
MASTER THESIS

Bc. Tomáš Witzany

Deep neural networks and their
application for economic data processing

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: doc. RNDr. Iveta Mrázová, CSc.

Study programme: Informatics

Study branch: Theoretical Informatics

Prague 2017

V prvńı řadě bych poděkoval předevš́ım Doc. RNDr. Ivetě Mrázové, CSc. za
cenné rady a př́ıpomı́nky, za trpělivost a pr̊uběžnou kontrolu mých výsledk̊u při
vedeńı mé diplomové práce. Dále bych rád poděkoval Národńı Gridové Infras-
truktuře Metacentrum za př́ıstup k výpočetńım a úložným zař́ızeńım, pod pro-
gramem ”Projects of Large Research, Development, and Innovations Infrastruc-
tures” (CESNET LM2015042).

V neposledńı řadě chci poděkovat svým nejbližš́ım, předevš́ım rodič̊um, za
poskytováńı motivace a podpory při psańı této práce i během celého mého studia.

2

Prohlašuji, že jsem tuto diplomovou práci vypracoval(a) samostatně a výhradně
s použit́ım citovaných pramen̊u, literatury a daľśıch odborných zdroj̊u.

Beru na vědomı́, že se na moji práci vztahuj́ı práva a povinnosti vyplývaj́ıćı
ze zákona č. 121/2000 Sb., autorského zákona v platném zněńı, zejména skutečnost,
že Univerzita Karlova v Praze má právo na uzavřeńı licenčńı smlouvy o užit́ı této
práce jako školńıho d́ıla podle §60 odst. 1 autorského zákona.

V . dne Podpis autora

3

Název práce: Hluboké neuronové śıtě a jejich využit́ı při zpracováńı ekonomických
dat

Autor: Bc. Tomáš Witzany

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: Doc. RNDr. Iveta Mrázová, CSc., Katedra teoretické
informatiky a matematické logiky

Abstrakt: Analýza makroekonomických časových řad je kĺıčová pro informovanost
rozhodnut́ı politik̊u na národńı úrovni. Analýza ekonomických údaj̊u má boha-
tou historii a zejména v oblasti modelováńı nelineárńıch závislost́ı z̊ustává mnoho
otevřených otázek. K moderńım nástroj̊um pro analýzu časových řad patř́ı mimo
jiné metody strojového učeńı. Z těchto metod neuronové śıtě patř́ı k jedné z
nejpouž́ıvaněǰśıch, jak modelovat nelineárńı závislosti. Ćıl této práce spoč́ıvá ve
studiu hlubokých neuronových śıt́ı, analýze jejich vlastnost́ı a posouzeńı jejich
kvalit pro řešeńı úloh, např́ıklad prognózu vývoje HDP nebo klastrováńı zemı́.
Použité modely zahrnuj́ı vrstevnaté neuronové śıtě, LSTM śıtě, konvolučńı śıtě
a Kohonenovy mapy. K analýze a testováńı studovaných model̊u byla použita
historická data poskytovaná Organizaćı spojených národ̊u a Světovou bankou.
Tato data zahrnuj́ı historii makroekonomického vývoje přes 190 r̊uzných zemı́
za posledńıch padesát let. Vzhledem k vysokým časovým nárok̊um na testováńı
model̊u jsme využili služeb výpočetńıho centra MetaCentrum.

Kĺıčová slova: neuronové śıtě, mlp, lstm, cnn, som, makroekonomické časové řady

4

Title: Deep neural networks and their application for economic data processing

Author: Bc. Tomáš Witzany

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Analysis of macroeconomic time-series is key for the informed decisions
of national policy makers. Economic analysis has a rich history, however when
considering modeling non-linear dependencies there are many unresolved issues
in this field. One of the possible tools for time-series analysis are machine learn-
ing methods. Of these methods, neural networks are one of the commonly used
methods to model non-linear dependencies. This work studies different types of
deep neural networks and their applicability for different analysis tasks, including
GDP prediction and country classification. The studied models include multi-
layered neural networks, LSTM networks, convolutional networks and Kohonen
maps. Historical data of the macroeconomic development across over 190 differ-
ent countries over the past fifty years is presented and analysed. This data is then
used to train various models using the mentioned machine learning methods. To
run the experiments we used the services of the computer center MetaCentrum.

Keywords: neural networks, lstm, cnn, macroeconomic time series analysis

5

Contents

1 Introduction 3

2 Artificial neural networks 5
2.1 Feed-forward pass . 6
2.2 Backpropagation . 8

2.2.1 Notation and overview . 8
2.2.2 Analysis . 9
2.2.3 Algorithm . 10

2.3 Transfer Functions . 11
2.3.1 Sigmoid . 11
2.3.2 Rectified Linear Unit . 11

2.4 Overfitting . 12
2.4.1 Cross-validation . 13
2.4.2 Noise regularization . 13
2.4.3 Dropout regularization . 14
2.4.4 Sensitivity analysis . 14

3 Self-organizing maps 16
3.1 Network architecture . 16
3.2 Training . 18

4 Convolutional neural networks 20
4.1 Classic CNN architecture . 21

4.1.1 Convolutional layer . 21
4.1.2 Pooling layer . 23
4.1.3 Summary . 23

4.2 Backpropagation . 24
4.2.1 Convolutional layer . 24
4.2.2 Pooling layer . 26

5 Recurrent neural networks 28
5.1 Long-short term memory network architecture 30
5.2 Single cell forward pass . 30
5.3 LSTM Backpropagation . 32

6 Experimental results 37
6.1 Data . 37

6.1.1 Data preprocessing . 39
6.2 Visualising time-series . 40

1

6.2.1 Results . 40
6.3 GDP Prognosis . 45

6.3.1 Experiment setup . 45
6.3.2 MLP networks for GDP prediction 49
6.3.3 LSTM networks for GDP prediction 61
6.3.4 CNN networks for GDP prediction 67
6.3.5 Summary . 75

7 Conclusion 77

Bibliography 79

List of Figures 84

List of Tables 86

Appendices 87

A Indicator Distributions 88

B Implementation and documentation 92
B.1 Project overview . 92
B.2 Requirements and installation . 92
B.3 Browsing Results . 93
B.4 Running experiments . 94
B.5 Evaluating and plotting results 95

B.5.1 Main analysis . 95
B.5.2 Futher analysis . 96

B.6 Data preparation and implementation details 97

2

Chapter 1

Introduction

Analysis and prediction of macroeconomic time-series is key for national policy-
makers. However, economic forecasting is not a simple task because of the lack
of an accurate theoretical model of the economy. For the analysis of non-linear
dynamical systems, such as macroeconomics, it is often infeasible to obtain an
analytical model. In such cases the solution often is to resort to black-box models
that ignore the internal mechanisms of the system and simply attempt to repro-
duce the system behavior. In this work we focus on such models, classic and deep
neural networks.

In this work we examined and compared classic neural network models to
more complex deep neural networks. The available research in this field mostly
focuses on multilayer neural-networks with varying rates of success. In this work
we developed multilayer neural network models which we then compared to recur-
rent and convolutional neural network models. Even though both recurrent and
convolutional neural networks are architectures that are well performing on tasks
involving time-series, the available research applying these models to economic
data is lacking.

The work is based on publicly available macro-economic data from interna-
tional organisations as the World Bank and the United Nations. The data is first
analysed and visualised using self-organising maps. Afterwards examine many
different architectures of artificial neural networks and their applicability to a
prediction task formulated on the data. One of the first models we trained for
comparison is a multilayer perceptron (MLP) network and we experimented with
many different parameters of multilayer neural networks.

One of the possible problems that arise when using multilayer neural networks
to model time-series is that they have difficulties learning a temporal dependency.
MLP networks look at all the historical data at once, but on the other hand
recurrent neural networks (RNN) are neural network architectures that handle
time-series by looking at the data in order and learning how a sequence changes
over time. In this work we focus on Long-Short-Term-Memory neural networks
as they are a RNN architecture that had been shown to generally outperform
traditional RNNs on time-series analysis tasks.

Convolutional neural networks (CNN) are neural networks that aggregate data
in a similar manner to an animals visual cortex. This is in practice employed by
training filters on the data, such as Gaussian or averaging filters. We apply
this method to economic time series as many of the classic time-series analysis

3

methods employ in one way or another such filters - moving averages, max/min
filters and more. The network will train the filter best applicable and then use
this data to create a prediction.

The work is structured into a theoretical and experimental part. The theo-
retical part describes multilayer neural networks in Chapter 2, recurrent neural
networks in Chapter5 and convolutional neural networks in Chapter 4. The theo-
retical part finally describes self-organising maps in Chapter 3. The experimental
chapter 6 shows an exploratory analysis of the data and visualises it using SOMs
in Section 6.2. Afterwards we define a prediction task in Section 6.3 and explore
the applicability of different artificial neural networks to this task. We first show
how MLP networks perform in Section 6.3.2 and determine the best parameters
for them. Later we examine the performance of LSTM networks in Section 6.3.3.
Lastly we show the performance of convolutional neural networks in Section 6.3.4.

The work includes the data and programs necessary to execute the experi-
ments described. The experiments involving LSTM networks and CNNs require
significant computation time to execute and therefore the experiments were exe-
cuted using the services of the computational center MetaCentrum. The results
of these experiments are included as well.

4

Chapter 2

Artificial neural networks

Artificial neural networks represent a biologically inspired model for distributed
computation. The model simulates the biological nervous system with a network
of artificial neurons as shown in Figure 2.1. Artificial neurons or nodes in the
network correspond to a mathematical function in the sense that a neuron’s out-
put is determined by the neuron’s transfer function and its inputs. ANNs can be
organised into many different connection topologies and can have several different
neuron types [1]. In this chapter we will first present an brief overview of ANN
properties in general and later focus on one of the most common type of ANNs -
the multilayered perceptron network (MLP).

The main advantages of ANNs are their high flexibility and the fact that no
assumptions have to be made about the data. MLPs have the ability to learn
any limited function - from the universal approximation theorem [2] it follows
that a single hidden layer perceptron network can approximate any continuous
function on a compact subset of Rn given enough neurons. Also, generally there
is no expert knowledge necessary to train the network, only training data.

ANNs in general can be used for both supervised and unsupervised learning
[3] but also for reinforcement learning [4]. Supervised learning is learning by
example from a teacher. The neural network is presented the inputs with their
desired outputs and a training algorithm is used to adapt the network to exhibit
this behavior. Contrary to this during unsupervised learning the model is not
presented with this information and its goal is to inferr any patterns in the unla-
beled data. Lastly reinforcement learning is a method inspired by biology. The
model is rewarded whenever it is performing well and the learning algorithms
task is to predict which actions will yield the best reward.

A very simple example of an ANN with one hidden layer can be seen in Figure
2.1. In this figure each circle represents a neuron and the arrows between them
represent channels of information flow. The column of neurons on the left - the
input layer - are neurons that simply hold a certain value - the input. This input
is then sent by the connecting arrows into the next layer - the hidden layer. Each
neuron in the hidden layer transforms (weighted sum) these signals to form a
neuron potential. This potential is then transformed by a transfer function and
the resulting value is sent to the output layer. The output layer acts in a similar
way as the hidden layer, but its neurons can have different transfer functions.

ANNs can take many different forms and variants. One of the main vari-
ants are multilayered ANNs where neurons are arranged into layers as shown in

5

Figure 2.1: Multilayered artificial neural network

The figure contains a simple artificial neural network with one hidden layer. The circles
denote neurons and arrows connections.

Figure 2.1. Multilayered ANNs are often further divided into shallow and deep
neural networks. Shallow ANNs generally only have one hidden layer, while deep
neural networks have several. Another important classification of ANNs is into
feedforward and recurrent neural networks. Feedforward neural networks do not
form cycles in the network topology. The network on Figure 2.1 is a feedforward
network. We discuss recurrent neural networks in more detail in Chapter 5.

Each variant is best suited for a slightly different task. ANNs are commonly
used to approximate functions, pattern recognition and classification. In prac-
tice ANNs are applied in many areas such as marketing, finance, retail, image
recognition and more [5].

In the following sections we will focus feedforward multilayer perceptron (MLP)
variant of ANNs trained with supervised learning. We first describe how a MLP
computes its output in Section 2.1 followed by Section 2.2 on how to train them.
In Section 2.3 we describe different transfer functions, their advantages and down-
falls. And finally in Section 2.4 we describe the problem of overfitting and its
possible solutions.

2.1 Feed-forward pass

In this section we look at the formal way a feed-forward multilayer perceptron
(MLP) neural network evaluates its output. Later on we will use this knowledge
to describe how such a neural network can be trained. The equations governing
how the forward pass works are inspired by how the biological neuron functions
in the human brain [6].

A multilayer feedforward neural network consists of two or more layers of
neurons such as in Figure 2.1 where the flow of information is from the left to
the right. First we define the notation to be used in the following formulas. We
consider a neural network divided into L layers of neurons (including the input
and output layer), the input dimension is denoted n and the output dimension
m. The first layer indexed as the 1-st layer is the input layer. The input simply

6

exposes an input vector ~x = (x1, . . . , xn). A weight representing a connection
between the i-th neuron in the l− 1-st layer and the j-th neuron in the l-th layer
is denoted w

(l)
i,j . The goal of the forward pass is to calculate the output of the final

layer - the L-th layer, which we will save into the output vector ~p = (p1, . . . , pm).
The number of neurons in a layer is denoted by sl.

Each neuron computes its potential and activation value from the activation
values provided by the connecting neurons. We denote an activation of the i-th
neuron in the l-th layer as a

(l)
i and the potential of the same neuron as z

(l)
i . A

vector of activations of neurons in a certain layer is ~a(l). The activations of the
neurons in the input layer are fixed as a

(1)
i = xi. We can now describe how any

neuron in the network computes its potential and activation.
In a biological neuron, elictrical impulses are carried by dendrites to the neu-

ron and are added up in its body. If the electric potential accumulated from
the dendrites reaches a certain threshold, the neuron fires into its output - the
axon. In Equation 2.1 we describe how a neuron i in layer l gathers up potential
z
(l)
i by means of a weighted sum of the activations of the sl−1 connected neu-

rons in the l − 1-th layer. The threshold necessary for it to fire is commonly
called the neuron bias. Sometimes biases are written separately from the sum
z
(l)
i =

∑
w

(l)
ji a

(l−1)
j − b(l)i where b

(l)
i denotes the bias. For this analysis we include

the biases into the sum for simplicity, which is done by having an extra neuron
in each layer with a fixed activation value of -1.

z
(l)
i =

sl−1∑
k=1

w
(l)
k,ia

(l−1)
k (2.1)

The next discussed bioligical mechanism of the neuron is its firing. In the case
of the artificial neuron we calculate the activation of the i-th neuron in the l-th
layer - a

(l)
i as shown in Equation 2.2. The activation is calculated as the potential

transformed by the transfer function f . The transfer functions commonly used
in artificial neural networks are sigmoidal (logistic) function - flog(s) = 1

1+e−λs
or

a step function. Typical transfer functions result in a behavior where the neuron
fires whenever the potential is above 0 and is silent otherwise. Transfer functions
are discussed in more detail later in Section 2.3.

a
(l)
i = f(z

(l)
i) (2.2)

Listing 2.1: Feed forward pass

1 FF(net ,~x)
2 #set the 1st layer as the input

3 ~a(1) = ~x
4 #process the non -input layers in order

5 foreach layer l = 2, . . . ,L:
6 foreach i = 1, . . . , sl:
7 #compute the potential and activation

8 z
(l)
i =

∑
k w

(l)
ki a

(l−1)
k

9 a
(l)
i = f(z

(l)
i)

10 #activations in the last layer are the network output

11 ~p = ~a(L)

7

These equations describe an algorithm in Listing 2.1 that is used to calculate
the output of the network - the activations of the last layer. The algorithm’s input
is a structure describing the network - net (including the network’s weights) - and
the network input x. The algorithm’s output is ~p. In this algorithm we first set
up the input of the network assigning the activation of the first layer. After that
the layers are processed in topological order, computing the activation of each
neuron. The activations of neurons in the last layer are then output.

2.2 Backpropagation

In the previous section we described how a neural network computes its out-
put. However to make the network compute anything useful we need to assign
appropriate weights to the network. For certain simple networks and tasks it
is possible to compute the weights directly, though in most cases it would be
a nearly impossible task to assign the weights manually. The main strength of
neural networks lies in the fact that we can optimize weights of a network to fit
to any specific data set using an algorithm called Back Propagation (BP) [7] [8].

BP is a algorithm that trains the weights of a multilayer feedforward network
with smooth transfer functions to fit the provided data. The algorithm minimises
the network error on the data, with respect to the network’s weights and biases.
The algorithm works with various different definitions of what the network erorr
is, in this analysis we use a mean squared error 2.3. Furthermore there are several
different types of backpropagation, such as total gradient descent [9], stochastic
gradient descent [10] (which we describe here), momentum based BP [11] or
various adaptive BP variants.

2.2.1 Notation and overview

The algorithm takes a data set of input-desired output pairs and a network
to train. The algorithm works iteratively where we present the network with
an input and correct the weights according the the output produced. In order
to do this we calculate the gradient of the error function, especially its weight
components. We can then use these weight components to update the weights in
order to lower the error of the network on the presented input. This continues
iteratively until a stopping condition is reached, for example until the gradient is
low enough. In this analysis we focus on describing the stochastic version of the
algorithm, where the weights of the network are updated in each iteration.

Suppose the training set {(~x(1),~y(1)), . . . ,(~x(T),~y(T))} of T training input-output
pairs (the superscript here denotes the index of the sample, not the layer). For a
single training sample (~x,~y) we define the error cost function simply as the squared
difference between the actual network output and the desired output in Equation
2.3 where FF is the network output function with the defined parameters as
described in Listing 2.1.

E(net,~x,~y) =
1

2
||FF (net,~x)− ~y||2 (2.3)

We can use the single sample error cost functions to define the overall error
cost function simply as an average error across the whole data set in 2.4. The goal

8

of the algorithm then is to minimise this overall error. However, since we are using
the stochastic gradient descent variant of backpropagation we do not minimise
the overall error directly. Nevertheless the idea is that we are still closing in on
the minimum of such a overall error cost function.

