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ABSTRACT

Trichomonas vaginalis is a human pathogen that affects annually approximately 258 

million people worldwide. This parasite possesses organelles of mitochondrial origin called 

hydrogenosomes, which generate ATP under anaerobic conditions. The identification of the 

protein content at the subcellular level may provide new targets for antiparasitic drugs 

developments as well as it contributes for our understanding of the organelles function and 

evolution. The availability of protocols for organelles purification and the complete genome 

sequence allow the study of the organellar proteomes using mass spectrometry and 

bioinformatics, providing a powerful strategy that combine cell biology and proteomics.  In our 

research, we used several approaches to identify the protein composition in hydrogenosomes 

and mitosomes. We performed transcriptomic and proteomic analysis to investigate the 

molecular responses of Trichomonas vaginalis upon iron availability. Furthermore, the changes 

in the proteome during the development of metronidazole resistance were also studied.  The 

organelles separated by differential and Optiprep-sucrose gradient centrifugation were analyzed 

with nano-RP-HPLC/MALDI-TOF/TOF. We also used Triton X-114 phase partitioning to 

separate membrane proteins and iTRAQ technique to label the peptides of the samples used for 

comparative proteomic analyses.  In order to confirm the mitochondrial localization of the 

proteins, the data was analyzed using 5 different bioinformatic tools such as PSORT II, 

TargetP, Euk-mPLoc 2.0, Yloc and Hunter.  The present study makes a significant contribution 

to understanding the overall organelles network.
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1. Introduction

Mitochondria play a key role in iron metabolism.  Iron is a component of catalytic and 

redox cofactors such as heme and iron-sulfur (Fe-S) clusters, prosthetic groups that are utilized 

by proteins in various critical processes.  In addition to their well-established role in providing 

the cell with ATP, mitochondria are important for formation of iron-sulfur clusters as well as 

heme synthesis.  The synthesis and insertion of Fe-S clusters to the apoproteins is mediated by 

iron sulfur cluster (ISC) assembly machinery (Smid et al., 2006;   Lill and Kispal, 2000;   Lill 

et al., 1999;   Lill et al, 2005;   Rouault and Tong, 2005).  On the other hand, the steps leading 

to heme synthesis are distributed between the cytosol and mitochondria. While many of the 

intermediate steps are cytoplasmic, the first and last step of the synthesis takes place in the 

organelle. The process ends with the insertion of the ferrous iron into the porphyrin ring by the 

aid of the ferrochelatase enzyme (Camadro et al., 1988).

The human parasite T. vaginalis lacks the classical aerobic mitochondria. Instead, 

trichomonads possess an organelle of mitochondrial origin called hydrogenosome (Martin and 

Müller, 1998).  Similarly to mitochondria, hydrogenosomes possess the multiprotein machinery 

responsible for iron-sulfur cluster biosynthesis (Šutak et al., 2004).  Initial experiments in 

trichomonads have revealed the iron-dependent changes in enzyme activities and host cell 

interactions associated with pathogenicity (Vanácová et al., 2001; Lehker et al., 1992; Arroyo 

et al., 1992; Alderete et al., 1995; Arroyo and Alderete, 1995; Garcia et al., 2003; Moreno-

Brito et al., 2005).  The most significant changes upon iron availability were observed in the 

expression of hydrogenosomal proteins, including the Fe-S and non-FeS proteins involved in 

energy metabolism (Vanácová et al., 2001). 

Trichomoniasis is a sexual transmitted disease (STD) caused by T. vaginalis.  The 

infection has been efficiently treated with derivatives of the 5-nitroimidazoles although 

presence of resistant strains has been reported (Dunne et al., 2003; Kirkcaldy et al., 2012; 

Upcroft et al., 2009).  The proteins involved in the activation of the drug to its toxic form 

localize to the hydrogenosome and it is in the organelle where metabolic changes leading to 

development of drug resistance take place (Kulda et al., 1984; Kulda et al., 1993; Brown et al., 

1999), although alternative cytosolic flavin-based mechanism has been proposed  (Leitsch et 

al., 2010).



3

T. vaginalis is the most extensively studied member of the Parabasala group.  The 

genome sequence was published in 2007 (Carlton et al., 2007). Approximately 60 000 protein-

coding genes were predicted, which opened new perspectives to study the metabolism of the 

parasite.  This information has to be corroborated with research at the proteome level which 

will provide a more direct knowledge about biological processes.

In the present study we perform comparative proteomic analyses of highly purified 

hydrogenosomes from T. vaginalis grown under iron rich and iron depleted conditions.  Protein 

levels were rigorously analyzed and the proteins were classified into groups according to their 

biological functions. The observed changes in protein levels were supported by a 

transcriptomic analysis. We identified 179 proteins, of which 58 were differentially expressed. 

Iron deficiency led to the upregulation of proteins involved in Fe-S cluster assembly and the 

downregulation of enzymes involved in carbohydrate metabolism. 

In addition, a proteomic analysis of highly purified hydrogenosomes isolated from 

metronidazole-susceptible parent strain TV10-02 and from the in vitro developed resistant 

derivatives growing with 3, 5 and 100 µg/ml metronidazole (MR3, MR5, and MR100) was 

compared, to observe the changes in the expression during the development of metronidazole 

resistance in the parasite. From a total of 700 proteins identified, approximately 140 were 

hydrogenosomal proteins found in all cell lines.  Changes in protein expression were rather low 

in MR3 and MR5 strains while the highly resistant strain MR100 displayed marked 

downregulation of the enzymes involved in energy and amino acid metabolism.  In contrast, 

increased protein levels were observed for key components of ISC assembly machinery and for 

hydrogenase maturases. Interestingly, the highest increase was observed for hybrid cluster 

protein (HCP) which might be involved in scavenging of toxic products of nitrate metabolism 

including hydroxylamine. These data has not been published yet.  

2. Trichomonas vaginalis

T. vaginalis is a parasite from the Excavata group and the class Parabasala (Cavalier-

Smith T, 2002). It infects the genitourinary tract of humans with approximately  258 million 
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cases occurring annually worldwide (Schmid et al., 2011). The parasite is exposed to adverse 

conditions in its natural environment: acidic pH, presence of lactobacillus, hormonal changes, 

low nutrients, menstrual flow and fluctuations in iron concentrations during the menstrual 

cycle.  However, the parasite is well adapted to cross the vaginal mucus, adhere to the 

epithelium, multiply and colonize the urogenital tract and survive for long periods of time 

causing a chronic infection in humans called trichomoniasis (Harp et al., 2011), the most 

common non-viral sexually transmitted infection (Petrin et al., 1998;  Schwebke and Burgess, 

2004).   

Trichomoniasis has been associated with adverse pregnancy outcomes (Cotch, 1990; 

Hardy et al., 1984), cervix and prostate cancer (Stark et al., 2009) and increased risk to human 

immunodeficiency virus infection, HIV (Laga et al., 1993; Chesson et al., 2004; Van der Pol et 

al., 2008; Serwin et al., 2013). The infection is efficiently treated with derivatives of the 5-

nitroimidazole however, presence of strains that are resistant to the drug have been reported 

(Dombrowski et al., 1987; Grossman et al., 1990;  Heyworth et al., 1980;  Kulda et al., 1982; 

Coelho, 1997;  Kellock et al., 1996;  Kirkcaldy et al., 2012; Upcroft et al., 2009). The medical 

implications, the unique biology, and the interesting evolution of trichomonads have raised a 

special interest to study these parasites.

A remarkable feature of trichomonads is the presence of hydrogenosomes, which were 

discovered in Tritrichomonas foetus in 1973 (Lindmark and Müller M., 1973; Müller, 1993) 

and extensively studied in T. vaginalis (Müller, 1988; Müller, 1993; Tachezy, 2008; Müller, 

2003; Müller, 2007).  

T. vaginalis has a repetitive genome of ~160Mb with approximately 60 000 protein-

coding genes encoded on six chromosomes. The genome is surprisingly large in comparison to 

other parasites such as Giardia intestinalis (~11.7 Mb) or Entamoeba histolytica (~24 Mb) and 

it has one of the highest coding capacities in eukaryotes reported to date. The genome reflects a 

recent genetic expansion such as amplification of specific gene families implicated in 

pathogenesis and phagocytosis of host proteins, which is considered as a result of the parasite 

adaptation to the genital environment.  In addition, the genome contains many genes of 

bacterial origin acquired by lateral gene transfer. Interestingly, the genome sequence provided 
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evidences to support the common origin of hydrogenosomes and mitochondria.  Additionally, 

the identification of genes which have been implicated in metronidazole resistance in bacteria 

could give clues to the potential mechanisms that clinically resistant parasites may use (Carlton 

et al., 2007).

3. Mitochondria and organelles of mitochondrial origin

Mitochondria are eukaryotic organelles mainly known for their role as “powerhouses” 

of the cell.  These organelles evolved most likely from α-proteobacteria through endosymbiosis 

(Margulis et al., 1970). The strongest bases for this theory provided physiological and 

biochemical similarities between these organelles and prokaryotic cells, such as the presence of 

a double membrane with a typical bacterial lipid in the inner membrane called cardiolipin 

surrounding the organelle, and the presence of an organellar genome in mitochondria that 

shares similarity with bacterial DNA (Yang et al., 1985; Margulis, 1970; Esser et al., 2004; 

Embley and Martin, 2006; Dyall and Johnson, 2000). 

 Important evidence in support of the endosymbiotic theory comes from analysis of the 

organellar genomes (Zimorski et al., 2014).  Phylogenetic analyses of small subunit rRNA 

encoded by mitochondrial genomes supported a view that the origin of mitochondria is the 

result of an endosymbiotic process where an ancient eukaryotic host, probably an archae 

methanogen, engulfed and retain a bacteria most likely of α-proteobacterial origin (Yang et al., 

1985;  Margulis et al., 1970; Anderson et al., 1998;  Esser et al.,2004;  Embley and Martin, 

2006; Horner et al., 1996).  

According to the last classification of the organelles of mitochondrial origin, 

mitochondria are membrane bounded organelles, oxygen respiring which generate the bulk of 

ATP by oxidative phosphorylation (Müller et al., 2012). It has the complex I to V of the 

electron transport chain and key subunits of these complexes are encoded by genes found in the 

mitochondrial genome (Allen, 2003). The organelle has been named aerobic mitochondria and 

it uses O2 as a terminal electron acceptor (Müller et al., 2012).  

Not all eukaryotes harbour the classical aerobic mitochondria. The absence of 

organelles with classical mitochondrial structure in some species led to the assumption that 
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these organisms represent ancient or early-branching eukaryotes without mitochondria (Martin 

and Müller, 1998; Cavalier – Smith, 1987; Hjort et al., 2010).  Later on, the discovery of highly 

modified mitochondria such as hydrogenosomes and mitosomes in the so-called 

“amitochondriate organisms” changed this view.  It is believed that during the evolution, the 

original mitochondria diverged into several different forms, which we called now organelles of 

mitochondrial origin.  Most of these organelles lost their genomes and the genes of the original 

endosymbiont were lost or transferred to the host nucleus (Rivera and Lake, 2004; Hackstein et 

al., 2006; Hjort et al., 2010).  

In the latest years, different organelles have been described in a number of protists 

(Lindmark and Müller, 1973; Millet et al., 2013; Putignani et al., 2004; Stechmann et al., 2003, 

Hashimoto et al., 1998; Hackstein et al., 2006).  The information provided by these studies has 

helped to demonstrate that all eukaryotic groups possess an organelle of mitochondrial origin. 

However, recently was reported that the oxymonad Monocercomonoides spp. is the first 

eukaryote lacking even the most reduced form of mitochondrion which has important 

implications for cellular processes and our understanding of reductive mitochondrial evolution 

across the eukaryotic tree of life (Karnkowska et al., 2016). 

Based on the character of energy metabolism and the contribution of bacterial anaerobic 

enzymes, particularly hydrogenase, five types of mitochondrial organelles were distinguished 

(Müller et al., 2012). Aerobic mitochondria are the classical organelles described above that 

produce ATP and use O2 as a terminal electron acceptor.  The yeast Sacharomyces cerevisiae 

represents a major eukaryotic model organism for the identification and characterization of 

protein functions and cellular pathways in aerobic mitochondria (Kai et al., 2002; Sickmann et 

al., 2013).

Anaerobic mitochondria have been found in protist and also in multicellular organisms 

like parasitic nematodes.  The organelle has typical mitochondrial features but it uses an 

endogenous product such as fumarate as a final electron acceptor, although environmental 

acceptors like nitrate are also used.  Anaerobic mitochondria produce ATP with the help of a 

proton-pumping electron transport, but they do not need O2.  The end product of electron 
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transport is not H2O, but could be nitrite (NO2), nitric oxide (NO) and succinate among others 

(Tielens et al., 2002; Risgaard -Petersen et al., 2006).

The hydrogen-producing mitochondria have been studied in the ciliate Nyctotherus 

ovalis (Akhmanova et al., 1998; Hackstein et al., 1999; Hackstein and Yarlett, 2006). The 

organelle possesses an electron transport chain but additionally it expresses the protein Fe-

hydrogenase, therefore it can use protons as a terminal electron acceptor. The organelle harbour 

enzymes of the tricarboxylic acid cycle (TCA), some homologues of mitochondrial import and 

processing machinery, and various mitochondrial-type metabolite transporters (de Graaf et al., 

2011). Hydrogen-producing mitochondria represent a very recent adaptation to hypoxic 

environments. It is considered to represent the link between aerobic mitochondria and 

hydrogenosomes since they harbour an electron transport chain and DNA like the aerobic 

mitochondria and they produce hydrogen like hydrogenosomes (Martin, 2005; Akhmanova et 

al., 1998; Boxma et al., 2005; Hackstein et al., 1999; Hackstein and Yarlett, 2006).  

Hydrogenosomes are double-membrane-bounded and H2-producing organelles. The 

organelle lacks a genome, cytochromes and the electron transport chain.  Moreover, the 

synthesis of ATP is strictly mediated by substrate-level phosphorylation. The organelles have 

been mostly studied in the human parasite T. vaginalis although they have been found in 

anaerobic protists of various eukaryotic lineages (Müller, 2003; van der Giezen, 2009).  The 

organelle will be described in more detail in the next chapter.

Mitosomes are the most reduced forms of mitochondria identified to date.   The 

organelle has been found in multiple eukaryotic lineages mainly in anaerobic protist or 

intracellular parasites.  It has been characterized in the human parasites Giardia intestinalis 

(Tovar et al., 2003) and Entamoeba histolytica (Tovar et al., 1999).  These organelles do not 

synthesize ATP and they are unique among the organelles of mitochondrial origin that lack this 

function.  Mitosomes of some lineages have retained components of ISC assembly machinery 

(Goldberg et al., 2008; Tovar et al., 2003) and others have retained components of sulfate 

activation (Mi-ichi et al., 2009; Clark and Roger, 1995).

Despite the diversification and metabolic differences between these organelles, all of 

them with exception of the mitosome in Entamoeba hystolytica play a role in iron-sulfur (Fe-S) 

cluster assembly (Tachezy et al., 2001;  Goldberg et al., 2008;  Tovar et al., 2003;  Rada et al., 

2009;  Smíd et al., 2006;  Maralikova et al., 2010).  In mitochondria, the assembly of Fe-S 
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clusters mediated by ISC assembly machinery is the only essential function identified thus far 

and the disruption of the Fe-S cluster assembly machinery leads to cell death by iron 

accumulation (Lill et al., 1999; Lill and Kispal, 2000; Mühlenhoff and Lill, 2000).

3.1 Hydrogenosomes

Hydrogenosomes were discovered in 1973 in the cattle parasite T. foetus (Lindmark and 

Müller, 1973) but the biochemistry and structure of the organelle has been studied in detail in 

the human parasite T. vaginalis (Hrdý et al., 2007; Müller, 2003; Müller et al., 2012; 

Benchimol, 2009; Benchimol, 2000).  Information about hydrogenosomes in other organisms is 

rather limited (Müller, 2003; Dyall, 2000; Hackstein et al, 1999). 

Hydrogenosomes measure from 300 nm to 1 µm, however larger organelles and 

abnormal shapes have been observed under stress conditions. In most hydrogenosomes-bearing 

organisms, the organelles have been observed as granules with rounded or elongated 

appearance that are usually associated with cytoskeletal structures like the axostyle and costa 

(Benchimol, 2009;  Benchimol, 2000).

The organelles has been described in different phylogenetic lineages like parabasalids 

(Lindmark and Müller, 1973) amoeboflagellates (Barbera et al., 2010;  Brul et al., 1994;  

Broers,1992), chytrid fungi (O'Fallon et al., 1991; Marvin-Sikkema et al.,1994;  Yarlett et 

al.,1986),  free living ciliates (Fenchel and Finlay, 1991; van Bruggen et al., 1984; Dyer, 1989; 

Broers et al., 1991), and symbiotic ciliates (Yarlett et al., 1981; Lloyd et al., 1989; Paul et al., 

1990) and archamoebae (Nyvltova et al., 2013). These findings indicate a multiple independent 

origin of hydrogenosomes as an adaptation to anaerobic conditions (Embley, 2006).  

The study of the hydrogenosomal metabolism has been conducted at level of individual 

pathways. Hydrogenosomal localization has been experimentally confirmed only for limited 

number of proteins involved in known pathways. The possibility to perform proteomic analyses 

is limited by the need of an axenic culture with an appropriate amount of cells.  Trichomonas 

spp. and Neocallimastix spp.  are the only hydrogenosome-bearing organisms that could meet 

these requirements (Müller and Lindmark, 1978; van der Giezen et al., 1997) .  However, the 

genome sequence is essential for a large scale proteomic approach which renders T. vaginalis 
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hydrogenosomes as the only possibility for the proteomic characterization (Carlton et al., 2007; 

Henze, 2008).

4. Hydrogenosomal metabolism in T. vaginalis

4.1 Energy metabolism

 The energy metabolism was the first function discovered in hydrogenosomes 

(Čerkasov et al., 1978; Lindmark and Muller, 1974). It was demonstrated that isolated 

organelles generate equivalent amounts of ATP, acetate, CO2 and hydrogen per mol of 

pyruvate under anaerobic conditions (Steinbüchel and Müller, 1986). Presence of this 

metabolic pathway was confirmed by determination of enzymatic activities found in the 

isolated organelles and it was later supported by molecular data and finally by the analysis of 

the T. vaginalis genome sequence (Hrdý and Müller, 1995a; Hrdý and Müller, 1995b; Doležal, 

2004; Hrdý et al., 2004; Thong and Coombs, 1987;   Steinbüchel and Müller, 1986; Müller, 

1998, Carlton et al., 2007). 

In T. vaginalis, pyruvate and malate are produced from glucose in the cytosol during 

anaerobic glycolysis. Both substrates enter the hydrogenosome and serve as sources for energy 

metabolism. Malate is oxidatively decarboxylated by the hydrogenosomal NAD-dependent 

malic enzyme, the most abundant hydrogenosomal protein in T. vaginalis, to produce pyruvate, 

CO2 and NADH (Drmota et al., 1996; Hrdý and Müller, 1995a).  To maintain the redox 

balance, NADH is reoxidized by the NADH: ferredoxin oxidoreductase.  The enzyme is 

composed of two subunits with homology to the 24- and 51-kDa subunits of the Complex I 

(NADH dehydrogenase, NDH) of the mitochondrial respiratory chain (Hrdý et al. 2004; Thong 

and Coombs, 1987; Steinbüchel and Müller, 1986).

Pyruvate is oxidatively decarboxylated by pyruvate: ferredoxin oxidoreductase (PFOR), 

a Fe-S protein possessing several [4Fe4S] clusters (Müller, 1993; Hrdý and Müller, 1995b; 

Hrdý et al., 2004; Müller, 1993; Docampo et al., 1987; Ragsdale, 2003).  PFOR is associated 

with the hydrogenosomal membrane and shows high sensitivity to oxygen (Williams et al., 

1987). The genome annotation revealed seven different genes coding for PFOR (Carlton et al., 

2007).  PFOR from T. vaginalis was biochemically studied and purified to homogeneity by 

Williams in 1987. The enzymatic reaction catalyzed by PFOR generates acetyl-CoA, CO2 and 

two electrons that are transferred to ferredoxin (Fdx) (Bui et al., 1996; Payne et al., 1993), an 
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iron sulfur protein of low molecular weight with [2Fe-2S] cluster (Hrdý et al, 2004).  Fdx 

acquires the electrons from PFOR and/or NDH and transfer these electrons to [FeFe] 

hydrogenase (Bui et al., 1996; Payne et al., 1993; Zwart et al., 1988), which uses them to 

generate molecular hydrogen (end product) (Hrdý et al., 2004;  Müller, 1993).

The CoA moeity of acetyl-CoA is transferred by the acetate: succinate CoA- transferase 

(ASCT) to succinate yielding succinyl-CoA and acetate as a metabolic end product 

(Steinbüchel and Müller, 1986; Lahti et al., 1992; Lahti et al., 1994; Lindmark, 1976). ASCT 

enzyme was described for the first time in trichomonads. The enzyme was characterized at the 

molecular level and it differs from the ASCT found in mitochondria of other parasites such as 

trypanosomes (Lindmark, 1976; van Grinsven et al., 2008).  Succinyl-CoA synthetase (SCS) 

also known as succinate thiokinase is an energy conserving enzyme that uses succinyl-CoA as 

a substrate to produce ATP/GTP by substrate level phosphorylation. SCS is the only enzyme 

from the Krebs cycle that has been found in T. vaginalis hydrogenosomes. Adenylate kinase is 

a phosphotransferase enzyme that catalyzes the interconversion of adenine nucleotides by the 

transfer of a phosphate group between two molecules of ADP forming ATP and AMP.  The 

enzyme is also present in hydrogenosomes (Declerck and Müller, 1987; Lange et al., 1994). 

Whether the hydrogenosomal energy metabolism is essential or not for the parasite is 

not clear. The hydrogenosomes from the T. vaginalis strain with high level of resistance to 

metronidazole lack the enzymatic activities involved in the synthesis of ATP (Edwards, 1993; 

Kulda 1999; Upcroft and Upcroft, 2001; Dunne et al. 2003; Cudmore et al. 2004; Vanácová et 

al., 2001).  However, it was proposed that the enzymatic activity of PFOR could be replaced by 

an alternative 2-keto acid oxidoreductase, which is probably present in hydrogenosomes and 

thus contributes to ATP synthesis (Brown et al., 1999).  

4.2 Iron-sulfur clusters assembly machinery

Iron-sulfur clusters are inorganic cofactors necessary for the biological functions of 

proteins. The synthesis and insertion of these groups to the apoproteins is mediated by the iron 

sulfur cluster assembly machinery (ISC) (Lill and Kispal, 2000; Lill et al., 1999; Lill and 

Muhlenhoff, 2005; Rouault and Tong, 2005).  The system was initially found in the 

mitochondria of S. cerevisiae. Later on, it was demonstrated that the formation of Fe-S clusters 



11

is a fundamental function shared by mitochondria, mitosomes and hydrogenosomes, which also 

confirm a common origin of these organelles (Šutak et al., 2004).

The first indication that the ISC assembly machinery was present in the hydrogenosome 

was the finding of two gene paralogues coding for a  pyridoxal-5′-phosphate-dependent 

cysteine desulfurase (IscS), an essential enzyme for  Fe-S clusters assembly,  are present in T. 

vaginalis genome and they are phylogenetically related to their mitochondrial homologs 

(Tachezy et al., 2001).  In 2004, Šutak et al., confirmed that hydrogenosomes of T. vaginalis 

contain the key enzyme of Fe-S center biosynthesis, cysteine desulfurase (TviscS-2). 

Moreover, they demonstrated that isolated hydrogenosomes catalyze the assembly and 

insertion of Fe-S clusters to apoferredoxin (Šutak et al., 2004). Later, genes for all components 

of the iron-sulfur cluster assembly machinery were identified in the genome of T. vaginalis 

(Carlton et al., 2007).  

Mechanism of ISC assembly machinery-dependent Fe-S cluster formation includes two 

main steps.  In the first step, the IscS/Isd11 complex provides sulfur to the scaffold protein 

IscU while frataxin is the source of iron (Santos et al, 2004; Doležal et al, 2007).  Isd11 is a 

protein that was found only in eukaryotes and it supports activity of IscS.  Since there is not 

bacterial homologue of Isd11, the protein has been proposed to be the eukaryotic invention to 

the ISC assembly machinery (Richards and van der Giezen, 2006).  Two genes coding for 

homologues of Isd11 has been found in T. vaginalis genome (Carlton et al., 2007).  Besides 

IscU which is encoded by a single gene, there are alternative scaffold proteins named Nfu and 

IscA encoded by multiple genes. IscA is an alternative scaffold protein which is involved in the 

maturation of more complex Fe-S clusters ([4Fe4S]). IscA homologues in mitochondria (Isa1 

and Isa2) are involved in the maturation of aconitase and the activation of SAM complex, 

known also as biotin synthase and lipoic-acid synthase (Gelling et al., 2008). Aconitase is not 

present in T. vaginalis hydrogenosomes but the organelle possesses the hydrogenase maturases 

(HydE, HydF and HydG) from which functional HydE, a homologue of biotin synthase that 

possess [4Fe4S] cluster, is necessary for the assembly and insertion of Fe-S clusters and ligands 

into the H-cluster, the active site of the trichomonad [FeFe]  hydrogenases (Pütz et al, 2006).  

Therefore, it is possible that IscA participates in the activation of HydE maturase, among other 

[4Fe4S] proteins in the hydrogenosome. 
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In the second step, preassembled transient Fe-S clusters in IscU are transferred to the 

apoproteins, a process that is mediated by the chaperone system, which includes the Hsp70, co-

chaperone Jac1 (DnaJ), and ADP/ATP nucleotide exchange factor.  Fe-S cluster formation also 

requires reducing equivalents, which are provided by [2Fe2S] ferredoxin.  There are seven 

genes coding for [2Fe2S] ferredoxin in T. vaginalis genome and all gene products localize in 

the hydrogenosome.  This electron transfer protein has a key role in energy metabolism.  

However, it is not clear which ferredoxin paralogue is involved in energy metabolism and 

which participates in the synthesis of Fe-S clusters. 

Surprisingly, the transcription of T. vaginalis IscS and frataxin is upregulated under iron 

deficiency, which was explained by a higher demand for the formation of new Fe-S clusters 

(Šutak et al, 2004).  This finding contrast with the mitochondrial homologue (Yfh1), which 

showed upregulation under iron enriched conditions.  It has been suggested that frataxin may 

serve as iron storage in mitochondria (Santos et al, 2004). In contrary, the hydrogenosomal 

frataxin most likely lacks the iron storage function; the protein possibly donates iron for the 

formation of Fe-S clusters in hydrogenosomes (Doležal et al, 2007).

The mitochondrial ISC assembly machinery of yeast and mammalian cells was found 

essential not only for the formation of mitochondrial Fe-S proteins but cytosolic and nuclear 

Fe-S proteins too (Kispal et al., 1999; Lange et al., 2000).  Although the nature of the 

compound exported from mitochondria to the cytosol is unknown, a Fe-S cluster export 

machinery has been identified which consists of ABC half-transporter Atm1, sulfhydryloxidase 

Erv1 and the tripeptide glutathione (GSH) ( Kispal et al., 1999; Lange et al., 2000; Balk et al., 

2004; Lange et al., 1991; Sipos et al., 2002). In 2003 was identified the first component  of the 

cytosolic Fe-S cluster assembly machinery (CIA) which, together with the Fe-S cluster export 

machinery are responsible of maturation of nuclear and cytosolic Fe-S proteins (Roy et al., 

2003). T. vaginalis genome sequence has revealed the presence of putative homologues of the 

cytosolic Fe-S cluster assembly (CIA) including Cia1, Cia2B , Nar1 and Nbp35/Cfd1, while 

homologues of Dre2, Tah18 and MMS19 were not found (Carlton et al., 2007).  Recently it 

was reported that Cia2A and Cia2B form protein complexes with Cia1 and MMS19 and they 

are involved in the maturation of the Fe-S cluster of the iron regulatory protein 1 (IRP1) which 

is critical for cellular iron homeostasis.  It was also demonstrated that the complexes stabilize 

the iron regulatory protein 2 (IRP2) and  then the protein connects the cytosolic Fe-S protein 
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maturation with cellular iron regulation (Stehling et al., 2013).  Cia2A has not been identified 

in yeast and its presence in T.vaginalis is under study (Unpublished results).  Homologues of 

the membrane components involved in Fe-S cluster export machinery (Erv1, Atm1 and GSH) 

have not been found either.  Hence, it is not clear whether the hydrogenosomal ISC machinery 

produces essential components for the formation of extra-hydrogenosomal Fe-S proteins as it 

was reported in mitochondria.

4.3 Amino acid and polyamine metabolism

Before the analysis of T. vaginalis genome, the knowledge of the aminoacid 

metabolism in T. vaginalis was limited to the arginine decarboxylation and some transaminase 

activities (Zuo et al., 1995; Yarlett et al., 1994; Yarlett et al., 1996). The parasite can 

use aminoacids like arginine, threonine, leucine and methionine as a source of energy when 

carbohydrates are scarce (Zuo et al., 1995).  Later on, the genome sequencing revealed the 

presence of two enzymes from the glycine decarboxylase complex (GDC) and a serine 

hydroxymethyltransferase (SHMT) with predicted N-terminal hydrogenosomal presequences 

suggesting presence of more hydrogenosomal pathways for amino acid metabolism (Carlton et 

al, 2007).

4.3.1 Arginine metabolism

Arginine is the precursor for the biosynthesis of polyamines, organic compounds that 

are important for oxidative stress protection and membrane stability (Tadolini, 1988; Tabor and 

Tabor, 1976; Pegg, 1986). Four enzymes participate in the arginine dihydrolase pathway that 

converts arginine to ATP (Linstead and Cranshaw, 1983).  Arginine deaminase is the enzyme 

that catalyzes the hydrolysis of arginine to citrulline.  This product is converted to ornithine and 

carbamoyl phosphate by ornithine carbamoyl transferase, which is the second enzyme of the 

pathway.  In the third reaction, putrescine is formed from ornithine by ornithine decarboxylase.  

Finally, the pathway generates ATP by the enzyme carbamate kinase, which breaks carbamoyl 

phosphate, an energy storage molecule, forming bicarbonate and ammonia (Yarlett et al., 

1994).
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T. vaginalis uses a bacterial type of arginine dihydrolase pathway, which is probably 

important source of ATP for the parasite in situ (Petrin et al., 1988).  Analyses of vaginal 

discharges from infected patients showed decreased levels of arginine while putrescine levels 

increased (Chen et al., 1982).  The cells that were grown in vitro with an abundant supply of 

glucose produced ATP mainly by the carbohydrate metabolism with only 1% of the ATP 

produced by the arginine metabolism (Yarlett et al., 1996; Petrin et al., 1988).  The inactivation 

of components of the arginine dihydrolase pathway decreases putrescine levels, which results 

in hydrogenosomal damage caused reactive oxygen species (ROS) (Reis et al., 1999).  

The only enzyme of the arginine dihydrolase pathway that has been found in the 

hydrogenosome is the arginine deaminase (ADI) (Yarlett et al., 1994). Three different genes 

coding for arginine deaminase were found in the genome of T. vaginalis and all of them were 

experimentally localized in the hydrogenosome (Yarlett et al., 1994; Morada et al., 2011).  

However, the other three enzymes of the pathway showed cytosolic activities.  The reason of 

the hydrogenosomal localization of arginine deaminase is unknown (Yarlett et al., 1994). 

 

4.3.2 Glycine decarboxylase complex and serine hydroxymethyltransferase

Glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) 

are present in prokaryotes and eukaryotes and they are linked together to release one carbon 

units from serine. Active one carbon units are essential in a number of biosynthetic processes 

being the most important for the synthesis of nucleotides. The system is activated when high 

amount of glycine is present and it is responsible for the synthesis of serine and/or glycine 

when the aminoacids are required.  

In eukaryotes, GDC is present only in the mitochondria. The system is composed of 

four weakly associated enzymes forming an unstable complex. The four enzymes of the 

complex are: the amino methyl transferase (T protein), the glycine decarboxylase (P protein), 

the dihydrolipoamide dehydrogenase (L protein), and the glycine cleavage (H protein).  The H 

protein has the essential cofactor 5[3-(1,2)-dithiolanyl] pentanoic acid (lipoic acid), which 

interacts consecutively with the other three components of the system to catalyze the oxidative 

decarboxylation and deamination of glycine. 

T. vaginalis has two paralogues coding for H proteins.  The products of both genes are 

effective substrates for the L protein, which is encoded by a single gene.  H and L proteins have 
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an amino-terminal hydrogenosomal targeting presequences and they have been localized in 

hydrogenosomes by immunofluorescence microscopy (Carlton et al., 2007; Mukherjee et al., 

2006a).  The other two components of the complex, the T and P proteins seems to be absent in 

the parasite.  However, it is possible that the homologues in T. vaginalis of the components T 

and P are highly divergent by comparison with the proteins that have been identified in other 

organisms.  A recent study reported that the incomplete glycine decarboxylase complex (GDC) 

in T. vaginalis actually constitutes an NADH- and lipoate-dependent redox system for peroxide 

detoxification which is catalyzed by hydrogenosomal OsmC peroxidase (Nývltová et al., 2016).

SHMT is a reversible enzyme important in the catalytic conversion of serine to glycine. 

The enzyme depends on the pyridoxal phosphate (PLP) cofactor that is present in the active site 

of the enzyme identified single gene coding for SHMT was identified in T. vaginalis and which 

is targeted to the hydrogenosome.  The active-site lysyl residue in T. vaginalis SHMT forms an 

internal aldimine with PPL. This feature makes T. vaginalis SHMT different from its 

prokaryotic and eukaryotic homologues and makes this protein a potential drug target 

(Mukherjee et al., 2006b).

4.4 Protein import machinery

Hydrogenosomes lack organellar genome and hence, the whole set of organellar 

proteins are nuclear encoded and after synthesis on free ribosomes they are imported to the 

organelle (Clemens and Johhson, 2000).   

In order to assure the delivery of nuclear encoded proteins into mitochondria, 

eukaryotic cells has created the protein import machinery in the mitochondrial membranes 

(Pfanner and Geissler, 2001;  Dyall et al., 2004;  Wickner and Schekman, 2005;  Doležal et al., 

2006;  Stewart, 2007; Chacinska et al., 2009). The machinery has been well characterized in 

the mitochondria of the yeast Saccharomyces cerevisiae. However, information about proteins 

in the hydrogenosomal membranes that facilitate protein transport and the exchange of 

metabolites is quite limited. 

The targeting of matrix proteins is dependent on N-terminal cleavable presequences or 

internal targeting signals (Bradley et al., 1997; Mentel et al., 2008; Rada et al., 2015, Garg et 

al., 2015). Analysis of hydrogenosomal proteins revealed the presence of short N-terminal 
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targeting presequences that are encoded in the genes but are not present in the mature protein.  

Hydrogenosomal presequences are cleaved from the mature protein upon translocation by a 

hydrogenosomal processing peptidase which consists of two subunits similar to mitochondrial 

processing peptidase (MPP) (Bradley et al., 1997;   Smid et al., 2008; Mentel et al., 2008).  

In order to enter the mitochondria, the nuclear encoded proteins are recognized by the 

protein translocases inserted in the outer mitochondrial membrane called the Translocase of 

outer membrane (TOM) complex (Meisinger et al., 2001; Hill et al., 1998).  The machinery 

includes protein complexes that consist of core module subunits that are common to all 

eukaryotes and additional subunits that have been acquired during evolution in individual 

eukaryotic lineages (Macasev et al., 2004; Doležal et al., 2006). 

The second major import machinery in the outer membrane is the Sorting and assembly 

machinery (SAM50) complex, function of which is the integration and assembly of outer 

membrane proteins including the TOM complex (Bohnert et al., 2007; Kozjak et al., 2003). 

SAM50 works with the assistance of small Tim proteins which guide the substrates to the 

complex (Hoppins and Nargang, 2004; Koehler, 2004; Wiedemann et al., 2004).  

Once the mitochondrial protein has passed through the TOM channel, it interacts with 

the Translocase of inner membrane (TIM) machines, two molecular systems inserted in the 

inner mitochondrial membrane called TIM22 and TIM23 (Rehling et al., 2003; Kovermann et 

al., 2002).  TIM22 mediates the insertion of the proteins that have to be integrated in the inner 

mitochondrial membrane such as the proteins of the mitochondrial carrier family (MCF) that 

are guided by small Tim proteins (Rehling et al., 2003).  TIM23 is the second protein channel 

designed for the translocation of proteins targeted to the mitochondrial matrix (Chacinska et al., 

2009; Doležal et al., 2006; Neupert, 2007; Martinez-Caballero et al., 2007; Meinecke et al., 

2006; Koehler, 2004; Glick et al., 1992; Stuart, 2002).  

