
MASTER THESIS

Dušan Varǐs

Automatic Error Correction of Machine
Translation Output

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Ondřej Bojar, Ph.D.

Study programme: Master of Computer Science

Study branch: Mathematical Linguistics

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague date 27th July 2016 Dušan Varǐs

Title: Automatic Error Correction of Machine Translation Output

Author: Dušan Varǐs

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Ondřej Bojar, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: We present MLFix, an automatic statistical post-editing system, which
is a spiritual successor of the rule-based system, Depfix. The aim of this thesis
was to investigate the possible approaches to automatic identification of the most
common morphological errors produced by the state-of-the-art machine trans-
lation systems and to train sufficient statistical models built on the acquired
knowledge. We performed both automatic and manual evaluation of the system
and compared the results with Depfix. The system was mainly developed on the
English-to-Czech machine translation output, however, the aim was to generalize
the post-editing process so it can be applied to other language pairs. We modified
the original pipeline to post-edit English-German machine translation output and
performed additional evaluation of this modification.

Keywords: automatic post-editing, machine translation, supervised machine
learning, natural language processing, Treex

I would like to thank my supervisor, RNDr. Ondřej Bojar, Ph.D., for valuable
advice and support during writing this thesis. I would also like to thank Matěj
Trojan for helping me with the evaluation of Czech MLFix output. Finally, I
would like to thank Ladislav Valkovič, Ph.D., Mgr. Ondřej Dušek and Radek
Śıleš for helping me with evaluating German MLFix output and providing me
information about the language.

This thesis is dedicated to them.

Contents

1 Introduction 3
1.1 Task Motivation . 3
1.2 Related Work . 3
1.3 Thesis Structure . 4

2 System Description 5
2.1 Processing Pipeline . 5

2.1.1 M-Layer Analysis . 5
2.1.2 Interset . 6
2.1.3 Word Alignment . 6
2.1.4 A-Layer Analysis . 7

2.2 Statistical Component . 8
2.3 Wordform Generation . 8
2.4 Language Independence . 8

3 Available Data 10
3.1 Khan Academy . 10
3.2 Autodesk . 10
3.3 HimL-Lingea Logs . 11
3.4 WMT Datasets . 11
3.5 Other Sources . 12
3.6 Monolingual Data . 12

4 Task Definition 14
4.1 Specifying the Task . 15

4.1.1 Oracle Classifier . 16
4.1.2 Depfix Reference . 20
4.1.3 Oracle Evaluation . 21

4.2 Feature Extraction . 23

5 Model Training 24
5.1 Model Evaluation Methodology 24
5.2 Automatic Error Detection . 25

5.2.1 Unbalanced Data Problem 25
5.2.2 Machine Learning Method Comparison 26
5.2.3 Feature Selection . 27
5.2.4 Model Summary . 29

5.3 Automatic Morphology Prediction 29
5.3.1 Machine Learning Method Comparison 32
5.3.2 Feature Selection . 32
5.3.3 Model Summary . 35

6 System Evaluation 37
6.1 Automatic Evaluation . 37

6.1.1 Morphology Prediction Evaluation 37
6.1.2 Error Detection Evaluation 38

1

6.2 System-wide Evaluation . 39
6.3 Manual Evaluation . 40

7 English-German 42
7.1 Processing Pipeline Modifications 42
7.2 Data Analysis . 43
7.3 Model Development . 45
7.4 Evaluation . 45

8 Conclusion 49

Literature 51

Bibliography 51

List of Figures 56

List of Tables 57

A Contents of the CD 58

B MLFix Scenarios 59
B.1 English-Czech . 59

B.1.1 Analysis on M-layer . 59
B.1.2 Alignment . 60
B.1.3 Analysis on A-layer . 60
B.1.4 Fixing . 61
B.1.5 Detokenization . 62

B.2 English-German . 62
B.2.1 Analysis on M-layer . 62
B.2.2 Alignment . 63
B.2.3 Analysis on A-layer . 63
B.2.4 Fixing . 64
B.2.5 Detokenization . 64

2

1. Introduction

In this thesis, we present a statistical post-editing tool MLFix based on its rule-
based predecessor Depfix (Rosa, 2014). We aim to use statistical machine learn-
ing methods to generalize a subset of Depfix rules and create a fairly language-
independent automatic post-editing (APE) tool. Our main goal is to find a rea-
sonable trade-off between the amount of linguistic knowledge needed in the train-
ing and input data and the dependence on language-specific third-party analysis
tools. We also want to specify the machine learning (ML) task which our APE
component should accomplish and train a sufficient ML model for correcting ma-
chine translation (MT) output. The system was developed using English-Czech
language pair, however, we also present a preliminary results we gathered from
English-German language pair experiments.

1.1 Task Motivation

Even though the state-of-the-art MT systems have been gradually improving in
the past few decades, they are still not perfect. Currently, the most popular
statistical machine translation (SMT) systems can be fairly effective even with
little or no linguistic knowledge about the concerned language pair given they
have access to sufficient amount of parallel data. However, when translating into
morphologically rich languages, data sparsity increases rapidly and such systems
quickly begin to introduce grammatical errors into the translated sentences and
worsen the overall fluency of the translation.

Still, these systems can be of help to the human translators since it is usually
less costly to start with a partially incorrect translations provided by the SMT
system and have a human translator correct them than to translate the source text
manually. Human post-editors can however still be quite expensive so naturally,
there have been attempts to automate this process with automatic post-editing
tools.

1.2 Related Work

Up to this date, there have been various approaches to the task of automatic error
correction of machine translation output, each with a different level of success.

The very first attempts in the field of automatic post-editing (Simard et al.,
2007) focused on applying phrase-based statistical machine translation (PB-SMT)
system on the output of rule-base machine translation. The system was trained on
monolingual bitextual data containing the MT output as the source sentence and
the reference translation as the target sentence. This phrase-based automatic
post-editor (PB-APE) helped to significantly improve the performance of the
rule-based MT system in question. There were also attempts to apply the post-
editing component on a phrase-based translation system but the combined system
performed slightly worse in comparison with the standalone SMT system.

Further experiments with PB-SMT + PB-APE (Béchara et al., 2011) were
done on English-French and French-English translation, where significant im-

3

provements were reported for the latter translation direction. They improved the
design suggested by Simard et al. by creating a purely statistical pipeline. The
PB-APE was then expanded by adding further context information about the
source sentence to the SMT-generated output (used as an input for the PB-APE)
reporting further improvement in performance.

These previous attempts can be considered purely statistical since only a little
amount of linguistic knowledge about the concerned languages was used during
development. To gain further insight into the task of automatic post-editing, a
more thorough analysis of the most frequent errors made by the current SMT
systems was performed by Bechara (2013) and later by Rosa (2013), the former
for English-French and the latter for English-Czech.

The error analysis was later used during development of the rule-based APE
Depfix (Rosa, 2014), which was designed to correct errors made by the English-
Czech SMT systems. The system uses a set of finely hand-crafted rules that aim
at identifying and correcting morphological errors such as incorrect agreement or
valency, which are often encountered during English-Czech machine translation.
It does not focus on a lexical errors although some minor corrections, e.g. insertion
of missing reflexive particles, are made. The system succeeded to improve output
of various MT systems and was deployed as a stable part of the Chimera (Bojar
et al., 2013a) MT system.

The idea behind Depfix system seems promising, however, due to its rule-
based nature, it is difficult to apply the APE on a different language pair since it
would require costly modifications to the existing set of rules. One of the goals
of this thesis is to try to replace the rule-based blocks by statistical ones so they
can be applied to MT output in a new target language more easily, simply by
training an appropriate statistical model.

1.3 Thesis Structure

In Chapter 2, we describe MLFix data processing pipeline and introduce all the
tools we use. In Chapter 3, we take a look at all datasets which we used during
our system development and analyze their usefulness for our system. In Chap-
ter 4, we define the post-editing task, go through various modifications of the
task we considered and explain our approach with the support of our analysis of
the available data. In Chapter 5, we describe the process of the development of
the statistical models for the MLFix post-editing component and present results
of the evaluation of the trained models. In Chapter 6, we evaluate the perfor-
mance of the whole MLFix system and analyze the level of contribution to the
resulting performance of each individual statistical component. In Chapter 7,
we briefly describe our modifications to English-Czech pipeline when used on
English-German language pair, then summarize the differences in the training
data and model training between the two language pairs. The chapter concludes
with an evaluation of the English-German pipeline. We conclude the thesis in
Chapter 8.

We include a summary of the contents of the attached CD in Attachment A
and a full English-Czech and English-German Treex scenario in Attachment B.

4

2. System Description

In this chapter, we describe the main components of MLFix system and take
a closer look at the suggested processing pipeline. We focus on English-Czech
pipeline, however, we also describe modifications needed to apply MLFix for
other language pairs.

Full examples of currently deployed Treex scenarios (English-Czech
and English-German) are included in Attachment B.

2.1 Processing Pipeline

MLFix is, similarly to its predecessor, almost entirely implemented in the Treex
(Popel and Žabokrtský, 2010)1 framework (formerly known as TectoMT). The
framework was originally created as a basis for English-Czech hybrid translation
system, combining rule-based modules with statistical models and using deep
semantic language representation for sentence translation. However, due to its
modularity, it is now used for various tasks of natural language processing (NLP)
across different languages. The framework was built to support the methodology
of the theory of Functional Generative Description (Sgall, 1967) and was adapted
to support sentence representation in Prague Dependency Treebank (Hajič et al.,
2006). Mainly, it supports the representation of sentences on different layers
of abstraction defined in FGD: morphological layer, analytical layer and a tec-
togrammatical layer, usually referred to as m-layer, a-layer and t-layer where
prefixes m-, a- and t- are also used to refer to the objects at the corresponding
layer of abstraction. Because the tools for tectogrammatical layer analysis are
currently available for a limited set of languages (mainly Czech and English, with
others in progress), we decided to use only the a-layer (surface syntax) for data
representation.

2.1.1 M-Layer Analysis

MLFix analysis pipeline is derived from an existing Depfix pipeline with a several
modifications to make it easier to apply to different target languages. MLFix takes
a pairs of source sentences and their MT outputs, which are aligned on a sentence
level, as the input. Additionally, sentence-level aligned reference translations are
expected during the system training. The input data are first read in parallel
and stored into Treex internal representation. Both source side and MT side are
tokenized by a rule-based tokenizer, each token is then represented by a separate
m-node.

Next, lemmatization and part-of-speech (POS) tagging is performed. For both
English and Czech, we use MorphoDiTa (Straková et al., 2014)2 tool for morpho-
logical analysis and tagging. MorphoDiTa is also used for Czech lemmatization.
For English lemmatization, we use a rule-based block implemented in Treex. It
is important to provide a POS tagger for the target language that supports rela-
tively fine-grained morphological tags because our goal is to correct morphological

1http://ufal.mff.cuni.cz/treex
2http://ufal.mff.cuni.cz/morphodita

5

http://ufal.mff.cuni.cz/treex
http://ufal.mff.cuni.cz/morphodita

errors represented mainly through these tags. It was reported by Rosa (2013, p.
33) that the tagger produces significantly more errors in morphological analysis
of Czech SMT outputs in comparison with normal text. In Depfix, this is cov-
ered by a rule-based block that identifies these errors and changes the incorrect
morphological tag without changing the surface form. We decided to omit this
block and leave the issue to our statistical component.

The last step we do in the scope of the m-layer analysis is a transformation
of the morphological tags into a more general representation. Optionally, we can
apply a named-entity recognition tool if one is available but it is not mandatory.
For English, we use the Stanford Named Entity Recognizer (NER) (Finkel et al.,
2005)3, for Czech, we use a simple rule-based NER.

2.1.2 Interset

Since there are usually different tagsets used across individual languages, often
engineered for purposes of that specific language and with no standardized tag
representation, we would be forced to modify our existing pipeline to some extent
every time a new language would be introduced. Therefore, we have decided to
use Interset (Zeman, 2008)4, an interlingua-based representation of morphological
tags from various tagsets. To be able to use this representation to represent
tags from a given tagset, a decoding/encoding module is required. However, the
support for various tagsets spanning through different languages started growing
lately mainly due to Universal Dependencies (Nivre et al., 2016)5 project.

After the transformation, in following steps of the analysis, a choice of a
specific tagset becomes transparent because MLFix blocks only have to deal with
one well-defined set of features.

2.1.3 Word Alignment

In the next step, we create a word-level alignment for each sentence pair using
GIZA++ (Och and Ney, 2000). We create one-to-one word alignment between
the source language and the MT output where possible using the intersection
symmetrization.6 This step helps us later with feature extraction (e.g. extracting
the information about the aligned source node) and with further processing of
the target sentence.

In the process of training data extraction, we also create a simple alignment
between the MT sentence and the reference sentence exploiting forms, lemmas
and tags of the m-nodes. This is done by a language-independent rule based
block which was already implemented in Treex, Align::A::MonolingualGreedy.
Then, we create alignment between source sentences and reference sentences by
combining the SRC-MT and MT-REF alignments created earlier.

3http://nlp.stanford.edu/software/CRF-NER.shtml
4https://ufal.mff.cuni.cz/interset
5universaldependencies.org
6When post-editing SMT output, we might expect to be provided the word alignment by

the SMT system we are correcting. However, this would put additional constraint on the input
data format so we do not make this assumption.

6

http://nlp.stanford.edu/software/CRF-NER.shtml
https://ufal.mff.cuni.cz/interset
universaldependencies.org

Preprocessing
Source (English) MT (Czech) Reference (Czech)

Training data MDiTa + MST MDiTa + src proj MDiTa + MST

Test data MDiTa + MST MDiTa + src proj −
Alignment

SRC-MT MT-REF SRC-REF

Training GIZA++ Rule-based SRC-MT + MT-REF
Test data GIZA++ − −

Table 2.1: Summary of the tools used to process source (English), MT (Czech)
and reference (Czech) sentences. For preprocessing tagger+parser pairs are pre-
sented, MorphoDiTa (MDiTa) for tagging and MST parser or projection of the
source trees (src proj). Additionally, alignment type (GIZA++, Rule-based, or
combination of alignments) is listed for each sentence pair.

2.1.4 A-Layer Analysis

After the m-layer analysis and the word alignment, we perform dependency pars-
ing. For English, we use Maximum spanning tree (MST) parser (McDonald
et al., 2005)7 implemented in Treex framework. For SMT output, even though
there might be an existing dependency parser available for the target language,
it is usually trained on data that do not contain errors. Therefore, it has usually
significantly lower performance when applied on the SMT output. research on
Depfix has shown that the knowledge of the dependency structure of the SMT
output can provide additional valuable information for identifying grammatical
errors8, thus improving the Depfix performance.

For the time being, we decided to build the dependency structures of the SMT
output simply by projecting the dependency structure of the source sentence onto
the target side using the word alignment we extracted in the preceding step.
The resulting structure will most likely contain errors, but should be at least
consistent throughout our data. To compensate for the lower accuracy of the
extracted dependency structure we perform dependency parsing of the reference
sentences during training, if a proper parser is available. For this purposes, we
use the MST Parser for the Czech language as well.

Note that for Czech SMT output, an implementation of the MST parser
adapted for the SMT output is already available (Rosa et al., 2012a), however,
so far we have not done any experiments to determine whether the dependency
structures provided by the adapted parser (which should be more accurate than
our projected trees) influence the final performance of our system.

