
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Zuzana Petř́ıčková

Artificial Neural Networks and Their
Usage For Knowledge Extraction

(Umělé neuronové śıtě a jejich využit́ı při
extrakci znalost́ı)

Department of Theoretical Computer Science
and Mathematical Logic

Supervisor of the doctoral thesis: doc. RNDr. Iveta Mrázová, CSc.

Study programme: Computer Science

Specialization: Theoretical Computer Science

Prague 2015





Acknowledgments

First of all, I would like to express my sincere thanks to my supervisor doc. RNDr.
Iveta Mrázová, CSc. for her extraordinarily kind, patient and tireless guidance
and support throughout my whole doctoral study.

Throughout my doctoral study, my research work was partially supported
by the Grant Agency of Charles University under the Grant-No. 17608, by the
grant “Res Informatica” of the Grant Agency of the Czech Republic under the
Grant-No. 201/09/H057, by the grant “Collegium Informaticum” of the Grant
Agency of the Czech Republic under Grant-No. 201/05/H014 and by the Grant
Agency of the Czech Republic under the Grants-No. 15-04960S, P202/10/133
and P103/10/0783. I thank the respective institutions for their support.

Finally, I am very grateful to my whole family for supporting me during the
studies and for their help with taking care of my daughter while I was finishing this
thesis. And especially, I would like to thank Markéta for her catching joyfulness
and Martin for always being so patient and tolerant.



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, April 9, 2015 Zuzana Petř́ıčková



Název práce: Umělé neuronové śıtě a jejich využit́ı při extrakci znalost́ı

Autor: RNDr. Zuzana Petř́ıčková

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı disertačńı práce: doc. RNDr. Iveta Mrázová, CSc., Katedra teoret-
ické informatiky a matematické logiky

Abstrakt:

Vrstevnaté neuronové śıtě jsou známé předevš́ım d́ıky své schopnosti dobře zobec-
ňovat a odhalit v datech i složité nelineárńı závislosti. Na druhé straně má tento
model tendenci vytvářet poměrně složitou vnitřńı strukturu, a to předevš́ım pro
rozsáhlé datové sady. Při efektivńım řešeńı náročných úloh jsou proto kladeny
vysoké nároky předevš́ım na rychlost procesu učeńı, schopnost śıtě zobecňovat a
na vytvořeńı jednoduché a transparentńı struktury modelu.

V této práci jsme navrhli obecnou metodologii pro učeńı vrstevnatých neurono-
vých śıt́ı. Jej́ım základem je rychlá a robustńı metoda škálovaných konjugovaných
gradient̊u. Tento standardńı algoritmus učeńı je rozš́ı̌ren o analytické či aproxima-
tivńı oslabováńı citlivosti a o vynucovańı kondenzované interńı reprezentace. Re-
dundantńı vstupńı a skryté neurony jsou prořezávány pomoćı technik založených
na citlivostńı analýze a interńı reprezentaci znalost́ı.

Vlastnosti navržené a implementované metodologie byly otestovány na řadě úloh,
vesměs s pozitivńım výsledkem. Vytvořený algoritmus učeńı je velmi rychlý a
robustńı k volbě parametr̊u. Alternativńı testované metody překonává jak ve
schopnosti naučených śıt́ı zobecňovat, tak i v jejich citlivosti k šumu v datech.
Metoda je schopna poměrně dobře rozpoznat irelevantńı vstupńı př́ıznaky a vyt-
vořit v pr̊uběhu učeńı jednoduchou a transparentńı strukturu śıtě. T́ım usnadňuje
interpretaci funkce naučené śıtě.

Kĺıčová slova: vrstevnaté neuronové śıtě, kondenzovaná interńı reprezentace,
citlivostńı analýza, výběr př́ıznak̊u, prořezáváńı, zobecňováńı



Title: Artificial Neural Networks and Their Usage For Knowledge Extraction

Author: RNDr. Zuzana Petř́ıčková

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical
Computer Science and Mathematical Logic

Abstract:

The model of multi-layered feed-forward neural networks is well known for its
ability to generalize well and to find complex non-linear dependencies in the da-
ta. On the other hand, it tends to create complex internal structures, especially
for large data sets. Efficient solutions to demanding tasks currently dealt with re-
quire fast training, adequate generalization and a transparent and simple network
structure.

In this thesis, we propose a general framework for training of BP-networks. It
is based on the fast and robust scaled conjugate gradient technique. This clas-
sical training algorithm is enhanced with analytical or approximative sensitivity
inhibition during training and enforcement of a transparent internal knowledge
representation. Redundant hidden and input neurons are pruned based on inter-
nal representation and sensitivity analysis.

The performance of the developed framework has been tested on various types
of data with promising results. The framework provides a fast training algo-
rithm, robust to tunable parameters. Furthermore, it outperforms the reference
techniques in the achieved generalization ability and robustness to noise in the
data. It is very likely to identify redundant input features and create a simple
and transparent network structure during training. In such a way it simplifies
knowledge extraction from the model.

Keywords: feed-forward neural networks, condensed internal representation,
sensitivity analysis, feature selection, pruning, generalization



Contents

Introduction 5

1 Basic concepts 9
1.1 Formal neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Artificial neural network . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Recall process . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Training process . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Generalization and VC-dimension . . . . . . . . . . . . . . . . . . 16
1.4 Back-propagation algorithm . . . . . . . . . . . . . . . . . . . . . 17
1.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Analysis of the standard BP-model . . . . . . . . . . . . . 20
1.5.2 Analysis of the BP-algorithm . . . . . . . . . . . . . . . . 22

2 Goals of the thesis 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Statement of the main goals . . . . . . . . . . . . . . . . . . . . . 28
2.3 Chronological structure of the goals . . . . . . . . . . . . . . . . . 29

2.3.1 The first goal – Fast knowledge extraction . . . . . . . . . 30
2.3.2 The second goal – Topology simplification . . . . . . . . . 32
2.3.3 The third goal – Fast creation of a simple and clear internal

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Analyzed methods 35
3.1 Methods for fast training of BP-networks . . . . . . . . . . . . . . 36

3.1.1 Conjugate gradients methods . . . . . . . . . . . . . . . . 37
3.1.2 Scaled conjugate gradients . . . . . . . . . . . . . . . . . 40

3.2 Feature selection techniques . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Feature ranking methods . . . . . . . . . . . . . . . . . . . 46
3.2.2 Wrapper methods . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Embedded models . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Methods for structure optimization . . . . . . . . . . . . . . . . . 54
3.3.1 Brute-force methods . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Pruning algorithms . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Network construction techniques . . . . . . . . . . . . . . 60
3.3.5 Probability optimization techniques . . . . . . . . . . . . . 61
3.3.6 Regularization techniques . . . . . . . . . . . . . . . . . . 61
3.3.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Methods for improved generalization . . . . . . . . . . . . . . . . 63
3.4.1 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Learning from Hints . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Training with Jitter . . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 Summary of Section 3.4 . . . . . . . . . . . . . . . . . . . 66

3.5 Methods for creation of a transparent network structure . . . . . . 67
3.5.1 Learning condensed internal representation . . . . . . . . . 67

1



3.5.2 Learning unambiguous internal representation . . . . . . . 72

4 Results achieved 73
4.1 Fast knowledge extraction . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Proposal of the SCGIR-method . . . . . . . . . . . . . . . 75
4.1.3 Summary of Section 4.1 . . . . . . . . . . . . . . . . . . . 82

4.2 Topology simplification . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Pruning based on internal representation . . . . . . . . . . 83
4.2.3 Pruning based on sensitivity analysis . . . . . . . . . . . . 84
4.2.4 Analytical sensitivity control . . . . . . . . . . . . . . . . . 88
4.2.5 Summary of Section 4.2 . . . . . . . . . . . . . . . . . . . 99

4.3 Fast creation of a simple and clear internal structure . . . . . . . 100
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.2 Approximative sensitivity control . . . . . . . . . . . . . . 101
4.3.3 Summary of Section 4.3 . . . . . . . . . . . . . . . . . . . 110

5 Experiments 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . 118
5.1.3 Settings and notation . . . . . . . . . . . . . . . . . . . . . 119
5.1.4 The structure of supporting experiments . . . . . . . . . . 122

5.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Experiment 5.2.1 – General results . . . . . . . . . . . . . 123
5.2.2 Experiment 5.2.2 – Extended results . . . . . . . . . . . . 128
5.2.3 Experiment 5.2.3 – Results on weight decay . . . . . . . . 134
5.2.4 Experiment 5.2.4 – Results on SCGIR . . . . . . . . . . . 137
5.2.5 Experiment 5.2.5 – Extended results on SCGIR . . . . . . 139
5.2.6 Summary of Generalization . . . . . . . . . . . . . . . . . 141

5.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1 Experiment 5.3.1 – General results . . . . . . . . . . . . . 142
5.3.2 Experiment 5.3.2 – Results on SCGIR . . . . . . . . . . . 143
5.3.3 Experiment 5.3.3 – Stability test . . . . . . . . . . . . . . 144
5.3.4 Summary of Speed . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.1 Experiment 5.4.1 – General results . . . . . . . . . . . . . 145
5.4.2 Experiment 5.4.2 – Results on SCGIR . . . . . . . . . . . 146
5.4.3 Experiment 5.4.3 – Extended results on SCGIR . . . . . . 147
5.4.4 Experiment 5.4.4 – Example network structures (for SCG-

hint and SCGIR-hint) . . . . . . . . . . . . . . . . . . . . 148
5.4.5 Experiment 5.4.5 – Example network structures (for SCGS

and SCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.6 Summary of Transparency . . . . . . . . . . . . . . . . . . 153

5.5 Structure optimization . . . . . . . . . . . . . . . . . . . . . . . . 154
5.5.1 Experiment 5.5.1 – Feature selection techniques . . . . . . 154
5.5.2 Experiment 5.5.2 – Pruning techniques . . . . . . . . . . . 155
5.5.3 Experiment 5.5.3 – General results . . . . . . . . . . . . . 157

2



5.5.4 Experiment 5.5.4 – Results on SCGIR . . . . . . . . . . . 162
5.5.5 Experiment 5.5.5 – Example network structures (for SCG

and SCGSA) . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.5.6 Experiment 5.5.6 – Sensitivity analysis . . . . . . . . . . . 165
5.5.7 Summary of Structure optimization . . . . . . . . . . . . . 167

Conclusions 169

Bibliography 175

List of Tables 185

List of Figures 187

List of Algorithms 189

List of Abbreviations 191

3



4



Introduction

5



The subject of our study is the computational model of artificial neural net-
works (ANNs). Artificial neural networks represent a well-established and widely
acknowledged part of Machine Learning and Artificial Intelligence.

This robust and powerful computational model was originally inspired by
neurobiology — by the mechanisms and processes that are expected to operate in
the human brain. Similarly to human brains, the strength of ANNs stems from the
massive parallelization of simple computational elements. Furthermore, ANNs
have an outstanding ability to learn from data and make reasonable predictions.
This makes them suitable to solve even complex tasks from many emerging areas.
Until now, the model has been successfully applied to a wide range of real-world
tasks like signal processing [92], time series analysis, bioinformatics, data and
web mining or multimedia information processing.

In this thesis, we concentrate on the computational model of fully-connected
multilayer feed-forward neural networks (BP-networks). When compared to other
neural network and machine learning models (e.g., decision trees, linear regres-
sion), the model of BP-networks is appreciated for a relatively simple topology
and robustness against noise and other problems of the data (e.g., outliers, high
dimensionality). Further advantages of BP-networks are their superior approxi-
mation and generalization abilities and fast response once the model is trained.
And above all, the model is very likely to find complex non-linear dependencies
in the data.

In our research, we have worked a lot with real-world economical data obtained
from the World Bank [109]. This data set comprises various economical and
demographical characteristics of the particular countries – the so called World
development indicators (WDI-indicators).

An interesting property of the World Bank data is, that it contains various
mutual relationships among the input features. Some of the relationships are
linear or logarithmic and therefore discoverable using the standard, mostly linear,
methods (e.g., linear regression, PCA [53] or correlation coefficients [41]). Such
simple relationships have been studied a lot by economic researchers in the past
years. For example, Baird et al. in [9] found a negative linear relationship between
Gross domestic product per capita and Infant mortality.

In addition to relatively simple mutual relationships, the World Bank data
contains also complex non-linear dependencies, that are very difficult to discover
by means of standard methods. The process of their extraction is thus very time-
consuming and with no guarantee of success.

An example of a more complex mutual relationship between the WDI-indi-
cators is shown in Figure 1. The figure depicts the values of the following input
features: Fertility rate, Number of fixed line and mobile phone subscribers, Num-
ber of Internet users and Life expectancy at birth. We can clearly see, that these
WDI-indicators give a very similar information. If we knew for a single country
the value of just one of them, we could manually predict the others based on the
graph. However, the mutual relationship among these four features is not simple
enough to be detected using the above-listed standard methods. On the other
hand, the computational model of BP-networks represents a valuable option, as
it is very powerful in modeling even more complex relations.

6



0
500

1000
1500

2000
2500

30
40

50
60

70
80

90

0

200

400

600

800

1000
In

te
rn

et
 u

se
rs

Life expectancyTelephone subscribers

Fertility rate

Figure 1: Mutual relationship among the following WDI-indicators: Fertility rate,
Number of fixed line and mobile phone subscribers, Number of Internet users and
Life expectancy at birth.

To summarize our motivation example, the main objective of this thesis is
to quickly extract complex non-linear dependencies present in the data and to
describe them in a comprehensible way. To solve this task, we use the powerful
and robust computational model of BP-networks.

On one hand, BP-networks are remarkably better in finding complex depen-
dencies in the data than classical statistical models (e.g., decision trees or linear
regression). On the other hand, they have a tendency to create relatively complex
internal structures, especially for large and demanding tasks. In such a case, it
may be difficult to describe the extracted knowledge in a simple way (e.g., in
the form of rules). Complex tasks also have greater demands on the generaliza-
tion ability of the BP-network model that the standard training algorithm (back-
propagation) can only hardly achieve or it becomes extremely slow.

Fortunately, there are several enhancements of the standard BP-model and
its training process, that overcome the above-sketched difficulties. Based on their
main purpose, the enhancing techniques can be divided into the following cate-
gories: fast training, topology simplification, creation of a transparent network
structure with greater expressive power and improvement of generalization ability.
In the following paragraphs, we will provide a brief summary of these techniques.

When considering the techniques for faster training of BP-networks, we can
choose among relatively simple enhancements of the standard back-propagation
algorithm (e.g., learning with momentum, early stopping, adaptive learning rate
methods [52, 99]) and sophisticated training techniques (e.g., second order or
conjugate gradient optimization methods [14, 35, 71, 75, 91]). Especially the
conjugate gradients methods (e.g., the Scaled conjugate gradients training al-
gorithm (SCG) [75]) offer fast training and robustness to noise and outliers in

7



the data. They are appreciated for both adequate generalization and low space
complexity.

While most of the standard training algorithms work with a fixed topolo-
gy, structure optimization methods try to find the optimal network topology
automatically during training. In such a way they simplify further knowledge
extraction from the model. The key representatives of structure optimization
methods are pruning algorithms [28, 34, 43, 62, 77, 126], regularization tech-
niques [36, 111, 119] and network construction methods [33, 66]. Some of the
pruning techniques also try to automatically identify relevant input features [29].

BP-networks represent knowledge in a distributed way. Although they tend
to form relatively unclear internal structures, there are regularization techniques
that help to make the internal structure more transparent (e.g., the methods
of learning condensed or unambiguous internal representation [86]). The main
purpose of these techniques is to improve the expressive power of the BP-network
model.

Among the techniques that improve the generalization ability of the trained
BP-networks, we may highlight especially learning from hints [2], training with
jitter [73, 93, 104], cross-validation and early stopping [95], and the methods for
structure optimization. Most of the above-listed methods also try to reduce the
VC-dimension of the final network structures and make the network function
smoother [114].

In Chapter 1, we state the basic concepts used in the thesis. We define formally
the model of artificial neural networks and describe the standard back-propaga-
tion training algorithm. After that, we provide a brief analysis of this model and
its training algorithm.

In Chapter 2, we state and discuss the main goals of this thesis. In Chapter 3,
we continue with a thorough description of existing approaches to our goals. We
structure Chapter 3 based on the following issues: fast training, feature selection,
structure optimization, generalization improvement and transparency.

In Chapter 4, we propose a general framework for training of BP-networks.
We introduce three successive versions of our framework (SCGIR, SCGS and
SCGSA) that differ primarily in the regularization techniques included. Chapter
5 is devoted to experimental evaluation of the designed framework. The chapter
is structured based on the following fields of interest – generalization, speed,
transparency and structure optimization.

8



1. Basic concepts

9



In this chapter we will describe basic concepts used in the thesis. We will
define formally the model of artificial neural networks and state the corresponding
terminology used in the area of neural networks (Reed [95], Bishop [16], [15], Rojas
[100] and Haykin [48]).

1.1 Formal neuron

An artificial neural network (ANN) is a computational model that consists of
simple computational units called formal neurons (or just neurons) [101]. It was
originally inspired by neurobiology – by the mechanisms and processes that are
expected to operate in the human brain. Similarly to human brains, the strength
of ANNs stems from the massive parallelization of simple computational elements.
Furthermore, both types of neural networks (the biological as well as the artificial
ones) have an outstanding ability to learn from the data and make reasonable
predictions. This makes them suitable to solve even complex tasks such as signal
processing [92].

The biological neuron is the elementary part of the nervous system. Its main
purpose is to transfer and process signals – electric and electrochemical impulses.
It consists of three main parts:

• dendrites that transfer the input signals into the neuron,

• cell body, which accumulates and processes the signal,

• and axon that transmits the output signal to other neurons.

The axon is connected to dendrites of other neurons. The neuron accumulates
the input signals weighted by the strength of the corresponding dendrites. If the
summed electric impulse exceeds a given threshold, the neuron becomes active –
it generates the electric impulse and transfers it to other neurons via the axon.
The repeated excitation of a neuron magnifies the strength of the respective
connections and so the neural network learns.

The model of a formal neuron was inspired by the biological neuron.

Definition 1. A formal neuron is a computational unit with the weight vector
(w1, ..., wn) ∈ <n, the threshold h ∈ < and the transfer function f : < → <. For
an arbitrary input vector ~x ∈ <n the neuron computes its output y ∈ < as the
value of the function f at ξ. ξ denotes the value of the inner potential of the
neuron:

ξ =
n∑
i=1

wixi − h. (1.1)

The output value y = f(ξ) is called the activity of the neuron.

We will use the following formal modification of the definition of ξ in order to
simplify the notation in the further formulas:

ξ =
n∑
i=0

wi xi, (1.2)

where x0 = 1 and w0 = −h (the thresholds are represented by weights coming
from fictive neurons with a constant output value 1). The structure of the formal
neuron is shown in Figure 1.1.

10



w1

x2

xn

x1

wn

w2

inputs weights

potential value ξ

output

y=f(ξ)

x0=1

w0=-h
threshold h

ξ=∑xi.wi
i = 0

n

Figure 1.1: A formal neuron.

Transfer functions The functionality of a neuron depends on the choice of
the transfer function. Table 1.1 briefly summarizes some of the basic and most
common variants of the transfer functions: step, signum, saturated linear, linear,
sigmoidal and hyperbolic tangent functions. Some of the training algorithms
described later in this work, such as back-propagation (sec. 1.4), put some further
restrictions on the transfer functions, e.g., differentiability. For this reason, Table
1.1 shows also the derivatives of the functions that are differentiable on <. The
graphs of the sigmoidal and hyperbolic tangent functions and their derivatives
are depicted in Figure 1.2.

Table 1.1: Transfer functions and their derivatives.

name function value derivative

step f : < → {0, 1} f(ξ) =

{
1, ξ > 0
0, ξ ≤ 0

–

signum f : < → {−1, 0, 1} f(ξ) =


1, ξ > 0
0, ξ = 0
−1, ξ < 0

–

saturated
linear f : < →< 0, 1 > f(ξ) =


1, ξ > 1
ξ, 0 ≤ ξ ≤ 1
0, ξ < 0

–

linear f : < → < f(ξ) = ξ. ∂y
∂ξ = f ′(ξ) = 1

sigmoidal f : < → (0, 1) f(ξ) = 1
1+e−λξ

, λ > 0
∂y
∂ξ = f ′(ξ) = λe−λξ

(1+e−λξ)

= λy(1− y)
hyperbolic
tangent f : < → (−1, 1) f(ξ) = 1−e−a ξ

1+e−a ξ
, a > 0

∂y
∂ξ = f ′(ξ) = 2a e−a ξ

(1+e−a ξ)2

= a
2 (1 + y) (1− y)

1.2 Artificial neural network

The artificial neural network is a computational model that consists of neurons,
which are mutually interconnected so that the output of each neuron can serve
as the input of one or more other neurons. More formally:

11



−4 −2 0 2 4
−1

0

1
Sigmoidal function

x

f(
x)

−4 −2 0 2 4
0

0.5

1
Derivative of the sigmoidal function

x

f(
x)

−4 −2 0 2 4
0

0.5

1
Hyperblic tangent function

x

f(
x)

−4 −2 0 2 4
0

0.2

0.4
Derivative of the hyperbolic tangent function

x
f(

x)

Figure 1.2: Graphs of the sigmoidal and hyperbolic transfer functions and their
derivatives on the interval [−4, 4].

Definition 2. The artificial neural network (ANN) is a tuple M = (N,C, I, O,
w, t), where

• N is the non-empty finite set of neurons,

• C ⊆ N × N is the non-empty set of oriented edges that connect the pairs
of neurons,

• I ⊆ N is the non-empty set of input neurons,

• O ⊆ N is the non-empty set of output neurons,

• w : C → < is the weight function,

• t : N → < is the threshold function.

The topology of a neural network is given by the number of neurons and their
mutual interconnections.

Definition 3. The topology of the ANN M = (N,C, I, O, w, t) is an oriented
graph with the set of nodes N and the set of edges C. The edges are weighted
by w.

There exist various topologies of ANNs. The so-called recurrent neural net-
works contain cycles. Acyclic ANNs are called feed-forward. For a feed-forward
neural network, the input neurons are the neurons with only outgoing edges, while
the output neurons have only incoming edges. If the neurons are arranged into
multiple layers, we name the model multilayer. In the past years, a strong effort
has been made in the field of so-called deep networks (introduced by LeCun et
al. in [65]).

In this work, we will concentrate on the ANNS with the layered, fully-con-
nected and feed-forward topology.

12



Definition 4. The fully-connected multilayer feed-forward neural network (BP-
network) is an ANN that fulfills the following requirements:

• The set of edges C together with the set of nodes N form an acyclic oriented
graph.

• The set N consists of the sequence L1, ..., Ll+2 of (l + 2) disjoint subsets
called layers.

• Each neuron in the layer Lk is connected to all neurons of the subsequent
layer Lk+1, k = 1, ..., l + 1. C contains only edges from the k-th to the
(k + 1)-th layer, k = 1, ..., l + 1.

• The first layer, called the input layer, is the set of n input neurons. The
input neurons have just one input and their transfer function is linear –
identity.

• The last layer, denoted as the output layer, consists of m output neurons.

• All other neurons are called hidden neurons. They are contained in the
remaining l, hidden, layers L2, ..., Ll+1.

Generally, each neuron in the BP-network can has its own transfer function. In
this work, we will use the model, where all the hidden neurons have the hyperbolic
tangent transfer functions, while all the output neurons implement the linear
transfer functions.

The topology of a BP-network is usually a priori given and fixed. It can be
described by the term (l1 = n)− l2− ...− ll+1− (ll+2 = m), where lk is the number
of neurons in the layer Lk, k = 1, ..., l + 2 and the sign “–” is the delimiter. Fig.
1.3 shows an example BP-network with the topology 4-3-4-2.

output 
layer

input
layer

hidden 
layers

Figure 1.3: Example of the 4-3-4-2 BP-network topology.

Another important concept of the BP-networks is the configuration.

13



Definition 5. The configuration of the ANN is given by all the weights (and
thresholds) in the ANN. It can be expressed by the weight vector ~w of size W :

~w = (wij)[i,j]∈C (tk)k∈N , (1.3)

where W is the total number of weights and thresholds.

The function of the BP-network can be described by two different processes –
the recall process and the training process. We will describe them in more detail
in the following subsections.

1.2.1 Recall process

Each BP-network implements a network function ϕ : <n → <m. If we present an
input vector ~x ∈ <n to the model, it will compute the output vector ~y = ϕ(~x) ∈
<m in the following way: If all the hidden and output neurons have the same
transfer function f, the j-th element of the output vector corresponding to the
j-th output neuron is given by:

ϕ(~x)j = f(
∑
i∈Ll+1

wij f(...f(
∑
i1∈L1

wi1i2 xi1)...)), (1.4)

where i, i1 and i2 index the neurons in the layers Ll+1, L1 and L2, respectively.
The recall process has the following schema:

1. Present an input vector ~x ∈ <n.

2. For i = 1, ..., n, the activity of the i-th input neuron is set to the i-th element
of the input vector, yi = xi.

3. For each network layer Lk, k = 2, ..., l+2 (successively from the first hidden
layer to the output layer) and for each neuron j in the layer Lk compute
its potential with the use of the activities of the neurons in the preceding
layer (indexed by i):

ξj =
∑
i∈Lk−1

wij yi. (1.5)

Then compute the activity of the neuron j:

yj = f(ξj) = f(
∑
i∈Lk−1

wij yi), (1.6)

where f is the transfer function.

4. At the end of the recall process, the activities of all neurons are computed.
The actual network output ~y ∈ <m is given by the activities of the output
neurons.

14



1.2.2 Training process

The objective of the training process of a BP-network is to approximate an sought
after function as well as possible. The knowledge is stored in the network weights
and thresholds, i.e., in the configuration. A natural way to train BP-networks is
so-called supervised training, i.e., learning from examples. That means, that the
wanted network function is unknown, its value is given just for a training set T
of P input-output patterns:

T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}}. (1.7)

for a network with n input neurons and m output neurons. The input patterns
~xp are the input vectors for the BP-network, while the output patterns ~dp are
the desired network outputs. The actual outputs produced by the network will
be denoted by ~yp ∈ <m. The elements xp1, xp2, ..., xpn of the input pattern ~xp are
called the input features. The dimensionality of the input data is defined as the
number n of input features.

At the end of the training process, the actual output for each input pattern
should be as close as possible to the corresponding output pattern. Any difference
is treated as an error to be minimized. The actual network behavior can be
evaluated by the error function E = E(~w), where ~w is the current configuration.
The standard performance measure is the sum of squared errors ESSE:

E(~w) = E = ESSE =
P∑
p=1

Ep =
1

2

P∑
p=1

‖ ~yp− ~dp ‖2 =
1

2

P∑
p=1

m∑
j=1

( ypj − dpj )2

(1.8)
where p is an index over all training patterns, j indexes all output neurons, and
Ep is the error corresponding to the p-th training pattern. The standard error
function ESSE can be replaced by alternative performance measures. A common
option is EMSE (mean square error), defined as:

EMSE =
1

mP
ESSE =

1

2mP

P∑
p=1

m∑
j=1

( ypj − dpj )2, (1.9)

where m and P are the numbers of output neurons and patterns, respectively.
EMSE is advisable for large training sets and networks with a large number of
outputs. The error function can also be altered by the so-called penalty terms, re-
flecting various further training goals added to the performance (e.g., restrictions
on the network function).

The error function E(~w) can be at the point (~w+ ~z) expressed by the Taylor
series:

E(~w + ~z) = E(~w) + E ′(~w)T~z +
1

2
~z TE ′′(~w)~z + · · · , (1.10)

where E ′(~w) is the gradient vector of the length W with the elements E ′(~w)i =
∂E
∂wi

, and E ′′(~w) is the W × W Hessian matrix of second derivatives with the

elements E ′′(~w)ij = ∂2E
∂wi∂wj

, W is the lenght of ~w.

15



1.3 Generalization and VC-dimension

Generalization is the ability of a computational model to give correct outputs not
only to the patterns in the training set, but also to previously unseen or noisy
input patterns.

Poor generalization is often related to the problem of so called overtraining. If
a computational model is overtrained, it tends to memorize the training patterns
and is not able to recognize well patterns outside of the training set. The opposite
problem to overtraining is called undertraining. A model is undertrained, if it
is too simple and it doesn’t fit the training data. Figure 1.4 illustrates both
problems of undertraining and overtraining.

(a) (b) (c)

Figure 1.4: Generalization ability of a computational model. Training patterns
are indicated by black circles, model function is indicated by a red line. (a)
undertrained model (too simple approximation), (b) fitting model (good general-
ization), (c) overtrained model (poor generalization).

Generalization error In practice, the generalization ability can be roughly
assessed as the performance error on the test set of patterns (patterns not present
in the training set or noisy patterns). To achieve reliable results, the test set
should be sufficiently large and mimic the actual data distribution.

Vapnik–Chervonenkis dimension The Vapnik-Chervonenkis dimension (or
VC-dimension) was originally defined by Vapnik and Chervonenkis [113]. It mea-
sures the complexity of a learning system as the maximum number of points that
the learning system (i.e., the class of concepts) can shatter. The higher is the VC-
dimension of a learning system, the more training patterns are needed to achieve
an acceptable generalization. A learning system is called learnable, if its VC-
dimension is finite.

16



1.4 Back-propagation algorithm

The back-propagation training algorithm (BP-algorithm) is one of the most com-
monly used concept for training BP-networks. The algorithm was independently
discovered by several authors (Werbos [118], Parker [89], LeCun [63] and Rum-
melhart, Hinton and Williams [102]), however it became generally known mostly
thanks to the last contribution [102].

BP-algorithm is an optimization method over the network weights and thresh-
olds – the aim of training is to find a set of weights and thresholds that ap-
proximate the wanted network function as well as possible. It is designed for
supervised training, i.e. it learns from examples. It uses the training set T =
{ ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}} (1.7), for a network with n
input neurons and m output neurons. As the performance measure, the stan-
dard BP-algorithm uses the sum of squared errors function E = ESSE =
1
2

∑P
p=1

∑m
j=1 ( ypj − dpj )2 (1.8), where p and j are the indexes over all the train-

ing patterns and all the output neurons, respectively. Vectors ~xp, ~yp and ~dp are the
input patterns, the actual outputs and the desired output patterns, respectively.

BP-algorithm is a gradient method. In each step we choose a direction, in
which the error function decreases the most and adjust the weights in this di-
rection (against the gradient of the error function). The optimization process is
iterative and proceeds in discrete time steps. The basic schema of an iteration
follows:

1. Select a training pattern from the training set.

2. Forward propagation: Present the selected training pattern to the network
and compute the actual network output (in the direction from the input to
the output layer).

3. Compare the actual and desired output and compute the error.

4. Back-propagation: Adjust the weights to minimize the error (backwards
from the output to the input layer).

The process is repeated until the stop condition is satisfied – for example until
the error is reasonably small or until a pre-set (maximal) number of iterations is
reached.

In the following paragraphs, we will briefly describe the derivation of the
adaptation rules for the described algorithm. We assume that all the network
transfer functions are continuous and differentiable. The weights and thresholds
of the network w are adjusted iteratively after presenting each respective training
pattern (~xp, ~dp) by:

wij(t+ 1) = wij(t) + ∆wij(t), (1.11)

where ∆wij(t) is the change of wij in time t. t+ 1 and t index next and present
weights, respectively.

∆wij(t) is proportional to the negative partial derivative of the pattern error
function:

∆wij(t) ' −α
∂Ep
∂wij

, (1.12)

17



where α is a positive constant representing the learning rate – it defines the step
length in the negative gradient direction and controls the speed of convergence.
In the following terms, the actual output value and the potential of a neuron j
will be denoted as ypj and ξpj, respectively. We apply the chain rule for partial
derivatives and obtain:

∂Ep
∂wij

=
∂Ep
∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

=
∂Ep
∂ypj

f ′(ξpj) ypi = δpj ypi, (1.13)

where δpj = ∂Ep
∂ypj

∂ypj
∂ξpj

is a useful notation often referred to as back-propagated

error. For an output neuron j, the derivative can be computed directly:

δpj = (ypj − dpj) f ′(ξpj). (1.14)

For a hidden neuron j, ∂Ep
∂ypj

will be computed indirectly using the chain rule:

∂Ep
∂ypj

=
∑
q

∂Ep
∂ξpq

∂ξpq
∂ypj

=
∑
q

δpq wjq, (1.15)

δpj = f ′(ξpj)
∑
q

δpq wjq, (1.16)

where q indexes neurons in the layer above the neuron j.
Altogether:

wij(t+ 1) = wij(t)− α δpj ypi, (1.17)

δpj =

{
( ypj − dpj ) f ′(ξpj) for an output neuron,

f ′(ξpj)
∑

q δpq wjq for a hidden neuron.
(1.18)

Algorithm 1.1 summarizes the steps of the BP-algorithm for the BP-network
model with the hyperbolic tangent transfer function in the hidden layers and the
linear transfer function in the output layer.

The behavior of the BP-algorithm varies depending on how the details are
dealt with. For example, we can choose among various simple or sophisticated
weight-initialization strategies [110]. An example of a simple heuristic is to select
the weights randomly from an interval such as (− 2√

n
, 2√

n
), where n is the number

of inputs. A more sophisticated possibility is e.g. the Nguyen-Widrow initializa-
tion technique [87] that forces the initial weight vectors to cover well the input
space of each layer.

Because the BP-algorithm is not guaranteed to converge, there are various
stop conditions, which are in applications usually combined. The basic stop
criterion is a given maximal number of epochs / iterations or a time limit. Another
possibility is to stop training if the average weight change ∆wij(t) falls under a
pre-determined lower bound, i.e., if the adaptation process is too slow.

The stop criterion can also be based on the error function – we can define the
requested value of network error (averaged over all training patterns and network
outputs) on the training set or on previously unseen (validation) data. If the
desired error value is reached, the training is stopped. We can similarly use also
the pre-determined maximal number of consecutive epochs/iterations in which
the training/validation error grows.

18



Algorithm 1.1 Back-propagation algorithm

0. Input:
BP-network M = (N,C, I, O, w, t),

Training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}},
Stop criteria, e.g.:

a. The training or validation error is lower than a pre-set value.
b. The time index t has reached the pre-determined value.
c. The average validation error grows in a more consecutive iterations

than allowed.
1. Initialization:

Initialize all the weights and thresholds with small random values.
Set discrete time index t to 0.

2. Present a newly chosen training pattern in the form ( ~xp, ~dp ).
3. Forward propagation:

Compute the actual network output ~yp:
For each network layer L (in the direction from the input to the output
layer) and for each neuron j in layer L compute its potential and activity
with the use of activities of neurons in the preceding layer (indexed by i).

ξpj =
∑

i wij xpi,
ypj = f(ξpj)

4. Back-propagation:
4a. Compute the value of back-propagated error:

For each network layer L (in the direction from the output to the input
layer) and for each neuron j in layer L compute the value of δpj
with the use of actual values of δpq of neurons from the following layer
(indexed by q):

δpj =

 ypj − dpj for an output neuron j,

( 1 + ypj ) ( 1 − ypj )
∑

q δpq wjq for a hidden neuron j.

4b. Adjust each network weight wij (from the neuron i to neuron j):
wij(t+ 1) = wij(t)− α δpj ypi.

5. If the stop criteria are not satisfied, set t = t+ 1 and continue with step 2.

19



Another issue is the ordering of training patterns. A common strategy, some-
times called online learning, is to select the patterns randomly, while each par-
ticular pattern can be presented once or in more consecutive iterations. Other
variant is to present the whole training set systematically in cycles called epochs.
This is typical for batch learning, where the weights and thresholds are adjusted
only once per epoch after presenting all the training patterns. The formula 1.17
is in such a case modified in the following way:

wij(c+ 1) = wij(c)− α
P∑
p=1

∂Ep
∂wij

= wij(c)− α
P∑
p=1

δpj ypi, (1.19)

where p and c index the training patterns and epochs, respectively. For batch
learning, the adaptation process is usually smoother but slower than for the
standard algorithm (it follows the gradient more precisely, however each training
pattern weights less). The method is supposed to converge better and be more
stable, however it may have a bigger chance of getting stuck in a poor local
minimum of the error function [95].

Although we refer to the multi-layered fully connected feed-forward neural
networks as to BP-networks, other optimization methods can be used to update
the weights and thresholds of this model as well (e.g., second-order gradient tech-
niques [12], genetic algorithms or simulated annealing [37]). On the other hand,
the BP-algorithm is not restricted to the BP-networks, the Algorithm 1.1 can be
easily extended to handle with different (i.e., not layered) network topologies.

1.5 Analysis of the BP-algorithm and the stan-

dard BP-model

In this section, we will discuss the main advantages and drawbacks of the standard
BP-model and the BP-algorithm.

1.5.1 Analysis of the standard BP-model

The computational model of BP-networks is very efficient and robust, with re-
markable approximation and generalization abilities. The tasks suitable to BP-
networks usually involve function approximation or pattern recognition. In the
past years, the model has been successfully applied to a wide range of real-world
problems (including signal processing, prediction and control systems, bioinfor-
matics, data compression or web mining).

When compared to other neural network and ‘general’ machine learning mod-
els (e.g., decision trees, linear regression), the model of BP-networks is appreci-
ated for its simple topology, robustness against the noise and other problems of
the data (outliers, course of dimensionality) and fast response once the model is
trained.

In the following paragraphs, we will discuss the following basic questions: a)
what kind of functions can be approximated by the BP-networks, b) what is the
expected computational complexity of the learning problem, and c) the question
of learnability of this learning system.

20



Approximation Cybenko [25], Hornik [50] and others formulated and proved
the ability of universal approximation for BP-networks. The universal approx-
imation theorem states that BP-networks with one hidden layer (and meeting
some additional conditions) are universal approximators for the class of real con-
tinuous functions on compact subsets of <n. In detail, Cybenko [25] proved, that
any real continuous function f : [0, 1]n → (0, 1) can be approximated arbitrar-
ily close by a BP-network with one hidden layer, sigmoidal transfer function in
the hidden layer and linear transfer function in the output layer, while the BP-
network might require any number of hidden neurons [25]:

Theorem 1. Let σ be the sigmoidal function and C(In) the space of continuous
functions on [0, 1]n. Given any f ∈ C(In) and ε > 0, there is a sum G(x) of the
form

G(~x) =
N∑
j=1

ajσ(~w T
j ~x+ hj) ; ~wj ∈ <n, aj, hj ∈ <, j = 1, ..., N (1.20)

for which

|G(~x)− f(~x)| < ε for all ~x ∈ [0, 1]n. (1.21)

Hornik [50], Kůrková [59] and others generalized this result to networks with
other types of transfer functions in the hidden layer and for other classes of ANNs.

Based on the universal approximation theorem, it may seem like the BP-
network topology with one hidden layer is always a sufficient choice. However,
architectures with more hidden layers are more appropriate for many tasks – we
may need less computational units in sum, the training could be easier and faster
and the final network structure may be more transparent.

Computational complexity of the learning problem Judd [54] showed
that the general learning problem for BP-networks with the step transfer func-
tion is NP-complete. That means, that no algorithm is known, that will solve the
general learning problem for BP-networks with the step transfer function in poly-
nomial time. In the worst case, the time grows exponentially with the problem
size (i.e., with the number of weights and thresholds) [100]. Š́ıma [107] proved
the NP-hardness of the learning problem even for the minimal BP-network topol-
ogy with a single neuron with the sigmoidal transfer function. However, some
restricted architectures of BP-networks can be trained in a polynomial time [54].

These theoretical results show, that it makes sense to use approximative meth-
ods for BP-training (e.g., back-propagation) and to search for heuristics that will
speed up the training process.

Learnability and VC-dimension The higher is the complexity of the learn-
ing problem, the more training patterns are needed to achieve sufficient model
performance and generalization. This issue is related to the VC-dimension and
learnability of the BP-networks (see Section 1.3). Baum and others [13] showed,
that the VC-dimension dV C of a BP-network with N neurons and W weights can
be estimated as:

dV C ≤ 2W log2(eN), (1.22)

21



where e is the base of the natural logarithm. To achieve a given generalization
error rate 0 < ε ≤ 1/8, the needed number P of randomly selected training
patterns can be bounded as [13]:

P ≥ O(
W

ε
log2

N

ε
). (1.23)

High VC-dimension is often connected with worse generalization. The VC-
dimension of BP-networks can be reduced, e.g., by learning from hints [2], regu-
larization or pruning. If we reduce the number of degrees of freedom of the BP-
network, we also reduce the inherent complexity of the learning problem [100].

1.5.2 Analysis of the BP-algorithm

Although there exist many more sophisticated training algorithms for BP-net-
works (and even more sophisticated neural network models), the standard back
propagation method is still quite popular in real-world applications. The main
reasons may be, that it is simple to implement and easy to understand, well-
documented and tested. Once the BP-network is trained, the response is also
very fast.

On the other side, the main disadvantages of the standard BP-algorithm are
the low speed of the training process (with a tendency to get stuck in local min-
ima of the error function), its high sensitivity to the choice of initial parameters
(especially topology) and low transparency of the final model. In the following
paragraphs, we will discuss these topics in more detail.

Time costs Due to recurrent computations of the back-propagated error δpj ,
the time complexity of one iteration of the BP-algorithm is O(W 2), where W is
the number of weights (and thresholds) in the network. Nevertheless, for many
even simple real applications the training process may be slow – especially in
terms of the number of iterations and the total training time. The low speed is
partly a coincidence of the simplicity of the algorithm, but it may be caused also
by other factors, such as bad choice of the topology and other model parameters.

Furthermore, the training set should be prepared carefully. It should be well-
balanced, represent adequately the desired network function and cover the input
space as well as possible. If the dimensionality of the input data is high, more
training patterns are needed to achieve good model performance and general-
ization. Poor data representation with a larger number of irrelevant inputs may
lead to slow convergence and may even prevent the BP-network from learning the
task. To accelerate the training process, it is also important to normalize both
the input and output patterns. According to LeCun [64], the input variables
should be uncorrelated.

Long training times can be also caused by paralysis caused by sigmoid sat-
uration. The back-propagated error δpj is proportional to the derivative of the
transfer function f ′(ξj). If the potentials ξj are (absolutely) large, the values of
f ′(ξj) (and δpj) are almost zero (it is caused by flat tails of sigmoidal and similar
transfer functions). A neuron is saturated, if this happens for most of the training
patterns. Input weights of a saturated neuron stop adapting. If there is a larger

22



number of saturated neurons in a BP-network, the training becomes extremely
slow or it can even stop in a poor state.

Large potentials can be caused by great input weights or inputs. Therefore,
the problem of paralysis can be significantly reduced by normalization of the
input and output patterns – the desired outputs should be within the range of
the corresponding transfer function. It is also advisable to initialize the weights
adequately with small random values and to use an antisymmetric transfer func-
tion (such as hyperbolic tangent) [48], [95]. Further possibility is to detect and
resolve the paralysis during training [116] (e.g., by reducing the training rate or
by scaling the weights).

The speed of training and even the convergence depends on a careful choice
of the learning rate 0 < α ≤ 1. If the value is too high, sufficient minima of the
error function can be skipped or the algorithm may tend to oscillate around the
minimum. If α is too small, the training will become extremely slow (and it can
more easily get stuck in a poor local minimum of the error function).

The optimal choice of α depends not only on the given task, but also on other
aspects, such as the current position in the weight space and the error surface.
In flat regions of the error surface, the value of α could be higher, while in steep
regions it should be lower. Faster training can be achieved (and the problems of
local minima and loops can be fixed) by changing the learning rate dynamically
during training according to the current error trend. There are various adaptive
learning rate methods which differ in the heuristic rule that alters the training
rate (e.g., delta-bar-delta [52] or Rprop [99]).

The problem of especially deep networks is that the first layers often learn
very slowly – because the term δpj is diminished when back-propagated through
the network layers. For each neuron j, the back-propagated error δpj is a linear
combination of the error terms form the above layer multiplied by the derivative of
the transfer function f ′(ξj) (1.18). However, the value of f ′(ξj) is for the common
transfer functions between 0 and 1 (see Figure 1.2 on page 12). Therefore, δpj may
become very small after passing through several network layers and the training
process may become imbalanced.

A possible solution represent local learning rates αj, unique for each neuron
j [95]. To compensate the decreasing δpj, αj can grow in the direction from the
output to the input layer. For neurons in the first layers, αj can be even much
greater than 1.

In steep valleys of the error function, following the negative gradient of the
error function can lead to frequent and huge oscillations even for relatively small
values of the learning rate α. To fix this problem, a common modification of the
BP-algorithm – learning with momentum – can be useful. The idea is to stabilize
the adaptation process by taking into account also previous weight changes. The
formula 1.12 is modified in the following way:

∆wij(t+ 1) ' −α ∂Ep
∂wij

+ αm∆wij(t), (1.24)

where 0 ≤ αm < 1 is the momentum rate.
When learning with momentum, the weight vector movement tends to be

more stable. This may speed up training in flat regions of the error surface and

23



stabilize oscillations in narrow valleys. However, if the momentum rate is too
high compared to the learning rate (and with respect to the solved task), the
algorithm may skip shallow local minima of the error function and may not be
able to follow a curved valley in the error surface. Simultaneous tuning of both
the learning rate and the momentum rate is necessary, which brings a further
difficulty into the training process.

If the training time is a critical option, there is also a possibility to use a more
sophisticated (e.g., second order or conjugate gradient) optimization method. A
disadvantage of faster training algorithms is, that their generalization ability can
be comparable or even worse than for the standard BP-algorithm, because their
chance of overtraining (during the same amount of time) is greater. However,
various heuristics and even sophisticated techniques can be used without regard
to the chosen training algorithm to assure sufficient generalization.

A common approach to avoid overtraining is the so-called early stopping (a
stop criterion based on the network error on the validation data). A further
possibility is to implement some of the general sampling methods (e.g., cross-
validation). Ensemble learning is in a way similar to cross-validation, it is based
on training several models (e.g., BP-networks with different configurations) and
combining their outputs. A problem of this method is inefficiency (a large number
of BP-networks needs to be trained) and no guarantee of improved generalization
compared to a single well-tuned model.

Sensitivity to parameters One of the main drawbacks of the BP-algorithm
is its high sensitivity to the choice of initial parameters with respect to the given
problem. When applied to real-world applications, the method is sometimes
accused of poor performance and poor generalization, which is however an impact
of little effort invested in tuning of the parameters (and poor preprocessing of the
training set).

We already discussed the issue of the learning rate α and momentum rate αm.
Further options that have to be pre-set, are the topology, transfer functions and
their parameters, error function, weight initialization technique, stop conditions
or weight update strategy (e.g., batch learning).

The search for an optimal combination of values of critical network parame-
ters, such as the learning rate or topology, is a demanding part of the training
process. The common approach is to train the BP-network more times with
various parameters’ settings and then to choose the best model. This is easy
to implement, but usually extremely time consuming. Another possibility is to
use methods that set the parameters dynamically (such as adaptive learning rate
methods) or alternative training algorithms with less optional parameters or more
robust to their actual setting (i.e., Quickprop [32]).

Maybe the most critical BP-network parameter is its topology. It should
correspond to the complexity of the analyzed data. If the network is too small,
it is not able to learn the task properly. On the contrary, if it is too large, it has
a tendency to overtrain. Therefore, when training a larger network, we also need
more training patterns to assure good generalization.

Unfortunately, even if the optimum size of the network were known, it might
be difficult to train such a network completely from scratch [103], because it may

24



require a very specific set of weights. For larger networks there may be more
ways to fit the data and therefore training may be faster and easier. Pruning
techniques applied to larger already trained networks might represent a viable
option in such a case [96]. An alternative to pruning methods is the opposite
approach – the constructive methods (e.g., cascade correlation [33]).

Occam’s razor, one of the basic principles of machine learning, prefers simple
models to the complex ones. A simple model doesn’t mean in the context of
BP-networks just a smaller topology, but also smoother network function, lower
curvature and a larger margin set along the separating hyper-planes. Such BP-
networks are expected to have smaller VC-dimension and generalize better [16,
46, 121].

To reduce the model complexity, an additional prior information about the
problem beside the training set may be useful – in the form of a hint function [2],
or in the form of additional training patterns. Another possibility is to add an
appropriate penalty term to the error function. A widely-used example of such
a regularization method is weight decay [119] that forces all the network weights
to be smaller.

Training with noisy data (jitter) is based on adding noise to the input patterns
during training. It was empirically proved to improve generalization and smooth-
ness for a wide range of problems especially when there are not enough training
patterns [69, 104]. However, it can be quite inefficient, because for some tasks a
large (and a priori unknown) number of noisy patterns need to be generated.

Transparency of internal structure Another big disadvantage of standard
BP-networks is that the model doesn’t tend to develop a transparent network
structure. For such networks, it is not clear, what is the relation between the
training data and the weights and activities of hidden neurons. Therefore it is
extremely difficult to ‘guess’ the real meaning of every particular hidden or even
input neuron for a proper network output. Extracting knowledge, especially rules,
from the model is extremely difficult. Such networks often use small differences
of neuron outputs to distinguish between the presented patterns.

A possible solution is a penalty term added to the error function that enforces
larger margins along the separating hyper-planes or even clear internal represen-
tation of the particular hidden neurons. An example of such approach is the
method of learning internal representation [86].

It is also expected that it may be easier to extract the knowledge from BP-
networks with simple and smooth network functions. Therefore, pruning tech-
niques and other methods reducing their VC-dimension may be helpful also in
this respect.

Although there are various fast training algorithms and techniques that improve
generalization, sometimes the standard BP-algorithm itself can yield results sim-
ilar to more sophisticated approaches – especially for simpler tasks with a low
dimension of the inputs and a sufficient number of training patterns. However,
even in such a case, the procedure of parameter tuning can be difficult and time-
consuming. For large-scale and demanding tasks (like data and web mining or
multimedia data processing), the more refined methods can definitely mean a
significant improvement.

25



26



2. Goals of the thesis

27



2.1 Introduction

Real-world data often contains non-linear dependencies, that are very difficult to
extract by means of standard methods. The process of knowledge-extraction is
thus often very time-consuming, without the guarantee of success. We want to
find such dependencies as quickly as possible and to describe them as simply as
possible.

To solve this task, we decided to use the computational model of BP-networks.
Our choice has several reasons: BP-networks are a robust computational model
with good approximation and generalization abilities, capable of finding non-
linear dependencies in the data. Moreover, BP-networks are applicable to a wide
range of complex problems. Both the model and its training process can be
easily modified to overcome possible difficulties (e.g., overtraining) and achieve
additional requirements (e.g., on the internal structure of the model or on the
speed of the training process).

On the other hand, the BP-network model has a tendency to create relatively
complex internal structures. When compared to the classical statistical models
(e.g., linear regression, decision trees), BP-networks are more likely to find non-
linear dependencies in the data. However it may be more difficult to describe
these relations (e.g., in the form of rules).

There are more reasons to seek a robust, transparent and simple internal
structure of the BP-network: The main reason is the transparency and compre-
hensibility of the model. Moreover, if the created network function is overtrained
rather than smooth, the model tends to be sensitive to noise in the data and
generalize worse.

As we discussed in Section 1.5, the prediction and generalization abilities
of a BP-network depend strongly on many aspects, including an appropriate
choice of the topology and other tunable parameters. A further factor that affects
generalization is the quality of the training set (particularly, the relevance and
mutual dependence of the input features). Excessive task dimensionality is a
serious problem of many practical implementations of BP-networks.

For these reasons, there has been a strong effort in recent years to develop
techniques that will force the system to find by itself the optimal topology and
to ignore redundant and irrelevant inputs. Further methods intend to force the
BP-network model to create a robust, transparent and simple internal structure.
Other methods are focused on fast training or on generalization improvement.

Unfortunately, a large number of the techniques that solve one of the discussed
problems make some of the other problems worse. For example, techniques, which
effectively simplify the BP-network structure (e.g., pruning methods), are usual-
ly very costly and parameter-sensitive. To reduce the problems of the particular
methods, a possible solution is to combine several methods together (e.g., a fast
training algorithm that generalizes worse with a technique that avoids overtrain-
ing).

2.2 Statement of the main goals

We focus on the usage of the computational model of BP-networks for fast ex-
traction of non-linear dependencies that are hidden in the data. For this reason,

28



the main goal of this work is to develop a general framework for BP-network
training with the following features:

• The trained BP-network should approximate well the desired network func-
tion and generalize adequately.

• The training process should be as fast as possible.

• The applied methods should have just a small number of tunable parameters
and be robust to the choice of their values.

• The training algorithm should force the BP-network model to create a ro-
bust, transparent and simple internal structure.

• The model itself should identify relevant input features in the data.

• The formed network structure should simplify knowledge extraction from
the model and make the interpretation of the extracted knowledge easier.

Better results can be achieved when combining advantages of several tech-
niques together. Therefore, to reach our goals, our framework will take advantage
of several existing and newly developed techniques for BP-network training.

The goals of the work will be achieved through the following steps:

1. We will theoretically analyze and discuss the related methods and their fea-
tures. Related techniques will be divided into the following categories: fast
training of BP-networks, feature selection, structure optimization, general-
ization improvement, and creation of a transparent network structure.

2. We will design and implement the framework for BP-network training that
will have the above-specified properties.

3. We will evaluate the performance of the proposed methods. The behavior
and the characteristics of the framework will also be compared experimen-
tally with alternative techniques for BP-network training, regularization,
feature selection and pruning.

The experiments will be performed on several data sets of various properties –
discrete and continuous, artificial and real-world, simple and complex. To achieve
comprehensible and sufficiently general test results, representative datasets from
the respective groups will be chosen carefully. Consequently, an appropriate
preprocessing of the data will be done.

The experimental analysis will concentrate on practical features of the meth-
ods in order to answer the question whether and how well the set goals were
achieved.

2.3 Chronological structure of the goals

As already stated, the main aim of this thesis is to develop and experimentally
evaluate a general framework for BP-network training, with an emphasis put on
the above-discussed requirements. To structure our work chronologically based
on the successive progress of our research in the past years, we will now divide our
goal into three sub-goals. Later in this thesis, in Chapter 4, we will propose three
successive versions of our framework that will focus on solving the respective sub-
goals.

29



1. Fast knowledge extraction: We seek a training algorithm that will find
a transparent structure of the entire network automatically during training.
At the same time, the training algorithm should be fast and it should not
reduce the prediction and generalization abilities of the trained BP-network.

2. Topology simplification: We want the training algorithm to find an ad-
equate and simple topology of the BP-network automatically during train-
ing. Moreover, it should identify relevant input features in the data and
important hidden neurons.

3. Fast creation of a simple and clear internal structure: We search for
an efficient training algorithm, that will fulfill both previous goals at once.
Namely, it should be fast and generalize well. It should also automatically
identify important input features and form a simple and clear structure of
the entire network. In this way, it should facilitate knowledge extraction
from the model.

In the following paragraphs, we will discuss these three sub-goals in more
detail.

2.3.1 The first goal – Fast knowledge extraction

Our first goal is to design a framework for training of BP-networks, that will
provide:

• Speed: A fast training algorithm, that doesn’t have many tunable param-
eters and is robust to their choice.

• Transparency: Techniques that force the model to create a clear and
transparent internal structure that will simplify knowledge extraction from
the model.

• Generalization: Techniques that force the BP-network function to be
smooth and generalize well.

A brief analysis of these three topics follows.

Speed The standard method for training BP-networks is the BP-algorithm. As
we discussed in Section 1.5, drawbacks of this simple training technique are both
the relatively low speed of the training process and its high sensitivity to the
choice of initial parameters.

However, there are enhancements of the BP-algorithm that speed up the train-
ing (e.g. learning with momentum, early stopping, adaptive learning rate meth-
ods), or we can choose among the more sophisticated training techniques (e.g.,
second order or conjugate gradient optimization methods).

A problem of most of the fast training algorithms (e.g., the adaptive learning
rate methods) is that they introduce many tunable parameters. Multiple pa-
rameter tuning is a very demanding task when training BP-networks. Some of
the methods can even worsen the generalization ability of the model (e.g., relax-
ation methods or weight decay) [100]. Other methods are impractical for large-
scale problems due to their great space complexity (e.g., quasi-Newton methods,
Levenberg-Marquardt method [71]).

30



If we look for a fast training method with both adequate generalization and
low space complexity, we can choose among the family of conjugate gradients
methods. These techniques are also robust to noise and outliers in the data.
Moreover, especially the Scaled conjugate gradients training algorithm (SCG)
[75] reduces the number of parameters that have to be set.

Transparency Most of the standard methods for training of BP-networks (e.g.,
BP-algorithm, SCG, Levenberg-Marquardt) form models, where the role and im-
portance of every single neuron or even whole parts of the original network re-
mains unclear in general. Interpretation of knowledge extracted by a BP-or SCG-
trained BP-network is difficult.

However, there are regularization techniques that help to make the internal
structure more transparent – namely the method of learning condensed internal
representation (IR-algorithm) and the method of learning unambiguous internal
representation (UIR-algorithm) [86]. The objective of both methods is to obtain
such a structure of the trained BP-network that would be equivalent to rules and
enable thus easier knowledge extraction from the model.

An advantage of the IR- and UIR-methods is that they can be combined
with all of the above-discussed training algorithms. They are also expected to
improve the generalization ability of the trained BP-networks, because they favor
smoother network functions and facilitate further pruning of the trained model
[86].

A disadvantage of the IR- and UIR-methods is their sensitivity to the choice
of the initial parameters that can affect also the prediction and generalization
abilities of the final networks. The UIR-method suffers also from high time and
space costs.

Generalization An adequate generalization ability of the BP-network mod-
el depends on many aspects (e.g., a careful choice of model parameters and
preprocessing of the training set, choice of the training algorithm). Additional
techniques are thus often needed to assure sufficient generalization and to avoid
overtraining.

In this respect, we may highlight especially learning from hints [2], training
with jitter [73, 93, 104], cross-validation and early stopping [95], and the methods
for structure optimization. Early stopping and cross-validation are simple yet
efficient mechanisms to prevent overtraining. Some of the more sophisticated
methods (e.g., learning from hints, training with jitter, some of the regularization
and pruning techniques) also try to reduce the VC-dimension of the final network
structures and make the network function smoother. While training with jitter
suffers from high time costs and is restricted to just some of the discussed training
algorithms, learning from hints is a generally-usable method that can even make
the training process faster.

To take advantage of the above-described methods and to overcome their limits,
a possible solution is to combine them. Therefore, we decided to choose the
most promising methods from each group and combine them together in order to
achieve the above-stated requirements.

31



2.3.2 The second goal – Topology simplification

Our second goal is to enhance our framework for training of the BP-networks
with Structure optimization:

• Simplification of the topology: Creation of a simple yet adequate model
topology.

• Measuring relevance: Automatic detection of important and irrelevant
parts of the BP-network.

• Feature selection: Sophisticated selection of relevant input features.

In the following paragraphs, we will discuss these topics in detail.

Simplification of the topology The topology of a BP-network is a very im-
portant model parameter. From our point of view, extracting knowledge from a
smaller network with a simple structure is much easier. The optimal choice of
topology is given by the task and it affects both the approximation and gener-
alization abilities of the model. While most of the standard training algorithms
work with a fixed topology, structure optimization methods (especially pruning
algorithms, regularization techniques and network construction methods) try to
find the optimal topology automatically during training.

Network construction techniques [5, 6] start with a small topology and in-
crementally add neurons and weights until a reasonable structure is reached. A
disadvantage of these methods is that they usually require special training algo-
rithms (e.g., genetic algorithms), the training process is usually very slow and
the model has strong tendency to overtrain.

Pruning algorithms [94] start training with a large topology and then remove
redundant parts of the model until a reasonable topology is achieved. The objects
of pruning are usually edges, hidden neurons or input neurons.

An advantage of the pruning techniques is that they can be easily combined
with most of the discussed training algorithms. Adequate pruning may improve
generalization and prediction abilities of the model [34]. The main problem of
the pruning methods is to set their optional parameters carefully. They are
especially the relevance measure to identify redundant elements to be pruned,
and the heuristic rules, that will control the pruning process.

Regularization techniques try to eliminate redundant elements (typically wei-
ghts) from the network already during training. Most of such methods (e.g.,
weight decay [119], weight elimination [117]) add a penalty term to the error
function that forces the BP-network, e.g., to decrease the absolute values of the
weights. Weights smaller than a given threshold are then regarded as irrelevant
and removed. A disadvantage of weight decay and similar methods is that they
tend to decrease the generalization ability of the model and create smaller yet
not transparent network structures.

Measuring relevance Some of the pruning techniques use a relevance measure
to identify redundant elements to be pruned. They are thus able to identify
significant input features and relevant hidden neurons or weights. If we knew,
how the inputs impact the outputs and which inputs are more significant than the

32



other ones, we could understand better the internal structure of a BP-network
and we could easier explain the underlying process.

Many relevance measures are based on the sensitivity analysis [123]. Sensitiv-
ity analysis tries to quantify the response of a computational model to parameter
perturbations. There are more approaches to sensitivity measurements – with
respect to the error function or with respect to the BP-network’s outputs. Their
advantage is a high accuracy. Their disadvantage is, that computing the ex-
act sensitivity coefficients [34, 126] is relatively costly. However, there are also
less precise, but efficient approximative measures (e.g., weight product [108] or
optimal brain damage [62]).

Unfortunately, the sensitivity criteria alone are not capable of detecting all re-
dundant neurons or weights, especially if the internal structure of the BP-network
is too complex. Most of the sensitivity criteria assume that inputs and activities
of hidden neurons are mutually independent and numerical. A possible solution
may be to combine the chosen pruning technique with a suitable regularization
technique that would make the relevance measurement easier.

Feature selection Because excessive task dimensionality started to be a prob-
lem of many computational models including BP-networks, feature selection has
became an important part of data preprocessing.

There are many simple yet efficient model-independent feature selection tech-
niques (e.g., filter methods based on correlation coefficients, on the information
theory or on the clustering principle [40]). Their disadvantage is, that they are
able to identify just linear dependencies between the input features and the out-
puts. Moreover, they are not able to identify redundant and mutually correlated
input features.

In the case of BP-networks, feature selection can be considered as a part of
structure optimization. Especially the above mentioned pruning techniques are
useful in this respect. Some of them (e.g., sensitivity-based pruning methods) are
able to identify also complex non-linear relationships between the input features
and the outputs. Although such techniques usually perform better than filter
methods, they suffer from higher computational costs.

To reach our second goal, we decided to use some the above-mentioned tech-
niques for structure optimization. Especially the pruning techniques based on
the sensitivity analysis [27, 28, 29, 34, 122, 126] seem to be advantageous, as they
manage all our requirements (on structure optimization, feature selection and
relevance measurement) at once. If we decide for pruning, we will have to choose
a concrete relevance measure and a set of heuristic rules, that will control the
pruning process. Another possibility is to use a suitable regularization technique
to speed up and simplify pruning.

A further question is, which of the discussed techniques would fit most to the
methods already included in our framework. Our effort is not only to adequately
form during training as small BP-network topology as possible. The BP-network
structure should also be comprehensible and it should simplify knowledge extrac-
tion from the model. Therefore, the chosen techniques should not work against
the transparency of the model.

33



2.3.3 The third goal – Fast creation of a simple and clear
internal structure

Our third goal will be to enhance our framework to achieve both the first and the
second goals at once:

• Generalization: The framework should favor smooth BP-network func-
tions that contribute to adequate generalization.

• Speed: The training process should be as fast as possible and robust to
the choice of initial parameters.

• Transparency and structure optimization The BP-network should cre-
ate a small, simple and transparent internal structure during training. It
should also automatically identify relevant input features. The created mod-
el structure should simplify the further knowledge extraction.

Our second sub-goal didn’t focus on efficiency. A problem of most of the
methods for structure optimization (including pruning and regularization tech-
niques) are high computational costs. The most promising pruning methods are
based on the sensitivity analysis. Their advantage is that they are not in conflict
with the methods for improved transparency, they improve generalization ability
of the model, and that they support creation of a smooth network function.

To support the sensitivity-based pruning, a combination with a sensitivity-
based regularization technique would be helpful. However, as the sensitivity
coefficients are quite complex, we expect, that an exact sensitivity-regularization
technique would also be very computationally costly. Therefore, in order to speed
up the training process, we should look for approximative solutions – especially
for an approximative sensitivity-based regularization technique.

34



3. Analyzed methods

35



3.1 Methods for fast training of BP-networks

The standard BP-training algorithm is based on the same strategy like most
other optimization methods designed to minimize functions. The minimization
is a local iterative process and the approximation is often given by the first or
second order Taylor expansion of the error function (1.10).

Iterative weight adjustment begins in a starting point – configuration ~w1. For
each point ~wt, determining the next point ~wt+1 involves two independent steps.
First, the search direction ~gt has to be determined, i.e., in what direction in the
weight space we want to move in the search for a new point ~wt+1. Once the search
direction has been found, the step size αt has to be determined. The configuration
~wt is then updated using the formula:

~wt+1 = ~wt + αt ~gt. (3.1)

If the search direction is set to the negative gradient ~gt = −E ′(~wt) and the
step size to a constant (i.e., the learning rate), then the algorithm becomes the
batch variant of the gradient descent based BP-algorithm. The gradient de-
scent algorithm is based just on the linear approximation of the error function
E(~w+~z) ≈ E(~w) +E ′(~w)T~z. The imprecise approximation may explain, why the
convergence of the standard BP-algorithm is relatively slow, especially for large-
scale real data. In theory, the asymptotic convergence rate of the BP-algorithm
is linear [95] – at each step, the error is reduced by a constant factor.

As discussed in Section 1.5.2, faster training of the BP-algorithm can be
achieved by learning with momentum or/and by using an adaptive learning rate
method, that changes the learning rates dynamically during training (e.g., the
algorithm of Silva and Almeida [105], delta-bar-delta [52] or Rprop [99]). For the
method of Silva and Almeida, the adaptation rule has the form ~wt+1 = ~wt+ ~αt ~gt.
The step size is local (unique for each weight) and is updated after each epoch t
according to the following heuristic:

αt+1,i =


uαt,i, gt−1,i gt,i > 0
dαt,i, gt−1,i gt,i < 0
αt,i, otherwise

(3.2)

where i indexes the elements of ~gt and ~αt. u > 1 and 0 < d < 1 are pre-set
constants. The step size is increased, if the partial derivation has the same sign
in the steps t− 1 and t. It is decreased, if the partial derivation has the opposite
sign in the steps t− 1 and t.