Finally, presequence translocase-associated motor (PAM), pulls the preprotein from the 

TIM23 channel into the matrix.  In yeast the core components of the PAM complex are Ssc1 or 

mt-Hsp70, which is assisted by Mge1, Pam18, Pam16, Pam17 and Tim44 (van der Laan et al., 

2006;  Bohnert et al., 2007).  PAM components except Pam17 have been found essential for 

cell viability (Craig et al., 1987;  Maarse et al., 1992;  Bolliger et al.,1994;  D´Silva et al.,2003;  

Mokranjac et al.,2003;  Truscott et al., 2003;  Frazier et al., 2004;  Kozany et al., 2004;  Li et 

al., 2004;  van der Laan et al., 2005). (Fig.1)
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Figure1. Mitochondrial import pathways for precursor proteins (Kutik et al., 2007)

Considering that hydrogenosomes need channels for protein import and exchange of 

metabolites with the cytosol as mitochondria, we can expect presence of homologues of 

mitochondrial translocases and carriers in the membranes of the hydrogenosome.  However, 

only two hydrogenosomal membrane proteins, i.e., Hmp31 and Hmp35, have been described in 

T. vaginalis, thus far, without homology to mitochondrial proteins (Dyall et al., 2000; Tjaden et 

al., 2004).  Homologs to components of the SAM50, PAM and TIM23 complexes have been 

detected in T. vaginalis genome and some of them have been localized to the hydrogenosome 

(Carlton et al., 2007;  Bui et al., 1996;  Germot et al.,1996;  Bozner, 1997;  Dyall et al., 2003;  

Doležal et al., 2005;  Doležal et al., 2006). Unexpectedly, initial analysis of the T. vaginalis 

genome did not reveal any TOM candidate, although some components of TOM complex have 

been reported in organisms with mitosomes like Giardia intestinalis (Dagley et al., 2009; 

Regoes et al., 2005; Dyall and Doležal, 2008). 
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4.5 Oxidative stress protection

T. vaginalis is a microaerophilic parasite with optimal growth when low oxygen 

concentration (less than 0.25 μM) is present (Paget and Lloyd, 1990). It is also known that the 

concentrations of oxygen higher than the ones found in the vaginal environment (above ≈60 

μM) are lethal for the parasite (Ellis et al., 1994).  

Two important hydrogenosomal proteins (PFOR and HYD) are highly sensitive to 

oxygen and reactive oxygen species (ROS) (Lindmark and Müller, 1973; Lloyd and Kristensen, 

1985) which makes the presence of a detoxifying system in the organelle essential for the 

enzyme protection (Linstead and Bradley, 1988).  The parasite does not need oxygen for 

energy metabolism. T. vaginalis is a fermentative organism without the ability to carry out 

oxidative phosphorylation.  Eventhough, the hydrogenosomes displayed respiration when the 

gas is present in the environment. 

Two cytosolic pyridine nucleotide dehydrogenases called NADH and NADPH oxidases 

are the main oxygen reducing enzymes in the parasite.  NADH and NADPH oxidases have 

high activity and efficiently to reduce oxygen to water and hydrogen peroxide, respectively, 

which contribute to maintain the anaerobic conditions within the parasite (Linstead and 

Bradley, 1988; Tanabe, 1979).  It is believed that T. vaginalis relies upon cytosolic NADH and 

NADPH oxidases to prevent the permeation of oxygen into the hydrogenosomes. Protons are 

the final electron acceptors in the hydrogenosomal metabolism of T. vaginalis but, when the 

concentration of oxygen is too high that saturates the cytosolic oxygen reductases, the gas 

difuses into the hydrogenosome and oxygen becomes the final electron acceptor in the 

organelle metabolism. At this point the hydrogen production ceased (Lloyd and Kristensen, 

1985).  Recently it was found that the flavin reductase enzyme, previously known as NADPH 

oxidase and responsible of the reduction of free flavins, is a key protein in the development of 

metronidazole resistance in T. vaginalis (Leitsch et al., 2014).

In addition to NAD(P) oxidases, trichomonads are equipped with several other 

detoxification mechanisms that protect the parasite from the effect of oxygen and ROS.  

Glutathione, a widespread antioxidant among eukaryotes, is absent in T. vaginalis, however 

cysteine is considered the major redox buffer and antioxidant in the parasite (Ellis et al., 1994).  

In addition, T. vaginalis is able to generate thiols from the action of a bacterial-like enzyme 

called methionine-γ-lyase that has antioxidant properties (McKie et al., 1998). 
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The existence of a hydrogenosomal oxygen reductase was proposed by Čerkasov in 

1978 but the protein was just recently characterized as a flavodiiron protein (FDP) (Smutná et 

al., 2009).  FDPs belong to a superfamily with a role in detoxification of oxygen and nitric 

oxide in anaerobic prokaryotes (Saraiva et al., 2004; Gardner et al., 2002; Gomes et al., 2002; 

Seedorf et al., 2004).  T. vaginalis encodes four homologues of FDPs but only one of them 

carries the hydrogenosomal targeting sequence (Carlton et al., 2007; Hrdý et al., 2007). The 

hydrogenosomal localization of T. vaginalis FDP (TvFDP) was confirmed by 

immunofluorescence microscopy.  TvFDP belongs to the Class A flavodiiron proteins. The 

protein reduces dioxygen to water using four electrons per cycle derived from pyruvate or 

NADH via ferredoxin (Smutná et al., 2009). In the same study, it was demonstrated that 

TvFDP is unable to utilize nitric oxide as a substrate, which was previously observed in G. 

intestinalis FDP homologue (Di Matteo et al.., 2008). 

The incomplete oxygen reduction leads to the formation of reactive oxygen species 

(ROS) such as the superoxide radical and hydrogen peroxide.  These two compounds react with 

iron ions through the Fenton chemistry forming the hydroxyl radicals, which are highly toxic 

and inactivate hydrogenosomal enzymes causing parasite dead (Hrdý et al., 2007).  

The activities of catalase and other peroxide-reducing enzymes were not detectable in T. 

vaginalis, which is probably the cause for the parasite sensitivity to oxygen concentrations 

above physiological levels (Ellis et al., 1994). The iron-containing superoxide dismutase 

(FeSOD) is the superoxide-scavenging enzyme in trichomonads, which is present both in the 

cytosol and in the hydrogenosome of the parasite (Lindmark and Müller, 1974; Kitchener et al, 

1984; Rasoloson et al., 2001; Viscogliosi et al., 1998; Ellis et al., 1994).  The enzyme converts 

two superoxide molecules to hydrogen peroxide and oxygen (Lindmark and Müller, 1974).  

Seven genes encoding iron-containing superoxide dismutase (FeSODs) were identified by 

classical molecular methods and this finding was later confirmed by analysis of the T. vaginalis 

genome (Carlton et al., 2007).  

Rubrerythrin is an enzyme with peroxidase-like activity (Jin et al., 2002) found only in 

anaerobic prokaryotes and Entamoeba histolytica (Pütz et al.,2005).  Six rubrerythrin genes 

have been found in the genome of T. vaginalis and the hydrogenosomal localization of one of 

these gene products has been confirmed by immunofluorescence microscopy (Carlton et al., 

2007; Pütz et al., 2005). In the cytosol of T. vaginalis, thioredoxin peroxidase together with 
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thioredoxin and thioredoxin reductase (TrxR) form the peroxiredoxin system (Coombs et al., 

2004).  Thioredoxin peroxidase belongs to a thiol peroxidase family of proteins named 

peroxiredoxins (McGonigle et al., 1998). The protein is a peroxide sensor that reduces toxic 

hydrogen peroxide, alkyl peroxides and peroxynitrites with electrons provided by thioredoxin 

(Rhee et al., 2005; Hofmann et al., 2002; Wood et al., 2003). TrxR is a low molecular weight 

protein that reduces the oxidized thioredoxin. 

Components of the peroxiredoxin system have been found also in the hydrogenosome 

of T. vaginalis (Pütz et al., 2005; Henze et al., 2008). Thioredoxin and peroxiredoxin thiol 

peroxidase have been identified in the hydrogenosomal proteome. Thioredoxin has an N-

terminal extension resembling hydrogenosomal targeting presequences (Pütz et al., 2005). 

Later on, two T. vaginalis TrxR homologues without a hydrogenosomal targeting sequence 

were expressed in the hydrogenosome (Henze, 2008).  The study also demonstrated that N-

terminal targeting sequence is not indispensable for the protein import in the hydrogenosomes 

and the targeting is mediated by internal signals (Coombs et al., 2004; Pütz et al., 2005; Henze, 

2008).

OsmC and Ohr are proteins involved in oxygen stress protection that has been identified 

only in prokaryotes, so far. The proteins are involved in defense against oxidative stress caused 

by exposure to organic hydroperoxides (Lesniak et al., 2002; Lesniak et al., 2003).  The 

catalytic activity of these proteins depends on highly reactive cysteine thiol groups (as in the 

case of peroxiredoxins) to convert hydrogen peroxides to less toxic metabolites (Lesniak et al., 

2003). OsmC protein was identified in the hydrogenosome of T. vaginalis by a proteomic 

analysis and four putative homologues were identified in the T. vaginalis genome showing that 

the cysteine residues are conserved in all the sequences identified (Carlton et al., 2007). The 

proteins have an N-terminal sequence similar to hydrogenosomal targeting sequences and they 

have a role in detoxification of peroxides in hydrogenosomes (Hrdý et al., 2007; Nývltova et 

al., 2016). 

5. A role of iron in Trichomonas vaginalis

T. vaginalis and other pathogens depend on its capability to acquire essential nutrients, 

such as iron, from the host environment to establish infection. Iron is a deleterious reductant for 
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living beings because it produces free radicals, so its concentrations have to be strictly 

regulated. Therefore, host-iron is not freely available, but tighly bound to iron-transport 

proteins like transferrin and lactoferrin (Dunn et al., 2007), intracellularly stored in ferritin or 

incorporated to functional domains of various enzymes, carriers and other proteins. Iron has 

numerous and diverse functions as a component of haem in haemoproteins which function as 

O2 carriers, Fe-S clusters involved mainly in electron transfer and other iron containing-

proteins without haem or Fe-S clusters involved in iron transport and iron storage (Crichton, 

2001).

Trichomonads have high requirements for extracellular iron (50 – 100µM) and 

therefore have developed specific receptor-mediated mechanisms to acquire iron from 

lactoferrin, transferrin, haem and low-molecular-weight iron complexes (Tachezy et al., 1996; 

Šutak et al., 2008; Peterson and Alderete, 1984; Lehker et al., 1990; Tachezy, 1999).  In T. 

vaginalis energy metabolism and oxidative stress protection are processes mainly dependent on 

Fe-S proteins (Vanácová et al, 2001; Gorrel, 1985). The hydrogenosome of T. vaginalis 

contains a number of Fe-S proteins that are involved in energy metabolism such as PFO, 

ferredoxin, NDH, ferredoxin, hydrogenase, which may explain the high requirement for iron by 

the parasite (Hrdý et al, 2004).  Iron is indispensable also for the function of cytosolic and 

nuclear proteins. Rli1p is an essential protein in ribosome biogenesis and function, the protein 

is highly conserved among eukaryotes including T. vaginalis (Kispal et al, 2005; Yarunin et al., 

2005; Smid et al., 2008).

In addition to housekeeping functions, iron also influences interactions between the 

parasite and the host cell.  Previous studies have shown that the levels of cytoadherence of T. 

vaginalis cells are regulated by iron (Mundodi et al., 2006).  The expression of surface adhesins 

(Sommer et al., 2005; Solano-Gonzalez et al., 2007; Kummer et al., 2008; Alvarez-Sánchez et 

al., 2007) and the increased resistance of trichomonads to complement-mediated lysis are also 

iron-regulated processes (Alderete et al, 1995). Importance of the ability to uptake iron by 

trichomonads from the host was shown to be an important virulence factor (Kulda et al, 1999; 

Ryu et al., 2001).  Moreover, when compared with organisms grown in excess of iron, parasites 

cultivated under low iron concentrations showed a reduction in the rate of protein synthesis up 

to 80%, morphological alterations, three-fold decreased cellular densities and extended 

generation time up to 2.5 times (Lehker and Alderete, 1992; Melo-Braga et al., 2003; de Jesus 
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et al., 2007; Vanácová et al., 2001).  However, the mechanisms controlling the iron-dependent 

regulation of these processes are unknown, so far.  

The expression of the hydrogenosomal ME and PFO is positively regulated by iron at 

the transcriptional level (Vaňáčová et al., 2001).  Transcriptional regulation has been 

implicated as one of the major regulatory mechanism in modulating expression of certain T. 

vaginalis virulence phenotypes in response to changing iron supply (Lehker et al., 1991). Iron 

dependent transcription was studied in the malic enzyme (ME) gene which encodes a 65-kDa 

hydrogenosomal malic enzyme.  This protein was detected also as a surface adhesine AP-65-1 

(Alderete et al., 1995; Hrdý and Müller M., 1995a). It was experimentally demonstrated that 

iron-induced transcription of the ap-65-1 gene is regulated by the interaction of DNA 

regulatory elements and nuclear proteins (Tsai et al., 2002; Ong et al., 2004; Ong et al., 2006; 

Ong et al., 2007; Hsu et al., 2009);   however, this type of iron regulatory elements have not 

been found in other positively iron-regulated genes that suggests the presence of another iron 

regulatory mechanism for gene expression. Indeed, it has been showed that expression of two 

cysteine proteases (TVCP4 and TVCP12) is regulated post-transcriptionally based on the 

interactions between cytoplasmic iron regulatory proteins (IRPs) and iron-responsive elements 

(IREs) located in the untranslated regions (UTRs) of messenger RNAs (mRNA) of for TVCP4 

and TVCP12 (Solano-Gonzalez et al., 2007; Torres-Romero and Arroyo, 2009). This IRE/IRP 

system is well known for proteins involved in the storage and utilization of iron and other iron-

dependent proteins (Haile et al., 1992; Hentze et al., 1996; Pantopoulos, 2004).

6. Treatment of Trichomonas vaginalis infection

Derivatives of 5-nitroimidazole, such as tinidazole and metronidazole, are the drug of 

choice for treatment of trichomoniasis and other infections caused by anaerobic or 

microaerophilic organisms of eukaryotic or prokaryotic origin.  5-nitroimidazoles are the only 

class of antimicrobial medications known to be effective against T. vaginalis and the drug was 

introduced for the treatment of trichomoniasis in 1960 (Lindmark and Müller, 1976a; Watt and 

Jennison., 1960; Moffett and McGill, 1960).  The recommended treatment of a single dose of 2 

g orally has shown a cure rate of approximately 84% - 98% (Thin et al., 1979; Spence et al., 

1997; Workowski and Bolan, 2015).  Although most recurrent T. vaginalis infections are the 

result of a reinfection from an untreated sex partner, 4 - 10% of treatment refractory cases 
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might be attributed to metronidazole resistance (Schmid et al., 2001; Schwebke and Barrientes, 

2006; Kirkcaldy et al., 2012; Upcroft et al., 2009).  Tinidazole is equivalent or superior to 

metronidazole in achieving parasitologic cure and resolution of symptoms (Wood and Monro, 

1975).  In addition, tinidazole resistance occurs only in 1% of the cases of trichomoniasis, but 

this alternative is more expensive compared with metronidazole (Schwebke and Barrientes, 

2006; Workowski and Bolan, 2015).   Although the prevalence of resistance is rather low, 

dependance on a single group of antimicrobial agents increases the possibility to develop cross-

resistance in the parasite.  The importance of studying the metabolic pathways involved in 

metronidazole activation and the biochemical mechanisms involved in drug resistance by the 

parasite lies in the need for new therapeutic alternatives.

 

6.1 Metronidazole activation 

5-Nitroimidazoles are activated within the susceptible target cell by metabolic reduction 

producing cytotoxic radical anions that damage macromolecules. The inactive prodrug enters 

the cell by passive diffusion (Müller and Lindmark, 1976; Müller and Gorrell, 1983).  In 

trichomonads, drug activation most likely takes place in the hydrogenosome where the drug 

enters by passive diffusion.  However, recently another mechanism of the drug activation has 

been reported that involves cytosolic proteins (Leitsch et al., 2010).

In hydrogenosomes, the electrons generated by PFOR during pyruvate decarboxylation 

are transferred to hydrogenase. In the presence of metronidazole, the electrons are 

preferentially captured by the drug and hydrogenase production ceased (Lloyd and Kristensen, 

1985). The reduction of the nitro group of the prodrug is via a single step electron transfer 

which results in the formation of reactive intermediates.  The generation of nitro anion radicals 

in intact cells, cell homogenates and organelles has been demonstrated several times by EPR 

spectroscopy (Chapman et al., 1985; Yarlett et al., 1987; Rasoloson et al., 2002).

The alternative hydrogenosomal pathway does not involve PFOR activity (Hrdý et al., 

2005).  In this case, the electrons required for the reduction of the drug are generated by the 

NAD-dependent malic enzyme during the oxidative decarboxylation of malate. The NADH 

produced in this reaction is reoxidized by an enzyme with NADH: ferredoxin oxidoreductase 
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activity which has been identified as a homologue of the NADH dehydrogenase (NDH) module 

of the mitochondrial respiratory Complex I (Hrdý et al., 2004). T. vaginalis NDH is involved in 

electron transfer to metronidazole but cannot donate electrons directly to the drug. Thus, 

ferredoxin acts as an essential electron donor in both pyruvate- and malate-dependent pathways 

(Rasoloson et al., 2002; Hrdý et al., 2005). 

In 2009, another model of metronidazole activation was proposed by Leitsch and 

colleagues. The study demonstrated that nitroimidazole drugs form covalent adducts, with 

proteins that have a role in maintenance of the redox balance in the parasite, like the enzymes 

from the thioredoxin system. Hence, it was found that the flavin enzyme thioredoxin reductase 

displays nitroreductase activity with nitroimidazoles, including metronidazole. It was shown 

that the formation of covalent adducts with protein and non-protein thiols enhance the toxicity 

of nitroimidazoles by the disruption of the cellular redox system (Leitsch et al., 2009).  This 

mechanism seems to take place in the cytosol and challenged the model of hydrogenosomal 

activation of nitroimidazole drugs. 

6.2 Metronidazole resistance

T. vaginalis can develop two types of metronidazole resistance named aerobic and 

anaerobic according to the conditions at which the resistance could be observed.  

Aerobic resistance is typically found in clinical isolates from treatment-refractory 

patients (Ellis et al., 1994; Rasoloson et al., 2001; Meingassner and Thurner, 1979; Kirkcaldy 

et al., 2012) and  it can be induced in vitro by exposing the metronidazole-sensitive T. vaginalis 

to low doses of metronidazole for a relatively short period of time (Tachezy et al., 1993; 

Rasoloson et al., 2002). This type of resistance has been attributed to the defect in oxygen 

scavenging system which leads to increased level of intracellular oxygen.  It probably causes 

re-oxidation of the metronidazole radical ion, and consequently the detoxification of the drug 

(Lloyd and Pedersen, 1985; Yarlett et al., 1986).  It is important to notice that the natural 

habitat of T. vaginalis is not anaerobic and the parasite is exposed to a variable oxygen tension 

at the vaginal surface (Wagner and Levin, 1978).  In cells expressing the aerobic type of 

resistance, the hydrogenosomal pathway responsible for the activation of the drug remains 

active and the cells are susceptible to metronidazole under anaerobic conditions (Müller and 
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Gorrell 1983; Ellis et al., 1992; Tachezy et al., 1993). T. vaginalis strains displaying aerobic 

resistance showed decreased tolerance to oxygen (Ellis et al., 1994; Rasoloson et al., 2001) 

which affects the viability of the cell under oxygen stress.  Aerobic resistance also showed up-

regulation of the iron-containing superoxide dismutase (Fe-SOD) that was observed in both 

clinical isolates and the in-vitro induced strain probably as a response to the presence of 

intracellular oxygen and its reactive metabolites (Ellis et al. 1994; Rasoloson et al., 2001). 

Initially it has been suggested that aerobic resistance could be mediated by an altered 

ferredoxin function or insufficient amount of ferredoxin based on the reduction of gene 

transcription in resistant strains (between 40% and 65%) which results in decreased 

intracellular levels of the protein in the resistant strain compared with the sensitive strain 

(Yarlett et al. 1986b; Quon et al. 1992).  However, no significant differences in ferredoxin 

levels between the drug-susceptible T. vaginalis strain and its aerobically resistant derivative 

were found on protein level in later studies (Rasoloson et al., 2001; Rasoloson et al., 2002).  

Moreover, identical signals for functional ferredoxin iron sulfur centers were found in the 

aerobic resistant strain induced in vitro, the susceptible strain and a clinical isolate expressing 

aerobic resistance (Rasoloson et al., 2001).

Leitsch and colleagues (2010) demonstrated that metronidazole resistance in the 

parasite is associated with lost of flavins and thioredoxin reductases activities. This is 

supported by observation that treatment of T. vaginalis with DPI (diphenyleneiodonium), a 

flavin´s inhibitor, which inhibited thioredoxin reductase activity and reduced free flavins 

(Leitsch et al., 2010).  The results were corroborated by the measurement of thioredoxin 

reductase activity in a highly metronidazole-resistant strain developed in vitro showing that the 

activity was completely absent in this cell line (Leitsch et al., 2009).  Taken together, DPI-

treated cells displayed a flavin metabolism similar to that found in metronidazole-resistant T. 

vaginalis strain. However, PFOR activity was upregulated in DPI-treated cells under low 

oxygen tension. Therefore, they proposed that the loss of hydrogenosomal pathways could be 

linked with the absence of flavins reducing enzymes that affect the cellular redox status in the 

cell and the reduced expression of hydrogenosomal enzymes could be a consequence and not 

the cause of the resistance to metronidazole.  The study showed that thioredoxin reductase is 

only an essential enzyme under aerobic conditions because not even the growth was inhibited 

under anaerobic condition in DPI-treated T.vaginalis (Leitsch et al., 2010). 
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The anaerobic type of resistance was induced in vitro and it is associated with loss of 

the metronidazole activation pathway. The development of resistance was accomplished by 

exposing the drug-susceptible cells to daily passages in culture medium containing increasing 

concentrations of metronidazole (2-100 ug/ml) for a prolonged period of time in vitro (1-2 

years) (Kulda et al., 1984; Kulda et al., 1993; Brown et al., 1999).  The resistant strains 

developed high tolerance to the drug and were able to multiply in the presence of 100µl/ml of 

metronidazole. The uptake of metronidazole by these strains was undetectable and therefore the 

signals for nitro free radicals were absent in the EPR spectra, indicating that the drug was not 

activated (Kulda et al., 1989).  The resistance to metronidazole was acquired in a stepwise 

process;  the aerobic resistance was induced  at the first stage (growth at 3 ug/ml 

metronidazole) and the gradual elimination of the hydrogenosomal enzymes responsible for the 

drug activation was observed during adaptation to 5-100 ug/ml  (Rasoloson et al. 2002). 

Absence of PFOR activity was observed in the strain cultivated at 5 µg/ml of 

metronidazole which represented the early stage of anaerobic resistance (Rasoloson et al., 

2002) The susceptibility to the higher concentrations could be attributed to the alternative 

pathway of the drug activation that involves the hydrogenosomal malic enzyme, NDH and 

ferredoxin, which are active at this stage of resistance development (Rasoloson et al. 2002).  At 

this stage, the hydrogenosomes generate metronidazole anion radicals as detected by EPR 

spectroscopy (Hrdý et al., 2005).  A gradual reduction of hydrogenase activity was observed 

with increasing resistance; however, the decrease was slower than that found in PFOR and the 

activity of hydrogenase disappear later (Kabíčková et al., 1988; Rasoloson et al., 2002). The 

enzymatic activities of PFOR, malic enzyme, NDH, hydrogenase, and ferredoxin were lost in 

the hydrogenosomes of fully anaerobic resistant parasites, in which production of 

metronidazole anion radicals was not observed (Kulda et al., 1989; Rasoloson et al., 2002; 

Hrdý et al., 2005). Additionally, NAD(P)H nitroreductases and Nim proteins have been 

reported to have a role in metronidazole activation, and metronidazole resistance, respectively. 

At least five genes coding for nitroreductases have been found in T. vaginalis genome however, 

none of them have the hydrogenosomal targeting sequence, suggesting a cytosolic localization 

of nitroreductases in T. vaginalis. In the pathogenic bacteria Helicobacter pylori resistance to 

metronidazole has been associated with mutation in the chromosomal genes encoding 

nitroreductases. These proteins can convert metronidazole into a toxic product such as 
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hydroxylamine which is both bactericidal and mutagenic (Goodwin et al., 1998; Jenks et al., 

1999; Jeong et al., 2000; Mendz and Mégraud, 2002). Nim proteins confer 5-nitroimidazole 

resistance in certain strains of Bacteroides fragilis.  It was shown that the resistant bacteria 

produce nitro anion radicals; however, the radicals are rapidly converted to a non toxic amine 

derivative in the presence of the Nim (Carlier et al. 1997). Studies of the crystal structures of 

the NimA protein from Deinococcus radiodurans have identified a catalytically important 

histidine residue along with pyruvate and antibiotic binding sites. The reaction mechanism 

involves the 2-electron reduction of the antibiotic that prevents the accumulation of the toxic 

nitro radical (Leiros et al., 2004). Three Nim homologues have been found in T. vaginalis, two 

of them with predicted hydrogenosomal targeting signal (Carlton et al., 2007) and all of them 

possess the conserved histidine residue found in Deinococcus radiodurans  (Leiros et al., 

2004).  

7. Aims of the thesis

 To develop the method for isolation of highly purified hydrogenosomes and mitosomes 

from Trichomonas vaginalis and Giardia intestinalis respectively.

 To compare the gene expression in Trichomonas vaginalis cultivated under different 

iron level.

 To analyze iron-dependent changes in the proteome of Trichomonas vaginalis 

hydrogenosome using mass spectrometry.

 To investigate changes in the proteome of Trichomonas vaginalis strains during in vitro 

induction of resistance to metronidazole. 
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Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic

Abstract
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Introduction

Iron is an essential element for virtually all forms of life. It plays

an indispensable role as a component of metalloproteins, either

bound to more or less complex prosthetic groups, such as heme or

iron-sulfur (FeS) clusters, or alone, such as in the case of

ribonucleotide reductase, the key enzyme of DNA metabolism.

Metalloproteins are involved in many vital cellular functions,

including electron transport, enzymatic catalysis, redox sensing

and regulation of gene expression [1]. In addition to housekeeping

functions, iron influences the virulence of pathogenic microor-

ganisms, which is underlined by the observations that host iron

withholding is markedly reinforced during microbial infection [2].

Therefore, invading pathogens have evolved effective iron-

acquisition mechanisms to meet their needs for iron [3].

Trichomonas vaginalis is a sexually transmitted anaerobic parasitic

protist of the Excavata group that infects humans, with an

estimated worldwide annual incidence of 170 million cases [4,5].

One of the most prominent characteristics of this parasite is the

lack of ‘‘classical’’ oxygen-respiring mitochondria. Instead, tricho-

monads possess hydrogenosomes, mitochondria-type organelles

that produce molecular hydrogen and among other functions,

synthesize ATP through substrate-level phosphorylation [6].

Trichomonads require unusually high concentrations of iron in

in vitro cultures [7]. This need has been largely attributed to the

dependence of trichomonads upon the activities of FeS cluster-

containing proteins, which mediate vital energy-conserving

reactions in the parasite’s hydrogenosomes [8], but it may also

be related to the fact that trichomonads apparently lack substantial

levels of iron-storage proteins, such as ferritin [3]. Thus, high

extracellular iron may be required to furnish the turnover of FeS

proteins. Lactoferrin, heme and low-molecular-weight iron com-

plexes can serve as an external source of iron for T. vaginalis [9].

The FeS proteins involved in hydrogenosomal energy metab-

olism are pyruvate:ferredoxin oxidoreductase (PFO), electron

carrier ferredoxin, [FeFe]-hydrogenase and two-subunit remnants

of respiratory complex I. PFO oxidatively decarboxylates pyru-

vate, which is supplied from the cytosol or through the activity of

non-FeS hydrogenosomal malic enzyme, to acetyl-CoA, which is

converted to acetate by the activity of acetate:succinate-CoA

transferase in a succinate-dependent reaction. The resulting

succinyl-CoA serves as a substrate for ATP synthesis by succinate

thiokinase, while electrons released from pyruvate are transported

via ferredoxin to hydrogenase, which forms molecular hydrogen

(see [9] for review). NADH resulting from the malic enzyme

reaction can be reoxidized by the complex I remnant [10]. In

addition to the proteins involved in hydrogenosomal carbohydrate

metabolism, other hydrogenosomal Fe-containing proteins include

FeS flavoproteins, the flavodiiron oxygen reductase, peroxidase

rubrerythrin, proteins of the FeS cluster assembly system (ISC),

hybrid cluster protein, Fe superoxide dismutase and possibly

others [11–14].
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Iron availability markedly influences hydrogenosomal catabo-

lism, and increased activities of FeS enzymes involved in

hydrogenosomal energy metabolism have been observed upon

iron supplementation [7,8,15]. Clearly, there is effective regulation

linking the activity/expression of FeS proteins and iron availabil-

ity. Even the expression of non-FeS proteins, such as malic

enzyme, has been shown to be regulated by iron [8,15–16]. The

list of iron-regulated genes has been greatly extended by our

previous work, which demonstrated a marked effect of iron on the

T. vaginalis transcriptome [18]. Among the hundreds of regulated

genes identified in this study, hydrogenosomal carbohydrate

metabolism and ISC assembly machinery appeared to be the

most important pathways influenced by this critical nutrient. T.

vaginalis genes are typically present in multiple copies [19], and

intriguingly, in most cases expression of only certain paralogues

was regulated by iron [18]. The effect of iron limitation on T.

vaginalis morphology and overall proteome changes was studied by

De Jesus et al. [20]. Cells from iron-depleted medium displayed

altered morphology, including the internalization of flagella and

the axostyle and transformation to a larger and rounded shape.

Observed changes in protein expression included the downregu-

lation of PFO and cysteine proteases, while actin was upregulated

in iron-depleted trichomonads [21]. However, the two-dimen-

sional gel electrophoresis (2DE) used to separate the protein

samples prior to MS identifications in the previous study is known

to often fail to resolve membrane proteins, low-abundance

proteins, proteins with extreme pI values and very small or large

proteins [22], resulting in an incomplete list of identified proteins,

potentially including those affected by changes in external

conditions. Therefore, to obtain a better picture of the effect of

iron limitation on trichomonads, we utilized a gel-free approach

based on isobaric tag labeling (iTRAQ), isoelectric focusing of

tryptic peptides and nano-LC-MALDI identification. We specif-

ically focused on hydrogenosomes because many FeS proteins

reside in these organelles, along with the FeS cluster assembly

machinery.

Methods

Parasite Cultivation
Trichomonas vaginalis strain T1 (J.H. Tai, Institute of Biomedical

Sciences, Taipei, Taiwan) was grown in Diamond’s trypticase-

yeast-extract-maltose (TYM medium) supplemented with 10%

heat-inactivated horse serum without agar at pH 6.2 [23]. The

iron-supplemented medium was prepared by adding ammonium

ferric citrate to a final iron concentration of 86 mM. Iron-restricted

cells were subcultured for 10 passages in iron-deficient TYM

medium prepared without ammonium ferric citrate and supple-

mented with 2,29-dipyridyl (Sigma Chemical Co., St. Louis,

Missouri) to a final concentration of 70 mM.

Cell Fractionation and Hydrogenosome Isolation
One-liter cultures of T. vaginalis cells grown under iron-enriched

(+Fe) and iron-depleted (2Fe) conditions were harvested by

centrifugation at 13006g for 12 minutes at 4uC and washed twice

with 50 ml of phosphate-buffered saline (PBS) and once with

50 ml of isotonic ST buffer (250 mM sucrose, 10 mM Tris, and

0.5 mM KCl, pH 7.2). Subsequent steps were performed at 4uC in

ST buffer supplemented with the protease inhibitors TLCK

50 mg/ml (tosyl lysyl chloromethyl ketone) and leupeptin 10 mg/

ml. Cell pellets were resuspended in 40 ml of ST buffer and

sonicated on ice until approximately 90% of the cells were

disrupted. The homogenate was centrifuged at 8006g for 15

minutes to remove the nuclei and unbroken cells. The supernatant

was centrifuged at 170006g for 20 minutes, resulting in an

enriched large granular fraction (LGF, sediment) and crude

cytosolic fraction (supernatant). The enriched LGF was further

fractionated using a discontinuous Optipreptm gradient (Axis-

Shield). To prepare the gradient, 0.5 ml of 50% (w/v) Optiprep

working solution was applied to the bottom of the tube, and 1 ml

of each lower-density solution (ranging from 36 to 18% in 2%

steps) was layered successively. The Optiprep working solution was

prepared by diluting the original Optipreptm to 50% using a

diluent recommended for general purposes (0.25 M sucrose,

6 mM EDTA and 60 mM Tris-HCl, pH 7.4). Successive gradient

solutions were prepared by diluting the 50% working solution with

homogenization buffer (0.25 M sucrose, 1 mM EDTA and

10 mM Tris-HCl, pH 7.4) to the specific concentration. The

LGF was resuspended in 0.5 ml of homogenization buffer and

layered on top of the gradient. The gradient was centrifuged in a

swinging bucket rotor at 200,0006g for 2 hours at 4uC. The

separated fractions were then carefully removed using a micropi-

pette, and each fraction was washed separately with ST buffer

containing protease inhibitors at 21,0006g for 20 minutes at 4uC.

SDS-PAGE and Western Blotting
SDS-PAGE and Western blotting were used to analyze the

protein composition of Optiprep-sucrose-purified hydrogeno-

somes. SDS-PAGE was performed with a Bio-Rad miniprotean

gel apparatus using a 12% gel. Electrophoretically resolved

proteins were stained with Coomassie brilliant blue or transferred

to a nitrocellulose membrane to be probed with polyclonal rabbit

antiserum against hydrogenosomal malic enzyme [24].

Transmission Electron Microscopy (TEM)
Pellets of each fraction obtained from the Optiprep-sucrose

gradients were fixed for 24 hours in 2.5% glutaraldehyde in 0.1 M

cacodylate buffer (pH 7.2) and postfixed in 2% OsO4 in the same

buffer. Fixed specimens were dehydrated with an ascending

ethanol and acetone series and embedded in an Araldite - Poly/

BedH 812 resin mixture. Thin sections were cut on a Reichert-

Jung Ultracut E ultramicrotome and stained using uranyl acetate

and lead citrate. Sections were examined and photographed using

a JEOL JEM-1011 electron microscope with a Megaview III

camera and analySIS 3.2 software (Soft Imaging SystemH).

Determination of Enzymatic Activities
The activities of hydrogenosomal and non-hydrogenosomal

enzymes were measured spectrophotometrically at 25uC in all

fractions. Hydrogenosomal malic enzyme was measured aerobi-

cally at 340 nm as the rate of malate-dependent NAD+ reduction

[24], and the lysosomal marker enzyme acid phosphatase was

measured according to Barret (1972). The activities were

determined immediately after organelle isolation. Protein concen-

trations in the fractions were determined by the Lowry method.

Protein Digestion and iTRAQ Labeling
Aliquots of hydrogenosomal fractions containing 100 mg of total

protein were precipitated with 300 ml of acetone overnight at

220uC. The precipitate was centrifuged, acetone was carefully

removed, and the remaining traces of acetone were left to

evaporate for 5 minutes. Sample dissolution, reduction, alkylation,

digestion and iTRAQ 4-plex labeling were performed according

to the manufacturer’s instructions (AB Sciex, Foster City, CA)

using sequencing-grade porcine trypsin (Promega). Combined

samples were precipitated with 500 ml of acetone overnight at

220uC.

Proteome of Trichomonas Hydrogenosome
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Isoelectric Focusing, Extraction and HPLC
Combined iTRAQ-labeled samples were dissolved in 250 ml of

2 M urea and poured into the 17 cm focusing tray of a Protean

IEF Cell (Bio-Rad, Hercules, CA, USA). The sample was covered

with 17 cm IPG strips (pH 3–10, Bio-Rad) without paper wicks or

oil. Active rehydration at 50 V for 2 hours was followed by voltage

steps of 100, 250, 500 and 1000 V for 15 minutes and a maximum

of 10 kV until 40 kVHrs was reached. The final step was set at

500 V forever. The current was limited to 50 mA, and only one

strip was focused at a time.