We summarize the methods used for preprocessing source, MT and reference
sentences and methods for creating the corresponding word alignments in Ta-
ble 2.1.

7http://sourceforge.net/projects/mstparser
8Actually, in the case of Depfix , the information about the dependency structure is crucial

for most of the fixing components because e.g. the parent-child relationship is examined almost
every time.

7

http://sourceforge.net/projects/mstparser

2.2 Statistical Component

After data preprocessing, we extract all available features and apply a trained
statistical model. The features are extracted separately for each node and passed
to a model. The model needs to accomplish these two goals:

1. identify candidate words with incorrect morphology,

2. fix incorrect morphological features.

Of course, these two steps can be split between multiple separate components (and
models). We describe the post-editing process in more detail later in chapter 5.

We decided to use Scikit-Learn (Pedregosa et al., 2011)9 toolkit to train and
execute our models since it has an easy-to-use and quite uniform interface, which
allows us to try out different machine learning (ML) methods simply by switching
the model class. In Treex, we use a simple wrapper to load and execute the trained
Scikit-Learn model. If a support for a different ML implementation is needed (e.g.
VowpalWabbit10,11), this wrapper can be easily modified to suit the requirements.

2.3 Wordform Generation

After we have identified morphologically incorrect words and assigned them a
new morphological categories, we need to generate new surface forms reflecting
the changes we have made. This can be done either by rule-based component or
with the help of another statistical model.

For Czech, we have used a morphological generator build upon the morphology
of Hajič (2004) that is already part of the Treex framework. For other languages,
when there was not another option available, we used Flect (Dušek and Jurč́ıček,
2013)12. Flect is a language independent morphological generation tool also using
Scikit-Learn models. The tool learns morphological inflection patterns form an
annotated corpus and should be able to inflect even previously unseen words using
lemma suffixes as features and predicting the difference between the lemma and
the necessary surface form given some morphological specifications.

2.4 Language Independence

From the previous description, we can notice that MLFix still depends on several
language specific tools. It is quite dependent on the capability of a source lan-
guage analysis (in our case English), because we do not only need a POS tagger
but also a dependency parser. However, we assume that source sentences are
usually grammatically correct so it is much easier to provide required tools than
their modified versions targeted at the MT output.

9http://scikit-learn.org/stable/
10https://github.com/JohnLangford/vowpal_wabbit/wiki
11At the time of writing this thesis, there is already a limited support for VowpalWabbit in

Treex.
12https://ufal.mff.cuni.cz/flect

8

http://scikit-learn.org/stable/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://ufal.mff.cuni.cz/flect

We also require a specific decoder of the source and target POS tags into
Interset feature structures but Interset already covers a large variety of the most
widespread tagsets available and its support is still growing.

Finally, aside from a language specific post-editing models (which we do not
expect to be reusable across different languages) we require a module that regen-
erates the corrected wordform (either from the “lemma+tag” or “lemma+Interset
features combination” specification). A state-of-the-art tool might not be explic-
itly available for every language but if no other option is provided, we can use a
statistical form generator, in our case Flect.

9

3. Available Data

In this chapter we take a closer look at available sources of data and describe how
they contributed to our research.

We came across various sources of training data with various level of use-
fulness. The data was usually available only in a smaller volume. Some of the
sources are:

• Khan Academy1 human post-edits of manually translated (EN→CS) sub-
titles,

• Autodesk triparallel data2,

• log files of human post-editing done by Lingea for the Health in my Lan-
guage3 (HimL) project test dataset,

• results from the previous workshops on machine translation (mainly
WMT10 (Callison-Burch et al., 2010)4, and WTM16 (Bojar et al., 2016)5

datasets).

In the following sections, we describe each in more detail.

3.1 Khan Academy

The data provided by Khan Academy consist of English-Czech subtitles, where
the Czech part (usually manually translated from English) was manually edited.
During the analysis of the dataset, we noticed that most of the time, the correc-
tions were made mostly on the lexical level which is to be expected since the Czech
sentences were created by a human translator. Therefore, we concluded that this
dataset has little to no value for the task of training a model for correcting errors
in morphology created by MT systems.

3.2 Autodesk

Autodesk data consist of English sentences which were machine translated into a
set of target languages (cs, de, pl etc.) complemented with human post-editing
of the MT output. However, these datasets are domain specific (mostly user
documentation), so they might not be very attractive to use with more general
texts. We were not able to find any information about the MT system that was
used to create the translated output. The biggest advantage of these data is their
larger volume when compared with other post-editing datasets so we used them
mainly for model development and benchmarking of the used machine learning
methods.

1https://khanovaskola.cz/
2https://autodesk.app.box.com/Autodesk-PostEditing
3http://www.himl.eu/
4http://www.statmt.org/wmt10/
5http://www.statmt.org/wmt16/

10

https://khanovaskola.cz/
https://autodesk.app.box.com/Autodesk-PostEditing
http://www.himl.eu/
http://www.statmt.org/wmt10/
http://www.statmt.org/wmt16/

3.3 HimL-Lingea Logs

The data provided by Lingea6 were collected when official test sets for HimL
project were created. The data consist mainly of texts related to public health.
The original English sentences were first machine-translated to languages at which
the project was aimed (Czech, German, Polish and Romanian) and then post-
edited by professional translators using Lingea’s post-editing tool. The datasets
are probably the most detailed one since they consist of complete logfiles describ-
ing elementary actions taken by human post-editors (such as selecting phrases in
a translated sentence, looking up alternative translations in a dictionary etc.).

When we examined the data more closely, we noticed that it is rather difficult
to determine which actions are useful for our machine learning process. Also, we
were a little disappointed when we found out that most of the time, the post-
editors preferred to rewrite the whole sentence “from scratch”7 instead of doing
a few atomic modifications to the provided MT output.

In the end, we decided to simply extract triparallel data from these logs (the
source sentence + SMT output + result of the human post-editing). In the future,
we might consider to use other logged actions for model training.

3.4 WMT Datasets

For the last decade, the workshop on machine translation (WMT) has aimed to
provide working grounds for many researchers in the field of machine translation.
It has been great source of parallel data between English on one side and various
other languages on the other. Each year, the scope of the workshop expands,
including various new subtask related to machine translation, such as several
evaluation tasks and, more recently, automatic post-editing task.

The data available for the post-editing task usually contains a set of:

• source English sentences,

• output of various MT systems, usually the ones that participate in the main
translation tasks,

• either a reference sentences or human post-editing of the MT output from
the participating MT systems.

These datasets give us the opportunity to compare the performance of our
post-editing models when applied to the different systems. Even though the
data available for the WMT subtasks are often from various domains (news, IT,
biomedical), the domain of the post-editing data is more limited, mainly to the
news articles.

6http://www.lingea.cz/
7By that, we mean that the human post-editor usually preferred to rewrite the whole cor-

rected sentence, even though only a several changes (either lexical and morphological) were
made, and delete the original. This might have been also motivated by the need to reorder the
MT output.

11

http://www.lingea.cz/

3.5 Other Sources

The sources listed above (each one to a different degree) can be considered a
knowledge base for examining the behavior of a human post-editors as well as
training data for our system. We think that they provided us with some in-
teresting insight into the post-editor’s thought process. On the other hand, we
have also considered using other sources since the data mentioned above are quite
limited in size.

One possible way to tackle the shortage of training data is to use available
parallel corpora. These corpora (containing only source sentences + reference
translations) can be expanded by translating the source sentences and thus cre-
ating a set of sentences which contain MT generated errors and should be fixed
to resemble the reference translation. These data can be then used to train post-
editing models for that specific SMT system8 or possibly for other SMT systems.
This method can surely help to overcome the aforementioned data acquisition
bottleneck since there is generally much more parallel data then post-edited sen-
tences. For English-Czech language pair, the natural choice of the parallel corpus
would be CzEng 1.0 (Bojar et al., 2012b)9.

Of course, this aproach introduces some additional noise related to the post-
editing task. For example, we can get fluent and correct MT output which is
very different from the reference translation because sentences can easily have
hundreds of thousands of correct translations (Bojar et al., 2013b). Therefore, it
can be hard to distinguish which of the differences between MT and the reference
translation are genuine MT errors.

The basic summary of the available data is shown in the table Table 3.1.

3.6 Monolingual Data

We have also considered using bitext monolingual data (either MT output +
post-edited sentences or MT output + reference translations), however due to the
nature of our processing pipeline we would be much more limited when analyzing
the training data. Also this way, we would lose the additional information that
can be extracted from the source sentences, which proved to be valuable in the
practice (Rosa et al., 2012b).

8Obviously, the post-editing model training data have to be different from the parallel data
used for the training of the SMT system, so some jackknife sampling should be used with limited
training data.

9http://ufal.mff.cuni.cz/czeng

12

http://ufal.mff.cuni.cz/czeng

Sentences # Tokens English
Tokens Czech

MT PE REF

Khan Academy ∼14k ∼93k ∼93k* ∼93k −
Autodesk 46,916 490,005 456,697 441,645 −
HimL-Lingea 3892 60,142 51,428 56,485 −
WMT10 2,489 54,021 44,578 − 45,422

WMT16 2,999 57,418 48,037 − 48,915

CzEng 1.0 15M 206M − − 150M

* Translations in Khan Academy data come from humans.

Table 3.1: Summary of the available post-editing data. Only English-Czech data
is listed, however, for datasets where data for other language pairs are available,
their volume is approximately the same. We provide only rough estimates for
the Khan Academy data. There is no information about the number of tokens
in the MT part of CzEng because we decided to abandon the idea of creating a
triparallel corpus for the time being.

13

4. Task Definition

In this chapter we present results of the closer inspection of the available training
data and describe our process of developing the MLFix post-editing component.

When we closely inspected the morphological errors present in our data we
decided to approach the post-editing problem as a classification task. Basically,
the main idea is to identify words with incorrect surface form, assign new mor-
phological categories to such words (e.g. via new morphological tags, Interset
categories) and generate a new surface form. This approach seems reasonable,
since it gives us fair amount of freedom in generalizing the morphological post-
editor, by customizing the scope of the trained classifier or classifiers (e.g. by
specifying the set of categories being predicted by the classifier or the set of in-
stances, which can be modified by the predictor). On the other hand, it raises
several issues that have to be resolved, mainly:

• What instances should we extract from our training data?

• Which of the extracted instances should we mark as incorrect, as opposed
to instances that represent words with correct surface from?

• Is it necessary to extract error-free training instances?

• What features should we extract for each instance?

• How should we apply the trained classifier? Should we apply it on each
word in a sentence or should we identify the erroneous words first?

• What morphological categories should be predicted by our classifier?

Another important question is how should we measure the performance of our
models. Obviously, we cannot base the quality of our system on the performance
of the classifier itself since even a really well performing classifier can have only
a small or negative impact on the edited sentences (e.g. if we choose to predict
morphological categories that have very small impact on the final surface form, or
we incorrectly identify erroneous words in our training data). Still, the standard
metrics used for classifier evaluation, such as accuracy, precision and recall, can
be helpful during some stages of development (e.g. the choice of machine learning
method, hyperparameter tuning).

However, in the end, our main goal is not producing a well performing classi-
fier, but creating more fluent, grammatically correct sentences. Naturally, for this
purpose, human evaluation of the post-edited sentences is the best choice as far
as reliable judgement goes, but it is also very costly and we usually need a more
efficient method during system development. Therefore, we rely on the widely
used BLEU scoring and probably even more suitable translation error rate (TER)
metric. Relying on these methods alone has however a few drawbacks which we
will address later in the in this chapter.

14

4.1 Specifying the Task

As mentioned above, our goal is assigning new surface forms to the morphologi-
cally incorrect words in the MT translated text via newly predicted morphological
tags. For morphologically rich languages, this can be quite difficult due to large
tagsets. Also, most of the time, the incorrect surface form of the word is only a
result of an incorrect value in a small subset of morphological characteristics of
the word (e.g. wrong case, number, gender). These reasons are why we decided to
use the Interset categories instead1 and allow for predicting only a few categories
at a time.

Eventually, when we were deciding on how our post-editing system should
work, we have settled on three possible scenarios:

1. Have one completely general classifier that is applied on each word in the
sentence (some words might be omited by hand-crafted rule, e.g. ignore
classes that do not flect).

2. Identify the erroneous words first by a separate classifier. Apply a second
classifier on the marked words and predict new morphological categories.

3. Identify the erroneous words same way as in the previous scenario however,
this time also choose a classifier that should be applied in the second step.
The choice can be simply deterministic (e.g. via general POS), or stochastic.

The first scenario can be appealing because it is very easy to implement and
requires only one model. The problem is that requirements for such model might
be way too big and difficult to satisfy. Another problem might be an unbalanced
training dataset since most of the training examples will represent “correct” (as
far as fluency of the translated text is concerned) instances, where predicting a
new morphological categories is not desired. Therefore producing a well perform-
ing model can become difficult in the end.

We thus find the second scenario much more plausible and it was our main
focus during this research. It requires a simple binary classifier for the first
step and one multiclass (or possibly multitask2) classifier. When we train the
binary classifier (which identifies the words that need to be corrected) we still
have to face the issue of an unbalanced training dataset, on the other hand, the
classifier assigning new morphological categories can be simply trained only on
the incorrect instances.

The third scenario seemed reasonable because we usually want to modify dif-
ferent morphological categories for different POSes. However due to the results
of the data analysis (presented in more detail in Section 4.2), we found it unnec-
essary to implement for the time being.

1It is not necessary for Czech, since the Czech positional tagset allows us to modify only
necessary parts of the morphological tag. However, other languages do not provide similar
tagset, therefore Interset might be more feasible representation.

2We define a multitask classifier as a classifier combining two classification tasks together
(e.g. predicting new number and new case). The tasks are separate, however the classifier takes
the possible relation of the two tasks into account.

15

4.1.1 Oracle Classifier

Now that we have outlined the post-editing subtasks and assigned hypothetical
classifiers to solve each one of them, there are following two issues left to resolve:
the choice of training instances and the choice of classifier targets. Since we only
focus on correcting morphological errors generated by the MT system and we
ignore lexical errors completely, we have to be careful during the extraction of
training instances for our classifier. We have found it very helpful to use a “fake”
classifier for this task, that we simply call Oracle.

The basic idea behind the Oracle classifier is that it has access not only to the
source sentences and the MT output like our production classifier but also to the
“correct” answers contained in the reference translations/post-edited sentences.
The most important task for the Oracle is to help us to observe whether the
suggested definition of training instances and moreover the definition incorrect
instances (the instances, which require post-editing) has a potential of improving
the MT output (if we had a perfect classifier).

We decided to extract one training instance for each word in our data that
meets all of the following criteria:

• the MT-node lemma IS EQUAL to the REF-node lemma,

• the MT-parent node IS DEFINED AND
the MT-parent node IS NOT ROOT,

• the REF-parent node IS DEFINED AND
the REF-parent node IS NOT ROOT,

• the SRC-node IS DEFINED,

• the SRC-parent node IS DEFINED AND
the SRC-parent node IS NOT ROOT,

We have settled for these criteria for the following reasons: we want to extract only
instances that have true predictions available (thus the check for the presence of
the aligned REF-node), we want to ignore misleading instances related to possible
lexical errors or different lexical choice (equality of the SRC-node and REF-
node lemmas) and finally, we want to make sure that enough relevant tree-based
context information will be extracted. We have not modified the definition of the
training instance much during the research. On the other hand, we experimented
with several definitions of the incorrect instance.

