 K.
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Figure 4.23: Nd2IrIn8 magnetization curves (part 1) with derivatives (ordered
state) for T = 2 to 7 K. Two transitions are visible at low temperatures and
become blurred at higher temperatures.
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Figure 4.24: Nd2IrIn8 magnetization curves (part 2) with derivatives (ordered
and paramagnetic state) for T = 8 to 20 K. One transition is still visible (at
T < TN).
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Figure 4.25: Nd2IrIn8 M(T ) curves (part 1) with derivatives for µ0H = 0.1 T to
7.50 T. The PM to AFM transition is visible. A second transition emerges at
fields higher than 7.25 T.
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Figure 4.26: Nd2IrIn8 M(T ) curves (part 2) with derivatives for µ0H = 8.0 T to
12.00 T. The PM to AFM transition is visible up to 11.0 T. The second transition
up to 10.0 T.
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0 K 14.4 K 91.5 K 106.4 K 141.3 K

Table 4.7: Obtained CEF energy levels

from the cubic law as seen from Figs. 4.28 and 4.29 and where the power of the
dependency seems to be impossibly large. This behavior is believed to be due to
the traces of NdIn3 detected by EDX. Other evidence of a small amount of NdIn3

could be two slightly elevated points on the Cp(T ) curve that would correspond to
the transition temperatures 5.9 K and 5.3 K of NdIn3 [11]. Figure 4.30 shows the
magnetic specific heat up to 80 K. The magnetic entropy seems to increase to the
expected value for Nd3+ ions 2R ln (2J + 1) = 2R ln 10. The magnetic entropy at
TN is considerably larger than 2R ln 10 which suggests a second doublet close to
the ground-state doublet. The energy levels calculated from the CF parameters
(Tab. 4.7) have the second lowest doublet at 14.4 K which could explain the in-
creased entropy at TN. The Schottky specific heat calculated from the CF levels
(see Tab. 2) is also in agreement with the data, as seen in Fig. 4.30.
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Figure 4.27: Low temperature specific heat for Nd2IrIn8, the subtracted specific
heat of La2RhIn8 and the result. The inset shows temperature evolution of Smag

for different R2RhIn8 (R = Y, La, Lu) non-magnetic analogues used.
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Conclusion

The magnetic and thermodynamic properties of Nd2RhIn8 and Nd2IrIn8 com-
pounds from the RmTnX3m+2n family have been studied in this thesis. We have
also come up with a new interpretation of specific heat data of Nd2IrIn8 in the
T <TN region and with comparison of measured data to crystal field calculations
based on parameters obtained from an ab-initio method.

Single crystals of Nd2RhIn8 and Nd2IrIn8 were successfully grown from flux.
The R2TX8 compounds crystallize in the Ho2CoGa8 tetragonal structure, space
group P4/mmm (No. 123) and are antiferromagnetic with Néel temperatures
10.8(2) K, 12.5(2) K respectively. The measured susceptibility curves were fitted
to the modified Curie-Weiss law. The magnetization curves at low temperatures
(2 K) showed a step-like transitions, characteristic for this compound family, that
become blurred and smeared at temperatures closer to TN. The first derivative
of magnetization curves was used to obtain the magnetic phase diagrams for field
along the c-axis. The obtained magnetic phase diagrams are new results in the
study of RmTnX3m+2n compounds. The expected similarity of the diagrams to
those of related compounds and the presence of two phases was confirmed however
we disproved the shape of the phase boundary presented by Duque et al. [37].

In the second part of our work, we built a program in the matrix calculator
Octave for evaluation of properties based on the crystal field Hamiltonian which
calculates CEF susceptibility and the Schottky specific heat for a set of CEF
energy levels. The possibility to evaluate the Stevens operator equivalents directly
from definition as a function of J has brought a significant simplification of the
calculations compared to the need of using the tabulated values of Ô m

n .
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Octave scripts

Notes: every function needs to be put in a separate .m file with the function name
or a script file with multiple functions has to be used. Only the Ô 0

2 and Ô 0
4 are

shown below. The rest, ie. the Ô 4
4 ,Ô 0

6 and Ô 4
6 operators can be constructed in

a straightforward fashion.