The strip was cut into pieces approximately 2–3 mm wide. The

pieces were sonicated for 15 minutes in 20 ml of 10% acetonitrile

(ACN) with 0.1% trifluoroacetic acid. The supernatants were

mixed 1:1 with water and subjected to nano-reverse-phase HPLC.

LC separation was performed with an Ultimate 3000 HPLC

system (Dionex, Framingham, MA) coupled to a Probot micro-

fraction collector (Dionex). A PepMap 100 C18 RP column

(particle size 3 mm, length 15 cm, internal diameter 75 mm;

Dionex) with pre-column (PepMap 300 C18, particle size 5 mm,

300 Å wide pore, length 5 mm, internal diameter 300) was used

for separation with a gradient of 4% (v/v) acetonitrile and 0.1%

(v/v) trifluoroacetic acid to 80% (v/v) acetonitrile and 0.1% (v/v)

trifluoroacetic acid for 60 minutes. The flow rate was set to

300 nl/min. The eluate was mixed 1:3 with matrix solution

(2 mg/ml a-cyano-4-hydroxycinnamic acid in 80% ACN) with the

Probot micro-fraction spotter prior to spotting onto a MALDI

target. The spotting frequency was 5 spots per minute; i.e., 60 nl

eluate +180 nl matrix solution per MALDI spot.

Mass Spectrometry
Spectra were acquired on a 4800 Plus MALDI TOF/TOF

analyzer (AB Sciex) equipped with an Nd:YAG laser (355 nm,

firing rate 200 Hz). All spots were first measured in MS mode

from m/z 800 to 4,000, and then, up to the 15 strongest precursors

were selected for MS/MS analysis, which was performed with

1 kV collision energy and the operating pressure of the collision

cell set to 1026 Torr. Tandem mass spectra were processed with a

4000 Series Explorer with subtract baseline enabled (peak width

50), Gaussian smoothing applied with filter width 5, minimum

signal to noise 8, local noise window width 250 m/z, minimum

peak width at full width half max 2.9 bins, cluster area signal to

noise optimization enabled (threshold 15) and flag monoisotopic

peaks enabled (generic formula C6H5NO).

Proteomic Data Analysis
A database search was performed with GPS Explorer v. 3.6 (AB

Sciex) with locally installed Mascot v. 2.1 (Matrix Science) against

the database of annotated T. vaginalis protein sequences from

TrichDB (http://trichdb.org, release-1.2, 21-Sep-2010, 119344

sequences) with trypsin digestion, methyl methanethiosulfonate

modification of cysteines and N-terminal and an e-amino group of

lysine modified with iTRAQ 4-plex reagents as fixed modifications

and methionine oxidation as the variable modification. Precursor

tolerance was set to 100 ppm, and the MS/MS fragment tolerance

was 0.2 Da. The maximum peptide rank was 1, and the minimum

ion score confidence interval (CI) per peptide was 95%. Spectra

assigned to more than one protein were not used for quantitation.

Average iTRAQ ratios and standard deviations were calculated

for each protein using all of the available treatment/control

iTRAQ pairs.

Bioinformatic searches based on protein BLAST (http://www.

ncbi.nlm.nih.gov/blast) and hidden Markov models (http://

toolkit.tuebingen.mpg.de/hhpred) were used to verify and man-

ually edit TrichDB annotations. All identified protein sequences

were analyzed using programs for subcellular localization

prediction, including PSORT II (http://psort.hgc.jp/form2.

html), TargetP (http://www.cbs.dtu.dk/services/TargetP/), Euk-

mPLoc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/)

and Yloc (http://abi.inf.uni-tuebingen.de/Services/YLoc/

webloc.cgi). The NetBeans Platform application (Hunter software)

was used to predict hydrogenosomal N-terminal targeting

sequences as described previously [25].

Results and Discussion

Identification of Hydrogenosomal Proteins by Mass
Spectrometry

To investigate changes in the T. vaginalis hydrogenosomal

proteome caused by iron limitation, trichomonads were grown in

media supplemented with 70 mM of the iron chelator 2,2-dipyridyl

(iron-restricted conditions, 2Fe). As a control, we used trichomo-

nads grown in media supplemented with ammonium ferric citrate

to a final iron concentration of 86 mM (iron-rich conditions, +Fe).

Highly purified hydrogenosomes were obtained from homoge-

nates of both cultures through differential centrifugation followed

by preparative centrifugation of the large granular fraction using a

discontinuous Optiprep (iodixanol) gradient. Ten distinct bands

with variable thickness and density were obtained under both iron

conditions. The band appearance/distribution differed between

the +Fe and -Fe conditions (Fig. 1). Western blot analyses of

fractions showed that the hydrogenosomal marker malic enzyme

was particularly enriched in fractions #7 and #8 under iron-rich

(+Fe) conditions and fractions #6 and #7 under iron-depleted

(2Fe) conditions (Fig. 1). The fraction purity was further examined

with electron microscopy (Fig. 1) and the determination of

enzymatic activities of the hydrogenosomal and lysosomal markers

malic enzyme and acid phosphatase, respectively (Fig. S1). Based

on these results, fraction #7 appeared to be the purest

hydrogenosomal fraction with the least contamination and was

therefore chosen for the comparative proteomic analysis.

Proteins in this fraction were digested and labeled using the

iTRAQ 4-plex kit. The labeled peptides were fractionated using

isoelectric focusing and analyzed using LC-MS/MS. Five inde-

pendent biological replicates were included in the analysis. Two

pairs of biological replicates were processed and measured in two

iTRAQ -LC-MS analyses, and one pair was measured in a

separate analysis. In total, we acquired over 64,000 MS/MS

spectra in 200 LC runs. The Mascot 2.1 search engine identified a

total of 631 proteins, which were then classified into functional

categories (Table S1). Spectra assigned to more than one protein

were not used for quantitation. The average ratio for each protein

was calculated from all available iTRAQ pairs. Only values

calculated using at least three pairs were included. Proteins with an

average ratio (fold change) of at least 62.0 were considered

differentially expressed.

To distinguish hydrogenosomal proteins from non-hydrogeno-

somal contamination, five different bioinformatic tools for the

prediction of subcellular localization (PSORT II, TargetP, Euk-

mPLoc 2.0, and Yloc and Hunter) were used (Table S1). A protein

was considered putatively hydrogenosomal if mitochondrial

localization was predicted by at least one of the tools. These

predictions yielded 287 putative hydrogenosomal proteins (Table

S1). In the final list of hydrogenosomal proteins (Table S2), we

excluded all proteins in categories that were not related to the

hydrogenosome and were most likely externally associated with

other organelles (cytoskeleton, histone/DNA, vacuolar proteins,

protein synthesis and modification, signaling pathways, signal

transduction and vesicle transport) [14] and proteins for which

Proteome of Trichomonas Hydrogenosome
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non-hydrogenosomal localization was confirmed experimentally

[13,26]. However, we included proteins and their paralogues that

were not recognized by the above-mentioned tools but were

experimentally identified as hydrogenosomal proteins by others

[13,14,26]. Using this approach, we selected 179 proteins (Table

S2). We used relatively stringent criteria to eliminate all probable

contaminants, and therefore, the final number of putative genuine

hydrogenosomal proteins was considerably lower than that

previously published by Schneider et al. [14]. Nevertheless, we

identified several new paralogues of known hydrogenosomal

proteins (e.g., ferredoxins, Nfu and Isd11) and proteins that had

been overlooked by previous analyses [13,14], such as frataxin and

HydE (Table S2). Altogether, of the 179 proteins identified as

likely to be hydrogenosomal, we obtained a fold change of at least

2.0 for 58 proteins; 31 of these proteins were upregulated, and 27

were downregulated under iron-deficient conditions (Table 1).

Figure 1. Isolation of hydrogenosomal fractions from T. vaginalis cells grown under iron-enriched (+Fe) and iron-depleted (2Fe)
conditions. (A) The fraction enriched in hydrogenosomes was further fractionated with an Optiprep density gradient. (B) Analysis of Optiprep
fractions by Western blotting using an antibody against hydrogenosomal malic enzyme. (C–D) Transmission electron microscopy of fraction #7,
which was chosen for proteomic analysis.
doi:10.1371/journal.pone.0065148.g001
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Iron-sulfur Cluster Assembly
Hydrogenosomes of T. vaginalis possess machinery required for

the formation of FeS clusters, which is homologous to the

mitochondrial ISC system [27–29]. Iron depletion caused the

increased expression of almost all known components involved in

hydrogenosomal ISC assembly machinery; however, some of these

components did not reach the cut-off limit (Fig. 2, Table 1). All

three detected paralogues of the scaffold protein IscA-2 and four

detected copies of Nfu scaffolds were significantly upregulated;

however, the expression of a single copy of IscU, which is believed

to act as a principal scaffold, did not show iron-dependent

regulation (Table 1). This may suggest that Trichomonas uses the

alternative scaffolds IscA and Nfu preferentially over IscU. Unlike

mitochondria, which possess two types of IscA homologues (Isa1

and Isa2), only IscA-2-encoding genes were identified in the T.

vaginalis genome [19]. Mitochondrial Isa1 and Isa2, together with

Iba57, are specifically required for the maturation of aconitase and

activation of SAM enzymes [30]. In hydrogenosomes, no

aconitase is present; nevertheless, the SAM enzyme HydE is

essential for hydrogenase maturation ([28] see below). Therefore,

one additional anticipated function of hydrogenosomal IscA-2

might be the activation of HydE. Another protein that most likely

fulfills the function of a scaffold is P-loop NTPase Ind1, which is

specifically required for the assembly of respiratory complex I in

mitochondria [32]. Four homologues of Ind1 were detected in the

hydrogenosomal proteome, which correlates with the presence of a

highly reduced (two subunit) form of complex I within the

organelle [10,33]. One of the Ind1 proteins was significantly

upregulated under 2Fe conditions. Similarly, a single homologue

of Isd11, an accessory protein of cysteine desulfurase (IscS) [34],

was significantly upregulated under 2Fe conditions, while the

upregulation of the second detected copy of this protein and IscS

itself was not significant. Consistent with the previous study of

Sutak et al. [28], our study detected only IscS-2, and IscS-1 was

not found, suggesting that only one of the two gene copies is

expressed. Of the components that act late in FeS protein

Table 1. Significantly regulated proteins in iron depleted conditions.

DOWNREGULATED UPREGULATED

Accession No. Annotation Fold change Accession No. Annotation Fold change

TVAG_230580 Pyruvate:ferredoxin oxidoreductase BI 237,4 TVAG_469020 HydG-1 10,4

TVAG_254890 Pyruvate:ferredoxin oxidoreductase E 216,9 TVAG_146780 Nfu-4 8,7

TVAG_242960 Pyruvate:ferredoxin oxidoreductase BII 213,5 TVAG_479680 2-nitropropane dioxygenase precursor 5,4

TVAG_310050 [Fe] hydrogenase-3 29,0 TVAG_451860 Nfu-3 4,7

TVAG_265760 FAD/FMN-binding family protein-4 28,8 TVAG_253630 Hsp70 mitochondrial type-3 3,5

TVAG_292710 Ferredoxin 4 26,6 TVAG_008840 Nfu-2 3,2

TVAG_064490 Rubrerythrin-1 26,4 TVAG_055320 IscA2-2 3,2

TVAG_154730 Iron-sulfur flavoprotein (ISF3) 26,3 TVAG_044500 Nfu-1. 3,1

TVAG_399860 Ferredoxin 2 25,9 TVAG_361540 IscA2-3 2,8

TVAG_198110 Pyruvate:ferredoxin oxidoreductase A 25,4 TVAG_329200 HydE-2 2,7

TVAG_049140 Superoxide dismutase [fe], putative 25,3 TVAG_282580 Conserved unknown protein 2,6

TVAG_183790 Malic enzyme F 24,8 TVAG_412560 OsmC-2 2,5

TVAG_076510 Serine palmitoyltransferase 24,2 TVAG_048590 Thioesterase family protein 2,5

TVAG_412220 Malic enzyme D. 23,8 TVAG_344280 Conserved unknown protein 2,5

TVAG_296220 Complex 1, Tvh21 23,6 TVAG_342900 Flavine reductase 2,4

TVAG_037570 [Fe] hydrogenase-2 (64 kDa) 23,3 TVAG_060450 Acetyltransferase-1 2,3

TVAG_395550 Acetate:succinate CoA transferase-3 23,2 TVAG_385350 Thioredoxin 2,3

TVAG_466790 Pyruvate:ferredoxin oxidoreductase F 23,0 TVAG_456770 IscA2-1 2,3

TVAG_181350 Conserved unknown protein 22,9 TVAG_242760 Isd11-1 2,2

TVAG_133030 Complex 1, Tvh47 22,9 TVAG_182340 Mge (GrpE) protein 21 2,2

TVAG_003900 Ferredoxin 1 22,8 TVAG_183850 Arginine deiminase 23 2,1

TVAG_416100 Malic enzyme C 22,4 TVAG_370860 Tim17/22/23C 2,1

TVAG_047890 Succinyl-CoA synthetase, alpha 22,3 TVAG_177600 Glycine cleavage system H protein 2,1

TVAG_182620 [Fe] Hydrogenase-1 (50 kDa) 22,3 TVAG_381290 Hsp20-3 2,0

TVAG_340290 Malic enzyme H 22,1 TVAG_277380 Ind-4 (P-Loop ATPase) 2,0

TVAG_104250 Hmp35 -2 22,1 TVAG_205390 HydF 2,0

TVAG_351540 FAD/FMN-binding family protein-3 22,0 TVAG_086470 Thioredoxin 2,0

TVAG_433130 Hsp70 mitochondrial type-6 2,0

TVAG_467820 Arginine deiminase -1 2,0

TVAG_318670 Succinyl-CoA synthetase, alpha 2,0

TVAG_109540 Serine hydroxymethyltransferase 2,0

doi:10.1371/journal.pone.0065148.t001
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biogenesis and ensure the transfer of the nascent FeS cluster to the

target apoprotein, two homologues of the chaperone HSP70 and

one nucleotide exchange factor Mge1 (GrpE) were significantly

upregulated under -Fe conditions.

Hydrogenosomal Hyd machinery, which consists of the three

proteins HydE, HydF and HydG, is essential for maturation of the

H cluster, the active site of [FeFe] hydrogenase [31,35].

Interestingly, one paralogue of each component was upregulated

under –Fe conditions, and moreover, HydG-1 showed the highest

fold change between the two iron conditions (Table 1).

The observed upregulation of virtually all ISC components

under iron limitation suggests the existence of a common

regulatory mechanism. Multifarious Myb-like regulatory machin-

ery has been shown to regulate the iron-dependent expression of

hydrogenosomal malic enzyme; one of the identified myb

regulatory elements was named MRE2f [16,17,36]. In our recent

study, we found the MRE2f motif in the 59untranslated regions of

IscS-2 (TVAG_239660) and IscA2 (TVAG_456770) [18], sug-

gesting that these genes might be regulated through the Myb

system. However, the mode of regulation of the remaining ISC

components remains unclear.

Energy Metabolism
Iron restriction resulted in the decreased expression of all

enzymes involved in hydrogenosomal carbohydrate metabolism.

These enzymes are encoded by multiple genes in T. vaginalis. Our

proteomic analysis detected virtually all gene products (Fig. 3,

Table 1); however, only one or several paralogues of a particular

enzyme were significantly downregulated (Table 2). Two crucial

FeS enzymes in the pathway, PFO and [FeFe]-hydrogenase, as

well as the non-FeS malic enzyme, were among the most

downregulated proteins. Three paralogues of PFO displayed

downregulation one order of magnitude higher than all of the

other proteins participating in energy metabolism (fold changes of

237.4, 216.9 and 213.5 for PFO BI, BII and E, respectively,

Table 1). Only one of the detected paralogues was significantly

downregulated in the following cases: both subunits of the

respiratory complex I remnant, acetate:succinate-CoA transferase

(ASCT) and heterodimeric succinyl-CoA synthase (SCS), of which

only the a subunit showed significant downregulation under -Fe

conditions.

Taken at face value, it appears that the above-described changes

in the expression of proteins involved in iron-sulfur cluster

assembly and energy metabolism are adaptive and aimed at

minimizing the negative effects of iron shortage. While the

pathway of hydrogenosomal pyruvate catabolism, in which

abundant FeS proteins operate, is downregulated to lower the

need for iron supply, the ISC system is strengthened, apparently to

increase the efficiency of FeS cluster formation, which is needed

for vital housekeeping proteins.

Figure 2. Proteins of the iron-sulfur cluster assembly machinery identified in this study. Gene IDs marked with an asterisk denote
proteins that were significantly regulated in response to iron availability.
doi:10.1371/journal.pone.0065148.g002
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Oxygen Detoxification System
Although T. vaginalis inhabits oxygen-poor environments, it is

well adapted to survive periods of relative aerobiosis. The parasite

possesses a number of defense mechanisms that provide protection

against oxidative damage to vulnerable cellular components,

among which the hydrogenosomal enzymes PFO and hydroge-

nase are particularly oxygen sensitive. The spectrum of proteins

that are able to play a role in hydrogenosomal oxygen and reactive

oxygen species (ROS) detoxification seems to be unexpectedly

broad [34,11,9,14]. We detected several proteins that are possibly

involved in oxygen and ROS defense whose expression was

influenced by iron availability. Two thioredoxins and one protein

with similarity to bacterial OsmC proteins were upregulated, while

rubrerythrin and superoxide dismutase were downregulated under

-Fe conditions (Table 1). Thioredoxins and thioredoxin peroxi-

dases are components of the ubiquitous peroxiredoxin system,

which provides protection against peroxides similar to bacterial-

type OsmC proteins, which are believed to act upon organic

hydroperoxides [37,38] (the function of the OsmC homologue in

T. vaginalis is nevertheless unknown). It is noteworthy that while

the above three upregulated proteins are non-Fe enzymes whose

activity is based on cysteine residues, rubrerythrin and superoxide

dismutase, which are downregulated under iron limitation, are

both Fe-containing (but not FeS cluster-containing) proteins.

In addition, one of the two detected paralogues of bacterial-type

FeS flavoproteins, which are likely involved in oxygen and

hydrogen peroxide detoxification, was also downregulated

(Table 1). In contrast, flavodiiron oxygen reductase, the terminal

oxidase of the hydrogenosome [12], was not affected under -Fe

conditions.

The Differential Regulation of Paralogous Gene
Expression

The iron-dependent changes in the level of hydrogenosomal

proteins determined in this study corresponded well with previous

transcriptomic investigations of iron-dependent gene expression

based on DNA microarray (TvArray V2.0) and comparative EST

analyses (Fig. 4) [18]. The only exception observed was the a-SCS

subunit (TVAG 318670), which was significantly upregulated at

the proteomic level but downregulated with the EST approach

under -Fe conditions. Importantly, the proteomic analysis

extended the list of iron-regulated hydrogenosomal proteins, as a

limited set of hydrogenosomal protein-coding transcripts was

detected by DNA microarray and/or identified among T. vaginalis

ESTs [18]. The proteomic analysis also confirmed and further

elaborated a previous striking observation [18]; i.e., the differential

regulation of individual copies of multi-member gene families, with

some paralogues being regulated in response to changed iron

Figure 3. Proteins of hydrogenosomal energy metabolism identified in this study. Gene IDs marked with an asterisk denote proteins that
were significantly regulated in response to iron availability.
doi:10.1371/journal.pone.0065148.g003
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concentration and others unaffected. For example, seven distinct

paralogues of [2Fe-2S] ferredoxin ensure electron transport in T.

vaginalis hydrogenosomes. Three of the paralogues (ferredoxin 1, 2

and 4) showed significant downregulation under -Fe conditions,

while three paralogues (ferredoxin 3, 6, and 7) appeared to be

upregulated, although their fold changes did not reach the cut-off

limit (Table S1). It could be speculated that ferredoxins share the

trend of regulation with the pathway in which they are involved.

Therefore, we suggest that downregulated ferredoxin paralogues

are involved in energy metabolism, while those that are

upregulated may participate in ISC assembly. For the hydrogenase

maturase HydG, the HydG-1 paralogue displayed high upregula-

tion, with a fold change of 10.4, while the other paralogue HydG-2

showed insignificant downregulation, with a fold change of -1.6

under -Fe conditions. The observed difference in the expression of

HydG paralogues may reflect their different functions or

requirement for different environmental signals. Indeed, the

differential expression of individual genes of multigene families

was reported for T. vaginalis upon interaction with fibronectin [39].

For example, there are seven paralogues of thioredoxin perox-

idases in the T. vaginalis genome [19]; of these, a single paralogue,

TVAG_484570, was shown to be upregulated in parasites bound

to fibronectin [39], while two different paralogues (TVAG_038090

and TVAG_455310) were significantly upregulated in cells grown

under -Fe conditions (Table S1). Previous genome analyses

revealed that the majority of T. vaginalis genes, including those

coding for hydrogenosomal proteins, are present in multiple copies

[13,14,19]. Although the reason for expansion of the T. vaginalis

genome is not clear, it is tempting to speculate that gene

multiplication together with an ability of the parasite to regulate

individual genes upon different environmental stimuli provided an

advantage to the parasite in its efficient response to continuous

challenges in the host environment caused by factors such as the

immune system, physiological changes during the menstrual cycle,

iron availability and adverse microbial community.

In conclusion, the combination of transcriptomic [18] and

proteomic data from trichomonads cultivated under different iron

conditions presented in this work provides a basis for the study of

the iron-dependent expression of individual genes that belong to

multigene families, which apparently plays an important role in T.

vaginalis cells living in rapidly changing environments.

Supporting Information

Figure S1 Enzymatic activities of hydrogenosomal
marker malic enzyme and lysosomal marker acid

Figure 4. Comparison between iron-regulated proteins determined with the proteomic approach and the expression of
corresponding genes studied by DNA microarrays and comparative EST analysis [18]. Red square, significant upregulation under high
iron; pink square, insignificant upregulation under high iron; green square; significant upregulation under low iron; light green square, insignificant
upregulation under low iron; empty square, no change in the transcript level; black square, a gene that was not included in the analysis.
doi:10.1371/journal.pone.0065148.g004
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phosphatase in subcellular fractions from Optiprep
density gradient from iron rich and iron depleted
culture.
(TIF)

Table S1 Complete list of proteins identified in the
hydrogenosomes of Trichomonas vaginalis including
likely contaminants, putative membrane proteins and
hypothetical proteins.
(XLS)

Table S2 Bona fide hydrogenosomal proteins including
putative membrane proteins.

(XLS)
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18. Horváthová L, Safarı́ková L, Basler M, Hrdy I, Campo NB, et al. (2012)
Transcriptomic identification of iron-regulated and iron-independent gene

copies within the heavily duplicated Trichomonas vaginalis genome. Genom Biol
Evol 4(10): 1017–29.

19. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. (2007) Draft
genome sequence of the sexually transmitted pathogen Trichomonas vaginalis.

Science (New York, NY) 315: 207–212.

20. De Jesus JB, Ferreira MA, Cuervo P, Britto C, e Silva-Filho FC, et al. (2006)
Iron modulates ecto-phosphohydrolase activities in pathogenic trichomonads.

Parasitol Int 55: 285–290.

21. De Jesus JB, Cuervo P, Junqueira M, Britto C, Silva-Filho FCE, et al. (2007) A

further proteomic study on the effect of iron in the human pathogen Trichomonas

vaginalis. Proteomics 7: 1961–1972.
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Abstract

Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic

protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection,

proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened

iron-regulated genes using an oligonucleotide microarray for T. vaginalis and by comparative EST (expressed sequence tag) sequen-

cing of cDNA libraries derived from trichomonads cultivated under iron-rich (+Fe) and iron-restricted (�Fe) conditions. Among

19,000 ESTs from both libraries, we identified 336 iron-regulated genes, of which 165 were upregulated under +Fe conditions

and 171 under�Fe conditions. The microarray analysis revealed that 195 of 4,950 unique genes were differentially expressed. Of

these, 117 genes were upregulated under +Fe conditions and 78 were upregulated under �Fe conditions. The results of both

methods were congruent concerning the regulatory trends and the representation of gene categories. Under +Fe conditions, the

expression of proteins involved in carbohydrate metabolism, particularly in the energy metabolism of hydrogenosomes, and in

methionine catabolism was increased. The iron–sulfur cluster assembly machinery and certain cysteine proteases are of particular

importance among the proteins upregulated under �Fe conditions. A unique feature of the T. vaginalis genome is the retention

during evolution of multiple paralogous copies for a majority of all genes. Although the origins and reasons for this gene expansion

remain unclear, the retention of multiple gene copies could provide an opportunity to evolve differential expression during growth in

variable environmental conditions. For genes whose expression was affected by iron, we found that iron influenced the expression of

only some of the paralogous copies, whereas the expression of the other paralogs was iron independent. This finding indicates a very

stringent regulation of the differentially expressed paralogous genes in response to changes in the availability of exogenous nutrients

and provides insight into the evolutionary rationale underlying massive paralog retention in the Trichomonas genome.

Key words: gene duplication, iron, microarrays, EST analysis.

Introduction

Gene duplications are important in evolution (Lynch and

Conery 2000), and no genome has more recently duplicated

genes than the parasitic flagellate Trichomonas vaginalis, the

causative agent of trichomoniasis (Carlton et al. 2007; Cui

et al. 2010). Trichomoniasis is the most common sexually

transmitted infection of nonviral origin in humans. Although

trichomoniasis is usually self-limiting in males, it causes serious

health problems for female patients, including an increased

risk of cervical cancer, pelvic inflammatory disease, infertility,

and transmission of the HIV (Laga et al. 1993; Zhang and Begg

1994; Viikki et al. 2000; Moodley et al. 2002). Trichomoniasis

during pregnancy is associated with low birth weight, the

GBE
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premature rupture of membranes and preterm birth (Cotch

et al. 1997). The establishment of a T. vaginalis infection as

well as infections by other pathogenic microorganisms is

dependent on the efficient acquisition of essential nutrients

such as iron, from the host environment. Trichomonads

can utilize various host iron-containing proteins such as lacto-

ferrin, transferrin, ferritin, hemoglobin, and low-molecular-

weight-iron complexes (Sutak et al. 2008). Iron is required

for critical housekeeping functions such as proteosynthesis,

genome duplication, and energy fixation. A significant portion

of the trichomonad energy metabolism takes place in

hydrogenosomes, whose function is particularly dependent

on iron (Gorrell 1985; Vanácová et al. 2001). These specific

mitochondria-related organelles contain a number of FeS pro-

teins that catalyze key steps in ferredoxin-linked electron

transport, hydrogen production, and ATP synthesis at the

level of substrate phosphorylation (Hrdy et al. 2004). The for-

mation of FeS clusters in the catalytic centers of apoproteins is

mediated by the hydrogenosomal iron–sulfur cluster (ISC) as-

sembly machinery, which consists of approximately 10 pro-

teins, of which cysteine desulfurase (IscS) and the molecular

scaffold protein IscU are the main components (Tachezy et al.

2001; Sutak, Dolezal, et al. 2004. Iron is also required for the

functions of cytosolic and nuclear FeS proteins such as Rli1p,

which is a protein essential for ribosome biogenesis and func-

tion (Kispal et al. 2005; Yarunin et al. 2005). This protein is

highly conserved in eukaryotes, including T. vaginalis (Smı́d

et al. 2008).

In addition to housekeeping functions, iron affects specific

host–pathogen interactions associated with the virulence of

the parasite. Experiments performed in vitro have shown that

iron regulates the cytoadherence of T. vaginalis to target cells

(Mundodi et al. 2006) as well as the expression of cysteine

proteinases (Sommer et al. 2005; Solano-González et al.

2007; Kummer et al. 2008), ecto-ATPases and ecto-phosphat-

ases (De Jesus et al. 2006), and it increases trichomonad re-

sistance to complement-mediated lysis (Alderete et al. 1995).

Iron-dependent enhancement of experimental infections in

mice was demonstrated with the related bovine parasite

Tritrichomonas foetus (Kulda et al. 1999). However, little is

known about the mechanisms underlying the iron-dependent

regulation of these processes. Positive iron regulation at the

transcriptional level was observed for the expression of some

hydrogenosomal proteins, including malic enzyme (ME) and

pyruvate:ferredoxin oxidoreductase (PFOR) (Vanácová et al.

2001). A detailed study of the iron-dependent regulation of

hydrogenosomal ME, which may alternatively be present on

the cell surface as the adhesin (AP65–1) (Hirt et al. 2007), led

to the identification of Myb recognition elements and novel

Myb proteins that appear to be components of a multifarious

regulatory machinery in T. vaginalis (Ong et al. 2006, 2007).

Two cysteine proteases, TVCP4 and TVCP12, were recently

reported to be regulated at the posttranscriptional level by

an iron-responsive element/iron response protein-like system

(Solano-González et al. 2007; Torres-Romero and Arroyo

2009).

We combined cDNA microarray analysis with an expressed

sequence tag (EST) approach to map iron-regulated genes and

to reconstruct iron-regulated pathways in T. vaginalis. Our

data revealed numerous iron-responsive genes that are

involved in several essential pathways, particularly in cytosolic

glycolysis and extended glycolysis in hydrogenosomes, as well

as genes that encode components of the FeS cluster assembly

machinery. Moreover, iron affected the expression of many

genes with unknown functions.

Materials and Methods

Cell Cultures

Axenic cultures of T. vaginalis strain T1 were grown in trypti-

case–yeast extract–maltose medium supplemented with 10%

heat-inactivated horse serum, pH 6.2 (Diamond 1957). Iron-

rich medium (+Fe) and iron-restricted medium (�Fe) were

supplemented with 100mM Fe-nitrilotriacetate; and 50mM

2-2-dipyridyl (Sigma), respectively. The cells were subcultured

daily in +Fe and �Fe media for 5 days prior to experiment.

cDNA Library Construction and DNA Sequencing

RNA isolation kit (Pharmacia) was used to extract the total

RNA from cells grown under +Fe and �Fe conditions, and

contaminating genomic DNA was digested with DNase I.

PolyA+ RNA was isolated using a PolyA+ tract mRNA isolation

kit (Promega). Complementary DNA was synthesized using a

ZAP–cDNA synthesis kit after priming with oligo-dT. The cDNA

was then directionally cloned into the EcoRI and XhoI sites of

the Uni-ZAP XR vector (Stratagene). Single and well-separated

plaques were cored out from agar plates and transferred to

96-well microtiter plates containing SM buffer. The phage

stocks were used as templates for cDNA insert amplification

with T3 and T7 primers (1 nM for each primer). The amplified

products were separated in 1.5% agarose gels, and clones

that yielded single polymerase chain reaction (PCR)-amplified

bands were collected for sequencing. Single-pass sequencing

from the 50-end of the cDNA insert was initiated with a T3

primer using the ABI PRISM BigDye Terminator Cycle Sequen-

cing Kit (Applied Biosystems). The sequencing products were

resolved and analysed on an ABI PRISM 377 (Applied Biosys-

tems) or a MEGABACE DNA Sequencer (GE). The nucleotide

sequences obtained were processed with the Phred/Phrap/

Consed package (http://www.phrap.org/phredphrapconsed

.html).

Functional Annotations and Sequence Analysis

BLAST tools were used to compare the assembled sequence

contigs to known Trichomonas mRNAs, putative open-read-

ing-frames from the T. vaginalis G3 genome (Carlton et al.

2007) and NCBI’s nonredundant (nr) nucleotide (E value¼
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10�15) and protein database. Genes were functionally anno-

tated based on the Interpro and Gene Ontology databases.

Contigs with identity greater than 60% of their length were

annotated and assigned to KEGG pathways.

Putative coding regions from the EST data were collected

from BLASTX alignments, and the codon usage bias was cal-

culated. A Perl script was also written to locate poly-A tails and

to search 10–35 bp upstream for putative mRNA poly-adeny-

lation signals; the script allowed one mismatch and two

mismatches from the sequence AAUAAA. Putative signal se-

quences and transmembrane domains in the coding regions

were identified by SignalP 3.0 and TMHMM 2.0 (http://www

.cbs.dtu.dk/services/), respectively. Putative Trichomonas pro-

tein kinases and peptidases were identified by sequence com-

parison with datasets downloaded from the KinBase (http://

www.kinase.com) and the MEROPS (http://merops.sanger.ac

.uk) databases, respectively.

Microarray Sample Preparation

RNA from trichomonads grown in +Fe and �Fe conditions

was isolated using a QuickPrep Total RNA Extraction Kit

(Amersham Biosciences) according to the manufacturer’s in-

structions. The total RNA was further purified using an RNeasy

CleanUp Kit (Qiagen). The RNA concentration and purity were

determined using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies). The integrity of the RNA was

checked by agarose gel electrophoresis. The same RNA sam-

ples were used in parallel experiments for cDNA microarray

analysis and quantitative real-time PCR (qRT-PCR). cDNA

probes were synthesized using 2mg of total RNA and primers

labeled with Cy3 and Cy5, respectively, according to the

manufacturer’s instructions (3DNA Array 900 Expression

Array Detection Kit, Genisphere). Four independent RNA sam-

ples (biological replicates) from T. vaginalis strain T1 grown

under +Fe and �Fe conditions were compared. A dye–swap

design was used to prevent dye-associated effects on cDNA

synthesis.

Microarray Analysis

A T. vaginalis customized cDNA microarray (TvArray V2.0) was

implemented by the Molecular Regulation and Bioinformatics

Laboratory, Chang Gung University, Taiwan. The TvArray chip

contained PCR products amplified from 7,688 EST clones with

an average GC content of 38.36% and an average length of

384 bp. The cDNA inserts were fabricated on GAPSTM II

Coated Slides (Corning. USA). The microarrays were prehy-

bridized in Coplin chambers using a solution containing 1%

bovine serum albumine, 1% sodium dodecyl sulfate, and 3X

saline sodium citrate buffer (1X SSC consists of 0.15 M NaCl

with 0.015 M sodium acetate). The slides were incubated at

50�C for 30 min, washed with water and isopropanol and

dried by centrifugation at 90�g for 3 min. Hybridization

with the cDNA hybridization mix and washes were performed

following the protocol for the 3DNA Array 900 Expression

Array Detection Kit (Genisphere). cDNA hybridizations were

performed in a VersArray Hybridization Chamber (Bio-Rad) at

60�C overnight. Hybridizations with fluorescent 3DNA re-

agents were performed in the same chamber at 60�C for

4 h. After the final washing step, the slides were dried by

centrifugation at 90� g for 3 min and scanned using the

GenePix 4200A scanner (Axon). GenePix Pro 5.1 software

was used to determine the average signal intensity and the

local background for each spot. The Cy3/Cy5 fluorescence

ratios were Log 2 transformed and normalized by LOWESS

normalization method in the TIGR microarray data analysis

system version 2.19 (Saeed et al. 2003). In total, 10 independ-

ent hybridizations using samples from 4 independent cultures

and RNA extractions were performed and data of the inde-

pendent experiments were combined. We used MeV v4.8.1

to determine significantly regulated genes. One-class Student

t test was performed and P values were based on all 1,024

possible permutations (cut-off was 0.01) and the proportion

of false significant genes was set to not exceed 10 genes.

The results of all experiments are available in the Array-

Express database (http://www.ebi.ac.uk/arrayexpress/) under

the array design name TvArray v1.0.

qRT-PCR Analysis

Oligonucleotide primers (supplementary table S1, Supplemen-

tary Material online) were designed using Primer Designer

software v1.01 (Scientific and Education software). The pri-

mers were tested prior to qRT-PCR analysis using DNA as a

template, and single amplicons of the proper size were

sequenced. The RT reaction contained 1mg of total RNA,

500 ng of Oligo(dT) 15 Primer (Invitrogen), 5 mM DTT

(Invitrogen), 2 U of RNasin (Invitrogen), 10 U of SuperScriptII

reverse transcriptase (Invitrogen), and 500mM each of dATP,

dCTP, dGTP, and dTTP. The reactions were incubated at 42�C

for 50 min followed by 15 min at 70�C. For qRT-PCR, 1ml of

cDNA was amplified in a 25ml reaction mixture containing

each gene-specific primer at 50 nM and 12.5ml of iQTM

SYBR green Supermix (Bio-Rad). All reactions were performed

in triplicate using a RotorGene 2000 Real-Time PCR cycler

(Corbett Life Science). The expression levels of each gene

were normalized to those of the housekeeping gene b-tubu-

lin, expression of which is not affected by the availability of

iron. Relative quantitative values were obtained by the com-

parative threshold cycle (2���C
T) method as described by

(Livak and Schmittgen 2001).

