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Abstract 
 

 

 

 

Variability of magmatic textures records a wide array of physicochemical and 

mechanical processes that have operated in a magma chamber during its crystallization. Here 

I investigate how the final textural record can quantitatively be used to decipher the magma 

crystallization history and internal dynamics of magma chambers. The thesis is based on a 

formulation of numerical models of texture formation under the activity of various 

crystallization processes. Numerical results are then compared to the new quantitative textural 

datasets derived from four distinct magmatic systems in the Bohemian Massif: (i) 

Fichtelgebirge-Smrčiny granite batholith; (ii) Krkonoše-Jizera plutonic complex; (iii) Kdyně 

mafic intrusion; (iv) České středohoří volcanic complex. Combination of the field textural 

studies with their interpretation via numerical crystallization models provides new 

implications regarding magmatic crystallization and internal dynamics of magma chamber. 

The most important results of this Ph.D. thesis are as follows: 

(i) a new method has been developed that allows the rates of nucleation and growth of 

crystals to be derived from quantitative textural data. The method requires using the 

crystallinity evolution in time as an independent constraint in order to provide unique 

solution. In case of the Hawaiian lava lakes, where direct observation of magmatic 

crystallization was possible, the calculated rates are in the order of 10-11 cm s-1 and agree well 

measured values; 

(ii) forward numerical modeling of texture formation provided a quantitative 

connection between the rates of nucleation and growth and final textural record. Simulated 

textures suggest that the effects of crystallization processes other than is homogeneous 

nucleation and growth of crystals on final textural record can be separated using conventional 

and non-traditional textural descriptors. Quantitative relationships are calibrated between the 



Abstract 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- ii - 

textural parameters and the extent of heterogeneous nucleation and mechanical interstitial 

melt extraction efficacy; 

(iii) application of numerical results to natural magmatic textures ranging from 

granites and mafic cumulates to porphyritic volcanic rocks suggests that heterogeneous 

nucleation is generally a dominating mechanism of formation of nuclei in silicate magmas. 

Extraction of interstitial melt thus the crystal/liquid separation and accumulation of crystals is 

ubiquitous process in porphyritic rocks where large crystals are supposedly present in 

magmatic suspension; 

(iv) in porphyritic granites the textural record indicates that large intrusive unites of 

plutonic complexes can be emplaced rapidly as single magmatic batches that undergo 

subsequent internal differentiation by mechanical processes as crystallization proceeds; 

(v) in the Jizera granite (Krkonoše-Jizera plutonic complex) the melt extraction was 

most effective close to the floor and roof of more than 550 m thick intrusive unit while the 

crystal-melt separation was negligible in the unit interior. These observations support a new 

differentiation model in which the crystals suspended in a convecting magma are captured 

from the suspension as the melt percolated through the rigid crystal frameworks of the upper 

and lower solidification fronts.  

In general, these results illustrate that integration of numerical modeling and field 

textural studies provides a powerful tool for interpreting the solidification dynamics and 

internal lifestyle of magma chambers. 
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Abstrakt / Czech abstract 
 

 

 

 

Variabilita magmatických textur zaznamenává širokou škálu termokinetických 

a mechanických procesů fungujících v magmatických krbech v průběhu jejich krystalizace. 

Tato disertační práce se zaměřuje na kvantitativní využití texturního záznamu k pochopení 

krystalizační historie a vnitřní dynamiky magmatických krbů. Základem předkládané práce je 

formulace numerických modelů pro vznik magmatických textur za účasti různých 

krystalizačních procesů v průběhu tuhnutí magmatu. Výsledky numerických simulací jsou 

porovnávány s novými sadami texturních dat získanými ze čtyř odlišných magmatických 

systémů v Českém masivu, a to ze: (i) smrčinského granitového batolitu; (ii) krkonošsko-

jizerského plutonického komplexu; (iii) kdyňské mafické intruze; (iv) vulkanitů Českého 

středohoří. Kombinace terénních texturních studií s interpretací texturních dat pomocí nových 

numerických modelů krystalizace poskytuje nové implikace ohledně magmatické krystalizace 

a vnitřních procesů v magmatických krbech. Nejdůležitější výsledky této disertační práce 

jsou: 

(i) rychlosti nukleace a růstu krystalů v magmatu mohou být odvozeny z texturních 

dat. Další nezávislý parametr v podobě průběhu krystalinity v čase je však nezbytný k získání 

jednoznačného řešení. Tam, kde je možné přímé pozorování krystalizace (lávová jezera na 

Havaji), jsou vypočtené rychlosti v dobré shodě s rychlostmi pozorovanými v přírodních 

magmatických systémech; 

(ii) numerické krystalizační modely ukazují, že s použitím obvyklých i nových 

kvantitativních texturních parametrů je možné oddělit texturní záznam dílčích procesů 

aktivních během krystalizace magmatu. Jsou kalibrovány kvantitativní vztahy mezi texturními 

parametry a intenzitou heterogenní nukleace a efektivitou mechanické extrakce intersticiální 

taveniny; 
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(iii) použití numerických modelů k interpretaci přírodních magmatických textur 

z různých horninových typů a prostředí vzniku ukazuje, že heterogenní nukleace je obecně 

dominantním mechanizmem vzniku krystalů. Extrakce intersticiální taveniny, a tím 

i oddělování taveniny a krystalů a akumulace krystalů se ukazuje jako zásadní proces, který je 

všudypřítomný v porfyrických horninách, kde se krystaly během krystalizace vyskytovaly 

v magmatické suspenzi; 

(iv) texturní záznam porfyrických granitů ukazuje, že velké intrusivní jednotky 

plutonických komplexů mohou být vmístěny rychle v podobě jednoho magmatického pulsu, 

který prochází následnou vnitřní diferenciací mechanickými procesy během krystalizace 

v prostoru vmístění; 

(v) v jizerském granitu (krkonošsko-jizerský plutonický komplex) textury dokumentují 

nejvíce efektivní extrakci taveniny v blízkosti dna a stropu a zanedbatelnou extrakci taveniny 

v centru více než 550 m mocného magmatického tělesa. K vysvětlení pozorovaného průběhu 

míry extrakce taveniny je navržen nový diferenciační model, který předpokládá zachycování 

krystalů z konvektující magmatické suspenze v horní a dolní solidifikační frontě; 

Tato disertační práce ukazuje, že spojení terénních texturních studií a kvantitativního 

modelování vzniku textur poskytuje silný nástroj k pochopení magmatické krystalizace, 

vnitřní dynamiky a vývoje magmatických krbů.  
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Chapter 1.  
 
 
Introduction 
 
 
 
 
1.1. Crystallization and magma chamber dynamics 

 

Internal dynamics and evolution of magma chambers is a combined result of magma 

cooling and crystallization and mechanical interaction between melt and crystals (e.g., Bea, 

2010). As the cargo of crystals suspended in magma increases so does the effective viscosity 

of magmatic suspension (e.g., Barnea & Mizrahi, 1973; Petford, 2009; Picard et al., 2013), 

and motion of crystals relative to the magma and flow of the bulk suspension becomes 

progressively hindered. Once the crystal fraction reaches the critical value when the solid 

phases interconnect, the crystal mush becomes essentially rigid and it develops a yield 

strength (Marsh, 1981; Vigneresse et al., 1996; Vigneresse & Tikoff, 1999; Saar et al., 2001; 

Petford, 2003). The crystallization progress thus predetermines rheological and mechanical 

behavior of magmatic suspension (crystal mush). 

In natural magma chambers cooling as well as crystallization is non-uniform and it 

varies spatially. Cooling starts from intrusion contact and progresses into the magma chamber 

interior. As a result, solidification fronts form through which crystallinity increases and 

magma evolves from a liquid or sparse suspension to nearly solid slurry while magma 

chamber interior remains in a liquid state (e.g., Marsh, 1989, 1995, 2002). Initially, the 

solidification fronts are sharp and thin and located close to the intrusion contacts. As cooling 

progresses, the fronts become thicker and they propagate into the magma chamber at the 

expanse of the liquid or suspension zone. The suspension zone is able to flow and it may be 

convecting (e.g., Marsh, 1989, 1995; Verhoeven & Schmalzl, 2009; Bea 2010; Huber et al., 
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2012), and suspended crystals are able to move by gravitational settling due to density 

difference relative to melt (e.g., Schwindinger, 1999; Verhoeven & Schmalzl, 2009). Efficacy 

of both the crystal settling and magma convection depends, among other factors, on the 

thickness and viscosity of the suspension zone. If conditions are favorable, the settling 

velocity exceeds the propagation rate of the upper solidification front. In turn, the upper 

solidification front is effectively being disaggregated as it grows and all new crystals are 

gravitationally dragged away and deposited onto the lower solidification front (Fig. 1.1). 

Two general end-member cases of magma chamber solidification are thus theoretically 

possible: (i) solidification front-dominated, where crystallization mainly proceeds in-situ and 

it takes place symmetrically within the upper and lower solidification fronts; 

(ii) accumulation-dominated, where the rate of crystal settling exceeds the front propagation 

and the lower solidification front grows as a cumulate pile. Needless to say, the transition 

between the two end-member cases is driven by the magma crystallization kinetics. 

Crystallization kinetics dictates the appearance rate and crystal size at the solidification front 

edge, thus the crystal settling efficacy. This problem will be discussed later and it will be 

illustrated how kinetics comes into play in determining the mode of magma chamber 

solidification (Section 1.3). 

 

 
 

 
 

Fig. 1.1. Evolution of a sill-shaped magma chamber by propagation of solidification fronts and suspension 
crystallization. Abbreviations: CR – country rock; USF – upper solidification front; SPT – solid percolation 
threshold; SZ – suspension zone; LSF – lower solidification front. Symbols: vS – crystal settling velocity; vF – 

solidification front propagation velocity. 
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Excepting outstanding cases of the Hawaiian lava lakes (e.g., Cashman & Marsh, 

1988; Cashman, 1993), magma chambers are inaccessible to direct observations. 

Understanding their internal processes thus remains restricted to the indirect evidence and to 

laboratory and numerical modeling studies. In this thesis, I will show that magmatic textures 

provide a valuable record of the kinetics and mechanics of magma crystallization process and 

may serve as an important tool in our understanding of a magma chamber evolution. 

 

 

1.2. Physicochemical principles of magmatic crystallization 
 

When a melt cools below the equilibrium liquidus temperature it becomes 

oversaturated in one or multiple solid phases and begins to crystallize. The crystallization 

proceeds by two mechanisms – nucleation and growth of crystals. After crystallization the 

system may experience a period of textural coarsening in which small crystals are destroyed 

in order to reduce the excessive surface energy. These processes operate in a closed system 

and represent in-situ crystallization. Apart from that, mechanical movement of crystals can 

occur and distant parts of the crystallizing magma chamber can exchange their crystals.  

 

 

1.2.1. In-situ kinetic crystallization 

 

Below the liquidus, bulk solid phase is energetically favorable with respect to liquid 

state as Gibbs energy per unit volume, mass, or number of moles of solid is lower than that of 

the melt. Crystals, however, have finite surface area and associated surface energy (surface 

tension) contributes to the energy budget. While generally small, the surface energy becomes 

important in small crystals, whose surface to volume ratio is high and the surface energy tends 

to destabilize them. As a result, crystals are unstable below certain critical size and atomic, 

molecular or ionic clusters smaller than the critical size would dissolve. To form a 

thermodynamically stable crystal, the critical size must be overcome. This happens as a result 
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of random collisions of building units (atoms, molecules, ions) in the melt. The formation of 

clusters with structure analogous to crystal lattice is called homogeneous crystal nucleation 

(e.g., Becker & Doring, 1935; Lasaga, 1998; Hammer 2004). 

Critical cluster size is a strong function of the crystal surface energy. However, the 

surface energy is considerably lowered if the cluster shares part of its surface with another 

solid phase. In turn, presence of solid surfaces on which clusters may be formed decreases the 

critical cluster size and facilitates crystal nucleation. In this case, the nucleation is termed 

heterogeneous as it takes place on heterogeneities in a heterogeneous system composed of 

multiple phases (e.g., Lasaga, 1998). Due to the smaller critical cluster size and lower 

associated energy barrier of nucleation, heterogeneous nucleation is easier and a majority of 

crystals are supposed to be formed by this process (e.g., Lofgren, 1983; Hammer et al., 2010). 

Once a thermodynamically stable crystal (larger than the critical size) is formed, it 

continues to grow by addition of building units on its surface (e.g., Kirkpatrick, 1975; Lasaga, 

1998). Building units remain most stable in locations where the largest number of bonds can 

be formed to the existing crystal surface. However, the specificity with which the positions 

are chosen depends on the degree of undercooling. At low undercooling, only the most 

favored locations are always chosen and the crystal surface remains, on the atomic level, 

ideally flat. As undercooling increases the specificity of attachment decreases and the surface 

evolves to rough with large elevation differences (e.g., Lasaga, 1998). Depending on the 

degree of undercooling, concentration of impurities or defects in crystal lattice or other 

environmental variables, the crystal growth thus occurs by several growth mechanisms which 

differ on the atomistic scale (e.g., Kirkpatrick, 1975). 

 

 

1.2.2. In-situ static recrystallization and size-dependent growth 

  

The crystal growth mechanisms considered in the previous section (1.2.1) are jointly 

termed surface-controlled growth, as the reaction on the crystal surface is the rate limiting 

step that determines the overall crystal growth rate (e.g., Kirkpatrick, 1975; Lasaga, 1998). In 
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surface controlled growth, the crystal size increases steadily and the growth rate remains 

constant when all the intensive variables remain fixed. 

In contrast to the surface control of growth, the transport of the reactants to the crystal 

surface may be the rate-determining factor. In such a case, the crystal growth becomes 

diffusion-controlled. During the diffusion-controlled growth a depleted zone impoverished in 

nutrients concentrated in the crystal forms around its surface and the nutrients must be 

transported through the depleted zone by diffusion. Larger crystals are surrounded by larger 

depleted zones and the reactant transport is thus slower. As a result, the growth rate of crystal 

decreases with increasing crystal size (e.g., Lasaga, 1998). 

Transport of nutrients is not the only process leading to the crystal size-dependent 

growth rate. As already stated (Section 1.2.1) the surface energy contribution adds to the 

energy budget of crystallization and it reduces the effective driving force for crystallization 

experienced by a crystal. The size-dependent surface energy effect propagates into the growth 

rate which also becomes size-dependent. For macroscopic crystals, the surface energy 

contribution is usually unimportant compared to the bulk Gibbs energy of crystallization. 

However, close to the equilibrium, at low undercooling, the bulk Gibbs energy of 

crystallization is small and the surface effects become important. Small crystals are thus 

energetically unfavorable compared to the large ones and in a system held close to the 

equilibrium the material tends to be transferred from small to larger grains. This effect is 

variably referred to as textural coarsening, Ostwald ripening or textural equilibration and it 

decreases the total surface area thus the surface energy of the system (e.g., Higgins, 2011). 

The differences in the driving force due to surface effects are generally small leading 

to miniscule rates of textural coarsening. The coarsening is thus ineffective in rapidly 

crystallizing systems, where bulk Gibbs energy of crystallization dominates, but it becomes 

important where the crystallization is slow and the system is held at high temperatures for a 

prolonged period of time. In turn, while volcanic rocks are expected to be rarely affected by 

coarsening, the coarsening effects are ubiquitous in metamorphic rocks and their importance 

in plutonic rocks is being increasingly recognized (Fig. 1.2; e.g., Higgins, 2011). 
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1.2.3. Open system processes 

 

So far, we have considered the crystallization processes involving local transport of 

material on a grain-scale only. In-situ crystallization almost certainly represents a suitable 

model for crystallization in some settings such as in chilled margins of larger magma bodies 

or in small sills and dikes. However, it is being increasingly recognized that in many cases the 

crystals with very different growth histories are assembled together in the final solidified rock 

(e.g., Davidson et al., 2007). This assertion is supported by numerical simulations of magma 

chamber dynamics which suggest that originally unrelated domains of magma with their 

phenocrysts can be brought together by chaotic convection (Bea, 2010). Detailed study of 

major and trace elements, isotopic or cathode luminescence zoning can be used to track the 

variations of melt composition from which a crystal grew as well as to constrain the time-

scale of crystal residence or magma mixing (e.g., Davidson et al., 2007; Morgan et al., 2004; 

Słaby & Götze, 2004). In addition, density differences between crystals and melt are expected 

to promote gravitational separation by Stokes’ settling (e.g., Schwindinger, 1999). While 

(partial) cumulate origin of resulting rocks can be identified geochemically, textural 

distinction between cumulates and in-situ crystallized rocks is still controversial (e.g., 

Vernon, 1986; Vernon & Collins, 2011). 

 
 

Fig. 1.2. Concept of kinetic and equilibrium textures. In rapidly quenched (volcanic) rocks, the textural 
equilibration is unlikely, whereas in metamorphic rocks it is expected to be widespread. Examples of textures 
(from left to right): porphyritic trachybasalt, České středohoří Mts.; porphtyritic granite, Fichtelgebirge granite 

batholith; dunite cumulate, Kdyně basic intrusion. All geological units are located within Bohemian Massif, 
central Europe. 
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1.2.4. Rates of crystal nucleation and growth in magmatic systems 

 

The rates of crystal nucleation and growth are functions of environmental variables of 

which the most important is undercooling below the temperature of liquidus. Both rates equal 

to zero in the equilibrium and as undercooling increases, the rates also increase. After 

reaching maxima, the rates turn to decrease (Fig. 1.3). The decreasing trends are due to the 

temperature decrease and associated Arrhenian deceleration of kinetics (e.g., Lasaga, 1998). 

A number of experimental studies measured the growth rate as a function of 

undercooling in melts of geologically relevant composition while comparable studies of the 

nucleation rate are much more limited (e.g., Kirkpatrick, 1975, 1976, 1977, 1979; Fenn, 1977; 

Swanson, 1977; Lofgren, 1983; Swanson & Fenn, 1986; Muncill & Lasaga, 1987, 1988; see 

Hammer 2008 for review). The undercooling itself, however, remains poorly known in 

magmatic systems. Alternatively, empirical studies of solidification of lava lakes and dikes 

suggest that both kinetic quantities are related to the cooling rate of magma (e.g., Cashman, 

1993). In these studies, the time-integrated rates of nucleation and growth come from the total  

 

 

 

 
 

Fig. 1.3. The rates of nucleation, I, and growth, G, as a function of undercooling below the temperature of 
liquidus, Tm. See Section 1.4.2 for the discussion of textural evolution during crystallization at temperatures T1, 

T2, and T3. 
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numbers and sizes of crystals in a given rock volume. Combined with the cooling rate from 

thermal models, this approach provides characteristic, time-averaged rates of nucleation and 

growth as a function of the cooling rate. 

Experimental studies conducted mostly on analogue materials indicate the size-

dependent nature of the crystal growth laws and suggest that inherent variability may exist 

between the growth rates of otherwise comparable crystals (i.e., dispersion of growth rate) 

(e.g, Eberl et al., 2002). The physical origin of these effects as well as its potential 

significance in magmatic crystallization is, however, not yet known. 

 

 

1.3. Crystallization and magma chamber dynamics revisited: 
Illustrative exercise on the upper solidification front stability 

 

In this section I will use an example of upper solidification front propagation vs. 

destruction due to crystal settling to illustrate the interplay of mechanical and kinetic effects 

during magma crystallization. As cooling progresses the isotherms and the crystallinity 

isolines propagate into the magma chamber and a zone in which crystal mush locks into the 

interconnected crystal framework expands through the suspension zone (e.g., Marsh, 1995, 

2002). A rheologically rigid zone of interconnected crystal framework is bounded by the 

solidus isotherm on its outer side and by the isotherm at which critical crystallinity of 

interlocking occurs on the inner side. At the isotherm of critical crystallinity, the rigid crystal 

mush evolves to mobile suspension. The crystals at the boundary are subjected to gravity and 

can escape from being captured in the upper solidification front by Stokes’ settling. A ratio of 

the crystal settling to the solidification front propagation velocity thus determines whether the 

magma chamber solidifies by crystal accumulation or whether an in-situ solidification front is 

stable and propagates. 
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1.3.1. Crystallization of sills: Cooling, crystallization, and characteristic crystal size  

 

Let us assume tabular magma chamber (sill) of half-thickness D emplaced horizontally 

deep into host rocks and cooling conductively. To keep this exercise simple, I will ignore the 

effects of internal magma convection, cooling due to volatile release and transport within the 

host rock, or latent heat release during the crystallization. The temperature within the magma 

can be calculated analytically and is given by (e.g., Marsh, 2002): 

 

  
0

', ' 1 1 ' 1 'erf erf
2 2 ' 2 '

w

w

T x t T x x
T T t t

       
, (1.1) 

 

where T(x’,t’) is temperature at dimensionless position x’ at dimensionless time t’, Tw is initial 

wall-rock temperature, and T0 is initial temperature of magma. Dimensionless time and 

position are defined as 

 

 2' ,               ' ,x Kx t t
D D

   (1.2) 

 

where x and t are absolute position and time, respectively, D is the magma chamber half-

thickness, and K is thermal diffusivity. The dimensionless time, t’, is thus the absolute time 

normalized by the characteristic cooling time, tchar = D2/K, leading to t’ = t/tchar. The position x 

is a vertical coordinate with origin in the center of the magma chamber. 

Let us further assume that the magma was emplaced into the upper crust (Tw = 200 

C) at its liquidus temperature (T0 = 1200 C), and that its solidus temperature is 200 C lower 

than the liquidus. These values broadly approximate the liquidus and solidus temperatures of 

basaltic magmas, as measured for example in Hawaiian lava lakes (e.g., Cashman & Marsh, 

1988; Cashman 1993). The cooling model (Eqn. 1.1) enables us to calculate the temperature 

evolution (Fig. 1.4a) and the time of arrival of solidus isotherm thus the duration of the 

crystallization interval at any point within the magma body. As expected, the crystallization is 

short close to  the wall-rock, but longest  in the center of the sill (Fig. 1.4b),  where the solidus 
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isotherm arrives at t’  0.3, that is, at 30 % of the characteristic cooling time. During this 

crystallization interval the temperature drops by the liquidus minus solidus temperature 

difference, i.e., by 200 C. Using the time and temperature difference, the cooling rate (in 

C s-1) at any point within the magma chamber of arbitrary half-thickness can be evaluated. 

A number of crystallization studies recognized that the rate of growth and nucleation 

relates to the cooling rate. For basaltic magmas, the relationships for the growth rate, G, and 

nucleation rate, I, were quantitatively calibrated (Cashman, 1993): 

 

 

dlog 7.81 0.88log ,
d

dlog 0.72 1.35log ,
d

TG
t

TI
t

  

 

 (1.3) 

 

with original units of C hour-1 for the cooling rate, dT/dt, cm s-1 for the growth rate, cm-3 s-1 

for the nucleation rate. Using the rates of growth and nucleation, the characteristic crystal 

size, L0, can be estimated (e.g., Marsh, 1998): 
 

 
 

Fig. 1.4. Thermal model of sill-shaped conductively cooling magma chamber. (a) thermal evolution (C) of 
solidifying sill-shaped magma chamber. Model parameters: magma liquidus temperature, TL = 1200 C; magma 

emplaced at its liquidus temperature; magma solidus temperature, TS = 1000 C; wall-rock temperature, 
TW = 200 C; thermal diffusivity, K = 10-6 m2 s-1. (b) time of arrival of solidus isotherm as a function of relative 
position within a magma chamber. 
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 (1.4) 

 

where the constant C is a geometrical factor of the order of one and we further use C = 1. The 

characteristic crystal size is smallest near the intrusive contact and it increases into the magma 

chamber interior, where crystallization period is longer and cooling rate slower (Fig. 1.5). In 

addition and as expected, greater sill thickness leads to overall greater crystal size. 

 

 

1.3.2. Crystallization of sills: Formation of upper solidification front 

 

The simple cooling-crystallization model (Section 1.3.1) allows a typical grain size in 

a solidified rock to be estimated as a function of the position within the magma chamber and 

magma chamber thickness (Fig. 1.5). Interlocking and mutual capture of crystals to form the 

rigid part of the solidification front, however, occurs earlier during the crystallization and the 

crystals at the capture front are thus smaller than the expected characteristic crystal size, L0. 

The  interlocking  occurs  at  rheologically  critical  crystallinity,  crit,  whose  estimates  vary  
 

 
 

Fig. 1.5. Characteristic crystal size, L0, as a function of relative position within the magma chamber for three 
representative values of magma chamber half-thickness, D. 



1. Introduction 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 12 - 

greatly according to crystal shape or size sorting (e.g., Marsh, 1981; Vigneresse et al., 1996; 

Vigneresse & Tikoff, 1999; Saar et al., 2001; Petford, 2003). In further calculations we will 

use a conservative estimate of crit = 0.3. I will further assume that crystallinity increases 

linearly with time and temperature during the crystallization interval. The critical crystallinity, 

crit = 0.3, is thus reached during the 30 % of the crystallization interval and the characteristic 

crystal size at which the critical crystallinity and rheological transition occurs reaches 30 % of 

the final size L0. In general and under above-mentioned assumptions, the characteristic crystal 

size at the critical isotherm, Lcrit, can be estimated as 

 
 crit 0 crit .L L   (1.5) 

 

The crystals at the critical isotherm are located on a boundary between the mobile 

suspension and the rigid zone of the solidification front. These crystals are thus the largest and 

the most mobile ones which are still able to escape from being captured in the advancing 

upper solidification front by settling. The settling velocity, vs, is given by the Stokes’ law: 

 

 
2

crit
s

2
9 2

Lgv 


 
  

 
 (1.6) 

 

where g is acceleration due to gravity, ∆ is density difference between the crystals and the 

melt, and  is effective viscosity of suspension. As solidification front advances towards the 

center of the magma chamber, the characteristic crystal size at the isotherm of critical 

crystallinity increases and so does the settling velocity. In other words, the settling velocity of 

crystals at the solidification front edge increases as the front thickens (Fig. 1.6). 

The balance between the settling velocity, vs, and the front propagation velocity, vf, 

determines whether the upper front is stable and propagates by crystal formation or the front 

disaggregates by crystal release and settling into the chamber interior. In case of stable and 

propagating front the front propagation velocity equals to the propagation velocity of the 

isotherm of critical crystallinity. In this simple model, the propagation velocity is quantified 
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as a numerical derivative of the front position in discrete time steps. The front propagation 

velocity is high in the initial period of cooling, then it decreases and finally increases before 

the upper and lower solidification fronts merge (Fig. 1.6). This behavior corresponds to the 

shape of isotherms in the time vs. position in the magma chamber diagram (Fig. 1.4a). 

Three kinds of a relationship between the settling and propagation velocity are 

possible: (i) the settling velocity is always lower that the propagation velocity (Fig. 1.6a). The 

upper solidification front forms and expands until it meets with the lower front near the center 

of the sill; (ii) the settling velocity is always greater than the propagation velocity (Fig. 1.6c) 

and the upper solidification front never forms as all newly formed crystals are removed by 

settling; (iii) transitional case, in which the propagation velocity is initially higher, thus the 

upper front starts growing, but the settling velocity overwhelms before the fronts merge and 

propagation of the upper front is thus terminated (Fig. 1.6b). The two end-members, (i) and 

(ii), correspond to the solidification regime dominated by solidification fronts (case (i)) and 

by crystal accumulation (case (ii)). 

 Importantly, the solidification regime depends on the magma viscosity and sill 

thickness  (Figs. 1.6, 1.7).  At  any  relevant  magma viscosity, relatively thin sills develop the  

 

 
 

Fig. 1.6. Crystal settling and solidification front propagation velocities, vs and vf, respectively. Calculated for 

magma viscosity,  = 102 Pa s (basaltic melt) and three magma chamber half-thicknesses: (a) D = 3 m; 
(b) D = 30 m; (c) D = 1000 m. Further computational details are given in Fig. 1.4. 
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upper solidification front (model (i)), while solidification of thicker sills is dominated by 

accumulation (model (ii)). Surprisingly, the crystal accumulation is thus more effective in 

larger magma bodies. This is due to the fact that cooling time scales vary with square of 

magma chamber size but the dependence of a crystal settling time on the chamber size is only 

linear. The regime diagram (Fig. 1.7) shows the transition between the two modes of 

solidification as a function of the sill thickness and melt viscosity. 

A number of simplifications were made in the above outlined approach. For example, 

the effect of convection on cooling and front propagation was neglected. Additionally, the 

kinetic relationships (Eqn. 1.3), originally calibrated for basaltic composition, were 

extrapolated over a wide range of viscosities. While almost surely oversimplified to be correct 

in detail, the qualitative inferences are generally valid and this simple model illustrates how 

the interplay of kinetic and mechanical effects can be used to decipher the solidification 

processes and internal evolution of magma chambers. 

 

 

 
 

Fig. 1.7. Regime-diagram of a magma chamber solidification style as a function of melt viscosity, , and 
magma chamber half-thickness, D. In the “front stable” field, the upper solidification front progresses into the 
magma chamber center, where it meets the lower solidification front. In contrast, in the “front unstable” field, 

the upper solidification front never forms, since all crystals are gravitationally dragged to the chamber interior 
before they are incorporated into the rigid crystal framework. In the “stable/unstable transition” the upper 
front starts propagating but the crystal settling overwhelms before the upper front meets the lower front. The 

magma chamber behavior was determined at discrete set of points (indicated by point symbols). Further 
computational details are given in Fig. 1.4. 
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1.4. Textures as a record of crystallization processes and their rates 
 

1.4.1. Quantitative description of magmatic textures 

 

Quantitative description of size, shape, spatial, and contact parameters of magmatic 

textures is essential for various comparative and interpretation purposes (cf., Higgins, 2006). 

The crystal size distribution, CSD, is a conventional measure of the grain size and its 

variability in rocks (e.g., Cashman & Marsh, 1988; Marsh, 1998; Higgins, 2000, 2002a). The 

CSD illustrates variations of crystal population density, that is, the relative number of crystals 

per unit volume, as a function of the crystal size. In magmatic rocks, the natural logarithm of 

population density show straight relationship with crystal size. As a consequence, possible 

deviations from linearity can provide information about the crystallization process, such as 

mixing of crystal populations, textural coarsening, or heterogeneous nucleation (e.g., 

Armienti et al., 1994; Marsh, 1998; Higgins, 2002, 2006; Špillar & Dolejš, 2015). While 

frequently used in textural quantification of volcanic and mafic plutonic rocks (Armienti et 

al., 1994; Higgins, 1996; 2002; Boorman et al., 2004; Higgins & Chandrasekharam, 2007), 

comparable CSD studies of felsic plutonic rocks and felsic rock in general are much more 

sparse (e.g., Mock et al., 2003; Yang, 2012). 

Spatial distribution of crystals bears additional information on the kinetics and 

dynamics of the crystallization process. The simplest method of spatial distribution analysis is 

evaluation of the clustering index (e.g., Clark & Evans, 1954; Kretz, 1966, 1969; Jerram et 

al., 1996, 2003). Individual crystals of a texture of interest are substituted by points placed at 

the crystal centers and for each point the distance to the nearest neighbor is evaluated. The 

clustering index is then defined as a ratio of the average nearest neighbor distance to its 

expected value in a perfectly random assembly of points. The clustering index is thus smaller 

than unity when the crystal population is clustered and it is greater than unity when the 

assembly is ordered (anti-clustered). The method provides a simple tool to characterize the 

clustering, ordering or randomness of crystal suspensions and to identify effect of various 
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other mechanical or kinetic processes during the magma solidification (e.g., Mock et al., 

2003). 

The clustering index works with the nearest neighbors only and it ignores the pattern 

of spatial distribution of crystals on longer scales. More detailed characterization of the spatial 

distribution pattern is possible using the spatial distribution functions such as Ripley’s K 

function or pair correlation function (e.g., Baddeley, 2008; Rudge et al., 2008). These 

statistical tools characterize the area density of crystals as a function of distance which can 

again be benchmarked against theoretical values for random, ordered or clustered 

distributions on various length scales. 

 

 

1.4.2. Origin of magmatic textures and interpretation of textural measurements 

 

Magmatic textures are a combined result of kinetically driven nucleation and growth 

of crystals, textural equilibration and mechanical processes such as crystal accumulation, flow 

sorting or mixing of magmas (e.g., Lasaga, 1998; Marsh, 1998; Higgins, 2006). Here I 

examine how these processes affect the resulting magmatic texture and its CSD in particular. 

Across various rock types, geotectonic settings of their origin and shape and cooling regime 

of their parental magma bodies, the CSDs of large fraction of magmatic rocks are 

characterized by a straight line in a crystal size vs. logarithm of the population density 

projection (Cashman & Marsh, 1988; Wilhelm & Wörner, 1996; Higgins, 2002; Zieg & 

Marsh, 2002; Boorman et al., 2004). It is generally accepted that straight CSDs result from 

kinetic crystallization by nucleation and growth (e.g., Lasaga, 1998; Marsh, 1998). During 

kinetic crystallization, both nucleation and the growth rate contribute to the characteristic 

grain size and CSD slope of the resulting texture. Both rates are non-monotonous functions of 

undercooling, but maximum of the nucleation rate is shifted towards higher undercooling 

(lower temperature) compared to the growth rate maximum (Fig. 1.3; e.g., Swanson, 1977). 

At low undercooling (T1), the nucleation rate is low compared to the growth rate. Few nuclei 

control the growth of crystals to larger dimensions over longer timescales. The resulting 
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texture is thus coarse-grained with flat CSD slope. At moderate undercooling (T2), both rates 

are high and leading to a fine-grained texture with a steep CSD slope. Finally, at extremely 

high undercooling (T3) on the order of hundreds degrees, both nucleation and growth rates are 

close to zero, no crystals are formed and melt cools below glass transition without significant 

crystallization and vitrifies. 

Two end-member models characterize the crystallization leading to the textures with 

straight CSDs: (i) open-system crystallization; (ii) closed-system crystallization (e.g., Lasaga, 

1998; Marsh, 1998; Higgins, 2006). In the open-system model, the crystals migrate through 

the reference volume and are characterised by a mean residence time, . During which half of 

the crystals is removed from the system by outflow of magma or by crystal settling (Randolph 

& Larson, 1971). While in the system, the crystals grow by a constant growth rate, G0. The 

largest crystals are those present in the system for the longest period of time, thus in the 

smallest quantities. The CSD slope is thus inversely proportional to the G0 and  (e.g., 

Wilhelm & Wörner, 1996). 

In the closed-system crystallization, variations in the crystal number as a function of size 

are only due to the temporal variations of rates of nucleation and growth. A large number of 

combinations of the nucleation and the gorwth rate functions can produce a texture with straight 

CSD. One simple and particularly usefull combination consistent with straight CSDs is constant a 

growth rate coupled to the nucleation rate increasing exponentially in time (e.g., Marsh, 1998). 

In detail, CSDs of many magmatic textures deviate from the straight course and 

various kinks and curvatures have been reported (Armienti et al., 1994; Waters & Boudreau, 

1996; Higgins & Roberge, 2003; Higgins, 2006; Simakin & Bindeman, 2008; Yang, 2012). 

Kinked CSDs are composed of two or more straight segments, each of them characterized by 

a distinct slope. Conventionally, kinked CSDs are interpreted to be a result of multiple crystal 

populations mixing due to mixing of magmas with contrasting crystallization histories. 

Alternatively, the CSD trend may be modified in response to abrupt change of crystallization 

conditions. For example, eruption of magma to the surface or its transfer from deeper to 

shallower magma chamber increases the cooling rate and the two CSD segments then 

represent the groundmass and phenocryst populations of crystals (e.g., Marsh, 1998). 
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The CSDs with distinct kink can be regarded as a special case of concave-up curved 

distributions. The concave-up curvature has been interpreted as due to magma mixing, 

increased cooling rate, crystal aggregation or size-dependent growth (Burkhart et al. 1980; 

Eberl et al., 2002; Pupiere et al. 2008). On the other hand, the concave-down CSD curvature 

is typical for textures coarsened to some degree, where the population of small crystals was 

partially eliminated (e.g., Higgins, 2011). 

Comparably less is known about the effect of various crystallization processes on 

other textural descriptors than the CSDs. Variations of the clustering index record variable 

degree of mechanical flow sorting of crystals during the emplacement of porphyritic rhyolite 

(Mock et al., 2003) or reflect the crystallization mechanism or porphyroblasts in metamorphic 

rocks (e.g., Hirsch et al., 2000). 

 

 

1.4.3. Experimental studies and numerical simulations of textural evolution 

 

Crystallization of magma is essentially inaccessible to direct observation and the 

exceptional observations are limited to shallow-level systems such as in Hawaiian lava lakes 

(e.g., Cashman & Marsh, 1988; Cashman, 1993). Laboratory experiments on natural and 

synthetic samples as well as numerical modeling provide an alternative opportunity to study 

the crystallization process and the formation of igneous textures. The crystallization 

mechanism dictates three-dimensional structure of the crystal framework and its rheological 

properties or permeability for interstitial liquid and thus has direct consequence for magma 

transport, emplacement, differentiation and eruption (e.g., Hoover et al., 2001; Hersum et al., 

2005; Annen, 2009; Verhoeven & Schmalzl, 2009; Bea, 2010). 

Majority of experimental studies of magmatic crystallization focused on extracting the 

rates of nucleation and growth as a function of undercooling (e.g., Kirkpatrick, 1975, 1976, 

1977, 1979; Fenn, 1977; Swanson, 1977; Lofgren, 1983; Swanson & Fenn, 1986; Muncill & 

Lasaga, 1987, 1988). These studies inherently use rapid quenching of experimental charges 

which allows only the final state of the sample to be observed. Rare attempts were made to 
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characterize the textural evolution using a set of samples and multiple quenches at various 

stages of crystallization (e.g., Zieg & Lofgren, 2006; Pupier et al., 2008) or by direct in-situ 

observation in a moissanite cell (Schiavi et al., 2009). The in-situ crystallization observations 

demonstrate the size-independent growth and important role of coalescence of crystals. On 

the other hand, experiments on analogue materials suggest that size-dependent growth, 

growth rate dispersion or textural coarsening might be more important than previously 

assumed (e.g., Means & Park, 1994; Eberl et al., 2002; Mills et al., 2011). 

Various crystallization processes can be described by phenomenological or physical 

laws and numerical modeling can be used to study the formation and evolution of the 

geometry of crystal framework as well as the resulting texture. Simulated textures can be 

compared to the rock textures in order to decipher the crystallization processes active in 

natural magmas. Existing three-dimensional numerical models of crystallization (e.g., Hersum 

& Marsh, 2006; Amenta et al., 2007) provide rough approximation to continuous 

crystallization by nucleation and growth. The computational requirements, however, increase 

with increasing resolution of the simulated domain and become large or prohibitive for spatial 

resolution necessary to provide statistically representative sample of the texture. 

 

 

 

1.5. Structure of the thesis 
 

This thesis develops forward and inverse models of textural analysis that are used to 

illustrate and interpret physicochemical and mechanical processes and internal evolution of 

magma chambers. The thesis consists of the introductory chapter (Chpt. 1), five manuscripts 

(Chpts. 2–6), and a summary (Chpt. 7). 

In the introduction (Chpt. 1), I provide elementary theoretical foundations of the 

crystallization process and its implications for the origin of magmatic textures. To illustrate 

the interaction of kinetic and mechanical processes during magma crystallization I further 

formulate a simple model of sill solidification. 
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In Chpt. 2, a method of the CSD inversion is developed to extract the rates of 

nucleation and growth from textural data. The effect of the crystallization process on other 

textural parameters than the CSD is explored in Chpt. 3 via forward modeling. A high-

resolution three-dimensional numerical model of texture evolution under arbitrary rates of 

nucleation and growth is developed. Simulated textures allowed us to derive quantitative 

properties of kinetic textures which are useful indicators of activity of other crystallization 

processes than homogenous nucleation and growth of crystals is. 

In the subsequent chapters, I expand the forward crystallization model to simulate the 

textural effect of heterogeneous nucleation and crystal accumulation. In Chpt. 4, the effect of 

heterogeneous nucleation on textural parameters is explored and quantitative relationships are 

calibrated to extract the ratio of heterogeneous vs. homogeneous nuclei number based on the 

measurements of several independent textural parameters. A widespread occurrence of 

heterogeneous nucleation is shown to provide consistent explanation of observed textural 

features, such as concave-up curved CSDs, in a variety of rock types. The effect of 

mechanical crystal accumulation or melt extraction on textural parameters is studied in 

Chpt. 5. It is shown that the spatial distribution pattern of crystal centers becomes 

progressively ordered (i.e., anti-clustered) as accumulation of crystals or extraction of 

interstitial melt progresses. 

Finally, the Chpt. 6 is a quantitative study of phenocryst distribution patterns in the 

porphyritic Jizera granite, northern Bohemian Massif. Continuous textural variations across 

more than 550 m of vertical section suggest that the granitic melt was emplaced as a single 

batch that subsequently underwent mechanical in-situ differentiation. The new melt extraction 

model is applied to estimate the amount of melt extracted from the system and it provides 

inferences about connection to shallower magma chambers or to surface volcanic activity. 
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Preface to Chapter 2 
 

 

 

 

 

Rates of nucleation and growth of crystals in undercooled magmas are principal 

factors which determine the evolution and final appearance of igneous textures. Mechanical 

behavior of a crystal framework/suspension and its potential for crystal-liquid separation thus 

for the magma differentiation is driven by crystal size and interconnectivity and is therefore 

directly related to the rates of nucleation and growth. With a few exceptions, the crystallizing 

magmas are inaccessible to direct observations thus the rates of crystal nucleation and growth 

in natural systems remain poorly constrained. In this chapter, we formulate a new inverse 

numerical model to extract the nucleation and the growth rate from measurable textural data. 

We employ the crystal size distribution as principal textural information and use temporal 

evolution of crystallinity as another input parameter in order to constrain a unique solution. 

This chapter was published as ŠPILLAR, V. & DOLEJŠ, D. (2013): Calculation of time-

dependent nucleation and growth rates from quantitative textural data: Inversion of crystal 

size distribution. – Journal of Petrology 54, 913–931. The manuscript was formatted to 

conform to general layout of this thesis. 
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Chapter 2. 
 
 
Calculation of Time-dependent Nucleation and Growth 
Rates from Quantitative Textural Data: Inversion of Crystal 
Size Distribution 
 

 

 

 

2.0. Abstract 
 

Magmatic textures provide an insufficiently explored tool to interpret physical 

processes and environmental variables that drive differentiation and crystallization in magma 

chambers. We derive a new method, which utilizes the crystal size distribution (CSD), to 

retrieve the rates of nucleation and growth from natural igneous rocks. However, a single 

CSD results from arbitrary number of combinations of nucleation and growth rates, if 

additional parameters such as crystallinity evolution are employed, the solution for rates 

becomes unique. Interpretation of representative log-linear CSD trends shows that the 

nucleation rates are sensitive to even minor features of the CSD, whereas the growth rate 

functions are mainly related to the crystallinity evolution. The reconstructed growth rates 

become minimal at intermediate crystallinities but diverge to very high values at the 

beginning and the end of crystallization. This general result is related to the small effective 

area of the solid-liquid interface close to liquidus (few small grains) and near solidus (largely 

solidified with diminishing melt pools). Assuming that growth rate is related to environmental 

variables such as magma undercooling, these results suggest that solid fraction in many 

magmas increased in a sigmoidal manner over their crystallization time and indicate the 

system’s tendency for largest undercooling at the beginning and at the end of crystallization. 

For crystallization times constrained by conductive cooling models, the growth rates 
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calculated for representative CSDs are on the order of 10-11 cm s-1, which is in a good 

agreement with in situ observations of Hawaiian lava lakes. Calculated growth rates are 

inversely proportional to the magma body size and increase from the chamber interior to the 

margins. 

 

Key words:  

Crystal size distribution; crystallinity; nucleation rate; growth rate; magmatic texture. 

 

 

2.1. Introduction 
 

Mechanisms of igneous crystallization exert major control on chemical differentiation 

in magma chambers, approach to solid-melt (-fluid) equilibrium, efficiency of melt extraction 

from crystal phases and time scales of these processes (Boudreau & Philpotts, 2002; Hersum 

et al., 2005; Aarnes et al., 2008). Since magmatic processes are commonly inaccessible to 

direct observation, various indirect approaches, in particular the determination of crystal size 

distributions, were devised to unravel the magma crystallization history (Marsh, 1988; 

Cashman & Marsh, 1988; Cashman, 1993; Wilhelm & Wörner, 1996; Marsh, 1998; Higgins, 

2002a; Mock et al., 2003; Bindeman, 2003; Simakin & Bindeman, 2008). The theory of 

crystal size distribution (CSD), originally developed for industrial systems (Randolph & 

Larson, 1971), uses the nucleation and growth rates to predict observable number densities of 

crystals of different sizes. Rates of nucleation and growth thus determine final rock texture 

and its temporal evolution. Furthermore, knowledge of development of solid phase 

framework is crucial for determining dependant rheological and transport properties of the 

magma (Petford, 2003; Hersum et al., 2005; Hersum & Marsh, 2006; Champallier et al., 

2008), thus for testing the physical models of magma chambers (e.g., Tait & Jaupart, 1992; 

Jaupart & Tait, 1995; Marsh, 2002). 