Adaptive learning rate methods automate the process of tuning the parameter
α and are usually much faster than the standard BP-algorithm with a sub-optimal
choice of α. However, they are not guaranteed to be faster and generalize better
than the well-tuned standard BP-algorithm. A disadvantage of most of the adap-
tive learning rate methods is that they need additional storage capacity (e.g.,
for the method of Silva and Almeida, for the vectors ~gt−1 and ~αt). They also
introduce further parameters to the model to be tuned.

On the contrary to the BP-algorithm and adaptive learning rate methods, the
second-order optimization methods compute the search direction and step size
more precisely. They use the quadratic approximation of the error function. Let

36



E~w denote the quadratic approximation of E in the neighborhood of the point ~w:

E~w(~z) = E(~w) + E ′(~w) T~z +
1

2
~z TE ′′(~w)T~z. (3.3)

When minimizing E~w(~z), we search for the solutions of the following linear equa-
tion:

E ′~w(~z) = E ′′(~w)~z + E ′(~w) = 0. (3.4)

The Newton’s method computes the solution directly:

~z = − (E ′′(~w))
−1

E ′(~w), (3.5)

where (E ′′(~w))−1 is the inverse Hessian matrix. The adaptation rule of the New-
ton method is:

~wt+1 = ~wt − (E ′′(~w))
−1

E ′(~w). (3.6)

An advantage of the Newton’s method is its fast convergence [95]. A problem
is, that to ensure fast training and convergence to the minimum of the error
function, it requires the Hessian matrix to be symmetric and positive definite,
which is usually not true for the real-world tasks.

Definition 6. The real N ×N matrix A is

1. symmetric, if AT = A,

2. positive definite, if ∀~x 6= 0, ~x ∈ <N : ~x T A~x > 0.

Another problem is, that computing and storing the Hessian matrix and/or
its inverse can be a difficult task. The inverse of the Hessian matrix needs to be
computed in each iteration. It requires the storage O(W )2, where W is the length
of the weight vector, and up to O(PW 2) operations to compute (3.6), where P
is the number of training patterns [16]. The time and space complexity can be
enormous, especially for larger network topologies.

The quasi-Newton methods (e.g., the Levenberg-Marquardt method [71]) try
to overcome the problems of the Newton method by computing just an approxi-
mation of the Hessian matrix. However, the space complexity is still O(W )2 [48].
On the other hand, the Levenberg-Marquardt algorithm is faster than other first-
and second-order training algorithms for many tasks [42]. However, the method
is sensitive to the choice of initial parameters (especially weights), to the noise
in the data and it tends to overtrain [20]. Furthermore, its storage requirements
make it inefficient and impractical for large-scale problems [42].

Another group of efficient training algorithms that use the second-order in-
formation are Conjugate gradients methods.

3.1.1 Conjugate gradients methods

Unlike the full second-order optimization methods, the Conjugate gradients al-
gorithms (CG-algorithms) don’t compute or store the Hessian matrix. Instead,
they are based on the concept of mutually conjugate search directions.

Definition 7. The non-zero vectors ~p1, · · · , ~pk ∈ <N are mutually conjugate with
respect to the symmetric and positive definite N ×N matrix M , if ~pi

TM~pj = 0
for all i 6= j, 1 ≤ i, j ≤ N.

37



In each step of the algorithm, the actual search direction is determined to be
conjugate (with respect to the Hessian matrix) to all preceding search directions.
This prevents the respective adjustments of the weight vector to cancel out pre-
vious changes and speeds up the training process. Figure 3.1 shows a comparison
of the convergence of the BP-algorithm and the CG-algorithms when minimizing
a quadratic error function.

w1

w2

w1 w

(a) BP-algorithm

w1

w2

w1 w

(b) CG-algorithms

Figure 3.1: Example of the convergence of the BP-algorithm and CG-methods
when minimizing a quadratic error function. ~w1 is the starting configuration,
while ~w is the final configuration.

On the contrary to the Newton and quasi-Newton methods, the space com-
plexity of the CG-algorithms is comparable to the standard Back-propagation.
They require only O(W ) memory usage with W being the size of the weight vec-
tor. That makes this class of models convenient also for large-scale problems with
a large number of input features. Moreover, the CG-algorithms converge much
faster than the BP-algorithm for many tasks [11, 21]. The training time of the
efficient variants (e.g., the Scaled conjugate gradient method [75]), is usually com-
parable to the Levenberg-Marquardt algorithm (or even shorter for larger models
[42]). Theoretically, the convergence rates are super-linear for most problems
[95].

In the case of the CG-algorithms, the training process consists of independent
one dimensional line-searches along the mutually conjugate directions. Similarly
to other optimization methods, the adaptation rule has the form (3.1): ~wt+1 =
~wt + αt~gt, where αt is the step size and ~gt is the search direction. Also the
process of computing the mutually conjugate search directions is iterative. In the
first step, the search direction ~g1 is set equal to the gradient descent direction,
~g1 = −E ′(~w1). In each step t > 1, the search direction ~gt is determined as the
combination of the previous search direction and the current gradient descent
direction:

~gt = −E ′(~wt) + βt~gt−1, (3.7)

where βt ∈ < is a scaling factor.
The CG-algorithms are mostly efficient, if the error function E(~w) is locally

quadratic with a positive definite Hessian matrix. In such a case, the minimum
of E(~w) can be found by at most W iterations [16]. Unfortunately, as the error

38



function is usually not quadratic with a positive definite Hessian matrix, the
number of steps is usually higher than W . There are only W mutually conjugate
search directions, and therefore the methods need to restart periodically. During
the restart, the actual search direction is set to the current steepest descend
direction. The basic restart rule is to restart after every W iterations. The
efficiency of the algorithm can be increased by the use of a more sophisticated
restart method, e.g., the Powell-Beale restart rule [14, 91]. The algorithm is then
restarted, if the Powell’s inequality holds:

| ~g T
t ~gt−1 |≥ c‖ ~gt ‖2, c ∈ (0, 1). (3.8)

The variants of the CG-methods differ in the way, how they compute the values
of the parameters βt and αt. The most common formulae for the calculation of βt
without the explicit knowledge of the Hessian were introduced by Fletcher-Reeves
[35]:

βt =
‖ ~rt ‖2

‖ ~rt−1 ‖2 , (3.9)

and Polak-Ribiere [90]:

βt =
~r Tt (~rt − ~rt−1)

‖ ~rt−1 ‖2 , (3.10)

where ~rt = −E ′(~wt). These expressions are mutually equivalent for the quadratic
error function, but can yield different results for real-world tasks.

If the error function E(~w) is locally quadratic with a positive definite Hessian
matrix, the parameter αt can be computed exactly. In the following paragraphs,
we will derive the corresponding formula. Equally to the full second-order opti-
mization methods, the techniques of conjugate gradients minimize the quadratic
approximation of the error function E~w(~z) = E(~w) +E ′(~w) T~z + 1

2
~z TE ′′(~w)~z by

searching for the solution ~z ∗ of the equation (3.4): E ′~w(~z) = E ′′(~w)~z+E ′(~w) = 0.
Let ~g1, ..., ~gW be mutually conjugate with respect to the positive definite Hes-

sian matrix E ′′(~w). They form the basis in <W [75]. Let ~w be the initial weight
vector and ~z1 = ~0 be the starting point when searching for ~z ∗ minimizing E~w(~z).
Then ~z ∗−~z1 can be expressed as the linear combination of the vectors ~g1, · · · , ~gW :

~z ∗ − ~z1 =
W∑
t=1

αt ~gt ; αt ∈ < (3.11)

If the coefficients αt are known, ~z ∗ can be computed by ~z ∗ = ~z1 + α1~g1 + · · ·+
αW~gW , or iteratively in W steps:

~zt+1 = ~zt + αt~gt ; 1 ≤ t ≤ W,

~z ∗ = ~zW+1 (3.12)

A question remains, how to compute the coefficients αt minimizing E~w(~z).
Let ~w1 = ~w + ~z1 ; ~wt+1 = ~wt + ~zt+1 ; 1 ≤ t ≤ W. Then ~wW+1 = ~w1 + ~z ∗ is the
final weight vector. Because ~gi

TE ′′(~wt)~gj = 0 for all i 6= j, 1 ≤ i, j ≤ W, by
multiplying the equation (3.11) with ~g Tt E

′′(~wt), we gain:

~g Tt (E ′′(~wt)~z
∗ − E ′′(~wt)~z1) = αt~g

T
t E

′′(~wt)~gt. (3.13)

39



Because of (3.4), we can substitute −E ′(~wt) for E ′′(~wt)~z
∗ and compute the

coefficients αt minimizing E~w(~z):

αt =
~g Tt (−E ′(~wt)− E ′′(~wt) ~z1)

~g Tt E
′′(~wt)~gt

=
−~g Tt E ′~wt(~z1)

~g Tt E
′′(~wt)~gt

. (3.14)

To avoid the evaluation of the Hessian matrix, the expression (3.14) can be
simplified in the following way: The value of E ′′(~wt)~gt can be approximated by
the vector ~st:

~st =
E ′(~wt + σt ~gt)− E ′(~wt)

σt
; 0 < σt << 1. (3.15)

Then, the parameter αt can be computed by:

αt =
−~g Tt E ′(wt)

~g Tt ~st
≈
−~g Tt E ′wt(~z1)

~g Tt E
′′(~wt)~gt

. (3.16)

If the error function is locally quadratic and the Hessian matrix E ′′(~w) is positive
definite, the process is guaranteed to find the global minimum of E~w. Otherwise,
it can easily fail. Unfortunately, the quadratic approximations on which the
algorithms work can be very poor when the current point is far from the desired
minimum. The solution to the problem is to alter the search in such a way that
it prevents the difficulties with the indefinite Hessian matrices. Therefore the
‘classical’ CG-algorithms don’t use the exact calculation, but find the value of
the step size αt by a line-search along the search direction ~gt:

αt = argminαE(~wt + α~gt) (3.17)

using, e.g., the Charalambous’ method [21]. For the quadratic error function,
the Charalambous’ method will find the optimal step size, otherwise it at least
ensures that the error doesn’t increase at any step.

Algorithm 3.1 summarizes the steps of the ‘classical’ CG-algorithms (with the
Fletcher-Reeves expression for the calculation of βt).

The line-search per each iteration to determine a better step size αt is a
critical part of the ‘classical’ CG-training, because it requires a large amount of
computational time. The main reason is, that it is necessary to compute the value
of the error function and the gradient several times, which can be time-expensive.
A further disadvantage of this approach is that it introduces problem-dependent
parameters that need to be tuned (e.g., the maximum number of iterations of
the line-search). In the following section, we will discuss the method of scaled
conjugate gradients that computes the parameter αt in a different and more
effective way.

3.1.2 Scaled conjugate gradients

An extremely efficient variant to the classical conjugate gradients methods rep-
resents the method of scaled conjugate gradients (SCG). This method has been
proposed by Møller in [75]. It avoids the line-search, typical for other conjugate
gradients methods. Instead, it computes the parameter αt in a way inspired by
the Levenberg-Marquardt approach [67]. Furthermore, SCG also eliminates most
of the problem-dependent parameters, typical for the ‘classical’ CG-algorithms.

40



Algorithm 3.1 General schema of the Conjugate gradients algorithms

0. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of the size W .

Training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}}.
1. Initialization:

Set the discrete time variable t = 1 .
Initialize the weight vector ~w1 with small random values.
Compute the steepest descent direction ~r1 = −E ′(~w1).
Set the search direction ~g1 = ~r1.

2. Compute the step size αt:
αt = argminαE(~wt + α~gt).

3. Update the weight vector and compute the new steepest descent direction:
~wt+1 = ~wt + αt~gt,
~rt+1 = −E ′(~wt+1).

4. If the restart condition is satisfied (e.g., t mod W = 0),
restart the algorithm and re-initialize the search direction ~gt+1:
~gt+1 = ~rt+1.

Else compute βt+1 and the new search direction:

βt+1 = ‖~rt+1‖2

‖~rt‖2
,

~gt+1 = ~rt+1 + βt+1~gt.

5. If the stop condition is not satisfied (e.g., ~rt 6= 0 ), set t = t+ 1
and go to step 2.,

else terminate and return the weight vector ~wt as the desired minimum
of the error function E.

The basic idea is to regulate the indefiniteness of the Hessian matrix by a
control parameter λt > 0 (Lagrange multiplier). The Hessian matrix E ′′( ~wt) is
then replaced by the matrix E ′′( ~wt) + λtI. The quadratic approximation E~wt of
the error E in the neighborhood of the point ~wt is altered in the following way:

E~wt,λt(~z) = E(~wt) + E ′(~wt)
T~z +

1

2
~z T (E ′′(~wt) + λ I) ~z. (3.18)

The optimal step size αt (see Eq. 3.14) can be expressed using the following
expression:

αt =
−~g Tt E ′~wt,λt(~z1)

~g Tt E
′′(~wt)~gt + λt ‖ ~gt ‖2

=
−~g Tt E ′~wt,λt(~z1)

~g Tt (E ′′(~wt) + λt I)~gt
(3.19)

and it can be controlled by the value of λt: the higher is the value of λt, the
smaller is the step size. Similarly to the ‘classical’ CG-algorithms, the Hessian
matrix is not evaluated. The value of (E ′′(~wt) + λt I)~gt is approximated by the
vector ~st:

~st =
E ′(~wt + σt ~gt)− E ′(~wt)

σt
+ λt ~gt ; 0 < σt << 1. (3.20)

Furthermore (because ~z1 = ~0):

E ′~wt,λt(~z1) = (E ′′(~wt) + λt I) ~z1 + E ′( ~wt) = E ′( ~wt) (3.21)

41



The step size αt is computed by:

αt =
−~gt T E ′( ~wt)

~g Tt ~st
=
µt
δt
≈

−~g Tt E ′~wt,λt(~z1)

~g Tt (E ′′(~wt) + λt I)~gt
, (3.22)

where
δt = ~g Tt ~st , µt = −~gt T E ′( ~wt). (3.23)

The value of the parameter δt ≈ ~g Tt (E ′′(~wt) + λt I)~gt indicates, whether the
altered Hessian matrix is positive definite: If for a given time step t : δt ≤ 0,
the altered Hessian matrix is not positive definite. In such a case, the value of λt
should be increased in order to make δt positive and the altered Hessian matrix
positive definite. Let λt, ~st a δt denote the new values of λt, ~st a δt, respectively.
The values of ~st and δt can be computed using the following formulae:

~st =
E ′(~wt + σt ~gt)− E ′(~wt)

σt
+ λt ~gt

=
E ′(~wt + σt ~gt)− E ′(~wt)

σt
+ λt ~gt + (λt − λt) ~gt

= ~st + (λt − λt) ~gt ,
(3.24)

δt = ~gt
T ~st = ~gt

T ~st + ~gt
T (λt − λt) ~gt

= δt + (λt − λt) ‖ ~gt ‖2 . (3.25)

To ensure δt > 0, it is necessary that λt > λt − δt
‖~gt‖2 .

A question is, how to set λt to get an optimal solution, i.e., to force E~wt,λt to
be a good quadratic approximation of E in the neighborhood of ~wt. Møller in
[75] recommends to set

λt = 2 (λt −
δt
‖ ~gt ‖2

). (3.26)

In such a case:

δt = δt + (λt − λt) ‖ ~gt ‖2

= δt + (2λt − 2
δt
‖ ~gt ‖2

− λt) ‖ ~gt ‖2

= −δt + λt ‖ ~gt ‖2, (3.27)

and

~st = ~st + (λt − λt) ~gt = ~st + (2λt − 2
δt
‖ ~gt ‖2

− λt) ~gt

= ~st +

(
λt − 2

δt
‖ ~gt ‖2

)
~gt . (3.28)

Because λt > 0, δt ≤ 0, it is ensured that δt = −δt + λt ‖ ~gt ‖2> 0
Because the parameter λt alters the Hessian matrix in an artificial way, E~wt,λt

may not be a very good approximation of E in some points even if the altered
Hessian matrix is positive definite [75]. A solution is to measure the quality of the
quadratic approximation E~wt,λt and dynamically change λt in the following way:

42



If E~wt,λt(αt~gt) is close to E(~wt + αt~gt), λt should be reduced. If the quadratic
approximation is poor, λt should be increased. This can be achieved by the com-
parison parameter ∆t, that measures the quality of the quadratic approximation:

∆t ≈
E(~wt)− E(~wt + αt~gt)

E(~wt)− E~wt,λt(αt ~gt)
=

E(~wt)− E(~wt + αt ~gt)

−E ′( ~wt)T αt~gt − 1
2
αt~g Tt (E ′′(~wt) + λt I)αt~gt

=
E(~wt)− E(~wt + αt ~gt)

αtµt − 1
2
α2
t δt

=
2 δt [E(~wt)− E(~wt + αt ~gt)]

µ2
t

.

(3.29)

The parameter λt is altered in each step t of the SCG-algorithm using the
following rules:

• If ∆t ≥ 0.75, then λt+1 = 1
4
λt.

• If ∆t < 0.25, then λt+1 = λt + δt (1−∆t)
‖~gt‖2 .

Algorithm 3.2 describes in detail the respective steps of the SCG-algorithm.
The SCG-algorithm belongs to the most efficient methods for BP-network

training. The calculation complexity of the SCG-algorithm is O(W 2) per iteration
and just O(W) memory usage [75]. For many tasks, the convergence is a degree
faster then for the BP-algorithm, while the approximation and generalization
abilities of the trained networks are comparable [42], [95]. It is not clear, which
variant of the CG-algorithms is the best in practice, because different variants
outperform the others for different tasks [42]. On the contrary to the classical CG-
algorithms, the SCG-algorithm computes the step size in a more sophisticated
way. Moreover, it minimizes the number of tunable parameters. For this reason,
we preferred to use this method in our framework.

43



Algorithm 3.2 Scaled conjugate gradients algorithm (SCG):

0. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of the size W .

Training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}},
1. Initialization:

Set the discrete time variable t = 1 and set success = true .
Initialize the weight vector ~w1 with small random values.

Set scalars such that 0 < σ ≤ 10−4 , 0 < λ1 ≤ 10−8 and λ1 = 0 .
Calculate the steepest descent direction ~r1 = −E ′(~w1).
Set the search direction ~g1 = ~r1.

2. If success = true , then calculate the second-order information:

σt = σ
‖ ~gt ‖ ; ~st = E′ ( ~wt +σt ~gt )−E′ ( ~wt )

σt
; δt = ~gt

T ~st .

3. Scale ~st , δt :

~st = ~st + (λt − λt )~gt ; δt = δt + (λt − λt ) ‖ ~gt ‖2 .

4. If δt ≤ 0 , then make the Hessian matrix positive definite by setting:

~st = ~st +
(
λt − 2 δt

‖~gt ‖2

)
~gt ; λt = 2

(
λt − δt

‖~gt ‖2

)
;

δt = − δt + λt ‖ ~gt ‖2 ; λt = λt .

5. Calculate step size αt : µt = ~g Tt ~rt ; αt = µt
δt

.

6. Calculate the comparison parameter ∆t :

∆t = 2 δt [E( ~wt )−E( ~wt +αt ~gt ) ]

µ2
t

.

7. If ∆t ≥ 0 , then a successful reduction in the value of the error
function E can be made:

~wt+1 = ~wt + αt ~gt ; ~rt+1 = −E ′ ( ~wt+1 ) ;

λt = 0 ; success = true .

7.a If tmodW = 0 , then restart the algorithm by setting: ~gt+1 = ~rt+1 ,

else create a new conjugate direction:

βt+1 =
~r Tt+1 (~rt+1−~rt )

‖~rt ‖2
and ~gt+1 = ~rt+1 + βt+1 ~gt .

7.b If ∆t > 0.75 then reduce the scale parameter: λt = 1
4
λt ,

else reduction in error is not possible:

λt = λt ; success = false .

8. If ∆t < 0.25 then increase the scale parameter: λt = λt + δt ( 1−∆t )
‖~gt ‖2

9. If the stop condition is not satisfied ( e.g., the steepest descent direction
~rt 6= 0 ), set t = t+ 1 and go to step 2),

else terminate and return the weight vector ~wt as the desired minimum
for the error function E.

44



3.2 Feature selection techniques

When using the BP-networks and other computational models (e.g., decision
trees) to solve real-world problems, the proper preparation of the training data
is essential. That involves particularly the process of feature subset selection
(FSS) that focuses on the serious problem of excessive task dimensionality [114].
The input to the FSS process is a set on input features that includes relevant
features important for the training but also redundant and irrelevant features
that will make the training more difficult or even impossible. The aim of the
FSS techniques is to identify a subset of significant input features and discard
the remaining ones.

There are several reasons, why to do feature selection [41]:

1. General data reduction decreases storage requirements and it may make the
training process faster.

2. When reducing the feature set, we save resources in the next round of data
collection and preprocessing.

3. A smaller set of informative and relevant features may improve the model
performance and increase its predictive accuracy. It is useful especially if
there is only a limited number of training patterns available.

4. Feature selection may supply to better data understanding and improve the
comprehensibility of the model.

In practice, superfluous inputs may also lead to worse generalization. Intu-
itively, the intrinsic generalization of an input pattern ~xp includes all the input
patterns ~xq, q 6= p that cannot be distinguished from ~xp under the (low-dimen-
sional) internal representation r: r(~xp) = r(~xq). Quite naturally, one would like
to group all the patterns from each class into a small number of equivalence class-
es, with each class having its cardinality as large as possible. A lower number of
equivalence classes implies reduced dimensionality of trained networks resulting
into a lower VC-dimension and improved generalization [114]. This general idea
has inspired several cluster-based feature selection techniques and methods based
on the sensitivity analysis.

Some of the techniques for feature extraction like PCA [53] try to identify mu-
tual correlations among the input features. Most of such techniques (e.g., PCA)
can detect just linear dependencies among the data. However, some sophisticated
methods can also detect non-linear relations among the data, e.g., the sensitivity-
based methods [29, 34].

Generally, feature selection methods can be classified into three categories:
filter, wrapper and embedded methods [17]. Filter methods are independent of
the selected computational model and training algorithm, which may be very
complex and sophisticated. Instead, they focus on efficiency and they are based
on a simple, often heuristic principle. Wrapper models use a predictor as a black
box to score the feature subsets. The embedded methods are usually specific to
the chosen computational model, while the feature selection process is a part of
the model training. Typically, wrapper and embedded methods have a better
performance than filter methods but require heavier computation costs. In the
following paragraphs, we will describe some of the methods for feature selection
in more detail.

45



3.2.1 Feature ranking methods

A high percentage of the filter methods are based on feature ranking. They use a
relevance measure that computes a complete order of features, while each input
feature is processed separately. Let Ri denote the relevance of the input feature
i , i = 1, ..., n, where n is the total number of input features. Then the FSS
process consists of the following steps:

1. Compute the relevance coefficients Ri for each input feature i = 1, ..., n.

2. Rank the input features according to their relevance.

3. Select n′ features with the highest values of relevance.

Correlation coefficients and information theoretic relevance measures

To detect relevant input features, we can choose among various simple or so-
phisticated relevance measures [40, 41]. A simple approach to feature relevance
measurement represent the correlation coefficients. They assess the degree of
linear dependence of individual input feature with the outputs. A widely used
correlation coefficient is the Pearson’s coefficient, that is restricted to tasks with
just one numerical output. For the wanted model function ϕ : <n → < and the
training set T = {[ ~xp, yp ] | ~xp ∈ <n, yp ∈ <, p ∈ {1, . . . , P}}, the Pearson’s
coefficient is defined as

Ri =
cov(Xi, Y )√
var(Xi)var(Y )

, (3.30)

with the estimate:

Ri =

∑P
p=1 (xpi − x̄i)(yp − ȳ)√∑P

p=1 (xpi − x̄i)2
∑P

p=1(yp − ȳ)2

, (3.31)

where ȳ = mean{q∈{1,...,P}} yq and x̄i = mean{q∈{1,...,P}} xqi, Xi is the i-th input
variable and Y is the output variable. Further correlation coefficients are based
on the classical test statistics (e.g.,T-test, F-test, χ2-test). Disadvantage of the
correlation criteria such as Pearson’s coefficient is that they can only detect linear
dependencies between input features and the output.

Several filters are based on Information theory [40]. Many of such filters rely
on empirical estimates of the mutual information between each input feature and
the output:

Ri = MI(Y,Xi) =

∫
xi

∫
y

p(xi, y)log2
p(xi, y)

p(xi)p(y)
dxidy = H(Y )−H(Y |Xi), (3.32)

where p(xi) and p(y) are the probability densities of xi and y, p(xi, y) is the
joint density. H(Y ) = −

∫
y
p(y)log2p(y)dy is the entropy of Y , H(Y |Xi) =∫

xi
p(xi)(−

∫
y
p(y|xi)log2p(y|xi))dxi is the conditional entropy of Y given Xi. The

difficulty of the information theoretic criteria is that the densities p(xi), p(y) and
p(xi, y) are all unknown and are hard to estimate from data, especially for the
continuous data and when the number of training patterns is small.

An advantage of the simple feature ranking methods sketched above is that
they are very efficient. Therefore, they can be used as preprocessing for more

46



sophisticated methods to spare computational costs, especially for tasks with
very large numbers of features.

On the other side, most of these methods require probabilities that are not
easy to estimate for continuous features, especially when the number of training
patterns is small. Some of the methods are even restricted to a particular type
of the data (e.g., discrete, with just one output).

A further disadvantage is, that most of the methods identify just linear de-
pendencies between the input features and the outputs. They are also not able
to identify redundant and mutually correlated input features [40]. The methods
assume that the input features are mutually independent and they rank variables
just based on their individual predictive qualities. However, input features that
are useless by themselves can be useful together with others.

Feature construction methods

A special class of filter methods is based on the construction of higher order
features from the original ones. The higher order features are then ordered based
on the variance they explain and only the best features are selected. The classical
representative of this approach is the Principal component analysis (PCA) [53].
This method generates linear combinations of features. The new feature vectors
are orthogonal in the original space. PCA has been used successfully in many
tasks to reduce the dimensionality of the data [53]. Yet in principle, PCA can
detect just linear dependencies among the data.

Cluster-based relevance measures

Many of the relevance measures are restricted to classification tasks and are based
on clustering [18], [24], [68]. Clustered data provide namely automatically an
intrinsic equivalence class structure expected to yield improved generalization
[114]. The aim of a classification task is to divide the training patterns into
several classes. In such a case, the training set has the form

T = {[ ~xp, dp ] | ~xp ∈ <n, dp ∈ {1, ..., cl}, p ∈ {1, . . . , P}}, (3.33)

where cl is the number of classes.
The training set T can be divided by a chosen clustering method (e.g., c-

means [70]) into k clusters C1, ..., Ck for a chosen k > 0. Let ~c1, ...,~ck be the
centroids of the clusters C1, ..., Ck. Let Ol ∈ {1, ..., cl} be the majority class for

the input patterns in cluster Cl and vector ~Al ∈ [0, 1]cl, Alj = 1 ⇐⇒ Ol = j.
For each training input pattern ~xp, p ∈ {1, ..., P} belonging to the cluster Clp , let

~ap = ~Alp . Then T̂ = {(~x1,~a1), ..., (~xP ,~aP )} is the new training set.
Several relevance measures may be used to select the subset SF ⊂ {1, ..., n} of

relevant input features. At first, the relevance Rli of the feature i for the cluster
Cl is computed for each input feature and each cluster:

Rli = mean
{p,~xp∈Cl}

rpi, (3.34)

where rpi denotes for an input pattern ~xp and feature i one of the relevance
measures listed below. Then, SF is selected in the following way: For each
cluster Cl, order the features according to Rli in the descending order and select

47



the first kl features before a great fall in Rli. If there occur more possible splits,
that one yielding less features is chosen. The resulting feature set is the union of
the feature sets for the particular clusters.

Distance-relevance [83] (dist) For the input pattern ~xp belonging to the
cluster Ckp with the centroid ~ckp and the input feature i:

rpi = −
|xpi − ckpi|∑
l 6=kp |xpi − cli|

. (3.35)

Minimum-relevance [83] (min) For the input pattern ~xp belonging to the
cluster Ckp with the centroid ~ckp and the input feature i:

rpi = −min

(
1,

|xpi − ckpi|
minl 6=kp |xpi − cli|

)
(3.36)

for minl 6=kp |xpi − cli| 6= 0. Otherwise, rpi = −1.

Maximum-relevance [83] (max) For the input pattern ~xp belonging to the
cluster Ckp with the centroid ~ckp and the input feature i:

rpi = −min(1,
maxl 6=kp(xpi − cli)−2

(xpi − ckpi)−2
) (3.37)

for maxl 6=kp(xpi − cli)−2 6=∞. Otherwise, rpi = −1.

Entropy-relevance [55] (entro) The relevance measure Ri does not depend
on clustering. For input patterns ~xp, ~xq, let

Dpq(SF ) =

√√√√∑
i∈SF

(
xpi − xqi

maxr xri −minr xri

)2

, (3.38)

D̂pq(SF ) = 2
Dpq(SF )

meanp,q Dpq(SF ) , (3.39)

R̂(F ) = −
n−1∑
p=1

n∑
q=p+1

[
D̂pq(SF ) log D̂pq(SF ) + (3.40)

+ (1− D̂pq(SF )) log(1− D̂pq(SF ))
]
, (3.41)

for the set of features SF ⊂ {1, ..., n}. For the feature i, the relevance measure is:

Ri = R̂({1, ..., n})− R̂({1, ..., n} \ i). (3.42)

Example

We will illustrate the cluster-based approach to feature selection on the Iris data
set [8] (Figure 3.2). The data set contains 150 training patterns, 4 input features
and 1 output feature. The output feature indicates one of three classes (‘Iris
Setosa’,‘Iris Versicolor’, and ‘Iris Virginica’), where each class refers to a type of
iris plant. The four input features are denoted as ‘Sepal length in cm’ (SL), ‘Sepal
width in cm’ (SW), ‘Petal length in cm’ (PL), and ‘Petal width in cm’ (PW).

48



4
6

8 2
4

6

0

2

4

6

8

Sepal Width
Sepal Length

P
et

al
 L

en
gt

h
Iris Setosa
Iris Versicolor
Iris Virginica

2345 0
5

10

0

0.5

1

1.5

2

2.5

Petal Length
Sepal Width

P
et

al
 W

id
th

Iris Setosa
Iris Versicolor
Iris Virginica

Figure 3.2: Graph of the Iris data set. The training patterns are denoted by
signs that indicate one of the three classes ‘Iris Setosa’,‘Iris Versicolor’, and ‘Iris
Virginica’.
To make the graphs comprehensible, each graph shows just three of the four input
features (via axes) – ‘Sepal Length’, ‘Sepal Width’ and ‘Petal Length’ (on the
left) and ‘Sepal Length’, ‘Petal Length’, and ‘Petal Width’ (on the right).

4
6

8 2
4

6

0

2

4

6

8

 

Sepal Width
Sepal Length

 

P
et

al
 L

en
gt

h

cluster 1
cluster 2
cluster 3

2345 0
5

10

0

0.5

1

1.5

2

2.5

 

Petal Length
Sepal Width

 

P
et

al
 W

id
th

cluster 1
cluster 2
cluster 3

Figure 3.3: Clustering of the Iris data set into three clusters using the c-means
algorithm. Centroids of the clusters are denoted by small black circles.
To make the graphs comprehensible, each graph shows just three of the four input
features (via axes) – ‘Sepal Length’, ‘Sepal Width’ and ‘Petal Length’ (on the
left) and ‘Sepal Length’, ‘Petal Length’, and ‘Petal Width’ (on the right).

49



Figure 3.3 shows a clustering of the Iris data into three clusters using the c-
means algorithm. Based on the data and its clustering, the above-listed relevance
measures can be computed in order to evaluate the relevance Rli of the particular
input features i ∈ {SL, SW,PL, PW} for each cluster l ∈ {1, 2, 3}. Bars in
Figure 3.4 illustrate, how the relevances Rli look like for the distance-relevance
and minimum-relevance measures.

1 2 3
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
Distance−relevance

Cluster

R
el

ev
an

ce
 o

f t
he

 li
st

ed
 fe

at
ur

es

 

 

Sepal Length
Sepal Width
Petal Length
Petal Width

1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0
Minimum−relevance

Cluster

R
el

ev
an

ce
 o

f t
he

 li
st

ed
 fe

at
ur

es

 

 

Sepal Length
Sepal Width
Petal Length
Petal Width

Figure 3.4: Relevance of the input features (‘Sepal Length’, ‘Sepal Width’,
‘Petal Length’, and ‘Petal Width’) for each cluster l ∈ {1, 2, 3}. The relevance is
computed using the distance-relevance measure (on the left) and the minimum-
relevance measure (on the right). The most relevant input features are denoted
by black arrows.

After computing the relevance Rli, the most relevant features can be selected
using the following heuristic: For each cluster l, order the input features according
to Rli in the descending order and select the first kl mostly-relevant features before
a great fall in Rli. The resulting feature set is the union of the feature sets for
the particular clusters.

Table 3.1 shows features selected using the the distance-relevance ( dist), min-
imum-relevance ( min), maximum-relevance ( max ), entropy-relevance ( entro),
Pearson’s correlation coefficient ( pearson, see Subsection 3.2.1 on page 46) and
sensitivity-relevance ( sens, see Subsection 3.2.3 on page 52) measures.

Table 3.1: Features denoted as relevant for the respective clusters and for the
entire data using the chosen feature selection techniques.

cluster dist min max entro pearson sens

1 SW SW SW SW, SL PL, PW PL, PW
2 SW all all SW, PL, PW PL, PW PL, PW
3 PL, PW PL, PW PL, PW PL – PL, PW
all SW, PL, PW all all all SL, PL, PW PL, PW

An interesting observation is, that for clusters 1 and 3, all of the cluster-based
methods denoted almost the same features as the most relevant (i.e., SW for
cluster 1 and PL, PW for cluster 3). However, the particular methods have various
outcomes for cluster 2. In sum, for a majority of the cluster-based methods, each
of the four input features was denoted as relevant for at least one of the three

50



clusters. Therefore, such methods (i.e., min, max and entro) selected all the
input features.

Another interesting observation is, that the sens method (that is independent
on the chosen clustering) selected the features PL, PW as the most relevant
for all the clusters and also for the entire data and the respective classes (‘Iris
Setosa’,‘Iris Versicolor’, and ‘Iris Virginica’).

3.2.2 Wrapper methods

Contrary to the feature ranking methods, the wrapper methods don’t measure the
relevance of each input feature separately, but they assess the relative usefulness
of the particular subsets of input features.

The FSS process consists in searching for an optimal subset of input features in
the space of all possible feature subsets. The quality of the subsets SF ⊂ {1, ..., n}
is evaluated based on the performance of the chosen computational model on SF .
In practice, important questions are:

1. Which computational model to use?

2. How to score the feature subsets based on the performance of the chosen
computational model?

3. How to search the space of all possible feature subsets?

Computational models widely used in this respect include decision trees, naive
Bayes, support vector machines and BP-networks, where especially BP-networks
are able to identify also non-linear dependencies in the data. Performance assess-
ments are usually done using a validation set.

An exhaustive search of the space of all possible feature subsets becomes for
higher numbers of input features computationally intractable. Therefore, the
wrapper methods usually use heuristic search strategies, e.g., branch-and-bound,
simulated annealing, genetic algorithms, or greedy search [58]. Computationally
advantageous are especially the greedy search strategies, namely forward selection
and backward elimination. In forward selection, we start with a single input fea-
ture and progressively incorporate other features into larger and larger subset. In
backward elimination we start with the set of all input features and progressively
eliminate the least promising ones.

When compared to filter methods, wrappers are still a relatively simple, how-
ever universal approach to FSS. They are in principle applicable to any type of
data. A disadvantage of wrapper methods are high computational costs, because
the chosen computational model has to be trained from scratch and evaluated
several times for various feature subsets. To decrease the computational com-
plexity, there is a need to reduce the number of examined feature subsets as
much as possible. However, if we choose a too rough search strategy, the method
will tend to overtrain [98].

A further disadvantage of the embedded methods is, that they may yield
very different feature subsets if the training data changes a little (e.g., if it is
corrupted by noise), or for various initial settings of the chosen computational
model [41]. A possible solution of this problem is the use of ensemble models
[112]. Ensemble models combine outputs from multiple computational models to
get a more precise and stable prediction. However, the price for the robustness
are greater computational costs.

51



3.2.3 Embedded models

Ideally, the system should learn to ignore redundant and irrelevant inputs by
itself. Embedded methods thus incorporate feature selection as a part of the
training process. They may be faster than the wrapper methods, because the
chosen computational model is trained only once. However the training process
may be more complex and computationally expensive than without the embedded
feature extraction.

BP-networks and feature selection

For BP-networks, the issue of feature selection can be looked at as the part of
structure optimization (see Section 3.3). Especially the pruning techniques try
to identify and eliminate irrelevant parts from the BP-network – edges, hidden
neurons and also input neurons, that correspond to the input features.

Most of the methods for pruning of the input neurons are based on the main
principles of sensitivity analysis (see Section 3.3.3 for details). A representative of
this approach is the method of Fidalgo [34] that is capable of detecting also non-
linear dependencies among the data. The sensitivity coefficients Sij are computed
as the mean absolute value of the derivatives of the j-th output with respect to
the i-th input over all of the P input patterns:

Sij =
1

P

P∑
p=1

∣∣∣∣∂ ypj∂xpi

∣∣∣∣ (3.43)

and express how and how much the solution to a given problem depends on the
data. Input neurons with low sensitivity coefficients are considered to be less
important and can be pruned from the network.

To measure also the curvature, both the first- and second-order partial deriva-
tives of the output variables with respect to the input variables can be used [122].

Sensitivity relevance (sens) The sensitivity coefficients can be used also
as a relevance measure for a feature ranking method. A neural network is then
trained on the training set T using the selected training algorithm, e.g., the
SCGIR algorithm (Algorithm 4.1). For the j-th BP-network output and input
feature i, let Sij be the sensitivity of the output j on the input i. Then

Ri = mean
j

Sij. (3.44)

A problem of this method is that the sensitivity coefficients are specific to a
concrete BP-network. Two well-trained BP-networks can produce very different
sensitivities. If we want to use the sensitivity coefficients as a universal feature
ranking measure, we have to average the results over a higher number of trained
BP-networks or to use an ensemble model [41].

Contrary to filters and wrappers, embedded methods are not a universal tool.
However, they can benefit from the skills of the chosen computational model,
while reducing the computational costs of the wrapper methods. Namely the

52



methods based on the BP-networks are able to capture also non-linear relation-
ships among input features and the outputs. Both embedded and wrapper meth-
ods tend to have higher capacity than filter methods and are therefore more
likely to overtrain [41]. Thus the filter methods may perform better for very
small training sets. Embedded and wrapper methods will eventually outperform
filter methods as the number of training patterns increases.

53



3.3 Methods for structure optimization

As already discussed, the topology of a BP-network is a very important option-
al parameter, that significantly affects both the performance and generalization
abilities of the model. Topology of the network should correspond to the com-
plexity of the analyzed data. If the BP-network is too small, it is not able to learn
the task properly. On the contrary, if it is too large, it has a tendency to overtrain
– it memorizes the training patterns but is not able to recognize patterns outside
of the training set. Therefore, when training a larger network, we also need more
training patterns to avoid overtraining.

There are several reasons for searching optimal (i.e., minimal) structure of BP-
networks. The main goal is to improve and speed up prediction and to achieve
better generalization. We appreciate the effectiveness of computation especially
when working with large data sets. Other objectives are to decrease sensitivity to
noisy data and to detect and manage the overtraining problem. Smaller networks
also need less training patterns.

Nevertheless, searching for an optimal topology has more objectives than just
an improved generalization and computational efficiency. It can also help create
a clear and transparent structure of the network. This simplifies the following
knowledge extraction. Moreover, some of the techniques for structure optimiza-
tion are able to identify significant input parameters and relevant hidden neurons
or weights. When we knew, how the inputs impact the outputs and which inputs
are more significant than others, we could understand better the internal struc-
ture of a BP-network and we could also easier explain the underlying process.
Extracting knowledge from a smaller network with a clear and simple structure
is also much easier.

There are many different approaches to structure optimization, which can be
divided into categories based on their principles and goals:

• Brute-force.

• Pruning algorithms.

• Network construction techniques.

• Probability optimization techniques.

• Regularization techniques.

Some of the methods just incrementally increase the number of neurons (e.g., net-
work construction techniques), other techniques only decrease the network size
(e.g., pruning algorithms), some adaptive methods enable both types of modifi-
cations (e.g., probability optimization techniques). In the following paragraphs,
we will describe each approach in more detail.

3.3.1 Brute-force methods

Brute-force is the most common approach, how to find the optimal network size
[94]. It is based on successive training of smaller networks, until the smallest
topology is found, which still fits the data. This process is very time-consuming
– many networks have to be trained. We also have to consider the remaining

54



initial parameters, because the behavior of the trained network is very sensitive
to them.

There are also other problems connected with training of networks with topol-
ogy, which is for a given task nearly optimal [43]. For such a network, it is difficult
to converge and to learn the correct function. The smaller the network is, the
more often it gets stuck in a local minimum during training. The training process
is also usually much slower for networks with minimal topology than for larger
ones.

3.3.2 Pruning algorithms

The principle of the pruning algorithms [94] is to train a larger network than
necessary and then remove redundant parts of the final network until a reasonable
topology is achieved. The usual training and pruning process can be described

Algorithm 3.3 General principle of pruning

1. Training: Train a BP-network with a reasonable fixed topology.

2. Performance evaluation: Compute the performance error on the validation
data (the validation data should be disjoint from the training set).

3. Pruning: Repeat:

(a) Relevance evaluation: Compute the relevance of hidden neurons, input
neurons or weights using the chosen heuristic.

(b) Removal of insignificant elements: Remove the least relevant ele-
ment(s).

(c) Retraining: Retrain the BP-network.

(d) Performance evaluation: Compute the performance error on the vali-
dation data.

Until a stop criterion for pruning is satisfied (e.g., the actual error on the
validation data is lower than a given threshold, or it stops decreasing from
one iteration of pruning to another.

in few steps, as shown in Algorithm 3.3.

The respective pruning algorithms differ in the way, how they solve the fol-
lowing important tasks:

1. Which elements of the network to remove?

2. When to stop pruning?

3. How to evaluate the significance or relevance of single network elements
(i.e., weights or neurons)?

4. How to successively detect and remove the unimportant elements based on
the chosen relevance measure?

Most of the pruning techniques target the pruning of edges (weights) or hidden
neurons. A more difficult task is to remove also the irrelevant input neurons.
Pruning of network inputs corresponds to the identification of as input features,

55



which are not needed for training (see Section 3.2). By their elimination we can
obtain a network, which will generalize better [126].

Most of the pruning techniques establish a set of heuristic rules, that controls
the pruning process. The heuristics must be created carefully – they should not
work with a high number of optional parameters, the number of pruned elements
must be reasonable (not too large or too small), and the pruning process should
not be very costly.

Particular pruning methods use different strategies for measuring relevance.
One of the most common relevance measures for weights is called weight saliency
[62, 77]. Saliency is the sensitivity of the error function to the removal or change
of a single weight. Actually, the removal of a weight corresponds to setting the
weight equal zero. The sensitivity of weight wi is formally defined as: S(wi) =
E(wi = 0) − E(wi = wfi ) where wfi is the final value of weigh wi after training.
Weight saliency is a very sophisticated and precise relevance measure, which is
however highly inefficient [56, 77].

Several pruning methods approximate the weight saliency in order to improve
computational efficiency (e.g., optimal brain damage (OBD) [62], optimal brain
surgeon (OBS) [47] and others [77], [56]). In the case of OBD, the saliency
is approximated by the second derivative of the error function with respect to
the weight, where OBD assumes that the error function is quadratic and that
the Hessian is diagonal. The OBS method is motivated by OBD, but differs in
the way, in which the saliency is approximated. The OBS method iteratively
computes the full Hessian, which leads to a more accurate approximation of the
error function. The main weakness of the OBD and OBS techniques is their
relatively low computational efficiency. Nevertheless, many modifications and
approximations have been introduced – e.g., in [7], which try to deal with this
problem.

The previous methods targeted pruning of weights. Hagiwara in [43] suggests
three simple and effective strategies for detecting both redundant hidden neurons
and weights (called Goodness factor, Consuming energy and Weights power).
These measures are less sophisticated and precise than OBD or OBS, but require
significantly less computational time.

The goodness factor is defined as:

Gi =
∑
p

∑
j

(ypiwij)
2, (3.45)

where p is an index over all training patterns, i is an index over all neurons in
a fixed hidden layer, ypi is their output, j is an index over all neurons in the
next layer, and wij is the weight from the i-th to the j-th neuron. The goodness
factor favors neurons with high absolute values of weights and activities for most
patterns.

The so-called consuming energy is defined as it follows:

Ei =
∑
p

∑
j

ypiwijypj, (3.46)

where ypj is the output of the j-th neuron in the next layer. Consuming energy
favors neurons, which excite frequently and at the same time as neurons in the
next layer.

56



The so-called weight power subsumes only the weights and is defined as it
follows:

Wi =
∑
j

(wij)
2. (3.47)

Hagiwara in [43] has shown on the mirror symmetry problem, that all the three
strategies massively reduce the network size and lead to better generalization,
while the simplest strategy, Weight power, reaches the best results. However, the
methods based on weight magnitude often remove also important parts of the
network [47].

3.3.3 Sensitivity analysis

Generally, sensitivity analysis is a study of how to quantify the response of a
computational model to parameter perturbations [123]. For BP-networks, there
are two main approaches to sensitivity analysis [28, 123]:

1. with respect to the error function,

2. with respect to the BP-network’s outputs.

The first approach – the error function sensitivity analysis – assesses the sen-
sitivity of the applied error function to changes (or removals) of single weights
and other parameters. Representatives of this approach were some of the previ-
ously discussed pruning methods (Saliency, OBD, OBS). Except weight pruning,
the error function sensitivity can also be used to develop sophisticated training
algorithms with improved convergence and stability [12, 57]. Other application
is the study of the robustness and stability of the BP-networks – study of the
conditions, under which the outputs of the BP-network change [4, 88].

The second approach – the output sensitivity analysis – evaluates the impact
of small perturbations of the BP-network inputs and other parameters on its
outputs. It has a wide range of applications [28, 123]: e.g., to study the general-
ization abilities of BP-networks [22], to measure the non-linearity of the training
data [60], to detect and visualize decision boundaries [31], for selective learning
[30, 51], to assess the significance of the input features [29], and for pruning of
irrelevant input features and hidden neurons [28, 29, 34, 126].

The approaches to output sensitivity analysis differ in the way, how they
compute the sensitivity coefficients. Tchaban et al. [108] suggested a simple,
yet less precise sensitivity measure called weight product. For a neuron i and a
neuron j from the immediately following layer that are connected by the weight
wij, and for a training pattern p, the weight product Spij is defined by:

Spij =
xpiwij
ypj

, (3.48)

where xpi denotes the i-th input element of the neuron j and ypj corresponds
to its output value. Empirical studies [36, 115] have, however, shown that the
approach of Tchaban et al. [108] is ineffective when examining the influence of
the inputs on outputs.

A different definition of sensitivity in BP-networks has been suggested by
Zurada et al. [126] and Fidalgo [34]. The sensitivity coefficients Sij are computed

57



as the mean absolute value of the derivatives of the j-th output with respect to
the i-th input over all of the P input patterns:

Sij =
1

P

P∑
p=1

∣∣Spij∣∣ =
1

P

P∑
p=1

∣∣∣∣∂ypj∂xpi

∣∣∣∣ . (3.49)

This principle can be generalized to measure the sensitivity Spij of the activity of
a neuron j (in the output or in a hidden layer) to the activity of a neuron i (in
one of the preceding layers).

Anyway, the coefficients Spij can simply be computed recursively from the
input layer to the output layer (or analogically in the opposite direction):

Spij =
∂ypj
∂ypi

= f ′(ξpj)wij (3.50)

for the sensitivity of the activity of a single neuron j to the activity of a neuron
i in the preceding layer and

Spij =
∂ypj
∂ypi

=
∑
k

SpkjS
p
ik =

∑
k

f ′(ξpj)wkjS
p
ik (3.51)

for the sensitivity of the activity of the neuron j ∈ Llj to the activity of the
neuron i ∈ Lli , lj > li + 1. k indexes the neurons in the hidden layer preceding j.

Such sensitivity measure Spij can be used to evaluate the significance of input
features, hidden neurons or input patterns with respect to the model outputs.
However, we must take into consideration, that the sensitivity coefficients are
computed separately for each training pattern. The significance of the input fea-
tures for the outputs can be very different for various training patterns. An input
feature (or a hidden neuron) can be assigned as superfluous only if the corre-
sponding sensitivity coefficients are low for all the training patterns. Naturally,
the sensitivity coefficients are specific to a concrete BP-network. Two well-trained
BP-networks can produce very different sensitivities.

Several variants of sensitivity analysis use the computed sensitivity coefficients
for pruning. In this respect, the key questions refer to the detection of redundant
neurons and to the stop criteria for pruning. A. P. Engelbrecht, I. Cloete, J.
M. Zurada and others [27, 29, 34, 126] use heuristics, which remove inputs and
hidden neurons with the smallest sensitivity, Engelbrecht [28] suggests to remove
neurons with minimum variance of sensitivity. Yeh and Cheng [122] use both the
first- and second-order partial derivatives of the output variables with respect to
the input variables.

Pruning based on the sensitivity coefficients may improve the generalization
ability of the trained BP-networks [34]. Unfortunately, the sensitivity criteria
alone are not capable of detecting all redundant neurons, because they assume
that inputs and activities of hidden neurons are mutually independent and nu-
merical. J. J. Montaño and A. Palmer [76] presents an extension called Numeric
sensitivity analysis, which handles also quantitative or discrete input parameters.

The sensitivity coefficients can also be used for knowledge extraction from the
BP-network model – we can, e.g., divide the training patterns into equivalence
classes or clusters characterized by similar sensitivities [122].

58



Sensitivity analysis used for training

The concept of network sensitivities can be used also for learning. The Sensitivity-
Based Linear Learning Method (SBLLM) [19] proposed for BP-networks with
one hidden layer, calculates the weights by solving a system of linear equations.
Assuming that the applied non-linear transfer functions are invertible, the method
minimizes for each training pattern the difference between the actual and desired
neuron potentials. For both the hidden and output neurons, the desired potential
value can be determined as the value of the inverse transfer function of their
desired activities.

During training, the error Q of the network is evaluated as the sum of the
error QHID (determined as the difference between the desired and actual potential
values over all hidden neurons) and QOUT (determined as the difference between
the desired and actual potential values over all output neurons):

Q = QHID +QOUT , (3.52)

QHID =
∑
p

∑
h

(∑
i

wihxpi − f−1
h (yph)

)2

, (3.53)

QOUT =
∑
p

∑
j

(∑
h

whjyph − f−1
j (ypj)

)2

, (3.54)

where p indexes the training patterns, i is the index of all the input neurons, h
indexes all the hidden neurons and j indexes all the output neurons, fh is the
transfer function corresponding to neuron h.

This leads to a system of linear equations to be solved for both considered
layers. Afterwards, the sensitivity terms for the sensitivity of the error QHID of

the hidden neuron potentials to actual activities of the hidden neurons ∂ QHID

∂ yph
and

for the sensitivity of the error QOUT of the output neuron potentials to actual

activities of the hidden neurons ∂ QOUT

∂yph
are computed and then also used to adjust

the estimated “desired” activities for the hidden neurons:

∂QHID

∂yph
= −

2
(∑

iwihxpi − f
−1
h (yph)

)
f
′
h(yph)

; for all p, h, (3.55)

∂QOUT

∂yph
= 2

∑
j

(∑
h

whjyph − f−1
j (ypj)

)
whj ; for all p, h. (3.56)

These sensitivities allow then for an efficient and extremely fast iterative gradient-
based update of the “desired” hidden neuron activities to be applied.

This method reaches a minimum error in a few epochs of training. This be-
havior is very convenient when dealing with huge data sets and large networks.
However, when the training set is not representative enough, the few iterations
employed by the method make it very difficult to avoid overtraining with tech-
niques like early stopping.

A usual technique to avoid over-training is regularization that consists in
adding a penalty term to the loss function. Therefore, a generalization of the
SBLLM method [39] uses a regularization term based on the weight decay regu-
larizer that is defined as the sum of squares of all the weights and thresholds in

59



the network. As a result, the weights of both layers are calculated independently
by minimizing a new error function Q̂(l) for each of the respective layers, l:

Q̂(l) = L(l) + α
∑
i

∑
j

w2
ij , (3.57)

where

L(l) =
∑

p

∑
j

(
f
′
j(ypj)εpj

)2

=
∑

p

∑
j

(
f
′
j(ypj)

(∑
iwijxpi − f

−1
j (ypj)

))2
.

(3.58)

In the above equations (3.57) and (3.58), α is the regularization parameter, the
second term on the right-hand side of (3.57) is the regularization term, and i,
and j are the indexes over the inputs and outputs of the considered layer l, ypj is
the desired output for the neuron j.

The term L(l) measures the training error also as the sum of squared errors
before the non-linear transfer functions. However, as big differences of the poten-
tials matter more around zero desired potentials, a scaling term to the sensitivity
loss function has been introduced that multiplies it by the derivative of the trans-
fer function applied to the desired layer output, f

′
j(ypj). This equalizes the errors

calculated before and after the non-linearities.

The method of Zhong et al. [125] employs the output sensitivity of a binary
BP-network to its parameter variation. The neuron with the highest sensitivity
(to the output) will be selected for training, because in this way, the output can
be altered the most.

Although the three above-sketched sensitivity-based techniques exhibit fast
convergence, they are primarily aimed at training instead of feature selection and
pruning. Due to the character of the networks found by solving a system of linear
equations, the first two methods might also tend to overtrain [19, 125].

3.3.4 Network construction techniques

Network construction techniques start with a small network and incrementally
add hidden neurons and weights until a reasonable topology is achieved [5, 6]. A
similar approach is to split existing neurons if the performance of the network is
not sufficient [66]. Network construction methods are usually not based on train-
ing from examples, as they require different training paradigms, such as genetic
algorithms. Therefore, they are hardly comparable to the standard pruning or
regularization techniques.

The best-known example of this approach is cascade correlation [33]. This
method has several advantages: the training process is very quick, the network
determines size and topology without outside interventions, and the algorithm is
robust to changes of the training set during training. The key problems, crucial
for the success of cascade correlation and other network construction techniques,
are to decide, when to stop adding new neurons and when and in which place
to add a new neuron or edge. A wrong treatment of these questions can lead to
overtraining and strong slow-down of the construction process.

60



3.3.5 Probability optimization techniques

Probability optimization techniques dynamically alter the BP-network topology
already during training. They are usually based on genetic algorithms or sim-
ulated annealing. Particular methods differ in the way, in which they code the
solution.

A method introduced by Whitley et al. [120] trains a fully connected BP-
network, then prunes weights using genetic operators and finally retrains the BP-
network. In one iteration of the algorithm, more instances of the pruned and
retrained network compete for survival and are awarded for fewer parameters
and better generalization.

An advantage of these techniques consists in the fact, that they usually lead
to good generalization, even if the training set is relatively small [44]. The main
disadvantage is that the pruning process is very time-consuming.

3.3.6 Regularization techniques

Regularization techniques try to eliminate redundant weights already during
training. A penalty term added to the error function usually enforces a decrease
of absolute weight values during training. Weights smaller than a given threshold
are regarded as useless and removed.

The well-known representative of this approach is called weight decay [119].
The penalty term added to the error function has the form

F = β
∑
i

w2
i , (3.59)

where 0 < β � 1 is a constant and i indexes all the weights and thresholds in
the BP-network.

Each weight wi is altered using:

wi(t+ 1) = wi(t)− α
∂Et
∂wi
− β ∂F

∂wi
= wi(t)− α

∂Et
∂wi
− βwi(t), (3.60)

where α, β are positive constants, Et is the standard error function of the BP-
algorithm corresponding to the training pattern that is presented to the BP-
network in time t (see Eq. (1.8), (1.11), and (1.12)). The main idea of this
process is, that unimportant weights have ∂Et

∂wi
' 0 and therefore their values

decrease exponentially:

wi(t) ≈ βtwi(0) for 0 < β � 1. (3.61)

A drawback of this method is that it favors weight vectors with many small
elements to weight vectors with a few large elements, although the BP-network
with the configuration of the second type may perform and generalize better [95].

Another regularization technique is weight elimination [117]. It uses the fol-
lowing penalty term:

F = λ
∑
i

w2
i /w

2
0

1 + w2
i /w

2
0

, (3.62)

where λ and w0 are problem-dependent constants, that have to be chosen care-
fully. The penalty term measures the complexity of the BP-network as a function
of weight magnitudes related to the parameter w0.

61



Other variants of the penalty terms – e.g. [36, 111] – yield varying results.
Their main weakness consists in their relatively high computational costs and
worse generalization [45].

3.3.7 Remarks

Besides structure optimization techniques, other methods can be used to improve
the generalization, create simpler and smoother network function and thus en-
able simpler knowledge extraction – namely the methods of learning from hints
and learning internal representation. These techniques will be described in the
following Sections 3.4 and 3.5. Such methods can be easily combined with some
of the techniques for structure optimization to achieve better results.

Analysis of the structure optimization methods

The above-discussed approaches to architecture optimization differ in many ways
– they employ different principles, characteristics, and even goals. Some of the
methods just try to shrink the network size and speed up the recall (e.g., regu-
larization techniques). Other techniques are capable of improving generalization
and robustness to noisy data (e.g., pruning algorithms and probability optimiza-
tion techniques). More sophisticated strategies (e.g., sensitivity analysis) rather
identify significant network elements and facilitate knowledge extraction.

Each of the described methods has its advantages but also drawbacks. No one
can be denoted as the best in any situation and for all reasons. For example, reg-
ularization techniques can be easily and efficiently combined only with gradient-
based training algorithms, such as back-propagation. On the other hand, net-
work construction techniques usually require different training paradigms, such
as genetic algorithms. Some of the pruning algorithms (OBS, weight magnitude,
and sensitivity analysis) can be used with both types of learning algorithms.

A significant drawback of most standard methods consists in their low efficien-
cy. Real-world applications therefore prefer simpler and more efficient methods,
such as weight magnitude. Even though more sophisticated methods reach better
results, precision is usually compensated by disproportional increase in computa-
tion time. The best results are thus often obtained by a combination of several
applicable methods.

62



3.4 Methods for improved generalization

Although the standard BP-algorithm has the potential to generalize remarkably
well, this ability strongly depends on many aspects (e.g., careful choice of model
parameters and preprocessing of the training set). Additional techniques are
thus often needed to assure sufficient generalization and to avoid overtraining
[95]. Beside methods for structure optimization, that were described in Section
3.3, there are other techniques helpful in this respect (e.g., cross-validation and
early stopping, learning with hints, training with jitter). In this section, we will
discuss some of these methods in more detail.

3.4.1 Early stopping

A common heuristic approach to avoid overtraining is the so-called early stopping.
It is based on the observation, that during the training the generalization error
(see Section 1.3) typically tends to decrease firstly similarly to the performance
error on the training data. However, after some time it reaches a minimum and
begins to increase, while the error on the training set continues decreasing and
the model overtrains.

Early stopping tries to identify the iteration of best generalization. It is a stop
criterion based on the performance error on the validation data. The original
training set T is divided into two disjoint parts: the new training set T1 and the
so called validation set V . The BP-network is trained on T1, while V is used to
assess, whether the overtraining has begun. In each iteration, we compute the
performance error on V . We stop training as soon as the error on V is growing
in k ≥ 1 consecutive steps and return the model with the lowest validation error.

An advantage of early stopping is, that it often speeds up the training process,
because it reduces the number of epochs. It also often helps to avoid overtraining
[42]. A problem is, that for many tasks, the validation error doesn’t follow the
simple trend assumed by the method. It may not decrease monotonically and
the local minima can simply confuse the method to stop too soon [10, 95]. The
method may also be less effective for second-order training algorithms that are
characterized by relatively high weight changes per iteration [10, 95].

3.4.2 Learning from Hints

Learning from hints was originally proposed by Abu-Mostafa [2, 3]. It is a power-
ful method for incorporating prior knowledge as a learning aid into the supervised
training process.

A hint is any piece of information about the unknown function except the
training set. It may take the form of naturally or even artificially generated input-
output patterns or the form of a global constraint of the unknown function. Hints
may have even local character or they may be related to the model architecture.

A hint may be helpful in the training process in two main ways: a) It may
reduce the number of functions that are candidates to be the wanted network
function. That may result in better generalization. b) It may reduce the number
of steps necessary to find an appropriate approximation of the wanted function.
In [2, 3], Abu-Mostafa has shown that restricting the space of candidate hypothe-
ses for the wanted network function by learning from hints can reduce the VC-

63



dimension of the final network structures. Consequently, a hint may reduce the
number of training patterns needed to learn the solution.

In the following paragraphs, we will describe two systematical ways, how to
integrate hints into the training process: the extra examples hint method [1] and
the extra output hint method [38]. An advantage of these two approaches is,
that they present a general guideline for the treatment of almost any type of
hints. Moreover, these methods are easy to implement. Unlike for most other
hint methods, they don’t require changes of the chosen training method or error
criterion and thus they can be easily applied both to the standard BP-algorithm
and its modifications like SCG and others. When solving a concrete task, the
choice of one of these approaches depends on the character of the data and on
the hints that are available.

Extra examples hint method The extra examples hint method was proposed
by Abu-Mostafa in [1]. The principle of this approach is to represent hints in the
form of input-output patterns. Such hints can become a part of the training set.
Important questions are: a) How to transform hints into the training patterns?
b) How many patterns to create for each hint? The training set should be well-
balanced to enable the BP-network to learn simultaneously both the wanted
network function and the hints.

We will illustrate the process of generation of the new training patterns on a
simple example. Let F : <n → [−1, 1] be the wanted network function and a hint
be the knowledge that F is odd, i.e. F (−~x) = −F (~x). Then for each original

training pattern (~xp, ~dp), p = 1, ..., P , we create and add to the training set a new

one: (−~xp,−~dp). A similar principle can be applied also to more complex hints,
such as monotonicity or invariance [1].

Abu-Mostafa in [1] and others [61] propose various sophisticated strategies
that prescribe, in which order and frequency to present the training patterns
including hints to the BP-network during the training process. The goal of these
strategies is that the BP-network learns as many hints as possible as well as
possible.

An example of a simple training strategy is to present the training patterns
cyclically in so called batches [1]. A batch is a subset of training patterns that
correspond to a single hint. The number of patterns in a batch may change during
the training process reflecting the actual importance of the particular hint.

The success of the extra examples hint method depends on the quality of
the hints available and on the chosen training strategy. Abu-Mostafa in [1] has
shown, that if the hints and the training strategy were chosen adequately, this
method would improve and speed up the training process and reduce the number
of training patterns required.

Extra output hint method The extra output hint method was originally
proposed by Suddarth and others in [38], [106], [124]. This method consists
in supplying the network with additional target outputs during training which
express some knowledge about the problem. The hints have the form of a function
with the same domain as the wanted network function. Similarly to the extra
examples hint method, no modification of the training algorithm or error criterion
is involved and the extra added outputs can be removed after training is finished.

64



Let F : <n → [−1, 1]m be the unknown function and let h : <n → [−1, 1]m
′

be the chosen hint function. T = { ( ~xp , ~dp ) | ~xp = (xp1, . . . , xpn) , ~dk =
(dp1, . . . , dpm) , 1 ≤ k ≤ P } denotes the ‘classical’ training set for F . The form

considered for the training set T ′ of the hint H will be: T ′ = { ( ~xp , ~d
′
p ) | ~xp =

(xp1, . . . , xpn) , ~d
′

k = (d
′
p1, . . . , d

′

pm′) , 1 ≤ k ≤ P } When applying the hint H
during training, the modified network will have m + m′ output neurons. The
number of its input and hidden neurons will remain the same. The extended
training set T ′′ will correspond to: T ′′ = { ( ~xp , ~d

′′
p ) | ~xp = (xp1, . . . , xpn) , ~d

′′
p =

(dp1, . . . , dpm, d
′
p1, . . . , d

′

pm′) , 1 ≤ p ≤ P }.
The resulting network comprises two structures sharing their hidden neurons

but learning to implement two distinct functions. In this way, the network is
forced to develop an internal representation supporting an adequate approxima-
tion of both functions.

If the hint function is well-chosen, it may reduce the size of the weight space
that a BP-network has to search for an appropriate set of weights. Then the
training process will be faster and the chance to find a simpler model that gen-
eralizes better will be higher. On the other hand, a poor choice of a hint may
even reduce the generalization ability [23, 38, 106]. That happens especially if the
target and hint functions don’t share a common sub-function for the BP-network
to find. Similar problem occurs, if the hint function is too complex, so the model
is not able to approximate both functions at the same time. In the second case,
a possible solution is to train a bigger BP-network topology with more hidden
neurons.

A simple heuristic, of how to find a good hint, is that it should be relevant to
the problem and not too complex [38]. Examples of such hints are the knowledge
about monotonic regions of the target function [38] or a suitable clustering of the
training data [23]. Especially clustering of the training data is a hint that can be
used in a wide range of problems, even if no more task-specific hints are available.
Clustered data provide an intrinsic equivalence class structure expected to yield
improved generalization.

3.4.3 Training with Jitter

The idea of training with jitter is to add a small random noise to the training input
patterns during the training. In such a case, we never present to the BP-network
exactly the same input pattern twice, so the model cannot simply memorize the
training data and overtrain. This is helpful especially for larger BP-networks
and if the number of training patterns is limited. The further goal of training
with jitter is to make the wanted network function simpler and smoother and less
sensitive to noise in the data.

Training with jitter succeeded in improving the generalization ability of the
trained BP-networks in many practical applications [73, 93, 104]. A disadvantage
of the method is that it requires small learning rates and more training epochs
in order to average over the noise [93]. Another problem is the choice of an
appropriate noise variance [49] that significantly affects the success of the method.

Training with Static Jitter Unfortunately, the training with jitter cannot
be applied to the training algorithms, where the learning rates or the step sizes

65



depend on the change of the error from one iteration to the next (e.g., adaptive
learning rate methods, conjugate gradients methods). It would make the training
process very unstable.

A possible solution is a static variant of learning with jitter. Its idea is to
create a larger training set by adding a sufficiently large amount of training
patterns with an added random noise. A big problem of this method is the choice
of an appropriate size of the training set with noisy training patterns. Reed in
[95] showed on practical examples, that in many cases the sufficient training set
with noisy patterns was even 100-times greater than the original one, while also
the required number of iterations was about 100− 1000-times higher than when
training without jitter.