E(net) =

[
1

m

m∑
k=1

E(net,~x(k),~y(k))

]
+ λ

layers∑
l=1

sl−1∑
i=1

sl∑
j=i

(w
(l)
ij)2 (2.4)

The stochastic gradient descent algorithm instead of calculating the gradient
of the overall error 2.4 it calculates only the gradient of the single sample error.
This greatly simplifies the process and lowers the computational requirements
with often improving on found solutions [12]. The algorithm calculates the gradi-
ent in order to update the weights in the neural network with the goal of lowering
the error as shown in Equation 2.5.

∆w
(l)
ij = −α ∂

∂w
(l)
ij

E (2.5)

2.2.2 Analysis

The goal of this analysis is to derive the partial ∂

∂w
(l)
ij

E from Equation 2.5.

The trick backpropagation uses to achieve this is that we use the error flow from
the previous layer, which is ∂

∂a
(l)
j

E, to derive the partial. This error flow is easily

computed for the output layer, and afterwards the algorithm propagates from
layer by layer to the input (hence the name backpropagation). Our task then is
to calculate how error flow propagates to the lower layer, ∂

∂a
(l−1)
k

E based on the

error from the higher level, along with deriving the partial ∂

∂w
(l)
ij

E with the use

of the error flow from the higher layer ∂

∂a
(l)
k

E. We will also use a helper variable,

usually called deltas which is δ
(l)
k := ∂E

∂z
(l)
k

.

When given the error flow from the layer ∂E

∂a
(l)
j

we can derive the deltas δ
(l)
k

using the chain rule as described in Equation 2.6. The first identity follows from
the chain rule and the second from the definition of the activation a

(l)
j in Equation

2.2.

δ
(l)
j :=

∂E

∂z
(l)
j

=
∂E

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

=
∂E

∂a
(l)
j

f ′(z
(l)
j) (2.6)

Following this result we use the deltas to derive the formula for the weight
gradient component ∂

∂w
(l)
ij

E in Equation 2.7 again using the chain rule. In this

equation the last identity follows now from the definition of the potential z
(l)
j in

Equation 2.1.

∂E

∂w
(l)
ij

=
∂E

∂z
(n)
j

∂z
(l)
j

∂w
(l)
ij

= δ
(l)
j a

(l−1)
i (2.7)

9

Next given the deltas δ
(l)
k we can derive the error flow to the lower layer ∂

∂a
(l−1)
k

E

in Equation 2.8.

∂E

∂a
(l−1)
j

=
∑
r

∂E

∂z
(l)
r

∂z
(l)
r

∂a
(l−1)
j

=
∑
r

δ(l)r w
(l)
j,r (2.8)

To summarize we now have the equations to calculate the weight gradient
component ∂E

∂w
(l)
ij

when we are given the error flow from the previous layer - ∂E

∂a
(l)
j

.

We can also propagate this error to the lower layers from the higher layers. There-
fore the last thing to resolve is where to get the error flow to the output layer
which we get directly from the definition of our single sample error from Equation
2.4.

∂E

∂a
(n)
j

=
∂

∂a
(n)
j

1

2
||FF (net,~x)− ~y||2 = a

(n)
j − ~yj (2.9)

2.2.3 Algorithm

With this knowledge we can construct an algorithm, that computes the single
sample partials for a given input-output pair. These partials can be then used
to update the weights in order to lower the error rate of the network. The
BP algoritm executes the pseudocode in Listing 2.2 for a specific sample in the
training set. We have L layers, with the L-th layer being the output layer and
the 1-st layer the input layer.

Listing 2.2: BP Algorithm - single sample update

1 BPSingle(net ,~x,~y)
2 #perform the feedforward pass

3 FF(net ,~x)
4 #calculate propagation of the output layer

5 foreach layer l in (L . . . 1):
6 foreach neuron j in (1 . . . sl):
7 if l==L: #output layer

8 δ
(l)
j = (a

(l)
j − ~yj)f ′(z

(n)
j)

9 else: #hidden layer

10 δ
(l)
j =

(∑
r δ

(l+1)
r w

(l+1)
jr

)
f ′(z

(l)
j)

11 foreach weight i in (1, . . . sl−1):

12 ∂

∂w
(l)
ij

E = δ
(l)
j a

(l−1)
i

13 ∆w
(l)
ij = −α ∂

∂w
(l)
ij

E

Listing 2.3: BP Algorithm

1 BP(training set)

2 initialize net with small random weights

3 while stopping condition not met:

4 select (~x,~y) from training set:

5 BPSingle(net ,~x,~y)

10

The complete BP algorithm is described in listing 2.3. We initialize the
weights with small random values, for example according to Normal(0,ε2) for
a small ε. Then we iteratively lower the error rate on the training set by going
through samples and updating the weights according to the gradient partials.
The algorithm lined up in 2.3 is purposely left vague on several points. As the
stopping condition mentioned on line 3 we want to use some kind of indicator of
the model convergence on the data, for example small gradient. The algorithm
can measure how much the weights of the network changed over the several past
iterations. The algorithm could also measure the network performance on an
independent (validation) sample and stop whenever this performance stops im-
proving. On line 4 the algorithm selects a sample from the training set. The
sample can be selected completely randomly from the training set, or we can
pass the whole training set in order before going back to the first sample.

2.3 Transfer Functions

In the previous sections we mentioned transfer functions as being a key com-
ponent of an artificial neuron. Transfer functions are the mechanism by which
neural networks introduce non-linearity into their underlying model. Further-
more, for the backpropagation algorithm to work its differential (see Equation
2.6) needs to be defined. There are many different types of activation functions
that can be used in neural networks. In this section we describe a few important
ones, some of which we will later use in our experiments.

2.3.1 Sigmoid

The sigmoid, or logistic, non-linearity has the mathematical form of σ(x) =
1

1+e−x and is charted in Figure 2.2. The sigmoid function has historically been
one of the more used activation functions, since it can be interpreted as a firing
of a biological neuron. A biological neuron is either not firing at all or it is fully
saturated and firing at its maximum level.

In practice sigmoid activation functions have recently fallen out of favor be-
cause of one of their major drawbacks. An undesirable property of the sigmoid
activation function is the when the neurons activation saturates in either of the
tails of 1 or 0, its gradient in these regions is nearly zero [13]. This mean that
nearly no information will flow through this neuron back into the network. This
also comes in hand with random initializations of the neuron, if the weights are
randomly initialised as too high, the neuron will immediately saturate and the
network will barely learn.

A variant of the sigmoid is the so called tanh function with a mathematical
form of tanh(x) = 2σ(2x) − 1, charted in Figure 2.2. The tanh activation func-
tion is usually prefered over the sigmoid as networks using tanh functions often
converge faster than networks using standard sigmoid function.

2.3.2 Rectified Linear Unit

The Rectified Linear Unit (ReLU) is an activation function that does not
saturate at the high signal tail, unlike the sigmoid, first introduced in [14]. Its

11

(a) sigmoid (logistic) function (b) tanh function

Figure 2.2: The sigmoid activation function variants.

(a) ReLU function (b) LeReLU function

Figure 2.3: The ReLU activation function variants.

mathematical form is very simple - f(x) = max(0,x) a linear function thresholded
at zero - charted in Figure 2.3. It has been found to accelerate the gradient descent
convergence in comparison to the classic sigmoid/tanh activation functions [15]
and it is easily computed and implemented.

However in a similar manner to the sigmoid activation functions there are
cases where the ReLU neuron unit can underperform. It can adapt in such a
way that the neurons never activate and therefore stop propagating error in the
network (dying neurons). In order to allow some small amount of error to flow
through the unit even though it is not activated the Leaky ReLU unit has been
introduced in [16]. With the mathematical form of f(x) = max(x, αx) where α
is a small constant - leak coefficient. So far the Leaky ReLU has not had large
success over a simple ReLU [17].

2.4 Overfitting

Overfitting is a problem in statistics and machine learning that appears when
fitting a model to training data. The model is called to overfit, whenever the
model describes the random noise of the training data more-so that the underlying

12

relationship. Generally speaking overfitting often occurs whenever the ratio of
a model complexity compared to the training set size gets too high. This can
be also explained in that when the model has enough ’capacity’ to store random
noise, it will overfit.

In order to prevent overfitting, a multitude of techniques can be employed.
In the following sections we describe some of these methods, including cross-
validation, two different types of regularization and sensitivity analysis.

2.4.1 Cross-validation

Cross-validation is a model evaluation method for assessing how a model gen-
eralizes to an independent data set [18]. It is usually used during supervised
training. During supervised training a model is given a training set that the
training algorithm uses to fit the model parameters to the training data. The
main purpose of cross-validation is to define a dataset to test the model against
in the training phase (a validation set).

The simplest kind of cross-validation is called the holdout method. Before
training, the data is separated into two sets - a training and testing set. The
training algorithm fits the model to the training set only, and we hold out the
testing set. After the training algorithm finishes the model is evaluated on the
testing set.

A simple alternative expanding the holdout method is k-fold cross-validation.
The data is now separated into k subsets instead of only two. The training
algorithm is then executed k times, each time with one of these subsets as the
training set. After each run the validation set is constructed by a union of the
k−1 subsets that were not used during training. To evaluate the total error across
all folds an average of the evaluations in each run is calculated. The variance of
this error decreases with increasing k, while each sample in the dataset was used
during only one training algorithm run, which gives us a good estimation of the
model strength.

2.4.2 Noise regularization

To prevent a model from overfitting one of the possible solutions is to add
noise to the training data. This in turn makes it hard for the model to perfectly
train random noise of the original training data. Even if the model overfitted, it
would overfit on the random noise instead on the noise of the training set.

xnoised = xN (1,α) (2.10)

Noise can be inserted into the data for example as an added Gaussian Gaussian
noise according to Equation 2.10. Noise can be introduced to the training set at
multiple points during training, in each epoch during training or before training
once on the whole dataset. Adding noise each epoch during training makes it
very difficult for the network to overfit even on the random noise.

13

Figure 2.4: Depiction of how Dropout affects a network during training.

2.4.3 Dropout regularization

A technique employed in order to prevent overfitting of artificial neural net-
works is to randomly turn on or off neurons during the training process called
Dropout [19]. In each training epoch individual neurons are either ’dropped out’
- turned off with a probability of 1 − p or left on with a probability of p. Along
with the turned off neurons the connecting edges are turned off aswell and they
are not adapted during that epoch. An illustration of this process is shown in
Figure 2.4. After the epoch is done the dropped out neurons are turned on again
and the process iterates, by once again turning off some neurons randomly.

2.4.4 Sensitivity analysis

Determining an appropriate architecture for a neural network can be a very
difficult task, as if we use a model that is too complex the training might lead
to overfitting. On the other hand by using a simple model we risk not being
able to capture some of the relationships present in the data at all. Sensitivity
analysis is a way to extract information about the significance of neurons from a
trained multilayer neural network. We can use sensitivity analysis to determine
which feature of the input data are relevant and which aren’t to prune an over-
fitted neural network. It is also possible to find hidden neurons that are almost
irrelevant to the performance of the neural network.

If we examine the Taylor expansion of the neural network function F around
its parameters θ and omit the expansion past the first derivative we get an equa-
tion (2.11) quantifying the change in the output of the neural network due to
small perturbations in its parameters.

F (θ + ∆θ)− F (θ) = ∆θF ′(θ) (2.11)

Equation (2.11) shows us that the change in output of the neural netwok can
be calculated by the derivative F ′(θ) with respect to the network hyperparameter
θ. We can now derive equations to calculate the sensitivity of the network output
due to change in input values and hidden neuron activations. To demonstrate
assume a three-layer neural network with one input, one hidden and one output

14

layer. The sigmoidal activation function is used in the hidden layer and the linear
activation is used in the output layer.

For each input pattern ~x, its input feature xi and output neuron ok we can
calculate the sensitivity coefficients using (2.12) where woutkj are the weights from
the hidden neuron j to the output neuron k, winji are weights from the input
neuron i to the hidden neuron j and yj is the activation of the j-th neuron due
to input ~x.

Sok,xi =
∂ok
∂xi

=
∂

∂xi

∑
j=1

wokjyj =
∑
j

wokjyj(1− yj)wiji (2.12)

In a similar fashion we can compute the sensitivity coefficients for hidden unit
activations according to equation (2.13).

Sok,yj =
∂ok
∂yj

= ok(1− ok)wkj (2.13)

Using (2.12) we can calculate the overall sensitivity coefficient of the output
with regard to a certain input feature i. First we calculate the sensitivity coef-
ficients of all output features with regard to the input feature specified for each
pattern according to (2.12). We can then calculate the sensitivity coefficient of
the output neuron k with regard to change in the input neuron i as an absolute
average over all patterns (2.14).

Sok,i =

∑
x∈X |Sok,xi |
|X|

(2.14)

The total sensitivity coefficient of the output with regard to the feature could
be then computed in several different ways. As the maximum (2.15), a sum (2.16)
or a weighted average (2.17) over the output features. In Equation (2.17) vm are
weights that denote the relative importance of the specific outputs and can be
selected by an expert.

Si = max
m
{Som,i} (2.15)

Si =
m∑
i=1

Som,i (2.16)

Si =

∑m
i=1 vmSom,i∑m

i=1 vm
(2.17)

If the sensitivity coefficient of an input feature is very low relatively to the
other features, that feature seems to contribute little to the ouput value. Large
sensitivity coefficients in turn indicate significant features. We can use the com-
puted coefficients to prune the irrelevant input features.

15

Chapter 3

Self-organizing maps

A self-organizing map (SOM) alternatively called Kohonen map [20] is a type
of neural network that uses unsupervised learning to represent data of a high-
dimension typically by means of a 2-dimensional map. The process of reducing
the dimensionality of vectors, is essentially a data compression technique known
as vector quantisation. In addition, this technique creates a map that stores in-
formation in such a way that any topological relationships within the training
set are maintained. Another important aspect of SOMs is that it is an unsuper-
vised learning technique. The mentioned properties make SOMs especially useful
for visualising high-dimensionality data. The architecture is inspired by the bi-
ological neuron model and uses neurons to perform the dimension compression.
Similarily to most artificial neural networks, SOMs work in two modes, training
and classification (or mapping).

These networks have been used in various classification tasks in security[21],
finance [22], text mining [23] and more. Further they can be used to visualise
high dimensionality data such as voting patterns [24] or the structure of welfare
in the world [25].

3.1 Network architecture

The self-organizing map consists of a set of neurons arranged into a grid,
rectangular and hexagonal being the most common. A neuron is a vector of
weights ~w of the same dimension as the input data. Say we have real number
input data of dimension n. Then a neuron is a vector ~w = {w1, . . . , wn}. Each
neuron in the topological map also has a typically pre-assigned position on the
topological grid. An example of a SOM is presented in Figure 3.1.

A SOM consists of neurons in a grid as shown in Figure 3.1. Instead of
directly indexing neurons by their position, we index neurons independently. A
neuron j is placed on an position in the map, defined by coordinate(j). Usually
it is also necessary to define a metric of distance between these coordinates (e.g.
Euclidean). Each neuron is connected to the input by a weight vector. The
dimensionality of the input is n. We denote a weight from an input feature i to
the neuron j in the map as wij.

In a SOM map a data sample will be mapped on the neuron that is most
similar to it. Aditionally, since the topological relationships are maintained within
the training set, samples mapped close to one another in the map are more similar

16

Figure 3.1: An example SOM with a 3x3 neuron map and an input of
dimension 4.

17

than samples mapped further away from each other. This means that the map
can be interpreted as a similarity graph of the input data and even used for
clustering. The mapping of an input consists of finding the neuron most similar
to the input as shown in Equation 3.1. The neuron c closest to the input is then
called the winner. The equation uses a metric to determine the winner, any valid
metric is applicable (e.g. Euclidean).

min
c
||~x− ~w(j)|| (3.1)

3.2 Training

To train a self-organizing map, we first initialize its weights with small random
number and then we iteratively present it with samples and update the weights of
its neurons. In each iteration t we present a sample x(t) and update the weights
of the most active neuron in the map and its neighborhood. The most active
neuron, the winner, is determined by a metric (e.g. Euclidian) to find the neuron
whose weights are the closest to the presented sample as explained in equation
(3.1). We denote the winner with the index c.

Afterwards the winner and its neighbors in the map are adapted towards the
presented sample as described in equation (3.2).

∆wi,j = α(t)hc,j(t)[x
(t)
i − wi,j] (3.2)

This equation describes how to update any arbitrary weight of the network,
not just the winners weights. Instead we define a neighborhood function - hc,j(t)
- which is a function of distance between neuron c and neuron j in the map. This
parameter controls the how the winners neighbors are adapted. The adaptation
speed is controlled by the learning rate α(t), which should converge to 0 with
increasing iterations.

The parameter hc,j(t) controls the area in which the winners neighbors are
also adapted by a rate that decays with increasing distance between the neighbor
neuron and the winner neuron in the topology map. The so-called neighborhood
function thus often mimics a normal distribution around the winner, but it can
also be a linear function of the distance from the winner or similar. A very
simple example neighborhood function is shown up in Equation 3.3 which makes
the SOM adapt the winner and the neurons directly next to it in the map.

hc,j =

||coordinates(c)− coordinates(j)|| > 1⇒ 0

||coordinates(c)− coordinates(j)|| = 1⇒ 0.5

||coordinates(c)− coordinates(j)|| = 0⇒ 1

(3.3)

The pseudocode of the algorithm is presented below in listing 3.1.

Listing 3.1: SOM Algorithm

1 Map=initmap(nxn) # initialize the weights randomly

2 while stopping condition not reached:

3 x(t)=random_sample # draw a sample from the data set

4 c=winner(Map ,x(t)) # find the winner neuron

5 foreach neuron i in Map:

18

6 wi,j = wi,j + α(t)hc,j(t)[x
(t)
i − wi,j]

The neuron weights are initalized with random values and iteratively adapted,
which drives a competition between different regions in the input space for neu-
rons in the map. This yields more dense regions of the input space to be mapped
to more neurons in the map rather than sparse regions, which is why the distri-
bution of the input space is reflected in the map. The neighborhood function also
ensures preservation of the topology of the input space, such that neurons close
on the topological map represent similar regions of the input space.