The CSDs in many natural magmatic systems approach linear relationship between 

crystal size and logarithm of population density (e.g., Higgins, 2002a; Zieg & Marsh, 2002; 
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Boorman et al., 2004; Mock & Jerram, 2005). The rates of nucleation and growth and their 

variations can only exceptionally be determined from natural samples and their CSDs when 

constraining parameters on magma solidification are known, as in the case of solidification of 

Hawaiian lava lakes (Cashman & Marsh, 1988; Cashman, 1993). For fossil magmatic 

systems, theories were proposed that place constraints on nucleation and growth rates in order 

to reproduce observed log-linear CSDs (e.g., Marsh, 1998). If crystallization is assumed to 

occur in a simple open system a product of characteristic growth rate and growth time can be 

determined from a slope of the CSD (e.g., Cashman & Marsh, 1988; Mangan, 1990; Wilhelm 

& Wörner, 1996). On the other hand, batch crystallization in a closed system is usually 

supposed to occur under exponentially increasing rate of nucleation while the growth rate 

remains roughly constant (e.g., Marsh, 1998). 

Both rates are functions of intensive parameters such as Gibbs energy of 

crystallization or undercooling that are expected to vary as crystallization proceeds 

(Kirkpatrick et al., 1976, 1979; Swanson, 1977; Muncill & Lasaga, 1987, 1988; Couch, 2003; 

see Hammer, 2008 for review). In general, log-linear CSDs can result from an arbitrary 

number of combinations of crystal growth and nucleation rates, therefore interpretation of 

these time-dependent kinetic parameters is an ambiguous problem. Determination of complex 

variability of both rates, required for conceptual understanding of magma chamber dynamics, 

thus remains elusive. 

In this study, we formulate a new method of inversion of the crystal size distribution 

curve, which allows retrieval of time-dependent growth and nucleation rates. The solution 

becomes unique, when we use temporal variation of crystal volume fraction as additional 

parameter. We first formulate our model for a single-phase system but its extension to 

multiple crystallizing phases is straightforward. Our model solutions are directly applicable to 

magmas where one solid phase dominates or to multicomponent systems where crystallization 

kinetics of all solids is approximately similar. We emphasize that this approach only applies 

to igneous textures directly resulting from crystal nucleation and growth but were not affected 

by subsequent annealing or coarsening processes (cf. Higgins, 2011). 
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2.2. Kinetics of crystal nucleation and growth 
 

Crystal size distribution at time t, n(L, t), provides a quantitative measure of the 

number of crystals of size L in a unit magma volume. It is a population density function, 

hence the number of crystals of size between L and L + dL in a unit sample volume is 

n(L, t)dL (e.g., Marsh 1998, 2007). During crystallization, the crystal size distribution reflects 

temporal variations of the nucleation rate, i.e., number of nuclei formed in a unit melt volume 

per unit time, I(t), and of the growth rate, i.e., advance of crystal-melt interface per unit time, 

G(t). In an inversion problem, we look for time-dependent rates, I(t) and G(t), that satisfy the 

observed crystal size distribution, n(L, T), at time T. 

 

 

2.2.1. Evolution of crystallinity 

  

During progressive crystallization, the total volume of solid phases increases at the 

expense of melt. To quantify fraction of solid and liquid phases, respectively, as a function of 

time, we sum up the contributions of all crystals in a control volume while assuming their 

spherical shape. For volume V(t) of the crystal nucleating at time τ we obtain at any later 

time t  

 

  
3

4( ) d
3

t

V t G


  
 

   
 
 , (2.1) 

 

where G is the growth rate and τ' is the integration variable. Since crystals nucleate with the 

rate that may vary with time, it must be accounted for by second integration over the time 

interval of crystallization. Crystallinity Ф(t), i.e., volumetric fraction of crystals in the system, 

at any time t > 0 is then given by: 
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where I(t) is the nucleation rate, i.e., the number of nuclei formed per unit melt volume per 

unit time. 

Eqn. (2.2) is valid at low crystallinities only; at moderate to high crystallinities, it does 

not account for shrinkage of volume available for crystal nucleation and for variations in 

growth due to crystal impingement (e.g., Lasaga, 1998). These drawbacks are solved by mean 

field approach via the Avrami theory (Avrami 1939, 1940; see Lasaga, 1998 and Marsh, 

1998). The Avrami relationship provides quantitative link between the rates of crystal growth 

and nucleation, G(t) and I(t), respectively, and the volume fraction of the solid phase as a 

function of time. As follows from Avrami’s mean field approximation, the correct expression 

for the volume fraction of crystals as a function of time resembles the exponential of our Eqn. 

(2.2). In the environment where crystals nucleate at random positions this expression reads 

(see Lasaga (1998) for derivation): 

 

      
3

A
0

1 exp d d
t t

t I G


    
          

   
  , (2.3) 

 

where factor σA accounts for various crystal shapes. It relates the crystal volume V to the half 

of its linear dimension R as V = σAR3. For spheres, the shape factor thus becomes σA = 4π/3 as 

it has already appeared in Eqn. (2.2). 

 

 

2.2.2. Crystal population balance 

 

Development of CSD, described by population density, n(L, t), as a function of time t 

and grain size L has been conventionally evaluated from crystal population balance (Randolph 

& Larson, 1971; Lasaga, 1998; Marsh, 1998; Resmini, 2007): 
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effn G n R

t L
 

 
 

 (2.4) 

 

where Geff is an effective growth rate, and R is a source term describing changes in a 

population balance due to effects other than crystal nucleation and growth, thus incorporating 

processes such as crystal settling, grain coarsening, etc. Eqn. (2.4) represents an analogue of 

the advection equation describing the transfer of crystals from one size class to another by 

process of crystal growth (Lasaga, 1998). For a closed system with R = 0 and growth rate 

independent of grain size, the population balance equation becomes 

 

 eff 0n nG
t L

 
 

 
. (2.5) 

 

The assumption of independency of growth rate and crystal size (McCabe 1929, cf. 

Kile & Eberl 2003) was repeatedly confirmed by experimental studies (e.g., Kirkpatrick et al., 

1979; Muncill & Lasaga, 1987; Schiavi et al., 2009) and applied in many CSD studies (e.g., 

Marsh, 2007). Size-dependent growth, however, was also observed (e.g., Eberl et al., 2002) 

and attributed to various physical processes like depletion of a boundary layer (Muncill & 

Lasaga, 1987) or grain coalescence (Schiavi et al., 2009). For simplicity, we use size-

independent growth as a first-order approximation. Size-dependent rates can easily be 

incorporated into our method, if desired. 

With increasing crystallinity, probability of crystal impingement increases and the 

total area of solid-melt interface decreases, thus leading to a decrease in effective growth rate, 

Geff. The Geff becomes progressively smaller when compared to an ideal, or nominal, growth 

rate, G, describing the rate by which any surface element of crystal-melt interface advances in 

its normal direction. Note that the ideal growth rate, G, is the rate determined purely by the 

crystallization kinetics. Differences between the ideal and effective growth rates stem from 

geometrical causes only. 

In order to use the population balance equation with ideal rates, functional dependence 

between G and Geff must be defined. At very low crystallinities, when crystals do not touch 
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each other, G and Geff are equal. At very high crystallinities, Geff approaches zero as surface 

area of crystals available for growth diminishes. These two conditions may be stated as 

 

 
     
   

eff

eff

,    for   0,

0,    for   1,

G t G t t

G t t

  

  
 (2.6) 

 

where Ф(t) stands for crystallinity (solid fraction) at time t. Lasaga (1998) proposed a simple 

scaling, which conforms with Eqns. (2.6) 

 

       1/3eff 1G t G t t    , (2.7) 

 

where the exponent of 1/3 results from cubic relationship between linear growth rate and 

volume fraction.  In our approach, we note that the effective growth rate is a time derivative 

of the (observable) grain size as follows: 

 

 
 

Fig. 2.1. Two-dimensional illustration of various definitions of the grain size and of the effective growth rate. 
The time derivative of length of the longest line connecting two points on a grain boundary defines the growth 
rate, GMF. Growth rate GEV is based on a diameter of the circle which has an equal area as the crystal outline. 

The GMF and GEV are related to measurable size of crystal and hence provide alternative definitions of effective 
growth rate. The same approach can be extended to three-dimensions. 
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 eff 1 d ,
2 d

LG
t

  (2.8) 

 

where one half accounts for growth in two opposite directions away from the crystal center. 

That is, an effective growth rate is directly related to the definition of the grain size (see 

Higgins, 2000, 2006 for various definitions of the grain size) and the G – Geff relationship 

must be consistent with the adopted definition. Fig. 2.1 illustrates how the change in the grain 

topology over some finite time span can be described by different effective growth rates while 

using different definitions of the grain size. Throughout this paper, we use rate GEV as an 

effective growth rate, Geff, whereas G is an ideal growth rate directly related to the 

thermodynamic driving force for crystallization. 

In order to derive a more rigorous expression for the effective growth rate than the 

approximation afforded by Eqn. (2.7), we have employed an approach based on a CSD 

second moment (Marsh, 1988; Resmini, 2007). Consider relationship between a grain volume 

V and its size L, 

 

 3
CSDV L , (2.9) 

 

 

 
 

Fig. 2.2. The CSD at time t1 and t1 + Δt. During the time instant Δt, all grains grow by the size increment 
ΔL = 2GeffΔt and move to higher size classes, as given by the crystal population balance Eqn. (2.5). 
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where σCSD is a shape factor relating volume to linear dimension of a model geometrical 

object (for instance, σCSD = π/6 for a sphere when the sphere diameter is used as a linear size). 

Shape factor σCSD differs from the σA used previously in the Avrami equation (Eqn. (2.3)) in 

two respects: (i) σCSD is related to the shape of a geometrical object from whose size CSD is 

calculated, rather than to the real growth shape of a crystal as σA is; (ii) σCSD is related to a full 

linear dimension, whereas σA works with a “radius”, defined as a distance to which crystal 

faces moved from the nucleation center during the growth. Eqn. (2.9) provides a definition of 

the crystal size based on its volume. With this grain size definition, equation for Geff will have 

the following form (see Appendix 1 for derivation): 

 

      
1

eff 2
CSD

0

d6 , d
d

G t n L t L L t
t


  

   
 

 . (2.10) 

 

While based on different physical assumptions, Eqns. (2.7) and (2.10) provide two alternative 

conversion methods between ideal (kinetic) and effective growth rate as a function of time 

and previous crystallization history. Note that ideal rates are contained in a crystallinity 

function, Φ(t) (see Eqn. (2.3)) that enters both equations. We have tested both methods (see 

Section 2.3) and used the later one as superior through our calculation.  

 

 

2.2.3. Relationship between growth and nucleation rates 

 

Consider crystal size distribution n(L, t) at some time t as shown in Fig. 2.2a. After 

time step Δt, the entire grain population moves by increment ΔL toward greater size 

(Fig. 2.2b), in agreement with the population balance, Eqn. (2.5). The size increment ΔL is 

related to the growth rate as follows: 
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where the factor of two ensures consistency with convention in Eqn. (2.8) due to crystal 

growth on opposite crystal faces. In addition, ΔN new crystals nucleate during the time 

interval Δt, as follows: 

 

  eff d
t t

t

N I  


   , (2.12) 

 

where Ieff(t) is the effective nucleation rate. As with the effective growth rate, the effective 

rate of nucleation is lower than ideal nucleation rate owing to decreasing melt volume 

available for nucleation as crystallization proceeds. The ideal and effective nucleation rates 

are related by volume fraction of melt as follows (Lasaga, 1998; Marsh, 1998): 

 

      eff 1I t I t t    . (2.13) 

 

Conventional definition of the population density (e.g., Lasaga, 1998; Marsh, 1998) 

relates increments of the crystal number and size to the observable crystal size distribution at 

any time t: 

 

  0, Nn L t t
L


  


. (2.14) 

 

Substituting from Eqns. (2.11) and (2.12) for ΔN and ΔL, respectively, into Eqn. (2.14) we 

obtain at the limit of Δt → 0: 

 

    
 

eff

eff0,
2
I t

n L t
G t

  . (2.15) 

 

This provides a relationship between the effective nucleation and growth rates, and the crystal 

size distribution at any time t during solidification. Since all natural CSDs record 
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solidification at some final time T, described by population density n(L, T), Eqn. (2.15) will 

now be reformulated to time T, at which the crystal size distribution is observed. Recalling 

that the crystal balance Eqn. (2.5) represents an advective transfer, its solutions at different 

times t1 and t2, where t2 ≥ t1, are shifted by the rate of advection integrated over the interval of 

t2 - t1. Since the effective growth rate has a meaning of rate of advection, we obtain a simple 

relationship relating the crystal size distributions at different times 

 

  
2

1

eff
1 2, 2 d ,  

t

t

n L t n L G t
 

    
 

 , (2.16) 

 

where the Geff integral is an increase in the grain size over the interval of t2 - t1. Substituting T 

for t2 and t ≤ T for t1 and inserting Eqn. (2.16) into Eqn. (2.15) yields a relationship between 

crystal size distribution at the end of solidification, at time T, and both the nucleation and the 

growth rate as a function of time 

 

  
 

eff
eff

eff2 d ,  
2

T

t

I t
n G T

G t


 
  

 
 . (2.17) 

 

When CSD of the sample is known, Eqn. (2.17) together with relations between 

effective and ideal rates, Eqns. (2.7), (2.10) and (2.13), provide a fundamental relationship 

between the rate of nucleation and that of growth. If one rate is known or assumed, the other 

becomes dependent and can be uniquely calculated. This reasoning is similar to that of Zieg & 

Marsh (2002), however, our equations account for the time-dependent rates of nucleation and 

growth instead of employing their characteristic values. Eqn. (2.17) also highlights the 

inherent ambiguity in inversion of CSD into growth and nucleation rates. For every growth 

rate function, that is suitable to generate some observed CSD, a corresponding nucleation rate 

function can be expressed. Note that a suitable growth rate function must satisfy: 
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 eff
MAX

0

2 d
T

L G   , (2.18) 

 

where LMAX is size of the largest crystal. The integral constraint, Eqn. (2.18), is satisfied by 

unlimited number of various non-negative functions, therefore an arbitrary number of 

corresponding pairs of nucleation and growth rate functions can be constructed from a single 

CSD curve. One such pair is exponential nucleation rate and constant growth rate (e.g., 

Marsh, 1998; Hersum & Marsh, 2006; Amenta et al., 2007) but this is not a restrictive 

requirement for the origin of log-linear CSDs in natural magmatic systems. 

 

 

2.3. Numerical implementation 
 

If neither the nucleation nor the growth rate function is known or can be assumed as is 

the general case in magmatic systems, the unique solution to the CSD inversion can still be 

formulated if one additional independent parameter (function) is provided. Here we use 

crystallinity, Ф(t), as the only necessary constraint for simultaneous determination of I(t) and 

G(t) from final CSD. Progress of crystallinity can be obtained from kinetic experiments (e.g., 

Zieg & Lofgren, 2006), from unique natural observations (e.g., Marsh, 1981; Kirkpatrick, 

1976), approximated by phase equilibrium calculations (e.g., Ghiorso & Sack, 1995; Holland 

& Powell, 2001) coupled with relevant cooling models, or varied in exploratory manner. 

Eqns. (2.3) and (2.17) with (2.7) or (2.10) and (2.13) provide a complete set of relationships 

needed to calculate both the nucleation rate I(t) and the growth rate G(t) as functions of time 

from the CSD and the evolution of crystallinity, Ф(t). 

Our numerical technique employs finite discretization of length and time domain to 

solve the set of equations involved in the inversion of a crystal size distribution n(L), which is 

from some time of interest T. Let us discretize the length scale of CSD into a regularly spaced 

sequence {Li}, where {0... }i N  such that L0 = 0, Li+1 = Li + ΔL, and LN = LMAX, where LMAX 

is the size of the largest crystal. Let us further denote ni the population density corresponding 

to size Li, hence ni = n(Li). In this formulation, ΔL represents a size step at which the CSD is
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sampled in its discretized representation. Furthermore, we define sequence {ti}, {0... }i N , 

where each ti represents the time of nucleation of crystals that reached the size Li at the time 

of interest T. Note that t0 and tN represent boundary conditions of the simulation. Crystals of 

size L0 (i.e., the population of smallest grains) must have nucleated last, hence t0 = T. On the 

other hand, crystals of size LN = LMAX must have nucleated first, hence tN = 0. 

We will approximate the unknown functions, Ieff(t) and Geff(t), by a set of discrete 

values in a piecewise constant fashion as follows: 

 

 
   
  

eff eff eff eff

1

,    ,

for all , ,    where 1... .
i i

i i

I t I G t G

t t t i N

 

 
 (2.19) 

 

Unsymmetrical parentheses in Eqn. (2.19) indicate, in conventional mathematical notation, 

that the interval of t excludes or includes the start and end point, respectively. Substituting ti 

and ti-1 for the lower and upper bound of integration in Eqn. (2.11) and using above defined 

discretization we obtain 

 

  eff
12 i i iL G t t   , (2.20) 

 

for a grain size increment ΔL over a time interval  1,i it t  . Similarly, the number of nuclei 

formed during the same time interval in a unit volume of system follows from Eqn. (2.12): 

 

  eff
1i i iN I t t   . (2.21) 

 

By definition ti-1 and ti are times of nucleation of grains with size Li-1 and Li, respectively, at 

the time of interest T, hence the analogous quantity ΔN is obtained by integration from a 

crystal size distribution 

 

  
1

, d
i

i

L

L

N n L T L


   . (2.22) 
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When using trapezoidal approximation for numerical integration 

 

  1

2
i in n

N L
   , (2.23) 

 

and combining Eqns. (2.20), (2.21) and (2.23) we arrive at a relationship that couples 

nucleation and growth rates: 

 

 
eff

1 eff
i

i i
i

In n
G  . (2.24) 

 

Eqn. (2.24) represents a discrete analogue of Eqn. (2.17), and it allows us to relate the 

effective rates of growth and nucleation to one another at time ti using the population density. 

At this point, however, the value of time ti is also unknown variable to be solved for. 

We will illustrate the numerical method for two types of calculations: (i) calculation of 

nucleation rate from the CSD and an assumed growth rate and (ii) calculation of the 

nucleation and the growth rate from the CSD and crystallinity. 

 

 

2.3.1. Calculation of nucleation rate 

 

The growth rate G(t) is often expected to be less variable than the rate of nucleation 

I(t) that may increase exponentially (e.g., Cashman, 1993; Hammer & Rutherford, 2002; 

Marsh, 2007). If we assume that the growth rate is a simple, prescribed function, the 

nucleation rate necessary to produce an observed CSD, is uniquely defined and can be 

calculated. In this calculation, the crystallinity constraint is eliminated by the explicit 

assumption of the growth rate function. Furthermore, we demonstrate how distinct pairs of 

nucleation and growth rates generate identical final CSD. We employ Eqn. (2.24) to couple 

the nucleation and the growth rate at every time step i. Duration of each step is then calculated 
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from Eqn. (2.20) to provide a time reference at which the i-th discrete value of nucleation and 

growth rate is considered. 

The solution procedure (Fig. 2.3) starts at time step N, where tN = 0 is the initial 

condition, and the oldest crystals nucleated in the system. The prescribed ideal growth rate, 

GN, is first converted into the effective growth rate, eff ,NG  before Eqn. (2.24) is employed to 

couple the nucleation and the growth rate; the conversion is performed using Eqn. (2.7) or 

(2.10). Both methods were compared and the discrete form of Eqn. (2.10), that is, 

Eqn. (2.A.4) was used in final calculations. The corresponding effective nucleation rate, eff ,NI  

is then obtained from Eqn. (2.24). Since the CSD is discretized into regular ΔL steps and the 

growth rate is time-dependent, duration of each time step is generally different. The time of 

next step, tN-1, is thus obtained from Eqn. (2.20). Finally, the effective nucleation rate is 

transformed to the ideal rate using Eqn. (2.13) and the crystallinity at the current time step is 

calculated via the discretized Avrami equation (Eqn. (2.27)). This procedure is repeated at 

time steps tN-1, tN-2, etc. until the time t0, when the youngest crystals nucleated in the system, is 

reached. 

Since relationships between effective and ideal rates (Eqns. (2.7) and (2.10)) make use 

of actual crystallinity Фi or its derivative  dФ/dt(ti), these quantities must be calculated at each 

 

 
 

Fig. 2.3. Flow chart for calculation of the nucleation rate from the CSD and the prescribed growth rate function. 
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time step ti. In our computations, we use the Avrami equation (Eqn. (2.3)) or its discrete 

analogue (Eqn. (2.27)) to calculate crystallinity at any time step. The time derivative of 

crystallinity is obtained from crystallinities at current and previous time steps using backward 

difference scheme (see Appendix 2). 

It is noteworthy that the growth rate function must remain positive throughout the 

crystallization, otherwise Eqn. (2.24) would predict negative a nucleation rate and Eqn. (2.20) 

would lead to negative time step. As expected, the method cannot be applied to stagnant or 

dissolving grains.  

 

 

2.3.2. Calculation of nucleation and growth rate from CSD and crystallinity 

 

For calculation of rates of nucleation, I(t), and growth, G(t), we use Eqns. (2.20) and 

(2.24) coupling CSD, eff eff,  ,i iI G  and ti-1. The solution procedure starts at time step N, where 

crystallinity ФN = 0 and time tN = 0 are the initial conditions. To calculate the rates of 

nucleation and growth that satisfy the CSD and the crystallinity requirements simultaneously, 

an iterative approach based on the method of bisection is utilized at each time step i (Fig. 2.4).  

The lower limit, Gi
(L), and upper limit, Gi

(U), for ideal growth rate are taken as zero and 

very large positive value, respectively, and are averaged to provide the mean rate, Gi
(M). The 

ideal growth rate, Gi
(M), is converted to the effective growth rate, eff (M) ,iG  using Eqn. (2.7) or 

(2.10). In the present calculations we used the discrete form of Eqn. (2.10), that is, Eqn. 

(2.A.4). The effective nucleation rate, eff (M) ,iI  is calculated for the effective growth rate using 

the CSD information (Eqn. (2.24)). Due to the regular discretization of the CSD with a ΔL 

step, duration of the time steps is irregular and it is determined from Eqn. (2.20). The ideal 

rate of nucleation, I i
(M), is then calculated from the corresponding effective rate using Eqn. 

(2.13). Based on the ideal rates, the crystallinity, calc
1 ,i  is obtained (see below). The new 

estimate for Gi
(M) is sought until the predicted crystallinity calc

1 1i i    and prescribed 

crystallinity  pres (M)
1 1i it    are equal (Fig. 2.4). If  (M) (M)

1 1i it    then Gi
(L) is replaced by 

Gi
(M) in next iteration; in an opposite case Gi

(U) accepts the value of Gi
(M). Such an approach 
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forces the true value of the growth rate to be progressively more constrained by Gi
(L) and Gi

(U) 

as iterations proceed. When the iterations have converged to a desired precision, the solution 

proceeds to the next (i-1)th time step until the step N = 0, when the youngest crystals 

nucleated, is reached.  

In order to calculate calc
1i  we use the Avrami equation (Eqn. (2.3)). The equation will 

now be recast into a discrete form, compatible with our definition of time steps. Eqn. (2.3) 

taken at time ti-1 yields: 
 

    
1 1

3

1 A
0

1 exp d d
i it t

i I G


    
 



           
    

  . (2.25) 

 
 

 
 

Fig. 2.4. Flow chart with solution algorithm for calculating the rates of nucleation and growth from the CSD 

and crystallinity trends. Superscripts (L), (U), and (M) correspond to the lower, upper, and middle guess of the 
growth rate, respectively, in the actual time step. 
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and this form allows us to calculate the crystallinity at time ti-1 using discrete values 

representing functions I(t) and G(t) at given time step. Integrals involved in Eqn. (2.25) can 

therefore be rewritten as sums of integrals over subintervals, which are defined by a set of 

time steps {ti}: 

 

      
1 1 1

3
1

1 A1 exp d d d
j j k

j k

t t tjN

i
j i k it t

I G G

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
 

             
    

    . (2.26) 

 

Using constant values of G(t) and I(t) in each subinterval, as defined in Eqn. (2.19), we 

obtain: 
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   , (2.27) 

 

where current values of I i
(M) and Gi

(M) are used to calculate the current estimate of 

crystallinity.  

 

 

2.3.3. Verification of the method 

 

Our method of the CSD inversion was tested using synthetic CSD and crystallinity 

functions, which were obtained from predefined nucleation rate I(t) and growth rate G(t) 

functions.  The correspondence of the resulting I(t) and G(t) with the predefined functions 

verifies the algorithm and its accuracy. 

We have chosen an exponentially increasing rate of nucleation and constant rate of 

growth in order to produce a log-linear CSD that is observed in natural samples (e.g., Marsh, 

1998; Hersum & Marsh, 2006; Amenta et al., 2007), with the shape factors σA = 4π/3 and 

σCSD = π/6 representing spherical shape of isolated unimpinged grains (Fig. 2.5). At extremely 
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low crystallinities (Ф < 0.0001), the calculated growth rate Gcalc(t) is numerically scattered 

around the exact value G(t), however, above this crystallinity threshold, the scatter is reduced 

to approximately 1 % of the exact value. Nucleation rate is reproduced accurately, with an 

exception of a few data points at the highest crystallinities (Ф > 0.9) where longer calculation 

time steps were used that lead to larger accumulated integration errors. As shown in Figs. 2.5c 

and 2.5d, these errors do not propagate substantially to the calculated CSD or to the 

crystallinity function. 

 

  
Fig. 2.5. Numerical verification of the CSD inversion method. First, we use predefined rates of nucleation and 

growth to predict the evolution of crystallinity and the resulting CSD. Second, the crystallinity function and CSD 
are used as input for the inversion algorithm and the retrieved rates of nucleation and growth are compared 
with the original ones: (a) growth rate; (b) nucleation rate; (c) crystallinity; (d) crystal size distribution.  The 

predefined functions are shown as solid curves; calculated values are indicated by point symbols. Symbol tu 
refers to arbitrary time units. 
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Fig. 2.6. Comparison of correction methods for the effective growth rate. The straight log-linear CSD with a 

slope of b = -40 cm-1 (population density considered as a natural logarithm) and linear crystallinity function 
Ф(t) = 0.03t were transformed to obtain the nucleation and growth rates using power-law correction (Eqn. 
(2.7)) and a correction based on the 2nd CSD moment (Eqn. (2.10)). The CSD’s value of ln n at zero grain size 

was chosen to represent a sample with crystallinity of 100 % (see Appendix 3). Symbol tu refers to arbitrary 
time units. Note the crystallization terminates at different times when distinct correction methods are used 
(see text for further discussion). 

 

2.3.4. Comparison of correction methods for effective growth rate 

 

Our algorithm for inversion of CSD and crystallinity function to I(t) and G(t) (see 

Section 2.3.2) can now be used to compare the appropriateness and applicability of two 

distinct relationships between Geff and G (Eqns. (2.7) vs. (2.10)). An arbitrary CSD and 

crystallinity function was inverted to nucleation and growth rates using Eqn. (2.7) or Eqn. 

(2.10) as leading relationship between Geff and G (Fig. 2.6). 

The power-law relationship (Lasaga, 1998; Eqn. (2.7)) predicts marginally higher 

ideal growth rates (Fig. 2.6a), when compared to the correction based on CSD’s 2nd moment 

(Eqn. (2.10)). This difference propagates into the nucleation rate (Fig. 2.6b), which increases 

more steeply with time (that is, with advancing crystallization). Also, the effective growth and 

nucleation rate predicted by a power-law relationship is higher. As a consequence of higher 

effective rates, the prescribed CSD, from the largest crystal sizes down to the smallest ones, is 

generated and crystallization terminated in a shorter crystallization time. This comparison 

highlights the discrepancy caused by the two different corrections for the effective rates. The 
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power-law relationship will lead to a complete CSD in the shorter time but the crystallinity 

has not reached 100 % yet. In detail, for our set of parameters, crystallization terminates at 

Ф = 82 % when the power-law correction is employed, while it reaches Ф = 98 % with a 

correction based on the 2nd moment of CSD. 2nd moment correction hence provides very close 

match of both CSD and crystallinity function. 

Our model example thus reveals inconsistency between CSD and crystallinity, when a 

power-law correction (Eqn. (2.7)) is used for calculating the effective growth rate, as 

crystallization is terminated long before the prescribed final crystallinity is reached. On the 

other hand, Eqn. (2.10), which utilizes the CSD’s 2nd moment, is internally consistent with the 

initial CSD and it allows a much closer approach to the prescribed final crystallinity. 

Therefore, the method based on CSD’s 2nd moment should be used preferentially and we 

employ Eqn. (2.10) in all calculations presented in this study. 

 

 

2.4. Results 
 

We derived an algorithm, which utilizes the crystal size distribution of igneous rocks, 

to obtain the rates of nucleation and growth that are consistent with the observed texture. In 

order to make the solution unique, we must use additional constraints in the CSD inversion 

model: (i) one can assume a functional form for one of the rates, which leads to a unique 

solution for the other one, or (ii) we constrain the evolution of crystallinity in time, as 

discussed below, and the both rate functions can be solved for uniquely. We illustrate several 

applications of the CSD inversion method to calculations of nucleation rates and crystallinity 

functions from prescribed CSDs and growth rates, and to calculations of nucleation and 

growth rates from several model CSDs and crystallinity functions. All simulations were run 

up to complete crystallization and assume uniform properties of all grains, that is, a one-

component (single-phase) system. They are also applicable to multiphase crystallization, 

when differences in crystallization behavior of individual phases are insignificant. For all 

simulations, we use shape factors σA = 4π/3 and σCSD = π/6, representing spherical shape of 
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isolated unimpinged grains because grain shapes are not explicitly evaluated in our 

calculations. 

 

 

 
 

Fig. 2.7. Representative reconstruction of the nucleation rate I(t) from CSD and growth rate G(t). All pairs of I(t) 
and G(t) produce identical CSDs at the end of the crystallization. The CSD is straight with a slope of b = -40 cm-1 
(population density is considered as a natural logarithm). The value of ln n at zero grain size was chosen such 

that the CSD represents a sample with crystallinity of 100 % (see Appendix 3). (a) input CSD; (b) input growth 
rate functions: constant G(t) = 0.00276, linear G(t) = 0.000053t, exponentially increasing G(t) = 
0.0001 exp(t/20.5), and exponentially decreasing G(t) = 0.004 exp(-t/120). Constants involved in the expressions 

for the growth rates are adjusted such that crystallinity of 100 % is reached at approximately same time of 
100 tu for all growth rate functions considered; (c) calculated nucleation rates; (d) calculated crystallinities for 
each pair of nucleation and growth rate. Symbol tu refers to arbitrary time units. 
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2.4.1. Calculations using CSD and growth rate 

 

We performed four inversions of log-linear CSD with a slope b = -40 cm-1. This value 

is based on CSDs of norites from the Sudbury Igneous Complex, Canada (Zieg & Marsh, 

2002) and it is representative of a texture formed in a plutonic environment. The 

corresponding intercept value ln n(0) = 13.611 (cm-4) is defined by a mass-balance constraint 

to represent a sample with 100% modal content of crystals (see Appendix 3). We explored the 

effects of four different growth rate functions (Fig. 2.7): constant, linear, exponentially 

increasing, and exponentially decreasing. Arbitrary time units (tu) are normalized so that the 

complete crystallinity is reached after 100 tu in each run. 

In all runs both the nucleation rate and crystallinity function increases quasi-

exponentially (Figs. 2.7c, d). Remarkably, the nucleation rates remain negligibly low for up to 

60-90 % of the crystallization time. In simulation where growth rate remains constant 

throughout the crystallization, exactly exponential nucleation rate is predicted, in agreement 

with the theory (e.g., Marsh, 1998). Decreasing growth rate leads to the sub-exponential but 

initially greater nucleation rate. This in turn causes an early increase of crystallinity and a 

higher crystallinity is observed at any arbitrary time than in a system with a constant growth 

rate. When the growth rate increases with time, the reverse behavior is observed, that is, the 

nucleation rate increases super-exponentially but crystallization is delayed, then more rapid. 

Steeper increase in the growth rate causes larger delays in the increase of the nucleation rate 

and crystallinity. 

 

 

2.4.2. Calculations using CSD and crystallinity 

 

We carried out six simulations with log-linear CSDs and different crystallinity 

functions, Ф(t). Both functions are usually available for natural samples, the CSD is a 

measurable quantity and the crystallinity function can be approximated from experimental 

studies or thermodynamic calculations, hence the nucleation and growth rates can be 
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recovered without additional constraints or kinetic models.  We have chosen two CSDs with 

slopes b = -40 or -10 cm-1, respectively, that are similar to the range of slopes reported by 

Zieg and Marsh (2002) from norites of the Sudbury melt sheet (Sudbury Igneous Complex, 

Canada) and hence resemble natural samples from a plutonic environment. The intercept 

values were set to ln n(0) = 13.611 and 8.066 (cm-4), respectively, as required by the mass-

balance constraint for the 100% crystallinity of the sample (see Appendix 3). We have 

explored three various crystallinity functions, namely sigmoidal, linear, and sinusoidal. From 

a sine function, only the first quarter-period is considered, since we are interested in a 

crystallinity increasing with time. The linear function was chosen to be tangent to the sine at 

the origin (onset of crystallization). Choice of these functions is motivated by relationships 

between crystallinity (or melt fraction) and temperature observed in phase equilibrium studies 

(e.g., Wyllie, 1977; Marsh, 1981; Douce & Johnson, 1991; Dufek & Bergantz, 2005). As 

demonstrated by the conductive cooling models (e.g., Kirkpatrick, 1976), the dependence of 

temperature on time, even in more realistic models of cooling of sheet-like magma body, is 

still well characterized by a linear relationship, if considered far enough from the contact. The 

monotonous functions can thus serve as simple first-order models of crystallinity-time 

relationships which are, however, variable enough to cover possible geological variations. 

Fig. 2.8 shows the input CSD and crystallinity functions and the calculated rates of 

crystal nucleation and growth. Rates calculated from both the linear and the sinusoidal 

crystallinity functions share common characteristics at the beginning of crystallization, i.e., at 

the time, when both crystallinity functions have similar slope. In both cases, the nucleation 

rates at time t = 0 have some finite nonzero value and always increase with time. When the 

sinusoidal crystallinity function starts to depart from the linear trend towards lower 

crystallinities, the lower nucleation rates are observed. 
 

► Fig. 2.8. Inversion of straight log-linear CSDs. (a) input crystallinity functions are as follows: linear 
Ф(t) = 0.030208t, sinusoidal Ф(t) = sin(tπ / 104), sigmoidal Ф(t) = 1 – exp(-3×10-6 πt4). The linear function was 

chosen to be tangent to the sinusoidal function at t = 0. All functions were chosen to span similar time interval 
between zero and full crystallinity; (b) input CSDs:  b = -40 or -10 cm-1 with intercepts of 13.611 or 8.066 (cm-4), 
respectively. The population density is considered as a natural logarithm. Intercept values were chosen to 

represent samples with 100% crystal content (see Appendix 3); (c) calculated nucleation rates for CSD with 
b = -40 cm-1; (d) calculated growth rates for CSD with b = -40 cm-1; (e) calculated nucleation rates for CSD with 
b = -10 cm-1; (f) calculated growth rates for CSD with b = -10 cm-1. Symbol tu refers to arbitrary time units. 
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In contrast, growth rates initially exhibit very high values because crystal nuclei are 

not abundant and the surface area is small, and they decrease as crystallization progresses 

during the most of the crystallization time in both the linear and sinusoidal case. At the end of 

the crystallization interval the growth rates increase again. Similarly to the nucleation rate, 

when the slope of the Ф(t) curve becomes smaller, as in the sinusoidal case, lower growth 

rates are obtained. In addition, the final increase in the growth rate is less pronounced in the 

case of sinusoidal crystallinity function when compared to the linear case. 

Behavior of both the nucleation and growth rates is different when the sigmoidal 

increase in crystallinity is assumed. In this scenario, the nucleation rate increases with time, 

but starting from zero value. The growth rate is decreasing during the entire crystallization 

interval. Despite substantial numerical oscillations during the first few percent of 

crystallization time, the growth rate starts at some finite value at time t = 0, which is in 

contrast with the two other cases of crystallinity functions. 

The resulting rates of nucleation and growth are qualitatively similar for both CSD 

slopes tested. The most notable difference is a scale of both rates; greater CSD slope 

propagates to larger values of the nucleation rate (about two orders of magnitude) and to 

smaller growth rates (about a factor of five for b from -10 to -40 cm-1). This effect can easily 

be understood by realizing that the lower CSD slope implies larger crystal sizes, hence higher 

growth rates are needed to produce such crystals during any given crystallization time. On the 

other hand, the higher CSD slope indicates higher crystal number, and it thus requires higher 

rate of nucleation. 

The simulations indicate that the main factors controlling the course of nucleation and 

growth rates are the initial and final slope of the crystallinity function, Ф(t), that is, the initial 

and final crystallization rate. The zero initial slope forces the nucleation rate to start from a 

zero value and the growth rate from some finite positive value. In case of any nonzero initial 

slope of Ф(t = 0) the initial nucleation rate is positive and the growth rate diverges positively, 

that is, it starts at positive infinity at the liquidus and it decreases as time increases. Analogous 

behavior appears at the end of the crystallization: nonzero slope of Ф(t) curve at the solidus 

forces rate of growth to diverge positively. On the other hand, zero slope of the crystallinity 
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curve at the end of crystallization prevents the growth rate from its final divergence. These 

findings are general and do not depend on a particular CSD slope. The CSD slope only affects 

scales of both rates in order to achieve appropriate numbers and sizes of crystals within a 

given crystallization time. 

 

 

2.4.3. Calculations with natural CSDs  

 

To illustrate the effects of irregular CSD patterns measured on natural magmatic 

rocks, we transformed three representative CSDs using model crystallinity functions to 

nucleation and growth rates. This approach mainly addresses consequences of various curved 

shapes, kinked segments and sensitivity to scatter due to the measurement errors on both 

rates, provided that the crystallization occurred in a closed system. The input CSD functions 

are (i) compound CSD of plagioclase from Sudbury norite, Canada (Marsh, 2007), with 

predominantly large grains and limited amount of fine crystal fraction; (ii) kinked CSD of 

plagioclase from Atka high alumina basalt, Alaska (Resmini, 1993; Marsh, 1998), with two 

approximately straight segments that differ in their slopes; and (iii) a cumulate CSD of 

chromite Stillwater, Montana (Waters & Boudreau, 1996), with a pronounced deficiency of 

small grains (see Fig. 2.9). The last sample, despite not being the product of closed system 

crystallization, was included for comparison to unravel the consequences of significant 

peaking in the CSD for rates of nucleation and growth, if formed as a batch system. Because 

the representative CSDs were originally acquired for single phases in distinct modal amounts, 

the distributions must be rescaled to 100 %. We applied linear scaling of both size and 

population density by such factor that a volume fraction of analyzed phase, as determined 

from the 3rd moment of the scaled CSD, equals to unity (see Appendix 3).  

Fig. 2.10 shows the rates of crystal growth and nucleation, as retrieved from natural 

CSDs (Fig. 2.9) and crystallinity functions (Fig. 2.8a). The growth rate functions are very 

similar in all three cases but differ in their absolute magnitude. The growth rate behavior 

strongly depends on the crystallinity function Ф(t) whereas the CSD shape has a subordinate 
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effect only. This demonstrates that variations in growth rate during magmatic crystallization 

predominantly control the evolution of mode (crystallinity) but do not significantly affect the 

resulting CSD. In contrast, the nucleation rate is particularly sensitive to both the CSD and the 

crystallinity function. Kinks and fluctuations on CSD remarkably propagate into the 

nucleation rate, however, the exact expression depends on a crystallinity function. Similarities 

in some crystalinity functions in the initial or final stages of crystallization propagate into 

analogous behavior of the nucleation rates. For the linear and sinusoidal crystallinity 

functions, which have  the same initial slope, the nucleation rate  behaves similarly near  t = 0. 

 

 

 
 

Fig. 2.9. Natural CSDs used for reconstruction of the nucleation and growth rates: (i) compound CSD: 
plagioclase from the Sudbury norite, Canada (Marsh, 2007); (ii) kinked CSD, plagioclase from Atka, Alaska, 

high-alumina basalt (Resmini, 1993; Marsh, 1998); (iii) cumulate CSD: chromite from the Stillwater layered 
mafic intrusion, Montana (Waters & Boudreau, 1996). Original data were linearly scaled in both size and 
population density to represent sample with 100% crystal content. No smoothing was applied to raw 

measurements, therefore, this approach also illustrates the effects of small-scale features of the CSD on the 
resulting rates and their fluctuations.  

 

 
► Fig. 2.10. Nucleation and growth rates reconstructed from natural CSDs. Input CSDs are shown in Fig. 2.9, 
and input crystallinity functions Ф(t) are in Fig. 2.8a. (a), (c), (e) illustrate the resulting nucleation rates 

whereas (b), (d), (f) show the resulting growth rates referring to: (a), (b) compound CSD with deficient small 
grains; (c), (d) kinked CSD with two straight segments; (e), (f) cumulate CSD with significant peak. See Fig. 2.9 
caption for references. Symbol tu refers to arbitrary time units.   
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On the other hand, slopes of both sinusoidal and sigmoidal crystallinity functions approach 

zero at the end of crystallization and, accordingly, nucleation rates converge to each other. 

Linear crystallinity function always leads to the nucleation rate increasing towards the 

end of crystallization, regardless of the actual CSD. Bent CSDs with a population density 

decreasing at smallest grain sizes require the nucleation rate to decrease after some peak value 

(with sinusoidal and sigmoidal crystallinity function). Conversely, the nucleation rate for the 

kinked CSD with a steep straight segment at the smallest grain sizes behaves similarly to the 

simple straight CSD, that is, the nucleation rate always increases with time. It is interesting to 

note that smooth Ф(t) functions translate into the smooth growth rates, whereas the smooth 

variations in nucleation rate require smooth CSDs. 

 

 

2.5. Discussion 
 

2.5.1. Interpretation of the calculated rates of nucleation and growth 

 

We have shown that the nucleation rate function reflects minor features of the CSD, 

whereas shape of the growth rate function is largely insensitive to the same factors. If the 

length scale of CSD is changed, only the relative scale of the growth rate changes. The growth 

rate for both CSDs reaching L ≈ 0.6 cm is about twice as large as for a CSD ending at L ≈ 

0.4 cm (in the case of sigmoidal crystallinity function), when crystallization rate functions, 

Ф(t), are equal. This does not imply that a coarser-grained rock requires the growth rate to be 

higher compared to a finer grained one, with steeper CSD, because the time scale of 

crystallization may differ. 

The predicted growth rates largely depend on the shape of the crystallinity functions. 

Any positive slope of the crystallinity function, Ф(t), at the beginning or near the end of the 

crystallization forces the growth rate to increase to large values. In contrast, zero initial (or 

final) slope of the crystallinity function allows the growth rate to remain at some finite value 

at the beginning (or at the end) of crystallization. The divergence of growth rates to very large 
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values at the beginning and the end of crystallization is simply a consequence of the small 

surface area on which growth may occur. At the beginning of crystallization, when (nearly) 

no crystals are present, very large or infinite growth rates are required to produce a finite 

increment in crystal fraction (crystallinity). Similarly, at the end of crystallization, the surface 

area of the grains exposed to the melt approaches zero hence the growth rate must again 

increase ad infinitum to produce any observable increment of crystallinity. Since an infinite 

growth rate is unphysical, this observation implies that only a sigmoidal crystallinity function 

(with d/dt = 0 at liquidus and solidus) is realistic in natural or synthetic systems. 

During the intermediate part of crystallization, the reactive surface is large enough to 

enable growing crystals to most closely approach equilibrium crystallinity vs. time 

relationship. This is expected to occur under moderate crystallinities. The lows on the 

calculated growth rate vs. time curves can thus be interpreted as minimal growth rates, which 

are to occur under conditions of nearest approach to equilibrium (see Figs. 2.8 and 2.10). 