Analysis of 50 Untranslated Regions

An application based on the NetBeans Platform (http://plat

form.netbeans.org) was developed to search for MRE-like

motifs in 300 bp of the upstream regions of all iron-regulated

genes. We searched for the MRE eukaryotic consensus (C/T)

AACG(G/T) and the specific MREs of the ME gene as described
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by Hsu et al. (2009): MRE1/MRE2r (A[A/T/C/G]AACGAT, CGA

TA, AACGATA, and TAACGA) and MRE2f (TATCGT and TAT

CGTC).

Results and Discussion

Microarray Analysis

To investigate changes in gene expression caused by iron avail-

ability, trichomonads were grown in media supplemented

with 100mM Fe-nitrilotriacetate (iron-rich conditions, +Fe) or

with the iron chelator 2,2-dipyridyl (50mM; iron-restricted

conditions, �Fe). To estimate timeframe for cultivation prior

to RNA isolation, we monitored enzymatic activities of PFOR

and ME (Rasoloson et al. 2002) as their expression is known to

be affected by iron availability in trichomonads (Vanácová

et al. 2001). The activities of both enzymes decreased

during 24 h cultivation under �Fe conditions and then

remained stable (supplementary fig. S1, Supplementary Mate-

rial online). Thus, to assure ultimate effect of iron on tricho-

monads, we cultivated the cells for 5 days under +Fe/�Fe

conditions prior to each experiment. The total RNA was

then isolated from both treatment groups and hybridized

onto DNA microarray slides containing PCR products amplified

from 7,688 EST clones representing 4,950 unique T. vaginalis

genes. A direct pairwise comparison strategy was used to

identify differentially expressed genes. Altogether, 10 inde-

pendent hybridizations were performed using samples from

four independent experiments. Genes whose expression ratios

changed by a factor of at least 1.3 and had P values lower

than 0.01 were considered to be significantly regulated by

iron. In total, 195 genes met this criterion that represent ap-

proximately 4% of unique genes; 117 and 78 genes were

upregulated in cells cultivated under +Fe and �Fe conditions,

respectively (fig. 1 and supplementary table S2a, Supplemen-

tary Material online). The distribution of genes into fold

change categories is given in supplementary table S2b, Sup-

plementary Material online. The complete dataset including

genes expression of which was not affected by iron was de-

posited in the ArrayExpress database (http://www.ebi.ac.uk/

arrayexpress/) under the array design name TvArray v1.0.

To verify the cut-off limit and to validate the microarray

data, we selected 15 genes for qRT-PCR analyses. The selec-

tion included genes that were not affected by iron (ferredoxin

6, IscS-2), genes with moderate changes in expression (�1.42-

to 1.67-fold change) and genes with a greater than 2-fold

change in expression (hydrogenase, alcohol dehydrogenase,

and PFOR) according to the microarray data (table 1). In each

instance, the qRT-PCR confirmed regulation trends observed

in the microarray analysis. The ratios between paired samples

(fold change) determined by qRT-PCR were, however, greater

than the fold change obtained for the same gene by micro-

array analysis. These results are consistent with those of Yuen

et al. (2002) and Dallas et al. (2005), who showed that

microarray analysis underestimates the changes in gene ex-

pression compared with the more qRT-PCR assay, although

correlations between microarray and qRT-PCR data are gen-

erally strong. The list of genes that met the cut-off limit 1.3 in

our study included majority of genes coding for proteins that

were showed previously to be affected by iron on protein level

in T. vaginalis and related parasite T. foetus such as PFOR,

hydrogenosomal ME, hydrogenase, ferredoxin, cytosolic

malate dehydrogenase, and cysteine protease (Vanácová

et al. 2001; De Jesus et al. 2007; Dolezal et al. 2007) that

further supports validity of the microarray analysis.

Comparative EST Analysis

As a second technique to identify differentially expressed

genes, we employed a comparative EST approach (Lee et al.

1995). 10,042 and 9,032 ESTs were sequenced from two

distinct cDNA libraries that were derived from trichomonads

grown under +Fe and �Fe conditions, respectively. The rela-

tive frequency (RF) of an EST was calculated as the number of

ESTs per 10,000 clones. The upregulation index was calcu-

lated as the difference between the RF under +Fe conditions

and the RF under �Fe conditions. The distribution of unique

genes to upregulation index categories is summarized in sup-

plementary table S2d, Supplementary Material online. The

upregulation index values ranged from 1 to 70, which was

considerably higher than the range of the fold change based

on microarray analysis. Consequently we used higher cut-off

limit: a gene was considered to be significantly upregulated if

the upregulation index was greater than or equal to five. This

criterion met 336 genes (�5%) out of a total number of

6,381 unique genes that were generated by the assembly of

the ESTs. Of those genes, 165 were upregulated under +Fe

conditions, and 171 were upregulated under �Fe conditions

(supplementary table S2c, Supplementary Material online). A

representation of the gene categories that were affected by

iron availability is shown in figure 2.

Major Iron-Regulated Pathways

Glycolysis

The energy metabolism of T. vaginalis relies on fermentative

carbohydrate catabolism in the cytosol that is extended to

malate or pyruvate degradation in the hydrogenosome

(Müller et al. 2012). At least one (but usually several) of mul-

tiple gene copies encoding glycolytic proteins showed signifi-

cant iron-dependent regulation (fig. 3 and supplementary

table S3, Supplementary Material online), with similar results

obtained from both methods (microarray and EST analysis).

The enzymes that supply the glycolytic pathway with sub-

strates (glucokinase, glycogen phosphorylase, and phospho-

glucomutase) and the successive glycolytic enzymes were

significantly upregulated under +Fe conditions. A striking

exception was the upregulation of one of the four detected

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes
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α

A B

FIG. 1.—Heatmap visualization of iron-regulated genes based on microarray analysis. Results of 10 experiments are given in columns A–J. (A) genes

upregulated in +Fe conditions; (B) genes upregulated in �Fe conditions.
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(TVAG_366380) under �Fe conditions according to the EST

analysis, as the other three GAPDH genes were upregulated

under +Fe conditions (fig. 3 and supplementary table S3,

Supplementary Material online). It is tempting to speculate

that GAPDH TVAG_366380 gene copy encodes protein

with the function distinct from other paralogs.

Multifunctional character of GAPDH was reported in macro-

phages where GAPDH serves as a surface receptor that is

upregulated upon iron depletion (Rawat et al. 2012).

Interestingly, T. vaginalis possesses two types of phosphofruc-

tokinase (PFK) (Liapounova et al. 2006) Inorganic pyrophos-

phate (PPi)-dependent PFK catalyzes reversible

phosphorylation of fructose-6-phosphate in the cytosol

(Mertens et al. 1998). More recently, putative

ATP-dependent PFK has been identified in proteome of hydro-

genosomes (Rada et al. 2011). Two of the three genes that

encode the PPi-dependent PFK and one of two genes for the

ATP-dependent PFK were upregulated under +Fe conditions

(supplementary table S3, Supplementary Material online). The

most significant changes in iron-dependent gene expression

were associated with the pathways that follow the conversion

of phosphoenolpyruvate (PEP), the branch-point of carbohy-

drate metabolism. The enzymes that catalyze the formation of

malate from PEP via oxaloacetate (PEP carboxykinase and

malate dehydrogenase) were considerably upregulated

under +Fe conditions (fig. 3). In contrast, the pathway that

converts malate to lactate was upregulated under �Fe condi-

tions. This pathway involves cytosolic NADP-dependent ME

and NADH-dependent lactate dehydrogenase (fig. 3). These

findings indicate that under +Fe conditions, malate

preferentially enters the hydrogenosome and serves as a sub-

strate for hydrogenosomal energy metabolism. However,

under �Fe, when hydrogenosomal metabolism is ceased,

malate is metabolized in the cytosol via pyruvate to lactate.

Thus, the ability to switch between hydrogenosomal and cyto-

solic malate metabolism seems to be important for the ability

of trichomonads to quickly adapt to changes in iron availability

in their environment. Similar changes in carbohydrate metab-

olism were reported in T. vaginalis that had impaired hydro-

genosomal metabolism because of the induction of

metronidazole resistance (Kulda et al. 1993).

Besides lactate, T. vaginalis also produces low amount of

ethanol (Cerkasovová et al. 1986). In our dataset, we identi-

fied two types of alcohol dehydrogenases (ADHs) that differ in

the metal ion present in the active site of the enzyme. Notably,

four of five genes coding for the iron-containing ADH were

upregulated under +Fe conditions, whereas one gene was

upregulated under �Fe conditions together with one of two

genes coding for the zinc-containing ADH (fig. 3). In the

related organism T. foetus, acetaldehyde that is reduced by

ADH to ethanol is formed from pyruvate by the enzyme pyru-

vate decarboxylase (Sutak, Tachezy, et al. 2004). However,

pyruvate decarboxylase activity was not detected in T. vagina-

lis, and the gene encoding this enzyme was not identified in

the genome (Carlton et al. 2007). Thus, the pathway respon-

sible for the formation of acetaldehyde remains unclear.

Hydrogenosomal Energy Metabolism

Iron increased the transcription of all critical enzymes in hydro-

genosomal carbohydrate catabolism; at least one copy of each

gene was significantly upregulated (fig. 4 and supplementary

table S3, Supplementary Material online). PFOR and ME,

which are the enzymes that catalyze the oxidative decarboxyl-

ation of the hydrogenosomal substrates pyruvate and malate,

respectively, were the most highly upregulated enzymes of

the pathway. Three genes encoding PFOR (PFOR-A, BI and

BII) displayed the highest upregulation observed in the micro-

array analysis (4.01, 3.71, and 3.64, respectively), and also had

high upregulation scores determined by the EST analysis (32,

18, and 9, respectively) (supplementary table S2a and c, Sup-

plementary Material online). The gene coding for ME-H was

the most highly upregulated according to the EST analysis,

with an upregulation index value of 63 (supplementary

table S2c, Supplementary Material online). The re-oxidation

of NADH resulting from ME activity is mediated by heterodi-

meric NADH dehydrogenase (remnant of respiratory complex

I). The 51 kDa subunit of this enzyme was significantly upre-

gulated under +Fe conditions according to EST analysis, but

the upregulation of the 24 kDa subunit did not reach the cut-

off limit. Electrons generated by PFOR are transferred via fer-

redoxin to the hydrogenase responsible for the synthesis of

molecular hydrogen. The genes that code for ferredoxin-1 and

the 64 kDa [Fe]-hydrogenase were upregulated under +Fe

Table 1

Fold Changes Detected by qRT-PCR in Comparison with Results of

Microarray Analysis

TrichDB 1.2

Accession No.

Annotation Microarrays

Upregulation

Rate*

Fold Change

Detected by

qRT-PCR**

TVAG_239660 IscS-2 NSC NSC

TVAG_251200 Ferredoxin 6 NSC NSC

TVAG_129940 IBP39 1.11 1.88

TVAG_348330 Glycogen phosphorylase 1.24 1.95

TVAG_281070 Phosphofructokinase 1.31 4.62

TVAG_292710 Ferredoxin 4 1.33 2.89

TVAG_104250 Hmp-35-2 1.56 2.28

TVAG_238830 Malic enzyme B 1.67 2.51

TVAG_198110 PFO A 4.01 24.96

TVAG_037570 Iron hydrogenase 64 kDa 2.48 109.64

TVAG_422780 Alcohol dehydrogenase 2.57 31.44

TVAG_165030 Malate dehydrogenase �1.33 �1.62

TVAG_381311 Lactate dehydrogenase �1.81 �5.02

TVAG_361540 IscA-2 �1.36 �2.26

TVAG_008840 NfU-2 �1.42 �1.47

NOTE.—NSC, no significant change of gene expression.

*P� 0.01.

**P� 0.05.
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conditions. Finally, the acetyl-CoA that is generated by PFOR

activity is used in two steps of ATP synthesis: the reactions

catalyzed by acetate:succinate-CoA transferase (ASCT) and

heterodimeric succinyl-CoA synthase (SCS). One of the four

ASCT genes and all of the genes that encode SCS subunits

showed significant upregulation under +Fe conditions.

FeS Cluster Assembly

The biosynthesis of the ISCs that are necessary for the matur-

ation of FeS proteins is an indispensable process that occurs in

the hydrogenosomes of T. vaginalis. In contrast to the com-

ponents of energy metabolism, the ISC assembly machinery

appeared to be upregulated under �Fe conditions (fig. 4 and

supplementary table S3, Supplementary Material online). Our

screen detected genes that encode two paralogs of the

scaffold protein IscA, three Nfu paralogs, and the cysteine

desulfurase IscS-2. Frataxin was previously shown to be

upregulated under �Fe conditions using a nuclear run-on

assay (Dolezal et al. 2007). This trend was also observed in

our analysis, but the cut off limit was not reached (EST upre-

gulation index�2). Interestingly,�Fe conditions also caused a

significant increase in the expression of the hydrogenase

maturase (Hyd–G) that is required for the assembly of the

hydrogenase-specific H cluster (Putz et al. 2006). Altogether,

these results suggest a common regulatory mechanism for the

genes that encode the multiple components of the ISC assem-

bly machinery that are upregulated under�Fe conditions. This

regulation might be related to the sensing of an increased

cellular demand for FeS cluster synthesis during �Fe

conditions.

Hydrogenosomal Membrane Proteins

Hydrogenosomes are surrounded by two membranes that

possess a specific set of proteins that facilitate the exchange
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FIG. 2.—Classification of iron-regulated genes by functional category. Numbers of genes that were upregulated under iron-rich (+Fe) and iron-restricted

(�Fe) conditions. Results of microarray and EST analysis are represented by open and hatched bars, respectively. Color code of functional categories is given

in the legend.
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of metabolites between the cytosol and organelles. We de-

tected four hydrogenosomal membrane proteins [two Hmp35

and two ADP/ATP carriers (AACs)] that were differentially

expressed in response to iron availability (supplementary

table S3, Supplementary Material online). Hmp35, which is

a unique form of a b-barrel protein that is localized to the

outer hydrogenosomal membrane, was significantly upregu-

lated under +Fe conditions. Hmp35 is a cysteine-rich protein

with the cysteine residues clustered near the C terminus,

where they form a metal-binding motif (Dyall et al. 2003;

Rada et al. 2011). These structural properties, together with

the observed upregulation of the protein under +Fe condi-

tions, allow us to speculate that Hmp35 may be involved in

iron transport. Five members of the mitochondrial carrier pro-

tein family (MCF) that serve as AACs in the inner

hydrogenosomal membrane have been identified (Dyall

et al. 2000; Rada et al. 2011). In this study, two of these

proteins showed significant iron-dependent regulation:

AAC-1 was upregulated under �Fe conditions, whereas

AAC-2 was upregulated under +Fe conditions (fig. 4 and sup-

plementary table S3, Supplementary Material online). As

described earlier, active hydrogenosomal energy metabolism

is dependent on iron. Under these conditions, a portion of the

ATP synthesized in the hydrogenosomes is directly used by

processes such as ISC assembly and HSP-70–dependent pro-

tein transport and maturation. Some ATP could also be ex-

ported by AACs to the cytosol in exchange for ADP as in

mitochondria. However, ATP is also required for hydrogeno-

somal functions under iron-limiting conditions when the ex-

pression of enzymes necessary for ATP synthesis is ceased.
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Thus, ATP might be imported from the cytosol by AACs. The

expression of AAC-1 is increased under�Fe conditions, which

renders it the most likely candidate for the transportation of

ATP into hydrogenosomes.

Amino Acid Metabolism

The arginine dihydrolase pathway contributes to energy me-

tabolism in T. vaginalis (Yarlett et al. 1996). Two components

of the pathway, ornithine carbamoyltransferase and carba-

mate kinase, were significantly upregulated under +Fe condi-

tions (supplementary table S3, Supplementary Material

online), whereas arginine deiminase, which was recently

shown to be localized in hydrogenosomes (Morada et al.

2011), was not regulated by iron availability.

Methionine can be directly degraded to a-ketobutyrate,

ammonia, and thiols or converted to homocysteine. These

two metabolic pathways appear to be regulated by iron in

opposing manners. Methionine degradation is catalyzed by

the unique enzyme methionine g-lyase (McKie et al. 1998).

We found that one of the two genes that encode this enzyme

was upregulated under +Fe conditions. In contrast, genes that

encode three components of the homocysteine-forming path-

way (methionine adenosyltransferase, S-adenosyl methionine-

dependent methyltransferase, and S-adenosyl homocysteine

hydrolase) appear to be upregulated under �Fe conditions

(fig. 5 and supplementary table S3, Supplementary Material

online).

Proteases

Multiple proteinases have been found in T. vaginalis (Carlton

et al. 2007), and many of them have been implicated in the

virulence of the parasite (Dailey et al. 1990; Ramon-Luing et al.

2010). The expression of 16 genes coding for cysteine prote-

ases and metallopeptidases was found to be regulated by iron,

and 9 of these genes were upregulated under�Fe conditions

(supplementary table S3, Supplementary Material online). De

Jesus et al. (2007) used comparative proteomics to show that

CP3 and the legumain-like cysteine proteinase-1(LEGU1) are

downregulated under �Fe conditions, and their results are

consistent with upregulation of these proteins that we

observed with EST under +Fe conditions. Kummer et al.

(2008) isolated an extracellular protein fraction from T. vagi-

nalis that they called CP30 and that contained CP2, CP3, CP4,

and CPT, and they demonstrated that trichomonads grown

under �Fe conditions had increased CP30 fraction protease

activity. These results are consistent with the increased tran-

scription of CP2 observed in our experiments (supplementary

table S3, Supplementary Material online), whereas opposite

trend we obtained for CP3 and CPT (supplementary table S3,

Supplementary Material online).
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Regulation of Transcription

Proteins that are involved in the regulation of transcription

and translation, including ribosomal proteins and proteins

that affect DNA metabolism, constitute approximately 10%

of the iron-regulated genes (fig. 2 and supplementary table

S3, Supplementary Material online). Of particular interest are

the Myb-like transcription factors, which are exceptionally

abundant in the T. vaginalis genome and have been suggested

to be major regulators of gene transcription (Hsu et al. 2009).

In our dataset, we detected the expression of 97 Myb-like

DNA-binding proteins, five of which were significantly regu-

lated by iron. One gene was upregulated under +Fe condi-

tions, and four genes were upregulated under�Fe conditions

(supplementary table S3, Supplementary Material online). To

date, four T. vaginalis Myb-like proteins have been chara-

cterized (Ong et al. 2006, 2007; Hsu et al. 2009; Smith

et al. 2011). It was demonstrated that the temporal and

iron-inducible transcription of the ME is regulated by the syn-

ergistic or antagonistic actions of three proteins that can se-

lectively bind to two discrete Myb protein recognition sites in

the 50-untranslated regions (5’-UTR) of the ME gene. Myb1

and Myb2, that play the roles of a repressor and an activator,

respectively, are able to bind to both sites with affinities that

differ over time and according to iron availability (Ong et al.

2006, 2007). Myb3 activates basal and prolonged iron-indu-

cible transcription by binding solely to the MRE1 site (Hsu et al.

2009). In the T. vaginalis genome, there are three genes that

encode Myb-3-like proteins, and all three products contain

conserved base-contacting amino acids. Hsu et al. (2009)

showed that the gene copy TVAG_475500 is upregulated

under +Fe conditions. In our screen, we detected a second

copy (TVAG_252420) that was upregulated under �Fe con-

ditions. We also identified a Myb2 gene; however, under our

experimental conditions, Myb2 was not regulated by iron,

which contradicts the findings of Ong et al. (2007).

Because MRE sites were demonstrated to be essential for

the iron-dependent regulation of ME, we searched 300 bp of

the 50-UTR of all iron-regulated genes detected in our screen

for the presence of MRE motifs. We found numerous genes

that had upstream sequences containing the MRE eukaryotic

consensus sequence (C/T)AACG(G/T) or specific MRE-like sites

similar to those found in the ME gene (supplementary table

S4, Supplementary Material online). The genes that contain

both MRE1/MRE2r and MRE2f in their upstream regions, and

that have the motifs in the same order as in ME upstream

region, are listed in table 2. Interestingly, the 50-UTR of the

genes that encode ADH, hypothetical protein TVAG_383310

and thioredoxin reductase contain both elements at positions

similar to those in the 50-UTR sequence of the ME gene

(table 2), which suggests a similar multifarious Myb-mediated

regulation of transcription.

Conclusions

The 160 Mb T. vaginalis genome is the largest protozoan

genome that has been sequenced thus far (Carlton et al.

2007). A unique feature of the Trichomonas genome among

all sequenced eukaryotes is the massive expansion of many

gene families and the retention of multiple copies for almost

Table 2

Iron-Regulated Genes That Contain Both MRE1/MRE2r and MRE2f in Their Upstream Regions

TrichDB 1.2 Accession No. Annotation MRE1/MRE2r MRE2f

+Fe ANAACGATA TATCGT

�111/�103 �59/�54

TVAG_422780 Alcohol dehydrogenase �136/�129 �37/�32

CGATA TATCGT

�107/�103 �59/�54

TVAG_035180 Arp2/3 complex subunit �300/�296 �45/�40

TVAG_218790 Conserved hypothetical protein �230/�226 �110/�105

TVAG_405900 Phosphoglucomutase �286/�282 �199/�194

TAACGA TATCGTC

�110/�105 �59/�53

TVAG_072120 Conserved hypothetical protein �173/�168 �19/�13

�Fe CGATA TATCGT

�107/�103 �59/�54

TVAG_383370 Conserved hypothetical protein �114/�110 �81/�76

TVAG_474980 Thioredoxin reductase �151/�147 �107/�102

NOTE.—The numbers indicate position of the sequence motifs of translation start site. Values in bold indicate position of the motifs in the 50-UTR of ME (Ong et al. 2006).
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all genes (Cui et al. 2010). The mechanistic origins and biolo-

gical functions of these multiple gene copies are yet unknown,

but it is clear that they provided abundant starting material for

evolutionary innovation while also contributing to the genetic

robustness of the organism (Li et al. 2010). Indeed, because

the T. vaginalis genome appears to be haploid, genetic redun-

dancy might be particularly important to buffer gene muta-

tions. Moreover, the differential expression of paralogous

copies could be necessary for optimal growth in response to

various environmental conditions (Giaever et al. 2002). We

demonstrated that iron, a critical nutrient for T. vaginalis,

has broad effects on the parasite’s trancriptome, which is

consistent with the observation that iron modulates tricho-

monad growth, metabolic fluxes, and virulence phenotypes

such as cytoadherence (Mundodi et al. 2006). However, we

found that in most cases iron regulated the expression of a

single gene or a portion of the gene copies, whereas the ex-

pression of other paralogous copies of the gene was iron

independent.

The strongest iron-dependent upregulation we observed

was for ME and PFOR, enzymes that play critical roles in hydro-

genosomal energy metabolism and that are known to exhibit

iron-dependent changes in protein expression and enzyme

activity (Vanacova et al. 2001; Leitsch et al. 2009. However,

we also found that there were four gene copies for ME, and

two for PFOR, whose expression was not iron dependent. Of

all major enzymes involved in hydrogenosomal energy metab-

olism, only SCS, which mediates the final step of ATP synthe-

sis, appears to be an exception in that the expression of all

copies of both SCS subunits was iron dependent. Further stu-

dies of expression profiles for cells grown under various con-

ditions such as the absence of external glucose, temperature

or oxygen stress, the induction of the amoeboid form or com-

parison with nonpathogenic forms should lead to further in-

sights as to how individual copies among the myriad

trichomonad gene families have come to fall under differential

iron regulation during evolution.

Supplementary Material

Supplementary figure S1 and tables S1–S4 are available

at Genome Biology and Evolution online (http://www.gbe

.oxfordjournals.org/).
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Abstract

Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called
hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome
were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded
in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for
biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence
microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome.
We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple
paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim
chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for
targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking
Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was
fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange
across the outer membrane were identified including multiple isoforms of the b-barrel proteins, Hmp35 and Hmp36; inner
membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly,
hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several
new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common
core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable
differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary
history of the Excavata group.
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Introduction

Hydrogenosomes are highly divergent forms of mitochondria

adapted for ATP synthesis under anaerobic conditions with the

concomitant production of molecular hydrogen [1]. These

organelles are present in pathogenic and free-living unicellular

eukaryotes that inhabit oxygen-poor environments [2]. In the

course of the mitochondria-to-hydrogenosome transition, aspects of

typical mitochondrial energy metabolism were lost, including the

classic pyruvate dehydrogenase complex, the citric acid cycle and

the elaborate membrane-associated respiratory chain. Given the

absence of genes encoding the membrane subunits of respiratory

complexes, which are invariably coded by the mitochondrial

genome (e.g., cytochrome oxidase subunit Cox1 and cytochrome

b), perhaps this is the reason that hydrogenosomal genomes were

relinquished [3,4]. To synthesize ATP, hydrogenosomes have

gained specific pathways that metabolize pyruvate or malate to

acetate and CO2 and hydrogen in a process accompanied by

substrate-level phosphorylation [1].

One of the major mitochondrial functions is to supply other

cellular compartments with metabolic energy. The evolution of

ADP/ATP carriers (AACs) provided a means to mediate the export

of ATP across the mitochondrial inner membrane in exchange for

ADP. The function of AACs is coupled with a specific family of

porins called voltage-dependent anion channels (VDACs) that

passively allow a nucleotide flux across the outer membrane [5]. In

addition to AACs, the mitochondrial inner membrane possesses up

to 55 distinct carriers that belong to a large mitochondrial carrier

protein family (MCF) [6–11]. These carriers facilitate the exchange

of a wide variety of metabolites to connect cytosolic and
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mitochondrial metabolism [12,13]. MCFs and VDACs are

nuclearly encoded proteins that are synthesized in the cytosol and

targeted to a translocase in the outer mitochondrial membrane

(TOM) complex. The TOM complex is the main gate for the entry

of mitochondrial proteins into the intermembrane space, where they

are further sorted according to their final destination. The porin

precursors that are targeted to the outer membrane are assembled

by sorting and assembly machinery (SAM complex). The AACs and

other MCFs are assembled by a protein translocase in the inner

mitochondrial membrane (TIM) complex. In many eukaryotes,

there are two distinct TIM complexes [14,15] that are built from

distinct members of the Tim17/Tim22/Tim23 family of proteins.

In this case, the MCFs are assembled by the TIM22 complex [16–

19], whereas proteins transferred into the matrix are assembled by

the TIM23 complex in a process catalyzed by the presequence

translocase-associated motor (PAM) complex.

Our knowledge about the proteins in hydrogenosomal membranes

that facilitate protein transport and the exchange of metabolites is in

its infancy. The most-studied hydrogenosomes are those in the

human pathogen, Trichomonas vaginalis, for which the complete

genome sequence is available [20]. However, only two hydrogeno-

somal membrane proteins, i.e., Hmp31 and Hmp35, have been

described in this organism thus far. Hmp31 is a MCF member and

serves as an AAC carrier localized in the inner hydrogenosomal

membrane [21–24]. The cysteine-rich Hmp35 protein is predicted to

form pores but has no known homologs; its precise function is

unknown. Despite the paucity of knowledge on membrane proteins, a

number of proteins have been localized in the matrix of hydrogeno-

somes. The targeting of matrix proteins is dependent on N-terminal

cleavable presequences [25,26] or internal targeting signals [27]. The

presequences are removed in the hydrogenosomal matrix by a

dimeric hydrogenosomal processing peptidase that shares a common

origin with the mitochondrial processing peptidase, MPP [26].

To gain insight into the processes mediating the exchange of

metabolites and the protein import machinery in T. vaginalis

hydrogenosomes, we established a proteomics survey of the organelle.

We sought to determine how many outer membrane porins and inner

membrane MCF-like carriers are present in the hydrogenosomes,

what the spectrum of other hydrogenosomal multitopic and

monotopic membrane proteins is, and whether any components of

the protein import machinery have been overlooked by previous

bioinformatic-only searches [14,20]. The proteomic approach,

together with bioinformatics, biochemical assays and fluorescence

microscopy, allowed the identification and validation of an unusually

large number of b-barrel proteins, including several paralogs of

Tom40, Sam50 and Hmp35, whereas the spectrum of inner

membrane carriers was apparently limited to the AAC types of

MCF. Two selected components of the inner membrane translocase,

Tim17-22-23A and Pam18, were identified, and their efficient

assembly into yeast mitochondrial membranes suggests the conserva-

tion of membrane targeting signals for these inner membrane

proteins. However, the extreme divergence of four hydrogenosomal

Tim17-22-23 family proteins obscures the determination of whether

distinct TIM23 and TIM22 complexes are both present in the

hydrogenosomes. Lastly, we identified two small Tim chaperones with

previously unseen modifications that adapt them to function in the

unique anaerobic conditions of the hydrogenosomes in T. vaginalis.

Results

Identification of hydrogenosomal membrane proteins of
diverse topologies

Hydrogenosomes were purified by differential and Percoll-

gradient centrifugation from a lysate of T. vaginalis, and membrane

proteins were extracted from the purified hydrogenosomes using

Triton X-114. The extracted proteins were separated by 1D SDS-

PAGE (Fig. 1), the gel lane was cut into 47 slices, and each slice

was submitted to nanoLC MS/MS analysis (Table S1). The

sequences of the identified proteins were analyzed by a range of

bioinformatic tools designed for the detection of conserved

domains using multiple sequence alignments and hidden Markov

models, structure predictions, and predictions of subcellular

localization (Tables 1A,1B and S2). We identified 68 putative

membrane proteins; we annotated 17 of these as components of

protein import machinery, including key components of the outer

membrane TOM and inner membrane TIM complexes. In

addition, 11 polytopic transmembrane proteins and 44 integral

monotopic proteins were identified, as judged by transmembrane

prediction algorithms (see the Materials and Methods). The most

abundant proteins observed by electrophoresis after Triton X-114

extraction included eight integral membrane proteins: ADP/ATP

carrier-1, ADP/ATP carrier-2, Hmp35-2, Hmp36-1, Sam50,

hypothetical proteins TVAG_455090 and TVAG_440200, and

pyruvate:ferredoxin oxidoreductase, in addition to the most

abundant soluble protein in the hydrogenosome, i.e., malic

enzyme (Fig. 1).

To validate the proteomic and sequence analysis, we chose 26 of

these putative hydrogenosomal membrane proteins and tested

their localization using the expression of epitope-tagged constructs

in T. vaginalis (Fig. 2 and Table 1,2). Immunofluorescent

microscopy revealed the colocalization of tagged proteins and

the hydrogenosomal marker protein, malic enzyme. The mem-

brane proteins were often observed at the peripheral rings

surrounding the hydrogenosomal matrix labeled by the anti-malic

enzyme antibody.

The proteomic survey identified the products of 63 genes that

were either previously annotated as encoding ‘hydrogenosomal

proteins’ with known matrix localization or novel hydrogenosomal

Figure 1. Proteins extracted by Triton-X114 from hydrogeno-
somal membranes. The most abundant proteins observed by
electrophoresis after Triton X-114 extraction included seven integral
membrane proteins (ADP/ATP carrier-1, ADP/ATP carrier-2, Hmp35-2,
Hmp36-1, Sam50, unknown protein-1 TVAG_455090, and unknown
protein-2 TVAG_440200), an integral monotopic proteins (pyruvate:fer-
redoxin oxidoreductase, PFOR), and malic enzyme, which is the
dominant hydrophobic protein in hydrogenosomes.
doi:10.1371/journal.pone.0024428.g001
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matrix proteins, such as alanine aminotransferase, phosphofruc-

tokinase, hybrid cluster proteins, and Ind-1 (Tables S3A-C), and

the protein products of 45 genes that were previously annotated as

encoding ‘hypothetical proteins’ with unclear localization (Tables

S4C and S4D). The hydrogenosomal preparation also contained

52 proteins annotated as being found in other cellular locations;

some of these identified proteins may represent contamination by

other membranes (e.g., the ABC transporter, MFS transporter and

vacuolar proton ATPase) or cytoplasmic adherence on the

hydrogenosomes (e.g., cytosolic HSP70 and cytoskeletal proteins),

whereas many were simply inferred to be located elsewhere based

on minimal sequence similarity to proteins from other eukaryotes

(Tables S3A–C and S4A–D).

Polytopic proteins of the mitochondrial carrier family
Multiple transmembrane domains were predicted in 12 of the

identified proteins. Of these, five were classified as MCF members:

one of these proteins is Hmp31 [21], and the other four have not

Table 1. Putative membrane proteins identified in T. vaginalis hydrogenosomes.

Identification Structure Cell localization Signal

Accession number Name TMHMM MEMSAT3 TargetP PsortII Exp. Local.

TM No. TM No. mit%

Protein import machinery

TVAG_399510 Tom40-1 0 0 O 17.4% NV b

TVAG_332970 Tom40-2 0 0 O * b

TVAG_450220 Tom40-3 0 0 O 17.4% H b

TVAG_123100 Tom40-4 0 0 O 4.3% NV b

TVAG_341190 Tom40-5 0 0 O 8.7% H b

TVAG_195900 Tom40-6 0 0 O 4.3% H b

TVAG_178100 Sam50 0 0 O 17.4% H b

TVAG_287510 small Tim9-10A 0 0 O 8.7% H

TVAG_026080 small Tim9-10B 0 0 O 4.3% H

TVAG_198350 Tim17/22/23A 0 0 O 8.7% H

TVAG_061900 Tim17/22/23B 2 0 O 17.4% H

TVAG_370860 Tim17/22/23C 0 0 O 26.1% H

TVAG_379950 Tim17/22/23D 3 0 O 8.7%

TVAG_447580 Tim17-like 0 0 M 4.3%

TVAG_008790 Tim44 0 0 M 17.4% H

TVAG_470110 Pam16 0 0 O 17.4% H

TVAG_436580 Pam18 0 1 O 13.0% H D

beta-barrel proteins

TVAG_146920 Porin-1 0 0 O 4.3% b

TVAG_340380 Porin-2 0 0 O 21.7% b

TVAG_590550 Hmp-35-1 0 0 O 8.7% H[50] b

TVAG_104250 Hmp-35-2 0 0 O 8.7% H b

TVAG_031860 Hmp-36-1 0 0 O 4.3%

TVAG_216170 Hmp-36-2 0 0 O 8.7%

Integral polytopic proteins

TVAG_237680 ADP/ATP carrier-1, Hmp-31 0 5 O 26.1% H[21]

TVAG_051820 ADP/ATP carrier-2 0 6 O 34.8% H

TVAG_164560 ADP/ATP carrier-3 0 4 O 8.7%

TVAG_196220 ADP/ATP carrier-4 0 5 O 13.0%

TVAG_262210 ADP/ATP carrier-5 0 5 O 13.0%

TVAG_039960 Unknown 6 6 S 11.1% H

TVAG_455090 Unknown 2 1 O 17.4% H

TVAG_489980 Unknown 6 3 O 4.3%

TVAG_127990 Unknown 2 2 O 21.7%

TVAG_440200 Unknown 3 2 O 4.3%

TVAG_136450 Unknown 0 2 O 8.7%

TVAG_192370 Unknown 2 1 O 11.1% H

doi:10.1371/journal.pone.0024428.t001
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been previously studied and have no obvious orthologs in other

organisms. It was predicted that all five of the hydrogenosomal

MCF proteins contain the characteristic six transmembrane alpha-

helices. As with all carrier proteins, in these five hydrogenosomal

proteins, the odd-numbered helices contain P-X-[DE]-X-X-[KR]

signature motifs that, in the context of the three-dimensional

structure, surround the pore and determine the substrate

specificity of the carrier [28] (Fig. 3). An ADP-ATP exchange

activity has been determined for Hmp31 in Trichomonas gallinae,

and the other carrier proteins we identified in hydrogenosomes

have sequence motifs (such as the RRRMMM signature; Fig. S1)

that suggest that they also mediate nucleotide exchange.

Single-spanning and C-tail-anchored proteins
According to the structure predictions, 33 putative hydrogeno-

somal proteins were classified as integral monotopic proteins with

a single hydrophobic transmembrane domain (TMD). Of these

proteins, 21 contain a TMD located in the middle of the protein,

with N- and C-terminal flanking regions (single-spanning proteins),

whereas 12 proteins have characteristics of C-tail anchored

proteins (Table 2). The genes corresponding to the single-spanning

proteins and C-tail-anchored proteins were previously annotated

as encoding ‘hypothetical proteins’ with no significant homology in

other organisms.

C-tail-anchored proteins consist of a large functional domain

exposed to the cytosol and a short C-terminal transmembrane

segment that is flanked at both ends by positively charged residues

[29–31]. The predicted transmembrane segments of the hydro-

genosomal C-tailed proteins are 19–23 amino acid residues in

length, which is somewhat longer than those found in mitochon-

drial proteins. This increased length may reflect differences in the

thickness of the lipid bilayer in the outer membranes of each

organelle. The C-terminal ends that follow the transmembrane

segments are 2–16 amino acid residues in length and contain 2–7

positively charged residues (Fig. S2).