19

Chapter 4

Convolutional neural networks

Convolutional neural networks (CNN) popularised by LeCun in [26] are a
special type of neural network that is based on the organisation of the neurons in
an animals visual cortex [27]. They were originaly designed to process and classify
two dimensional digital pictures with minimal pre-processing and are mainly used
in image recognition and classification. The convolutional neural network model
is based on a previous work by that describes a simpler architecture called the
neocognitron [28].

The neocognitron is a multilayer neural network designed for visual recogni-
tion and classification. The neocognitron is based on two types of cells found in
the visual cortex called simple and complex cells. The simple (S) and complex (C)
cells are cascaded in a way where the S-cells extract local features from the input
are and the C-cells look at a surrounding area of S-cells to find these features,
thus tolerating some small deformations. This network architecture was success-
fully used to classify handwritten digits [28] and also used to classify temporal
patterns in [29].

The neocognitron architecture for recognising handwritten digits was further
extended by LeCun in [26] and [30]. These works introduce convolutional neural
networks and a gradient descent based algorithm to train them. An example of
a convolutional neural network is presented in Figure 4.1.

CNNs work in a similar manner to the neocognitron model. As with the
neocognitron the process can be separated into two steps that are then repeated
multiple times. The first step applies convolutions to the input to extract features
from images into multiple feature maps. The second - pooling - step downsam-
ples these feature maps, to decrease the size and introduce some resistance to
deformations in the data. After the last layer a classic multilayer neural network
is then used to process the output of the last pooling (subsampling) layer.

The process of convolution and pooling (subsampling) can be very successful
at extracting and detecting very complicated features. This architecture was
succesfully demonstrated in the field of image classification - high performance
on the ImageNet database [31] in [15], and various image synthesis tasks such
as image super-resolution [32] face synthesis [33] and even creative tasks such as
artistic style transfer [34].

In the following text we will mainly focus on describing the CNN architecture
specifically tailored for use with images, or 2D data. Nevertheless the principles
described can be applied to one dimensional data aswell. This is important since

20

Figure 4.1: Convolutional neural network example

This figure shows a convolutional neural network with 2 convolutional and 2 pooling
layers followed by a 2-layer dense neural network. Under each layer you can see the
main parameters of the layer. The label above the layer describes the input of the layers.

the data we will be using later in the experiments will be a multidimensional
signal, rather than 2D data in the sense images are. Convolutional networks
have been used in the past for modeling 1D data such as sentences in natural
language processing [35], [36], waveform modeling [37] and in more general signal
processing [38].

4.1 Classic CNN architecture

In this section we describe the CNN architecture in more detail and how it
processes input - the forward pass.

As mentioned earlier the unique functionality of CNNs consists in 2 special
layers: a convolutional layer and a pooling layer. A CNN consists of pairs of
these layers stacked on top of each other, followed by a classic densely connected
multilayer neural network. In the following sections we describe how the forward
pass works for both the convolutional layer and the pooling layer.

First however, before we explain how these layers work, we define how the
input data of the network looks like. The network input is a 2-dimensional picture,
for simplicity greyscale, which can be represented as a matrix of numbers ranging
from a minimum to a maximum color value. An example of a small 4x4 picture is
shown in Figure 4.2. In this matrix the values fit in one byte in the range 0-255,
however we can also use floating point numbers from 0 to 1.

4.1.1 Convolutional layer

A convolutional layer is a layer that holds multiple convolutional filters (ker-
nels) which are used to extract features from the input data. A convolutional filter
is a matrix representing a transformation that is applied to overlapping sliding
windows of the input image. The inner workings of a convolution is shown in
Figure 4.3. The convolution transforms an area of n×n (in the figure 3x3). This
transformation is applied on the whole picture to create the feature map. The

21

Figure 4.2: A representation of a 4x4 greyscale picture, with pixel values
ranging from 0 to 255

Figure 4.3: A demonstration of a convolutional layer.

The filter weight matrix elementwise multiplies the input window and is summed up to
calculate one pixel value in the feature map. This is then repeated for all applicable
input windows.

dimension of the feature map can be slightly smaller as seen in the figure because
of padding.

Formally a convolutional filter is a neuron with n × n weights. The feature
map is created by passing all the n × n windows of the input image one by
one to the convolutional neuron and calculating its output. To formally define
this process we first define a window function that selects a matrix with the
pixel values surrounding a certain point in Equation 4.1. The function takes the
window center [x,y] and the offset of if from the edge k, to get a square filter of
a width n. The offset is used to center the filter - in the case of odd sized filters
we can use k = (n− 1)/2 and in the case of even sized filters k = n/2.

I(x,y,k,n) =

INx−k,y−k · · · INx,y−k · · · INx−k+n,y−k+n

...
. . .

... . .
. ...

INx−k,y · · · INx,y · · · INx−k+n,y
... . .

. ...
. . .

...
INx−k,y−k+n · · · INx,y−k+n · · · INx−k+n,y−k+n

 (4.1)

22

A single transformation can be then written as the dot (Frobenius) product
of the input window and its weights as described in Equation 4.2. Lastly this
value is passed to an activation function, various applicable activation functions
are discussed in Section 2.3. To create the feature map this process is applied to
each applicable coordinate. You can see that the window function is not defined
for coordinates near the edges of the input picture (x < k, y < k, ...) and
for these coordinates the convolution cannot be applied (unless we extend the
window function). From this we get get the feature map for a given convolutional
kernel W in 4.3. Which is in fact very similar to the perceptron equation from
Section 2.1.

z(x, y,W) =
∑
i,j

I(x,y,k,n)ijWij (4.2)

Fx,y = f(z(x,y,W)) = f(
∑
i,j

I(x,y,k)ijWij) (4.3)

The laid out process describes how one feature map is computed using a single
filter. In practice multiple filters are used in each layer as shown in Figure 4.1
creating multiple feature maps. In general all filters in one layer use the same
filter width.

4.1.2 Pooling layer

The next step in the convolutional layer is the pooling step. The convolutional
step alone is fairly impractical as it greatly increases the amount of data the
deeper layers would have to work with. The primary utility of the pooling layer
therefore is to reduce the spatial dimensions of the data.

Much like the convolutional layer described higher, the pooling layer takes a
rectangular window and transforms it into one single value. In this case however
the windows do not overlap, therefore pooling greatly reduces the dimensionality
of the data. Furthermore, contrary to the convolutional layer the transformation
applied here is fixed - no weights are being trained. There are few operations
that can be used, including computing the maximum or the average across the
input window. An example of a max-pooling layer is presented in Figure 4.4.

The pooling layer can formally described using some of the functions used to
describe the convolutional layer. We use the window selection function as defined
in Equation 4.1 to select the area to downsample. A downsampling operation
is then applied to the resulting matrix, such as selecting the maximum value or
calculating the average, as shown in Equation 4.4. Sometimes a transfer function
can be used after the pooling layer aswell, here denoted by f , however usually a
linear transfer function is used.

Sx,y = f(downsample(I(nx, ny, k))) (4.4)

4.1.3 Summary

The CNN architecture is formed by pairs of convolutional layers and pooling
layers stacked on top of each other multiple times followed by a fully connected
multilayer neural network as described in Figure 4.1. The convolutional layers
create feature maps by applying filters to windows as described in Equation 4.3.

23

Figure 4.4: A demonstration of a max-pooling layer.

The pooling layer divides the feature map into non-overlapping regions and calculates a
downsampling operation on each region, in this case the maximum. The source windows
in the feature map correspond to the calculated output.

The pooling layers reduce the amount of data by downsampling it as shown in
Equation 4.4. The output of the last pooling layer is then flattened and passed
as input to a classic multilayer neural network which we described in Chapter 2.

4.2 Backpropagation

Convolutional neural networks are trained using the back propagation algo-
rithm. In the previous section we described a CNN as a series of pairs of con-
volutional layers and pooling layers followed by a fully connected MLP neural
network. The MLP network can be trained using the backpropagation algorith
as we described in Section 2.2. The other layers of the CNN are trained using
the same basic principles using the error flow passed from the MLP network.

4.2.1 Convolutional layer

So far we explained how a convolutional network acts on a fairly high level.
For a simple approach to deriving a learning algorithm we can transform a con-
volutional layer into a multilayer neural network and then use the classic back
propagation algorithm. We perform this transformation by creating a set of neu-
rons for each filter with each neuron corresponding to a pixel. We then prune the
connections to the input picture so that each neuron (representing a pixel in the
feature map) is connected to its respective receptive field. Lastly we force the
neurons that belong to one filter to share weights. An illustration of this process
is lined up in Figure 4.5.

To derive the backpropagation we now define the forward pass process for-
mally. For simplicity we consider a convolutional layer with only one filter, we

24

Figure 4.5: The MLP-CNN abstraction.

A CNN is a MLP with pruned connections and weight sharing. The first step demon-
strates connection cutting, after which each neuron is only connected to its receptive
field. The second step shows connection sharing.

label this layer as l-th. We divide neurons into two types, one the input neurons
and the other type the filter neurons, while each neuron corresponds to a pixel.
We denote the weight vector representing the filter wi,j with i,j describing the
position in the filter matrix. The potential of a filter neuron at coordinates [x,y]
then is

zlx,y =
∑
i,j

wi,j.a
l−1
i+x,j+y (4.5)

For simplicity we dont define the ranges of i and j, even though we could range
the indexes from −k to n− k. In the equation 4.5 we use al−1i+x,j+y which denotes
values of pixel in a picture (or a feature map). The input layer is a picture or a
pooling map and these values are their pixel values. To define the activation of
neurons in the convolutional layer at coordinates [x,y] we have

alx,y = f(zlx,y) (4.6)

where f is an activation function (for example sigmoid).
To derive the backpropagation algorithm for the convolutional layer lets have

some error function E (for example MSE as used in Section 2.2), and let us have
given the error flow to the convolutional layer from the higher layer. Assuming
we have the error flow ∂E

∂alx,y
we need to compute the error flow to the previous

layer - ∂E

∂al−1
x,y

. Also we need to derive the gradient component for each weight of

the matrix w - ∂E
∂wi,j

.

First let us look at the gradient component for each weight and simplify by
applying the chain rule. Since the weight wi,j is used in every single potential

25

calculation zx,y we get the equation:

∂E

∂wi,j
=
∑
x,y

∂E

∂zlx,y

∂zlx,y
∂wi,j

=
∑
x,y

∂E

∂zlx,y
al−1x+i,y+j (4.7)

We have to sum over all the neurons in the filter layer since they all share the

weight wi,j. The identity
∂zlx,y
∂wi,j

= al−1x+i,y+j follows simply from the Equation 4.5.

To to compute this sum, we need to calculate the deltas δlx,y = ∂E
∂zlx,y

using

the error flow we have from the previous layer ∂E
∂alx,y

. The result in Equation 4.8

follows from the chain rule and Equation 4.6.

∂E

∂zlx,y
=

∂E

∂alx,y

∂alx,y
∂zlx,y

=
∂E

∂alx,y
f ′(zlx,y) (4.8)

And we can substitute this result into Equation 4.7to get the weights gradient
component shown in Equation 4.9

∂E

∂wi,j
=
∑
x,y

∂E

∂alx,y
f ′(zlx,y)a

l−1
x+i,y+j (4.9)

What we have left is to compute the error flow to the previous layer, which
we can derive using the chain rule:

∂E

∂al−1x,y

=
∑
i,j

∂E

∂zlx−i,y−j

∂zlx−i,y−j
∂al−1x,y

(4.10)

In this equation we perform a sort of backward convolution. As instead of looking
which input pixels contribute toward a convolution, we look at which convolutions
use a certain pixel. When we take a look at Equation 4.5 we can see that the

identity
∂zlx−i,y−j

∂al−1
x,y

= wi,j holds. Therefore we get the error flow to the previous

layer as:
∂E

∂al−1x,y

=
∑
i,j

∂E

∂zlx−i,y−j
wi,j (4.11)

Where ∂E
∂zlx−i,y−j

is as derived in Equation 4.8. This result is fairly intuitive as the

error flow is a weighted sum of the error flows from the previous layer, which is
very similar to how the classic backpropagation algorithm acts.

In conclusion we have 3 main results. The gradient component for the neuron
potentials (deltas) ∂E

∂zlx,y
which is derived in Equation 4.8. The gradient component

for the filter weights ∂E
∂wi,j

, which we will use to update them, derived in Equation

4.9 which uses the error flow from the previous layer. Finally we have the error
flow to the previous layer ∂E

∂al−1
x,y

which is shown in Equation 4.11 and which enables

more than one convolutional layer architectures to learn.

4.2.2 Pooling layer

The pooling layers do not actually do any learning themselves as their pa-
rameters (if any) are fixed. They simply reduce the size of the feature map by a

26

factor. However we still need to have error flow through them, and that is what
we derive in this section.

A pooling operation takes a block of n × n pixels from the feature map and
reduces them to a single value. Each pooling operation is associated with a
certain block, described by its coordinates. Lets define the output of the pooling
operator on coordinates [x,y] as alx,y (where l denotes the layer) and we have given

the error flowing from the following layer ∂E
∂alx,y

. We need to propagate this error

to the corresponding neurons in the previous layer - ∂E

∂al−1
x,y

.

In the case of a average-pooling operator we have alx,y = 1
n2

∑
i,j a

l−1
nx+i,ny+j and

then we have the error flow:

∂E

∂al−1x,y

=
∂E

∂alx,y

∂alx,y
∂al−1x,y

=
1

n2

∂E

∂alx,y
(4.12)

In the case of a max-pooling operator alx,y = maxi,j a
l−1
nx+i,ny+j and then the

error flows fully through the maximum selected value, and its 0 for the other
ones.

27

Chapter 5

Recurrent neural networks

Recurrent neural networks (RNNs) are a type of artificial neural networks
where the connections between the neurons in the network form directed (feed-
back) cycles as seen in Figure 5.1. As with MLPs there are many architectures
of RNNs such as Hopfield networks [39], Boltzmann machines [40], Echo state
networks [41] and Long-short term memory networks [42]. An example RNN can
be seen in figure 5.1.

The feedback cycles on neurons makes RNNs able to memorize relevant data
over time, acting as a memory cell, which in principle can make them more
powerful than standard feed-forward networks. An MLP can only map from
input to output vectors, whereas an RNN can map from the entire history of
previous inputs. To gain similar information in a MLP we would have to provide
it the whole history we provide an RNN, which in turn increases the number of
hyperparameters to train, and might introduce noise. An equivalent result to the
universal aproximation theory for MLPs is that a RNN can map a sequence to
sequence with enough hidden units [43].

Despite of the theoretical strength of the model, the early variants of RNNs
had very limited success. The main issue of the classic variants of RNNs is a rapid
decay of the error propagated through time, also called the vanishing gradient
problem [44] [45]. The vanishing gradient problem is that the gradient gets very
low even after a few time-steps of an RNN. An example of the vanishing gradient
problem is depicted in Figure 5.2. This causes the RNNs to only ever remember
information for a few time-steps. In this chapter we will focus on Long-short
term memory networks introduced in [42] that attempt to overcome the vanishing
gradient problem of traditional RNNs by introducing a constant error flow into
the network. This model has been also further expanded in [46].

LSTMs have had great success in recent years in many different applications.
They have been used in the field of speech recognition [47], text recognition [48],
natural language processing for phoneme classification [49]. LSTMs have proven
themselves to be very effective when compared to other adaptive approaches
that keep no internal state (hidden markov models, support vector machines and
feedforward networks) [50] [51].

28

x

net

y

(a) Recursive neural net-
work with the feedback
loop

x1 x2 x3

net net net

y1 y2 y3

(b) Time-series unfolded RNN

Figure 5.1: A recursive neural network.

On the left there is a depiction of a RNN with the recursive connection. When used
for an input over 3 time-steps, we can depict the process as a network with connections
between time-steps that pass information from the older time-steps to the newer ones.

x1 x2 x3 x4 x5

net net net net net

y1 y2 y3 y4 y5

Figure 5.2: Vanishing gradient in a recursive neural network.

The shading of the nodes depict how much of the information from the first time step
is available. The information about the first time step decays over time.

29

5.1 Long-short term memory network architec-

ture

Long-short term memory networks (LSTMs) are a subclass of recursive neural
networks capable of learning long term dependencies in the data. The model
was first introduced in [42]. They were explicitly designed to learn long term
dependencies as classic RNNs were ineffective at that task.

The main issue solved by LSTM is the rapid decay of error propagation over
time. The core principle that solves decaying information flow in LSTM is a
memory cell, which is a recurrently connected linear unit. The linear recurrence
of the memory cell is what causes the error flow to remain constant.

This memory cell in an abstract way acts similarily as an electronic memory
cell does. The LSTM network can read, write or erase data from it. These
memory cells are often arranged into memory cell blocks, where all cells in one
block share some of their weights. The blocks (or just single cells) are then
arranged into layers which of there can be multiple in one network. TODO
obrazek

The processes of reading, writing and erasing the data from the memory cell
are controlled by structures called gates; cell, input, output and more recently a
forget gate which was proposed in [46] as seen in a depiction of a single memory
cell in Figure 5.3. First the cell gate calculates a candidate input value which
then is used with conjunction with the input gate to generate a new state of
the memory cell. The forget gate controls the memory cell state decay, to what
amount will the old memory cell state be retained. Finally the output gate
uses both the cell memory and the network input to determine when to output
infromation for use in the network.

For example we have a time series of two inputs, x1, x2. The task of the
LSTM is to count the number of times the input x1 is high and output this value
whenever x2 is high. The LSTM trains its input gate so that it fires whenever x1
is high, which causes the input to the cell to be open and in turn increments the
value in the memory cell. The LSTM also trains the output gate to fire whenever
x2 is high which in turn makes the network output the value of the memory cell.
We could also expand this example by adding another input that tells the LSTM
to erase the memory cell value. An expanded example that sums real numbers
on a separate input was presented in [42].