 

 

2.5.2. Transformation of rates to real time units 

 

The predicted nucleation and growth rates are in arbitraty units that reflect scaling of 

the crystallization interval to given number of units. If the time span between liquidus and 

solidus is known or chosen, the rates can be converted into real time units. We explore the 

duration of crystallization by using the time span between liquidus and solidus temperature of 

magma in a conductively cooling magma chamber. The linear crystallinity-time relationship 

that we employ in our calculations prescribes, by definition, the full crystallinity to be reached 

at the time of 33 tu, which also corresponds to the liquidus-solidus time span, tsol-liq. Thus 

from the identity 

 
 sol-liq33 tu t , (2.28) 
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conversion between tu and specific (physical) time units is obtained. Choice of the actual 

shape of the crystallinity-time curve is largely arbitrary as long as we are interested in the 

intermediate part of crystallization, when essentially any crystallinity function can be 

reproduced (see above). 

Liquidus-solidus time span remains to be specified now. We illustrate this approach by 

using a model of a melt sheet cooling conductively from both sides due to the temperature 

difference between magma and a country rock (see Fig. 2.11 caption for the model 

parameters). We assume infinite lateral extent of the melt sheet hence the model applies to 

horizontal dykes or to tabular plutons whose lateral extent is much grater than  their thickness. 

 

 

  
Fig. 2.11. Calculated minimal growth rates as a function of relative position in a tabular magma body for fixed 
CSD slope. Calculations were performed for various magma body thicknesses and for two CSDs with slopes 

b = -40 cm-1 and b = -10 cm-1 (population density is considered in a natural log units). Chosen CSDs represent 
textures formed in a plutonic environment and are based on a range of values reported by Zieg & Marsh (2002) 
from the Sudbury Igneous Complex, Canada. The intercepts of CSDs are 13.611 (cm-4) and 8.066 (cm-4). 

Intercepts were chosen to represent sample with 100% crystal content (see Appendix 3). Relative position x is 
x = 0 in the center of the magma body and x = 1 at the magma chamber wall. Parameters used in calculations 
are as follows: thermal diffusivity of magma and of country rocks κ = 1×10-6 m2 s-1, (see Whittington et al., 

2009) magma temperature at the emplacement 1100 °C; country rock initial temperature 200 °C; magma 
liquidus temperature 1100 °C; magma solidus temperature 900 °C. Difference of magma liquidus and solidus 
temperature is chosen to be 200 ºC, which corresponds to usual span of crystallization (e.g., Marsh, 1981, 

1989). No latent heat generation is considered. 
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Analytical solution of the heat conduction problem (e.g., Carslaw & Jaeger, 1959) leads to a 

time period, tsol-liq, over which the temperature decreases by 200 ºC from the liquidus 

(conventional temperature difference between a magma liquidus and solidus; e.g., Marsh, 

1981, 1989) in any arbitrary location across the melt sheet. We have scaled both calculations 

performed for log-linear CSDs with slopes b = -10 and -40 cm-1 (see Section 2.4.2). 

For fixed CSD slope, the minimal growth rate is predicted to increase non-linearly by 

about 1.5 orders of magnitude from the center of the pluton to the 90% distance to the magma 

chamber wall, and the relative magnitude of its increase is independent of the pluton thickness 

and the CSD slope. An order of magnitude increase in the pluton thickness leads to two orders 

of magnitude decrease in the minimal growth rate. For a fixed pluton thickness, a fourfold 

increase of the CSD slope (b = -10 to -40 cm-1) results in a fourfold decrease of the minimal 

growth rate. From these scaling laws, a formula relating the minimal growth rate GMIN 

between plutons of a half-thicknesses D and D0 (in meters) and CSDs with slopes b and b0 (in 

cm-1, where population density is considered in a natural log units) can be written 

 

    
2

MIN MIN -10 0
0 0,  ,  ,  ,  ,    in cm s ,b DG D b x G D b x

b D
    
 

 (2.29) 

 

where x is the relative position between the pluton center and the boundary (x = 0 for the 

center and x = 1 for the pluton roof). Since the choice of D0 and b0 is arbitrary, Eqn. (2.29) 

can be transformed to 

 

    MIN -1
2,  ,  ,    in cm s ,

C x
G D b x

bD
  (2.30) 

 

where the coefficient C(x) incorporates values of b0, D0, and of GMIN(D0, b0, x). Using data 

shown in Fig. 2.11, C(x) can be calculated for any location x across the magma chamber and 

its variations reflect differences in thermal evolution in different locations in the magma 

chamber. Apart from C(x), only the actual value of the CSD slope b at given location x, and 
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the pluton thickness D are needed to estimate the growth rate GMIN using Eqn. (2.30). We use 

Eqn. (2.30) to evaluate the absolute growth rates in a magma sheet with half-thickness 

D = 0 m and for the CSD slope b = -500 cm-1. Value of the slope is similar to the value 

reported by Cashman & Marsh (1988) as corrected by Higgins (2006) for plagioclase in their 

sample 65-1-17 from the crust of the Makaopuhi lava lake, Hawaii. We obtained minimal 

growth rate GMIN = 2.17  10-11 cm s-1 in 65 % of the distance to the margin of the magma 

sheet. The position equals the depth in the Makaopuhi lava lake from where Cashman & 

Marsh (1988) obtained the growth rate of 3.5  10-11 cm s-1 (corrected by Higgins, 2006) for 

their sample. Our calculated value thus compares very well with previous results. This model 

approach demonstrates a self-consistent link between crystal size distribution parameters, 

nucleation and growth rates as well as time scale of crystallization predicted by thermal 

modeling. 

 

 

2.6. Conclusions 
 

The crystal size in natural igneous rocks is a final result of the nucleation and growth 

rates, and their variations during crystallization, combined with possible subsequent 

modification of the texture by surface-energy driven processes such as grain annealing or 

coarsening. We derive a new method for retrieval of these kinetic parameters from the crystal 

size distribution of interest provided the post-crystallization modifications were insignificant. 

We illustrate two techniques of the CSD interpretation that apply to a limiting case of closed-

system crystallization when no mechanical processes such as crystal movement or separation 

are affecting the resulting texture. A single CSD can be produced by various combinations of 

the nucleation and the growth rate functions, which, however, lead to different evolutions of 

the crystallinity with time. In an inverse approach, the CSD of interest in combination with 

appropriate crystallinity function, constrained by experimental phase equilibria or 

thermodynamic models, can be used to unambiguously determine the self-consistent 

nucleation and growth rates as a function of time. We applied the transformation procedure to 
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several straight log-linear and complex CSDs and explored several crystallinity-time 

relationships. Minor fluctuations in the CSDs propagate into significant variations in the 

nucleation rate, whereas the growth rate behavior is much less sensitive. In detail, the 

behavior of both rate functions is mostly determined by the initial and final rate of the 

crystallinity increase. This results from a small area of the crystal-melt interface at the initial 

and final stages of crystallization, when the number of crystals and their size are small or the 

area of crystal exposed to residual interstitial melt becomes very small, respectively. Nonzero 

initial or final increases in crystallinity thus imply large positive growth rates at both limits of 

crystallization. Consequently, the initial and final stages of crystallization are thus expected to 

record the highest departures from equilibrium, as any finite growth rate cannot, at this stage, 

offset a finite increment of crystallinity. In contrast, crystallinity is expected to approach 

equilibrium values during most of the intermediate crystallinity span, when a large surface 

area of crystals is available for their growth. Magnitudes of the rates of nucleation and growth 

are proportional to the CSD slope. Calculations with straight log-linear CSDs show that 

change in the CSD slope from -10 to -40 cm-1 results in two orders of magnitude increased 

rate of nucleation and four times decreased rate of growth. 

When the crystallization time is known or independently estimated, for instance, from 

cooling models, the nucleation and growth rate functions can be scaled into real units. With 

the fixed CSD slope, our results predict the minimal growth rate (at intermediate 

crystallinities) to increase by ~1.5 orders of magnitude between the center of the magma body 

and the 90 % distance towards the contact. The growth rate is inversely proportional to the 

magma body size and the slope of the CSD. For conditions broadly similar to cooling lava 

lakes such as in Hawaii we obtain growth rates in order of 10-11 cm s-1 which is in agreement 

with natural observations (Cashman & Marsh, 1988).  
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2.9. Appendices 
 

2.9.1. Appendix 1: Relationship for the effective growth rate based on the 2nd moment of 

CSD 

 

The crystallinity variations with time allow us to define an effective growth rate as a 

time-derivative of a linear grain size. This variable would, when summed over all grains, 

provide the same volume change of a solid phase, as is required by known change in the 

crystallinity. As noted by Resmini (2007), the growth rate must be inversely proportional to 

the total surface of all grains, represented by 2nd moment of CSD. Let us consider a CSD in a 

volume-equivalent grain size measure (i.e., crystal size is defined as a linear dimension of a 

geometrical object with fixed shape, whose volume equals that of the crystal). Over any finite 

time interval, equality must exist between the real volume change of any grain and of the 
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corresponding geometrical object, whose linear size is considered as a size measure of a CSD. 

In the other words: 
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, (2.A.1) 

 

where t stands for time. Inserting relationship between volume and linear size of a 

geometrical object of interest (Eqn. (2.9)) into Eqn. (2.A.1) and integrating over all grains in a 

unit volume, we obtain 
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where n(L) represents the CSD at some time t. Using the definition of effective growth rate 

(Eqn. (2.8)) and noting that the volume change of all crystals in a unit volume of the system is 

the increment of crystallinity Ф, we obtain the expression for effective growth rate: 
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which is based on our volume-equivalent definition of the crystal size. The growth rate 

calculated from Eqn. (2.A.3) is used through our numerical implementation of the CSD 

inversion. 

 

 

2.9.2. Appendix 2: Numerical calculation of effective rates of growth and nucleation 

 

Our numerical methods for inversion of CSD employ conversions between ideal 

(nominal) and effective rates of crystal nucleation and growth (see Eqns. (2.7), (2.10), and 
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(2.13)), which require knowledge of actual crystallinity, Ф, or its time-derivative, dФ/dt. 

Crystallinity Ф(t) at any time instant t during crystallization is evaluated from discrete Avrami 

equation, Eqn. (2.27). The time-derivative of crystallinity, however, cannot be directly 

calculated since, at any instant t, Ф(t’) is only known for t’ ≤ t. Thus dФ/dt must be 

approximated using backward difference scheme (recall that time ti increases with decreasing 

index i of a time step). Using backward differences, the trapezoidal rule for integration 

involved in Eqn. (2.10), and the discretization of CSD described in the Section 2.3, we obtain 

the following numerical formula for the effective growth rate: 
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At the beginning of calculation, that is, at i = N, quantities with i + 1 indices are undefined 

and the above formula cannot be evaluated, but the effective growth rate is constrained by 

initial conditions  eff ,N NG G  because crystallinity is zero. 

 

 

2.9.3. Appendix 3: Slope-intercept relationship for log-linear CSDs 

 

As shown by Marsh (1998) or Higgins (2002b), slopes b and intercepts n0 of straight 

log-linear CSDs are not independent but are related to crystallinity, Φ, by mass-balance 

constraints. For the volume-equivalent measure of the grain size, crystallinity is related to the 

3rd moment of CSD as follows:  
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where n(L) is the population density at size L and σCSD is a shape factor (see Section 2.2). 

Note that different measures of the grain size such as maximum length would lead to different 

formulas that are generally less straightforward. 

For straight log-linear CSDs, the integral in Eqn. (2.A.5) can be evaluated analytically 

to yield the following slope-intercept relationship, 

 

   CSD
0

64ln ln ln .b n
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
 (2.A.6) 

 

This equation is similar to Eqn. (73) of Marsh (1998) but here we adopt volume-equivalent 

measure of the grain size, which, in addition, allows us to obtain numerical values for all 

parameters involved in his Eqn. (73) and it yields analytical relationship between the slope 

and intercept of the CSD. 
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Preface to Chapter 3 
 

 

 

 

Computational method for the inversion of crystal size distribution, CSD, (Chapter 2) 

has revealed that the extraction of nucleation and growth rates from the CSDs is non-unique 

unless additional constraints are considered. In order to explore other textural parameters than 

CSDs and their response to various nucleation and growth rates we developed a new three-

dimensional forward crystallization model. We derive size, spatial, and contact parameters of 

textures resulting from crystallization by homogeneous nucleation and growth of crystals in a 

closed system. This approach has revealed that some textural descriptors are correlated while 

others are sensitive to crystallization processes other than homogeneous nucleation and 

growth (e.g., heterogeneous nucleation or mechanical accumulation of crystals). 

This chapter was published as ŠPILLAR, V. & DOLEJŠ, D. (2014): Kinetic model of 

nucleation and growth in silicate melts: implications for igneous textures and their 

quantitative description. – Geochimica et Cosmochimica Acta 131, 164–183. The manuscript 

was formatted to conform to general layout of this thesis. 
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Chapter 3.  
 

 

Kinetic model of nucleation and growth in silicate melts: 
Implications for igneous textures and their quantitative 
description 

 

 

 

 

3.0. Abstract 
 

We present a new high-resolution numerical model for the simulation of crystallization 

and texture evolution using arbitrary rates of crystal nucleation and growth. The algorithm 

models single or multiphase solidification in a three-dimensional domain and 17 simulations 

using constant, linearly increasing, exponential, and Gaussian functions for the rates of 

nucleation and growth yield equigranular to seriate textures. Conventional crystal size 

distributions of all textures are nearly linear to concave-down (previously interpreted as 

formed by equilibration coarsening), and identical distribution patterns can result from 

multiple non-unique combinations of nucleation and growth rates. The clustering index is 

always a non-monotonous function, which initially increases then decreases with increasing 

crystal fraction. For texture from random homogeneous nucleation the index is substantially 

lower than previous predictions based on a random sphere distribution line, hence, natural 

samples interpreted as clustered now have greater degrees of randomness or ordering. The 

average number of contact neighbors and the average neighbor distance of a crystal depend 

linearly on crystal size, but one of the two remains insensitive to nucleation and growth 

kinetics and represents potential indicator of other crystallization processes than random 

nucleation and crystal growth. Simultaneous comparison of size, spatial and clustering 

patterns and of their departures from expected values are suggested to allow for separation of 
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effects of crystallization kinetics, melt-mineral mechanical interactions, suspension mixing, or 

postcrystallization re-equilibration and coarsening on natural igneous rocks. 

 

Key words: 

Crystal nucleation; growth; crystallization kinetics; texture description; crystal size 

distribution. 

 

 

3.1. Introduction  
 

Igneous textures provide an overall and time-integrated record of various processes 

that occurred during magma solidification. Crystallization dominantly involves nucleation of 

new crystals and growth of existing ones, with possible modifications arising from their 

mechanical motion or other interactions, as well as coarsening and annealing (Cashman & 

Marsh, 1988; Marsh, 1998; Higgins, 2011). These processes, acting in response to cooling, 

thermodynamic and other driving forces, control the evolution of crystallinity and 

crystallization rate, as well as sizes and mutual configurations of individual crystals (e.g., 

Cabane et al., 2005; Hammer, 2008). Crystallinity and geometry of the crystal framework, in 

turn, dictate the rheological behavior of magma or permeability of the framework for 

percolating melt or fluid (Hoover et al., 2001; Hersum et al., 2005; Walsh & Saar, 2008). 

These properties are crucial for models of magma differentiation, mechanical transport, and 

style of emplacement or eruption to the surface (e.g., Gerya & Burg, 2007; Bachmann and 

Bergantz, 2008; Annen, 2009; Verhoeven & Schmalzl, 2009; Bea, 2010). 

Direct observations of crystallization processes in nature are inherently rare and 

limited to shallow-level systems, for example those in the Hawaiian lava lakes (Cashman & 

Marsh, 1988). Likewise, experimental studies allowing in-situ observation of crystallization 

are instrumentally difficult and sparse (Means & Park, 1994; Schiavi et al., 2009). Therefore, 

computational modeling of magma crystallization provides important insights into the 

transient evolution of texture and its properties during crystallization (Elliott et al., 1997; 
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Hersum & Marsh, 2006; Amenta et al., 2007). In addition, numerical models offer a tool to 

individually assess the effects of individual crystallization processes and their rates on the 

final rock texture. 

The three-dimensional numerical model of crystallization of Hersum & Marsh (2006) 

used a cubic magma volume discretized into a large number of volume elements (voxels), 

where individual crystals grow by successive incorporation of adjacent voxels. These authors 

employed the rate of growth coupled with a predefined crystallinity function via the Avrami 

equation (Avrami, 1939, 1940; Lasaga, 1998; Marsh, 1998) in order to maintain self-

consistency with the rate of nucleation. As noted by Amenta et al. (2007), such an approach 

results in artificial behavior if performed in discrete time steps. They used explicit rates of 

nucleation and growth to simulate crystallization by successive addition of virtual lattice units 

to individual crystals. Despite these efforts, discrete three-dimensional models of 

crystallization remain computationally expensive and provide only a rough approximation to 

continuous nucleation, growth, and impingement processes. Spatial resolution at affordable 

computational cost is limited, which introduces significant statistical noise into resulting 

textures. On the other hand, simple analytical models of crystallization based on the Avrami 

theory (e.g., Avrami, 1939, 1940; see Marsh, 1998) are useful in estimating the evolution of 

crystallinity and crystal size, but otherwise provide only limited characterization of resulting 

textures. 

There are a number of quantitative parameters for the description of natural and 

synthetic textures, in particular, parameters characterizing the size, shape, spatial, and contact 

parameters of the crystal assembly in both 2D and 3D. Crystal size distribution (CSD; 

Randolph & Larson, 1971; Cashman & Marsh, 1988; Marsh, 1998; Higgins, 2006) is 

commonly used to assess sizes of crystals in the crystal population (e.g., Higgins, 2006; 

Morgan & Jerram 2006). The CSD itself cannot account for the spatial distribution, e.g., 

aggregation vs. spatial ordering of crystals, or for crystal shape variations resulting from space 

competition among adjacent grains, which require additional measurements (e.g., Jerram et 

al., 1996, 2003; Jerram & Cheadle 2000; Rudge et al., 2008). The use of synthetic/modeled 

textures involving single or multiple solid phases can be used to explore, define and evaluate 
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new distribution parameters, and to calibrate their dependencies and sensitivity to individual 

kinetic factors. 

In this paper, we develop a new computational model for the simulation of crystal 

nucleation and growth in a three-dimensional melt volume. Our strategy uses the discrete 

voxel method (e.g., Hersum & Marsh, 2006) to characterize the grain-grain contacts, but the 

grain-melt interfaces are tracked continuously. The model, therefore, accurately characterizes 

the continuous nucleation, growth, and impingement of crystals, while it only requires 

moderate computational resources. High spatial resolution also affords accurate quantitative 

description of the resulting grain population aiming at identification of optimal and practical 

quantitative parameters that would augment current CSD methods applied to natural 

magmatic rocks. 

We employ the model to explore the effects of various evolutionary trends of the 

nucleation and growth rates on the resulting texture, CSD, shape, contact, and spatial 

distribution patterns. Using our simulations we constrain the kinetic models that are consistent 

with natural igneous textures and point to ambiguities in current CSD interpretations. 

Subsequently, we calibrate variability or invariance of various properties of simulated textures 

in order to identify parameters sensitive to other processes active during magma 

solidification, e.g., mechanical crystal-melt interactions, heterogeneous nucleation, or 

coarsening of crystals. 

 

 

3.2. Kinetic model 
 

3.2.1. Computational implementation 

 

The model is based on the voxel method (Hersum & Marsh, 2006) but it is modified to 

minimize the effects of discretization. We use a mixed discretized-continuous representation 

(Fig. 3.1a), with a simulation domain discretized into a large number of volume elements 

(voxels). Crystallization in the simulation domain is treated as progressive homogeneous and 
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heterogeneous nucleation of new grains and growth of preexisting grains, performed in short 

discrete time steps. Crystal faces propagating to the melt are tracked continuously, as is the 

position and orientation of all crystal nuclei and centers. 

Initially, all voxels are occupied by melt phase. As crystallization proceeds, each voxel is 

progressively assigned a label of the solid crystal that first reaches the center of that voxel. 

Using this procedure, individual voxels are progressively transformed from melt to the 

respective solid phase. In our computational implementation, up to fifteen different solid 

phases can simultaneously crystallize in the simulation domain. At any stage, individual 

grains, when completely surrounded by melt (i.e., they do not impinge on each other), are 

arbitrary six-sided parallelepipeds, whose shape and orientation is described by three pairs of 

orthogonal vectors that represent growth rate vectors in three dimensions. The crystal face 

(grain-melt interface) is tracked as a plane that advances in the direction of its normal vector 

during each time step. Grain-grain interfaces are recorded when two adjacent voxels are 

assigned to different grains; the location of the voxel interface represents a grain boundary 

(Fig. 3.1a). This approach allows us to represent the final texture discretely, whereas distances 

of unimpinged crystal faces from the nucleation centers are continuous functions of time; 

hence, discretization artifacts are minimized. Similarly, locations and orientations of crystals 

are treated as real-value accurate values. Our simulation algorithm, named VoxelTex, 

performs  high-resolution simulations  with  approximately  100  million  voxels, 1200  1200 

 

 
 

Fig. 3.1. Two-dimensional analogy of the discrete-continuous texture representation used in the simulation 

algorithm. Voxels added to both crystals between time t and t + Δt are shown in gray color. (a) nucleation and 
growth over a short discrete time step; dots mark centers of the voxels; (b) illustration of the “continuity 
condition” applied to the addition of new voxels to the crystals. Voxels the positions of which fall within the 

boundary of crystal B but which are not added to the crystal B are indicated.  
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pixel sections, and about 100 thousand grains. Runs on a 3.2 GHz PC as a single thread 

achieve full crystallinity in roughly 10 minutes with the requirement of 2 GB RAM memory.  

 

 

3.2.1.1. Crystal nucleation 

The algorithm employs homogeneous or heterogeneous nucleation of new crystals or a 

combination of both. The number of nuclei produced by homogeneous nucleation, 0
hmN , 

during each time step, results from the instantaneous nucleation rate, I(t), and the length of the 

time step, Δt, as follows: 

 
  0

hm ,N I t V t   (3.1) 

 

where V is the volume of the simulation domain. 0
hmN  is generally a fractional number due to 

the rational nature of all variables in the product in Eqn. 3.1. In order to transform the rational 

number of nuclei predicted from the nucleation rate into an integer value we use the following 

rounding procedure: first, a number of nuclei corresponding to the integer part of 0
hmN  is 

created, then the last nucleus is created with the probability equal to the fractional part of 
0
hmN . This reflects the stochastic nature of nucleation and ensures that the correct number of 

nuclei is used. 

Locations of the homogeneous nuclei are generated as random points inside the entire 

simulation domain. From all 0
hmN  nuclei predicted, only those located in the melt region (Nhm) 

are considered as real nuclei. The decision for acceptance or rejection of a nucleus uses 

continuous (undiscretized) description of grain size, orientation and location of all crystals, 

and is, thus, precise and independent of discretization (Fig. 3.1a). This approach ensures that 

the nucleation rate per unit melt volume exactly follows the prescribed rate function. The 

actual number of nuclei formed in the entire simulation domain is, thus, implicitly scaled 

down as the available melt fraction decreases. 

By contrast, heterogeneous nucleation takes places on pre-existing solid-melt 

interfaces. The rate of heterogeneous nucleation, H(t), has the dimension of the number of 
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nuclei per unit area of the solid-melt interface and unit time. The number of heterogeneous 

nuclei formed at an arbitrary time step, 0
htN , is obtained for each crystal face from the 

heterogeneous nucleation rate H(t) for that crystal face: 

 
  0

ht ,N H t S t   (3.2) 

 

where S is the total area of the crystal face, in which heterogeneous nucleation is considered, 

and Δt is the duration of the time step. The rational value of 0
htN  is rounded to an integer 

number using the same procedure as for the homogeneous nucleation, and locations of 

heterogeneous nuclei are determined as random points on the crystal face. Similar to 

homogeneous nucleation, only those heterogeneous nuclei, which are located outside of all 

other existing grains, are considered as real nuclei (Fig. 3.1a). The heterogeneous nucleation 

rate can be varied with time during crystallization, and it can be specific for each nucleation 

solid phase and for each solid phase on which nucleation occurs. To simulate different surface 

properties of faces with different crystallographic orientation, the heterogeneous nucleation 

rate can also differ for each face of the parent crystal. Additionally, the rate of heterogeneous 

nucleation can vary from crystal to crystal, thus reflecting possible spatial variations of 

intensive thermodynamic parameters due to formation of melt boundary layers.  

When a homogeneous or heterogeneous nucleus is formed, we assign it an arbitrary 

random orientation in space. Grain orientation is described via three mutually perpendicular 

random unit vectors, a, b, and c that represent directions normal to the crystal faces. First, 

vector a with random distribution on a unit sphere is calculated using inverse transform 

sampling (e.g., Devroye, 1986). Vector b is then determined as a random unit vector 

perpendicular to a. Lastly, vector c is calculated to be perpendicular to both a and b. Two 

opposite candidates for vector c exist and an arbitrary one can be chosen, as grain orientation 

is invariant to swapping of c and –c. 

Wherever random numbers appear in our calculations, we always employ the 

Mersenne-Twister random number generator (Matsumoto & Nishimura, 1998) that provides 

high uniformity and randomness of the generated number distribution. 
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3.2.1.2. Crystal growth and boundary conditions of the simulation 

During each time step, all crystal faces advance by a distance D according to current 

growth rate, G(t), in direction of their normal vector: 

 
   ,D G t t   (3.3) 

 

where Δt is the duration of the time step. Distinct rates of growth for each of the orthogonal 

crystal faces will produce tabular or prismatic grains. After positions of all crystal faces have 

been updated, the centers of all melt voxels are tested if they were not included in a solid 

phase. When the voxel is consumed by a growing grain, it is marked as part of it (Fig. 3.1a). 

When the center of the voxel that already belongs to crystal A is crossed by the advancing 

face of crystal B, its identity is not changed and it remains part of crystal A. That is, already 

solid crystals do not penetrate each other. The side of the parallelepiped, which represents the 

face of crystal B, however, continues to advance. After the virtual face leaves crystal A on its 

opposite side, it starts to consume melt voxels again (Fig. 3.1b); crystal B effectively grows 

through crystal A. To prevent crystals from growing through each other by this mechanism, a 

voxel becomes part of the grain only if at least one of its neighboring voxels already belongs 

to the same grain (Hersum & Marsh, 2006). As neighboring voxels we consider those sharing 

a face, edge, or corner (twenty-six neighbors are possible, in total). This condition is not 

applied to the voxel containing the nucleus itself and to its neighbors, because it would 

prevent initiation of growth after nucleation.  

Duration of each time step, Δt, is set adaptively, to ensure that all crystal faces in the 

simulation advance by no more than a distance Dmax, related to the voxel edge length. In our 

simulations, Dmax was set to 1/10 of the voxel edge length. If desired, the growth rate can vary 

from crystal to crystal, thus simulating possible spatial variations of intensive thermodynamic 

parameters due to the formation of melt boundary layers or other transient processes.  

Periodic boundary conditions are prescribed at all boundaries of the simulation 

domain. Crystals growing out of the domain through its sides appear as crystals growing into 

the  domain  on  the  opposite side. As a consequence,  edge effects are minimized, that is, the    
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Fig. 3.2. Simulation domain and its two-dimensional x-y sections. Example of texture evolution using 
exponentially increasing nucleation and constant growth rates. (a) single crystallizing phase. (b) three phases, 

distinguished by color, crystallizing simultaneously with same kinetics. Symbol Φ denotes crystallinity, i.e., 
volume per cent of all solid phases. In the plane sections, shades of gray indicate growth zoning.  
 

crystal number density is not lowered due to proximity to the domain boundary. Three-

dimensional snapshots and two-dimensional sections of progressive crystallization are 

illustrated in Fig. 3.2.  

 

 

3.2.1.3. Domain sectioning 

All textures have been simulated in three dimensions; but in order to facilitate 

comparison with natural petrographic samples, we visualize and quantify them in two-

dimensional sections as well. The distribution data from natural petrographic samples are 

almost exclusively two-dimensional (e.g., Higgins, 2000, 2002a, 2006; Mock et al., 2003; 

Boorman et al., 2004; Yang, 2012) and their transformation into three dimensions using 
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stereological methods is non-unique and approximate only (e.g., Higgins, 2000, 2006; Mock 

& Jerram, 2005; Morgan & Jerram, 2006; Jaret et al., 2008). To eliminate this ambiguity and 

the need for introducing conversion approximations, we use an additional set of apparent two-

dimensional parameters that characterize the resulting texture in a two-dimensional section 

through the simulation box, which then allows direct comparison with conventional 

petrographic observations. 

The simulation box is sectioned by an x-y plane, and the domain resolution in the z-

direction is increased in its vicinity to increase accuracy. In our simulations, sections were 

sampled at half height of the simulation box in order to reduce any boundary effects. 

Ambiguous solutions arise when several grains are intergrown such that one grain appears as 

multiple isolated fragments in the section. Two general solutions are possible: (i) fragments 

are re-classified as independent grains, or (ii) fragments are labeled as belonging to one 

discontinuously intersected grain. The first approach tends to overestimate the number of 

grains, i.e., the nucleation rate, and underestimate the grain size, i.e., the growth rate, but it 

enables uniform comparison with natural samples. The second method does not affect 

interpretation of rates and has been used in this study. In routine petrographic work, 

chadocrysts of a single crystal can usually be identified from corresponding orientations of 

optical indicatrices and this guarantees complete correspondence between petrographic 

observations and our simulations. 

 

 

3.2.2. Quantitative description of crystal populations 

 

We employ scalar and functional parameters to quantitatively characterize the 

simulated texture. Scalar parameters are single values that characterize the entire crystal 

population (e.g., number of crystals per unit volume, average crystal size, etc.). Functional 

parameters, on the other hand, are a set of values that describe the functional dependence of 

two quantities. This can be either frequency distribution (e.g., crystal size distribution, CSD) 

or the dependence of two properties on each other (e.g., dependence of crystal axial ratio on 



3. Model of nucleation and growth 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 87 - 

crystal size). In the calculations of functional parameters, we employ binning methods and 

use ten equally-sized bins of the independent variable. 

 

 

3.2.2.1. Crystal sizes and volumes 

A simple first-order measure of the overall grain size is provided by the number of 

grains in a unit area. In a two-dimensional section of area A through a simulation domain, a 

certain number of crystals is entirely present in the section (Ntot), whereas others are 

intersected by the boundary of the studied area (Npart). In the estimate of the crystal number, 

σA, we count crystals on the boundary as halves: 

 

 tot part
A

0.5N N
A




 . (3.4) 

 

By taking the 3/2 power of σA, the crystal number can be dimensionally converted to the 

approximate number of crystals per unit volume, whose reciprocal value provides a mean 

volume of the crystal. Mean crystal volume can be converted to the linear size if some 

uniform shape of all crystals is assumed. For simplicity we assume spherical shapes of all 

crystals here, but an arbitrary three-dimensional shape can be used and the resulting linear 

size would differ by the shape factor only. For an average three dimensional crystal size, 
mean
3DL , it immediately follows from the volume of the sphere: 

 

  
1

13mean 2
3D A

6L 


    
. (3.5) 

 

In order to obtain the conventional crystal size distribution (cf. Cashman & Marsh, 1988; 

Cashman, 1993; Marsh, 1998; Higgins, 2002a; Mock et al., 2003; Bindeman, 2003; Boorman 

et al., 2004; Simakin & Bindeman, 2008), we use the three-dimensional simulation results 

directly. Volume of each crystal is measured as the number of voxels, NV, that belong to the 

crystal. Linear three-dimensional size of the crystal, L3D, is then calculated as a diameter of 

equal-volume sphere according to: 
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 V3
3D V

32 ,
4

NL L


   (3.6) 

 

where LV is the edge length of the voxel. The resulting population density, n, and its 

dependence on crystal size, L3D, represents a true distribution of three-dimensional crystal 

sizes, which does not suffer from any two- to three-dimensional conversion effects (e.g., 

Higgins, 2000; Mock & Jerram, 2005). Other definitions of three-dimensional crystal size 

include the long axis of the crystal (the length of the longest inscribed line; e.g., Higgins, 

2006; Jerram et al., 2009). However, the present procedure appears to be more robust, less 

sensitive to crystal shape variations, and less affected by statistical fluctuations. The estimate 

based on the size of the equivalent-volume sphere will be preferred here to maintain 

consistency with our previous study (Špillar & Dolejš, 2013). 

The calculated CSDs are nearly linear to concave-down curves. Linear CSDs are 

conveniently characterized by the slope, b3D, fitted to a relationship between logarithm of the 

population density, n, and crystal size, L3D. 

In two-dimensional sections, we introduce apparent grain size, L2D, as the diameter of 

a circle with an area equal to that of the grain cross-section in the section of interest: 

 

 P
2D V2 NL L


  , (3.7) 

 

where LV is the edge length of the voxel and NP is a number of pixels that belong to the crystal 

in the section of interest. Note that sections are generally taken in one of the directions 

parallel to the sides of the voxels. That is, the edge length of the voxel and that of the pixel are 

equal. As most of the measurements on natural igneous textures come from two-dimensional 

data, we have also constructed CSDs from L2D crystal sizes. Slopes of linear CSDs obtained 

from two-dimensional data are denoted as b2D. Other ways of defining the crystal size in two-

dimensional section are discussed by Higgins (2006) and are based on the longest dimension 

of a crystal, dimensions of the best fit ellipses, etc. We, however, prefer the equal area-based 

methods due to its simplicity and stability to variations in the crystal shape. 
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The overall appearance of the texture is related to the distribution of volume (or mass) 

of crystals per size class. To remain compatible with easily retrievable data from rock 

sections, we have calculated area distributions based on L2D crystal sizes. Two-dimensional 

area distributions can still be compared to the true three-dimensional distributions of volumes 

based on the L3D crystal size (e.g., Jerram et al., 2009). The range of crystal sizes is divided 

into regular bins, and the area of crystals is summed up in each bin. The ratio of the 

accumulated area to the total area of the section equals the modal fraction of crystals that 

pertain to the given size bin. The grain size with the highest modal fraction is denoted as the 

most voluminous grain size, vol
2DL . 

 

 

3.2.2.2. Crystal shape 

Grain shape is a combined result of (i) habits of freely growing euhedral crystals as a 

function of any anisotropy in its growth rates, and (ii) truncations due to impingement on 

other grains. In addition, in two dimensions, orientation and location of the section influence 

the apparent crystal shape. Various methods for describing the shape of crystals are given in 

the metallographical and stereological literature to quantitatively describe and separate 

between elongation, irregularity, and other aspects of the grain shape (e.g., Kurzydłowski & 

Ralph, 1995, p. 257; Wojnar, 1999, p. 193). As grain shapes are not too complex in our 

simulated textures we only use a simple measure of the elongation of crystals. For each grain 

in a two-dimensional section, we define a rectangle of the smallest area and arbitrary 

orientation that can be circumscribed to the cross-section of the grain. The edge length ratio of 

this circumscribed rectangle, α, is used to represent the apparent axial ratio of the grain (e.g., 

Higgins, 2006; Wojnar, 1999, p. 193). An isotropic unimpinged crystal habit, that is, spherical 

cross-sections, have the axial ratio of unity. Random sections of a cube yield axial ratios 

greater than one, as some of the sections are elongated. Impingement, as a random process, 

does not occur symmetrically around a crystal and, therefore, progressively increases the axial 

ratio above unity. Distribution of apparent axial ratios and apparent axial ratio as a function of 

the crystal size are used here as additional quantitative measure of texture appearance.  
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Fig. 3.3. Reduction of the simulated texture to a point pattern. In a texture, two random grains with different 
sizes and their contact neighbors are highlighted. In a point pattern, the nearest neighbors are indicated by 

arrows. 

 

3.2.2.3. Contact relationships 

Grains that share a common boundary in a two-dimensional section are considered as 

contact neighbors. The number of contact neighbors of the crystal, η, is a non-negative integer 

number (Fig. 3.3). Each grain can, thus, have none, one, or more neighbors; a grain 

completely surrounded by melt has no neighbor (η = 0). Such grains can exist only if the 

crystal fraction in the texture is less than 100 %. A chadocryst totally enclosed in an oikocryst 

has one neighbor (η = 1; inclusion). It is expected that η varies with grain size, L2D, because 

larger crystals, on average, have more neighbors, as their perimeter in section is longer. The 

value of η also depends on the density of nuclei; therefore, nucleation and growth rate 

histories are recorded in the variations of neighbor number distribution and in the variations 

of η as a function of crystal size. 

The crystal-to-crystal distance, defined as the distance between nucleation centers, 

cannot be measured directly because (i) locations of nucleation centers are unknown in natural 

samples, and (ii) nucleation centers are distributed in a three-dimensional space and do not 

generally lie in a section plane. Following the approach common in point pattern analysis 

(e.g., Rudge et al., 2008), we use centers of mass of the crystals (in two dimensions) and 

define the distance of crystals as the distance of their respective centers. Average neighbor 
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distance, ρ, is an arithmetic mean of neighbor distances evaluated over all neighbors of the 

crystal of interest (Fig. 3.3). Similar to η, the value of ρ is evaluated as a function of the grain 

size, L2D. The nearest neighbor distance cannot be (when ignoring inclusions) less than the 

sum of the smallest dimensions of the two neighbors and it generally increases with the grain 

size; additional variations reflect the history of the nucleation and growth rates. In our 

simulations, all parameters are only evaluated for those grains that were entirely located in the 

two-dimensional sections; grains that are trimmed by edges of the simulation volume were 

not considered. 

 

 

3.2.2.4. Spatial distribution of crystals 

Spatial relationships of crystals provide additional information on the crystallization 

process, in particular on the mechanism of crystal nucleation, physical interactions of 

individual crystals, or on crystal framework formation (e.g., Jerram et al., 1996; Hirsch et al., 

2000; Rudge et al., 2008). They can be measured within an individual phase or by looking at 

multiple phases (e.g., Jerram & Cheadle, 2000). Here, we adopt an approach common in 

spatial distribution analysis and describe crystals in two-dimensional section by their centers 

of mass (e.g., Rudge et al., 2008). The resulting point pattern (Fig. 3.3) is then analyzed to 

discriminate between a random distribution, clustering, or ordering of points/crystals. A 

simple method to discriminate between these types of spatial distribution, called the R-value 

technique, was introduced to geology by Kretz (1966, 1969) and Jerram et al. (1996). It 

compares the mean value of all distances of the nearest neighbors in a point pattern with its 

expected value for perfectly random distribution of points. The value of R is defined as a 

ratio: 
 

 A

E

RR
R

 , (3.8) 

 

where RA is the average distance to the nearest neighbor measured in the point pattern, and RE 

is a value expected for randomly distributed points. The expected value of RE depends on the 
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number of points in the point pattern, N, and on the area of the point pattern, A (e.g., Kretz, 

1966): 

 

 E
1

2
R

N
A




. (3.9) 

 

From the definition (Eqn. 3.8), R = 1 indicates a random distribution of points, for R < 1 

points are clustered, and R > 1 indicates ordering of points. 

As noted by Jerram et al. (1996), R = 1 is an appropriate reference for a random 

distribution of points only. Crystals have finite sizes and cannot be as close to each other as 

infinitely small points could be. As a consequence, a random distribution of crystals must 

have R > 1 and an appropriate reference model for the random distribution of crystals as a 

function of their modal fraction must be constructed. Based on the packing of equally-sized 

spheres, Jerram et al. (1996) proposed a random sphere distribution line, RSDL, as a reference 

for the random distribution of crystals, to which we will compare our results from random 

nucleation and growth textures. These authors also modeled the texture variations away from 

the random reference line of equal-sized spheres due to crystal growth, compaction, and due 

to variations in size sorting. 

Practical calculation of the R value is complicated by the edge effect. This arises from 

the fact that the point pattern is studied on a finite area. Crystals near the boundary, thus, may 

lack their nearest neighbors that are located outside of the observation window, which biases 

R towards higher values. To correct for the edge effect, we use an empirical correction after 

Donnelly (1978), which is implemented in the “Spatstat” library (Baddeley & Turner, 2005) 

of the R statistical programming language (R Development Core Team, 2011). Due to the 

large number of crystals present in our simulated textures, the magnitude of the correction is 

less than 0.02 of R-value in more than 90 % of the data points. 
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Fig. 3.4. Nucleation (a) and growth (b) rate functions used in the simulations (see Tab 3.1 for equations and 
naming convention). Note the log scale of the vertical axis in the inset in part (a). Symbols lu and tu are 
arbitrary length and time units, respectively. 

 
Tab. 3.1. Nucleation and growth rate functions used in simulations. 

Nucleation rate I(t) Growth rate G(t) 

Labeling Equation Labeling  Equation 

C1 5×10-5 C1 0.0015 

C2 10×10-5 C2 0.15 

L1 5×10-5·t C3 15 

L2 10×10-5·t C4 50 

E1     7 71 10 1 10te  E1  / 215 te  

E2     6 61 10 1 10te  E2 15 te  

E3     7 2 71 10 1 10te  N1 50 te  

E4     9 4 95 10 5 10te  N2  / 250 te  
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Units for the nucleation rate are lu-3 tu-1, units for the growth rate are lu tu-1, where tu is an arbitrary time unit 

and lu is an arbitrary length unit, t stands for time. Symbols C, L, E, N, and G in the label of equations denote 
constant, linear, exponential, negative exponential, and Gaussian functions, respectively, and all rate functions 
are shown in Fig. 3.4. Simulations are labeled by the nucleation rate followed by the growth rate (e.g., 

simulation C1C3 uses the nucleation rate function C1 and the growth rate function C3). 
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3.3. Methodology 
 

We have explored variability of textures and textural parameters by performing three-

dimensional simulations with various nucleation and growth rate functions. Following 

experimental and theoretical studies (e.g., Lasaga, 1998; Marsh, 1998; Burkhard, 2002; 

Bindeman, 2003; Hersum & Marsh, 2006; Amenta et al., 2007), we use simple monotonous 

(constant, linear, positive and negative exponential) or Gaussian functional forms to 

characterize the temporal evolution of the nucleation and growth rates. Such functions 

approximate effects of constant or increasing undercooling, or depletion of interstitial melt, or 

provide an approximation to increasing undercooling followed by quenching (Lasaga, 1998). 

Rate functions used in our simulations are defined in Tab. 3.1, shown in Fig. 3.4, and 

all simulations are listed in Tab. 3.2. Most rate functions were chosen to be within an order of 

magnitude in order to produce textures with comparable grain size. To explore scaling, on the 

other hand, three additional simulations with rates differing by several orders of magnitude 

were also performed (Tab. 3.2). All simulations were conducted in a three-dimensional 

simulation box with ~80 million voxels. Textural analysis was carried out on 1200 × 1200 

pixel two-dimensional sections through the center of the simulation domain. Sections contain 

few hundreds to few thousands complete grains (i.e., grains not intersected by the domain 

boundary; Tab. 3.2), which ensures statistical reproducibility of our results. For simplicity, all 

simulations were performed with a single crystal phase (one-component system), although 

extension to multiphase population is straightforward. This treatment is strictly applicable to 

magmas crystallizing one phase only, or to multicomponent polyphase systems where 

nucleation and growth rates of different phases are similar. All crystals are assumed to have 

isotropic growth rates in three dimensions, that is, euhedral shape is a cube with six mutually 

perpendicular faces advancing at equal rate. The growth rate is considered to be independent 

of crystal size. Size-dependent growth or growth rate dispersion (e.g., Eberl et al., 2002), 

however, are easy to implement in future modifications. 

Textural variations observed in our models result from the variation of the rates of 

nucleation and growth. Simulated textures must be considered as purely kinetic end members 
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with no involvement of texture coarsening or mechanical sorting (e.g., Higgins, 2011). While 

these effects can be incorporated into future models of texture evolution, simulations of 

simple kinetic textures provide an important reference for comparison with natural examples, 

where departures may point to mechanical effects, textural coarsening, or other processes. 

 

 

 

 
Tab. 3.2. List of textural simulations. 