To validate the predicted topology of the C-tailed anchored

protein TVAG_ 277930, we added a C-terminal HA tag and

expressed the modified protein in T. vaginalis. We then confirmed

that the expressed protein was targeted to hydrogenosomes by

immune-fluorescent microscopy (Table 2). Hydrogenosomes from

this transformed strain were isolated and treated with trypsin.

Although proteolysis did not affect the mobility of the matrix

protein, pyruvate:ferredoxin oxidoreductase, which is protected by

the hydrogenosomal membranes (Fig. 4), proteolysis resulted in a

shift of Tta1 mobility on SDS-PAGE from 36 kDa to ,14 kDa.

This result is consistent with the expected cleavage of the

,22 kDa domain facing the cytosol, with the C-terminal domain

and epitope-tag protected from trypsinolysis by the outer

membrane. The C-terminal domain of this C-tail anchored

protein was degraded only when Triton X-100 was added to

solubilize the outer membrane (Fig. 4).

Mitochondrial porins and other outer membrane
b -barrel proteins

Tom40, an essential component of the TOM complex, is the

main gate for membrane proteins imported into the mitochondria

[16]. Tom40 is a b-barrel protein and, together with VDAC,

belongs to the Pfam family, PF01459, whose members are also

referred to as the ‘mitochondrial porins’ [32]. Recent structural

studies have shown that the b-barrels of the mitochondrial porins

are assembled from 19 beta-strands [33,34]. In hydrogenosomal

preparations, we identified 8 proteins that we designate as

mitochondrial porins because they have sequence features of the

PF01459 family, and secondary structure predictions using the

PSI-PRED algorithm suggest that all 8 of the sequences contain 19

transmembrane beta strands (Fig. S3). The very last beta strand of

all of the known mitochondrial outer membrane b-barrel proteins

contains a beta signal motif, PxGxxHxH, where P stands for polar

amino acid residue, G for glycine and H for hydrophobic acid.

The signal is recognized by the SAM complex to facilitate the

assembly of these proteins in the outer membrane [35]. All eight of

the T. vaginalis mitochondrial porins contain this conserved motif

(Fig. S3).

To distinguish whether the identified b-barrel proteins represent

Tom40 or VDAC homologs, we performed independent HMM-

based searches of predicted T. vaginalis proteins based on T.

vaginalis genome sequences. Tom40 and VDAC HMMs were built

from the protein sequences of an identical set of species. The

Tom40 HMM search identified 6 of the 8 mitochondrial porins,

which we therefore named Tom40-(1 through 6). No sequences

were matched using the VDAC-specific HMM search under the

HMMER 2 default parameters. It remains possible that one or

more of the remaining mitochondrial porins functions as a VDAC

and has a sequence that is too highly diverged to be aligned with

the VDAC sequences from other eukaryotes.

Given that the TOM complex is a multi-subunit molecular

machine built around a Tom40 channel, we tested whether T.

vaginalis Tom40 was also found as a part of a high-molecular-

weight complex. We engineered a strain of T. vaginalis to express a

HA-tagged version of Tom40-3 and verified that the protein was

localized to hydrogenosomes (Fig. 5A). Hydrogenosomes were

isolated from the transformed parasites, gently solubilized by 0.5%

Triton X-100 and analyzed by gel filtration. Immunoblotting of

the elution profile revealed a major peak of Tom40-3 present as

oligomers of ,230 kDa, with a smaller population of Tom40-3 in

a complex of ,590 kDa (Fig. 5B). These results are consistent with

the mitochondrial porin, Tom40-3, being a subunit of a protein

complex that assists hydrogenosomal protein import.

Hmp35 (hydrogenosomal membrane protein 35) is a unique form

of a b-barrel protein identified in hydrogenosomes. The proteomic

assessment of the hydrogenosomes identified what appears to be a

second isoform of Hmp35 (Hmp35-2) and another two related

proteins that are distinguished by a C-terminal extension (Hmp36-1

and Hmp36-2). The Hmp35 and Hmp36 proteins are encoded from

four different genes in T. vaginalis; excluding the C-terminal extension,

their DNA sequences are sufficiently similar to strongly indicate very

recent gene duplications and a likely functional redundancy of the

proteins. Previously, Hmp35 was predicted to be predominantly

composed of beta sheets [36], and current PSIPRED predictions (Fig.

S4) indicate that the polypeptide chain is arranged in up to 19 beta

sheets, plus one alpha helix positioned in the middle of the protein

sequence between beta sheets 10 and 11. We therefore extend the

suggestion by Dyall et al. [36] to conclude that the Hmp35 and

Hmp36 family of proteins are outer membrane b-barrels. A

Figure 2. Immunofluorescent microscopy of T. vaginalis strains expressing selected membrane proteins. Hemagglutinin-tagged
proteins were visualized using an anti-hemagglutinin mouse monoclonal antibody (in green). The matrix protein, malic enzyme, was visualized using
a rabbit polyclonal anti-malic antibody (in red). The nucleus was stained with DAPI (blue). DIC, differential interference contrast. Tom40-3
(TVAG_450220), Tom40-6 (TVAG_195900), C-tail-anchored (TVAG_277930), Tim9/10a (TVAG_287510), integral polytopic (TVAG_455090), Tim17/22/
23-1 (TVAG_198350), Pam16 (TVAG_470110), Tim44 (TVAG_008790).
doi:10.1371/journal.pone.0024428.g002
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distinguishing feature of the Hmp35-1 and Hmp35-2 proteins is their

cysteine-rich character, including a C-terminal domain that features

the metal-binding motif, CX6CCX2CX9HX15CCXHXX2C [36].

The Hmp36-1 and Hmp36-2 proteins both lack this C-terminal

cysteine-rich domain, and Hmp36-1 and Hmp36-2 contain only 2

and 5 cysteine residues, respectively. Although the last predicted beta-

strand of Hmp35-1 and Hmp35-2 shows a match to the beta-signal

motif, this motif is not clear in Hmp36-1 and Hmp36-2.

Small TIM chaperones associated with hydrogenosomal
membranes

Integral membrane proteins of the outer and inner membranes

of mitochondria are assembled into the membranes with the

assistance of a group of ,10 kDa chaperones called small TIMs.

These chaperones are localized within the intermembrane space

and are also found associated with membranes, reflecting their role

in the delivery of nascent imported membrane proteins [37–39].

Table 2. Putative membrane proteins identified in T. vaginalis hydrogenosomes (continued).

Identification Structure Cell localization Signal

Accession number Name TMHMM MEMSAT3 TargetP PsortII Exp. Local.

TM No. TM No. mit%

Integral monotopic C-tail-anchored proteins

TVAG_090120 C-tail-1 1 1 O 13.0% Ct

TVAG_190830 C-tail-2 1 0 O 13.0% Ct

TVAG_458060 C-tail-3 1 1 O 4.3% Ct

TVAG_272350 C-tail-4 1 0 O 13.0% H Ct

TVAG_240680 C-tail-5 1 1 O 13.0% Ct

TVAG_137270 C-tail-6 1 1 O 8.7% Ct

TVAG_277930 C-tail-7 1 1 O 13.0% H Ct

TVAG_283120 C-tail-8 1 1 O 13.0% H Ct

TVAG_174010 C-tail-9 1 1 O 13.0% Ct

TVAG_369980 C-tail-10 1 1 O 4.3% H Ct

TVAG_393390 C-tail-11 1 1 O * Ct

TVAG_211970 C-tail-12 1 0 O 13.0% Ct

Integral monotopic single spanning proteins

TVAG_032990 Unknown 0 1 O 21.7%

TVAG_080160 Unknown 0 1 O 13.0%

TVAG_094480 Unknown 1 1 O 17.4%

TVAG_152710 Unknown 0 1 O 13.0%

TVAG_178320 Unknown 0 1 O 8.7%

TVAG_182990 Unknown 0 1 O 21.7%

TVAG_210010 Unknown 0 1 O *

TVAG_218130 Unknown 1 1 S *

TVAG_225560 Unknown 1 0 O 21.7%

TVAG_251750 Unknown 1 1 O 4.3%

TVAG_252220 Unknown 0 1 O *

TVAG_295140 Unknown 0 1 O *

TVAG_331680 Unknown 1 1 S 11.1%

TVAG_333160 Unknown 1 1 O 22.2%

TVAG_337270 Unknown 0 1 O 26.1%

TVAG_341690 Unknown 0 1 O *

TVAG_370950 Unknown 0 1 M 21.7%

TVAG_403380 Unknown 0 1 O 33.3%

TVAG_413430 Unknown 0 1 O 13.0%

TVAG_425430 Unknown 0 1 O 8.7%

TVAG_423530 Unknown 1 2 O 17.4% H

Proteins were manually annotated based on searches in TrichDB, Uniprot, and PFAM A+B (Table S2). Protein structure was predicted using TMHMM and MEMSAT3;
subcellular location was predicted using TargetP and PsortII. TM No., number of predicted transmembrane a-helixes. M, predicted location in mitochondria. S -
predicted proteins of secretory pathway; O, predicted location in other compartments; Mit%, probability percentage of mitochondrial location; *, mitochondrial location
was not predicted; Exp. Local., experimental location; H, localization of HA-tagged proteins was confirmed in T. vaginalis hydrogenosomes by immunofluorescence
microscopy; NV, transformed T. vaginalis strain was not viable. Signal: D indicates N-terminal targeting sequence identified by Hunter; b indicates presence of beta
signal of beta-barrel proteins for insertion into the outer membrane of mitochondria; Ct, C-tail anchor detected [Fig. S2].
doi:10.1371/journal.pone.0024428.t002

Biogenesis of Hydrogenosomes

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e24428



Sequence classifications have demonstrated that there are four

small TIM families: Tim8, Tim9, Tim10 and Tim13 [40]. These

families reflect the structural characteristics required to form

hetero-hexameric functional chaperones of the type Tim83:

Tim133 or Tim93:Tim103. In the hydrogenosomal membrane

fraction, we identified two small TIM proteins that share 93%

sequence identity (Fig. 6). The main difference between these

paralogs is at position 12, where either a negatively-charged

glutamic acid (TvTim9/10a) or positively charged lysine

(TvTim9/10b) is present. A comparative analysis of the hydro-

genosomal small TIMs is made difficult by sequence divergence,

but the highest sequence identity for TvTim9/10a and TvTim9/

10b was found with Tim9 of S. cerevisiae. An extraordinarily

distinguishing feature of both hydrogenosomal proteins is the

absence of the defining conserved twin cysteine motif,

CX3CXnCX3C: TvTim9-10a and TvTim9-10b retain only a

single cysteine (Cys25) (Fig. 6).

Proteins of the Tim17/22/23 family and the
hydrogenosomal TIM complexes

The key components of the inner membrane translocase

complexes, TIM23 and TIM22, belong to the Tim17/Tim22/

Tim23 protein family. These proteins typically possess four

transmembrane domains and an amino acid signature called the

PRAT motif [41]. As characterized in yeast, the Tim17 and

Tim23 proteins constitute the TIM23 complex that translocates

proteins into the matrix, whereas the protein called Tim22 forms a

distinct TIM22 complex to facilitate the import of MCFs and

other multitopic proteins. The proteomics survey identified two

hydrogenosomal proteins, TvTim17/22/23-1 and TvTim17/22/

23-2, which match significantly with the Tim17/22/23 family in

the PFAM database (E = 1,7218 and E = 2,3214; respectively). In

Figure 5. Cellular localization and gel filtration chromatogra-
phy of trichomonad Tom40-3. (A) Total cell lysates (Ly) and
cytosolic (Cp) and hydrogenosomal fractions (Hy) were prepared from
trophozoites expressing an HA-tagged Tom40-3 (TVAG_450220) and
analyzed by SDS-PAGE and immunoblotting using a mouse monoclonal
anti-HA tag antibody. (B) Size exclusion chromatography of Tom40-3.
Hydrogenosomes were solubilized in gel filtration running buffer
containing 0.5% TX-100 and centrifuged, and the supernatant was
subjected to gel filtration on a Superdex-200 column. Fractions of
500 ml (6-20) were analyzed by immunoblotting. Estimated sizes of the
components of the putative trichomonad Tom40 complex are marked
with arrows.
doi:10.1371/journal.pone.0024428.g005

Figure 3. The amino acid sequences of six putative hydrogenosomal carrier proteins were aligned with the sequences of 33
mitochondrial carriers from Saccharomyces cerevisiae and that of the AAC1 carrier from Bos taurus (Pebay-Peyroula et al., 2003),
according to the method of Kunji and Robinson (2006). The substrate specificity of the carrier is determined by the amino acid residues of the
even-numbered transmembrane helixes facing the transport pore (red stars). The residues in direct contact with the substrate are highlighted in
yellow boxes. Only the even-numbered helixes of the most similar homologs are shown, indicating that TVAG_237680, TVAG_051820, TVAG_262210,
TVAG_164560 and TVAG_196220 belong to the group of adenine nucleotide carriers. The corresponding residues of TVAG_197670 do not resemble
any of the specificity motifs (Kunji and Robinson, 2006). BtAac1 and ScAac1, ScAac2 and ScAac3 are adenine nucleotide carriers from Bos taurus and
Saccharomyces cerevisiae, respectively.
doi:10.1371/journal.pone.0024428.g003

Figure 4. Expression of the C-tail anchored protein,
TVAG_277930, in the hydrogenosomal outer membrane.
Hydrogenosomes were isolated from a T. vaginalis strain expressing
TVAG_277930 with a C-terminal hemagglutinin tag and incubated for
30 min at 4uC and 37uC with 0, 50, 100 or 200 mg/ml trypsin or mg/ml
trypsin plus 0.5% Triton X-100 (Tx). Samples were analyzed by SDS-
PAGE and immunoblotting using a mouse monoclonal anti-HA tag and
anti-PFO antibodies. Pyruvate:ferredoxin oxidoreductase (PFO) was
used as a control matrix proteins.
doi:10.1371/journal.pone.0024428.g004
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addition, we found three other hydrogenosomal membrane

proteins with some overall sequence similarity to the family but

with insignificant matches (E.7,226) (Table 1). We refer to these

three proteins as TvTimC, TvTimD and TvTim-like. The PRAT

domain was partially conserved in TvTim17/22/23-1 and

TvTim17/22/23-2, and it was conserved to a lesser extent in

TvTimC and TvTim D and was absent in the TvTim-like protein.

We suggest that TvTim17/22/23-1 and TvTim17/22/23-2

should be considered as candidate TIM complex subunits and

that TvTimC and TvTimD should be considered as potential

candidates (Fig. 7). We note also that TvTim17/22/23-1 possesses

positively charged residues at its C-terminus (Lys130 and Lys131)

and negatively charged residues at its N-terminus (Glu26 and

Glu27), which are features of Tim23 [42]. However, limited

conservation of the hydrogenosomal proteins in any of the Tim17,

Tim22 and Tim23 subfamilies prevents a determination of their

functional equivalence based on sequence alone. Consistent with

this sequence divergence, the expression of TvTim17/22/23-1 or

TvTim17/22/23-2 failed to support the growth of yeast strains

lacking Tim17, Tim22 or Tim23 (Fig. S5A, B, C).

To test whether these hydrogenosomal proteins possess the

information required for assembly into the inner membrane of yeast

mitochondria, we measured the import of TvTim17/22/23-1 into

mitochondria isolated from yeast. A time-dependent incorporation

of the radiolabeled protein was observed (Fig. 8A), indicating that

TvTim17/22/23-1 was imported across the outer membrane. The

treatment of the mitochondria in hypo-osmotic buffer before the

addition of proteinase K (PK) revealed the presence of a TvTim17/

Figure 6. Sequence alignment of the Trichomonas vaginalis small Tims, TvTim9-10A (TVAG_287510) and TvTim9-10B (TVAG_026080)
against the sequences of S. cerevisiae and human members of four small Tim families. Tim9: S. cerevisiae, O74700; H. sapiens, Q9Y5J7.
Tim10: S. cerevisiae, P87108; H. sapiens, P62072. Tim8: S. cerevisiae, P57744; H. sapiens, O60220. Tim13: S. cerevisiae, P53299; H. sapiens, AAF15101. The
conserved cysteine residues are marked by arrowheads (,) and highlighted in yellow. The conserved Tim9 residues are highlighted in red, and
conserved Tim10 residues are highlighted in green.
doi:10.1371/journal.pone.0024428.g006

Figure 7. Alignment of the T. vaginalis Tim17/22/23 PRAT domains against eukaryotic orthologs. Organism names and accession
numbers are as follows: T. vaginalis TvTim17/22/23A, TVAG_198350; TvTim17/22/23B, TVAG_061900; TvTim17/22/23C, TVAG_370860; TvTim17/22/
23D, TVAG_379950; TvTim17-like, TVAG_447580; A. thaliana Tim23-1, AAR26373; S. cerevisiae, Tim17, CAA89438; P. falicparum, putative Tim17,
XP_001348502; A. thaliana, Tim17-1, AAO63303; T. brucei Tim17/22/23 CBH18364; S. cerevisiae Tim22p NP_010064. Consensus PRAT sequence: G/
AX2F/YX10RX3DX6 G/A/SGX3G. Conserved residues are marked by arrowheads and highlighted in green. Experimentally verified internal targeting
signals are in blue. Positively charged residues at the C-terminus are in red.
doi:10.1371/journal.pone.0024428.g007
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22/23-1 fragment that was ,3 kDa smaller than the full-length

protein, indicating that TvTim17/22/23-1 was incorporated into

the inner membrane (and, thereby, largely protected from PK).

Whereas no effect on the translocation of TvTim17/22/23-1 across

the outer membrane was observed when the membrane potential

(Dy) was dissipated by valinomycine (Fig. 8A), the incorporation of

TvTim17/22/23-1 into a high molecular complex (over 230 kDa)

was observed, but only when TvTim17/22/23-1 was incubated

with energized mitochondria (Fig. 8B). Thus, the translocation of

TvTim17/22/23-1 across the outer membrane is independent of

Dy, whereas its insertion into the inner membrane complex

depends on Dy. These properties conform to those observed for

Tim17/22/23 proteins from yeast [43].

Presequence translocase-associated motor (PAM)
The final step of preprotein import across the inner membrane

requires the function of the matrix-exposed PAM complex, which

consists of two soluble matrix proteins, mtHsp70 and Mge1, and 3

essential membrane components (Tim44, Pam16, and Pam18). A

complete set of putative membrane PAM components was

identified in hydrogenosomes, and the membrane proteins,

TvPam16, TvPam18 and TvTim44, localize to hydrogenosomes

when expressed in T. vaginalis with a C-terminal HA tag (Table 1).

The protein sequence of TVAG_436580 (TvPam18) conforms to

the sequence characteristics of HMM for the Pam18 family (Fig.

S6) [44]. The characteristic features of Pam16, which forms a

subcomplex with Pam18, were identified in protein sequence

TVAG_470110 (TvPam16), and the conserved hypothetical

protein, TVAG_008790, is a candidate Tim44 (Table 1 and Figs.

S7 and S8). It is noteworthy that the N-terminal domains of

Tim44 vary in length and structure depending on the species [45],

with the TvTim44 N-terminal domain consisting of 144 residues

with a predicted hydrogenosomal targeting presequence (Fig. S8).

We sought to determine whether TvPam18 functions in the

PAM complex in yeast. First, we tested whether [35S]-labeled

TvPam18 accumulated in yeast mitochondria in a time-dependent

manner and behaved as an inner membrane protein (Figs. 9A and

B). To assess the topology of the imported TvPam18, yeast

mitochondria were sequentially treated by proteinase K and a

hypo-osmotic buffer. When the outer membrane was ruptured, the

intermembrane space protein, Cyb2, was degraded, but TvPam18

Figure 8. In vitro import and topology of TvTim17/22/23-1. (A) In
vitro synthesized, [S35]-radiolabeled TvTim17/22/23-1 was incubated
with isolated yeast mitochondria at 25uC for the indicated time, treated
with 25 mg/mL proteinase K to degrade surface-associated proteins and
analyzed by SDS PAGE and autoradiography. After incubation with the
[S35]-radiolabeled TvTim17/22/23-1 for 12 minutes, yeast mitochondria
were exposed to proteinase K in import buffer (see the Material and
Methods) with a hypo-osmotic buffer (10 mM MOPS – ‘‘M’’) or import
buffer alone (‘‘-M’’) and resolved by SDS PAGE. The arrow indicates the
fragment of TvTim17/22/23-1 protected by the inner mitochondrial
membrane. Proteins were detected by autoradiography. Dy, the
reaction as described proceeding in the presence of transmembrane
potential; -Dy, the reaction as described when the transmembrane
potential was dissipated by the addition of 1 nM valinomycine. (B) In
vitro synthesized, [S35]-radiolabeled TvTim17/22/23-1 was incubated
with isolated yeast mitochondria at 25uC for the indicated time. Proteins
were then treated with 25 mg/mL proteinase K to degrade surface-
associated proteins or incubated in the absence of externally added
ATP (-ATP) when the transmembrane potential was dissipated by the
addition of 1 nM valinomycine (-Dy) or without PK treatment (-PK). One
species was detected (,280 kD) (arrow). (*), abundant respiratory chain
complex radiolabeled by free [S35] methionine.
doi:10.1371/journal.pone.0024428.g008

Figure 9. In vitro import and the topology of TvPam18. (A) In
vitro synthesized, [S35]-radiolabeled TvPam18 was incubated with
isolated yeast mitochondria at 25uC for the indicated time, treated
with 25 mg/ml proteinase K to degrade surface-associated proteins and
analyzed by SDS PAGE and autoradiography. (B) After incubation with
[S35]-radiolabeled TvPam18 for 30 minutes, yeast mitochondria were
treated with sodium carbonate (pH 11.5) and Triton X-100 and
centrifuged at 100,0006 g. Samples were resolved by SDS-PAGE, and
the proteins were detected by western blotting and autoradiography.
(S) soluble fraction; (P) insoluble fraction. (C) After incubation with [S35]-
radiolabeled TvPam18 or GiPam18 for 30 minutes, yeast mitochondria
were exposed to proteinase K in import buffer, hypo-osmotic buffer
(10 mM MOPS – ‘‘M’’) or 1% Triton X-100 (‘‘TX’’) and resolved by SDS
PAGE. Proteins were detected by western blotting or autoradiography.
doi:10.1371/journal.pone.0024428.g009
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was not affected (Fig. 9C). However, when the outer and inner

membranes were lysed by Triton X-100, TvPam18 was degraded.

Thus, TvPam18 assumes the same topology as the ScPam18 yeast

protein does in mitochondria, with an N-terminal transmembrane

domain in the inner mitochondrial membrane and its J-domain

located in the mitochondrial matrix.

To test whether TvPam18 can function in place of ScPam18,

chimeric ScPam18-TvPam18 constructs were expressed in a

heterozygous mutant yeast, Pam18/Dpam18 (Fig. 10). The

heterozygous diploid cells were induced to sporulate, and the

tetrads were dissected onto rich media plates. Because PAM18 is

an essential gene, the Dpam18 haploid progeny should not form

viable colonies on the dissection plates. Cells transformed with the

plasmid encoding ScPam18 served as a control and showed four

viable colonies from each tetrad (Fig. 10D). When TvPam18 was

expressed, only two spores germinated to form colonies of haploid

cells, indicating that TvPam18 was not able to restore full PAM

function in yeast (Fig. 10A). Furthermore, the addition of the

specific yeast intermembrane space domain to TvPam18

(ScIMSTvPam18) was not sufficient to bring TvPam18 into the

correct context to function in yeast (Fig. 10B). Full complemen-

tation was seen only when the yeast N-terminal region and

transmembrane segment were fused with the TvPam18 J-domain

(ScNTvJPam18) (Fig. 10C). The growth rate and viability of wild-

type and cells complemented with ScNTvJPam18 were indistin-

guishable at 25-30uC when the cells were grown on a fermentable

(glucose) or non-fermentable (lactate) carbon source (Fig. S9A),

and the efficiency of protein import into the mitochondria where

the PAM complex was restored with ScNTvJPam18 was

indistinguishable from the activity of ScPam18 (Fig. S9B).

Discussion

Mitochondria are surrounded by two distinct membranes,

across which metabolites are exchanged to coordinate metabolic

pathways in the cytosol with those that act within the organelle.

Both the outer membrane and inner membrane possess a specific

set of membrane proteins that facilitate this metabolite exchange

as well as machineries for protein import, interactions with various

cellular structures and other diverse functions. Our analysis of

hydrogenosomal membrane proteins revealed the presence of

membrane transporters, including major core components re-

quired for organelle biogenesis that are functional homologs of the

mitochondrial systems, thus extending support for the common

evolutionary origin of mitochondria and hydrogenosomes from an

ancestral endosymbiont. However, our analysis also revealed

remarkable distinctions in the membrane proteome of hydrogeno-

somes (Fig. 11A, B).

Outer membrane proteins in hydrogenosomes
The outer hydrogenosomal membrane has proteins of at least

two distinct architectures: b-barrel proteins and a-helical, mono-

topic proteins of tail-anchored topology. Proteins of the mitoporin

family of b-barrel proteins include Tom40 (a protein transport

pore) and VDAC (a metabolite pore). The proteome of

hydrogenosomes includes multiple paralogs of the Tom40-type

of sequence. Although hydrogenosomes do not have an obvious

VDAC, Tom40-type channels can serve as metabolite channels in

the outer membrane [46,47]; it is possible that one or more of

these ‘Tom40’ sequences functions as a metabolite pore.

Hydrogenosomes also have four isoforms of a b-barrel protein,

Hmp35/Hmp36. Neither BLAST searches nor structural homol-

ogy detection engines detected Hmp35 or Hmp36 homologs in

any other available genome sequence. The functions of Hmp35

and Hmp36 are not known, but Hmp35 possesses a cysteine motif,

CX6CCX2CX9HX15CCXHXX2C, in its C-terminal region that

could function to coordinate metal ions [48], and it is possible that

Hmp35 might function in metal ion transport. The transported

metal ions may include the iron that is essential for the function of

hydrogenosomal FeS proteins [49] and that accumulates within

these organelles [50]. Consistent with this idea, we observed

increased expression of Hmp35 in T. vaginalis grown on iron-rich

media, whereas the expression of Hmp36 was not affected

(unpublished results).

The a-helical C-tail-anchored proteins are the second category

of proteins found in the outer hydrogenosomal membrane. An

outer membrane topology was confirmed for Tta1, which was

selected from the 12 proteins with characteristics of C-tail-

anchored proteins. In mitochondria, the C-tail-anchored proteins

include important components of the outer mitochondrial

membrane, such as Tom5, Tom6, Tom7, cytochrome b5, Fis1

Figure 10. The J-domain of Trichomonas vaginalis TvPam18 can substitute for the J-domain of yeast ScPam18. Yeast Pam18/Dpam18
cells were transformed with plasmids carrying wild-type or modified Pam18 sequences. Cells were sporulated, and the tetrads were dissected onto
YPD plates. Two viable colonies indicate no complementation by the candidate protein; four viable colonies indicate successful complementation by
the candidate sequence. (A) TvPam18, wild-type Trichomonas vaginalis Pam18 sequence; (B) ScIMSTvPam18, ScPam18 IMS domain fused to wild-type
TvPam18; (C) ScNTvJPam18, ScPam18 J-domain replaced by TvPam18 J-domain; (D) ScPam18, wild-type yeast Pam18 sequence; Orange, ScPam18
sequence; Blue, TvPam18 sequence; TM, transmembrane domain; IMS, intermembrane space domain; IA, interaction arm; J, J-domain.
doi:10.1371/journal.pone.0024428.g010
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Figure 11. Comparison of the protein machineries of the outer and inner membranes of T. vaginalis hydrogenosomes (A) and
S. cerevisiae mitochondria (B). T. vaginalis and S. cerevisiae belong to two distinct eukaryotic supergroups: Excavata and Opisthokonta,
respectively. Excavates are exclusively unicellular and are often parasitic eukaryotes, whereas opisthokonts include both unicellular and multicellular
organisms, such as fungi and animals. T. vaginalis hydrogenosomes and yeast mitochondria share core components of the outer and inner
membranes (Tom40, Sam50, Tim17/22/23, and PAM machinery), although the protein sequences are extremely divergent. The associated
components, such as Tom20 and Tom70, and the inner membrane component, Mia40, were not identified in the hydrogenosomes or other
excavates, suggesting that these components were not present in the last common mitochondrial ancestor, although a secondary loss cannot be
excluded. Conversely, the absence of Erv1 and the reduction of the small Tims family to a single type of highly modified TvTim9/10 most likely reflect
the specific adaptation of hydrogenosomes to anaerobic conditions. The assembly of ADP/ATP within the inner hydrogenosomal membrane and the
identification of divergent small Tims and Tim17/22/23 proteins indicate that a functional TIM22 complex is present; however, sequence divergence
prevented the prediction of whether the Tim17/22/23 proteins form a single multifunctional channel or distinct TIM23 and TIM22 complexes. In
addition to the TOM/TIM machineries, the hydrogenosomes possess a conserved pathway for the assembly of inner membrane C-tail anchored
proteins. (A) The core components of the hydrogenosomal protein import machinery are shown in orange, and the subunits of the PAM machinery
and the hydrogenosomal processing peptidase, HPP, are in pink. The putative components of the metabolite exchange system and C-tail-anchored
protein are shown in yellow. (B) The core components of the mitochondrial protein import machinery are shown in purple, and associated
components are depicted in blue. VDACs, C-tail-anchored proteins and MCFs (mitochondrial carrier family) are shown in green.
doi:10.1371/journal.pone.0024428.g011
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and VAMP-1B [29,31]. A single C-tail-anchored protein, VAP,

was recently identified in the mitosomes of the related excavate,

Giardia intestinalis [51]. The hydrogenosomal C-tail-anchored

proteins revealed no homology with any known mitochondrial

protein in other organisms. Surprisingly, given the topology of

many mitochondrial proteins in fungi, animals and plants [16,52],

including the receptors of the TOM complex, Tom70 and

Tom20, none of the hydrogenosomal membrane proteins that

we identified contained N-terminal signal-anchor sequences.

The inner membrane proteome in the hydrogenosomes
of T. vaginalis

The inner mitochondrial membrane possesses a large variety of

a-helical, single-spanning or polytopic proteins that are required for

(i) protein transport across the inner membrane (TIM complex), (ii)

the exchange of metabolites (MCF), and (iii) respiratory chain

function. The hydrogenosomal inner membrane proteome seems to

be less complex. We identified candidate core subunits of a TIM

complex and the complete PAM machinery. However, all of the

hydrogenosomal proteins that matched with the Tim17/22/23

family in the PFAM database were too divergent to allow the

determination of their functional equivalents that correspond to any

of the Tim17, Tim22 and Tim23 subfamilies, and their expression

failed to support the growth of yeast strains lacking Tim17, Tim22

or Tim23. The hydrogenosomal MCF protein, Hmp31, was

efficiently targeted into the inner membrane of S. cerevisiae

mitochondria, and conversely, when yeast AAC was expressed in

T. vaginalis, it was integrated into a hydrogenosomal membrane

[21]. These data, together with the identification and characteriza-

tion of the TvTim17/22/23 proteins, indicate that hydrogenosomes

possess a functional equivalent of the TIM22 complex. However, it

remains to be established whether the assembly of hydrogenosomal

AACs is mediated by a specialized TIM22 complex as required for

the assembly of metabolite carrier proteins in yeast, humans and

(most likely) plants [52]. Another possibility is that T. vaginalis has a

single inner membrane translocase for the assembly of membrane

proteins and the translocation of matrix components. Such a

situation would not be unprecedented, as a single gene coding for a

Tim17/22/23 protein has been identified in the genomes of

Trypanosoma brucei [15] and microsporidians [53], which strongly

suggests the presence of a single multifunctional TIM complex in

these protists.

The adaptation of hydrogenosomes to function in oxygen-poor

or anaerobic environments is likely the major factor that resulted

in the remarkable differences between the hydrogenosomal

membrane machineries and the mitochondrial systems. These

adaptations include the complete loss of inner membrane

complexes of the respiratory chain, including the components

generating a transmembrane electrochemical potential. In mito-

chondria, the membrane potential is essential to activate the

Tim23 channel and exerts an electrophoretic effect on the

positively charged N-terminal targeting signals of transported

proteins. It is not clear how a membrane potential is generated in

hydrogenosomes or whether the membrane potential is necessary

for protein translocation into hydrogenosomes, although a

requirement for a small potential has been suggested [25]. Such

a fundamental difference in the character of the inner membrane

might explain the observed divergence of hydrogenosomal TIM

components, together with modifications of the corresponding

substrates. Indeed, it has been demonstrated that hydrogenosomal

targeting signals of matrix proteins possess a considerably lower

negative charge than mitochondrial targeting presequences [26].

Metabolite transport across the hydrogenosomal
membranes

A remarkable difference was observed with respect to the

limited spectrum of MCF proteins. Mitochondrial carriers are

considered to be a unique eukaryotic invention that allows

metabolic communication between the organelles and the cytosol

[6–11]. A spectrum of MCFs that are specialized for the

transport of various substrates is conserved across all eukaryotic

groups, from the excavate, T. brucei, which has at least twenty-

five carriers proteins [15], to humans, with forty-four MCF

members [20]. Hydrogenosomal membranes have five MCFs

that appear to be paralogs of Hmp31, which facilitates the

transport of ADP and ATP across the inner hydrogenosomal

membrane [21,24]. The presence of only a single MCF-type

AAC in the hydrogenosomal inner membrane most likely reflects

the reduction of metabolic pathways, such as the pyruvate

dehydrogenase-dependent conversion of pyruvate, the citric acid

cycle, citrulline synthesis, and lipid breakdown, for which various

MCF proteins are required [6]. However, there are several

hydrogenosomal pathways that are dependent on substrate

import or for which a metabolite exchange could be expected.

The hydrogenosomal energetic metabolism is based on the

import of pyruvate and malate, whereas acetate is released as a

metabolic end product [1]. The hydrogenosomal localization of

two components of the glycine cleavage system [54], arginine

deiminase [55], and aminotransferase (this study) strongly

suggests a requirement for amino acid exchange. Transporters

for these substrates remain to be identified; however, they are

unlikely to be of MCF types.

In addition to functional adaptations, some of the peculiarities

in the hydrogenosomal membrane proteome might reflect the

distant evolutionary history of T. vaginalis and other model

organisms, such as S. cerevisiae and vertebrates (Figure 11). A case

in point comes from the analysis of the TOM complex. The core

TOM complex components have been found in all eukaryotic

lineages, suggesting their presence in a common mitochondrial

ancestor [14]. However, the phylogenetic distribution of the

additional components that optimize the function of the TOM

complex is lineage-specific. In S. cerevisiae, the TOM complex

comprises seven components (Tom70, Tom40, Tom22, Tom20,

Tom7, Tom6, and Tom5) [16]. In T. vaginalis, we did not identify

Tom20 or Tom70, which function as receptors for N-terminal and

inner targeting signals, although both types of signals are

conserved in this organism [25,27]. The absence of these

components seems to be common to the eukaryotic group,

Excavata [56], to which trichomonads belong, as they have not

been identified in the related protists, Giardia intestinalis, Trypano-

soma brucei or Naegleria gruberii [51,57] (unpublished results), or in

plants [14,58,59]. Although there may be a large number of

membrane proteins (58%) in the hydrogenosomes of T. vaginalis

without known functional domains, whether these components

represent highly divergent homologs of known systems that were

not recognized or represent novel systems will require further

functional investigations.

Materials and Methods

Cell cultivation
T. vaginalis strain T1 (kindly provided by J.-H. Tai. Institute of

Biomedical Sciences, Taipei, Taiwan) was grown in Diamond’s

Tryptone-Yeast extract-Maltose medium (TYM) with 10% (v/v)

heat-inactivated horse serum at 37uC.
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Extraction of membrane proteins in Triton X-114
Highly purified hydrogenosomes were obtained from cell lysates

by differential and Percoll-gradient centrifugation [60]. Mem-

brane proteins were isolated using Triton X-114 as previously

described [61]. Briefly, hydrogenosomes were solubilized for 1

hour on ice with 2% (w/v) TritonH X-114 (Sigma) in Tris buffer

(150 mM NaCl, 10 mM Tris?HCl and 1 mM EDTA, pH 7.4) at a

ratio of 1 mg of hydrogenosomal pellet to 4 ml of the buffer.

Solubilized hydrogenosomes were centrifuged at 20,006 g for 20

minutes (min) at 4uC. The pellet was discarded, and the

supernatant was incubated for 3 min at 37uC. The Triton X-

114 phase was separated from the aqueous phase by centrifugation

for 1 min at 13,0006 g. The aqueous supernatant with soluble

proteins was discarded, and the Triton X-114 phase containing

the membrane proteins was redissolved in 10 volumes of Tris

buffer at 4uC. The ensuing extraction of the Triton-X114 phase at

37uC and solubilization in ice-cold Tris buffer was repeated twice.