While this method seems to be very parameter-dependent and inefficient, it
is also not as powerful to avoid overtraining and to create a smoother network
function as training with dynamic noise [95].

3.4.4 Summary of Section 3.4

In this section, we described some of the methods, that improve the generaliza-
tion ability of the BP-networks, especially early stopping, learning from hints
and training with jitter. While early stopping is a simple yet efficient heuristic
to prevent overtraining, the other two methods, similarly to the regularization
techniques, try to reduce the complexity of the model by reducing the number of
functions that are candidates to be the wanted function.

While training with jitter naturally makes the training process much slower,
learning from hints can even reduce the number of iterations needed. While
training with jitter is restricted to just some of the training algorithms for BP-
networks, especially the extra output hint method is not limited in this respect.
However, success of the hint methods depends on the quality of the given hints,
so choice of which method to use will always depend on the given task and other
aspects.

66



3.5 Methods for creation of a transparent net-

work structure

Standard BP-algorithm usually tends to create a non-transparent network struc-
ture. For such networks, it is not clear, what is the relation between the training
data and the weights and activities of hidden neurons. Therefore it is extreme-
ly difficult to ‘guess’ the real meaning of every particular hidden or even input
neuron for a proper network output. Such networks often use small differences of
neuron outputs to distinguish between the presented patterns.

3.5.1 Learning condensed internal representation

A possible solution is the method of learning condensed internal representation
(IR-algorithm) by Mrázová and Wang [86]. This regularization technique is de-
signed for BP-networks with the sigmoidal transfer function.

The main idea of the IR-algorithm is to group the activities of the hidden
neurons around three possible values – 0, 1

2
and 1. Intuitively, the activity 1

corresponds to the active state of the neuron and to the value ‘yes’, 0 (the passive
state) has the meaning ‘no’, and 1

2
(the silent state) means ‘don’t know’. Such

internal structure of the BP-network is equivalent to rules and enables an easy
interpretation of the extracted knowledge, especially if the number of equivalence
classes, given by the states of the hidden neurons, is not high.

The criterion for developing a transparent internal network structure is formu-
lated as an additional term of the error function to be minimized during training
– the representation error function.

Definition 8. For a given BP-network with h hidden neurons and an input
pattern ~x ∈ <n, we call the vector ~r ∈ <h of activities of all hidden neurons the
internal representation of the given BP-network.
The internal representation ~r = (r1, . . . , rh) of the given BP-network is called
binar, if ri ∈ {0, 1} for i = 1, . . . , h. It is called condensed, if ri ∈ {0, 1

2
, 1} for

i = 1, . . . , h.

Definition 9. For a given BP-network and a training set T , the hidden neuron
i with the sigmoidal transfer function fi forms:

1. the uniform representation, if fi(ξpi) = c ∈ < for all input patterns from T
(indexed by p).

2. the representation identical to the representation of the hidden neuron j, if
fi(ξpi) = fj(ξpj) for all input patterns from T (indexed by p).

3. the representation complementary to the representation of the hidden neu-
ron j, if fi(ξpi) = 1 − fj(ξpj) for all input patterns from T (indexed by
p).

The aim of the IR-algorithm is to develop a condensed internal representation
of the BP-network or of its part during the training. Mrázová and Wang in [86]
concentrated on the last hidden layer, i. e., the layer immediately connected to
the output layer. In [80], Mrázová generalized the IR-algorithm also to other

67



hidden layers. Furthermore, the authors restrict the method to the model of BP-
network with sigmoidal transfer function.

In the following paragraphs, we will discuss the form of the representation
error function of the IR-method and show the derivation of the rules for weight
adjustment. The representation error function should penalize hidden neurons
with activities far from the values 1, 0 and 1

2
. It should be differentiable and non-

negative, with local minima corresponding to hidden neuron activities equal to
1, 0 and 1

2
. This could be achieved by including the multiplicative terms (1− y),

y and (y − 1
2
)2 into the representation error function. These terms achieve their

minima on the interval [0, 1] in the values – 1, 0 and 1
2
, respectively.

Figure 3.5 shows the graph of the term y (1 − y) (y − 1
2
)2. Although this

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

x

f(x)

Figure 3.5: Graph of the function x (1− x) (x− 1
2
)2 on the interval [0, 1].

function meets all the given requirements, there is a problem: The local minima
0 and 1 are disadvantaged with regard to 1

2
. Maxima of this function are situated

relatively close to 0 and 1, while there is a wide valley around the local minimum
1
2
. Such a penalty term would force hidden neurons to remain in silent states for

most of the training patterns.
To move the two distant local maxima closer together, the term y (1− y) (y−

1
2
)2 can be replaced by the term ys (1 − y)s (y − 1

2
)2 with s > 1. Mrázová and

Wang [86] recommend to set s = 4. Such a penalty term would approach the
local minima at 0 and 1 much smoother, as shown in Figure 3.6.

In sum, the wanted representation error function F is formulated as it follows:

F =
∑
p

∑
j′

yspj′ (1− ypj′)s (ypj′ −
1

2
)2 =

∑
p

Fp (3.63)

where p is an index over all training patterns and j′ an index over all hidden
neurons. y represents their activity and s is a parameter for tuning the shape of
the representation error function. Fp is the representation error function corre-
sponding to the p-th training pattern.

The overall error function of the IR-method has the form:

G = E + cF F (3.64)

where E represents the standard error function of the BP-algorithm (see Eq. 1.8)
and F stands for the above defined representation error function. The coefficient

68



0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

f(x)

x

 

 

s = 1
s = 2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

−5

f(x)

x

 

 

s = 4

Figure 3.6: Graph of the function xs (1− x)s (x − 1
2
)2 on the interval [0, 1] for

s = 1, 2 (on the left) and s = 4 (on the right).

cF ≥ 0 reflects the trade-off between the influence of E and F in G. Its right
choice can be crucial for the quality of the solution obtained. Small values of cF
will prevent the BP-network to form a condensed internal representation during
the training. On the other hand, too large values of cF can result into BP-net-
works with a perfectly formed condensed internal representation but incapable of
approximating the desired function because of saturated hidden neuron outputs.

The training process of the IR-method is identical to the standard BP-algo-
rithm, however with G as the error function. During the training process, both
E and F are minimized simultaneously. The terms for adjusting the weights
with respect to the error function E were stated in equations (1.17) and (1.18).
To minimize also the representation error function F , the basic idea of gradient
descent is applied as well. Let (~xp, ~dp) be the training pattern presented to the
BP-network in time t. The change of the weight wij in time t corresponding to F
will be denoted as ∆Fwij(t). It is proportional to the negative partial derivative
of Fp with respect to this weight:

∆Fwij(t) ' −
∂Fp
∂wij

. (3.65)

In the derivations below, neurons from the layer above the neuron j will be
declared as those indexed by k. The actual output value and the potential of a
neuron j will be denoted as ypj and ξpj, respectively. Then, the terms for ∂Fp

∂wij

can be derived in the following way:

• For neuron j from the output layer Ll+2:

∂Fp
∂wij

= 0. (3.66)

• For neuron j from the last hidden layer Ll+1:

∂Fp
∂wij

=
∂Fp
∂wij

=
∂Fp
∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

=
∂Fp
∂ypj

f ′(ξpj) ypi = %pj ypi, (3.67)

where %pj = ∂Fp
∂ξpj

= ∂Fp
∂ypj

∂ypj
∂ξpj

= ∂Fp
∂ypj

f ′(ξpj) is an auxiliary term that can be

denoted as the back-propagated representation error. For j from the last

69



hidden layer, ∂Fp
∂ypj

can be computed using the sum and product rules:

∂Fp
∂ypj

=
∂

∂ypj

(∑
j′

yspj′ (1− ypj′)s (ypj′ −
1

2
)2

)
=

=
∂
[
yspj (1− ypj)s (ypj − 1

2
)2
]

∂ypj
=

= ypj
s−1 (1− ypj)s−1 (ypj −

1

2
)

[
2 (s+ 1) ypj (1− ypj)−

1

2
s

]
, (3.68)

where j′ indexes all hidden neurons. Altogether, because f ′(ξpj) = λ ypj (1−
ypj) :

∂Fp
∂wij

= λypj
s(1− ypj)s(ypj −

1

2
)

[
2(s+ 1)ypj(1− ypj)−

1

2
s

]
ypi =

= %pjypi. (3.69)

• For neuron j from one of the other hidden layers L2, ..., Ll:

The equation (3.67) holds also for neurons j from hidden layers other than
last. ∂Fp

∂ypj
will be computed indirectly using the sum and chain rules:

∂Fp
∂ypj

=
∂
[
yspj (1− ypj)s (ypj − 1

2
)2
]

∂ypj
+
∑
q

∂Fp
∂ypq

∂ypq
∂ξpq

∂ξpq
∂ypj

=

= ypj
s−1 (1− ypj)s−1 (ypj −

1

2
)

[
2 (s+ 1) ypj (1− ypj)−

1

2
s

]
+

+
∑
q

%pq wjq ,

(3.70)

where q indexes neurons in the layer above the neuron j. Altogether:

∂Fp
∂wij

=

{
ypj

s−1 (1− ypj)s−1 (ypj −
1

2
)

[
2 (s+ 1) ypj (1− ypj)−

1

2
s

]
+

+
∑
q

%pq wjq

}
λ ypj (1− ypj) ypi =

= %pj ypi.
(3.71)

The term (1.17) for weight adjustment will be altered in the following way:

wij(t+ 1) = wij(t)− α δjp ypi − αr %pj ypi, (3.72)

where the term δjp was defined in Eq. (1.18) and

%pj =



0, j ∈ Ll+2

λ ypj
s (1− ypj)s (ypj − 1

2
)
[
2 (s+ 1) ypj (1− ypj)− 1

2
s
]
, j ∈ Ll+1

λ ypj (1− ypj)
{ [

2 (s+ 1) ypj (1− ypj)− 1
2
s
]
ypj

s−1 ·

· (1− ypj)s−1 (ypj − 1
2
) +

∑
q %rwjq

}
, j ∈ Lk, 2 ≤ k ≤ l.

(3.73)

70



α and αr from Equation (3.72) are constants representing the particular learning
rates. λ is the parameter of the sigmoidal transfer function, s is the parameter
for tuning the shape of the representation error function.

For the choice of the parameter s = 4, the formulated adaptation rules based
on F lower down both the first- and second-order derivatives of the sigmoidal
transfer function. The first-order derivative is equal y′ = y (1− y). The second-
order derivative is equal y′′ = y (1 − y) (1 − 2y). The term y4 (1 − y)4 (y − 1

2
)2

can be expressed in the form 1
4

(y′)2 (y′′)2. The terms (3.72) and (3.73) for weight
adjustment include both y′ and y′′. As a result, the hidden neurons are penal-
ized during the training for absolutely high values of the first- and second-order
derivatives of their transfer functions. In other words, the hidden neurons are
punished for high curvature and great input-output sensitivity. In this way, the
IR-method contributes to a smoother network function and better generalization
ability of the trained model.

Pruning The IR-method also significantly supports subsequent pruning of re-
dundant edges and neurons. Obviously, neurons providing identical internal rep-
resentation can be more easily recognized and subsequently also removed with
minor changes of the network – e.g. using the approach described by J. Sietsma
and R. J. F. Dow [104]. The same holds for neurons yielding for all the patterns
identical or complementary internal representation to another hidden neuron.

In the following paragraphs, we will describe the pruning method of Sietsma
and Dow [104] in more detail:

• Let i be a neuron, that forms a uniform representation. So for a constant
c ∈ <, its activities ypi are equal to c for all training input patterns (indexed
by p). To keep the same network outputs after the removal of the neuron i,
it is sufficient to adjust the thresholds of all the neurons j in the following
layer: wnew0j = w0j + cwij.

• Let i1 and i2 be two neurons from the same hidden layer that form identical
representations to each other – their activities are identical for all training
input patterns (ypi1 = ypi2). We will combine these neurons into a single
unit i. To keep the same network outputs after this change, we have to set
the weights from i to all the neurons j in the following layer in the following
way: wnewij = wi1j + wi2j.

• Let i1 and i2 be two neurons from the same hidden layer that have comple-
mentary activities for all training input patterns (ypi1 = 1 − ypi2). Analo-
gously to the previous case, we will combine these neurons into a single unit
i. To keep the same network outputs after this change, we have to set the
weights from i to all the neurons j in the following hidden layer and to ad-
just the thresholds of the neurons j in the following way: wnewij = wi1j−wi2j,
wnew0j = w0j + wi2j.

An advantage of this pruning technique is, that it needs no further retraining
because the network outputs on the training data remain the same after pruning.

71



Remarks The main purpose of the IR-method is to create a transparent inter-
nal structure of the BP-network during the training process. The formed con-
densed internal representation is equivalent to rules and enables easier knowledge
extraction from the model.

Another great advantage of the IR-method is, that it is expected to improve
the generalization ability of the trained BP-networks, because it favors smoother
network functions and facilitates further pruning of the trained model.

A disadvantage of the IR-method is its sensitivity to the parameters α and
αr that need to be tuned carefully. Poor choice of these parameters may result
in a worsened prediction and generalization abilities of the trained model caused
by overtraining or by saturation of the hidden neuron outputs. In this respect,
combination of the IR-method with techniques that prevent overtraining (e.g.
early stopping) and methods that improve the generalization ability (e.g. learning
from hints) may be very helpful.

Further drawback of the IR-method are its relatively high time costs. They
are caused mainly be the use of the standard BP-algorithm, which is relatively
slow. However, the principle of the IR-method is general enough to be applied also
to some of the faster training algorithms, which may largely solve the efficiency
problem.

3.5.2 Learning unambiguous internal representation

An enhancement of the IR-method is the method of learning unambiguous inter-
nal representation (UIR-algorithm) [86]. This method forces the formed internal
representation of the BP-network not only to be transparent, but also to differ
as much as possible for substantially different output patterns.

Similarly to the IR-method, the method of learning unambiguous internal
representation is a regularization technique that adds an additional term to the
error function to be minimized during the training:

F ∗ = −1

2

∑
p

∑
q 6=p

∑
j′

∑
o

(dpo − dqo)2(ypj′ − yqj′)2 (3.74)

where p and q are indexes over all training patterns, j′ an index over all neurons
in the last hidden layer and o indexes all neurons in the output layer. y represents
the activity of the hidden neurons and d represents the output patterns.

The UIR-algorithm is expected to improve generalization ability and decrease
sensitivity of the trained BP-networks when compared to the IR-method. Howev-
er, a great disadvantage of this method are its high time and space complexities,
which are caused by the complexity of F ∗ and the corresponding rules for weight
adaptation. After presenting each of the training pattern to the BP-network, it
is necessary to compare it with all other training patterns. Moreover, it is needed
to store the activities of all neurons in the last hidden layer for each training
pattern.

72



4. Results achieved

73



4.1 Fast knowledge extraction

4.1.1 Introduction

The first goal – recalled In this section, we will design the first version of
our framework for training of BP-networks, that will provide:

• Speed: A fast training algorithm, that doesn’t have many tunable param-
eters and is robust to their choice.

• Transparency: Techniques that force the model to create a clear and
transparent internal structure that will simplify knowledge extraction from
the model.

• Generalization: Techniques that force the BP-network function to be
smooth and generalize well.

In Chapter 2, we discussed the existing approaches to this goal and its sub-
tasks. Now, we will briefly outline our approach and explain the reasons for our
choice. A detailed description of our framework follows later in this section.

Speed: Among the fast training algorithms for BP-network training, we decided
for the SCG-algorithm. Its advantages are low space complexity, robustness to
noise and outliers in the data and a low number of tunable parameters. Its
disadvantage is that it tends to create a complex and not transparent internal
structure of the trained BP-network.

Transparency: To improve the transparency of the SCG-trained BP-networks,
we decided for the IR-method. This regularization technique forces the BP-net-
work to form a condensed internal representation during training. The condensed
internal representation is equivalent to rules and enables an easier knowledge ex-
traction from the model.

An advantage of this method is that it can be easily combined with many
training algorithms, including SCG. Another great advantage of the IR-method
is, that it is expected to improve the generalization ability of the trained BP-
networks, because it favors smoother network functions and facilitates further
pruning of the trained model [86].

A drawback of the original IR-method are its relatively high time costs that
are caused mainly by the increased number of training epochs when compared to
the standard BP-algorithm. However, the application of the IR-method to the
SCG-algorithm may solve this problem.

Generalization: A disadvantage of the IR-method is its sensitivity to its pa-
rameters that need to be tuned carefully. A poor choice of parameters may result
in worsened prediction and generalization abilities of the trained model. In this
respect, a combination of the IR-method with techniques that prevent overtrain-
ing (e.g. early stopping) and methods that improve the generalization ability (e.g.
learning from hints) may be very helpful. Learning from hints may also make
the training process faster and improve the ability of the IR-method to create a

74



transparent structure of the BP-network. Knowledge extraction from the trained
BP-network will be further supported by sensitivity analysis.

In the following paragraphs, we will describe our approach in detail.

4.1.2 Proposal of the SCGIR-method

In this section, we will describe the first version of our framework for training
of the BP-networks called SCGIR [78, 82, 97]. It is based on the SCG-training
algorithm (see Section 3.1.2) enhanced with the method of learning internal rep-
resentation (described in Section 3.5) and with learning from hints (see Section
3.4.2).

IR-method for the ‘bipolar’ BP-network model

In this work, we decided for the so called ‘bipolar’ BP-network model, where
all the hidden neurons have the hyperbolic tangent transfer function, while all
the output neurons implement the linear transfer function. For the ‘bipolar’ BP-
network model, the activities of the hidden neurons are from the interval (−1, 1).
This interval corresponds to the range of the hyperbolic tangent transfer function.
Also the input patterns are usually normalized to the interval [−1, 1]n, where n
is the number of input features.

However, the IR-method, as proposed by the authors in [86] and [80], is de-
signed for the ‘binary’ BP-network model, where all the hidden and output neu-
rons implement the sigmoidal transfer function. Fortunately, the principle of
the IR-method can be applied also to BP-networks with other continuous and
differentiable transfer functions (including hyperbolic tangent and linear).

To alter the IR-algorithm to fit the ‘bipolar’ BP-network model [97], we have
to define the representation error function and other concepts in a slightly dif-
ferent way than they were established in Section 3.5. We also have to alter the
rules for weight adjustment to reflect the new representation error function and
the derivatives of the applied transfer functions.

Definition 10. The internal representation ~r = (r1, . . . , rh) of a BP-network
with h hidden neurons is called bipolar, if ri ∈ {−1, 1} for i = 1, . . . , h. It is
called condensed, if ri ∈ {−1, 0, 1} for i = 1, . . . , h.

Definition 11. For a given BP-network and a training set T , the hidden neuron
i with the hyperbolic tangent transfer function fi forms:

1. the uniform representation, if fi(ξpi) = c ∈ < for all input patterns from T
(indexed by p).

2. the representation identical to the representation of the hidden neuron j, if
fi(ξpi) = fj(ξpj) for all input patterns from T (indexed by p).

3. the representation complementary to the representation of the hidden neu-
ron j, if fi(ξpi) = −fj(ξpj) for all input patterns from T (indexed by p).

The aim of the representation error function is to force the BP-network to
develop a condensed internal representation during training. In the following
paragraphs, we will propose its form for the model of ‘bipolar’ BP-networks.

75



Our goal is to group the activities of the hidden neurons around the values 1
(‘yes’), −1 (‘no’) and 0 (‘don’t know’). Therefore, the error term corresponding
to the activity y of a given hidden neuron will have the form (1− y)s (1 + y)s y2

with s ≥ 1. Figure 4.1 shows the graph of this term for various values of the
parameter s.

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

f(x)

x

 

 

s = 1
s = 2
s = 3
s = 4

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

f(x)

x

 

 

s = 3

Figure 4.1: Graph of the function (1 − y)s (1 + y)s y2 on the interval [−1, 1] for
s = 1, 2, 3, 4 (on the left) and s = 3 (on the right).

The parameter s has to be set adequately to move the two distant local maxi-
ma farther from the values −1 and 1 towards 0. We decided to choose s = 3. For
s = 3, the local maxima are closest to the values −1

2
and 1

2
, as shown in Figure

4.1.
The altered representation error function F [78] is given by the sum of the

particular error terms over all hidden neurons (indexed by j′) and over all training
patterns (indexed by p):

F = F (~w) =
∑
p

∑
j′

(1 + ypj′)
s (1− ypj′)s y2

pj′ =
∑
p

Fp(~w) , (4.1)

where ypj′ is the activity of a neuron j′ for the p-th training pattern, s is a
parameter for tuning the shape of the representation error function. Fp is the
representation error function corresponding to the p-th training pattern.

The overall error function G will have the form:

G = G(~w) = E(~w) + cF F (~w) =

=
∑
p

Gp(~w) =
∑
p

[Ep(~w) + cF Fp(~w)] =

=
1

2

∑
p

∑
j

(ypj − dpj)2 + cF
∑
p

∑
j′

(1 + ypj′)
s(1− ypj′)sy2

pj′ , (4.2)

where E represents the performance error function (defined by Equation 1.8)
and F stands for the above defined representation error function. The coefficient
cF ≥ 0 reflects the trade-off between the influence of E and F in G. cF remains
constant throughout the whole training process but might be variable, too. p
goes over all training patterns, j and j′ are indexes over all output neurons and
hidden neurons, respectively. y denotes the activity of a neuron while d is its
desired output value.

76



The derivation of the rules for weight adjustment with respect to the altered
error function F (defined by (4.1)) [97] is analogical to the standard IR-method
(see Section 3.5 and equations (3.66), ...,(3.71)), however with some differences.

Let (~xp, ~dp) be the training pattern presented to the BP-network in time t and

let ∆Fwij(t) ' − ∂Fp
∂wij

be the change of the weight wij in time t corresponding to

F . In the following paragraph, we will describe the derivation of the term ∂Fp
∂wij

.

In the derivations below, neurons from the layer above the neuron j will be
declared as those indexed by q. The activity and the potential of a neuron j will
be denoted as ypj and ξpj, respectively. The terms for ∂Fp

∂wij
are derived in the

following way:

• For neuron j from the output layer Ll+2:

∂Fp
∂wij

= 0. (4.3)

• For neuron j from the last hidden layer Ll+1:

∂Fp
∂wij

=
∂Fp
∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

= %pj ypi, (4.4)

where %pj = ∂Fp
∂ypj

∂ypj
∂ξpj

is the back-propagated representation error. It is

computed differently to the standard IR-method. The first derivative is
given by:

∂Fp
∂ypj

=
∂

∂ypj

(∑
j′

(1 + ypj′)
s(1− ypj′)sy2

pj′

)
, (4.5)

where j′ indexes all hidden neurons. Because

∂
[
(1 + ypj′)

s(1− ypj′)sy2
pj′

]
∂ypj

= 0

for all j′ , (j′ ∈ Ll+1 , j
′ 6= j) or (j′ ∈ Lk , 2 ≤ k ≤ l) ,

(4.6)

we can use the product rule and compute:

∂Fp
∂ypj

=
∂
[
(1 + ypj)

s(1− ypj)sy2
pj

]
∂ypj

=

= s(1 + ypj)
s−1(1− ypj)sy2

pj + (1 + ypj)
s(−s)(1− ypj)s−1y2

pj +

+ (1 + ypj)
s(1− ypj)s2ypj =

= 2
[
1− (s+ 1) y2

pj

]
(1 + ypj)

s−1 (1− ypj)s−1 ypj . (4.7)

The derivative of the hyperbolic tangent transfer function is given by:

∂ypj
∂ξpj

= f ′(ξpj) = (1 + ypj) (1− ypj) = (1− y2
pj) . (4.8)

Altogether:

∂Fp
∂wij

= 2
[
1− (s+ 1) y2

pj

]
(1− y2

pj)
s ypj ypi = %pjypi. (4.9)

77



• For neuron j from a hidden layer Lk , 2 ≤ k ≤ l:

The equations (4.4) and (4.5) hold also for neurons j from hidden layers
other than last. Moreover,

∂
[
(1 + ypj′)

s(1− ypj′)sy2
pj′

]
∂ypj

= 0

for all j′ , (j′ ∈ Lk , j′ 6= j) or (j′ ∈ Lk′ , 2 ≤ k′ ≤ k) .
(4.10)

∂Fp
∂ypj

will be computed indirectly using the sum and chain rules:

∂Fp
∂ypj

=
∂
[
(1 + ypj)

s(1− ypj)sy2
pj

]
∂ypj

+
∑
q

∂Fp
∂ypq

∂ypq
∂ξpq

∂ξpq
∂ypj

=

= 2
[
1− (s+ 1) y2

pj

]
(1− y2

pj)
s−1 ypj +

∑
q

%pq wjq , (4.11)

where q indexes the neurons in the layer above the neuron j. Altogether:

∂Fp
∂wij

=

[
2
[
1− (s+ 1) y2

pj

]
(1− y2

pj)
s−1 ypj +

∑
q

%pq wjq

]
(1− y2

pj) ypi =

= %pj ypi.
(4.12)

If we combine the altered IR-method with the standard BP-algorithm (we will
call this method GDIR), the term for weight adjustment will be analogical to the
IR-method (see Equation (3.72)):

wij(t+ 1) ' wij(t)−
∂G

∂wij
(t) = wij(t)− α δpj ypi − αr %pj ypi, (4.13)

where the term δpj was defined in Eq. (1.18) and

%pj =


0 , j ∈ Ll+2

2
[
1− (s+ 1) y2

pj

]
(1− y2

pj)
s ypj , j ∈ Ll+1

2
[
1− (s+ 1) y2

pj

]
(1− y2

pj)
s ypj +

+ (1− y2
pj)
∑

q %pqwjq , j ∈ Lk, 2 ≤ k ≤ l.

(4.14)

In the above equations, α and αr are constants representing the particular learning
rates, s is the parameter for tuning the shape of the representation error function,
q indexes neurons in the layer above the neuron j.

The SCGIR-method

Our new SCGIR-method [78, 97] combines the altered IR-method with the SCG
training algorithm. The training process of the SCGIR-method is identical to
the standard SCG-algorithm, however with G (defined by (4.2)) as the error
function. Algorithm 3.2 on page 44 will be modified in the following way: The

78



terms ~rk = −E ′(~wk) will be replaced by the terms ~rk = −G′(~wk). For details, see
Algorithms 4.1 and 4.2 on pages 79 and 80.

The derivative of the error function G′(~w) = (..., ∂G
∂wij

, ...), can be computed

as G′(~w) = E ′(~w) + cF F
′(~w), where ∂G

∂wij
= ∂E

∂wij
+ cF

∂F
∂wij

.

To simplify the description, we will set G′(~w) =
∑

pG
′
p(~w) , where G′p(~w) =

(..., ∂Gp
∂wij

, ...) is the derivative of the error function corresponding to the p-th train-

ing pattern, with the elements ∂Gp
∂wij

= ∂Ep
∂wij

+ cF
∂Fp
∂wij

. They are computed in the

following way:

∂Gp

∂wij
=



(ypj − dpj) ypi , j ∈ Ll+2{∑
q δpq wjq + 2 cF [1− (s+ 1) y2

pj] ·
· (1− y2

pj)
s−1 ypj

}
(1− y2

pj) ypi , j ∈ Ll+1{∑
q (δpq + cF%pq)wjq + 2 cF [1− (s+ 1) y2

pj] ·
· (1− y2

pj)
s−1 ypj

}
(1− y2

pj) ypi , j ∈ Lk, 2 ≤ k ≤ l.
(4.15)

~w is the actual configuration of the BP-network, y denotes the activity of a neuron
while d is its desired output value. q indexes neurons in the layer above the neuron
j, s is the parameter for tuning the shape of the representation error function
F . cF is a constant representing the influence of F in G. δpq and %pq can be
determined according to (1.18) and (4.14), resp.

Algorithm 4.1 Function SCGIR() (Scaled conjugate gradients algorithm with
learning internal representation):

1. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of size W .

A training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}}.
2. Train:

Train the BP-network M on the training set T using the SCG-training
algorithm (described by Algorithm 4.2 on page 80) and the overall error
function G(~w) =

∑
pGp(~w) defined by (4.2) with ∂Gp

∂wij
defined by (4.15).

M ′ = SCG(M,T,G).

3. Return: M ′.

Similarly to the standard IR-method, the choice of the parameter s for tuning
the shape of the representation error function F is an important issue. We decided
to set s = 3. For this choice, the formulated adaptation rules based on F minimize
both the first- and second-order derivatives of the hyperbolic tangent transfer
function. The first-order derivative is equal y′ = (1+y) (1−y). The second-order
derivative is equal y′′ = −2 y. The term (1+y)3 (1−y)3 y2 can be expressed in the
form 1

4
(y′)3 (y′′)2. Therefore, similarly to the standard IR-method (and s = 4),

the hidden neurons are penalized during training for absolutely high values of
the first- and second-order derivatives of their transfer functions. In other words,
the hidden neurons are punished for high curvature and input-output sensitivity.

79



Algorithm 4.2 Function SCG() (General schema of the SCG-like training algo-
rithms)

0. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of size W .

A training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}},
An error function Err(~w) with the derivative Err′(~w).

1. Initialization:
Set the discrete time variable t = 1 and set success = true .
Initialize the weight vector ~w1 with small random values.

Set scalars such that 0 < σ ≤ 10−4 , 0 < λ1 ≤ 10−8 and λ1 = 0 .
Calculate the direction based on the error function ~r1 = −Err′(~w1).
Set the search direction ~g1 = ~r1.

2. If success = true , then calculate the second-order information:

σt = σ
‖ ~gt ‖ ; ~st = Err′ ( ~wt +σt ~gt )−Err′ ( ~wt )

σt
; δt = ~gt

T ~st .

3. Scale ~st , δt :

~st = ~st + (λt − λt )~gt ; δt = δt + (λt − λt ) ‖ ~gt ‖2 .

4. If δt ≤ 0 , then make the Hessian matrix positive definite by setting:

~st = ~st +
(
λt − 2 δt

‖~gt ‖2

)
~gt ; λt = 2

(
λt − δt

‖~gt ‖2

)
;

δt = − δt + λt ‖ ~gt ‖2 ; λt = λt .

5. Calculate step size αt : µt = ~g Tt ~rt ; αt = µt
δt

.

6. Calculate the comparison parameter ∆t :

∆t = 2 δt [G( ~wt )−G( ~wt +αt ~gt ) ]

µ2
t

.

7. If ∆t ≥ 0 , then a successful reduction in the value of the error
function G can be made:

~wt+1 = ~wt + αt ~gt ; ~rt+1 = −Err′ ( ~wt+1 ) ;

λt = 0 ; success = true .

7.a If tmodW = 0 , then restart the algorithm by setting: ~gt+1 = ~rt+1 ,

else create a new conjugate direction:

βt+1 =
~r Tt+1 (~rt+1−~rt )

‖~rt ‖2
and ~gt+1 = ~rt+1 + βt+1 ~gt .

7.b If ∆t > 0.75 then reduce the scale parameter: λt = 1
4
λt ,

else reduction in error is not possible:

λt = λt ; success = false .

8. If ∆t < 0.25 then increase the scale parameter: λt = λt + δt ( 1−∆t )
‖~gt ‖2

9. If the stop condition is not satisfied ( e.g., the steepest descent direction
~rt 6= 0 ), set t = t+ 1 and go to step 2),

else terminate and return the BP-network with the weight vector ~wt as
the final one.

80



In this way, also the SCGIR-method contributes to a smoother network function
and better generalization ability of the trained model [16].

Further supplements of the SCGIR-method

A problem of the IR-method is its sensitivity to the choice of parameter cF . Too
small values of cF may prevent the BP-network from forming a condensed internal
representation during training. On the other hand, larger values of cF may lead
to worse generalization and approximation because of saturated hidden neuron
outputs.

We assume that also the SCGIR-method will suffer from the cF -sensitivity
problem. However we expect that it will be less serious than in the case of the IR-
method due to the robustness of the SCG-training algorithm. On the other hand,
it may be more difficult to achieve a perfect transparent internal representation
using the fast and robust SCG-algorithm than using the standard BP-algorithm
– due to the reduced number of training epochs and greater step sizes.

Nevertheless, we decide to combine the proposed technique (Algorithm 4.1 on
page 79) with further enhancements, that will support improved generalization
and transparency:

Learning from hints To improve the generalization ability and stability of the
trained networks, we decided to implement learning from hints, namely the extra
output hint method [106]. As hints we use c-means clustering of the training data
[23]. It is a general approach independent on the choice of the training algorithm
and error function. Clustered data provide an intrinsic equivalence class structure
expected to yield improved generalization.

We hope that learning from hints will help the SCGIR-method to create a
condensed internal representation of the trained network and to identify redun-
dant hidden and input neurons. Learning from hints may also make the training
process faster. A further advantage of the extra output hint method is that no
modification of the network algorithm or error criterion is involved.

Pruning based on the internal representation The IR-method together
with learning from hints may help to simpler identification of redundant hidden
neurons identified by uniform, identical or complementary representations. Such
hidden neurons can be simply pruned using the approach described by J. Siets-
ma and R. J. F. Dow [104]. This pruning technique was described in detail in
Subsection 3.5.1 on page 71. Its enhancement to the ‘bipolar’ BP-network model
will be introduced in the following Section 4.2.2. This pruning technique needs
no retraining of the once trained and pruned BP-network, because the network
outputs on the training data remain the same after pruning.

Knowledge extraction based on the sensitivity analysis Knowledge ex-
traction from the trained and pruned BP-network can be further supported by
the sensitivity analysis. We decided to use it especially to detect and visualize
decision boundaries [31] and to assess the significance of the input features [29].

81



4.1.3 Summary of Section 4.1

In this section, we proposed the first version of our framework – the SCGIR-
method. It is intended to be fast and relatively insensitive to the choice of tunable
parameters, to provide improved generalization, to create a transparent network
structure and allow an easy interpretation of the extracted knowledge. The qual-
ities and drawbacks of this method will be assessed in the experimental part of
this work in Chapter 5. For more experimental results, see also [78, 82, 97].

82



4.2 Topology simplification

4.2.1 Introduction

The second goal – recalled In this section, we will enhance our framework
for training of the BP-networks to fulfill also the second of our goals:

• Simplification of the topology: Creation of a simple yet adequate model
topology.

• Measuring relevance: Automatic detection of important and irrelevant
parts of the BP-network.

• Feature selection: Sophisticated selection of relevant input features.

Possible approaches to this task and its subtasks were discussed in Chapter 2.
In this section, we will derive our approach to these tasks and explain the main
reasons for our choice.

Among the techniques for structure optimization, we decided for pruning
based on the formed internal representation and on the output sensitivity analysis
[83, 85]. The main reasons for our choice are the following:

• Both methods are very efficient, generally usable and compatible with the
techniques already included in our framework. They are intended to help
the SCGIR-method to create a simple and transparent structure of the BP-
network and thus simplify knowledge extraction from the model.

• Both methods should also contribute to smoother network functions and
improved generalization ability of the trained model.

• Namely the sensitivity analysis also satisfies all of our requirements on struc-
ture optimization, feature selection and relevance measurement at once.

Moreover, the pruning method based on internal representation and the IR-reg-
ularization technique are supposed to mutually facilitate each other: not only
that the creation of the condensed internal representation should be improved by
pruning, but also that the IR-method should simplify pruning based on internal
representation.

Similarly, to accelerate and simplify pruning based on sensitivity analysis, a
well-designed regularization technique might be useful. Unfortunately, existing
regularization methods are mostly focused on different tasks (e.g., weight mini-
mization). For this reason, we decided to design and integrate into our framework
a new analytical sensitivity-based (SC) regularization technique [83, 84, 85].

In the following subsections, we will describe our training and pruning ap-
proach in detail. Later in this section, we will introduce the new SC-regularization
technique.

4.2.2 Pruning based on internal representation

The SCGIR-method together with learning from hints may supply to simpler
identification of redundant hidden neurons identified by uniform, identical or
complementary representations. Such hidden neurons can be simply pruned using
the approach described by J. Sietsma and R. J. F. Dow [104]. An advantage of this
pruning technique is high efficiency, because the network outputs on the training

83



data remain the same after pruning and no further retraining of the pruned BP-
model is needed.

This pruning technique was originally proposed for the standard ‘binary’ BP-
network model [104]. A detailed description of the pruning mechanism is stated
in Subsection 3.5.1 on page 71. To alter the technique to fit the ‘bipolar’ BP-
network model, we have to change slightly the pruning rules for the case of two
hidden neurons with complementary representations to each other:

• Let i1 and i2 be two neurons from the same hidden layer that have com-
plementary activities for all training input patterns (indexed by p): ypi1 =
− ypi2 . These neurons will be combined into a single unit i. To keep the
same network outputs after this change, we have to set the weights from
i to all the neurons j in the following hidden layer in the following way:
wnewij = wi1j − wi2j.

Pruning rules for the cases of two hidden neurons with identical representations
to each other and for neurons with uniform representations are the same like for
the ‘binary’ BP-network model. The pruning strategy based on internal repre-
sentation is summarized in Step 2. of Algorithm 4.4 on page 90.

4.2.3 Pruning based on sensitivity analysis

The general principle of the so-called relevance-based pruning algorithms [94] is
to train a larger network than necessary and then remove redundant parts of
the final network until a reasonable topology and model performance is achieved.
When designing a pruning technique, we can follow the following questions:

1. Which parts of the BP-network to prune and how to evaluate their rele-
vance?

2. How to identify the redundant elements to be pruned?

3. How to control the pruning process (e.g., when to stop pruning)?

In the following paragraphs, we will present a detailed description of our
sensitivity-based pruning algorithm [83, 85] through successive answering of these
questions.

1. Which parts of the BP-network to prune and how to evaluate their
relevance?

We decided to prune both the hidden neurons and input neurons that correspond
to input features. This way we can manage feature selection as an integral part of
the training-and-pruning process. As a relevance measure, we use the exact sen-
sitivity coefficients Spij suggested by Zurada et al. [126] and Fidalgo [34] (defined
by Equations (3.50) and (3.51)). See Subsection 3.3.3 for a detailed description
of this approach and its alternatives.

We preferred this sophisticated sensitivity-based relevance measure over the
other ones (e.g., the so-called weight product [108] defined by Equation (3.48),
or the so-called consuming energy [43] defined by Equation (3.46)) due to its
exactness and accuracy. The exact sensitivity coefficients may be more likely to
correctly identify the important and redundant parts of the BP-network than

84



their less precise yet computationally more efficient alternatives. Some of the
approximative sensitivity measures (e.g., weight product [108]) may prune more
neurons, however the prediction and generalization abilities of the pruned model
may be worse.

In our case, we use the coefficient Spiv to measure the sensitivity of the activity
of a neuron v in the output layer to the activity of a neuron i from one of the
preceding layers. Because for the ‘bipolar’ BP-network model, f ′(ξpv) = 1 for all
the output neurons (indexed by v) and f ′(ξph) = ( 1 − y2

ph ) for all the hidden
neurons (indexed by h), Spiv can be determined as:

Spiv =
∂ypv
∂ypi

= f ′(ξpv)wiv = wiv (4.16)

for the sensitivity of the activity of the output neuron v ∈ Ll+2 to the activity of
a neuron i in the last hidden layer Ll+1 and

Spiv =
∂ypv
∂ypi

=
∑
g

SpgvS
p
ig =

∑
g

Spgvf
′(ξpg)wig =

∑
g

Spgv(1− y2
pg )wig (4.17)

for the sensitivity of the activity of the output neuron v ∈ Ll+2 to the activity
of the neuron i ∈ Lk, 1 ≤ k ≤ l. g indexes the neurons in the layer Lk+1. For
the input neurons i, their activity ypi = xpi, where xpi is the i-th input feature.
The coefficients Spij can be computed recursively (in the direction from the last
hidden layer to the input layer).

A big advantage of the sensitivity relevance measure Spiv is, that it can be used
in addition to pruning also for other purposes that simplify knowledge extraction
from the BP-network model:

1. to assess the significance of input features [29],

2. to assess the significance of training patterns [51],

3. to detect and visualize decision boundaries [31].

The significance of an input feature u for the network outputs can be computed
e.g., by:

Su = mean
{p,v}

|Spuv| , (4.18)

where p indexes the training patterns, v indexes the network outputs and Spuv is
the sensitivity of the output neuron v to the activity of the input neuron u for
the input pattern p. The coefficients Su can be used as a relevance measure to
rank the input features [29].

Similarly, the significance of a training input pattern p for the network outputs
can be computed by:

Sp = mean
{u,v}

|Spuv| , (4.19)

where u indexes the input features and v indexes the network outputs. The
coefficients Sp can be used as a relevance measure to rank the training patterns
[51], to detect the decision boundaries [31] and for selective learning [30]. The idea
of these techniques is that the training patterns closest to the decision boundaries
are the most informative and are characterized by high values of Sp [31].

85



A problem of the relevance measures Su and Sp is, that they are specific
to a concrete BP-network. To achieve more general results, we would have to
normalize the values of Su and Sp and average them over a higher number of
trained BP-networks.

2. How to identify the redundant elements to be pruned?

Another question is, how to use the coefficients Spiv to identify superfluous neurons
to be pruned. A problem of this relevance measure arises from the fact that the
sensitivity coefficients are computed separately for each training pattern and for
each network output. The significance of the input features and hidden neurons
for the outputs can be very different for various training patterns and for various
outputs. The existing pruning strategies [27, 28, 34, 122, 126] differ in the way,
how they get over this problem.

A possible solution is to average the sensitivity coefficients over the training
patterns in some way. Zurada et al. [126] concentrate only on input neurons.
They suggest to compute the so called mean squared average sensitivity coeffi-
cients S∗uv as the square root of the squared sensitivity coefficients averaged over
the input patterns (indexed by p):

S∗uv =

√
mean

p
(Spuv)

2 =

√√√√ 1

P

P∑
p=1

(Spuv)
2 =

√√√√ 1

P

P∑
p=1

(
∂ypv
∂ypu

)2

. (4.20)

The significance of an input neuron u over all outputs (indexed by v) is computed
by:

S∗u = max
v
S∗uv = max

v

√√√√ 1

P

P∑
p=1

(
∂ypv
∂ypu

)2

. (4.21)

The coefficients S∗u for all input neurons u are sorted in the descending order.

After that, if a great fall in the sequence of S∗u is found (i.e.,
S∗
u′

S∗
u′+1

< β for a given

neuron u′ and a constant parameter 0 < β < 1), all neurons i in the input layer
such that S∗i ≤ S∗u′ are removed from the BP-network.

We took inspiration from the above described approach and proposed a simple
pruning strategy applicable to both input and hidden neurons:

1. For each hidden and input layer L, we compute a pruning threshold δL in
the following way:

δL = βmean
{v,j,p}

∣∣Spjv∣∣ = βmean
{v,j,p}

∣∣∣∣∂ypv∂ypj

∣∣∣∣ , (4.22)

where p indexes the training patterns, v indexes the output neurons, j
indexes the neurons in layer L, Spjv is the sensitivity of the output neuron
v to the activity of neuron j for the input pattern p, and 0 < β ≤ 1 is a
given constant parameter. In our experiments, β was set to 0.7.

2. If a neuron i in a hidden or input layer L fulfills the following condition:

max
p

mean
v
|Spiv| < δL, (4.23)

i is selected to be pruned.

86



3. All hidden and input neurons satisfying condition (4.23) are pruned at once.

The idea of our pruning criterion is, that an input or hidden neuron should be
labeled as superfluous only if the corresponding sensitivity coefficients are low for
all the training patterns. Our pruning strategy based on sensitivity analysis is
summarized in Step 3. of Algorithm 4.4 on page 90.

3. How to control the pruning process?

In the following paragraphs, we will describe our training-and-pruning method-
ology [83, 85]. Although the methodology is independent of the chosen training
algorithm, we hope it will be advantageous especially together with the SCGIR-
algorithm and its enhancements.

Let T = {(~xp, ~dp) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}} be the training set

and Vpr = { ( ~xr, ~dr ) | ~xr ∈ <n, ~dr ∈ <m, r ∈ {1, . . . , R}} and let Ves =

{ ( ~xq, ~dq ) | ~xq ∈ <n, ~dq ∈ <m, q ∈ {1, . . . , Q}} be two mutually disjoint vali-

dation sets. We denote the vectors ~x as the input patterns, and the vectors ~d
as the desired network outputs. To control both the training and pruning pro-
cesses together, we use a parameter maxEpochs and the validation sets Vpr and
Ves. The training process with pruning can be briefly described by the following
schema:

1. Initialize the BP-network.

2. Repeat the following two steps:

(a) Training:
(Re)train the BP-network on the training set T with early stopping
and with the following stop criteria:

• the overall error on the validation set Ves grows five times in a
row,

• or the maximum number of training epochs indicated by parame-
ter maxEpochs is reached.

Save the BP-network.

(b) Pruning:

i. Prune from the BP-network hidden neurons based on internal rep-
resentation.

ii. Prune from the BP-network hidden and input neurons based on
sensitivity analysis.

iii. Adjust input patterns from the training set T and the validation
sets Ves and Vpr.

Until no further pruning is possible (i.e., no input or hidden neurons were
pruned during the last pruning phase).

3. Select the BP-network with the lowest performance error on the validation
set Vpr to be the final one.

Now, we will describe the key aspects of the above specified methodology
in detail. The parameter maxEpochs denotes the maximum total number of
training epochs over all phases of (re)training. After each training phase, the
parameter maxEpochs is reduced by the number of training epochs actually

87



used by the training algorithm. If maxEpochs falls to zero, the following training
phases are implicitly skipped.

After each pruning phase t, the training set T and the validation sets Ves and
Vpr are adjusted by removing from the input patterns all features corresponding
to the input neurons actually pruned from the BP-network. For a BP-network Mt

with the given nt inputs, its training set Tt will have the form Tt = {(~x tp, ~dp) | ~x tp ∈
<nt , ~dp ∈ <m, p ∈ {1, . . . , P}}, where the input patterns ~x tp contain exactly the

features corresponding to the inputs of Mt. Analogically, Vpr,t = { ( ~x tr ,
~dr ) | ~x tr ∈

<nt , ~dr ∈ <m, r ∈ {1, . . . , R}} and Ves,t = { ( ~x tq ,
~dq ) | ~x tq ∈ <nt , ~dq ∈ <m, q ∈

{1, . . . , Q}}.
The validation set Vpr,t is used to measure the performance error of the corre-

sponding BP-network Mt. For a BP-network Mt with the weight vector ~wt and
nt inputs, the performance error e(Vpr,t)t of Mt on Vpr,t is computed using the
following formula:

e(Vpr,t)t = EVpr,t(~wt) =
1

2

∑
r

‖ ~y tr − ~dr ‖2 =
1

2

∑
r

∑
v

( ytrv − drv )2, (4.24)

where r indexes all patterns from Vpr,t, v indexes all output neurons of Mt, and
~y tr ∈ <m denotes the actual output produced by Mt for the input pattern ~x tr .
After each iteration t of the algorithm, we save the actual BP-network Mt and its
performance e(Vpr,t)t. At the end, the BP-network with lowest value of e(Vpr)t is
selected to be the final one.

The validation sets Ves,t are used by the early stopping strategy (see Section
3.4.1 for details). The training in each training phase t is stopped, if the overall
error of the actual BP-network Mt on the corresponding validation set Ves,t grows
five times in a row or if the maximal number of training epochs (indicated by the
parameter maxEpochs) is reached. The overall error function is specific to the
chosen training algorithm (e.g., E defined by (1.8) for the standard BP-algorithm
or the SCG-algorithm, or G defined by (4.2) for the SCGIR-algorithm).

Our training-and-pruning methodology [83, 85] is summarized by Algorithms
4.3 and 4.4 on pages 89 and 90.

4.2.4 Analytical sensitivity control

In the previous subsections, we introduced a methodology for training of BP-
networks with pruning of hidden and input neurons based on internal representa-
tion and sensitivity analysis [83, 85] (described by Algorithms 4.3 and 4.4). The
methodology can be combined e.g., with the formerly proposed SCGIR-training
algorithm (described by Algorithm 4.1 on page 79). However, a sophisticated en-
hancement of the training method could make the pruning process much easier.
It might also increase the chance that the trained and pruned BP-networks would
have an (sub)optimal and transparent structure and that they would generalize
adequately.

Especially the pruning process based on sensitivity analysis could be fur-
ther simplified and improved by a well-designed and sophisticated regularization
technique. However, most of the existing regularization techniques for structure
optimization (e.g., weight decay [119], weight elimination [117]) are based on
the minimization of the magnitudes of weights. Weights smaller than a given

88



Algorithm 4.3 Function train and prune() (training-and-pruning methodology
based on internal representation and sensitivity analysis)

1. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of size W .
A training algorithm ALG.
Three mutually disjoint data sets:
• a training set T = {(~xp, ~dp) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}},
• a validation set for early stopping Ves = {(~xq, ~dq) | ~xq ∈ <n, ~dq ∈
<m, q ∈ {1, . . . , Q}},
• a validation set for pruning Vpr = {(~xr, ~dr) | ~xr ∈ <n, ~dr ∈ <m, r ∈
{1, . . . , R}}.

The maximum number of training epochs maxEpochs, maxEpochs ∈ N .
The pruning parameter β, 0 < β ≤ 1.

2. Initialization:
Set the discrete time variable t = 1.
Set M1 = M , T1 = T , Ves,1 = Ves , Vpr,1 = Vpr.

3. Repeat:

(a) Training / retraining:
i. Train the BP-network Mt on the training set Tt using the training

algorithm ALG with early stopping (see Section 3.4.1) with the
validation set Ves,t and the maximum number of training epochs
maxEpochs. Apply the following stop criteria on ALG:

• The overall error on the validation set Ves,t grows five times in
a row.

• The maximum number of training epochs is reached.
ii. Adjust the parameter maxEpochs:

Let epochst ≤ maxEpochs be the number of epochs used by the
ALG-algorithm. Then:
maxEpochs = maxEpochs− epochst.

iii. Performance evaluation:
Compute the performance error e(Vpr,t)t of the BP-network Mt on
the validation set Vpr,t:
e(Vpr,t)t = 1

2

∑
r

∑
v (yrv − drv)2,

where yrv denotes the v-th actual output produced by Mt for the
r-th input pattern from Vpr,t.

(b) Pruning:
i. Identify and remove from the BP-network the redundant hidden

and input neurons (Algorithm 4.4):
Mt+1 = prune hidden and input neurons(Mt, β).

ii. Adjust the sets Tt, Ves,t and Vpr,t: remove from the input patterns
all features corresponding to the input neurons pruned from Mt.

(c) Set t = t+ 1.

Until the following stop criterion for pruning is satisfied:
• Mt and Mt−1 have equal topologies (i.e., no input or hidden neurons

were pruned during the t-th iteration of pruning).
4. Select the network Mt′ with the lowest error e(Vpr,t′)t′ = mini∈{1,...,t} e(Vpr,i)i

to be the final one.

89



Algorithm 4.4 Function prune hidden and input neurons() (one iteration of
the pruning method)

1. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of size W .
The pruning parameter β , 0 < β ≤ 1.

2. Remove redundant hidden neurons based on the formed internal represen-
tation: For each hidden layer Lk , 1 < k ≤ l + 1:
(a) For each neuron i in layer Lk:

If i forms a uniform representation (there exists c ∈ < such that for
all training patterns p: ypi = c):

i. Remove i and the corresponding edges from the BP-network M .

ii. For all j ∈ Lk+1 : set wnew0j = w0j + cwij.

(b) For each pair of neurons i1 and i2 in layer Lk:
If i1 and i2 form identical representations to each other (ypi1 = ypi2 for
all training patterns p):

i. Remove i2 and the corresponding edges from the BP-network M .

ii. For all j ∈ Lk+1 : set wnewi1j
= wi1j + wi2j.

If i1 and i2 form complementary representations to each other (ypi1 =
−ypi2 for all training patterns p):

i. Remove i2 and the corresponding edges from the BP-network M .

ii. For all j ∈ Lk+1 : set wnewi1j
= wi1j − wi2j.

3. Remove redundant hidden and input neurons based on sensitivity analysis:

(a) Relevance evaluation: For each hidden and input layer L (in the
direction from the output to the input layer) and for each neuron
i in layer L, compute the values of the sensitivity coefficients Spiv:

Spiv =

{
f ′(ξpv)wiv ; i ∈ Ll+1∑

g S
p
gvf
′(ξpg)wig ; i ∈ Lk , g ∈ Lk+1 , 1 ≤ k ≤ l + 1 ,

for all output neurons (indexed by v) and all training patterns (indexed
by p).

(b) Identification of redundant hidden and input neurons:
Set I = {}.
For each hidden and input layer L:

i. Compute the threshold δL:
δL = βmean{v,i,p} |Spiv| ,

where p indexes the training pattern, v indexes the output neu-
rons, i indexes the neurons in layer L.

ii. For each neuron i in layer L:
If i fulfills the following condition:

maxp meanv |Spiv| < δL,
insert i into I.

(c) Remove redundant neurons:
Remove all the neurons i ∈ I and the corresponding edges from the
BP-network M .

4. Return: The pruned BP-network M .

90



threshold are regarded as useless and removed. A question is, whether such reg-
ularization techniques would also make easier the pruning of hidden and input
neurons.

A problem of the regularization techniques based on weights’ minimization
is, that they favor configurations with many small weights to configurations with
a few large weights. However, a BP-network with the configuration of the sec-
ond type may perform and generalize better [95] and its internal structure may
be simpler and more transparent. Moreover, regularization based on weights’
minimization could prevent the BP-network from forming a condensed (or even
bipolar) internal representation and make thus the pruning of hidden neurons
based on their representations more difficult. Also the impact of weight mini-
mization on the sensitivity based pruning is questionable.

For these reasons, rather than minimizing the magnitudes of weights, we de-
cided to minimize directly the absolute sensitivity coefficients, which are a key
part of our pruning strategy. In [83, 84, 85], we proposed a new regularization
technique SC for analytical sensitivity control. The criterion for sensitivity con-
trol is formulated as a penalty term added to the error function to be minimized
during training – the sensitivity error function.

In essence, there are two main options for sensitivity control in BP-networks
– sensitivity can be either inhibited or enforced [79, 83]. Both variants are as-
sumed to increase the differences among the achieved sensitivity coefficients of the
respective neurons and restrict the space of candidate hypotheses for the want-
ed network function. Anyway, we expect that BP-networks with an inhibited
sensitivity might yield better results due to their smoother function.

We call the SC-regularization technique analytical, because it works exactly
with the sensitivity coefficients (defined by Equations (4.16) and (4.17)) and it
doesn’t attempt to approximate them in some way. Such regularization could
make the training process computationally expensive. On the other side, it is
maximally compatible with the proposed sensitivity-based pruning rule (Equa-
tion (4.23)). Thus the analytical SC-regularization might simplify and improve
the pruning process more than a less precise yet more efficient regularization
technique.

In sum, the SC-regularization technique is intended to impact pruning of more
input and hidden neurons and easier optimization of the network structure. It
should also contribute to smoother network functions and improved generaliza-
tion ability of the trained model [16]. At the same time, the SC-regularization
technique should improve (or at least not reduce) the ability of the trained BP-
networks to form a condensed internal representation during training and support
thus an easy interpretation of the extracted knowledge.

The sensitivity error function

In the following paragraphs, we will discuss the form of the sensitivity error
function for the SC-method. In the case of sensitivity inhibition, the sensitivity
error function should penalize input (and indirectly also hidden) neurons for high
magnitudes of sensitivity coefficients Spiv (see Equations (4.16), (4.17) for the
definition of Spiv). This would help the proposed pruning technique (Algorithm
4.4 on page 90) to identify and prune from the BP-network hidden and input
neurons with low influence on the network outputs. Such redundant hidden and

91



input neurons are characterized by absolutely low sensitivity coefficients for all
training patterns and network outputs.

In general, the sensitivity error function G will be formulated as it follows
[83]:

G = G(~w) =
∑
p

Gp(~w) =
1

2

∑
p

∑
u

∑
v

(Spuv)
2 =

1

2

∑
p

∑
u

∑
v

(
∂ypv
∂xpu

)2

,

(4.25)
where p indexes the training patterns, v indexes the output neurons, u indexes the
input neurons. For a given training pattern p, the term ∂ypv

∂xpu
corresponds to the

sensitivity Spuv of the activity ypv of the output neuron v to the u-th input feature
xpu. Gp(~w) = 1

2

∑
u,v (Spuv)

2 is the sensitivity error function corresponding to the
p-th training pattern.

During the training process, the above-defined sensitivity error function G
is optimized simultaneously with the performance error function E (defined by
Equation (1.8)) and the representation error function F (defined by Equation
(4.1)). We will thus use the following modification of the overall error function
H:

H(~w) = E(~w) + cFF (~w) + cGG(~w) , (4.26)

where cF ≥ 0 and cG ∈ < are coefficients reflecting the trade-off between the
influence of E, F and G in H. The parameters cF and cG remain constant
throughout the whole training process but might be variable, too. The parameter
cG controls, whether the sensitivity is inhibited or enforced during training. For
sensitivity inhibition, we must set cG > 0. For sensitivity enforcement (see, e.g.,
[79, 83]), it is necessary to set cG < 0. In [79], sensitivity control is used for
improved information transfer in modular networks.

In the following subsections, we will derive the rules for weight adjustment
corresponding to the overall error function H(~w).

The derivation of the rules for weight adjustment

Because of the complexity of the error function G(~w) defined by Equation (4.25),
we firstly derived in [85] the rules for weight adjustment of the SC-regularization
technique for the simplified BP-network topology with just one hidden layer. In
[84], we generalized the SC-technique to the the model of ‘bipolar’ BP-networks
with an arbitrary number of hidden layers.

In the equations in this subsection, we will use the following notation: p will
be an index over all training patterns, v will index all output neurons and u will
index all input neurons. A weight from a neuron i to a neuron j will be denoted
by wij, y will denote the activity of a neuron while ξ will be its potential. x
will correspond to the considered element of the presented input pattern. For a
given training pattern p, the term ∂ypj/∂ypi will correspond to the sensitivity
Spij of the activity ypj of the (hidden or output) neuron j to the activity ypj of the
neuron i in one of the preceding layers. For the input neurons u, their activity is
equal to their input (i.e., ypu = xpu).

We will work with the general form of the sensitivity error function G (defined
by (4.25)). The overall error function H(~w) = E(~w) + cFF (~w) + cGG(~w) will be

92



evaluated according to:

H(~w) =
1

2

∑
p

∑
v

( ypv − dpv )2 + cF
∑
p

∑
j′

(1 + ypj′)
s (1− ypj′)s y2

pj′ +

+ cG
1

2

∑
p

∑
u

∑
v

(Spuv)
2 . (4.27)

In the above expression, j′ indexes all hidden neurons, d denotes the desired
activity of a neuron and s is a parameter for tuning the shape of the representation
error function.

To minimize H(~w), the functions E(~w), cFF (~w) and cGG(~w) are minimized
simultaneously. The derivative of H(~w) is given by H ′(~w) = E ′(~w) + cFF

′(~w) +
cGG

′(~w). It is computed as H ′(~w) =
∑

pH
′
p(~w), where H ′p(~w) = (..., ∂Hp

∂wij
, ...) and

∂Hp

∂wij
=

∂Ep
∂wij

+ cF
∂Fp
∂wij

+ cG
∂Gp

∂wij
. (4.28)

The partial derivatives in ∂Ep/∂wij+cF∂Fp/∂wij were already stated in Equation
(4.15). To inhibit also the sensitivity of the network, we have to determine the
terms ∂Gp/∂wij as well.

Let (~xp, ~dp) be the training pattern presented to the BP-network in time t and
let i be the neuron connected with neuron j via the weight wij. In the derivations
below, all neurons in the same layer as neuron i will be indexed by g, all neurons
in the same layer as neuron j will be indexed by h.

The derivative ∂Gp
∂wij

we can be computed using the sum and chain rules:

∂Gp

∂wij
=

∂

∂wij

(
1

2

∑
u

∑
v

(Spuv)
2

)
=
∑
u

∑
v

Spuv

(
∂Spuv
∂wij

)
. (4.29)

• For neuron j in the output layer Ll+2:
The term Spuv can be formulated as:

Spuv =
∑
g

Spgv S
p
ug =

∑
g

wgv S
p
ug , (4.30)

where g indexes neurons in the last hidden layer Ll+1. Therefore,

∂Gp

∂wij
=
∑
u

∑
v

Spuv
∂

∂wij

(∑
g

wgv S
p
ug

)
=
∑
u

∑
v

Spuv
∑
g

Spug
∂wgv
∂wij

.

(4.31)

Because

∂wgv
∂wij

=

 1 for (g = i) and (v = j)

0 otherwise ,
(4.32)

we obtain:
∂Gp

∂wij
=
∑
u

SpujS
p
ui . (4.33)

93



• For neuron j in a hidden layer other than first (j ∈ Lk , i ∈ Lk−1 , 2 < k ≤
l + 1):
The term Spuv can be formulated as:

Spuv =
∑
g

SpugS
p
gv =

∑
g

Spug

(∑
h

Spgh S
p
hv

)
=

=
∑
g

Spug
∑
h

(1− y2
ph)wgh S

p
hv , (4.34)

where g indexes all neurons in the layer Lk−1, h indexes all neurons in the
layer Lk. Therefore, we can apply the sum and product rules and obtain:

∂Gp

∂wij
=
∑
u

∑
v

Spuv
∂

∂wij

(∑
g

Spug
∑
h

(1− y2
ph)wgh S

p
hv

)
=

=
∑
u

∑
v

Spuv
∑
g

Spug
∑
h

∂
[
(1− y2

ph)wgh S
p
hv

]
∂wij

=

=
∑
u

∑
v

Spuv
∑
g

Spug
∑
h

[
∂(1− y2

ph)

∂wij
wgh S

p
hv +

+ (1− y2
ph)

∂wgh
∂wij

Sphv + (1− y2
ph)wgh

∂Sphv
∂wij

]
. (4.35)

The particular derivatives will be computed in the following way:
∂(1−y2

ph)

∂wij
=

0 for h 6= j and

∂(1− y2
pj)

∂wij
=

∂(1− y2
pj)

∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

= (−2 ypj) (1− y2
pj)xpi . (4.36)

The derivative
∂wgh
∂wij

can be computed analogically to the Equation (4.32)

and

∂Sphv
∂wij

=
∂Sphv
∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

= T phv,j (1− y2
pj) ypi , (4.37)

where T phv,j denotes an auxiliary term, T phv,j =
∂Sphv
∂ypj

.

To obtain the value of T phv,j, the term T pqv,j =
∂Spqv
∂ypj

has to be computed

recursively backwards from the output layer towards the hidden layer Lk
containing the neurons h and j.

– For a neuron q in the last hidden layer Ll+1:

T pqv,j =
∂Spqv
∂ypj

=
∂wqv
∂ypj

= 0. (4.38)

94



– For a neuron q in the hidden layer Lk′ , k ≤ k′ ≤ l:

T pqv,j =
∂

∂ypj

(∑
r

SpqrS
p
rv

)
=

∂

∂ypj

(∑
r

wqr (1− y2
pr)S

p
rv

)
=

=
∑
r

wqr
∂
[
(1− y2

pr)S
p
rv

]
∂ypj

=

=
∑
r

wqr

[
∂(1− y2

pr)

∂ypj
Sprv + (1− y2

pr)
∂Sprv
∂ypj

]
=

=
∑
r

wqr

[
∂(1− y2

pr)

∂ypr

∂ypr
∂ypj

Sprv + (1− y2
pr)T

p
rv,j

]
=

=
∑
r

wqr
[

(−2ypr)S
p
jrS

p
rv + (1− y2

pr)T
p
rv,j

]
, (4.39)

where r indexes neurons from the hidden layer Lk′+1.

Altogether:

∂Gp

∂wij
=
∑
u

∑
v

Spuv

[∑
g

Spug(−2 ypj) (1− y2
pj) ypiwgj S

p
jv +

+Spui (1− y2
pj)S

p
jv +

+
∑
g

Spug
∑
h

(1− y2
ph)wgh T

p
hv,j (1− y2

pj) ypi

]
=

= (−2 ypj) ypi
∑
u

∑
v

Spuv S
p
jv

∑
g

Spug wgj (1− y2
pj) +

+ (1− y2
pj)
∑
u

∑
v

Spuv S
p
ui S

p
jv +

+ (1− y2
pj) ypi

∑
u

∑
v

Spuv
∑
g

Spug
∑
h

(1− y2
ph)wgh T

p
hv,j .

(4.40)

Because for the first subterm,∑
g

Spug wgj (1− y2
pj) =

∑
g

Spug S
p
gj = Spuj , (4.41)

we obtain:

∂Gp

∂wij
= (−2 ypj) ypi

∑
u

∑
v

Spuv S
p
jv S

p
uj +

+ (1− y2
pj)
∑
u

∑
v

Spuv S
p
ui S

p
jv +

+ (1− y2
pj) ypi

∑
u

∑
v

Spuv
∑
g

Spug
∑
h

(1− y2
ph)wgh T

p
hv,j .

(4.42)

95



• For neuron j in the first hidden layer L2 (neuron i is in the input layer L1):
The term Spuv can be formulated as:

Spuv =
∑
h

SpuhS
p
hv =

∑
h

(1− y2
ph)wuh S

p
hv , (4.43)

where h indexes all neurons in the first hidden layer.
Therefore, we can apply the sum and product rules and obtain:

∂Gp

∂wij
=
∑
u

∑
v

Spuv
∂

∂wij

(∑
h

(1− y2
ph)wuh S

p
hv

)
=

=
∑
u

∑
v

Spuv
∑
h

∂
[
(1− y2

ph)wuh S
p
hv

]
∂wij

=

=
∑
u

∑
v

Spuv
∑
h

[
∂(1− y2

ph)

∂wij
wuh S

p
hv + (1− y2

ph)
∂wuh
∂wij

Sphv +

+ (1− y2
ph)wuh

∂Sphv
∂wij

]
.