We tried three different heuristics to identify incorrect instances, each with a
different set of conditions:

1. the MT-node form IS NOT EQUAL to the REF-node form,

2. the MT-node form IS NOT EQUAL to the REF-node form AND the MT-
parent form IS EQUAL to the REF-node form,

3. the MT-node form IS NOT EQUAL to the REF-node form AND (the MT-
parent form IS EQUAL to the REF-node form OR the MT-parent form is
marked as INCORRECT)

16

All definitions work in the context of the training instance. For later reference, we
refer to these heuristics as WrongForm1, WrongForm2 and WrongForm3 respec-
tively. In any case, if the conditions are not met, the training instance is marked
as correct and should be left unchanged by the classifier. These definitions cover
both instances that should be changed (correct vs. incorrect instance) and how
the incorrect instances should be modified (values from the REF-node). The sur-
face forms generated with the use of these training instances should be identical
to those of the reference, if all morphological categories, that are different from
the reference, are properly set before generating the new form. This fact has
one major drawback related to the evaluation: the quality of the Oracle (and
therefore the “best” possible result) or a production classifier cannot be reliably
measured by automatic n-gram based metrics, because the post-edited sentences
will always have same or better score than the MT output. Therefore, manual
evaluation is required to some extent.

The first method (comparing only the surface forms) marked about one-tenth
of the training instances as incorrect. When used in combination with the Oracle
classifier, the post-edited sentences have shown moderate improvement in the
automatic metrics. However in a closer observation of the sentences, we noticed
many incorrect modifications such as Example 4.1. Clearly, even though the
wordform of “mı́sto” has been changed to match the reference, the governing
verb “mı́t” requires its dependent to be in the dative case. The change has
thus actually introduced a new grammatical error into the sentence and thus
worsened the fluency of the translated sentence. Additionally, by changing the
case of the word “mı́sto”, the already correct agreement with the subordinate
adjectives “posledńı” and “volná” got also broken, making the result even worse.
On the other hand, the wordform in the reference sentence is correct because
the governing word of “mı́st” is a noun (“pár”) instead of a verb resulting in a
genitive case of the word.

Source: We have the last few vacancies for New Year’s Eve and
Christmas.

SMT output: Máme posledńı volná mı́sta na Silvestra a Vánoce.

Gloss: We have the lastdative fewdative vacanciesdative for New Year’s
Eve and Christmas.

Oracle output: Máme posledńı volná mı́st na Silvestra a Vánoce.

Gloss: We have the lastdative fewdative vacanciesgenitive for New Year’s
Eve and Christmas.

Reference: Na Silvestra i na Vánoce máme posledńıch pár mı́st.

Example 4.1

The previous example has shown that for identifying incorrect instances, some
additional information about the surrounding members of the sentence is required.
We have seen that by slightly altering governing nodes, e.g. by only choosing
a different lexical translation of the source node or by choosing a completely
different expression, the equality between the surface form of the MT word and

17

its reference counterpart cannot be enforced without harming the quality of the
MT sentence. Therefore, we tried to introduce additional constraints to correctly
identify candidates for post-editing. To mark and instance as incorrect, not only
the ref-node form has to be different from its aligned ref-node form, but we must
make sure that their governing nodes have identical surface form. We considered
checking only for the lemmas of the governing nodes at first, but this constraint
was too soft and was not able eliminate some of the previous errors. The main
motivation behind this constraint is to identify at least some agreement and
possibly valency errors without too much of language-specific insight. We assume
that if the surface form of the mt-node and ref-node differ while their parent node
is identical, there is a high chance that the mt-node’s surface form is incorrect
while the reference node has the right correction3.

This additional constraint helped us to remove a large number of false positives
and produced training examples such as Example 4.2. In this example, we can see
that the noun “život” was correctly changed to “života” because of the valency
frame of the verb “sd́ılet”. However, we can see, that this constraint might be
too strict because the adjective “akademického” was left unmodified even though
by changing its governing noun “život”, the agreement present in the MT output
and should have been preserved after the post-editing was left unnoticed. The
post-editing of the word “akademického” was omitted, because the surface forms
of the governing nodes in the MT sentence and the reference sentence (“život”
vs. “života”) did not match. We observed this kind of false negative quite often
which led us to introducing one additional constraint.

Source: . . . where he acknowledged the ”wonderful people” he
shared his academic life with.

SMT output: . . . kde potvrdil, že je ”skvěĺı lidé” sd́ılel jeho akademického
života.

Gloss: . . . where he acknowledged, that is ”wonderful people” he shared
his academic lifegenitive.

Oracle output: . . . kde potvrdil, že je ”skvěĺı lidé” sd́ılel jeho akademického život.

Gloss: . . . where he acknowledged, that is ”wonderful people” he shared
his academic lifedative.

Reference: . . . do poděkováńı ”skvělým lidem”, s nimiž sd́ılel akademický
život.

Example 4.2

To soften the previous constraint in favor of not breaking the agreement of
the dependent nodes, we decided that if the previous constraint is not satisfied
(possibly due to a difference between the mt-parent surface form and the ref-
parent surface form), the node in question should still be marked as incorrect if

3This, of course, depends on the quality of the dependency tree produced by the parser.
However, since we use different parsing methods for mt-side (projection of the src-tree) and the
reference (dependency parser) we expect that the number of false positives in our training data
will be lowered.

18

and only if the governing node was marked as incorrect and the node’s surface
form is different form that of the reference node. This is basically similar to
post-editing the MT output dependency tree recursively from its root to its leaf
nodes.

Applying this new constraint we were able to produce training examples simi-
lar to Example 4.3. As we can see in the MT output, there is correct agreement be-
tween the words “Potrefená” and “husa”,4 however, they have broken agreement
with the governing preposition “naproti”. This is corrected in the Oracle output.
Even more interesting is the phrase “narazit na moravské náměst́ı” and its coun-
terpart, “narazit na moravském náměst́ı”, both being grammatically correct while
having different meaning. The first one means literally “to come across moravské
náměst́ı” (“náměst́ı” meaning “square” in Czech), while the other one can be
translated as “to come across (someone/something) on moravské náměst́ı”. In
this case the phrase created by the Oracle classifier (even though it does not work
on the phrase-level) is closer to the original meaning. We might notice, the some
named entities were not correctly identified (“Moravské”, “Husa”) but correcting
these is not a goal of the original task.

Source: The only place we’ve managed to come across is on
Moravské náměst́ı, opposite the Potrefená Husa.

SMT output: Jediné mı́sto, kde se nám podařilo narazit na moravské náměst́ı
naproti Potrefená husa.

Gloss: The only place, where we’ve managed to come across
Moravskédative náměst ídative opposite the Potrefenánominative

Husanominative.

Oracle output: Jediné mı́sto, kde se nám podařilo narazit na moravském
náměst́ı naproti Potrefené huse.

Gloss: The only place, where we’ve managed to come across
Moravskélocative náměst ílocative opposite the Potrefenágenitive

Husagenitive.

Reference: Jediné mı́sto, na které jsem zat́ım natrefil, je na Moravském
náměst́ı naproti Potrefené Huse.

Example 4.3

It should be noted, that these constraints do not detect all possible morpho-
logical errors. For example, since we check mostly only the relationship with the
governing node, we effectively omit subject-verb agreement errors. This can be
possibly fixed in the future by additional constraints, however, in the scope of
this thesis, our main objective was to find and evaluate a method for identifying
and correcting morphological errors that is as general as possible.

We also must keep in mind that the final constraint, while producing rea-
sonable training examples, still managed to produce instances containing false
positives. Even though it might be caused by incorrect assumptions during the

4 Even though “Potrefená Husa” is a named entity, in Czech, these are still flected with
regard to the rest of the sentence structure.

19

designing of our heuristics, we should point out that there are instances such
as Example 4.4, where it is difficult to decide whether the post-editing helped to
improve or harmed the fluency of the MT output, possibly due to being only one
of the several steps that needs to be taken during the post-editing. In this ex-
ample, we can see that the adjective “osvětleného” was changed to “osvětleném”
because the governing node “baru”, being a part of the apposition with the “Julep
Room”, should be in the preposition-noun agreement with the preposition “v”.
However due to mistranslation of the named entity (“Julep Room”) and wrong
indication of the apposition relationship (missing comma), the reader might con-
sider the correction made by the Oracle less fluent or unnatural. On the other
hand, the meaning of the original MT output is quite different from the meaning
in the source sentence, therefore, some post-editing is definitely required.

As we have seen, the task of extracting meaningful and correctly annotated
training instances for our system gets increasingly difficult with growing difference
between the MT output and the reference sentences. If provided output only from
a poor MT systems, the task might be almost impossible. For this reason, we
have tried another, somewhat limited, method for creating and extracting training
instances.

Source: . . . entertainment coordinator at The Julep Room, a
dimly lit bar near Gautier, said. . .

SMT output: . . . programový koordinátor v Julep mı́stnosti osvětleného baru
u Gautiera, prý. . .

Gloss: . . . entertainment coordinator at The Julep room of a litgenitive
bargenitive near Gautier, said. . .

Oracle output: . . . programový koordinátor v Julep mı́stnosti osvětleném baru
u Gautiera, prý. . .

Gloss: . . . entertainment coordinator atlocative The Julep room a
litlocative barlocative near Gautier, said. . .

Reference: . . . koordinátor zábavy v The Julep Room, spoře osvětleném baru
pobĺıž Gautier, řekl. . .

Example 4.4

4.1.2 Depfix Reference

From the previous observations, we assume that the constraint-based method
achieves best results when combined with data, where reference sentences (or
human post-edited sentences) are as close to the MT output as possible. We
can also take another look at the issue: the less is the amount of unnecessary
changes , or in our case changes which cannot be identified by our system (e.g.
lexical error corrections), more precise should be the extraction of the training
instances. For this reason, we have decided to examine training data, where we
created “syntetic” post-editating of the MT output. These synthetic sentences
are neither produced by a human translator or created by a human post-editing
process. A suitable tool for this task might quite naturally be Depfix.

20

Reference WrongForm1 WrongForm2 WrongForm3

Original 0.159 0.021 0.026
Depfix 0.009 0.003 0.003

Table 4.1: Overview of the portions of instances from WMT10 dataset marked as
incorrect using different heuristic rules. We compare original dataset containing
reference translations and dataset where reference translations were replaced by
Depfix output.

The main focus of the Depfix post-editing tool is correcting morphological
errors (aside from some frequent lexical errors, e.g. missing reflexive particles
and too eagerly translated named entities) which usually results in post-edited
sentences that are not that different from the MT output. Aside from that, the
morphological changes (even though they are a result of an applied set of rules)
made by Depfix are very similar to the post-editing changes we are trying to teach
our statistical component.

Considering these observations, we have created a new datasets by applying
Depfix on the available bilingual data and using Depfix output in place of reference
sentences. We have then extracted the training instances in a similar way as with
the genuine post-editing data. We have also run our Oracle classifier on the data
with the resulting sentences matching the Depfix output most of the time.5

This method seems quite viable for the task of identifying incorrect instances
and learning the right correction method because it should reflect at least the
thought process behind creating the corrections rules. It should be also aplicable
on various MT systems because, as Rosa (2014) has previously reported, Depfix
was able to improve the quality of various systems to some degree. The main
downside to this method is currently being limited only to the Czech language
since the Depfix was created with the aim to post-edit English-Czech machine
translation. Furthermore, it is questionable whether the system trained on these
data can surpass the performance of the original post-editing system. This ap-
proach might become more interesting if a viable method of adapting the trained
models to another language pairs is devised in the future.

4.1.3 Oracle Evaluation

In this section, we present a brief evaluation of the Oracle classifier to show what
is the possible upper limit, that can be reached by our statistical components.
This is important, because the resulting model cannot perform well with regard
to our demands, if the extracted instances that are provided during training are
already incorrectly classified.

We present a brief statistic about the percentage of the instances that were
marked by each heuristic presented in Table 4.1. The statistic was computed over
several different datasets presented in the previous chapter (Autodesk, HimL,
WMT10, WMT16). We also provide similar statistics for the data created via
Depfix. We can see that the portion of incorrect instances, i.e. the instances which
will serve as our training data, is not very high. This is due to many sentences

5The only cases when the Oracle classifier did not correspond to the modification made by
Depfix were when Depfix made one of its lexical corrections.

21

Reference Evaluated Changed + − 0 Precision Impact

Post-edits 800 95 61 16 18 79.2% 7.6%
Depfix 800 75 47 3 25 94.0% 5.5%

Table 4.2: Results of the manual evaluation of the ideal system based on the
WrongForm3 heuristic. Sentences were taken from HimL dataset. We compare
the results on both original dataset containing human post-edited sentences and
the dataset with Depfix reference sentences.

being considered correct by our heuristics (possibly because they contained either
too many errors, or the errors were of a different nature than the ones we detect).

To get a brief idea, if our heuristic has a potential of providing valuable
information for the classifier training, we decided to manually annotate a portion
of the data from the HimL testset post-edited by our Oracle classifier. Because
this is not a final evaluation of our system, the evaluation was made only by the
author of this thesis. The evaluation has been done on the pairs of MT output,
Oracle post-edited output, randomly shuffled to lessen the bias of the annotator.
We also provided the source sentence to help the annotator decide whenever both
outputs seemed grammatically correct but had a different meaning. We did not
provide the annotator with reference sentences due to the nature of Oracle post-
editor. For comparison, we also extracted a similar number of sentences from the
same dataset, where the reference sentences were replaced by the Depfix output.
This evaluation was done mainly for the purpose of development so only one
annotator was involved.

In Table 4.2, we present results of the manual evaluation. We present number
of sentences in the evaluated dataset, the number of sentences, that were actu-
ally modified by Oracle and the manually assigned label given to each modified
sentence: better (+), worse (−) or indecisive (0). Indecisive annotations were
usually a result of both translations being too incomprehensive or due to multi-
ple corrections in the sentence, both improving and worsening. In addition, we
have computed the precision (4.1) and impact (4.2) of Oracle in a same manner
as Bojar et al. (2013a) did during Depfix evaluation in the Chimera MT system:

precision =
better

better + worse
(4.1)

impact =
better

evaluated
(4.2)

We can see from the results, that the final heuristic presented in this chapter,
if we ignore the indecisive corrections, made mostly positive changes to the MT
output (about four-fifths of the time) However, the impact is quite low, only
slightly more than 7% of the sentences were modified by Oracle classifier. When
compared to the results achieved on the data with Depfix reference sentences we
can see that the precision grows even more and the overall impact drops a little
lower. Therefore, we can assume that the presented heuristic can provide us with
quite reliable training data. Sadly, due to the low impact, much larger volumes
of post-edited data are needed to extract of reasonably big training dataset.

22

4.2 Feature Extraction

We have chosen the following strategy for designing the initial set of features:
we extract as many distinct features based on the available node information and
later we reduce the features by one or several methods of features selection, either
manual or stochastic.