5.2 Single cell forward pass

In this section I explain how a single memory cell computes its state and its
output.

The input of a single cell is the output of the previous layer (or the network
input), we denote this as ~x, along with the recurrent connections, which we will

denote ~h. A single memory cell is composed of four gates, the cell, input, forget
and output gate and its memory state. Each gate can be represented by a artificial
neuron, where the gate is connected to the network and recurrent inputs ~x and ~h
with a weighted connection. The weight vectors for different gates will be denoted
~wcell, ~winput, ~wforget and ~woutput. The different transfer functions will be discussed

30

along with the gate definitions. Lastly we define the cell state in time t as s(t)
along with the output of the cell at time t as ac(t). The cell state will be denoted
by s(t).

The goal of the forward pass is to update the cell state - calculate s(t + 1)
and to get the cell output ac(t). This computation can be divided into five steps,
each controlled by one of the gates:

1. Compute a candidate value to store in the cell acell - controlled by the cell
gate.

2. Compute how much of the candidate value will be stored ainput - controlled
by the input gate.

3. Compute how much of the original cell state will be retained aforget - con-
trolled by the forget gate.

4. Update the cell state using the gate outputs - s(t+ 1).

5. Compute the cell output value ac(t) - controlled by the output gate.

The first step is for the memory cell to determine a candidate for what could
be stored in the cell - acell. The output of the gate is calculated as a artificial
neuron as shown in Equation 5.3. The transfer function used is often a tanh
scaled to the range [−2,2] in Equation 5.2.

zcell(t) = ~wcell(t) · [~x(t),~h(t), 1]

acell(t) = g(zcell(t))
(5.1)

g(x) =
4

1 + e−x
− 2 (5.2)

The second step is to determine how much ainput of the candidate value acell
will be actually stored in the state s(t+ 1). This is controlled by the input gate,
which again is an artificial neuron. The input gate output is shown in Equation
5.3. The transfer function used is most commonly a simple sigmoid in Equation
5.4. We will then use the neuron output - ainput to scale the candidate value from
the cell gate in Equation 5.6.

zinput(t) = ~winput(t) · [~x(t),~h(t), 1]

ainput(t) = g(zinput(t))
(5.3)

f(x) =
1

1 + e−x
(5.4)

The third step in the computation of the cell output ac(t) is to decide how
much of the cell state s(t) is retained between time steps - aforget. The forget
gate takes a look at the network input and the recurrent input and outputs a
number between 0 and 1 which will determine how much information the cell
state retains. The output of the forget gate can be written again as a artificial
neuron as shown in Equation 5.5. The transfer function used is most commonly
a sigmoid in Equation 5.4.

zforget(t) = ~wforget(t) · [~x(t),~h(t), 1]

aforget(t) = g(zforget(t))
(5.5)

31

We can now show how the cell state is updated during the forward pass using
the the cell, input and forget gates. The network calculates its cell, input and
forget gate activations - acell, ainput, aforget as defined in Equations 5.1, 5.3 and
5.5. These values are then used to calculate the cell state using Equation 5.6.
The candidate value is scaled by the input gate and added to the cell state that
is scaled by the forget gate.

s(t+1) = ainput(~x(t+1),~h(t+1))acell(~x(t+1),~h(t+1))+aforget(~x(t+1),~h(t+1))s(t)
(5.6)

The last step left to compute is the memory cell output ac(t), which is deter-
mined by the output gate. The output gate is again an artificial neuron as shown
in Equation 5.7.

zoutput(t) = ~woutput(t) · [~x(t),~h(t), 1]

aoutput(t) = g(zoutput(t))
(5.7)

We then use the output gate activation aoutput to compute the cell output
ac(t). We first squash the cell state by a transfer function and then scale it by
the output gate value as shown in Equation 5.8. The transfer function used is
most commonly a tanh function in Equation 5.9. The index c denotes the index
of the cell in question.

ac(t) = aoutput(~x,~h)h(s(t)) (5.8)

h(x) =
2

1 + e−x
− 1 (5.9)

These equations describe how a single memory cell is updated in the forward
pass. In the LSTM there can be multiple memory cells and often memory cells
are arranged into memory cell blocks. A memory cell block is a set of memory
cells that share input, output and forget gate weights. Note the blocks do not
share cell gates, as they are meant to store vectors of information based on the
same triggers.

5.3 LSTM Backpropagation

The original LSTM training algorithm uses an approximate error gradient
using back-propagation through time (BPTT) [52] trunctated after one time-
step. Since then there have been developed other ways to train LSTMs, such as
using an exact error gradient with an untrunctated BPTT [53]. There are also a
few non-gradient-based methods [54], [55].

In this section we summarise the trunctated BPTT version of the training al-
gorithm. The trunctated formula approximates the partial derivatives by cutting
off the error flow once it leaves memory cells or gate units.

We assume one layer of LSTM memory cell blocks and one layer of output
neurons densely connected to the LSTM cells. The neurons in the output layer
will be denoted by the index o. Memory cells are arranged into memory cell
blocks, each indexed by j, the size of a block is denoted Sj. Memory cell blocks
share input, forget and output gate weights, therefore these gates are indexed
directly - e.g. outj. The cell gate and the cell state are indexed by the memory

32

×output gating

h(s(t))output squashing

s(t) ×

+

forget gating

×input gating

ac

acellinput squashing

aoutput

aforget

ainput

network and recurrent input

Figure 5.3: A computational graph of a LSTM memory cell.

The LSTM creates a new memory state by scaling it (aforget) and adding a new state
from ainput.acell. The cell state is then squashed and passed through a scaling gate
aoutput as the memory cell output.

33

cell index cvj , where v is the index of the cell within the cell block j. For example
the cell state of the memory cell v in the cell block j is denoted by scvj . Each
output neuron has an activation ao and a potential zo as defined in the MLP
forward pass in Section 2.1. We use this notation in a similar fashion for gates.
We do not use a index for the layer, but each result is dependent on time, which
is put in brackets after the property of the neuron, such as ao(t). The weight wl,m
denotes the connection outgoing from the unit l to the unit m.

First we define the squared error over all output units.

E(t) =
∑
o

eo(t)
2 (5.10)

eo(t) =
∂E(t)

∂ao(t)
= ~do(t)− ao(t) (5.11)

where ao is the output on the o-th output node and ~do(t) the o-th component
of the desired output. If this layer was not the final layer but for example was
followed by another layer of perceptrons we could inject the error flow as necessary
in eo. In a similar fashion as in the MLP backpropagation we minimize the error
using gradient descent by iteratively adding the changes ∆wl,m to every applicable
weight.

First we compute the contribution to a general wl,m’s gradient based update
with learning rate α as shown in Equations 5.12, 5.13, 5.14, 5.15. These equations
follow the chain rule and BPTT. Our goal is to compute the gradient component
for weights connected to the output units and the output gates.

∆wl,m(t) = −α∂E(t)

∂wl,m

1
= −α

∑
o

∂E(t)

∂ao(t)

∂ao(t)

∂wl,m
(5.12)

2
= α

∑
o

∑
i

eo(t)
∂ao(t)

∂ai(t)

∂ai(t)

∂zi(t)

∂zi(t)

∂wl,m
(5.13)

3
= α

∑
o

∑
i

eo(t)
∂ao(t)

∂ai(t)

∂ai(t)

∂zi(t)

(
δi,mal(t− 1) +

∂zi(t)

∂al(t− 1)

)
(5.14)

4
= α

(∑
o

eo(t)
∂ao(t)

∂am(t)

)
∂am(t)

∂zm(t)
al(t− 1) (5.15)

4
= αδm(t)al(t− 1) (5.16)

δm(t) :=

(∑
o

eo(t)
∂ao(t)

∂am(t)

)
∂am(t)

∂zm(t)
(5.17)

The first identity in equation 5.12 follows simply from the chain rule on all the
output units o. We then substitute eo(t) and the second identity in 5.13 follows
from a chain rule on a gate or cell unit i (we will later subset these to simplify
further). The third identity in equation 5.14 follows from the backpropagation
through time principle (δi,l is the Kronecker delta 5.18). In the fourth identity 5.15
we trunctate the error when it leaves a memory block by setting the derivative
∂zi(t)

∂am(t−1) = 0 and simplify the result to account for the Kronecker delta.

δi,j =

{
1, if i = j.

0, otherwise.
(5.18)

34

In Equation 5.17 we isolated the delta component of the gradient. For weights
coming to output units, we set m = o′. The equation in then reduces to:

δo′ = eo′(t)f
′
o′(zo′(t)) (5.19)

In a similar fashion we can simplify for weights incoming to output gates. We
set m = outputj and then simplify to 5.20 by differentiating Equations 5.8 and
5.7 from the forward pass.

δoutputj = f ′outputj(zoutputj(t))

 Sj∑
v=1

h(scvj

∑
o

wcvj oδo(t)

 (5.20)

The delta for the output gate sums over all the cells in the memory block as
every one contributes to the weight change on the output gate.

From Equations 5.16, 5.17, 5.20 and 5.19 we get the weight update formulas
for the output neurons and the output gates.

To calculate the gradient component of weights connected to the other gates,
we first define the error on the cell state and then propagate this error to the
gates, since each gate contributes to the cell state. We define an internal cell
state error escv

j
(t) as shown Equation 5.21 which we can compute as 5.22 from

the differentiation of 5.20.

escv
j
(t) := − ∂E(t)

∂scvj (t)
(5.21)

= f ′outputj(zoutputj(t))h
′(scvj)

∑
o

wcvj oδo(t) (5.22)

We can then use this error to compute the gradient contribution according to:

∆wl,m(t) = −α ∂E

∂wl,m
= −α ∂E(t)

∂scvj (t)

∂scvj (t)

∂wl,m
= αescv

j
(t)

∂scvj
∂wl,m

(5.23)

In the above equation we already computed the term escv
j
(t). To obtain the

partial
∂scv

j
(t)

∂wl,m
we differentiate Equation 5.6 from the forward pass to get:

∂scvj (t)

∂wl,m
=
∂scvj (t− 1)

∂wl,m
aforgetj(t) +

∂aforgetj(t)

∂wl,m
s(t− 1)

+
∂ainputj(t)

∂wl,m
acellcv

j
(t) +

∂acellcv
j
(t)

∂wl,m
ainputj(t)

(5.24)

Forturnately these partials are zero unless correct weight connections are set.
For those we can differentiate forward pass equations 5.1 5.3 and 5.5 to obtain:

35

∂scvj (t)

∂wl,cellcv
j

=
∂scvj (t− 1)

∂wl,cellj
aforgetj(t) + g′(zcellcv

j
(t))ainputj(t)am(t− 1) (5.25)

∂scvj (t)

∂wl,inputj
=
∂scvj (t− 1)

∂wl,inputj
aforgetj(t) + g(zcellcv

j
(t))f ′(zinputj(t))am(t− 1) (5.26)

∂scvj (t)

∂wl,forgetj
=
∂scvj (t− 1)

∂wl,forgetj
aforgetj(t) + scvj (t− 1)f ′(zforgetj(t))am(t− 1) (5.27)

We can now take these partials and substitute them as necessary into equation
5.23 to obtain the weight updates for the input, cell and forget gates. To update
weights of the input and forget gate, we have to sum over the contributions of all
the cells in the cell block as shown in equation 5.28.

∀m ∈ {forgetj, inputj} : ∆wl,m(t) = α

Sj∑
v=1

escv
j
(t)

∂scvj
∂wl,m

(5.28)

The equation for the cell gate is simply

∀m ∈ {cellj} : ∆wl,m(t) = αescv
j
(t)

∂scvj
∂wl,m

(5.29)

To summarize the backpropagation process, first we calculate deltas for the
output neurons 5.19 and the output gate 5.20. We use these deltas to substitute
in the classic weight update equation 5.16 to update the incoming and outgoing
output gate weights. To update the other gate weights, we have to first propagate
the error from the output through the output gates to a cell state error as defined
in 5.22. Each cell has to hold variables during training that save the cell state
error component of weights incoming to the input, cell and forget gates, as defined
in equations 5.25, 5.26 and 5.27. These equations define a recursive update that is
performed each step. The initial values can be set at 0. These variables are then
used to update the incoming weights of input, forget and cell gates according to
equations 5.28 and 5.29.

36

Chapter 6

Experimental results

Monetary policy-makers tend to consider forecasts of economic activity for
their decision making. In general any monetary policy applied to a national
economy may change the economy in the long run. In order to make informed
decisions policy-makers often require predictions and other analysis of the econ-
omy. The indicators of GPD and GDP growth rate being the most prominent
are usually forecasted by means of macroeconomic aggregates such as investment
and consumption indexes. In this chapter, our goal will be to analyse multidi-
mensional macroeconomic time-series with these goals in mind.

In the following chapter we will first describe the data in Section 6.1 and
visualise the macroeconomic development of different countries in Section 6.2.
We will then explore the task of GDP prediction and analyse the applicability of
different types of deep neural networks for prediction in Section 6.3.

6.1 Data

The data used in the experiments had been collected by the UN National
Accounts Main Aggregates Database [56] supplemented with datapoints from the
World Bank Open Database [57]. The database created contains yearly national
aggregates for 198 countries in total for the time period from 1970 to 2015. In
the following section we will describe the data and perform some exploratory
analysis.

The dataset is collected from 2 sources, the UN National Accounts Main
Aggregates Database and the World Bank Open Database. Most of the economic
indicators are available from the UN database and we augmented this database
with a few socioeconomic indicators from the WB. The indicators from the WB
are marked in the list below: Internet coverage, Life expectancy and Population
growth. During the training we used 16 different macroeconomic indicators in
total which are listed below. The list contains indicators representing the share
of a specific branch of business, these branches are formally defined by the UN
and are called ISIC divisions [58], for the scope of this work the short description
will suffice.

• GDP per capita - Gross Domestic Product per citizen. UN Indicator

• Absolute GDP - Gross Domestic Product absolute value. UN Indicator

37

• Agriculture share of GDP - Value added in agriculture, forestry and fishing.
ISIC divisions A-B as a share of the country GDP. UN Indicator

• Mining share of GDP - Value added in mining. ISIC divisions C-E as a
share of the country GDP. UN Indicator

• Construction share of GDP - Value added in construction ISIC division F
as a share of the country GDP. UN Indicator

• Wholesale share of GDP - Value added in wholesale, retail, restaurants and
hotels. ISIC divisions G-H as a share of the country GDP. UN Indicator

• Transport share of GDP - Value added in transportation. ISIC divisions I
as a share of the country GDP. UN Indicator

• Other share of GDP - Value added in other activities. ISIC divisions J-P
as a share of the country GDP. UN Indicator

• General government final consumption expenditure - Government expen-
diture on goods and services that are used for the direct satisfaction of
individuals or the community as a share of GDP. UN Indicator

• Household consumption expenditure - Expenditure incurred by resident
households on individual consumption of goods and services as a share of
GDP. Household final consumption expenditure consists of the expenditure,
including imputed expenditure, incurred by resident households on individ-
ual consumption goods and services, including those sold at prices that are
not economically significant. UN Indicator

• Gross capital formation - Gross fixed capital formation is measured by the
total value of a producer’s acquisitions, less disposals, of fixed assets during
the accounting period plus certain additions to the value of non-produced
assets (such as subsoil assets or major improvements in the quantity, quality
or productivity of land) realised by the productive activity of institutional
units. UN Indicator

• Exports of goods and services share of GDP - Represents the value of goods
and services provided to the rest of the world. UN Indicator

• Imports of goods and services share of GDP - Represents the value of goods
and services recieved from the rest of the world. UN Indicator

• Internet coverage - Internet users per 100 people. WB Indicator

• Life expectancy - The number of years a infant is expected to live with
mortality patterns current at its birth. WB Indicator

• Population growth - Yearly population growth rate as a percentage. WB
Indicator

Some basic statistical parameters of the indicators are described in Table 6.1.
Moreover the distrubutions of every indicator are charted in Appendix A. The

38

indicator mean std min max
Agriculture (ISIC A-B) - % of GDP 16.48 14.85 0.03 80.51
Mining (ISIC C-E) - % of GDP 23.33 13.64 0.05 93.78
Construction (ISIC F) - % of GDP 6.19 3.03 0.14 28.06
Wholesale (ISIC G-H) - % of GDP 14.99 6.50 0.57 51.96
Transport (ISIC I) - % of GDP 7.9 3.71 -5.23 29.09
Other (ISIC J-P) - % of GDP 30.18 12.18 1.40 78.82
General gov. final cons. expend. - % of GDP 17.86 10.27 1.11 201.02
Household cons. expend. - % of GDP 63.85 18.66 3.85 179.22
Gross capital formation - % of GDP 24.40 10.18 -13.41 113.31
GDP Per Capita - US dollars 7078.44 13.40e3 33.88 157.09e3
Absolute GDP - US dollars 172.29e9 783.85e9 2.58e6 17.34e12
Exports of goods and services - % of GDP 35.53 29.63 -2.46 295.75
Imports of goods and services - % of GDP 42.79 30.12 1.60 297.94
Internet users per 100 people 8.67 19.37 0.00 98.16
Life expectancy at birth - years 64.11 11.55 19.50 83.33
Population growth - % of population 1.74 1.60 -10.96 17.62

Table 6.1: Statistical properties of indicators

distributions of the indicators are fairly normal, and that suggests the indicators
do not have to be split further.

There are a few interesting outliers that can be noticed in the data around
the extremes. For example the minimum life expectancy being only 19.5 years
old comes from the datapoints of Cambodia around the period of the Cambodian
Civil War. Another worrying value is a negative exports share of GDP, which
presented itself in the Communist Czechoslovakia. The datapoints in the Eastern
Bloc are in general not very trustworthy and this datapoint is probably not actual
exports, but maybe an aggregate of imports minus exports. Another interesting
extreme is the transport share of GDP minimum value being negative. This value
appears in the datapoints of Marshall Islands and its most likely incorrect data,
even though it could be explained by very heavy investments into transportation
with no returns, possibly the government spent a lot of money on infrastructure.
Since the goal of this work was not to create a clean database of macroeconomic
indicators, we decided to leave these inaccuracies in the data and use the data as
was provided.