Proteins in the final Triton X-114 phase were precipitated by the

addition of 10 volumes of ice-cold acetone and air-dried.

SDS-PAGE and liquid chromatography
Proteins were separated by 1D SDS PAGE and digested in-gel

(slices) by trypsin; subsequently, the tryptic peptides were separated

by reverse-phase nano liquid chromatography. The Triton X-114-

extracted proteins were solubilized in sample buffer (20% glycerol,

4% SDS, 0.02% bromophenol blue and 125 mM Tris?HCL,

pH 7.4) and separated on a 12% gel by SDS PAGE. The gel was

stained with Coomassie Brilliant Blue R-250, and the lanes with

separated proteins were cut to 1-mm wide slices. Each slice was

transferred to a separate microtube, and the proteins were subjected

to in-gel tryptic digestion using sequencing-grade modified trypsin

(Promega) as described previously [62]. The tryptic peptides were

separated by liquid chromatography using an Ultimate 3000 HPLC

system (Dionex). The peptide samples, diluted in 0.3% TCA with

10% ACN, were loaded onto a PepMap 100 C18 RP column (3-mm

particle size, 15-cm length, 75-mm internal diameter; Dionex) at a

flow rate of 300 nl per minute. The peptides were eluted by a 45-

min linear gradient of 5–80% (v/v) ACN in 0.1% (v/v) TCA over a

period of 45 min. The eluate (60 nl) was mixed 1:3 with matrix

solution (20 mg/ml a-cyano-4-hydroxycinnamic acid in 80% ACN)

prior to spotting onto MALDI target plates using a Probot

microfraction collector (Dionex).

Mass spectrometry and MS/MS data analysis
Spectra were acquired using a 4800 Plus MALDI TOF/TOF

analyzer (Applied Biosystems/MDS Sciex) equipped with an

Nd:YAG laser (355 nm) with a firing rate of 200 Hz. All of the

spots were measured in the MS mode, and up to 10 of the

strongest precursors were selected for MS/MS, which was

performed with a collision energy of 1 kV and an operating

pressure of collision cell set to 1026 Torr. Peak lists from the MS/

MS spectra were generated using GPS Explorer v. 3.6 (Applied

Biosystems/MDS Sciex) and searched by local Mascot v. 2.1

(Matrix Science) against annotated proteins in the TrichDB

database (http://trichdb.org/trichdb/). Database search criteria

were as follows: enzyme - trypsin; taxonomy - Trichomonas vaginalis;

fixed modification - carbamidomethylation; variable modification

- methionine oxidation; peptide tolerance 2120 ppm, allowing

one missed cleavage; and MS/MS tolerance 20.2 Da.

Protein sequence analysis
All of the identified protein sequences were manually annotated

based on searches in the TrichDB (http://trichdb.org/trichdb/),

Uniprot Protein knowledgebase (http://www.uniprot.org/), NCBI

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Pfam (http://pfam.san-

ger.ac.uk/search) databases. The protein sequences (,1000 residues)

were submitted (i) against a 90% redundancy-reduced NCBI nr

database by means of simple pair-wise alignment Psi-BLAST for 8

iterations at an e-value cutoff of 1023 and (ii) against the Pfam 23.0

A+B database of families represented by multiple sequence alignments

and hidden Markov models (HMMs) at an e-value of 0.044.

TargetP and SignalP, based on the combination of artificial

neural networks and hidden Markov models, respectively (http://

www.cbs.dtu.dk/services/), together with PsortII (http://psort.

ims.u-tokyo.ac.jp/), were used to predict the subcellular location.

An application based on the NetBeans Platform (Hunter) was

used to predict the subcellular localization of proteins according to

their N-terminal amino acid sequence, as previously described

[26]. The following parameters were used: (i) the presequence start

motif - ML[ACGQRSTV] or MS[ILV] or MIS or MTL; (ii) a

cleavage site motif - R.F[TKILFSAGQ] or R[AFNESG][TYILF-

SAGQ] or K[AFNESG][TYILFSAGQ] or K.F[TKILFSAGQ].

The secondary structure and topology of alpha-helix integral

membrane proteins was predicted using two bioinformatic tools:

TMHMM (http://www.cbs.dtu.dk/services/) and Memsat3

(http://bioinf.cs.ucl.ac.uk/memsat/).To determine members of

protein families, a hidden Markov model analysis was performed

according to the method of Likic et al. [63].

Selectable transformation of T. vaginalis and
immunofluorescence microscopy

Selected genes were amplified by PCR from T. vaginalis genomic

DNA and inserted into the TagVag2 plasmid. Cells were

transformed and selected as described previously [64]. T. vaginalis

cells expressing recombinant proteins with a C-terminal hemag-

glutinin (HA) tag were identified with a mouse anti-HA mAb [60].

The malic enzyme was detected with a rabbit anti-malic enzyme

polyclonal antibody [65]. A secondary AlexaFluor-488 (green)

donkey anti-mouse antibody and AlexaFluor-594 (red) donkey

anti-rabbit antibody were used for the visualization of the target

proteins. Cells were observed using an OLYMPUS Cell-R, IX81

microscope system, and images were processed using ImageJ 1.41e

software (http://rsb.info.nih.gov/ij/).

Structural modeling
The model of TvTim44 (residues 144–326) was built using the

human Tim44 structure (PDB ID: 2cw9) [66] as a template. The

alignment was constructed by MUSCLE [67] and manually

edited. The 3D structure model of TvTim 44 was built using

Modeller 9v7 [68]. The quality of the final model was checked

using What Check [69] and ProSA-web services [70]. The

electrostatic potential on the solvent-accessible surface of

TvTim44 was calculated using APBS 1.3 [71].

Sequential proteolytic degradation, protein extraction
and protein import into Saccharomyces cerevisiae
mitochondria

Mutant yeast strains and their corresponding wild-type control

strains were grown in parallel in YPLac medium at 30uC. The

mitochondria were isolated by differential centrifugation, and

protein import assays were performed as previously described [72].

BN PAGE analysis following the import of the precursor proteins

was performed according to a previously described method [72].

Sequential proteolytic degradation following the import of radiola-

beled precursors and protein extraction was performed as described

previously [73].
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Functional complementation
Functional complementation of yeast mutants was performed by

transfection of a heterologous-protein encoding plasmid into

Dpam18/Pam18, Dtim17/Tim17, Dtim22/Tim22, or Dtim23/

Tim23 cells. To cause the yeast to sporulate, the cells were grown

in rich media at 30uC to mid-log phase, isolated by centrifugation,

and then transferred to a 1% potassium acetate solution and

incubated with shaking at 25uC for 3 to 4 days. The resulting

tetrads were dissected onto YPD plates and incubated at 30uC.

Growth and viability analysis
Yeast cells with a disrupted pam18 gene and carrying the pScPam18

or pScNTvJPam18 construct were grown to a mid-logarithmic

growth phase (0.6, OD600,0.8) in rich media and diluted to an

OD600 of 0.2. Each cell suspension was then further diluted in 7 five-

fold steps in sterile double-distilled water, and 5 ml of the last 6 diluted

cell suspensions was spotted onto media plates. The plates were

incubated at 25uC, 30uC or 37uC until colonies were visible.

Sequential proteolytic degradation of C-tail anchored
proteins targeted to hydrogenosomes

Aliquots of Percoll-purified intact hydrogenosomes (3 mg) were

resuspended in 1 ml of ST buffer (250 mM sucrose, 10 mM Tris,

pH 7.4, 0.5 mM KCl, 50 mg/ml TLCK and 10 mg/ml leupeptin).

Trypsin was added to final concentrations of 50–200 mg/ml, and

the samples were incubated on ice or in a water bath at 37uC for

30 min. After incubation, soybean trypsin inhibitor was added

(5 mg/ml), and the samples were analyzed by immunoblotting

using a monoclonal mouse anti-HA antibody and an anti-

pyruvate:ferredoxin oxidoreductase antibody (kindly provided by

Patricia Johnson, UCLA, USA and Guy Brugerolle, University of

Clermont Ferrand, France, respectively).

Gel size analysis of Tom40
Approximately 30 mg of Percoll-purified hydrogenosomes were

solubilized in 0.5 ml of ice-cold gel size running buffer (150 mM

NaCl, Tris [pH 8.0], 0.5 mM MgCl2, 5% ethylene glycol, 50 mg/ml

TLCK and 10 mg/ml leupeptin) with 0.5% Triton X-100 on ice for

1 hour. Solubilized hydrogenosomes were centrifuged at 13,0006g

for 10 min. The supernatant was loaded onto a Superdex 200 10/

300 GL column (GE healthcare; equilibrated with Gel Filtration

Standards�, BioRad) and separated using a flow rate of 0.5 ml/

min. Fractions (500 ml) were collected, and the proteins were

extracted using TCA-methanol/chloroform and analyzed by

immunoblotting using a monoclonal mouse anti-HA antibody.

References for the supporting information are available as a

separate document in References S1.

Supporting Information

Figure S1 Mitochondrial carrier proteins in Trichomo-
nas vaginalis. Sequence alignment of Trichomonas vaginalis

mitochondrial carrier homologs ADP/ATP carrier 1 (Hmp31,

TVAG_237680) AAC-2 (TVAG_051820), AAC-3 (TVAG_164560),

AAC-4 (TVAG_197670) and AAC-5 (TVAG_262210) and bovine

mitochondrial AAC (NP_777083). Solid lines above the alignment

represent alpha-helixes, as deduced from the structure of the bovine

AAC [1]. The signature motif of the AAC protein family is shown in

box.

(TIF)

Figure S2 The C-terminal domains of putative C-tailed
anchored proteins identified in T. vaginalis hydrogeno-
somal membranes. Predicted transmembrane domains (TMD)

are highlighted in yellow. Positively charged residues are in red,

and negatively charged residues are in green. AA TMD indicates

the number of amino acids in the TMD.

(DOC)

Figure S3 Protein sequence alignment of candidate
porin_3 family proteins in hydrogenosomal mem-
branes. The secondary structure of all of the protein sequences,

as predicted by PSIPRED, is shown above the protein alignment.

Predicted beta-strands are in green, and predicted alpha helixes

are in purple. The presence of the beta-signal is highlighted in red.

(PDF)

Figure S4 Sequence alignment of Trichomonas vagina-
lis b-barrel proteins, Hmp35 and Hmp36. Cysteines and

histidines of the putative metal binding motif, CX6CCX2CX9HX15-

CCXHXX2 C, are highlighted in yellow. Hmp35-1 (TVAG_590550),

Hmp35-2 (TVAG_104250), Hmp36-1 (TVAG_031860) and

Hmp36-2 (TVAG_216170).

(PDF)

Figure S5 Trichomonas vaginalis TvTim17-22-23A and
TvTim17-22-23B cannot substitute for Tim17, Tim22
and Tim23 in Saccharomyces cerevisiae. Yeast Tim17/

Dtim17, Tim22/Dtim22 or Tim23/Dtim23 cells were transformed

with plasmids carrying TvTim17-22-23A (A), TvTim17-22-23B

(B) or TvTim17-22-23A, respectively, where key residues were

mutated to restore the PRAT motif (T97Y D112K) (C). Cells were

sporulated, and the tetrads were dissected onto YPD plates. Two

viable colonies indicate no complementation by the candidate

protein, whereas four viable colonies indicate successful comple-

mentation by the candidate sequence.

(PDF)

Figure S6 Alignment of T. vaginalis Pam16 and Pam18
against eukaryotic orthologs. The diagnostic features iden-

tified in TvPam18 are (i) a J-domain at the C-terminus of the

protein with a typical arrangement of three helixes and a short

linker with a conserved HPDXGGS sequence motif connecting

helixes II and III. The invariant HPD tripeptide is critical for the

stimulation of the ATPase activity of Hsp70 by Pam18. (ii) A

transmembrane a-helix that is close to the N-terminus. TvPam18

also contains a short N-terminal extension that is predicted to be a

targeting presequence and a short N-terminal intermembrane

space domain. However, TvPam18 does not contain a conserved

interaction arm in front of helix I, which was structurally defined

by [2] as one of the means by which Pam18 interacts with Pam16.

The Pam16 protein family contains a degenerate J-domain with

homology to Pam18 that lacks the HPD tripeptide in the linker

motif; thus, it is unable to stimulate the ATPase activity of Hsp70.

In TvPAM16, HPD is replaced by a D90, L91, E92 tripeptide,

whereas the GGS motif of the linker is conserved. Importantly,

TvPam16 contains a conserved L99 in the J-like domain that

corresponds to L97 in the yeast ortholog. This residue has been

shown to mediate an essential interaction between the Pam16 J-

like domain and the J domain of Pam 18 that stabilizes the

heterodimer [3]. A second characteristic feature predicted in

TvPam16 is an N-terminal hydrophobic domain that is required

for the interaction of Pam18:Pam16 heterodimer with the TIM23

translocon. The J-like domain of TvPam16 is underlined. Helical

structures of the J-like domain (in red) were predicted by

PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/). Arrowheads indi-

cate the degenerate HPD motif of Pam16 between helixes II and

III. The HPD motif of Pam18 is boxed. The leucine and

asparagine residues essential for the Pam16-Pam18 interaction are

marked with a star. Organisms and accession numbers: T. vaginalis,
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TVAG_470110; S. cerevisiae, Pam16, P42949; H. sapiens, Pam16,

Q9Y3D7; D. discoideum, Pam16, XP_640279; E. cuniculi, Pam16,

ECU11_0700; T. vaginalis, Pam18, TVAG_436580; S. cerevisiae,

Pam18, Q07914; H. sapiens, NP_660304.

(PDF)

Figure S7 Alignment of the Tim44 domain of T.
vaginalis against eukaryotic and bacterial orthologs.
Conserved hydrophobic residues that form the large hydrophobic

pocket of Tim44 are highlighted in yellow [4,5]. The conserved

proline mutation, which causes familial oncocytic thyroid carcino-

ma, is in red [6]. Organisms and accession numbers: Saccharomyces

cerevisiae, Q01852; Schizosaccharomyces pombe, NP_595905; Phytophora

infestans, XP_002997475; Tribolium castaneum, XP_975336; Homo

sapiens, NP_006342; Caenorhabiditis elegans, O02161; Caulobacter

crestentus, AAK25703.

(PDF)

Figure S8 Tim44 is a peripheral membrane protein
exposed at the matrix side of the inner membrane that
provides a molecular scaffold for the assembly of the
import motor [7]. The BLAST algorithm (NCBI BLAST,

reference) using the PDB database of macromolecular structures

detected a sequence similarity between the C-terminal part of

TVAG_008790 and the C-terminal part of yeast Tim44 (E = 624).

This result was further supported by recognition of the C-terminal

Tim44 domain by PFAM (E = 723) and HHsenser (E = 124)

(Table S2). The structure of the C-terminal part of human Tim44

[8] was used to build the model of the C-terminal part of

TVAG_008790 (residues 144-326). The resulting structure shows

that all of the secondary structures present in human Tim44

appear in TvTim44 (Fig. 8B). The C-terminus of TvTim44 can

form a large characteristic pocket with the conserved hydrophobic

residues (Fig. 8C and Fig. S7 alignment) that were suggested to

participate in the binding of Tim44 to the inner membrane [8]. A

significant difference can be observed at position 225 of TvTim44,

where an Arg replaces a hydrophobic Leu or Phe in orthologous

species (Fig. S7 alignment). The positively charged domain of

human Tim44 implicated in the binding of cardiolipins (residues

289-295) is not well conserved in TvTim44, although calculations

of the electrostatic potential of TvTim44 also suggest a positive

charge in this area (Fig. 8D charge identification). The low

conservation of this domain likely reflects an absence of cardiolipin

in Trichomonas vaginalis [9].

(PDF)

Figure S9 ScNTvJPam18 can support wild-type rates of
cell viability and in vitro protein import. (A) Equal cell

numbers of wild-type or complemented yeast were serially diluted

onto medium containing glucose or lactic acid as a carbon source

and incubated at 25uC, 30uC or 37uC. (B) Mitochondria from

wild-type and complemented cells were isolated and incubated at

25uC with [35S]-labeled precursors for the indicated time, treated

with 25 mg/ml proteinase K to degrade the surface-associated

proteins, and analyzed by SDS-PAGE and digital autoradiogra-

phy.

(PDF)

References S1 References for the supporting informa-
tion figures and tables.
(DOC)

Table S1 Complete list of proteins identified by nanoLC
MS/MS in four independent experiments.
(DOC)

Table S2 Identification of hydrogenosomal proteins
using TrichDB (http://trichdb.org/trichdb/), Uniprot
(http://www.uniprot.org/), and PFAM A+B (http://
pfam.sanger.ac.uk/) searches.
(DOC)

Table S3 Putative matrix proteins identified in T.
vaginalis hydrogenosome.
(DOC)

Table S4 List of putative non-hydrogenosomal proteins.
(DOC)
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Introduction

Mitochondria are eukaryotic organelles that are thought to have

evolved from an alpha-proteobacterial endosymbiont about two

billion years ago. The loss of bacterial autonomy and transition of

the endosymbiont to a ‘‘protomitochondrion’’ were associated

with a reduction in the number of genes in the endosymbiont

genome; these genes were either transferred to the nuclear genome

or lost. While the genome of the extant alpha-proteobacterium

Rickettsia prowazekii contains 834 protein-coding genes [1], the

largest number of genes (67 protein-coding genes) in a mitochon-

drial genome is found in Reclinomonas americana [2], with only three

protein-coding genes present in the Plasmodium falciparum mito-

chondrial genome [3]. Paradoxically, the reduction of the

mitochondrial genome did not lead to a reduction of the

organellar proteome [4]. The acquisition of a mechanism for

mitochondrial import at the earliest stage of the endosymbiont-to-

protomitochondrion transition allowed the recruitment of the

proteins of endosymbiotic origin that were now encoded in the

nucleus, and the import of proteins of other origins [5].

Contemporary mitochondrial proteomes contain hundreds of

proteins, up to 1100 proteins in the mouse [6].

Mitosomes are the most highly reduced forms of mitochondria,

having completely lost their genomes and dramatically reduced

their proteomes. Mitosomes have also lost many of the typical

mitochondrial functions, such as respiration, the citric acid cycle,

and ATP synthesis. Biosynthesis of FeS clusters is the only

mitochondrial function seen to be retained by at least some

mitosomes [7]. Mitosomes have become established independently

in diverse groups of unicellular eukaryotes (protists); many of them

once considered to be amitochondrial because they lack organelles

with the expected mitochondrial morphology [8].

Organisms with mitosomes live under oxygen-limiting conditions,

like the human intestinal parasites Giardia intestinalis [9] and Entamoeba

histolytica [10], or are intracellular parasites like the microsporidians

Encephalitozoon cuniculi and Trachipleistophora hominis [11,12] and the

apicomplexan Cryptosporidium parvum [13]. Mitosomes are tiny ovoid

organelles enclosed by two membranes. Unlike mitochondria, the

inner membrane of mitosomes does not form cristae. The

morphology of the mitosome is reminiscent of the hydrogenosome,

another form of mitochondrion that is present in some anaerobic

protists, such as Trichomonas vaginalis. Unlike mitosomes, however,

hydrogenosomes are metabolically active organelles that produce

ATP by substrate level phosphorylation [14].

The limited knowledge of mitosomal proteomes has been gained

mainly from analyses of genome sequences and localization studies

of a few model mitosomal proteins [9,11,15–21]. The only

published proteomics study that focused on mitosomes was that
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recently reported for the amoeba E. histolytica, identifying a unique

sulfate activation pathway [22]. To increase our understanding of

the function and origin of these enigmatic organelles, we established

a large-scale proteomic approach to analyze the mitosomes of

Giardia intestinalis. This organism was selected because Giardia

intestinalis is a common human intestinal pathogen, its genome

sequence has been published [23,24], and it is considered to be

among the most basal eukaryotes [25]. Moreover, previous analysis

of the G. intestinalis genome provided little new information

pertaining to the putative mitosomal proteome [24], so there are

substantial gaps in our knowledge of the structure and function of

this essential organelle. Here, we quantitatively analyzed the

presence of isobarically-tagged proteins in mitosome enriched

fractions. This technique allowed us to discriminate the mitosomal

proteins from those of contaminating cellular structures. Combined

with an exhaustive bioinformatics analysis, this strategy identified

139 putative mitosomal proteins; 20 of which were experimentally

confirmed to be localized in mitosomes. Our results revealed that

the proteome of the G. intestinalis mitosome is selectively reduced and

houses a single metabolic pathway for FeS cluster assembly, a novel

diflavin protein with NADPH reductase activity, a minimal protein

import machinery and proteins that may be important for the

interaction of mitosomes with other cellular compartments.

Results and Discussion

Identification of putative mitosomal proteins by isobaric
tagging

Mitosome-enriched fractions were separated from a Giardia

homogenate by preparative centrifugation using a discontinuous

Optiprep (iodixanol) gradient [26]. This method produced five dense

organellar fractions (Fig. 1A). The mitosomal marker protein IscU

was particularly enriched in fraction #4 and to a lesser extent in

fraction #3 (Fig. 1B). Electron microscopy confirmed the presence of

mitosomes in both fractions; however, co-fractionating vesicles of

similar densities were also found (data not shown).To discriminate

between putative mitosomal proteins and those of contaminating

cellular structures, we compared the relative distribution of each

protein in fractions #3 and #4. Because the mitosomal proteins

necessarily co-fractionate (i.e. being contained within mitosomes)

during gradient centrifugation, each of the bona fide mitosomal protein

should display similar distribution ratios [27]. To this end, the

proteins of fractions #3 and #4 were digested in parallel with trypsin

and each peptide population was labeled with a distinct iTRAQ

reagent and then combined. The isobaric mass characteristics of the

iTRAQ reagents means the differentially-labeled peptides from

fractions #3 and #4 form a single peak in the MS scan for protein

identification. MS/MS analysis of the iTRAQ-labelled peptides

liberates the isotope-encoded reporter ions, the ratio of which can

reflects the distribution of the protein across the two fractions. In our

analysis, the pooled peptides were analyzed by tandem mass

spectrometry after subsequent separation with isoelectric focusing

and nano-liquid chromatography (nano-LC MS/MS). The iTRAQ

ratio was then calculated for each protein, and the proteins were

sorted according to the relative distributions in the fractions (Fig. 2).

Validating the methodology, mitosomal markers (IscS, IscU,

[2Fe2S] ferredoxin, Cpn60, Hsp70 and glutaredoxin 5) [28]

clustered together with similar iTRAQ ratios (Fig. 2). Proteins with

ratios between the lowest and highest values for the markers were

considered to be candidate mitosomal proteins. We also extended

this window on both sides by half of the distance between the

limiting markers and included all proteins in this extended window

(Fig. 2). In total, we identified 638 proteins (Table S1), with 139 of

these proteins meeting the defined criteria for mitosomal proteins

(Tables 1–7). Each of the 139 mitosomal candidates was assigned

to a probable function based on current annotations in the

GiardiaDB, PSI BLAST searches in the NCBI nr database, and

motif and domain searches in the Pfam database. Three additional

bioinformatics tools were used to predict cellular localization

(PsortII, TargetP 1.1 and SignalP 3.0), and two web-based

programs were used to predict alpha-helical transmembrane

region segments (TMHMM and Memsat3) (Tables S2–S4,

summary is given in Tables 1–7). The candidate proteins were

clustered into 13 groups according to their predicted functions

(Tables 1–7, Fig. 3). The proteomic data confirmed the validity of

250 hypothetical genes predicted from the complete genome

sequence of Giardia [24]; 40 of these formed the largest group of

candidate mitosomal proteins.

Evolution-inspired orthology phylogenetic profiling
Previous phylogenetic analyses of known mitosomal proteins

have generally confirmed their alpha-proteobacterial origin [28–

30]. On this premise, we compared the genomes of G. intestinalis

and Rickettsia typhi using the orthology phylogenetic profile tool at

GiardiaDB (http://www.orthomcl.org/cgi-bin/OrthoMclWeb.

cgi) to identify proteins of alpha-proteobacterial ancestry in the

G. intestinalis genome. The phylogenetic profiling yielded 106

candidate genes that were analyzed with the topology prediction

algorithms described above (Table S5). Based on these analyses,

six additional proteins: acetyl CoA acetyl transferase, CDP-

diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase,

guanylate kinase, J-protein HesB, thioredoxin reductase, and

thymidylate kinase were added to the set of candidate mitosomal

proteins identified by our proteomics approach (Tables 1–7).

Figure 1. Isolation of mitosome-rich fractions. (A) Trophozoites were disrupted and centrifuged to remove unbroken cells, nuclei and
cytoskeletal residue. The high-speed pellet was resuspended in sucrose buffer, layered onto an Optiprep density gradient, and centrifuged overnight.
Five distinct fractions were obtained. (B) Fractions were collected and analyzed by SDS-PAGE and Western blot. The mitosomal marker GiIscU was
detected in fractions #3 and #4 using a polyclonal rabbit antibody. (C–D) Electron microscopy of subcellular fractions. Fraction #3 (C) contains
numerous vesicles of variable sizes, while fraction #4 (D) contains vesicles of more homogeneous sizes. Arrows indicate mitosomes.
doi:10.1371/journal.pone.0017285.g001

Proteome of Giardia Mitosome
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Experimental validation of protein subcellular localization
The cellular localization of the selected candidate proteins was

observed by stable episomal expression in Giardia. To establish the

morphology of subcellular localizations by this approach, we first

observed the localization of five marker proteins: cytosolic enolase,

two proteins from the endoplasmic reticulum (Hsp70 and protein

disulfide isomerase 5), mitosomal Hsp70 and glutaredoxin (Fig. 4A).

We added to these markers of known location, three proteins of

untested location with iTRAQ ratios outside that of the mitosomal

range: glutamate dehydrogenase, copine and peroxiredoxin. Gluta-

mate dehydrogenase and copine were associated with cytoskeletal

structures, while peroxiredoxin localizes to the endoplasmic

reticulum network. This strategy was used to test the sub-cellular

localization of 44 selected proteins. Of these 20 expressed fluorescent

fusions that were found in the mitosomes (Tables 1–7). By way of

example, four of these: VAP, Pam16, Cpn10 and unknown proteins

GL50803_9296 and GL50803_ 14939 are shown in Fig. 4B.

Iron-sulfur cluster assembly
Proteins involved in FeS cluster assembly formed the most

prominent functional group within the predicted mitosomal proteins.

These included components required for the formation of transient

FeS clusters on the molecular scaffold (IscS, IscU, Nfu) (Fig. S1) and

components that have been proposed to transfer the transient FeS

clusters to target apoproteins, including IscA (Fig. S2), the monothiol

glutaredoxin 5, chaperone Hsp70 and its co-chaperones the J-protein

HscB (Fig. S3) and nucleotide exchange factor GrpE (Fig. S4). The

identification of the FeS cluster assembly machinery in the mitosomal

proteome is consistent with the ability of the mitosome-enriched

fraction to catalyze the formation of FeS clusters on a ferredoxin

apoprotein [9]. However, when we compared the FeS cluster

machinery of Giardia mitosomes to that of S. cerevisiae and Trypanosoma

brucei mitochondria, we found that several mitochondrial compo-

nents were absent from the mitosomes (Table 8).

A striking deviation from other eukaryotes is the absence of

frataxin in Giardia mitosomes. Frataxin is invariably present in

eukaryotes that contain the ISC-type FeS cluster assembly

machinery. The presence of frataxin in mitosomes was found in

E. cuniculi [17], and genes encoding frataxin are present in the

genomes of C. parvum and the diplomonad Spironucleus vortens, a

close relative of Giardia. We failed to identify frataxin in the

genomes of three G. intestinalis strains in the GiardiaDB, using

either BLAST searches or the motif search tool.

Two IscA-like proteins, IscA1 (Isa1) and IscA2 (Isa2) are present

in virtually all mitochondria [31] and are thought to act as scaffold

proteins for transient FeS clusters [32–34] and/or serve as iron

donors [35]. Interestingly, the Giardia mitosome contains only a

single IscA-2 type protein (Fig. S2), while IscA-1 is absent. The

same situation was found in hydrogenosomes of Trichomonas

vaginalis (Table 8). No genes encoding IscA were found in the

genomes of other organisms with mitosomes. The observed

distributions of IscA therefore suggest that IscA-1 was lost in

mitosomes and hydrogenosomes together with a specific set of

mitochondrial FeS proteins, while IscA-2 was retained in Giardia

mitosomes to function either in the maturation of specific FeS

protein(s) or as an iron transporter [35].

The mitosomes did not contain Ind1 or Iba57. In mitochondria,

these proteins are required for the formation of FeS clusters on

specific substrates. Ind1 is a P-loop NTPase that is required for the

maturation of FeS proteins of the multi-subunit respiratory

complex I [36,37]. Homologues of Ind1 are also present in the

hydrogenosomes of T. vaginalis (Table 8), which contain a highly

reduced form of complex I with only two FeS catalytic subunits

[38]. The selective absence of Ind1 in the mitosomes of Giardia

(Table 8) is thus consistent with the absence of complex I and

highlights the specific role of Ind1 in the biogenesis of this

respiratory complex. Iba57 forms a complex with the scaffold

protein IscA (Isa1p and Isa2p in yeast), which plays a specific role

in [4Fe4S] cluster assembly of aconitase-type proteins and the

functional activation of mitochondrial radical-SAM FeS proteins

[39]. As in the case of Ind1, the absence of Iba57 likely reflects the

absence of the respective substrate proteins in mitosomes.

Pyridine nucleotide-driven electron transport in
mitosomes

The formation of FeS clusters requires reducing equivalents, which

are provided by a short electron chain consisting of the [2Fe2S]

ferredoxin and ferredoxin:NADP+ reductase (FNR) [40]. The

presence of this chain has been predicted in the mitosomes of C.

parvum and E. cuniculi; however, [2Fe2S] ferredoxin, but not FNR, was

found in Giardia mitosomes (Table 1). We identified a distinct protein

with a possible redox activity named GiOR-1 (GL50803_91252),

which is currently annotated in the GiardiaDB as an inducible nitric

oxide synthase. This protein consists of a flavodoxin-like FMN-

binding domain that is connected to a cytochrome p450 reductase-

like domain, including a FAD binding pocket and an NADP(H)

binding site (Fig. S5). These two domains are present in the C-termini

of various oxidoreductases, such as cytochrome p450 reductase and

nitric oxide synthase, and serve as electron donors (Fig. S5). GiOR-1

does not contain an N-terminal domain that determines the specific

functions of known oxidoreductases.

The architecture of GiOR-1 resembles that of the recently

identified protein Tah18 in Saccharomyces cerevisiae [41,42]. Tah18

was shown to form a complex with Dre2 in the cytosol, where it

participates in cytosolic FeS cluster assembly [43]. Under

oxidative stress, the Dre2-Tag18 complex was destabilized, and

Tah18 relocalized from the cytosol to the mitochondria. This

behavior has been shown to be associated with apoptotic events.

Figure 2. iTRAQ ratios define protein subcellular localization.
Proteins in fractions #3 and #4 isolated on the Optiprep gradient were
labeled with the iTRAQ-114 and iTRAQ-115 reagents, respectively,
analyzed by LC MS/MS, and sorted according to the iTRAQ ratios.
Mitosomal marker proteins (red diamonds) fall into a narrow range of
iTRAQ ratios. Green diamondsdindicate the zone of proteins considered
as mitosomal candidates (mitosomal distribution, MiD).
doi:10.1371/journal.pone.0017285.g002

Proteome of Giardia Mitosome
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Searches for a Dre2 homologue in Giardia were unsuccessful.

However, we identified a second paralogue of Tah18 named

GiOR-2 (GL50803_15897, Fig. S5). The expression of tagged

GiOR-1 and GiOR-2 in G. intestinalis confirmed that the GiOR-1

is localized to the mitosome, but GiOR-2 was found in numerous

vesicles that did not correspond to mitosomes (Fig. 4C). To assess

the oxidoreductase activity of GiOR-1, recombinant GiOR-1

was produced in Escherichia coli and isolated as a yellow protein,

which is expected for diflavin oxidoreductases. GiOR-1 efficient-

ly transferred electrons from NADPH to dichlorophenolindol-

phenol, whereas an about 30 fold lower activity was measured

using NADH as the electron donor (Table 9). Low specific

activities were observed also with methyl viologen and oxygen as

electron acceptors (Table 9). No activity was observed when

GiOR-1 was assayed with G. intestinalis mitosomal ferredoxin as a

possible native electron acceptor. These results suggest that

GiOR-1 does not act directly as a ferredoxin reductase in

mitosomes, however, its ability to utilize NADPH as an electron

donor indicates that pyridine nucleotides are involved in

mitosomal electron transport.

Molecular chaperones in the mitosomal matrix: protein
folding and assembly

A single mitosomal Hsp70, three J-protein co-chaperones and

the nucleotide exchange factor GrpE were identified in the

mitosomes. The J-proteins included HscB, an orthologue of yeast

Jac1 (Fig. S3)that has a predicted role in FeS cluster biogenesis

[44], and Pam18/Tim14, which is required for translocation of

proteins across the mitochondrial inner membrane [45]. The third

J-protein also contains an N-terminal DnaJ domain (type III

family); however, its function cannot be inferred from domain

structure or phylogenetic profiling. We also identified the

chaperonins Cpn60 and Cpn10 (Fig. S6), that function in folding

and assembly of newly-imported proteins [46,47] (Table 1).

Table 1. Putative mitosomal proteins classified by predicted function: Iron-sulfur cluster assembly, chaperones, redox mechanism
and protein translocation and processing.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP
Target
P Psort II

Exp
Ver. MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

Iron-sulfur cluster assembly

GL50803_14519 IscS, cysteine desulfurase 296 4 Y N O M 0 # 0

GL50803_15196 IscU 243 5 Y N M 17% M 0 # 0

EAA38809 Nfu 60 2 Y N M 39% M 1 0

GL50803_14821 IscA 198 3 Y N O 35% M 0 # 0

GL50803_2013 Glutaredoxin 5 249 3 Y N O 13% M 0 # 0

Molecular chaperones

GL50803_14581 mitochondrial type HSP70 404 7 Y N O 13% M 0 # 0

GL50803_1376 GrpE 29 1 Y N M 39% M 0 # 0

GL50803_17030 DnaJ protein, Jac1 * * * N O 35% M 0 # 0

GL50803_9751 DnaJ protein, Type III 34 1 Y N O 13% M 1 1

GL50803_103891 Cpn60 336 6 Y N O M 0 # 0

GL50803_29500 Cpn10 68 1 Y Y O 9% M 0 # 0

Redox mechanism

GL50803_27266 [2Fe-2S] ferredoxin 182 2 Y N M 48% M 0 # 0

GL50803_91252 GiOR-1, oxidoreductase 40 1 N N O 13% M 0 # 0

GL50803_15897 GiOR-2, oxidoreductase * * * N O 21% O 0 # 0

GL50803_9827 Thioredoxin reductase * * * N M 13% O 0 # 0

GL50803_9719 NADH oxidase 271 5 Y N O 9% ** 0 # 0

GL50803_16076 Peroxiredoxin 1 293 5 Y N O 9% 0 # 0

Protein translocation and processing

GL50803_17161 Tom40 208 2 Y N O 13% M 0 # 0

XP_002364144 Pam18 68 1 Y N M 30% M 0 # 0

GL50803_19230 Pam16 35 1 Y N O 13% M 0 # 0

GL50803_9478 GPP, processing peptidase 30 1 Y N O 4% M 0 # 0

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t001
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Protein import
We identified four components that are potentially involved in

transporting proteins across the mitosomal membranes: a

homologue of a mitochondrial Tom40, which would form a

general import pore in the outer mitosomal membrane, and the

three essential components of the PAM (presequence translocase-

associated motor) complex: Pam18, Pam16 (Fig. S7) and mHsp70.