Our feature set has a hierarchical structure. For each training instance, we ex-
tract information about the node, its parent, the aligned source node and aligned
source node’s parent. For training purposes, we also extract information from
the aligned reference node. Note, that we ignore information about the parent of
the reference node, we use this information only for distinguishing the incorrect
instances from the correct ones according to the previously described approach.

From each of these “main” nodes inside the instance, we extract information
specific to them and to their close neighborhood (e.g. their parent, grandparent,
preceding child, following child, preceding sibling, following sibling). We also ex-
tract information about the number of preceding and following children, direction
of the edge coming from the node’s parent and finally the Interset representation
of the morphological POS tag. As a default, if a value is not defined we use an
empty string instead. We are allowed to do that because we treat every feature
as categorical, i.e. taking one of discrete values.

We have also tried extracting the lemmas but it resulted in a large growth
of an already quite big feature space, so we initially abandoned the idea. In
the future, it might be interesting to include at least a limited number of the
most frequent lemmas in our feature set and observe how they can affect the
performance of the classifiers.

This way, we extracted around 1500 initial features. Of course, this was a
general feature set that needed to be further processed within every classification
task. Also, the method by which we chose the initial features resulted in many of
the features having zero variance. Those features we removed, giving us around
1000 features.

23

5. Model Training

In this chapter, we describe the process of developing the statistical post-editing
models. We take a closer look at the task of model selection and parameter tuning,
the feature selection methods we have experimented with and several methods of
evaluation used during the tuning. We only present experiment results for the
separate statistical models, evaluation of the whole MLFix system is presented
in the next chapter.

In this chapter, we cover the following two classification tasks: the identi-
fication of incorrect instances (words from the MT output with incorrect sur-
face form), addressed as error detection for short, and the prediction of the new
morphological categories for the incorrect instances, referred to as morphological
prediction.

Our development process can be separated into three stages: in the first stage,
we have focused on basic comparison of different ML methods and choice of the
most suitable candidate for each task. In the second stage we have tried to
further increase the performance of the model based on the chosen ML method
by experimenting with various methods for feature selection and in the third
stage, for each dataset, we have searched for the best hyperparameters of the
both the selected ML method and the feature filtering method.

5.1 Model Evaluation Methodology

We have decided to do word-level evaluation during the model development. More
precisely, we have evaluated performance of models using the instances extracted
by the process we have described in the previous chapter.

For both error detection and morphological prediction task, we have defined
a baseline model for comparison. The baseline model basically represents a pre-
dictor which does not detect any errors (all instances are marked as correct) or
keeps the original morphological categories for each instance.

Aside from a standard accuracy metric, we have also measured precision and
recall of the models we trained to gain additional information about the model
performance. We use standard definition of precision (5.1) and recall (5.2) com-
puted using the following equations:

precision =
TP

TP + FP
(5.1)

recall =
TP

TP + FN
(5.2)

However, we have slightly altered the definitions of true positives (TP), false
positives (FP) and false negatives (FN) with regard to the baseline model.

For error detection, each instance that was assigned the same value as the true
prediction and a different value than the baseline is marked as TP. Eash instance
that was assigned a value different from both the true prediction and the baseline
is marked as FP and each instance with the predicted value equal to the baseline
but different from the true prediction is marked as FN.

24

For morphological prediction, we use the same definition of TP, however, the
definitions of FP and FN are altered in the following way (the true prediction
does not match the predicted value):

• if the baseline value matches the predicted value, an instance is marked as
FN,

• if the baseline value matches the true prediction, an instance is marked as
FP,

• if the baseline does not match either one, an instance is marked as wrong
positive (WP).

The WP is a special case which reflects the situation where predictor tries
to predict new value (different from the original one) but fails and returns just
another incorrect value.

We must also take into account that the error detection classifier is a general
model, which is not designed to distinguish the types of morphological errors
and the morphological predictor might be specialized only on a limited set of
the morphological categories. Therefore, sometimes we want the morphological
predictor to just leave the “incorrect” instances unchanged because it is simply
incapable of predicting new values of the incorrect categories.

In the end, we have found the basic accuracy metric to be more informative
for evaluating the morphological predictor, not only because in takes the WP
instances into account but also due to the nature of our training data. We use
only instances that are marked as incorrect by our heuristic which make preci-
sion/recall less relevant compared to accuracy. On the other hand, if we decided
to expand our training data by “correct” instances, these metrics would become
more useful.

5.2 Automatic Error Detection

As we have already pointed out, the task of identifying morphologically incorrect
words in the text is more difficult than the task of assigning new morphologi-
cal categories. It is not surprising that we have faced several issues during the
development which we describe in more detail in the following sections.

5.2.1 Unbalanced Data Problem

In this task, we face the problem of binary classification, where we assign the
value 0 to instances that we consider correct (they are not going to change) and
the value 1 to instances that need to be corrected. The process of assigning these
values to the extracted training instances was described in the previous chapter.

The baseline classifier for error detection has already achieved accuracy larger
than 95% simply by marking all the instances as correct (class 0). However, we are
more interested in maximizing the precision and recall of the class 1 predictions.
As we have already pointed out, this is caused by a fact that only a small portion
of our training instances is being marked as incorrect by our heuristic. This
became a severe issue since most of the machine learning methods rely more or

25

less on accuracy during the process of searching for the best hypothesis, however,
it is the minority class, that is our target during the error classification.

There are several methods that can be used to solve this problem: e.g. creating
synthetic training data by over-sampling instances with our minority class or
under-sampling instances belonging to the dominating class (Batista et al., 2004),
weighting of the training instances or modification of the cost function (Domingos,
1999). The manipulation with the training data (over and under-sampling) is the
easiest method, however, by modifying the distribution of the classed in training
data the classifier performance can drop when applied to data with real-world
distribution. Still, the idea of modifying the distribution of our training data is
worth considering.

We took the inspiration from the work of Jia et al. (2013) describing the
classification of grammar errors in the texts written by a human. They also
approach the task as a classification problem. During training, they filter their
training corpus to only around 5% of sentences, because only those were ones
that contained grammatical errors.

In our case, if we look at the results produced by Oracle classifier, we can
see that only a small portion of the MT sentences has been actually modified.
This means that a large number of the sentences were considered morphologically
“correct”.1 These sentences are still part of our original training data, introduc-
ing a significant amount of training instances belonging to the majority class.
Therefore, to balance our data, we have decided to use only training instances
extracted only from the sentences where at least one word was marked as incor-
rect. This way, we were able to increase the portion of the minority class up to
10%. The training data is still unbalanced but to a much lower degree.

This less unbalanced dataset can be used in two ways: we can simply treat
it like a downsampled data and use the trained models “globally” (on every MT
sentence), or we can add another component for identifying these “incorrect”
sentences and than apply our error detection model on them. In the scope of this
thesis, we opt for the former approach.

5.2.2 Machine Learning Method Comparison

There are many machine learning methods that support binary classification, so
we have decided to only compare a limited subset of the available methods that
are implemented in the Scikit-Learn framework. For each classifier we tried sev-
eral hyperparameter settings to observe the changes in the classifier behavior.
However, we have made only a rough examination of hyperparameter configura-
tion due to the high number of tested methods. At this stage, the goal was not
to train the best possible classifier but eliminate those, that are not suitable for
the task.

We have measured the performance of the classifiers on several datasets:
WMT10 data translated by CU-Bojar system (Bojar et al., 2012a), dataset ex-
tracted from the lingea logfiles (HimL) translated by simple moses SMT system
(Koehn et al., 2007) and WMT16 newstest dataset translated by the Chimera
system. For each dataset, only instances from the “incorrect” sentences (sen-

1This is very likely not true but we can at least assume that they do not contain training
instances marked as incorrect (as far as our heuristic goes).

26

Dataset System Origin # Instances # Instances (filt.)

WMT10 CU-Bojar REF 23,470 6,033
HimL Moses PE 7,234 2,469
WMT16 CU-Chimera REF 26,942 7,047
WMT10 CU-Bojar Depfix 40,678 4,101
HimL Moses Depfix 10,491 1,114
WMT16 CU-Chimera Depfix 42,021 1,897

Table 5.1: Summary of the size of the training data extracted from various
datasets translated by different SMT systems. We present size before and after
(filt.) removing the instances extracted from the “correct” sentences. Origin
column indicates origin of the reference sentences: post-edited (PE), standard
reference (REF) or created by Depfix.

tences containing at least one error) were used. Additionally, their counterpart
was created by substituting the reference sentences with the Depfix output to
additionally measure the performance on the “synthetic” data. The summary of
the size of the used training data is in Table 5.1.

For the purposes of this coarse evaluation, we used each dataset separately
for both training and testing of the classifiers, by performing one-against-the-rest
10-fold jack-knife sampling. Therefore, the results presented in this stage should
be considered only as an in-domain performance for a specific MT system.

We have compared the following methods: logistic regression, ridge regres-
sion classifier, random forests, extremely randomized trees and support vector
machines (SVM) classifier, all of them being implemented in the Scikit-Learn
toolkit. In Figure 5.1, we can see the comparison of the performance of vari-
ous classifiers based on the F1-measure metric. We can see that for the task
of error identification, support vector machines with linear kernel might be the
most suitable method, outperforming other methods in most of our datasets. The
“baseline” performance is not spectacular, with score of less 0.3 for the normal
data and a slightly better score (∼0.5) for the Depfix data. Therefore, we have
chosen SVM based models for the following stages of model development.

5.2.3 Feature Selection

During model comparison, we have compared the performance on two initial fea-
ture sets: one that did not contain any information about the source sentence
(∼680 initial features) and one with source sentence features (∼1360 initial fea-
tures). Before training, the features with zero variance were removed, however,
no other feature filtering has been performed. We have noticed that the addi-
tional information provided by the source sentence features significantly improves
performance of the majority of the ML methods. Therefore, we have decided to
use this feature set for feature selection method comparison.

Having selected SVM, we tried out several methods for feature selection and
compared their influence on the classifier performance. During the comparison,
we used a SVM model with fixed hyperparameters. We have compared the fol-
lowing methods for feature selection: KBest selection (with chi-squared scoring
function), selection of the percentile of the features (based on the ANOVA F-
test), selection based on lasso regularization and selection through models with

27

Figure 5.1: Overview of the classifier performance (error detection). We have
tried several variations of the hyperparameters for each classifier. The classifiers
are ordered from the best to the worst. Only top 50 results are shown for each
dataset.

28

Dataset System Origin Precision Recall F1

WMT10 CU-Bojar REF 0.29 0.25 0.27
HimL Moses PE 0.28 0.32 0.30
WMT16 CU-Chimera REF 0.40 0.44 0.42
WMT10 CU-Bojar Depfix 0.51 0.55 0.53
HimL Moses Depfix 0.55 0.51 0.53
WMT16 CU-Chimera Depfix 0.50 0.52 0.51

Table 5.2: Summary of the in-domain performance of the trained error detection
models. The evaluation was performed by a jack-knife one-vs-rest classification
on each dataset. Origin column indicates origin of the reference sentences: post-
edited (PE), standard reference (REF) or created by Depfix.

feature importance scoring (svm, random forest). As far as importance scoring
goes, we compared different model configurations and during features selection,
only features with importance higher than the mean of the feature importance
distribution were selected.

The results of feature selection method comparison are shown in Figure 5.2.
We can see that most of the time the feature selection performed by either
ANOVA percentile selector or SVM slightly improved the model performance.
Therefore, we have decided to use these methods during the model tuning.

5.2.4 Model Summary

With the ML method and feature selection method chosen, we have proceeded
to the development of the final model. We have trained several different models,
one for each presented dataset, instead of combining the datasets and training
one larger model. We have chosen this approach because it makes it easier to
exclude specific models if needed (e.g. during final evaluation) and in the future,
include additional models when more training data become available without the
need to retrain the whole error detection component. The use of multiple models
for error detection is described later in Chapter 6.

We present the summary of the trained models in Table 5.2. We can see, that
the models trained on the Depfix data performed better than the ones trained
on the original datasets. Unfortunately, we did not perform any cross-domain
evaluation at this stage so we cannot say that the datasets with Depfix reference
sentences provide better training instances for the error detection models. The
better performance might be just a result of more consistent training data in the
corresponding dataset.

The overall performance is still quite low, so there is still room for improve-
ment. We think that introducing additional features (e.g. information from the
t-layer) or increasing the size of the training data might help us improve these
models in the future.

5.3 Automatic Morphology Prediction

The second classification task to predict correct morphological categories for the
words that were marked as incorrect. Because we are using the Interset represen-

29

Figure 5.2: Overview of the performance of the SVM with linear kernel when
combined with various feature selection methods. We have tried several variations
of the hyperparameters for each method. The horizontal line marks the best
performance without any feature selection method. The methods are ordered
from the best to the worst. Only top 50 results are shown for each dataset.

30

POS Frequency

noun 38%
adj 16%
adp 10%
verb 9%
adv 9%

Table 5.3: Change frequency of various POS classes in Czech.

tation of morphological features we have several possibilities how to handle this
task such as:

1. predict each category separately,

2. concatenate the features and treat them as a single prediction target,

3. use the methods that support multitask classification,

With the first option, the biggest issue is determining the order in which the
classifiers should be applied. Additionally, we have to decide if we also want to
include the current node’s morphological features into our model’s feature set or
use the newly predicted ones. The second approach eliminates this problem by
predicting the values simultaneously. This, however considerably enlarges the set
of predicted values increasing data sparsity. This can be a big problem as we have
already shown that the amount of data available for the post-editing task (mainly
the post-edited data) can be quite small. The third option combines the first two
by training an estimator which handles multiple joint classification tasks, one for
each morphological category. The Scikit-Learn toolkit provides several classifiers
which support this option.

Before jumping straight into the developing of our classifier, it is important
to examine what morphological changes are made in our training data, how fre-
quently they are made and how can they affect the resulting surface form gener-
ation. For instance, we can predict new values of the “punctype” category, but it
is very unlikely that it will affect the resulting wordform of any of the words clas-
sified as incorrect, because this category is related strictly to punctuation. There
are of course less obvious examples and some categories, while being relevant in
one target language can be pointless in another.

For this reason, we have made a frequency analysis of the changes encountered
in our data, shown in Figure 5.3. We can see that most of the time, only the
grammatical case was modified (more than 50% of the instances for the Depfix-
based datasets and more than 40% of the instances for the genuine post-editing
datasets). Other changes were a lot less frequent (less than 10% of the modified
instances). We have also checked, the amount of modifications made for indi-
vidual general POS classes. Table 5.3 summarizes the modification frequencies
for each POS class. In conclusion, we have decided to focus on predicting the
following categories: grammatical case, number, gender and animateness. These
categories are relevant to the majority of the changed words, therefore, changes
made by a classifier predicting these categories should be noticeable.

31

Dataset System Origin # training instances

WMT10 CU-Bojar REF 645
HimL Moses PE 338
WMT16 CU-Chimera REF 722
WMT10 CU-Bojar Depfix 210
HimL Moses Depfix 72
WMT16 CU-Chimera Depfix 99

Table 5.4: Summary of the size of the training data extracted from various
datasets translated by different SMT systems. Origin column indicates origin of
the reference sentences: post-edited (PE), standard reference (REF) or created
by Depfix from the given MT output.