6.1.1 Data preprocessing

Missing values

The data from UN has farily few missing datapoints. The main missing dat-
apoints come from newly formed countries after the fall of the Soviet Union.
Fortunately generally speaking both the former country and the newly formed
country was present in the data. Therefore the missing data in the countries
newly formed could have been filled in from the country it was previously part
of. For example the datapoints from Czechoslovakia were used to fill in the miss-
ing data in Czech republic before 1990. Even though this might introduce some
inaccuracies into the data, we felt this replacement to be necessary since in total

39

it was required for 27 countries.
After this former country replacement we used interpolation and k-NN to

replace more missing values in a similar manner as is described in [59]. There
was in total there 318465 datapoints in the database from which there was 8193
(2.5% of total datapoints) missing values replaced with k-NN or interpolated. If
only a few values (4) were missing in an otherwise complete timeseries (of any
indicator) interpolation was used to fill in the blank values. In total 666 (8% of
missing datapoints) values were replaced using interpolation. If there was more
datapoints missing in a time series, we employed the k-NN algorithm to find a
country most similar to the other (non-missing indicators) and used that similar
country to fill in the missing values. Using k-NN we replaced 7527 values in
total (92% of missing datapoints). Countries that were completely missing an
indicator were completely removed from the dataset.

Normalisation

The data has been min-max normalised according to Equation 6.1 in order to
reduce weights in the trained networks. The min-max weights are noted in the
table 6.1. This causes the data to be mapped to the interval [−1,1].

x∗ =
x−min

max−min
(6.1)

6.2 Visualising time-series

As a part of the exploratory analysis of the data we first employ self-organising
maps to visualise the data. Self-organizing maps (SOM) are used to map multidi-
mensional data onto a two-dimensional map. One of the possible applications of
SOM for multidimensional time series is to visualise the development of the time
series over a period of time. In this experiment we take time series data from the
dataset described in Section 6.1 to get a visual representation of how different
countries economics evolved over time. The results give an insight into how spe-
cific countries develop over time in an easy-to-understand and visual way. This
method however does not use the time series during its training, each time-step
is considered a different, and independent sample.

The training algorithm used was an Euclidean distance 30x30 SOM and the
map has been trained using an 20000-iteration algorithm that drew a random
sample each time to adjust the map. For implementation details review Apendix

6.2.1 Results

The training resulted into a map that generally places well developed countries
to the upper right corner, less developed countries to the left middle and top. We
can see the distribution of each feature in Figure 6.1. In the heatmaps lighter
colors correspond to higher values for the respective feature. We can see that there
is a large overlap between import and export. Life expectancy is also mostly a
complement to population growth with life expectancy. Life expectancy forms a
gradient from the top left corner to the lower right corner, which corresponds to
fast developing countries with a generally lower life standard. Agriculture peaks

40

in the upper left corner while industry in the lower middle and it overlaps highly
with exports, which follows common sense. Suprisingly the highest GDP does
not overlap with high import/export areas but it does overlap with very high life
expectancy.

These figures help interpret the movement of each country on the map over
time. Let us take a look at Bangladesh in Figure 6.2. In this figure the lighter
colors of the neurons indicate a lower density area where neurons are further away
to each other, while dark shades indicate high density areas where neurons are
fairly close to one another. According to the World Bank [57] Bangladesh has been
growing at an impressive rate. This fact that Bangladesh is a growing country
is consistent with the displayed time series on the map as upwards movements
correspond with an increased life expectancy and GDP.

The World Bank classifies countries each year by their GNI per capita and
Bangladesh aspires to become classified by the World bank as a middle income
country within the next ten years. We can examine this aspiration by examining
the agreggated time series for the lower-middle and middle income classes. In
Figures 6.3 and 6.4 we can see that Bangladesh is much more similar to the lower
middle income class than the middle income class, but it is fairly close to the
lower middle income time series. Another good example is France, for which it is
immediately clear that it is a highly developed country as seen in Figure 6.5 and
is one of the highest GDP/life expectancy countries in our data by 2015.

However this analysis can be easily mislead by the other variables as the
income class depends only on one of the variables observed. For example Malaysia
is considered a upper-middle income economy, but is placed in the lower left corner
on the map as seen in Figure 6.6. This is most likely caused by Malaysia being a
leading exporter in several electronic products and natural resources.

In conclusion it is important to realise that the position on the map represents
all the variables that were used to construct it. This then means that in some
cases one variable becomes dominant in representing the country. For example
with France its GDP highly above average and therefore we cannot for example
determine the Import/Export situation of France just from the map.

41

Figure 6.1: Indicator heatmaps

42

Figure 6.2: Bangladesh time series

Figure 6.3: Lower-middle income class time series

43

Figure 6.4: Middle income class time series

Figure 6.5: France time series

44

Figure 6.6: Malaysia time series

6.3 GDP Prognosis

One of the common goals in time-series analysis is to predict one of the vari-
ables into the future. Our data describes the macroeconomic development of
countries, and arguably the most decisive indicator for determine the overall de-
velopment of a country are the GDP and GDP per capita indicators. In this
section we define such a prediction task and explore how different deep neural
networks perform.

6.3.1 Experiment setup

First in order to give us an idea about what would be a reasonable time-lag
into the past we have done a simple autocorrelation analysis. Autocorrelation
is the correlation of a signal with itself at different time lags. Given a time
series with n observations {X1, . . . ,Xn}, its estimated mean µ and variance σ2,
an estimate of the autocorrelation index R(k) of a time lag k can be obtained as:

R(k) =
1

(n− k)σ2

n−k∑
t=1

(Xt − µ)(Xt+k − µ) (6.2)

When performed on the autocorrelation of GDP, the resulting autocorrelation,
see Figure 6.7, suggests that the importance of past data drops significantly after
about 6 years.

The input data can be represented as a matrix Xc
i,j for each country. The

superscript c denotes the country, i index denoting the indicator and j denoting

45

Figure 6.7: Autocorrelation plot of GDP

The plot denotes the correlation coefficient between different time-lags of GDP.
The value at the x-coordinate k denotes the R(k) coeffient as defined in Equation
6.2 averaged over the GDP time-series of all countries in the dataset. It represents
the correlation between GDP values at time t and time t+ k.

46

the year of the datapoint. The number of indicators is denoted by I. To create
the set of samples for the prediction task, each country matrix has been split by
columns into into 6-year sliding windows for each sample. This means for each
country a set of samples has been created according to Equation 6.3 with the
window size d set to 6.

Sc(t,d) ∈ RI×d : Sc(t,d)i,j = Xc
i,t+j−d (6.3)

To formally define the prediction task the only thing left is to select the target
variable. Our goal here is to predicting GDP, which is present in our data in two
indicators - GDP Per Capita (GDPPC) and Absolute GDP (AGDP). We have
selected AGDP as the target variable, keeping the GDPPC as an indicator.

Formally the prediction task then is to find a function f : RI×d → R2. The
input of the function is a matrix of I = 16 vectors, each vector a time series of
an indicator. The target of the function are two numbers: the first the AGDP
and the second a differential variable. We denote the AGDP indicator index as
a and then get the definition of the target as:

f(Sc(t,d)) = (Xc
a,t+d+1, X

c
a,t+d+1 −Xc

a,t+d) (6.4)

For example for a matrix of indicators from the year 1970 to 1975, the first
target variable will be the AGDP in the year 1976. As the second target variable
we included a difference indicator, in our example the second target variable
would be the difference between the AGDP of 1976 and 1975. Including the
second differential variable follows the learning with hints principle which can
improve the prediction strength.

In the following sections we will explore how this prediction task can be solved
using different data mining approaches and compare their effectiveness. In each
architecture we explore how different model parameters affect its performance.
The model parameters include:

• Number of hidden layers. For data that is linearly separable there is
no need for any hidden layers. However this is seldom the case for more
complex data. For the majority of problems one hidden layer is considered
sufficient. Furthermore, additional layers can lead to overfitting and much
longer training times.

• Number of neurons in hidden layers. There is no clear rule as to
how to select the number of neurons [60]. Generally an amount around the
number of input or output neurons is considered a good amount. In this
case the number of input neurons is 112 (16 indicators times 7 - width of
window).

• Activation function. Each hidden neuron has an activation function
as described in Chapter 2. The most common activation functions are
discussed in 2.3.

• Regularization method. The most common problem when training neu-
ral networks is the problem of overfitting. There are many different ways to
prevent overfitting. In these experiments we consider two different types.
One introduces noise into the data during each training epoch and the other
is Dropout. These techniques are discussed in more detail in Section 2.4

47

Figure 6.8: Example of how the naive model predicts the GDP of Czech
Republic

The exact values considered for each parameter will be discussed separately for
each architecture tested. In each experiment, the data will be randomly separated
into five disjunct sets by countries. Afterwards the training/testing set split will
follow the crossvalidation scheme, where one set is left out being the testing set.
The resulting performances will be presented on the disjunct training, validation
and testing set.

The naive model

As a benchmark model for the prediction task we used a naive model. The
naive model simply predicts a zero-difference in GDP. The model is defined in
Equation 6.5. The model achieves a MSE of 4,17E-3 on our dataset. An example
of the prediction of the naive model is presented in Figure 6.8.

f(Sc(t,d)) := (Xc
a,t+d, 0) (6.5)

The naive model is often used as a benchmark to compare different methods
for GDP prediction. To gauge how different models perform compared to the
naive model we present a few examples of related works to the task of GDP
prediction.

The first example presents a comparison of different classic models used for
GPD prediction of Japan in [61]. In this work a naive model is used to compare
classic time series modeling techniques - Vector Autoregression and the VECM
model. The RMSE achieved by these models is shown in Table 6.2. In this work
the classic models achieved a RMSE about three-times better than that of the
naive model. Another related work predicts Canadian GDP in [62]. The work
compares a few classic time-series models, regression models and neural network
models. The results presented show that neural network models can achieve a
MSE about half the MSE of the naive model when used for GDP prediction. The
exact values are presented in Table 6.3.

48

model RMSE relative
naive 1,784 100%
VAR 0,651 36,5%
VECM 0,645 36,2%

Table 6.2: Classic time-series models compared to the naive model

model MSE relative
naive 5,26 100%
AR 5,53 105,1%
regressor 3,28 62,4%
neural net 2,51 47,7%

Table 6.3: Regression and neural network models compared to the naive
model

6.3.2 MLP networks for GDP prediction

The first neural network-based approach we will consider for the prediction
task at hand is using multilayer perceptron networks (MLP) which have been
described in Chapter 2. In the experiment we have explored many different
network architectures to determine which model is best suited to the task at
hand. The number of input and output neurons are fixed by the prediction task.
The variable parameters explored are the following:

• Number of hidden layers. In these experiments we consider networks
with one, two and three hidden layers.

• Number of neurons in hidden layers. In our tests we will consider
networks with 100, 200 and 300 neurons in each hidden layer.

• Activation function. In our experiments we tested the classic sigmoid
activation function and a leaky ReLU function.

• Regularization method. In these experiments we consider two different
types. One introduces noise into the data during each training epoch and
the other is Dropout. These techniques are discussed in more detail in
Section 2.4

With the model parameters described above we have executed experiments
while measuring their performance. Each model has been tested using 50 random
initialisations in order to get a statistically significant performance average.

In the following sections we examine how different model parameters affect
the model prediction strenght. The prediction task is as described in 6.3. The
loss function used during training is mean squared error. The optimizer used is
a momentum based back-propagation algorithm. For more details on the imple-
mentation see Appendix B.

First, we present the raw experiment results and afterwards we analyse them,
demonstrate the best performing ones and formulate how we should select the
model architecture and asses this architectures applicability to this task.

49

Results

First we present the results for models that are using the tanh activation
function. The results are listed in Table 6.4. For a visual illustration of the
results examine the boxplot in Figure 6.9. Next we present the results for models
that are using the Leaky ReLU activation function. The results are listed in Table
6.5. Again for a better illustration of the results examine the boxplot in Figure
6.10.

50

model id epochs tr. loss std val. loss std test loss std best cpu
50U-1L-D 84 3,94E-3 2,36E-4 3,56E-3 4,50E-4 3,70E-3 9,52E-4 1,85E-3 0,1
50U-1L-N 85,5 2,98E-3 2,16E-4 4,23E-3 1,26E-3 5,99E-3 2,71E-3 3,09E-3 0,1
50U-2L-D 93,5 4,61E-3 3,44E-4 3,77E-3 8,34E-4 3,94E-3 1,29E-3 1,80E-3 0,1
50U-2L-N 82 2,20E-3 2,95E-4 4,36E-3 1,26E-3 5,44E-3 1,63E-3 2,80E-3 0,1
50U-3L-D 97 5,18E-3 3,84E-4 3,92E-3 7,44E-4 4,02E-3 1,24E-3 1,89E-3 0,1
50U-3L-N 79,5 1,79E-3 2,19E-4 3,89E-3 5,93E-4 4,94E-3 1,30E-3 2,43E-3 0,1
100U-1L-D 86,5 3,82E-3 2,74E-4 3,58E-3 6,33E-4 3,56E-3 9,85E-4 1,98E-3 0,1
100U-1L-N 87 3,71E-3 2,48E-4 5,20E-3 2,09E-3 6,47E-3 3,03E-3 3,22E-3 0,1
100U-2L-D 91 4,51E-3 3,58E-4 4,01E-3 9,04E-4 4,23E-3 1,47E-3 1,73E-3 0,1
100U-2L-N 77,5 2,06E-3 1,73E-4 4,06E-3 1,22E-3 4,86E-3 1,30E-3 2,53E-3 0,1
100U-3L-D 91,5 5,08E-3 3,21E-4 3,92E-3 8,32E-4 4,14E-3 1,33E-3 2,08E-3 0,1
100U-3L-N 81 1,76E-3 2,68E-4 4,11E-3 7,89E-4 5,09E-3 1,26E-3 3,35E-3 0,1
200U-1L-D 83,5 4,01E-3 2,31E-4 3,97E-3 8,15E-4 4,12E-3 1,04E-3 2,15E-3 0,1
200U-1L-N 103,5 5,04E-3 4,56E-4 7,43E-3 3,49E-3 8,27E-3 4,04E-3 3,11E-3 0,1
200U-2L-D 93 4,76E-3 3,28E-4 4,53E-3 1,78E-3 4,51E-3 1,72E-3 2,25E-3 0,1
200U-2L-N 79 2,17E-3 1,97E-4 4,06E-3 1,09E-3 4,81E-3 1,37E-3 2,56E-3 0,1
200U-3L-D 90 5,59E-3 3,86E-4 5,24E-3 1,58E-3 5,15E-3 1,70E-3 2,53E-3 0,1
200U-3L-N 80,5 1,82E-3 2,96E-4 4,06E-3 6,50E-4 5,14E-3 1,24E-3 3,20E-3 0,1
300U-1L-D 84 4,16E-3 2,59E-4 4,19E-3 1,16E-3 4,33E-3 1,42E-3 2,16E-3 0,1
300U-1L-N 100 5,78E-3 5,44E-4 7,33E-3 4,60E-3 8,16E-3 4,59E-3 2,58E-3 0,1
300U-2L-D 82 5,25E-3 2,98E-4 4,82E-3 1,52E-3 5,05E-3 1,89E-3 2,42E-3 0,1
300U-2L-N 84,5 2,22E-3 2,52E-4 4,04E-3 6,19E-4 4,70E-3 1,04E-3 3,10E-3 0,1
300U-3L-D 89 6,39E-3 3,63E-4 6,43E-3 2,29E-3 6,73E-3 2,43E-3 2,97E-3 0,1
300U-3L-N 84,5 1,84E-3 3,13E-4 4,36E-3 1,47E-3 5,29E-3 1,66E-3 2,91E-3 0,1

Table 6.4: AGDP Centered Sigmoid performance

The table contains the model identifier which is comprised of the number of units in each hidden layer, the number of layers and the regularization
type - D for dropout and N for noise. In the following columns the table contains the average amount of epochs needed before the stopping condition
has been hit, the average training loss, the average validation loss and the average test loss along with their standard deviations. The last two
columns contain the best test loss and the average cpu time it took to train the model in hours. The two best average validation, test losses and the
two overall best test losses have been underlined.

51

Figure 6.9: Boxplot of the AGDP prediction model performance with the Tanh function

The plot contains the average validation loss denoted by the red line, the size of the box represents the standard deviation and the whiskers in the
box plot are the minimum and maximum validation loss.

52

model id epochs tr. loss std val. loss std test loss std best cpu
50U-1L-D 98,5 3,80E-3 2,62E-4 3,37E-3 5,54E-4 3,45E-3 7,42E-4 1,99E-3 0,1
50U-1L-N 87,5 2,70E-3 1,54E-4 3,53E-3 5,72E-4 3,60E-3 6,89E-4 2,32E-3 0,1
50U-2L-D 107 4,17E-3 3,69E-4 3,41E-3 6,97E-4 3,42E-3 9,47E-4 1,83E-3 0,1
50U-2L-N 70,5 1,81E-3 1,94E-4 3,86E-3 4,55E-4 4,55E-3 9,34E-4 2,60E-3 0,1
50U-3L-D 113 4,51E-3 3,24E-4 3,58E-3 5,28E-4 3,56E-3 7,57E-4 2,07E-3 0,1
50U-3L-N 66,5 1,56E-3 2,13E-4 3,93E-3 5,43E-4 4,72E-3 1,03E-3 2,99E-3 0,1
100U-1L-D 96 3,57E-3 2,30E-4 3,66E-3 6,81E-4 3,60E-3 9,97E-4 1,82E-3 0,1
100U-1L-N 89,5 2,72E-3 2,35E-4 3,40E-3 7,39E-4 3,51E-3 8,19E-4 2,15E-3 0,1
100U-2L-D 102 3,95E-3 2,69E-4 3,38E-3 6,02E-4 3,44E-3 9,06E-4 1,74E-3 0,1
100U-2L-N 69 1,68E-3 2,14E-4 3,96E-3 4,90E-4 4,52E-3 1,04E-3 2,88E-3 0,1
100U-3L-D 108,5 4,35E-3 2,83E-4 3,74E-3 7,55E-4 3,77E-3 9,29E-4 1,89E-3 0,1
100U-3L-N 68,5 1,40E-3 2,02E-4 4,01E-3 6,94E-4 4,81E-3 1,10E-3 2,54E-3 0,1
200U-1L-D 89 3,73E-3 1,92E-4 3,72E-3 1,13E-3 3,82E-3 1,17E-3 2,37E-3 0,1
200U-1L-N 89,5 2,76E-3 2,09E-4 3,44E-3 6,96E-4 3,50E-3 9,06E-4 1,99E-3 0,1
200U-2L-D 90 4,10E-3 2,54E-4 3,75E-3 8,28E-4 3,78E-3 8,87E-4 2,50E-3 0,1
200U-2L-N 71 1,80E-3 2,32E-4 4,14E-3 1,20E-3 4,76E-3 1,49E-3 2,92E-3 0,1
200U-3L-D 96 4,61E-3 2,11E-4 4,08E-3 1,27E-3 4,12E-3 1,22E-3 2,55E-3 0,1
200U-3L-N 73,5 1,47E-3 2,58E-4 4,04E-3 6,68E-4 4,60E-3 1,20E-3 2,70E-3 0,1
300U-1L-D 93 3,78E-3 2,68E-4 3,94E-3 8,73E-4 4,00E-3 1,21E-3 1,64E-3 0,1
300U-1L-N 89 2,88E-3 2,05E-4 3,63E-3 1,04E-3 3,84E-3 1,25E-3 2,29E-3 0,1
300U-2L-D 89 4,31E-3 2,51E-4 3,95E-3 9,41E-4 3,99E-3 1,05E-3 1,86E-3 0,1
300U-2L-N 70 1,96E-3 1,95E-4 4,14E-3 8,56E-4 4,68E-3 1,17E-3 2,74E-3 0,1
300U-3L-D 81 5,07E-3 2,67E-4 4,56E-3 1,09E-3 4,66E-3 1,24E-3 2,68E-3 0,1
300U-3L-N 72 1,62E-3 2,39E-4 4,18E-3 1,04E-3 4,77E-3 1,57E-3 1,79E-3 0,1

Table 6.5: AGDP LeReLU performance

The table contains the model identifier which is comprised of the number of units in each hidden layer, the number of layers and the regularization
type - D for dropout and N for noise. In the following columns the table contains the average amount of epochs needed before the stopping condition
has been hit, the average training loss, the average validation loss and the average test loss along with their standard deviations. The last two
columns contain the best test loss and the average cpu time it took to train the model in hours. The two best average validation, test losses and the
two overall best test losses have been underlined.

53

Figure 6.10: Boxplot of the AGDP prediction model performance with the LeReLU function

The plot contains the average validation loss denoted by the red line, the size of the box represents the standard deviation and the whiskers in the
box plot are the minimum and maximum validation loss.

54

Analysis and model demonstration

To analyse the results, we take a look at how the models tend to perform
depending on each separate parameter tested. For a list of average validation
losses over a certain parameter, review Table 6.6.

Overall the performance between different model architectures does not differ
that much. First we discuss the model architecture - the layer count and unit
count - and its influence on performance. The best (underlined) models in the
performance Tables 6.5 and 6.4 are those that in all cases have either one or two
layers. The aggregates in Table 6.6 confirm that that 2 layer models perform
slightly better than others with statistical significance. When it comes to the
number of neurons in each hidden layer the best performing models are in general
either 50 unit or 100 unit models, with 50 neuron models having a slight edge
according to the t-test. This goes against the rule of thumb we mentioned in
the experiment setup, but since the 100 unit networks are farily close (even the
p-value is not that low) it gave us a decent starting point estimate.

From the performance Tables 6.5 and 6.4 we can see that a big majority of
the best performing models are models using Dropout. This is further confirmed
by the fact that the dropout models have an average validation loss of 4,04E-3
compared to the average noise validation loss of 4,31E-3. Finally when comparing
the Leaky ReLU models to the tanh models in the performance Tables 6.5 and 6.4
the best performances of the LeReLU models are significantly better than those of
the tanh models, and this holds for the averages aswell - with LeReLU achieving
a 3,81E-3 average and tanh a significantly higher 4,54E-3 average validation loss.

Next we take a look at the training process. In general the training process was
very similar to that of model 100U-2L-D-AGDP-lerelu, which is shown in Figure
6.11. The validation and test loss seem to be still decreasing even after 70 epochs
of training. However as mentioned in the section 6.1, it is very likely that the
data might be strongly correlated. Even though we selected whole countries to be
in the test set separating the database as well as we could into two independent
sets, the test and validation loss stay strongly correlated during training.

We now take a few prediction models and examine how they predict GDP of
a few countries to see if they predict in any interesting ways. We compare the
best performing Dropout model with the parameters - 100U-2L-D-lerelu - and the
best performing noisy model with parameters - 300U-3L-N-lerelu. The Dropout
model achieved a MSE of 1,74E−3 on the test set while the Noise model achieved
a 1.79E − 3 MSE on the test set.

In Figure 6.12 we first take a look at how the two models perform on the
samples inside the training set. In the case of better performing dropout model,
the model copies the naive model fairly closely. Notice especially that the model
does not even attempt to train the differential GDP. The 300U-3L-N-lerelu on
the other hand seems to have trained the differential GDP at least a little bit.
This effect could be explained by the fact that the 100U-2L-D-lerelu has a lower
capacity and cannot learn the differential effectively. Another reason could be
that the model simply got stuck in a local minimum of the gradient, since the
naive model is already a fairly good model.

The next examples are presented in Figures 6.13 and 6.14 as the predictions of
out-sample countries - Nepal and Cuba. In both cases the predictions follow the
observations made in the previous paragraph. The model trained can be mostly

55

grouping avg val. loss std runs best test loss P-value
1-layer models 4,26E-3 1,30E-3 800 1,64E-3 < 0,0001
2-layer models 4,02E-3 9,56E-4 800 1,73E-3 -
3-layer models 4,25E-3 9,71E-4 800 1,79E-3 < 0,0001
50-unit models 3,79E-3 7,07E-4 600 1,80E-3 -
100-unit models 3,92E-3 8,69E-4 600 1,73E-3 0.0046
200-unit models 4,37E-3 1,27E-3 600 1,99E-3 < 0,0001
300-unit models 4,63E-3 1,46E-3 600 1,64E-3 < 0,0001
dropout models 4,04E-3 9,78E-4 1200 1,64E-3 -
noise models 4,31E-3 1,17E-3 1200 1,79E-3 < 0,0001
tanh models 4,54E-3 1,36E-3 1200 1,73E-3 -
lerelu models 3,81E-3 7,89E-4 1200 1,64E-3 < 0,0001

Table 6.6: MLP model performance aggregates

The table contains the average validation loss over all models with a certain parameter
fixed, and the best test loss on the same subset of models. The first column is the fixed
parameter, with the other columns being the aggregates. The last column lists pairwise
t-test P-values with the other pair being the best performing model aggregate within the
specific parameter (denoted by horizontal lines).

Figure 6.11: A chart of the loss values over the training process of a
MLP network

56

summarized as the naive model. In the case of prediction of Nepals GDP using
the 100U-2L-D-lerelu model, the prediction looks better than that of the naive
model. Either the model has trained on sample countries similar to Nepal, or the
model learnt some underlying dependency.

In many countries, the years following the fall of the Soviet Union in 1991
caused large turbulences in their data. As mentioned in Section 6.1 during the
exploratory analysis, especially countries of the eastern bloc can contain noisy
or incorrect data around these years. We examined how the models perform
during these years to see how reliable are the models during these years. You can
see histograms of the error rates based on the year of the prediction in Figure
6.15. The histograms show that the models underperform during the period from
1990-1995.

We can see that the dropout model mostly follows the naive model defined in
Section 6.3.1, with a possible few improvements. The noisy model does correctly
predict a large swing in GDP around the year 1991. As mentioned in Section
6.1 during the exploratory analysis, especially countries of the eastern bloc can
contain noisy or incorrect data around these years. We can further examine
this trend by looking at the histogram of loss rates by year in Figure 6.15.The
histograms show that the models underperform during these years. That means
that the network has not overtrained itself to detect these changes even though
it correctly predicts it in the case of Lithuania.

To summarise the analysis, the best performing models use 50 neurons in 2
layers with the Leaky ReLU function. For regularization a combination of cross-
validation and Dropout saw best performance. Overall the MLP models achieve
a better performance than that of the naive model 4,17E-3 MSE versus the best
losses of 1,64E-3 which is 39,3% of the naive model loss. This result is consistent
with the performance of neural networks reported in related works discussed in
Section 6.3.1. We further examined the models and in most cases it seemed like
the models act very similarily to the naive model.

57

(a) 100U-2L-D-lerelu (b) 300U-3L-N-lerelu

Figure 6.12: The GDP prediction of in-sample Poland

(a) 100U-2L-D-lerelu (b) 200U-3L-N-tanh

Figure 6.13: The GDP prediction of out-sample Nepal

58

(a) 100U-2L-D-lerelu (b) 300U-3L-N-lerelu

Figure 6.14: The GDP prediction of out-sample Cuba

59

(a) 100U-2L-D-lerelu (b) 300U-3L-N-lerelu

Figure 6.15: The error rates over the whole dataset of two different models.

60

6.3.3 LSTM networks for GDP prediction

The second neural network architecture we tested for the prediction task de-
fined in Section 6.3 was recurrent neural networks using the Long Short Term
Memory architecture described in Chapter 5.1. Similar to the MLP experiment
we have considered the following model parameters:

• Number of hidden layers. The network is setup in layers of LSTM cell
blocks in a similar manner to multilayer perceptron networks, except in
this case, each unit is an LSTM cell. We tested networks with one, two
and three layers. The output layer was always a layer of neurons densely
connected to the last LSTM layer.

• Number of neurons in hidden layers. In our tests we will consider
networks with 100 and 200 LSTM cells in each hidden layer. Since the
training time is greatly increased compared to MLP and CNN networks,
networks with 300 hidden units were not tested. Furthermore networks
with 200 hidden units were not tested with three layers.

• Activation function. The activation functions of LSTM cells used were
a sigmoid for the inner gate nodes and tanh for the state gates.

• Regularization method. Both Dropout and noising in each epoch were
tested for regularization, see Section 2.4.

Experiment results

In this section we examine the results for models predicting the Absolute GDP
using LSTM networks. The results are listed in Table 6.7 and again for a better
illustration of the results examine the boxplots in Figure 6.16.

61

model id epochs tr. loss std val. loss std test loss std best cpu
100U-D-1L 63 2,57E-3 2,56E-4 3,33E-3 3,73E-4 3,53E-3 8,35E-4 1,96E-3 1,4
100U-D-2L 85 2,34E-3 5,89E-4 3,09E-3 9,83E-4 3,50E-3 1,42E-3 1,19E-4 2,9
100U-D-3L 112,5 2,06E-3 8,52E-4 2,58E-3 1,47E-3 2,92E-3 2,02E-3 1,08E-4 3,9
100U-N-1L 95 2,19E-3 7,63E-4 2,71E-3 1,24E-3 2,81E-3 1,41E-3 1,81E-4 1,2
100U-N-2L 69 2,56E-3 2,72E-4 3,46E-3 3,79E-4 3,93E-3 1,01E-3 2,01E-3 3,1
100U-N-3L 74,5 2,62E-3 2,04E-4 3,35E-3 3,83E-4 3,94E-3 9,81E-4 2,44E-3 5,2
200U-D-1L 53,5 2,15E-3 2,81E-4 3,46E-3 4,23E-4 3,81E-3 9,17E-4 2,22E-3 2,4
200U-D-2L 62 2,18E-3 3,33E-4 3,54E-3 4,62E-4 4,43E-3 1,20E-3 2,46E-3 6
200U-N-1L 50,5 2,21E-3 1,99E-4 3,41E-3 3,99E-4 3,72E-3 9,45E-4 2,26E-3 2,3
200U-N-2L 60,3 2,25E-3 3,37E-4 3,47E-3 3,86E-4 4,09E-3 1,28E-3 2,34E-3 5,7

Table 6.7: AGDP LSTM performance

The table contains the model identifier which is comprised of the number of units in each hidden layer, the regularization type - D for dropout
and N for noise and the number of layers. In the following columns the table contains the average amount of epochs needed before the stopping
condition has been hit, the average training loss, the average validation loss and the average test loss along with their standard deviations. The last
two columns contain the best test loss and the average cpu time it took to train the model in hours. The two best average validation, test losses and
the two overall best test losses have been underlined.

62

Figure 6.16: Boxplot of the AGDP prediction model performance with the LSTM architectures

The plot contains the average validation loss denoted by the red line, the size of the box represents the standard deviation and the whiskers in the
box plot are the minimum and maximum validation loss.

63

grouping avg val. loss std runs best test loss P-value
1-layer models 3,23E-3 6,09E-4 200 1,81E-4 0.0039
2-layer models 3,39E-3 5,52E-4 200 1,19E-4 < 0.0001
3-layer models 2,97E-3 9,26E-4 100 1,08E-4 -
100-unit models 3,09E-3 8,04E-4 300 1,08E-4 -
200-unit models 3,47E-3 4,18E-4 200 2,22E-3 < 0.0001
dropout models 3,20E-3 7,42E-4 250 1,08E-4 -
noise models 3,28E-3 5,57E-4 250 1,81E-4 0.1734

Table 6.8: LSTM model performance aggregates

The table contains the average validation loss over all models with a certain parameter
fixed, and the best test loss on the same subset of models. The first column is the fixed
parameter, with the other columns being the aggregates. The last column lists pairwise
t-test P-values with the other pair being the best performing model aggregate within the
specific parameter (denoted by horizontal lines).

Analysis and model demonstration

First we analyse how different parameters affect the performance in Table
6.8. The main difference the results show us is that 200 neuron models perform
significantly worse than 100 neuron models. The difference between 3-layer and
1-layer models is not that significant, in some cases 1-layer models perform well,
and in other cases the 3-layer models. Suprisingly the 2-layer models in the
middle have been shown to underperform. Finally the regularization type used
does not seem to be too significant, with dropout having a slight edge.

In this section we take the best LSTM prediction models for absolute GDP
and examine examples of a few hand picked cases. Comparatively the LSTM
networks performed very well, especially on the high end initialisations. A closer
examination of how one of the 100U-3L-D networks performs in Figure 6.17 shows
us a model that is in general very similar to the naive model. In the case of
predicting Congo the prediction seems to be following the target very well. Nev-
ertheless compared to the naive model the plots show that our models react on
the differential GDP target, at least during turbulent periods.

To further examine the workings of these models, we can compare the per-
formance of the differential prediction to the absolute prediction. To do this we
define a new variable as diffGPD(t) = GDP (t−1)+differentialprediction(t).
This variable shows us how close to the GDP would we be if we used only the
differential target variable for prediction. We can see an example of how this vari-
able predicts the GDP of Spain and Estonia in Figure 6.18. In a lot of cases the
predicted real GDP variable can get very far from the target, as it is not directly
tied to the previous time step. A possible improvement to better predict GDP
could be to use the differential compound prediction along with the real GDP
prediction (e.g. average), even though we would lose the flexibility of moving
away from the naive model.

Finally we take a look at the training process of the model 100U-2L-D, which is
shown in Figure 6.19. The plot shows the validation and test loss stop improving
shortly after the training start. Since the LSTM models were one of the most
computationally taxing ones, it could be recommended to implement an earlier

64

stopping condition.

65

(a) Republic of Congo (b) Estonia

Figure 6.17: The GDP prediction of a LSTM network

(a) Spain (b) Estonia

Figure 6.18: A comparison of the absolute and differential target variable of a LSTM network

66

Figure 6.19: A chart of the loss values over the training process of a
LSTM network

6.3.4 CNN networks for GDP prediction

The last neural network-based approach considered for the prediction task was
ti use convolutional neural networks (CNN) which have been described in Chapter
4. In line with the previous experiments we have explored a few different network
architectures to determine how different parameters affect the task at hand.

The CNNs used in our task are constructed using a stack of convolutional
layers and a multilayer perceptron network on top. Even though the different in-
dicators are strongly correlated, we have decided to train filters for each indicator
separately. An illustration of such a CNN architecture is presented in Figure 6.20,
where two convolutional layers were connected to each indicator. The variable
parameters explored are then the following:

• Number of hidden layers in the MLP. In these experiments we con-
sider networks with one or two layer MLPs connected to the output of the
convolutional layers.

• Number of neurons in MLP layers. In our tests we will consider
networks with 100 and 200 neurons in each MLP layer.

• Activation functions. The activations used in both the MLP layers and
the convolutional layers were tanh.

• Regularization method. In these experiments we consider only the noise
noise regularization, see Section 2.4.

• Filter width. Each convolutional layer trains multiple filters that convolve
the input as defined in Chapter 4. The filter widths considered were 2, 4
and 6. In the case of the 6 wide filter the window width was expanded by
3 to allow some data to flow through the network.

67

Figure 6.20: A chart of the CNN architecture.

The CNN trains filters for each indicator separately. The results of the small CNNs for
each input feature are concatenated and passed into a MLP.

• Filter count. Each convolutional layer trains multiple filters that convolve
the input, the number of filters considered in each convolutional layer was
2 and 4.

With the model parameters described above we have executed experiments
while measuring their performance. Each model has been tested using 50 random
initialisations in order to get a statistically significant performance average.

In the following sections we examine how different model parameters affect
the model prediction strenght. The prediction task is as described in 6.3. The
loss function used during training is mean squared error. The optimizer used is
a momentum based back-propagation algorithm. For more details on the imple-
mentation see Appendix B.

First, we present the raw experiment results and afterwards we analyse them,
demonstrate the best performing ones and formulate how we should select the
model architecture and asses this architectures applicability to this task.

Model performance

The raw performance of the models using the CNN architectures described
earlier are presented in Tigure 6.9. For a more visual examination of the results
we present Figure 6.21 a boxplot of the validation losses of the different model
parameter runs.

68

model id epochs tr. loss std val. loss std test loss std best cpu
100U-1L-[[2-4]-[2-2]] 92,5 2,97E-3 2,40E-4 3,34E-3 4,06E-4 3,43E-3 8,02E-4 1,96E-3 0,2
100U-1L-[[4-4]-[4-2]] 83 2,80E-3 2,69E-4 3,36E-3 4,24E-4 3,40E-3 9,00E-4 1,90E-3 0,4
100U-1L-[[6-4]-[4-2]] 71 2,80E-3 1,91E-4 3,27E-3 3,30E-4 3,49E-3 6,61E-4 1,91E-3 0,2
100U-2L-[[2-4]-[2-2]] 83,5 2,72E-3 2,35E-4 3,65E-3 5,43E-4 3,78E-3 8,36E-4 2,24E-3 0,2
100U-2L-[[4-4]-[4-2]] 68 2,55E-3 2,48E-4 3,63E-3 4,70E-4 3,84E-3 1,06E-3 1,78E-3 0,2
100U-2L-[[6-4]-[4-2]] 68 2,46E-3 2,19E-4 3,70E-3 6,22E-4 3,88E-3 8,54E-4 2,31E-3 0,2
200U-1L-[[2-4]-[2-2]] 89,5 2,95E-3 2,63E-4 3,42E-3 4,92E-4 3,49E-3 8,77E-4 1,60E-3 0,2
200U-1L-[[4-4]-[4-2]] 80,5 2,82E-3 2,46E-4 3,40E-3 4,62E-4 3,45E-3 7,25E-4 2,36E-3 0,2
200U-1L-[[6-4]-[4-2]] 76 2,74E-3 2,15E-4 3,45E-3 4,72E-4 3,54E-3 7,18E-4 2,03E-3 0,2
200U-2L-[[2-4]-[2-2]] 82,5 2,74E-3 2,81E-4 3,66E-3 5,09E-4 3,94E-3 1,02E-3 2,28E-3 0,2
200U-2L-[[4-4]-[4-2]] 73,5 2,50E-3 2,03E-4 3,77E-3 5,98E-4 3,96E-3 9,17E-4 2,01E-3 0,2
200U-2L-[[6-4]-[4-2]] 66,5 2,48E-3 2,39E-4 3,74E-3 5,06E-4 4,01E-3 8,99E-4 2,31E-3 0,2

Table 6.9: CNN performance

The table contains the model identifier. Each model is comprised of two CNN layers followed with a MLP. The identifier contains the number of
units in the MLP layers and the number of layers. The pairs of numbers in the brackets describe the convolutional layers. Each convolutional layer
is described by the number of filters trained for each indicator and the window width . In the following columns the table contains the average amount
of epochs needed before the stopping condition has been hit, the average training loss, the average validation loss and the average test loss along with
their standard deviations. The last two columns contain the best test loss and the average cpu time it took to train the model in hours. The two best
average validation and two best test losses have been underlined.

69

Figure 6.21: Boxplot CNN prediction models performance.

The plot contains the average validation loss denoted by the red line, the size of the box represents the standard deviation and the whiskers in the
box plot are the minimum and maximum validation loss.

70

grouping avg val. loss std runs best test loss P-value
1-layer models 3,37E-3 4,31E-4 300 1,60E-3 -
2-layer models 3,69E-3 5,42E-4 300 1,78E-3 < 0,0001
100-unit models 3,49E-3 4,66E-4 300 1,78E-3 -
200-unit models 3,57E-3 5,07E-4 300 1,60E-3 0,04
2-filter models 3,52E-3 4,88E-4 200 1,60E-3 -
4-filter models 3,54E-3 4,89E-4 200 1,78E-3 0,68
6-filter models 3,54E-3 4,83E-4 200 1,91E-3 0,68

Table 6.10: CNN model performance aggregates

The table contains the average validation loss over all models with a certain parameter
fixed, and the best test loss on the same subset of models. The first column is the fixed
parameter, with the other columns being the aggregates. The last column lists pairwise
t-test P-values with the other pair being the best performing model aggregate within the
specific parameter (denoted by horizontal lines).

Analysis and model demonstration

To analyse the results, we take a look at how the models tend to perform
depending on each separate parameter tested. For a list of average validation
losses over a certain parameter, review Table 6.6.

The table shows us the aggregate validation losses over the tested param-
eters. The results show with statistical significance that in the case of CNN-
architectures, 1-layer MLP performs better than a 2-layer model. The results
also show that 100 unit MLPs perform better. Unfortunately it seems that the
performance of the network does not depend on the number of filters in the con-
volutional layers. The absolute best test losses in fact show that filters might be
hurting the networks performance.

Next we take a look at the training process. In general the training process
was very similar to that of model 100U-1L-[[2-4]-[2-2]], which is shown in
Figure 6.22. The training chart shows that the validation loss started stagnating
already around the 20-th epoch and hasnt improved much in the last 50 epochs.
The test loss and the validation loss seem to still be fairly closely correlated,
however a lot less than during MLP training in Figure 6.11.

We now take the best performing model architecture and examine the trained
convolutions in closer detail. Examples of how the model 200U-1L-[[2-4]-[2-2]]
transforms two specific indicators using the trained convolutions is presented in
Figures 6.23 and 6.24. When training CNNs, the convolutions trained in the first
layer are usually simpler transformations, while the following layers combine the
transformations into more complicated features.

In the case of our models, the convolutions trained in the first layer could
be usually classified into one of: smoothed out original, multiplied/transposed
original and prediction of difference. For example in the case of transforming
Wholesale share of GDP in Figure 6.23 convolution 1 is probably a convolution
detecting larger change in the original convolution. Convolution 2 in the same
Figure looks like the original time series smoothed out and possibly scaled down.
The first layer convolutions on the Gross capital formation time-series in Figure
6.24 show a similar story. Convolution 0 seems simply like a scaled copy of the

71

Figure 6.22: A chart of the loss values over the training process of a
CNN network

original, while convolution 1 detects difference.
The convolutions trained during image classification are often compound fea-

tures of the convolutions in the lower layers. In our case the convolutions in the
second layer seemed to flatten out the whole time series of both the Wholesale
time series and the Gross capital formation time series and only rarely send any
of the data forward. The only indicator that the convolutions in the second layer
seemed to respond to in greater effect was the GDP indicator as shown in Figure
6.25. These results suggest that the CNNs trained recognise very little valuable
information in time-series other than GDP. Even then the model attains a better
performance than that of the naive model.

As a final point we examined how the loss rate depends on the year of the
window error in Figure 6.26. The error has a similar trend to that of the MLP
networks, in that between 1990-1995 the model performs at its worst.

72

(a) Convolutions in first layer (b) Convolutions in second layer

Figure 6.23: How a CNN transforms the Wholesale share of GDP of Czech Republic

(a) Convolutions in first layer (b) Convolutions in second layer

Figure 6.24: How a CNN transforms the Gross capital formation share of GDP of Czech Republic

73

Figure 6.25: How a CNN in the second layer transforms the GDP of
Czech Republic.

Figure 6.26: The error rates over the whole dataset of two different
models.

74

6.3.5 Summary

In the previous experiments we analysed different parameters of MLP net-
works, CNNs and LSTMs and the models applicability for the task of predicting
GDP using a multidimensional macroeconomic time-series.

In Table 6.11 we provide a overall quantitative comparison of the best per-
forming models of each architecture. From this table we can asses that all deep
neural network based approches achieved on average at least the performance of
the naive model 6.3.1. MLP networks have proven themselves to be a decent base-
line model for this task, their average performance slightly better than that of a
naive model. CNNs follow this rule, achieving the performance of MLPs. It seems
that convolutions do not offer too much when it comes to predictive power, nev-
ertheless they provide an interesting alternative approach. The best performing
architecture tested were LSTM networks, with their average performance about
2 times better than that of the naive model.

The table contains the test losses of the best models. If these best runs were
on test sets that are independent from the training and validation set, these
results would be very nice. It is important to note, that the database is strongly
correlated and therefore it is likely that at least in a few runs, the test loss was
not independent at all from the training and validation set. Nevertheless the best
test losses are included for completion.

75

architecture model id tr. loss µ val. loss µ val loss % of naive test loss µ best test loss best % of naive cpu
NAIVE NAIVE 4,17E-3 4,17E-3 100% 4,17E-3 4,17E-3 100% -
MLP 50U-1L-D 3,80E-3 3,37E-3 80,8% 3,45E-3 1,99E-3 47,7% 0,1
MLP 100U-2L-D 3,95E-3 3,38E-3 80,8% 3,44E-3 1,74E-3 41,7% 0,1
CNN 100U-1L-[[2-4]-[2-2]] 2,97E-3 3,34E-3 80,8% 3,43E-3 1,96E-3 47,0% 0,2
CNN 100U-1L-[[6-4]-[4-2]] 2,80E-3 3,27E-3 78,4% 3,49E-3 1,91E-3 45,8% 0,2
LSTM 100U-D-3L 2,06E-3 2,58E-3 61,8% 2,92E-3 2,02E-3 48,4% 3,9
LSTM 100U-N-1L 2,19E-3 2,71E-3 64,9% 2,81E-3 1,41E-3 33,8% 1,2

Table 6.11: Comparison of deep neural network performance for GDP prediction

The table contains a comparison of the neural network architectures that were tested to perform well on GDP prediction.

76

Chapter 7

Conclusion

The aim of this thesis was to compare the viability of several deep neural net-
work architectures for macro-economic data analysis. To this end, the introduced
architectures were trained on a prediction task and tested with multiple different
parameters. The data used to train the models was real-world publicly available
economic data from the United Nations and the World bank.

The problem of time-series forecasting is one of the most publicly visible ac-
tivities of professional economists. Economic time-series forecasting is present in
many aspects of business, such as planning, state and local budgeting, manage-
ment, financial engineering and national policy. The available research in this
field mostly focuses on multilayer neural networks with varying rates of success.
In this work we focused on experimenting with multidimensional time-series and
whether deep neural networks can improve on the performance of MLP networks.
The the network architectures examined included feedforward multilayer neural
networks, recurrent neural networks and convolutional networks.

The data used to run the experiments was publicly available data from the
World Bank and United Nations including a history macroeconomic indicators
of over 200 countries since 1970. We analysed the data and examined it using
self organising maps. Afterwards we defined a training task to predict the GDP
of a country from its macro-economic history and analysed several available pa-
rameters of multilayer neural networks and tested their performance during this
prediction. Further we analyzed available parameters of long-short term mem-
ory networks and finally the examined how convolutional neural networks predict
GDP.

We compared the performance of these networks to a conservative model that
is often used in literature. The performance achieved falls in line with the perfor-
mances achieved in literature. The MLP networks achieved a slightly better per-
formance than the conservative model, while the LSTM networks further improve
on this performance. The CNN networks do not improve on the performance of
MLPs.

For each architecture type we analysed the influence of different model pa-
rameters on performance and formulated statistically grounded hypothesis about
them. For MLP and LSTM network architectures, the results have shown that
significant non-linearities are present in the experiment data. MLP and LSTM
networks with multiple layers performed better than networks with one layer.
The results also confirm the general opinion that Dropout regularization per-

77

forms well. In our experiments we compared Dropout regularization with a more
traditional noise regularization, which it outperformed in both the MLP and
LSTM architecture experiments. The CNN experiments show that they are not
very attractive for economic prediction in general, the best performing CNNs had
the least number of filters. This was also confirmed by analysing the convolu-
tional filter function in the networks, where the networks used only a handful of
filters in any significant manner.

The experiments were ran using Python and the Keras neural networks library
with the Theano backend. Since the computational requirements of the experi-
ments were fairly high we used the services of the computation center MetaCen-
trum. In total we used over 400 CPU days of computation power. The complete
full run of experiments would take about 70 CPU days, however some iteration
was necessary, hence the higher absolute total. The experience of working with
deep neural networks and their training on a computational cluster was a very
beneficial personal experience.

In summary, we have managed to evaluate different neural network architec-
tures and their applicability to time-series prediction. We have shown in this
thesis that LSTMs improve on MLPs and that the filters trained by CNNs do not
expose any new information to the prediction task. Moreover, we analysed the
influence of different model parameters on performance and shown that the data
analysed contains significant non-linearities to warrant a multiple layer architec-
ture. Further architecture parameters analysed included neuron count, regular-
ization, transfer functions and filter count. These are what I consider the major
contributions of this work.

78

Bibliography

[1] W lodzis law Duch and Norbert Jankowski. Survey of neural transfer func-
tions. Neural Computing Surveys, 2(1):163–212, 1999.

[2] Balazs Csanad Csaji. Approximation with artificial neural networks. Faculty
of Sciences, Etvs Lornd University, Hungary, 24:48, 2001.

[3] Terence D Sanger. Optimal unsupervised learning in a single-layer linear
feedforward neural network. Neural networks, 2(6):459–473, 1989.

[4] Kenneth O Stanley. Efficient reinforcement learning through evolving neu-
ral network topologies. In In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002. Citeseer, 2002.

[5] Kate A Smith and Jatinder ND Gupta. Neural networks in business: tech-
niques and applications for the operations researcher. Computers & Opera-
tions Research, 27(11):1023–1044, 2000.

[6] Mark F Bear, Barry W Connors, and Michael A Paradiso. Neuroscience,
volume 2. Lippincott Williams & Wilkins, 2007.

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Technical report, DTIC
Document, 1985.

[8] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architec-
tures, and applications. Psychology Press, 1995.

[9] James L McClelland, David E Rumelhart, PDP Research Group, et al. Par-
allel distributed processing, vol. 1 and 2, 1986.

[10] Halbert White. Learning in artificial neural networks: A statistical perspec-
tive. Neural computation, 1(4):425–464, 1989.

[11] Fernando M Silva and Luis B Almeida. Acceleration techniques for the
backpropagation algorithm. In Neural Networks, pages 110–119. Springer,
1990.

[12] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.
Springer, 2012.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

79

[14] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 807–814, 2010.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[16] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML, volume 30, 2013.

[17] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalu-
ation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[18] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, volume 14, pages 1137–1145, 1995.

[19] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[20] Teuvo Kohonen. Self-organising maps. Springer Science & Business Media,
30, 2001.

[21] Jonathan Owens and Andrew Hunter. Application of the self-organising map
to trajectory classification. In Visual Surveillance, 2000. Proceedings. Third
IEEE International Workshop on, pages 77–83. IEEE, 2000.

[22] Guido Deboeck and Teuvo Kohonen. Visual explorations in finance: with
self-organizing maps. Springer Science & Business Media, 2013.

[23] Rasika Amarasiri, Damminda Alahakoon, Kate Smith, and Malin Pre-
maratne. Hdgsomr: a high dimensional growing self-organizing map us-
ing randomness for efficient web and text mining. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence, pages 215–
221. IEEE Computer Society, 2005.

[24] Leo Bispo. Us congress som. https://github.com/leobispo/som, 2012.

[25] Samuel Kaski and Teuvo Kohonen. Exploratory data analysis by the self-
organizing map: Structures of welfare and poverty in the world. In Neural
networks in financial engineering. Proceedings of the third international con-
ference on neural networks in the capital markets. Citeseer, 1996.

[26] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-
plied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

80

https://github.com/leobispo/som

[27] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex. The Journal of
physiology, 160(1):106–154, 1962.

[28] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Bio-
logical cybernetics, 36(4):193–202, 1980.

[29] Les E Atlas, Toshiteru Homma, and Robert J Marks II. An artificial neural
network for spatio-temporal bipolar patterns: Application to phoneme clas-
sification. In Proc. Neural Information Processing Systems (NIPS), page 31,
1988.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[32] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a
deep convolutional network for image super-resolution. In European Confer-
ence on Computer Vision, pages 184–199. Springer, 2014.

[33] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[34] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2414–2423, 2016.

[35] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[36] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188,
2014.

[37] Yedid Hoshen, Ron J Weiss, and Kevin W Wilson. Speech acoustic mod-
eling from raw multichannel waveforms. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 4624–
4628. IEEE, 2015.

[38] Patrice Y Simard, Léon Bottou, Patrick Haffner, and Yann LeCun. Boxlets:
a fast convolution algorithm for signal processing and neural networks. Ad-
vances in Neural Information Processing Systems, pages 571–577, 1999.

[39] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

81

[40] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[41] Herbert Jaeger. The “echo state” approach to analysing and training re-
current neural networks-with an erratum note. Bonn, Germany: German
National Research Center for Information Technology GMD Technical Re-
port, 148:34, 2001.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[43] Barbara Hammer. On the approximation capability of recurrent neural net-
works. Neurocomputing, 31(1):107–123, 2000.

[44] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. ICML (3), 28:1310–1318, 2013.

[45] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning long-term depen-
dencies, 2001.

[46] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[47] Alex Graves, Douglas Eck, Nicole Beringer, and Juergen Schmidhuber. Bi-
ologically plausible speech recognition with lstm neural nets. In Interna-
tional Workshop on Biologically Inspired Approaches to Advanced Informa-
tion Technology, pages 127–136. Springer, 2004.

[48] Thomas M Breuel, Adnan Ul-Hasan, Mayce Ali Al-Azawi, and Faisal Shafait.
High-performance ocr for printed english and fraktur using lstm networks. In
2013 12th International Conference on Document Analysis and Recognition,
pages 683–687. IEEE, 2013.

[49] Daniel Soutner and Luděk Müller. Application of lstm neural networks in
language modelling. In International Conference on Text, Speech and Dia-
logue, pages 105–112. Springer, 2013.

[50] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech
recognition with deep bidirectional lstm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on, pages 273–278. IEEE,
2013.

[51] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification
with bidirectional lstm and other neural network architectures. Neural Net-
works, 18(5):602–610, 2005.

[52] Ronald J Williams and David Zipser. Gradient-based learning algorithms for
recurrent networks and their computational complexity. Back-propagation:
Theory, architectures and applications, pages 433–486, 1995.

82

[53] Alex Graves, Nicole Beringer, and Juergen Schmidhuber. Rapid retraining
on speech data with lstm recurrent networks. Technical report, Technical
Report IDSIA-05-05, IDSIA, www. idsia. ch/techrep. html, 2005.

[54] Daan Wierstra, Faustino J Gomez, and Jürgen Schmidhuber. Modeling sys-
tems with internal state using evolino. In Proceedings of the 7th annual con-
ference on Genetic and evolutionary computation, pages 1795–1802. ACM,
2005.

[55] Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and Faustino Gomez.
Training recurrent networks by evolino. Neural computation, 19(3):757–779,
2007.

[56] United Nations national accounts main aggregates database. http://

unstats.un.org/unsd/snaama/introduction.asp. Accessed: 2016-02-01.

[57] World Bank open data. http://data.worldbank.org/. Accessed: 2016-02-
01.

[58] United Nations. International standard industrial classification of all eco-
nomic activities (isic) rev. 4. United Nations Statistical Papers, (4), 2008.

[59] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor
Hastie, Robert Tibshirani, David Botstein, and Russ B Altman. Missing
value estimation methods for dna microarrays. Bioinformatics, 17(6):520–
525, 2001.

[60] Guang-Bin Huang. Learning capability and storage capacity of two-
hidden-layer feedforward networks. IEEE Transactions on Neural Networks,
14(2):274–281, 2003.

[61] Masahiro Ashiya. Forecast accuracy of the japanese government: Its year-
ahead gdp forecast is too optimistic. Japan and the World Economy,
19(1):68–85, 2007.

[62] Greg Tkacz. Neural network forecasting of canadian gdp growth. Interna-
tional Journal of Forecasting, 17(1):57–69, 2001.

83

http://unstats.un.org/unsd/snaama/introduction.asp
http://unstats.un.org/unsd/snaama/introduction.asp
http://data.worldbank.org/

List of Figures

2.1 Multilayered artificial neural network 6
2.2 The sigmoid activation function variants. 12
2.3 The ReLU activation function variants. 12
2.4 Depiction of how Dropout affects a network during training. 14

3.1 An example SOM with a 3x3 neuron map and an input of
dimension 4. 17

4.1 Convolutional neural network example 21
4.2 A representation of a 4x4 greyscale picture, with pixel

values ranging from 0 to 255 22
4.3 A demonstration of a convolutional layer. 22
4.4 A demonstration of a max-pooling layer. 24
4.5 The MLP-CNN abstraction. 25

5.1 A recursive neural network. 29
5.2 Vanishing gradient in a recursive neural network. 29
5.3 A computational graph of a LSTM memory cell. 33

6.1 Indicator heatmaps . 42
6.2 Bangladesh time series . 43
6.3 Lower-middle income class time series 43
6.4 Middle income class time series 44
6.5 France time series . 44
6.6 Malaysia time series . 45
6.7 Autocorrelation plot of GDP 46
6.8 Example of how the naive model predicts the GDP of

Czech Republic . 48
6.9 Boxplot of the AGDP prediction model performance with

the Tanh function . 52
6.10 Boxplot of the AGDP prediction model performance with

the LeReLU function . 54
6.11 A chart of the loss values over the training process of a

MLP network . 56
6.12 The GDP prediction of in-sample Poland 58
6.13 The GDP prediction of out-sample Nepal 58
6.14 The GDP prediction of out-sample Cuba 59
6.15 The error rates over the whole dataset of two different

models. 60

84

6.16 Boxplot of the AGDP prediction model performance with
the LSTM architectures . 63

6.17 The GDP prediction of a LSTM network 66
6.18 A comparison of the absolute and differential target vari-

able of a LSTM network . 66
6.19 A chart of the loss values over the training process of a

LSTM network . 67
6.20 A chart of the CNN architecture. 68
6.21 Boxplot CNN prediction models performance. 70
6.22 A chart of the loss values over the training process of a

CNN network . 72
6.23 How a CNN transforms the Wholesale share of GDP of

Czech Republic . 73
6.24 How a CNN transforms the Gross capital formation share

of GDP of Czech Republic . 73
6.25 How a CNN in the second layer transforms the GDP of

Czech Republic. 74
6.26 The error rates over the whole dataset of two different

models. 74

85

List of Tables

6.1 Statistical properties of indicators 39
6.2 Classic time-series models compared to the naive model . 49
6.3 Regression and neural network models compared to the

naive model . 49
6.4 AGDP Centered Sigmoid performance 51
6.5 AGDP LeReLU performance 53
6.6 MLP model performance aggregates 56
6.7 AGDP LSTM performance 62
6.8 LSTM model performance aggregates 64
6.9 CNN performance . 69
6.10 CNN model performance aggregates 71
6.11 Comparison of deep neural network performance for GDP

prediction . 76

86

Appendices

87

Appendix A

Indicator Distributions

88

(a) Absolute Gross Domestic Product (GDP) (b) GDP Per Capita (c) Exports of goods and services

(a) Imports of goods and services (b) Gross capital formation (c) General government final consumption expen-
diture

89

(a) Agriculture, hunting, forestry, fishing (ISIC
A-B)

(b) Mining (ISIC C-E) (c) Construction (ISIC F)

(a) Wholesale (ISIC G-H) (b) Transport (ISIC I) (c) Other Activities (ISIC J-P)

90

(a) Household consumption expenditure (b) Internet users (per 100 people)

(a) Life expectancy at birth, total (years) (b) Population growth (annual %)

91

Appendix B

Implementation and
documentation

In this appendix we describe the contents of the appended DVD and how to
run the experiments using our code.

B.1 Project overview

The following diagram describes the project directory structure and the loca-
tions of the notable files and scripts in the attachment:

/

thesis.pdf/

results/

dense configs/

lstm configs/

cnn configs/

src/

mlp experiment.py

lstm experiment.py

cnn experiment.py

som experiment.py

configs/

database.db

data src

...

The data is separated into two folders, the results folder contains the ex-
periment results - the loss history files, model weights and other statistics. The
src folder contains the scripts that were used to run the experiments and other
utility scripts, such as scripts that can be used to load weights of a trained model
and use the model for prediction etc.

B.2 Requirements and installation

The project scripts run on Python3.4, the models are trained using the Keras
with the Theano backend libraries. The plots are made using the matplotlib and

92

Pandas python libraries.
The list of debian packages required to run the project is placed in

src/apt-requirements.txt. The list of pip requirements is placed in
src/requirements.txt. An installation script made for Ubuntu based systems
installing the necessary requirements is placed in src/install.sh. Except that
the script installs the requirements, it edits the Keras configuration file so that
Keras uses the Theano backend.

The scripts create files with results (weights, logs) in their local directory.
Before running scripts copy the contents of the DVD to a local drive and run the
scripts from the src subdirectory to avoid unforseen interactions.

B.3 Browsing Results

There are no installation requirements to browse the results of experiments.
The results are structures in 3 stages:

1. the architecture directory (dense, lstm, cnn)

2. parameter identifier directory (50U-1L-D-AGDP-lerelu)

3. the run directory (1-10)

The results are segmented into directories based on their model architecture type
(cnn, dense, lstm). Each experiment directory contains directories for each pa-
rameter permutation tested. For the exact meaning of the parameter identifier,
review Chapter 6. Each parameter permutation contains 10 folders for different
runs of the experiment. Each run then contains weights for 5 models, each for one
of the model from the cross-validation folds. An outline of the folder structure
for one run of 5 folds is:

dense configs/

50U-1L-D-AGDP-lerelu.json/

1-10/

fold0-model

fold0-model.csv

...

model.json

run stats

toss.npz

...

Each experiment folder contains 5 sets of weight files each named fold[0-4]

-model and a history of this training run in fold[0-4]-model.csv. The run
folder then contains a json file containing the exact model definition as exported
from Keras in model.json. The experiments were ran on the MetaCentrum
computation center and the run_stats file contains an information about the
execution, including CPU time used. Finally the run folder contains a file that
contains the k-fold random toss value for each country in the file toss.npz.

The history of each training k-fold run in is saved in a csv named fold[0-4]

-model.csv. The csv contains three columns epoch, loss, val_loss and test_

loss. Each row of the csv file represents one epoch during the training and the

93

row values are the training, validation and test losses recorded during training.
The final row shows the final performance of this run of the experiment.

B.4 Running experiments

The experiments were ran using scripts in the src folder:

1. mlp_experiment.py - Script used to train and test MLP networks

2. lstm_experiment.py - Script used to train and test LSTM networks

3. cnn_experiment.py - Script used to train and test CNN networks

The scripts expose commands as switches to perform various different tasks
relevant to the model in question. Each script has a way to train a model and
create some plots based on the results. The CNN script can plot the convolutions
in each layer. The MLP script can plot a error histogram. This functionality will
be discussed in another section.

To train a specific architecture, select one of the parameter configurations
from the src/configs/*_configs. Each configuration is saved in a json and
contains parameter values for the NN architecture. Certain architectures use
different configs. An example of a config is shown in Listing B.1.

Listing B.1: JSON config

1 {

2 "hidden_units ":50,

3 "noise_epoch ":false ,

4 "num_layers ":1,

5 "use_dropout ":true ,

6 "max_epoch_count ":250 ,

7 "target_indicator ":" Absolute_Gross Domestic Product (GDP)",

8 "activation_function ":" lerelu",

9 "lerelu_alpha ":0.3

10 }

The config contains the number of hidden units in each layer (50), whether
or not to noise the data in each epoch, the number of layers, whether or not to
use dropout, the maximum epochs to train, the target indicator, the activation
function used (lerelu or tanh) and an optional lerelu parameter. The folders under
src/configs contain all the network configurations used in this work.

To run an experiment you run the relevant python script with the -train
switch and provide it the path to the configuration file. An example of how a
MLP network would be trained

Listing B.2: Training MLP networks

1 python3 mlp_experiment.py -train ./ configs/dense_configs

/test_config.json

After an experiment is finished running, it will have created weight files, loss
history files and a toss.npy file as described higher.

94

B.5 Evaluating and plotting results

After an experiment is finished running, we can use the created weight files
to evaluate the model and plot the predictions made by the model. To do this
we use the same scripts as used to run the experiments:

1. mlp_experiment.py

2. lstm_experiment.py

3. cnn_experiment.py

B.5.1 Main analysis

The functionality available to all three scripts is to evaluate the models MSE
and to plot the prediction. The functionality is invoked using either the -plot

or the -eval switch. Both commands require a config file to be provided from
the src/configs/ folder and the weight file to be used during the evaluation and
plotting.

Plotting

To plot we need to use the -plot switch. The plot command further requires
a config file to be provided from the src/configs/ folder and the weight file to
be used during the evaluation and plotting. An optional parameter is a country
code of which country to plot. If no country is provided, all countries are plotted.
The list of country codes available is in src/data_src/country_codes.csv. The
syntax of this command is in Listing B.6. The plots of the countries are outputted
in a subfolder mlp_plots (or lstm/cnn).

Listing B.3: Syntax of -plot command

1 mlp_experiment.py -plot config -weights foldmodel [-

country ccode]

An example of plotting the GDP prediction of Czech Republic using a MLP
network trained in the experiments is shown below

Listing B.4: Plotting GDP prediction

1 python3 mlp_experiment.py -plot ./ configs/dense_configs

/50U-1L-D-AGDP -lerelu.json -weights ../ results/

dense_configs /50U-1L-D-AGDP -lerelu.json /1/fold0 -model

-country CZE

Evaluating

To evaluate a model we need to use the -eval switch. The eval command
further requires a config file to be provided from the src/configs/ folder and the
weight file to be used during the evaluation and plotting. An optional parameter
is the cross-validation toss.npy file to output MSE on all folds. If no toss is
provided, overall MSE is output. The syntax of this command is in Listing B.5.

95

Listing B.5: Syntax of -eval command

1 mlp_experiment.py -eval config -weights foldmodel [-toss

tossfile]

An example of how to evaluate the GDP prediction of a MLP network trained
in the experiments is shown below

Listing B.6: Evaluating GDP prediction

1 python3 mlp_experiment.py -eval ./ configs/dense_configs

/50U-1L-D-AGDP -lerelu.json -weights ../ results/

dense_configs /50U-1L-D-AGDP -lerelu.json /1/fold0 -model

-toss ../ results/dense_configs /50U-1L-D-AGDP -lerelu.

json /1/ toss.npy

B.5.2 Futher analysis

The different scripts expose further functionality specific for different network
architectures. For example the cnn_experiment.py script can plot how the con-
volutions in a network transform a specific country.

Convolutions

After a CNN is finished training, we might want to look at what the convo-
lutions trained do to an input. To do this we can use the command invoked by
the switch -convolutions in the cnn_experiment.py script. The syntax of the
command is shown the listing below

Listing B.7: Syntax of -convolutions command

1 mlp_experiment.py -convolutions config -weights

foldmodel -country ccode

The command plots how the convolutions in the first and second layer of the
network transform the indicators of the specified country. The convolutions are
saved in the folder cnn_plots/. An example of how to plot convolutions is in the
listing below

Listing B.8: Plotting convolution transformations

1 python3 cnn_experiment.py -convolutions ./ configs/

dense_configs /50U-1L-D-AGDP -lerelu.json -weights ../

results/dense_configs /50U-1L-D-AGDP -lerelu.json /1/

fold0 -model -country CZE

Error histogram

The MLP and CNN script files expose a functionality to plot the error rate
of a network dependent on the target year. To invoke this functionality use the
switch -eval_hist.The syntax of the command is shown the listing below

Listing B.9: Syntax of -convolutions command

1 mlp_experiment.py -eval_hist config -weights foldmodel

96

The command plots a histogram of the loss rate over time into mlp_plots/

(cnn respectively). An example of how to draw histograms is in the listing below:

Listing B.10: Plotting convolution transformations

1 python3 mlp_experiment.py -eval ./ configs/dense_configs

/50U-1L-D-AGDP -lerelu.json -weights ../ results/

dense_configs /50U-1L-D-AGDP -lerelu.json /1/fold0 -model

Compound plot

The LSTM script exposes a functionality to plot the compound variable as
defined in section 6.3.3. To invoke this functionality use the switch -compound_

plot.The syntax of the command is the same as the syntax of the plot command.

Listing B.11: Syntax of -compound plot command

1 lstm_experiment.py -compound_plot config -weights

foldmodel [-country ccode]

An example of plotting the GDP prediction of Czech Republic using a MLP
network trained in the experiments is shown below

Listing B.12: Compound plotting GDP prediction

1 python3 lstm_experiment.py -compound_plot ./ configs/

dense_configs /50U-1L-D-AGDP -lerelu.json -weights ../

results/dense_configs /50U-1L-D-AGDP -lerelu.json /1/

fold0 -model -country CZE

B.6 Data preparation and implementation de-

tails

The data is exposed to the scripts via a sqlite interface impemented in shared.

py. The sqlite database is saved in the file database.db and was created from csv
files downloaded from the sources mentioned in the thesis. The script prepare_

data.py parses the csv files, replaces missing values, normalizes it and exports
the data to the sqlite database.

The shared.py is the script file containing most of the implementation guts.
The classes implemented are:

1. Database - an object holding the sqlite connection handle

2. CountryIndicatorTable - an object exposing the table containing the
data used in the experiments via various getter methods

3. ArgumentParse - a utility class that loads a json and replaces default
values with the values in the json

4. ArgumentParse - a utility class parsing command line parameters

5. ExperimentData - a wrapper class for preparing data for the NN experi-
ments

97

6. Model - a superclass of a model, creating an interface for creating, saving
and training models

7. MLPModel - subclass of Model implementing the MLP specifics

8. LSTMModel - subclass of Model implementing the LSTM specifics

9. CNNModel - subclass of Model implementing the CNN specifics

10. SOM - a class implementing a SOM algorithm (can be used separately
from shared.py)

The models are created using the Keras Sequential API. An example of how
the MLP network was implemented is in the following listing

Listing B.13: Keras Sequential API example

1 model = Sequential ()

2
3 model.add(Flatten(input_shape=input_shape [1:]))

4 for i in range(self.config[’num_layers ’]):

5 if i==0:

6 print(input_shape [1:])

7 model.add(Dense(self.config[’

hidden_units ’]))

8 else:

9 model.add(Dense(self.config[’

hidden_units ’]))

10
11 if self.config[’activation_function ’]==’tanh ’:

12 model.add(Activation(’tanh ’))

13 else:

14 model.add(LeakyReLU(alpha=self.config[’

lerelu_alpha ’]))

15
16 if self.config[’use_dropout ’]:

17 model.add(Dropout (0.5))

18
19 model.add(Dense(target_shape [1], input_shape=input_shape

[1:]))

20 model.add(Activation(’linear ’))

21
22 model.compile(loss=’mean_squared_error ’,

23 optimizer=’rmsprop ’,

24 metrics=[’accuracy ’,’mean_absolute_error

’])

The LSTM and CNN models were implemented using a similar approach. An
important thing to note is that the SOM class has been implemented without the
Keras library and is therefore standalone.

98

	Introduction
	Artificial neural networks
	Feed-forward pass
	Backpropagation
	Notation and overview
	Analysis
	Algorithm

	Transfer Functions
	Sigmoid
	Rectified Linear Unit

	Overfitting
	Cross-validation
	Noise regularization
	Dropout regularization
	Sensitivity analysis

	Self-organizing maps
	Network architecture
	Training

	Convolutional neural networks
	Classic CNN architecture
	Convolutional layer
	Pooling layer
	Summary

	Backpropagation
	Convolutional layer
	Pooling layer

	Recurrent neural networks
	Long-short term memory network architecture
	Single cell forward pass
	LSTM Backpropagation

	Experimental results
	Data
	Data preprocessing

	Visualising time-series
	Results

	GDP Prognosis
	Experiment setup
	MLP networks for GDP prediction
	LSTM networks for GDP prediction
	CNN networks for GDP prediction
	Summary

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Indicator Distributions
	Implementation and documentation
	Project overview
	Requirements and installation
	Browsing Results
	Running experiments
	Evaluating and plotting results
	Main analysis
	Futher analysis

	Data preparation and implementation details