(4.44)

The particular derivatives can be computed analogically to the previous
case. Altogether:

∂Gp

∂wij
=
∑
u

∑
v

Spuv (−2 ypj) (1− y2
pj)xpiwuj S

p
jv +

+
∑
v

Spiv (1− y2
pj)S

p
jv +

+
∑
u

∑
v

Spuv
∑
h

(1− y2
ph)wuh T

p
hv,j (1− y2

pj)xpi =

= (−2 ypj)xpi
∑
u

∑
v

Spuv S
p
uj S

p
jv +

+ (1− y2
pj)
∑
v

Spiv S
p
jv +

+ (1− y2
pj)xpi

∑
u

∑
v

Spuv
∑
h

(1− y2
ph)wuh T

p
hv,j . (4.45)

The SCGS-algorithm The second version of our framework for training of
the BP-networks will be called SCGS [83, 84, 85]. It combines the SC- and
IR-regularization techniques with the SCG-algorithm (described by Algorithm
4.2 on page 80) and with the above-defined training-and-pruning methodology
(Algorithms 4.3 and 4.4 on pages 89 and 90).

The training process of the SCGS-method is identical to the standard SCG-
algorithm (see Algorithm 4.2 on page 80 for the general schema of the SCG-like
algorithms), however withH(~w) = E(~w)+cFF (~w)+cGG(~w) (defined by (4.26)) as
the error function. The derivative of H(~w) is given by H ′(~w) = E ′(~w)+cFF

′(~w)+
cGG

′(~w). It is computed as: H ′(~w) =
∑

pH
′
p(~w), where H ′p(~w) = (..., ∂Hp

∂wij
, ...)

and ∂Hp/∂wij = ∂Ep
∂wij

+ cF
∂Fp
∂wij

+ cG
∂Gp
∂wij

.

96



For the considered ‘bipolar’ BP-network model with an arbitrary number of
hidden layers, the terms ∂Hp/∂wij correspond to:

∂Hp

∂wij
=



(ypj − dpj)ypi + cG
∑

u S
p
ujS

p
ui

for neuron j ∈ Ll+2{∑
q δpqwjq + 2 cF

[
1− (s+ 1)y2

pj

]
(1− y2

pj)
s−1ypj

}
(1− y2

pj) ypi +

+ cG

[
(−2ypj)ypi

∑
u,v S

p
uvS

p
jvS

p
uj +

+ (1− y2
pj)
∑

u,v S
p
uvS

p
uiS

p
jv +

+ (1− y2
pj)ypi

∑
u,v S

p
uv

∑
g S

p
ug

∑
h(1− y2

ph)wghT
p
hv,j

]
for neuron j ∈ Ll+1{∑

q (δpq + cF%pq)wjq + 2 cF
[
1− (s+ 1)y2

pj

]
(1− y2

pj)
s−1ypj

}
·

· (1− y2
pj) ypi +

+ cG

[
(−2ypj)ypi

∑
u,v S

p
uvS

p
jvS

p
uj +

+(1− y2
pj)
∑

u,v S
p
uvS

p
uiS

p
jv +

+ (1− y2
pj)ypi

∑
u,v S

p
uv

∑
g S

p
ug

∑
h(1− y2

ph)wghT
p
hv,j

]
for neuron j ∈ Lk , 3 ≤ k ≤ l{∑

q (δpq + cF%pq)wjq + 2 cF
[
1− (s+ 1)y2

pj

]
(1− y2

pj)
s−1ypj

}
·

· (1− y2
pj) ypi +

+cG

[
(−2ypj)xpi

∑
u,v S

p
uvS

p
ujS

p
jv + (1− y2

pj)
∑

v S
p
ivS

p
jv +

+ (1− y2
pj)xpi

∑
u,v S

p
uv

∑
h(1− y2

ph)wuhT
p
hv,j

]
for neuron j ∈ L2

(4.46)
In the above expression, s denotes the parameter for tuning the shape of the
representation error function, g, h index the neurons in the same layers as i and
j, respectively, q is the index of the neurons in the layer above the neuron j. cF
and cG are constants representing the influence of the respective error terms, δpq
can be determined according to (1.18) and %pq according to (4.14). The terms
T phv,j = ∂Sphv/∂ypj are computed recursively backwards from the output layer
towards the hidden layer Lk containing the neuron j:

1. For each neuron h in the last hidden layer Ll+1:

T phv,j = 0 . (4.47)

2. For each neuron h in the hidden layer Lk′ , k ≤ k′ ≤ l , j ∈ Lk:

T phv,j =
∑
r

whr
[

(−2ypr)S
p
jrS

p
rv + (1− y2

pr)T
p
rv,j

]
, (4.48)

where r indexes neurons from the hidden layer above the neuron h.

To speed up the training process, all the terms Spuv, S
p
uh and Sphv (for all the

training patterns p, hidden neurons h, output neurons v and input neurons u) are
computed and saved before the computation of H ′(~w) using the following schema:

97



• The values of sensitivity coefficients Spuj for all training patterns (indexed by
p), all input neurons (indexed by u) and for all hidden and output neurons
(denoted by j) are determined recursively in the direction from the first
hidden layer towards the output layer:

1. For a neuron j in the first hidden layer:

Spuj =
∂ypj
∂xpi

= (1− y2
pj)wuj . (4.49)

2. For a neuron j in a hidden layer other than first or in the output layer:

Spuj =
∑
g

Spgj S
p
ug = (1− y2

pj)
∑
g

wgjS
p
ug , (4.50)

where g indexes neurons from the layer below the neuron j.

• Similarly, the values of sensitivity coefficients Spiv for all training patterns
(indexed by p), all output neurons (indexed by v) and for all hidden neurons
(denoted by i) are determined recursively in the direction from the last
hidden layer towards the first hidden layer:

1. For a neuron i in the last hidden layer:

Spiv = wiv . (4.51)

2. For a neuron j in a hidden layer other than last:

Spiv =
∑
h

Spih S
p
hv =

∑
h

wih (1− y2
ph)S

p
hv (4.52)

where h stands for the neurons from the layer above the neuron i.

The SCGS-method is summarized by Algorithm 4.5 on page 98.

Algorithm 4.5 Function SCGS() (Scaled conjugate gradients algorithm with
learning internal representation and analytical sensitivity control):

1. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of size W .

A training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}}.
2. Train:

Train the BP-network M on the training set T using the SCG-training
algorithm (described by Algorithm 4.2 on page 80) and the overall error
function H(~w) =

∑
pHp(~w) defined by (4.27) with ∂Hp

∂wij
defined by (4.46).

M ′ = SCG(M,T,H).

3. Return: M ′.

98



4.2.5 Summary of Section 4.2

In the first part of this section, we proposed a methodology for training of BP-net-
works with pruning of hidden and input neurons based on internal representation
and sensitivity analysis (Algorithms 4.3 and 4.4). After that, we designed a new
analytical sensitivity-based regularization technique SC. Finally, we combined the
SC-regularization technique and the new-proposed training-and-pruning method-
ology with the formerly defined SCGIR-algorithm (see Algorithm 4.1 on page 79)
– in the SCGS-algorithm (Algorithm 4.5).

The presented training-and-pruning methodology with the help of the pro-
posed regularization techniques is intended to find an adequate and simple topol-
ogy of the BP-network automatically during training. Moreover, it should identify
relevant input features in the data and important hidden neurons. Both regu-
larization techniques might also contribute to a smoother network function and
better generalization ability of the trained BP-networks. As a result, the SCGS-
algorithm should take advantage of all of the included techniques and provide a
general framework capable of

1. analytical sensitivity control during training,

2. enforcement of condensed internal representation during training,

3. sophisticated pruning of hidden and input neurons and identification of
significant input features,

4. improved generalization,

5. and easier interpretation of the extracted knowledge.

An expected drawback of the SCGS-method are its excessive time costs, which
increase with the growing number of hidden layers. They are caused mainly by the
complexity of the SC-regularization technique. The evaluation of the sensitivity
error function and the corresponding rules for weight adjustment require time-
consuming computation. Moreover, in each step of the training algorithm, we
have to go through the whole network several times (e.g., to compute the values
of the sensitivity coefficients and their derivatives).

The qualities and drawbacks of our training-and-pruning methodology and
of the SCGS-method will be assessed in the experimental part of this work in
Chapter 5. For more experimental results, see also [83, 84, 85].

99



4.3 Fast creation of a simple and clear internal

structure

4.3.1 Introduction

The third goal – recalled Our third goal will be to enhance our framework
to achieve both the first and the second goals at once:

• Generalization: The framework should favor smooth BP-network func-
tions that contribute to adequate generalization.

• Speed: The training process should be as fast as possible and robust to
the choice of initial parameters.

• Creation of a simple and transparent network structure: The BP-
network should create a small, simple and transparent internal structure
during training. It should also automatically identify relevant input fea-
tures. The created model structure should simplify the further knowledge
extraction.

In the previous Section 4.2, we proposed the SCGS-method for training of BP-
networks (Algorithm 4.5 on page 98). It fulfills two of the above requirements
– on creation of a simple and transparent network structure and on improved
generalization. On the other hand, a problem of this method is its low efficiency.

The high time and space complexities of the SCGS-algorithm are caused main-
ly by the SC-regularization technique. The efficiency problem of the SC-method
arises from the analytical nature of the sensitivity error function and from the
complexity of the corresponding rules for weight adjustment. On the other hand,
the SC-regularization technique is (thanks to its analytical character) highly pre-
cise and maximally compatible with our sensitivity-based pruning technique (Al-
gorithm 4.4 on page 90).

Contrary to the SC-regularization technique, some other methods included in
our framework are very efficient. They are especially the IR-regularization tech-
nique together with the SCG-training algorithm and our training-and-pruning
methodology. For this reason, when proposing our approach to the third goal,
we will keep these methods in our framework. However, we will introduce a new
approximative sensitivity-based regularization technique that will substitute the
analytical one.

The new approximative sensitivity-based regularization technique should be
as efficient as possible. At the same time, it should also keep most of the good
qualities of the analytical method:

1. it should simplify pruning based on sensitivity analysis,

2. it shouldn’t be in conflict with the methods for improved transparency,

3. it should improve the generalization ability of the model,

4. and it should support creation of a smooth network function.

In the following paragraphs, we will describe our approach in detail.

100



4.3.2 Approximative sensitivity control

In this subsection, we will introduce our new approximative regularization tech-
nique for sensitivity control. We will call the method SCA [81]. In order to
avoid the huge computational complexity of the analytical SC-technique, we will
replace the sensitivity error function G (defined by (4.25)) by an alternative (ap-
proximative) expression. Naturally, there are more possible ways, in which G
could be approximated. For this reason, we have decided to introduce sever-
al variants of the approximative sensitivity error function and select the most
promising expression to be the final one.

We will propose the SCA-regularization technique for the ‘bipolar’ BP-net-
work model, where all the hidden neurons have the hyperbolic tangent transfer
functions, while all the output neurons implement the linear transfer functions.
The approach could be applied also to BP-networks with other continuous and
differentiable transfer functions, but the adaptation rules had to be slightly al-
tered, reflecting the derivatives of the applied transfer functions.

In the equations in this subsection, we will use the following notation: p will
be an index over all training patterns, v will index all output neurons, u will
index all input neurons. A weight from a neuron i to a neuron j will be denoted
by wij, y will denote the activity of a neuron while ξ will be its potential. x will
correspond to the considered element of the presented input pattern.

In the following paragraphs, we will describe two possible expressions of the
sensitivity error function and discuss their advantages and limitations.

The SCA1-method

We will denote the initial variant of the SCA-method as SCA1. It is based on
a straightforward approximation of the overall network sensitivity. The exact
sensitivity terms Spuv = ∂ypv

∂xpu
(defined by Equations (4.16) and (4.17)) are approx-

imated by the terms

T puv =
∆ypv
∆xpu

=
ypu − y∗pu
xpu − x∗pu

(4.53)

with ∆xpu = xpu − x∗pu and ∆ypv = ypv − y∗pv. x
∗
pu denotes the value of xpu

corrupted by a small amount of random noise (in or experiments usually chosen
within the range of 0.01-1%). y∗pv corresponds to the v-th actual network output

determined for the noise-corrupted input pattern ~x∗p.

The sensitivity error function G(~w) = 1
2

∑
p,u,v

(
∂ypv
∂xpu

)2

is replaced by the

following alternative expression of the overall network sensitivity:

G1 = G1(~w) =
∑
p

G1
p(~w) =

1

2

∑
p

∑
u

∑
v

(T puv)
2 =

=
1

2

∑
p

∑
u

∑
v

(
∆ypv
∆xpu

)2

=
1

2

∑
p

∑
u

∑
v

(ypv − y∗pv)2

(xpu − x∗pu)2
, (4.54)

where G1
p(~w) = 1

2

∑
u,v

(
∆ypv
∆xpu

)2

is the approximative sensitivity error function

corresponding to the p-th training pattern. The idea of this error criterion is, that
the network outputs shouldn’t be too sensitive to small changes of the inputs.

101



The overall error function is defined as H(~w) = E(~w) + cFF (~w) + cGG
1(~w).

E(~w) represents here the performance error function (defined by Equation (1.8)),
F (~w) stands for the representation error function (defined by Equation (4.1))
and G1(~w) corresponds to the new-proposed network criterion minimized during
training. The coefficients cF and cG reflect the trade-off between the influence of
E, F and G1 in H.

In sum, H(~w) has the form:

H(~w) =
1

2

∑
p

∑
v

( ypv − dpv )2 + cF
∑
p

∑
j′

(1 + ypj′)
s (1− ypj′)s y2

pj′ +

+ cG
1

2

∑
p

∑
u

∑
v

(
∆ypv
∆xpu

)2

, (4.55)

where j′ indexes all hidden neurons, d denotes the desired activity of a neuron
and s is a parameter for tuning the shape of the representation error function.

To minimize H(~w), the functions E(~w), cFF (~w) and cGG
1(~w) are minimized

simultaneously. The derivative of H(~w) is given by H ′(~w) = E ′(~w) + cFF
′(~w) +

cGG
1′(~w). It is computed as: H ′(~w) =

∑
pH

′
p(~w), where H ′p(~w) = (..., ∂Hp

∂wij
, ...)

and
∂Hp

∂wij
=

∂Ep
∂wij

+ cF
∂Fp
∂wij

+ cG
∂G1

p

∂wij
. (4.56)

The partial derivatives in ∂Ep/∂wij+cF∂Fp/∂wij were already stated in Equation
(4.15). To inhibit also the sensitivity of the network, we have to determine also
the terms ∂G1

p/∂wij.

The derivation of the rules for weight adjustment: Let (~xp, ~dp) be the
training pattern presented to the BP-network in time t and ~x∗p be the noise-
corrupted input pattern.

In the following paragraphs, v will index all output neurons and u will index all
input neurons. All neurons from the layer above the neuron j will be declared as
those indexed by q. The activity and the potential of a neuron j corresponding to
the input pattern ~xp will be denoted as ypj and ξpj, respectively. The activity and
the potential of a neuron j corresponding to the noise-corrupted input pattern
~x∗p will be denoted as y∗pj and ξ∗pj, respectively. For the input neurons u, their
activity is equal to their input (i.e., ypu = xpu , y

∗
pu = x∗pu), ∆xpu = xpu−x∗pu. For

the output neurons v, ∆ypv = ypv − y∗pv.
Let i be the neuron connected with neuron j via the weight wij. The terms

for
∂G1

p

∂wij
can be computed using the sum and chain rules:

∂G1
p

∂wij
=

∂

∂wij

(
1

2

∑
u

∑
v

∆2ypv
∆2xpu

)
=

1

2

(∑
u

1

∆2xpu

)∑
v

∂(∆2ypv)

∂wij
. (4.57)

Because

∂(∆2ypv)

∂wij
= 2 ∆ypv

∂(∆ypv)

∂wij
= 2 ∆ypv

(
∂ypv
∂wij

−
∂y∗pv
∂wij

)
, (4.58)

102



we obtain:

∂G1
p

∂wij
=

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂ypv
∂wij

−

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂y∗pv
∂wij

. (4.59)

Let

σpj =

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpj

,

σ∗pj =

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pj

(4.60)

be auxiliary terms for the back-propagated sensitivity errors. Because
∂ξpj
∂wij

= ypi

and
∂ξ∗pj
∂wij

= y∗pi, we can apply the chain rule to (4.59) and get:

∂G1
p

∂wij
=

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpj

∂ξpj
∂wij

−

−

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pj

∂ξ∗pj
∂wij

=

= σpjypi − σ∗pjy∗pi . (4.61)

It remains to derive the terms for σpj and σ∗pj.

• For neuron j in the output layer Ll+2:

The derivative ∂ypv
∂ξpj

is given by:

∂ypv
∂ξpj

=

{
0 for j 6= v
f ′(ξpj) for j = v .

(4.62)

Similarly, the derivative
∂y∗pv
∂ξ∗pj

will be computed as:

∂y∗pv
∂ξ∗pj

=

{
0 for j 6= v
f ′(ξ∗pj) for j = v .

(4.63)

For the considered ‘bipolar’ BP-network model and the output neuron j,
f ′(ξpj) = f ′(ξ∗pj) = 1.

Therefore, the terms σpj and σ∗pj will be computed as it follows:

σpj = σ∗pj =

(∑
u

1

∆2xpu

)
∆ypj . (4.64)

• For neuron j in a hidden layer (j ∈ Lk , i ∈ Lk−1 , 1 < k ≤ l + 1):

The terms ∂ypv
∂ξpj

and
∂y∗pv
∂ξ∗pj

will be computed indirectly using the chain rule:

∂ypv
∂ξpj

=
∑
q

∂ypv
∂ξpq

∂ξpq
∂ypj

∂ypj
∂ξpj

=
∑
q

∂ypv
∂ξpq

wjqf
′(ξpj) , (4.65)

103



∂y∗pv
∂ξ∗pj

=
∑
q

∂y∗pv
∂ξ∗pq

∂ξ∗pq
∂y∗pj

∂y∗pj
∂ξ∗pj

=
∑
q

∂y∗pv
∂ξ∗pq

wjqf
′(ξ∗pj) , (4.66)

where q indexes all neurons in the layer Lk+1.

Therefore:

σpj =

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpj

=

=

(∑
u

1

∆2xpu

)∑
v

∆ypv

[∑
q

∂ypv
∂ξpq

wjqf
′(ξpj)

]
=

= f ′(ξpj)
∑
q

wjq

[(∑
u

1

∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpq

]
=

= f ′(ξpj)
∑
q

wjqσpq , (4.67)

and

σ∗pj =

(∑
u

1

∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pj

=

=

(∑
u

1

∆2xpu

)∑
v

∆ypv

[∑
q

∂y∗pv
∂ξ∗pq

wjqf
′(ξ∗pj)

]
=

= f ′(ξ∗pj)
∑
q

wjq

[(∑
u

1

∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pq

]
=

= f ′(ξ∗pj)
∑
q

wjqσ
∗
pq , (4.68)

For the considered ‘bipolar’ BP-network model and the hidden neuron j,
f ′(ξpj) = (1− y2

pj) and f ′(ξ∗pj) = (1− y∗2pj ).

Altogether:
∂G1

p

∂wij
= σpjypi − σ∗pjy∗pi , (4.69)

where the terms σpj and σ∗pj are computed recursively according to:

σpj =


(∑

u
1

(xpu−x∗pu)2

)
(ypj − y∗pj) , j ∈ Ll+2

(1− y2
pj)
∑

q wjqσpq , j ∈ Lk , 1 < k ≤ (l + 1) ,
(4.70)

σ∗pj =


(∑

u
1

(xpu−x∗pu)2

)
(ypj − y∗pj) , j ∈ Ll+2

(1− y∗2pj )
∑

q wjqσ
∗
pq , j ∈ Lk , 1 < k ≤ (l + 1) .

(4.71)

In the above equations, q indexes neurons in the layer above the neuron j.
An advantage of the above-defined rules for weight adjustment corresponding

to G1(~w) is, that they are relatively simple and may not much slower down
the training process. Although there are two recursive terms σpj and σ∗pj, their
complexity is similar to the complexity of the recursive terms δpj corresponding
the performance error function (defined by Equation (1.18)).

104



Problems of the SCA1-method A serious problem of the sensitivity error
function G1(~w) is, that it requires all denominators ∆xpu to be different from zero.
Otherwise, the expressions (4.53), (4.54) and (4.69) can’t be evaluated. However,
even if ∆xpu 6= 0 for all training patterns p and network inputs u, the computation
of the error function G1(~w) = 1/2

∑
p,u,v(T

p
uv)

2 and the corresponding rules for
weight adjustment can lead to serious rounding problems. The reason is, that
the approximative sensitivity measure T puv = ∆ypv/∆xpu computes the division
of each couple of input and output dimensions separately.

When computing
∂G1

p

∂wij
, the worse rounding problems occur in the evaluation

of the sub-terms
(∑

u
1

∆2xpu

)
. If for a certain training pattern p and a network

input u, the term ∆xpu is very close to zero, the terms 1
∆2xpu

will yield values of

a high order of magnitude. If x∗pu is created by adding random noise within the
range of 0.01-1% to xpu, the value of 1

∆2xpu
is from the range 104 − 108. Also the

terms
(∑

u
1

∆2xpu

)
thus have very different orders of magnitude for the respective

training patterns, typically from the range 105 − 108.
We will illustrate the issue on an example of a training set with 192 training

patterns and 18 input features (this training set corresponds to the BIN2 data set
that is described in Subsection 5.1.1 on page 114). Table 4.1 contains the average

numbers of training patterns with the value of
(∑

u
1

∆2xpu

)
with the given order

of magnitude.

Table 4.1: Average numbers of training patterns, for which the value of(∑
u

1
∆2xpu

)
has the given order of magnitude.

order of magnitude 105 106 107 108 all
average number of training patterns 7.1 91.8 91.2 2.0 192

As a result, the adaptation rules for G1(~w) extremely overrate training pat-

terns, for which ∆xpu is close to zero for some of the inputs and thus
(∑

u
1

∆2xpu

)
has a higher-than-average order of magnitude (e.g., 108 in the above example).

For such training patterns, the value of
∣∣∣ ∂G1

p

∂wij

∣∣∣ is at least one or two orders of mag-

nitude higher than for an average training pattern. Therefore, a small number
of such extreme training patterns entirely defuse the impact of all other training
patterns on weight adaptation during training.

Example: Although the rounding problem of the SCA-method becomes more
serious with the growing number of input features, it can be illustrated also on
the following example of a BP-network with just two inputs, one output and an
arbitrary internal structure. In such a case, the approximative sensitivity error
function corresponding to a given training pattern p has the following form:

2G1
p(~w) =

(
∆yp1
∆xp1

)2

+

(
∆yp1
∆xp2

)2

=
(yp1 − y∗p1)2

(xp1 − x∗p1)2
+

(yp1 − y∗p1)2

(xp2 − x∗p2)2
. (4.72)

Figure 4.2 and Table 4.2 illustrate, how the terms ∆xp1, ∆xp2 and ∆yp1 can look
like for concrete training patterns. Table 4.2 contains also the corresponding

105



values of the error function G1
p(~w) and its subterms.

x2

x1

∆x12

y1

y1 = f(x1,x2)∆y11

∆x11

x2

x1
∆x22 ~ 0

y1
y1 = f(x1,x2)

∆y21

∆x21

Figure 4.2: The graphs of the network function f and of the terms ∆xp1, ∆xp2
and ∆yp1 for two considered training patterns (p = 1, 2). The terms ∆xp1, ∆xp2
are depicted by green lines and ∆yp1 are depicted by red lines.

The graph on the left side of Figure 4.2 (p = 1) corresponds to a training
pattern, where the terms ∆x11, ∆x12 and ∆y11 have the same orders of magni-
tude. The graph on the right (p = 2) corresponds to a training pattern, where
∆x22 ∼ 0 (it has smaller order of magnitude than ∆x21). In the second case, the

absolute values of G1
2(~w) and

∂G1
2

∂wij
will be extremely high when compared to the

first example (regardless of the concrete values of ∆x21 and ∆y21). Therefore,
the second training pattern will have an unreasonably great impact on weight
adaptation when compared to the first one.

Table 4.2: Values of the error function G1
p = 1

2

(
∆2yp1
∆2xp1

+ ∆2yp1
∆2xp2

)
and its subterms

for three representative training patterns (indexed by p) for a simple BP-net-
work with no hidden neurons and a single output neuron with the linear transfer
function and the weights w01 = 0.1, w11 = 0.9 and w21 = −0.1.

p xp1 xp2 yp1 ∆xp1 ∆xp2 ∆yp1
1

∆2xp1

1
∆2xp2

∆2yp1
1

∆2xp1

+ 1
∆2xp2

G1
p

1 0 1 0 −1.66 · 10−3 9.09 · 10−3 2.40 · 10−3 3.64 · 105 1.21 · 104 5.76 · 10−6 3.76 · 105 1.1
2 −1 1 −0.9 4.11 · 10−3 −7.43 · 10−3 −4.44 · 10−3 5.93 · 104 1.81 · 104 1.97 · 10−6 7.74 · 104 0.8
3 1 1 0.9 −6.68 · 10−3 3.34 · 10−4 6.05 · 10−3 2.24 · 104 8.95 · 106 3.66 · 10−5 8.97 · 106 164.1

The same problem is shown on the third row of Table 4.3. Because for the third
training pattern, the values of ∆xp1 and ∆xp2 have different orders of magnitude,
its impact on weight adjustment is overrated (as indicated by the value of G1

p(~w)).

The final version of the SCA-method

To avoid serious rounding problems during training of the SCA1 method, we

decided to replace the error function G1(~w) = 1
2

∑
p,u,v

(
∆ypv
∆xpu

)2

(defined by

Equation (4.54)) by an alternative, more robust expression. In the following
paragraph, we will discuss the new form of the approximative sensitivity error
function.

106



To avoid the rounding problem, the error function and the terms for weight

adjustment shouldn’t include the sub-terms
(∑

u
1

∆2xpu

)
. To achieve this require-

ment, we won’t process each pair of input and output dimensions separately as
it is done by the approximative sensitivity measure T puv = ∆ypv/∆xpu (Equation
(4.53)). Instead, we will project all the network inputs into a single dimension
using the squared (Euclidean) distance. We will do the same also with network
outputs. In such a case, a zero or small value of ∆xpu for a single dimension of
the input won’t cause problems.

The new approximative sensitivity error function GA [81] thus has the form

GA(~w) =
1

2

∑
p

∑
v ∆2ypv∑
u ∆2xpu

=
∑
p

GA
p (~w) , (4.73)

where GA
p (~w) = 1

2

∑
v ∆2ypv∑
u ∆2xpu

is the approximative sensitivity error function corre-

sponding to the training pattern p. GA expresses for the training patterns the
ratio between the squared (Euclidean) distances of the outputs,

∑
v ∆2ypv, and

the squared (Euclidean) distances of the inputs,
∑

u ∆2xpu.

Example: We will illustrate the form of the approximative sensitivity error
function GA on the example of a BP-network with just two inputs, one output
and an arbitrary internal structure. In such a case, the approximative sensitivity
error function corresponding to a given training pattern p has the following form:

2GA
p (~w) =

∆2yp1
∆2xp1 + ∆2xp2

=
( yp1 − y∗p1 )2

(xp1 − x∗p1 )2 + (xp2 − x∗p2 )2
. (4.74)

Figure 4.3 illustrates, how the terms ∆yp1 and
√

∆2xp1 + ∆2xp2 can look like for
a concrete training pattern.

x2

x1

y1

y1 = f(x1,x2)∆y11

∆x12

∆x11

Figure 4.3: The graph of the network function f and of the terms ∆xp1, ∆xp2
(depicted by black lines),

√
∆2xp1 + ∆2xp2 (depicted by green line) and ∆yp1

(depicted by red line) for a certain training pattern (p = 1).

107



Table 4.3: Values of the error functions G1
p = 1

2

(
∆2yp1
∆2xp1

+ ∆2yp1
∆2xp2

)
and GA

p =

1
2

∆2yp1
∆2xp1 + ∆2xp2

for three representative training patterns (indexed by p) and a sim-

ple BP-network with no hidden neurons and a single output neuron with the
linear transfer function and the weights w01 = 0.1, w11 = 0.9 and w21 = −0.1.

p xp1 xp2 yp1 ∆xp1 ∆xp2 ∆yp1
1

∆2xp1

+ 1
∆2xp2

1
∆2xp1+∆2xp2

∆2yp1 G1
p GAp

1 0 1 0 −1.66 · 10−3 9.09 · 10−3 2.40 · 10−3 3.76 · 105 1.17 · 104 5.76 · 10−6 1.1 0.03
2 −1 1 −0.9 4.11 · 10−3 −7.43 · 10−3 −4.44 · 10−3 7.74 · 104 1.39 · 104 1.97 · 10−6 0.8 0.14
3 1 1 0.9 −6.68 · 10−3 3.34 · 10−4 6.05 · 10−3 8.97 · 106 2.23 · 104 3.66 · 10−5 164.1 0.41

Table 4.3 shows a comparison of the values of the error functions GA
p (~w) and

G1
p(~w) (defined by Equation (4.72)) for three representative training patterns

(indexed by p). As shown on the third row of Table 4.3, even if ∆x2 ∼ 0 (i.e.,
if ∆x1 and ∆x2 had different orders of magnitude) for a given training pattern,
it wouldn’t cause rounding problems when computing GA

p (~w). Moreover, the
impact of such training pattern on weight adjustment wouldn’t be overrated.

The overall error function H(~w) = E(~w)+cFF (~w)+cGG
A(~w) will be evaluated

according to:

H(~w) =
1

2

∑
p

∑
v

( ypv − dpv )2 + cF
∑
p

∑
j′

(1 + ypj′)
s (1− ypj′)s y2

pj′ +

+ cG
1

2

∑
p

∑
v ∆2ypv∑
u ∆2xpu

, (4.75)

where j′ indexes all hidden neurons, d denotes the desired activity of a neuron
and s is a parameter for tuning the shape of the representation error function.
The coefficients cF and cG reflect the trade-off between the influence of E, F and
GA in H.

The derivative of the overall error function H ′(~w) = E ′(~w) + cFF
′(~w) +

cGG
A′(~w) is computed as: H ′(~w) =

∑
pH

′
p(~w), where H ′p(~w) = (..., ∂Hp

∂wij
, ...) and

∂Hp

∂wij
=

∂Ep
∂wij

+ cF
∂Fp
∂wij

+ cG
∂GA

p

∂wij
. (4.76)

The partial derivatives in ∂Ep/∂wij+cF∂Fp/∂wij were already stated in Equation
(4.15). It remains to determine the terms ∂GA

p /∂wij.

The derivation of the rules for weight adjustment The derivation of the
rules for weight adjustment with respect to the error function GA (defined by
(4.73) is analogical to the SCA1-method and the error function G1 (see Subsection
4.3.2 and equations (4.57), ...,(4.68)).

Let (~xp, ~dp) be the training pattern presented to the BP-network in time t
and ~x∗p be the noise-corrupted input pattern. Let i be the neuron connected with
neuron j via the weight wij.

In the following paragraphs, v will index all output neurons and u will index all
input neurons. All neurons from the layer above the neuron j will be declared as

108



those indexed by q. The activity and the potential of a neuron j corresponding to
the input pattern ~xp will be denoted as ypj and ξpj, respectively. The activity and
the potential of a neuron j corresponding to the noise-corrupted input pattern
~x∗p will be denoted as y∗pj and ξ∗pj, respectively. For the output neurons v, ∆ypv =
ypv − y∗pv. For the input neurons u, their activity is equal to their input (i.e.,
ypu = xpu , y

∗
pu = x∗pu), ∆xpu = xpu − x∗pu.

The terms for
∂GAp
∂wij

can be computed using the sum and chain rules:

∂GA
p

∂wij
=

∂

∂wij

(
1

2

∑
v ∆2ypv∑
u ∆2xpu

)
=

1

2

(
1∑

u ∆2xpu

)∑
v

∂(∆2ypv)

∂wij
(4.77)

Because

∂(∆2ypv)

∂wij
= 2 ∆ypv

∂(∆ypv)

∂wij
= 2 ∆ypv

(
∂ypv
∂wij

−
∂y∗pv
∂wij

)
=

= 2 ∆ypv

(
∂ypv
∂ξpj

∂ξpj
∂wij

−
∂y∗pv
∂ξ∗pj

∂ξ∗pj
∂wij

)
, (4.78)

we obtain:

∂GA
p

∂wij
=

(
1∑

u ∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpj

∂ξpj
∂wij

−

−
(

1∑
u ∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pj

∂ξ∗pj
∂wij

. (4.79)

The auxiliary terms σpj and σ∗pj for the back-propagated sensitivity errors will be
defined as:

σpj =

(
1∑

u ∆2xpu

)∑
v

∆ypv
∂ypv
∂ξpj

,

σ∗pj =

(
1∑

u ∆2xpu

)∑
v

∆ypv
∂y∗pv
∂ξ∗pj

(4.80)

Because
∂ξpj
∂wij

= ypi and
∂ξ∗pj
∂wij

= y∗pi, we get:

∂GA
p

∂wij
= σpjypi − σ∗pjy∗pi , (4.81)

where the terms σpj and σ∗pj can be computed recursively according to:

σpj =

{ (
1∑

u(xpu−x∗pu)2

)
(ypj − y∗pj) , j ∈ Ll+2

(1− y2
pj)
∑

q wjqσpq , j ∈ Lk , 1 < k ≤ (l + 1) ,
(4.82)

σ∗pj =

{ (
1∑

u(xpu−x∗pu)2

)
(ypj − y∗pj) , j ∈ Ll+2

(1− y∗2pj )
∑

q wjqσ
∗
pq , j ∈ Lk , 1 < k ≤ (l + 1) .

(4.83)

In the above equations, q indexes all neurons in the layer above the neuron j.

109



The rules for weight adjustment corresponding to GA(~w) differ from the rules
for G1(~w) (defined by Equations (4.69), (4.70) and (4.71)) just in small details.
The derivation of the terms for σpj and σ∗pj (Equations (4.82) and (4.83)) is
analogical to the SCA1-method (Subsection 4.3.2). We just substitute all the

sub-terms
(∑

u
1

∆2xpu

)
by the sub-terms

(
1∑

u ∆2xpu

)
.

Although there are two recursive error terms σpj and σ∗pj, the overall complexi-
ty of the adaptation rules for GA(~w) is similar to the complexity of the adaptation
rules for the performance error function (defined by Equations (1.17) and (1.18)).
For this reason, the SCA-regularization technique is expected to be very efficient
when compared to the analytical SC-regularization technique and may not much
slower down each iteration of the training process.

The SCGSA-training algorithm The last version of our framework, the so
called SCGSA-training algorithm [81], combines the SCA- and IR-regularization
techniques with the SCG-training algorithm (Algorithm 4.2 on page 80) and
with our training-and-pruning methodology (Algorithms 4.3 and 4.4 on pages 89
and 90).

The training process of the SCGSA-method is identical to the standard SCG-
algorithm (see Algorithm 4.2 on page 80 for the general schema of the SCG-like
algorithms), however with H(~w) = E(~w)+cFF (~w)+cGG

A(~w) (defined by (4.75))
as the error function. The derivative ofH(~w) is computed as: H ′(~w) =

∑
pH

′
p(~w),

where H ′p(~w) = (..., ∂Hp
∂wij

, ...). For the considered ‘bipolar’ BP-network model, the

terms ∂Hp/∂wij correspond to:

∂Hp

∂wij
=



(ypj − dpj) ypi + cG (σpjypi − σ∗pjy∗pi) ,
for neuron j ∈ Ll+2{∑

q δpq wjq + 2 cF [1− (s+ 1) y2
pj] (1− y2

pj)
s−1 ypj

}
·

· (1− y2
pj) ypi + cG (σpjypi − σ∗pjy∗pi) ,

for neuron j ∈ Ll+1{∑
q (δpq + cF%pq)wjq + 2 cF [1− (s+ 1) y2

pj] (1− y2
pj)

s−1 ypj

}
·

· (1− y2
pj) ypi + cG (σpjypi − σ∗pjy∗pi) ,

for neuron j ∈ Lk , 2 ≤ k ≤ l.
(4.84)

In the above expressions, s denotes the parameter for tuning the shape of the
representation error function, q indexes the neurons in the layer above the neuron
j. cF and cG are constants representing the influence of the respective error terms.
δpq can be determined according to (1.18), %pq according to (4.14), σpj according
to (4.82) and σ∗pj according to (4.83).

The SCGSA-method is summarized in Algorithm 4.6.

4.3.3 Summary of Section 4.3

In this section, we designed a new approximative sensitivity-based regularization
technique SCA. It replaced in our framework the formerly-proposed SC-regu-
larization technique for analytical sensitivity control. The main reasons for the

110



Algorithm 4.6 Function SCGSA() (Scaled conjugate gradients algorithm with
learning internal representation and approximative sensitivity control):

1. Input:
BP-network M = (N,C, I, O, w, t) with the weight vector ~w of the size W .

A training set T = { ( ~xp, ~dp ) | ~xp ∈ <n, ~dp ∈ <m, p ∈ {1, . . . , P}}.
2. Initialize:

For each training input pattern ~xp ∈ T, create a new input pattern ~x∗p ∈ <n
by adding a small amount of random noise (within the range of 0.01-1%)
to each input feature.

3. Train:
Train the BP-network M on the training set T using the SCG-training
algorithm (described by Algorithm 4.2 on page 80) and the overall error
function H(~w) =

∑
pHp(~w) defined by (4.75) with ∂Hp

∂wij
defined by (4.84).

M ′ = SCG(M,T,H).

4. Return: M ′.

change were great computational costs of the SC-technique. The SCA-regulariza-
tion technique is expected to be very fast when compared to SC-method. Despite
of the approximative nature of the SCA-method, it should keep the good qualities
of the SC-method as much as possible:

• It should simplify pruning based on sensitivity analysis.

• It should contribute to a smoother network function and better generaliza-
tion ability of the trained BP-networks.

The new-proposed SCGSA method (Algorithm 4.6) combines SCA with the
SCG-training algorithm, our formerly defined training-and-pruning methodology
and the IR-regularization technique. The qualities and drawbacks of the SCGSA-
method will by assessed in the experimental part of this work in Chapter 5. For
a detailed experimental evaluation, see also [81].

111



112



5. Experiments

113



5.1 Introduction

This chapter is devoted to experimental evaluation of our framework. In our
experiments, we concentrated mainly on the following issues:

1. To verify the behavior and the required abilities of our framework on various
types of the data.

2. To assess the benefits and drawbacks of the introduced methods when com-
pared with related techniques.

The experiments were performed on a 2.8 GHz quad core processor, 12 GB
RAM. Our system was implemented in Matlabr 7.0.1 [72] and used a single
processor and 2 GB RAM. Our implementation uses functions from the Neural
Network ToolboxTM5.0 [26] (especially, for the standard BP-algorithm and the
SCG-training algorithm). The methods for training of BP-networks, that were
not included in the Neural Network ToolboxTM, were newly implemented (includ-
ing the algorithms for learning from hints, learning internal representation and all
the new-proposed techniques). The created library is available as an attachment
of this thesis.

5.1.1 Data sets

The experiments involved several data sets of various properties – discrete and
continuous, artificial and real-world, simple and complex. Especially for the real-
world data, an advanced sophisticated preprocessing had to be done. To examine,
whether the tested methods are able to recognize relevant input features, some
of the data sets were enhanced by several irrelevant, randomly generated input
features.

Generally, our experiments concern three tasks, which we denoted as Binary
Addition, Binary Multiplication and World Bank. In the following paragraphs,
we will describe these tasks and the corresponding data sets in detail.

Binary addition of two 3-bit numbers

For the Binary Addition task, we created two data sets: BIN2A and BIN2.
The BIN2A data set consists of all 64 possible training patterns with 6 bipo-

lar input features and 4 bipolar output features. Each input pattern consists of
the bipolar codes of the two numbers to be added. The bipolar code of their
sum represents the desired output. When adding 4(∼ (+1,−1,−1)) and 7(∼
(+1,+1,+1)) yielding the sum 11(∼ (+1,−1,+1,+1)), the corresponding train-
ing pattern would have the form: [[+1,−1,−1,+1,+1,+1], [+1,−1,+1,+1]]. All
of the 64 patterns formed the training set. As the optional hint output, we pro-
vided the carry-information to the second output bit.

The BIN2 data set consists of 320 patterns with 18 bipolar input features and
4 bipolar output features. The first 6 input features represent two three-bit binary
numbers and the four bits of the output indicate the sum of the two binary num-
bers. The other 12 input features are bipolar bits generated randomly with a uni-
form distribution. When adding 4(∼ (+1,−1,−1)) and 7(∼ (+1,+1,+1)) yield-
ing the sum 11(∼ (+1,−1,+1,+1)), the corresponding training pattern would
have the form: [[+1,−1,−1,+1,+1,+1, ...], [+1,−1,+1,+1]].

114



The BIN2 data set is divided into the training set of the size 192, the vali-
dation set and the test set, both of the size 64. Each of the 64 possible training
patterns is present three-times in the training set and once in the other two sub-
sets. The fact, that 2/3 of the input features are irrelevant (randomly generated),
makes the BIN2 task much more difficult than the BIN2A task.

Binary multiplication of two 3-bit numbers

The first data set for the Binary Multiplication task is denoted as BIN3. The
BIN3 data set consists of 320 patterns with 18 bipolar input features and 6
bipolar output features. 192 of the patterns are contained in the training set, 64
in the validation set and 64 in the test set.

The first 6 input features stand for the two three-bit binary numbers to be mul-
tiplied and the six bits of the output indicate the product of the two factors. The
other 12 input features are bipolar bits generated randomly with a uniform distri-
bution. When multiplying, e.g., 4(∼ (+1,−1,−1)) and 7(∼ (+1,+1,+1)) yield-
ing 28(∼ (−1,+1,+1,+1,−1,−1)), the corresponding training pattern would
have the form: [[+1,−1,−1,+1,+1,+1, ...], [−1,+1,+1,+1,−1,−1]].

All of the 64 possible training patterns are present 3-times in the training
set and once in the other two subsets. Binary Multiplication is indeed a rather
difficult task due to the unbalanced number of −1 and 1 at the outputs (1365 :
555). In addition, 2/3 of the input features of the BIN3 data set are irrelevant
(randomly generated).

Binary multiplication of two 2-bit numbers

The second data set for the Binary Multiplication task is denoted as BIN3A.
It consists of 16 patterns with 4 bipolar input features and 4 bipolar output
features. All of the 16 patterns form the training set. The 4 input features are
the two two-bit binary numbers to be multiplied and the four bits of the output
indicate the product of the two factors. When multiplying, e.g., 2(∼ (+1,−1))
and 3(∼ (+1,+1)) yielding 6(∼ (−1,+1,+1,+1)), the corresponding training
pattern would have the form: [[+1,−1,+1,+1], [−1,+1,+1,+1]].

World Bank

The World Bank task is based on continuous real-world data obtained from the
World Bank [109]. The collected data set consists of 972 patterns comprising
25 World development indicators (WDI-indicators) for each of the respective 162
countries and over the years 2001-2006. Each pattern has thus 25 input features
listed in Table 5.1. There are two alternative output features: PPP-GNI (with
continuous numerical values) and the so-called Income group (with 5 possible
discrete values).

For the World Bank task, we created two data sets: WBA (a regression task)
and WB (a classification task):

• The WBA data set consists of 956 patterns with 25 numerical input fea-
tures encoding the WDI-indicators (listed in Table 5.1). As the output
feature, we have used the PPP-GNI indicator.

115



Table 5.1: World development indicators

Input features:
1 Purchasing power parity conversion factor (local currency units per in-

ternational dollar)
2 Ratio of purchasing power parity conversion factor to official exchange

rate
3 Present value of debt( % of exports of goods, services nd income)
4 Short-term debt (% of total debt)
5 Short-term debt (% of exports of goods, services, and income)
6 Total debt service (% of gross national income)
7 GINI-Index
8 Tax revenue collected by central government (% of gross domestic prod-

uct)
9 Taxes on income, profits, and capital gains (% of revenue)
10 Taxes on goods and services (% of revenue)
11 Taxes on international trade (% of revenue)
12 Social contributions (% of revenue)
13 Expenditures for Research & Education (% of gross domestic product)
14 GDP deflator (implicit price deflator for gross domestic product, %

growth)
15 Fertility rate, total (births per woman)
16 Fixed line and mobile phone subscribers (per 1,000 people)
17 GDP growth (annual percentage growth rate of gross domestic product)
18 High-technology exports (% of manufactured exports)
19 Inflation (as measured by the GDP deflator, annual %)
20 Internet users (per 1,000 people)
21 Life expectancy at birth, total (years)
22 Military expenditure (% of gross domestic product)
23 Poverty head-count ratio at national poverty line (% of population)
24 Present value of debt (% of gross national income)
25 Total debt service (% of exports of goods, services and income)

Output features:
26 PPP-GNI (Gross national income converted to international dollars using

purchasing power parity rates)
27 Income group (High income OECD, High income nonOECD, Upper mid-

dle income, Lower middle income, Low income)

116



In the experiments with hints, we used the Income group (hintIG) to create
5 hint outputs that label the five classes of the Income Groups. The other
option was to use clustering of the input data into k groups as a hint. For
clustering, the c-means algorithm with Euclidean distance measure has been
applied.

• The WB data set consists of 956 patterns with 35 numerical input features.
25 of the input features encode the WDI-indicators (listed in Table 5.1). The
other 10 input features were generated randomly (each from the interval
[−1, 1]) with a uniform distribution. There are 5 output features that label
the five classes of the Income Groups.

Table 5.2 briefly summarizes the basic characteristics of the respective data sets.

Table 5.2: Data sets and their characteristics.

number of type of data
data set training

patterns
output
features

all input
features

random
input
features

artificial/
real

discrete/
continuous

simple/
medium/
complex

BIN2A 64 4 6 – artificial discrete simple
BIN2 320 4 18 12 artificial discrete medium
BIN3 320 6 18 12 artificial discrete complex
BIN3A 16 4 4 – artificial discrete simple
WBA 956 1 25 – real continuous complex
WB 956 5 35 10 real continuous complex

Preprocessing of the World Bank data

The data sets corresponding to the World Bank task required an advanced pre-
processing. In the following paragraphs, we will describe the whole process in
detail.

At first, we had to decide, what would be the input and output features, and
acquire the data from the World Bank. As a task, we decided to predict the
gross national income of the particular countries over the years 2001-2006. It is
quantified by the indicators PPP-GNI and Income group. Then, we had to select
an informative set of input features that would facilitate the prediction. The
World Bank publishes annually hundreds of WDI-indicators. From this amount,
we selected 25 WDI-indicators to be the input features, while we followed our
knowledge of the domain.

The acquirement of the data from the World Bank was a challenging task,
because the values of the chosen WDI-indicators were not simply available in one
source. On the contrary, the data was spread over a high number of tables and
text documents with various formatting. For this reason, we collected the data
manually and converted it into a single text format that can be processed by
Matlabr.

A further problem of the original data was, that some of the WDI-Indicators
were available just as total values that can hardly be mutually compared (e.g., the
total debt service of a country, the total number of Internet users in a country).

117



Therefore, we transformed the values of such WDI-indicators in a way to relate
them to the appropriate basic entities (e.g., as a % of gross national income, as
a % of revenue, or per 1,000 people).

Another serious problem of the original data was its sparsity. To solve this
problem, we firstly removed from the data patterns without output features and
patterns with less than 50% of input features. There remained 956 patterns from
the original 1350 ones. After that, we estimated the remaining missing values
either from known values (using linear interpolation) or we replaced them by
mean value.

The data was normalized such that in every dimension the mean was 0 and
standard deviation was 1. We used the following formula:

xpi(new) =
xpi −meanj xpj

stdj xpj
, (5.1)

where i and j index the n input features, p indexes the training patterns, x is the
original value of a an input feature and x(new) is its new value. The standard
deviation (std) is defined by:

std
i
xpi =

[
1

n− 1

n∑
i=1

(
xpi −mean

j
xpj

)2
] 1

2

. (5.2)

The same normalization was done also for the output feature PPP-GNI. For the
Income Group indicator, we created 5 output features that label the five classes
of the Income groups (with the values 1 and −1).

5.1.2 Performance evaluation

To compare the performance of the tested methods, several approaches were used
depending on the character of the respective data sets. Typically, the data sets
were divided into the training, validation and test sets. The training set was
used for training. The validation set was used by the early stopping strategy
(for a detailed description, see Section 3.4.1) and by the training-and-pruning
methodology (Algorithms 4.3 and 4.4). The test set was used to estimate the
generalization ability of the trained BP-networks (measured, e.g., as the mean
squared error (MSE, defined by Equation 1.9) on the test set).

The BIN2 and BIN3 data sets were divided into the training, validation and
test sets a priori. The BIN2A data set was not divided – all of the training
patterns formed the training set. During experimental testing, each tested train-
ing algorithm was evaluated on the same set of 100 different randomly initialized
networks (with the weights from the interval [−1, 1]). For each of the 100 trained
BP-networks, we computed the values of the tested parameters (e.g., of the mean
squared error on the test set or of the number of epochs) and averaged them over
the 100 experiments.

For the WBA and WB data sets, we kept 1
10

of the original data as a val-
idation set and used the remaining 9

10
for training and testing. To compare the

performance of tested methods, we used the 10-fold cross-validation [74] (alterna-
tively, the 10-times repeated 10-fold cross-validation). Similarly to the previous

118



case, all the tested training algorithms and their parameter settings were ap-
plied to the same set of 10 (respectively, 100) different randomly initialized BP-
networks.

The principle of the k-fold cross-validation is to divide the data set into k
disjoint parts with (almost) the same number of training patterns. One of the
k parts forms the test set, while the other (k − 1) parts form the training set.
There are k possible ways, how to split the data into the training and test sets.
Thus, each of the tested training algorithms is repeated k-times, each time using
a randomly initialized BP-network and a different pair of training and test sets.
For each of the k trained BP-networks, we computed the values of the tested
parameters and averaged them over the k experiments. The principle of k-fold
cross-validation is summarized by Algorithm 5.1 on page 119 .

Algorithm 5.1 General principle of the k-fold cross-validation
1. Input:

A training algorithm ALG.
A data set T .
k randomly initialized BP-networks M1, . . . ,Mk.
The tested criterion E = E(M,T ).

2. Remove a part (e.g., 1
10

) of the patterns from T to form a validation set Tv.

3. Divide T into k disjoint subsets T1, . . . , Tk of (almost) equal sizes, where
|Ti| ≥ 30, i = 1, . . . , k.

4. For i = 1, . . . , k:

(a) Form the training set Ttr and the test set Tt:
Tt = Ti , Ttr = T \ Ti .

(b) Train the BP-network Mi on the training set Ttr using the training
algorithm ALG and the validation set Tv.

(c) Compute the value of the tested criterion of the trained BP-network
Mi on the test set Tt:
ei = E(Mi, T ).

5. Compute and return the mean and standard deviation of the values of the
tested criterion over the k experiments:
[meani ei ± stdi ei]

5.1.3 Settings and notation

BP-network model

In our experiments, we use the so called ‘bipolar’ BP-network model, where all the
hidden neurons have the hyperbolic tangent transfer functions, while all the out-
put neurons implement the linear transfer functions. The weights are randomly
initialized from the interval [−1, 1].

Training algorithms

Table 5.3 contains the notation of the training algorithms used in the experiments.
For all of the training algorithms, we applied the following stop criteria:

119



1. The training is stopped, if the maximal number of training epochs (indicated
by the parameter maxEpochs) is reached.

2. The training is stopped, if the overall error on the validation set grows five
times in a row. This stop criterion was omitted for the BIN2A data set.

When training together with pruning, we used our training-and-pruning method-
ology described by Algorithms 4.3 and 4.4 on pages 89 and 90. If not said oth-
erwise, both pruning strategies based on internal representation and sensitivity
analysis were applied.

When training together with learning from hints, we implemented the extra
output hint method [106] (described in Subsection 3.4.2). After the BP-network
was trained, we removed all the hint outputs and retrained the BP-network again.

Table 5.3: Training algorithms.

Name Reference Description

Reference techniques
GD Algorithm 1.1,

Page 19
Standard back-propagation (BP-) algorithm.

GDM Subsection 1.5.2,
Page 23

BP-algorithm with momentum.

GDIR Subsection 3.5.1,
Page 67

BP-algorithm with learning internal representa-
tion.

GDMIR Subsection 3.5.1,
Page 67

BP-algorithm with momentum and with learn-
ing internal representation.

SCG Algorithm 3.2,
Page 44

Scaled conjugate gradients algorithm.

New-proposed techniques
SCGIR Algorithm 4.1,

Page 79
Scaled conjugate gradients algorithm with learn-
ing internal representation.

SCGS Algorithm 4.5,
Page 98

Scaled conjugate gradients algorithm with learn-
ing internal representation and analytical sensi-
tivity control.

SCGSA Algorithm 4.6,
Page 111

Scaled conjugate gradients algorithm with learn-
ing internal representation and approximative
sensitivity control.

Enhancements:
ALGIR Subsection 4.1.2,

Page 75
Algorithm ALG together with learning internal
representation (with the altered IR-regulariza-
tion technique).

ALGWD Subsection 3.3.6,
Page 61

Algorithm ALG together with the weight decay
regularization technique.

ALG-hint Subsection 3.4.2,
Page 64

Algorithm ALG together with learning from
hints.

ALG* Subsection 3.4.3,
Page 65

Algorithm ALG combined with training with jit-
ter [95].

120



Table 5.4: Notation of the tested criteria.

the average mean squared error:
MSEtr ... on the training set
MSEv ... on the validation set
MSEt ... on the test set
MSE(nt) ... on the noisy test set

the average value of an alternative error function (e.g., the classifi-
cation error):

Etr ... on the training set
Ev ... on the validation set
Et ... on the test set
E(nt) ... on the noisy test set
imp the improvement of the error when compared to the SCG method
c the number of networks with no error on the test set
cn the number of networks with no error on the noisy test set
arch the average number of input and hidden neurons after training (de-

limited by −)
H the average number of hidden neurons after training
I the average number of input neurons after training

the number of networks that achieved during training the optimum
number:

nH ... of hidden neurons
nA ... of both hidden and input neurons
nI the number of networks that pruned during training all of the input

neurons corresponding to the randomly generated input features
St the average (analytical) sensitivity of the trained BP-network on

the test data
wm the average absolute value of all weights and thresholds in the BP-

network
the percentages of the activities of hidden neurons that differ from
the values −1, 0, and 1 ...

pIR ... at most by 0.1
pIR,3 ... at most by 0.3

the number of networks with a well-formed condensed internal rep-
resentation ...

cR ... and no errors on the training, validation and test sets
cA ... and an optimum number of hidden and input neurons, no errors

on the training, validation and test sets
epochs the average number of training epochs
t(s) the elapsed training time (in seconds)

121



Tested criteria

Table 5.4 shows the basic notation used in the experiments to evaluate the per-
formance of the methods. The criterion MSE corresponds to the mean squared
error (defined by Equation (1.9)) averaged over all network outputs and training
patterns. For the BIN2, BIN2A and BIN3 data sets, Etr, Ev, Et and E(nt)
denote the average numbers of patterns with incorrect outputs on the training,
validation, test and noisy test sets, respectively. For the WB and WBA data
sets, Etr, Ev, Et and E(nt) denote the classification error on the training, valida-
tion, test and noisy test sets. The noisy test set is created from the original test
set by adding a random normally distributed noise (up to 5%) to all the input
features.

The average (analytical) sensitivity St on the test data is defined as St =
meani,v,p |Spiv|, where p indexes all training patterns, v indexes all output neurons,
and i indexes all input and hidden neurons, the sensitivity coefficients Spiv are
defined by Equations (4.16) and (4.17).

5.1.4 The structure of supporting experiments

In Chapter 4, we designed three successive versions of our general framework for
training of BP-networks – the SCGIR, SCGS and SCGSA training algorithms. In
the following sections, we will concentrate on an experimental evaluation, whether
and how these methods fulfill the requirements that we declared in Chapter 2).
We will structure this chapter based on the following fields of interest – General-
ization, Speed, Transparency and Structure optimization.

122



5.2 Generalization

In this section, we are interested in answering of the following questions:

1. What are the prediction and generalization abilities of the trained BP-net-
works? Do the new-proposed methods (SCGIR, SCGS and SCGSA) favor
smoother BP-network functions and do they contribute to an improved
generalization ability of the trained BP-networks?

2. Are the methods sensitive to the noise in the data?

The SCGIR, SCGS and SCGSA methods were compared with the standard
training algorithms (i.e., SCG, GD) and also with related techniques that might
positively influence the network’s robustness and generalization capabilities (e.g.,
learning internal representation [86] (GDIR), training with jitter [95] (ALG*),
weight decay [119] (ALGWD) and learning from hints [106](ALG-hint)).

In this section, we use the notation described in Table 5.4 and in Subsection
5.1.3 on page 122. The generalization abilities of the trained BP-networks and
their behavior on noisy data is indicated by the average value of the chosen
error function on the test set (MSEt, Et) and on the noisy test set (MSE(nt),
E(nt)), respectively. In some of the experiments, we also compared the number of
networks with no error on the test and noisy test sets (c, cn) and the improvement
of the error when compared to the SCG algorithm (imp).

The smoothness of the created network functions is indicated partly by the
average values of absolute sensitivity coefficients on the test set (St) and by the
average absolute values of weights and thresholds in the BP-network (wm). The
robustness of the training algorithms to noise in the data is further measured by
the value of the error on the test data corrupted by varying amount of noise. In the
following paragraphs, we will describe the settings and results of the experiments
performed.

5.2.1 Experiment 5.2.1 – General results

Experiment setting

In Experiment 5.2.1 [81], we compared the SCGIR, SCGS and SCGSA train-
ing algorithms with pure scaled conjugate gradients (SCG) and other related
techniques (SCG*, SCGIR*). We evaluated the generalization abilities of BP-
networks trained by the above listed methods and their sensitivity to noise in the
data.

SCG* and SCGIR* denote the SCG and SCGIR training algorithms com-
bined with training with jitter [95]. See Section 3.4.3 on page 65 for a detailed
description of this technique. For SCG* and SCGIR*, the training set was ex-
tended by noisy training patterns. The extended training set contained for each
original training pattern also its copy corrupted by noise (0.01-1% of the original
input values), the outputs remained the same. The chosen level of noise kept the
input alterations within the same range like SCGSA. In the case of noisy test
sets, however, larger amounts of added noise (5%) had been involved.

The tests involved two types of data: binary (Binary Addition and Binary
Multiplication tasks – data sets BIN2 and BIN3) and continuous (World Bank
task – data set WB). These data sets contain several randomly generated input

123



features that made the training process more difficult. All methods were trained
together with pruning of both input and hidden neurons (by the use of our train-
ing-and-pruning methodology described by Algorithms 4.3 and 4.4 on pages 89
and 90). The results for the WB data set were obtained by a 10-times repeated
10-fold cross-validation. Each tested method was applied to the same set of 100
different randomly initialized networks.

The parameters cF and cG of the SCGIR, SCGS and SCGSA methods were set
experimentally, separately for each task. For the BIN2 data set, all the trained
networks had the initial topology 18-12-4, the parameter maxEpochs was set to
2001. For the BIN3 data set, the initial networks’ topologies were 18-12-12-6.
The parameter maxEpochs was set to 1001 for the SCG* and SCGIR* methods,
and to 601 for the other training algorithms. For the WB data set, we worked
with two initial topologies: 35-50-5 and 35-15-15-5. For the network topology
35-50-5, the parameter maxEpochs was set to 1101, for the topology 35-15-15-5,
it was set to 311.

The results obtained for the BIN2 and BIN3 data sets are stated in Table
5.5. Table 5.6 contains the results for the WB data set. Figure 5.1 depicts the
histograms of MSE(nt) for the chosen training algorithms and all of the data
sets. Figure 5.2 shows the average values of MSE(nt) for various levels of noise
in the noisy test sets (for the chosen training algorithms and all of the data sets).
In the tables and figures, the generalization abilities of the trained BP-networks
and their sensitivity to noise in the data are indicated by the values of MSEt,
Et, c and MSE(nt), E(nt), cn, imp, respectively.

0 0.02 0.04 0.06 0.08
0

20

40

60

80

error (measured as MSE(n
t
))

pe
rc

en
ta

ge
 o

f n
et

w
or

ks
w

ith
 th

e 
co

ns
id

er
ed

 e
rr

or

Binary Addition 18−12−4

SCG
SCGIR
SCGSA
SCGS

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

error (measured as MSE(n
t
))

pe
rc

en
ta

ge
 o

f n
et

w
or

ks
w

ith
 th

e 
co

ns
id

er
ed

 e
rr

or

Binary Multiplication 18−12−12−6

SCG
SCGIR
SCGSA
SCGS

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

error (measured as MSE(n
t
))

pe
rc

en
ta

ge
 o

f n
et

w
or

ks
w

ith
 th

e 
co

ns
id

er
ed

 e
rr

or

World Bank 35−50−5

SCG
SCGIR
SCGSA
SCGS

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

error (measured as MSE(n
t
))

pe
rc

en
ta

ge
 o

f n
et

w
or

ks
w

ith
 th

e 
co

ns
id

er
ed

 e
rr

or

World Bank 35−15−15−5

SCG
SCGIR
SCGSA
SCGS

Figure 5.1: Experiment 5.2.1 – Histograms of MSE(nt) for the SCG, SCGIR,
SCGS and SCGSA methods with pruning for the Binary Addition, Binary Mul-
tiplication and World Bank tasks (for networks with one and two hidden layers,
respectively).

124



0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

av
er

ag
e 

er
ro

r 
(m

ea
su

re
d 

as
 M

S
E

(n
t))

percentage of noise

Binary Addition 18−12−4

SCG
SCG*
SCGIR
SCGS
SCGSA

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

av
er

ag
e 

er
ro

r 
(m

ea
su

re
d 

as
 M

S
E

(n
t))

percentage of noise

Binary Multiplication 18−12−12−6

SCG
SCG*
SCGIR
SCGS
SCGSA

0 1 2 3 4 5 6 7 8 9 10
0.045

0.05

0.055

0.06

0.065

0.07

av
er

ag
e 

er
ro

r 
(m

ea
su

re
d 

as
 M

S
E

(n
t))

percentage of noise

World Bank 35−50−5

SCG
SCG*
SCGIR
SCGS
SCGSA

0 1 2 3 4 5 6 7 8 9 10
0.025

0.03

0.035

0.04

0.045

0.05

av
er

ag
e 

er
ro

r 
(m

ea
su

re
d 

as
 M

S
E

(n
t))

percentage of noise

World Bank 35−15−15−5

SCG
SCG*
SCGIR
SCGS
SCGSA

Figure 5.2: Experiment 5.2.1 – Average values of MSE(nt) for various noise
levels and the SCG, SCG*, SCGIR, SCGS and SCGSA methods enhanced with
pruning for the Binary Addition, Binary Multiplication and World Bank tasks
(for networks with one and two hidden layers, respectively).

Results – On the generalization abilities of the networks

The experiments done on all datasets confirmed that both SCGS and SCGSA
techniques significantly improve generalization capabilities of the trained net-
works. For the BIN3 data set, the average value of MSE(nt) is for SCGS and
SCGSA about 3.0-times smaller than for SCG, while for the BIN2 and WB
data sets, it is about 1.2-times smaller. The results for the SCGIR method are
comparable with the SCG method. For the BIN2 and WB data sets, the SCGS
method outperformed all the other methods, while for the BIN3 data set, the
SCGSA method performed the best.

The SCGS and SCGSA methods remarkably reduce the overall network sen-
sitivity indicated by the value of St (especially for the WB and BIN3 data sets),
while the average absolute value of weights (wm) is comparable to SCG. These
facts support the idea, that both SCGS and SCGSA methods favor smoother net-
work functions. Not surprisingly, the exact SCGS method reduces the sensitivity

125



T
ab

le
5.5:

E
x
p

erim
en

t
5.2.1

–
T

h
e

p
erform

an
ce

of
th

e
S
C

G
,

S
C

G
*,

S
C

G
IR

,
S
C

G
IR

*,
S
C

G
S
A

an
d

S
C

G
S

m
eth

o
d
s

(w
ith

p
ru

n
in

g)
on

th
e

B
IN

2
d
ata

set
(B

in
ary

A
ddition

task
)

an
d

on
th

e
B

IN
3

d
ata

set
(B

in
ary

M
u

ltiplication
task

).
T

h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
an

d
stan

d
ard

d
ev

iation
over

100
ran

d
om

n
etw

ork
in

itialization
s.