Number of grains in 2D 
section Group Nucleation  

rate 
Growth  
rate 

Section  
edge 
length 
[lu] Complete Incomplete 

σA [lu-2] 
mean
3DL  

[lu] 

vol
2DL  

[lu] 

C1 C3 1200 2916 263 0.00212 21.74 26.97 

C1 E1 1200 2529 241 0.00184 23.31 28.92 

C1 E2 1200 2339 227 0.00170 24.23 30.06 

C1 N1 1200 1867 206 0.00137 27.04 33.54 

C1 N2 1200 1694 217 0.00125 28.26 35.07 

Constant 
nucleation 

C2 C3 1200 4170 311 0.00300 18.25 22.63 

L1 C3 1200 2900 240 0.00210 21.84 27.09 Linear 
nucleation L2 C3 1200 3807 274 0.00274 19.11 23.71 

E1 C1 0.3 3003 205 34505 0.0054 0.0067 

E1 C2 30 2867 199 3.2961 0.5508 0.6834 

E2 C2 30 2966 239 3.4283 0.5401 0.6701 

E3 C3 1200 2095 221 0.00153 25.55 31.70 

E3 C4 1200 282 80 0.00022 66.87 82.97 

E4 C3 1200 7592 363 0.00540 13.61 16.89 

Exponential 
nucleation 

E4 C4 1200 686 102 0.00051 44.20 54.84 

G1 G1 1200 5038 345 0.00362 16.62 20.63 Gaussian 
rates G2 G1 1200 1447 185 0.00107 30.58 37.95 

The σA is area density of crystals as defined in Eqn. 3.4. Grains are considered to be incomplete if truncated by 
the boundary of the simulation domain. The mean

3DL  is a mean crystal size based on the crystal volume density, 
vol
2DL  is the most voluminous grain size. Units lu are arbitrary length units.  
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3.4. Results 
 

3.4.1. Texture description 

 

Simulated textures range from equigranular to seriate, and their representative 

examples are shown in Fig. 3.5 (for all textures, see Electronic Appendix 3.1). A simple 

combination of constant rates of nucleation and growth (simulation C1C3) leads to an 

equigranular texture (Fig. 3.5a). If the growth rate is allowed to decrease (C1N1) or the 

nucleation rate is increased (L1C3) in the course of crystallization, smaller interstitial grains 

begin to appear in the texture, which acquires a more seriate appearance (Fig. 3.5b, c). 

Finally, an exponential increase of the nucleation rate combined with constant growth rate 

(E4C3) leads to few large (old) crystals surrounded by many smaller (younger) interstitial 

grains and results in a seriate texture (Fig. 3.5d). Gaussian rate functions (simulations G1G1, 

G2G1) produce seriate textures similar to those formed by linearly increasing nucleation or 

exponentially decreasing growth rate (Fig. 3.5b, c). We have compared two cases of the 

Gaussian rate functions: (i) both rates reach their maxima at the same time (Fig. 3.5e), or (ii) 

the maximum in the nucleation rate is delayed and occurs after a decline of the growth rate 

(Fig. 3.5f), which simulates the nucleation lag known from the crystallization experiments 

(e.g., Fokin et al., 2006, 2008). The latter scenario produces a more coarse-grained texture 

because of the small number of nuclei. 

Tab. 3.2 summarizes characteristic area densities of crystals and grain sizes. Area 

densities of crystals and mean crystal sizes in simulated textures depend more on the growth 

rate than on the nucleation rate. For instance, a twofold increase in the nucleation rate (from 

C1 to C2, or from L1 to L2), while keeping the growth rate constant, reduces grain size by 

about  15 %  only. On  the  other  hand,  scaling of  the growth rate  scales the crystal size by a 

 

 
► Fig. 3.5. Two-dimensional sections through representative simulated textures. Width of each image 

corresponds to 600 length units and each snapshot covers ¼ of the area of simulated section. For all textures, 
see Electronic Appendix 3.1. 
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comparable factor (e.g., simulation E3C3 vs. E3C4). This effect results from the dimensional 

difference between the rates of nucleation and growth with respect to one-dimensional crystal 

size. 

 

 

3.4.2. Crystal size and volume distribution 

 

The crystal size distributions (CSDs) from our simulations are almost straight to 

concave down curves in the logarithm of the population density vs. crystal size diagram 

(Fig. 3.6). For all monotonous rate functions, the curvature of CSD reduces as the nucleation 

rate increases or the growth rate decreases more rapidly with time. We distinguish two classes 

of CSDs among our results: (i) straight CSDs with only minute decrease in the population 

density observed at smallest crystal sizes. Apart from this grain size segment, straight CSDs 

are well approximated by a linear relationship between the logarithm of the population 

density and crystal size; (ii) concave-down CSDs where curvature is distributed over all 

crystal sizes. 

For simulations with exponential nucleation and constant growth rates, the resulting 

CSDs are straight. Depletion of the population density in smallest crystal sizes is in 

qualitative agreement with theoretical predictions using approximate solutions (cf. Marsh, 

1998), but our model predicts a lesser extent of depletion. Straight parts of the CSDs result 

from rapid (exponential) increase of the number of new grains with time. In the final stages of 

crystallization, the decrease in the population density of small crystals occurs due to the 

shrinkage of melt volume available for nucleation. We neglect the concave-down lower end 

and parameterize the entire straight CSD by the respective values of the slope and the 

intercept. At any volume fraction of crystals in the system, the slope and the intercept of 

straight CSDs are related by the mass balance constraints (e.g., Marsh, 1998; Higgins, 2002b). 

Slopes of the straight CSDs depend on the rate functions (Tab. 3.3). Higher growth rate 

enables crystals to grow larger, thus reducing the slope, whereas steeply increasing nucleation 

rate leads to larger crystal numbers, that is it increases the CSD slope. A similar relationship 
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applies to both b2D and b3D slopes derived from apparent two-dimensional and true three-

dimensional crystal sizes, respectively. 

Combinations of monotonous rate functions other than those with the exponential 

nucleation rate and the constant growth rate yield concave-down CSDs. Textures resulting 

from  the  Gaussian  rate  functions  also  exhibit  concave- down  CSDs.  Consistent with  the  

 

  
Fig. 3.6. Representative crystal size distributions derived from the volume data. Symbol L3D is a true crystal size 
calculated as a diameter of equal-volume sphere.  

 
Tab. 3.3. Slopes of the straight CSDs. 

Nucleation rate Growth rate b2D b3D 

E1 C1 -332 -248 

E1 C2 -3.09 -2.44 

E2 C2 -3.28 -2.43 

E3 C3 -0.067 -0.053 

E3 C4 -0.024 -0.018 

E4 C3 -0.126 -0.099 

E4 C4 -0.043 -0.032 

The b2D is a slope of a CSD calculated based on the apparent crystal size in two-dimensional sections, L2D; the 
b3D is calculated from the volume data and uses L3D as a true crystal size. Both slopes are calculated from the 

natural logarithm of the population density, n, in lu-4, where lu is an arbitrary length unit. The smallest crystal 
sizes (smallest size class) are omitted from the regression. Note the close correlation between b2D and b3D.  
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Fig. 3.7. Representative apparent volume distributions in two-dimensional sections for (a) simulations with 
similar characteristic grain size, and (b) simulations with remarkably different characteristic grain size and 

straight CSDs only. Area fraction (mode) is for each size class.  
 
 

  
Fig. 3.8. Apparent axial ratio, α, of crystals in two-dimensional sections. Frequency (a) and volumetric (b) 

distribution of α. All curves are density distribution functions.  

 

numerical results of Lasaga (1998), our simulations show that the curvature of CSDs is 

reduced when the time difference between peaks of the Gaussian nucleation rate and the 

Gaussian growth rate becomes greater (simulation G1G1 vs. G2G1). For all performed 

simulations, crystal size distributions by area fraction are bell-shaped curves with single, 
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variably broad maxima (Fig. 3.7a). That is, a certain crystal size is the most abundant one, by 

area (volume). Such a most abundant crystal size exists even in cases where the CSD is 

straight, without any maximum in the number density of crystals. In cases with constant or 

linear nucleation rate, volume distributions are almost perfectly symmetrical, which is 

consistent with the qualitative observation of more or less equigranular texture. Exponential 

nucleation, on the other hand, leads to the volume distribution being skewed to the left, where 

most of the volume is concentrated in smaller crystals. Larger phenocryst-like grains 

contribute to seriate appearance of these textures. When plotted on the log crystal size vs. 

modal fraction diagram (Fig. 3.7b), the left-skewed distributions become symmetrical and 

they only shift along the logarithmic size axis when the kinetic functions and corresponding 

CSDs are varied.  

In our approach, we have considered the distributions by area as a proxy for the true 

volume distributions. A reversed approach, that is construction of a 3D distribution from 2D 

measurements, is often applied in interpretations of natural samples. This procedure includes 

estimate of the most representative three-dimensional crystal shape from the long and short 

axes of the crystals in the section (using the CSDslice algorithm; Morgan & Jerram, 2006), 

and the representative shape is then employed in the CSDcorrections software (Higgins, 

2000) in order to derive an approximation of the true CSD. As our 3D simulations and 2D 

sections are directly corresponding and self-consistent, we can evaluate the applicability and 

accuracy of the above procedure. Our 2D vs. 3D distributions are well comparable, in 

agreement with the results of a previous study (Jerram et al., 2009). The reconstructed 3D 

distributions are significantly biased towards higher population densities for the smallest 

crystal sizes. Furthermore, because the true crystal sizes are always greater than or equal to 

the size of any of their two-dimensional sections, the 2D and 3D datasets differ slightly in the 

grain size leading to a consistent relative shift of approximately 10 length units; an analogous 

feature is expected to occur in reconstructed 3D distributions for natural samples. 
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3.4.3. Crystal shape 

 

All simulations use growth rates that are constant for all crystal faces, and a euhedral 

unimpinged crystal would, therefore, acquire a cubic shape. Variation of the apparent axial 

ratio, α, thus results purely from impingement processes during crystal growth and from the 

cut-section effects.  

The apparent axial ratio values range from unity to ~10 in our simulations (Fig. 3.8). 

High ratios, however, are scarce, as their frequency decreases exponentially (Fig. 3.8a). 

Distributions of axial ratio are rather similar for all studied textures and form a narrow band in 

the log frequency vs. axial ratio space. Similarly, the distribution of volume of crystals by its 

axial ratio decreases with the axial ratio, as most of the volume consists of isometric crystals, 

and this is in agreement with visual appearance of our simulated textures (Fig. 3.5). 

The apparent axial ratios observed in two-dimensional sections can be used to 

reconstruct the representative crystal shape in three dimensions using the CSDslice algorithm 

(Morgan & Jerram, 2006). Since the growth shape of the crystals is known, this approach 

provides internal verification of the crystal shape reconstruction. Remarkably, the predicted 

crystal shapes are weakly prismatic with representative axial ratios of 1:1:1.8 (simulation 

E3C3) or 1:1:1.6 (simulation G1G1), respectively, which is in contrast to the cubic growth 

shape of all crystals. The crystal shapes, however, were estimated with a poor goodness-of-fit 

parameter, R2 ≈ 0.65, with the CSDslice procedure. This results from a large effect of crystal 

impingement, which obscures the primary growth shape. The indirect estimation procedures 

of the crystal shape are, thus, more meaningful for phenocryst populations as opposed to 

crystal aggregates. 

Analysis of the axial ratios of crystal populations (Fig. 3.9a) allows us to define a 

general relationship between the crystal size and its axial ratio. On average, small crystals 

tend to be more elongate with α ≈ 2 and the average axial ratio decreases with increasing 

crystal size (Fig. 3.9). Small crystals are formed generally late; thus, their growth is more 

constrained by surrounding pre-existing crystals, which changes their axial ratios to higher 

values. The  relationship  between the axial ratio and the crystal size, however, depends on the    
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◄ Fig. 3.9. Two-dimensional crystal size, L2D, and 
apparent axial ratio, α. (a) entire crystal population 

from the simulations C1C3 and E3C3. Dependence of 
α on apparent crystal size, L2D, for simulations with 
similar (b) and different (c) characteristic grain size. 

 

rates of nucleation and growth, and its slope generally reflects the overall crystal size of the 

texture (e.g., G1G1 vs. E3C3; Fig. 3.9b). Dependencies of the α-ratio on the crystal size for 
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simulations with different length scales but with straight CSDs are compared in Fig. 3.9c. The 

shapes of these curves remain invariant and they only shift along the size axis as the overall 

crystal size changes by several orders of magnitude for the slopes of the corresponding CSD 

from ~ -300 to ~ -0.1 lu-1. 

 

 

3.4.4. Contact relationships 

 

The number of contact neighbors of a crystal, η, ranges from one to about 15-30 in 

two-dimensional sections through simulated textures (Fig. 3.10c). The frequency distributions 

of neighbor numbers are similar for all textures, with η between 3 and 5 being the most 

frequent number of neighbors. Individual neighbor numbers depend on the crystal size, L2D, 

because larger crystals tend to be, on average, in contact with more neighbors as documented 

by a nearly linear increase of η with L2D (Fig. 3.10a). The curves of η vs. L2D are characterized 

by different slopes for different textures; however, when projected towards zero crystal size 

they share a common intercept. The slope is related to overall grain size, thus more fine-

grained textures (with greater slope of their CSD) are characterized by greater slope of their η 

vs. L2D relationship (cf. E3C4 vs. E4C3 in Fig. 3.10a). Higher nucleation rate or lower growth 

rate, therefore, produce textures with greater slopes in the η vs. L2D relationship. 

The average neighbor distance, ρ, for a crystal has a bell-shaped frequency distribution 

with a pronounced maximum (Fig. 3.10d). For more coarse-grained textures (with shallower 

CSD slopes), the position of the maximum shifts towards higher distances and its amplitude 

decreases (cf. E3E4 vs. E4C3). This results from the fact that crystals cannot be closer to each 

other than their respective sizes allow. Average neighbor distance, thus, depends on the parent 

crystal size, L2D, and this dependence is almost linear (Fig. 3.10b). Among different textures, 

the intercepts of the ρ vs. L2D curves vary, but the slopes remain the same.  

Crystals with just one neighbor (η = 1) are considered to be inclusions in a host grain, 

but some of them are only incidental cross-sections appearing as inclusions in the two-

dimensional section. In  our simulated textures, inclusions  are rare and the fraction of crystals   
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Fig. 3.10. Contact relationships of crystals in a two-dimensional section. Relationship between the number (a) 

or distance (b) of contact neighbors and the crystal size, L2D. Frequency distribution of neighbor number (c) and 
of neighbor distance (d).  

 

 

having an inclusion is generally as low as 1/40 to 1/400. Both simulations with the Gaussian 

rates (G1G1 and G2G1) have the least number of inclusions (1/340 or 1/400 inclusion-bearing 

grains). On the other hand, mineral inclusions are most frequent in textures originating from 

exponential nucleation, where the fraction of crystals with inclusions is between 1/40 and 

1/160, and it does not correlate with the slope of the CSD. Due to the general scarcity of 

inclusions, multiple inclusions in a single grain are so rare that their numbers cannot be 

evaluated with statistical confidence. 
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Fig. 3.11. Clustering index, R, as a function of crystallinity for textures with straight CSDs and for a texture with 

constant rates of nucleation and growth (C1C3). Simulations of crystallization of needles and plates with aspect 
ratios of 1:1:3 and 1:3:3, respectively, are shown for comparison. Each simulation, except for those with 
needles and plates, was repeated 10 or 20 times, and the results were averaged to obtain more accurate 

trends. Error bars are 1σ values from averaging over multiple simulations and do not apply to needles and 
plates. The RSDL is the random sphere distribution line of Jerram et al. (1996). 

 

 

3.4.5. Spatial distribution pattern 

 

We use the centers of mass of crystals to evaluate the degree of random distribution, 

clustering, or ordering of crystals via the clustering index, R (e.g., Kretz, 1966, 1969; Jerram 

et al., 1996). In Fig. 3.11, the value of R and its evolution during crystallization is shown for 

selected textures. At the limit of zero crystallinity, the clustering index converges to R = 1 in 

all simulated textures. In this case, crystals do not constrain positions of each other; thus, the 

value of R must be equal to that for a hypothetical random distribution of points. With 

increasing crystallinity, R generally increases because any new crystal cannot nucleate where 

a preexisting one is already present. Crystal centers, thus, become more distant from each 

other than expected for the random distribution of points, and this is also so where divergence 

between the individual textures appears. The texture originating from the constant rates of 

nucleation and growth (C1C3) evolves towards higher values of R when compared to the 
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textures from exponential nucleation and constant growth rate (e.g., E1C1). In contrast to 

C1C3, all cases with exponential nucleation lead to a reversal in R and, after reaching the 

maximum value of ~1.18 at about 80 % crystallinity (Φ) its value drops to 1.13-1.15 at 

complete solidification. The trend of increasing ordering is reversed due to the large number 

of small crystals being distributed randomly in the interstitial space. 

Textures with straight CSDs, i.e., resulting from various exponential nucleation rates, 

are characterized by mutually similar trends in the R vs. Φ space where they define a narrow 

band no wider than ~0.02 of the R-value. The dispersion between the individual textures 

remains small in spite of the differences by nearly four orders of magnitude in the slope of 

their respective CSDs. For each kinetic model, the trend of the R-value with respect to Φ 

defines a random texture. Values of R above this trend indicate ordering of crystals, whereas 

lower values indicate clustering. Note that the trends of R for all simulated textures are 

located well below the random sphere distribution line of Jerram et al. (1996). Such deviation 

is expected as simulated textures contain a distribution of sizes and are not made of equally 

sized spheres as considered by Jerram et al. (1996). The trends of crystal growth at low to 

moderate crystallinities are also similar to those modeled by Jerram et al. (1996). 

 

 

3.5. Discussion 
 

3.5.1. Characteristic grain size 

 

Grain size is one of the most important and traditionally employed parameters for the 

characterization of igneous textures (e.g., Cross et al., 1906; Teuscher, 1933; Niggli, 1954; Le 

Maitre, 2002). However, CSDs in many igneous rocks are almost straight in logarithm of the 

population density vs. crystal size projection (e.g., Cashman & Marsh, 1988; Wilhelm & 

Wörner, 1996; Marsh, 1998; Higgins, 2002b; Zieg & Marsh, 2002) implying that the number 

of grains increases exponentially with decreasing crystal size. Thus, an arithmetic average of 

grain size is not a statistically valid measure of the grain size. Instead, approaches based on 
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higher statistical moments of the CSD (e.g., Marsh, 1988) can provide such a measure. We 

suggest that a grain size appearing dominant to the observer as well as being constrained 

statistically is that with the most significant volume (or area) fraction in the sample. Our 

simulated textures show that the crystal volume distributions, in contrast to conventional 

CSDs, are all unimodal with a well-defined maximum; thus, the most voluminous and 

visually dominant grain size can be determined (Fig. 3.7). In addition, the most voluminous 

grain size, vol
2DL , correlates with the mean grain size, mean

3DL , as calculated from the area density 

of crystals (Fig. 3.12). The most voluminous grain size can, thus, be approximated by this 

simple approach. This also lends support to the visual definition of the grain size and assures 

consistency with the instrumental or computational estimates. 

 

 

3.5.2. Straight log-linear and curved CSDs 

 

Numerical simulations of crystallization help recognize possible trends of the 

nucleation and growth rates that produce straight CSDs similar to those found in many natural 

igneous rocks (e.g., Cashman & Marsh, 1988; Wilhelm & Wörner, 1996; Marsh, 1998; 

Higgins, 2002b; Zieg & Marsh, 2002). The straight nature of the logarithm of the population 

density vs. crystal size relationship is a characteristic feature of simulations employing 

combination of the exponentially increasing rate of nucleation and the constant rate of growth 

(cf. Marsh, 1998; Hersum & Marsh, 2006). Other combinations of constant, linear, and 

exponential rates used in this study do not approach the linear behavior of CSDs (Fig. 3.6b), 

although multiple nucleation and growth rate functions consistent with any given (including 

straight) CSD can be constructed numerically by the method of Špillar & Dolejš (2013). The 

combination of exponential nucleation rate and constant growth rate appears to be a 

reasonable approximation of the crystallization kinetics in natural magmas provided that the 

nucleation rate is a much stronger function of the driving force of crystallization (e.g., 

undercooling) than the growth rate.  
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Fig. 3.12. Correlation between mean three-dimensional crystal size, mean

3DL , calculated from the volumetric 
number density of crystals, and the most voluminous crystal size in two-dimensional section, vol

2DL . Error bars 

represent relative magnitudes of error, calculated as the inverse of a number of grains, and are scaled 
arbitrarily. Where not shown, error bars are smaller than the symbol size. 

 

All simulated textures exhibit some discernible curvature of their CSDs. For 

exponential nucleation rates, this affects the smallest crystal sizes only while the rest of the 

CSD remains straight, and we designate all such CSDs as straight. In all other cases of 

nucleation and growth rate functions the downward curvature of CSDs is more pronounced 

and distributed over the full range of crystal sizes. Curved CSDs that are depleted in small 

crystals were reported in numerous studies from large intrusive bodies of both felsic and 

mafic composition and were frequently ascribed to texture coarsening or annealing 

(Bindeman, 2003; Higgins, 2002a; Boorman et al., 2004; Simakin & Bindeman, 2008). Our 

simulations show that curved CSDs may result directly from the specific combinations of 

nucleation and growth rates and do not require post-crystallization modification of the texture.  

For Gaussian nucleation and growth rates, the CSD curvature is inversely proportional 

to the temporal difference between the peak of nucleation and growth (Lasaga, 1998; cf. 

G1G1 vs. G2G1; Fig. 3.6b). When the maximum nucleation succeeds the maximum of the 

growth rate, the crystallization cannot continue and some residual melt always remains. 
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◄ Fig. 3.13. Comparison of pairs of similar textures 
formed by different combinations of the nucleation 
and growth rate functions. (a) distribution of true 

crystal sizes, L3D, based on the volume data. (b) 
dpendence of a neighbor number, η, on apparent 
crystal size, L2D. (c) fequency distribution of an 

average neighbor distance, ρ. In each pair, the 
Gaussian rates (solid line) are set to obtain a texture 
that matches the textural parameters of one of the 

previously simulated texture (dashed line). For the 
Gaussian nucleation rate, μI and σI, are the mean 
value and the standard deviation, respectively, used 

in the following formula: 
 
 

          1/24 2 2( ) 5 10 2 exp ( ) /(2 )I I II t t . 
 
 

Value of the standard deviation is fixed to σI = 3 tu, 
whereas the value of μI was adjusted. Symbol tu are 

arbitrary time units. 
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3.5.3. Covariance behavior of nucleation and growth rates 

 

Natural and synthetic textures can be conveniently described by scalar quantities. 

Various functional parameters describing size, shape, contact and spatial relationships of 

crystals can be employed to gain a more thorough description of a texture but some are 

inherently interrelated. Several distinct textures in our simulation set (e.g., C1C3 vs. L1C3) 

yield similar CSDs but also approach each other in other quantitative textural parameters 

(e.g., spatial distribution pattern, contact relationship). To test if distinct combinations of rate 

functions leading to identical CSDs will also have identical other textural parameters, we 

performed an additional set of simulations with Gaussian rates of nucleation and growth. 

Parameters of the Gaussian rates were adjusted stepwise in order to obtain textures, the CSDs 

of which would be identical to some of the previously simulated non-Gaussian textures. The 

CSDs and contact parameters of three examples are shown in Fig. 3.13. The close 

correspondence between the CSDs and the other textural parameters empirically confirms 

that: (i) contrasting histories of nucleation and growth rates can lead to identical textures. 

Therefore, both the rate functions describing nucleation and growth cannot be simultaneously 

and uniquely determined from the texture. (ii) A CSD is a sufficient function to describe the 

texture and all other quantitative parameters of the texture can be uniquely determined from 

the CSD provided that the textures originate by spatially random nucleation and grain size-

independent growth only. 

On the other hand, textural parameters determined indirectly from the known CSD of a 

texture of interest can be compared with those actually measured on the texture. If any 

difference is found, then it must be due to other processes than spatially random nucleation in 

melt and size-independent growth of crystals. This method, therefore, opens an avenue for 

identifying textural evidence of other processes than simple nucleation and growth that could 

have operated during magma crystallization. 
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3.5.4. Invariant properties of textures and implications for magmatic processes 

 

Textural variations observed in our models result from variations of nucleation and 

growth rates. These textures must be considered as limiting kinetic cases with no involvement 

of crystal coarsening or mechanical sorting (e.g., Marsh, 1988, 1998; Higgins, 2011). While 

such effects can be incorporated into future models of texture evolution, we attempt to identify 

textural parameters, which are insensitive (invariant) to the nature of the nucleation and growth 

rate in our simulations, and their variations in natural samples would, thus, point to the action 

of other processes such as heterogeneous nucleation (Hammer at al., 2010), existence of 

chemically modified boundary layers (Muncill & Lasaga, 1987, 1988; Acosta-Vigil et. al., 

2006), size-dependent growth (Eberl et al., 2002; Kile & Eberl, 2003), mechanical clustering 

of crystals in a suspension (Schwindinger, 1999), textural coarsening,  etc. (e.g., Higgins, 

2011). 

Several rate-invariant properties are illustrated in Fig. 3.10. The number of neighbors of 

a crystal, η, depends linearly on the crystal size, L2D, but individual trends have a common 

intercept, ηI = 2.434 ± 0.087 (1σ) (Tab. 3.4). This quantity represents an average number of 

neighbors of a crystal approaching zero size. For natural textures, ηI varies between 1 and 3, as 

a very small crystal may form an inclusion in a larger crystal, be located at a boundary between 

two other crystals or at a triple junction. Deviation of ηI from the theoretical value (~2.4) 

provides information on other crystallization processes unrelated to nucleation and growth. 

Heterogeneous nucleation on crystal surfaces increases the number of interstitial grains and the 

value of ηI is lowered. On the other hand, suppression of nucleation in a chemically modified 

melt boundary layer has the opposite effect, similar to texture coarsening, which, in an extreme 

case, leads to equigranular honeycomb-like texture, where each grain has 6 neighbors. 

The average neighbor distance, ρ, also linearly depends on the crystal size, L2D, and the 

slope of this relationship remains nearly constant, ρS = 0.424 ± 0.029 (1σ), for all simulated 

textures (Fig. 3.10b). The slope represents an increment by which the average distance to the 

contact neighbor increases per unit increase of the crystal size, and this quantity is expected to 

be altered when other than random nucleation and size-independent growth occurred during 
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crystallization. We emphasize that values presented here are based on the growth rate that is 

isotropic in three directions (that is, growth form is a cube) and will be modified when other 

growth forms such as plates or prisms are considered. 

 
Tab. 3.4. Fits for the invariants of the simulated textures. 

Fit to η(L2D) Fit to ρ(L2D) Nucleation 
rate curve 

Growth  
rate curve Slope [lu-1] Intercept [n.d.] Slope [n.d.] Intercept [lu] 

C1 C3* 0.179 ± 0.003 2.399 ± 0.053 0.399±0.010 16.142±0.263 

C1 E1 0.169 2.334 0.393 17.311 

C1 E2 0.158 2.453 0.418 17.644 

C1 N1 0.146 2.381 0.399 20.250 

C1 N2 0.135 2.406 0.393 21.371 

C2 C3 0.218 2.283 0.393 13.644 

L1 C3 0.181 2.387 0.406 16.333 

L2 C3 0.204 2.401 0.400 14.360 

E1 C1** 745.2 ± 31.46 2.526 ± 0.166 0.458 ± 0.013 0.0039 ± 0.0001 

E1 C2** 7.476 ± 0.363 2.468 ± 0.181 0.466 ± 0.007 0.385±0.007 

E2 C2** 7.363 ± 0.362 2.536 ± 0.154 0.461 ± 0.009 0.386±0.009 

E3 C3* 0.160 ± 0.005 2.492 ± 0.087 0.445±0.013 18.490±0.527 

E3 C4* 0.060 ± 0.004 2.446 ± 0.179 0.439±0.034 48.038±2.014 

E4 C3* 0.294 ± 0.006 2.473 ± 0.088 0.465±0.008 9.587±0.179 

E4 C4 0.088 2.664 0.464 31.408 

G1 G1 0.233 2.367 0.411 12.216 

G2 G1 0.137 2.364 0.401 23.293 

Invariants – all textures (± 1σ): ηI = 2.434 ± 0.087 ρS = 0.424 ± 0.029 

The η(L2D) is the linear dependence of the neighbor number on the crystal size, whereas ρ(L2D) is the linear 
dependence of average neighbor distance on crystal size. To avoid statistical fluctuations due to the low 
number of observations, fits are calculated from zero to half of the maximum value of L2D only; at higher values 

of L2D, observations are sparser and fits suffer from undesired statistical fluctuations. Where indicated, multiple 
realizations of a single simulation were performed and averaged to obtain statistically more stable results. 
Symbols lu are arbitrary length units. Units n.d. indicate dimensionless quantity. All errors are 1σ values. 

* average of 20 repeated simulations. 
** average of 10 repeated simulations. 



3. Model of nucleation and growth 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 114 - 

3.5.5. Spatial distribution of crystals and random textures 

 

Our simulations allow comparison of the spatial arrangement of crystals with textural 

parameters in case of random distribution. By definition, random distribution of points is 

characterized by unit value of the clustering index, R (e.g., Clark & Evans, 1954; Kretz, 

1966). In real textures with finite size of crystals, the value of R for random distribution 

becomes a function of crystallinity. To characterize this effect, random distribution of spheres 

was introduced as a reference (e.g., Jerram et al., 1996). In contrast to the random sphere 

model, however, new crystals nucleate during the crystallization in the available melt pools, 

and their locations are constrained by other crystals already present in the melt. As our 

simulation algorithm treats homogeneous nucleation as occurring at random locations in the 

melt,  the  simulated  textures  provide   a  reference  for  random  textures  formed  during  

 

  
Fig. 3.14. Degree of ordering vs. clustering of crystals in representative natural textures: BC – Belingwe 

komatiite, Zimbabwe, olivine in the basal chill zone (Jerram et al., 2003); BK – Belingwe komatiite, Zimbabwe, 
olivine in the cumulate zone (Jerram et al., 1996); HC – Holyoke flood basalt, Connecticut/Massachusetts, 
plagioclase in the colonnade zone (Jerram et al., 2003); HE – Holyoke flood basalt, Connecticut/Massachusetts, 

plagioclase in the entablature zone (Jerram et al., 2003); HR – Halle rhyolite, Germany, quartz, alkali feldspar, 
and plagioclase phenocrysts (Mock et al., 2003); KK – Kambalda komatiite, Western Australia, olivine in the 
cumulate zone (Jerram et al., 2003); SP – Shanggusi granite porphyry, China, quartz phenocrysts (Yang, 2012); 

VK – Vammala komatiite, Finland, olivine in the cumulate zone (Jerram et al., 2003). Random sphere 
distribution line (RSDL) according to Jerram et al. (1996). The random texture trend is drawn for simulated 
textures with straight CSDs, and it is believed to separate between clustering and ordering in natural textures. 
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continuous nucleation and growth, and for the evolution of the clustering index, R, as a 

function of crystallinity (random texture trend, RTT).  

All textures with straight CSDs share a common RTT (Fig. 3.11), whereas RTTs 

consistent with textures having non-straight CSDs can also be calculated using our simulation 

algorithm. The RTT obtained in this study differs significantly from the random sphere 

distribution line used by Jerram et al. (1996) and in subsequent studies (e.g., Ikeda et al., 

2002; Jerram et al., 2003; Mock et al., 2003). Textures resulting from random nucleation in a 

melt would be considered as clustered, according to the classification of Jerram et al. (1996), 

whereas natural textures considered as clustered should now be regarded as more ordered with 

respect to the new RTT trend (Fig. 3.14). Any deviations found in natural textures from the 

theoretically predicted RTT, therefore, indicate that process(es) other than random nucleation 

and size-independent growth must have influenced magma crystallization. Comparison of 

natural textures with the predicted RTT may provide better insight into cluster-forming 

heterogeneous nucleation or aggregation of crystals during the crystal settling, or it may 

indicate crystal mush compaction in cumulates (e.g., Jerram et al., 1996, 2003). 

 

 

  
Fig. 3.15. Crystal size, L2D, vs. crystal growth time for populations of crystals in three representative textures. 

The crystal growth time is estimated from two-dimensional sections as a time interval from the instant when 
the crystal enters the sectioning plane to the point when it is completely impinged (stops growing) in that 
section.  
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3.5.6. Crystallinity evolution and crystallization time 

 

We define growth time of a grain as the time span between nucleus formation and the 

end of crystal growth when all faces of the crystal are impinged by neighboring crystals, or 

when the growth rate decreases to zero. As a total crystallization time we define the time 

needed for the whole simulation domain to reach 100 % crystallinity. All crystallization 

simulations reveal a universal positive correlation between crystal size and crystal growth 

time (Fig. 3.15). The growth time of the largest crystals (in a two-dimensional section) spans 

up to about 75 % of the total crystallization time for a magma. In detail, however, individual 

crystals in the population show significant spread around the linear trend in Fig. 3.15, as the 

growth times of individual, similarly sized crystals differ by several factors. Similarly sized 

crystals may, thus, record vastly different time spans and conditions of magma crystallization.  

The slope of the linear relationship in the crystal size vs. crystal growth time space is 

inversely related to the effective growth rate of the crystals. The effective growth rate (e.g., 

Lasaga, 1998; Marsh, 1998) accounts for the impingement of crystals and various orientations 

of the crystal faces with respect to the plane of section. We observe that the effective growth 

rate mainly depends on the growth rate function, whereas the dependence on the nucleation 

rate is weak and secondary (Fig. 3.15). However, the variations in the growth rate with time 

do not alter the linear correlation between the crystal size and its growth time. The effective 

growth rate is, thus, meaningfully defined even in complex cases where the nucleation and 

growth rates have varied with time. 

The evolution of crystal fraction (crystallinity) with time is illustrated in Fig. 3.16. In 

all cases, the crystallinity-time evolution follows a sigmoidal trend with a slow onset, rapid 

progress at intermediate crystal fraction, and a slow approach towards full crystallinity. These 

trends are in excellent agreement with analytical predictions from the Avrami theory (Avrami, 

1939, 1940; Lasaga, 1998; Marsh, 1998), and such behavior results from the universal 

variation of crystal surface area that is available for grain growth. This area is small during 

early stages of crystallization, progressively increases with increasing grain size, and decreases 
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Fig. 3.16. Crystallinity-time relationships in textural simulations: (a) original data and (b) normalized to time 
interval to reach 98 % crystallinity. 

 

near the end of crystallization due to impingement of most of the crystals and decreasing size 

of residual melt pockets. 

The total crystallization time is specific for each simulation but it is generally related 

to the nucleation rate at the liquidus, i.e. onset of crystallization (Fig. 3.16a). Simulations with 

constant or linearly increasing nucleation rate exhibit the shortest crystallization time lag. 

Those with exponential or Gaussian nucleation rates, that is, with the slower onset of 

nucleation at the beginning of crystallization, show greater delays in crystallinity increase. To 

compare the evolution of crystallinity, we normalized all simulations to a common time scale 

when they reach 98 % crystallinity (Fig. 3.16b). This level, rather than 100 % crystallinity, 

was chosen to avoid artifacts or instabilities resulting from asymptotic approach to infinity at 

full crystallinity. Simulations with constant nucleation rate and decreasing or constant growth 

rate (C1N1, C1C3) provide normalized time-crystallinity relationships, which are closest to 

linear. Exponential nucleation (e.g., E3C3, E4C3), on the other hand, leads to crystallinity that 

is almost negligible during the first half of the crystallization time, but then increases rapidly. 

Models with exponential nucleation, thus, provide the greatest departure from simple 

proportionality between  the  time  and  crystal  fraction.  Importantly,  only  the  models 
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with exponential nucleation rates produce textures with straight CSDs that are known from a 

wide range of natural volcanic and mafic intrusive rocks (e.g., Cashman & Marsh, 1988; 

Wilhelm & Wörner, 1996; Marsh, 1998; Zieg & Marsh, 2002). Kinetic models that are closer 

to the linear time-crystallinity relationship result in concave-down CSDs, which are observed, 

for instance, in large silicic systems (e.g., Bindeman, 2003; Simakin & Bindeman, 2008). 

The magnitude of the departure from the linear time-crystallinity relationship may 

provide inferences about the degree of disequilibrium during crystallization. If a quasi-linear 

crystallinity-temperature relationship is assumed, as predicted by melting and cooling 

experiments (e.g., Marsh, 1981; Annen et al., 2008), and when cooling proceeds at 

approximately constant rate, the departure of the crystallinity from the quasi-linear trend is 

directly proportional to the degree of disequilibrium. This observation indicates that samples 

showing straight CSDs were at greater disequilibrium during crystallization, whereas more 

equilibrium crystallization occurred in those cases where concave-down CSD patterns are 

observed. 

 

 

3.6. Concluding remarks 
 

We developed a new high-resolution kinetic model for the simulation of texture 

evolution in a three-dimensional magma domain. The model incorporates homogeneous 

nucleation and crystal growth rates, and it was employed to perform exploratory simulations 

of crystallization of a single type of solid phase using various combinations of constant, 

linear, exponential, and Gaussian rate functions for nucleation and growth. The simulated 

textures were quantified by true three-dimensional CSDs and a variety of apparent spatial, 

contact, and shape parameters in a two-dimensional section. The resulting textures broadly 

resemble natural ones and cover a range from equigranular to seriate types with considerable 

variation of grain size and size distribution. Porphyritic types, however, were not observed in 

any of the kinetic models and their formation apparently requires a sudden increase of crystal 

nucleation and/or abrupt decrease in the growth rate. A more likely and common way to 
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produce porphyritic textures is by episodic annealing or by mixing crystal populations 

through the processes of crystal recycling/accumulation (e.g., Morgan et al., 2007; Martin et 

al., 2010; Johnson & Glazner 2010; Mills et al., 2011). In a multiphase system, a porphyritic 

texture can form if second and additional saturating phases appear after a substantial time lag, 

when the phenocrysts of the first liquidus phase are allowed to nucleate and sufficiently grow. 

Different combinations of the nucleation and growth rate functions can lead to textures 

with identical CSDs, contact, spatial, and shape parameters. In addition, we have identified 

conventional and new textural parameters that are either sensitive or invariant to processes of 

random nucleation and growth. Their simultaneous evaluation on natural igneous rocks and 

mutual comparison of individual parameters offers a powerful tool for identifying and 

separating effects of other crystallization processes such as heterogeneous nucleation, 

formation of melt boundary layers, mechanical interactions of crystals or textural coarsening. 
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Preface to Chapter 4 
 

 

 

 

A number of experimental crystallization studies has proven homogeneous nucleation 

of crystals from undercooled melt to be difficult. Nucleation is eased by presence of solid 

surfaces that lower the energy barrier and act as the sites of preferential nucleation. 

Consequently, spatially constrained heterogeneous nucleation leads to the formation of 

clusters of crystals. This affects rheology of crystal mushes and enhances gravitational 

crystal-liquid separation. In this chapter, we extend the three-dimensional model of 

crystallization by nucleation and growth of crystals (Chapter 3) to include the effect of 

heterogeneous nucleation. We then calibrate a set of quantitative relationships between the 

heterogeneous to homogeneous nuclei number ratio and derive textural parameters, such as 

CSD curvature or clustering index, measurable on natural samples and experimental products. 

This chapter was published as ŠPILLAR, V. & DOLEJŠ, D. (2015): Heterogeneous 

nucleation as the predominant mode of crystallization in natural magmas: numerical model 

and implication for crystal-melt interaction. – Contributions to Mineralogy and Petrology 

169, 1–16.  The manuscript was formatted to conform to general layout of this thesis. 
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Chapter 4. 
 
 
Heterogeneous nucleation as the predominant mode of 
crystallization in natural magmas: Numerical model and 
implications for crystal-melt interaction 

 

 

 

 

4.0. Abstract 
 

Crystallization of natural magmas is inherently a disequilibrium process, which 

involves nucleation and growth kinetics, melt-crystal mechanical interactions and subsolidus 

modifications, which are all recorded in the resulting rock texture. We use a new high-

resolution three-dimensional numerical model to address the significance and consequences 

of homogeneous vs. heterogeneous crystal nucleation in silicate magmas. With increasing 

amount of heterogeneous nuclei during crystallization, initially equigranular textures evolve 

to porphyritic, bimodal and spherulitic types. The corresponding crystal size distributions 

(CSDs) become concave-up curved, the clustering index progressively decreases, and the 

grain contact relationships record increased clustering. Concave-up curved CSD previously 

interpreted as resulting from multistage crystallization, mixing of crystal populations, grain 

agglomeration, or size-dependent growth are now predicted, consistently with other size, 

spatial and clustering parameters, to form by heterogeneous crystal nucleation. Correlation 

relationships between various textural parameters and the fraction of heterogeneous nuclei are 

calibrated and used on representative volcanic and plutonic rocks, including cumulate rocks, 

to deduce the fraction of heterogeneous nuclei. The results indicate that ~60 % to ~99 % of all 

nuclei are heterogeneous. For plutonic and cumulate rocks the estimate of the heterogeneous 

nuclei fraction based on the clustering index is significantly lower than other estimates. Such 
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discrepancies, in general, point to the occurrence of other processes and here the results imply 

that crystal mush compaction and interstitial melt extraction was involved during the magma 

solidification. Formation of crystals in clusters, implicit for heterogeneous nucleation, implies 

that greater efficiency of crystal-melt separation is expected in these situations. 

 

Key words: 

Heterogeneous nucleation; CSD; crystal cluster; crystallization; quantitative texture 

measurement. 

 

 

4.1. Introduction  
 

Magma chambers are complex systems whose internal dynamics and temporal 

evolution is determined by rheological properties of crystal mush which forms and evolves as 

crystallization progresses (e.g., Marsh, 1989; Bachmann & Bergantz, 2008; Bea, 2010). 

Magma crystallization is inherently a non-equilibrium process, and its time-integrated result is 

recorded by texture of the solidified magmatic product. Textural studies have proven to be 

useful in providing estimates for the rates of nucleation and growth of crystals as well as the 

residence time of crystals in natural magmas (e.g., Marsh, 1998; Hersum & Marsh, 2007). 

These quantitative textural measurements, in combination with theoretical predictions, have 

revealed that crystal size distributions (CSDs) of various magmatic rocks are well 

approximated by a linear relationship in the logarithmic population density vs. crystal size 

space (e.g., Cashman & Marsh, 1988; Mock et al., 2003; Higgins & Chandrasekharam, 2007). 

Deviations from the straight trends are, however, rather common and the concave-up 

segments of the CSDs were documented in many studies (Armienti et al., 1994; Higgins, 

1996, 2002; Higgins & Roberge, 2003; Yang, 2012). This concave-up curvature of the CSDs 

has been attributed to various processes such as size-dependent crystal growth (Marsh, 1998; 

Eberl et al., 2002), continuous to sudden changes in intensive variables, which drive the 

crystallization (e.g., Yang, 2012), agglomeration of crystals in a magma (Burkhart et al., 
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1980; Pupiere et al., 2008), and multiple-stage crystallization or mixing of crystal populations 

from distinct magma batches (Armienti et al., 1994; Higgins, 1996). Remarkably, non-linear 

CSDs were reported in experimental crystallization studies under closed and steady 

conditions, where most of the processes postulated above cannot operate (Burkhard, 2002; 

Zieg & Lofgren, 2006; Pupier et al., 2008; Brugger & Hammer, 2010). Thus, non-linear CSDs 

may represent an implicit feature of silicate melt crystallization, whose origin may not be yet 

fully understood. 

An independent approach to understanding of the crystallization processes is provided 

by the analysis of crystal spatial ordering and degree of clustering (e.g., Jerram et al., 1996, 

2003). Numerous volcanic and plutonic rocks have a non-random spatial distribution of their 

crystals and show a tendency towards clustering (e.g., Vance, 1969; Schwindinger, 1999; 

Ikeda et al., 2002; Jerram et al., 1996; 2003; Hammer et al., 2010). The clustering was 

interpreted to result from heterogeneous nucleation on preexisting crystal surfaces (e.g., 

Hammer at al., 2010), adhesion of crystals during mechanical settling in a suspension 

(Schwindinger, 1999), remobilization of previously accumulated and sintered crystals (e.g., 

Higgins & Chandrasekharam, 2007), or adjustment of crystal positions and orientations due to 

the surface energy minimization (Ikeda et al., 2002). Although many of these processes 

appear to be plausible, no consistent explanation exists for non-linear CSDs and clustered 

crystal patterns frequently observed in nature. In this work we explore the role of 

heterogeneous nucleation for the origin of these textural features in detail. 

The term heterogeneous nucleation has been used with different meanings in 

petrological and materials-science literature (e.g., Spry, 1969; Shelley, 1992; Lasaga, 1998; 

Philpotts & Ague, 2009; Christian, 2002). It refers to the inhomogeneous formation of new 

nuclei at preferred sites, most commonly on the surface of preexisting solid phases excluding 

syntaxial growth (heterogeneous nucleation sensu lato), or it is restricted to the nucleation on 

the surface of preexisting but compositionally or structurally different solid phases 

(heterogeneous nucleation sensu stricto or heterophase nucleation; Machlin, 2007).  