Pam18 and Pam16 form an intimate complex that anchors a

population of the matrix Hsp70 to the inner membrane and

regulates its activity to drive protein translocation across the inner

Table 2. Putative mitosomal proteins classified by predicted function: transporters and proteins known to operate in endoplasmic
reticulum and tramsport vesicles.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP
Target
P Psort II

Exp
Ver. MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

Transporters

GL50803_114777 major facilitator
superfamily mfs_1

658 8 N N M 4% ER 10 12

GL50803_17296 major facilitator
superfamily mfs_1

32 1 Y N M ** 7 10

GL50803_17342 major facilitator
superfamily mfs_1

151 3 Y N M ** 10 12

GL50803_87446 ABC transporter,
A family, putative

554 7 Y N O ** 4 7

GL50803_3470 ABC transporter,
A family, putative

95 2 Y N M ** 6 7

GL50803_17165 ABC transporter,
A family, putative

113 2 Y N O 4% 8 7

GL50803_21411 ABC transporter,
A family, putative

429 10 Y N S 0 14

ER, vesicle transport

GL50803_5744 Sec61-alpha 175 3 Y N M 22% ER 10 9

GL50803_16906 Phosphatidate
cytidylyltransferase

48 2 Y N M 9% ER 7 8

GL50803_14200 Molybdenum
cofactor sulfurase

56 1 Y N O 22% ER 2 1

GL50803_14670 Protein disulfide
isomerase PDI3

69 1 Y Y S 22% 1 0

GL50803_8064 Protein disulfide
isomerase PDI5

58 1 Y Y S 13% ER 1 1

GL50803_17121 ER Hsp70 (Bip) 1626 24 Y Y S 11% ER 0 # 1

GL50803_15204 Endosomal cargo
receptor 3

95 2 Y Y S 1 1

GL50803_14469 R-SNARE 3 45 1 Y N O 1 2

GL50803_8559 Vacuolar ATP synthase 16
kDa proteolipid subunit

90 1 Y N O 11% 4 4

GL50803_7532 Vacuolar ATP synthase
catalytic subunit A

146 2 Y N O 17% 1 0

GL50803_13000 Vacuolar ATP synthase
subunit d

342 5 Y N O 13% 1 0

GL50803_23833 Vacuolar protein sorting 35 26 1 Y N O 11% 1 0

GL50803_18470 Vacuolar proton-ATPase
subunit, putative

608 8 Y N O 4% 6 6

GL50803_96670 Potassium-transporting
ATPase alpha chain 1

473 9 Y N O 4% 10 8

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t002
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membrane [48]. Typically, it functions together with a TIM

complex that forms the translocation pore for protein passage

across the membrane. In representative organisms from all

lineages of eukaryotes, the TIM complex is built from one or

two proteins of the Tim17/22/23 family [49]. Surprisingly, we

find no evidence for a member of this protein in our proteomics

data, and sensitive hidden Markov model searches detected no

related sequences in the Giardia genome (unpublished, see

Methods). In eukaryotes, the Sec61 channel catalyzes protein

transport across the endoplasmic reticulum [2], while a highly-

related protein called SecY is the translocation channel in the

inner membrane of bacteria, including the alpha-proteobacteria

from which mitochondria are derived. Interestingly, Reclinomonas

americana encodes a bacterial-type SecY protein translocation

channel in its mitochondrial genome [50], and our proteomics

analysis detected what appeared to be contamination of the

mitosomal membranes with GiSecY/Sec61. We expressed a

tagged version of this protein in Giardia but it localized to the

endoplasmic reticulum, as expected for a cognate Sec61, rather

than to the mitosomes. The nature of the mitosomal inner

membrane protein translocation channel remains unknown, and

yet must exist given that at least 17 of the proteins detected in the

mitosomal proteome are likely to reside in the matrix.

We suggest that Tim23/17/22 protein(s) have been secondarily

lost from Giardia, given that the these proteins appear to be derived

from components of the ancestral endosymbiont [48] and are

present in all other groups of eukaryotes including other members

of the Excavata [51], particularly T. vaginalis (TrichDB, http://

trichdb.org/trichdb; our unpublished data). Because there is

evidence to suggest that T. vaginalis and G. intestinalis share a

common ancestor [44,52], the absence of a Tim23 homologue in

Giardia likely reflects the overall simplification of the organelle than

a primitive trait. Why has the TIM complex been replaced? In

addition to a reliance on ATP hydrolysis mediated by the PAM

motor, the TIM complex is powered by the membrane potential

through its physical association with the respiratory complexes III

and IV [53,54]. Giardia mitosomes do not generate a large

membrane potential, as shown by their inability to accumulate the

routinely used mitochondrial probes that are sensitive to the

membrane potential (e.g., mitotrackers, JC-1, our observations).

Perhaps any membrane potential that is present, is insufficient to

support the function of a TIM23 translocase.

Table 3. Putative mitosomal proteins classified by predicted function: protein modification, cztosceletal and motor proteins.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP Target P Psort II MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

Protein modification

GL50803_8587 Kinase, AGC NDR 22 1 Y N O 4% 0 # 0

GL50803_14223 Kinase, NEK 124 2 Y N O 13% 0 # 0

GL50803_16824 Kinase, NEK 87 2 Y N O 0 # 0

GL50803_17510 Kinase, NEK 25 1 Y N O 17% 0 # 0

GL50803_5375 Kinase, NEK 46 1 Y N O 17% 0 # 0

GL50803_11775 Kinase, NEK-frag 50 2 Y N O 17% 0 # 0

GL50803_7183 Kinase, NEK-frag 22 1 Y N O 13% 0 # 0

GL50803_8805 Kinase, SCY1 159 2 Y N O 11% 1 0

GL50803_7110 Ubiquitin 360 5 Y N O 17% 0 # 0

Cytoskeletal and motor proteins

GL50803_11654 Alpha-1 giardin 934 17 Y N O 13% 1 0

GL50803_7796 Alpha-2 giardin 478 8 Y N O 17% 1 0

GL50803_5649 Alpha-10 giardin 294 5 Y N O 9% 1 0

GL50803_15097 Alpha-14 giardin 643 9 Y N O 4% 0 # 0

GL50803_112079 Alpha-tubulin 394 7 Y N O 0 # 0

GL50803_136020 Beta tubulin 841 13 Y N O 0 # 0

GL50803_42285 Ciliary dynein heavy chain 11 23 1 Y N 1 0

GL50803_93736 Dynein heavy chain 29 1 Y N 13% 0 0

GL50803_16993 FtsJ cell division protein, putative 24 1 Y N O 17% 0 # 0

GL50803_102101 Kinesin-3 85 1 Y N O 26% 0 # 0

GL50803_21444 Spindle pole protein, putative 63 2 Y N O 22% 0 # 0

GL50803_8589 Suppressor of actin 1 81 2 Y N O 11% 3 2

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t003
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Interaction of mitosomes with other cellular
compartments

In the Giardia mitosomes, we identified a VAMP (vesicle-

associated membrane protein)-associated protein, VAP (Table 6).

VAPs are involved mainly in membrane trafficking and lipid

metabolism. They provide membrane anchors for various lipid

binding proteins on the surfaces of the endoplasmic reticulum and

Golgi complex [53] and physically interact with SNARE proteins,

with FFAT-motif containing lipid transport proteins and micro-

tubules. Like other VAPs, the Giardia VAP protein contains an N-

terminal domain that includes the VAP consensus sequence [55], a

central coiled-coil domain and a C-terminal transmembrane

domain with the putative dimerization motif GxxxG (Fig. S8). The

presence of a VAP protein has not been reported in mitochondria

or other mitosomes so far. In Giardia, GiVAP was found within the

set of hypothetical proteins with distribution value corresponding

to mitosomal proteins (Table 6) and its mitosomal localization was

experimentally confirmed (Fig. 4B).

Hypothetical proteins
The set of mitosomal candidates contains 40 proteins annotated

as hypothetical proteins. We selected six proteins with high

mitochondrial score (Tables 6–7) for the verification of their sub-

cellular localization. Three proteins were confirmed to reside in

mitosomes (Table 6, Fig 4): (i) putative VAP (GL50803_15985)

that is discussed above, (ii) hypothetical protein GL50803_14939

that contains two predicted transmembrane domains (residues 13–

35 and 102–124), and (iii) a putative soluble globular protein

GL50803_9296. The latter two proteins seem to be unique for

giardia as no orthologues were identified in available databases.

Two other hypothetical proteins (GL50803_16596 and

GL50803_4768) were observed in the cytosol and in association

with kinetosomes, respectively (Table 6, data not shown). The

cellular localization of hypothetical protein GL50803_12999

remains inconclusive. Although the protein co-localized with IscU

in some vesicles, it was not observed in typical rod-like structure

between nuclei (data not shown).

Origin of mitosomes and perspectives
Mitosomes are thought to have evolved several times in

different eukaryotic lineages through the reduction of ancestral

mitochondria. For example, microsporidians are intracellular

parasites allied with Fungi; whereas Fungi typically possess fully

equipped mitochondria with large proteomes (.850 proteins)

[11,56], only twenty to thirty proteins have been identified from

genome analysis of E. cuniculi as having similarity to bona fide

mitochondrial proteins of Saccharomyces cerevisiae [15,18,21].

Apicomplexan parasites related to Plasmodium also include

Table 4. Putative mitosomal proteins classified by predicted function: various metabolic processes, lipid metabolism.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP
Target
P Psort II

Exp
Ver. MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

Various metabolic processes

GL50803_7203 Guanylate kinase * * * N M 65% O 0 # 0

GL50803_3287 Acetyl-CoA acetyltransferase * * * N M 22% O 0 # 0

GL50803_8163 Manganese-dependent inorganic
pyrophosphatase, putative

25 1 Y N O 22% 0 # 0

GL50803_6497 Metal-dependent hydrolase 30 1 Y N O 13% 1 0

GL50803_10311 Ornithine carbamoyltransferase 665 8 Y N O 9% 1 0

GL50803_14993 Pyrophosphate-fructose
6-phosphate
1-phosphotransferase
alpha subunit

56 1 Y N M 35% 1 0

GL50803_15380 CDC8 Thymidylate kinase * * * N O 35% O 0 # 0

Lipid metabolism

GL50803_9062 Long chain fatty acid
CoA ligase 5

279 3 Y N O 22% ** 0 # 0

GL50803_21118 Long chain fatty acid
CoA ligase 5

25 1 Y N O 26% 0 # 0

GL50803_113892 Long chain fatty acid
CoA ligase, putative

224 4 Y N O 26% 0 # 0

GL50803_7259 CDP-diacylglycerol-
glycerol-3-phosphate 3-
phosphatidyltransferase

43 1 N N M 22% 6 2

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t004
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organisms with mitosomes, such as Cryptosporidium parvum and

Cryptosporidium hominis. Based on genomic analyses, 37–54 proteins

have been predicted to reside in these mitosomes [19], of which

18 were detected by mass spectrometry in whole C. parvum

sporozoites [25].

An intriguing question concerns the nature of the mitochondrial

progenitor from which mitosomes of G. intestinalis have evolved.

Giardia is a member of the Excavate group, which has recently

been re-considered to belong to the basal groups of eukaryotes

based on its mechanism of cytochrome c and c1 biogenesis

Table 5. Putative mitosomal proteins classified by predicted function: miscellaneous.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP Target P Psort II Exp Ver. MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

Miscellaneous

GL50803_11953 Coatomer alpha
subunit (WD40)

31 1 Y N O 0 # 0

GL50803_88765 Cytosolic HSP70 22 1 Y N O 4% 1 0

GL50803_112312 Elongation factor
1-alpha

424 10 Y N O 4% 1 0

GL50803_12102 Elongation factor
1-gamma

158 3 Y N M 13% 1 0

GL50803_28379 Multidrug resistance-
associated protein 1

210 4 Y N O 0 10

GL50803_16313 Pescadillo (ribosome
biogenesis)

52 1 Y N M 17% ** 0 # 0

GL50803_15380 CDC8 Thymidylate
kinase

* * * N O 35% O 0 # 0

GL50803_16354 Protein 21.1 25 1 Y N O 4% 0 # 0

GL50803_17288 Protein 21.1 54 2 Y N O 4% 0 0

GL50803_23492 Protein 21.1 130 1 Y N O 30% 1 0

GL50803_86855 Protein 21.1 22 1 Y N O 9% 0 # 0

GL50803_88245 Protein 21.1 23 1 Y N O 17% 0 # 0

GL50803_21662 Coiled-coil protein 31 1 N N M ** 0 # 0

GL50803_16152 Coiled-coil protein 57 2 Y N O 0 # 0

GL50803_8564 Coiled-coil protein 74 3 Y N O 0 0

GL50803_9515 Coiled-coil protein 61 2 Y N O 0 # 0

GL50803_40244 P24, putative 53 1 Y N O 13% 1 1

GL50803_6430 14-3-3 protein 78 2 Y N O 13% 1 0

GL50803_8903 Copine I 190 4 Y N O 44% O 0 # 0

GL50803_14225 CXC-rich protein 494 8 Y Y S 0 1

GL50803_17476 CXC-rich protein 255 7 Y Y S 4% 0 1

GL50803_113656 Cysteine protease 73 2 Y Y S 1 1

GL50803_103454 High cysteine membrane
protein Group 1

1038 14 Y Y S 1 1

GL50803_17328 High cysteine membrane
protein Group 2

113 3 Y Y S 0 1

GL50803_91099 High cysteine membrane
protein Group 2

65 1 Y Y S 13% 0 # 1

GL50803_114042 High cysteine membrane
protein Group 4

330 5 Y Y S 1 1

GL50803_11359 Ribosomal protein S4 31 1 Y N O 17% 1 0

GL50803_17411 TCP-1 chaperonin subunit
gamma

24 1 Y N O 1 0

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t005
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[25,57]. These and other data have placed the root of eukaryotes

between Excavata and Euglenozoa, a group of protists that

includes trypanosomatids [58]. In this respect, there is an apparent

simplicity in the protein import machinery of the Giardia

mitosomes that deserves attention (Fig. 5). The proteomics analysis

detected in mitosomes a protein recently shown to be Tom40, the

protein translocation channel across the outer membrane [25,59].

The current model for the evolution of the TOM complex posits

that Tom40 was derived from a beta-barrel protein in the

endosymbiont’s outer membrane, perhaps of an usher or

autotransporter type protein translocase [60]. Because two other

proteins: Tom7 and Tom22, have been found in representative

species of all other eukaryotic groups [58], the model further

suggests that the first TOM complex was composed of Tom40,

Tom22 and Tom7. Our proteomics finds no evidence of Tom7 or

Tom22 in mitosomes, and sensitive hidden Markov model

searches likewise fail to find any proteins encoded in the Giardia

genome with similarity to Tom7 or Tom22 [25,57]. Whether

reflecting a secondary gene loss or the ancestral condition,

GiTom40 would appear to be a selectively simple protein

translocase. In addition to Tom40, mitochondria contain one

other member of the mitochondrial porin family, the voltage-

Table 6. Putative mitosomal proteins classified by predicted function: miscellaneous - continued; hypothetical proteins.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP
Target
P Psort II

Exp
Ver. MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

GL50803_10330 Tenascin precursor 330 4 Y Y S 11% 0 # 0

GL50803_16477 Tenascin-37 178 4 Y Y S 17% 1 0

GL50803_16833 Tenascin-like 96 2 Y Y S 0 # 0

GL50803_13561 Translation elongation
factor

36 1 Y N O 13% 1 0

GL50803_15889 UDP-N-acetylglucosamine-
dolichyl-phosphateN-
acetylglucosamine-
phosphotransferase

36 1 Y Y S 4% 10 7

GL50803_11521 VSP 198 3 Y Y S 1 1

GL50803_137618 VSP 530 9 Y N O 4% 2 1

GL50803_11470 VSP with INR 220 3 Y N O 2 1

GL50803_6733 Zinc finger domain 55 1 Y N S 22% 4 4

Hypothetical proteins

GL50803_12999 Hypothetical protein 414 5 Y Y M ? 2 2

GL50803_14939 Hypothetical protein 133 2 Y Y M 30% M 1 2

GL50803_15985 Hypothetical protein (VAP,
VAMP associated protein)

35 1 Y N M 13% M 1 1

GL50803_16596 Hypothetical protein 177 3 N N M 30% O 0 # 0

GL50803_4768 Hypothetical protein 21 1 Y N M 57% O 0 # 0

GL50803_9296 Hypothetical protein 178 4 Y Y M 57% M 0 # 0

GL50803_11237 Hypothetical protein 24 1 Y N O 9% 1 0

GL50803_11557 Hypothetical protein 41 1 Y N O 17% 1 0

GL50803_11866 Hypothetical protein 25 1 Y N O 22% 0 # 0

GL50803_13288 Hypothetical protein 35 1 Y N O 9% 1 0

GL50803_13413 Hypothetical protein 95 2 Y N O 11% 2 2

GL50803_137685 Hypothetical protein 200 4 Y N S 13 9

GL50803_137746 Hypothetical protein 25 1 Y N O 0 # 0

GL50803_13922 Hypothetical protein 1121 14 Y Y S 1 1

GL50803_14164 Hypothetical protein 23 1 Y N O 13% 0 # 0

GL50803_14278 Hypothetical protein 31 1 Y N O 13% 0 # 0

GL50803_14660 Hypothetical protein 105 2 Y N O 35% 1 0

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t006
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dependent anion channels (VDAC), which serve to exchange

metabolites [61]. The absence of VDAC in Giardia mitosomes

might reflect the disappearance of many of the metabolic

pathways, and the concomitant decrease in metabolite flux across

the outer membrane. It is likely that the Giardia Tom40, in

addition to importing proteins, exchanges ions and small

metabolites across the outer mitosomal membrane as has been

demonstrated for the yeast Tom40 in mutants lacking VDAC

[44,62–64].

Another surprising result, one that can only be explained by a

secondary gene loss, is the absence of the outer membrane protein

Sam50 in Giardia. Sam50 is a component of the SAM (sorting and

assembly machinery) complex, which is required for the assembly

of both Tom40 and VDAC [48,65]. The apparent absence of

Sam50 from the Giardia genome and from our proteomics data is

unique among eukaryotes. A putative Sam50 homologue has been

predicted in the genomes of all eukaryotes, including trypanoso-

matids [58,65] and mitosome- and hydrogenosome-containing

protists (C. parvum, E. cuniculi, E. histolytica and T. vaginalis) [66].

Numerous phylogenetic and functional analyses indicate that

Sam50 was derived from the Omp85/BamA protein present in the

outer membrane of the ancestral, alpha-proteobacterial endosym-

biont and it must, therefore, have been present in the earliest

mitochondria [44]. It is not clear how Giardia Tom40 is assembled

within the outer membrane without the assistance of the SAM

complex. It is known that even in yeast Tom40 mediates the

import of new molecules of Tom40 into mitochondria [67] and it

is tempting to speculate that the Giardia Tom40 is capable of

mediating its own import and membrane insertion, given the

highly simplified nature of the TOM complex in mitosomes.

Our proteomics data support the hypothesis that ISC assembly

is an important and possibly the only biosynthetic function of

Giardia mitosomes. Previous phylogenic analyses have indicated

that the ISC assembly machinery was obtained from the alpha-

proteobacterial endosymbiont; nearly complete ISC assembly

machinery is present from trypanosomatids to higher eukaryotes.

Therefore, the absence of certain components, such as IscA-1,

Iba57, and Ind, in the mitosomal machines (Table 8) is apparently

due to a secondary loss of specific target proteins. Noteworthy, we

did not identify any proteins that would carry FeS clusters in

Giardia mitosomes, except for components of the FeS cluster

assembly machinery itself. It seems likely then that the main role of

Table 7. Putative mitosomal proteins classified by predicted function: hypothetical proteins – continued.

Accession number Annotation Identification Localization Structure

MASCOT Coverage MiD SignalP Target P Psort II MEMSAT3 SGP TMHMM

score peptides % mito TM No. TM No.

GL50803_14845 Hypothetical protein 69 2 Y N O 4% 0 # 0

GL50803_15084 Hypothetical protein 22 1 Y N O 0 # 0

GL50803_16424 Hypothetical protein 117 3 Y N O 26.1% 0 # 0

GL50803_16430 Hypothetical protein 32 1 Y N O 9% 1 0

GL50803_16998 Hypothetical protein 24 1 Y N O 17% 0 # 0

GL50803_17236 Hypothetical protein 69 1 Y N M 10 10

GL50803_1937 Hypothetical protein 75 2 Y N S 2 2

GL50803_23389 Hypothetical protein 33 1 Y N O 4 6

GL50803_28962 Hypothetical protein 39 1 Y Y S 4% 1 1

GL50803_29327 Hypothetical protein 111 2 Y N O 17% 1 0

GL50803_3021 Hypothetical protein 21 1 Y N O 13% 0 # 0

GL50803_32999 Hypothetical protein 98 3 Y N O 13% 0 # 0

GL50803_3491 Hypothetical protein 25 1 Y N O 30% 1 0

GL50803_6617 Hypothetical protein 350 5 Y Y S 1 1

GL50803_7188 Hypothetical protein 926 11 Y Y S 13% 3 1

GL50803_7242 Hypothetical protein 69 1 Y N O 22% 3 3

GL50803_7244 Hypothetical protein 144 3 Y N O 11% 4 3

GL50803_94658 Hypothetical protein 27 1 Y N O 13% 0 # 0

GL50803_9503 Hypothetical protein 206 3 Y N O 9% 0 # 0

GL50803_9780 Hypothetical protein 333 5 Y Y S 11% 0 # 0

GL50803_9861 Hypothetical protein 137 2 Y N O 4% 0 # 0

GL50803_10016 Hypothetical protein 265 5 Y Y S 22% 1 0

GL50803_111809 Hypothetical protein 34 1 Y N O 0 # 0

Mascot score, Mascot total ion score for the identified protein. Coverage, number of unique peptides per identified protein. MiD, mitosomal distribution. Proteins are
marked ‘‘Y’’ if their distributions in fractions #3 and #4 of the Optiprep gradient (measured by the iTRAQ ratio) were within the range between Cpn10 and IscU and the
window that extended in both directions by half of the distance between these markers. Proteins with ratios outside of this range are indicated with ‘‘N’’. TargetP and
PsortII were used to predict the subcellular location of Giardia proteins. S, secretory; N, non-secretory; M, mitochondrial; O, other. Exp. ver., experimental verification of
protein localization using the pONDRA expression vector. The recombinant tagged proteins were localized by fluorescence microscopy. M, mitosome; ER, endoplasmic
reticulum; O, other; ? inconclusive. MEMSAT3 and TMHMM were used to predict transmembrane domains. SGP, predicted soluble proteins are marked with number sign
(#). Asterisk (*) is used where no data were available. (**) transformed Giardia did not express the recombinant tagged protein.
doi:10.1371/journal.pone.0017285.t007
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mitosomes could be to export preassembled FeS clusters, or other

compounds that are essential for the biogenesis of FeS proteins, to

other cellular compartments. In mitochondria, the export of these

enigmatic compounds is dependent on the membrane ABC ‘‘half-

transporter’’ Atm1 [68] and sulfhydryl oxidase Erv1 [69]. In the

mitosome-enriched fraction, we identified four ABC half-trans-

porters by mass spectrometry, and another candidate was

predicted based on phyletic profiling of the G. intestinalis genome

(Table 2). However, compared to other Atm1 homologues, these

candidates lack the x-loop with the conserved arginine, which is

essential for known Atm1 transporters (Fig. S9). No protein with

homology to Erv1 was found by proteomics or by analysis of the

Giardia genome.

Another remaining question pertains to the source of ATP that

is required for the multiple processes identified in mitosomes

including FeS cluster assembly and export, organelle division,

protein import and protein folding. In E. histolytica, it has been

shown that a mitochondrial carrier family (MCF) protein localizes

to mitosomes and exchanges ATP and ADP across the inner

membrane, effecting the import ATP into mitosomes [20]. E.

cuniculi mitosomes contain a distinct bacterial nucleotide trans-

porter that may fulfill the same function [23,24]. However, our

proteomic analysis did not revealed a candidate nucleotide

transporter in the mitosomes of Giardia leaving open the question

of ATP acquisition.

In conclusion, using iTRAQ-based mass spectrometry and

bioinformatics we identified 139 candidate mitosomal proteins.

Mitosomal localization was confirmed experimentally for 20 of 44

proteins tested, suggesting the complete mitosomal proteome of

Giardia to be of the order of 50-100 proteins. Previous genome

analyses failed to predict any of the novel mitosomal proteins

identified here [70]; only by combining quantitative mass

spectrometry and bioinformatics were these novel proteins

identified. The small proteome of the G. intestinalis mitosome

indicates a marked reduction in mitochondrial metabolic activity

and reduced requirements for organelle biogenesis. These do not

mirror the reductions seen in the mitosomal proteome of

Cryptosporidium, supporting the view that lineage-specific reductions

produce organelles with distinct metabolic pathways and specific

‘‘short-cut’’ pathways for biogenesis. Our findings provide new

insight into aspects of mitochondrial evolution and the basis from

which to begin reconstructing the details of precisely how these

organelles are built and replicated to support Giardia growth and

division.

Methods

Cell culture and fractionation
G. intestinalis strain WB (American Type Culture Collection)

was grown in TYI-S-33 medium supplemented with 10% heat-

inactivated bovine serum and 0.1% bovine bile [9]. Trophozoites

were freeze-detached, washed in PBS and collected by centrifu-

gation. Cells were then resuspended in hypotonic buffer (12 mM

MOPS, pH 7.4) and incubated for 15 minutes. The cells were

then pelleted at 6806 g for 15 minutes, resuspended in the same

buffer with DNase I (40 mg/mL) and homogenized by 10

passages through a 25G needle. After homogenization, the

isotonicity was immediately restored with the addition of an equal

volume of 500 mM sucrose in MOPS buffer. The homogenate

was then treated with trypsin (200 mg/mL) for 10 minutes at

37uC to release the organelles from the cytoskeleton. Proteases

inhibitors were then added (5 mg/mL of soybean trypsin

inhibitor, leupeptin and TLCK), and the homogenate was diluted

and centrifuged for 20 minutes at 27606 g to remove cellular

debris. The collected supernatant was centrifuged using a

Beckman rotor Ti 50 at 20,000 rpm for 30 minutes. After

centrifugation, the pellet was collected and washed in SM buffer

(250 mM sucrose and 12 mM MOPS, pH 7.4). Next, the pellet

was resuspended in 0.5 mL of SM buffer and layered onto a

discontinuous density OptiPrep (Axis-Shield PoC AS, Oslo,

Norway) gradient, which consisted of 1 ml each of 15%, 20%,

25%, 30% and 50% OptiPrep diluted in 12 mM MOPS buffer.

The gradient was centrifuged for 24 h in a Beckman SW 40 rotor

at 120,0006 g at 4uC. Fractions (1 mL each) were collected,

washed and analyzed by immunoblot using a polyclonal rabbit

anti-IscU antibody [71,72].

Figure 3. Classification of the identified proteins according to function. Functions were assigned based upon GiardiaDB annotations, PSI-
BLAST analysis and searches of the Pfam database (Tables 1, 2, 3, 4, 5, 6 and 7, Tables S2–S3).
doi:10.1371/journal.pone.0017285.g003
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Mass spectrometry analysis
Samples of two selected fractions (100 mg of total protein each)

were precipitated with acetone at 220uC for 2 hours and then

pelleted at 13,0006 g for 15 min. The proteins were trypsin

digested and labeled with sample-specific iTRAQ reagents

according to the manufacturer’s protocol (Applied Biosystems).

Labeled samples were mixed and precipitated with acetone. The

pellet was dissolved in 2 M urea in HPLC grade water, and the

solution was subjected to IEF using 7 cm immobilized pH 3–10

gradient strips (Bio-Rad) for 20,000 VHrs. The strips were cut

into 2-mm wide slices, and peptides were extracted using 50%

ACN with 1% TFA. Extracted peptides were then separated

using an Ultimate 3000 HPLC system (Dionex) coupled to a

Probot micro-fraction collector (Dionex). The samples were

loaded onto a PepMap 100 C18 RP column (3 mm particle size,

15 cm long, 75 mm internal diameter; Dionex) and separated

with a gradient of 5% (v/v) ACN and 0.1% (v/v) TFA to 80% (v/

v) ACN and 0.1% (v/v) TFA over 60 min at a flow rate of

300 nl/min. The eluate was mixed 1:3 with matrix solution

(20 mg/mL a-cyano-4-hydroxycinnamic acid in 80% ACN) prior

to spotting onto a MALDI target. Spectra were acquired using a

4800 Plus MALDI TOF/TOF analyzer (Applied Biosystems/

MDS Sciex) equipped with a Nd:YAG laser (355 nm, 200 Hz

firing rate). All spots were measured in MS mode; up to 10 of the

strongest precursors were selected for MS/MS analysis, which

was performed using collision energy of 1 kV and operating

pressure of the collision cell of 1026 Torr. Peak lists from the

MS/MS spectra were generated using GPS Explorer v. 3.6

(Applied Biosystems/MDS Sciex) subtraction of baseline enabled

with peak width 50, smoothing with Savitsky-Golay algorithm of

polynomial order of four and three points across peak, minimum

signal to noise (S/N) 3, local noise window 250 m/z, cluster area

S/N optimization enabled with S/N threshold 5. Spectra were

searched with locally installed Mascot v. 2.1 (Matrix Science)

against the GiardiaDB release 1.3 annotated protein database

(4892 sequences, 2663813 residues) and GiardiaDB release 1.2

Open Reading Frame translations greater than 50 amino acids

(85612 sequences, 9633221 residues). The database search

criteria were as follows: trypsin; one missed cleavage site allowed;

fixed modifications iTRAQ 4-plex on N-terminal- and lysine e-

amino group, methylthiolation of cysteine; variable modification

methionine oxidation; peptide mass tolerance of 100 ppm; MS/

MS tolerance of 0.2 Da; maximum peptide rank of 1, minimum

ion score C.I. (peptide) of 95%.

Figure 4. Sub-cellular localization of selected proteins in Giardia. Transformed G. intestinalis cells with episomally-expressed HA-tagged
proteins. (A) Marker proteins were stained using a mouse anti-HA antibody (green). Grx5, glutaredoxin 5; ER, endoplasmic reticulum; glutamate DH,
glutamate dehydrogenase. (B) Predicted mitosomal proteins (GL50803_14939, GL50803_9296, VAP, Cpn10, Pam16) were stained using a mouse anti-
HA antibody (green). (C) Cellular localization of tagged diflavin proteins GiOR-1 and GiOR-2 stained with mouse anti HA antibody (green). Tom40 was
detected by polyclonal rabbit anti-Tom40 antibody (red).
doi:10.1371/journal.pone.0017285.g004

Table 8. Comparison of iron-sulfur cluster assembly machineries in organisms with mitosomes (Giardia intestinalis,
Cryptosporidium parvum, and Encephalitozoon cuniculi), hydrogenosomes (Trichomonas vaginalis), and mitochondria (Trypanosoma
brucei, Saccharomyces cerevisiae).

Name G. intestinalis C. parvum E. cuniculi T. vaginalis T. brucei S. cerevisiae

IscS (Nfs) N N N NN N N

Isd11 # # N NN NNN N

Nfu N # # NNN NNN N

IscU (Isu) N N N N N NN

IscA1(Isa1) # # # # N N

IscA2 (Isa2) N # # NNNN N N

Iba57 # # # # N N

Ind # # # NNN N N

Grx5 N # N # N N

Ferredoxin (Yah1) N N N NNNNNNN NN N

FOR (Arh1) # N N # N N

Frataxin (Yfh1) # N N NN N N

HSP70 N N N NNN NN N¤¤

Dna-J (Jac1) N N N NN N N

GrpE N N N NN N N

Atm1 # N N # N N

Erv1 # # N # N N

Filled circles indicate the presence of protein exhibiting homology to the known component of mitochondrial iron-sulfur cluster assembly machinery identified by
BLAST searches. Empty circles indicates absence of homologous protein. Mitochondria of S. cerevisiae possess three distinct Hsp70 of which Ssq1 is devoted for FeS
cluster assembly (filled circle), while Ssc1, and Ecm10 have other fuctions (diamonds). Other eukaryotes possess multifunctional Hsp70. IscS, cysteine desulfurase; Isd11,
IscS binding protein; Nfu, IscU, IscA, a scafold proteins; Iba57, IscA binding protein required for [4Fe4S] cluster assembly; Ind, P-loop NTPaseb required for assembly of
respiratory complex I; Grx5, glutaredoxin 5; ferredoxin, [2Fe2S] ferredoxin that transport electrons; FOR, ferredoxin oxidoreductase; frataxin, iron binding protein; Hsp70,
chaperone; DnaJ, GrpE, co-chaperones; Atm1, ABC half trasnporter; Erv1, sulfhydryl oxidase. Names of proteins used for S. cerevisiae orthologs are in brackets.
doi:10.1371/journal.pone.0017285.t008
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Bioinformatics
Bioinformatics searches based on simple pair-wise alignment

Psi-BLAST and hidden Markov models (HMMs) were applied to

verify the automatic protein annotations and estimate their

functions. Protein sequences (,1000 residues) were submitted (i)

against a 90% redundancy reduced NCBI nr database for 8

iterations at an e-value cutoff of 1023 and (ii) against Pfam 23.0

A+B database of families represented by multiple sequence

alignments and hidden Markov models at an e-value of 0.044

(http://pfam.sanger.ac.uk/search). Where noted in the text,

tailored HMM libraries were used to search for components of

the protein import machinery [16].

Programs based on a combination of artificial neural networks

(TargetP) and hidden Markov models (SignalP, both http://www.

cbs.dtu.dk/services/) together with PsortII (http://psort.ims.

u-tokyo.ac.jp/) were used to predict the subcellular localizations

of the proteins. The secondary structures and topologies of alpha-

helical integral membrane proteins were predicted using two

bioinformatics tools: TMHMM, a program based on hidden

Markov models (http://www.cbs.dtu.dk/services/), and Memsat3

(http://bioinf.cs.ucl.ac.uk/memsat/).

Transformation of G. intestinalis and
immunofluorescence

Selected genes were amplified by PCR from genomic Giardia

DNA and inserted into the pONDRA plasmid [73]. Table S6

contains a list of primers that were used for subcloning of genes into

expression vector. Cells were transformed and selected as described

previously [16]. G. intestinalis cells expressing the recombinant

proteins fused to a hemagglutinin tag (HA) at the C-terminus were

fixed and stained for immunofluorescence microscopy with a mouse

monoclonal anti-HA antibody. A secondary AlexaFluor-488 (green)

donkey anti-mouse antibody was used.

Preparation of recombinant proteins and enzyme assay
The coding region of GiOR-1 and [2Fe2S]ferredoxin was

subcloned into pET42b and pET3a (Invitrogen), respectively and

Table 9. Activity of mitosomal diflavin oxidoreductase GiOR-
1.

Substrate
Specific activity
[mg.min21.mg21]

Standard
deviation

NADPH 0

NADPH+DCIP 9,053 0,111

NADH + DCIP 0,269 0,034

NADPH + MV 0,450 0,205

NADPH + O2 0,144 0,042

NADPH+ferredoxin 0

Electron donors: NADPH, NADH.
Electron acceptors: DCIP, dichlorophenol-indolephenol; MV, methyl viologen;
O2, aerobic conditions; ferredoxin, recombinant G. intestinalis [2Fe2S]ferredoxin.
doi:10.1371/journal.pone.0017285.t009

Figure 5. Schematic representation of protein import pathway in the mitosome of G. intestinalis. Components identified in mitosome are
highlighted by color. Components that are known to participate in the protein import into mitochondria of animals and fungi are shown in grey
colour. OM, outer membrane; IMS, intermembrane space; IM, inner membrane; TOM, translocase of outer membrane; SAM, sorting and assembly
machinery; TIM, translocase of inner membrane; PAM, presequence translocase-associated motor; VAP, VAMP (vesicle-associated membrane protein)-
associated protein; VDAC, voltage-dependent anion channel; MPP, mitochondrial processing peptidase.
doi:10.1371/journal.pone.0017285.g005
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expressed in Escherichia coli BL21. The bacteria were induced with

0,5 mM IPTG (isopropyl-b-D-thiogalactopyranoside) and grown

at 37uC in LB medium. For expression of GiOR-1, the LB

medium was supplemented with 250 mM flavin adenine dinucle-

otide (FAD) and 250 mM flavin mononucleotide (FMN), whereas

the LB medium supplemented with 400 mM ferric ammonium

citrate was used for expression of ferredoxin. After induction, the

cells were incubated overnight at 4uC. The harvested cells were

homogenized, and soluble fraction was obtained by centrifugation

at 250,0006 g, 1 h, 4uC. The his-tagged GiOR-1was affinity

purified under native conditions using a Ni-NTA column (Qiagen)

according to manufacture’s protocol. Ferredoxin was isolated by

gel filtration chromatography using a BioLogic HR system

(BioRad).

Enzyme activity of GiOR-1 was assayed spectrophotometrically

at 25uC in anaerobic cuvettes under nitrogen atmosphere. The

activity was monitored as a rate of NADPH or NADH (0,25 mM)

oxidation in the presence of dichlorophenol-indolephenol

(0,1 mM) or ferredoxin at 340 nm, or as a rate of methyl viologen

(2 mM) reduction at 600 nm. NADPH oxidase activity was

measured under aerobic conditions at 340 nm. The enzymatic

activity was determined in phosphate buffer (100 mM KH2PO4/

KOH, 150 mM NaCl, pH 7,4). Protein concentration was

determined according to Lowry method.