B
in
a
ry

A
d
d
itio

n
ta

sk
–

u
sin

g
th

e
1
8
-1

2
-4

n
etw

o
rk

to
p

o
lo

g
y

m
eth

o
d

c
F

c
G

a
r
ch

n
I
n
A

c
n
c
R

c
A

p
I
R

E
t

E
(n
t )

im
p

M
S
E
tr

M
S
E
t

M
S
E

(n
t )

im
p

S
t

w
m

ep
o
ch

s
t(s)

S
C

G
−

−
7
.8

-7
.4

8
2

2
0

8
2

1
4

3
8
8
.9

0
.3
±

1
.7

5
.0
±

3
.6

1
.0

0
0
.0

0
1
±

0
.0

0
6

0
.0

0
3
±

0
.0

1
7

0
.0

3
5
±

0
.0

2
8

1
.0

0
0
.0

9
±

0
.1

2
1
.3

6
±

0
.4

3
1
4
1
3
.7

5
.9

S
C

G
*

−
−

6
.4

-7
.4

9
1

2
3

8
7

2
5

1
3

9
0
.4

0
.1
±

1
.0

4
.2
±

3
.7

1
.2

1
0
.0

0
1
±

0
.0

0
7

0
.0

0
1
±

0
.0

0
8

0
.0

3
1
±

0
.0

3
5

1
.1

2
0
.0

8
±

0
.0

9
1
.4

4
±

0
.4

3
1
3
1
2
.9

7
.1

S
C

G
IR

1
0
−

5
−

7
.4

-7
.3

8
2

2
6

8
7

6
7

2
5

9
6
.7

0
.1
±

0
.6

4
.9
±

3
.6

1
.0

3
0
.0

0
1
±

0
.0

0
7

0
.0

0
1
±

0
.0

0
7

0
.0

3
0
±

0
.0

2
5

1
.1

8
0
.0

7
±

0
.1

0
1
.4

8
±

0
.5

1
1
7
1
3
.5

1
1
.7

S
C

G
IR

1
0

[−
6
,−

4
]
−

7
.7

-7
.5

7
9

2
4

8
6

5
2

2
2

9
5
.2

0
.2
±

1
.7

5
.4
±

4
.9

0
.9

3
0
.0

0
1
±

0
.0

1
2

0
.0

0
2
±

0
.0

1
3

0
.0

3
4
±

0
.0

5
4

1
.0

2
0
.0

9
±

0
.1

8
1
.4

8
±

0
.5

4
1
6
8
0
.0

1
1
.6

S
C

G
IR

1
0
−

6
−

7
.6

-7
.5

8
4

2
5

8
5

3
9

1
8

9
3
.0

0
.3
±

1
.7

4
.9
±

3
.4

1
.0

3
0
.0

0
1
±

0
.0

0
4

0
.0

0
3
±

0
.0

1
5

0
.0

3
6
±

0
.0

3
6

0
.9

8
0
.0

8
±

0
.1

1
1
.4

1
±

0
.4

6
1
4
2
9
.2

1
1
.2

S
C

G
IR

*
1
0
−

6
−

6
.8

-7
.3

8
9

2
4

9
0

2
9

1
1

9
2
.2

0
.0
±

0
.3

3
.9
±

3
.1

1
.2

9
0
.0

0
1
±

0
.0

0
5

0
.0

0
1
±

0
.0

0
5

0
.0

3
1
±

0
.0

3
6

1
.1

4
0
.0

8
±

0
.0

8
1
.4

1
±

0
.4

2
1
3
8
4
.3

1
5
.6

S
C

G
S

−
5
·
1
0
−

7
6
.9

-7
.5

8
7

2
2

9
0

3
3

1
1

9
1
.4

0
.3
±

1
.7

4
.0
±

3
.1

1
.2

5
0
.0

0
0
±

0
.0

0
3

0
.0

0
2
±

0
.0

1
2

0
.0

2
8
±

0
.0

2
2

1
.2

7
0
.0

7
±

0
.0

7
1
.4

3
±

0
.4

9
1
6
3
6
.3

4
2
0
.5

S
C

G
S

−
5
·
1
0

[−
8
,−

6
]

6
.9

-7
.4

8
9

2
5

8
4

3
5

1
4

9
1
.6

0
.3
±

1
.8

4
.4
±

3
.3

1
.1

5
0
.0

0
1
±

0
.0

0
4

0
.0

0
3
±

0
.0

1
4

0
.0

2
9
±

0
.0

2
6

1
.2

0
0
.0

8
±

0
.0

6
1
.3

9
±

0
.4

4
1
6
6
2
.3

4
3
1
.9

S
C
G
S

1
0
−

6
5
·
1
0
−

7
7
.0

-7
.5

8
7

2
1

8
7

3
9

1
1

9
1
.4

0
.2
±

1
.2

4
.0
±

2
.9

1
.2
7

0
.0

0
0
±

0
.0

0
3

0
.0

0
2
±

0
.0

1
1

0
.0

2
7
±

0
.0

2
0

1
.3
1

0
.0

7
±

0
.0

6
1
.4

2
±

0
.5

0
1
6
2
5
.7

4
2
0
.1

S
C
G
S

1
0
−

6
5
·
1
0

[−
8
,−

6
]

7
.1

-7
.5

8
6

2
4

8
7

3
8

1
4

9
1
.7

0
.1
±

0
.9

4
.1
±

2
.3

1
.2
2

0
.0

0
0
±

0
.0

0
2

0
.0

0
1
±

0
.0

0
7

0
.0

2
7
±

0
.0

2
1

1
.2
9

0
.0

7
±

0
.0

6
1
.4

0
±

0
.4

6
1
7
5
0
.7

4
7
3
.9

S
C
G
S

1
0

[−
7
,−

5
]

5
·
1
0
−

7
6
.1

-7
.2

9
5

2
8

9
5

4
3

1
6

9
2
.0

0
.1
±

0
.6

4
.0
±

2
.4

1
.2
7

0
.0

0
1
±

0
.0

0
5

0
.0

0
1
±

0
.0

1
2

0
.0

2
2
±

0
.0

1
6

1
.5
7

0
.0

7
±

0
.0

7
1
.5

4
±

0
.5

0
1
6
3
9
.2

3
5
1
.6

S
C
G
S

1
0

[−
7
.−

5
]

5
·
1
0

[−
8
,−

6
]

6
.6

-7
.3

9
2

2
5

9
5

3
6

1
4

9
2
.1

0
.1
±

0
.8

4
.1
±

2
.2

1
.2
3

0
.0

0
1
±

0
.0

0
4

0
.0

0
1
±

0
.0

0
8

0
.0

2
2
±

0
.0

1
1

1
.5
8

0
.0

7
±

0
.0

7
1
.4

7
±

0
.4

8
1
5
2
7
.2

2
7
1
.8

S
C

G
S

A
−

1
0
−

5
6
.9

-7
.5

9
0

2
2

8
6

2
9

1
2

9
0
.4

0
.1
±

0
.8

4
.3
±

3
.1

1
.1

6
0
.0

0
1
±

0
.0

0
6

0
.0

0
2
±

0
.0

0
9

0
.0

2
8
±

0
.0

2
0

1
.2

4
0
.0

9
±

0
.0

9
1
.3

5
±

0
.4

4
1
3
0
8
.6

8
.4

S
C

G
S

A
−

1
0

[−
6
,−

4
]

7
.1

-7
.6

8
4

2
1

8
3

3
2

1
3

9
0
.3

0
.2
±

1
.1

4
.4
±

2
.3

1
.1

5
0
.0

0
1
±

0
.0

0
4

0
.0

0
1
±

0
.0

0
8

0
.0

2
9
±

0
.0

2
2

1
.2

1
0
.0

9
±

0
.0

7
1
.3

3
±

0
.4

3
1
2
9
2
.5

1
0
.2

S
C
G
S
A

1
0
−

6
1
0
−

5
7
.4

-7
.8

8
4

1
9

8
7

3
1

1
0

9
0
.3

0
.4
±

2
.0

4
.3
±

3
.5

1
.1
9

0
.0

0
1
±

0
.0

0
6

0
.0

0
3
±

0
.0

1
5

0
.0

2
9
±

0
.0

2
2

1
.2
3

0
.0

8
±

0
.0

8
1
.3

2
±

0
.4

6
1
3
7
8
.3

1
3
.5

S
C
G
S
A

1
0
−

6
1
0

[−
6
,−

4
]

7
.3

-7
.6

8
3

2
2

8
1

2
7

1
1

9
0
.1

0
.3
±

2
.1

4
.6
±

3
.3

1
.1
1

0
.0

0
0
±

0
.0

0
1

0
.0

0
3
±

0
.0

1
5

0
.0

2
9
±

0
.0

2
4

1
.2
0

0
.0

9
±

0
.0

7
1
.3

0
±

0
.4

4
1
3
9
5
.5

1
6
.7

S
C
G
S
A

1
0

[−
7
,−

5
]

1
0
−

5
6
.4

-7
.3

9
0

2
4

9
4

3
5

1
5

9
1
.1

0
.1
±

0
.6

4
.2
±

2
.5

1
.2
0

0
.0

0
1
±

0
.0

0
5

0
.0

0
1
±

0
.0

0
7

0
.0

2
4
±

0
.0

1
3

1
.4
7

0
.0

8
±

0
.0

8
1
.4

2
±

0
.4

3
1
3
6
3
.0

1
3
.2

S
C
G
S
A

1
0

[−
7
,−

5
]

1
0

[−
6
,−

4
]

6
.4

-7
.3

9
3

2
4

9
6

3
1

1
4

9
1
.2

0
.1
±

0
.5

4
.2
±

2
.5

1
.2
0

0
.0

0
1
±

0
.0

0
4

0
.0

0
1
±

0
.0

0
4

0
.0

2
3
±

0
.0

1
0

1
.5
0

0
.0

8
±

0
.0

6
1
.4

2
±

0
.4

6
1
3
4
1
.0

1
2
.5

B
in
a
ry

M
u
ltip

lica
tio

n
ta

sk
–

u
sin

g
th

e
1
8
-1

2
-1

2
-6

n
etw

o
rk

to
p

o
lo

g
y

m
eth

o
d

c
F

c
G

a
r
ch

n
I

c
c
n

p
I
R

E
t

E
(n
t )

im
p

M
S
E
tr

M
S
E
t

M
S
E

(n
t )

im
p

S
t

w
m

ep
o
ch

s
t(s)

S
C

G
−

−
7
.7

-9
.5

-8
.9

3
3

5
1

0
7
6
.3

7
.5
±

9
.5

2
5
.3
±

7
.0

1
.0

0
0
.0

3
2
±

0
.0

4
0

0
.0

4
5
±

0
.0

6
0

0
.2

9
7
±

0
.1

8
9

1
.0

0
0
.2

8
±

0
.2

2
1
.0

9
±

0
.2

1
6
0
1
.0

6
.1

S
C

G
*

−
−

7
.5

-9
.4

-8
.7

3
8

4
9

0
7
6
.2

7
.9
±

9
.6

2
5
.4
±

8
.4

1
.0

0
0
.0

3
6
±

0
.0

4
1

0
.0

4
4
±

0
.0

5
0

0
.3

0
0
±

0
.2

1
0

0
.9

9
0
.2

6
±

0
.2

2
1
.1

6
±

0
.2

8
1
0
0
1
.0

1
0
.4

S
C

G
IR

1
0
−

4
−

7
.5

-9
.4

-8
.8

3
6

4
6

0
8
0
.3

6
.9
±

8
.4

2
5
.4
±

7
.2

0
.9

9
0
.0

3
2
±

0
.0

3
8

0
.0

4
0
±

0
.0

5
4

0
.3

4
3
±

0
.2

3
7

0
.8

6
0
.3

1
±

0
.2

8
1
.2

1
±

0
.2

7
1
0
0
1
.0

1
1
.4

S
C

G
IR

1
0

[−
5
,−

3
]
−

7
.6

-9
.5

-8
.8

3
5

4
8

0
8
0
.7

9
.9
±

1
2
.2

2
6
.6
±

8
.0

0
.9

5
0
.0

4
6
±

0
.0

6
1

0
.0

5
7
±

0
.0

7
9

0
.3

3
8
±

0
.2

1
8

0
.8

8
0
.2

9
±

0
.2

6
1
.1

8
±

0
.2

4
9
9
0
.9

1
1
.2

S
C

G
IR

1
0
−

6
−

7
.6

-9
.6

-9
.0

3
5

5
0

0
7
6
.2

7
.1
±

9
.7

2
5
.1
±

7
.5

1
.0

1
0
.0

3
1
±

0
.0

3
9

0
.0

4
5
±

0
.0

6
3

0
.3

0
1
±

0
.1

9
1

0
.9

8
0
.2

8
±

0
.2

3
1
.0

8
±

0
.2

2
6
0
1
.0

1
0
.5

S
C

G
IR

*
1
0
−

6
−

7
.7

-9
.5

-8
.8

3
3

5
1

0
7
6
.2

6
.4
±

8
.5

2
4
.7
±

7
.2

1
.0

2
0
.0

3
0
±

0
.0

3
8

0
.0

4
1
±

0
.0

5
5

0
.2

6
3
±

0
.1

4
5

1
.1

3
0
.2

7
±

0
.2

3
1
.1

4
±

0
.2

4
1
0
0
1
.0

2
2
.0

S
C

G
S

−
5
·
1
0
−

7
7
.6

-9
.6

-8
.9

3
4

5
5

1
1

7
2
.6

6
.5
±

8
.7

1
8
.3
±

8
.7

1
.3

8
0
.0

2
9
±

0
.0

3
7

0
.0

3
8
±

0
.0

4
8

0
.0

9
8
±

0
.0

5
7

3
.0

4
0
.1

4
±

0
.0

9
0
.9

5
±

0
.1

5
6
0
1
.0

3
7
3
3
.8

S
C

G
S

−
5
·
1
0

[−
8
,−

6
]

7
.5

-9
.5

-8
.9

3
8

5
3

9
7
3
.3

6
.8
±

8
.3

1
8
.5
±

8
.6

1
.3

7
0
.0

3
0
±

0
.0

3
7

0
.0

3
9
±

0
.0

4
6

0
.1

1
0
±

0
.0

7
3

2
.6

9
0
.1

5
±

0
.1

1
0
.9

8
±

0
.1

6
6
0
1
.0

3
6
8
8
.1

S
C
G
S

1
0
−

6
5
·
1
0
−

7
7
.8

-9
.5

-8
.9

3
1

5
3

1
0

7
2
.7

6
.1
±

8
.5

1
7
.8
±

8
.4

1
.4
2

0
.0

2
8
±

0
.0

3
7

0
.0

3
8
±

0
.0

5
0

0
.0

9
7
±

0
.0

6
0

3
.0
5

0
.1

4
±

0
.0

9
0
.9

6
±

0
.1

6
6
0
1
.0

3
6
2
0
.7

S
C
G
S

1
0
−

6
5
·
1
0

[−
8
,−

6
]

7
.6

-9
.6

-9
.0

3
2

5
6

8
7
3
.5

6
.4
±

7
.8

1
7
.7
±

8
.5

1
.4
2

0
.0

2
7
±

0
.0

3
3

0
.0

4
0
±

0
.0

5
3

0
.1

1
0
±

0
.0

8
4

2
.7
0

0
.1

6
±

0
.1

2
0
.9

6
±

0
.1

5
6
0
1
.0

3
7
2
3
.8

S
C
G
S

1
0

[−
7
,−

5
]

5
·
1
0
−

7
7
.6

-9
.6

-9
.0

3
6

5
7

1
1

7
3
.1

4
.7
±

6
.6

1
6
.5
±

7
.7

1
.5
3

0
.0

2
3
±

0
.0

3
0

0
.0

2
7
±

0
.0

3
4

0
.0

8
8
±

0
.0

4
5

3
.3
7

0
.1

4
±

0
.1

1
0
.9

8
±

0
.1

6
9
9
9
.7

3
7
5
0
.1

S
C
G
S

1
0

[−
7
,−

5
]

5
·
1
0

[−
8
,−

6
]

7
.6

-9
.6

-9
.0

3
5

5
6

1
5

7
3
.4

5
.7
±

8
.2

1
6
.3
±

8
.5

1
.5
5

0
.0

2
4
±

0
.0

2
9

0
.0

3
3
±

0
.0

4
4

0
.0

9
8
±

0
.0

6
5

3
.0
4

0
.1

4
±

0
.1

3
0
.9

6
±

0
.1

7
9
9
6
.8

3
4
3
8
.1

S
C

G
S

A
−

5
·
1
0
−

5
7
.9

-9
.6

-9
.0

3
0

3
8

1
9

7
2
.4

9
.6
±

1
0
.2

1
7
.0
±

9
.7

1
.4

9
0
.0

4
0
±

0
.0

4
9

0
.0

5
3
±

0
.0

6
1

0
.0

8
5
±

0
.0

6
4

3
.4

9
0
.1

1
±

0
.0

6
0
.8

9
±

0
.1

3
6
0
1
.0

8
.3

S
C

G
S

A
−

5
·
1
0

[−
6
,−

4
]

7
.7

-9
.6

-8
.8

3
4

3
2

4
7
3
.7

1
1
.1
±

1
1
.0

1
9
.2
±

1
0
.1

1
.3

2
0
.0

4
3
±

0
.0

4
0

0
.0

6
0
±

0
.0

6
6

0
.1

0
1
±

0
.0

7
3

2
.9

2
0
.1

1
±

0
.0

9
0
.9

4
±

0
.1

7
6
0
0
.1

9
.1

S
C
G
S
A

1
0
−

6
5
·
1
0
−

5
7
.9

-9
.7

-8
.9

2
7

4
2

1
6

7
2
.5

8
.6
±

9
.2

1
6
.2
±

8
.9

1
.5
6

0
.0

3
4
±

0
.0

3
8

0
.0

4
7
±

0
.0

4
9

0
.0

7
9
±

0
.0

5
3

3
.7
7

0
.1

0
±

0
.0

6
0
.8

8
±

0
.1

2
6
0
0
.8

1
3
.3

S
C
G
S
A

1
0
−

6
5
·
1
0

[−
6
,−

4
]

7
.7

-9
.4

-8
.9

3
8

3
7

7
7
2
.4

1
0
.7
±

1
0
.9

1
9
.0
±

9
.7

1
.3
3

0
.0

4
2
±

0
.0

4
6

0
.0

5
9
±

0
.0

6
2

0
.0

9
7
±

0
.0

6
4

3
.0
6

0
.1

1
±

0
.0

8
0
.9

1
±

0
.1

4
5
9
9
.1

1
3
.0

S
C
G
S
A

1
0

[−
7
,−

5
]

5
·
1
0
−

5
7
.6

-9
.4

-8
.9

4
0

4
5

1
8

7
1
.2

8
.5
±

8
.6

1
6
.4
±

8
.9

1
.5
4

0
.0

3
6
±

0
.0

3
6

0
.0

4
3
±

0
.0

4
2

0
.0

7
4
±

0
.0

4
5

3
.9
9

0
.1

1
±

0
.0

7
0
.9

0
±

0
.1

2
9
6
6
.5

1
2
.9

S
C
G
S
A

1
0

[−
7
,−

5
]

5
·
1
0

[−
6
,−

4
]

7
.4

-9
.5

-9
.0

4
9

4
2

1
3

7
2
.9

9
.1
±

9
.8

1
6
.9
±

9
.5

1
.4
9

0
.0

3
8
±

0
.0

4
2

0
.0

4
6
±

0
.0

4
8

0
.0

8
0
±

0
.0

5
2

3
.6
9

0
.1

1
±

0
.0

7
0
.9

2
±

0
.1

4
9
4
6
.7

1
3
.7

126



T
ab

le
5.

6:
E

x
p

er
im

en
t

5.
2.

1
–

T
h
e

p
er

fo
rm

an
ce

of
th

e
S
C

G
,

S
C

G
*,

S
C

G
IR

,
S
C

G
IR

*,
S
C

G
S
A

an
d

S
C

G
S

m
et

h
o
d
s

(w
it

h
p
ru

n
in

g)
on

th
e

W
B

d
at

a
se

t
(W

or
ld

B
an

k
ta

sk
).

T
h
e

st
at

ed
va

lu
es

co
rr

es
p

on
d

to
th

e
m

ea
n

an
d

st
an

d
ar

d
d
ev

ia
ti

on
ov

er
10

0
ra

n
d
om

n
et

w
or

k
in

it
ia

li
za

ti
on

s.
W

o
rl
d
B
a
n
k

ta
sk

–
u

si
n

g
th

e
3
5
-5

0
-5

n
et

w
o
rk

to
p

o
lo

g
y

m
et

h
o
d

c F
c G

a
r
ch

n
I

p
I
R

E
t

E
(n
t
)

im
p

M
S
E
tr

M
S
E
t

M
S
E

(n
t
)

im
p

S
t

w
m

ep
o
ch

s
t(

s)

S
C

G
−

−
2
2
.2

-2
4
.8

9
7

6
5
.5

0
.0

2
9
±

0
.0

1
6

0
.0

3
3
±

0
.0

1
7

1
.0

0
0
.0

5
8
±

0
.0

0
0

0
.0

5
8
±

0
.0

1
7

0
.0

6
3
±

0
.0

1
7

1
.0

0
0
.0

9
±

0
.0

3
0
.3

6
±

0
.1

6
9
6
9
.0

2
3
.6

S
C

G
*

−
−

2
2
.1

-2
3
.5

9
6

7
0
.5

0
.0

3
1
±

0
.0

1
6

0
.0

3
3
±

0
.0

1
7

1
.0

0
0
.0

5
7
±

0
.0

0
0

0
.0

5
7
±

0
.0

1
7

0
.0

6
2
±

0
.0

1
7

1
.0

2
0
.0

9
±

0
.0

3
0
.3

9
±

0
.1

8
9
7
4
.5

3
2
.0

S
C

G
IR

1
0
−

4
−

2
4
.3

-1
7
.8

7
1

9
1
.2

0
.0

4
1
±

0
.0

1
9

0
.0

4
1
±

0
.0

1
8

0
.8

0
0
.0

6
6
±

0
.0

0
0

0
.0

6
6
±

0
.0

2
0

0
.0

7
0
±

0
.0

2
0

0
.9

0
0
.0

5
±

0
.0

2
0
.4

8
±

0
.1

7
8
5
5
.4

2
7
.6

S
C

G
IR

1
0
−

5
−

2
3
.1

-2
3
.7

8
8

7
4
.1

0
.0

3
2
±

0
.0

1
7

0
.0

3
4
±

0
.0

1
8

0
.9

6
0
.0

5
9
±

0
.0

0
0

0
.0

5
9
±

0
.0

1
8

0
.0

6
3
±

0
.0

1
7

1
.0

0
0
.0

8
±

0
.0

3
0
.3

7
±

0
.1

4
9
7
0
.8

3
7
.4

S
C

G
IR

1
0
−

6
−

2
3
.1

-2
5
.5

9
3

6
4
.8

0
.0

3
0
±

0
.0

1
6

0
.0

3
2
±

0
.0

1
8

1
.0

3
0
.0

5
8
±

0
.0

0
0

0
.0

5
8
±

0
.0

1
7

0
.0

6
3
±

0
.0

1
7

1
.0

0
0
.0

9
±

0
.0

3
0
.3

4
±

0
.1

5
9
6
8
.0

4
8
.5

S
C

G
IR

1
0

[−
7
,−

5
]
−

2
2
.1

-2
4
.3

9
5

6
7
.9

0
.0

3
0
±

0
.0

1
8

0
.0

3
3
±

0
.0

1
7

1
.0

1
0
.0

5
7
±

0
.0

0
0

0
.0

5
7
±

0
.0

1
7

0
.0

6
2
±

0
.0

1
7

1
.0

1
0
.0

9
±

0
.0

3
0
.3

8
±

0
.1

9
1
0
1
4
.8

4
1
.7

S
C

G
IR

*
1
0
−

6
−

2
2
.6

-2
4
.0

9
3

7
0
.2

0
.0

2
9
±

0
.0

1
6

0
.0

3
4
±

0
.0

1
8

0
.9

7
0
.0

5
7
±

0
.0

0
0

0
.0

5
7
±

0
.0

1
7

0
.0

6
2
±

0
.0

1
8

1
.0

1
0
.0

8
±

0
.0

3
0
.3

7
±

0
.1

3
9
6
7
.6

7
8
.2

S
C

G
S

−
1
0
−

5
2
2
.4

-2
1
.9

8
9

7
3
.2

0
.0

2
8
±

0
.0

1
7

0
.0

3
2
±

0
.0

1
7

1
.0

3
0
.0

4
8
±

0
.0

0
0

0
.0

4
8
±

0
.0

1
5

0
.0

5
1
±

0
.0

1
6

1
.2

3
0
.0

5
±

0
.0

2
0
.3

8
±

0
.1

5
9
6
4
.0

2
0
3
6
.0

S
C

G
S

−
1
0

[−
6
,−

4
]

2
3
.6

-2
4
.5

8
2

6
7
.2

0
.0

2
9
±

0
.0

1
7

0
.0

3
1
±

0
.0

1
6

1
.0

7
0
.0

5
2
±

0
.0

0
0

0
.0

5
2
±

0
.0

1
5

0
.0

5
4
±

0
.0

1
5

1
.1

6
0
.0

5
±

0
.0

2
0
.3

3
±

0
.1

6
9
5
5
.3

2
0
5
0
.3

S
C
G
S

1
0
−

6
1
0
−

5
2
2
.7

-2
2
.0

8
8

7
5
.3

0
.0

3
0
±

0
.0

1
8

0
.0

3
2
±

0
.0

1
9

1
.0
4

0
.0

4
8
±

0
.0

0
0

0
.0

4
8
±

0
.0

1
5

0
.0

5
0
±

0
.0

1
6

1
.2
5

0
.0

5
±

0
.0

2
0
.3

9
±

0
.1

4
9
6
8
.4

1
9
8
4
.2

S
C
G
S

1
0
−

6
1
0

[−
6
,−

4
]

2
4
.1

-2
3
.7

8
0

7
0
.2

0
.0

2
8
±

0
.0

1
6

0
.0

3
0
±

0
.0

1
6

1
.0
8

0
.0

5
1
±

0
.0

0
0

0
.0

5
1
±

0
.0

1
6

0
.0

5
4
±

0
.0

1
6

1
.1
7

0
.0

5
±

0
.0

2
0
.3

4
±

0
.1

4
9
5
2
.0

1
9
5
1
.3

S
C
G
S

1
0

[−
7
,−

5
]

1
0
−

5
2
3
.9

-2
2
.4

6
6

7
6
.4

0
.0

2
8
±

0
.0

1
7

0
.0

3
1
±

0
.0

1
6

1
.0
6

0
.0

4
8
±

0
.0

0
0

0
.0

4
8
±

0
.0

1
6

0
.0

5
1
±

0
.0

1
6

1
.2
3

0
.0

4
±

0
.0

2
0
.3

8
±

0
.1

4
9
8
5
.9

1
8
1
9
.9

S
C
G
S

1
0

[−
7
,−

5
]

1
0

[−
6
,−

4
]

2
4
.5

-2
3
.9

5
9

7
3
.8

0
.0

2
8
±

0
.0

1
4

0
.0

3
1
±

0
.0

1
5

1
.0
7

0
.0

5
1
±

0
.0

0
0

0
.0

5
1
±

0
.0

1
6

0
.0

5
4
±

0
.0

1
6

1
.1
6

0
.0

5
±

0
.0

2
0
.3

7
±

0
.1

8
9
8
7
.0

1
7
0
4
.2

S
C

G
S

A
−

2
·1

0
−

4
2
2
.8

-2
2
.9

9
7

7
0
.6

0
.0

2
8
±

0
.0

1
8

0
.0

3
1
±

0
.0

1
8

1
.0

6
0
.0

5
0
±

0
.0

0
0

0
.0

5
0
±

0
.0

1
6

0
.0

5
4
±

0
.0

1
5

1
.1

7
0
.0

6
±

0
.0

3
0
.3

7
±

0
.1

3
9
7
8
.2

3
5
.2

S
C

G
S

A
−

2
·1

0
[−

5
,−

3
]

2
3
.0

-2
2
.6

9
3

7
0
.5

0
.0

3
1
±

0
.0

1
8

0
.0

3
4
±

0
.0

1
8

0
.9

8
0
.0

5
4
±

0
.0

0
0

0
.0

5
4
±

0
.0

1
8

0
.0

5
7
±

0
.0

1
8

1
.1

0
0
.0

6
±

0
.0

3
0
.3

9
±

0
.1

8
9
6
2
.3

3
5
.1

S
C
G
S
A

1
0
−

6
2
·1

0
−

4
2
2
.4

-2
1
.6

9
7

7
3
.3

0
.0

2
8
±

0
.0

1
8

0
.0

3
1
±

0
.0

1
8

1
.0
7

0
.0

5
1
±

0
.0

0
0

0
.0

5
1
±

0
.0

1
7

0
.0

5
5
±

0
.0

1
7

1
.1
4

0
.0

6
±

0
.0

2
0
.4

1
±

0
.1

9
9
4
5
.4

5
9
.0

S
C
G
S
A

1
0
−

6
2
·1

0
[−

5
,−

3
]

2
3
.2

-2
3
.5

9
2

7
0
.2

0
.0

3
0
±

0
.0

1
9

0
.0

3
1
±

0
.0

1
7

1
.0
5

0
.0

5
3
±

0
.0

0
0

0
.0

5
3
±

0
.0

1
6

0
.0

5
6
±

0
.0

1
6

1
.1
2

0
.0

6
±

0
.0

3
0
.3

7
±

0
.1

3
9
6
5
.2

5
8
.0

S
C
G
S
A

1
0

[−
7
,−

5
]

2
·1

0
−

4
2
2
.9

-2
4
.1

8
9

7
2
.4

0
.0

2
8
±

0
.0

1
6

0
.0

3
2
±

0
.0

1
7

1
.0
2

0
.0

5
2
±

0
.0

0
0

0
.0

5
2
±

0
.0

1
6

0
.0

5
6
±

0
.0

1
6

1
.1
2

0
.0

7
±

0
.0

2
0
.3

7
±

0
.1

3
9
7
8
.8

5
2
.4

S
C
G
S
A

1
0

[−
7
,−

5
]

2
·1

0
[−

5
,−

3
]

2
3
.1

-2
3
.8

8
6

7
1
.2

0
.0

3
2
±

0
.0

1
9

0
.0

3
3
±

0
.0

1
6

1
.0

0
0
.0

5
5
±

0
.0

0
1

0
.0

5
5
±

0
.0

1
6

0
.0

5
8
±

0
.0

1
6

1
.0
9

0
.0

7
±

0
.0

3
0
.3

7
±

0
.1

3
9
9
0
.6

4
8
.3

W
o
rl
d
B
a
n
k

ta
sk

–
u

si
n

g
th

e
3
5
-1

5
-1

5
-5

n
et

w
o
rk

to
p

o
lo

g
y

m
et

h
o
d

c F
c G

a
r
ch

n
I

p
I
R

E
t

E
(n
t
)

im
p

M
S
E
tr

M
S
E
t

M
S
E

(n
t
)

im
p

S
t

w
m

ep
o
ch

s
t(

s)

S
C

G
−

−
2
1
.2

-1
1
.2

-7
.3

8
8

7
8
.2

0
.0

3
1
±

0
.0

1
7

0
.0

3
6
±

0
.0

2
0

1
.0

0
0
.0

2
7
±

0
.0

3
7

0
.0

6
1
±

0
.0

3
7

0
.0

6
4
±

0
.0

3
8

1
.0

0
0
.0

5
±

0
.0

2
0
.5

2
±

0
.1

2
3
0
5
.1

1
5
.6

S
C

G
*

−
−

2
1
.0

-1
1
.4

-7
.1

7
2

7
9
.1

0
.0

3
1
±

0
.0

1
7

0
.0

3
9
±

0
.0

2
1

0
.9

4
0
.0

2
1
±

0
.0

1
9

0
.0

5
5
±

0
.0

2
5

0
.0

5
7
±

0
.0

2
5

1
.1

1
0
.0

4
±

0
.0

2
0
.4

7
±

0
.1

0
3
0
5
.9

1
8
.5

S
C

G
IR

1
0
−

4
−

2
1
.8

-1
0
.8

-7
.5

7
6

8
7
.2

0
.0

3
7
±

0
.0

2
0

0
.0

4
4
±

0
.0

2
2

0
.8

3
0
.0

2
7
±

0
.0

2
1

0
.0

6
1
±

0
.0

2
9

0
.0

6
5
±

0
.0

2
9

0
.9

8
0
.0

5
±

0
.0

3
0
.5

7
±

0
.1

4
3
0
2
.3

1
8
.8

S
C

G
IR

1
0
−

5
−

2
2
.0

-1
1
.6

-7
.8

8
2

8
0
.6

0
.0

3
3
±

0
.0

1
7

0
.0

3
9
±

0
.0

1
8

0
.9

3
0
.0

2
3
±

0
.0

2
2

0
.0

5
8
±

0
.0

2
6

0
.0

6
1
±

0
.0

2
6

1
.0

4
0
.0

4
±

0
.0

2
0
.5

2
±

0
.1

4
3
0
3
.6

2
0
.4

S
C

G
IR

1
0
−

6
−

2
1
.1

-1
1
.7

-7
.4

9
0

7
7
.6

0
.0

3
1
±

0
.0

1
7

0
.0

3
6
±

0
.0

2
0

1
.0

2
0
.0

3
0
±

0
.0

3
7

0
.0

6
1
±

0
.0

3
7

0
.0

6
4
±

0
.0

3
7

0
.9

9
0
.0

5
±

0
.0

2
0
.5

0
±

0
.1

1
3
0
4
.5

2
4
.2

S
C

G
IR

1
0

[−
7
,−

5
]
−

2
0
.3

-1
1
.3

-7
.3

9
0

7
8
.6

0
.0

3
2
±

0
.0

1
7

0
.0

3
8
±

0
.0

2
0

0
.9

7
0
.0

2
3
±

0
.0

2
2

0
.0

5
7
±

0
.0

2
8

0
.0

6
1
±

0
.0

3
2

1
.0

5
0
.0

5
±

0
.0

2
0
.5

2
±

0
.1

1
3
0
5
.8

2
0
.7

S
C

G
IR

*
1
0
−

6
−

2
1
.4

-1
1
.5

-7
.4

7
6

7
9
.5

0
.0

3
2
±

0
.0

1
8

0
.0

3
9
±

0
.0

2
0

0
.9

4
0
.0

2
5
±

0
.0

2
8

0
.0

6
0
±

0
.0

2
9

0
.0

6
2
±

0
.0

2
9

1
.0

3
0
.0

4
±

0
.0

2
0
.4

9
±

0
.1

0
3
0
1
.9

3
3
.8

S
C
G
S

−
1
0
−

5
2
1
.8

-1
1
.8

-7
.5

8
9

7
9
.6

0
.0

2
9
±

0
.0

1
8

0
.0

3
2
±

0
.0

1
9

1
.1
4

0
.0

2
1
±

0
.0

1
5

0
.0

5
0
±

0
.0

2
1

0
.0

5
0
±

0
.0

2
1

1
.2
6

0
.0

3
±

0
.0

1
0
.5

3
±

0
.1

3
3
0
2
.7

5
3
1
8
8
.0

S
C
G
S

−
1
0

[−
6
,−

4
]

2
2
.6

-1
1
.9

-7
.6

9
2

7
8
.1

0
.0

3
2
±

0
.0

1
9

0
.0

2
9
±

0
.0

1
9

1
.2
6

0
.0

3
2
±

0
.0

3
7

0
.0

6
0
±

0
.0

3
3

0
.0

4
9
±

0
.0

3
4

1
.3
0

0
.0

3
±

0
.0

2
0
.5

2
±

0
.1

2
3
0
4
.4

5
4
0
4
0
.0

S
C
G
S
A
−

1
0
−

4
2
1
.0

-1
1
.7

-7
.4

9
4

7
8
.6

0
.0

2
9
±

0
.0

1
6

0
.0

3
4
±

0
.0

1
7

1
.0
8

0
.0

2
1
±

0
.0

1
7

0
.0

5
0
±

0
.0

2
1

0
.0

5
2
±

0
.0

2
2

1
.2
3

0
.0

4
±

0
.0

2
0
.5

1
±

0
.1

0
3
0
3
.4

1
9
.8

S
C
G
S
A
−

1
0

[−
5
,−

3
]

2
1
.6

-1
1
.8

-7
.5

8
9

7
8
.0

0
.0

2
8
±

0
.0

1
7

0
.0

3
6
±

0
.0

1
9

1
.0
2

0
.0

2
3
±

0
.0

2
8

0
.0

5
3
±

0
.0

2
9

0
.0

5
5
±

0
.0

2
9

1
.1
5

0
.0

4
±

0
.0

2
0
.5

0
±

0
.1

2
3
0
4
.6

1
9
.3

S
C

G
S

A
1
0
−

6
1
0
−

4
2
1
.1

-1
1
.4

-7
.0

9
5

7
8
.6

0
.0

2
9
±

0
.0

1
6

0
.0

3
5
±

0
.0

1
6

1
.0

4
0
.0

2
2
±

0
.0

2
3

0
.0

5
2
±

0
.0

2
5

0
.0

5
4
±

0
.0

2
5

1
.1

9
0
.0

4
±

0
.0

2
0
.5

1
±

0
.1

0
3
0
4
.1

2
8
.5

S
C

G
S

A
1
0
−

6
1
0

[−
5
,−

3
]

2
1
.5

-1
1
.7

-7
.5

8
9

7
8
.5

0
.0

3
0
±

0
.0

1
7

0
.0

3
4
±

0
.0

1
8

1
.0

7
0
.0

2
7
±

0
.0

3
3

0
.0

5
6
±

0
.0

3
2

0
.0

5
8
±

0
.0

3
1

1
.1

1
0
.0

4
±

0
.0

2
0
.5

0
±

0
.1

3
3
0
4
.7

2
7
.6

S
C

G
S

A
1
0

[−
7
,−

5
]

1
0
−

4
2
1
.1

-1
1
.7

-7
.2

8
4

7
8
.5

0
.0

3
0
±

0
.0

1
7

0
.0

3
6
±

0
.0

1
9

1
.0

1
0
.0

2
5
±

0
.0

4
7

0
.0

5
6
±

0
.0

4
1

0
.0

5
8
±

0
.0

4
2

1
.0

9
0
.0

4
±

0
.0

2
0
.5

1
±

0
.1

1
3
0
4
.6

2
4
.1

127



more efficiently than the approximative SCGSA method for most of the data sets
(except BIN3, for which the SCGSA-trained networks generalize even slightly
better).

The SCG* and SCGIR* methods don’t improve the generalization ability of
the trained BP-networks as significantly as SCGS and SCGSA (as indicated, e.g.,
by MSE(nt) and imp in Tables 5.5 and 5.6). For some of the tasks (BIN3 and
WB with the topology 35-50-5), SCG* and SCGIR* don’t even outperform SCG.

Results – On the robustness to the level of noise in the data

In Figure 5.2, we can clearly see, that both the SCGS and SCGSA methods are
remarkably stable when tested on data corrupted by various amounts of noise.
The SCG* and SCGIR methods are less stable when compared to SCGS and
SCGSA, their robustness to noise is similar to SCG.

5.2.2 Experiment 5.2.2 – Extended results

Experiment setting

In Experiment 5.2.2 [83, 84], we extended the setting of Experiment 5.2.1 on
BP-networks trained without pruning or with pruning of only hidden or only
input neurons. We compared the SCGIR, SCGS and SCGSA methods with the
standard SCG training algorithm and with the variant of the SCGS method,
where the sensitivity is enforced (cG < 0, we denote this method as SCGS-ES).
The sensitivity enforcement is assumed to increase the differences among the
achieved sensitivity coefficients of the respective neurons and restrict the space
of candidate hypotheses for the wanted network function [83].

The tests involved two types of data: binary (Binary Addition and Binary
Multiplication tasks – data sets BIN2 and BIN3) and continuous (World Bank
task – data set WB). The experiment setting is analogical to Experiment 5.2.1
on page 123 with the following exceptions: For the BIN2 data set, the parameter
maxEpochs was set to 5001 and the tests comprise more possible values of the
parameters cF and cG. The results for the WB data set were obtained by 10-fold
cross-validation. For the BIN2 and BIN3 data sets, each tested method was
repeated 100-times on 100 different randomly initialized BP-networks.

Tables 5.7 and 5.8 contain the results for the BIN2 data set, while Tables 5.9
and 5.11 summarize the experiment on the WB data set. The results obtained
for the BIN3 data set are stated in Table 5.10. In the tables, the generalization
abilities of the trained BP-networks and their sensitivity to noise in the data
are indicated by the values of MSEt, Et, c and MSE(nt), E(nt), cn, St, imp,
respectively.

Results – On the generalization abilities of the networks

All experiments confirmed that the both the SCGS and SCGSA methods signif-
icantly improve generalization capabilities while maintaining a relatively stable
behavior on noisy data even when trained without pruning or with pruning of
just input or just hidden neurons. Sensitivity enforcement (SCGS-ES) showed in
this respect only marginal improvements.

128



Table 5.7: Experiment 5.2.2 – The performance of the SCG, SCGIR, SCGS-ES,
SCGS and SCGSA methods without pruning on the BIN2 data set using the 18-
12-4 network topology. The stated values correspond to the mean and standard
deviation over 100 random network initializations.

method cF cG Etr Ev Et c epochs t(s)

SCG – – 3.05± 11.14 4.38± 9.92 4.60± 10.36 76 342.1 1.1
SCGIR 2 · 10−6 – 3.04± 11.21 4.32± 9.96 4.36± 10.29 76 357.1 2.9
SCGIR 2 · 10−5 – 3.04± 11.26 4.39± 10.06 4.31± 10.06 79 638.3 4.6
SCGIR 5 · 10−5 – 3.15± 10.83 4.43± 9.35 4.77± 10.44 74 625.9 5.1
SCGIR 5 · 10−4 – 6.6± 20.55 8.46± 12.4 8.15± 12.15 44 1271.0 10.4
SCGS-ES – −10−7 2.94± 11.09 4.20± 9.85 4.21± 10.04 75 333.9 107.2
SCGS-ES – −2 · 10−7 2.94± 11.09 4.20± 9.85 4.18± 10.04 77 409.5 141.6
SCGS-ES – −10−6 3.58± 11.99 5.46± 10.69 5.52± 11.14 64 329.8 105.5
SCGS-ES – −2 · 10−6 4.19± 13.22 6.83± 11.11 6.39± 11.38 27 181.4 65.0
SCGS-ES 2 · 10−5 −2 · 10−7 3.15± 10.74 4.75± 9.47 5.03± 10.57 71 558.8 181.0
SCGS-ES 5 · 10−4 −2 · 10−7 6.83± 20.58 8.91± 12.42 8.65± 12.42 42 826.8 269.8
SCGS – 10−4 0.94± 2.53 2.49± 3.21 3.02± 3.30 19 557.8 216.7
SCGS – 2 · 10−4 5.28± 5.00 6.91± 3.52 7.33± 3.93 1 220.9 55.3
SCGS – 2 · 10−5 0.09 ± 0.51 0.69 ± 2.54 0.73 ± 2.76 86 749.4 229.0
SCGS – 2 · 10−6 2.47± 9.25 3.04± 8.52 3.15± 8.72 84 432.6 127.4
SCGS – 2 · 10−7 2.96± 11.18 3.95± 9.55 4.02± 9.94 79 312.9 107.3
SCGS 2 · 10−5 2 · 10−5 0.15± 0.80 0.83± 2.71 0.89± 3.07 83 1248.8 328.2
SCGS 5 · 10−4 2 · 10−5 1.84± 7.15 3.52± 7.56 3.69± 7.83 57 954.4 372.1
SCGSA – 5 · 10−4 0.76± 3.37 1.70± 4.98 1.75 ± 5.15 66 788.5 5.0
SCGSA – 2 · 10−4 1.03± 4.93 1.89± 6.22 2.02± 6.57 77 880.0 5.6
SCGSA – 10−4 1.48± 6.09 2.64± 7.62 2.64± 7.77 80 758.8 4.8
SCGSA – 8 · 10−5 1.47± 5.83 2.61± 7.67 2.57± 7.63 81 681.7 4.4
SCGSA 2 · 10−6 5 · 10−4 0.73 ± 3.35 1.61 ± 4.92 1.77 ± 5.28 63 641.0 6.6
SCGSA 2 · 10−6 2 · 10−4 0.86± 4.69 1.61± 5.56 1.79± 6.21 80 835.9 8.8
SCGSA 2 · 10−6 10−4 1.48± 6.03 2.62± 7.67 2.56± 7.72 81 877.8 9.2

The BIN2A dataset - using the topology 6-6-4
SCG – – 20.07± 27.74 6.69± 9.25 6.69± 9.25 55 4852.2 15.5
SCGS – 2 · 10−5 13.68± 24.50 4.56± 8.17 4.56± 8.17 58 2329.9 215.8
SCGSA 10−6 10−6 13.14± 24.42 4.38± 8.14 4.38± 8.14 61 2224.4 15.6

The BIN2A dataset - using the topology 6-12-4
SCG – – 0± 0 0± 0 0± 0 100 1000.0 4.1

While the SCGS and SCGSA methods achieve relatively similar results for
networks trained with pruning of both input and hidden neurons, if pruning
of input neurons is not allowed, the SCGS method outperforms SCGSA in the
generalization abilities of the trained BP-networks, especially for the BIN2 and
BIN3 data sets (as indicated, e.g., by the value of MSE(nt) and imp in Table
5.10).

In Tables 5.7 and 5.8, we can clearly see that the Binary Addition task is
harder to be solved by a neural network when random inputs are added and no
pruning of inputs is done. In such a case, both the SCGS and SCGSA methods
remarkably increase the number of BP-networks that learned the task (indicated
by the value of c). When comparing the SCGS method to SCG, the average
number of erroneously recalled input patterns over all of the 100 trained networks
(Et) has been reduced 6-times while reducing its standard deviation 4-times. The
number c of error-less networks has raised by 13%. For the SCGSA method
compared to SCG, the value of Et has been reduced 2.5-times while reducing
its standard deviation 2-times. The number of error-less networks has raised by
7%. If pruning of inputs was allowed, almost all BP-networks learned the task
correctly, independently of the chosen training algorithm.

Also the task of Binary Multiplication is hard to be solved by a BP-network
when random inputs are added and no pruning of inputs is done, as indicated

129



T
ab

le
5.8:

E
x
p

erim
en

t
5.2.2

–
T

h
e

p
erform

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
S
-E

S
,

S
C

G
S

an
d

S
C

G
S
A

m
eth

o
d
s

w
ith

p
ru

n
in

g
on

th
e

B
IN

2
d
ata

set
u
sin

g
th

e
18-12-4

n
etw

ork
top

ology.
T

h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
an

d
stan

d
ard

d
ev

iation
over

100
ran

d
om

n
etw

ork
in

itialization
s.m

eth
o
d

c
F

c
G

H
I

n
H

n
I

E
tr

E
v

E
t

c
ep

o
ch

s
t(s)

P
ru

n
in

g
o
f

h
id

d
en

n
eu

ro
n

s
S

C
G

–
–

8
.1

7
±

2
.1

2
1
8

2
3

–
2
.7

9
±

1
1
.9

9
2
.7

1
±

7
.8

4
3
.0

3
±

8
.5

2
8
0

6
4
7
.2

2
.1

S
C

G
IR

2
·
1
0
−

5
–

7
.7

8
±

2
.0

0
1
8

3
2

–
3
.7

1
±

1
3
.5

1
2
.6

4
±

7
.2

8
2
.9

8
±

8
.4

2
8
5

9
4
8
.3

7
.3

S
C

G
S

-E
S

–
−

2
·
1
0
−

7
7
.9

6
±

2
.0

7
1
8

2
8

–
2
.6

6
±

1
1
.9

6
2
.5

4
±

7
.7

8
2
.7

5
±

8
.4

1
8
3

7
4
4
.8

2
2
1
.6

S
C

G
S

-E
S

2
·
1
0
−

5
−

2
·
1
0
−

7
7
.9

7
±

2
.1

2
1
8

3
0

–
3
.2

7
±

1
2
.6

0
2
.4

9
±

6
.9

3
2
.7

3
±

7
.8

7
8
4

9
8
5
.0

2
5
1
.3

S
C

G
S

–
2
·
1
0
−

5
7
.7

5
±

2
.1

5
1
8

3
8

–
0
.1
8
±

0
.8
9

0
.4
9
±

1
.9
2

0
.6
6
±

2
.7
2

9
1

1
1
3
8
.0

3
2
7
.1

S
C

G
S

2
·
1
0
−

5
2
·
1
0
−

5
7
.7

7
±

2
.1

5
1
8

3
7

–
0
.3

7
±

2
.0

0
0
.8

2
±

3
.1

3
0
.7

9
±

2
.9

8
8
8

1
5
2
2
.6

4
1
9
.2

S
C

G
S

A
–

5
·
1
0
−

5
7
.6

1
±

1
.9

1
1
8

3
2

–
1
.3
2
±

7
.2
4

1
.2
9
±

5
.1
0

1
.3
3
±

5
.3
1

8
9

1
0
2
1
.3

6
.3

S
C

G
S

A
2
·
1
0
−

6
5
·
1
0
−

5
8
.2

5
±

2
.3

1
1
8

2
7

–
1
.9

0
±

9
.9

3
1
.8

7
±

6
.9

9
1
.8

6
±

6
.7

7
8
8

1
0
4
0
.2

1
0
.4

S
C

G
S

–
2
·
1
0
−

4
7
.7

3
±

2
.0

5
1
8

3
7

-
3
.5

9
±

3
.8

0
3
.7

2
±

3
.0

5
4
.1

1
±

3
.3

3
1
3

4
3
6
.9

9
6
.6

S
C

G
S

–
1
·
1
0
−

4
7
.9

6
±

2
.2

5
1
8

3
4

-
0
.6

7
±

2
.4

9
1
.2

3
±

2
.1

1
.5

9
±

2
.0

8
3
1

9
5
7
.3

3
2
8
.6

S
C

G
S

–
2
·
1
0
−

6
7
.8

6
±

2
.0

2
1
8

2
7

-
2
.3

1
±

1
0
.7

3
1
.8

7
±

6
.8

9
1
.8

7
±

6
.8

5
8
6

7
5
8
.6

2
0
6
.1

S
C

G
S

–
2
·
1
0
−

7
8
.2

7
±

2
.2

1
1
8

2
3

-
2
.6

2
±

1
1
.7

1
2
.3

6
±

7
.4

4
2
.6

5
±

8
.0

7
8
3

6
1
6
.2

1
8
5
.3

P
ru

n
in

g
o
f

in
p

u
t

n
eu

ro
n

s
S

C
G

–
–

1
2

6
.6

7
±

2
.6

3
–

8
9

0
±

0
0
±

0
0
±

0
1
0
0

1
3
3
9
.1

5
.3

S
C

G
IR

2
·
1
0
−

5
–

1
2

6
.2

0
±

1
.2

6
–

9
4

0
±

0
0
±

0
0
±

0
1
0
0

1
0
2
9
.2

8
.7

S
C

G
S

-E
S

–
−

2
·
1
0
−

7
1
2

6
.7

6
±

2
.8

6
–

9
1

0
±

0
0
±

0
0
±

0
1
0
0

1
1
1
4
.4

2
1
5
.1

S
C

G
S

-E
S

2
·
1
0
−

5
−

2
·
1
0
−

7
1
2

6
.5

5
±

2
.3

7
–

9
1

0
±

0
0
±

0
0
±

0
1
0
0

9
6
3
.0

1
9
9
.7

S
C

G
S

–
2
·
1
0
−

5
1
2

6
.0
0
±

0
.0
0

–
1
0
0

0
±

0
0
±

0
0
±

0
1
0
0

1
1
4
8
.1

2
8
2
.3

S
C

G
S

2
·
1
0
−

5
2
·
1
0
−

5
1
2

6
.0
0
±

0
.0
0

–
1
0
0

0
±

0
0
±

0
0
±

0
1
0
0

1
4
4
7
.8

3
3
9
.0

S
C

G
S

A
–

1
0
−

5
1
2

6
.0
0
±

0
.0
0

–
1
0
0

0
±

0
0
±

0
0
±

0
1
0
0

9
7
7
.7

7
.2

S
C

G
S

A
2
·
1
0
−

6
1
0
−

5
1
2

6
.0

1
±

0
.1

0
–

9
9

0
±

0
0
±

0
0
±

0
1
0
0

9
3
9
.7

1
0
.5

S
C

G
S

–
2
·
1
0
−

4
1
2

6
.0

2
±

0
.2

–
9
9

3
.2

4
±

6
.0

3
1
.1
±

2
.0

6
1
.1

3
±

2
.1

6
6
2

4
3
2
.9

7
7
.6

S
C

G
S

–
1
·
1
0
−

4
1
2

6
.0
±

0
.0

–
1
0
0

0
.2

4
±

1
.1

0
.0

8
±

0
.3

7
0
.0

8
±

0
.3

7
9
5

7
4
5
.9

2
2
7
.8

S
C

G
S

–
2
·
1
0
−

6
1
2

6
.0

2
±

0
.2

–
9
9

0
±

0
0
±

0
0
±

0
1
0
0

1
0
4
3
.6

1
9
7
.1

S
C

G
S

–
2
·
1
0
−

7
1
2

6
.0

4
±

0
.2

4
–

9
7

0
±

0
0
±

0
0
±

0
1
0
0

1
1
7
3
.2

2
0
0

P
ru

n
in

g
o
f

b
o
th

in
p

u
t

a
n

d
h

id
d

en
n

eu
ro

n
s

S
C

G
–

–
7
.7

4
±

1
.6

4
7
.2

2
±

3
.4

9
2
3

8
5

0
.0

1
±

0
.1

0
.0

9
±

0
.9

0
0
.1

3
±

1
.3

0
9
9

1
3
4
3
.1

4
.5

S
C

G
IR

2
·
1
0
−

5
–

7
.4

0
±

1
.4

1
6
.9

1
±

3
.0

8
2
9

8
8

0
.0

3
±

0
.3

0
0
.0

1
±

0
.1

0
0
.0

1
±

0
.1

0
9
9

1
5
8
3
.5

1
1
.4

S
C

G
S

-E
S

–
−

2
·
1
0
−

7
7
.6

5
±

1
.5

6
7
.4

2
±

3
.7

7
2
3

8
4

0
±

0
0
±

0
0
±

0
1
0
0

1
3
3
9
.0

2
5
8
.2

S
C

G
S

-E
S

2
·
1
0
−

5
−

2
·
1
0
−

7
7
.5

6
±

1
.4

4
7
.2

9
±

3
.6

1
2
3

8
4

0
.1

5
±

1
.2

3
0
.0

5
±

0
.4

1
0
.0

5
±

0
.4

1
9
8

1
5
0
6
.4

2
8
4
.9

S
C

G
S

–
2
·
1
0
−

5
6
.9
8
±

1
.2
4

6
.5
2
±

2
.3

8
4
3

9
4

0
±

0
0
±

0
0
±

0
1
0
0

1
5
9
7
.1

3
4
3
.2

S
C

G
S

2
·
1
0
−

5
2
·
1
0
−

5
7
.0
6
±

1
.2
4

6
.5
0
±

2
.3
7

3
7

9
5

0
.0

7
±

0
.7

0
0
.2

1
±

2
.1

0
0
.1

9
±

1
.9

0
9
9

1
8
5
0
.3

4
5
1
.5

S
C

G
S

A
–

5
·
1
0
−

5
7
.0
8
±

1
.1
6

6
.4
4
±

2
.0
9

3
5

9
2

0
±

0
0
±

0
0
±

0
1
0
0

1
2
4
6
.2

8
.1

S
C

G
S

A
2
·
1
0
−

6
5
·
1
0
−

5
7
.2

2
±

1
.2

8
6
.4

4
±

2
.0

9
3
0

9
3

0
±

0
0
±

0
0
±

0
1
0
0

1
3
5
2
.0

1
3
.6

S
C

G
S

–
2
·
1
0
−

4
7
.0

3
±

1
.1

1
6
.1

4
±

1
.2

1
3
7

9
8

2
.3

3
±

8
.2

4
0
.7

7
±

2
.7

0
.8

2
±

2
.7

9
8
2

5
5
8
.3

1
0
8
.3

S
C

G
S

–
1
·
1
0
−

4
7
.0

2
±

1
.2

6
6
.6

1
±

2
.6

3
4
1

9
4

0
.1

5
±

1
.2

3
0
.0

9
±

0
.5

7
0
.1
±

0
.6

4
9
7

1
1
5
4
.2

2
9
6
.5

S
C

G
S

–
2
·
1
0
−

6
7
.3

6
±

1
.3

3
6
.2

7
±

1
.3

3
2
9

9
1

0
±

0
0
±

0
0
±

0
1
0
0

1
3
8
4
.9

2
5
2
.9

S
C

G
S

–
2
·
1
0
−

7
7
.3

4
±

1
.2

3
6
.0

7
±

0
.4

3
2
7

9
6

0
±

0
0
±

0
0
±

0
1
0
0

1
3
0
0

2
3
0
.8

M
in

im
a
l

6
-6

-4
to

p
o
lo

g
y

w
ith

o
u

t
p

ru
n

in
g

S
C

G
S

–
2
·
1
0
−

5
6

6
–

–
2
0
.0

7
±

2
7
.7

4
6
.6

9
±

9
.2

5
6
.6

9
±

9
.2

5
5
5

4
8
5
2
.2

1
5
.5

S
C

G
S

2
·
1
0
−

5
2
·
1
0
−

5
6

6
–

–
1
3
.6

8
±

2
4
.5

0
4
.5

6
±

8
.1

7
4
.5

6
±

8
.1

7
5
8

2
3
2
9
.9

2
1
5
.8

S
C

G
S

A
–

1
0
−

6
6

6
–

–
1
4
.7

0
±

2
6
.2

4
4
.9

0
±

8
.7

5
4
.9

0
±

8
.7

5
6
5

2
3
5
0
.5

1
0
.4

S
C

G
S

A
2
·
1
0
−

6
1
0
−

6
6

6
–

–
1
3
.1

4
±

2
4
.4

2
4
.3

8
±

8
.1

4
4
.3

8
±

8
.1

4
6
1

2
2
2
4
.4

1
5
.6

130



T
ab

le
5.

9:
E

x
p

er
im

en
t

5.
2.

2
-

T
h
e

p
er

fo
rm

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
S
,

S
C

G
S
-E

S
an

d
S
C

G
S
A

m
et

h
o
d
s

w
it

h
an

d
w

it
h
ou

t
p
ru

n
in

g
on

th
e

W
B

d
at

a
se

t
u
si

n
g

th
e

35
-5

0-
5

n
et

w
or

k
to

p
ol

og
y

an
d

10
-f

ol
d

cr
os

s-
va

li
d
at

io
n
.

m
et

h
o
d

c F
c G

H
I

E
tr

E
v

E
t

ep
o
ch

s
t(

s)

W
it

h
o
u

t
p

ru
n

in
g

S
C

G
–

–
5
0

3
5

0
.0

0
2
±

0
.0

0
2

0
.0

1
9
±

0
.0

1
8

0
.0

4
1
±

0
.0

2
0

1
1
5
.3
±

3
6
.2

2
.7
±

1
.1

S
C

G
IR

1
0
−

6
–

5
0

3
5

0
.0

0
2
±

0
.0

0
2

0
.0

1
9
±

0
.0

1
8

0
.0

4
4
±

0
.0

2
1

1
1
5
.8
±

3
6
.7

8
.0
±

2
.5

S
C

G
S

–
2
·1

0
−

5
5
0

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

1
7
±

0
.0

1
4

0
.0
3
4
±

0
.0
1
4

1
3
1
.1
±

2
9
.8

4
5
2
.5
±

1
5
5
.9

S
C

G
S

1
0
−

6
2
·1

0
−

5
5
0

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

1
7
±

0
.0

1
4

0
.0
3
5
±

0
.0
1
5

1
3
1
.1
±

3
0
.6

3
9
9
.1
±

9
1
.2

S
C

G
S

-E
S

–
−

2
·1

0
−

6
5
0

3
5

0
.0

0
3
±

0
.0

0
3

0
.0

1
9
±

0
.0

1
5

0
.0

4
4
±

0
.0

2
2

1
1
0
.2
±

3
6
.9

3
4
9
.6
±

1
1
8
.8

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
5
0

3
5

0
.0

0
2
±

0
.0

0
3

0
.0

2
2
±

0
.0

2
0

0
.0

4
3
±

0
.0

2
2

1
1
0
.4
±

3
7
.6

3
4
0
.9
±

1
1
7
.3

S
C

G
S

A
–

1
0
−

3
5
0

3
5

0
.0

0
3
±

0
.0

0
2

0
.0

1
6
±

0
.0

1
3

0
.0
3
3
±

0
.0
1
6

1
3
9
.0
±

2
1
.2

6
.1
±

1
.0

S
C

G
S

A
1
0
−

6
1
0
−

3
5
0

3
5

0
.0

0
3
±

0
.0

0
3

0
.0

1
9
±

0
.0

1
6

0
.0
3
3
±

0
.0
1
5

1
1
7
.1
±

3
1
.0

1
0
.5
±

2
.7

P
ru

n
in

g
o
f

h
id

d
en

n
eu

ro
n

s
S

C
G

–
–

4
1
.9
±

3
.3

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

2
6
±

0
.0

1
2

0
.0

3
7
±

0
.0

2
1

2
8
0
.5
±

5
4
.4

6
.3
±

1
.2

S
C

G
IR

1
0
−

6
–

2
8
.9
±

1
2
.2

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

2
5
±

0
.0

1
2

0
.0

3
4
±

0
.0

2
1

3
8
7
.9
±

1
1
0
.9

2
0
.3
±

4
.6

S
C

G
S

–
2
·1

0
−

5
3
4
.0
±

1
0
.5

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

1
5
±

0
.0

0
9

0
.0
3
1
±

0
.0
1
1

4
4
7
.3
±

1
8
7
.4

1
3
2
6
.2
±

5
1
2
.4

S
C

G
S

1
0
−

6
2
·1

0
−

5
3
3
.8
±

1
1
.5

3
5

0
.0

0
3
±

0
.0

0
4

0
.0

1
7
±

0
.0

1
2

0
.0
3
2
±

0
.0
1
1

4
5
7
.3
±

1
6
1
.8

1
2
2
7
.2
±

4
0
3
.8

S
C

G
S

-E
S

–
−

2
·1

0
−

6
3
3
.8
±

1
0
.5

3
5

0
.0

0
2
±

0
.0

0
3

0
.0

3
0
±

0
.0

1
6

0
.0

3
3
±

0
.0

1
6

2
8
8
.7
±

8
4
.0

7
9
2
.9
±

2
2
7
.0

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
3
3
.7
±

1
0
.2

3
5

0
.0

0
1
±

0
.0

0
1

0
.0

3
2
±

0
.0

1
7

0
.0

3
5
±

0
.0

1
8

3
0
2
.6
±

9
1
.8

8
5
4
.4
±

2
5
3
.3

S
C

G
S

A
–

1
0
−

5
2
1
.8
±

9
.4

3
5

0
.0

0
3
±

0
.0

0
3

0
.0

2
3
±

0
.0

0
8

0
.0
2
9
±

0
.0
1
7

5
5
2
.6
±

2
3
6
.5

1
4
.3
±

4
.5

S
C

G
S

A
1
0
−

6
1
0
−

5
2
4
.1
±

1
0
.1

3
5

0
.0

0
2
±

0
.0

0
2

0
.0

1
9
±

0
.0

1
2

0
.0
2
7
±

0
.0
1
0

5
9
9
.4
±

1
8
2
.9

2
9
.6
±

8
.0

P
ru

n
in

g
o
f

in
p

u
t

n
eu

ro
n

s
S

C
G

–
–

5
0

2
2
.7
±

5
.1

0
.0

0
9
±

0
.0

0
5

0
.0

0
9
±

0
.0

0
9

0
.0

2
8
±

0
.0

1
7

2
9
4
.7
±

7
9
.0

9
.9
±

2
.3

S
C

G
IR

1
0
−

6
–

5
0

2
2
.2
±

2
.0

0
.0

0
9
±

0
.0

0
3

0
.0

1
6
±

0
.0

1
0

0
.0

3
5
±

0
.0

2
2

2
6
7
.9
±

9
7
.4

2
0
.3
±

6
.6

S
C

G
S

–
2
·1

0
−

5
5
0

2
1
.1
±

2
.6

0
.0

0
9
±

0
.0

0
3

0
.0

1
5
±

0
.0

0
9

0
.0
2
4
±

0
.0
2
0

3
0
8
.7
±

9
4
.2

8
9
3
.8
±

2
8
6
.3

S
C

G
S

1
0
−

6
2
·1

0
−

5
5
0

2
1
.2
±

2
.1

0
.0

0
8
±

0
.0

0
4

0
.0

1
7
±

0
.0

1
0

0
.0
2
5
±

0
.0
1
9

3
1
6
.8
±

1
0
5
.8

7
8
7
.1
±

2
4
7
.5

S
C

G
S

-E
S

–
−

2
·1

0
−

6
5
0

2
1
.6
±

3
.2

0
.0

1
2
±

0
.0

0
3

0
.0

1
6
±

0
.0

0
8

0
.0

3
7
±

0
.0

2
3

2
5
7
.1
±

8
9
.5

5
9
2
.8
±

1
9
8
.5

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
5
0

2
1
.6
±

3
.2

0
.0

1
3
±

0
.0

0
3

0
.0

1
8
±

0
.0

1
0

0
.0

3
5
±

0
.0

2
0

2
5
7
.3
±

8
8
.7

5
9
0
.3
±

1
9
5
.5

S
C

G
S

A
–

1
0
−

4
5
0

2
1
.5
±

2
.9

0
.0

0
9
±

0
.0

0
2

0
.0

1
7
±

0
.0

1
0

0
.0

2
9
±

0
.0

2
0

2
3
9
.8
±

9
7
.7

1
2
.1
±

4
.4

S
C

G
S

A
1
0
−

6
1
0
−

4
5
0

2
1
.3
±

2
.0

0
.0

0
9
±

0
.0

0
7

0
.0

1
4
±

0
.0

1
2

0
.0
2
4
±

0
.0
1
5

3
4
5
.2
±

1
5
5
.8

3
4
.0
±

1
4
.1

P
ru

n
in

g
o
f

b
o
th

h
id

d
en

a
n

d
in

p
u

t
n

eu
ro

n
s

S
C

G
–

–
3
9
.0
±

3
.8

2
2
.3
±

1
.5

0
.0

0
8
±

0
.0

0
5

0
.0

1
3
±

0
.0

1
1

0
.0

2
8
±

0
.0

1
5

4
9
3
.1
±

1
1
7
.6

1
2
.1
±

2
.4

S
C

G
IR

1
0
−

6
–

2
7
.7
±

7
.9

2
1
.0
±

2
.4

0
.0

1
1
±

0
.0

0
4

0
.0

1
5
±

0
.0

1
3

0
.0

2
8
±

0
.0

1
5

5
3
3
.6
±

1
5
4
.9

2
7
.2
±

5
.8

S
C

G
S

–
2
·1

0
−

5
2
2
.8
±

7
.8

2
1
.3
±

1
.9

0
.0

1
1
±

0
.0

0
5

0
.0

1
0
±

0
.0

1
1

0
.0
2
6
±

0
.0
1
8

6
0
9
.8
±

1
6
7
.2

1
3
8
9
.8
±

4
7
0
.0

S
C

G
S

1
0
−

6
2
·1

0
−

5
2
3
.7
±

1
1
.9

2
1
.5
±

5
.4

0
.0

1
3
±

0
.0

0
9

0
.0

1
5
±

0
.0

1
5

0
.0
2
7
±

0
.0
1
8

6
2
0
.6
±

1
6
8
.0

1
2
7
2
.6
±

3
3
3
.8

S
C

G
S

-E
S

–
−

2
·1

0
−

6
3
1
.9
±

3
.8

2
1
.9
±

1
.8

0
.0

1
3
±

0
.0

0
7

0
.0

1
9
±

0
.0

1
2

0
.0

3
5
±

0
.0

1
9

4
9
1
.3
±

1
2
7
.7

9
5
6
.8
±

2
2
1
.0

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
2
9
.5
±

6
.9

2
1
.3
±

2
.1

0
.0

1
9
±

0
.0

2
1

0
.0

2
4
±

0
.0

1
5

0
.0

3
3
±

0
.0

1
7

4
7
3
.8
±

1
1
5
.7

9
7
4
.3
±

2
4
6
.3

S
C

G
S

A
–

1
0
−

4
2
3
.7
±

4
.1

2
1
.6
±

2
.3

0
.0

0
9
±

0
.0

0
5

0
.0

2
2
±

0
.0

1
1

0
.0
2
2
±

0
.0
1
6

9
5
6
.1
±

3
0
3
.0

2
6
.4
±

6
.4

S
C

G
S

A
1
0
−

6
1
0
−

4
2
5
.9
±

5
.7

2
2
.0
±

2
.2

0
.0

1
0
±

0
.0

0
4

0
.0

1
6
±

0
.0

1
4

0
.0
2
3
±

0
.0
1
4

8
2
4
.4
±

3
3
7
.1

4
4
.1
±

1
3
.7

131



T
ab

le
5.10:

E
x
p

erim
en

t
5.2.2

–
T

h
e

p
erform

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
S

an
d

S
C

G
S
A

m
eth

o
d
s

w
ith

an
d

w
ith

ou
t

p
ru

n
in

g
on

th
e

B
IN

3
d
ata

set
u
sin

g
th

e
18-12-12-6

n
etw

ork
top

ology.
T

h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
an

d
stan

d
ard

d
ev

iation
over

100
ran

d
om

n
etw

ork
in

itialization
s.

m
eth

o
d

c
F

c
G

a
r
ch

E
tr

E
t

E
(n
t )

im
p

c
c
n

M
S
E
t

M
S
E

(n
t )

im
p

S
t

ep
o
ch

s
t(s)

W
ith

o
u

t
p

ru
n

in
g

S
C

G
–

–
1
8
-1

2
-1

2
9
9
.0
±

4
6
.4

5
1
.8
±

6
.8

5
1
.9
±

6
.5

1
.0

0
0

0
0
.5

4
±

0
.1

2
0
.5

5
±

0
.1

2
1
.0

0
0
.1

1
±

0
.0

2
7
0
.5

0
.4

S
C

G
IR

1
0
−

4
–

1
8
-1

2
-1

2
1
0
4
.0
±

4
5
.9

5
2
.8
±

5
.1

5
2
.8
±

4
.6

0
.9

8
0

0
0
.5

5
±

0
.0

9
0
.5

6
±

0
.0

9
0
.9

8
0
.1

0
±

0
.0

3
6
7
.8

0
.8

S
C

G
S

–
2
·
1
0
−

4
1
8
-1

2
-1

2
6
9
.1
±

3
5
.0

4
3
.1
±

7
.4

4
3
.0
±

7
.7

1
.2

1
0

0
0
.3

1
±

0
.0

7
0
.3

1
±

0
.0

7
1
.7

7
0
.0

6
±

0
.0

2
1
0
9
.7

3
7
1
8
.5

S
C

G
S

1
0
−

4
2
·
1
0
−

4
1
8
-1

2
-1

2
6
5
.5
±

3
9
.4

4
2
.4
±

8
.8

4
1
.6
±

8
.8

1
.2

5
0

0
0
.3
0
±

0
.0
9

0
.3
0
±

0
.0
9

1
.8
3

0
.0

6
±

0
.0

2
1
1
7
.2

3
9
2
7
.1

S
C

G
S

1
0
−

5
2
·
1
0
−

4
1
8
-1

2
-1

2
6
1
.1
±

3
5
.4

4
0
.8

±
8
.8

4
0
.8

±
8
.2

1
.2
7

0
0

0
.3

2
±

0
.0

8
0
.3

1
±

0
.0

8
1
.7

7
0
.0

6
±

0
.0

2
1
1
7
.0

3
4
4
8
.8

S
C

G
S

A
–

5
·
1
0
−

4
1
8
-1

2
-1

2
7
1
.8
±

3
8
.2

4
7
.6
±

7
.9

4
8
.3
±

7
.2

1
.0

7
0

0
0
.4

8
±

0
.1

1
0
.4

9
±

0
.1

0
1
.1

4
0
.0

9
±

0
.0

2
9
0
.3

0
.7

S
C

G
S

A
1
0
−

6
5
·
1
0
−

4
1
8
-1

2
-1

2
7
2
.8
±

4
1
.1

4
6
.6

±
1
0
.4

4
7
.5

±
9
.2

1
.0
9

0
0

0
.4
5
±

0
.1
2

0
.4
5
±

0
.1
2

1
.2
2

0
.0

9
±

0
.0

3
9
5
.6

1
.5

P
ru

n
in

g
o
f

h
id

d
en

n
eu

ro
n

s
S

C
G

–
–

1
8
-8

.3
-7

.7
1
0
1
.1
±

4
5
.0

4
6
.4
±

6
.0

4
7
.2
±

5
.1

1
.0

0
0

0
.4

6
±

0
.1

0
0
.4

7
±

0
.1

0
1
.0

0
.0

8
±

0
.0

2
3
4
0
.2

2
.6

S
C

G
IR

1
0
−

5
–

1
8
-8

.0
-8

.1
1
0
8
.7
±

5
2
.1

4
7
.4
±

6
.4

4
7
.7
±

6
.2

1
.0

0
0

0
.4

7
±

0
.1

0
0
.4

8
±

0
.0

9
1
.0

0
.0

9
±

0
.0

3
3
4
6
.7

4
.4

S
C

G
IR

1
0
−

4
–

1
8

-6
.6

-6
.2

1
1
8
.0
±

3
9
.7

4
7
.0
±

4
.1

4
8
.2
±

3
.4

1
.0

0
0

0
.4

4
±

0
.1

0
0
.4

6
±

0
.1

0
1
.0

0
.0

8
±

0
.0

2
2
9
9
.3

4
.0

S
C

G
S

–
1
0
−

4
1
8
-9

.5
-9

.4
6
1
.3
±

3
7
.4

3
8
.8

±
8
.5

3
8
.9

±
9
.3

1
.2

0
0

0
.2
8
±

0
.1
1

0
.2
8
±

0
.1
1

1
.7

0
.0

6
±

0
.0

3
4
2
5
.8

4
0
0
0
.7

S
C

G
S

1
0
−

5
2
·
1
0
−

4
1
8
-1

0
.2

-1
0

6
7
.6
±

4
4
.2

3
8
.0

±
7
.9

3
8
.3

±
7
.9

1
.2

0
0

0
.2
9
±

0
.0
7

0
.2
9
±

0
.0
7

1
.7

0
.0

5
±

0
.0

2
4
2
1
.6

6
1
6
4
.8

S
C

G
S

1
0
−

5
1
0
−

4
1
8
-9

.9
-9

.4
6
6
.7
±

3
0
.9

3
7
.8

±
9
.3

3
8
.6

±
1
0
.1

1
.2

0
0

0
.2
7
±

0
.1
2

0
.2
7
±

0
.1
2

1
.8

0
.0

5
±

0
.0

2
4
6
6
.6

4
3
7
9
.2

S
C

G
S

A
–

1
0
−

3
1
8
-9

.5
-8

.6
7
5
.8
±

4
5
.7

4
2
.3
±

6
.7

4
3
.9
±

6
.0

1
.1

0
0

0
.3

6
±

0
.0

9
0
.3

8
±

0
.0

8
1
.2

0
.0

6
±

0
.0

2
3
9
5
.4

3
.7

S
C

G
S

A
1
0
−

4
1
0
−

3
1
8
-8

.9
-8

.5
7
3
.6
±

4
2
.8

4
1
.9
±

6
.1

4
2
.8
±

5
.3

1
.1

0
0

0
.3
5
±

0
.0
9

0
.3
6
±

0
.1
0

1
.3

0
.0

5
±

0
.0

2
4
2
3
.7

5
.8

P
ru

n
in

g
o
f

in
p

u
t

n
eu

ro
n

s
S

C
G

–
–

6
.0

-1
2
-1

2
0
.0
±

0
.0

0
.0
±

0
.0

1
4
.6
±

4
.8

1
.0

1
0

0
0
.0

0
1
±

0
.0

0
1

0
.1

2
3
±

0
.0

6
9

1
.0

0
.2

2
±

0
.1

7
6
0
1
.0

3
.7

S
C

G
IR

1
0
−

5
–

6
.0

-1
2
-1

2
0
.0
±

0
.0

0
.0
±

0
.0

1
6
.2
±

6
.8

0
.9

1
0

0
<

0
.0

0
1

0
.1

4
6
±

0
.0

8
6

0
.8

0
.2

3
±

0
.1

6
6
0
1
.0

8
.4

S
C

G
IR

1
0
−

6
–

6
.0

-1
2
-1

2
0
.0
±

0
.0

0
.0
±

0
.0

1
3
.4
±

4
.6

1
.1

1
0

2
<

0
.0

0
1

0
.1

1
3
±

0
.0

7
1

1
.1

0
.1

9
±

0
.1

4
6
0
1
.0

8
.4

S
C

G
S

–
1
0
−

5
6
.0

-1
2
-1

2
0
.9
±

1
.4

0
.3
±

0
.5

0
.7

±
0
.7

2
0
.9

9
9

0
.0

0
4
±

0
.0

0
2

0
.0
0
6
±

0
.0
0
3

2
0
.5

0
.0

5
±

0
.0

4
5
8
1
.6

3
3
9
2
.7

S
C

G
S

1
0
−

5
1
0
−

5
6
.0

-1
2
-1

2
1
.8
±

2
.5

0
.6
±

0
.8

1
.9
±

2
.1

7
.7

8
4

0
.0

0
5
±

0
.0

0
4

0
.0

1
1
±

0
.0

0
8

1
1
.2

0
.0

6
±

0
.0

5
5
4
3
.2

5
0
8
0
.3

S
C

G
S

1
0
−

5
2
·
1
0
−

6
6
.0

-1
2
-1

2
0
.0
±

0
.0

0
.0
±

0
.0

0
.9
±

1
.3

1
6
.2

1
0

7
0
.0

0
2
±

0
.0

0
1

0
.0

0
9
±

0
.0

0
4

1
2
.3

0
.1

1
±

0
.1

1
5
6
4
.0

6
0
3
6
.0

S
C

G
S

A
–

1
0
−

4
6
.0

-1
2
-1

2
0
.6
±

1
.3

0
.2
±

0
.4

2
.9

±
2
.1

5
.0

1
0

7
0
.0

0
3
±

0
.0

0
3

0
.0
1
5
±

0
.0
0
9

8
.0

0
.0

4
±

0
.0

2
4
9
9
.1

4
.6

S
C

G
S

A
1
0
−

6
1
0
−

4
6
.0

-1
2
-1

2
0
.9
±

1
.4

0
.3
±

0
.5

2
.9

±
1
.9

5
.0

1
0

7
0
.0

0
4
±

0
.0

0
3

0
.0
1
4
±

0
.0
0
7

8
.6

0
.0

6
±

0
.0

4
5
0
1
.7

8
.4

P
ru

n
in

g
o
f

b
o
th

h
id

d
en

a
n

d
in

p
u

t
n

eu
ro

n
s

S
C

G
–

–
7
-9

.2
-8

.3
2
2
.2
±

2
3
.7

7
.5
±

7
.9

2
6
.7
±

9
.2

1
.0

–
–

0
.0

4
±

0
.0

4
0
.2

9
±

0
.1

3
1
.0

0
.3

6
±

0
.2

9
6
0
1
.0

4
.5

S
C

G
IR

1
0
−

4
–

7
.9

-9
.3

-8
.9

1
7
.8
±

2
1
.8

7
.1
±

7
.5

2
7
.3
±

5
.7

1
.0

–
–

0
.0

4
±

0
.0

4
0
.2

6
±

0
.1

1
1
.1

0
.2

3
±

0
.1

7
6
0
1
.0

9
.0

S
C

G
IR

1
0
−

5
–

7
.4

-9
.3

-8
.9

1
1
.3
±

1
6
.5

3
.9
±

5
.6

2
4
.6
±

6
.6

1
.1

–
–

0
.0

2
±

0
.0

3
0
.2

9
±

0
.1

4
1
.0

0
.2

9
±

0
.2

6
6
0
1
.0

8
.9

S
C

G
S

–
1
0
−

7
6
.8

-9
.2

-8
.4

1
9
.5
±

2
1
.8

6
.7
±

7
.2

1
3
.2
±

8
.1

2
.0

–
–

0
.0

3
±

0
.0

3
0
.0
7
±

0
.0
4

4
.1

0
.2

3
±

0
.1

2
6
0
1
.0

3
5
9
3
.5

S
C

G
S

1
0
−

5
1
0
−

7
7
.4

-9
.3

-8
.9

1
4
.4
±

2
6
.3

4
.8
±

8
.8

1
4
.2
±

9
.9

1
.9

–
–

0
.0

3
±

0
.0

4
0
.0

8
±

0
.0

7
3
.6

0
.1

7
±

0
.1

6
6
0
1
.0

3
4
9
9
.3

S
C

G
S

1
0
−

5
2
*
1
0
−

8
7
.6

-9
.8

-9
.3

7
.6
±

1
4
.6

2
.4

±
4
.9

1
2
.5

±
5
.1

2
.1

–
–

0
.0
2
±

0
.0
2

0
.0

8
±

0
.0

4
3
.6

0
.2

3
±

0
.1

9
6
0
1
.0

5
7
8
7
.9

S
C

G
S

A
–

2
·
1
0
−

4
8
.3

-9
.6

-9
.8

2
0
.1
±

1
6
.0

9
.9
±

9
.2

1
6
.0
±

7
.6

1
.7

–
–

0
.0

6
±

0
.0

6
0
.0

8
±

0
.0

6
3
.8

0
.0

5
±

0
.0

3
6
0
1
.0

5
.9

S
C

G
S

A
1
0
−

6
2
·
1
0
−

4
7
-9

.2
-9

.0
3
9
.4
±

2
8
.9

1
4
.7
±

1
0
.7

2
0
.2
±

9
.9

1
.3

–
–

0
.0

5
±

0
.0

3
0
.0

7
±

0
.0

3
4
.1

0
.0

8
±

0
.0

6
6
0
1
.0

9
.8

S
C

G
S

A
1
0
−

6
5
·
1
0
−

5
6
.7

-9
.2

-8
.7

1
4
.6
±

1
1
.8

5
.2

±
4
.2

1
3
.7

±
7
.7

1
.9

–
–

0
.0
3
±

0
.0
2

0
.0
5
±

0
.0
2

5
.3

0
.1

1
±

0
.0

7
6
0
1
.0

1
0
.4

132



T
ab

le
5.

11
:

E
x
p

er
im

en
t

5.
2.

2
–

T
h
e

p
er

fo
rm

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
S

an
d

S
C

G
S
A

m
et

h
o
d
s

w
it

h
an

d
w

it
h
ou

t
p
ru

n
in

g
on

th
e

W
B

d
at

a
se

t
u
si

n
g

th
e

35
-1

5-
15

-5
n
et

w
or

k
to

p
ol

og
y

an
d

10
-f

ol
d

cr
os

s-
va

li
d
at

io
n
.

m
et

h
o
d

c F
c G

a
r
ch

E
tr

E
t

E
(n
t
)

im
p

M
S
E
t

M
S
E

(n
t
)

im
p

S
t

ep
o
ch

s
t(

s)

W
it

h
o
u

t
p

ru
n

in
g

S
C

G
–

–
3
5
-1

5
-1

5
0
.0

0
6
±

0
.0

0
8

0
.0

6
2
±

0
.0

2
0

0
.0

6
0
±

0
.0

1
2

1
.0

0
.0

8
5
±

0
.0

2
0

0
.0

8
7
±

0
.0

1
8

1
.0

0
.0

4
±

0
.0

1
9
0
.8

1
.4

S
C

G
IR

1
0
−

5
–

3
5
-1

5
-1

5
0
.0

0
5
±

0
.0

0
7

0
.0

6
1
±

0
.0

2
1

0
.0

5
7
±

0
.0

2
0

1
.1

0
.0

8
2
±

0
.0

2
4

0
.0

8
6
±

0
.0

2
3

1
.0

0
.0

4
±

0
.0

1
9
8
.7

4
.4

S
C

G
IR

1
0
−

4
–

3
5
-1

5
-1

5
0
.0

0
7
±

0
.0

0
5

0
.0

5
4
±

0
.0

2
0

0
.0

5
2
±

0
.0

2
1

1
.2

0
.0

8
2
±

0
.0

2
2

0
.0

8
4
±

0
.0

2
6

1
.0

0
.0

3
±

0
.0

1
8
6
.3

3
.9

S
C

G
S

–
1
0
−

4
3
5
-1

5
-1

5
0
.0

0
9
±

0
.0

0
4

0
.0

4
3
±

0
.0

1
7

0
.0

4
8
±

0
.0

1
8

1
.2

0
.0
5
8
±

0
.0
1
8

0
.0
6
2
±

0
.0
1
9

1
.4

0
.0

2
±

0
.0

1
1
2
7
.3

6
2
1
4
6
.8

S
C

G
S

1
0
−

5
1
0
−

4
3
5
-1

5
-1

5
0
.0

0
8
±

0
.0

0
3

0
.0

4
4
±

0
.0

1
5

0
.0
4
5
±

0
.0
1
3

1
.3

0
.0

6
4
±

0
.0

1
5

0
.0

6
5
±

0
.0

1
7

1
.3

0
.0

2
±

0
.0

1
1
1
8
.6

4
3
1
0
6
.2

S
C

G
S

A
–

1
0
−

3
3
5
-1

5
-1

5
0
.0

0
6
±

0
.0

0
7

0
.0

4
9
±

0
.0

2
2

0
.0

5
1
±

0
.0

2
4

1
.2

0
.0

7
1
±

0
.0

2
3

0
.0

7
4
±

0
.0

2
3

1
.2

0
.0

3
±

0
.0

1
8
9
.3

2
.3

S
C

G
S

A
1
0
−

4
1
0
−

3
3
5
-1

5
-1

5
0
.0

0
8
±

0
.0

0
6

0
.0

5
2
±

0
.0

2
1

0
.0
4
7
±

0
.0
2
2

1
.3

0
.0
7
0
±

0
.0
2
5

0
.0
7
1
±

0
.0
2
7

1
.2

0
.0

3
±

0
.0

1
1
2
0
.9

7
.1

P
ru

n
in

g
o
f

h
id

d
en

n
eu

ro
n

s
S

C
G

–
–

3
5
-1

0
.9

-7
.0

0
.0

0
4
±

0
.0

0
6

0
.0

5
2
±

0
.0

2
0

0
.0

5
8
±

0
.0

1
5

1
.0

0
.0

8
4
±

0
.0

2
6

0
.0

8
7
±

0
.0

2
7

1
.0

0
.0

4
±

0
.0

2
2
9
7
.4

8
.3

S
C

G
IR

1
0
−

5
–

3
5
-1

0
.2

-6
.6

0
.0

0
8
±

0
.0

1
1

0
.0

4
7
±

0
.0

2
0

0
.0

5
3
±

0
.0

1
7

1
.1

0
.1

2
0
±

0
.1

1
9

0
.1

2
4
±

0
.1

1
8

0
.7

0
.0

4
±

0
.0

2
3
0
1
.8

1
5
.8

S
C

G
S

–
5
·1

0
−

5
3
5
-1

0
.7

-5
.4

0
.0

1
0
±

0
.0

0
7

0
.0

3
5
±

0
.0

1
6

0
.0
4
1
±

0
.0
1
7

1
.5

0
.0
5
6
±

0
.0
1
8

0
.0
5
8
±

0
.0
1
8

1
.5

0
.0

2
±

0
.0

1
2
9
4
.2

7
4
0
6
7
.0

S
C

G
S

1
0
−

5
5
·1

0
−

5
3
5
-9

.3
-4

.8
0
.1

7
3
±

0
.0

8
4

0
.1

7
4
±

0
.0

6
8

0
.0

4
3
±

0
.0

1
5

1
.4

0
.2

6
8
±

0
.1

0
0

0
.0

6
2
±

0
.0

1
6

1
.4

0
.0

2
±

0
.0

1
2
3
3
.1

1
6
6
0
4
.4

S
C

G
S

A
–

1
0
−

3
3
5
-1

2
.5

-7
.7

0
.0

0
7
±

0
.0

0
5

0
.0

4
0
±

0
.0

1
9

0
.0

5
2
±

0
.0

2
2

1
.2

0
.0

7
0
±

0
.0

2
2

0
.0

7
3
±

0
.0

2
5

1
.2

0
.0

3
±

0
.0

1
2
9
8
.4

1
0
.5

S
C

G
S

A
1
0
−

5
1
0
−

3
3
5
-1

2
.5

-8
.8

0
.0

0
3
±

0
.0

0
4

0
.0

3
7
±

0
.0

1
7

0
.0
3
9
±

0
.0
2
0

1
.6

0
.0
6
0
±

0
.0
1
8

0
.0
6
2
±

0
.0
2
0

1
.4

0
.0

3
±

0
.0

1
2
9
5
.4

1
6
.9

P
ru

n
in

g
o
f

in
p

u
t

n
eu

ro
n

s
S

C
G

–
–

2
0
.1

-1
5
-1

5
0
.0

1
2
±

0
.0

1
1

0
.0

3
2
±

0
.0

1
8

0
.0

3
9
±

0
.0

2
0

1
.5

0
.0

5
5
±

0
.0

2
2

0
.0

5
9
±

0
.0

2
2

1
.5

0
.0

5
±

0
.0

2
2
5
4
.5

7
.7

S
C

G
IR

1
0
−

5
–

1
9
.9

-1
5
-1

5
0
.0

1
4
±

0
.0

1
3

0
.0

3
2
±

0
.0

1
9

0
.0

3
7
±

0
.0

2
0

1
.6

0
.0

5
3
±

0
.0

2
4

0
.0

5
7
±

0
.0

2
4

1
.5

0
.0

5
±

0
.0

2
2
5
5
.5

2
0
.2

S
C

G
S

–
1
0
−

4
2
7
.8

-1
5
-1

5
0
.0

1
9
±

0
.0

1
1

0
.0

3
8
±

0
.0

1
7

0
.0

4
4
±

0
.0

1
2

1
.4

0
.0

5
4
±

0
.0

2
0

0
.0

5
6
±

0
.0

1
7

1
.5

0
.0

2
±

0
.0

1
2
4
0
.1

7
0
5
2
3
.3

S
C

G
S

–
1
0
−

4
2
4
-1

5
-1

5
0
.0

1
6
±

0
.0

0
7

0
.0

3
2
±

0
.0

1
1

0
.0
3
5
±

0
.0
1
2

1
.7

0
.0
4
8
±

0
.0
1
6

0
.0
5
1
±

0
.0
1
8

1
.7

0
.0

3
±

0
.0

1
2
7
1
.7

7
1
6
2
5
.7

S
C

G
S

A
–

2
·1

0
−

4
2
0
.4

-1
5
-1

5
0
.0

1
4
±

0
.0

1
3

0
.0

2
9
±

0
.0

1
7

0
.0

3
4
±

0
.0

1
7

1
.7

0
.0

5
1
±

0
.0

2
2

0
.0

5
3
±

0
.0

2
2

1
.7

0
.0

4
±

0
.0

2
2
5
3
.0

1
1
.2

S
C

G
S

A
1
0
−

5
2
·1

0
−

4
2
0
.2

-1
5
-1

5
0
.0

1
3
±

0
.0

1
1

0
.0

3
0
±

0
.0

1
7

0
.0
3
4
±

0
.0
1
9

1
.8

0
.0
4
9
±

0
.0
2
0

0
.0
5
1
±

0
.0
2
0

1
.7

0
.0

4
±

0
.0

2
2
6
0
.7

2
2
.2

P
ru

n
in

g
o
f

b
o
th

h
id

d
en

a
n

d
in

p
u

t
n

eu
ro

n
s

S
C

G
–

–
2
1
-1

2
.8

-9
.0

0
.0

0
5
±

0
.0

0
4

0
.0

3
2
±

0
.0

1
3

0
.0

4
7
±

0
.0

1
9

1
.3

0
.0

5
5
±

0
.0

1
9

0
.0

6
0
±

0
.0

2
3

1
.4

0
.0

5
±

0
.0

2
3
0
1
.0

1
0
.6

S
C

G
IR

1
0
−

6
–

1
9
.9

-1
2
-8

.6
0
.0

0
7
±

0
.0

0
7

0
.0

2
8
±

0
.0

1
5

0
.0

3
9
±

0
.0

2
2

1
.6

0
.0

5
5
±

0
.0

2
0

0
.0

6
1
±

0
.0

2
2

1
.4

0
.0

5
±

0
.0

3
3
0
1
.0

1
9
.9

S
C

G
IR

1
0
−

5
–

2
1
.4

-1
2
.2

-8
.4

0
.0

0
8
±

0
.0

0
8

0
.0

2
9
±

0
.0

1
1

0
.0

3
9
±

0
.0

1
8

1
.6

0
.0

6
2
±

0
.0

3
2

0
.0

6
7
±

0
.0

3
3

1
.3

0
.0

5
±

0
.0

2
3
0
2
.8

1
8
.9

S
C

G
S

–
1
0
−

5
2
1
.9

-1
1
.9

-8
.2

0
.0

1
7
±

0
.0

1
8

0
.0

2
6
±

0
.0

0
8

0
.0
3
4
±

0
.0
1
4

1
.7

0
.0

4
9
±

0
.0

2
0

0
.0

5
2
±

0
.0

2
1

1
.7

0
.0

3
±

0
.0

2
3
0
7
.9

4
9
9
1
5
.2

S
C

G
S

1
0
−

5
1
0
−

5
2
2
.6

-1
2
.3

-7
.5

0
.0

0
9
±

0
.0

0
7

0
.0

2
8
±

0
.0

1
5

0
.0
3
4
±

0
.0
1
7

1
.7

0
.0
4
5
±

0
.0
2
0

0
.0
4
8
±

0
.0
2
2

1
.8

0
.0

3
±

0
.0

1
3
0
2
.0

4
8
9
1
0
.1

S
C

G
S

A
–

1
0
−

3
2
2
.6

-1
2
.7

-1
0
.3

0
.0

1
8
±

0
.0

1
0

0
.0

2
7
±

0
.0

0
9

0
.0

3
3
±

0
.0

1
9

1
.8

0
.0
4
3
±

0
.0
1
4

0
.0
4
5
±

0
.0
1
7

1
.9

0
.0

4
±

0
.0

1
3
0
1
.0

1
3
.2

S
C

G
S

A
1
0
−

6
1
0
−

3
2
3
.7

-1
3
.1

-9
.0

0
.0

1
7
±

0
.0

1
1

0
.0

2
8
±

0
.0

1
2

0
.0
3
2
±

0
.0
1
6

1
.9

0
.0

4
6
±

0
.0

1
4

0
.0

4
8
±

0
.0

1
7

1
.8

0
.0

3
±

0
.0

1
3
0
7
.3

2
0
.6

133



by the values of c in Table 5.10. In such a case, none of the trained networks
has been able to provide correct outputs for all input patterns. Anyway, espe-
cially the exact method for sensitivity inhibition (SCGS) considerably improves
generalization (1.8-times for the BIN3 data set and 1.4-times for the WB data
set). For the SCGSA method compared to SCG, the improvement of MSE(nt) is
smaller (1.2-times for both the BIN3 and WB data sets). For BIN3, sensitivity
inhibition combined with enforced condensed internal representation yields even
better generalization.

5.2.3 Experiment 5.2.3 – Results on weight decay

Experiment setting

In Experiment 5.2.3, we compared the SCGIR, SCGS and SCGSA methods with
the standard training algorithms GD and SCG and with the GD, SCG and SCGIR
methods enhanced by the weight decay regularization technique [119] (GDWD,
SCGWD, SCGIRWD). See Subsection 3.3.6 on page 61 for a detailed description
of weight decay. The main aim of this experiment was to mutually compare the
weight decay and the new-proposed regularization techniques for analytical and
approximative sensitivity control and their effect on the generalization abilities
of BP-networks trained without pruning.

The tests involved two types of data: binary (Binary Addition and Binary
Multiplication tasks – data sets BIN2 and BIN3) and continuous (World Bank
task – data set WB). In this experiment, the parameters cF ≥ 0 and cG ≥ 0
reflect the trade-off between the influence of the particular penalty terms in the
overall error function. The parameter cF corresponds to the representation error
function (defined by Equation (4.1)). For the GDWD, SCGWD and SCGIRWD
methods, the parameter cG belongs to the weight decay error function (defined
by Equation (3.59)). For SCGS and SCGSA, cG corresponds to the sensitivity
error functions defined by Equations (4.25) and (4.73), respectively.

All BP-networks were trained without pruning, the parameter maxEpochs
was set to 3000. The parameters cF and cG were set experimentally, separately
for each task. For the BIN2 and BIN3 data sets, all the trained networks had
the topologies 18-12-4 and 18-12-12-6, respectively. For the WB data set, we
tested two topologies: 35-50-5 and 35-15-15-5. The results for the WB data
set were obtained by a 10-times repeated 10-fold cross-validation. For all data
sets, each tested method was applied to the same set of 100 different randomly
initialized networks.

The results obtained for the BIN2 and BIN3 data sets are stated in Table
5.12. Table 5.13 summarizes the results for the WB data set. In the tables, the
generalization abilities of the trained BP-networks and their sensitivity to noise
in the data are indicated by the values of MSEt, Et, c and MSE(nt), E(nt), cn,
imp, respectively. We also compared the values of St and wm.

Results – On the generalization abilities of the networks

The experiments proved, that training with weight decay improves the general-
ization abilities of BP-networks trained without pruning. For the BIN3 data
set, SCGWD outperforms in this respect both the SCGS and SCGSA methods,

134



T
ab

le
5.

12
:

E
x
p

er
im

en
t

5.
2.

3
–

T
h
e

p
er

fo
rm

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
W

D
,

S
C

G
IR

W
D

,
G

D
,

G
D

W
D

,
S
C

G
S

an
d

S
C

G
S
A

m
et

h
o
d
s

(w
it

h
ou

t
p
ru

n
in

g)
on

th
e

B
IN

2
d
at

a
se

t
(B

in
ar

y
A

dd
it

io
n

ta
sk

)
an

d
on

th
e

B
IN

3
d
at

a
se

t
(B

in
ar

y
M

u
lt

ip
li

ca
ti

on
ta

sk
).

T
h
e

st
at

ed
va

lu
es

co
rr

es
p

on
d

to
th

e
m

ea
n

an
d

st
an

d
ar

d
d
ev

ia
ti

on
ov

er
10

0
ra

n
d
om

n
et

w
or

k
in

it
ia

li
za

ti
on

s.

B
in
a
ry

A
d
d
it
io
n

ta
sk

–
u

si
n

g
th

e
1
8
-1

2
-4

n
et

w
o
rk

to
p

o
lo

g
y

m
et

h
o
d

c F
c G

c
c n

p
I
R

p
I
R
,3

E
tr

E
t

E
(n
t
)

im
p

M
S
E
t

M
S
E

(n
t
)

im
p

S
t

w
m

ep
o
ch

s
t(

s)

S
C

G
–

–
7
7

6
2

8
0

9
2

3
.8
±

1
5
.5

3
.9
±

9
.7

1
0
.1
±

1
2
.5

1
.0

0
.0

5
4
±

0
.1

4
7

0
.0

8
7
±

0
.1

4
6

1
.0

0
.0

7
±

0
.0

6
0
.5

6
±

0
.0

8
4
1
5
.2

1
.5

S
C

G
IR

1
0
−

4
–

7
1

5
7

8
8

9
7

5
.9
±

2
0
.0

4
.9
±

1
1
.2

1
1
.8
±

1
3
.6

0
.9

0
.0

6
5
±

0
.1

6
1

0
.1

0
1
±

0
.1

5
7

0
.9

0
.0

7
±

0
.0

5
0
.6

1
±

0
.1

1
9
9
8
.3

7
.7

S
C

G
IR

1
0
−

6
–

7
3

6
0

8
2

9
4

3
.9
±

1
5
.6

3
.9
±

9
.7

1
0
.2
±

1
2
.6

1
.0

0
.0

5
4
±

0
.1

4
6

0
.0

8
7
±

0
.1

4
6

1
.0

0
.0

7
±

0
.0

6
0
.5

7
±

0
.0

9
4
2
8
.2

3
.4

S
C

G
W

D
–

−
1
0
−

4
7
5

5
3

6
1

8
8

3
.2
±

1
5
.1

3
.1
±

9
.3

9
.0
±

1
1
.7

1
.1

0
.0

4
8
±

0
.1

4
5

0
.0

8
2
±

0
.1

4
3

1
.1

0
.1

0
±

0
.0

3
0
.3

8
±

0
.0

5
1
8
9
.9

0
.7

S
C

G
IR

W
D

1
0
−

6
−

1
0
−

4
7
6

5
0

6
1

8
8

3
.2
±

1
5
.2

3
.1
±

9
.3

9
.0
±

1
1
.7

1
.1

0
.0

4
8
±

0
.1

4
5

0
.0

8
3
±

0
.1

4
5

1
.1

0
.1

0
±

0
.0

4
0
.3

8
±

0
.0

5
2
2
4
.0

1
.9

G
D

–
–

1
8

1
7

5
2

8
1

2
2
.3
±

4
7
.7

1
3
.5
±

1
9
.3

2
0
.1
±

2
1
.0

0
.5

0
.1

8
2
±

0
.2

8
2

0
.2

1
2
±

0
.2

7
1

0
.4

0
.1

4
±

0
.0

4
0
.3

4
±

0
.0

2
2
6
9
1
.1

1
1
.7

G
D

W
D

–
−

1
0
−

3
0

2
9

3
2

6
9

1
1
.4
±

3
6
.8

1
0
.6
±

1
2
.1

1
6
.0
±

1
2
.6

0
.6

0
.1

0
7
±

0
.1

8
2

0
.1

2
3
±

0
.1

8
0

0
.7

0
.1

4
±

0
.0

1
0
.2

5
±

0
.0

2
1
5
1
7
.5

6
.9

S
C

G
S

–
2
·1

0
−

5
5
9

8
4

8
1

9
3

1
.3
±

7
.3

1
.7
±

5
.6

6
.5

±
6
.8

1
.6

0
.0

2
2
±

0
.0

6
8

0
.0
5
0
±

0
.0
6
5

1
.7

0
.0

6
±

0
.0

3
0
.5

3
±

0
.0

7
7
1
5
.2

2
0
6
.1

S
C

G
S

1
0
−

6
2
·1

0
−

5
6
1

8
3

8
2

9
4

1
.2
±

7
.1

1
.6
±

5
.6

6
.6
±

6
.8

1
.5

0
.0

2
1
±

0
.0

6
7

0
.0
5
0
±

0
.0
6
4

1
.8

0
.0

6
±

0
.0

3
0
.5

3
±

0
.0

6
7
6
4
.7

2
2
4
.5

S
C

G
S

A
–

0
.0

0
0
5

5
4

6
0

8
3

9
4

0
.2
±

1
.1

1
.0
±

2
.0

5
.8

±
3
.1

1
.7

0
.0

1
2
±

0
.0

2
1

0
.0
4
8
±

0
.0
2
4

1
.8

0
.0

6
±

0
.0

2
0
.5

7
±

0
.0

7
7
0
8
.4

3
.8

S
C

G
S

A
1
0
−

6
0
.0

0
0
5

5
2

6
9

8
1

9
4

2
.6
±

1
4
.1

2
.4
±

7
.6

7
.6
±

9
.5

1
.3

0
.0

3
0
±

0
.0

8
9

0
.0

6
5
±

0
.0

8
6

1
.3

0
.0

7
±

0
.0

4
0
.5

5
±

0
.0

6
5
6
2
.3

5
.1

B
in
a
ry

M
u
lt
ip
li
ca
ti
o
n

ta
sk

–
u

si
n

g
th

e
1
8
-1

2
-1

2
-6

n
et

w
o
rk

to
p

o
lo

g
y

m
et

h
o
d

c F
c G

c
c n

p
I
R

p
I
R
,3

E
tr

E
t

E
(n
t
)

im
p

M
S
E
t

M
S
E

(n
t
)

im
p

S
t

w
m

ep
o
ch

s
t(

s)

S
C

G
–

–
0

0
6
2

8
4

1
2
8
.8
±

3
7
.3

5
5
.0
±

4
.5

5
5
.2
±

4
.1

1
.0

0
.5

8
3
±

0
.0

8
4

0
.5

9
4
±

0
.0

8
2

1
.0

0
.1

0
±

0
.0

2
0
.4

5
±

0
.0

5
5
6
.6

0
.3

S
C

G
IR

1
0
−

4
–

0
0

6
3

8
5

1
3
0
.0
±

3
6
.8

5
5
.1
±

4
.7

5
5
.3
±

4
.4

1
.0

0
.5

8
9
±

0
.0

7
8

0
.6

0
1
±

0
.0

7
3

1
.0

0
.1

0
±

0
.0

2
0
.4

6
±

0
.0

6
5
7
.4

0
.8

S
C

G
IR

1
0
−

6
–

0
0

6
2

8
4

1
2
9
.4
±

3
6
.6

5
5
.0
±

4
.5

5
5
.2
±

4
.2

1
.0

0
.5

8
3
±

0
.0

8
3

0
.5

9
4
±

0
.0

8
1

1
.0

0
.1

0
±

0
.0

2
0
.4

5
±

0
.0

5
5
6
.4

0
.8

S
C

G
W

D
–

−
1
0
−

3
1
2

7
4
8

7
8

5
0
.8
±

6
3
.7

3
3
.5
±

1
9
.5

3
5
.4

±
1
7
.8

1
.6

0
.2

6
9
±

0
.2

2
5

0
.2
8
1
±

0
.2
2
3

2
.1

0
.0

7
±

0
.0

3
0
.3

5
±

0
.0

4
2
1
8
.8

1
.1

S
C

G
IR

W
D

1
0
−

6
−

1
0
−

3
1
5

8
4
8

7
8

5
0
.5
±

6
3
.8

3
3
.5
±

1
9
.6

3
5
.3

±
1
7
.8

1
.6

0
.2

6
8
±

0
.2

2
5

0
.2
8
1
±

0
.2
2
2

2
.1

0
.0

7
±

0
.0

2
0
.3

5
±

0
.0

4
2
1
0
.0

2
.8

G
D

–
–

0
0

6
2

8
4

1
4
4
.5
±

2
5
.8

5
7
.7
±

3
.0

5
7
.6
±

3
.0

1
.0

0
.6

3
0
±

0
.0

7
7

0
.6

3
9
±

0
.0

7
4

0
.9

0
.1

1
±

0
.0

2
0
.4

5
±

0
.0

5
2
2
5
.6

1
.5

G
D

W
D

–
−

1
0
−

3
0

0
4
8

7
8

9
2
.3
±

5
0
.8

5
1
.0
±

7
.9

5
1
.5
±

7
.5

1
.1

0
.4

2
8
±

0
.1

6
5

0
.4

4
0
±

0
.1

6
3

1
.3

0
.0

9
±

0
.0

2
0
.3

5
±

0
.0

4
5
6
9
.4

3
.9

S
C

G
S

–
1
0
−

4
0

0
7
2

9
0

7
4
.9
±

4
2
.4

4
4
.0
±

1
0
.1

4
4
.3
±

9
.5

1
.2

0
.3

3
0
±

0
.1

2
1

0
.3

4
2
±

0
.1

1
8

1
.7

0
.0

7
±

0
.0

2
0
.5

1
±

0
.0

7
1
0
6
.0

1
7
0
4
.6

S
C

G
S

1
0
−

6
1
0
−

4
0

0
7
1

9
0

7
6
.6
±

4
2
.1

4
4
.5
±

9
.9

4
4
.8
±

9
.6

1
.2

0
.3

3
0
±

0
.1

2
1

0
.3

4
2
±

0
.1

1
9

1
.7

0
.0

7
±

0
.0

2
0
.5

1
±

0
.0

7
1
0
3
.9

1
6
7
7
.4

S
C

G
S

A
–

5
·1

0
−

4
0

0
6
5

8
6

1
0
2
.8
±

4
5
.9

5
2
.3
±

6
.6

5
2
.6
±

6
.0

1
.1

0
.5

1
9
±

0
.1

0
3

0
.5

3
1
±

0
.0

9
9

1
.1

0
.1

0
±

0
.0

2
0
.4

8
±

0
.0

6
7
3
.1

0
.7

S
C

G
S

A
1
0
−

6
5
·1

0
−

4
0

0
6
5

8
6

9
6
.6
±

4
9
.4

5
1
.8
±

6
.7

5
1
.8
±

6
.5

1
.1

0
.5

0
4
±

0
.1

0
0

0
.5

1
5
±

0
.0

9
6

1
.2

0
.1

0
±

0
.0

2
0
.4

9
±

0
.0

7
7
7
.9

1
.3

135



T
ab

le
5.13:

E
x
p

erim
en

t
5.2.3

–
T

h
e

p
erform

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
W

D
,

S
C

G
IR

W
D

,
G

D
,

G
D

W
D

,
S
C

G
S

an
d

S
C

G
S
A

m
eth

o
d
s

(w
ith

ou
t

p
ru

n
in

g)
on

th
e

W
B

d
ata

set
(W

orld
B

an
k

task
).

T
h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
an

d
stan

d
ard

d
ev

iation
over

100
ran

d
om

n
etw

ork
in

itialization
s.

W
o
rld

B
a
n
k

ta
sk

–
u

sin
g

th
e

3
5
-5

0
-5

n
etw

o
rk

to
p

o
lo

g
y

m
eth

o
d

c
F

c
G

c
c
n

p
I
R

p
I
R
,3

E
tr

E
t

E
(n
t )

im
p

M
S
E
t

M
S
E

(n
t )

im
p

S
t

w
m

ep
o
ch

s
t(s)

S
C

G
–

0
0

1
5
2

8
0

0
.0

0
2
±

0
.0

0
4

0
.0

4
1
±

0
.0

2
0

0
.0

4
2
±

0
.0

2
0

1
.0

0
.1

0
2
±

0
.0

2
4

0
.1

0
5
±

0
.0

2
4

1
.0

0
.0

9
±

0
.0

1
0
.1

8
±

0
.0

2
1
3
0
.6

3
.0

S
C

G
IR

1
0
−

4
–

0
0

7
8

9
2

0
.0

0
7
±

0
.0

0
7

0
.0

5
1
±

0
.0

2
2

0
.0

5
1
±

0
.0

2
1

0
.8

0
.1

1
5
±

0
.0

3
5

0
.1

1
7
±

0
.0

3
5

0
.9

0
.0

7
±

0
.0

2
0
.2

5
±

0
.0

8
1
2
0
.8

8
.6

S
C

G
IR

1
0
−

6
–

0
1

5
3

7
9

0
.0

0
2
±

0
.0

0
4

0
.0

4
1
±

0
.0

2
0

0
.0

4
2
±

0
.0

2
0

1
.0

0
.1

0
3
±

0
.0

2
4

0
.1

0
6
±

0
.0

2
3

1
.0

0
.0

8
±

0
.0

1
0
.2

0
±

0
.0

6
1
2
9
.0

9
.7

S
C

G
W

D
–

−
1
0
−

3
0

3
2
8

6
5

0
.0

0
2
±

0
.0

0
2

0
.0

3
6
±

0
.0

1
8

0
.0

3
7
±

0
.0

2
0

1
.1

0
.0

7
9
±

0
.0

1
7

0
.0
8
0
±

0
.0
1
7

1
.3

0
.0

6
±

0
.0

1
0
.1

3
±

0
.0

1
1
5
0
.9

3
.3

S
C

G
IR

W
D

1
0
−

6
−

1
0
−

3
0

3
3
7

7
1

0
.0

0
2
±

0
.0

0
2

0
.0

3
5
±

0
.0

1
9

0
.0

3
6
±

0
.0

1
9

1
.2

0
.0

7
8
±

0
.0

1
7

0
.0
8
0
±

0
.0
1
7

1
.3

0
.0

6
±

0
.0

1
0
.1

4
±

0
.0

4
1
5
0
.3

1
1
.0

G
D

–
0

0
1

5
3

7
9

0
.0

1
5
±

0
.0

7
8

0
.0

6
6
±

0
.0

7
6

0
.0

6
8
±

0
.0

7
5

0
.6

0
.3

2
3
±

1
.7

4
4

0
.3

2
4
±

1
.7

4
3

0
.3

0
.0

9
±

0
.0

1
0
.2

0
±

0
.0

6
4
9
6
.2

1
8
.8

G
D

W
D

–
−

1
0
−

3
0

1
3
7

7
1

0
.0

1
8
±

0
.0

7
7

0
.0

5
7
±

0
.0

7
5

0
.0

5
8
±

0
.0

7
4

0
.7

0
.2

9
2
±

1
.7

4
7

0
.2

9
3
±

1
.7

4
6

0
.4

0
.0

7
±

0
.0

1
0
.1

4
±

0
.0

4
4
9
6
.2

1
8
.3

S
C

G
S

–
2
·
1
0
−

5
0

2
5
6

8
2

0
.0

0
3
±

0
.0

0
3

0
.0

3
5
±

0
.0

1
8

0
.0

3
6
±

0
.0

1
9

1
.1

0
.0

7
4
±

0
.0

2
0

0
.0
7
5
±

0
.0
2
0

1
.4

0
.0

5
±

0
.0

1
0
.1

7
±

0
.0

3
1
5
6
.2

5
3
9
.2

S
C

G
S

1
0
−

6
2
·
1
0
−

5
0

1
5
6

8
3

0
.0

0
3
±

0
.0

0
3

0
.0

3
5
±

0
.0

1
8

0
.0

3
6
±

0
.0

1
8

1
.2

0
.0

7
4
±

0
.0

2
0

0
.0
7
5
±

0
.0
2
0

1
.4

0
.0

5
±

0
.0

1
0
.1

7
±

0
.0

3
1
5
0
.6

5
1
4
.1

S
C

G
S

A
–

2
·
1
0
−

4
0

3
5
4

8
1

0
.0

0
2
±

0
.0

0
4

0
.0

3
8
±

0
.0

2
0

0
.0

3
9
±

0
.0

1
9

1
.1

0
.0

9
2
±

0
.0

2
2

0
.0

9
4
±

0
.0

2
2

1
.1

0
.0

7
±

0
.0

1
0
.1

8
±

0
.0

2
1
4
0
.6

6
.3

S
C

G
S

A
1
0
−

6
2
·
1
0
−

4
0

2
5
4

8
2

0
.0

0
2
±

0
.0

0
3

0
.0

3
7
±

0
.0

2
0

0
.0

3
7
±

0
.0

1
9

1
.1

0
.0

9
2
±

0
.0

2
2

0
.0

9
4
±

0
.0

2
2

1
.1

0
.0

7
±

0
.0

1
0
.1

8
±

0
.0

2
1
3
6
.0

1
3
.0

W
o
rld

B
a
n
k

ta
sk

–
u

sin
g

th
e

3
5
-1

5
-1

5
-5

n
etw

o
rk

to
p

o
lo

g
y

m
eth

o
d

c
F

c
G

c
c
n

p
I
R

p
I
R
,3

E
tr

E
t

E
(n
t )

im
p

M
S
E
t

M
S
E

(n
t )

im
p

S
t

w
m

ep
o
ch

s
t(s)

S
C

G
–

0
0

0
7
0

8
9

0
.0

0
6
±

0
.0

0
8

0
.0

6
0
±

0
.0

2
5

0
.0

6
1
±

0
.0

2
5

1
.0

0
.0

8
3
±

0
.0

2
7

0
.0

8
4
±

0
.0

2
7

1
.0

0
.0

4
±

0
.0

1
0
.3

0
±

0
.0

4
9
5
.2

1
.6

S
C

G
IR

1
0
−

4
–

0
0

8
8

9
6

0
.0

0
9
±

0
.0

0
8

0
.0

6
5
±

0
.0

2
5

0
.0

6
3
±

0
.0

2
4

1
.0

0
.0

8
8
±

0
.0

2
7

0
.0

8
9
±

0
.0

2
6

0
.9

0
.0

3
±

0
.0

1
0
.3

4
±

0
.0

4
9
2
.6

4
.6

S
C

G
IR

1
0
−

6
–

0
0

7
9

9
2

0
.0

0
6
±

0
.0

0
8

0
.0

6
1
±

0
.0

2
4

0
.0

6
1
±

0
.0

2
5

1
.0

0
.0

8
3
±

0
.0

2
7

0
.0

8
4
±

0
.0

2
7

1
.0

0
.0

4
±

0
.0

1
0
.2

2
±

0
.0

1
9
4
.2

4
.8

S
C

G
W

D
–

−
1
0
−

3
0

1
5
0

8
0

0
.0

0
5
±

0
.0

0
7

0
.0

5
4
±

0
.0

2
4

0
.0

5
4
±

0
.0

2
4

1
.1

0
.0

7
5
±

0
.0

2
3

0
.0

7
5
±

0
.0

2
3

1
.1

0
.0

4
±

0
.0

1
0
.2

1
±

0
.0

1
9
9
.5

1
.7

S
C

G
IR

W
D

1
0
−

6
−

1
0
−

3
0

0
3
7

7
4

0
.0

0
4
±

0
.0

0
6

0
.0

5
4
±

0
.0

2
3

0
.0

5
5
±

0
.0

2
3

1
.1

0
.0

7
4
±

0
.0

2
2

0
.0

7
5
±

0
.0

2
2

1
.1

0
.0

4
±

0
.0

1
0
.1

8
±

0
.0

1
9
9
.8

4
.9

G
D

–
0

0
0

4
8

7
9

0
.0

2
4
±

0
.0

2
1

0
.0

6
7
±

0
.0

3
1

0
.0

6
8
±

0
.0

3
2

0
.9

0
.1

0
5
±

0
.0

3
1

0
.1

0
6
±

0
.0

3
1

0
.8

0
.0

5
±

0
.0

1
0
.2

2
±

0
.0

1
2
8
3
.0

7
.3

G
D

W
D

–
−

1
0
−

3
0

0
3
7

7
4

0
.0

2
7
±

0
.0

1
8

0
.0

6
6
±

0
.0

2
9

0
.0

6
7
±

0
.0

2
9

0
.9

0
.1

0
6
±

0
.0

2
7

0
.1

0
7
±

0
.0

2
7

0
.8

0
.0

5
±

0
.0

1
0
.1

8
±

0
.0

1
2
8
8
.4

7
.1

S
C

G
S

–
1
0
−

4
0

1
0

8
3

9
4

0
.0

0
9
±

0
.0

0
4

0
.0

4
3
±

0
.0

1
7

0
.0
4
8
±

0
.0
1
8

1
.3

0
.0

5
8
±

0
.0

1
8

0
.0
6
2
±

0
.0
1
9

1
.3

0
.0

2
±

0
.0

1
0
.3

4
±

0
.0

3
1
2
7
.3

6
2
1
4
7
.0

S
C

G
S

1
0
−

5
1
0
−

4
0

0
8
4

9
5

0
.0

0
8
±

0
.0

0
3

0
.0

4
4
±

0
.0

1
5

0
.0
4
5
±

0
.0
1
3

1
.4

0
.0

6
4
±

0
.0

1
5

0
.0
6
5
±

0
.0
1
7

1
.3

0
.0

2
±

0
.0

1
0
.3

4
±

0
.0

3
1
1
8
.6

4
3
1
0
6
.0

S
C

G
S

A
–

1
0
−

3
0

0
7
8

9
2

0
.0

1
0
±

0
.0

2
3

0
.0

6
0
±

0
.0

3
2

0
.0

5
8
±

0
.0

3
2

1
.0

0
.0

7
9
±

0
.0

3
8

0
.0

7
9
±

0
.0

3
8

1
.1

0
.0

3
±

0
.0

1
0
.3

3
±

0
.0

5
1
0
0
.1

3
.1

S
C

G
S

A
1
0
−

6
1
0
−

3
0

1
7
9

9
2

0
.0

0
7
±

0
.0

0
7

0
.0

5
3
±

0
.0

2
3

0
.0

5
4
±

0
.0

2
5

1
.1

0
.0

7
4
±

0
.0

2
5

0
.0

7
5
±

0
.0

2
5

1
.1

0
.0

3
±

0
.0

1
0
.3

3
±

0
.0

4
9
4
.8

6
.0

136



while for the other data sets it achieves slightly worse results. Weight decay com-
bined with enforced condensed internal representation (SCGIRWD) doesn’t yield
to further generalization improvements.

Contrary to SCGS and SCGSA, the methods based on weight decay remark-
ably reduce the absolute values of weights (wm), while their effect on the overall
network sensitivity St varies depending on the task being solved. When compar-
ing the SCGWD method to SCG on the BIN2 data set, the value of wm has
been reduced by 65%, while the overall network sensitivity raised by 43%. For
the SCGS method compared to SCG, the value of wm remains unchanged, while
the overall network sensitivity has been reduced by 14%. These facts support the
idea, that weight decay doesn’t contribute to smoother network functions and it
doesn’t support sensitivity-based pruning as much as the sensitivity inhibiting
techniques.

In sum, the experiments with BP-networks trained without pruning don’t give
a clear answer, whether the SCGWD-trained BP-networks generalize better or
worse than the SCGS- and SCGSA-trained ones. However, they form different
internal structures (as indicated by wm and St). For SCGWD, the low values
of weights together with relatively great sensitivities would influence the way in
which the networks are pruned based on sensitivity analysis. In Experiment 5.5.2,
we will prove, that for BP-networks trained together with pruning, the SCGS-
and SCGSA-trained BP-networks remarkably outperform the SCGWD-trained
ones in their generalization abilities.

5.2.4 Experiment 5.2.4 – Results on SCGIR

Experiment setting

In Experiment 5.2.4 [78], we concentrated on the SCGIR method with or without
learning from hints and when compared to the GD, SCG and GDIR algorithms.
We evaluated the prediction and generalization abilities of BP-networks trained
by the respective methods. When training together with learning from hints
(ALG-hint), we implemented the extra output hint method [106] (described in
Subsection 3.4.2 on page 64).

The tests involved two tasks: Binary Addition (data set BIN2A) and World
Bank (data set WBA). These data sets don’t contain randomly generated input
features. All methods were applied without pruning, the parameter maxEpochs
was set to 6000.

For the BIN2A data set, we trained the networks with two topologies: 6-6-4
and 6-12-4. While 6-6-4 is the minimal network topology for the BIN2A data
set, more than necessary hidden neurons are available in the second case. As the
single hint output of the ALG-hintmethods, we provided the carry-information to
the second output bit. For the SCGIR and GDIR methods, the coefficient cF was
experimentally chosen 0.0005. For the GD and GDIR methods, the parameter α
for the learning rates was set to 0.6. The whole BIN2A data set was used as
the training set, while the networks were trained without early stopping. Each
tested method was repeated 100-times on 100 different randomly initialized BP-
networks.

For the WBA data set, the tested network topology was 25-37-1. In the
experiments with hints, we used the Income group (hintIG) to create 5 hint

137



outputs that label the five classes of the Income Groups. The other option was
to use clustering of the input data into k groups as a hint. For clustering, the c-
means algorithm with Euclidean distance measure has been applied. We denote
these variants as hint9 (for k = 9) and hint6 (for k = 6). For the GD and GDIR
methods, the parameter α for the learning rates was set to 0.3. The coefficient cF
for GDIR was experimentally chosen 0.00004 and for SCGIR 0.0005. To compare
the performance of tested methods, the 10-fold cross-validation has been used.

The results obtained for the BIN2A data set are stated in Table 5.14. Table
5.15 contains the results for the WBA data set. In the tables, we use the notation
described in Table 5.4 and in Subsection 5.1.3 on page 122. In addition, c is
the number of networks with no error on the training set, cIR is the number of
networks with a well-formed condensed internal representation (activities of all
hidden neurons differ for all training patterns from the values −0.85, 0, 0.85 at
most by 0.15). cR is the number of networks with a well-formed condensed internal
representation and no error on the training set. ns(0.15) represents the average
number of hidden neurons with activities from one of the intervals (−0.70,−0.15)
or (0.15, 0.7) (summed over all training patterns). The maximal possible value of
ns(0.15) is for the BIN2A data set and the network topology 6-6-4 equal 64×6 =
384 and for the WBA data set 956× 37 = 35372. ns(0.1) indicates the average
number of hidden neurons with activities from one of the intervals (−0.8,−0.1)
or (0.1, 0.8) (summed over all training patterns). nneur1 is the number of hidden
neurons with an insignificant (small) weight to the output neuron, nneur2 indicates
the average number of hidden neurons, that have formed always the same internal
representation, or an identical or complementary one to another hidden neuron.
Such neurons can be easily pruned from the network.

The prediction and generalization abilities of the trained BP-networks are
indicated by the values of Etr, c and in Table 5.14 and by the values of MSEtr
and MSEt in Table 5.15.

Results – On the generalization abilities of the networks

For the BIN2A dataset, the prediction abilities of the trained BP-networks are
about the same for all of the tested training algorithms, while the average error for
SCG- and SCGIR-trained BP-networks is slightly lower than for their GD- and
GDIR-trained counterparts. For networks with the topology 6-12-4, where more
than necessary hidden neurons are available, all the methods have no difficulty to
learn the task. On the contrary, only 25-45% of the networks with the minimal
topology 6-6-4 have after training no error on the training set – depending on
the chosen training algorithm. For the SCG- and SCGIR-trained networks with
the topology 6-6-4, the presence of a hint often leads to a smaller error and to
a higher number of adequately trained networks. For GD- and GDIR-trained
networks, no such improvement is visible from the table.

For the WBA dataset, the SCGIR method reaches a better performance than
the GDIR method – the final errors MSEtr and MSEt achieved for the training
and test sets are apparently smaller. On the other hand, no significant general-
ization improvement is visible from Table 5.15 when training with a presence of
a hint.

In sum, the SCGIR method outperforms in our tests the GDIR method in
the prediction and generalization abilities of the trained BP-networks. Learning

138



Table 5.14: Experiment 5.2.4 – The performance of the SCGIR and related meth-
ods (without pruning) on the BIN2A data set (Binary Addition task) using the
6-6-4 and 6-12-4 network topologies. The stated values correspond to the mean
and standard deviation over 10 random network initializations.

BIN2A data set – using the 6-6-4 network topology

method c cIR cR nneur2 ns(0.15) Etr epochs t(s)

GD 37 3 6 – 21.94± 12.96 6.28± 7.03 4705.7 52.9
GD-hint 38 0 1 – 21.64± 11.71 5.98± 6.70 5046.3 53.0

GDIR 26 7 32 – 15.55± 15.43 7.90± 6.89 5001.0 90.6
GDIR-hint 26 11 44 – 10.98± 13.50 8.81± 7.44 5018.0 90.5

SCG 35 0 0 – 40.32± 20.49 5.91± 6.63 401.0 5.5
SCG-hint 45 1 2 – 39.68± 20.81 4.83± 6.15 403.0 5.6

SCGIR 37 6 11 – 25.32± 17.43 7.25± 8.29 400.6 9.0
SCGIR-hint 42 7 15 – 22.79± 16.60 5.34± 6.32 381.61 9.1

BIN2A data set – using the 6-12-4 network topology

method c cIR cR nneur2 ns(0.15) Etr epochs t(s)

GD 99 0 0 0.20± 0.49 62.59± 28.23 0.02± 0.2 5001.0 59.2
GD-hint 100 0 0 0.34± 0.57 65.82± 22.31 0± 0.0 5002.0 58.5

GDIR 98 79 87 0.30± 0.48 0.80± 2.34 0.08± 0.6 5001.0 104.5
GDIR-hint 96 77 78 0.30± 0.56 0.98± 2.52 0.08± 0.4 5002.0 105.8

SCG 100 0 0 0.50± 0.67 58.04± 25.38 0± 0.0 497.1 6.2
SCG-hint 100 0 0 0.66± 0.82 62.35± 25.84 0± 0.0 492.6 6.3

SCGIR 100 30 30 0.37± 0.58 15.06± 16.54 0± 0.0 501.0 10.9
SCGIR-hint 100 50 50 0.59± 0.70 9.11± 16.30 0± 0.0 501.2 11.0

from hints has just marginal impact in this respect. This may be caused by the
character of the hints, which are focused on the improvement of the transparency
of the trained BP-networks rather than on better prediction and generalization.

5.2.5 Experiment 5.2.5 – Extended results on SCGIR

Experiment setting

In Experiment 5.2.5 [78], we investigated the behavior of the SCGIR method on
noisy data. Here, we compare the GD, GDIR, SCG and SCGIR algorithms, all
trained with the hint hintIG on the WBA data set. The experiment setting is
analogical to Experiment 5.2.4 on page 137 with the following exceptions: The
whole WBA data set was used as the training set. As the test set, we used the
data derived from the original training set by adding 1 − 5 % random noise to
each of the input features. The tested network topology was 25-37-1. For GD and
GDIR, the parameter α for the learning rates was set to 0.3. The coefficient cF
was experimentally chosen 0.00004 for GDIR and 0.0005 for SCGIR. The entire
training process has been repeated 10-times for all the methods.

The results of Experiment 5.2.5 are summarized in Table 5.16. We compared
the mean squared errors achieved for the training and (noisy) test sets (MSEtr,
MSE(nt) as well as the difference between internal representations of the original
and of the noisy input data (mean over all activities of hidden neurons over all
input patterns, diff ).

139



T
ab

le
5.15:

E
x
p

erim
en

t
5.2.4

–
T

h
e

p
erform

an
ce

of
th

e
S
C

G
IR

an
d

related
m

eth
o
d
s

(w
ith

ou
t

p
ru

n
in

g)
on

th
e

W
B

A
d
ata

set
(W

orld
B

an
k

task
)

u
sin

g
th

e
25-37-1

n
etw

ork
top

ology.
T

h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
an

d
stan

d
ard

d
ev

iation
over

10
ran

d
om

n
etw

ork
in

itialization
s.

m
eth

o
d

ep
o
ch

s
t(s)

M
S
E
tr

M
S
E
v

M
S
E
t

n
n
eu
r
1

n
n
eu
r
2

n
s (0.15)

n
s (0.1)

G
D

17
0
9.1
±

70
6
.1

4
7.6
±

0
.8

0
.0

46
±

0
.009

0.021
±

0.003
0.060

±
0.033

3
.8
±

1
.9

4.0
±

2
.4

8992.5
±

998
.7

21133.0
±

1879.0

G
D

-h
in
t9

249
8
.4
±

1
1.4

6
9.6
±

0
.4

0
.0

50
±

0
.005

0.025
±

0.003
0.068

±
0.037

5
.0
±

1
.4

3.5
±

1
.6

9040.8
±

762
.9

21217.0
±

1214.8

G
D

-h
in
t6

24
3
0.5
±

12
3
.9

6
6.7
±

0
.9

0
.0

51
±

0
.007

0.024
±

0.002
0.067

±
0.041

3
.9
±

1
.2

5.3
±

2
.6

8170
.9
±

1252.2
19463.0

±
2052.6

G
D

-h
in
tI
G

248
0
.3
±

6
8.6

6
5.1
±

0
.7

0
.0

47
±

0
.005

0.026
±

0.004
0.066

±
0.029

3
.4
±

1
.5

3.6
±

1
.9

8477.6
±

877
.7

19900.0
±

1632.5

G
D

IR
11

8
2.2
±

97
5
.6

1
0
3.1
±

2
.4

0
.0

76
±

0
.018

0.043
±

0.010
0.107

±
0.067

3
.4
±

1
.3

9.0
±

3
.2

2776
.9
±

2092.3
9914.2

±
5468.4

G
D

IR
-h
in
t9

248
4
.6
±

5
4.7

1
9
5.3
±

3
.0

0
.0

72
±

0
.009

0.043
±

0.008
0.091

±
0.048

4
.7
±

2
.2

12.1
±

2
.3

1131.0
±

228
.8

4947
.1
±

814.7

G
D

IR
-h
in
t6

24
4
1.8
±

14
7
.9

1
9
4.0
±

1
.8

0
.0

70
±

0
.005

0.043
±

0.008
0.092

±
0.047

3
.6
±

1
.5

9.0
±

2
.4

1405.4
±

223
.7

6001
.9
±

890.9

G
D

IR
-h
in
tI
G

24
5
3.2
±

11
7
.9

1
9
3.5
±

0
.5

0
.0

76
±

0
.008

0.044
±

0.007
0.090

±
0.044

4
.9
±

1
.9

8.6
±

2
.5

1330.9
±

233
.9

5610
.0
±

977.2

S
C
G

62.7
±

1
1.6

5.0
±

1
.0

0
.0

42
±

0
.009

0.028
±

0.006
0.056

±
0.026

3
.5
±

2
.0

4.7
±

1
.5

8670
.1
±

1441.9
20324.0

±
2232.6

S
C
G

-h
in
t9

2
51
.4
±

8
5.9

1
9.1
±

2
.6

0
.0

34
±

0
.004

0.030
±

0.006
0.064

±
0.034

7
.5
±

3
.1

5.4
±

2
.8

2767
.5
±

1196.4
7283.0

±
2683.5

S
C
G

-h
in
t6

1
54
.0
±

5
3.2

1
4.2
±

2
.1

0
.0

40
±

0
.006

0.030
±

0.004
0.071

±
0.047

5
.9
±

2
.3

3.8
±

3
.0

4984
.9
±

1937.7
12874.0

±
4199.0

S
C
G

-h
in
tI
G

1
88
.0
±

1
3.2

1
8.2
±

3
.6

0
.0

30
±

0
.006

0.027
±

0.005
0.053

±
0.025

14.0
±

2
.9

0.8
±

1
.0

3885.4
±

871
.5

9886.8
±

1829.7

S
C

G
IR

226
.5
±

127
.1

1
7.2
±

3
.4

0
.0

67
±

0
.005

0.033
±

0.008
0.087

±
0.045

4
.0
±

1
.9

8.6
±

1
.6

3820.8
±

583
.5

13469.0
±

1547.8

S
C

G
IR

-h
in
t9

2
33
.3
±

6
2.9

5
3
.8
±

1
3.8

0
.0

56
±

0
.012

0.043
±

0.014
0.075

±
0.024

8
.9
±

2
.5

6.9
±

2
.2

729
.6
±

346
.5

3329.6
±

1298.9

S
C

G
IR

-h
in
t6

2
38
.2
±

6
4.0

3
8.6
±

7
.5

0
.0

50
±

0
.009

0.036
±

0.008
0.071

±
0.026

8
.8
±

2
.8

8.6
±

1
.6

786
.0
±

252
.5

3338
.9
±

994.9

S
C

G
IR

-h
in
tI
G

1
80
.6
±

5
1.7

4
6
.5
±

1
2.3

0
.0

50
±

0
.010

0.037
±

0.009
0.084

±
0.040

10.4
±

2
.7

8.1
±

2
.8

689
.2
±

143
.8

2696
.9
±

507.7

140



Table 5.16: Experiment 5.2.5 – The performance of the SCGIR and related meth-
ods (without pruning) on the WBA data set (World Bank task) using the 25-37-1
network topology and noisy data. The stated values correspond to the mean and
standard deviation over 10 random network initializations.

method MSEtr MSE(nt) diff nneur1 nneur2 epochs ns(0.15) ns(0.1)

GD 0.0202 0.0233 0.0097± 0.0047 0.8 1.6 10002 7268.6 17147
GDIR 0.0427 0.0450 0.0056± 0.0082 6.8 4.3 10002 756.0 3712
SCG 0.0070 0.0132 0.0100± 0.0141 10.1 2.1 985.2 2142.9 5494.5
SCGIR 0.0070 0.0136 0.0056± 0.0165 16.8 3.9 1292.0 404.9 1632

Results – On the generalization abilities of the networks

In this test, the SCGIR method proved to perform better and to be less sensitive
to the noise in the data than the GDIR method – the final errors MSEtr and
MSE(nt) achieved for the training and noisy test sets are apparently smaller,
they are comparable to the SCG method.