Here we consider heterogeneous nucleation as a preferential nucleation on melt-crystal 

interfaces, frequently facilitated by the presence of heterogeneities of any kind such as crystal 
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surfaces, dislocations, or other defects (e.g., Philpotts & Ague, 2009). This mechanism has 

long been recognized as a viable, important and more efficient means of nucleation of crystals 

and bubbles under magmatic conditions (e.g., Fenn, 1977; Lofgren, 1983; Davis & Ihinger, 

1998; Mourtada-Bonnefoi, & Laporte 2004; Hammer et al., 2010). In the case of a solid phase 

nucleating from a melt, the interfacial energy between the nucleus and existing solid phase is 

expected to be lower that that of the nucleus and a melt because of lesser number of broken 

bonds between two solid phases. The solid surface therefore provides a site of energetically 

favorable nucleation, which is statistically preferred. Experimental studies (Lofgren, 1983) 

demonstrated that a nucleating phase tends to prefer structurally similar substrates. Although 

we illustrate crystallization of a single solid phase, that is, the nucleating and substrate phases 

are identical, our results are directly applicable to multiphase systems if nuclei are marked.  

Spatial relationship of heterogeneous nuclei to their parent crystals ensures formation 

of crystal clusters. These clusters have been observed in experimental crystallization studies 

(e.g., Hammer et al., 2010) and their formation is consistent with clustering of crystals known 

from natural magmatic textures. In terms of texture evolution, heterogeneous nuclei are 

younger than their parental crystals, therefore, on average, grow to smaller sizes and may 

contribute to abundant population of small crystals in textures characterized by concave-up 

CSDs.  

We employ three-dimensional high-resolution numerical simulations of crystal 

nucleation and growth and demonstrate that both concave-up curvature of CSDs and 

clustering of crystals are consistently produced by extensive occurrence of heterogeneous 

nucleation in crystallizing magmas. Based on simulated textures robust correlation 

relationships between quantitative size and spatial parameters of textures and fraction of 

heterogeneously nucleating crystals were derived. Multiple correlation relationships were then 

used simultaneously to compare synthetic textures to those found in natural samples and to 

estimate the fraction of crystals nucleating heterogeneously in a quantitative manner. We 

show that the combined characterization of size and spatial relationships in crystal population 

can provide strong quantitative inferences about the mechanisms of crystal nucleation in 

natural magma chambers. 
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4.2. Numerical model 
 

4.2.1. Simulation of crystallization textures by homogeneous and heterogeneous 

nucleation 

 

Texture evolution during melt solidification was modeled using the new high-

resolution VoxelTex numerical algorithm (Špillar & Dolejš, 2014), which simulates 

crystallization by nucleation and growth of crystals in a three-dimensional domain. The 

algorithm is based on a voxel method of Hersum & Marsh (2006) and it utilizes 70 million 

discrete volume elements to describe crystal-crystal interfaces while crystal-melt interfaces 

are tracked using continuous interface tracking method. Due to the memory requirements the 

three-dimensional domain has 1 : 1 : 1/4 dimensions. The spatial resolution of the model is 

limited to 1000 × 1000 grid cells in a two dimensional section passing through the center of 

the simulation domain and parallel to its largest faces. The computational grid was coarsened 

with increasing distance from the sectioning plane.  

Initially, all voxels in the simulation domain are assigned to the melt phase. 

Crystallization is simulated as a series of discrete time steps of nucleation of new crystals and 

growth of the preexisting ones. Individual crystals, while unimpinged, are randomly oriented 

six-sided parallelepipeds, whose faces propagate into the melt. When face of a crystal 

propagates through the center of a voxel, the voxel is assigned to the crystal and it becomes 

part of a solid phase. While crystal-melt interfaces are tracked continuously as positions of the 

crystal faces, the crystal-crystal interface is recorded when two adjacent voxels are assigned 

to different crystals. This mixed tracking approach allows us to represent a texture discretely 

but discretization artifacts are minimized. 

In the present version, the model simulates kinetic crystallization by homogeneous and 

heterogeneous nucleation and growth of crystals in static environment. The growth rate is 

considered constant through space and with respect to crystals size. Fluctuations in the growth 

rate, which would arise from variable melt composition including possible formation of 

boundary layers or other heterogeneities, are not considered here. Furthermore, the model is 
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suited to study kinetic textures (e.g., Higgins, 2011) where subsequent modification due to 

textural coarsening was not important. Our approach simulates crystallization in a static 

environment, where relative movement of crystals and melt can be neglected, due to either 

unfavorably high melt viscosity or much shorter time scales of crystallization compared to 

those of crystal movement or deformation. 

In the model, the crystals nucleate homogeneously on random positions in the melt, or 

heterogeneously but randomly distributed on the surfaces of other preexisting crystals. For the 

modeling purpose, possible heterogeneous nucleation taking place on submicroscopic seed 

particles (e.g., Lofgren, 1983) is considered as a contribution to the homogeneous nucleation 

since the seeds themselves are randomly distributed in the melt and they are indistinguishable 

in the model due to resolution limitations. Both types of nuclei are considered to be randomly 

oriented in space to simulate isotropic textures without any preferred orientation of crystals.  

The rates of homogeneous and heterogeneous nucleation and the growth rate are 

specified as functions of time. To characterize an overall effect of heterogeneous nucleation, 

the ratio of numbers of heterogeneous to homogeneous nuclei in the simulation domain, N, is 

evaluated as a function of the progress of solidification. In contrast to homogeneous 

nucleation, the formation of heterogeneous nuclei is energetically favorable due to presence of 

other solid surfaces (e.g., Volmer, 1939; Lasaga, 1998). A heterogeneous nucleus shares part 

of its surface with another solid phase, which lowers the total surface energy of the nucleus, 

and, therefore, reduces the energy barrier of nucleation. Both nucleation modes thus differ by 

a factor in the nucleation energy barrier but share common thermodynamic driving force, the 

Gibbs energy of crystallization (e.g., Lasaga, 1998). This implies that the rates of 

homogeneous and heterogeneous nucleation are mutually coupled. As the most simple and 

robust first-order approximation we use linear proportionality relationship between the rates 

of homogeneous, I, and heterogeneous, H, nucleation (cf., Lofgren, 1983), H = ξ I, where ξ is 

the proportionality constant and both rates I and H are functions of time. The proportionality 

constant was varied in successive simulations in order to obtain textures with variable N 

ratios. For ξ = 0, nucleation is purely homogeneous whereas with increasing ξ the nucleation 

becomes progressively heterogeneous and confined to preexisting crystal faces. More  general  
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Fig. 4.1. (a) ncleation rate functions; (b) growth rate functions used in simulations. Rate functions denoted with 
same letter are used jointly. All pairs of the rate functions are chosen to produce textures with straight CSDs 
(Špillar & Dolejš, 2013) in the limiting case of zero heterogeneous nucleation. The rate functions are chosen so 

that: (i) the slope of the CSD thus the typical grain size of a texture ranges about two orders of magnitude 
(rates A, B, C); and (ii) to produce a textures with identical CSD via different kinetic paths (rates C, D, E). Rate 
functions are: exponential nucleation and constant growth (A, B, C), exponentially increasing growth rate and 

corresponding numerically determined nucleation rate (D), and exponentially decreasing growth rate and 
corresponding nucleation rate (E). See table Electronic Appendix 4.1. Symbols lu and tu are arbitrary length and 
time units, respectively. 

 

power-law relationship between I and H was tested in exploratory manner but it has no 

qualitative effect on the results. 

The rates of nucleation and growth were chosen to obtain textures with straight log-

linear CSDs in the limiting case of no heterogeneous nucleation. Several combinations of rate 

functions (Fig. 4.1; table Electronic Appendix 4.1) producing textures with straight CSDs, 

including exponential rate of nucleation and constant rate of growth (Marsh, 1998; Špillar & 

Dolejš 2013) were tested in order to address potential dependence of the resulting textures on 

the rates of nucleation and growth (Section 4.3.5). For each pair of the nucleation and the 

growth rate functions, the proportionality constant, ξ, was varied in order to obtain a series of 

textures with progressively increasing ratio of the heterogeneous to homogeneous nuclei 

numbers, N. First, the ξ was set to zero and a purely homogeneous nucleation texture with 

N = 0 was produced as a reference case. About ten subsequent simulations used progressively 

greater positive values of ξ (up to 1-10), leading to N in the order of hundreds, i.e., strong 
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predominance of the heterogeneous nuclei in the resulting texture. Generally, the N ratio 

evolves during progressive crystallization in a single simulation run because the crystal 

surface area available for heterogeneous nucleation increases as the crystallization progresses.  

The predicted slopes of the CSDs in the natural logarithm of the population density vs. 

grain size space varied over two orders of magnitude, and this covers substantial part of the 

variations from natural plutonic to volcanic rocks (e.g., Marsh, 1998; Zieg & Marsh, 2002). In 

the majority of simulations the growth rate of all crystals was considered to be identical in 

three perpendicular directions and crystals therefore grew as cubes until impinged. Additional 

simulations for various anisotropic growth rates (inequant crystal morphologies including 

prisms and plates) were also performed. 

 

 

4.2.2. Quantitative description of simulated textures 

 

The three-dimensional simulation volume was sectioned by a two-dimensional plane 

during and after the solidification, in which apparent CSDs, spatial, and contact parameters of 

the grain population were evaluated. Using this approach, the simulation results are directly 

comparable to the measurements in petrographic thin section without introducing artifacts 

related to stereological transformation. 

The sections are raster images, 1000 by 1000 pixels large, due to voxel nature of the 

simulation algorithm, and they capture hundreds to thousands of individual crystals. Raster 

sections are post-processed to provide apparent size in a two-dimensional section, L2D, 

number of neighbors, η, the average neighbor distance, ρ, and the coordinates of the center of 

mass for all grains in the section (Fig. 4.2, for details, see Špillar & Dolejš, 2014). Only those 

crystals that are not trimmed by the domain edge are used in further analysis. We estimate the 

apparent crystal size, L2D, as a diameter of equal-area circle. This definition of crystal size is 

preferred over more complex methods (e.g., Higgins, 2006) due to its simplicity and 

robustness to variations in the crystal shape (Špillar & Dolejš, 2014). As (contact) neighbors 

we consider only those grains that share part of their boundary in the section. Consideration of 
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textural parameters in a two-dimensional section is preferred over the use of the true three-

dimensional data because it is more simple and it enables direct comparison with the data 

from petrographic thin sections, where stereological corrections would be ambiguous or 

impossible. All CSDs are constructed using the two-dimensional crystal size, L2D. Ten bins of 

the crystal size are employed and the bin sizes are exponential (e.g., Higgins, 2000); each bin 

is 1.2 times wider than the previous one. 

The clustering index, R, of the simulated texture (Jerram et al., 1996) is evaluated 

using the following procedure: each crystal is first represented by its center in a two-

dimensional section and the entire texture pattern is thus simplified to a set of points. The 

nearest neighbor for each crystal center (point) is identified and the nearest neighbor distances 

are arithmetically averaged over all points (crystals) in the texture. The clustering index, R, is 

calculated as a ratio of the observed average nearest neighbor distance to its theoretically 

derived value in a randomly distributed set of points (Jerram et al., 1996). The value of R = 1 

thus indicates random distribution, whereas lower values point to clustering. The values of R 

> 1 indicate greater than random distances between the points and are attributed to ordered 

(anticlustered) distribution (e.g., Jerram et al., 1996, 2003). Apart from the clustering index, 

the spatial distribution pattern of the texture is characterized by the apparent number of the 

contact neighbors of each crystal and by their center-to-center distances. 
 
 

 
 

 
 

 
 

Fig. 4.2. Contact and spatial parameters measured in a texture and in a corresponding point patters. A random 
grain with its contact neighbors are highlighted in a texture. Average neighbor distance of a grain is calculated as 

a mean of the distances to all contact neighbors of the grain. In a point pattern, the nearest neighbor distances 
used to calculate the clustering index, R, are indicated by arrows. Modified from Špillar & Dolejš (2014). 
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Each textural simulation was repeated ten times to constrain confidence intervals of 

the resulting quantities (table Electronic Appendix 4.2). Because the crystallization is 

determined by random positions and orientations of the nuclei, repeated runs of a simulation 

with the same kinetic and other settings can also be regarded as multiple samplings of a single 

texture.  Therefore,  all  textural  parameters  from  ten repetitive simulations were averaged to  
 

 
 

Fig. 4.3. Representative simulated textures with various ratios of the numbers of heterogeneous to 
homogeneous nuclei, N. (a) N = 0, homogeneous nucleation only. (b) N = 20.45 (95 % of heterogeneous nuclei), 
serial texture. (c) N = 75 (98.7 % of heterogeneous nuclei), porphyritic texture. (d) N = 798 (99.9 % of 

heterogeneous nuclei), spherulitic texture (intensive heterogeneous nucleation). The % het. nucl. shortcut stands 
for the percentage of heterogeneous nuclei. Each texture is 1 length unit across. The textures are produced 
using the nucleation and the growth rate C (Fig. 4.1). 
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yield statistically robust and representative results. The strategy of repetitive simulations was 

used instead of evaluating multiple sections through the simulation domain because the 

computational grid is inhomogeneous and refined in the vicinity of the sectioning plane 

(passing through the center of the simulation domain). Based on our modeling results we 

propose a series of fits that link size and spatial parameters to the ratio of heterogeneous to 

homogeneous nuclei, N. These correlation relationships enable multiple values of N to be 

estimated for a given natural texture using multiple textural parameters and to assess what 

other processes affected the crystallization. 

 

 

4.3. Results 
 

4.3.1. General textural observations 

 

Set of 98 simulations (table Electronic Appendix 4.2) with variable CSD slopes, 

combinations of the nucleation and growth rate functions, growth rate anisotropy, and for 

various fractions of heterogeneous nuclei were performed. Each simulation was repeated 10 

times with identical settings in order to average the results. The simulation set revealed that an 

increasing fraction of crystals originating as heterogeneous nuclei affects both qualitative 

texture appearance and its quantitative descriptors, although the system can accommodate 

surprisingly large number of heterogeneous nuclei before they are recognized visually. Effects 

of heterogeneous nucleation become discernible at N ≈ 2 (i.e., when the heterogeneously 

nucleating crystals are about twice more abundant than their homogeneous counterparts, 

corresponding to ~65 % heterogeneous nuclei) and are manifested by an increased number of 

small interstitial crystals surrounding large grains. As N increases further, the texture becomes 

serial (N ≈ 20; ~95 % heterogeneous nuclei) and eventually porphyritic (N ≈ 75; ~99 % 

heterogeneous nuclei), whereby margins of the phenocrysts are intergrown with the matrix 

(Fig. 4.3; animations Electronic Appendices 4.3 and 4.4; Electronic Appendix 4.5). Radial 

rims of the wedge-shaped crystals bordering larger grains are common. At N on the order of 
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hundreds (> 99 % of heterogeneous nuclei), the crystallization proceeds by nucleation and 

growth of heterogeneous nuclei on isolated clusters and a spherulitic texture forms (Fig. 4.3d). 

Since crystallization inherently starts with the formation of homogeneous nuclei, the N ratio 

always increases during the crystallization. This is in agreement with progressive increase in 

the surface area of all homogeneous and heterogeneous crystals, which further accelerates 

heterogeneous nucleation.  

 

 

4.3.2. Curvature of crystal size distributions 

 

The resulting textural sequence, as N increases, is quantitatively recorded in the 

systematic variations of the CSDs (Fig. 4.4a). For homogeneous nucleation only (N = 0; 0 % 

heterogeneous nuclei), the CSD is straight in a log-linear projection with a minor decrease in 

the population of the smallest crystal sizes. This depletion in very fine crystal fraction results 

from diminishing of the melt volume available for new nucleation during the final stages of 

crystallization in a closed system (Marsh, 1998). With increasing N, the CSD progressively 

curves up due to increasing population of small crystals originating as heterogeneous nuclei 

while the distribution of larger crystals remains unaffected. In order to characterize the shape 

of the curved CSDs, we evaluate the slope of its steeper, b1, and shallower, b2, segments and 

use the b1/b2 slope ratio as quantitative measure of the CSD curvature. To obtain value of b1 

we use linear fit through population densities in the third, fourth and fifth crystal size bin, 

because the population densities of the smallest crystal fractions are strongly affected by 

effects of closed-system crystallization. For the b2 slope, we fit the population densities in the 

second to fourth last crystal size bin to eliminate large error on the density of large but very 

few crystals. This method of evaluating two piecewise slopes is preferred over more robust 

fits (e.g., sum of two negative exponentials) due to convergence issues arising during fitting 

of such complex functional forms. Conventional use of the logarithmic scale for the 

population density ensures that the superposition of the two straight lines produces a gradual 

curvature. Simulated curved CSDs are thus accurately described by the two values of slope. 
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Fig. 4.4. (a) crystal size distribution of textures with progressively increasing fraction of heterogeneous nuclei, N. Data 
points are in the middle of the bins and interpolated dotted lines illustrate slopes b1 and b2. Nucleation and growth rate 

functions used in crystallization simulations are rates C (Fig. 4.1). The diameter of equal-area circle is considered as 
crystal size, L2D, which ensures simple comparison with two-dimensional natural data from the thin-sections. (b) 
crvature of the CSDs (b1 to b2 slope ratio) as a function of N. Simulations for cubic crystals (with various kinetic rates, A, 

B, C, D, and E as defined in Fig. 4.1 and Electronic Appendix 4.1) and prismatic crystal shapes (with various elongations 
and fixed kinetic rate C) are compared. Simulations are at full crystallinity, Φ = 100 %. Other crystallinities provide 
indistinguishable results. Note that the textures resulting from various kinetic rate functions define common trend of the 

CSD curvature. Indicated error bars are representative 2σ confidence intervals as determined from 10 repetitive 
crystallization simulations. The ticks on the vertical axis show measured values of the CSD curvature in natural samples. 
The % het. nucl. shortcut stands for the percentage of heterogeneous nuclei and lu are arbitrary length units. 

 

The CSD curvature, as expressed by the b1/b2 value, correlates positively with the 

logarithm of N. The b1/b2 ratio is used instead of the slope b1 itself because the ration is 

dimensionless and therefore unrelated to the characteristic grain size of the texture. For N 

below ~1 (< 50 % heterogeneous nuclei), the heterogeneous nuclei are too sparse to cause 

measurable textural effect and the b1/b2 value fluctuates within the range of 0.2 around unity. 

However, as N increases above ~1, the b1/b2 ratio also increases and it yields a common trend 

that is identical for all simulated textures and is independent of b2 (Fig. 4.4, Tab. 4.1). The 

relationship between N and b1/b2 is therefore invariant with respect to the rate of 

homogeneous nucleation and to the growth rate. This simple heuristic relationship also holds 

true for hemicrystalline textures that did not reach 100 % crystallinity and it may serve for 

estimating the proportion of heterogeneous nuclei from textural data of natural igneous rocks 

as discussed further below. 
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Tab. 4.1. Empirical fits for functional relationships between N and texture parameters. 
Texture 
parameter 

Fitted  
relationship 

CSD 
curvature, 
b1/b2 

  1

2
1.382 1.476 logb N

b
 

Calibration range of log N: from -0.2 to 2.4. 
 
 

Clustering 
index, 
R 

  
 

2
1 2 3

2
1 2

,   where logp x p x pR x N
x q x q

 

 

Fit parameters and calibration ranges as a function of crystallinity, Φ:  

Calibration range 
(log N) Φ p1 p2 p3 q1 q2 

from to 

1 1.059 -2.577 3.117 -2.273 3.027  -2 2.4 

0.5 1.056 -3.318 4.069 -2.814 3.918 -2 1.9 

0.4 1.039 -3.303 4.064 -2.806 4.026 -2 1.7 

0.3 1.022 -3.176 3.493 -2.749 3.569 -2 1.6 

0.2 0.9809 -2.731 2.866 -2.382 3.042 -2 1.4 

0.1 0.9558 -1.922 1.396 -1.778 1.542 -2 1.1 

Calibration for all CSD slopes. 
 
 

Slope of the 
neighbor 
number 
dependence 
on crystal 
size, 
ηS 

     3 2
1 4S 2 3 ,   where logp x p x p x p x N  

 

Fit parameters and calibration ranges as a function of crystallinity, Φ: 

Calibration range 
(log N) Φ p1 p2 p3 p4 

from to 

1 0.0128 0.0790 0.1466 2.0455  -0.8 1.8 

0.5 0.0476 0.1616 0.1943 1.5862 -0.8 1.3 

0.3 0.0410 0.2105 0.3007 1.3137 -0.9 1.1 

0.2 0.0357 0.2353 0.3828 1.1445 -0.6 0.9 

Calibration for the slope of shallower part of the CSD, b2 = -29 lu-1. Before use in a texture 
with arbitrary CSD slope, b2

arbitrary, measured value of the ηS
arbitrary must be first recalculated 

to its equivalent value, ηS
29 useful with present calibration *: 

 

  


29 arbitrary
S S arbitrary

2

29log log log
b

. 
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Intercept of 
the average 
neighbor 
distance 
dependence 
on crystal 
size, 
ρI 

      4 3 2
I 1 4 52 3 ,   where logp x p x p x p x p x N  

 

Fit parameters and calibration ranges as a function of crystallinity, Φ: 

Calibration range  
(log N) Φ p1 p2 p3 p4 p5 

from to 

1 -0.0020 -0.0188 -0.0559 -0.0627 -1.5345   -0.8 1.8 

0.5 0 0 -0.0543     -0.0877     -1.4565 -0.8 1.3 

0.3 0 -0.0051 -0.0332     -0.0588     -1.4501 -0.9 1.1 

0.2 0 0 -0.0303     -0.0676     -1.4334 -0.6 0.9 

Calibration for the slope of shallower part of the CSD, b2 = -29 lu-1. Before use in a texture 
with arbitrary CSD slope, b2

arbitrary, measured value of the ρI
arbitrary must be first recalculated to 

its equivalent value, ρI
29 useful with present calibration *: 

 

  


29 arbitrary
I I arbitrary

2

29log log log
b

. 

 

* Units lu are arbitrary length units. CSD slope is considered using natural log units of the population density. 

 

 

4.3.3. Contact relationships and spatial distribution patterns 

 

Qualitative inspection of textural variations with changing N suggests that additional 

contact and spatial parameters of a crystal population in a two-dimensional section vary 

according to the fraction of heterogeneous nuclei. We will now introduce set of contact 

parameters which will be subsequently used for interpretation of natural samples. In general, 

the number of contact neighbors of a crystal, η, and the average center-to-center distance 

between a crystal and its contact neighbors, ρ, when evaluated over discrete size bins, are 

linear functions of the crystal size (Fig. 4.5). The slopes of the η dependence on crystal size, 

ηS, and the intercepts of the ρ dependence on crystal size, ρI, vary regularly with the fraction 

of heterogeneous nuclei. Increasing N implies larger number of surrounding interstitial grains, 

thus η increases more steeply with crystal size; consequently, ηS is higher (Fig. 4.6a). The 

value of ρI behaves in the opposite way and it decreases as N increases (Fig. 4.6b). Both 

trends  of  ηS  and  ρI  as  a function  of  N  depend  on  the  volume  fraction of solid phase  
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Fig. 4.5. (a) nighbor number, η, and (b) average neighbor distance, ρ, as a function of the crystal size, L2D. As 

the ratio of the heterogeneous to homogeneous nuclei number, N, increases the slope, ηS, also increases and 
the intercept, ρI, reduces. The % het. nucl. shortcut stands for the percentage of heterogeneous nuclei and lu 
are arbitrary length units. The nucleation and the growth rates used in crystallization simulations are rates B 

(Fig. 4.1) and all parameters are derived from textures with 100 % crystallinity. 

 

 

 

 
 

Fig. 4.6. Contact parameters as functions of the ratio N. (a) sope of the dependence of neighbor number on 
crystal size, ηS. (b) intercept of the dependence of average neighbor distance on crystal size, ρI. The curves are 

functions of the volume fraction of crystals, Φ, and they scale with the slope of a shallower CSD segment, b2 
(see text). The % het. nucl. shortcut stands for the percentage of heterogeneous nuclei. The nucleation and the 
growth rates used in crystallization simulations for textures with CSD slope b2 = -29 lu-1 are rates C (Fig. 4.1). 

The symbol lu are arbitrary length units. Error bars are 2σ confidence intervals determined from 10 repetitive 
crystallization simulations. 
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(crystallinity); at lower crystal fractions the trends are steeper (Fig. 4.6, Tab. 4.1). At full 

crystallinity, ηS and ρI differ by ~0.6 orders of magnitude as N increases from 0.1 to 100 (10 

to 99 % heterogeneous nuclei). 

In contrast to the dimensionless CSD curvature, ρI and ηS have units of length and 

reciprocal length, respectively, which suggests that each value additionally depends on the 

characteristic length scale of texture. Before ηS and ρI can be used to estimate N in an arbitrary 

texture the values must be first transformed to the length scale of a texture for which the 

trends of ηS and ρI as a function of N are provided by the numerical model. Such simple 

scaling relationships aid interpretation of natural textures. We consider the characteristic grain 

size which is inversely proportional to the negative CSD slope, b2, (e.g., Marsh 1998) as the 

characteristic length scale of texture. The CSD slope b2 is used as a texture descriptor 

independent of the value of N, which is generally unknown prior to the transformation 

procedure. Based on simulations performed for various slopes b2, the simple relationships for 

transforming of ρI and ηS between two textures (cf. Fig. 4.6a) were derived: 
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where superscripts A and B denote two different textures. Using the above relationships, ρI 

and ηS can be converted from texture with a unique CSD slope to equivalent values for texture 

with another CSD slope. 

Experimental studies demonstrated that heterogeneous nucleation leads to increased 

clustering of crystals (Hammer et al., 2010). Our simulations demonstrate similar effect of 

heterogeneous nucleation and show that with increasing fraction of heterogeneous nuclei, N, 

crystals are progressively more clustered and the clustering index, R decreases (Fig. 4.7, 

Tab. 4.1). The relationship between N and R is identical for all textures irrespective of their 

CSD slopes, which is similar to the behavior of CSD curvature. The N vs. R trend, however, 

depends on the volume fraction of crystals, which is a measurable quantity both in 
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simulations and in natural samples. Clustering is more pronounced at lower crystallinities and 

it is reduced as volume fraction of crystals increases. At 100 % crystallinity, the clustering 

index decreases from approximately 1.08 to 0.85 as N increases from zero to 100 (0 to 99 % 

heterogeneous nuclei; Fig. 4.7). With the clustering index greater than unity, the textures 

formed predominantly by homogeneous nucleation (N < 1, that is, < 50 % heterogeneous 

nuclei) are partially ordered. At the constant value of N the clustering index increases with 

increasing crystallinity. This trend of increasing ordering results from progressive 

constraining of nuclei into diminishing melt pockets within the expanding crystal framework. 

However, when N increases, such a trend shifts towards lower values of the clustering index 

(i.e., more clustered textures) owing to the predominance of heterogeneous nucleation.  

At low N values (N < 1, i.e., < 50 % heterogeneous nuclei), the ordering increases with 

increasing crystallinity beyond 50 % crystals in the magma, but subsequently decreases as the 

full crystallinity is approached (cf. Φ  50 % vs. Φ = 100 % in Fig. 4.7). Such a decrease of 

ordering and return towards more random crystal distribution is a consequence of large 

number of new crystals nucleating randomly in the interstitial melt pockets (see also Špillar & 

Dolejš, 2014).  

 
 

 
 

Fig. 4.7. Clustering index, R, as a function of the ratio N. Individual curves and point symbols are for various 
volume fractions of crystals, Φ. At any value of Φ, various kinetic rate functions define common trends and are 
considered jointly. The % het. nucl. shortcut stands for the percentage of heterogeneous nuclei. The ticks on the 

vertical axes show measured values of the CSD curvature in natural samples. 
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4.3.4. Effect of anisotropic crystal growth 

 

The majority of simulations were performed with crystals growing isotropically in 

three dimensions, that is, the euhedral shape is cubic. Additional simulations for various 

prismatic, tabular and intermediate crystal geometries reveal that the resulting textural 

descriptors show greater scatter and are subject to larger uncertainties than in the case of cubic 

growth. This is due to (i) a large number of possible configurations that any inequant crystal 

can have with respect to the sectioning plane. Therefore, a greater number of crystals is 

needed to provide statistically representative sample; (ii) inequant crystals sectioned near their 

larger dimension are likely to be more often trimmed by the domain boundary, hence edge 

effects become significant. 

All textural parameters and their relationships to the heterogeneous to homogeneous 

nuclei number ratio, N, are quantitatively affected by the growth shape of crystals. For 

increasingly prismatic shapes up to 1:1:5, the CSD curvature is reduced when compared to 

that for the cubes at any value of N (Fig. 4.4b). The CSD curvature for tabular crystal shapes 

is also less than that for cubes but the distinction between individual tabular and intermediate 

tabular-prismatic shapes is much less obvious due to large uncertainties. 

The clustering index, R, vs. N curves are almost identical for all crystal geometries at 

low crystallinities. At higher crystallinity, the value of R for prisms and plates is closer to 

unity than for cubes at identical N and the total range of variations of R is reduced (figures 

Electronic Appendix 4.6a, b). The ηS values for inequant crystal geometries are slightly 

greater than for cubes but the difference diminishes as N increases and ηS for cubes eventually 

becomes greater than for the inequant shapes (figures Electronic Appendix 4.6c, d). 

In general, inequant crystal morphologies lead to slight modification of the 

relationships between N and textural descriptors. Use of the relationships derived for cubic 

crystal geometries for textures with arbitrary crystal shapes will in most cases only provide 

the minimum limit for the proportion of heterogeneous nuclei, N. More precise estimates of N 

for textures with arbitrary crystal morphologies require crystallization simulations performed 

for the specific crystal shape of interest.  
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4.3.5. Role of kinetic path of crystallization 

 

Closed system crystallization and the resulting texture are uniquely defined by 

temporal evolution of the rates of nucleation and growth. Inverse textural interpretation, 

however, is non-unique and any texture can be reproduced by multiple combinations of both 

rate functions (Špillar & Dolejš, 2014), e.g., by multiple kinetic paths. 

We have tested sensitivity of the simulations to multiple combinations of the 

nucleation and growth rate functions that all produce textures with identical CSD (Fig. 4.4b). 

The textures with the same value of heterogeneous to homogeneous nuclei number ratio, N, 

but employing various pairs of the rate functions yield identical results for all textural 

descriptors. Therefore, relationships between N and textural descriptors are universal and 

invariant with respect to nucleation and growth rate function. This enables application of our 

results and calibrations to estimation of N in natural or synthetic experimental samples, where 

the nucleation and growth rate functions are unknown. 

 

 

4.4. Interpretation of natural igneous textures 
 

4.4.1. Methodology  

 

The relationships between textural descriptors and the heterogeneous to homogeneous 

nuclei number ratio, N, derived from the crystallization simulations (Tab. 4.1) can be 

employed to estimate the fraction of heterogeneously nucleating crystals in natural igneous 

rocks. To illustrate the approach and results, we performed complete textural analysis on five 

samples covering volcanic, plutonic and cumulate rocks (Tab. 4.2, Fig. 4.8). The sample CS-

12 is porphyritic trachybasalt with 17 vol. % clinopyroxene phenocrysts dispersed in fine-

grained matrix (Ulrych & Pivec, 1997; Ulrych et al., 2002, 2011) and only the phenocryst 

population was analyzed in this sample. Other samples are holocrystalline granites from the 

Fichtelgebirge  batholith  (e.g.,  Hecht  et  al., 1997;  Siebel  et al., 1997, 2010) and dunite  
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Fig. 4.8. Photomicrographs of individual rocks samples (crossed polarizers). (a) porphyritic trachybasalt with 
clinopyroxene phenocrysts, CS-12. (b) a cluster of clinopyroxen phenocrysts in the CS-12 sample. (c) weakly 

porphyritic coarse-grained granite, FG-25. (d) equigranular medium-grained granite, FG-51. (e) weakly 
porphyritic coarse-grained granite, FG-63. (f) dunite cumulate, KD-3. 

 

cumulate from the Kdyně mafic intrusion (Vejnar, 1986; Bues et al., 2002; Dörr et al., 1998, 

2002); entire crystal population (100 vol. %) was employed in the analysis. In the 

polymineralic samples, all mineral phases are considered jointly in the textural analysis. This 

approach provides valid estimate of N when individual minerals have comparable surface 

properties relevant for heterogeneous nucleation intensity. By contrast, if  kinetic properties of  
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Tab. 4.2. Sample description. 
Sample Description Crystallinity Geological unit and location Age (Ma) 

CS-12 
Porphyritic trachybasalt with 

clinopyroxene phenocrysts. 
17 % 

České středohoří Mts. 

N 50.6171° E 14.3688° 
31-25 (a) 

FG-25 
Weakly porphyritic coarse-grained 

two-mica granite, G3 variety. 
100 % 

Fichtelgebirge batholith 

N 49.9998° E 11.9472° 
291(b) 

FG-51 
Equigranular medium-grained two 

mica granite, G1S variety. 
100 % 

Fichtelgebirge batholith 

N 50.1254° E 12.1495° 
326(c) 

FG-63 
Weakly porphyritic coarse-grained 

two-mica granite, G3 variety. 
100 % 

Fichtelgebirge batholith 

N 50.1412° E 11.8570° 
291(b) 

KD-3 Dunite cumulate with ilmenite. 100 % 
Kdyně basic intrusion 

N 49.3373° E 13.0752° 
524(d) 

All coordinates are in WGS84 format. 
References: (a) Ulrych et al. 2002; (b) Siebel et al. 2010; (c) Hecht et al. 1997; (d) Dörr et al. 1998. 

 
Tab 4.3. Textural parameters and estimates of the fraction of heterogeneous nuclei. 

Parameter \ Sample CS-12 FG-25 FG-51 FG-63 KD-3 

b2 (mm-1) -1.8 -0.7 -2.5 -1.0 -2.5 

b1/b2 2.06  2.71 3.88 3.20 2.0 

% het. nuclei 74 
(59; 85) 

89 
(79; 94) 

98 
(95; 99) 

94 
(88; 97) 

72 
(57; 84) 

R 0.811 1.013 1.051 1.038 1.074 

% het. nuclei 77 
(72; 80) 

61 
(43; 72) 

32 
(6; 52) 

44 
(19; 61) 

7 
(0; 32) 

log ηS (mm-1) -0.043 0.613 1.332 0.817 1.0 

% het. nuclei 63 
(59; 67) 

88 
(86; 90) 

95.7 
(94.6; 95.8) 

91.7 
(89.2; 92.1) 

57 
(48; 65) 

log ρI (mm) -0.597 -0.080 -1.138 -0.287 -0.665 

% het. nuclei 100 (a) 91.7 
(90.3; 92.8) 

99.40 
(99.36; 99.44) 

94.3 
(94.2; 95.6) 

94.2 
(93.3; 95.0) 

The % het. nuclei is the percentage of heterogeneous nuclei in a texture based on individual textural parameters and 

it is calculated as N / ( N + 1 ) × 100 %, where N is the ratio of numbers of heterogeneous to homogeneous nuclei. 
Relationships for calculating of N from the textural parameters are given in Tab. 4.1. The values in brackets represent 
2σ confidence intervals and are obtained from the bounds of relationship between the textural parameter vs. 

fraction of heterogeneous nuclei as derived from repetitive crystallization simulations. 
Symbols: b1, b2 – slopes of the shallower and steeper part of the CSD, respectively; b1/b2 – CSD curvature; R – 
clustering index; ηS – slope of the neighbor number dependence on crystal size; ρI – intercept of the average 

neighbor number dependence on crystal size. 
Comment: (a) calculation of the fraction of heterogeneous nuclei based on the ρI diverges in case of the CS-12 sample; 
therefore the percentage of heterogeneous nuclei is close to 100. 
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individual minerals were different, then the resulting N represents an average value for the 

crystallizing assemblage. In addition, complete textural analysis allows comparison of the 

approaches based on different textural parameters and identification of any inconsistencies in 

estimates of heterogeneous nuclei fraction between individual methods. 

Standard or large thin sections (13 to 140 cm2) were prepared and scanned in plane 

polarized light. Orientations of individual thin sections were chosen at random as our samples 

do not show any macroscopic fabric or preferred orientation of crystals. One thin section was 

prepared from each sample and the section size was adapted to adequately represent the rock 

texture and to include a large number (several hundreds to thousands) of individual crystals. 

In raster images, crystal outlines were traced using a drawing tablet and commercial image 

editing software. Multiple images in various orientations with respect to the light polarization 

plane were used in order to accurately separate individual touching crystals. Custom image 

analysis program and R language facilities (R Development Core Team 2011) were used to 

evaluate CSD curvature (b1/b2), clustering index (R), slope of the dependence of the number 

of contact neighbors on crystal size (ηS), and intercept of the dependence of the average 

contact neighbor distance on crystal size (ρI) for each sample. In order to determine the 

fraction of heterogeneous nuclei in the sample, quantitative relationships between N and 

textural descriptors were calibrated using our simulation results (Tab. 4.1).  

 

 

4.4.2. Results and discussion 

 

Trachybasalt, CS-12, yields ~70 % heterogeneous and ~30 % homogeneous nuclei 

(N ≈ 2.3) for its population of clinopyroxene phenocrysts. Independent estimates from the 

CSD curvature, clustering index, and neighbor number are all consistent within their 95 % 

confidence intervals (Fig. 4.9, Tab. 4.3). The estimate based on the average neighbor distance, 

however, is significantly greater and it yields nearly 100 % heterogeneous nuclei. All granite 

samples, FG, irrespective of textural variety, yield comparable estimates of ~90 to 98 % 

heterogeneous nuclei (N ≈ 10 to 50) based on the CSD curvature, neighbor number, and 
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neighbor distances. However, the estimates using clustering index are significantly lower for 

all granite samples, ~30 to 60 % heterogeneous nuclei (N ≈ 0.4 to 1.5; Fig. 4.9, Tab. 4.3). 

Dunite cumulate, KD-3, yields ~60 to 70 % heterogeneous nuclei (N ≈ 1.5 to 2.3) when using 

the CSD curvature and neighbor number, whereas the estimates based on the clustering index 

and the average neighbor distance are significantly different, yielding ~7 and ~95 % 

heterogeneous nuclei (N ≈ 0.1 and 20), respectively (Fig. 4.9, Tab. 4.3). 

Generally, consistent estimates of the fraction of heterogeneous nuclei provided by 

independent textural parameters indicate kinetic crystallization in a closed system without 

additional mechanical crystal-melt interaction or modification by annealing or coarsening. On 

the other hand, discrepancies between estimates using distinct textural descriptors help 

identify involvement of other physicochemical or mechanical process(es) during 

crystallization. Explanation of textural patterns observed in our samples requires at least two 

such processes: (i) process A that increases the clustering index hence lowers the estimate of 

N based on the clustering index, but has no effect on other textural characteristics; (ii) process 

B  that  reduces  the value of ρI, thus increases the estimate of N calculated from the average 

 

 
 

Fig. 4.9. Estimate of the heterogeneous nuclei fraction in natural samples using four independent textural 
parameters. All error bars represent 2σ confidence intervals and are obtained from the bounds of the textural 

parameter vs. heterogeneous nuclei fraction relationships, as derived from repetitive crystallization 
simulations. Where not shown the error bars are smaller than the symbol size. N is the ratio of heterogeneous 
to homogeneous nuclei number and the symbol ∞ stands for infinite value of N. See text for the discussion on 

hypothetical processes A and B. 
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neighbor distances. The process A was involved in the crystallization of all granite samples 

whereas the process B occurred in the sample of trachybasalt, and a combination of both A 

and B is required in case of the dunite cumulate (Fig. 4.9). 

Compaction of the crystal suspension, that is, extraction of interstitial melt, is known 

to increase the value of the clustering index of a texture (e.g., Jerram et al., 1996). To 

illustrate, all crystals and crystal aggregates are compressed into a smaller volume during melt 

extraction. Individual crystals, however, cannot approach each other more closely than is the 

sum of their respective sizes. Therefore, the crystals during melt extraction event remain more 

distant, the clustering index increases and the texture is seen as more ordered. As the system 

acquires smaller volume, the population densities of all crystal sizes increase during 

compaction, but their relative proportions and therefore the CSD curvature remain unaffected. 

Due to the increase of crystallinity, extraction of the interstitial melt enhances the incidence of 

touching crystals and it therefore modifies the contact relationships of the rock texture. Since 

compaction causes relative increase of crystallinity and population density in the same way as 

progressive closed-system crystallization, we expect that the melt extraction modifies contact 

relationships in similar way as progressive crystallization and continuing growth. This 

assumption is valid in dilute magma suspensions, but it is violated in textures which were 

compacted to a large extent and compaction fabric started to develop. Our samples, however, 

show no apparent fabric and the amount of compaction is expected to have been within the 

limits of a magma mush of randomly oriented crystals. We propose that the clustering index is 

expected to be the textural descriptor most sensitive to the melt extraction. In view of these 

considerations, the process A is most likely melt extraction and/or compaction of the crystal 

suspension. This is consistent with appearance of process A in plutonic samples only and this 

finding implies that both the granites and the dunite cumulate, as expected, have lost portion 

of interstitial residual melt. 

The process B is characterized by reduction of the ρI value, that is, reduction of the 

average contact neighbor distances, while keeping other textural descriptors unmodified. A 

simple plausible way of reducing the average distance to the contact neighbors of any grain 

but not altering the number of neighbors is to align the orientations of neighboring crystals so 
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that the distance between their centers is shorter than it would be in the case of random 

orientation. Oriented attachment of crystals is possible, e.g., as a result of synneusis due to 

hydrodynamic interactions in turbulent suspension (e.g., Schwindinger, 1999) or when 

compaction fabric starts to develop. Alternatively, formation of oriented intergrowths was 

proposed to result from heterogeneous nucleation itself when orientation of heterogeneous 

nuclei is predetermined by the structure of substrate and nucleus phases (e.g., Hammer et al., 

2010). The process B was particularly extensive in samples of trachybasalt and dunite 

cumulate, where we evaluate a single mineral textural pattern. Oriented heterogeneous 

nucleation may therefore provide an explanation for anomalously high estimate of the 

heterogeneous nuclei fraction based on the neighbor distances in the CS-12 and KD-3 

samples, in contrast to slightly elevated values obtained in all granite samples, which are 

polymineralic (Fig. 4.9). 

Despite the limitations resulting from exploratory application of numerical modeling 

and complete textural analysis, we propose that combination of heterogeneous nucleation with 

other processes consistently explains quantitative textural patterns observed in various rock 

types. The combined use of other, less conventional, textural descriptors can identify and 

discriminate other kinetic or mechanical processes active during magma crystallization. As 

demonstrated in this study, clustering index is particularly sensitive to texture modification by 

melt extraction and/or crystal mush compaction. In addition to predicting consistently high 

fraction of heterogeneous nuclei in both volcanic and plutonic samples, the independent 

textural descriptors point to operation of selective mechanisms of heterogeneous nucleation, 

which are likely to be identified in single-phase textural patterns. 

In summary, we suggest that the highest amount of heterogeneous nuclei, ~90 to 98 % 

(N ≈ 10 to 50), appears in all granite samples. Significant deviation from this range appears in 

the estimate based on the clustering index which records superimposed effects of 

heterogeneous nucleation with other process, preferably the extraction of portion of interstitial 

melt. About 70 % heterogeneous nuclei (N ≈ 2.3) are found in case of trachybasalt, where all 

estimates are consistent apart from the one based on the average neighbor distances. The least 

certain result, 60 to 70 % of heterogeneous nuclei (N ≈ 1.5 to 2.3), is obtained in case of 
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dunite cumulate. In this sample, only two of four independent textural descriptors are 

consistent and both estimates based on the clustering index and on the average neighbor 

distances deviate. Since the two deviations are similar to those found in the samples of 

granites and trachybasalt, we suggest that the superimposition of both processes anticipated in 

above samples is required in case of dunite cumulate. 

 

 

4.5. Implication for magma crystallization and crystal-melt 
interaction 

 

High-resolution numerical simulation of crystallization shows that magmatic textures 

change systematically with increasing fraction of heterogeneous nuclei. With increasing 

fraction of heterogeneous nuclei, the number of small crystals in a texture also increases, and 

the rock gains seriate to porphyritic appearance when the ratio of heterogeneous to 

homogeneous nuclei number exceeds ~10 (> 90 % heterogeneous nuclei). Multiple textural 

parameters, including CSD curvature, clustering index, and contact relationships correlate 

with the ratio of numbers of heterogeneous to homogeneous nuclei, but are insensitive to the 

nucleation and growth rates of a texture. This heuristic observation allows us to meaningfully 

determine the fraction of heterogeneous nuclei from natural samples without recourse to the 

underlying kinetics of crystallization. The curved CSDs enriched in the fine grain fraction 

frequently observed in volcanic and plutonic rocks (e.g., Armienti et al., 1994; Higgins, 1996, 

2002; Higgins & Roberge, 2003; Yang, 2012) were interpreted by discontinuous 

crystallization or magma mixing, but are now self-consistently explained by heterogeneous 

crystal nucleation. This finding, when supported by other quantitative textural indicators, 

implies widespread occurrence of heterogeneous nucleation in nature.  