Supporting Information

Figure S1 Sequence alignment of Giardia Nfu against ekaryotic

and prokaryotic orthologues. Conserved thioredoxin-like CXXC

motif is shown in green. Giardia, Giardia intestinalis EAA38809;

Trichomonas, Trichomonas vaginalis, TVAG_146780; Trypanoso-

ma, Trypanosoma brucei, XP_845796; Leishmania, Leishmania

infantum, XP_001470367; Toxoplasma, Toxoplasma gondii,

XP_002371042; Plasmodium, Plasmodium falciparum, CAX64255;

Saccharomyces, Saccharomyces cerevisiae, NP_012884; Homo, Homo

sapiens, AAI13695; Rickettsia, Rickettsia prowazekii, NP_221029;

Stigmatella, Stigmatella aurantiaca, ZP_01463912.

(PDF)

Figure S2 Sequence alignment of Giardia IscA against eukaryotic

and bacterial orthologs. The conserved cysteine residues are

highlited in yellow. Organism names and accession numbers:

Giardia, Giardia intestinalis GL50803_14821; Trichomonas, Trich-

omonas vaginalis TVAG_055320; Trypanosoma, Trypanosoma cruzi

XP_806610; Saccharomyces, Saccharomyces cerevisiae Q12425;

Homo, Homo sapiens NP_919255; Arabidopsis, Arabidopsis thaliana

NP_179262; Chlamydomonas, Chlamydomonas reinhardtii

XP_001697636; Rickettsia, Rickettsia conorii NP_360365; Esche-

richia, Escherichia coli CAQ32901; Mycobacterium, Mycobacterium

leprae NP_301657.

(PDF)

Figure S3 Sequence alignment of Giardia Jac1 against eukaryotic

and bacterial orthologs. The conserved HSP70 interactin site is

highlited in green. Organism names and accession numbers:

Giardia, Giardia intestinalis, GL50803_17030; Trichomonas, Trich-

omonas vaginalis, TVAG_422630; Trypanosoma, Trypanosoma brucei,

XP_843770; Leishmania, Leishmania infantum, XP_001466207;

Plasmodium, Plasmodium falciparum, CAX64223; Toxoplasma,

Toxoplasma gondii, XP_002368309; Naegleria, Naegleria gruberi,

EFC47366; Saccharomyces, Saccharomyces cerevisiae, NP_011497;

Homo, Homo sapiens, AAN85282; Escherichia, Escherichia coli,

YP_002408666.

(PDF)

Figure S4 Sequence alignment of Giardia Mge1 against eukary-

otic (Mge1) and bacterial (GrpE) orthologs. The residues in yellow

indicate a GrpE dimer interface. HSP70 binding sites are shown in

green (Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F,

Kuriyan J, Crystal structure of the nucleotide exchange factor

GrpE bound to the ATPase domain of the molecular chaperone

DnaK, Science 1999, 276:431–435. Giardia intestinalis,

GL50803_1376; Homo sapiens, NP_079472; Saccharomyces cerevisae,

NP_014875; Escherichia coli, NP_417104; Arabidopsis thaliana,

NP_567757; Trichomonas vaginalis, XP_001329309; Trypanosoma

brucei, XP_845338; Dictyostelium discoideum, XP_638912; Bacillus

subtilis, NP_390426; Halobacterium sp., NP_279548.

(PDF)

Figure S5 Sequence alignment of G. intestinalis mitosomal

oxidoreductase OR-1 (GL50803_91252), against G. intestinalis

non-mitosomal paralogue OR-2 (GL50803_15897) and structur-

ally related proteins containing flavodoxin-like FMN-binding

domain (conserved residua in blue), FAD binding pocket (residua

involved in FAD binding in green) and NADP(H) binding site

(residua involved in NADP(H) in red). Saccharomyces cerevisiae

Tah18, DAA11472; Homo sapiens NDOR, NADPH dependent

diflavin oxidoreductase, AAH15735; Rattus norvegicus NOS, nitric

oxide synthase, AAC13747; Rattus norvegicus CPR, cytochrome

P450 reductase, NP_113764; Escherichia coli SiR, sulfite reductase,

YP_002330508; Homo sapiens MSR, methionine synthase reduc-

tase, NP_076915; Trichomonas vaginalis Hyd, hydrogenase,

TVAG_136330; Leptospira interrogans FNR, ferredoxin reductase,

YP_003372.

(PDF)

Figure S6 Conserved glycine which is present in all GroES and

Cpn10 homologues is shown in green. Hsp60 binding site is shown

in yellow (van der Giezen M, León-Avila G, Tovar J. (2005)

Characterization of chaperonin 10 (Cpn10) from the intestinal

human pathogen Entamoeba histolytica. Microbiology 151:3107-15).

Giardia intestinalis GL50803_29500; Trichomonas vaginalis

TVAG_191660; Saccharomyces cerevisiae NP_014663.1; Homo sapiens

XP_001118014.1; Leishmania infantum XP_001470405.1; Plasmodi-

um falciparum PFL0740c; Arabidopsis thaliana NP_563961.1;

Dictyostelium discoideum XP_636819.1; Mycobacterium tuberculosis

NP_217935.1; Escherichia coli NP_290775.1.

(PDF)

Figure S7 Sequence alignment of Giardia Pam16 against

eukaryotic Pam 16 orthologues and giardial Pam 18 paralogue.

Conserved leucin in an interacting hydrofobic pocket is shown in

green (D’Silva PR, Schilke B, Hayashi M, Craig EA (2008)

Interaction of the J-protein heterodimer Pam18/Pam16 of the

mitochondrial import motor with the translocon of the inner

membrane. Mol Biol Cell 19:424-32). The typical HPD motif (in

blue) present in Pam18 is degenerated in Pam16, in yellow

(Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M (2006)

Structure and function of Tim14 and Tim16, the J and J-like

components of the mitochondrial protein import motor. EMBO J

25:4675-85). Giardia intestinalis Pam 16 GL50803_19230; Tricho-

monas vaginalis TVAG_470110; Toxoplasma gondii XP_002367323.1;

Saccharomyces cerevisiae NP_012431.1; Neurospora crassa

XP_960477.1; Pediculus humanus XP_002428010.1; Schistosoma

japonicum CAX74438.1; Homo sapiens NP_057153.8; Mus musculus

NP_079847.1; Xenopus laevis NP_001084733.1; Giardia intestinalis

Pam 18 XP_002364144.

(PDF)
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Figure S8 Protein sequence alignment of VAP (VAMP-associ-

ated protein) homologues. Domain structure is depicted for each

represented sequence according to HHPRED (http://toolkit.

tuebingen.mpg.de/). Major sperm protein domain, yellow.

Coiled-coil domain in green and dimerization motif GXXXG in

red. The G. intestinalis VAP contains all protein characteristics as

described for human homologue.

(PDF)

Figure S9 Sequence alignment of Giardia AbcB transporter

against mitochondrial and bacterial orthologs. Giardia intestinalis

AbcB, GL50803_17315; Saccharomyces cerevisiae Atm1, NP_014030;

Saccharomyces cerevisae Mdl1, NP_013289; Homo sapiens AbcB7,

NP_004290; Homo sapiens AbcB10, NP_036221; Arabidopsis thaliana

Atm3, NP_200635; Naegleria gruberi Atm1,XP_002683195; Rhodo-

bacter sphaeroides AbcB, YP_001168064; Halobacterium sp. AbcB,

NP_279266. Walker A part of a conserved ATP-binding motif in

yellow; Q-loop part of a conserved ATP-binding motif in green;

ABC signature, a conserved sequence specific for ABC proteins in

pink; Walker B part of a conserved ATP-binding motif in blue; D-

loop part of a conserved ATP-binding motif in red; H-loop part of

a conserved ATP-binding motif in purple; X-loop contains a

conserved arginine in AbcB transporters (N), which is not present in

Giardia sequence, in cyan (Dawson RJ, Locher KP (2006)

Structure of a bacterial multidrug ABC transporter. Nature

443:180-185; Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An

allelic mutant series of ATM3 reveals its key role in the biogenesis

of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:

590-602).

(PDF)

Table S1 Complete list of proteins identified by LC MS/MS in

mitosomal fractions labelled by iTRAQ reagents.

(PDF)

Table S2 List of Giardia proteins within the mitosomal

distribution range (MiD) identified by LC MS/MS.

(PDF)

Table S3 Identification of protein families using PfamA+B

databases.

(PDF)

Table S4 Predictions of cellular localization.

(PDF)

Table S5 Orthology phylogenetic profililng. Genomes of G.

intestinalis and Rickettsia typhi were compared using orthology

phylogenetic profile tool at GiardiaDB.

(PDF)

Table S6 List of primers that were used for subcloning of genes

into expression vector pONDRA to investigate subcellular

localization of corresponding gene products in G. intestinalis.

(PDF)
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Trichomonas  vaginalis  has  been  reported  to  possess  alternative  2-keto  acid  oxidoreductases  (KORs).
These  enzymes  preferentially  used  indolepyruvate  in  a reaction  that resembled  that  of pyru-
vate:ferredoxin  oxidoreductase  (PFO).  However,  the  KORs  did  not  reduce  ferredoxin  and  remained  active
in  metronidazole-resistant  trichomonads  lacking  PFO.  Therefore,  it was  proposed  that  the KORs  may  help
trichomonads  to  survive  in the  presence  of  metronidazole.  The  KORs  were  identified  using  activity  stain-
ing  on  native  gels  (Brown  DM,  Upcroft  JA, Dodd  HN,  et  al. Alternative  2-keto  acid  oxidoreductase  activities
in T.  vaginalis.  Mol  Biochem  Parasitol  1999;98:203–14).  In  the  current  study,  we showed  that  the  apparent
richomonas
eto acid oxidoreductase
ydrogenosome
yruvate:ferredoxin oxidoreductase
etronidazole
itroblue tetrazolium

KOR  activity  was  caused  by  the  non-enzymatic  reduction  of  the  indicator  dye,  nitroblue  tetrazolium,  by
indolepyruvate,  which  is facilitated  by  Triton  X-100  used  to prepare  the  membrane  fractions.  We  could
not  confirm  the  presence  of  KORs  in metronidazole-resistant  T. vaginalis.  The  low  level  indolepyruvate-
dependent  activity  that  is  present  in  T.  vaginalis  strains  sensitive  to metronidazole  is  catalyzed  by PFO,
which  was  verified  using  the  pure  enzyme.  Therefore,  our  results  suggest  that  alternative  2-keto  acid

xist  in
oxidoreductases  do  not  e

Trichomonas vaginalis is a flagellated protist belonging to the
upergroup Excavata. It causes the most common non-viral gen-
tourinary infection of humans and has a worldwide annual
ncidence of up to 170 million cases [1].  Trichomonas is an
nusual eukaryote that is a fermentative anaerobe with hydrogeno-
omes instead of typical mitochondria. Hydrogenosomes are
itochondrion-related organelles that lack a genome and form

ydrogen by reacting protons with electrons that are derived from
etabolized substrates, such as pyruvate and malate. The pro-

uction of hydrogen is catalyzed by a hallmark hydrogenosomal
nzyme, the hydrogenase. The electron donor in this reaction is
he reduced form of the electron carrier [2Fe2S] ferredoxin, which
s reduced by another typical hydrogenosomal enzyme, pyru-
ate:ferredoxin oxidoreductase (PFO) [2].  A two-subunit remnant
f respiratory complex 1 also donates electrons to ferredoxin by
xidizing NADH [3].  PFO is a Fe–S protein that mediates the oxida-
ive decarboxylation of pyruvate and forms acetyl coenzyme A in

 CoA-dependent reaction [4].  Acetyl-CoA serves as a substrate
or ATP synthesis via succinyl coenzyme A in reactions that are
atalyzed by acetate/succinate CoA transferase and succinate thiok-

nase [2].

In 1999, new enzymes involved in T. vaginalis carbohydrate
etabolism were added to the existing list. These enzymes were

∗ Corresponding author. Tel.: +420 221951811; fax: +420 224919704.
E-mail address: hrdy@cesnet.cz (I. Hrdý).

166-6851/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.molbiopara.2011.09.005
 T.  vaginalis.
© 2011 Elsevier B.V. All rights reserved.

called alternative 2-keto acid oxidoreductases (KOR1 and KOR2)
and were identified using biochemical methods, which showed
that KOR1 and KOR2 resided in the membrane (predominantly
the hydrogenosomal membrane) fractions [5].  Similar to PFO,
these enzymes were reported to utilize 2-keto acids includ-
ing deaminated forms of aromatic amino acids (indolepyruvate,
phenylpyruvate) in a CoA-dependent reaction. However, unlike
PFO, KOR1 and KOR2 were found to be equally active in trichomon-
ads that are highly resistant to metronidazole, which is a widely
used drug that targets anaerobic pathogenic microorganisms [5].
Laboratory-derived T. vaginalis strains with extreme metronida-
zole resistance (growing in >100 �g ml−1 metronidazole) lack PFO
and other hydrogenosomal proteins (hydrogenase, malic enzyme,
ferredoxin) and exhibit altered carbohydrate metabolism [6]. By
oxidatively decarboxylating pyruvate, PFO generates low-redox-
potential electrons that are transferred to the nitro group of
metronidazole via ferredoxin, reducing this nitro group to form
cytotoxic products, including the reactive nitro-anion radical
intermediate. Elimination of the PFO- and ferredoxin-dependent
pathway of the reductive activation of metronidazole is a charac-
teristic feature for laboratory-derived Trichomonas strains that are
resistant to metronidazole. However, the elimination of PFO pre-
vents acetyl coenzyme A formation and consequently ATP synthesis

in the hydrogenosomes [7].  The reported presence of alternative
2-keto oxidoreductases in trichomonads was proposed to account
for the energy balance while avoiding metronidazole reduction
by replacing ferredoxin with an unidentified electron acceptor, to

dx.doi.org/10.1016/j.molbiopara.2011.09.005
http://www.sciencedirect.com/science/journal/01666851
mailto:hrdy@cesnet.cz
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roaden the spectrum of known catabolic substrates, circumvent
he loss of PFO and help resistant trichomonads survive in the
resence of the drug [5]. The identification of alternative 2-keto oxi-
oreductases in trichomonads was based on in-gel activity assays
sing indolepyruvate as a substrate and nitroblue tetrazolium
NBT) as a reducible acceptor. Tetrazolium dyes are commonly
sed in assays of the metabolic activity of tissues, cells or isolated
roteins that reduce an electron-transporting cofactor (usually
AD+ or NADP+). This cofactor then reduces the soluble, colorless
r weakly colored tetrazolium salt, yielding an intensely dark-
olored insoluble formazan [8]. When used with non-denaturing
olyacrylamide gels containing separated proteins, this so-called
istochemical staining can be used to detect and distinguish a wide
ariety of redox enzymes that use the same oxidizable substrate
ut differ in their electrophoretic mobilities. The enzymatic activ-

ty is visualized as a colored band that forms in the gel upon its
ncubation in a suitable buffer containing a substrate, all necessary
ofactors and tetrazolium dye.

As presented in the original report, bands corresponding to
he suspected indolepyruvate-dependent activity were observed in
on-denaturing gels used to separate T. vaginalis membrane frac-
ions that had been treated with Triton X-100 (KOR1) followed by

 M sodium acetate (KOR2). The bands were interpreted as indi-
ating the presence of 2-keto acid oxidoreductases, so far in T.
aginalis unknown enzymes. These enzymes were similar to PFO
ased on their requirement for coenzyme A but differed from PFO
ased on the electrophoretic mobility, detergent solubility (KOR1),
equirement of an electron acceptor other than ferredoxin and
aintenance of the enzymatic activity in metronidazole-resistant

richomonads.
A draft of the T. vaginalis genome sequence was published in

007 [9].  While providing an invaluable inventory of the cod-
ng potential of T. vaginalis (the genome size is estimated to
e approximately 160 mega bases), the annotation, among other
eatures, revealed that many Trichomonas proteins are coded by

ulti-gene families. This finding is also valid for the proteins that
onstitute the core hydrogenosomal catabolic pathway, includ-
ng PFO, ferredoxin, hydrogenase, malic enzyme and others that
re coded by 7–9 distinct genes [9].  With the genome sequence
vailable, we decided to re-address the question of the existence
f alternative 2-keto oxidoreductases, because the corresponding
roteins/genes have not been identified. We  speculated that some
f the more divergent PFO-like genes may  code for the proteins
ith the observed activity. We  reproduced the described proce-
ure for the preparation of membrane fractions of T. vaginalis
strain T1, provided by J.H. Tai, Institute of Biomedical Sciences,
aipei, Taiwan) [5] using the whole-cell lysate or Percoll-purified
ydrogenosomes as the starting material [10] because KOR1 activ-

ty was proposed to predominantly reside in the hydrogenosomes
5].  The only difference from the described protocol was the use
f 0.5% octylglucoside instead of 0.5% dodecylglucoside to wash
he membranes obtained from the starting material in the assay
uffer (50 mM Hepes, pH 7.5, 200 �M thiamine pyrophosphate,
.5 mM MgCl2 and 5 mM �-mercaptoethanol) [5].  The supernatant
rom the octylglucoside wash was discarded, and the resulting
ellet (corresponding to 10–20 ml  of culture with approximately

 × 106 cells ml−1 or hydrogenosomes that were purified from 2 l
f T. vaginalis culture) was extracted for 30 min  on ice with approx-
mately 400 �l of the assay buffer containing 1% Triton X-100 and
hen centrifuged at 100 000 × g for 40 min. A total of 10–30 �l of
he resulting supernatant was loaded onto a non-denaturing poly-
crylamide gel (Laemmli system without SDS, using 5% stacking gel

nd 9% separating gel, acrylamide:bisacrylamide ratio of 37.5:1).
he gel was run with cooling for approximately 4 h, washed and
ncubated in assay buffer without �-mercaptoethanol as previously
escribed [5].  The staining solution (10 ml)  contained 200 �M CoA,
ical Parasitology 181 (2012) 57– 59

5 mM indolepyruvate and 1 mg ml−1 NBT. Within minutes, dark-
blue bands with a trailing smear appeared in the gel (Fig. 1, lanes
1, 2). (For interpretation of the references to color in this text, the
reader is referred to the web  version of the article.) However, the
negative control, which lacked the necessary cofactor coenzyme A,
produced the same result (Fig. 1, lane 3). Realizing that the color
development may  not have been the result of enzymatic activ-
ity, we performed another control in which the gel was heated at
70 ◦C for 30 min  after the completion of electrophoresis. The stain-
ing pattern was identical to that using the non-denatured sample
(Fig. 1, lane 4). The enzyme inactivation by this treatment was  ver-
ified by the complete inactivation of the hydrogenosomal malic
enzyme, which is the most abundant hydrogenosomal membrane-
associated protein and is easily detected by in-gel activity staining
[11,12] (not shown). Additional controls using indifferent protein
sample rich in membranes (human red blood cells mixed with
Laemmli sample buffer with 1% Triton X-100 and without SDS and
reducing agent) or the sample buffer containing only 1% Triton X-
100 without any protein produced colored bands in the gel after
staining with indolepyruvate (Fig. 1, lanes 5 and 6, respectively).
The staining pattern was  also dependent on the amount of loaded
protein. Less protein yielded sharper bands and reduced the trail-
ing smear (not shown). Controls omitting indolepyruvate in the
incubation assay mixture or Triton X-100 in the sample did not
display detectable staining (Fig. 1, lanes 7 and 8, respectively). We
then set up the reaction in a test tube, mixing NBT (1 mg ml−1)
with indolepyruvate (5 mM)  in PBS (phosphate-buffered saline, pH
7.4). Upon addition of few microliters of 10% Triton X-100, the
mixture rapidly turned violet-brown, demonstrating that the non-
enzymatic reduction of NBT yielding formazan is greatly stimulated
by Triton X-100. Subsequently, we  reviewed the available literature
resources and found that the non-enzymatic reduction of tetra-
zolium salts with indoleacetaldehyde, a compound that contains an
indole bicyclic aromatic ring identical to that in indolepyruvate, has
been observed in studies using the monoamine oxidase histochem-
ical detection system with tryptamine as a substrate. However, the
exact chemistry of this NBT reduction has not been studied [13].
In addition, the enhancing effect of Triton X-100 on tetrazolium
salt reduction has been described as well [14,15]. It was  proposed
that univalently reduced, uncharged tetrazolium radicals rapidly
partition into Triton X-100 micelles which greatly increases their
local concentration and stimulates the formation of pigmented for-
mazan [14]. Therefore, we  inferred that the stained bands in the
native gels are caused by the non-enzymatic reduction of NBT by
indolepyruvate, which was  stimulated by Triton X-100 that was
possibly bound to hydrophobic proteins. Triton X-100 alone, which
is a nonionic detergent, did not migrate into the gel and pro-
moted formazan formation at the bottom of the sample-loading
well (Fig. 1, lane 6).

The previous study claimed that KORs using indolepyruvate as
a substrate remained equally active in the highly metronidazole-
resistant T. vaginalis strain and that the enzymes used methyl
viologen, benzyl viologen and NBT as acceptors with equal effi-
ciency [5].  We  used the Triton X-100-treated lysate of the T.
vaginalis strain TV 10-02 MR  100, which lacks PFO [6] and has a
similar level of metronidazole resistance as the strain used in the
original study, to verify the reported KOR activity with indolepyru-
vate. We employed the standard, anaerobic spectrophotometric
assay with methyl viologen as an acceptor [16]. We were unable
to detect any indolepyruvate-dependent activity (not shown).
Using the same assay and the lysate from metronidazole-sensitive
strain T1, we  observed an indolepyruvate- and CoA-dependent
reduction of methyl viologen, which amounted to approximately

5% of the activity of PFO with pyruvate (not shown). To verify
that this indolepyruvate-dependent activity was catalyzed by the
known hydrogenosomal PFO, we used the highly purified enzyme
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Fig. 1. Non-denaturing polyacrylamide gel electrophoresis of T. vaginalis membrane fractions. The gel was  developed using the assay buffer (see text for composition)
containing 5 mM indolepyruvate, 200 �M CoA and 1 mg  ml−1 NBT unless specified otherwise. Approximately 15–50 �g of protein was loaded per lane. Lane 1, whole T.
vaginalis cells that were lysed with 1% Triton X-100. Lane 2, Percoll-purified hydrogenosomes with 1% Triton X-100. Lane 3, Percoll-purified hydrogenosomes with 1%
Triton  X-100. The incubation mixture did not contain CoA. Lane 4, Percoll-purified hydrogenosomes with 1% Triton X-100. The gel slice was  heated at 70 ◦C for 30 min  after
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lectrophoresis and before staining. Lane 5, human red blood cells with 1% Triton X-
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ercoll-purified hydrogenosomes without Triton X-100.

17] in the subsequent assay. Indeed, the purified PFO displayed
ndolepyruvate-dependent activity, which was  4.5% of the PFO
ctivity with pyruvate (not shown).

In summary, we must conclude that the previously described
ctivities of alternative 2-keto acid oxidoreductases that use
ndolepyruvate as a preferred substrate were artifacts that were
aused by the non-enzymatic conversion of NBT into formazan by
ndolepyruvate in the presence of Triton X-100 due to the chem-
stry that has been already described. Likely, no such enzymes exist
n T. vaginalis, because we were unable to detect this activity in

etronidazole-resistant cells lacking PFO using a standard assay
ith methyl viologen as an acceptor. The low level indolepyruvate-
ependent activity that was found in metronidazole-sensitive
richomonads was catalyzed by hydrogenosomal PFO, which has
een previously characterized.
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9. Unpublished results

Changes of hydrogenosomal proteomes during development of metronidazole 
resistance in Trichomonas vaginalis

Metronidazole and other derivates of 5-nitroimidazole are the drugs used against the 

sexually transmitted parasite T. vaginalis and other anaerobic and microaerophilic pathogens.  

Susceptible organisms possess an electron-generating and transport systems involved in the 

oxidative decarboxylation of pyruvate and ATP synthesis.  This pathway is also responsible for 

reduction of the drug to cytotoxic products including hydroxylamine.  Mechanisms of both 

activation and resistance to metronidazole were described previously and reside in the 

hydrogenosome, but recently a cytosolic flavin-based mechanism has been proposed. 

Moreover, different metronidazole resistance mechanisms have been described in other 

organisms. Nim genes which encode 5-nitroimidazole reductases and NAD(P)H 

nitroreductases have been associated with metronidazole resistance in Bacteroides fragilis and 

metronidazole activation in Helicobacter pylori, respectively (Mendz and Mégraud 2002).  The 

finding of homologues of these genes in the genome of T. vaginalis suggests the presence of 

multiple mechanisms involved in metronidazole activation and metronidazole resistance in this 

parasite. 

In this study we performed the proteomic analysis of the highly purified 

hydrogenosomal fraction obtained using an Optiprep-sucrose gradient centrifugation. The 

organelles were isolated from the metronidazole-susceptible parent strain TV10-02 and from 

the in vitro developed resistant derivatives growing with 3, 5 and 100 ug/ml metronidazole 

(MR3, MR5, and MR100).  Hydrogenosomal proteins were digested with trypsin and the 

peptides were labeled using iTRAQ reagents. The labeled peptides were pooled and after 

separation using isoelectric focusing and nano-liquid chromatography were analyzed by 

tandem mass spectrometry (nano-LC MS/MS).  From a total of 700 proteins identified, 

approximately 140 hydrogenosomal proteins were found in all cell lines. Relative quantities of 

these proteins were compared.  Changes in protein expression were not significant (Fold 

change < 2.0) in MR3 and MR5 strains when compared with parent strain while the highly 

resistant strain MR100 displayed marked downregulation of the enzymes involved in energy 

and amino acid metabolism (PFOR, malic enzyme, acetate/succinate CoA transferase and 

others).  In contrast, increased protein levels were observed for key components of ISC 
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assembly machinery (IscS, IscU, IscA, Nfu and Ferredoxin 7) and for hydrogenase maturases 

in the MR100 strain. Interestingly, the highest fold change (greater than 38) was observed in 

two genes coding for the hybrid cluster protein (HCP; originally called “prismane”), that is 

common in prokaryotes and was initially isolated from the strictly anaerobic sulfate-reducing 

bacterium Desulfovibrio vulgaris (Pierik et al., 1992). HCP is located in the hydrogenosome of 

T. vaginalis and it coordinates two FeS clusters, one of which may be either a [2Fe2S] or a 

[4Fe4S] in different types of the enzyme, whereas the other is a unique [4Fe-2S-2O] cluster 

(van den Berg et al., 2000;   Macedo et al., 2002). Although widely examined at the biophysical 

level, little is known about the function of HCP in vivo. In prokaryotes, it was reported to be 

associated with nitrate and nitrite metabolism (Cabello et al., 2004) working as a 

hydroxylamine reductase (Wolfe et al., 2002), and to be involved in oxidative stress protection 

(Briolat and Reysset, 2002; Almeida et al., 2006).  HCP-coding genes are also present in 

several unrelated lineages of eukaryotic protists.   The exact physiological role of HCP in 

eukaryotes remains unknown but according with our results, in T. vaginalis the protein could 

be involved in scavenging of cytotoxic metabolites i.e hydroxylamine, formed after 

metronidazole reduction. These data demonstrate profound changes in the hydrogenosome 

proteome of highly metronidazole-resistant trichomonads and support the role of 

hydrogenosomes in the induction of anaerobic resistance to metronidazole.   

.

10. Conclusions

The effect of iron in the gene expression of the human parasite T. vaginalis was studied 

by comparative transcriptomic and proteomic analysis using cells cultured in the presence and 

absence of iron. The role of iron in the protein expression of T. vaginalis was consistent in the 

results of both analyzes. 

Previous studies had shown that iron availability significantly affects the pathogenicity 

of the parasite and the expression of genes encoding proteins involved in energy metabolism. 

The aim of these studies was to show in more depth the gene regulation and thus to understand 

the adaptive capacity of T. vaginalis under iron rich and iron restricted conditions.  In our first 

experiment, we observed iron regulation in 308 genes using DNA microarrays and 336 genes 
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using EST library sequencing.  In both methods, it was observed that approximately 50% of the 

genes were upregulated in iron enriched conditions while the other 50% were upregulated 

under iron restricted conditions. Genes that showed upregulation in the presence of iron, were 

those involved in carbohydrate metabolism both in the cytosol and the hydrogenosome, and 

also the genes involved in the catabolism of methionine.  In the absence of iron, there was 

upregulation of the components of the ISC assembly machinery and various cysteine proteases. 

It was observed the differential expression of individual copies of the expanded gene group 

showing that not all of the copies were affected by iron.  From this, one could deduce that the 

gene duplication observed in T. vaginalis genome sequence could be a strategy of the parasite 

to respond and adapt efficiently to the constant changes in its natural habitat.

Proteomic analysis was conducted specifically in hydrogenosomes of T. vaginalis. Data 

was analyzed based on protein expression under iron restricted conditions, for which 

hydrogenosomes from cells cultured in the presence of iron were taken as a control. The 

hydrogenosomal proteome confirmed the data obtained in our transcriptomic study.  We have 

identified 179 proteins, of which 58 were differentially expressed.  Iron deficiency showed 

upregulation of proteins involved in ISC assembly machinery and downregulation of proteins 

involved in carbohydrate metabolism. We confirmed that iron affects the expression of only 

some of the multiple protein paralogues while the expression of others was iron independent.  

We can conclude that changes in protein expression in components of the iron-sulfur cluster 

assembly machinery and energy metabolism are an adaptative mechanism of the parasite in 

response to the lack of iron. Hydrogenosomal Fe-S proteins with a role in pyruvate catabolism 

are downregulated to minimize the iron needs while the machinery for ISC assembly 

maximized its function for the efficient Fe-S clusters formation which is necessary for the core 

metabolism in the organelle. 

In addition, we observed that components involved in oxidative stress protection were 

affected by iron availability as well.  Two thioredoxins and one protein with homology to 

bacterial OsmC, which was recently found involved in detoxification of peroxides, were 

upregulated, whereas the Fe-containing proteins, rubrerythrin and superoxide dismutase were 

downregulated under iron depleted conditions. One paralogue of the bacterial-type FeS 

flavoprotein with a role in hydrogen peroxide and oxygen detoxification was downregulated 

too. Interestingly, one of the two detected paralogues of the β-barrel protein Hmp35 was 
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significantly downregulated under iron restricted conditions. This protein has been detected 

only in hydrogenosomes of T. vaginalis and a role as an iron transporter has been suggested.

In another series of experiments, we compared the protein expression in 

hydrogenosomes of T. vaginalis from a metronidazole-sensitive strain and three strains with in 

vitro developed metronidazole resistance. Protein expression in the highly metronidazole 

resistant strain (MR100)  revealed similar changes when compared with the parent strain as that 

found in trichomonads that were grown under iron depleted conditions.  ISC assembly 

machinery was upregulated in the MR100 strain whereas the enzymes from the carbohydrate 

metabolism were downregulated.  Interestingly, two paralogues of the hybrid cluster protein 

(HCP) were identified among the most upregulated proteins in MR100. This protein catalyzes 

reduction of hydroxylamine and thus it might be involved in the detoxification of toxic 

products from the nitrogen metabolism including the metronidazole. Another interesting 

protein is an unknown protein with a RIC and ScdA  domain,  which was significantly 

upregulated in MR100. The protein is similar to the bacterial protein FeS_repair_RIC, iron-

sulfur cluster repair di-iron protein. The protein in bacteria is stimulated by nitrosative stress 

and iron starvation. Additionally, RIC protein has homology with the ScdA protein identified 

in Staphylococcus aureus, which participate in cell wall biosynthesis and could be involved in 

drug resistance by increasing the cell wall permeability or the efflux pumps of active drugs.  

However, the role of this protein in T. vaginalis remain to be elucidated. HCP and the unknown 

protein with the RIC domain did not reveal a significant regulation under iron depleted 

conditions.

In a different experiment we have demonstrated that the hydrogenosome of T. vaginalis 

does not possess Alternative 2-keto acid oxidoreductases (KORs) as it was reported in a 

previous study. It has been suggested that the protein could replace the activity of pyruvate: 

ferredoxin oxidorreductase (PFOR) in metronidazole-resistant trichomonads.  We used a 

standard assay with methyl viologen as an acceptor but we were unable to detect this activity in 

metronidazole-resistant cells lacking PFOR. We have concluded that the KOR activity was 

caused by the non-enzymatic reduction of the indicator dye, nitroblue tetrazolium, by 

indolepyruvate, which is facilitated by Triton X-100 used to prepare the membrane fractions. 

Therefore the low level indolepyruvate-dependent activity that is present in T. vaginalis strains 

sensitive to metronidazole is catalyzed by PFOR.
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We have carried out an experiment to identify the hydrogenosomal membrane proteins 

in T. vaginalis. The data revealed some homologues of the mitochondrial membrane 

transporters and other functional components that are necessary for the organelle biogenesis.  

These findings corroborate a common origin for hydrogenosomes and mitochondria from an 

ancestral symbiont. However, important differences between the hydrogenosomal and 

mitochondrial membrane machineries were also observed.  

We have identified proteins from the outer membrane of the hydrogenosomes, some of 

them do not present homology with the mitochondrial counterparts; this is the case of the 12 

monotopic C-tailed anchored proteins identified.  In addition, components of SAM and TOM 

complex were found too and 4 isoforms of β-barrel proteins HMP35 and HMP36 which were 

found exclusively in hydrogenosomes of T.vaginalis, so far.  A cystein motif at the C- terminus 

of HMP35 with predicted role in metal transport makes this protein a suitable candidate for 

iron transport to supply the need of iron for Fe-S cluster formation in the organelle.  In the 

study we did not identify clear homologues of the VDAC protein family; hence the metabolite 

exchange across the membrane of T.vaginalis hydrogenosomes is probably carried out by 

Tom40. However, it is difficult to distinguish VDAC and Tom40 using just bioinformatic tools, 

and then it is possible that some proteins named as Tom40 could be actually VDAC proteins. It 

should be noted that the hydrogenosomal membrane proteins that were identified did not 

contain N-terminal signal-anchor sequences. These transmembrane segments are present in 

mitochondrial membrane proteins to anchor the protein in the membrane.  

Components of the TIM and PAM complex from inner hydrogenosomal membrane 

were revealed. Five homologues of the MCF carriers were found but apparently they are all 

involved in ADP/ATP transport across the membranes, which make as wonder how other 

metabolites, such as pyruvate or amino acids are transported.

We have identified two small TIMs chaperones in the intermembrane space.  The 

proteins share 93% sequence identity and have been called Tim9/10a and Tim9/10b.  The 

higuest similarity of the hydrogenosomal small TIMs is with Tim 9 of S. cerevisiae.  Mia40 

and Erv1 were not found in the proteome. This is consistent with the analyses of the genome of 

T. vaginalis that did not detected genes coding for these two proteins. 

Additionally, 58 unknown membrane proteins were identified, these proteins could be 

highly divergent from the mitochondrial homologues and this could avoid its recognition by the 
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bioinformatic tools, although it is possible that these proteins are unique to hydrogenosome of 

T. vaginalis.

The mitosomal proteome of Giardia intestinalis revealed an important reduction of the 

protein content in the organelle by comparison with hydrogenosomes and mitochondria. We 

have identified 139 proteins using mass spectrometry and 20 of them were experimentally 

localized in the mitosomes. The analysis revealed the presence of components of the ISC 

assembly machinery including IscS, IscA, IscU, Nfu and Glutaredoxin.  It was shown that just 

few components of the protein import machineries are present in the mitosomal membranes of 

G. intestinalis. Tom40, Pam 16/18 and molecular chaperones have been identified so far and 

we could not identified homologues of Sam50, Tim17/22/23 or VDAC protein family.  It is a 

very intriguing matter to know how the organelle assembles Tom40 channel, transport matrix 

proteins and exchange metabolites in the absence of these components. 

Based on these findings it is possible to conclude that ISC assembly machinery is the 

only known function of the organelle; however any MCF carrier that could be involved in 

ADP/ATP transport was not found and hence it is not clear how the mitosomes of G. 

intestinalis could obtain the energy necessary for Fe-S cluster assembly, organelle replication 

and protein import.  It is also unclear if the mitosomes export a product necessary for cytosolic 

Fe-S cluster assembly as in other organisms since Atm1 and Erv1 transporters were not 

identified. Altogether, our studies significantly contributed to the understanding of the 

evolution of hydrogenosomes and mitosomes, anaerobic forms of mitochondria in 

Trichomonas vaginalis and Giardia intestinalis, respectively. Our results provide basis for the 

study of the expression of multiple gene families under different environmental conditions and 

we give clues for the better understanding of the development of metronidazole resistance in 

anaerobic parasites.
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