5.3.1 Machine Learning Method Comparison

We have decided to train four different types of model: one predicting case only
(C), one predicting case and number (CN), one predicting case, number and gen-
der (CNG) and one predicting case, number, gender and animateness (CNGA).
We have used the same datasets as in the previous task, however, this time we
have extracted only feature vectors of the instances that were marked as incorrect
in our training data. Since our predictors classify only the incorrect instances,
training them on the whole dataset would only create unnecessary bias. On the
other hand, this has made the training sets quite small (containing only a few
hundreds of examples at most). The summary of the training data is in Table 5.4.
We have decided to train a separate classifier for each dataset instead of combin-
ing the data together, because we can simply combine the models instead (e.g.
via majority vote, best prediction etc.). This allows us to evaluate the combined
model on a test set of our choice. We can also leave out the model trained (using
jack-knife) on that particular test set, to see the applicability across test sets or
domains.

Again, we had to decide which ML method should we use for this task. We
have examined similar set of classifiers with similar hyperparameters as in the
error classification task to get a rough idea about their capabilities. We have
considered using the F-measure again, however, due to the nature of the train-
ing data (all instances are classified), the model accuracy metric seemed more
informative. A rough comparison was made with the case classifier only. Adding
additional targets to the classifiers naturally lowers their overall accuracy, how-
ever, their performance have been similar with respect to each other The results
are shown in Figure 5.4. We can see, that even without any sophisticated pa-
rameter tuning or feature filtering, the classifiers perform quite well. We can
also notice that in most of the cases, the ensemble methods (mainly extremely
randomized trees) performed slightly better than the rest of the examined ML
methods. Therefore, we have decided to pick this method for further experiments.

5.3.2 Feature Selection

We have decided to perform additional feature selection with models trained on
the standard HimL dataset and WMT10 dataset because there is still a reasonable
room for an improvement. Again, we have tried two initial feature sets, one

32

Figure 5.3: Frequency of the most changed Interset categories, grouped by
a datasets. Categories containing ”|” symbol (e.g. gender|number) represent
changes made simultaneously.

33

Figure 5.4: Overview of the classifier performance (category prediction). We
have tried several variations of the hyperparameters for each classifier. The clas-
sifiers are ordered from the best to the worst. Only top 50 results are shown for
each dataset.

34

Figure 5.5: Overview of random forest performance when combined with various
feature selection methods. The methods are ordered from the best to the worst.
The horizontal line indicates the best performance without any feature selection
method. Only top 50 results are shown for both examined datasets.

using the source side features and one without them. We have not noticed any
significant difference in performance between the models trained on these two
initial feature sets so we decided to use the larger one and leave the feature
selection to the automatic feature selection method. Additionally, probably due
to the nature of the classifier, we have noticed another slight improvement by
adding the source lemma (both of the aligned node and its parent) features, so
we have also included them to the initial feature set.2

We have compared several methods of feature selection: KBest selection (with
chi-squared scoring function), selection based on lasso regularization and selection
through models (svm, random forest). Again, we have done a rough comparison
of these methods by trying out several hyperparameter configurations. We tested
them on a model with fixed parameters. The result summary is in Figure 5.5. We
can see that regarding HimL dataset, feature selection did not have any positive
effect on the resulting performance. On the other hand, we have decided to use
the SVM-based feature selection for the WMT10 dataset model training.

5.3.3 Model Summary

In the end, we have trained six different models, one for the each dataset pre-
sented in the rough comparison. Aside from the case classifier, we have also com-
pared performance of the chosen multitask classifiers: the case-number (CN), the
case-number-gender (CNG) and the case-number-gender-animateness (CNGA)
classifier. These classifiers were trained using the same ML methods, each one
was tuned separately. The summary of the final in-domain performance is in Ta-
ble 5.5.

2We have not included the MT lemma feature, because we wanted to try using models
trained on Czech for German post-editing and this feature is too language-specific for that
purpose.

35

Dataset System Origin Case (Base) CN (Base) CNG (Base) CNGA (Base)

WMT10 CU-Bojar REF 73% (35%) 53% (14%) 40% (7%) 37% (7%)
HimL Moses PE 72% (34%) 50% (11%) 41% (5%) 41% (4%)
WMT16 CU-Chimera REF 95% (50%) 45% (21%) 34% (10%) 32% (10%)
WMT10 CU-Bojar Depfix 92% (45%) 83% (22%) 69% (19%) 69% (19%)
HimL Moses Depfix 92% (47%) 78% (26%) 73% (23%) 71% (23%)
WMT16 CU-Chimera Depfix 93% (54%) 64% (16%) 56% (11%) 53% (9%)

Table 5.5: Summary of the in-domain accuracy of the trained morphological
prediction models. The evaluation was performed by jack-knife one-vs-rest clas-
sification of the each dataset. Performance of the baseline (Base) classifier is
presented for comparison. Origin column indicates origin of the reference sen-
tences: post-edited (PE), standard reference (REF) or created by Depfix.

We can see that by including additional target for the multitask classification
the accuracy of the trained model becomes naturally lower. However, we must
take into account that we have only classified the predicted values as correct
or incorrect and we have not distinguished partially correct predictions. Brief
overview of the categories predicted by the CNGA classifier has shown us that
usually a predictor misclassifies only one or two of the target categories. Another
thing to keep in mind is the fact, that even though the predicted categories might
not be equal to the gold standard, the generated surface form might still match
the reference form due to the morphological ambiguities of the language. For
these reasons, we decided to use all these models during the system evaluation.

36

6. System Evaluation

In this chapter, we present the results of the final MLFix system evaluation.
We describe additional datasets we used during the evaluation and different con-
figurations of MLFix we compared. Furthermore, we present evaluation of the
individual MLFix components. We also present a comparison with the Depfix
system. We performed both automatic and manual evaluation.

6.1 Automatic Evaluation

During automatic evaluation, we used BLEU (Papineni et al., 2002) translation
quality metric based on measuring the n-gram difference between the MT output
and the reference translation. Even though it has its limitations, it is the most
widely used evaluation metric at the moment and it is considered a standard
metric for automatic evaluation. We relied mainly on the BLEU scoring metric,
however, we also need to mention Translation Edit Rate (TER) (Snover et al.,
2006) which we used during system development because it measures the quality
of translation based on the amount of corrections needed to match the reference
translation. Lowering the amount of work needed to post-edit the MT output is
one of the aims of MLFix system. Furthermore, the metric has been proved to
provide reasonable correlation with a human judgement.

We evaluted MLFix on the following datasets: Autodesk, WMT10
(Callison-Burch et al., 2010), WMT16 (Bojar et al., 2016), and HimL. These
datasets were translated with various SMT systems.

Because the domains of the training datasets differ to a various degree, we
decided to combine the final models instead of evaluating them separately. The
methods for combining the output of multiple classifiers differ with each MLFix
component and are described in more detail in the following sections. Naturally,
for each dataset we exclude the models trained on the corresponding dataset from
the evaluation.

6.1.1 Morphology Prediction Evaluation

We performed the evaluation of the morphological prediction module first to
determine which combined model to use during the error detection evaluation.
We compared several model combinations: Case models only, CN models only,
CNG models only, CNGA models only and a combination of all available models
(Comb). Each combined model runs all classifiers separately and stores the proba-
bilities of their predictions. Using these predictions, candidate tags are generated
and scored by these probabilities. If a tag is predicted by multiple classifiers, the
scores are summed together. The tag with the highest score is then chosen as the
result of the combined model.

We present the final results of the morphological prediction module evaluation
in Table 6.1. We compare BLEU scores of each model combination and their
improvement over the baseline scores. The values are multiplied by 100 for easier
reading. We can see that the CNG and CNGA models had the largest impact
most of the time. Since the difference between the CNG and CNGA performance

37

Dataset System Oracle Base Case CN CNG CNGA Comb

Autodesk NA 49.20 47.82 47.89 (+0.07) 47.91 (+0.09) 48.22 (+0.40) 48.21 (+0.39) 47.90 (+0.08)

HimL Moses 23.33 20.66 21.14 (+0.48) 20.97 (+0.31) 21.36 (+0.70) 21.49 (+0.83) 21.03 (+0.37)

WMT10 CU Bojar 16.70 15.66 15.84 (+0.18) 15.82 (+0.16) 15.95 (+0.29) 15.95 (+0.29) 15.82 (+0.16)

WMT16
UEDIN NMT 27.31 26.31 26.43 (+0.12) 26.48 (+0.17) 26.47 (+0.16) 26.50 (+0.19) 26.44 (+0.13)
CU Chimera 23.13 21.72 21.94 (+0.22) 21.99 (+0.27) 22.02 (+0.30) 22.05 (+0.33) 22.02 (+0.30)

Autodek-D NA 98.32 96.93 98.12 (+1.19) 98.09 (+1.16) 98.17 (+1.24) 98.16 (+1.23) 98.08 (+1.15)

HimL-D Moses 96.05 94.23 95.23 (+1.00) 95.04 (+0.81) 95.41 (+1.18) 95.42 (+1.19) 94.98 (+0.75)

WMT10-D CU Bojar 95.72 93.42 95.03 (+1.61) 94.99 (+1.57) 95.10 (+1.68) 95.07 (+1.65) 94.96 (+1.54)

WMT16-D CU Chimera 97.51 96.56 97.22 (+0.66) 97.23 (+0.67) 97.26 (+0.70) 97.27 (+0.71) 97.20 (+0.64)

Table 6.1: Automatic evaluation of the morphological prediction module using
BLEU and the relative improvement over the baseline MT output. Values are
multiplied by 100 for easier reading. The performance of the Oracle classifier is
also provided for comparison. Datasets with the -D suffix have Depfix output in
place of reference sentences. The best model for each dataset is printed in bold.

is very small we chose CNG model for the final evaluation because its models
performed better during the model training.

Surprisingly, the performance of the Comb models was lower than we antici-
pated. This might be caused by the fact that these models use basically four times
more classifiers and no weighting is used when combining their results. There-
fore, the final results of the combined models may be biased towards the simpler
models working with a lower number of possible outcomes and thus assigning
their predictions higher scores. Still, a more thorough investigation is needed in
the future.

6.1.2 Error Detection Evaluation

We performed error detection evaluation in a similar way. We used a combination
of binary classifiers in our prediction module. However, we chose a different
strategy for combining the output of the classifiers. We decided to use voting
scheme to determine the final prediction. In the end, we compared three basic
methods: Majority vote, AtLeastOne method, and Average prediction method.1

The Majority vote basically chooses the class that was marked by the majority
of classifiers. We think that this way can help us compensate for the low precision
of some of the classifiers we trained. Because the classifiers were trained on differ-
ent datasets, there should be some level of complementarity between them. Still,
we did not perform any more thorough analysis to support this assumption. Po-
tentially, this method can lead to a lower recall due to classifier combination. We
assume that combining several low recall classifiers can further bias the module
toward the majority class when using this method.

The AtLeastOne method classifies the word as incorrect if at least one classifier
marked it as incorrect. This method should counter the problem of combining
several low recall classifiers to some extent, however, we expect the precision to
drop rapidly when adding more classifiers, especially if their own precision is low
to begin with.

Because we are using classification models that support weighting of the pre-
dicted classes, we also considered the Average voting scheme. If the combined
classifier provide us not only with a predicted class but also some sort of confi-

1Surely, there are other voting strategies available but they were not investigated in the
scope of this thesis.

38

Dataset System Oracle Base Majority AtLeastOne Average

Autodesk NA 49.20 47.82 47.89 (+0.06) 48.47 (+0.65) 47.89 (+0.06)

HimL Moses 23.33 20.66 20.69 (+0.02) 22.08 (+1.41) 20.69 (+0.02)

WMT10 CU Bojar 16.70 15.66 15.84 (+0.18) 16.30 (+0.64) 15.77 (+011)

WMT16
UEDIN NMT 27.31 26.31 26.31 (0) 26.49 (+0.18) 26.31 (0)
CU Chimera 23.13 21.72 21.79 (+0.07) 22.01 (+0.28) 21.79 (+0.07)

Autodek-D NA 98.32 96.93 97.99 (+1.05) 97.99 (+1.05) 98.31 (+1.37)

HimL-D Moses 96.05 94.23 94.62 (+0.39) 96.04 (+1.81) 94.62 (+0.39)

WMT10-D CU Bojar 95.72 93.42 94.76 (+1.33) 95.61 (+2.18) 94.80 (+1.37)

WMT16-D CU Chimera 97.51 96.56 97.04 (+0.48) 97.47 (+0.9) 97.05 (+0.49)

Table 6.2: Automatic evaluation of the error detection module using different
voting methods to interpret output of multiple models using BLEU. Values are
multiplied by 100 for easier reading. For comparison, the performance of Oracle
classifier is also provided. Values in brackets indicate the difference between the
method and the baseline (Base) MT output. Datasets with the -D suffix have
Depfix output in place of reference sentences.

dence value (e.g. probability of the prediction correctness), we can average these
values and mark instance as incorrect if the averaged value exceeds a certain
threshold. This method is similar to the Majority scheme with the difference
that it can choose the result predicted by the minority only when their overall
confidence of the prediction is large enough.

We present the comparison of these three methods in Table 6.2. Morpholog-
ical values of the “incorrect” words were predicted by the Oracle morphological
predictor. We can notice that the AtLeastOne method achieved significantly
better BLEU scores than the other two. This was expected and in this case it
does not necessarily mean that the resulting sentences improved from the human
evaluation viewpoint, because the situation is similar to the heuristic selection
we presented in the task definition. Even though many wordforms were changed
by this method to reflect the wordforms in the reference sentence, it might have
lowered the overall fluency of the translated text. Still, we think that it is worth
exploring this method further.

As for the other two methods, the Average voting method seems to perform
slightly better than the Majority voting but the difference is not significant.

6.2 System-wide Evaluation

In this section, we present the final evaluation of the MLFix system. Based on
the evaluation of the separate components, we chose the CNG model combination
for morphological prediction and we decided to compare both AtLeastOne and
Average voting method for error detection. We also made a comparison with the
Depfix system. The results are summarized in Table 6.3. The number of changed
sentences by each system is shown in Table 6.4.

The results confirm that AtLeastOne voting method, while having large im-
pact, does not work quite well with Czech morphological prediction module. We
cannot tell how many of the marked instances were actually correct, nevertheless,
the morphology correction had probably hard time predicting correct morpholog-
ical categories for these instances. On the other hand, we can see that MLFix

39

Dataset System Base ALO-CNG Avg-CNG Depfix

Autodesk NA 47.82 44.94 (-2.87) 47.89 (+0.06) 47.63 (-0.19)

HimL Moses 20.66 18.91 (-1.75) 20.69 (+0.02) 21.02 (+0.35)

WMT10 CU Bojar 15.66 14.61 (-1.04) 15.76 (+0.10) 15.91 (+0.25)

WMT16
UEDIN NMT 26.31 25.75 (-0.55) 26.49 (+0.18) 26.15 (-0.15)
CU Chimera 21.72 21.44 (0.27) 21.79 (+0.07) 21.75 (+0.02)

Table 6.3: Final evaluation of MLFix using BLEU. Values are multiplied by
100 for easier reading. AtLeastOne (ALO-CNG) and Average (Avg-CNG) voting
methods were compared. The performance of Depfix is shown for comparison.

Dataset System ALO-CNG Avg-CNG Depfix Sent.