Predominantly heterogeneous mode of nucleation is consistent with lower energy 

barrier associated with the formation of heterogeneous rather than homogeneous nuclei (e.g., 

Lasaga, 1998). Extensive to almost exclusive role of heterogeneous nucleation in crystallizing 

magmas was reported by experimental studies (e.g., Lofgren, 1983). Under high 
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undercooling, crystals nucleate and grow as spherulitic clusters (Swanson & Fenn, 1986; 

MacLellan & Trembath, 1991; Baker & Freda, 2001), not dissimilar to those predicted by our 

numerical models (Fig. 4.3d), or nucleation starts heterogeneously on the walls of 

experimental container (Fenn, 1977; Swanson, 1977). In addition to heterogeneous nucleation 

on solid substrates, boundaries of gas bubbles were also reported to act as a substrate for 

heterogeneous nucleation of crystals (Davis & Ihinger, 1998).  

Complete textural analysis and application of new calibration relationships to 

representative igneous rocks indicates ˃90 % nuclei (N > 10) formed in a heterogeneous 

manner during polyphase crystallization of granitic magmas, but only ~60 to 70 % 

heterogeneous nuclei (N ≈ 1.5 to 2.3) in monomineralic mafic or ultramafic suspensions. Each 

is a multiple estimate using CSD curvature, clustering index, and contact relationships 

independently, and any discrepancies point to additional effects of other physico-chemical or 

mechanical processes.  In the specific examples discussed here, plutonic samples including 

dunite cumulate provide additional independent evidence for interstitial melt extraction, 

whereas low-fraction volcanic suspension records oriented heterogeneous nucleation. If 

widespread, heterogeneous nucleation is expected to lead to substantial clustering of mineral 

phases and greater efficiency of crystal settling and residual melt extraction in diverse 

magmatic systems (e.g., Schwindinger, 1999; Hammer et al., 2010). We argue that complete 

textural analysis not only demonstrates significant role of heterogeneous nucleation in 

general, but is capable of unraveling other processes such as crystal movement, mush 

compaction and melt extraction, or oriented heterogeneous nucleation and growth during 

magma solidification.  
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Preface to Chapter 5 
 

 

 

 

Spatial distribution of crystals in a magma records not only the kinetic crystallization 

process, but, in addition, depends on the mechanical interactions. We noticed that phenocrysts 

in magmatic rocks frequently are non-randomly distributed and such textural feature may 

serve as simple indicator of mechanical interactions between crystals and melt. In this 

chapter, we introduce the methods of computational statistical mechanics and develop a new 

Monte Carlo model of texture evolution during accumulation of crystals, or alternatively, 

extraction of interstitial melt, from the crystal suspension. The model allows us to 

quantitatively assess the extent of crystal accumulation in magmatic rocks based on textural 

record. 

This chapter was published as ŠPILLAR, V. & DOLEJŠ, D. (2015): Melt extraction from 

crystal mushes: numerical model for texture evolution and calibration of crystallinity-

ordering relationships. – Lithos 239, 19–32. The manuscript was formatted to conform to 

general layout of this thesis. 



5. Melt extraction from crystal mushes 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 164 - 



5. Melt extraction from crystal mushes 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 165 - 

Chapter 5. 
 
 
Melt extraction from crystal mushes: Numerical model of 
texture evolution and calibration of crystallinity-ordering 
relationships 

 

 

 

 

5.0. Abstract 
 

Mechanical crystal-melt interactions in magmatic systems by separation or 

accumulation of crystals or by extraction of interstitial melt are expected to modify the spatial 

distribution of crystals observed as phenocrysts in igneous rocks. Textural analysis of 

porphyritic products can thus provide a quantitative means of interpreting the magnitude of 

crystal accumulation or melt loss and reconstructing the initial crystal percentage, at which 

the process occurred. We present a new three-dimension numerical model that evaluates the 

effects of crystal accumulation (or interstitial melt removal) on the spatial distribution of 

crystals. Both processes lead to increasing apparent crystallinity but also to increasing spatial 

ordering expressed by the clustering index (R). The trend of progressive crystal packing 

deviates from a random texture trend, produced by static crystal nucleation and growth, and it 

is universal for any texture with straight log-linear crystal size distribution. For sparse crystal 

suspensions (5 vol. % crystals, R = 1.03), up to 97 % melt can be extracted, corresponding to 

a new crystallinity of 65 vol. % and R = 1.32, when the rheological threshold of crystal 

interlocking is reached. For initially crystal-rich suspensions the compaction path is shorter, 

this is because the initial crystal population is more aggregated and it reaches the limit of 

interlocking sooner. Crystal suspensions with ~35 vol. % crystals cannot be compacted 

without mechanical failure. These results illustrate that the onset of the rheological threshold 
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of magma immobility strongly depends on the spatial configuration of crystals in the mush: 

the primary rigid percolation threshold (~35 vol. % crystals) corresponds to touching or 

interlocking crystal framework produced by in-situ closed-system crystallization, whereas the 

secondary rigid percolation threshold (~35 to ~75 vol. % crystals) can be reached by 

compaction, which is particularly spatially efficient when acting on sparse crystal 

suspensions. Illustrative quantitative evaluation of the crystallinity-clustering relationships to 

representative porphyritic granites from a single intrusive unit of the Krkonoše-Jizera pluton 

(central Europe) reveals a single crystal accumulation path starting at low initial crystallinity 

(5–7 vol. % K-feldspar phenocrysts), with 24–84 % melt extracted leading to the observed 

crystallinity of 9–26 vol. %. By contrast, a camptonite dyke from the České středohoří 

volcanic province has experienced the onset of crystal accumulation later (18 vol. % 

amphibole crystals) and lost 23 % interstitial melt only. The combination of modal and 

clustering analysis offers a sensitive tool for identifying differentiation processes in natural 

magma chambers, and here it illustrates examples of mechanically-dominated open-system vs. 

in-situ nearly closed-system crystallization from two contrasting magmatic settings.  
 

Key words: 

Magma crystallization; melt extraction; crystal accumulation; texture quantification; crystal 

size distribution. 
 
 

5.1. Introduction  
 

Magma differentiation by fractionation of crystals from their parental liquids is a 

process fundamental to igneous differentiation and it has been thoroughly geochemically 

documented (e.g., Collins et al., 2006; Deering et al., 2011; Gelman et al., 2014). The 

separation of melt and crystals can occur in response to gravitational forces by mineral 

settling or floating, by melt motion, or by mechanical melt extraction from crystal suspension 

due to other mechanical forces. The record of such processes often remains ambiguous, both 

texturally and chemically. Geochemical evidence is provided by the departure from the 
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known or reconstructed liquid line of descent, but becomes progressively inapplicable in 

multiply saturated eutectic assemblages. In contrast, the textural record of crystal or melt 

accumulation or loss should be interpretable because the pattern of spatial organization of 

crystals in magma is distinctly affected by mechanical interaction compared to in-situ 

nucleation and growth. 

Recent advances in understanding silicate melt crystallization using in-situ 

observations (e.g., Means & Park, 1994; Schiavi et al., 2009, 2010) and by three-dimensional 

numerical models (e.g., Hersum & Marsh, 2006; Špillar & Dolejš, 2014) made it possible to 

study kinetic textures (e.g., Higgins, 2011) during arbitrary instants of their formation. In 

comparison to numerical predictions (e.g., Špillar & Dolejš, 2014), natural porphyritic 

textures, for example those observed in granites or rhyolites (e.g., Mock et al., 2003), show 

markedly lower frequency of touching crystal aggregates and have much less clustered 

appearance of the whole texture. The fraction of polycrystalline clusters generally increases 

with rising crystallinity – the lower apparent abundance of crystal aggregates can be achieved 

if the crystallization was interrupted at lower crystallinity by rapid loss of interstitial melt, 

which produced greater apparent crystal fraction. Qualitative differences of textures 

crystallized in-situ and those discussed here provides a possibility to identify the melt 

extraction/crystal accumulation process using quantitative textural measurements. 

We present a new model of texture evolution during an event of melt extraction or 

crystal accumulation from the crystal mush, building on our high-resolution numerical 

VoxelTex algorithm (Špillar & Dolejš, 2014). The model uses a three-dimensional melt 

domain, with crystallization driven by preset functions of crystal nucleation and growth 

followed by compaction of the crystal assembly. We show and calibrate correlation 

relationships between crystal fraction and spatial distribution patterns of crystals, and by 

comparing the natural and simulated numerical spatial distribution patterns we quantitatively 

assess the crystallinity at the onset of crystal accumulation or compaction event and the 

amount of melt extracted. The applications indicate that the combination of crystal 

accumulation modeling and clustering analysis is capable of detecting mechanical melt-

crystal interactions in fossil magma chambers. 
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5.2. Model of crystal accumulation and melt extraction  
 

Our model simulates textural evolution of a crystal mush during discrete steps of 

crystal accumulation or extraction of interstitial melt from the system of interest (Figs. 5.1 and 

5.2). The model starts with a preparation of the initial assembly of crystals by simulating 

static in-situ crystallization until the desired level of crystallinity is reached (e.g., by 

VoxelTex numerical method; Špillar & Dolejš, 2014). Nucleation and growth of crystals is 

then terminated and the population of crystals and crystal aggregates is subjected to the 

subsequent steps of crystal accumulation. This is equivalent to the extraction of interstitial 

melt or compaction of crystal mush in a control volume – crystal accumulation and melt 

extraction are thus two views of a single process of packing of all crystals and crystal 

aggregates into the smaller volume while some crystal-free melt is effectively extracted from 

the system (Fig. 5.1). In this study the terms crystal accumulation, melt extraction, and crystal 

mush compaction are therefore used interchangeably as they refer to a single conceptual 

phenomenon from the view point of melt and crystal mass balance as their net result. During 

compaction, crystals are not allowed to further grow or to nucleate (Fig. 5.2). 

 

 
 

Fig. 5.1. Nomenclature and symbols for a general crystal-melt interaction event (crystal accumulation, melt 
extraction, or crystal mush compaction). During the process, crystals and crystal aggregates rearrange into the 
smaller volume of crystal mush while some melt is left crystal-free and removed. Note that the crystals before and 

after the event remain identical but are only spatially rearranged. 
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After each packing step and increment of crystallinity, the three-dimensional 

simulation domain is sectioned by a plane on which the spatial distribution pattern of crystals 

is analyzed. Two-dimensional analysis is used in order to provide data directly comparable to 

those obtained by studies of thin-sections or natural outcrop patterns without the need for 

stereological conversions. 

 

 
 

Fig. 5.2. Textural evolution during the static in-situ crystallization followed by the mush compaction-melt extraction 

event. During the stage of in-situ crystallization, the system reaches a predefined initial crystallinity, ΦI (10 % in this case). 
Sizes and configurations of crystals in crystal aggregates are then transferred as input parameters to the numerical 
compaction procedure which continues in discrete steps until the close packing is reached. All calculation steps are fully 

three-dimensional. The AR and MEP stands for the accumulation ratio and the melt extraction percentage, respectively.   
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Instead of a forward first-principles simulation of the dynamics of accumulating 

suspension, which would include complex crystal-melt and crystal-crystal interactions, we 

apply a simple Monte Carlo approach inspired by the methods used in computational 

statistical mechanics (e.g., Frenkel & Smit, 2002). During the simulated accumulation process 

the position and orientation of any crystal or crystal cluster is chosen randomly and it is 

constrained by positions and boundaries of other crystals, as it would be in the case of 

physical accumulation of crystals from magmatic suspension. The random positioning of 

crystals into the compacted assembly does not simulate any specific fluid-mechanical process 

within the suspension. By contrast, the method explores the configurational space of the 

system by repetitive statistical simulations and it thus provides configuration-averaged 

properties of the compacted assembly. In nature, dynamic flow, magma convection, or chaotic 

crystal-crystal interactions during crystal settling tend to randomize the positions and 

orientations of individual crystals and therefore approach the result of our averaged 

simulations. The present stochastic approach provides direct connection between the initial 

and compacted configuration of the crystal assembly but it remains general and unaffected by 

the assumptions regarding physics of the accumulation process. The method thus allows 

calculation of statistical properties of the compaction textures while it is effectively process-

independent. 

 

 

5.2.1. Initial crystal assembly 

 

The initial population or assembly of crystals, which will undergo the accumulation or 

extraction process, may consist of isolated crystals and crystal aggregates (touching crystals 

that share at least one common boundary). For simplicity, individual crystals in the assembly 

are regarded as spheres of equivalent volume rather than shapes with complex geometries. 

This procedure substantially simplifies the algorithm, improves computational performance, 

while maintaining the physical accuracy of the model (for an analogous treatment of the effect 

of anisotropic crystal shape see Section 5.2.2.2). We discuss two types of initial assemblies: 
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(i) an assembly of isolated spheres for the purpose of illustrating the compaction algorithm, 

and (ii) an assembly of isolated spheres and their aggregates that mimics synthetic or natural 

crystallization texture. 

The assembly of isolated spheres, with no aggregates present, is fully characterized by 

the volume of the simulation domain and by sizes and distribution of individual spheres 

(crystals). In practice, such assembly is created by generating a certain number of spheres in 

the simulation volume so that their sizes fulfill any desired crystal size distribution (CSD). 

The assemblies of phenocrysts in natural porphyritic rocks are more complex and 

include both isolated crystals and crystal aggregates. We generate initial assemblies of such 

objects, that mimic the configuration of natural crystallization textures, with the VoxelTex 

numerical code (Špillar & Dolejš, 2014; Fig. 5.2). This model simulates static in-situ 

crystallization by nucleation and growth in three dimensions. The crystallization simulation 

employs arbitrary rates of nucleation and growth as a function of time. We have proven that 

any CSD and all other textural parameters of interest can be produced by an arbitrary number 

of combinations of the nucleation and growth rate functions (Špillar & Dolejš, 2013). 

Therefore, the initial crystal assembly can be created using an arbitrary pair of the rate 

functions that is consistent with any desired resulting CSD. Such a pair of rate functions can 

be obtained by choosing one function arbitrarily (either the nucleation rate or the growth rate) 

and calculating the other by the CSD inversion method (Špillar & Dolejš, 2013). The 

crystallization model is then terminated at the desired stage of crystallinity (crystal fraction), 

and the crystal sizes and their spatial configurations (distances and directions) are transferred 

to the compaction procedure. For simplicity, we assume that individual crystals grow as 

isometric cubes in the crystallization simulation, but crystal shape can be arbitrarily modified 

in the VoxelTex model. To enhance statistical validity of the initial crystallization simulation, 

particularly when a small number of large clusters is involved, the compaction calculations 

are repeated for Nrep-init (typically Nrep-init = 10) variations of the initial assembly. Multiple 

(Nrep-init) crystallization simulations are performed using identical rate functions and each 

initial assembly is subjected to the compaction procedure. 
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Fig. 5.3. Flowchart of the numerical procedure of crystal packing. 

 
Tab. 5.1. Variables used in the packing procedure. 

Symbol Description Typical value 

Nrep-init number of variations of the initial assembly 10 

Nrep-config number of repetitions of the packing procedure for each initial assembly 100 

Ntrials-crystal 
maximum number of attempts to place the crystal (crystal cluster) into the 
compacting assembly 

100000 

Ntrials-config maximum number of attempts to configure the compacted assembly 5 
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5.2.2. Compaction of the crystal assembly 

 

5.2.2.1. Geometry of crystal packing 

During crystal mush compaction, all crystals, which initially occupy a cubic box of 

volume V0, must be packed into a smaller volume, V1 = V0 – ∆V, where ∆V is the volume of 

the extracted melt (Figs. 5.1 and 5.3). Packing consists of sequential transfer of each crystal or 

a crystal aggregate into the smaller box by assigning it some random position and orientation. 

The position is determined by three independent and uniformly distributed random numbers 

and the orientation is obtained by applying random rotation in three dimensions (Kirk, 1992). 

A Mersenne-Twister random number generator (Matsumoto & Nishimura, 1998) is used to 

provide uniformly distributed random numbers of high quality. Only the positions and 

orientations of newly added crystals or crystal aggregates, which do not overlap with other 

crystals already present in the box, are accepted, otherwise the random generation of position 

and orientation is repeated. In order to decide when two crystals overlap we regard crystals as 

equivalent-volume spheres instead of treating complex crystal shapes (see further below). If 

no suitable position and orientation for the addition of a crystal is found after a preset 

maximum number of trials, Ntrials-crystal (Tab. 5.1), the entire crystal assembly is discarded and 

the packing procedure starts with all crystals anew. Once all crystals (spheres) are fitted in the 

smaller volume, the compaction step is successfully terminated, and the assembly is stored 

and subjected to textural analysis.  

During the packing procedure, the crystals and crystal aggregates are added into the 

smaller box in the order of decreasing size (volume), that is, starting with the largest crystal or 

crystal aggregate. This approach yields two benefits: (i) as larger crystals are placed into the 

domain earlier the compacted configurations are created more easily with lesser number of 

failed attempts; (ii) the edge effect due to preferential occurrence of larger crystals closer to 

the domain boundary is minimized. To prove that the addition of crystals in size order does 

not affect regular sampling of the configuration space, consider two crystal sizes only – small 

and large crystals. During the packing procedure, let us add the crystals into the domain in a 

reversed order, that is, starting from the small ones and proceeding toward the larger ones. 
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After all crystals from the small-size group were placed into the domain, only configurations 

where voids left are still large enough to accommodate the incoming group of larger crystals. 

All other configurations fail by definition because the large crystals do not fit the available 

pore space. In other words, only such configurations lead to successful completion where the 

small crystals have been placed at the locations as if the large crystals were already present in 

the system. The set of all attainable configurations is therefore not affected by the order in 

which the crystals are placed into the domain and we can insert large crystals first without 

introducing any artifacts. 

In order to predict textural evolution during progressive compaction, the crystal 

accumulation procedure is repeated with the same initial crystal assembly from the simulation 

volume V0, but packed into a successively smaller volume Vi = V0 – i·∆V. The volume change, 

∆V, determines the step of the compaction at which the textural data are acquired. At each 

step we decrement the volume of the system by ~3 %, which corresponds to a reduction of the 

linear dimension of the simulation box by 1 %. With the increasing number of steps, i, the 

packing procedure becomes less feasible due to the random search for a suitable spatial 

configuration. If no acceptable crystal assembly is found after Ntrials-config restarts, that is, after 

Ntrials-crystal has been reached Ntrials-config times, the search procedure is terminated. In practice, 

this corresponds to the densely packed configuration which has approached the geometrical 

limit of the closest possible packing. The approach to the limit of closest packing is, however, 

asymptotic with the number of trials and the limit itself is never fully reached. 

For each volume Vi, the packing procedure is performed Nrep-config times (typically Nrep-

config = 100). This ensures that the entire configuration space of the system is sampled 

regularly and that statistically robust results are obtained in case that the simulation domain 

contained only a limited number of crystals. From multiple realizations, the textural data (e.g., 

the clustering index; see below) are averaged in order to yield statistically robust results. 

Available computational resources set upper bounds for the Ntrials-crystal and Ntrials-config values at 

a trade-off such that for the low numbers of trials the algorithm fails to find closely packed 

configurations with a high amount of crystal accumulation. In our calculations, we use Ntrials-

crystal = 100 000 and Ntrials-config = 5 as a reasonable combination of limits that enables to reach 
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a high degree of compaction while keeping tolerable computational requirements. Using 

significantly higher number of trials leads to a only minor increase in the degree of 

compaction. 

The numerical crystal accumulation process is biased by the edge effect. During 

random packing procedure, the crystals are sequentially added into the simulation domain 

such that they do not overlap with other crystals and that their centers are present within the 

domain. As the amount of crystals inside of the domain increases it becomes progressively 

more difficult to find a suitable position for any new crystal. Positions close to the domain 

boundary are, therefore, favored as the region outside of the domain imposes no constraints 

on overlapping parts of the crystals and as no crystals enter the domain from outside. 

Generally, the magnitude of the edge effect increases with increasing crystallinity. The edge 

effect can be fully treated by using periodic boundary conditions in the crystal packing 

procedure. The periodicity would, however, add undesired complexity to otherwise 

computationally extensive calculations. Therefore, we use two different approaches to reduce 

the edge effect: (i) during the packing procedure, we place large crystals, whose positions are 

most constrained, into the simulation domain first (see above); (ii) to remove any other 

inherent heterogeneities near the domain boundaries, we only process the crystals which are 

more distant from the walls than 10 % of the linear dimension of the simulation box.  

 

 

5.2.2.2. Effect of crystal shape 

During the crystal packing procedure, the shape of individual crystals has been 

neglected and all crystals were approximated by equal-volume spheres. During compaction of 

the real crystal assembly, however, both the sizes and shapes of individual crystals are 

essential as they determine spatial configuration when impingement occurs. Since the full 

treatment of the packing of crystals with real shapes would be both computationally and 

algorithmically difficult, we derive a method to approximate the crystals by spheres having 

equivalent geometric behavior. The sizes of the equivalent spheres are determined in such a 

way that they conserve the collision properties of the assembly rather than the volume of 
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individual crystals. As a result, the collision-equivalent spheres approximate the compaction 

behavior of real crystal assemblies while the computational performance and physical 

accuracy remains feasible. 

Let us assume that real crystals are rectangular parallelepipeds with dimensions a, b, 

and c. We define the diameter of a collision-equivalent sphere, LCE, as twice the average 

distance from the center to the surface of the parallelepiped. The average distance to the 

surface is expressed in terms of the integrals over the surface S of the parallelepiped as 

follows: 
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 (5.1) 

 

where r is a radius vector of a point on the surface, rC is a radius vector of the center of the 

parallelepiped, and the symbol |.| denotes Euclidean distance. For various prismatic and platy 

crystals the LCE sizes and the sizes of equal-volume spheres, LEV, are summarized in Tab. 5.2. 

Note that for the cubic crystal shape both these sizes are almost equal; LCE = 1.28 and LVE = 

1.24 for a unit cube. 

For arbitrary crystal shape, both LCE and LVE sizes are related by a factor C, 

 
 CE VE ,L C L   (5.2) 

 

which is generally greater than unity (Tab. 5.2). That is, the collision-equivalent spheres are 

larger than equal-volume spheres, and the total volume of collision-equivalent spheres in the 

system is thus greater than the true volume of crystals. This approach defines apparent 

collision-equivalent crystallinity, ΦCE, which is greater than the true crystallinity, Φ. Since the 

volume of a sphere scales with the 3rd power of its linear dimension both crystallinities are 

related by cube of the factor C: 

 
 3

CE C   . (5.3) 
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Tab. 5.2. LCE and LVE sizes for various crystal morphologies. 
a b c LCE LVE C 

1 1 1 1.2808 1.2407 1.0323 

1 1 2 1.7038 1.5632 1.0899 

1 1 3 2.1402 1.7894 1.1960 

1 1 4 2.5920 1.9695 1.3161 

1 1 5 3.0549 2.1216 1.4399 

1 2 2 2.1143 1.9695 1.0735 

1 2 3 2.5284 2.2545 1.1215 

1 2 4 2.9573 2.4814 1.1918 

1 2 5 3.3993 2.6730 1.2717 

1 3 3 2.9193 2.5808 1.1312 

1 3 4 3.3255 2.8405 1.1707 

1 3 5 3.7466 3.0598 1.2244 

1 4 4 3.7100 3.1264 1.1867 

1 4 5 4.1109 3.3678 1.2207 

1 5 5 4.4929 3.6278 1.2384 

Symbols: a, b, c – crystal shape coefficients, as edge-lengths of a rectangular parallelepiped; LCE – collision-
equivalent crystal size; LVE – crystal size as a diameter of equal-volume sphere; C – the ratio of LCE to LVE. Note 

that crystal shape coefficients are normalized to a = 1 and that b and c coefficients are interchangeable due to 
shape symmetry. 

 

The difference between the true and virtual crystallinity remains small for isometric 

crystal shapes (e.g, 10 % for 1:1:1 cube). With increasing anisotropy the difference of both 

crystallinities also increases (e.g., ~300 % for 1:1:5 prisms) and it highlights progressively the 

more difficult compaction process of crystal mushes consisting of highly anisotropic crystals. 

In this work, we study compaction behavior of textures consisting of cubic crystals 

and neglect the effects of anisotropic crystal shape. For crystals of low anisotropy, our results 

can be approximately adapted using proper collision-equivalent crystallinity instead of its true 

value. However, a better approximation is obtained by redefining the initial crystal assembly 

using collision-equivalent sizes appropriate for a given crystal shape and performing the 
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compaction simulations using the modified initial assembly. With the increasing crystal-shape 

anisotropy the crystallization textures progressively deviate from that of cubic crystals and the 

geometry of crystal aggregates becomes more complex. A rigorous solution for anisotropic 

crystal shapes thus requires starting with a crystallization simulation and performing the 

VoxelTex modeling (Section 5.2.1) with the crystal shape of interest. The resulting texture is 

then converted to the initial assembly using the collision-equivalent crystal size and the 

assembly is used as an input in the compaction calculations. 

 

 

5.2.2.3. Progress variables of the compaction process 

At any stage, the crystal mush consists of solid crystals and interstitial melt (Fig. 5.1). 

Let us denote the initial and final volume of crystals before and after the crystal accumulation 

event as c
IV  and c

FV , respectively, and the initial and final volume of melt before and after the 

accumulation event as m
IV  and m

FV , respectively. The crystallinity, i.e., the volume fraction of 

crystals, before and after the accumulation, that is, initial and final crystallinity, is thus 

defined as: 
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 (5.4) 

 

While the volume of crystals remains unaffected by the crystal accumulation event, c
IV  = c

FV , 

some melt escapes, thus m
IV  > m

FV , and the crystallinity increases from its initial to the final 

value (Fig. 5.1). 

The value of crystallinity, Φ, is monitored during the crystal accumulation process. The 

unbiased value of crystallinity is obtained by simply dividing the total volume of all spheres 

(crystals) by the domain volume. The true volume of spheres within the domain is lower since 

some parts of the spheres are allowed to overlap outside of the domain boundaries. This 

overlapping volume is, however, compensated for by the theoretical volume of spheres that would 

overlap into the domain if the texture was not truncated by the domain boundary. 
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To characterize the amount of net crystal accumulation that the system has 

experienced we define the accumulation ratio, AR, as the ratio of final and initial 

crystallinities (Fig. 5.4): 

 

 F

I

.AR 


  (5.5) 

 

Note that during compaction the AR is always greater or equal to unity, since the crystallinity 

cannot, by definition, decrease during a period of crystal accumulation. To characterize the 

same process as the melt extraction event we define the melt extraction percentage, MEP, as 

the percentage of melt volume extracted from the crystal mush: 
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Substituting from Eqn. (5.4) and noting that c
IV  = c

FV , the MEP is readily expressed in terms 

of the initial and final crystallinities: 

 

 
 

Fig. 5.4. Isolines of the progress variables – accumulation ratio (AR) and melt extraction percentage (MEP) – 

during the crystal compaction process. The crystal packing starts from initial crystallinity, ΦI, reached by in-situ 
crystallization. During the compaction (melt extraction) procedure the crystallinity further increases AR-times 
to its final value, ΦF, while MEP fraction of the interstitial melt is extracted. Note that MEP is a function of both 

AR and one of the crystallinities. Processes, whereby crystal mush is depleted by crystal removal (e.g., settling) 
or addition of crystal-free melt, will appear in the lower-right half-space of the diagram. 
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Both quantities AR and MEP are interrelated and characterize the progress of the crystal 

accumulation process (Fig. 5.4). 

 

 

5.2.3. Quantitative description of the compacted texture 

 

The model operates with fully three-dimensional configurations, but we employ a two-

dimensional description of crystal clustering in order to facilitate direct comparison with 

spatial distributions of phenocrysts in natural rocks, which are determined from thin sections, 

polished surfaces or outcrop patterns (e.g., Jerram et al., 1996, 2004; Mock et al., 2003; 

Higgins, 2006;). After each simulation run, the resulting crystal configuration was sectioned 

by an x-y plane through the center of the simulation box and all crystals intersected by the 

plane were represented by their centers of mass with respect to their cross-section outline 

(e.g., Jerram et al., 1996; Higgins, 2006). A set of crystal centers provides a point pattern, 

which is analyzed by the two-dimensional spatial distribution analysis (e.g., Baddeley, 2008; 

Rudge et al., 2008). We use the clustering index, R, to quantitatively characterize the 

clustering/ordering relationship of crystals (Clark & Evans, 1954; Kretz 1966, 1969; Jerram et 

al., 1996, 2003). This index is defined as a ratio of the average nearest neighbor distance 

observed in a specific point pattern, RA, to the average nearest neighbor distance in a 

randomly distributed set of points, RE: 

 

 A

E

RR
R

 . (5.8) 

 

The value of RE depends on the number of points, N, and the area of the point pattern, A, as 

follows (e.g., Kretz, 1966): 

 



5. Melt extraction from crystal mushes 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 181 - 

 E
1
2

AR
N

   (5.9) 

 

By definition, in Eqn. (5.8), the value of R = 1 indicates a random distribution of 

points, whereas lower or greater values indicate clustered or ordered (i.e., anti-clustered) 

distributions, respectively (e.g., Kretz, 1966; Jerram et al., 1996). The clustering index 

calculated for the point pattern studied on a finite area is biased by the edge effect, because 

points (crystal centers) located close to the section boundary may lack some of their neighbors 

that would lie outside of the evaluated area. As a result, R is generally overestimated and we 

use the empirical correction method of Donnelly (1978) to correct for the edge effect and 

obtain unbiased value of the clustering index. 

 

 

5.3. Results 
 

During the mechanical crystal accumulation (melt extraction) crystals cannot approach 

each other closer than the sum of their respective sizes. Crystal centers are therefore more 

distant than they would be if the crystals were point objects and the accumulation process thus 

induces ordering (i.e., anti-clustering) in the spatial distribution pattern of crystal centers. 

Since individual crystals have nonzero sizes at the time of the crystal accumulation event, the 

melt-extraction texture is expected to differ from that of crystallinity increase by sustained 

nucleation and growth. We characterize the textural pattern resulting from crystal 

accumulation for (i) the assembly of isolated spheres characterized by a size distribution of 

the spheres, and (ii) the assembly of isolated and clustered spheres that mimics natural 

igneous textures. 
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Fig. 5.5. Three distinct sphere size distributions, SSDs, used as input for the compaction simulations of 

unclustered textures (i.e., isolated, untouching spheres). We consider sphere diameter as the equivalent crystal 
size, L. Straight SSDs have the slopes b = -3 and -50 mm-1, and 2000 and 3000 individual spheres, respectively. 
The Gaussian SSD has a mean sphere size of 0.1 mm, with one standard deviation of 0.02 mm (3000 individual 

spheres). 
 

 

 

 

 
 

Fig. 5.6. Progressive compaction of the assemblies of isolated spheres, defined in Fig. 5.5. For each compaction 
step, the calculations are repeated 200 times (Nrep-init = 200). The initial crystallinities are 2.7, 2.5, and 2.6 
vol. %, for the assemblies with straight SSDs and slopes b = -3 and -50 mm-1, and for the assembly with 

Gaussian SSD, respectively. The clustering index, R, always increases as a function of (a) crystallinity, Φ, or (b) 
the melt extraction percentage, MEP. Note that the evolution of the clustering index with the progressive 
compaction is invariant for both straight SSDs, hence universally applicable. 
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5.3.1. Compaction of unclustered textures 

 

We have performed the simulations of crystal accumulation with three assemblies of 

untouching spheres characterized by three different size distributions. Two initial assemblies 

with straight three-dimensional sphere size distributions (SSD) were generated to approximate 

the textures of natural rocks, which often have straight CSDs in plots of the natural logarithm 

of the population density vs. crystal size (e.g., Marsh, 1998; Higgins, 2006; Philpotts & Ague, 

2009). The SSD slopes chosen, b = -3 mm-1 (case 1) and -50 mm-1 (case 2), correspond to the 

most abundant (by volume) grain size of 0.06 and 1 mm, respectively, and are comparable to 

volcanic or plutonic textures (Fig. 5.5). In these textures small crystals are exponentially more 

abundant than the large ones. For comparison, the third initial assembly was generated with a 

Gaussian SSD having the mean sphere size of 0.1 mm and the standard deviation of the 

sphere size of 0.02 mm (Fig. 5.5). Prior to the compaction event, all assemblies have a 

crystallinity ~3 vol. % and they consist of two to three thousand individual spheres (see 

Fig. 5.5 for details). 

In all three cases, compaction leads to progressive ordering of the spatial distribution 

pattern of the spheres. For the limit of zero crystallinity the extrapolated clustering index 

approaches unity which corresponds to a perfectly random distribution of points (Fig. 5.6). As 

compaction progresses and crystallinity increases the clustering index monotonously 

increases and the sphere assembly is described as more ordered. Exact R–crystallinity 

relationships are, however, different for the assemblies with Gaussian and straight sphere size 

distributions. For the Gaussian SSD the clustering index increases rapidly and it reaches 

R = 1.5 at 35 vol. % of spheres (crystals), which corresponds to the extraction of 95 % of the 

initial amount of interstitial melt. In the two other cases with straight SSDs the clustering 

index increases steeply but only reaches R = 1.3 at 35 vol. % of spheres (crystals). 

The textures with straight SSDs therefore evolve to a less ordered state than those with 

Gaussian SSDs because abundant small spheres in simulations with straight SSDs can more 

easily fit into the interstitial spaces between the large spheres and the positions of most 

spheres are thus less constrained. By contrast, in the run with Gaussian SSDs the average-
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sized spheres are the most abundant. The space filling becomes less random when spheres of 

similar size predominate, hence the positions of individual spheres are more constrained by 

the others producing a higher degree of ordering. As a general observation, good initial size 

sorting produces more ordered textures (higher R) upon compaction. 

Independently of the large difference in slope b (by a factor of 15 between cases 1 and 

2), both assemblies with initially straight SSD follow a common path in the R–Φ space during 

progressive compaction (Fig. 5.6). We thus infer that the evolution of the clustering index 

during compaction is identical for all textures with straight sphere (crystal) size distribution 

and with the same initial crystallinity, Φ0. This is expected because straight textures are 

generally self-similar and related to one another by simple length scaling. 

 

 

5.3.2. Compaction of clustered textures 

 

Initial assemblies that include crystal aggregates were produced by in-situ kinetically 

driven crystallization during simultaneous nucleation and growth of crystals using the 

VoxelTex simulation algorithm (Špillar & Dolejš, 2014). The resulting crystal suspensions 

consist of both isolated crystals and touching crystals forming polycrystalline aggregates. We 

simulated two textures with straight CSDs having slope b = -332 and -3.28 mm-1, 

corresponding to the most abundant (by volume) grain size of 0.01 and 1 mm, respectively, 

and approximating volcanic and plutonic rocks (Fig. 5.7). As crystallinity increases during the 

crystallization progress, the clustering index first increases but after reaching a maximum 

value of ~1.18 at 80 vol. % crystals it drops slightly to 1.14 at 100 vol. % crystals (Fig. 5.8, 

Fig. 11 in Špillar & Dolejš, 2014). This trend, denoted as the random texture trend, RTT, is 

unique for all textures resulting from static crystallization by nucleation and growth and 

having straight log-linear CSDs (Špillar & Dolejš, 2014). Since the clustering index is greater 

than unity at all stages of crystallization, it formally points to ordering of the spatial 

distribution pattern of crystal centers. The apparent ordering is simply an implicit result of 

behavior of crystals, which nucleated later during the crystallization and are unavoidably 
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restricted to the remaining void space of melt and could not nucleate randomly in space where 

other crystals are already present. 

 

 
 

Fig. 5.7. The CSDs of the crystal mushes including crystal aggregates used as in input for the compaction 
calculations. The crystal mushes were produced by static in-situ crystallization with the constant growth rate 

and the nucleation rate exponentially increasing in time (e.g., Marsh, 1998; Špillar & Dolejš, 2014). The rate 
functions used in the crystallization simulations are G = 0.0015 and 0.15 mm s-1, respectively, and I = 1 × 10-7 et 
and 1 × 10-6 et mm-3 s-1, respectively, where G is the growth rate, I is the nucleation rate, and t is time. The 

resulting CSDs are straight with the slopes b = -332 and -3.28 mm-1, respectively (the smallest crystal fraction 
was omitted from the slope regression). 

 

 
 

Fig. 5.8. Evolutionary paths during the crystal compaction starting at various initial crystallinities. The trends 
are combined for both CSD input assemblies from Fig. 5.7. The trends 1:1:3 and 1:3:3 are for needles and 

plates, respectively, whereas other data are for cubic crystal morphologies. Grey area represents the 
confidence interval of the random texture trend, RTT. Open circles represent the data for natural samples (see 
Section 5.5). 
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Each texture was captured at seven steps, at 5 vol. % crystallinity increments, as 

crystallization progressed up to 35 vol. % crystals. Above the ~35 vol. % crystallinity the 

crystal mush formed by nucleation and growth is highly interlocked and essentially forms a 

rigid framework, which is difficult to further compact without a mechanical failure. When 

compaction was applied to each of the incremental textures, the clustering index departs from 

the RTT towards higher values as crystallinity increases (Fig. 5.8). Compaction induces 

additional ordering of crystals that is distinct from the intrinsic ordering trend due to crystal 

nucleation and growth. At the highest crystallinity, when close packing is reached and no 

further compaction is mechanically possible, the clustering index reaches the highest value, 

which corresponds to the most ordered state. Individual values of crystallinity and clustering 

index at the highest possible compaction depend on the initial crystallinity at which 

compaction began (Fig. 5.8). In general, sparse suspensions can be compacted to much higher 

crystallinities (higher AR and MEP values) and reach higher values of the clustering index 

(Fig. 5.8). By contrast, a suspension with initially higher crystallinity can undergo moderate 

compaction only and the increase in the clustering index is more limited. For example, the 

crystal mush with 5 vol. % crystals can be compacted up to 65 vol. % crystals (R = 1.32) at 

close packing, which corresponds to the extraction of ~97 % interstitial melt. This high value 

is not surprising considering that (i) the amount of the melt extracted relates to initially very 

high melt fraction, and (ii) certain crystal geometries (e.g., cubes) allow complete space 

filling, that is, reaching to the theoretical limit of the 100 % melt extraction. On the other hand 

a mush with initially 25 vol. % crystals begins to already mechanically lock at 45 vol. % 

crystals when R = 1.24 (Fig. 5.8). This behavior is a general feature of inherently clustered 

textures resulting from nucleation and growth. At low crystallinity, crystals are nearly all 

isolated and can be reconfigured easily when compacted. At higher crystallinities many of the 

crystals are present in aggregates with complex geometries, which are difficult to reconfigure 

into smaller volume. 

Despite the difference by two orders of magnitude in the CSD slope b in both 

simulations, both textures behave identically in the R–Φ space during compaction (Fig. 5.8). 

This finding further reinforces universality observed during the compaction of isolated 
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spheres. We infer that all textures with straight CSDs behave identically as they only differ by 

length scaling. Compaction trajectories in the R–Φ space are thus invariant for all textures 

with straight log-linear CSDs and Fig. 5.9 shows a universal calibration of isolines of initial 

crystallinity, Φ0, and of melt extraction percentage, MEP, as a function of R and Φ for 

interpretation of natural samples (see Tab. 5.3 for calibration details). 

Additional simulations performed for non-cubic crystal morphologies (1:1:3 columns 

and 1:3:3 plates) show compaction trajectories that are qualitatively similar to those for cubes. 

With the increasing shape anisotropy, however, the trends are shifted towards the higher 

values of R (Fig. 5.8) This implies that the texture with the same phenocryst fraction and 

degree of clustering will be produced by less melt extraction or from mushes with initially 

higher crystallinities than predicted for rocks with isotropic crystals.  

 

 
Tab. 5.3 . Polynomial fits for the initial crystallinity, Φ I, and for the melt extraction 
percentage, MEP. 

Fit for the melt extraction percentage, MEP. 
3 2 2 2 3 2

1 2 3 4 5 6 7 8 9 10              MEP a a R a a R a R a a R a R a R a  

 a1 = 404.3832 a5 = 5401.7028 a9 = 29992.9242 

 a2 = -3939.3505 a6 = -5415.6043 a10 = -12559.2192 

 a3 = 4877.1032 a7 = 6212.9121   

 a4 = -1015.9597 a8 = -23624.5656   

Fit for the initial crystallinity, ΦI. 
3 2 2 2 3 2

Ι 1 2 3 4 5 6 7 8 9 10               b b R b b R b R b b R b R b R b  

 b1 = -10.4019 b5 = 121.7443 b9 = 86.4774 

 b2 = 39.2773 b6 = -57.2857 b10 = -28.1001 

 b3 = -36.9961 b7 = 29.6135   

 b4 = -63.0533 b8 = -87.9978   

Fits were calculated using the Polyfitn toolbox in MATLAB® software. 
Symbols: Φ – crystallinity (volume fraction, i.e., Φ ϵ <0;1>); ΦI – initial crystallinity (volume fraction) prior to the 
crystal accumulation / melt extraction event; R – clustering index; MEP – melt extraction percentage (%); 

a1...a10, b1...b10 – fit coefficients. 
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Fig. 5.9. Isolines of the melt extraction percentage, MEP (a), and the initial crystallinity, ΦI (b) in the clustering 
index, R, vs. crystallinity, Φ, space. The isolines are derived from an empirical polynomial fit (Tab. 5.3) of the 
simulated data (Fig. 5.8). Linearly interpolated isolines of the original data are shown as thin grey lines. These 
two plots may be used to retrieve the melt extraction percentage and the initial crystallinity (prior to the 
compaction event) from the crystallinity and the clustering index measured on natural samples. 
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5.4. Implications for rheology of crystal mushes 

 

The results of the compaction simulations can provide additional inferences about 

rheology of dense crystal mushes. The upper limit of compaction above which further 

rearrangement of crystals and crystal aggregates into smaller volume requires an excessive 

number of trials, is therefore statistically improbable and may be regarded as a proxy for the 

rigid percolation threshold or rheologically critical solid fraction (Marsh, 1981; Vigneresse et 

al., 1996; Petford, 2003). Above the critical solid fraction the crystals form a touching 

framework that is capable of bearing a load and magma mush starts to develop a yield 

strength (e.g., Vigneresse & Tikoff, 1999; Saar et al., 2001). In our simulations, the upper 

limit of compaction is variable; it corresponds to ~65 vol. % apparent crystallinity for initial 

crystallinity of 5 vol. %, whereas textures initially with ~35 vol. % crystals are essentially 

uncompacting (Fig. 5.8). The suspensions produced by in-situ (static) nucleation and growth 

of cubes are thus able to compact until the crystallinity of ~35 vol. % is reached; above this 

crystallinity level the texture is mechanically locked. 

We term the rheological locking reached by in-situ crystallization at ~35 vol. % 

crystals as a primary rigid percolation threshold, PRPT. This value is higher than 22 vol. %, 

the rigid percolation threshold determined by numerical percolation studies (Saar et al., 2001), 

and higher than 25 vol. %, the volume percentage at which plagioclase chain network forms 

in basalts (Philpotts et al., 1998), but it remains considerably lower than the traditionally 

assumed value of ~55 vol. % (e.g., Marsh, 1981, 1989; Vigneresse & Tikoff, 1999). Our value 

of the PRPT crystallinity compares rather well to the experimental results of Arbaret et al. 

(2007), which are, however, relevant for more complex than isometric crystal geometries. 

The in-situ crystallization textures, which undergo compaction from low initial 

crystallinities (lower than PRPT), are predicted to exceed the PRPT until the crystal mush 

becomes locked and uncompactable. We term this rheological threshold reached by 

progressive compaction (as opposed to in-situ nucleation and growth) as a secondary rigid 

percolation threshold, SRPT. This is the limit of the close packing when mechanical 

reconfigurations  of  the  suspension  become  essentially  impossible and the suspension 
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Fig. 5.10. Crystallinity, at which the secondary rigid percolation threshold, SRPT, has been reached during 
packing as a function of the initial crystallinity, ΦI. Texture crystallized in-situ to crystal content greater than 
the primary rigid percolation threshold, PRPT, is completely touching (interlocked) and cannot be compacted 

without mechanical failure. Above the SRPT, the solidification can only continue by static (in-situ) 
crystallization. The calculated values of crystallinity at SRPT, ΦSRPT, are interpolated by the function: 
ΦSRPT = 75.01 × exp(-0.02173 × ΦI). 