Heat Capacity

% function y = einstein(T,T_E)

% Returns Einstein heat capacity for input T and Einstein temp T_E

% (Accepts arrays of T)

function y = einstein(T,T_E)

R = 8.31;

x_E = T_E./T;

pom = exp(x_E);

y = R .* x_E .* x_E .* pom ./ ((pom - 1).**2);

end

% function y = debye(T,T_D)

% returns C_Debye for T and Debye temp T_D

% (accepts arrays of T)

function y = debye(T,T_D)

R = 8.314;

x_D = T_D./T;

q = zeros(size(T));

for iii = 1:length(q)

q(iii) = quad(@fceinteg,0,x_D(iii));

endfor

y = 3 * R ./ (x_D .**3) .* q;

end

%numericaly integrated function in debye

function y = fceinteg(x)

pom = exp(x);

y = (x**4) * pom / ((pom - 1)**2);

end

%Calculates the Schottky heat capacity

function y = hc_a(T,levels);

T = T(:);

levels = levels(:);

pom1= exp(-levels * (1./T)’);

pom2 = ones(size(levels)) * sum(pom1);

pom1 = pom1 ./ pom2;

y = 8.314 * ((levels .* levels)’ * pom1
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- (levels’ * pom1).^2) ./ T’ ./T’;

endfunction

CEF susceptibility

function y = J_x(J,conv = 1)

y = .5 * (J_plus(J,conv) + J_minus(J,conv));

end

function y = J_y(J,conv = 1)

y = .5/i*(J_plus(J,conv) - J_minus(J,conv));

end

function y = J_z(J,conv=1)

y = diag(linspace(conv * J,conv * (-J),2*J+1));

end

function y = J_plus(J,conv = 1)

p1 = linspace(-J,J-1,2*J);

p1 = sqrt(J*(J+1) - p1.*(p1+1));

y = diag(p1,conv);

end

function y = J_minus(J,conv = 1)

y = J_plus(J,conv)’;

end

function y = O_20(J,conv = 1)

JJ = J*(J+1);

J2p1 = 2*J + 1;

Jz = J_z(J,conv);

E = eye(J2p1);

y = 3*Jz*Jz - JJ * E;

end

function y = O_40(J,conv = 1)

JJ = J*(J+1);

J2p1 = 2*J + 1;

Jz = J_z(J,conv);

E = eye(J2p1);

y = 35 * Jz**4 + (25 - 30 * JJ)*Jz**2 + E * JJ * (3 * JJ - 6);

end
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function [J J2p1 gJ Alpha Beta Gamma] = ion_p(s)

switch s

case {"Nd","ND","Nd3+"}

M = [4.5 8.0/11.0 -7.0/1089.0 -136.0/467181.0 -1615.0/42513471.0];

case {"Ce","CE","Ce3+"}

M = [2.5 6.0/7.0 -2.0/35.0 2.0/315.0 0];

otherwise

M = zeros(1,5);

endswitch

J = M(1); J2p1 = 2*M(1) + 1; gJ = M(2);

Alpha = M(3); Beta = M(4); Gamma=M(5);

end

function y = susc_CEF(ion,B,H,T,rec = 1)

% results are in u_B / T (or T/u_B when rec is 1)

uB = 0.67171; % in K/T

[J J2p1 gJ Alpha Beta Gamma] = ion_p(ion);

y=zeros(size(T));

p1 = ones(J2p1,1);

Jz = J_z(J); Jx = J_x(J); Jy = J_y(J);

H_size = sqrt(H*H’);

H_dir = H / H_size;

hamiltonian = B(1) * O_20(J) + B(2) * O_40(J) + ...

B(3)* O_44(J) + B(4) * O_60(J) + B(5) * O_64(J);

[U,E] = eig(hamiltonian);

energie= p1’*E;

energie = energie - min(energie);

JH = H_dir(1) * Jx + H_dir(2) * Jy + H_dir(3)*Jz;

JH = U’ * JH * U;

E_n = p1*energie;

E_m = E_n’;

denominator = E_m - E_n;

nuly = all(abs(denominator) < 1e-7,J2p1);

denominator = denominator + nuly;

for jj = 1:length(T)

prst = exp(-energie/T(jj));

Z = prst*p1;

CH = prst*abs(diag(JH)).**2 /T(jj);

numerator = exp(-E_n/T(jj)) - exp(-E_m/T(jj));

limita = nuly.*exp(-E_m/T(jj))/T(jj);

numerator += limita;

frac = numerator./denominator;

frac = frac - diag(diag(frac));
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CH += p1’*(abs(JH).**2 .*frac)*p1;

CH = CH/Z;

y(jj) = CH;

endfor

y = gJ*gJ*uB*y;

if (rec == 1)

y = 1./y;

end

end
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