Autodesk NA 20,104 7,203 11,415 42,259

HimL Moses 473 30 261 800

WMT10 CU Bojar 1,441 202 973 2,489

WMT16
UEDIN NMT 668 86 418 2,999
CU Chimera 713 122 624 2,999

Table 6.4: Number of sentences changed by different systems. Total number of
sentences in each dataset (Sent.) is listed for reference.

with the Average voting method was able to improve every tested MT output.
However, the improvement was usually quite small, always smaller when com-
pared to Depfix. Interestingly, Depfix was not quite able to improve the output
of the neural network machine translation system (UEDIN NMT) in terms of
BLEU, while MLFix achieved positive score improvement. It might be only a
coincidence and it needs to be investigated more thoroughly in the future. Dep-
fix results on the CU-Chimera dataset should be taken with a grain of salt since
Depfix is already part of the Chimera SMT system. Depfix also had a problem
with Autodesk dataset but we think this might be caused by the specific domain
of the dataset (user documentation).

Even though the changes were positive according to the automatic evaluation,
the impact of MLFix was very low. If we compare the number of sentences
changed by MLFix and Depfix, we can see that Avg-CNG MLFix modified five
to ten times fewer sentences depending on the dataset. We think that this might
be mainly due to the poor performance of the error detection classifiers in our
error detection module. Furthermore, Depfix covers wider range of corrections
which also reflects in a larger overall impact.

6.3 Manual Evaluation

For manual evaluation, we used the HimL dataset translated by Moses and the
WMT16 CU Chimera dataset. They were post-edited by the Avg-CNG MLFix
configuration. We used two independent annotators, both were presented with
pairs of MT output and MLFix output which were randomly shuffled. The source
sentence and reference translation were also provided for each pair. In the end, a
total of 126 changed sentences were evaluated. The results are shown in Table 6.5.

The results show that MLFix was able to improve around four-fifths of the
modified sentences. This result is quite pleasant, but it still needs to be confirmed

40

Evaluated Changed + − 0 Precision Impact

HimL-A 800 26 17 5 4 77.2% 2.1%
WMT16-A 2,999 100 73 21 6 77.6% 2.4%
HimL-B 800 26 5 5 16 50% 0.6%
WMT16-B 2,999 100 71 12 17 85.5% 2.3%

Total 7,598 252 166 43 43 79.4% 2.1%

Table 6.5: Results of manual evaluation of the best MLFix configuration (Avg-
CNG). Annotators A and B are distinguished by a suffix for each dataset.

A/B + − 0

+ 64 7 5
− 5 13 0

0 21 5 6

Table 6.6: Matrix containing inter-annotator agreement of MLFix manual eval-
uation.

in the future by a larger scale manual evaluation. As we expected, the overall
impact of MLFix is quite low, most likely due to the beforementioned low recall
of error detection classifiers in the error detection module. This module therefore
requires further improvement in the future.

Both annotators evaluated the same set of 126 sentences, their inter-annotator
agreement is shown Table 6.6. The inter-annotator agreement reached 62% (87%,
if we disregard the indefinite changes), therefore, the results of manual evaluation
cannot be completely relied on this time.

41

7. English-German

In this chapter, we describe changes we made to the English-Czech MLFix pipeline
to be able to apply the system to the English-German SMT outputs. We sum-
marize the data available for the model training and evaluate the system in a
similar way we did with the English-Czech pipeline.

7.1 Processing Pipeline Modifications

As we already pointed out, we focused on making the processing pipeline as
independent on the target language as possible. However, we still had to replace
some of the tools used during the Czech analysis to be able to correctly process
German sentences.

Again, we used the Treex framework as a backbone of the processing pipeline
and necessary 3rd party tools were implemented into the framework via wrappers.
After the sentences are read in parallel, they are processed separately, English
sentences following the same scenario as in the English-Czech pipeline. German
is tokenized, this time by a set of regex rules inspired by the Tiger corpus (Brants
et al., 2004) with main focus on abbreviations, ordinal numbers and compounds
connected by hyphens.

Next, lemmatization and morphological POS tagging is performed by a Mate
tools1 toolkit. The tagger is using CoNLL2009 (Hajič et al., 2009) tagset. We
also considered using Stanford POS Tagger (Toutanova and Manning, 2000)2,
however, the tagset it uses contains only coarse tags with little morphological
information. To convert the CoNLL2009 tags to Interset, we use a decoder which
was already available at the time of our research.

For the word alignment, we use GIZA++ again. Similar to English-Czech,
we produce one-to-one word alignment between the source sentences and the MT
output via intersection symmetrization. The alignment model was trained on
the European Parliament Parallel corpus (Koehn, 2005)3 (Europarl) containing
nearly two million sentences. During training, we create the MT-REF and SRC-
REF alignments in a same fashion we did in the original pipeline.

The dependency structure of the MT output is created by projecting the En-
glish dependency structures on the MT sentences. When we process the reference
sentences during training, we use a graph-based parser implementation (Bohnet,
2010) which is also a part of the Mate tools toolkit. We stop the analysis at
the a-layer, but again, further analysis of the sentences at the t-layer to gain
additional features for extraction might be helpful in the future.

We reused the statistical component used in the English-Czech pipeline, be-
cause it was designed to be language independent (with exception of the statistical
models). For wordform generation we use Flect morphology generation tool men-
tioned earlier. We trained the generator on a small fraction (around one hundred

1http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.

en.html
2http://nlp.stanford.edu/software/tagger.shtml
3http://www.statmt.org/europarl/

42

http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.en.html
http://nlp.stanford.edu/software/tagger.shtml

Reference Evaluated Changed + − 0 Precision Impact

Post-edits 800 77 20 39 18 33.9% 2.5%

Table 7.1: Results of the manual evaluation of the ideal fixing module based on
the same heuristic that was used in the English-Czech pipeline (WrongFrom3).
Sentences were taken from HimL dataset. For wordform generation, a statistical
component was used impacting the overall performance.

thousand sentences) of the Europarl corpus. The tool is trained on a set of fea-
tures based on a combination of lemma+Interset producing the inflected word.
The feature set was copied from the Dutch feature set so it might not contain all
the useful features. The accuracy of the inflection model measured on a separate
test set was around 94.5%. However, when we briefly examined the sentences
produced via Oracle, we noticed that much larger amount of words was flected
incorrectly.

It is not in the scope of this thesis but it is a future goal to replace the current
inflection model with a better solution, either stochastic or rule-based.

7.2 Data Analysis

We were able to collect only a smaller variety of data for English-German com-
pared to English-Czech mostly due to some datasets we mentioned earlier simply
not being available for this language pair. Still, we were able to gather the fol-
lowing datasets: WMT16, HimL and Autodesk. Note that in case of Autodesk
dataset, the size of English-German corpus is about three times bigger than the
size of English-Czech (around 120k sentences). For this reason, we decided to
include Autodesk dataset into our training data even though it covers a quite
specific domain.

When extracting the training instances for the model training we followed
same scenario as before using the same heuristic (WrongForm3) to identify “in-
correct” wordforms. We also used the Oracle classifier to gather information
about possible improvements this heuristic can bring when applied to German.

We also performed quick manual evaluation of the output produced by the
Oracle classifier by a non-native German speaker. The evaluation was performed
on the HimL dataset. Due to the limited resources we used only a single annotator
for this evaluation task. The evaluator, not being familiar with the MLFix system,
was presented with a set of instances containing the following: randomly shuffled
MT output and Oracle output, the source English sentence and the German
reference translation. The results of the evaluation are shown in Table 7.1. We
decided to only correct morphological categories by Oracle leaving the surface
form generation to Flect module because we wanted to see the best possible
outcome that can be achieved by the statistical fixing components. In the future
the Oracle evaluation with “Oracle” surface form generation might also be a
valuable source of information. This choice resulted in worse performance of the
Oracle classifier when compared to Czech Oracle. Therefore, we still chose to use
the same heuristic for marking incorrect instances in the training data, because
it probably was not because of the mark method that the Oracle performance
dropped.

43

Figure 7.1: Frequency of the most changed Interset categories in German data,
grouped by a datasets. Categories containing ”|” symbol (e.g. gender|number)
represent changes made simultaneously.

After the evaluation of the data extraction method we analyzed the extracted
instances and compared them to the information we gathered during Czech data
analysis. Figure 7.1 shows the frequency of the changed Interset categories.
Again, case was the most changed category among our data followed by gen-
der and number, either as a standalone change or as a part of a clustered change.
This led us to training the morphological prediction models in a same manner
as in the English-Czech pipeline dropping the animateness (CNGA) models this
time. To make sure that we can make similar assumptions during the model de-
velopment we also checked the distribution of changes made per individual POS
classes. The summary is shown in Table 7.2. Even though the distribution is
slightly different, nouns and adjectives are still the most changed words which
further supports our decision for training Case, CN and CNG models.

44

POS Frequency

noun 35%
adj 25%
punc 10%
adp 8%
conj 7%

Table 7.2: Change frequency of various POS classes in German.

Dataset System # Instances # Instances (filt.) # Incorrect

HimL Moses 12,067 2,729 369
WMT16 UEDIN-NMT 22,353 3,340 344
WMT16 UEDIN-PBMT 21,394 3,727 412
Autodesk − 1,263,750 124,698 17,268

Table 7.3: Summary of the size of the training data extracted from each dataset.
We present size before and after (filt.) removing the instances extracted from
the “correct” sentences. The size of datasets for category predictor training is
presented in the Incorrect column.

7.3 Model Development

We skipped the process of choosing proper ML and feature selection method
assuming that the ones used for training models for English-Czech pipeline will
also be sufficient for German. We only searched for the best combination of
hyperparameters during the model development process. We used both source
and MT features with addition of the source language lemmas to create the initial
feature set. We present a summary of the available training data for both error
detection and morphological prediction in Table 7.3. Again, we can see, that the
training data are quite small with exception of the Autodesk dataset. That is
also the main motivation behind including it in our training data.

The summary of the final error detection models is in Table 7.4. Surprisingly,
while having quite similar precision to the Czech models they achieved much
better recall overall. At this moment, we cannot say if it is caused by a ML
method choice or a suitable initial feature set, however, since there is still room
for improvement, we consider investigating the issue further in the future.

In Table 7.5, we present performance of the final German mophology predic-
tion models. The results are not very different from the Czech models with HimL
model being slightly better in this case, possibly due to a lesser amount of possi-
ble values of the case category. Surprisingly, the accuracy of a model trained on
the Autodesk dataset drops only a little with increasing complexity suggesting
that increasing the amount of training data can significantly improve the overall
accuracy of the resulting model.

7.4 Evaluation

We followed the same procedure during German MLFix evaluation as for Czech.
We compared several configurations of the morphological prediction module and
error detection module separately first, using Oracle to substitute the other mod-

45

Dataset System Precision Recall F1

HimL Moses 0.39 0.56 0.46
WMT16 UEDIN-NMT 0.28 0.43 0.34
WMT16 UEDIN-NMT 0.29 0.50 0.37
Autodesk − 0.41 0.77 0.53

Table 7.4: Summary of the in-domain performance of the final German error
detection models.

Dataset System Case(Base) CN(Base) CNG(Base)

HimL Moses 84%(29%) 79%(13%) 70%(5%)
WMT16 UEDIN-NMT 57%(46%) 48%(27%) 34%(22%)
WMT16 UEDIN-PBMT 57%(38%) 47%(21%) 35%(18%)
Autodesk − 96%(28%) 95%(17%) 93%(8%)

Table 7.5: Summary of the in-domain performance of the final German category
prediction models and its comparison with the baseline predictor.

ule, then we evaluated the whole MLFix system. We compared similar config-
urations we used in Czech MLFix: Case, CN, CNG and Combined model con-
figuration for morphological prediction and Majority, AtLeastOne and Average
voting scheme for error detection. For the whole system evaluation, we picked
the two most promising configurations and compared their performance. We also
measured a performance of the best Czech configuration (using Czech models)
when applied to German. We used BLEU scoring metric during automatic evalu-
ation. The evaluation was performed on the following datasets: Autodesk, HimL
Lingea logs and WMT16. For each evaluated dataset, the models trained on the
corresponding dataset were excluded.

We present the results of morphological prediction module evaluation in Ta-
ble 7.6. Once again, CNG configuration proved to be the reliable choice, having
the best score on each dataset. However, the overall improvement in BLEU score
is much lower when compared with Czech version of MLFix. This is little surpris-
ing because the individual performance of the morphological prediction models
measured during training was fairly equal and in some cases even better than
the one of the Czech models. It is possible that this might be either a result of
lower diversity in our data (most of the data belongs to Autodesk dataset) or a
consequence of the poor performance of the inflection module.

In Table 7.7, we present the results of the evaluation of the error detection
module. We can see that the module was performing quite poorly, not bringing
any improvement to any dataset at all. Due to the nature of the error detection
module evaluation (new morphological categories are taken from the reference
sentences and the wordform is regenerated by the inflection module), we suspect
that the main reason behind the poor performance is truly the inflection module.
Aside from that, we can see that this time it was the Majority scheme which
performed much better than the rest. However, the results might only point to
the fact that the Majority scheme marked the smallest number of instances as
incorrect thus worsening the MT output much less than the other two.

Nevertheless, we decided to pick Majority-CNG (Major-CNG) and Average-
CNG (Avg-CNG) configurations for the final evaluation. Their performance is
summarized in Table 7.8. Again, both systems performed poorly and it might

46

Dataset System Oracle Base Case CN CNG Comb

Autodesk − 46.23 45.90 45.96 (+0.06) 45.95 (+0.05) 46.02 (+0.12) 45.98 (+0.08)

HimL Moses 31.94 30.95 31.37 (+0.41) 31.29 (+0.34) 31.59 (+0.63) 31.46 (+0.50)

WMT16
UEDIN NMT 35.05 34.82 34.82 (0) 34.82 (0) 34.82 (0) 34.82 (0)
UEDIN PBMT 29.38 29.11 29.11 (0) 29.11 (0) 29.11 (0) 29.11 (0)

Table 7.6: Automatic evaluation of German morphological prediction module
using BLEU metric and the relative improvement over the baseline MT output.
Values are multiplied by 100 for easier reading. Performance of Oracle classifier
is provided for comparison. The best model for each dataset is printed in bold.

Dataset System Oracle Base Majority AtLeastOne Average

Autodesk − 46.23 45.90 45.80 (-0.10) 45.52 (-0.38) 45.79 (-0.11)

HimL Moses 31.94 30.95 30.89 (-0.05) 30.17 (-0.77) 30.58 (-0.36)

WMT16
UEDIN NMT 35.05 34.82 33.25 (-1.56) 30.15 (-4.67) 30.78 (-4.03)
UEDIN PBMT 29.38 29.11 27.96 (-1.15) 25.41 (-3.7) 25.97 (-3.14)

Table 7.7: Automatic evaluation of the error detection module using different
voting methods to interpret output of multiple models using BLEU metric. Val-
ues are multiplied by 100 for easier reading, and the relative improvement over
the baseline MT output. Performance of the Oracle classifier is provided for
comparison. The best model for each dataset is printed in bold.

look like the Czech MLFix provided the best results. Therefore, we also pro-
vide a summary of the number of sentences that were changed by each system
in Table 7.9. We can see that our suspicion that the negative score correlates
with the recall of each configuration was not completely wrong. When we com-
pare results we gathered during the Oracle evaluation and model development
for each language, we do not think that the poor performance during final evalu-
ation was caused mainly by the fixing components. We suspect that the current
performance bottleneck lies within the inflection module. A more thorough in-
vestigation of the inflection module is required in the future, with a possible
replacement with an alternative.

We also performed manual evaluation of the Avg-CNG configuration4. Two
independent non-native German speakers jointly evaluated 444 changed sen-
tences. The results of manual evaluation are in Table 7.10. They both evaluated
a subset of 141 to measure their inter-annotator agreement, shown in Table 7.11.
We can see that the impact of the German pipeline was similar to the Czech
pipeline. However, the low precision (∼13%) confirms the results measured by the
automatic metric. This is further supported by a reasonably high inter-annotator
agreement of 83%.

4At the moment, we cannot surely tell what is the best possible configuration for German,
so we simply followed the approach from English-Czech pipeline.

47

Dataset System Base Major-CNG Avg-CNG CS-Best

Autodesk − 45.90 45.64 (-0.26) 45.54 (-0.36) 45.82 (-0.08)

HimL Moses 30.95 34.81 (-0.56) 28.35 (-2.60) 30.95 (0)

WMT16
UEDIN NMT 34.82 30.46 (-4.36) 19.95 (-14.87) 34.81 (0)
UEDIN PBMT 29.11 25.70 (-3.41) 17.02 (-12.09) 29.11 (0)

Table 7.8: Final evaluation of the Englsh-German configuration of MLFix using
BLUE metric. Values are multiplied by 100 for easier reading. Majority-CNG and
Avg-CNG methods were compared with the best English-Czech configuration.

Dataset System Major-CNG Avg-CNG CS-Best Sent.

Autodesk − 6,626 8,794 2,535 124,498

HimL Moses 145 421 0 800

WMT16
UEDIN NMT 2,078 2,949 3 2,999
UEDIN PBMT 2,014 2,921 5 2,999

Table 7.9: Number of sentences changed by different systems. Total number of
sentences in each dataset (Sent.) is listed for reference.

Evaluated Changed + − 0 Precision Impact

A 640 313 36 263 14 12.0% 5.6%
B 320 141 18 118 5 13% 5.6%

Total 960 444 54 381 19 12.4% 5.6%

Table 7.10: Results of the manual evaluation of chosen German MLFix config-
uration (Avg-CNG) on a subset of HimL dataset.

A/B + − 0

+ 7 10 1
− 6 109 3

0 0 2 3

Table 7.11: Matrix containing inter-annotator agreement of German MLFix
manual evaluation.

48

8. Conclusion

In this thesis, we presented MLFix, an automatic post-editing tool focusing on
statistical post-editing of incorrect morphology in machine translation output.
The system was developed as a successor of a rule-based system, Depfix, with the
aim to generalize some of its rules to a stochastic model which can be applied
across languages.

During the development, we had to find a compromise between the level of
language independence and overall usefulness of the system. In the end, we have
chosen a unique approach to the problem of correcting the morphology by solving
a two-step classification task: error detection and morphological prediction. We
have faced a problem of automatic identification of correct/incorrect training
instances which we have solved with a fairly effective heuristic. Still, further
refinement of the training data extraction method is desired in the future.

Out of the two classification tasks, the morphological prediction proved to be
much easier. The resulting models, while being very good at predicting simple
categories (e.g. morphological case) manifested much lower individual perfor-
mance with increasing task complexity. However when combined together, they
performed quite well. Also, since we have used only really small datasets for
model training, we think that these models can be improved in the future by
increasing the training data or providing additional features. This claim is sup-
ported by the model trained on a much larger Autodesk dataset, which achieved
really good in-domain performance even when it was trained to classify multitask
problem (prediction of case-gender-number) Furthermore, we think that these
models have a potential use even in different fields of application, e.g. as a part
of automatic correction suggestion in a human post-editing framework.

The task detecting targets for our morphological prediction tool became main
a hurdle during the development of MLFix. Aside from the correct identifica-
tion of the training instances in our data, there was also an issue with highly
unbalanced training set which we partially resolved by upsampling the minority
class and filtering out instances from the “correct” sentences. Even though the
resulting models’ performance seemed unsatisfactory at first, they performed res-
onably well during final evaluation as far as precision of the resulting system was
concerned. The weaker side was the fairly low overall impact on the MT output.
As far as future improvement goes, the results achieved during model training on
the large Autodesk dataset suggest that the performance can still be improved
simply by increasing the amount of our training data.

As we are mentioning using larger training datasets in the future, in the scope
of this thesis we have focused mainly on investing human post-edited data that
are, at the moment, available in much smaller volumes than data containing
reference translation. However, we have tried training few models on smaller
datasets with reference sentences instead of human post-editing. The resulting
models still performed fairly well if the reference sentences were reasonably similar
to the MT output. Lastly, we have also examined data created by replacing the
human post-editing with Depfix output resulting in reliable source of training
data. These data tend to be much more sparse (as a result of Depfix impact on
the MT output) and the method is currently restricted to English-Czech language

49

pair only. However, if we can achieve adapting Czech models for other languages
in the future, this method might become viable.

During the final evaluation, the system performed well when measured with
the BLEU scoring metric. These results were confirmed to some extent by man-
ual evaluation, however, we are still not completely confident in the results and
suggest evaluating MLFix on much larger scale in the future. Surprisingly, MLFix
was able to surpass Depfix when it was applied to the output of NMT system.
This result caught our attention and will be investigated closely in the near fu-
ture. If confirmed, the application to the increasingly popular approach to the
machine translation might become valuable.

We have also evaluated performance of a modification aimed at correction Ger-
man SMT output. We were satisfied with the results during model development,
achieving results similar to Czech pipeline, which confirms that the classification
tasks themselves (as they were defined in the thesis) are not language dependent.
No special attention to manually modifying the feature set or choosing different
approach was required.

The results of the final evaluation for German were however poor. Aside from
the morphology module applied separately, German MLFix always worsened the
MT output as the automatic metric have shown. This was further confirmed
by a manual evaluation. We pointed out several indications that this might be
caused by a poor performance of the German inflection module we use to generate
new wordforms. We still have to investigate the matter further to confirm this
hypothesis. If confirmed, replacing (or improving) the module in the future might
be the first and fastest way to improvement. Another goal is to investigate
the German MT errors more thoroughly and adapt the German pipeline to the
findings.

Even though we mainly focused on morphology correction in this thesis, ML-
Fix can be further improved in the future by introducing other statistical modules
addressing additional MT errors. As an example we mention a possible word re-
ordering model because there were instances where words with new surface forms
predicted by MLFix still needed rearrangement to fully utilize the modification.
Due to the modularity of Treex framework, introducing new improvements to
MLFix is easy.

50

Bibliography

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard.
A Study of the Behavior of Several Methods for Balancing Machine Learning
Training Data. SIGKDD Explor. Newsl., 6(1):20–29, June 2004. ISSN 1931-
0145. doi: 10.1145/1007730.1007735. URL http://doi.acm.org/10.1145/

1007730.1007735.

Hanna Bechara. Statistical Post-editing and Quality Estimation for Machine
Translation Systems. Master’s thesis, Dublin city University, School of Com-
puting, 2013.

Hanna Béchara, Yanjun Ma, and Josef van Genabith. Statistical Post-Editing
for a Statistical MT System. In Proceedings of the 13th Machine Translation
Summit, pages 308–315, 2011.

Bernd Bohnet. Very High Accuracy and Fast Dependency Parsing is Not a Con-
tradiction. In Proceedings of the 23rd International Conference on Computa-
tional Linguistics, COLING ’10, pages 89–97, Stroudsburg, PA, USA, 2010. As-
sociation for Computational Linguistics. URL http://dl.acm.org/citation.

cfm?id=1873781.1873792.

Ondřej Bojar, Bushra Jawaid, and Amir Kamran. Probes in a Taxonomy of
Factored Phrase-Based Models. In Proceedings of the Seventh Workshop on
Statistical Machine Translation, pages 253–260, Montréal, Canada, 2012a. As-
sociation for Computational Linguistics. ISBN 978-1-937284-20-6.

Ondřej Bojar, Zdeněk Žabokrtský, Ondřej Dušek, Petra Galuščáková, Martin Ma-
jlǐs, David Mareček, Jǐŕı Marš́ık, Michal Novák, Martin Popel, and Aleš Tam-
chyna. The Joy of Parallelism with CzEng 1.0. In Proceedings of the Eighth In-
ternational Language Resources and Evaluation Conference (LREC’12), pages
3921–3928, Istanbul, Turkey, Květen 2012b. ELRA, European Language Re-
sources Association. ISBN 978-2-9517408-7-7.

Ondřej Bojar, Rudolf Rosa, and Aleš Tamchyna. Chimera – Three Heads for
English-to-Czech Translation. In Proc. of the WMT, pages 92–98, Sofia, Bul-
garia, 2013a. ACL. URL http://www.aclweb.org/anthology/W13-2208.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurelie Neveol, Mariana Neves, Martin
Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco
Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 Con-
ference on Machine Translation (WMT16). In Proceedings of the First Con-
ference on Machine Translation, Volume 2: Shared Task Papers, pages 131–
198, Berlin, Germany, August 2016. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/W16/W16-2301.

Ondřej Bojar, Matouš Macháček, Aleš Tamchyna, and Daniel Zeman. Scratch-
ing the Surface of Possible Translations. In Text, Speech and Dialogue: 16th

51

http://doi.acm.org/10.1145/1007730.1007735
http://doi.acm.org/10.1145/1007730.1007735
http://dl.acm.org/citation.cfm?id=1873781.1873792
http://dl.acm.org/citation.cfm?id=1873781.1873792
http://www.aclweb.org/anthology/W13-2208
http://www.aclweb.org/anthology/W/W16/W16-2301

International Conference, TSD 2013. Proceedings, pages 465–474, Berlin / Hei-
delberg, 2013b. Springer Verlag. ISBN 978-3-642-40584-6.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther
König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkor-
eit. TIGER: Linguistic Interpretation of a German Corpus. Research on Lan-
guage and Computation, 2(4):597–620, 2004. ISSN 1572-8706. doi: 10.1007/
s11168-004-7431-3. URL http://dx.doi.org/10.1007/s11168-004-7431-3.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Kay Peterson, Mark Przy-
bocki, and Omar Zaidan. Findings of the 2010 Joint Workshop on Statistical
Machine Translation and Metrics for Machine Translation. In Proceedings of the
Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR,
pages 17–53, Uppsala, Sweden, July 2010. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/W10-1703. Revised Au-
gust 2010.

Pedro Domingos. MetaCost: A General Method for Making Classifiers Cost-
sensitive. In Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’99, pages 155–164, New York,
NY, USA, 1999. ACM. ISBN 1-58113-143-7. doi: 10.1145/312129.312220. URL
http://doi.acm.org/10.1145/312129.312220.

Ondřej Dušek and Filip Jurč́ıček. Robust multilingual statistical morphological
generation models. In 51st Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2013, Proceedings of the Student Research Work-
shop, 4-9 August 2013, Sofia, Bulgaria, pages 158–164. The Association for
Computer Linguistics, 2013. URL http://aclweb.org/anthology/P/P13/

P13-3023.pdf.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
Non-local Information into Information Extraction Systems by Gibbs Sam-
pling. In Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’05, pages 363–370, Stroudsburg, PA, USA, 2005. As-
sociation for Computational Linguistics. doi: 10.3115/1219840.1219885. URL
http://dx.doi.org/10.3115/1219840.1219885.

Jan Hajič. Disambiguation of Rich Inflection - Computational Morphology of
Czech, volume I. Karolinum, Charles Univeristy Press, Prague, Czech Republic,
2004.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek,
Jǐŕı Havelka, Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševč́ıková
Raźımová. Prague Dependency Treebank 2.0. LDC2006T01, ISBN: 1-58563-
370-4, 2006.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,
Maria Antònia Mart́ı, Llúıs Màrquez, Adam Meyers, Joakim Nivre, Sebas-
tian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and

52

http://dx.doi.org/10.1007/s11168-004-7431-3
http://www.aclweb.org/anthology/W10-1703
http://doi.acm.org/10.1145/312129.312220
http://aclweb.org/anthology/P/P13/P13-3023.pdf
http://aclweb.org/anthology/P/P13/P13-3023.pdf
http://dx.doi.org/10.3115/1219840.1219885

Yi Zhang. The CoNLL-2009 Shared Task: Syntactic and Semantic Dependen-
cies in Multiple Languages. In Proceedings of the 13th Conference on Computa-
tional Natural Language Learning (CoNLL-2009), June 4-5, Boulder, Colorado,
USA, 2009.

Zhongye Jia, Peilu Wang, and Hai Zhao. Grammatical Error Correction as Mul-
ticlass Classification with Single Model. In Proc. of 7th CoNLL: Shared Task,
Sofia, Bulgaria, 2013.

Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation.
In Conference Proceedings: the tenth Machine Translation Summit, pages 79–
86, Phuket, Thailand, 2005. AAMT, AAMT. URL http://mt-archive.info/

MTS-2005-Koehn.pdf.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. Moses: Open Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics. URL http://dl.acm.org/

citation.cfm?id=1557769.1557821.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
Projective Dependency Parsing using Spanning Tree Algorithms. In Proc. of
HLT/EMNLP, 2005.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajič, Christopher Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal Dependencies v1:
A Multilingual Treebank Collection. In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016), pages 1659–
1666, Paris, France, 2016. European Language Resources Association. ISBN
978-2-9517408-9-1.

Franz Josef Och and Hermann Ney. A Comparison of Alignment Models for
Statistical Machine Translation. In Proc. of COLING, pages 1086–1090. ACL,
2000. ISBN 1-555-55555-1.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
Method for Automatic Evaluation of Machine Translation. In Proc. of ACL,
pages 311–318, Philadelphia, Pennsylvania, 2002.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

Martin Popel and Zdeněk Žabokrtský. TectoMT: Modular NLP Framework.
In Proceedings of the 7th International Conference on Advances in Natural

53

http://mt-archive.info/MTS-2005-Koehn.pdf
http://mt-archive.info/MTS-2005-Koehn.pdf
http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821

Language Processing, IceTAL’10, pages 293–304, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3-642-14769-0, 978-3-642-14769-2. URL http://dl.

acm.org/citation.cfm?id=1884371.1884406.

Rudolf Rosa. Automatic post-editing of phrase-based machine translation out-
puts. Master’s thesis, Charles University in Prague, Faculty of Mathematics
and Physics, Praha, Czechia, 2013.

Rudolf Rosa. Depfix, a Tool for Automatic Rule-based Post-editing of SMT. The
Prague Bulletin of Mathematical Linguistics, 102:47–56, 2014. ISSN 0032-6585.

Rudolf Rosa, Ondřej Dušek, David Mareček, and Martin Popel. Using Parallel
Features in Parsing of Machine-Translated Sentences for Correction of Gram-
matical Errors. In Proceedings of Sixth Workshop on Syntax, Semantics and
Structure in Statistical Translation (SSST-6), ACL, pages 39–48, Jeju, Korea,
2012a. Association for Computational Linguistics. ISBN 978-1-937284-38-1.

Rudolf Rosa, David Mareček, and Ondřej Dušek. DEPFIX: A System for Auto-
matic Correction of Czech MT Outputs. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, pages 362–368, Montréal, Canada,
2012b. Association for Computational Linguistics. ISBN 978-1-937284-20-6.

Petr Sgall. Generativńı popis jazyka a česká deklinace. Prague: Academia, 1967.

Michel Simard, Nicola Ueffing, Pierre Isabelle, and Roland Kuhn. Rule-Based
Translation with Statistical Phrase-Based Post-Editing. In Proceedings of the
Second Workshop on Statistical Machine Translation, pages 203–206, Prague,
Czech Republic, June 2007. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W07/W07-0228.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In
In Proceedings of Association for Machine Translation in the Americas, pages
223–231, 2006.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 13–18, Baltimore, Maryland, June 2014. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P/

P14/P14-5003.pdf.

Kristina Toutanova and Christopher D. Manning. Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-speech Tagger. In Proceed-
ings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natu-
ral Language Processing and Very Large Corpora: Held in Conjunction with
the 38th Annual Meeting of the Association for Computational Linguistics -
Volume 13, EMNLP ’00, pages 63–70, Stroudsburg, PA, USA, 2000. Asso-
ciation for Computational Linguistics. doi: 10.3115/1117794.1117802. URL
http://dx.doi.org/10.3115/1117794.1117802.

54

http://dl.acm.org/citation.cfm?id=1884371.1884406
http://dl.acm.org/citation.cfm?id=1884371.1884406
http://www.aclweb.org/anthology/W/W07/W07-0228
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://dx.doi.org/10.3115/1117794.1117802

Daniel Zeman. Reusable Tagset Conversion Using Tagset Drivers. In Proceedings
of the 6th International Conference on Language Resources and Evaluation
(LREC 2008), pages 213–218, Marrakech, Morocco, 2008. European Language
Resources Association. ISBN 2-9517408-4-0.

55

List of Figures

5.1 ML method comparison - Error detection 28
5.2 Feature selection method comparison - Error detection 30
5.3 Change frequency of Czech morphological categories 33
5.4 ML method comparison - Morphological prediction 34
5.5 Feature selection method comparison - Morphological prediction . 35

7.1 Change frequency of German morphological categories 44

56

List of Tables

2.1 Summary of the main tools used for processing English and Czech
sentences . 7

3.1 Summary of the available data . 13

4.1 Comparison of the heuristic rules 21
4.2 Manual evaluation of the Czech Oracle classifier 22

5.1 Summary of the extracted Czech training data for error detection 27
5.2 Model summary (Czech) - error detection 29
5.3 Change frequency of various POS classes in Czech. 31
5.4 Summary of the extracted Czech training data for morphological

prediction . 32
5.5 Model summary (Czech) - morphological prediction 36

6.1 Automatic evaluation of the Czech morphological prediction module 38
6.2 Automatic evaluation of the Czech error detection module 39
6.3 Final Czech MLFix evaluation . 40
6.4 Final Czech MLFix evaluation - number of changed sentences . . 40
6.5 Czech MLFix manual evaluation 41
6.6 Czech MLFix manual evaluation - inter-annotator agreement . . . 41

7.1 Manual evaluation of the German Oracle classifier 43
7.2 Change frequency of various POS classes in German. 45
7.3 Summary of the extracted German training data 45
7.4 Model summary (German) - error detection 46
7.5 Model summary (German) - morphological prediction 46
7.6 Automatic evaluation of the German morphological prediction mod-

ule . 47
7.7 Automatic evaluation of the German error detection module . . . 47
7.8 Final German MLFix evaluation 48
7.9 Final German MLFix evaluation - number of changed sentences . 48
7.10 German MLFix manual evaluation 48
7.11 German MLFix manual evaluation - inter-annotator agreement . . 48

57

A. Contents of the CD

The attached CD contains following items:

• config - configuration files for the statistical components

• data - sample input data

• INSTALL - a file containing a manual for MLFix installation

• Makefile - a Makefile containing MLFix commands

• models - models used by MLFix components that are currently outside of
Treex-shared directory

• README - manual for using MLFix

• scenarios - scenarios that are not implemented by Treex::Scen:: blocks

• scripts - scripts used for minor tasks (e.g. model training, data pre-, post-
processing)

• settings cs.mak, settings de.mak - settings files for EN-CS and EN-DE ML-
Fix pipeline

• thesis.pdf - a PDF file containing this thesis

58

B. MLFix Scenarios

In this attachement we list both English-Czech and English-German scenarios
we have used for MLFix processing pipeline. The scenarios can be generated by
Treex::Scen::MLFix:: blocks. At the beginning of each scenario we have in-
cluded a commented Treex command which dumps the scenario, on the command
line. The scenarios are listed in the order they are applied to the input. Note that
Czech and German blocks are called only in their respective scenario. Blocks for
processing English are identical in both pipelines, however, we list them in both
scenarios for easier comprehension.

B.1 English-Czech

B.1.1 Analysis on M-layer

Source (English)

treex -d Scen::MLFix :: Analysis_1 language=en

iset_driver ="en::penn"

Util:: SetGlobal language=en selector=

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::EN:: Tokenize

W2A::EN:: NormalizeForms

W2A::EN:: FixTokenization

W2A::EN:: TagMorphoDiTa lemmatize =0

W2A::EN:: FixTags

W2A::EN:: Lemmatize

A2A:: ConvertTags input_driver=en::penn

treex -d Scen::MLFix ::NER language=en model=ner -eng -

ie.crf -3-all2008.ser.gz

Util:: SetGlobal language=en

A2N::EN:: StanfordNamedEntities model=ner -eng -ie.crf -3-

all2008.ser.gz

A2N::EN:: DistinguishPersonalNames

Target (Czech)

treex -d Scen::MLFix :: Analysis_1 language=cs tagger=

morphodita iset_driver ="cs::pdt"

Util:: SetGlobal language=cs selector=

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::CS:: Tokenize

W2A::CS:: TagMorphoDiTa lemmatize =1

W2A::CS:: FixMorphoErrors

59

W2A::CS:: FixGuessedLemmas

A2A:: ConvertTags input_driver=cs::pdt

A2N::CS:: SimpleRuleNER

Reference (Czech)

treex -d Scen::MLFix :: Analysis_1 language=cs selector

=ref tagger=morphodita iset_driver ="cs::pdt"

Util:: SetGlobal language=cs selector=ref

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::CS:: Tokenize

W2A::CS:: TagMorphoDiTa lemmatize =1

W2A::CS:: FixMorphoErrors

W2A::CS:: FixGuessedLemmas

A2A:: ConvertTags input_driver=cs::pdt

A2N::CS:: SimpleRuleNER

B.1.2 Alignment

English -Czech

treex -d Scen::MLFix :: RunMGiza from_language=cs

to_language=en model=cs -en

Align::A:: AlignMGiza dir_or_sym=intersection selector=

from_language=cs to_language=en model_from_share=cs-

en tmp_dir =/mnt/h/tmp cpu_cores =1

Align:: AddMissingLinks layer=a selector= language=cs

target_language=en alignment_type=intersection

Align:: ReverseAlignment language=cs selector=

Reference

Align::A:: MonolingualGreedy selector=T language=cs

to_selector=ref

B.1.3 Analysis on A-layer

Source (English)

treex -d Scen::MLFix :: Analysis_2 language=en parser=

mst

Util:: SetGlobal language=en selector=

W2A::EN:: ParseMST

W2A::EN:: SetIsMemberFromDeprel

W2A::EN:: RehangConllToPdtStyle

W2A::EN:: FixNominalGroups

W2A::EN:: FixIsMember

W2A::EN:: FixAtree

W2A::EN:: FixMultiwordPrepAndConj

W2A::EN:: FixDicendiVerbs

60

W2A::EN:: SetAfunAuxCPCoord

W2A::EN:: SetAfun

Target (Czech)

treex -d Scen::MLFix :: Analysis_2 language=cs

src_language=en parser=

Util:: SetGlobal language=cs selector=

A2A:: ProjectTreeThroughAlignment language=en

to_language=cs to_selector=

Reference (Czech)

treex -d Scen::MLFix :: Analysis_2 language=cs selector

=ref

Util:: SetGlobal language=cs selector=ref

W2A::CS:: ParseMSTAdapted

W2A::CS:: FixAtreeAfterMcD

W2A::CS:: FixIsMember

W2A::CS:: FixPrepositionalCase

W2A::CS:: FixReflexiveTantum

W2A::CS:: FixReflexivePronouns

B.1.4 Fixing

Preparation

treex -d Scen::MLFix :: FixPrepare src_language=en

tgt_language=cs

Util::Eval language=cs selector=T zone=’$zone ->

remove_tree ("a") if $zone ->has_tree ("a");’

Util::Eval language=cs selector=FIXLOG zone=’$zone ->

set_sentence ("");’

A2A:: CopyAtree source_language=cs language=cs selector=

T align=1

Align:: AlignForward language=cs selector=T overwrite =0

preserve_type =0

Fixing

treex -d Scen::MLFix ::Fix "mark_method=scikit -learn "

fix_method=scikit -learn" "language=cs" "selector =" "

mark_config_file=XXX" "fix_config_file=XXX" "

iset_driver=cs::pdt"

MLFix:: MarkByScikitLearn language=cs selector=

config_file=XXX

MLFix::CS:: ScikitLearn language=cs selector=

config_file=XXX iset_driver=cs::pdt

61

B.1.5 Detokenization

treex -d Scen::MLFix :: WriteSentences language=cs

Util:: SetGlobal language=cs selector=

A2W:: Detokenize

A2W::CS:: DetokenizeUsingRules

A2W::CS:: DetokenizeDashes

Util::Eval zone=’print $zone ->sentence . "\n";’

B.2 English-German

B.2.1 Analysis on M-layer

Source (English)

treex -d Scen::MLFix :: Analysis_1 language=en

iset_driver ="en::penn"

Util:: SetGlobal language=en selector=

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::EN:: Tokenize

W2A::EN:: NormalizeForms

W2A::EN:: FixTokenization

W2A::EN:: TagMorphoDiTa lemmatize =0

W2A::EN:: FixTags

W2A::EN:: Lemmatize

A2A:: ConvertTags input_driver=en::penn

treex -d Scen::MLFix ::NER language=en model=ner -eng -

ie.crf -3-all2008.ser.gz

Util:: SetGlobal language=en

A2N::EN:: StanfordNamedEntities model=ner -eng -ie.crf -3-

all2008.ser.gz

A2N::EN:: DistinguishPersonalNames

Target (Czech)

treex -d Scen::MLFix :: Analysis_1 language=de tagger=

mate iset_driver ="de:: conll2009"

Util:: SetGlobal language=de selector=

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::DE:: Tokenize

W2A::DE:: LemmatizeMate

W2A::DE:: ParseMate lemmatize =0

A2A::DE:: CoNLL2Iset

Reference (Czech)

62

treex -d Scen::MLFix :: Analysis_1 language=de selector

=ref tagger=mate iset_driver ="de:: conll2009"

Util:: SetGlobal language=de selector=ref

Util::Eval zone=’$zone ->remove_tree ("a") if $zone ->

has_tree ("a");’

W2A::DE:: Tokenize

W2A::DE:: LemmatizeMate

W2A::DE:: ParseMate lemmatize =0

A2A::DE:: CoNLL2Iset

B.2.2 Alignment

English -German

treex -d Scen::MLFix :: RunMGiza from_language=de

to_language=en model=de -en

Align::A:: AlignMGiza dir_or_sym=intersection selector=

from_language=de to_language=en model_from_share=de-

en tmp_dir =/mnt/h/tmp cpu_cores =1

Align:: AddMissingLinks layer=a selector= language=de

target_language=en alignment_type=intersection

Align:: ReverseAlignment language=de selector=

Reference

Align::A:: MonolingualGreedy selector= language=de

to_selector=ref

B.2.3 Analysis on A-layer

Source (English)

treex -d Scen::MLFix :: Analysis_2 language=en parser=

mst

Util:: SetGlobal language=en selector=

W2A::EN:: ParseMST

W2A::EN:: SetIsMemberFromDeprel

W2A::EN:: RehangConllToPdtStyle

W2A::EN:: FixNominalGroups

W2A::EN:: FixIsMember

W2A::EN:: FixAtree

W2A::EN:: FixMultiwordPrepAndConj

W2A::EN:: FixDicendiVerbs

W2A::EN:: SetAfunAuxCPCoord

W2A::EN:: SetAfun

Target (German)

treex -d Scen::MLFix :: Analysis_2 language=de

src_language=en parser=

63

Util:: SetGlobal language=de selector=

A2A:: ProjectTreeThroughAlignment language=en

to_language=de to_selector=

Reference (German)

treex -d Scen::MLFix :: Analysis_2 language=de selector

=ref

Util:: SetGlobal language=de selector=ref

W2A::DE:: ParseMate

A2A::DE:: CoNLL2Iset

B.2.4 Fixing

Preparation

treex -d Scen::MLFix :: FixPrepare src_language=en

tgt_language=de

Util::Eval language=de selector=T zone=’$zone ->

remove_tree ("a") if $zone ->has_tree ("a");’

Util::Eval language=de selector=FIXLOG zone=$zone ->

set_sentence ("");

A2A:: CopyAtree source_language=de language=de selector=

T align=1

Align:: AlignForward language=de selector=T overwrite =0

preserve_type =0

Fixing

treex -d Scen::MLFix ::Fix mark_method=scikit -learn

fix_method=scikit -learn language=de selector=

mark_config_file=XXX fix_config_file=XXX iset_driver

=de:: conll2009

MLFix:: MarkByScikitLearn language=de selector=

config_file=XXX

MLFix::DE:: ScikitLearn language=de selector=

config_file=XXX iset_driver=de:: conll2009

B.2.5 Detokenization

treex -d Scen::MLFix :: WriteSentences language=de

Util:: SetGlobal language=de selector=

A2W:: Detokenize

Util::Eval zone=’print $zone ->sentence . "\n";’

64

	Introduction
	Task Motivation
	Related Work
	Thesis Structure

	System Description
	Processing Pipeline
	M-Layer Analysis
	Interset
	Word Alignment
	A-Layer Analysis

	Statistical Component
	Wordform Generation
	Language Independence

	Available Data
	Khan Academy
	Autodesk
	HimL-Lingea Logs
	WMT Datasets
	Other Sources
	Monolingual Data

	Task Definition
	Specifying the Task
	Oracle Classifier
	Depfix Reference
	Oracle Evaluation

	Feature Extraction

	Model Training
	Model Evaluation Methodology
	Automatic Error Detection
	Unbalanced Data Problem
	Machine Learning Method Comparison
	Feature Selection
	Model Summary

	Automatic Morphology Prediction
	Machine Learning Method Comparison
	Feature Selection
	Model Summary

	System Evaluation
	Automatic Evaluation
	Morphology Prediction Evaluation
	Error Detection Evaluation

	System-wide Evaluation
	Manual Evaluation

	English-German
	Processing Pipeline Modifications
	Data Analysis
	Model Development
	Evaluation

	Conclusion
	Literature
	Bibliography
	List of Figures
	List of Tables
	Contents of the CD
	MLFix Scenarios
	English-Czech
	Analysis on M-layer
	Alignment
	Analysis on A-layer
	Fixing
	Detokenization

	English-German
	Analysis on M-layer
	Alignment
	Analysis on A-layer
	Fixing
	Detokenization