 

approaches the rheological threshold of mechanical immobility (Fig. 5.10). For our 

simulations with the most dilute initial suspension (5 vol. % crystals), the SRPT has been 

reached at the crystalinity of ~65 vol. %, thus exceeding the conventional rheological 

threshold crystallinity value of ~55 vol. % (e.g., Marsh, 1981, 1989; Vigneresse & Tikoff, 

1999). For elongate or platy crystal morphologies, the extent of permissible compaction is 

reduced, and with the increasing crystal anisotropy the rheological locking occurs at 

progressively lower crystallinities. The most dilute suspensions (5 vol. % crystals initially) 

reach the SRPT at ~39 and ~45 vol. % for the 1:1:3 columnar and 1:3:3 platy crystals, 

respectively. 

The SRPT crystallinity is path-dependent. Its lower limit is equal to the PRPT (~35 

vol. %) and its upper limit corresponds to ~75 vol. % (compaction of a hypothetical infinitely 

dilute suspension of cubic crystals). In nature, the SRPT will be reached at a specific 

crystallinity which reflects mutual significance of in-situ nucleation and growth vs. 

mechanical rearrangement. Natural occurrence of lavas with crystallinity greater than the 
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PRPT of ~35 vol. % (e.g., Marsh, 1981; Bachmann & Bergantz, 2004; Huber et al., 2010) 

suggests that their crystallinities were not achieved by closed-system crystallization but have 

been enhanced by mechanical interactions or remobilization of crystal-enriched mushes. 

 

 

5.5. Application to natural igneous rocks 
 

5.5.1. Sample selection and processing 

 

Systematic ordering of crystal centers, expressed by increasing value of the clustering 

index in a texture undergoing progressive crystal accumulation or melt extraction provides the 

opportunity to detect these processes directly by textural analysis. We illustrate the approach 

on four samples of porphyritic rocks (Tab. 5.4). Three samples (J-1, J-3 and J-9) are 

porphyritic biotite granites (Jizera type) from the Krkonoše-Jizera plutonic complex 

(Bohemian Massif, Czech Republic; Žák & Klomínský, 2007; Žák et al., 2013; Kusiak et al., 

2014). The sampled intrusive unit has a coarse-grained matrix and is variably porphyritic, 

with up to 10 cm large K-feldspar megacrysts. In our sample set, the amount of megacrysts 

ranges from 9 to 26 vol. % (Tab. 5.5, Fig. 5.11). The sample J-3 shows more irregular 

distribution of the phenocrysts and a weak planar magmatic fabric. Since our method uses the 

distances  of  the  nearest  neighbors,  it remains insensitive to the orientation of crystals in the 

 

 
Tab. 5.4. List of samples. 

Sample Description Location Area (cm2) Crystal number 

CS-10 Camptonite N 50.71211 E 14.19283  33.2 761 

J-1 Porphyritic granite N 50.86013 E 15.19027 4727 324 

J-3 Porphyritic granite N 50.85868 E 15.19279 7440 297 

J-9 Porphyritic granite N 50.84079 E 15.18353 2455 296 

Geographic coordinates are given in the WGS 84 format. 
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space. The fourth sample (CS-10) is an alkali lamprophyre (camptonite) from a ~1 m-thick 

dyke in the České středohoří volcanic province (Czech Republic; Jelínek et al., 1989; Ulrych 

& Balogh, 2000; Skála et al. 2014). The CS-10 is characterized by a very fine grained matrix 

hosting 22 vol. % amphibole phenocrysts with most abundant grain size of ~1.7 mm (Figs. 

5.12 and 5.13). 

Due to the large size of phenocrysts in the granite samples, textural analysis of the 

Jizera granites was performed on the outcrop scale. All phenocrysts in a rectangular area, 

0.25–0.75 m2 large, of a flat and fresh outcrop surface were traced on a transparent foil and 

scanned. About 300 phenocrysts were recorded at each site, which is sufficient for a 

statistically robust estimate of the clustering index (Jerram et al., 1996). The resulting bitmap 

images were processed using commercial image-editing software (Fig. 5.12). For the 

camptonite sample (CS-10), the bitmap image of phenocryst population was obtained by 

scanning the polished rock slab (55 × 60 mm) and tracing the scanned image on a computer 

drawing tablet. All raster images were processed by our custom image analysis program to 

provide sizes of all crystals and two-dimensional coordinates of their centers (Fig. 5.12). The 

R language facilities (R Development Core Team, 2011) were used to calculate the area 

(volume) fraction of phenocrysts (crystallinity), the clustering index, and the apparent two-

dimensional crystal size distribution. The correction procedure of Donnelly (1978) was used 

to correct the clustering index for the edge effect (see Section 5.2.3). 

 

 

 
Tab. 5.5. Results of textural measurements. 

Sample Φ (vol. %) R Φ0 (vol. %) MEP (%) 

CS-10 22.1 1.133 17.9 23 

J-1 17.8 1.168 6.7 67 

J-3 9.2 1.066 5.2 24 

J-9 25.9 1.235 7.1 84 

Symbols: Φ – actual crystallinity (i.e., volume percentage of phenocrysts); Φ0 – initial crystallinity prior to 
crystal accumulation / melt extraction event; R – clustering index; MEP – melt extraction percentage. 
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Fig. 5.11. Digitized textures of the K-feldspar phenocrysts in the granite samples. 

 

 

 
 

Fig. 5.12. Process scheme for interpretation of the natural samples. Phenocryst outlines are drawn manually on 
the outcrop surface or polished rock slabs. Digitized crystal pattern provides crystallinity (volume fraction of 

phenocrysts) and the intersection areas of crystals are used to calculate the CSDs. Geometrical centers of all 
crystals from the digitized image form a point pattern which is used to calculate the clustering index, R. 
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Fig. 5.13. The CSDs of the granite and camptonite samples. The thin vertical lines illustrate the lower resolution 

limit of the digitizing procedure. 

 

5.5.2. Results and discussion of the samples 

 

Phenocryst populations of all samples have straight log-linear CSDs (Fig. 5.13). 

Therefore, they can be directly processed using our model calibration (Fig. 5.9, Tab. 5.3). The 

sample of the camptonite dyke (CS-10) slightly deviates from the random texture trend. The 

amphibole phenocryst population (22 vol. %) is only weakly ordered (R = 1.13), which 

corresponds to extraction of 23 % of interstitial melt, that occurred at the initial crystallinity 

of 18 vol. %. The phenocryst populations of the porphyritic granites (samples J-1, J-3 and J-9) 

show much greater departures from the random distribution trend and, in addition, a 

monotonous increase in the clustering index with the phenocryst fraction defining a common 

compaction path, which indicates that the samples are derived from a common suspension (5–

7 vol. %) by various degree of crystal accumulation. The amount of melt extracted from the 

crystal suspension ranged from 24 to 84 % of the initial melt volume (Tab. 5.5, Fig. 5.9), 

producing the present-day apparent crystallinities from 9 to 26 vol. %. Despite the generally 

high viscosity of granitic melts (e.g., Scaillet et al., 1998), the cooling regime in this plutonic 

complex does not appear to have imposed any constraint on the efficacy of the crystal 

accumulation or melt extraction. 
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In our granite samples, the crystal accumulation event is expected to have started at 

crystallinities of ~5 vol. %, which is substantially lower than the crystallinities usually 

invoked in the models of melt extraction from generally static crystal mushes, e.g., production 

of rhyolitic melts from granitic mushes near 40–50 vol. % crystallized (Bachmann & 

Bergantz, 2004). In our case study, the suspensions prior to and during the compaction are 

interpreted to be very to moderately dilute, with effective viscosity compared to the pure melt 

greater by only up to a factor of ~2.5 (Barnea & Mizrahi, 1973; Picard et al., 2013). Assuming 

a representative viscosity of 106 Pa s for hydrous granitic melts (e.g., Scaillet et al., 1998; 

Petford, 2003), and the crystal and melt density difference of 200 kg m-3, a 2 cm-large crystal 

will gravitationally travel from the roof to the base of a 1 km-thick magma chamber on the 

order of thousands of years, and directly comparable results will be obtained by considering 

the rate of advance of the local solidification front (Mangan & Marsh, 1992). Such a crystal 

travel time is much shorter that the expected crystallization time of such a magma chamber 

imposed by simple cooling models. Compared to the geochemical estimates of the melt 

extraction from static crystal mushes (e.g., up to ~50 % for the Searchlight pluton, Nevada; 

Gelman et al., 2014), our range of melt extraction extends to slightly higher values and were 

most likely facilitated by the onset of compaction at very low crystallinities. 

 

 

5.5.3. Discussion of the method 

 

The method devised in this paper allows quantitative estimation of the extent of 

mechanical separation of crystals and interstitial melt using the divergence of phenocryst 

spatial distribution patterns from a random arrangement. Processes altering the spatial pattern 

of crystals other than crystal accumulation (by settling or floating) are, for example, 

heterogeneous nucleation on preexisting crystal faces, which induces clustering of crystals. 

Extensive heterogeneous nucleation reduces the value of the clustering index and leads to 

underestimation of the amount of extracted melt (MEP). Textural coarsening invoked in many 

studies to explain the origin of large phenocrysts, especially in granitic rocks (e.g., Johnson & 
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Glazner, 2010; Higgins, 2011), is also expected to quantitatively increase ordering of the 

spatial distribution pattern of phenocrysts. 

Heterogeneous nucleation has profound effects on the CSD of a texture, manifested by 

its concave-up curvature (Špillar & Dolejš, 2014). Similarly, textural coarsening is associated 

with systematic changes of the CSD. During progressive coarsening small crystals are 

dissolved and their constituents are transferred to larger grains. The CSD becomes concave-

down, with depletion in small crystals (e.g., Cashman & Ferry, 1988; Waters & Boudreau 

1996; Higgins, 1998, 2002, 2006, 2011). Since we have evaluated CSDs of all our samples 

(Fig. 5.13) we infer that neither heterogeneous nucleation nor textural coarsening 

substantially altered the spatial distribution of the studied phenocryst populations. In general, 

the significance of other superimposed processes should be verified by using complementary 

textural descriptors (e.g., Špillar & Dolejš, 2014) and, in the future, more sophisticated spatial 

distribution parameters (e.g., radial distribution functions; Rudge et al., 2008) should be 

calibrated and used to further quantify the respective roles of nucleation kinetics, crystal 

accumulation, and textural coarsening. 

 

 

5.6. General implications 
 

Numerical simulations of textures of mechanically compacted (accumulated) crystal 

mushes show that the spatial distribution pattern of crystals systematically evolves from a 

random to ordered distribution as the amount of melt extracted or crystals accumulated 

increases. The spatial ordering results from the inherent inability of the crystals to overlap 

with each other. Crystal suspensions that have initially non-uniform crystal size distributions 

achieve the higher level of compaction (crystal packing), but then lower degree of ordering 

when compared to magmas with size-sorted crystals. Evolutionary trends of the clustering 

index as a function of increasing crystallinity only depend on the initial crystallinity and on 

the crystal size distribution (CSD) of the texture, and are otherwise universal. The extent of 

mechanically permissible compaction strongly depends on the initial crystallinity (phenocryst 
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fraction) and on the nature of the crystal size distribution. For straight log-linear CSDs, which 

most commonly occur in natural igneous rocks, sparse suspensions (~5 vol. % crystals) can be 

compacted up to the crystallinities of ~65 vol. % (secondary rigid percolation threshold) when 

mutual crystal-to-crystal interactions hinder further compaction and a rigid crystal framework 

forms. This corresponds to a rheological threshold where the magma gains yield strength and 

loses its ability to flow or erupt (e.g., Marsh, 1981; Vigneresse & Tikoff, 1999; Saar et al., 

2001). By contrast, dense suspension with initial crystallinity of ~35 vol. % produced by in-

situ crystal nucleation and growth in a closed system has a rather complex spatial 

configuration of the crystals with substantial proportion of touching crystal aggregates 

(primary rigid percolation threshold). In this case only a negligible compaction is possible 

without brittle fracturing or ductile deformation of the crystal framework. Therefore, no 

unique crystallinity level exists at which the rheological threshold is reached because it 

depends, among other factors, on previous crystallization vs. compaction history of the crystal 

mush. Crystallinities greater than 35–40 vol. % of some erupted lavas (e.g., Marsh, 1981; 

Bachmann & Bergantz, 2004; Huber et al., 2010) suggest that these could be remobilized 

crystal accumulations. 

Our new method was tested on a representative sample set of porphyritic granites and 

porphyritic lamprophyre camptonite whose phenocryst textures, when characterized by the 

clustering index, show moderately ordered spatial distributions. Absence of significant 

concave-up curvature of CSDs of the studied samples suggests that neither the textural 

coarsening nor heterogeneous nucleation were the dominant processes during their 

crystallization and therefore the spatial distribution can be interpreted by the crystal 

accumulation/melt extraction model. For the granitic plutonites, the compaction started early 

at very low crystallinities (5-7 vol. % K-feldspar megacrysts) but moderate to high amounts 

of the melt (24-84 vol. %) was extracted. By contrast, the crystal accumulation in a 

camptonite dyke was late and minor (increase from 18 to 22 vol. % amphibole phenocrysts). 

These two contrasting observations may imply a direct relationship to dominantly thermal vs. 

mechanical processes in determining the final crystal content of natural magmas. The results 

of this study suggest two end-members of magmatic crystallization, which may act to variable 
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extent: (i) in-situ or closed-system crystallization, whereby the touching crystal framework 

forms statically, reaches the limit of no compaction early and with a large fraction of 

interstitial melt remaining, and (ii) open-system crystallization by mechanical crystal addition 

or melt removal. The significance of both processes depends on thermomechanical conditions 

in a magma chamber or setting: (i) sites dominated by rapid cooling and mechanical 

stagnation such as pluton margins will form an interlocking crystal framework early and in a 

chemically closed system. Mechanical interactions, for instance, residual melt extraction, are 

expected to be associated with substantial mechanical failure (e.g., submagmatic fracturing; 

Bouchez et al. 1992); (ii) locations of dominantly mechanical interactions such as pluton 

interiors or feeding channels, which modify the crystal fraction more efficiently than 

production by nucleation and growth. Samples from these units are predicted to return low or 

variable initial crystalinities, but high degrees of spatial ordering. 

In summary, we show that, complementary to geochemical studies, the quantitative 

analysis of spatial distribution of crystals in magmatic rocks can reveal a detailed record of 

crystal accumulation or melt extraction from magmatic suspensions. 
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Preface to Chapter 6 
 

 

 

 

Practical application of the crystal accumulation modeling (Chapter 5) is illustrated in 

an exploratory study of the K-feldspar phenocryst textures in the porphyritic granite of the 

Krkonoše-Jizera pluton (Bohemian massif). In this chapter, we employ a detailed, outcrop-

scale texture quantification in order to study textural variations over more than 550 m high 

vertical section of the porphyritic granite. Textural relationships allowed us to study the mode 

and rate of emplacement of granitic pluton and the mechanism of its internal differentiation. 

Results suggest that the intrusive unit was emplaced as a single magmatic pulse which 

underwent subsequent differentiation by combination of crystal settling and capture within the 

solidification fronts. 

This chapter is a submission being prepared to the Journal of Petrology as 

ŠPILLAR, V. & DOLEJŠ, D.: Internal dynamics of granitic magma chambers revealed by 

quantitative analysis of K-feldspar size and spatial distribution pattern: A case study from the 

Krkonoše-Jizera pluton, Bohemian massif. The manuscript was formatted to conform to 

general layout of this thesis. 
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Chapter 6. 
 
 
Internal dynamics of granitic magma chambers revealed by 
quantitative analysis of K-feldspar size and spatial 
distribution pattern: 
A case study from the Krkonoše-Jizera Pluton, Bohemian 
Massif 

 

 

 

 

6.0. Abstract 
 

Granitic batholiths are ubiquitous features of the Earth’s continental crust. However, 

the mode and rate of their emplacement as well as mechanisms of their internal differentiation 

remain poorly understood. In this study we employ quantitative textural analysis of the K-

feldspar and plagioclase phenocryst textures in the porphyritic Jizera granite (Krkonoše-Jizera 

plutonic complex, Bohemian Massif, Central Europe), to constrain the size of magma batches 

and mechanism of their differentiation. Compared to the numerical model of texture evolution 

during melt extraction, the studied textures indicate that variable part of the interstitial melt 

was extracted, thus the crystals variably accumulated at the mush stage of the magma 

crystallization. In total, 20 % of melt was extracted and transported to shallower crustal 

levels but the efficacy of the melt extraction varies systematically with vertical position 

within the magma body. In detail, the melt extraction is greatest near the floor and roof of the 

magma chamber and almost negligible in the center. While intensive melt extraction (crystal 

accumulation) near the chamber floor is consistent with gravitational settling of crystals, 

intensive accumulation near the roof requires a differentiation mechanism unrelated to the 

sense of gravity. We suggest that convection of magmatic suspension through part of the 
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solidification front leads to the filtering of crystals in the rigid crystal framework of the front 

and is consistent with large crystal accumulation near the chamber boundaries. Regular 

variations of textural and melt extraction parameters suggest that more than 550 m thick 

granitic body was emplaced as a single batch of magma that underwent subsequent 

mechanical differentiation. Thermal constraints imply the flux of magma in the order of 

0.1 km3 year-1 which is comparable to the magmatic fluxes reported from active volcanic arcs. 

 

Key words: 

Granite; crystal accumulation; melt extraction; K-feldspar phenocryst; texture quantification; 

numerical modeling. 

 

 

6.1. Introduction 
 

Magma chambers are complex system where multitude of mechanical and physico-

chemical processes can operate on variable length and time scales. Compared to the mafic 

systems, the internal processes in granitic magma chambers remain far less understood and 

shrouded in controversies. Specifically, the mode of existence of granitic magma chambers 

itself remains unclear as it can range from incremental assembly of small magma bathes to the 

magmatic “big tank” (e.g., Glazner et al., 2004; Marsh, 2006; Lipman, 2007; Annen, 2009; de 

Saint Blanquat et al., 2011). The size of individual batches, however, is decisive for the 

internal dynamics of magma chamber as well as for its possible eruptive behavior or volcano-

plutonic connection (e.g., Bachmann et al., 2007). Additionally, the role of sub-solidus 

processes and textural modification in granitic rocks remains questionable (e.g., Johnson & 

Glazner, 2010) and it poses potentially significant difficulty in the interpretation of granitic 

structures (e.g., Vernon, 1986; Paterson et al., 2005; Vernon & Collins, 2011). While 

geochemistry has long been bringing important insight to the understanding of magmatic 

systems it can hardly decipher the nature of more structurally and texturally related processes 

indicated above. In spit of that, the textural record remains largely unexploited source of 
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information about kinetics and mechanics of granitic magma crystallization (Mock et al., 

2003; Farina et al., 2011; Yang, 2012). 

In this paper, we examine a textural record of the K-feldspar and plagioclase 

phenocrysts in porphyritic Jizera granite of the Krkonoše-Jizera plutonic complex, Bohemian 

Massif (e.g., Žák & Klomínský, 2007; Słaby & Martin, 2008; Žák et al., 2009, 2013; Kusiak 

et al., 2014). Based on the textural digitization on the outcrop scale we evaluate a crystal size 

distribution, CSD, and a spatial distribution pattern of phenocrysts in the porphyritic granite. 

Systematic variations of textural parameters with altitude allowed us to constrain the mode 

and rate of magma emplacement. Interpretation of measured textural descriptors with the 

numerical model of texture evolution during crystal mush compaction (Špillar & Dolejš, 

2015) provides an insight into the mechanism of internal differentiation of granitic magma 

chambers. The results suggest that mechanical magma differentiation process based on the 

interplay of the solidification front growth and convection through the permeable crystal 

network is involved in the crystallization of granitic magma chambers. 

 

 

6.2. Geological setting 
 

6.2.1. Regional setting 

 

The Carboniferous Krkonoše-Jizera plutonic complex (KJPC; also variably referred to 

as Krkonoše-Jizera pluton or Karkonosze pluton) is a product of the late Variscan magmatic 

activity in the Saxothuringian zone of the Bohemian Massif, Central Europe (e.g., Žák et al., 

2013). The pluton has E-W elongated “double-lobed” shape (Fig. 6.1) with its longest 

dimension 70 km long and it covers an area of 1000 km2 in a map view. It intrudes 

Neoproterozoic to Paleozoic complexes dominated by various units of phyllites, mica shists 

and orthogneisses which underwent variscan blueshist-facies metamorphism with subsequent 

greenshist facies overprint (e.g., Mazur et al., 2006; Žáčková et al., 2010; Faryad & Kachlík, 

2013; Žák et al., 2013). 
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Fig. 6.1. Geology of the Krkonoše-Jizera plutonic complex and sample locations. (a) simplified geological map of 

the Krkonoše-Jizera plutonic complex, Bohemian Massif, Central Europe. Bohemian Massif highlighted in gray in 
the location map, ST is the Saxothuringian Zone of the Bohemian Massif. Modified after Žák et al. (2013). (b) 
location of sampling points. 

 

The contact with surrounding units is sharp, discordant and it dips steeply to 

moderately outwards. Thermal effects of granite intrusion on the host lithologies are 

documented by up to 2.5 km wide zone of contact metamorphism in which regionally 
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metamorphosed host rocks were transformed to hornfels and spotted shists. Contact 

metamorphic mineral assemblages suggest that the granites were emplaced to moderate depth 

of no more than 7 – 10 km (e.g., Ilnicki, 2011). 

As suggested by gravimetric measurements (Sedlák et al., 2007), the pluton has 

tongue-like shape in three dimensions and it extends to the depth of 8 km below the present-

day surface. In eastern lobe of the complex pronounced negative gravity anomaly suggests 

even greater vertical extend of granitic material and is interpreted as a feeding or root zone of 

the pluton (Sedlák et al., 2007; Žák et al., 2013).  

 

 

6.2.2. Internal structure 

 

Krkonoše-Jizera plutonic complex is dominated by several intrusive units of 

porphyritic to equigranular biotite to two-mica granites to granodiorites (Fig. 6.1; Cloos, 

1925; Klomínský, 1969; Žák & Klomínský, 2007; Słaby & Martin, 2008; Žák et al., 2009, 

2013; Kusiak et al., 2014). On the western and south western margin, the KJPC is rimmed by 

two bodies of medium-grained equigranular two-mica granite (Tanvald granite), which 

represents probably the oldest intrusive event of the complex. Emplacement of the Tanvald 

granite was followed by at least two injections of two types of porphyritic biotite granites 

(Liberec and Jizera granite; Fig. 6.2) which constitue main part of the plutonic complex. 

While the radiometric dating remains rather inconclusive (317.3  2.1 Ma vs. 319.5  2.3 Ma 

for Tanvald and Liberec granites, respectively; Žák et al., 2013), the outcrop situation 

suggests that the intrusion of porphyritic Liberec granite followed that of equigranular 

Tanvald type (Klomínský et al., 2006; Žák et al., 2006). 

Liberec granite is medium to coarse-grained weakly porphyritic biotite granite with K-

feldspar phenocrysts typically 3 cm large. In a broad gradational zone the Liberec granite 

transitions to “stratigraphically” higher positioned medium-grained strongly porphyritic 

biotite Jizera granite with larger and more elongate K-feldspar phenocrysts, typically 5 – 10 

cm  long.  Gradational  contact  of both porphyritic types suggests that their emplacement was  



6. Internal dynamics of granitic magma chambers 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 212 - 

 
 

Fig. 6.2. Representative textures of the porphyritic granites on a polished rock slabs. (a) Jizera granite; (b) 

Liberec granite. 

 

roughly coeval which is also supported by the radiometric ages of the Jizera granite, 320.1  

3.0 Ma and 319.3  3.7 Ma, respectively (Žák et al., 2013). Apart from K-feldspar, 

plagioclase phenocrysts are occasional in Jizera granite, but are rarer in Liberec granite. In 

both facies, however, plagioclase occasionally forms thin rims of K-feldspar phenocrysts 

(rapakivi feldspar). Internal transitional zone between both porphyritic types is locally 

accompanied by blocks or smaller bodies of porphyritic quartz diorite to granodiorite (Fojtka 

granodiorite). 

In the central and highest part of the KJPC the medium-grained equigranular biotite 

granite (Harrachov granite) overlaid by the fine to medium-grained equigranular biotite 

granite (Krkonoše granite) crops out. Equigranular biotite granites are younger than the 

porphyritic types (315.0  2.7 Ma for Harrachov granite) and similar fine-grained rocks also 

appear as smaller subhorizontal sheet-like intrusions in the porphyritic granites (Žák et al., 

2013). Within the porphyritic granites, the fine-grained bodies are more common in highest 

elevations. 

Since Cloos (1925), the porphyritic granites of the Krkonoše-Jizera plutonic complex 

are a classical area of granite structural geology (e.g., Žák & Klomínský, 2007; Žák et al., 

2009, 2013). Recent study focused on anisotropy of magnetic susceptibility and macroscopic 
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phenocryst fabric (Žák et al., 2013) suggests that internal structure of the Liberec granite 

records primary margin-parallel magmatic fabric related to magma emplacement. In the Jizera 

granite, the K-feldspar magmatic fabrics are more complex and are inferred to reflect 

superposition of multiple regional stress field orientations. In both cases, the fabric formation 

occurred at magmatic stage without pervasive solid-state overprint (Žák et al., 2013). 

In otherwise homogeneous porphyritic granites local inhomogeneities such as 

schlieren channels, ladder dikes, or local K-feldspar accumulations are scattered. These 

structures are interpreted as a result of localized flow, crystal settling, or local melt migration 

during the mush stage of magma crystallization (Žák & Klomínský, 2007). Both porphyritic 

granites are also rich in decimeter-scale microgranular enclaves of more mafic composition 

(e.g., Słaby & Martin, 2008; Słaby et al., 2008). These enclaves macroscopically resemble 

fragments of the Fojtka granodiorite from the transitional zone of the Liberec and Jizera 

granites which suggests that they might originate from similar magmas. 

 

 

6.3. Quantitative textural analysis 
 

Magmatic textures provide an integrated record of both kinetic and mechanical 

processes active during magma crystallization. In order to decipher such processes in granitic 

magma chamber, we analyzed K-feldspar and plagioclase phenocryst textures in the 

porphyritic Jizera granit of the Krkonoše-Jizera plutonic complex. 

 

 

6.3.1. Field textural analysis and sampling strategy  

 

To provide statistically robust and representative data sets the textures were studied on 

the outcrop scale. On each sampling point, a part of the outcrop surface was covered with 

transparent  foils  on  which  individual  phenocrysts  were  outlined.  Where  it  was  possible, 
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Tab 6.1. List of studied samples. 
Sample details Mafic enclaves Phenocryst mode 

and clustering index 
Phenocryst CSD 

Sample Facies North East Alt. W H Nall v f  plg R Nlim S I R2 

J-1 J 50.86013 15.19027 785 580 815 324 0 0 17.75  1.17 263 -0.17 -11.39 0.93 

J-2 J 50.86606 15.18473 565 1249 1180 1258 0.47 3.4 18.60  1.20 1036 -0.16 -11.40 0.97 

J-3 J 50.85868 15.19279 805 835 891 297 0 0 9.19  1.06 261 -0.15 -12.51 0.99 

J-4 J 50.86406 15.18621 620 593 831 445 0.82 4.1 17.76  1.15 311 -0.15 -11.78 0.99 

J-5 J 50.86528 15.18063 525 830 590 294 2.97 4.1 18.38  1.16 231 -0.13 -12.16 0.97 

J-6 J 50.86196 15.19127 705 888 830 531 0.06 2.7 14.41 14.02 1.12 412 -0.14 -12.06 0.95 

J-7 J 50.85468 15.19901 875 889 831 314 0 0 10.72  1.11 280 -0.13 -12.73 0.96 

J-8 J 50.84056 15.18315 1063 888 833 473 0 0 12.32 23.63 1.10 349 -0.14 -12.32 0.99 

J-9 J 50.84073 15.18340 1065 593 414 296 0 0 25.85 48.93 1.23 241 -0.15 -10.98 0.97 

J-10 J 50.85452 15.22148 950 890 832 337 0.60 2.7 10.56 26.65 1.13 287 -0.12 -13.04 0.95 

J-11 J 50.83425 15.26009 1105 891 831 180 0.02 1.4 3.20 31.22 1.01 140 -0.27 -11.93 0.96 

J-12 J 50.85031 15.23825 1055 885 834 262 0.07 1.4 7.43  1.05 222 -0.19 -12.04 0.95 

J-13 J 50.82445 15.21271 1070 891 834 198 0 0 4.79 18.13 1.05 161 -0.18 -12.69 0.95 

J-14 J 50.82447 15.21296 1065 891 843 184 0 0 2.63  0.97 105 -0.26 -12.48 0.95 

J-15 J 50.83053 15.29852 1020 892 829 109 0 0 3.13  1.00 94 -0.36 -10.26 0.93 
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J-16 J 50.86556 15.18334 560 836 890 646 0.23 2.7 21.62  1.22 503 -0.11 -12.17 0.91 

J-17 J 50.8649 15.18708 590 891 834 514 0.51 5.4 15.76  1.17 416 -0.15 -11.67 0.95 

J-18 L 50.87858 15.15507 375 835 594 516 0 0 15.32  1.10 357 -0.27 -9.30 0.98 

J-19 J 50.85692 15.19329 830 829 887 373 0 0 12.56  1.10 293 -0.09 -13.41 0.92 

J-20 J 50.86172 15.18936 725 831 894 459 0 0 15.04  1.14 379 -0.13 -12.15 0.98 

J-21 J 50.86843 15.18823 485 828 892 543 0 0 16.22  1.18 416 -0.14 -11.97 0.97 

J-22 J 50.86332 15.18747 650 831 888 540 0.90 9.5 18.35  1.18 433 -0.13 -12.14 0.99 

J-23 J 50.86332 15.18747 650 832 293 180 0 0 24.75  1.16 149 -0.11 -12.26 0.95 

J-24 J 50.86109 15.18782 735 831 888 559 0 0 14.20  1.12 414 -0.14 -12.01 0.99 

Symbols and abbreviations: Facies – intrusive facies of the porphyritic granite (J – Jizera granite; L – Liberec granite); North and East – sample location in the WGS84 
coordinate system; Alt. – altitude of the sampling point (m a. s. l.); W, H – width and height of the analyzed outcrop surface (mm); Nall – number of all phenocrysts in the 
studied are; v – volume percentage of mafic enclaves (vol. %) measured on the studied area of the outcrop surface; f – frequency of mafic enclaves (no. m-2) on the studied 

area of the outcrop surface;  - mode of phenocrysts (vol. %); plg – volume percentage of plagioclase in phenocrysts. Missing values indicate that plagioclase and K-feldspar 
were not distinguished. R – clustering index of phenocrysts; Nlim – number of phenocrysts larger than the lower cut-off size, 12.5 mm; S – CSD slope (mm-1); I – CSD intercept 
(population densities are considered as a natural logarithm of mm-4). 
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occasional phenocrysts of plagioclase were discriminated from those of K-feldspar. Only the 

outcrops with flat, clean, and non-weathered surface were chosen for analysis. On each 

sampling point, the studied area was rectangular, 0.25 – 1.5 m2 large, and it contained several 

hundreds to more than a thousand of individual phenocrysts (Tab. 6.1). The foils were 

subsequently scanned on an ordinary flat scanner and cleaned using commercial image editing 

software to obtain raster image maps of the textures. Scanning was performed in a resolution 

of 100 DPI which ensured that even the small phenocrysts were tens of pixels across and 

raster effects were thus minimized. This approach in texture digitization was chosen as the 

ability to resolve individual phenocrysts on the outcrop surface is far superior compared to 

outlining the phenocrysts on, for example, digital photographs of the outcrops. 

On a total of 24 sampling points the textures were measured (Tab. 6.1, Fig. 6.1). The 

sampling points were chosen to set up an approximate profile from the northern margin of the 

Jizera granite body to south to its central part. Along the profile, elevation of sampling points 

increases by 620 m, from 485 m a. s. l. (J-21) to 1105 m a. s. l. (J-11). In the northern part of 

the profile the sampling density is high and elevation increases rapidly along the profile, 

whereas in the southern part, above 900 m a. s. l., the profile is more leveled and sampling 

localities are widely scattered due to limited outcrop situation. 

Field textural analysis is relevant for the population of larger phenocrysts, more than 

1 cm across (see Section 6.3.2.1). Therefore, the analysis of textures performed on the 

outcrops was supplemented by a textural measurements on a rock-slabs cut from the J-2 

sample. The rock slabs were scanned and their textures treated in an analogous manner to the 

outcrop textures. After merging of the two data sets, this approach allows considerable 

extension of the length scale on which the crystal size distribution, CSD, is determined. 

 

 

6.3.2. Data processing 

 

Raster texture maps were processed by our custom image analysis program to provide 

sizes of all crystals and two-dimensional coordinates of their centers (Špillar & Dolejš, 2014). 
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The R language environment (R Development Core Team, 2011) was used to calculate the 

area (volume) fraction of phenocrysts (crystallinity), the clustering index, and the apparent 

two-dimensional crystal size distribution. 

 

 

6.3.2.1. Crystal size distributions, CSDs 

Crystal size distribution, CSD, is traditional and convenient mean of describing grain-

size variations in rocks (e.g., Cashman & Marsh, 1988; Marsh, 1998, 2007; Higgins, 2006). 

CSD is defined as a probability density function that relates crystal size to frequency of its 

occurrence. In this work, CSDs were calculated based on a two-dimensional crystal sizes as 

which a diameter of equal-area circle was considered. This definition of crystal size is 

preferred over more complex methods (e.g., Higgins 2006) due to its simplicity and 

robustness to variations in the crystal shape (Špillar & Dolejš 2014). During the CSD 

calculation, only such crystals whose outline was not intersected by the study area boundaries 

were considered. Since only shapes and relative differences of CSDs were considered in this 

study we did not attempt to use any 2D-to-3D correction when dealing with CSDs (e.g., 

Higgins, 2000) and our analysis remained restricted to two-dimensional data sets. 

In one sample (J-2) the range of crystal sizes over which the CSD was determined was 

extended to smaller sizes by supplementing the data acquired from transparencies by textural 

analysis of polished rock slabs, where smaller grains could successfully be outlined. A total of 

six slabs were cut from the porphyritic granite from J-2 location. The slabs were scanned, K-

feldspar phenocrysts outlined in a commercial image editing software, and resulting raster 

images processed in a same way as those from transparencies. Each slab was approximately 

2 dm2 in size and on all the slabs a total of 149 K-feldspar phenocrysts were outlined. 

Superposition of CSDs from transparencies and rock slabs (Fig. 6.3a) suggests that 

transparency-derived CSDs are valid down to the crystal size of 10 – 15 mm. Below this size 

limit the CSDs from transparencies become artificially concave-down as only fraction of 

small grains can be resolved on the outcrop surface. Therefore, we use mid of the size interval 

suggested, 12.5 mm, as a lower cut-of size for CSDs derived from transparencies. Due to 
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apparent uniformity of all studied CSDs the “overlap” approach was employed in one sample 

only and we suggest that the results can be reasonably extrapolated to other samples. 

 

 

6.3.2.2. Clustering index, R 

Apart from crystal sizes, the spatial distribution of crystals provides important means 

of quantitatively characterizing and interpreting a rock texture (e.g., Jerram, 1996, 2003; 

Rudge et al., 2008). Specifically, we employ the clustering index, R (Clark and Evans, 1954; 

Kretz 1966, 1969; Jerram et al., 1996, 2003), to characterize the spatial distribution of 

phenocrysts in porphyritic granite. The clustering index is defined as a ratio of the average 

nearest neighbor distance observed in a texture, RA, to the average nearest neighbor distance 

in a randomly distributed set of points, RE: 

 

 A

E

RR
R

 . (6.1) 

 

We consider distance of crystal centers as a distance of crystals. The value of RE 

depends on the number of points, N, and the area over which the points are distributes, A, as 

follows (e.g., Kretz, 1966): 
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As follows from the Eqn. (1), the value of R = 1 indicates random distribution of 

points, whereas lower or greater values indicate clustered or ordered (i.e., anti-clustered) 

distributions, respectively (e.g., Kretz, 1966; Jerram et al., 1996).  

During texture digitization some of the smallest phenocrysts could not be resolved on 

the outcrop surface and the population of small crystals is thus incomplete (see Section 

6.3.2.1). Therefore, only crystals above the cut-off size of 12.5 mm were used in the 

clustering index calculation as  above  this  size  the  population  of  crystals  is  supposed  to  be 
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Fig. 6.3. Phenocryst crystal size distributions of the porphyritic granites. (a) superposition of the CSDs derived 
from the outcrops and from the polished rock slabs (J-2 sample); (b) outcrop-derived CSDs of all samples.  

 

 

complete. Textural measurements were performed on a finite area and the area boundaries 

introduce a bias in calculation of the clustering index. Crystals close to the boundaries lack 

some of their neighbors which would be located outside of the studied area and the value of 

the clustering index is thus generally overestimated. To obtain unbiased value of the 

clustering index the empirical correction procedure of Donnelly (1978) was employed. 

 

 

6.3.2.3. Estimate of three-dimensional crystal shape 

Modeling of melt extraction from crystal mush (see later) requires the knowledge of 

true crystal shape in three dimensions. Three-dimensional shape of K-feldspar megacrysts 

was estimated using the CSDslice method of Morgan & Jerram (2006). The method compares 

measured ratios of the longest to shortest dimensions of 2D crystal sections to the database of 

the ratios determined computationally for a wide array of crystal shapes and returns the best 

fitting shapes. 

We performed the shape determination for the sample J-2, where largest number of 

individual crystal outlines was captured. The best fitting shape is prismatic with axial ratio of 
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1:1.8:2.3 and with the goodness of fit, R2 = 0.87. Second and following best fitting shapes 

closely match the best one which proves the robustness of determination. Since no qualitative 

variations of the phenocryst shape are observed we use the above determined value as a 

representative estimate for the whole Jizera granite. 

 

 

6.3.3. Results of textural measurements 

  

Quantitative textural analysis was performed in homogeneous porphyritic granite, 

away from local inhomogeneities such as mafic schlierens or K-feldspar accumulation. These 

structures are scattered across the pluton (Žák & Klomínský, 2007; Žák et al., 2013). In the 

study area (Fig. 6.1) the inhomogeneities are rare excepting in highest altitudes (1000 m 

a.s.l.), where subhorizontal schlierens and schlieren channels are quite common. Similarly, 

small, apparently sheet-like bodies of fine-grained equigranular granite are common in higher 

altitudes. On the other hand, the mafic enclaves are qualitatively more frequent in lower parts 

of the studied domain and rarer in higher elevations. While not statistically robust, the data on 

mafic enclave frequency and volume percentage of enclaves within the rock derived from our 

transparencies suggest similar trend (Fig. 6.4, Tab 6.1). 

 

 

6.3.3.1. Modal abundance of phenocrysts 

Modal abundance of phenocrysts ranges from 3 vol. % to 26 vol. % (Fig. 6.5a, 

Tab. 6.1) and it varies regularly with altitude, therefore, with “stratigraphic” position within 

the ancient magma chamber. In lower part of the profile (550 m a.s.l.) the amount of 

phenorysts ranges between 15 and 22 vol. % with an exceptional value of 25 vol. % 

(sample J-23) and it decreases to 10 vol. % at around 950 m a.s.l (sample J-10). This trend 

continues further up and at the upper most part of the profile (1100 m a.s.l.) the phenocryst 

content is around 3 – 5 vol. %. In the uppermost part, however, the values are more scattered 

with couple of outliers (12 and 26 vol. % in samples J-8 and J-9, respectively). The phenocryst 
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Fig. 6.4. Occurrence of mafic enclaves as a function of altitude. (a) number of mafic enclaves per square meter 
of outcrop surface; (b) volume percent (area percent) of mafic enclaves on the outcrop surface. See text for a 
definition of zones.  

 

content thus steadily decreases with altitude through more than 600 m of vertical elevation 

difference. Detailed look at the lower most part of the profile may suggest slight reversal of 

this trend, which is, however, mainly due to 16 vol % of phenocrysts in the J-8 sample. Below 

400 to 450 m a.s.l. the Jizera granite transitions to less porphyritic and texturally different 

Liberec granite (sample J-18 at 375 m a.s.l.). 

In 7 samples where it could be determined the relative volumetric amount of 

plagioclase in phenocrysts ranges from 14 % to 31 % with exceptional value of 49 % 

(Tab. 6.1). While the highest fraction of plagioclase is found in one of the uppermost samples, 

J-9, we do not otherwise observe any systematic trend between altitude and plagioclase 

content in phenocrysts. 

 

6.3.3.2. Clustering index 

Within the sample set the values of the clustering index, R, range from 0.97 to 1.22 

(Tab. 6.1) and it strongly and positively correlates with the mode of phenocrysts (Fig. 6.6b). 

Majority of the studied textures are ordered as they plot above the random texture trend 

(Špillar & Dolejš, 2014) in the clustering index vs. phenocryst mode diagram (Fig. 6.6b). The 

phenocryst-richest  samples  are  those with highest values of the clustering index, therefore 
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Fig. 6.5. Textural data as a function of altitude. (a) modal content of phenocrysts; (b) clustering index of 
phenocrysts; (c) slope of the phenocryst CSD; (d) intercept of the phenocryst CSD. See text for the definition of 
zones. 

 

with most ordered textures. Only the most phenocryst-poor samples plot close to the random 

texture trend and spatial distribution of their phenocrysts is thus random or weakly 

order/weakly clustered. 

In the Jizera granite, the clustering index varies systematically with altitude 

(Fig. 6.5b). Textures in the lowermost part, around 500 m a.s.l., are most ordered with highest 

values of the clustering index, R  1.2. As altitude increases the clustering index decreases to 

1.1 in the central part of the studied profile (800 m a.s.l.) with possible slight reversal in the 



6. Internal dynamics of granitic magma chambers 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 223 - 

 
 

Fig. 6.6. Textural parameters as a function of mode of phenocrysts. (a) correlation of the mode of phenocrysts 
with the CSD slope. Note that the slope is almost independent of the mode outside of the Roof Zone. (b) 
clustering index of phenocrysts as a function of phenocryst mode.  

 

upper half (sample J-10 with R = 1.13). In the uppermost part, above 1000 m a.s.l., the 

values of the clustering index are more scattered between 0.97 and 1.23 (Fig. 6.5b). In the 

underlying unit of Liberec granite, the phenocryst texture is less ordered with R = 1.10 

(sample J-18). 

 

 

6.3.3.3. Crystal size distributions 

To the first order, CSDs of phenocrysts are straight in conventional size vs. natural log 

of population density space (Fig. 6.3b). When plotted together, the CSDs of Jizera granite 

samples form a wide fan as they pivot around a common intercept and their slope varies. The 

slope and intercept values from linear regression of CSDs are summarized in Tab. 6.1. Across 

the studied profile the values of the intercept are quite homogeneous with variations restricted 

to the interval between -9.3 and -13 (Fig. 6.5d). The CSD slope ranges between -0.09 and -

0.17 mm-1 everywhere excepting in the uppermost part of the profile, where CSDs are steeper 

and the slope reaches up to -0.36 mm-1 (Fig. 6.5c). In the case of J-9 sample, the CSD lies 

little above the fan of all other CSDs of Jizera granite. It is parallel to the CSD of neighboring 

J-8 sample, but it is shifted towards higher intercept value (-12.3 vs. -10.0) to accommodate 
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considerably higher modal content of phenocrysts (25.9 vs. 12.3 vol. % in J-9 and J-8, 

respectively). 

The CSD slope correlates with the modal content of phenocrysts (Fig. 6.6a). The 

phenocryst poor samples from the uppermost part of the studied profile are these with steepest 

CSDs, therefore, with smallest phenocryst size. As values of the CSD intercepts are much 

more homogeneous and restricted in variations, similar relationship does not exist between 

the phenocryst content and CSD intercept. 

Stratigraphically lower-most sample, J-18, belongs to the less porphyritic Liberec 

granite. Compared to the Jizera granite, Liberec facies has smaller phenocrysts and it is 

quantitatively reflected in steeper slope of its CSD (Fig. 6.3b). Contrasting intercept and slope 

values of this CSD thus break the trends defined by the Jizera granite samples (Figs. 6.5, 6.6a) 

and in the vertical profiles it clearly marks lower margin of the Jizera granite extent. 