5.2.6 Summary of Generalization

In sum, the SCGS and SCGSA methods outperform both the SCG and SCGIR
algorithms in their generalization abilities and in their low sensitivity to noise
in the data. The SCGIR method is in these respects comparable to the SCG
algorithm, while it however outperforms the classical GDIR-method. If pruning
of input (and hidden) neurons is allowed, the SCGS and SCGSA methods improve
generalization similarly. Otherwise, SCGS achieves slightly better results in this
respect. The SCGS and SCGSA methods are also outstandingly stable on data
corrupted by varying amounts of noise.

Both methods for sensitivity inhibition (SCGS and SCGSA) outperform train-
ing with noise-corrupted data (SCG*) used traditionally to improve network’s
generalization. Moreover, contrary to the weight decay technique (SCGWD), they
don’t reduce the absolute values of network weights and contribute remarkably
to smoother network functions. The actual behavior of the SCGS and SCGSA
methods, however, seems to depend on the character of the processed data and
on the topology of the trained network. Based on the experiments performed so
far, a higher improvement might be achieved for binary / discrete data and for
networks with more hidden layers.

141



5.3 Speed

In this section, we will concentrate on the following questions:

1. How fast are the new-proposed methods (SCGIR, SCGS and SGSA) when
compared to related techniques? What are their convergence rates?

2. Are the methods stable with respect to the choice of initial parameters?

Analogically to the previous section, we compare the time requirements of the
SCGIR, SCGS and SCGSA methods with the standard training algorithms (i.e.,
SCG, GD) and other related techniques. The time costs of the training process
will be measured by the average elapsed training time in seconds (t(s)). Con-
vergence rates of the respective training algorithms are indicated by the average
number of training epochs (epochs).

The SCGS and SCGSA methods have two important optional parameters,
cF and cG. They reflect the trade-off between the performance error function
(defined by Equation 1.8), the representation error function (defined by Equation
(4.1)) and the sensitivity error function (defined for SCGS by Equation (4.25)
and for SCGSA by Equation (4.73)) in the overall error function. The SCGIR
method uses just the parameter cF . To evaluate the robustness of SCGIR, SCGS
and SCGSA to the choice of parameters cF and cG, we evaluated the performance
of the methods for various settings of these parameters.

In the following paragraphs, we will describe the settings and results of the
experiments performed. The notation used in the experiments is described in
Table 5.4 and in Subsection 5.1.3 on page 122.

5.3.1 Experiment 5.3.1 – General results

Experiment setting

In Experiment 5.3.1 evaluated partly in [81, 83, 84], we compared the time-
costs of the SCGIR, SCGS and SCGSA methods with the standard SCG and
GD training algorithms and other related techniques (SCG*, SCGIR*, GDWD,
SCGWD, SCGIRWD). We used the settings of the experiments 5.2.1, 5.2.2 and
5.2.3 described on pages 123, 128 and 134, respectively. We considered BP-
networks trained with and without pruning or with pruning of only hidden or
only input neurons. The tests involved two types of data: binary (data sets
BIN2 and BIN3) and continuous (data set WB).

The results obtained for BP-networks trained with pruning are stated in Ta-
bles 5.5 and 5.6. Tables 5.7, 5.8, 5.9, 5.10 and 5.11 summarize the experiment
for BP-networks trained without pruning and with pruning of only hidden or
only input neurons. Tables 5.12 and 5.13 contain the results for the weight decay
technique (algorithms GDWD, SCGWD, SCGIRWD) and BP-networks trained
without pruning.

Results – On the time requirements of the methods

The experiments done on all three data sets show an interesting result: all of
the tested SCG-based techniques (i.e., SCG, SCGIR, SCGS, SCGSA, SCG*,

142



SCGWD) have comparable convergence rates – they use during training simi-
lar number of epochs. On the other hand, the respective methods differ in the
average training time indicated by the parameter t(s). The training time required
by SCGIR and SCGSA is comparable to SCG and about 2-3 orders of magni-
tude lower than for SCGS depending on the network size. In all tests, SCGIR is
slightly faster than SCGSA, while both methods are about 2-times slower than
SCG, independently of the BP-network topology and of the training data. On the
contrary, time costs of the SCGS method increase excessively with the growing
number of hidden layers.

In our tests, the SCG* method (training with jitter) has been faster than
SCGIR and SCGSA (as indicated by the values of t(s) in Tables 5.5 and 5.6).
However, the training time of SCG* grows relatively fast with the size of the
trained BP-network. For example: for the WB data set and the network topology
with one hidden layer, SCG* is about 1.3-times slower than SCG, while for the
network topology with two hidden layers, it is about 1.8-times slower. Based on
this trend we expect, that the SCGIR and SCGSA methods might outperform
SCG* in their speed for larger network topologies.

On the contrary to training with jitter (SCG*), the effect of weight decay
(SCGWD, SCGIRWD) on the required training time was in most of the tests
only marginal (as indicated by the values of t(s) in Tables 5.12 and 5.13).

5.3.2 Experiment 5.3.2 – Results on SCGIR

Experiment setting

In Experiment 5.3.2 [78], we concentrated on the SCGIR method and its time
costs when enhanced with learning from hints [106]. We also compared the results
to the GD, SCG and GDIR algorithms. We used the setting of Experiment 5.2.4
described on page 137. The tests involved two tasks: Binary Addition (data set
BIN2A) and World Bank (data set WBA). All the BP-networks were trained
without pruning.

The results obtained for the BIN2A data set are stated in Table 5.14. Table
5.15 contains the results for the WBA data set.

Results – On the time requirements of the methods

For both data sets, the SCGIR method proved to be much faster than the GDIR
method. For the BIN2A dataset, the average number of training epochs is for
SCGIR at least 10-times smaller than for GDIR, while for the WBA dataset, it
is about 5-times smaller. Also the required training time in seconds is for SCGIR
much lower than for GDIR (10-times for the BIN2A dataset and 6-times for the
WBA dataset).

For the BIN2A data set, training together with learning from hints has only
marginal effect on the convergence rates and training time of the methods. For
the WBA data set, the training time of the SCGIR method increases due to
learning from hints 2-3-times, while the average number of epochs remains about
the same. The values of t(s) in the tables clearly show, that the required training
time of the methods increases steadily with the growing number of hint outputs.

143



5.3.3 Experiment 5.3.3 – Stability test

Experiment setting

In Experiment 5.3.3 [81], we extended the setting of Experiment 5.2.1 by a test
of the robustness of the SCGIR, SCGS and SCGSA methods to the choice of
parameters cF and cG. The test was performed in two steps: first, the networks
were trained with SCGS or SCGSA and an experimentally chosen value for cG =
a ∗ 10b. Afterwards, training was repeated with altered values of cG with the
exponent being randomly chosen from the interval [b − 1, b + 1] with a uniform
distribution. The same test was performed also for the parameter cF and the
SCGIR, SCGS and SCGSA methods.

The results obtained for the BIN2 and BIN3 data sets are summarized in
Table 5.5. Table 5.6 contains the results for the WB data set.

Results – On the stability of the networks to the choice of initial pa-
rameters

The experiments done on all three data sets confirmed that both SCGS and
SCGSA methods are quite stable with respect to the choice of the parameters
cF and cG. For all the experiments, when changing the experimentally chosen
value of cG or cF even 10-times, we were still able to achieve comparable results
(as indicated, e.g., by the values of MSEt, MSE(nt) and imp in Tables 5.5 and
5.6). Also the SCGIR method proved to be relatively stable to the choice of the
parameter cF , although it is apparently more sensitive to its choice than SCGS
and SCGSA.

5.3.4 Summary of Speed

In sum, the training processes of the SCGIR, SCGS and SCGSA methods re-
quire similar number of epochs like the standard SCG training algorithm. They
remarkably outperform in this respect the GD and GDIR methods. While the
SCGS method suffers from high computational costs that grow excessively with
the size of the network topology, the training times of SCGIR and SCGSA are
much lower and appear to be proportional to the training time of SCG. The SC-
GIR and SCGSA methods require about twice the time spent by SCG to train a
BP-network of an arbitrary topology. Both the SCGS and SCGSA methods also
showed a very stable behavior with respect to the choice of the parameters cF
and cG.

144



5.4 Transparency

In this section, we will summarize experimental results answering the following
questions:

1. How powerful are the SCGIR, SCGS and SCGSA methods in forming the
condensed internal representation of the trained BP-networks when com-
pared to related techniques?

2. Are BP-networks trained by the respective methods likely to form a clear
and transparent internal structure? Do the methods facilitate the following
knowledge extraction?

Analogically to previous sections, we compared the SCGIR, SCGS and SCG-
SA methods with the standard SCG, GDIR and GD training algorithms and
other related techniques that might influence the ability of a BP-network to form
a condensed internal representation during training (e.g., ALG*, ALGWD and
ALG-hint).

The notation used in the experiments is described in Table 5.4 and in Sub-
section 5.1.3 on page 122. The quality of the formed condensed internal repre-
sentation is measured, e.g., by the values of pIR and pIR,3 (the percentages of
the activities of hidden neurons that differ from the values −1, 0, and 1 at most
by 0.1 and 0.3, respectively). In some of the experiments, we also evaluated the
number of networks with a well-formed condensed internal representation and no
error on the training, validation and test sets (cR).

In a further set of experiments, we compared the structures and functions of
concrete BP-networks trained by the SCG, SCGIR and SCGS training algorithms.
These tests involved BP-networks with one and two hidden layers and data sets
with a smaller number of input and output features (BIN2A, BIN3A). In the
following paragraphs, we will describe the settings and results of the experiments
performed.

5.4.1 Experiment 5.4.1 – General results

Experiment setting

In Experiment 5.4.1, we compared the SCGIR, SCGS and SCGSA methods with
the standard SCG and GD training algorithms and other related techniques
(SCG*, SCGIR*, GDWD, SCGWD, SCGIRWD). We investigated the abilities of
the BP-networks trained by the respective methods to form a condensed internal
representation during training.

Experiment 5.4.1 uses the settings of Experiments 5.2.1 and 5.2.3 described
on pages 123 and 134, respectively. We considered BP-networks trained with and
without pruning of hidden and input neurons. The tests involved two types of
data: binary (Binary Addition and Binary Multiplication tasks – data sets BIN2
and BIN3) and continuous (World Bank task – data set WB).

The results obtained for BP-networks trained with pruning of both hidden and
input neurons are stated in Tables 5.5 and 5.6. Tables 5.12 and 5.13 summarize
the experiment for BP-networks trained without pruning. In the tables, the
quality of the formed condensed internal representation is indicated by the values

145



of pIR and pIR,3. In the experiments on the BIN2 data set (in Table 5.5), we
also compared the values of cR.

Results – On the formed internal representation

The experiments done on all three datasets confirmed that all of the SCGIR,
SCGS and SCGSA methods increase the chance that the BP-networks to form a
condensed internal representation during training. The SCGIR method outper-
forms in this respect the SCGS and SCGSA methods. For SCGIR, the values
of cR and pIR apparently increase with the growing value of parameter cF . A
strong enforcement of internal representation is, however, connected with worse
generalization abilities of the trained BP-networks (indicated in the tables by the
values of MSE(nt), impr). The SCGS and SCGSA methods seem to be in these
respects less sensitive to the choice of parameter cF .

When comparing the values of cR in Table 5.5, the SCGIR method outper-
forms both the SCGS and SCGSA methods. It yields more BP-networks that
learned the task and formed condensed internal representations during training.
When comparing the SCGIR method to SCG, the value of cR has raised 5-times,
while for the SCGS and SCGSA methods compared to SCG, it has raised about
2-times. SCGS achieves slightly better results than the SCGSA method.

The experiments also proved that the SCGIR, SCGS and SCGSA methods
remarkably improve the quality of the formed condensed internal representation
indicated in the tables by the values of pIR and pIR,3. The highest increase of pIR
when compared to SCG was achieved for the WB data set and for BP-networks
trained without pruning (this test is summarized in Table 5.6). In such a case, for
BP-networks with two hidden layers, pIR has raised by 26% for SCGIR, by 19% for
SCGS and by 11% for SCGSA. For BP-networks trained with pruning (see Tables
5.5 and 5.6), the improvement of pIR compared to SCG is smaller. The reason
may be, that the hidden neurons that formed always the same representation, or
an identical or complementary one to another hidden neuron, have been pruned
from the networks.

The effect of training with jitter (SCG*, SCGIR*) on the formed internal
representation was in the tests only marginal (as indicated by the values of cR
and pIR in Tables 5.5, 5.6). On the other hand, the weight decay regularization
technique (SCGWD, SCGIRWD) remarkably decreases the chance of the BP-
network to form a condensed internal representation (as indicated by the values
of pIR and pIR,3 in Tables 5.12 and 5.13). For example, for the WB data set
and the network topology with one hidden layer, the value of pIR is for SCGWD
about 1.9-times smaller than for SCG. For the network topology with two hidden
layers, it is about 1.4-times smaller. A combination of weight decay with learning
internal representation (SCGIRWD) doesn’t lead to great improvement of the
formed internal representation.

5.4.2 Experiment 5.4.2 – Results on SCGIR

Experiment setting

In Experiment 5.4.2 [78], we concentrated on the SCGIR method and its abil-
ity to yield BP-networks with a well-formed condensed internal representation.

146



The SCGIR method was compared to the GD, SCG and GDIR algorithms. We
also investigated the influence of learning from hints [106] on the quality of the
formed condensed internal representation. We used the setting of Experiment
5.2.4 described on page 137. The tests involved two tasks: Binary Addition (data
set BIN2A) and World Bank (data set WBA). All BP-networks were trained
without pruning.

The results obtained for the BIN2A data set are stated in Table 5.14. Table
5.15 contains the results for the WBA data set. In the tables, the quality of the
formed condensed internal representation is indicated by the values of ns(0.15)
and ns(0.1). We also compared the number of networks with a well-formed con-
densed internal representation (indicated by cIR and cR) and the average number
of hidden neurons that can be easily pruned from the network (nneur1, nneur2).

Results – On the formed internal representation

The experiments on the BIN2A and WBA data sets confirm the ability of the
SCGIR method to form a condensed internal representation during training. On
the other hand, the GDIR method seems to be even more powerful in this respect
than SCGIR, especially for the BIN2A data set. However, the capability of
SCGIR to form a transparent internal representation improves significantly when
using simultaneously learning from hints.

For the WBA data set, the SCGIR method combined with learning from hints
even outperforms the GDIR method (with and without learning from hints) – it
yields a lower number of hidden neurons with non-transparent representations
(indicated by the values of ns(0.15) and ns(0.1) in Table 5.15). Moreover, the
SCGIR-hintIG method provides a higher value of nneur1 + nneur2 than the other
training algorithms. This means, that more hidden neurons can be pruned from
the networks due to their output weights and representations.

5.4.3 Experiment 5.4.3 – Extended results on SCGIR

Experiment setting

In Experiment 5.4.3 [78], we used the setting of Experiment 5.2.5 described on
page 139 and investigated the robustness of the formed networks’ internal rep-
resentations to noise in the data. Here, we compare the GD, GDIR, SCG and
SCGIR methods, all trained with the hint hintIG on the WBA data set.

The results of the experiment are summarized in Table 5.16. The quality
of the formed condensed internal representation is in the table indicated by the
values of ns(0.15) and ns(0.1). We also evaluated the difference between internal
representations of the original and of the noisy input patterns averaged over all
activities of hidden neurons and over all input patterns (diff ).

Results – On the formed internal representation

This experiment proved, that the SCGIR method has an outstanding ability to
form a condensed internal representation during training. Moreover, the created
network structures are very robust to noise in the input data. When considering
the values of ns(0.15), ns(0.1) and diff, the SCGIR method in this experiment

147



outperforms all of the SCG, GD and GDIR methods. When comparing SCGIR
to GDIR, the value of ns(0.15) is about two times smaller while the value of diff
is about the same for both methods. The value of diff for the GDIR and SCGIR
methods is half of the difference achieved for the GD and SCG methods.

5.4.4 Experiment 5.4.4 – Example network structures (for
SCGIR-hint and SCG-hint)

Experiment setting

In Experiment 5.4.4 [78], we compared the function and internal structure of
two concrete BP-networks trained by the SCGIR-hint and SCG-hint methods,
respectively. Our goal was to assess, whether the BP-networks trained by SCGIR-
hint are more likely to develop a transparent network structure when compared to
their SCG-hint-trained counterparts. We also investigated, whether the formed
network structures simplify knowledge extraction from the BP-network model.

The experiment setting is based on the setting of Experiment 5.2.4 described
on page 137. The test involved the Binary Addition task (data set BIN2A).
Both methods were applied without pruning to the same randomly initialized
BP-network with the topology 6-6-4, the parameter maxEpochs was set to 6000,
the coefficient cF of the SCGIR method was chosen 0.0005. The whole BIN2A
data set was used as the training set. The networks were trained without early
stopping and without pruning. As the single hint output of both SCGIR-hint
and SCG-hint methods, we provided the carry-information to the second output
bit.

The characteristics of the two concrete BP-networks trained by SCGIR-hint
and SCG-hint, respectively, are stated in Tables 5.17 and 5.18 and in Figure 5.3.
Table 5.17 presents network activities of both BP-networks for a sample of 15
training patterns, while Table 5.18 contains the values of the absolute sensitivity
coefficients averaged over all training patterns (in percents):

Suv = 100 mean
p
|Spuv|, (5.3)

where p indexes all training patterns, v indexes all output neurons, and u indexes
all network inputs. The sensitivity coefficients Spuv are defined by Equations
(4.16) and (4.17). Figure 5.3 illustrates both the structures and the functions of
the respective BP-networks.

Results – On the transparency of the formed internal structure

The values of activities of hidden neurons in Table 5.17 confirm, that the SCGIR-
hint method has formed a transparent – nearly condensed – internal representa-
tion. For the SCG-hint-trained BP-network, the activities of hidden neurons are
less transparent. Both BP-networks give correct outputs for all training patterns.

In Figure 5.3(a), we can clearly see that the BP-network trained by SCGIR-
hint has succeeded in finding the actual computing algorithm. Moreover, the
weights between its input and hidden layer are equal for the pairs of corresponding
input neurons 1 and 4, 2 and 5, and 3 and 6. The first, third and fifth hidden
neurons compute the ‘carry’ for higher output bits. The second, fourth and sixth

148



Table 5.17: Experiment 5.4.4 – Internal representation and network outputs of
two BP-networks with the topology 6-6-4 trained by the SCGIR-hint and SCG-
hint methods, respectively, on the BIN2A data set (Binary Addition task). The
table comprises the results obtained for a sample of 15 training patterns.

Results for the BP-network trained by SCGIR-hint
network inputs network outputs activities of hidden neurons

−1 −1 −1 −1 −1 −1 −0.99 −0.99 −0.99 −0.99 −1.00 −1.00 −1.00 0.99 0.98 1.00
−1 −1 −1 −1 −1 1 −1.00 −1.00 −0.99 0.99 −1.00 −1.00 −1.00 1.00 1.00 −0.98
−1 −1 −1 −1 1 −1 −1.00 −1.00 0.99 −0.99 −1.00 −1.00 −1.00 1.00 −1.00 1.00
−1 −1 −1 −1 1 1 −1.00 −0.99 0.99 0.99 −0.99 −1.00 −1.00 1.00 −0.98 −0.99
−1 −1 −1 1 −1 −1 −1.00 1.00 −0.99 −0.99 −1.00 −1.00 −1.00 −1.00 0.98 1.00
−1 −1 −1 1 −1 1 −1.00 1.00 −0.99 0.99 −1.00 −0.99 −1.00 −1.00 1.00 −0.99
−1 −1 −1 1 1 −1 −1.00 1.00 0.99 −0.99 −1.00 −1.00 −1.00 −1.00 −1.00 1.00
−1 −1 −1 1 1 1 −1.00 0.99 0.99 0.99 −0.99 −1.00 −0.99 −0.99 −0.98 −0.99
−1 −1 1 −1 −1 −1 −1.00 −1.00 −0.99 0.99 −1.00 −1.00 −1.00 1.00 1.00 −0.98
−1 −1 1 −1 −1 1 −1.00 −1.00 0.99 −0.99 −1.00 1.00 −1.00 1.00 1.00 −1.00
−1 −1 1 −1 1 −1 −1.00 −0.99 0.99 0.99 −0.99 −1.00 −1.00 1.00 −0.98 −0.99
−1 −1 1 −1 1 1 −1.00 0.99 −0.99 −0.99 0.99 1.00 −1.00 1.00 0.99 −1.00
−1 −1 1 1 −1 −1 −1.00 1.00 −0.99 0.99 −1.00 −0.99 −1.00 −1.00 1.00 −0.99
−1 −1 1 1 −1 1 −1.00 1.00 0.99 −0.99 −1.00 1.00 −1.00 −1.00 1.00 −1.00
−1 −1 1 1 1 −1 −1.00 0.99 0.99 0.99 −0.99 −1.00 −0.99 −0.99 −0.98 −0.99

... ... ...

Results for the BP-network trained by SCG-hint
network inputs network outputs activities of hidden neurons

−1 −1 −1 −1 −1 −1 −1.00 −0.99 −0.96 −0.97 0.55 −0.56 −1.00 −1.00 1.00 1.00
−1 −1 −1 −1 −1 1 −1.01 −0.97 −1.00 0.99 0.99 −0.48 −1.00 −1.00 1.00 −0.75
−1 −1 −1 −1 1 −1 −1.02 −1.02 0.98 −1.00 0.60 −0.21 −1.00 −1.00 1.00 1.00
−1 −1 −1 −1 1 1 −1.03 −0.99 1.00 0.99 0.99 −0.12 −1.00 −0.98 1.00 −0.71
−1 −1 −1 1 −1 −1 −1.02 0.97 −0.96 −0.98 0.55 −0.56 −1.00 −1.00 0.06 1.00
−1 −1 −1 1 −1 1 −1.03 1.00 −1.00 0.99 0.99 −0.48 −1.00 −1.00 0.05 −0.75
−1 −1 −1 1 1 −1 −1.04 1.01 0.98 −1.00 0.61 −0.21 −1.00 −1.00 0.02 1.00
−1 −1 −1 1 1 1 −1.01 0.98 0.99 0.99 0.99 −0.11 −0.96 −0.98 0.01 −0.71
−1 −1 1 −1 −1 −1 −1.02 −1.01 −1.03 0.97 −0.77 −0.32 −1.00 −1.00 1.00 1.00
−1 −1 1 −1 −1 1 −1.02 −1.01 1.00 −0.98 0.74 −0.22 −1.00 −1.00 1.00 0.85
−1 −1 1 −1 1 −1 −1.04 −0.95 1.00 0.99 −0.73 0.08 −1.00 −0.91 1.00 1.00
−1 −1 1 −1 1 1 −1.02 1.00 −0.99 −0.99 0.77 0.18 −1.00 1.00 1.00 0.88
−1 −1 1 1 −1 −1 −1.04 0.98 −1.03 0.98 −0.77 −0.31 −1.00 −1.00 0.04 1.00
−1 −1 1 1 −1 1 −1.04 1.00 1.00 −0.98 0.74 −0.22 −1.00 −1.00 0.03 0.86
−1 −1 1 1 1 −1 −1.00 1.00 1.00 0.99 −0.73 0.09 −0.94 −0.91 0.00 1.00

... ... ...

hidden neurons also compute similar functions for single output neurons. The
BP-network trained by SCG-hint (depicted in Figure 5.3(b)) has also learned the
‘carry’ to the first and second output bits (the first and third hidden neuron) but
the functions of other hidden and output neurons are less obvious.

The values of average sensitivity coefficients in Table 5.18 confirm the above-
stated results. The sensitivity coefficients corresponding to the BP-network
trained by SCGIR-hint are apparently regular. They are pairwise equal for the
corresponding input neurons 1 and 4, 2 and 5, and 3 and 6. All of the output
neurons are most sensitive to the values of the input features 3 and 6, while the
pair of input features 2 and 4 is evaluated as the second most important. For the
BP-network trained by SCGIR-hint, the sensitivity coefficients show less regu-
larity. Moreover, their values for the pair of corresponding input neurons 3 and
6 are very different. The first and third output neurons are most sensitive to the
values of the input features 2 and 4, which might be caused by the hint output,
that provides the carry-information to the second output bit.

149



0 0 0 -1

-2.6 -2.6 -2.7 -2.5 -3.1 -2.8

1
4

2
5

3
6

1.0 1.0 1.0-1.0

1

3

2 3 4

514 2 6

-1.0 -1.0 -1.0-1.0-1.0

2.62.6
5.1
5.2

3.1
3.1

-2.9
-2.92.6

2.6

-5.0
-5.0

5.1
5.1

-10.2
-10.3

2.62.6

2.62.6
5.25.310.5

10.5

(a) The BP-network with the topology 6-6-4 trained by SCGIR-hint.

0.1 0 -1.2 1.4

-1.8 -1.9 0 0.9 2.30

1 4 2 5 3 6

41 2 3

3 5 4 2 1 6

1.0 -2.1-2.1 1.0
-2.1

5.5 1.0
0.5

-1.5
-1.5

1.0
-0.8 1.1 -2.1

-2.1 -2.1
5.6 3.15.6

2.7

7.9
3.9

2.0

1.97.9

3.9

0.2
0.2

0.2

0.1

(b) The BP-network with the topology 6-6-4 trained by SCG-hint.

Figure 5.3: Experiment 5.4.4 – Network structures of two BP-networks with the
topology 6-6-4 trained by the SCGIR-hint and SCG-hint methods, respectively,
on the BIN2A data set (Binary Addition task). Positive weights are drawn
green, negative weights red. The magnitudes of the weight values are illustrated
by their thickness and indicated by numerical values, thresholds are shown inside
the circles for the respective neurons. Redundant weights are not depicted.

5.4.5 Experiment 5.4.5 – Example network structures (for
SCGS and SCG)

Experiment setting

In Experiment 5.4.5, we compared the functions and internal structures of two
concrete BP-networks trained by the SCGS and SCG methods, respectively. Our
goal was to evaluate, whether the SCGS-trained networks are more likely to
develop a transparent network structure when compared to their SCG-trained
counterparts. We also assessed, whether the formed network structures simplify
knowledge extraction from the BP-network model.

The test involved the task of Binary Multiplication of two 2-bit numbers (data
set BIN3A). Both methods were applied without pruning to the same randomly
initialized BP-network with the topology 4-4-4-4, the parameter maxEpochs was
set to 600, the coefficients cF and cG of the SCGS method were chosen 0.001
and 0.0001, respectively. The whole BIN3A data set was used as the training
set, while the networks were trained without early stopping and without pruning.

150



Table 5.18: Experiment 5.4.4 – Average values of the absolute sensitivity coeffi-
cients (in percents) for two sample BP-networks with the topology 6-6-4 trained
by the SCGIR-hint and SCG-hint methods, respectively, on the BIN2A da-
ta set (Binary Addition task). The coefficients Suv are computed as Suv =
100 meanp |Spuv|, where p indexes all training patterns, v is an index over all out-
put neurons and u is an index over all network inputs. The values of Suv that are
equal for the pairs of corresponding input neurons 1 and 4, 2 and 5, and 3 and
6, are colored red, green and blue, respectively.

Values of Suv = 100 meanp |Spuv| for the BP-network trained by SCGIR-hint.

Suv
u (index of the input)

1 2 3 4 5 6

1 9± 12 13± 13 28± 18 9± 12 13± 13 28± 18
v (index of 2 5± 7 19± 12 26± 13 5± 7 19± 12 26± 13
the output) 3 0± 0 11± 11 39± 11 0± 0 10± 11 39± 11

4 1± 1 7± 8 43± 7 1± 1 5± 5 43± 7

Values of Suv = 100 meanp |Spuv| for the BP-network trained by SCG-hint.

Suv
u (index of the input)

1 2 3 4 5 6

1 18± 17 20± 11 15± 11 18± 17 20± 11 11± 13
v (index of 2 27± 20 14± 13 12± 11 27± 20 14± 13 6± 7
the output) 3 1± 0 31± 3 18± 10 1± 0 31± 3 18± 8

4 1± 1 1± 1 41± 6 1± 1 1± 1 56± 6

Both the structure and the function of the two concrete BP-networks trained by
SCGS and SCG, respectively, is illustrated in Figure 5.4.

Results – On the transparency of the formed internal structure

Both BP-networks give correct outputs for all training patterns. The BP-network
trained by the SCGS method (depicted in Figure 5.4(a)) clearly succeeded in
finding a simple and transparent computational algorithm. Many weights are
almost zeroed out, others are symmetrical, some of the weights between the input
and hidden layer are equal for the pairs of corresponding input neurons A and C,
B and D. The first hidden layer computes relatively simple functions over the
input variables, while the second hidden layer computes slightly more complex
functions over the outputs of the first hidden layer.

For the BP-network trained by the standard SCG method (depicted in Figure
5.4(b)), the functions of the hidden neurons are more complex and the network
does not reveal such a clear computational pattern.

151



0.3 0.0 -1.3 -1.0

3.3 -2.0 -2.7 -1.6

-2.7 1.2 -1.3 -2.7

A B C D

AD~C
AC

BD

~ (         )

ABCD AC(     v    ) ~B  ~D BD(BC v AD) &

ABCD

~(         )ABCD

~ (            )BCvAD ACvBD~(            )

(AD     )v(     BCD)~C    ~A
BCv(AB     D)~ (             ~C  )

AC(     v    ) ~B  ~D

2.1

2.2

1.3

1.3

-1.6

2.2
2.0

0.7-0.8
-2.2

-1.2

-1.9

-1.6

-1.5

-2.2
-2.6

-2.5 -1.71.2
3.2 1.8

0.9

-1.3
-1.0

-1.0 -1.1

1.21.1

(a) The BP-network with the topology 4-4-4-4 trained by SCGS.

0.4 0.3 -1.4 -1.0

2.7 -1.6 -2.6 -1.1

-2.7 1.4 -1.1 -2.7

A B C D

ABCD AC(     v    ) ~B  ~D BD(BC v AD) &~(         )ABCD

1.9

2.2

1.3

1.3

-1.6

2.2
1.9

-0.7
-2.5

-1.7

-1.5

-1.8 -0.8 -1.7

-1.3-2.0 -1.31.6
3.2 1.8

0.7

-1.4
-1.1

-1.0 -1.0

1.41.3

0.7
0.5 0.7

0.7

0.6

1.1
-1.0

-0.3

0.2

-0.20.2

(b) The BP-network with the topology 4-4-4-4 trained by SCG.

Figure 5.4: Experiment 5.4.5 – Network structures of two BP-networks with the
topology 4-4-4-4 trained by the SCGS and SCG methods, respectively, on the
BIN3A data set (Binary Multiplication task). Positive weights are drawn green,
negative weights red. The magnitudes of the weight values are illustrated by
their thickness and indicated by numerical values, thresholds are shown inside
the circles for the respective neurons. Redundant weights are not depicted. The
attached expressions indicate the found functions denoted by means of and, or(∨)
and not(∼).

152



5.4.6 Summary of Transparency

In sum, all of the SCGIR, SCGS and SCGSA methods significantly increase
the chance that the BP-networks form condensed internal representation during
training. When compared to SCG, they yield more transparent network struc-
tures that simplify knowledge extraction from the BP-network model.

The SCGIR method outperforms in these respects both the SCG and SCGS
algorithms, it is however more sensitive to the choice of parameter cF . Too large
values of the coefficient cF might namely result into BP-networks with a perfectly
formed condensed internal representation yet incapable of approximating the de-
sired function because of saturated hidden neuron outputs. The SCGIR method
is less powerful in forming transparent internal representations when compared
with GDIR, yet it yields comparable results for noisy data. The performance
of the SCGIR method and its robustness to the choice of parameter cF remark-
ably improves when combined with learning from hints or with the regularization
techniques for exact or approximative sensitivity control (SCGS, SCGSA).

153



5.5 Structure optimization

In this section, we are interested in answering of the following questions:

1. How powerful and precise is the sensitivity-based relevance measure, when
used to feature selection and pruning, in comparison to related techniques?

2. Is the developed training-and-pruning methodology together with the SC-
GIR, SCGS and SCGSA training algorithms likely to identify relevant input
features and develop a (sub)optimal topology and a simple network struc-
ture during training?

3. Are the SCGIR, SCGS and SCGSA methods robust to the initial network
topology and to the presence of redundant input features?

4. Do the created network structures enable an easy knowledge extraction from
the model?

Most of the experiments in this section focus on the proposed training-and-
pruning methodology based on internal representation and sensitivity analysis.
It is described by Algorithms 4.3 and 4.4 on pages 89 and 90. We evaluated its
qualities when combined with the SCG, SCGWD, SCGIR, SCGS and SCGSA
training algorithms and when compared to alternative methods for pruning and
feature-selection (e.g., pruning based on alternative relevance measures). In fur-
ther experiments, we compared structures, functions and overall sensitivities of
BP-networks trained by the respective training algorithms together with pruning.

The notation used in the experiments is described in Table 5.4 and in Subsec-
tion 5.1.3 on page 122. In the following paragraphs, we will describe the settings
and results of the experiments performed.

5.5.1 Experiment 5.5.1 – Feature selection techniques

Experiment setting

The goal of Experiment 5.5.1 [83, 85] was to test the applicability of sensitivity-
and cluster-based techniques to feature selection. We investigated, whether the
tested feature selection techniques identify features relevant for the processed data
and what relevance measures do best. Namely, we compared the distance-rele-
vance [83] (dist), minimum-relevance [83] (min), maximum-relevance [83] (max ),
entropy-relevance [55] (entro) and sensitivity-relevance [34] (sens) measures. The
general principle of the cluster-based feature selection techniques (dist, min, max,
entro) is described in Subsection 3.2.1 on page 47. For a detailed description of
the sens method, see Subsection 3.2.3 on page 52.

The test involved two tasks: Binary Addition (data set BIN2) and World
Bank (data set WB). Both data sets contain a relatively high number of re-
dundant, randomly generated input features. This enables us to evaluate the
performance of the tested feature selection techniques. For the BIN2 data set,
the input features [1, . . . , 6] are necessary for the output, while the input features
[7, . . . , 18] are randomly generated and thus irrelevant. For the WB data set,
the input features [1, . . . , 25] are WDI indicators selected based on our domain
knowledge – some of them might be more important for prediction than the oth-
ers. The input features [26, . . . , 35] of the WB data set are randomly generated
and surely redundant.

154



For all of the cluster-based feature selection techniques, we used the same
clustering of the BIN2 data set into 8 clusters and of the WB data set into 14
clusters. The clusters were generated by the c-means algorithm with Euclidean
distance measure [23]. For the sens feature selection technique, we used sensitivity
coefficients computed for concrete SCG-trained BP-networks with the topologies
18-12-4 (for the BIN2 data set) and 35-50-5 (for the WB data set).

Table 5.19 shows the input features detected by the tested feature selection
techniques as the most relevant.

Table 5.19: Experiment 5.5.1 – Input features selected by the respective methods
from the BIN2 data set (Binary Addition task). The last two columns indicate
the total number of selected features and the total number of selected random
features for the WB data set (World Bank task).

Binary Addition task World Bank task
method selected input features total random

sens [1 2 3 4 5 6] 18 0
dist [1 7 9 10 11 12 13 16] 17 0
min [ 1 5 7 9 10 11 13 14 16] 18 1
max [ 1 5 7 9 10 11 13 14 16 17 18] 18 1
entro all 16 10

Results – On feature selection

Table 5.19 clearly shows that the sensitivity-based method (sens) outperforms all
of the cluster-based feature selection techniques. For the BIN2 data set, sens is
the only method able to identify reliably all relevant input features [1, 2, 3, 4, 5, 6].
The other methods preferred irrelevant features instead. For the WB data set,
only the sens and dist methods identified all of the randomly generated input
features while they evaluated as relevant a reasonable number of the remaining
input features (about 18). The indices of input features selected by the sens
method for the WB data set were [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
20, 21, 22, 24].

5.5.2 Experiment 5.5.2 – Pruning techniques

Experiment setting

In Experiment 5.5.2, we concentrated on the new-proposed training-and-pruning
methodology based on internal representation and sensitivity analysis. Name-
ly, we assessed its ability to identify relevant input features and to develop BP-
networks with a simple structure that generalize adequately. The methodology
was combined with several training algorithms (SCG, SCGIR, SCGWD, SCGIR-
WD, SCGSA). We evaluated, how the choice of the training algorithm affects
the achieved results. In this experiment, we denote the training algorithm ALG
combined with our training-and-pruning methodology as ALG-S.

For pruning of hidden and input neurons based on sensitivity analysis, our
training-and-pruning methodology uses as the relevance measure the exact sen-
sitivity coefficients Spij suggested by Zurada et al. [126] and Fidalgo [34] (defined

155



by Equations (3.50) and (3.51)). We compare this approach (ALG-S) to the same
pruning strategy, however with one of the alternative relevance measures – the
so-called weight product [108] defined by Equation (3.48) (ALG-ST), consuming
energy [43] defined by Equation (3.46) (ALG-CE), goodness factor [43] defined
by Equation (3.45) (ALG-GF) and weight power [108] defined by Equation (3.47)
(ALG-WP). See Subsection 3.3.3 for a detailed description of these approximative
relevance measures.

The tests involved two types of data: binary (Binary Addition and Binary
Multiplication tasks – data sets BIN2 and BIN3) and continuous (World Bank
task – data set WB). All BP-networks were trained together with pruning of
both input and hidden neurons. The results for the WB data set were obtained
by a 10-times repeated 10-fold cross-validation. Each tested method was applied
to the same set of 100 different randomly initialized networks.

The setting of parameters is stated in Table 5.20. The parameter cF cor-

Table 5.20: Experiment 5.5.2 – Parameter setting.

data set network topology maxEpochs method cF cG

BIN2 18-12-4 2001

SCGIR 10−6 −
SCGWD − 10−3

SCGIRWD 10−6 10−3

SCGSA − 10−5

SCGIRSA 10−6 10−5

BIN3 18-12-12-6 1101

SCGIR 10−6 −
SCGWD − 10−3

SCGIRWD 10−6 10−3

SCGSA − 5 · 10−5

SCGIRSA 10−6 5 · 10−5

WB 35-50-5 1201

SCGIR 10−6 −
SCGWD − 10−3

SCGIRWD 10−6 10−3

SCGSA − 2 · 10−4

SCGIRSA 10−6 2 · 10−4

WB 35-15-15-5 301

SCGIR 10−6 −
SCGWD − 10−3

SCGIRWD 10−6 10−3

SCGSA − 10−4

SCGIRSA 10−6 10−4

responds to the representation error function (defined by Equation (4.1)). For
the GDWD, SCGWD and SCGIRWD methods, the parameter cG belongs to the
weight decay error function (defined by Equation (3.59)). For SCGSA, cG corre-
sponds to the sensitivity error functions defined by Equations (4.25) and (4.73),
respectively.

The results of the experiment are summarized in Tables 5.21 and 5.22. In the
tables, we use the notation described in Table 5.4 and in Subsection 5.1.3 on page
122. In addition, H1 and H2 are the average numbers of neurons in the first and
second hidden layers, respectively. The columns denoted by BIN2 and BIN3
comprise results for the BIN2 and BIN3 data sets, respectively. The columns
denoted by WB2 and WB3 correspond to the WB data set and to BP-networks

156



with the initial topologies 35-50-5 and 35-15-15-5, respectively. Superior values
of the tested criteria are indicated by darker color.

Results – On the ability to develop BP-networks with a simple and
transparent structure that generalize well

The experiments done on all three datasets confirmed, that the exact sensitivity
relevance measure (S) is more likely to correctly identify the important and re-
dundant parts of the BP-network than its less precise yet computationally more
efficient alternatives (ST, GF, CE, WP). Independently of the chosen training
algorithm ALG, the generalization abilities of the ALG-S-trained and pruned
BP-networks are apparently superior (as indicated in Table 5.21 by the values of
MSEt and MSE(nt) ).

The experiments don’t give a clear answer, which of the tested relevance
measures are able to prune higher numbers of hidden and input neurons than the
other ones – different measures achieve better results than the others for different
tasks, as indicated by the values of I, nI , H1 and H2 in Table 5.21. All of the
relevance measures have, however, a similar impact on the required training time
and convergence rates (as indicated by the values of t(s) and epochs in Table
5.22).

When comparing the training algorithms, the weight decay-based methods
(e.g., SCGWD-S, SCGWD-CE) seem to prune more input neurons than the other
tested methods, but the generalization abilities of the pruned models are worse.
In most of the experiments, the best-generalizing BP-networks were yielded by
the SCGSA-S and SCGIRSA-S training algorithms.

5.5.3 Experiment 5.5.3 – General results

Experiment setting

In Experiment 5.5.3 [81, 83, 84], we investigated the robustness of the SCGIR,
SCGS and SCGSA methods to the choice of the network topology and to redun-
dant input features. We also evaluated the influence of the particular training
algorithms on the ability of our training-and-pruning methodology to identify re-
dundant input features and to adequately prune the BP-network during training.
We compared the SCGIR, SCGS and SCGSA methods with the standard SCG
training algorithm and other related techniques (SCG*, SCGIR*).

We used the settings of the experiments 5.2.1 and 5.2.2 described on pages 123
and 128, respectively. We considered BP-networks trained without pruning, with
pruning of both input and hidden neurons, or with pruning of only hidden or only
input neurons. The tests involved two types of data: binary (Binary Addition
and Binary Multiplication tasks – data sets BIN2 and BIN3) and continuous
(World Bank task – data set WB).

The experiment setting of Experiment 5.2.2 on page 128 was extended in the
following way: For the WB data set, we worked with three initial topologies: 35-
50-5, 18-50-5 and 35-15-15-5. For the network topology 18-50-5, we worked with
just 18 of the 35 input features that were selected by the sens feature selection
technique in Experiment 5.5.1. Our goal was to compare the performance of the

157



T
ab

le
5.21:

E
x
p

erim
en

t
5.5.2

–
T

h
e

p
erform

an
ce

of
th

e
listed

m
eth

o
d
s

(w
ith

p
ru

n
in

g)
on

th
e

B
IN

2
,

B
IN

3
an

d
W

B
d
ata

sets.
T

h
e

stated
valu

es
corresp

on
d

to
th

e
m

ean
over

100
ran

d
om

n
etw

ork
in

itialization
s.

S
u
p

erior
valu

es
of

th
e

tested
criteria

are
in

d
icated

b
y

d
arker

color.
–

P
art

I.

0.003
0.003
0.008
0.009
0.002
0.003

   
0.007
0.009
0.018
0.018
0.009
0.009

   
0.012
0.012
0.019
0.019
0.012
0.013

   
0.012
0.010
0.019
0.019
0.011
0.011

   
0.027
0.028
0.039
0.039
0.026
0.024

0.036
0.037
0.015
0.016
0.046
0.048

   
0.124
0.120
0.041
0.031
0.155
0.127

   
0.091
0.087
0.034
0.033
0.088
0.097

   
0.079
0.074
0.028
0.027
0.074
0.075

   
0.119
0.187
0.050
0.049
0.116
0.107

0.060
0.058
0.055
0.056
0.051
0.051

   
0.071
0.072
0.066
0.066
0.065
0.065

   
0.063
0.061
0.064
0.064
0.056
0.057

   
0.063
0.062
0.064
0.064
0.057
0.056

   
0.069
0.068
0.069
0.069
0.061
0.062

0.052
0.055
0.058
0.058
0.055
0.055

   
0.063
0.065
0.065
0.065
0.058
0.065

   
0.058
0.064
0.058
0.056
0.054
0.054

   
0.056
0.059
0.059
0.060
0.053
0.056

   
0.058
0.060
0.059
0.056
0.056
0.058

0.035
0.036
0.033
0.033
0.028
0.029

   
0.038
0.040
0.041
0.041
0.035
0.035

   
0.049
0.049
0.043
0.043
0.041
0.042

   
0.048
0.045
0.043
0.043
0.040
0.042

   
0.065
0.067
0.064
0.064
0.059
0.055

0.399
0.342
0.035
0.035
0.077
0.080

   
0.382
0.386
0.064
0.052
0.187
0.159

   
0.518
0.467
0.057
0.056
0.121
0.130

   
0.432
0.457
0.050
0.050
0.103
0.106

   
0.537
0.574
0.079
0.077
0.149
0.140

0.064
0.063
0.057
0.058
0.054
0.054

   
0.076
0.076
0.068
0.068
0.068
0.068

   
0.068
0.067
0.066
0.067
0.060
0.060

   
0.068
0.067
0.065
0.066
0.061
0.060

   
0.074
0.073
0.071
0.071
0.064
0.067

0.054
0.058
0.059
0.060
0.058
0.057

   
0.067
0.068
0.067
0.066
0.061
0.068

   
0.061
0.067
0.061
0.058
0.056
0.056

   
0.060
0.063
0.061
0.062
0.055
0.057

   
0.061
0.064
0.062
0.059
0.059
0.060

828499
100
9084   
918893938789   
565882825456   
565782835051   
323126262835

424288904040   
172072732015   
363986894133   
353887894242   
545878766056

939692879595   
292352522116   
838572708478   
858576758584   
696843406356

828086848786   
474667643645   
939391908590   
899190909090   
898688908489

7.8
7.6
6.0
6.0
6.9
7.4   
6.8
7.0
6.8
6.8
7.2
7.0   

11.1
10.8
8.2
8.2

11.2
11.1

   
11.1
11.0
8.1
8.0

11.7
11.6

   
14.0
14.0
14.9
14.9
14.4
13.6

7.5
7.5
6.5
6.4
7.7
7.5   
9.2
9.0
6.9
6.9
9.3
9.0   
7.3
7.2
6.4
6.2
7.3
7.7   
7.6
7.6
6.3
6.2
7.3
7.2   
7.1
6.8
7.4
7.7
6.8
6.8

22.3
22.3
22.3
22.9
22.1
22.4

   
24.2
25.4
26.1
25.8
25.0
26.0

   
21.9
21.2
23.5
23.9
21.7
22.7

   
21.7
21.4
23.5
23.3
21.5
21.6

   
22.6
22.7
27.5
28.0
23.8
25.1

21.0
21.3
20.6
21.0
20.6
21.2

   
20.4
20.7
20.1
20.8
20.6
20.5

   
19.1
19.0
19.3
19.6
20.5
19.3

   
19.7
19.2
19.7
19.6
19.8
19.8

   
19.0
19.8
19.3
19.1
20.3
19.3

7.4
7.5
8.6
8.6
7.5
7.8   
7.5
7.5
7.2
7.2
7.5
7.4   
8.9
8.7
7.5
7.5
8.9
8.9   
8.9
8.8
7.4
7.4
9.1
9.0   
9.8
9.8

10.5
10.5
10.0
9.7

9.5
9.5
9.7
9.7
9.7
9.5   
8.2
8.3
8.9
9.1
8.4
8.3   
8.8
8.8
8.9
8.8
8.8
9.0   
9.0
9.0
8.9
8.9
9.0
8.7   
7.5
7.4
8.2
8.3
7.6
7.6

35.3
35.0
43.1
43.4
32.2
31.5

   
27.2
28.6
31.2
32.4
27.3
27.7

   
22.7
22.3
24.9
25.3
24.1
25.4

   
22.9
21.5
24.6
23.7
21.8
22.9

   
21.5
22.1
29.9
30.0
23.1
24.6

11.7
11.6
11.6
11.7
11.5
11.7

   
12.0
11.7
11.8
12.3
12.1
12.0

   
11.1
11.4
11.1
10.7
11.8
11.5

   
11.3
11.5
10.8
10.8
11.2
11.9

   
12.0
12.1
12.3
12.7
12.3
12.2

8.8
8.9
9.6
9.5
9.1
8.9   
8.1
8.2
9.3
9.4
8.3
8.4   
7.8
7.8
8.8
8.6
7.8
8.0   
8.1
8.2
8.8
8.7
8.2
8.1   
7.0
6.9
8.1
8.3
7.2
7.2

7.5
7.7
7.5
7.4
7.1
7.7   
8.4
8.1
7.6
8.5
7.6
8.0   
7.4
7.6
7.4
7.3
8.2
7.5   
7.8
7.9
7.3
7.4
7.4
7.8   
7.9
8.2
8.7
9.0
8.3
8.0

M
S
E

t

B
I
N
2

B
I
N
3

W
B
2

W
B
3

M
S
E
(n

t )
B
I
N
2B

I
N
3

W
B
2

W
B
3

n
I

B
I
N
2

B
I
N
3

W
B
2

W
B
3

I
B
I
N
2

B
I
N
3

W
B
2

W
B
3

H
1

B
I
N
2

B
I
N
3

W
B
2

W
B
3

H
2

B
I
N
3

W
B
3

S
C

G
−

S
S

C
G

IR
−

S
S

C
G

W
D

−
S

S
C

G
IR

W
D

−
S

S
C

G
S

A
−

S
S

C
G

IR
S

A
−

S

S
C

G
−

S
T

S
C

G
IR

−
S

T
S

C
G

W
D

−
S

T
S

C
G

IR
W

D
−

S
T

S
C

G
S

A
−

S
T

S
C

G
IR

S
A

−
S

T

S
C

G
−

G
F

S
C

G
IR

−
G

F
S

C
G

W
D

−
G

F
S

C
G

IR
W

D
−

G
F

S
C

G
S

A
−

G
F

S
C

G
IR

S
A

−
G

F

S
C

G
−

C
E

S
C

G
IR

−
C

E
S

C
G

W
D

−
C

E
S

C
G

IR
W

D
−

C
E

S
C

G
S

A
−

C
E

S
C

G
IR

S
A

−
C

E

S
C

G
−

W
P

S
C

G
IR

−
W

P
S

C
G

W
D

−
W

P
S

C
G

IR
W

D
−

W
P

S
C

G
S

A
−

W
P

S
C

G
IR

S
A

−
W

P

158



T
ab

le
5.

22
:

E
x
p

er
im

en
t

5.
5.

2
–

T
h
e

p
er

fo
rm

an
ce

of
th

e
li
st

ed
m

et
h
o
d
s

(w
it

h
p
ru

n
in

g)
on

th
e

B
IN

2
,

B
IN

3
an

d
W

B
d
at

a
se

ts
.

T
h
e

st
at

ed
va

lu
es

co
rr

es
p

on
d

to
th

e
m

ea
n

ov
er

10
0

ra
n
d
om

n
et

w
or

k
in

it
ia

li
za

ti
on

s.
S
u
p

er
io

r
va

lu
es

of
th

e
te

st
ed

cr
it

er
ia

ar
e

in
d
ic

at
ed

b
y

d
ar

ke
r

co
lo

r.
–

P
ar

t
II

.

0.
09

0.
08

0.
33

0.
33

0.
09

0.
08    0.
09

0.
09

0.
30

0.
30

0.
08

0.
08    0.
06

0.
06

0.
27

0.
27

0.
06

0.
06    0.
07

0.
06

0.
27

0.
27

0.
06

0.
06    0.
06

0.
06

0.
17

0.
17

0.
05

0.
05

0.
32

0.
29

0.
14

0.
14

0.
10

0.
11    0.
24

0.
31

0.
14

0.
14

0.
11

0.
10    0.
38

0.
35

0.
14

0.
15

0.
12

0.
11    0.
32

0.
29

0.
15

0.
15

0.
11

0.
11    0.
43

0.
40

0.
15

0.
15

0.
13

0.
13

0.
11

0.
10

0.
09

0.
09

0.
08

0.
07    0.
09

0.
09

0.
09

0.
09

0.
07

0.
07    0.
09

0.
09

0.
09

0.
09

0.
07

0.
07    0.
09

0.
09

0.
09

0.
09

0.
07

0.
07    0.
09

0.
09

0.
08

0.
08

0.
07

0.
07

0.
05

0.
05

0.
06

0.
05

0.
04

0.
04    0.
05

0.
05

0.
06

0.
05

0.
04

0.
05    0.
05

0.
05

0.
05

0.
05

0.
04

0.
05    0.
05

0.
05

0.
05

0.
05

0.
04

0.
05    0.
06

0.
05

0.
06

0.
06

0.
05

0.
05

1.
36

1.
41

0.
59

0.
60

1.
35

1.
32    1.
44

1.
45

0.
65

0.
64

1.
34

1.
37    1.
21

1.
27

0.
62

0.
62

1.
16

1.
14    1.
23

1.
25

0.
62

0.
62

1.
12

1.
12    1.
06

1.
09

0.
38

0.
38

0.
99

1.
09

1.
20

1.
19

0.
53

0.
53

0.
90

0.
91    1.
08

1.
08

0.
55

0.
54

0.
87

0.
87    1.
23

1.
22

0.
58

0.
59

0.
92

0.
91    1.
21

1.
20

0.
58

0.
58

0.
93

0.
96    1.
36

1.
39

0.
62

0.
61

0.
98

1.
00

0.
29

0.
29

0.
16

0.
16

0.
32

0.
32    0.
34

0.
31

0.
19

0.
19

0.
34

0.
33    0.
36

0.
40

0.
22

0.
21

0.
39

0.
37    0.
38

0.
39

0.
21

0.
22

0.
41

0.
39    0.
42

0.
43

0.
20

0.
19

0.
43

0.
40

0.
51

0.
52

0.
51

0.
52

0.
52

0.
51    0.
53

0.
52

0.
53

0.
52

0.
54

0.
52    0.
57

0.
57

0.
57

0.
57

0.
55

0.
59    0.
57

0.
57

0.
57

0.
57

0.
58

0.
55    0.
58

0.
56

0.
58

0.
56

0.
57

0.
55

88
.9

93
.0

42
.1

42
.2

90
.4

90
.3    89
.2

93
.0

46
.8

46
.9

90
.9

91
.9    86
.1

89
.2

46
.0

45
.7

87
.4

88
.0    86
.4

89
.5

46
.1

45
.9

87
.7

88
.6    85
.1

87
.1

40
.6

40
.4

85
.4

87
.4

77
.2

77
.3

48
.8

49
.3

72
.5

71
.7    74
.3

74
.3

50
.6

50
.4

70
.7

71
.2    75
.7

75
.2

51
.6

52
.1

70
.0

71
.0    76
.3

76
.2

51
.4

51
.7

71
.6

71
.6    75
.8

76
.0

53
.4

53
.3

71
.2

71
.8

54
.9

56
.7

27
.2

28
.6

60
.7

62
.1    66
.5

66
.1

33
.1

33
.2

69
.8

69
.3    67
.2

69
.3

37
.7

38
.2

69
.7

69
.7    67
.3

70
.4

37
.6

39
.3

72
.6

72
.1    69
.6

70
.8

37
.6

37
.5

72
.8

71
.9

73
.4

74
.4

73
.4

74
.4

74
.5

74
.5    73
.3

73
.1

73
.3

73
.1

73
.7

73
.1    74
.2

74
.4

74
.2

74
.4

74
.9

75
.3    74
.1

74
.2

74
.1

74
.2

75
.3

74
.2    74
.0

74
.6

74
.0

74
.6

74
.8

74
.4

14
13

.7
14

29
.2

37
8.

4
38

2.
3

13
08

.6
13

78
.3

   
14

13
.9

14
29

.2
70

3.
6

70
1.

7
12

39
.7

12
39

.0
   

14
16

.2
14

29
.2

95
8.

6
95

1.
1

12
22

.7
12

43
.8

   
14

14
.0

14
23

.6
95

3.
1

95
2.

1
11

88
.7

12
90

.6
   

14
11

.6
14

26
.6

70
9.

3
73

9.
7

11
04

.4
11

62
.0

10
01

.0
10

01
.0

10
14

.4
10

08
.2

94
8.

1
96

0.
3

   
99

7.
4

99
7.

0
10

07
.7

10
09

.2
92

7.
0

95
9.

9
   

10
01

.0
10

01
.0

10
08

.7
10

05
.3

95
3.

7
96

6.
5

   
10

01
.0

10
01

.0
10

10
.8

10
07

.5
95

4.
5

94
5.

1
   

10
01

.0
10

01
.0

10
13

.0
10

09
.3

92
5.

9
92

0.
5

68
0.

8
68

8.
5

74
9.

0
76

7.
8

81
3.

3
81

0.
6

   
11

10
.7

11
00

.5
10

67
.8

10
81

.6
10

63
.5

10
64

.0
   

10
44

.4
10

65
.3

90
5.

6
89

9.
2

10
01

.1
97

7.
8

   
10

53
.8

10
47

.5
88

8.
9

91
7.

0
98

9.
1

96
9.

2
   

82
1.

0
81

0.
3

70
0.

3
70

6.
0

78
5.

9
78

4.
6

30
5.

1
30

4.
6

30
4.

2
30

2.
1

30
3.

4
30

5.
2

   
30

5.
1

30
4.

6
30

4.
3

30
2.

1
30

3.
8

30
5.

0
   

30
4.

9
30

4.
6

30
3.

0
30

0.
8

30
5.

2
30

1.
6

   
30

4.
4

30
4.

1
30

2.
4

30
0.

5
30

1.
2

30
5.

7
   

30
5.

1
30

4.
4

30
4.

3
30

2.
1

30
5.

1
30

2.
3

5.
3

10
.0

1.
5

2.
9

7.
1

11
.8    5.
3

10
.0

2.
4

4.
0

6.
7

10
.4    5.
2

9.
8

3.
2

5.
5

6.
5

10
.5    5.
1

9.
6

3.
0

5.
5

6.
3

10
.9    5.
1

9.
5

2.
4

4.
3

5.
9

9.
6

6.
4

12
.5

6.
3

12
.5

8.
4

13
.4    4.
8

10
.2

5.
0

10
.9

6.
6

11
.6    5.
1

10
.5

5.
1

10
.8

6.
8

11
.2    5.
0

10
.7

5.
0

11
.0

7.
0

11
.3    5.
0

10
.3

4.
9

10
.2

6.
6

10
.4

16
.7

41
.3

19
.3

51
.1

31
.5

55
.7    13
.9

31
.8

12
.4

36
.8

23
.5

46
.8    12
.8

32
.3

9.
7

26
.4

21
.4

41
.6    11
.9

31
.9

9.
5

27
.1

21
.0

41
.5    9.
5

25
.0

7.
7

21
.6

17
.4

34
.1

10
.8

18
.1

11
.1

19
.3

14
.7

23
.4    4.
3

12
.2

4.
4

12
.6

8.
0

16
.1    4.
3

12
.0

4.
2

11
.8

7.
8

15
.5    4.
1

11
.7

4.
0

11
.7

7.
4

15
.6    4.
3

12
.2

4.
4

12
.5

7.
8

15
.4

S
t

B
I
N
2

B
I
N
3

W
B
2

W
B
3

w
m

B
I
N
2

B
I
N
3

W
B
2

W
B
3

p
I
R

B
I
N
2

B
I
N
3

W
B
2

W
B
3

ep
oc
h
s

B
I
N
2
B
I
N
3

W
B
2

W
B
3

t(
s)

B
I
N
2

B
I
N
3

W
B
2

W
B
3

S
C

G
−

S
S

C
G

IR
−

S
S

C
G

W
D

−
S

S
C

G
IR

W
D

−
S

S
C

G
S

A
−

S
S

C
G

IR
S

A
−

S

S
C

G
−

S
T

S
C

G
IR

−
S

T
S

C
G

W
D

−
S

T
S

C
G

IR
W

D
−

S
T

S
C

G
S

A
−

S
T

S
C

G
IR

S
A

−
S

T

S
C

G
−

G
F

S
C

G
IR

−
G

F
S

C
G

W
D

−
G

F
S

C
G

IR
W

D
−

G
F

S
C

G
S

A
−

G
F

S
C

G
IR

S
A

−
G

F

S
C

G
−

C
E

S
C

G
IR

−
C

E
S

C
G

W
D

−
C

E
S

C
G

IR
W

D
−

C
E

S
C

G
S

A
−

C
E

S
C

G
IR

S
A

−
C

E

S
C

G
−

W
P

S
C

G
IR

−
W

P
S

C
G

W
D

−
W

P
S

C
G

IR
W

D
−

W
P

S
C

G
S

A
−

W
P

S
C

G
IR

S
A

−
W

P

159



trained BP-networks, when the redundant input features are removed in advance
and when they are pruned during training.

The results obtained for BP-networks trained with pruning of both hidden
and input neurons are stated in Tables 5.5 and 5.6. Tables 5.7, 5.8, 5.9, 5.10
and 5.11 summarize the experiment for BP-networks trained without pruning
and with pruning of only hidden or only input neurons. Table 5.23 contains the
results for the WB data set and the network topology 18-50-5.

Results — On the ability to develop BP-networks with a simple and
transparent structure that generalize well

All of the experiments proved the ability of our training-and-pruning methodology
to correctly identify the important and redundant parts of the BP-network and
to form a simple network structure during training (as indicated in the tables by
the values of arch, I, H, nI , nH and nA). For example, for the BIN2 data set (in
Table 5.5), the average final topology of the SCGS-trained BP-networks was 7-
7.5-4, while about 87% of the networks pruned all of the redundant input features
and about 21% of the networks finished training with the minimal topology for
the Binary Addition task (6-6-4).

The effect of a concrete training algorithm (e.g., SCG, SCGIR, SCGS or
SCGSA) on the average number of pruned hidden and input neurons varies de-
pending on the task being solved and on the network topology. In our experiments
with BP-networks with one hidden layer (in Tables 5.8 and 5.9), the SCGS and
SCGSA methods pruned more hidden and input neurons than SCG. For BP-net-
works with two hidden layers (in Tables 5.10 and 5.11), all of the tested training
algorithms yield similar topologies. Nevertheless, the choice of the training algo-
rithm influences the internal structure and generalization abilities of the trained
and pruned BP-networks (as we proved, e.g., in Experiments 5.2.1 and 5.2.2).

In all of our experiments, BP-networks trained together with pruning gen-
eralize better than BP-networks with the same initial topology trained without
pruning. Pruning of redundant input features improves generalization more than
pruning of only hidden neurons. For example, for the BIN3 data set and the
SCGSA-trained BP-networks (in Table 5.10), the value of MSE(nt) decreases
about 9-times when pruning of both hidden and input neurons, 30-times when
pruning of only input neurons and by 25%, when pruning of only hidden neurons.

Results – On the robustness of the methods to the network topology
and redundant input features

The tests confirmed, that the presence of redundant input features makes the
training process of BP-networks very difficult. In such a case, pruning is essential
not only to improve generalization, but even to learn the task at all. This is
mostly apparent for the tasks of Binary Addition (in Tables 5.7 and 5.8) and
Binary Multiplication (in Table 5.10).

Moreover, BP-networks with initial topologies larger than necessary trained
together with pruning outperform BP-networks with the optimal initial topologies
and with less redundant input features.

For the task of Binary Addition (in Tables 5.7 and 5.8), only about 76% of the
networks trained by SCG without pruning give a correct prediction. However,

160



T
ab

le
5.

23
:

E
x
p

er
im

en
t

5.
5.