In detail, some of the Jizera granite CSDs are not perfectly straight but show slight 

concave-down curvature with deficient population of small grains (e.g., J-1, J-2, J-5, J-21, 

Fig. 6.3b). Generally, the concave-down curvature of a CSD can be either an inherent feature 

of a texture resulting from specific crystallization process (e.g., textural coarsening; Higgins, 

2011) or methodological artifact when some of the small grains are missed during acquisition 

of textural data. To distinguish between the two we performed additional texture digitization 

from polished rock slabs to better characterize the population of small crystals in the J-2 

sample, the sample with largest dataset under study (Section 6.3.2.1). The superimposition of 

CSDs from the outcrop and the rock slabs suggests that true CSD continues linearly to the 

smaller grain sizes (Fig. 6.3a). We thus infer that observed week curvature of some CSDs is 

an artifact of imperfect texture digitization from rough outcrop surface rather than a result of 

the crystallization process. In the concave-down CSDs the deviation from linearity is rather 

limited and not strong enough to significantly distort related parameters such as CSD slope 

and intercept derived from linear regression. 
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6.4. Modeling of melt extraction 
 

6.4.1. Origin of ordered textures by melt extraction 

 

Our measurements of K-feldspar and plagioclase phenocryst textures in porphyritic 

Jizera granite reveal that the spatial distributions of phenocrysts are variably ordered (or anti-

clustered) when compared to textures resulting from in-situ nucleation and growth of crystals. 

Ordered textures can result from either mechanical accumulation of crystals or textural 

coarsening due to surface energy minimization (see later).  

During mechanical accumulation of crystals from magmatic suspension the crystals 

can be compacted to fit into smaller volume of melt while some melt is left crystal free or 

with reduced amount of crystals and is virtually extracted from the system. In this process, the 

individual crystals – or already existing crystal aggregates – are geometrically reconfigured to 

approach closer to each other than they used to be in a pre-accumulation stage. However, once 

two crystals touch each other they cannot further approach. As a result, the crystal centers are 

generally more distant in the compacted crystal mush then they would be in in-situ 

crystallized mush of the same crystal content. Such textures are classified as ordered or anti-

clustered and the extent of crystal accumulation (or alternatively of melt extraction) is 

expected to be proportional to the degree of ordering of a texture, therefore to the clustering 

index (Špillar & Dolejš, 2015). 

Alternatively to crystal accumulation, ordered textures can also result from textural 

coarsening due to surface energy minimization. In this process the material is transferred by 

diffusion from smaller grains to the larger ones. Since material transfer is faster between more 

closely separated grains the textural coarsening ultimately leads to a texture consisting of 

evenly distributed equal-sized crystals. Apart from increasing ordering of the spatial 

distribution pattern, the textural coarsening also affects CSD and it promotes its concave-

down shape as the population of small grains is progressively consumed. 

The CSDs of phenocrysts in studied granites are straight and do not show any 

significant deficit in the small-grain population. Therefore, we suggest that the observed 
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ordered spatial distribution patterns are likely a result of mechanical accumulation of crystals 

and extraction of interstitial melt rather than of textural coarsening. In subsequent sections we 

will apply the model of texture evolution during the melt extraction event (Špillar & Dolejš, 

2015) in order to estimate the quantitative role of this process in solidification of porphyritic 

granites. 

 

 

6.4.2. Statistical model of mechanical melt extraction 

 

6.4.2.1. Principles of melt extraction modeling 

After adaptation to the real crystal shape of K-feldspar phenocrysts, 1:1.8:2.3, (Section 

6.3.2.3) the model of Špillar & Dolejš (2015) was used to study textural effects of crystal 

accumulation or melt extraction in porphyritic granite. While details of the calculation 

procedure can be found in the original study we provide only a brief summary here. The 

crystal accumulation/melt extraction model operates in two steps: (i) crystallization; (ii) 

crystal accumulation. In the first step, in-situ kinetic crystallization by nucleation and growth 

of crystals from melt is simulated until the system reaches a desired pre-compaction 

crystallinity, I. The VoxelTex model is used to accomplish this step and the rates of crystal 

nucleation and growth are prescribed to generate a texture with straight CSD (Špillar & 

Dolejš, 2014), as observed in our samples. 

In the crystal accumulation step the virtual crystal mush generated by in-situ 

crystallization is packed into smaller post-compaction volume which leads to greater post-

compaction crystallinity, F. Instead of complex fluid-dynamic simulation of crystal mush 

compaction we apply simple Monte Carlo approach (e.g., Frenkel and Smit, 2002). We 

construct the compacted crystal mush progressively by sequentially and randomly adding 

individual crystals and crystal aggregates from the in-situ crystallized mush into the voids 

remaining within the compacted mush (Špillar & Dolejš, 2015). After all crystals are 

relocated to the compacted system the crystal mush is sectioned by a plane and a clustering 

index, R, of crystal centers is evaluated on this two-dimensional section. The compaction step 
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is repeated many times (typically, 100 times) to obtain statistically robust averaged results for 

the clustering index. 

The post-compaction volume, thus the post-compaction crystallinity, is arbitrarily 

chosen value smaller than the initial volume of the crystal mush. In case that the post-

compaction volume is chosen to small then some crystals will remain for which no large 

enough voids can be found. In such case the mechanical limit of compaction was exceeded 

(Špillar & Dolejš, 2015). For all volumes (crystallinities) in the range between initial and 

limiting value the compacted crystal mush can be constructed and the clustering index 

calculated. The method thus allows studying evolution of the clustering index with 

progressive compaction from initial to limiting crystallinity. 

Our Monte Carlo approach does not simulate any specific fluid-dynamic process 

within the magmatic suspension. In stead, by repetitive random simulations, the method 

explores the configurational space and provides configuration-averaged properties of the 

compacted mush. In natural magmas, dynamic processes such as magma flow, convection, or 

chaotic crystal-crystal interactions tends to randomize crystal positions and orientations and 

therefore approach their textural signatures to those derived by Monte Carlo simulations. 

Such method thus remains general and unbiased by the assumptions regarding physics of 

specific process of crystal accumulation (Špillar & Dolejš, 2015). 

 

 
 

Fig. 6.7. Crystal accumulation scheme. During the compaction, part of the interstitial melt is extracted, 
crystallinity increases from the intial, I, to final, F, and the crystals and crystal clusters are rearranged to fit 
into a smaller volume. Final crystallinity corresponds to the observed value, for example to the observed mode 

of phenocrysts, . Modified after Špillar & Dolejš (2015). 
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When analyzing outcrop textures of porphyritic granites the lower cut-off size was 

established below which not all of the crystals could had been resolved on the outcrop surface 

(Section 6.3.2.1). The clustering index derived from the outcrop data is thus relevant only for 

the crystal population from which all the crystals below the cut-off size were eliminated. To 

yield comparable values of the clustering index also from the simulated compaction textures 

the crystals whose size in a two-dimensional section was below the cut-off size were omitted 

from the clustering index calculation. 

 

 

6.4.2.2. Calibration of melt extraction vs. ordering relationship 

Let us assume some control volume, VI, of magma with initial mode of crystals, I. 

During the crystal accumulation event the crystals from the volume VI are packed into the 

smaller volume, VF, with final crystallinity, F. The difference between the two volumes, VI -

VF, is the volume of crystal-free melt; therefore the volume of melt which is effectively 

extracted from the system (Fig. 6.7). To characterize the extent of the crystal accumulation we 

define the accumulation ratio, AR, as a ratio of final and initial crystallinities: 

 

 F

I

.AR 


  (6.3) 

 

By definition, the AR is always grater than unity after crystal accumulation event. Opposite 

case, AR < 1, implies that the crystal mush was “diluted” by some melt incoming from the 

outside. Same crystal accumulation process can be characterized as a melt migration event 

with some fraction of interstitial melt being extracted from the system. Using the initial and 

final crystallinities the percentage of extracted melt, MEP, can be expressed as (Špillar & 

Dolejš, 2015):  
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For any initial crystallinity, I, the melt extraction (crystal accumulation) model 

(Section 6.4.2.1) allows to calculate the evolution of the clustering index, R, as a function of 

final crystallinity, F. Since the accumulation ratio, AR, and the melt extraction percentage, 

MEP, are functions of exclusively I and F, both AR and MEP can be related to R. We 

performed 8 sets of crystal accumulation simulations for the initial crystallinities varying from 

2.5 to 20 vol. % with 2.5 vol % step. Within each set, the final crystallinity was varied from 

the initial value up to the mechanical limit with 0.1 to 1 vol. % step and for each pair of the I 

and F the R, MEP, and AR were evaluated. Fig. 6.8 shows a calibration of isolines of the 

initial crystallinity, I, and of the melt extraction percentage, MEP, as a function of the final 

(observable) crystallinity, F, and of the clustering index, R (see Tab. 6.2 for calibration 

details). These calibrations are analogous to that of Špillar & Dolejš (2015) but here we use 

real crystal shape of the K-feldspar phenocrysts in the Jizera granite, 1:1.8:2.3, instead of 

isotropic cubes which quantitatively affects the calibrations. The calibrations (Fig. 6.8 and 

Tab. 6.2) will be used further to interpret melt extraction (crystal accumulation) efficacy in 

granitic crystal mushes. 

 

 

6.4.3. Melt extraction and crystal accumulation in Jizera granite 

 

Quantitative relationship between the melt extraction and the clustering index 

allowed us to calculate the amount of melt extraction, the accumulation ratio, and the initial 

(pre-extraction) mode of phenocrysts in the porphyritic Jizera granite. A total of 18 

statistically representative samples with more than 200 phenocrysts larger than the lower cut-

off size (Section 6.3.2.1) were used in these calculations. Calculated values are summarized in 

Tab. 6.3. All derived parameters, initial phencryst mode, accumulation ratio, and melt 

extraction show complex variations as a function of altitude (Fig. 6.9). 

Initial mode of phenocrysts present in a magmatic suspension prior to the melt 

extraction or crystal accumulation event, I, is most commonly  between  10 – 15 vol. %. In  
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Fig. 6.8. Isolines of the melt extraction percentage, MEP, as a function of the final (observed) mode of crystals 
(phenocrysts), , and of the clustering index, R. Isolines are based on the polynomial fit (Tab. 6.2) to the 

simulation results are shown on such part of the R- space only where the fit was calibrated. Gray points are 
measured data from the porphyritic granites. 

 

 

 

 
 

Fig. 6.9. Calculated melt extraction / crystal accumulation parameters as a function of the altitude. (a) initial 

mode of phenocrysts, I, prior to the compaction event; (b) crystal accumulation ratio, AR; (c) melt extraction 
percentage, MEP. See text for definition of the zones. 
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Tab. 6.2. Polynomial fits for the initial crystallinity, ΦI, and for the melt extraction 
percentage, MEP, as a function of the final (observed) crystallinity, , and clustering 
index, R. 

Fit for the melt extraction percentage, MEP. 

2 3 2
1 2 3 4 5 6 7 8 9 10              3 2 2MEP a a R a a R a R a a R a R a R a  

 a1 = -1849.8936 a5 = -38992.7066 a9 = -24292.0336 

 a2 = -13258.1454 a6 = 19117.7147 a10 = 7386.4140 

 a3 = 21042.5881 a7 = -8076.5004   

 a4 = 17476.7117 a8 = 25046.7214   

Fit for the initial crystallinity, ΦI. 

3 2 2 2 3 2
Ι 1 2 3 4 5 6 7 8 9 10               b b R b b R b R b b R b R b R b  

 b1 = -17.2889 b5 = 87.9559 b9 = 51.8640 

 b2 = 50.0862 b6 = -41.4062 b10 = -18.0457 

 b3 = -54.0045 b7 = 15.1082   

 b4 = -43.5479 b8 = -48.9967   

Fits were calculated using the Polyfitn toolbox in MATLAB® software. 
Symbols: Φ – crystallinity (volume fraction, i.e., Φ ϵ <0;1>); ΦI – initial crystallinity (volume fraction) prior to the 
crystal accumulation / melt extraction event; R – clustering index; MEP – melt extraction percentage (%); 

a1...a10, b1...b10 – fit coefficients. 

 

 

detail, it forms a D-shaped profile as a function of altitude (Fig. 6.9a). The I first 

increasesfrom 9 to 15 vol. % from the lowermost to the central part of the intrusive unit 

and it then decreases back to 6 vol. % in the upper part. In the uppermost locations, around 

1050 m a. s. l., the regular trend terminates and I varies between 9 and 18 vol. % at constant 

altitude. In the lower part of the profile, two samples, J-4 and J-5, lie out of the D-shaped 

curve with higher initial phenocryst mode of 17 vol. % which approaches the values typical 

for the central part of the intrusive unit. 

The crystal accumulation ratio, AR, is defined as a ratio of actual and initial modes of 

phenocrysts (Eqn. 6.3) and its physical meaning is similar to that of the melt extraction 

percentage, MEP. The AR ranges from  0.8  (slight dilution of  the  crystal  suspension  by 
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                       Tab. 6.3. Melt extraction (crystal accumulation) parameter of  
                       Jizera granite samples. 

Sample Altitude  Nlim Φ ΦI AR MEP 

J-21 485 416 16.22 9.17 1.77 49.6 

J-5 525 231 18.38 17.60 1.04 3.6 

J-16 560 503 21.62 12.65 1.71 45.4 

J-2 565 1036 18.60 11.42 1.63 43.3 

J-17 590 416 15.76 10.24 1.54 41.1 

J-4 620 311 17.76 17.34 1.02 2.1 

J-22 650 433 18.35 14.17 1.29 26.0 

J-6 705 412 14.41 15.23 0.95 -2.7 

J-20 725 379 15.04 13.75 1.09 13.1 

J-24 735 414 14.20 15.03 0.94 -2.5 

J-1 785 263 17.75 14.36 1.24 22.3 

J-3 805 261 9.19 11.66 0.79 -19.3 

J-19 830 293 12.56 14.27 0.88 -8.9 

J-7 875 280 10.72 8.67 1.24 27.3 

J-10 950 287 10.56 6.30 1.68 46.9 

J-12 1055 222 7.43 8.95 0.83 -12.7 

J-8 1063 349 12.32 13.90 0.89 -7.7 

J-9 1065 241 25.85 18.11 1.43 31.6 

Symbols: Nlim – number of crystal larger than the lower cut-off size, 12.5 mm; 
Φ – measured modal volume of phenocrysts (vol. %); ΦI – calculated initial 

modal volume of phenocrysts prior to the crystal accumulation / melt 
extraction event (vol. %); AR – accumulation ratio; MEP – melt extraction 
percentage (%). 

The samples with Nlim lower than 200 were discarded from the calculation 
procedure as statistically poorly constrained and are not included. 

 

crystal-free melt) to 1.8 (phenocryst mode almost doubled by crystal accumulation or melt 

extraction). Corresponding range of MEP is from -20 (20 % of melt added) to 50 (half of the 

interstitial melt removed). Both AR and MEP vary in the way which is opposite to the 
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variations of I and they define a C-shaped profiles as a function of altitude (Figs. 6.9b, c). 

From the AR = 1.8 and MEP = 50 % in the lower part of the intrusive unit both values 

decrease to 1 and 0 %, respectively, in the center and they increase again to 1.7 and 

47 % in the upper part. The crystal accumulation (melt extraction) was thus most intensive 

in the marginal parts of the magma chamber whereas it was virtually inefficient in the center. 

The outliers J-4 and J-5 which were away from the trend of the initial phenocryst 

mode, I, are also away from the AR and MEP trends as they show only little to no crystal 

accumulation and melt extraction. Similarly as in the case of initial phenocryst mode, also the 

regular trends of the AR and MEP terminate in the uppermost part of the intrusive unit. The 

AR there varies between 0.8 and 1.4 and corresponding MEP from -13 % to 32 % at 

approximately constant altitude. 

 

 

6.5. Discussion 
 

6.5.1. Mode and rate of emplacement of granitic plutons 

 

6.5.1.1. Single vs. multiple magma batches? 

In the last decades, there has been a considerable debate about the mode and rate of 

emplacement and existence of granitic magma chambers (e.g., Glazner et al., 2004; Coleman 

et al., 2004). In general, two end-member scenarios are possible: (i) a step-wise emplacement 

of a large number of smaller pulses with significant cooling and crystallization between 

arrival of subsequent magma batches; (ii) a “big tank” model, in which large volume of 

magma is emplaced either at once or as multiple batches, but is allowed to communicate 

internally as single magma body (e.g., Glazner et al., 2004; Marsh, 2006; Lipman, 2007; 

Annen, 2009; de Saint Blanquat et al., 2011). While emplacement by successive magmatic 

pulses is evident in some magma bodies (e.g., Paterson et al., 2008) in other cases large 

volumes of magma present at a single occasion are required. Clear evidence for the “big tank” 

magma chambers of felsic compositions comes from large ignimbrite deposits, commonly 
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exceeding hundreds to thousands cubic kilometers in volume (e.g., Bachmann et al., 2007; 

Lipman, 2007; Huber et al., 2012). Alternative evidence for large volumes of magma present 

in the crust me be drawn from observations of continuous geochemical, modal, or textural 

variation across significant distances within the solidified magma body. To produce 

continuous internal zoning the magma chamber or its zoned part must have been present in a 

liquid or mushy state as only in such state some process of internal differentiation in which 

individual parts of the chamber communicate may be effective. 

Based on the observed modal and textural variations we define a Roof Zone and an 

Internal Zone within the Jizera granite of the Krkonoše-Jizera plutonic complex and we 

suggest that the Internal Zone provides an example of internally differentiated continuously 

zoned magma chamber. Through the Internal Zone, the mode of phenocrysts and the 

clustering index decrease systematically as altitude increases from 450 to 1000 m a. s. l. 

while the CSD slope and intercept remain almost constant (Figs. 6.5c, d). Above 

1000 m a. s. l., the range of modal and textural variations is wider. Also, the textures are 

more heterogeneous on the outcrop scale with more abundant local inhomogeneities such as 

mafic schlierens, schlieren channels, local phenocryst accumulations, and sheets of fine-

grained equigranular granite (Section 6.2.2). We suggest that heterogeneous textural record in 

this zone indicates close proximity of the roof or boundary of the magmatic pulse. In the 

boundary zone, sharp thermal, viscosity, and velocity gradients are expected to exist and to 

enhance the formation of various localized magmatic structures (Žák & Klomínský, 2007) 

while rapid crystallization is essential for preserving the heterogeneities. Moreover, sharp 

viscosity gradients may facilitate later emplacement of the fine-grained sheets into this zone. 

The granites of the fine-grained sheets resemble the Krkonoše and Harrachov facies of the 

Krkonoše-Jizera pluton (Žák et al., 2013). We thus infer that the occurrence of isolated sheets 

of this composition may suggest close proximity of the stratigraphically higher positioned 

bodies of the Krkonoše and Harrachov granite, which overlay the pulse of Jizera granite itself. 

Stratigraphically below the Roof Zone the Internal Zone of the Jizera granite is located 

in which textural and modal parameters vary smoothly over more than 550 m of vertically. 

We suggest that such continuous variations are only possible if the whole body of that 
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thickness was allowed to coexist in a liquid or mushy state so that its individual parts could 

communicate to form smooth zoning. It is considered highly unlikely that such trends in the 

mode and clustering of phenocrysts could result from multiple magma injections occurring 

each after significant solidification of the previous ones. Moreover, CSDs are rather 

homogeneous across the Internal Zone (Fig. 6.5c, d) with no signs of internal contacts and 

cooling rate variations affecting the CSD slope (e.g., Cashman, 1993; Zieg & Marsh, 2002). 

 

 

6.5.1.2. Emplacement rate and magma fluxes 

In current erosion level the Jizera granite, including minor areas where it is supposedly 

overlain by the Krkonoše and Harrachov granites, crops out on the area of approximately 

10  60 km. Considering a thickness of the magma batch of more than 550 m, the volume is 

estimated to more than 330 km3 of granitic magma, which compares well to the erupted 

volumes of silicic ignimbrites and volumes of felsic batholithes published elsewhere (e.g., de 

Silva & Gosnold, 2007; Lipman, 2007; Lipman & Bachmann, 2015). Final parts of this batch 

must had been emplaced before its majority solidified in order to develop internal zoning. 

Simple order of magnitude estimate of duration of such process is provided by a characteristic 

cooling time, t = L2/, where L is a half-thickness of the magma body and  is a thermal 

diffusivity of a country rock (e.g., Marsh, 1989). For crustal thermal diffusivity of 10-6 m2s-1, 

the characteristic cooling time of 2.4  103 years leads to the influx rate of magma of at least 

0.14 km3 year-1. The rate of magma influx in the order of 0.1 km3 year-1 compares well to the 

most productive magmatic systems (e.g., Annen, 2009; de Saint Blanquat et al., 2011). 

Similar rates are reported from the Aleutian Island Arc (Jicha et al., 2006) or from Elba Island 

laccoliths (Rocchi et al., 2002). Compared to the published construction rates of granitic 

batholiths or to the extrusion rates of silicic ignimbrites (e.g., de Silva & Gosnold, 2007; 

Lipman, 2007), the suggested rate of magma influx is up to several orders of magnitude 

higher. The published estimates, however, are time-averaged fluxes relevant for the long-term 

construction of large magmatic suits rather than for the individual magmatic pulses. These 

long-term rates are expected to vary in time to much higher instantaneous injection rates 
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compatible with our estimate (e.g., de Saint Blanquat et al., 2011; Lipman & Bachmann, 

2015). 

 

 

6.5.2. Internal dynamics and differentiation of granitic magma chambers 

 

6.5.2.1. The Roof Zone: Evidence for local melt and crystal migration 

In the Roof Zone, two neighboring and closely separated samples, J-8 and J-9, differ 

strongly by their phenocryst crystallinity (12 vs. 26 vol. %) and their clustering index (1.10 vs. 

1.23) (Tab. 6.1). These differences propagate into the different melt extraction and 

accumulation rations of both samples (-8 vs. 32 % melt extracted; Tab. 6.3). While more 

phenocryst-poor sample, J-8, indicates limited amount of melt infiltration and crystal 

suspension dilution, the phenocryst-rich sample, J-9, underwent significant amount of melt 

extraction and crystal accumulation. The CSDs of both samples are almost parallel 

(Fig. 6.4b). While consistent CSD slopes suggest similar cooling rates (e.g., Zieg & Marsh, 

2002), the variation in the CSD intercept is due to a large difference in the phenocryst content. 

The intercept difference therefore follows from the volume-balance constraints (Higgins, 

2002a) and reflects a fact that larger number of grains is needed to accommodate greater 

mode, while relative numbers of crystals in individual size bins, thus the CSD slope, remain 

constant.  

As suggested by Higgins (2002b) in the study of Kiglapait mafic intrusion, similarly 

related parallel CSDs can result from the melt migration and crystal accumulation due to 

gravitational settling. Variations of the calculated melt extraction percentage and differences 

in the CSD intercepts can thus be consistently explained as a result of in-situ crystal 

accumulation and local melt migration. Difference in the initial crystallinity (Tab. 6.3) 

suggests that limited advance of crystallization must have occurred between the two samples 

were derived from originally common magma. The observations of textural and melt 

extraction variations on the outcrop scale support the hypothesis of mobile phenocrysts 

capable of movement and accumulation (e.g., Vernon, 1986; Paterson et al., 2005; Vernon & 
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Collins, 2011) rather than their origin by late-stage coarsening in subsolidus (e.g., Johnson & 

Glazner, 2010). 

 

 

6.5.2.2. The Internal Zone: Role of crystal settling in the lower part 

Variations of the phenocryst content as well as of the melt extraction percentage with 

altitude (Tab. 6.3, Figs. 6.5a, 6.9) suggest that mechanical movement and accumulation of 

crystals was not restricted locally but it was active on the magma chamber scale. The melt 

extraction percentage and the accumulation ratio vary as a function of elevation in a C-shaped 

profile. Significant crystal accumulation occurred in the top and bottom parts of the magma 

chamber while it is essentially absent in the center. Such trend is comparable to the 

compositional profiles reported from the mafic intrusions, where olivine content or mg-

number often decreases towards the center (e.g., Wager & Brown, 1968; Naslund, 1984; 

Galerne, 2009). 

Based on the stratigraphy of the Internal Zone we subdivide it into the Upper and 

Lower Zones (e.g., Fig. 6.9). While Lower Zone is generally normally zoned with crystal 

accumulation increasing to the bottom, the zoning of the Upper Zone is reversed. We suggest 

following hypotheses for the crystallization of the Lower Zone. On its base, phenocrysts are 

most accumulated because accumulation is easiest from originally sparse magmatic 

suspension characterized by low initial crystal content (Fig. 6.9a). As lower solidification 

front (e.g., Marsh, 1989, 1995) advances into the magma chamber, fed partially by arrival of 

crystals from the chamber interior, the suspension crystallinity gradually increases. In turn, 

the suspension becomes more viscous and accumulation less effective. Textural record of the 

Lower Zone thus reflects solidification front advance coupled with progressively hindered 

crystal settling due to increasing crystallinity. This hypothesis is supported by calculated 

initial phenocryst crystallinity (Fig. 6.9a) which also increases towards the center of the 

Internal Zone. 

In detail, two samples in the Lower Zone (J-4 and J-5) deviate from the trend 

described above. In these samples, the initial phenocryst content is high with negligible 
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crystal accumulation (Figs. 6.9b, c, Tab. 6.3) and it corresponds to reduced values of the 

clustering index (Tab. 6.1). We suggest that local melt migration/infiltration effects (e.g., Žák 

& Klomínský, 2007) may cause observed textural signatures, but spatially more thorough 

sampling would be necessary to provide detailed explanation. Specifically, expulsion and 

reinjection of interstitial liquid from compacting lower solidification front (e.g., Shirley, 

1987; Meurer & Boudreau, 1998; Boudreau & Philpotts, 2002) may locally alter textural 

signatures. Alternatively, the outliers may represent pathways through which more 

crystallized crystal mush entered the lower solidification front, either from the chamber 

interior or from the magma source regions as the Internal Zone was infilling gradually.  

 

 

6.5.2.3. The Internal Zone: Crystal filtering in the upper solidification front 

In the Upper Zone, the amount of crystal accumulation increases towards the inferred 

roof of the magma chamber (Fig. 6.9b, c). Such reversed trend is incompatible with the effect 

of crystal settling and is similar to the trends known from mafic intrusion, where olivine mode 

or mg-number often increases towards the chamber boundaries (e.g., Wager & Brown, 1968; 

Naslund, 1984; Galerne, 2009). Similarly, reversed trend resembles the upper part of the S-

shaped compositional profiles reported from some mafic sills (e.g., Gunn, 1966; Marsh, 1989; 

Boudreau & Philpotts, 2002; Latypov, 2003). The interpretation of reversed profiles in mafic 

intrusions and sills remains controversial and individual authors suggest its origin via 

different mechanisms, including convective fractionation (e.g, Rice, 1981; Wyborn et al., 

2001) or in-situ crystallization with Soret diffusion in a boundary layer (e.g., Latypov, 2003). 

While these models are able to explain modal and geochemical features they do not provide 

adequate explanations for variations of textural parameters as reported in this study. Here we 

suggested that textural and modal variations observed in the Upper Zone of the Jizera granite 

can be consistently explained by mechanical fractionation during magma convection by 

filtering of phenocrysts in the solidification front. 

Solidification front is a mushy zone through which a volume fraction of interstitial 

liquid gradually decreases towards a solidified rock (e.g., Marsh, 1989, 1995). Within the 
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solidification front the crystal content exceeds the solid percolation threshold (e.g., 

Vigneresse et al., 1996; Petford, 2003) and the crystal suspension or mush which is able to 

flow transitions to rigid crystal framework. Through most of this zone the melt is organized to 

form interconnected channels and is able to flow through the crystal framework (e.g., Marsh, 

2002; Bea 2010). At the boundary between mobile mush and the rigid framework the 

interstitial melt is subjected to the sheer stresses generated by flow in the mobile zone 

(Fig. 6.10b). The interstitial melt is thus mechanically coupled to the suspension zone. If the 

suspension zone convects due to, e.g., thermal convection, the flow is transmitted into the 

crystal framework and the solidification front is partially penetrated by the convection cells 

(Fig. 6.10b). As suspension moves through the porous framework of the solidification front, 

part of the crystal cargo (e.g., Davidson et al., 2007) suspended in magma is mechanically 

filtered out and remains accumulated within the solidification front. Magma convection thus 

provides generic mechanism to accumulate phenocrysts – contrary to gravity – in the upper 

solidification front (Fig. 6.10). We note that this mechanism is not restricted to the upper front 

but it is expected to operate equally in the lower solidification front, where the efficacy of 

crystal accumulation is further enhanced by crystal settling. 

The efficacy of the filtering process increases with increasing content of crystals 

suspended in magma but decreases as the flow velocity diminishes. The flow velocity scales 

with a Rayleigh number which is proportional to the third power of the magma chamber 

thickness (e.g., Marsh, 1989). Due to the third power, the role of the chamber thickness 

dominates and filtering efficacy thus the crystal accumulation is expected to decline as upper 

and lower solidification fronts approach. This corresponds well to the textural record of the 

Internal Zone, where crystal accumulation ratio (melt extraction percentage) decreases 

towards the center while the initial phenocryst content varies in the opposite way (Fig. 6.9, 

Tab. 6.3). 

The Internal Zone was hypothetically emplaced as a pulse of magma with initially 

6 vol. % of phenocrysts (Figs. 6.9a, 6.10) and it started to solidify at upper and lower 

solidification fronts. At initially low phenocryst content and large thickness of the suspension 

zone the crystal accumulation  by both  settling  and filtering  was  effective  leading  to  high  
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Fig. 6.10. Conceptual model of the porphyritic granite crystallization. (a) after the emplacement (Stage 2) into 
the country rock (CR), the upper and lower solidification fronts (USF, LSF) start to propagate into the magma 

chamber interior and the suspension zone (SZ) shrinks. The suspension zone and rigid parts of the solidification 
fronts are separated by the solid percolation threshold (SPT). Initially, the magma contains rapidly convects (1). 
Convection currents partially penetrate into the solidification fronts where phenocrysts get stuck (2). In the LSF 

the accumulation of phenocrysts is contributed by Stoke’s settling (3). After significant crystallization (Stage 2) 
the effective viscosity of the SZ increases and crystal settling becomes progressively hindered (4). As the SZ 
shrinks the convection ceases and crystal settling becomes ineffective (5) due to high effective viscosity of the 

suspension, but local movement (6) is possible, e.g., due to compaction of the solidification front. (b) at the 
suspension zone boundary (sold percolation threshold) the tangential forces generated by the convective 
currents in the suspension propagate into the solidification front and flow of the interstitial melt is induced. (c) 

in the upper solidification front, the convecting suspension invades the interconnected crystal framework and 
filtering of suspended phenocrysts occurs. (d) in the lower solidification front, the accumulation effect of the 
crystal filtering is enhanced by the gravitational crystal settling. 

 

 

accumulation ratios and melt extraction percentages at both floor and roof (Figs. 6.9b, 

c). On the floor, both accumulation mechanisms operated jointly thus the observed final mode 

of phenocrysts is higher than near the roof, where crystals are accumulated effectively by 

filtering but the suspension was sparse. As cooling continued and solidification fronts were 
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advancing into the magma chamber, the suspension zone became denser and thinner, and both 

accumulation mechanisms less effective. Finally, the suspension zone contained 12 – 15 vol. 

% of phenocrysts and it was essentially undifferentiating (melt extraction percentage close to 

zero) when the solidification fronts joined in the center of the magma chamber. 

For the filtering hypothesis to be valid, the convective currents must be able to carry 

the filtered particles to the upper part of the magma chamber against the gravity. Therefore, 

the velocity of the convective currents must exceed the settling velocity of individual crystals. 

Based on the equations of Marsh (1989) the convective velocity of magma can be estimated. 

With relevant parameters (Tab. 6.4), we obtain the convective velocity in the order of 

0.1 m s-1, which exceeds the Stokes settling velocity of 6 cm crystal by four orders of 

magnitude. The convective velocity is thus by far sufficient to bring the crystals to the upper 

solidification front and to reduce the overall crystal settling rate which would otherwise lead 

to complete crystal-liquid separation in the order of months. Larger particles, however, settle 

with faster velocities which may more approach the convective velocity, especially as the 

thickness of the mobile suspension zone thus the convective velocity decreases with 

progressive cooling. 

 
Tab. 6.4. Parameters for the convective and settling velocity calculations. 

Parameter Value 

Magma chamber half-thickness 270 m 

Initial magma temperature 750 C 

Host rock temperature 200 C 

Magma viscosity 104 Pa s 

Magma density 2300 kg m-3 

Thermal diffusivity (magma and host rock) 10-6 m2 s-1 

Crystal – melt density difference 200 kg m-3 

Thermal expansivity 3.3  10-5 K-1 

Magma chamber half-thickness is considered as a half of the inferred minimal thickness of the pulse of the 
Jizera granite. Material properties are typical values and their expected variations do not change results nor the 
interpretations significantly. 
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The effect of particle size is consistent with our observation that most of the mafic 

enclaves are concentrated in the Lower Zone and only scarce exceptions of small enclaves are 

present in the uppermost part of the Upper Zone (Fig. 6.4). The enclave distribution thus 

provides independent evidence of mechanical, flow and gravity driven, nature of the Internal 

Zone differentiation process, which represents large-scale analogy of the crystal accumulation 

and melt migration processes reported from the Roof Zone. 

 

 

6.5.3. Implications for magma fluxes and volcano-plutonic connection 

 

The melt extraction percentage, MEP, was found to be positive and systematically 

zoned across the most of the Jizera granite (Tab. 6.3, Fig. 6.9c). Regardless of the exact nature 

of the differentiation process leading to the observed internal zoning the MEP, and the initial 

crystallinity, I, can be summed over the height of the magma chamber. We apply this 

approach to the Internal Zone of the Jizera granite, which arguably represents a single pulse of 

magmatic activity. Simple mass-balance calculations of the phenocryst and melt volume lead  
 
 

 

 
 

Fig. 6.11. Magma fluxes estimated based on the melt extraction / crystal accumulation modeling and cooling 
time-scales. 
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to the overall initial mode of phenocrysts 13 vol. %, while overall final (observed) mode of 

phenocrysts approaches 17 vol. %. The phenocrysts are thus accumulated 1.3 times which 

is equivalent to the extraction of 20 % of interstitial melt from the whole Internal Zone. 

From the 0.14 km3 year-1 of intruding magma (Section 6.5.1.2), approximately 80 % 

thus solidified within the Internal Zone of the Jizera granite while remaining 20 % continued 

to the overlaying crustal levels. Differentiating pulse of the Jizera granite is thus expected to 

release 0.03 km3 year-1 of slightly more evolved magma to feed shallower-level plutons or 

surface volcanism (Fig. 6.11). While still high, this later magmatic flux is more compatible 

with published effusive rates (e.g., de Silva & Gosnold, 2007; Lipman, 2007; de Saint 

Blanquat et al., 2011) and it still represents instantaneous flux rate, not the long-term average. 

Assuming that all of the extracted liquid erupted as a product of surface volcanism, the above 

considerations lead to the extrusive-to-intrusive ratio of 1:4. This corresponds well to the 

extrusive-to-intrusive ratios determined by Lipman & Bachmann (2015) for silicic volcanism 

of the Southern Rocky Mountains volcanic field and it is in close agreement with the general 

ratio of 1:5 suggested by White et al. (2006). In reality, at least part of the extracted melt 

could solidified in plutonic environment and could potentially contributed to petrogenesis of 

shallower-level granites. Stratigraphically higher positioned and more differentiated, nearly 

eutectic (Słaby & Martin, 2008) Krkonoše and Harrachov equigranular granites or fine-

grained sheets associated with the Roof Zone of the Jizera granite could represent candidates 

for such melts. 

 

 

6.6. Concluding remarks 
 

Quantitative parameters of phenocryst textures in apparently homogenous porphyritic 

granite show regular variations with altitude. Monotonously increasing phenocryst mode and 

decreasing clustering index with increasing altitude indicate that more than 550 m thick 

batch  of  magma  had  been  emplaced  as a single pulse that underwent subsequent internal 
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differentiation. Numerical modeling of texture evolution during melt extraction or crystal 

accumulation suggests that the porphyritic granite represents a partial cumulate which was 

variably enriched in phenocryst content. During the crystal accumulation, 20 % of interstitial 

melt was removed from the system to form shallower plutons or to feed surface volcanism. 

The amount of melt extracted from the crystal mush or the extent of crystal 

accumulation is not constant but it is largest close to the floor and roof while the textures are 

devoid of any measurable crystal accumulation effects in the central part of the chamber. Such 

crystal accumulation pattern is analogous to the compositional profiles known from some 

mafic intrusions and sills and it cannot be explained by gravitational settling of crystals alone. 

Here we suggest that in a large thus convecting magma chambers the convective currents 

penetrate partially the rigid crystal framework of the solidification fronts. The crystal 

framework then acts as a sieve and mechanically filters large crystals out from the suspension 

leading to the crystal accumulation near chamber boundaries. As upper and lower 

solidification fronts approach each other the thickness of the convecting zone decreases and 

the convecting suspension becomes denser. Both factors reduce the vigor of convection and 

crystal accumulation (melt extraction) from the crystal mush becomes less effective.  

In general, this contribution illustrates that quantitative textural methods are capable of 

deciphering the cryptic zoning in otherwise homogeneous magmatic bodies and can provide 

constraints to the size and emplacement timescale of magma batches. In conjunction with 

numerical models of textural evolution the mechanical or physico-chemical processes 

responsible for the formation of internal chamber-scale zoning can be elucidated. We suggest 

that integration of textural and geochemical methods can prove as a fruitful field for future 

progress of our understanding of magma chamber dynamics. 
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7. Summary 
 

 

 

 

This thesis focuses on utilization of the methods of quantitative textural analysis in 

studies of magmatic crystallization and internal dynamics of magma chambers. Since active 

magmatic systems are generally inaccessible to direct observation we propose and develop 

numerical models of texture evolution to understand crystallization processes based on 

textural attributes of solidified rocks. 

In order to understand the rates of crystal nucleation and growth in natural magmas 

and their dependence on environmental parameters we derive a new method for retrieval of 

these kinetic parameters from the crystal size distribution (CSD) of interest (Chapter 2). A 

single CSD trend can be produced by various combinations of the nucleation and the growth 

rate functions, which, however, lead to different crystallinity-time relationships. In an inverse 

approach, the CSD of interest in combination with appropriate crystallinity function, 

constrained by experimental phase equilibria or thermodynamic models, can be used to 

unambiguously determine the self-consistent nucleation and growth rates as a function of 

time. For quasi-linear crystallinity-time functions, the growth rate is predicted to be high 

during initial and final stages of crystallization, but it remains much lower at intermediate 

crystallinities. Consequently, the initial and final stages of crystallization are expected to 

record the highest departures from equilibrium. Magnitudes of the rates of nucleation and 

growth are proportional to the CSD slope. For conditions broadly similar to cooling lava lakes 

such as in Hawaii we have obtained growth rates of about 10-11 cm s-1, in agreement with 

natural observations. 

As the CSD itself does not define unique crystallization history of a rock, we have 

developed new high-resolution kinetic model for the simulation of texture evolution in a 

three-dimensional magma domain (Chapter 3). The principal objective is to develop and 

evaluate additional size, spatial, and contact parameters of magmatic textures and their 
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response to variations of the kinetic rate functions. The high-resolution crystallization model 

incorporates homogeneous nucleation and growth of crystals. The resulting textures broadly 

resemble natural ones and cover a range from equigranular to seriate types with considerable 

variation in the grain size and its distribution. Different combinations of the nucleation and 

growth rates can produce textures with identical CSDs, contact, spatial, and shape parameters. 

Inverse extraction of the kinetic rates from the textural information thus remains ambiguous 

even in the case that textural parameters other than the CSDs are employed. In addition, new 

parameters were identified that remain invariant for all textures resulting from homogeneous 

nucleation and crystal growth and whose values do not depend on the respective rates. 

Evaluation of the invariant parameters in natural igneous textures offers a powerful tool for 

identifying and separating the effects of other crystallization processes such as of 

heterogeneous nucleation, formation of melt boundary layers, mechanical interactions of 

crystals, or textural coarsening. 

Igneous textures produced by heterogeneous nucleation (Chapter 4) evolve 

systematically from seriate to porphyritic varieties as the fraction of heterogeneous nuclei 

increases. Multiple textural parameters including CSD curvature, clustering index, and 

contact relationships correlate with the ratio of numbers of heterogeneous to homogeneous 

nuclei, but are insensitive to the nucleation and the growth rates during the crystallization. In 

turn, the relationships between the textural parameters and a fraction of heterogeneous nuclei 

can be calibrated and the fraction of heterogeneous nuclei can be determined in natural 

samples. The concave-up curved CSDs enriched in fine grain fractions, which are common in 

volcanic and plutonic rocks and are otherwise interpreted by discontinuous crystallization or 

magma mixing, are likely to result from continuous closed-system crystallization by 

heterogeneous nucleation. Complete textural analysis of several representative igneous rocks 

indicates that more than 90 % nuclei formed in a heterogeneous manner during polyphase 

crystallization of granitic magmas, but only ~60 to 70 % heterogeneous nuclei are formed in 

monomineralic mafic or ultramafic suspensions. 

So far, only closed system crystallization by nucleation and growth was considered. 

To address the effects of open system processes we developed a numerical model of texture 
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evolution during crystal accumulation or interstitial melt extraction from crystal suspension. 

Instead of direct simulation of crystal movement we have employed a statistical Monte Carlo 

approach in which the crystal suspension is compacted by randomly placing crystals into 

compacted structure. The numerical compaction procedure is repeated many times to obtain 

averaged textural evolution. Monte Carlo simulations of textures of mechanically compacted 

(accumulated) crystal mushes show that the spatial distribution pattern of crystals evolves 

from a random to ordered distribution as the amount of melt extracted or crystals accumulated 

increases (Chapter 5). During the progress of crystal accumulation (interstitial melt 

extraction) the clustering index of crystal centers increases which quantify progressively more 

ordered textures. The evolutionary trend of the clustering index as a function of the crystal 

accumulation progress is unique and it depends on the initial crystallinity and CSD of a 

texture only. In turn, complementary to geochemical studies, the quantitative analysis of 

spatial distribution of crystals in magmatic rocks can reveal a detailed record of crystal 

accumulation or melt extraction from magmatic suspensions. 

The compaction path and the crystallinity at which the rheological threshold (crystal 

interlocking) occurs depend on the previous crystallization history. Sparse suspensions (~5 

vol. % crystals) can be compacted up to the crystallinities of ~65 vol. % when mutual crystal-

to-crystal interactions hinder further compaction and a rigid crystal framework forms 

(secondary rigid percolation threshold). This corresponds to a rheological threshold where the 

magma gains yield strength and loses its ability to flow or erupt. By contrast, dense 

suspension with initial crystallinity of ~35 vol. % produced by in-situ crystal nucleation and 

growth in a closed system has a rather complex spatial configuration of the crystals with 

substantial proportion of touching crystal aggregates (primary rigid percolation threshold). In 

this case only a negligible compaction is possible without brittle fracturing or ductile 

deformation of the crystal framework. Crystallinities greater than 35–40 vol. % of some 

erupted lavas therefore suggest that these products could be remobilized partial crystal 

accumulations. 

The new quantitative model of crystal accumulation was employed to interpret the 

textures of K-feldspar phenocryst in the porphyritic Jizera granite of the Krkonoše-Jizera 



7. Summary 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

- 256 - 

pluton, northern Bohemian Massif. Here, the content of phenocrysts and the clustering index 

continuously decrease in more than 550 m high vertical section of the porphyritic granite and 

suggest that the granite was emplaced as a single magma batch with no textural discontinuity. 

Using simple thermal considerations we derive a magma emplacement rate in the order of 

0.14 km3 year-1, which is comparable to the rates of magma production in active volcanic 

arcs. Progressive ordering of spatial distribution pattern of K-feldspar phenocrysts suggests 

that the porphyritic granite represents a partial cumulate which was variably enriched in 

phenocrysts or depleted in melt content, respectively. The amount of melt extracted from the 

crystal mush is not uniform in the pluton section but it is largest near the floor and roof while 

no detectable crystal accumulation effects were found in the central part. In total, 20 % of 

interstitial melt was removed from the magma batch and apparently transported to shallower 

crustal levels. Gravity-driven crystal accumulation processes, which are unidirectional, are 

unable to render such symmetrical accumulation profile. By contrast, the symmetrical 

accumulation profile provides evidence for mechanical filtering and capture of phenocrysts as 

the convecting suspension percolates through the porous crystal framework of both 

solidification fronts. 

In summary, this thesis successively develops new quantitative methods of textural 

analysis in igneous systems. It illustrates their utility in forward predictive models of magma 

solidification as well as in inverse interpretations of specific kinetic and mechanical processes 

that may occur but were not yet unambiguously demonstrated in natural magma chambers. 
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