3
-

T
h
e

p
er

fo
rm

an
ce

of
th

e
S
C

G
,

S
C

G
IR

,
S
C

G
S

an
d

S
C

G
S
-E

S
m

et
h
o
d
s

w
it

h
an

d
w

it
h
ou

t
p
ru

n
in

g
on

th
e

W
B

d
at

a
se

t
u
si

n
g

th
e

18
-5

0-
5

n
et

w
or

k
to

p
ol

og
y

an
d

10
-f

ol
d

cr
os

s-
va

li
d
at

io
n
.

m
et

h
o
d

c F
c G

H
I

E
tr

E
v

E
t

ep
o
ch

s
t(

s)

W
it

h
o
u

t
p

ru
n

in
g

S
C

G
–

–
5
0

1
8

0
.0

1
3
±

0
.0

0
4

0
.0

1
7
±

0
.0

0
8

0
.0

3
4
±

0
.0

1
5

1
1
8
.6
±

2
3
.2

2
.1
±

0
.4

S
C

G
IR

1
0
−

6
–

5
0

1
8

0
.0

1
6
±

0
.0

0
9

0
.0

2
7
±

0
.0

1
0

0
.0

3
2
±

0
.0

1
0

1
2
2
.5
±

4
0
.5

8
.9
±

2
.6

S
C

G
S

–
2
·1

0
−

5
5
0

1
8

0
.0

1
4
±

0
.0

0
5

0
.0

2
3
±

0
.0

0
9

0
.0
3
3
±

0
.0
1
9

1
5
7
.4
±

8
0
.0

2
4
2
.4
±

1
2
2
.8

S
C

G
S

1
0
−

6
2
·1

0
−

5
5
0

1
8

0
.0

1
8
±

0
.0

0
9

0
.0

2
3
±

0
.0

1
1

0
.0
3
2
±

0
.0
1
2

1
2
6
.5
±

3
5
.9

1
9
8
.8
±

9
7
.5

S
C

G
S

-E
S

–
−

2
·1

0
−

6
5
0

1
8

0
.0

1
4
±

0
.0

0
4

0
.0

1
9
±

0
.0

0
5

0
.0

3
8
±

0
.0

1
8

1
1
3
.9
±

2
1
.8

1
8
5
.8
±

3
6
.3

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
5
0

1
8

0
.0

2
0
±

0
.0

0
9

0
.0

3
2
±

0
.0

0
7

0
.0

3
3
±

0
.0

1
9

1
1
4
.3
±

2
5
.1

2
2
6
.8
±

5
3
.5

S
C

G
S

A
−

1
0
−

6
5
0

1
8

0
.0

1
1
±

0
.0

0
3

0
.0

2
0
±

0
.0

1
8

0
.0
2
7
±

0
.0
1
0

1
2
3
.1
±

1
9
.0

5
.0
±

0
.7

S
C

G
S

A
1
0
−

6
1
0
−

6
5
0

1
8

0
.0

1
2
±

0
.0

0
3

0
.0

2
2
±

0
.0

1
7

0
.0
2
7
±

0
.0
1
0

1
2
5
.3
±

2
2
.2

1
1
.3
±

2
.0

P
ru

n
in

g
h

id
d

en
n

eu
ro

n
s

S
C

G
–

–
3
6
.9
±

4
.4

1
8

0
.0

0
8
±

0
.0

0
3

0
.0

3
2
±

0
.0

1
0

0
.0

3
1
±

0
.0

1
8

3
2
0
.5
±

9
5
.6

7
.5
±

2
.1

S
C

G
IR

1
0
−

6
–

2
7
.6
±

1
1
.0

1
8

0
.0

1
1
±

0
.0

0
4

0
.0

3
1
±

0
.0

1
1

0
.0

3
3
±

0
.0

1
9

3
4
2
.0
±

7
3
.6

1
9
.4
±

4
.5

S
C

G
S

–
2
·1

0
−

5
3
0
.3
±

7
.4

1
8

0
.0

0
6
±

0
.0

0
3

0
.0

2
2
±

0
.0

1
1

0
.0
2
9
±

0
.0
1
3

5
3
5
.6
±

2
0
1
.7

6
8
0
.8
±

2
3
6
.0

S
C

G
S

1
0
−

6
2
·1

0
−

5
2
5
.2
±

1
5
.0

1
8

0
.0

1
3
±

0
.0

0
4

0
.0

1
6
±

0
.0

1
1

0
.0
3
1
±

0
.0
0
9

4
9
7
.3
±

9
1
.8

6
1
0
.2
±

1
0
9
.5

S
C

G
S

-E
S

–
−

2
·1

0
−

6
3
7
.7
±

5
.8

1
8

0
.0

1
0
±

0
.0

0
3

0
.0

3
3
±

0
.0

1
5

0
.0

3
1
±

0
.0

2
1

2
7
8
.6
±

8
0
.1

5
4
4
.5
±

1
4
4
.9

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
2
6
.9
±

9
.3

1
8

0
.0

1
0
±

0
.0

0
4

0
.0

2
6
±

0
.0

1
4

0
.0

3
2
±

0
.0

2
3

3
1
9
.0
±

5
9
.5

6
2
5
.6
±

1
4
3
.4

S
C

G
S

A
−

1
0
−

6
2
6
.1
±

1
4
.5

1
8

0
.0

1
0
±

0
.0

0
5

0
.0

2
3
±

0
.0

1
2

0
.0
2
9
±

0
.0
1
8

6
3
7
.1
±

1
4
7
.1

1
5
.2
±

2
.3

S
C

G
S

A
1
0
−

6
1
0
−

6
2
6
.8
±

1
4
.4

1
8

0
.0

1
1
±

0
.0

0
5

0
.0

2
3
±

0
.0

1
3

0
.0
3
1
±

0
.0
2
0

6
1
1
.4
±

1
7
1
.2

3
1
.1
±

8
.4

P
ru

n
in

g
o
f

in
p

u
t

n
eu

ro
n

s
S

C
G

–
–

5
0

1
6
.3
±

1
.6

0
.0

1
8
±

0
.0

0
8

0
.0

2
7
±

0
.0

1
7

0
.0

3
4
±

0
.0

1
4

2
7
6
.2
±

7
0
.2

9
.8
±

1
.9

S
C

G
IR

1
0
−

6
–

5
0

1
5
.5
±

2
.5

0
.0

1
8
±

0
.0

0
8

0
.0

3
3
±

0
.0

0
6

0
.0

4
2
±

0
.0

2
0

3
2
9
.5
±

7
2
.2

2
5
.8
±

5
.9

S
C

G
S

–
2
·1

0
−

5
5
0

1
6
.3
±

2
.4

0
.0

1
9
±

0
.0

1
0

0
.0

2
4
±

0
.0

1
1

0
.0
3
2
±

0
.0
1
2

2
9
4
.0
±

7
2
.1

4
0
5
.8
±

1
0
5
.5

S
C

G
S

1
0
−

6
2
·1

0
−

5
5
0

1
6
.9
±

1
.3

0
.0

1
3
±

0
.0

0
5

0
.0

2
7
±

0
.0

1
3

0
.0
3
2
±

0
.0
2
0

3
8
4
.5
±

8
6
.6

5
4
4
.4
±

1
2
6
.8

S
C

G
S

-E
S

–
−

2
·1

0
−

6
5
0

1
5
.9
±

2
.3

0
.0

1
9
±

0
.0

0
8

0
.0

3
0
±

0
.0

1
4

0
.0

3
4
±

0
.0

1
7

3
2
2
.4
±

9
9
.9

4
4
9
.1
±

1
0
7
.0

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
5
0

1
5
.9
±

2
.0

0
.0

2
1
±

0
.0

0
9

0
.0

2
8
±

0
.0

1
1

0
.0

3
3
±

0
.0

1
4

2
9
8
.0
±

6
7
.7

5
0
8
.9
±

6
9
.8

S
C

G
S

A
−

1
0
−

6
5
0

1
6
.4
±

1
.3

0
.0

1
5
±

0
.0

0
5

0
.0

1
8
±

0
.0

1
4

0
.0
3
2
±

0
.0
1
7

2
6
8
.7
±

1
3
7
.7

1
3
.5
±

6
.3

S
C

G
S

A
1
0
−

6
1
0
−

6
5
0

1
6
.7
±

1
.6

0
.0

1
1
±

0
.0

0
4

0
.0

1
9
±

0
.0

1
5

0
.0

3
4
±

0
.0

1
7

3
1
9
.2
±

1
6
9
.4

2
9
.8
±

1
5
.0

P
ru

n
in

g
o
f

b
o
th

h
id

d
en

a
n

d
in

p
u

t
n

eu
ro

n
s

S
C

G
–

–
4
1
.1
±

4
.6

1
8
.0
±

0
0
.0

1
0
±

0
.0

0
3

0
.0

2
7
±

0
.0

1
2

0
.0

3
3
±

0
.0

1
6

1
0
2
5
.4
±

1
1
7
.5

1
3
.4
±

2
.2

S
C

G
IR

1
0
−

6
–

3
0
.3
±

1
1
.3

1
7
.1
±

1
.9

1
2

0
.0

1
3
±

0
.0

0
7

0
.0

3
3
±

0
.0

1
3

0
.0

3
7
±

0
.0

2
1

5
7
0
.7
±

1
3
0
.8

2
7
.4
±

6
.4

S
C

G
S

–
2
·1

0
−

5
3
5
.7
±

4
.0

1
7
.7
±

1
.0

0
.0

0
9
±

0
.0

0
4

0
.0

2
4
±

0
.0

1
4

0
.0
2
8
±

0
.0
1
2

6
6
2
.3
±

1
3
3
.3

8
2
1
.2
±

1
5
9
.1

S
C

G
S

1
0
−

6
2
·1

0
−

5
3
4
.3
±

7
.7

1
8
.0
±

0
0
.0

1
2
±

0
.0

0
3

0
.0

2
2
±

0
.0

1
3

0
.0
3
2
±

0
.0
1
7

5
7
7
.4
±

9
5
.3

7
9
1
.6
±

1
0
8
.1

S
C

G
S

-E
S

–
−

2
·1

0
−

6
3
7
.5
±

6
.2

1
6
.4
±

1
.8

0
.0

1
4
±

0
.0

0
7

0
.0

3
2
±

0
.0

1
7

0
.0

3
7
±

0
.0

2
2

4
7
1
.2
±

1
2
9
.1

7
8
6
.5
±

2
0
1
.8

S
C

G
S

-E
S

1
0
−

6
−

2
·1

0
−

6
3
2
.5
±

8
.7

1
7
.5
±

1
.6

0
.0

1
2
±

0
.0

0
7

0
.0

3
1
±

0
.0

1
5

0
.0

3
2
±

0
.0

1
4

5
7
2
.3
±

1
6
4
.9

8
4
2
.6
±

2
8
7
.7

S
C

G
S

A
−

1
0
−

6
3
7
.3
±

9
.2

1
7
.6
±

1
.3

0
.0

1
1
±

0
.0

0
7

0
.0

2
5
±

0
.0

1
2

0
.0
3
0
±

0
.0
1
9

1
0
1
7
.9
±

1
5
8
.1

2
3
.7
±

5
.9

S
C

G
S

A
1
0
−

6
1
0
−

6
3
5
.8
±

1
0
.6

1
6
.9
±

2
.4

0
.0

1
3
±

0
.0

1
0

0
.0

2
5
±

0
.0

1
5

0
.0

3
3
±

0
.0

1
9

1
0
0
5
.1
±

2
1
1
.6

4
4
.7
±

8
.8

161



both the SCGS and SCGSA methods remarkably increase the number of BP-
networks that learned the task (indicated by the value of c). If pruning of inputs
is allowed, almost all BP-networks learn the task correctly, independently of the
chosen training algorithm. In comparison, networks trained with an optimum
topology (6-6-4) and without redundant input features from scratch require a
relatively high number of epochs (about five times as many) to converge while
maintaining a much lower performance — only about 55-65% of the networks
give a correct prediction.

For the World Bank task, we compared the performance of BP-networks with
the initial topologies 35-50-5 (in Table 5.9) and 18-50-5 (in Table 5.23). Not
surprisingly, when training without pruning, BP-networks with the topology 18-
50-5 generalize better (as indicated by the value of Et). On the other hand, if
pruning of input (and hidden) neurons is allowed, BP-networks with the initial
topology 35-50-5 achieve even better results, especially when trained by the SCGS
and SCGSA methods.

5.5.4 Experiment 5.5.4 – Results on SCGIR

Experiment setting

In Experiment 5.5.4 [78], we concentrated on the SCGIR method and its ability
to prune hidden neurons based on internal representation and sensitivity anal-
ysis. The SCGIR method was compared to the GD, SCG and GDIR training
algorithms. We also investigated the influence of learning from hints [106] on the
formed network structures. We used the setting of Experiment 5.2.4 described
on page 137. The test involved the World Bank task (data set WBA). All BP-
networks were trained without pruning.

Results are stated in Table 5.15. We compared the numbers of hidden neurons
that could be pruned from the networks due to their representation (nneur2) and
because they have small absolute values of weights to the output neuron (nneur1).

Results — On the ability to identify redundant hidden neurons

The experiments confirm the ability of the SCGIR method to identify redundant
hidden neurons, especially when applied together with learning from hints. The
SCGIR-hintIG method remarkably outperforms in this respect all of the other
tested methods (with and without learning from hints).

When training without hints, the value of nneur2 is for SCGIR similar to GDIR
and about two times greater than for GD and SCG. That means that SCGIR and
GDIR can prune more hidden neurons than SCG and GD – most probably due
to more transparent internal representations formed.

5.5.5 Experiment 5.5.5 – Example network structures (for
SCGSA and SCG)

Experiment setting

In Experiment 5.5.5, we compared final topologies, functions and internal struc-
ture of two concrete BP-networks trained by the SCGSA and SCG methods, re-

162



spectively. Our goal was to assess, whether the BP-networks trained by SCGSA
are more likely to develop a small, simple and transparent network structure when
compared to their SCG-trained counterparts. We also investigated, whether the
formed network structures simplify knowledge extraction from the BP-network
model.

The experiment setting is based on the setting of Experiment 5.2.1 described
on page 123. The test involved the Binary Addition task (data set BIN2). Both
methods were applied with pruning of both input and hidden neurons to randomly
initialized BP-networks with the topologies 18-12-4, the parameter maxEpochs
was set to 2001, the coefficients cF and cG of the SCGSA method were chosen as
0.0005 and 0.0005, respectively.

Figure 5.5 illustrates both the structures and the functions of the respective
BP-networks (before pruning, and after pruning and retraining).

Results – On the ability of the methods to prune the network ade-
quately

Figure 5.5 clearly shows that while both methods identified the 12 irrelevant input
features, only the SCGSA method has pruned the network topology in an optimal
way.

For the SCGSA-trained BP-network before pruning (showed in Figure 5.5(a)),
the 6 hidden neurons on the right are redundant (with almost zero edges to all
of the outputs) and can be pruned immediately. The 12 input neurons on the
right are also redundant (as there are nearly zero edges from these inputs to the
relevant hidden neurons) and can be pruned next. The remaining neurons form
an optimal topology that solves the given task of Binary Addition (6-6-4, depicted
in Figure 5.5(b)).

For the SCG-trained BP-network before pruning (showed in Figure 5.5(c)),
the difference in the sensitivity coefficients between relevant and redundant input
or hidden neurons is not so clear and pruning is thus more difficult. The final
topology is therefore greater than necessary (6-8-4, depicted in Figure 5.5(d)).
The SCG-trained BP-network also contains apparently more non-zero weights
than the SCGSA-trained BP-network.

Results – On the transparency of the formed internal structure

Both SCGSA- and SCG-trained BP-networks give correct outputs for all training
patterns. However, only the SCGSA-trained BP-network has a simple and clear
internal structure (depicted in Figure 5.5(b)). It is similar to the structure of
the BP-network trained by the SCGIR-hint method on the BIN2A data set in
Experiment 5.4.4 (showed in Figure 5.3(a)).

Many weights of the SCGSA-trained BP-network are zeroed out, the remain-
ing weights between the input and hidden layer are equal for the couples of
corresponding input neurons 1 and 4, 2 and 5, and 3 and 6. The first, third and
fifth hidden neurons from the left (labeled by 8, 9 and 3, respectively) compute
the ‘carry’ for higher output bits. The second, fourth and sixth hidden neurons
(labeled by 11, 10 and 12, respectively) also compute similar functions for single
output neurons.

163



-1.6 -1.7 1.5 0.9  0.9 -2.80.2
1 2 7

7-18

0 0 0 -1

2.8 -2.6 -2.8 -2.8 -3.0 -3.0

-11.2

1
4

2
5

3
6

3109118

-1.0 1.0

-11.1

-1.0 -1.0-1.0 1.0

-5.3
-5.4

-5.5
-5.6 -2.8 -2.9

5.0
5.1 5.4

5.4 2.82.8

2.52.6

1 2 3 4

-1.0 -1.0

-3.1
-3.0

3.1
3.1

-10.4
-10.4

1.0-1.0

2.8
2.7

12 4 5 6
2.2 0.9

(a) The BP-network with the topology 18-12-4 trained by SCGSA – before pruning

0 0 0 -1

3.0 -2.9 -2.9 -2.9 -2.9 -2.9

-12.2

1
4

2
5

3
6

3109118

-1.0 1.0

-12.1

-1.0 -1.0-1.0 1.0

-5.8
-5.8

-6.1
-6.1 -3.0 -3.0

5.6
5.6 5.8

5.8 2.92.9

2.92.9

1 2 3 4

-1.0 -1.0

-3.1
-3.1

3.1
3.1

-11.4
-11.4

1.0-1.0

2.9
2.9

12

(b) The BP-network with the topology 18-12-4 trained by SCGSA
– after pruning and retraining.

 -2.4 -2.82.5

7-18

-1.40.3
-2.3 -2.2

-1.0

0 0 0 -1

1.5 2.0 1.3 0.5 0.61.7

1 4 2 5 3 6

2.4 -2.3

1.6

-1.1

125

-0.4 1.0

9 6

1.0

-1.0
2.3

1 7 2 3

1.0

1 2 3 4

-1.0
-1.3

-1.0

-5.4 -6.6 -2.8
-2.8

-1.4

-1.6

-3.6

-3.6

-1.5-1.6-1.4

-3.7
-3.8
-1.7-1.7

5.1
4.0

-1.0
-1.0

-2.1
-2.1

2.3
2.3 -2.0

-2.0
-2.2

-2.3
-0.4

-0.5 -0.5
-0.6

0.5
-0.5

4 8 10 11

0.5
0.1

(c) The BP-network with the topology 18-12-4 trained by SCG– before pruning.

-2.3 -2.1

-1.1

0 0 0 -1

1.5 2.0 1.3 0.5 0.61.7

1 4 2 5 3 6

2.4 -2.3

1.8

-1.2

125

-0.5 1.0

9 6

1.0-1.0
2.2

1 7 2 3

1.0

1 2 3 4

-1.0
-1.2

-1.0

-5.7 -7.1 -2.9
-2.9

-1.5

-1.8

-4.0

-4.0

-1.7-1.7-1.5

-4.3
-4.3
-2.0-2.0

6.3
4.9

-1.3
-1.3

-2.6
-2.6

2.8
2.8 -2.3

-2.3
-2.1

-2.3
-0.6

-0.6 -0.6
-0.6

0.6
-0.6

0.6

(d) The BP-network with the topology 18-12-4 trained by SCG – after
pruning and retraining.

Figure 5.5: Experiment 5.5.5 – Network structures of two BP-networks with the
initial topologies 18-12-4 trained by the SCGSA and SCG methods, respectively,
on the BIN2 data set (Binary Addition task). Positive weights are drawn green,
negative weights red. The magnitudes of the weight values are illustrated by
their thickness and indicated by numerical values, thresholds are shown inside
the circles for the respective neurons. Redundant weights are not depicted. The
blue dash-dotted lines separate input and hidden neurons to be pruned from the
networks.

164



The structure of the BP-network trained by SCG (depicted in Figure 5.5(d))
is apparently more complex and it does not reveal such a clear computational
pattern. It has also learned the ‘carry’ to the first and second output bits (the
hidden neurons labeled by 5 and 9, respectively), but the functions of other hidden
and output neurons are less obvious.

5.5.6 Experiment 5.5.6 – Sensitivity analysis

Experiment setting

In Experiment 5.5.6, we evaluated, in what way do the analytical and approxi-
mative methods for sensitivity control affect the overall network sensitivity. They
are designed to make the sensitivity coefficients smaller in general. Another ques-
tion is, whether they also increase the differences among the achieved sensitivity
coefficients of the respective input features. We also assessed, which input fea-
tures were evaluated as the most important ones based on the sensitivity analysis
of BP-networks trained by the SCG, SCGIR, SCGS and SCGSA methods.

The experiment setting is based on the setting of Experiment 5.2.1 described
on page 123. The test involved the World Bank task (data set WB). All methods
were applied with pruning of both input and hidden neurons to the same set of
100 randomly initialized BP-networks with the topologies 35-50-5, the parame-
ter maxEpochs was set to 1101. The setting of parameters cF and cG for the
respective training algorithms is stated in Table 5.24.

Table 5.24: Experiment 5.5.6 – Setting of the parameters cF and cG.

parameter
method

SCG SCGIR SCGS SCGSA

cF – 10−6 10−6 10−6

cG – – 5 · 10−7 10−5

For each trained BP-network and each input feature u, we computed the
values of absolute sensitivity coefficients averaged over all network outputs v and
all training patterns p:

Su = mean
{v,p}

|Spuv|, (5.4)

where the sensitivity coefficients Spuv are defined by Equations (4.16) and (4.17).
The values of Su for the respective training algorithms are stated in Figures 5.6
(for BP-networks before pruning) and 5.7 (for BP-networks after pruning and
retraining). Figure 5.8 gives a summary of the values of Su averaged over 100
random network initializations. Table 5.25 contains the most and least important
input features based on Su.

Results – On the overall sensitivity of the networks

Figures 5.6, 5.7, 5.8 confirm that the SCGS and SCGSA methods remarkably
decrease the absolute values of sensitivity coefficients, when compared to SCG.
The SCGS method apparently outperforms SCGSA in this respect. The sensi-
tivity coefficients achieved for the SCGIR-trained networks are about the same
as for the SCG-trained networks. On the other hand, the differences among the

165



0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(a) SCG

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(b) SCGIR

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(c) SCGS

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(d) SCGSA

Figure 5.6: Experiment 5.5.6 – Average values of the absolute sensitivity coeffi-
cients for BP-networks with the topologies 35-50-5 trained by the SCG, SCGIR,
SCGS and SCGSA methods on the WB data set (before pruning). Blue points
correspond to the values of Su = mean{v,p} |Spuv| for all input features indexed by
u, where p and v index all training patterns and network outputs, respectively.
Average values of Su over 100 network initializations are indicated by red circles.

sensitivity coefficients corresponding to the respective input features seem to be
proportional for all of the methods.

Results – On the sensitivity of the networks to the input features

Table 5.25 shows that all of the methods clearly identified and pruned the redun-
dant input features 26,...,35. They also agreed on the two most important input
features 7 (GINI-Index) and 20 (Internet users). Figure 1 in the Introduction of
this thesis shows the mutual dependence of the input features 15 (Fertility rate),
16 (Fixed line and mobile phone subscribers), 20 (Internet users) and 21 (Life
expectancy at birth). These input features, that give a very similar information,
are among the 9 most important ones based on Su for all of the tested methods.

The outputs of the SCGS- and SCGSA-trained BP-networks are sensitive most
to slightly different input features than the outputs of the SCG- and SCGIR-
trained ones. For example, the SCGS method emphasize the input features 11,
10 over 13, 16 and 18 over 24 (see Table 5.1 for a detailed description of these

166



0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(a) SCG

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(b) SCGIR

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(c) SCGS

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re

(d) SCGSA

Figure 5.7: Experiment 5.5.6 – Average values of the absolute sensitivity coeffi-
cients for BP-networks with the topologies 35-50-5 trained by the SCG, SCGIR,
SCGS and SCGSA methods on the WB data set (after pruning and retraining).
Blue points correspond to the values of Su = mean{v,p} |Spuv| for all input features
indexed by u, where p and v index all training patterns and network outputs, re-
spectively. Average values of Su over the 100 network initializations are indicated
by red circles.

input features). This fact together with improved generalization of the SCGS-
and SCGSA-trained BP-networks support the idea, that both SCGS and SCGSA
favor different, smoother network functions than SCG and SCGIR.

5.5.7 Summary of Structure optimization

In sum, our training-and-pruning methodology together with the SCGS and
SCGSA training algorithms proved to reliably identify redundant input features
and to develop BP-networks with a simple structure and improved generalization.
It outperforms in these respects both pruning based on alternative relevance mea-
sures and the cluster- and sensitivity-based feature selection techniques.

The SCGS and SCGSA methods applied together with pruning remarkably
outperform the SCG and SCGWD methods in their generalization abilities. They
are also more robust to the initial network topology and to the presence of re-
dundant input features.

167



0 5 10 15 20 25 30 35
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re SCG
SCGIR
SCGS
SCGSA

(a) before pruning

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

index of the input feature

av
er

ag
e 

se
ns

iti
vi

ty
 to

 th
e 

gi
ve

n 
in

pu
t f

ea
tu

re SCG
SCGIR
SCGS
SCGSA

(b) after pruning

Figure 5.8: Experiment 5.5.6 – Average values of the absolute sensitivity coeffi-
cients for BP-networks with the topologies 35-50-5 trained by the SCG, SCGIR,
SCGS and SCGSA methods on the WB data set (before and after pruning). The
stated values of Su correspond to the mean over 100 random network initializa-
tions.

Table 5.25: Experiment 5.5.6 – The most and least important input features for
BP-networks with the topologies 35-50-5 trained by the respective methods on
the WB data set.

The most important input features:
order SCG SCGIR SCGS SCGSA

1. 7 7 7 20
2. 20 20 20 7
3. 13 13 11 13
4. 16 21 10 11
5. 21 16 13 21
6. 11 11 21 16
7. 10 10 18 10
8. 15 15 16 15
9. 24 24 15 18

The least important input features:
order SCG SCGIR SCGS SCGSA

21. 14 14 8 14
22. 3 3 3 3
23. 8 8 19 19
24. 19 19 1 8
25. 17 17 17 17
26.− 35. 26− 35 26− 35 26− 35 26− 35

168



Conclusions

169



The main subject of this thesis has been the computational model of BP-
networks. Our goal was to use this model to find complex non-linear dependencies
in the data as quickly as possible and to describe them as simply as possible. For
this reason, we investigated the ability of BP-networks to create during training a
robust, transparent and simple internal structure. At the same time, we focused
on fast training, adequate generalization and robustness of the model to noise
and tunable parameters.

To achieve our goal, we developed a general framework for training of BP-net-
works. Our framework takes advantage of several existing and newly proposed
techniques for BP-network training. It is based on the general schema of the
fast and robust SCG-training algorithm [75] (Algorithm 4.2 on page 80). The
SCG algorithm is enhanced by three regularization techniques – IR (for learning
internal representation during training, described in Section 4.1.2), SC (for ana-
lytical sensitivity control, described in Section 4.2.4), and SCA (for approximative
sensitivity control, described in Section 4.3.2).

The IR-regularization technique [86] forces BP-networks to create a condensed
internal representation during training. In this way, it contributes to transparent
and simple internal structure of the trained BP-network and simplifies pruning
based on internal representation. It also facilitates knowledge extraction from
the model.

The new-proposed regularization techniques, SC and SCA, focus on sensitiv-
ity inhibition during training. While the analytical SC-regularization technique
is very complex and makes the training process extremely time consuming, its
approximative alternative, SCA, is very fast. Despite its approximative nature,
SCA keeps most of the advantages of the SC-method. Both methods contribute
to smoother network function and better generalization ability of the trained BP-
networks. They also simplify pruning based on sensitivity analysis and support
an easy interpretation of the extracted knowledge.

As an integral part of our framework, we developed a general training-and-
pruning methodology based on internal representation and sensitivity analysis
(Algorithms 4.3 and 4.4). It enables to identify relevant input features and find a
suitable topology of the BP-network automatically during training. In such a way
it simplifies all of the following processes: preprocessing, parameter-tuning, train-
ing and knowledge extraction from the trained BP-network. It also remarkably
improves the generalization capability of the trained model.

In addition to the above-listed key methods, our framework contains also
further supplementary methods, that support its good qualities (e.g., learning
from hints [106] and the early stopping strategy [95]).

The introduced framework was experimentally evaluated on several data sets
of various properties (i.e., discrete and continuous, artificial and real-world). In
the experiments performed, we assessed advantages and weaknesses of the entire
framework and of the included methods when compared with alternative tech-
niques. We considered related methods for BP-network training, regularization,
feature selection and pruning.

An advantage of the techniques included in our framework is, that they can
be combined in more ways. During our research, we successively introduced three

170



versions of our framework – SCGIR (Algorithm 4.1 on page 79), SCGS (Algo-
rithm 4.5 on page 98) and SCGSA (Algorithm 4.6 on page 111). These training
algorithms differ primarily in the regularization techniques included. The ear-
liest method, SCGIR, comprises the IR-regularization technique and learning
from hints. The SCGS and SCGSA methods combine the IR-regularization tech-
nique with one of the sensitivity-inhibiting techniques (SC for SCGS and SCA
for SCGSA). The benefits and drawbacks of the respective training algorithms,
based on the experiments performed so far, are summarized in Table 5.26.

Table 5.26: Summary of the qualities of the proposed methods (SCGIR, SCGS
and SCGSA), when compared to the standard SCG training algorithm. The
performance of the methods based on the respective criteria is in each column
indicated by the number of stars (1-5) — the best-performing method is labeled
by ‘*****’.

Method Generalization Speed Robustness to
parameters

Transparency Structure
optimization

SCG ***
satisfactory

*****
fast

*****
robust

*
weak

*
none

SCGIR *** **** *** ***** ***
comparable
with SCG

maximally
two times
slower
than SCG

relatively
sensitive to
parameter cF

strong
enforcement
for greater
values of cF

pruning
of hidden
neurons

SCGS ***** * ***** **** *****
bigger
improvements
for discrete
data and for
networks with
more hidden
layers

extremely
slow

robust to
parameters
cF and cG

medium,
but stable
enforcement

pruning
of hidden
and input
neurons

SCGSA ***** **** ***** **** *****
bigger
improvements
for discrete
data and for
networks with
more hidden
layers

maximally
two times
slower
than SCG

robust to
parameters
cF and cG

medium,
but stable
enforcement

pruning
of hidden
and input
neurons

The firstly-introduced method, SCGIR, proved in our experiments to be a
very fast training algorithm with an outstanding ability to form a condensed
internal representation during training. It is maximally two times slower than

171



SCG, while it yields networks with a comparable generalization ability. Its capa-
bility to create a transparent network structure is similar to GDIR. Anyway, the
right choice of the trade-off coefficient cF applied during training can impact the
quality of the solution obtained. Too large values of cF might result into BP-net-
works with a perfectly formed condensed internal representation yet incapable of
approximating the desired function because of saturated hidden neuron outputs.

The SCGS and SCGSA methods confirmed in our experiments to perform
comparably with each other in many aspects. When considering the generaliza-
tion ability of the trained BP-networks and their sensitivity to noise in the data,
both SCGS and SCGSA remarkably outperformed SCG, SCGIR and other tech-
niques traditionally used to improve network’s generalization (e.g., training with
jitter [95]). On the other hand, the actual behavior of the SCGS and SCGSA
methods seems to depend on the character of the processed data and on the ar-
chitecture of the trained network. Based on the experiments performed so far,
higher improvement might be achieved for discrete data and for networks with
more hidden layers.

Although SCGS and SCGSA are slightly less powerful in forming condensed
internal representation than SCGIR, they are more robust to the right choice
of the trade-off coefficients (cF , cG). Thanks to the introduced training-and-
pruning methodology, both SCGS and SCGSA methods also reliably identified
redundant input features and developed BP-networks with a relatively simple
structure. They outperformed in these respects alternative pruning and feature
selection techniques.

Based on the experiments performed so far, the last-introduced method, SCG-
SA, seems to represent the best choice for practical applications. According to
most of the tested criteria, the results for SCGSA are comparable or better than
for SCGIR. When comparing SCGSA to SCGS, its main advantage consists in
its low time costs. Contrary to SCGS, which is very time expensive, SCGSA is
maximally two times slower than SCG.

In sum, the main outcome of this thesis consist in developing a general frame-
work for training of BP-networks with the following advantages:

1. Improved generalization ability of the trained BP-networks and their lower
sensitivity to noise in the data.

2. Fast training, robust to tunable parameters.

3. Creation of a simpler and more transparent internal network structure (due
to enforcement of condensed internal representation and sensitivity inhibi-
tion during training).

4. Robustness of the model to initial topology and redundant input features
(due to sophisticated pruning of hidden and input neurons).

5. Simplified knowledge extraction from the model and easier interpretation
of the extracted knowledge.

Future work

Above all, we would like to test our framework more extensively on larger data
sets comprising several thousands of patterns and several thousands of input

172



features, in order to provide a greater number of statistically significant results.
In the past years, a strong effort has been made in the field of so-called

deep networks (introduced by LeCun et al. in [65]). Deep networks succeed in
some demanding tasks such as image processing, speech recognition or machine
translation, where the standard low-layered BP-networks fail. An interesting and
challenging task would be to find a way, how to successfully apply the main
principles proposed in this thesis to the model of deep networks. Especially
sensitivity inhibition and sensitivity-based pruning might simplify training and
contribute to improved robustness, stability and generalization of this model.

173



174



Bibliography

[1] Abu-Mostafa, Yaser S. A Method for Learning From Hints. In: Advances
in Neural Information Processing Systems, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc., 1993. Vol. 5, pp. 73–80. ISBN 1-558-60274-7.

[2] Abu-Mostafa, Yaser S. Hints and the VC dimension. Neural Computing.
Vol. 5, No. 2, pp. 278–288, 1993.

[3] Abu-Mostafa, Yaser S. Learning from Hints. Journal of Complexity. Vol.
10, No. 1, pp. 165 – 178, 1994.

[4] Alippi, C., Piuri, V. and Sami, M. Sensitivity to errors in artificial neural
networks: a behavioral approach. IEEE Transactions on Circuits and Sys-
tems I: Fundamental Theory and Applications. Vol. 42, No. 6, pp. 358–361,
June 1995.

[5] Andrejková, Gabriela. Applications of the approximation theory by neu-
ral Networks. Neural Network World. Vol. 5, pp. 787–795, 2000.

[6] Andrejková, Gabriela. Incremental Approximation by Layer Neural Net-
works. In: The State of the Art in Computational Intelligence : Proceedings
of the European Symposium on Computational Intelligence, Berlin / Hei-
delberg, Germany. Springer-Verlag, 2000. ISCI’2010, pp. 15–20.

[7] Attik, Mohammed, Bougrain, Laurent and Alexandre, Frederic. Neu-
ral Network Topology Optimization. In: International Conference on Arti-
ficial Neural Networks, Berlin / Heidelberg, Germany. Springer, 2005. Vol.
3697 of ICANN’05, pp. 53–58.

[8] Bache, K. and Lichman, M. UCI Machine Learning Repository. Uni-
versity of California, Irvine, School of Information and Computer Sciences,
2013. Available from: <http://archive.ics.uci.edu/ml>.

[9] Baird, Sarah, Friedman, Jed and Schady, Norbert. Aggregate Income
Shocks and Infant Mortality in the Developing World. The Review of Eco-
nomics and Statistics. Vol. 93, No. 3, pp. 847–856, 2011.

[10] Baldi, Pierre and Hornik, Kurt. Learning in Linear Neural Networks: a
Survey. IEEE Transactions on Neural Networks. Vol. 6, pp. 837–858, 1995.

[11] Battini, R. and Masulli, F. BFGS Optimization for Faster and Auto-
mated Supervised Learning. In: International Neural Network Conference,
Dordrecht, Germany. Kluwer, 1990. Vol. 2 of INCC 90, pp. 757–760.

[12] Battiti, Roberto. First and Second-Order Methods for Learning: between
Steepest Descent and Newton’s Method. Neural Computation. Vol. 4, pp.
141–166, 1992.

[13] Baum, Eric B. and Haussler, David. What Size Net Gives Valid Gener-
alization? Neural Computation. Vol. 1, No. 1, pp. 151–160, March 1989.
ISSN 0899-7667.

175



[14] Beale, E.M.L. A Derivation of Conjugate Gradients. In: Lootsma, F.A.,
ed. Numerical Methods in Nonlinear Optimization. London, UK: Academic
Press, 1997. chapter 4, pp. 39–43.

[15] Bishop, Christopher M. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag New York, Inc., 2006.
ISBN 0-387-31073-8.

[16] Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., 1995. ISBN 0-198-53864-2.

[17] Blum, Avrim L. and Langley, Pat. Selection of relevant features and
examples in machine learning. Artificial Intelligence. Vol. 97, pp. 245–271,
1997.

[18] Butterworth, Richard, Piatetsky-Shapiro, Gregory and Simovici,
Dan A. On Feature Selection Through Clustering. In: Proceedings of the
Fifth IEEE International Conference on Data Mining, Washington, DC,
USA. IEEE Computer Society, 2005. ICDM’05, pp. 581–584. ISBN 0-769-
52278-5.

[19] Castillo, Enrique F., Guijarro-Berdiñas, Bertha, Fontenla-Ro-
mero, Oscar and Alonso-Betanzos, Amparo. A Very Fast Learning
Method for Neural Networks Based on Sensitivity Analysis. Journal of
Machine Learning Research. Vol. 7, pp. 1159–1182, 2006.

[20] Chan, Lai-Wan. Levenberg-Marquardt Learning and Regularization. In:
Progress in Neural Information Processing. Springer-Verlag, 1996. pp. 139–
144.

[21] Charalambous, C. Conjugate gradient algorithm for efficient training of
artificial neural networks. Proceedings of the IEEE. Vol. 139, No. 3, pp.
301–310, 1992.

[22] Choi, Jin-Young and Choi, Chong-Ho. Sensitivity analysis of multilayer
perceptron with differentiable activation functions. IEEE Transactions on
Neural Networks. Vol. 3, No. 1, pp. 101–107, 1992.

[23] Christiansen, Morten H. Improving learning and generalization in neural
networks through the acquisition of multiple related functions. In: Bul-
linaria, J.A., Glasspool, D.G. and Houghton, G., eds. Fourth Neu-
ral Computation and Psychology Workshop: Connectionist Representations,
London, UK. Springer-Verlag, 1998. pp. 58–70.

[24] Covões, Thiago F., Hruschka, Eduardo R., Castro, Leandro N. and
Santos, Átila M. A Cluster-Based Feature Selection Approach. In:
Corchado, Emilio, Wu, Xindong, Oja, Erkki, Herrero, Álvaro and
Baruque, Bruno, eds. Hybrid Artificial Intelligence Systems, Vol. 5572
of Lecture Notes in Computer Science. Berlin / Heidelberg, Germany:
Springer, 2009. pp. 169–176.

176



[25] Cybenko, G. Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals, and Systems. Vol. 2, pp. 303–314, 1989.

[26] Demuth, Howard, Beale, Mark and Hagan, Martin. Neural Network
Toolbox 5: Users Guide. The Mathworks, Inc., 2007.

[27] Engelbrecht, A. and Cloete, I. A Sensitivity Analysis Algorithm for
Pruning Feedforward Neural Networks. In: IEEE International Conference
in Neural Networks, Washington, DC, USA. 1996. Vol. 2 of IEEE ICNN’96,
pp. 1274–1277.

[28] Engelbrecht, A. P. A new pruning heuristic based on variance analysis
of sensitivity information. IEEE Transactions on Neural Networks. Vol. 12,
No. 6, pp. 1386–1399, 2001.

[29] Engelbrecht, A. P., Cloete, Ian and Zurada, Jacek M. Determining
the Significance of Input Parameters using Sensitivity Analysis. In: Inter-
national Work-Conference on Artificial Neural Networks, 1995. IWANN’95,
pp. 382–388.

[30] Engelbrecht, Andries Petrus. Sensitivity Analysis for Selective Learning
by Feedforward Neural Networks. Fundamenta Informaticae. Vol. 45, No.
4, pp. 295–328, 2001.

[31] Engelbrecht, Andries Petrus. Sensitivity Analysis for Decision Bound-
aries. Neural Processing Letters. Vol. 10, No. 3, pp. 253–266, 1999.

[32] Fahlman, Scott E. Faster-Learning Variations on Back-Propagation: An
Empirical Study. In: Proceedings of the Connectionist Models Summer
School, Los Altos, CA, USA. Morgan-Kaufmann, 1988.

[33] Fahlman, Scott E. and Lebiere, Christian. The Cascade-Correlation
Learning Architecture. In: Touretzky, David S., ed. Advances in Neural
Information Processing Systems, Vol. 2. San Francisco, CA, USA: Morgan
Kaufmann, 1990. pp. 524–532.

[34] Fidalgo, J. N. Feature subset selection based on ANN sensitivity analysis
- a practical study. Advances in Neural Networks and Applications. pp.
206–211, 2001.

[35] Fletcher, R. Practical methods of optimization. A Wiley Interscience
Publication, 2nd edition, 1987.

[36] Garson, G. David. Interpreting neural-network connection weights. AI
Expert. Vol. 6, No. 4, pp. 46–51, 1991. ISSN 0888-3785.

[37] Ghosh, Ranadhir, Ghosh, Moumita, Yearwood, John and Bagirov,
Adil. Comparative Analysis of Genetic Algorithm, Simulated Annealing and
Cutting Angle Method for Artificial Neural Networks. In: Proceedings of
the 4th International Conference on Machine Learning and Data Mining in
Pattern Recognition, Berlin / Heidelberg, Germany. Springer-Verlag, 2005.
MLDM’05, pp. 62–70. ISBN 3-540-26923-1.

177



[38] Gällmo, O. and Carlström, J. Some Experiments Using Extra Out-
put Learning to Hint Multi Layer Perceptrons. In: Niklasson, L.F. and
Boden, M.B., eds. Current Trends in Connectionism, Hillsdale, MI, USA.
1995. SCC’95, pp. 179–190.

[39] Guijarro-Berdiñas, Bertha, Fontenla-Romero, Oscar, Pérez-Sán-
chez, Beatriz and Alonso-Betanzos, Amparo. A Regularized Learning
Method for Neural Networks Based on Sensitivity Analysis. In: ESANN,
2008. pp. 289–294.

[40] Guyon, Isabelle. An introduction to variable and feature selection. Journal
of Machine Learning Research. Vol. 3, pp. 1157–1182, 2003.

[41] Guyon, Isabelle, Gunn, Steve, Nikravesh, Masoud and Zadeh, Lotfi A.
Feature Extraction: Foundations and Applications (Studies in Fuzziness
and Soft Computing). Springer-Verlag New York, Inc., 2006. ISBN 3-540-
35487-5.

[42] Hagan, Martin T., Demuth, Howard B. and Beale, Mark. Neural Net-
work Design. PWS Publishing Co., 1996. ISBN 0-534-94332-2.

[43] Hagiwara, Masafumi. A simple and effective method for removal of hidden
units and weights. Neurocomputing. Vol. 6, No. 2, pp. 207–218, 1994.

[44] Hancock, P. J. B. Pruning Neural Nets by Genetic Algorithm. In: Alek-
sander, I. and Taylor, J.G., eds. International Conference on Artificial
Neural Networks, Brighton, UK. Elsevier, 1992. pp. 991–994.

[45] Hanson, Stephen José and Pratt, Lorien. Comparing biases for minimal
network construction with back-propagation. Advances in Neural Informa-
tion Processing Systems. Vol. 1, pp. 177–185, 1989.

[46] Hara, Kazuyuki and Okada, Masato. Online learning of a simple percep-
tron learning with margin. Systems and Computers in Japan. Vol. 35, No.
7, pp. 98–105, 2004.

[47] Hassibi, B., Stork, D. G. and Wolf, G. J. Optimal Brain Surgeon and
general network pruning. In: IEEE International Conference on Neural
Networks, San Francisco, CA, USA. 1993. Vol. 1 of IEEE ICNN’93, pp.
293–299.

[48] Haykin, Simon. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, 2nd edition, 1998. ISBN 0-132-73350-1.

[49] Holmström, Lasse and Koistinen, Petri. Using Additive Noise in Back-
Propagation Training. Research Reports A3, Rolf Nevanlinna Institute,
1990.

[50] Hornik, Kurt. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural Networks. Vol. 4, No. 2, pp. 251–257, March 1991. ISSN
0893-6080.

178



[51] Hunt, S. D. and Deller, John R. Selective training of feedforward arti-
ficial neural networks using matrix perturbation theory. Neural Networks.
Vol. 8, No. 6, pp. 931–944, 1995.

[52] Jacobs, Robert A. Increased Rates of Convergence Through Learning
Rate Adaptation. Neural Networks. Vol. 1, pp. 295–307, 1988.

[53] Jolliffe, I.T. Principal Component Analysis. Springer-Verlag, 2nd edi-
tion, 2002.

[54] Judd, J. Stephen. Neural network design and the complexity of learning.
Neural network modeling and connectionism. MIT Press, 1990.

[55] Kantardzic, Mehmed. Data Mining: Concepts, Models, Methods and
Algorithms. John Wiley & Sons, Inc., 2002. ISBN 0-471-22852-4.

[56] Karnin, E. D. A simple procedure for pruning back-propagation trained
neural networks. In: IEEE International Conference on Neural Networks,
1990. Vol. 1, pp. 239–242.

[57] Koda, M. Neural network learning based on stochastic sensitivity analysis.
IEEE Transactions on Systems, Man and Cybernetics, Part B. Vol. 27, No.
1, pp. 132–135, 1997.

[58] Kohavi, Ron and John, George H. Wrappers for Feature Subset Selection.
Artificial Intelligence. Vol. 97, No. 1, pp. 273–324, 1997.

[59] Kůrková, Věra. Approximation of functions by perceptron networks with
bounded number of hidden units. Neural Networks. Vol. 8, No. 5, pp. 745
– 750, 1995. ISSN 0893-6080.

[60] Lamers, M.H., Kok, J.N. and Lebret, E. A multilevel nonlinearity study
design. In: IEEE World Congress on Computational Intelligence Neural
Networks, May 1998. Vol. 1, pp. 730–734.

[61] Lampinen, Jouko, Litkey, Paula and Hakkarainen, Harri. Selection of
Training Samples for Learning With Hints. In: International Joint Confer-
ence on Neural Networks, Washington, DC, USA. 1999. IJCNN’99.

[62] LeCun, Y., Denker, J., Solla, S., Howard, R. E. and Jackel, L. D.
Optimal Brain Damage. In: Touretzky, D. S., ed. Advances in Neural
Information Processing Systems, San Mateo, CA, USA. Morgan Kauffman,
1990. Vol. 2.

[63] LeCun, Yann. Une procédure d’apprentissage pour réseau à seuil asymét-
rique. In: Proceedings of Cognitiva 85, Paris, France. 1985. pp. 599–604.

[64] Lecun, Yann, Simard, Patrice Y. and Pearlmutter, Barak. Automatic
Learning Rate Maximization by On-Line Estimation of the Hessian’s Eigen-
vectors. In: Advances in Neural Information Processing Systems. Morgan
Kaufmann, 1993. Vol. 5, pp. 156–163.

179



[65] LeCun, Yann, Bottou, Léon, Bengio, Yoshua and Haffner, Patrick.
Gradient-Based Learning Applied to Document Recognition. Proceedings
of the IEEE. Vol. 86, No. 11, pp. 2278–2324, 1998.

[66] Lee, Tsu-Chang. Structure Level Adaptation for Artificial Neural Networks.
Kluwer Academic Publishers, 1991. ISBN 0-792-39151-9.

[67] Levenberg, K. A Method for the Solution of Certain Problems in Least
Squares. In: Quarterly Applied Math, 1944. Vol. 2, pp. 164–168.

[68] Liu, Quanjin, Zhao, Zhimin and Wang, Yong. Study on Feature Selec-
tion Based on Fuzzy Clustering Algorithm. In: Qian, Zhihong, Cao, Lei,
Su, Weilian, Wang, Tingkai and Yang, Huamin, eds. Recent Advances in
Computer Science and Information Engineering, Vol. 124 of Lecture Notes
in Electrical Engineering. Berlin / Heidelberg, Germany: Springer, 2012.
pp. 155–161.

[69] Liu, Yinyin, Starzyk, Janusz A. and Zhu, Zhen. Optimized Approxima-
tion Algorithm in Neural Networks Without Overfitting. IEEE Transac-
tions on Neural Networks. Vol. 19, No. 6, pp. 983–995, 2008.

[70] MacQueeen, J. B. Some Methods for Classification and Analysis of Mul-
tivariate Observations. In: Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkley, CA, USA. 1967. Vol. 1,
pp. 281–297.

[71] Marquardt, Donald W. An algorithm for least-squares estimation of
nonlinear parameters. SIAM Journal on Applied Mathematics. Vol. 11, No.
2, pp. 431–441, 1963.

[72] MATLAB and Neural Network Toolbox. Version 7.0.1 (R14). The
MathWorks, Inc., 2004.

[73] Minnix, J.I. Fault tolerance of the backpropagation neural network trained
on noisy inputs. In: International Joint Conference on Neural Networks,
June 1992. Vol. 1 of IJCNN’92, pp. 847–852.

[74] Mitchell, Thomas M. Machine Learning. McGraw-Hill, Inc., 1st edition,
1997. ISBN 0-070-42807-7.

[75] Møller, Martin F. A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks. Vol. 6, No. 4, pp. 525–533, 1993.

[76] Montaño, J. J. and Palmer, A. Numeric sensitivity analysis applied to
feedforward neural networks. Neural Computing and Applications. Vol. 12,
No. 2, pp. 119–125, 2003.

[77] Mozer, Michael C. and Smolensky, Paul. Skeletonization: A technique
for trimming the fat from a network via relevance assessment. Advances in
Neural Information Processing Systems. Vol. 1, pp. 107–115, 1989.

180



[78] Mrázová, Iveta and Reitermanová, Zuzana. Enforced knowledge ex-
traction with BP-networks. In: Dagli, Cihan, ed. Intelligent Engineering
Systems through Artificial Neural Networks, New York, NY, USA. ASME
Press, 2007. Vol. 17, pp. 285–290. ISBN 0-791-80265-5.

[79] Mrázová, Iveta. Controlled Learning of GREN-networks. In: Dagli,
C. H., Buczak, A. L., Ghosh, J., Embrechts, M. J., Ersoy, O. and
Kercel, S., eds. Smart Engineering System Design: Neural Networks,
Fuzzy Logic, Evolutionary Programming, Data Mining and Complex Sys-
tems. ASME Press, 2001. ASME Press Series, pp. 21–26.

[80] Mrázová, Iveta. Knowledge Extraction with Neural Networks: Signifficant
Patterns and their Representation in Back-Propagation Networks. LAP
LAMBERT Academic Publishing, 2011.

[81] Mrázová, Iveta and Petř́ıčková, Zuzana. Fast Sensitivity-Based Train-
ing of BP-Networks. In: Artificial Neural Networks and Machine Learning.
Springer, 2014. Vol. 8681 of Lecture Notes in Computer Science, pp. 507–
514.

[82] Mrázová, Iveta and Reitermanová, Zuzana. Enforced knowledge ex-
traction with BP-networks. Technical Report 2007/7, Department of Soft-
ware Engineering, Faculty of Mathematics and Physics, Charles University
in Prague, July 2007.

[83] Mrázová, Iveta and Reitermanová, Zuzana. A new sensitivity-based
pruning technique for feed-forward neural networks that improves gener-
alization. In: International Joint Conference on Neural Networks. IEEE,
2011. IJCNN’2011, pp. 2143–2150.

[84] Mrázová, Iveta and Reitermanová, Zuzana. Sensitivity-based SCG-
training of BP-networks. Procedia Computer Science – Complex adaptive
systems. Vol. 6, No. 0, pp. 177 – 182, 2011. ISSN 1877-0509.

[85] Mrázová, Iveta and Reitermanová, Zuzana. A new sensitivity-based
pruning technique for feed-forward neural networks that improves gener-
alization. Technical Report 2011/3, Department of Theoretical Comput-
er Science and Mathematical Logic, Faculty of Mathematics and Physics,
Charles University in Prague, March 2011.

[86] Mrázová, Iveta and Wang, Dianhui. Improved generalization of neural
classifiers with enforced internal representation. Neurocomputing. Vol. 70,
No. 16-18, pp. 2940–2952, 2007.

[87] Nguyen, Derrick and Widrow, Bernard. Improving the Learning Speed
of 2-layer Neural Networks by Choosing. In: Initial Values of the Adaptive
Weights, International Joint Conference of Neural Networks, 1990. pp. 21–
26.

[88] Oh, Sang-Hoon and Lee, Youngjik. Sensitivity analysis of single hidden-
layer neural networks with threshold functions. IEEE Transactions on Neu-
ral Networks. Vol. 6, No. 4, pp. 1005–1007, 1995.

181



[89] Parker, D. B. Learning-Logic. Technical Report TR-47, Center for Comp.
Research in Economics and Management Sci., MIT, 1985.

[90] Polak, E. and Ribiere, G. Note sur la convergence de methodes de
directions conjugees. Francaise Informate Recherche Operatonelle. Vol. 3,
pp. 35–43, 1969.

[91] Powell, M. J. D. Restart procedures for the conjugate gradient method.
Mathematical Programming. Vol. 2, No. 1, pp. 241–254, 1977. ISSN 0025-
5610.

[92] Procházka, Aleš and Pavelka, Aleš. Feed-forward and recurrent neural
networks in signal prediction. In: 5th IEEE International Conference on
Computational Cybernetics. IEEE, 2007. pp. 93–96.

[93] Reed, R., Marks, II R.J. and Oh, S. Similarities of error regularization,
sigmoid gain scaling, target smoothing, and training with jitter. IEEE
Transactions on Neural Networks. Vol. 6, No. 3, pp. 529–538, May 1995.
ISSN 1045-9227.

[94] Reed, Russell. Pruning Algorithms – A survey. IEEE Transactions on
Neural Networks. Vol. 4, pp. 740–747, 1993.

[95] Reed, Russell D. and Marks, Robert J. Neural Smithing: Supervised
Learning in Feedforward Artificial Neural Networks. MIT Press, 1998. ISBN
0-262-18190-8.

[96] Reed, Russell D. and Marks, Robert J. Neurosmithing: Improving Neural
Network Learning. In: Arbib, Michael A., ed. The Handbook of Brain
Theory and Neural Networks. Cambridge, MA, USA: MIT Press, 1998. pp.
639–644. ISBN 0-262-51102-9.

[97] Reitermanová, Zuzana. Knowledge Extraction with BP-netwoks. Mas-
ter’s thesis, Department of Software Engineering, Faculty of Mathematics
and Physics, Charles University in Prague, 2007.

[98] Reunanen, Juha, Guyon, Isabelle and Elisseeff, Andre. Overfitting
in Making Comparisons Between Variable Selection Methods. Journal of
Machine Learning Research. Vol. 3, pp. 1371–1382, 2003.

[99] Riedmiller, Martin. Advanced supervised learning in multi-layer percep-
trons — From backpropagation to adaptive learning algorithms. Computer
Standards & Interfaces. Vol. 16, No. 3, pp. 265 – 278, 1994.

[100] Rojas, Raul. Neural Networks - A Systematic Introduction. Springer-
Verlag, 1996.

[101] Rosenblatt, F. The Perceptron: A probabilistic model for information
storage and organisation in the brain. Psychological Review. Vol. 65, No. 2,
pp. 368–408, 1958.

182



[102] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning inter-
nal representations by error propagation. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 1, pp. 318–362, 1986.

[103] Sharkey, Noel E. Connectionist representation techniques. Artificial In-
telligence Review. Vol. 5, No. 3, pp. 143–167, 1991.

[104] Sietsma, J. and Dow, R. J. F. Creating artificial neural networks that
generalize. Neural Networks. Vol. 4, pp. 67–79, 1991.

[105] Silva, Fernando M. and Almeida, Luis B. Acceleration Techniques for
the Backpropagation Algorithm. In: Almeida, Luis B. and Wellekens,
Christian, eds. EURASIP Workshop. Springer, 1990. Vol. 412 of Lecture
Notes in Computer Science, pp. 110–119.

[106] Suddarth, S. C. and Kergosien, Y. L. Rule-Injection Hints as a Means
of Improving Network Performance and Learning Time. In: EURASIP
Workshop 1990 on Neural Networks, London, UK. Springer-Verlag, 1990.
Vol. 412, pp. 120–129.

[107] Š́ıma, Jǐŕı. Training a Single Sigmoidal Neuron Is Hard. Neural Computa-
tion. Vol. 14, No. 11, pp. 2709–2728, 2002.

[108] Tchaban, T., Taylor, M. J. and Griffin, J. P. Establishing impacts of
the inputs in a feedforward neural network. Neural Computing and Appli-
cations. Vol. 7, No. 4, pp. 309–317, 1998.

[109] The World Bank Group. World Development Report 2007/2008. Ox-
ford University Press, 2008.

[110] Thimm, Georg and Fiesler, Emile. Neural Network Initialization. In: Mi-
ra, José and Hernández, Francisco Sandoval, eds. International Work-
Conference on Artificial Neural Networks. Springer, 1995. Vol. 930 of Lec-
ture Notes in Computer Science, pp. 535–542. ISBN 3-540-59497-3.

[111] Tsaih, R. Sensitivity analysis, neural networks, and the finance. In: Inter-
national Joint Conference on Neural Networks, 1999. Vol. 6 of IJCNN’99,
pp. 3830–3835.

[112] Tuv, Eugene, Borisov, Alexander, Runger, George and Torkkola,
Kari. Feature Selection with Ensembles, Artificial Variables, and Redun-
dancy Elimination. Journal of Machine Learning Research. Vol. 10, pp.
1341–1366, December 2009. ISSN 1532-4435.

[113] Vapnik, V. N. and Chervonenkis, A. Ya. On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities. Theory of Probability
and its Applications. Vol. 16, No. 2, pp. 264–280, 1971.

[114] Vapnik, Vladimir Naoumovitch. The nature of statistical learning theory.
Statistics for engineering and information science. Springer, 2000. ISBN
0-387-98780-0.

183



[115] Wang, W., Jones, P. and Partridge, D. Assessing the Impact of In-
put Features in a Feedforward Neural Network. Neural Computing and
Applications. Vol. 9, No. 2, pp. 101–112, 2000.

[116] Wasserman, P. D. Experiments in Translating Chinese Characters Using
Backpropagation. In: COMPCON. IEEE Computer Society, 1988. pp. 399–
402.

[117] Weigend, Andreas S., Rumelhart, David E. and Huberman, Bernar-
do A. Generalization by Weight-Elimination with Application to Fore-
casting. In: Lippmann, Richard P., Moody, John E. and Touretzky,
David S., eds. Advances in Neural Information Processing Systems, Vol. 3.
San Francisco, CA, USA: Morgan Kaufmann, 1991. pp. 875–882.

[118] Werbos, P. J. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[119] Werbos, P. J. Back-propagation: Past and future. In: IEEE International
Conference on Neural Networks, New York, NY, USA. IEEE Press, 1988.
Vol. 1, pp. 343–353.

[120] Whitley, D., Starkweather, T. and Bogart, C. Genetic algorithms
and neural networks: Optimizing connections and connectivity. In: Parallel
Computing, 1990. Vol. 14, pp. 347–361.

[121] Xu, Lei. Data smoothing regularization, multi-sets-learning, and problem
solving strategies. Neural Networks. Vol. 16, No. 5-6, pp. 817–825, 2003.

[122] Yeh, I-Cheng and Cheng, Wei-Lun. First and Second Order Sensitivity
Analysis of MLP. Neurocomputing. Vol. 73, No. 10-12, pp. 2225–2233, June
2010. ISSN 0925-2312.

[123] Yeung, Daniel S, Cloete, Ian, Shi, Daming and Ng, Wing WY. Sensi-
tivity Analysis for Neural Networks. Natural Computing Series. Springer,
2010.

[124] Yu, Yeong-H. and Simmons, Robert F. Extra Output Biased Learning. In:
International Joint Conference on Neural Networks, San Diego, CA, USA.
University of Texas at Austin, 1990. Vol. 3 of IJCNN’90, pp. 161–166.

[125] Zhong, Shuiming, Zeng, Xiaoqin, Wu, Shengli and Han, Lixin. Sensi-
tivity-Based Adaptive Learning Rules for Binary Feedforward Neural Net-
works. IEEE Transactions on Neural Networks and Learning Systems. Vol.
23, No. 3, pp. 480–491, 2012.

[126] Zurada, Jacek M., Malinowski, Aleksander and Cloete, Ian. Sensi-
tivity Analysis for Minimization of Input Data Dimension for Feedforward
Neural Network. In: ISCAS, 1994. pp. 447–450.

184



List of Tables

1.1 Transfer functions and their derivatives . . . . . . . . . . . . . . . 11

3.1 Iris data set – Comparison of several feature selection techniques . 50

4.1 The rounding problem of the SCA1 method . . . . . . . . . . . . 105
4.2 Example values of the error function G1

p . . . . . . . . . . . . . . 106
4.3 Comparison of the error functions G1

p and GA
p . . . . . . . . . . . 108

5.1 World development indicators . . . . . . . . . . . . . . . . . . . . 116
5.2 Data sets and their characteristics . . . . . . . . . . . . . . . . . . 117
5.3 Training algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Notation of the tested criteria . . . . . . . . . . . . . . . . . . . . 121
5.5 Experiment 5.2.1 – Results for the BIN2 and BIN3 data sets . . 126
5.6 Experiment 5.2.1 – Results for the WB data set . . . . . . . . . . 127
5.7 Experiment 5.2.2 – Results for the BIN2 data set (without pruning)129
5.8 Experiment 5.2.2 – Results for the BIN2 data set (with pruning) 130
5.9 Experiment 5.2.2 – Results for the WB data set (35-50-5) . . . . 131
5.10 Experiment 5.2.2 – Results for the BIN3 data set . . . . . . . . . 132
5.11 Experiment 5.2.2 – Results for the WB data set (35-15-15-5) . . . 133
5.12 Experiment 5.2.3 – Results for the BIN2 and BIN3 data sets . . 135
5.13 Experiment 5.2.3 – Results for the WB data set . . . . . . . . . . 136
5.14 Experiment 5.2.4 – Results for the BIN2A data set . . . . . . . . 139
5.15 Experiment 5.2.4 – Results for the WBA data set . . . . . . . . . 140
5.16 Experiment 5.2.5 – Results for the WBA data set with an added

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.17 Experiment 5.4.4 – Internal representations of the BP-networks . 149
5.18 Experiment 5.4.4 – Sensitivity coefficients corresponding to the

BP-networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.19 Experiment 5.5.1 – Results for the BIN2 and WB data sets . . . 155
5.20 Experiment 5.5.2 – Parameter setting . . . . . . . . . . . . . . . . 156
5.21 Experiment 5.5.2 – Comparison of the pruning techniques – Part I. 158
5.22 Experiment 5.5.2 – Comparison of the pruning techniques – Part II.159
5.23 Experiment 5.5.3 – Results for the WB data set (18-50-5) . . . . 161
5.24 Experiment 5.5.6 – Parameter setting . . . . . . . . . . . . . . . . 165
5.25 Experiment 5.5.6 – The most and least important input features . 168
5.26 Summary of the performance of the proposed methods . . . . . . 171

185



186



List of Figures

1 World Bank – Mutual relationship of WDI-indicators . . . . . . . 7

1.1 Formal neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Graphs of the sigmoidal and hyperbolic transfer functions . . . . . 12
1.3 Topology of a BP-network . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Generalization ability of a computational model . . . . . . . . . . 16

3.1 Convergence process for the Conjugate gradients methods . . . . . 38
3.2 Graph of the Iris data set . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Clustering of the Iris data set . . . . . . . . . . . . . . . . . . . . 49
3.4 Iris data set – Relevance of input features . . . . . . . . . . . . . 50
3.5 Graph of the function x (1− x) (x− 1

2
)2 . . . . . . . . . . . . . . . 68

3.6 Graph of the function xs (1− x)s (x− 1
2
)2 . . . . . . . . . . . . . . 69

4.1 Graph of the function (1− y)s (1 + y)s y2 . . . . . . . . . . . . . . 76
4.2 The SCA1 method – Example . . . . . . . . . . . . . . . . . . . . 106
4.3 The SCA method – Example . . . . . . . . . . . . . . . . . . . . . 107

5.1 Experiment 5.2.1 – Histograms of MSE(nt) . . . . . . . . . . . . 124
5.2 Experiment 5.2.1 – The performance of the methods for various

noise levels in the data . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Experiment 5.4.4 – Network structures developed by SCGIR-hint

and SCG-hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4 Experiment 5.4.5 – Network structures developed by SCGS and SCG152
5.5 Experiment 5.5.5 – Network structures developed by SCGIR-hint

and SCG-hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.6 Experiment 5.5.6 – Sensitivity coefficients (before pruning) . . . . 166
5.7 Experiment 5.5.6 – Sensitivity coefficients (after pruning) . . . . . 167
5.8 Experiment 5.5.6 – Average sensitivity coefficients (before and af-

ter pruning) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

187



188



List of Algorithms

1.1 Back-propagation algorithm . . . . . . . . . . . . . . . . . . . . . 19
3.1 General schema of the Conjugate gradients algorithms . . . . . . 41
3.2 Scaled conjugate gradients algorithm (SCG) . . . . . . . . . . . . 44
3.3 General principle of pruning . . . . . . . . . . . . . . . . . . . . . 55
4.1 Function SCGIR() . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Function SCG() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Function train and prune() . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Function prune hidden and input neurons() . . . . . . . . . . . . 90
4.5 Function SCGS() . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Function SCGSA() . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 General principle of the k-fold cross-validation . . . . . . . . . . . 119

189



190



List of Abbreviations

ANN Artificial Neural Network

BP-algorithm Back-Propagation algorithm

BP-network Fully-connected multilayer feed-forward neural network

CG Conjugate Gradients

FSS The process of Feature Subset Selection

GDP Gross Domestic Product

GNI Gross National Income

IG Income Group

IR The method of learning condensed Internal Representa-
tion

OECD Organization for Economic Co-operation and Develop-
ment

PCA Principal Component Analysis

PPP Purchasing Power Parity conversion factor

SC The method of analytical Sensitivity Control

SCA The method of Approximative Sensitivity Control

SCG Scaled Conjugate Gradients

UIR The method of learning Unambiguous Internal Repre-
sentation

VC-dimension Vapnik-Chervonenkis dimension

WD Weight Decay

WDI World Development Indicator

191



192


	Introduction
	Basic concepts
	Formal neuron
	Artificial neural network
	Recall process
	Training process

	Generalization and VC-dimension
	Back-propagation algorithm
	Analysis
	Analysis of the standard BP-model
	Analysis of the BP-algorithm


	Goals of the thesis
	Introduction
	Statement of the main goals
	Chronological structure of the goals
	The first goal – Fast knowledge extraction
	The second goal – Topology simplification
	The third goal – Fast creation of a simple and clear internal structure


	Analyzed methods
	Methods for fast training of BP-networks
	Conjugate gradients methods
	Scaled conjugate gradients 

	Feature selection techniques
	Feature ranking methods
	Wrapper methods
	Embedded models

	Methods for structure optimization
	Brute-force methods
	Pruning algorithms
	Sensitivity analysis
	Network construction techniques
	Probability optimization techniques
	Regularization techniques
	Remarks

	Methods for improved generalization
	Early stopping
	Learning from Hints
	Training with Jitter
	Summary of Section 3.4

	Methods for creation of a transparent network structure
	Learning condensed internal representation
	Learning unambiguous internal representation


	Results achieved
	Fast knowledge extraction
	Introduction
	Proposal of the SCGIR-method
	Summary of Section 4.1

	Topology simplification
	Introduction
	Pruning based on internal representation
	Pruning based on sensitivity analysis
	Analytical sensitivity control
	Summary of Section 4.2

	Fast creation of a simple and clear internal structure
	Introduction
	Approximative sensitivity control
	Summary of Section 4.3


	Experiments
	Introduction
	Data sets
	Performance evaluation
	Settings and notation
	The structure of supporting experiments

	Generalization
	Experiment 5.2.1 – General results
	Experiment 5.2.2 – Extended results 
	Experiment 5.2.3 – Results on weight decay
	Experiment 5.2.4 – Results on SCGIR
	Experiment 5.2.5 – Extended results on SCGIR
	Summary of Generalization

	Speed
	Experiment 5.3.1 – General results
	Experiment 5.3.2 – Results on SCGIR 
	Experiment 5.3.3 – Stability test 
	Summary of Speed

	Transparency
	Experiment 5.4.1 – General results
	Experiment 5.4.2 – Results on SCGIR 
	Experiment 5.4.3 – Extended results on SCGIR
	Experiment 5.4.4 – Example network structures (for SCG-hint and SCGIR-hint)
	Experiment 5.4.5 – Example network structures (for SCGS and SCG)
	Summary of Transparency

	Structure optimization
	Experiment 5.5.1 – Feature selection techniques
	Experiment 5.5.2 – Pruning techniques 
	Experiment 5.5.3 – General results
	Experiment 5.5.4 – Results on SCGIR
	Experiment 5.5.5 – Example network structures (for SCG and SCGSA)
	Experiment 5.5.6 – Sensitivity analysis
	Summary of Structure optimization


	Conclusions
	Bibliography
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations

