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the Grothendieck property. The main result is that the space `∞ enjoys its quan-
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se zabývá kvantifikacemi určitých vlastnostı́ Banachových prostorů. Prvnı́ článek
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kompaktnı́ch, Banachových–Saksových a slabě Banachových–Saksových množin,
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patience and kindliness, for suggesting interesting and fruitful research topics and for
readily helping me whenever I needed help with anything. I am also indebted to him
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crastinating and my husband Martin for everything.

iv



Contents

Introduction 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Quantitative Grothendieck property 8
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Relation to (I)-envelopes . . . . . . . . . . . . . . . . . . . . . . . . 9
3 The relation between Grothendieck property and its quantitative version 11
4 More general results . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Quantification of the Banach-Saks property 18
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Quantitative relation to compactness and weak compactness . . . . . 21
4 Quantitative characterization of weak Banach-Saks sets . . . . . . . . 24
5 Quantities applied to the unit ball . . . . . . . . . . . . . . . . . . . . 30
6 Final remarks and open problems . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III Quantification of Pełczyński’s property (V) 37
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4 Quantitative version of Pełczyński’s theorem and its generalizations . 47
5 Some other properties of Banach spaces, their quantification and rela-

tionship to the property (V) . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Some properties of operators, their relation to unconditionally

converging operators, and their quantification . . . . . . . . . 50
5.2 Properties of Banach spaces related to above-defined proper-

ties of operators and a relationship between their quantitative
versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Some corollaries for C0(Ω) spaces . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV C*-algebras have a quantitative version of Pełczyński’s property (V) 57
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Introduction
The present thesis consists of four chapters, each of them corresponding to a research
paper. All these articles contain original results concerning quantifications of certain
properties of Banach spaces.

The beginnings of the study of analytic notions and properties from a quantitative
point of view via miscellaneous moduli, indices, measures, and other quantities can
be traced back to the late 19th century. This approach leads to deeper understanding
of the notions under study and often gives rise to some stronger or weaker notions or
properties. Let us mention some of the best-known examples. Continuity of a continu-
ous function on a compact metric space K can be measured quantitatively for instance
by the Lipschitz constant or the modulus of continuity. On the other hand, oscillation
of a bounded real function f on K defined by

osc( f ) = sup
x∈K

inf
{

sup
y,z∈U
| f (y) − f (z)| : U is a neighbourhood of x

}
measures discontinuity of f . In fact, 1

2 osc( f ) equals the distance of f to the space
C(K) of continuous real functions on K (see [8, Prop. 1.18]). Regarding convergence
of sequences of real numbers, measuring the speed of convergence has proved to be
very useful particularly in numerical analysis. Similarly to the case of functions, we
can also consider oscillation

ca(xn) = lim sup
n→∞

xn − lim inf
n→∞

xn

of a bounded sequence (xn) in R, which measures how far is (xn) from being con-
vergent. An intention to quantify the notions of nowhere dense and meager set has
naturally originated the notions of porous and σ-porous set (see for instance [13, 30]).
Attempts to measure compactness in metric spaces resulted in the concept of entropy
numbers (see e.g. [24]). A great deal of attention has been paid also to quantifica-
tions of non-compactness. Measures of non-compactness and weak non-compactness
of sets and operators in Banach spaces have been studied by dozens of mathemati-
cians and they have found plenty of applications, a few of them also in this thesis.
The first measure of non-compactness was defined by K. Kuratowski [28] in 1930.
In 1957, Gohberg, Goldenštein and Marcus [15] introduced the Hausdorff measure of
non-compactness. Goldenštein and Marcus later used it to prove a quantitative version
of Schauder’s theorem about compact operators [16]. An analogue of the Hausdorff
measure of non-compactness for measuring weak non-compactness is the de Blasi
measure of weak non-compactness [12], considered first by de Blasi in 1977. Many
other measures of weak non-compactness based on various characterizations of weakly
compact sets have been introduced since then (see for example [1, 11] and the refer-
ences given there).

A basic kind of application of such quantities is the following. Classical qualitative
results can be strengthened by replacing an implication with an inequality between
some suitable quantities. Let us explain this in more detail. Many results have the
following form: “Under some assumptions the implication

(1) x satisfies =⇒ x satisfies
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holds for all x.” A quantitative version of such a result aims to enrich it with some
additional information: if x does not satisfy but is not far from it, then it cannot be
far from satisfying . A way to say this mathematically is to replace the implication
(1) by an inequality

m (x) ≤ C · m (x),

where C > 0 is a constant which does not depend on x, and m (x), m (x) are some
quantities which have positive values for each x and vanish if and only if x satisfies

or , respectively. These quantities measure for each x “how far is x from satisfying
and ”.
Quantitative versions of theorems and properties in the Banach space theory of the

form described above have been studied by many mathematicians recently. Although
this research topic was brought to the forefront about ten years ago, first quantitative
results are much older – let us mention for example a quantitative version of Schauder’s
theorem [16] proved by Goldenštein and Marcus in 1965 or Behrends’ quantitative
version of Rosenthal’s `1–theorem [7] from 1996.

The number of recently published papers about quantifications of certain theo-
rems and properties is quite large. Among all notions in the theory of Banach spaces
weak compactness is maybe the one studied from a quantitative point of view the
most intensively. Outputs of this research are papers concerning quantitative version
of Krein’s theorem [9, 14, 17, 19], the Eberlein-Šmulyan and the Gantmacher the-
orem [1], James’ compactness theorem [11, 18], and many other publications, see
for instance [4, 6, 12, 25, 26, 27]. Other properties whose quantifications have been
studied during the last decade are for example the weak sequential completeness and
the Schur property [21, 22], the Dunford-Pettis property [20], the reciprocal Dunford-
Pettis property [23], or the Radon-Nikodym property [10]. Other publications dealing
with quantifications are for instance [2, 3, 5].

Let us now briefly sum up the contribution of this thesis. The list of the presented
papers is the following:

• Hana Bendová: Quantitative Grothendieck property, J. Math. Anal. Appl.,
412(2):1097–1104, 2014.

• Hana Bendová, Ondřej F. K. Kalenda, and Jiřı́ Spurný: Quantification of the
Banach-Saks property, J. Funct. Anal., 268(7):1733–1754, 2015.

• Hana Krulišová: Quantification of Pełczyński’s property (V), submitted (2015),
preprint available at http://arxiv.org/abs/1509.06610.

• Hana Krulišová: C∗-algebras have a quantitative version of Pełczyński’s prop-
erty (V), accepted to Czechoslovak Math. J. (2016), preprint available at
http://arxiv.org/abs/1605.04900.

In the first paper the Grothendieck property is quantified. A Banach space X is
Grothendieck if for each bounded sequence (x∗n) in the dual space X∗ the following
implication hold:

(x∗n) converges in the weak∗ topology =⇒ (x∗n) converges in the weak topology.

This implication is replaced by an inequality as described above to obtain a quantitative
version of the Grothendieck property. We characterize it using (I)-envelopes and then
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use this characterization and some results of O. Kalenda to prove that the space `∞,
known to have the Grothendieck property, enjoys also its quantitative version. This
result is then further generalized. It is also shown that the Grothendieck property is not
automatically quantitative, i.e. a Grothendieck space exists which is not quantitatively
Grothendieck.

The second paper investigates quantifications of the Banach-Saks and the weak
Banach-Saks property. It quantifies relationships of Banach-Saks, weak Banach-Saks,
compact, and weakly compact sets. A bounded subset A of a Banach space X is

• a Banach-Saks set if each sequence in A has a Cesàro convergent subsequence,

• a weak Banach-Saks set if any weakly convergent sequence in A admits a Cesàro
convergent subsequence.

For a bounded subset A of a Banach space we have the following relations:

A is relatively compact
⇓

A is Banach-Saks
m

A is weak Banach-Saks and weakly compact.

Two of these implications are quantified, the remaining one is proven to be merely
qualitative. We also quantify characterizations of weak Banach-Saks sets which use
uniform weak convergence and `1-spreading models, and we prove an analogue of
James’ distortion theorem for `1-spreading models.

The last two papers study possible quantifications of Pełczyński’s property (V).
A Banach space X has Pełczyński’s property (V) if for every Banach space Y and
every bounded linear operator T : X → Y

T is unconditionally converging =⇒ T is weakly compact,

or equivalently (see [29, Proposition 1]) for every K ⊂ X∗

K satisfies the condition (∗) below =⇒ K is relatively weakly compact.

(∗) lim
n→∞

sup
x∗∈K
|x∗(xn)| = 0 for every weakly unconditionally Cauchy series

∞∑
n=1

xn in X

In the third paper we prove that quantifications of these two conditions are equivalent,
too. The latter one is then used to prove that C0(Ω) spaces for a locally compact space
Ω and real L1 preduals enjoy a quantitative version of Pełczyński’s property (V). The
last paper generalizes one of the results obtained before – it contains a proof that all
C∗-algebras have a quantitative version of the property (V). The third paper also quan-
tifies a characterization of unconditionally converging operators as those which does
not fix a copy of c0. This gives rise to another characterization of a quantitative ver-
sion of the property (V). Furthermore, in both papers we study a relationship between
quantitative versions of the property (V) and several other properties of Banach spaces,
including for example the reciprocal Dunford-Pettis property, the Dieudonné property,
or the Grothendieck property.
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I. Quantitative Grothendieck property
(Published in J. Math.Anal.Appl., 412(2014), 1097–1104.)

Abstract: A Banach space X is Grothendieck if the weak and the weak∗ conver-
gence of sequences in the dual space X∗ coincide. The space `∞ is a classical example
of a Grothendieck space due to Grothendieck. We introduce a quantitative version
of the Grothendieck property, we prove a quantitative version of the above-mentioned
Grothendieck’s result and we construct a Grothendieck space which is not quantitative-
ly Grothendieck. We also establish the quantitative Grothendieck property of L∞(µ) for
a σ-finite measure µ.

1 Introduction
A Banach space X is said to be Grothendieck if the weak and the weak∗ convergence
of sequences in the dual space X∗ coincide. The space `∞ is a classical example of
a Grothendieck space due to Grothendieck [10]. Some other examples are C(K) where
K is an F-space [19], weak Lp spaces [18], and the Hardy space H∞ [2]. R. Haydon
has constructed a Grothendieck space which does not contain `∞ [11].

In this paper, we introduce a quantitative version of the Grothendieck property.
Our inspiration comes from many recent quantitative results. Quite a few properties
and theorems have been given in a quantitative form lately. Let us mention quantitative
versions of Krein’s theorem [5, 9, 7, 3], quantitative versions of the Eberlein–Šmulyan
and the Gantmacher theorem [1], quantitative version of James’s compactness theorem
[4, 8], quantitative weak sequential continuity and quantitative Schur property [13, 14],
quantification of Dunford–Pettis [12] and reciprocal Dunford–Pettis property [17].

The definition of the Grothendieck property can be rephrased as follows. A Banach
space X is Grothendieck if every weak∗ Cauchy sequence in X∗ is weakly Cauchy. The
quantitative version is derived from this formulation in the following way. Let X be
a Banach space and (x∗n) be a bounded sequence in X∗. Define

δw(x∗n) = sup
x∗∗∈BX∗∗

inf
n∈N

sup
k,l≥n
|x∗∗(x∗k) − x∗∗(x∗l )|

the “measure of weak non-cauchyness” of the sequence (x∗n), and

δw∗(x∗n) = sup
x∈BX

inf
n∈N

sup
k,l≥n
|x∗k(x) − x∗l (x)|

the “measure of weak∗ non-cauchyness” of the sequence (x∗n). The quantities δw(x∗n)
and δw∗(x∗n) are equal to zero if and only if the sequence (x∗n) is weakly and weak∗

Cauchy, respectively. We now replace the implication in the definition of the Grothen-
dieck property by an inequality between these two quantities, which is a stronger con-
dition.

Definition (Quantitative Grothendieck property). Let c ≥ 1. A Banach space X is
c-Grothendieck if

δw(x∗n) ≤ cδw∗(x∗n)

whenever (x∗n) is a bounded sequence in X∗.
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Section 2 establishes the relation between the quantitative Grothendieck property
and (I)-envelopes of unit balls. It is then used to prove the following quantitative
version of the above-mentioned Grothendieck’s result.

Theorem 1.1. The space `∞ is 1-Grothendieck.

If X is c-Grothendieck for some c ≥ 1, then it is Grothendieck. In Section 3 we
show that the converse is not true.

Theorem 1.2. There is a Grothendieck space which is not c-Grothendieck for any
c ≥ 1.

Section 4 contains a generalization of Theorem 1.1 and its consequences.

2 Relation to (I)-envelopes
In this section, we characterize the quantitative Grothendieck property using
(I)-envelopes. Some results on (I)-envelopes presented in [15] and [16] have been
found extremely useful to us.

Definition. Let X be a Banach space and B ⊂ X∗. The (I)-envelope of B is defined by

(I)-env(B) =
⋂co

∞⋃
n=1

co Cn
w∗
‖·‖

: B =

∞⋃
n=1

Cn

 .
Any Banach space X is considered to be canonically embedded into its bidual X∗∗.

If B is a set in a Banach space X, then B is regarded as a subset of X∗∗ and so is the
(I)-envelope of B. By B

w∗
we mean the weak∗ closure of B in X∗∗.

The following lemma, proved by Kalenda [15, Lemma 2.3], provides the charac-
terization of (I)-envelopes. It allows us to prove Proposition 2.2, which describes the
relation between (I)-envelopes and the quantitative Grothendieck property.

Lemma 2.1. Let X be a Banach space, B ⊂ X be a closed convex set and z∗∗ ∈ B
w∗

.
Then the following conditions are equivalent:

(1) z∗∗ < (I)-env(B);

(2) there is a sequence (ξ∗n) in BX∗ such that

sup
x∈B

lim sup
n→∞

ξ∗n(x) < inf
n∈N

z∗∗(ξ∗n);

(3) there is a sequence (ξ∗n) in BX∗ such that

sup
x∈B

lim sup
n→∞

ξ∗n(x) < lim inf
n→∞

z∗∗(ξ∗n);

(4) there is a sequence (ξ∗n) in BX∗ such that

sup
x∈B

lim sup
n→∞

ξ∗n(x) < lim sup
n→∞

z∗∗(ξ∗n).

9



Proposition 2.2. Let X be a Banach space and c ≥ 1. Then X is c-Grothendieck if and
only if (I)-env(BX) ⊃ 1

c BX∗∗ .

Proof. Suppose that X is not c-Grothendieck. Find a bounded sequence (x∗n) in X∗ such
that δw(x∗n) > cδw∗(x∗n), i.e.

sup
x∗∗∈BX∗∗

inf
n∈N

sup
k,l≥n
|x∗∗(x∗k) − x∗∗(x∗l )| > c sup

x∈BX

inf
n∈N

sup
k,l≥n
|x∗k(x) − x∗l (x)|.

There is no loss of generality in assuming that x∗n ∈ BX∗ , n ∈ N. Let x∗∗ ∈ BX∗∗ be such
that

inf
n∈N

sup
k,l≥n
|x∗∗(x∗k) − x∗∗(x∗l )| > c sup

x∈BX

inf
n∈N

sup
k,l≥n
|x∗k(x) − x∗l (x)|,

and set z∗∗ = 1
c x∗∗. Then z∗∗ ∈ 1

c BX∗∗ , and

(1)

lim sup
n→∞

z∗∗(x∗n) − lim inf
n→∞

z∗∗(x∗n) = inf
n∈N

sup
k,l≥n
|z∗∗(x∗k) − z∗∗(x∗l )|

=
1
c

inf
n∈N

sup
k,l≥n
|x∗∗(x∗k) − x∗∗(x∗l )|

> sup
x∈BX

inf
n∈N

sup
k,l≥n
|x∗k(x) − x∗l (x)|

= sup
x∈BX

(
lim sup

n→∞
x∗n(x) − lim inf

n→∞
x∗n(x)

)
.

Find subsequences (y∗k) and (z∗k) of the sequence (x∗n) for which
lim supn→∞ z∗∗(x∗n) = limk→∞ z∗∗(y∗k), and lim infn→∞ z∗∗(x∗n) = limk→∞ z∗∗(z∗k). Set ξ∗k =
1
2 (y∗k − z∗k), k ∈ N. Then (ξ∗k) is a sequence in BX∗ , and

lim
k→∞

z∗∗(ξ∗k) =
1
2

(
lim
k→∞

z∗∗(y∗k) − lim
k→∞

z∗∗(z∗k)
)

=
1
2

(
lim sup

n→∞
z∗∗(x∗n) − lim inf

n→∞
z∗∗(x∗n)

)
(1)
>

1
2

sup
x∈BX

(
lim sup

n→∞
x∗n(x) − lim inf

n→∞
x∗n(x)

)
≥

1
2

sup
x∈BX

(
lim sup

k→∞
y∗k(x) − lim inf

k→∞
z∗k(x)

)
≥

1
2

sup
x∈BX

lim sup
k→∞

(y∗k(x) − z∗k(x))

= sup
x∈BX

lim sup
k→∞

ξ∗k(x).

By Lemma 2.1, z∗∗ < (I)-env(BX), and so (I)-env(BX) 2 1
c BX∗∗ .

Now suppose that X is c-Grothendieck and fix arbitrary z∗∗ ∈ 1
c BX∗∗ . Let (x∗n) be

a sequence in BX∗ . Then δw(x∗n) ≤ cδw∗(x∗n), that is

sup
x∗∗∈BX∗∗

(
lim sup

n→∞
x∗∗(x∗n) − lim inf

n→∞
x∗∗(x∗n)

)
≤ c sup

x∈BX

(
lim sup

n→∞
x∗n(x) − lim inf

n→∞
x∗n(x)

)
.

Since cz∗∗ ∈ BX∗∗ , it follows that

lim sup
n→∞

z∗∗(x∗n) − lim inf
n→∞

z∗∗(x∗n) =
1
c

(
lim sup

n→∞
cz∗∗(x∗n) − lim inf

n→∞
cz∗∗(x∗n)

)
≤ sup

x∈BX

(
lim sup

n→∞
x∗n(x) − lim inf

n→∞
x∗n(x)

)
.
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For k ∈ N find an xk ∈ BX satisfying

lim sup
n→∞

x∗n(xk) − lim inf
n→∞

x∗n(xk) > lim sup
n→∞

z∗∗(x∗n) − lim inf
n→∞

z∗∗(x∗n) −
2
k
.

Then either lim supn→∞ x∗n(xk) > lim supn→∞ z∗∗(x∗n) − 1
k or lim infn→∞ x∗n(xk) <

lim infn→∞ z∗∗(x∗n) + 1
k . If the former inequality holds for infinitely many k ∈ N,

then lim supn→∞ z∗∗(x∗n) ≤ supx∈BX
lim supn→∞ x∗n(x). Otherwise the latter holds for in-

finitely many k ∈ N, and lim infn→∞ z∗∗(x∗n) ≥ infx∈BX lim infn→∞ x∗n(x), which gives
lim supn→∞ −z∗∗(x∗n) ≤ supx∈BX

lim supn→∞ x∗n(x).
So far we have shown that whenever (x∗n) is a sequence in BX∗ , either

lim sup
n→∞

z∗∗(x∗n) ≤ sup
x∈BX

lim sup
n→∞

x∗n(x) or lim sup
n→∞

−z∗∗(x∗n) ≤ sup
x∈BX

lim sup
n→∞

x∗n(x).

Consider now an arbitrary sequence (x∗n) in BX∗ . Set (y∗n)n = (x∗1,−x∗1, x
∗
2,−x∗2, . . .). From

what has already been proved, we obtain

lim sup
n→∞

z∗∗(y∗n) = lim sup
n→∞

−z∗∗(y∗n) ≤ sup
x∈BX

lim sup
n→∞

y∗n(x).

Hence
lim sup

n→∞
z∗∗(x∗n) ≤ lim sup

n→∞
z∗∗(y∗n) ≤ sup

x∈BX

lim sup
n→∞

y∗n(x)

= sup
x∈BX

max{lim sup
n→∞

x∗n(x), lim sup
n→∞

−x∗n(x)}

= sup
x∈BX

lim sup
n→∞

x∗n(x).

Lemma 2.1 gives z∗∗ ∈ (I)-env(BX), which shows that 1
c BX∗∗ ⊂ (I)-env(BX). �

We are now able to prove Theorem 1.1. It is a trivial consequence of Proposition
2.2 and Kalenda’s theorem [15, Example 4.1], which says that (I)-env(B`∞) = B(`∞)∗∗ .

3 The relation between Grothendieck property and its
quantitative version

We have already mentioned that the quantitative Grothendieck property is stronger than
its original qualitative version. This section is devoted to the construction of a Banach
space which is Grothendieck but not c-Grothendieck for any c ≥ 1.

The following proposition is a strengthening of Kalenda’s theorem [16, Theorem
2.2], and its proof is a modification of the original one.

Proposition 3.1. Let X be a nonreflexive Banach space and c ≥ 1. Then there exists
an equivalent norm |||·||| on X such that (X, |||·|||) is not c-Grothendieck.

Proof. If X is separable, then (I)-env(BX) = BX (see [15, Remark 1.1(ii)]). By non-
reflexivity, 1

c BX∗∗ 1 BX for any c ≥ 1, so the assertion follows from Proposition 2.2.
Renorming is not necessary.

Suppose that X is nonseparable. Find a separable subspace Y ⊂ X which is not
reflexive. Let x∗ ∈ S X∗ be such that x∗|Y = 0, and fix x0 ∈ X with x∗(x0) = 1. Obviously,
‖x0‖ ≥ 1. The bidual Y∗∗ can be canonically identified with the w∗-closure of Y in X∗∗,
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and Y = Y∗∗ ∩ X. Thus we can find some y∗∗ ∈ S Y∗∗ \ X. Set Z = span(Y ∪ {x0}). Since
y∗∗ ∈ Z∗∗ \ Z, y∗∗|BZ∗ is not weak∗ continuous. Clearly, Z is separable, thus (BZ∗ ,w∗)
is metrizable, hence y∗∗|BZ∗ is not even weak∗ sequentially continuous. Therefore there
exists a sequence (x̃∗n) in BZ∗ weak∗ converging to 0 and η ∈ (0, 1] such that y∗∗(x̃∗n) ≥ η,
n ∈ N. For each n ∈ N extend x̃∗n to x∗n ∈ BX∗ by the Hahn-Banach theorem.

Define

B =

{
x ∈ X : ‖x − x∗(x)x0‖ ≤ 1 and |x∗(x)| + dist(x − x∗(x)x0,Y) ≤

η

c

}
.

Then B is a closed absolutely convex set. Moreover, we show that

η

c(2 + ‖x0‖)
BX ⊂ B ⊂

(
1 +

η

c

)
‖x0‖BX.

For x ∈ B we have
‖x‖ ≤ 1 + |x∗(x)|‖x0‖ ≤ ‖x0‖ +

η

c
‖x0‖,

which proves the second inclusion. To prove the first one let x ∈ BX. Then

|x∗(x)| ≤ 1,

‖x − x∗(x)x0‖ ≤ 1 + ‖x0‖,

dist(x − x∗(x)x0,Y) ≤ ‖x − x∗(x)x0‖ ≤ 1 + ‖x0‖.

Hence for z =
ηx

c(2+‖x0‖)
we have

‖z − x∗ (z) x0‖ =
η

c(2 + ‖x0‖)
‖x − x∗(x)x0‖ ≤

η

c
1 + ‖x0‖

2 + ‖x0‖
≤ 1,

and
|x∗(z)| + dist (z − x∗ (z) x0,Y) ≤

η

c(2 + ‖x0‖)
+

η

c(2 + ‖x0‖)
(1 + ‖x0‖)

≤
η

c
1 + 1 + ‖x0‖

2 + ‖x0‖
=
η

c
.

Thus B is the unit ball of an equivalent norm on X. According to Proposition 2.2, we
shall have established the proposition if we show that 1

c B
w∗
1 (I)-env(B).

Set z∗∗ = 1
c ( ηc x0 +y∗∗). Let (yν) be a net in BY weak∗ converging to y∗∗. Then η

c x0 +yν
weak∗ converges to η

c x0 + y∗∗. Furthermore, η

c x0 + yν ∈ B since

x∗
(
η

c
x0 + yν

)
=
η

c
x∗(x0) + x∗(yν) =

η

c
,∥∥∥∥∥ηc x0 + yν − x∗

(
η

c
x0 + yν

)
x0

∥∥∥∥∥ = ‖yν‖ ≤ 1,

dist
(
η

c
x0 + yν − x∗

(
η

c
x0 + yν

)
x0,Y

)
= dist(yν,Y) = 0.

Therefore z∗∗ ∈ 1
c B

w∗
. It remains to prove that z∗∗ < (I)-env(B). Define ξ∗n = x∗ + x∗n,

n ∈ N. Then (ξ∗n) is a bounded sequence in X∗, and

lim inf
n→∞

z∗∗(ξ∗n) =
1
c

lim inf
n→∞

(
x∗

(
η

c
x0

)
+ x∗n

(
η

c
x0

)
+ y∗∗(x∗) + y∗∗(x∗n)

)
=

1
c

(
η

c
+
η

c
lim
n→∞

x∗n(x0) + y∗∗(x∗) + lim inf
n→∞

y∗∗(x∗n)
)

≥
1
c

(
η

c
+ 0 + 0 + η

)
=

c + 1
c

η

c
>
η

c
.
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In the last inequality, we have used the following two facts. Firstly, x∗n(x0) → 0, as
x0 ∈ Z. Secondly, y∗∗(x∗) = 0, since y∗∗ ∈ Y

w∗
and x∗|Y = 0. On the other hand, if

x ∈ B, y ∈ Y are arbitrary, then

lim sup
n→∞

ξ∗n(x) = x∗(x) + lim sup
n→∞

(x∗n(x − x∗(x)x0 − y) + x∗n(x0)x∗(x) + x∗n(y))

= x∗(x) + lim sup
n→∞

x∗n(x − x∗(x)x0 − y) +lim
n→∞

x∗n(x0)x∗(x) +lim
n→∞

x∗n(y)

≤ x∗(x) + lim sup
n→∞

‖x∗n‖‖x − x∗(x)x0 − y‖ + 0 + 0

≤ x∗(x) + lim sup
n→∞

‖x − x∗(x)x0 − y‖,

because x0, y ∈ Z, and x∗n(z)→ 0 for all z ∈ Z. Hence for every x ∈ B

lim sup
n→∞

ξ∗n(x) ≤ |x∗(x)| + dist(x − x∗(x)x0,Y) ≤
η

c
.

We thus obtain
lim inf

n→∞
z∗∗(ξ∗n) >

η

c
≥ sup

x∈B
lim sup

n→∞
ξ∗n(x).

Lemma 2.1 yields z∗∗ < (I)-env(B), which completes the proof. �

Lemma 3.2. Suppose that Xn, n ∈ N, are Grothendieck spaces. Then the space
X = ⊕`2 Xn is also Grothendieck.

Proof. The dual space X∗ and the bidual space X∗∗ can be represented as ⊕`2 X∗n and
⊕`2 X∗∗n , respectively. Let (x∗k) be a sequence in X∗ which weak∗ converges to x∗ ∈ X∗.
For x ∈ X we have x∗k(x)→ x∗(x), that is

∞∑
n=1

x∗k(n)(x(n))→
∞∑

n=1

x∗(n)(x(n)), k → ∞.

Let n ∈ N. If xn ∈ Xn, then x̄n = (0, . . . , 0, xn, 0, 0, . . . ) ∈ X, and so

x∗k(n)(xn) = x∗k(x̄n)→ x∗(x̄n) = x∗(n)(xn), k → ∞.

Hence the sequence (x∗k(n))k converges to x∗(n) in the weak∗ topology, and by the
Grothendieck property even in the weak topology.

To prove that x∗k weakly converges to x∗, fix arbitrary x∗∗ ∈ X∗∗. Then

x∗∗(n)(x∗k(n))→ x∗∗(n)(x∗(n)), n ∈ N.

We need to establish

lim
k→∞

∞∑
n=1

x∗∗(n)(x∗k(n)) = lim
k→∞

x∗∗(x∗k) = x∗∗(x∗) =

∞∑
n=1

x∗∗(n)(x∗(n)),

so the proof is completed by showing that the sum
∑∞

n=1 x∗∗(n)(x∗k(n)) is uniformly
convergent with respect to k ∈ N.
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Let ε > 0 and k ∈ N be arbitrary. If j ∈ N, then∣∣∣∣ ∞∑
n= j

x∗∗(n)(x∗k(n))
∣∣∣∣ ≤ ∞∑

n= j

‖x∗∗(n)‖‖x∗k(n)‖

≤
( ∞∑

n= j

‖x∗∗(n)‖2
) 1

2
( ∞∑

n= j

‖x∗k(n)‖2
) 1

2

≤
( ∞∑

n= j

‖x∗∗(n)‖2
) 1

2
‖x∗k‖X∗ .

The sequence (x∗k)k is bounded by the uniform boundedness principle. Hence M > 0
can be found such that ‖x∗k‖X∗ ≤ M, k ∈ N. As x∗∗ ∈ ⊕`2 X∗∗n , the sum

∑∞
n=1 ‖x

∗∗(n)‖2 is
convergent. Thus we can choose j0 ∈ N such that for j ≥ j0

∞∑
n= j

‖x∗∗(n)‖2 ≤
ε2

M2 .

Then for all j ≥ j0 ∣∣∣∣ ∞∑
n= j

x∗∗(n)(x∗k(n))
∣∣∣∣ ≤ (

ε2

M2

) 1
2

· M = ε,

which is the desired conclusion. �

Lemma 3.3. Let X be a Banach space and c ≥ 1. If X is c-Grothendieck, and Y is a
quotient of X, then Y is c-Grothendieck.

Proof. Let q : X → Y be a quotient map. It is easily seen that the dual operator
q∗ : Y∗ → X∗ is an isometric embedding. Consequently, q∗∗ : X∗∗ → Y∗∗ satisfy
q∗∗(BX∗∗) = BY∗∗ . Indeed, for x∗∗ ∈ BX∗∗

‖q∗∗x∗∗‖ = ‖x∗∗ ◦ q∗‖ ≤ ‖x∗∗‖‖q∗‖ = ‖x∗∗‖ ≤ 1,

thus q∗∗x∗∗ ∈ BY∗∗ . Let y∗∗ ∈ BY∗∗ be arbitrary. Define a linear functional x∗∗ on q∗(Y∗) ⊂
X∗ by x∗∗(q∗y∗) = y∗∗(y∗), y∗ ∈ Y∗, and extend it to a linear functional on X∗ with the
same norm by the Hahn-Banach theorem. Obviously, ‖x∗∗‖ = ‖y∗∗‖ and q∗∗x∗∗ = y∗∗.

Let (y∗n) be a bounded sequence in Y∗. Then

(2)

δw(q∗y∗n) = sup
x∗∗∈BX∗∗

inf
n∈N

sup
k,l≥n
|x∗∗(q∗y∗k) − x∗∗(q∗y∗l )|

= sup
x∗∗∈BX∗∗

inf
n∈N

sup
k,l≥n
|q∗∗x∗∗(y∗k) − q∗∗x∗∗(y∗l )|

= sup
y∗∗∈BY∗∗

inf
n∈N

sup
k,l≥n
|y∗∗(y∗k) − y∗∗(y∗l )| = δw(y∗n),

and

(3)

δw∗(q∗y∗n) = sup
x∈BX

inf
n∈N

sup
k,l≥n
|q∗y∗k(x) − q∗y∗l (x)|

= sup
x∈BX

inf
n∈N

sup
k,l≥n
|y∗k(qx) − y∗l (qx)|

= sup
x∈X,‖x‖<1

inf
n∈N

sup
k,l≥n
|y∗k(qx) − y∗l (qx)|

= sup
y∈Y,‖y‖<1

inf
n∈N

sup
k,l≥n
|y∗k(y) − y∗l (y)|

= sup
y∈BY

inf
n∈N

sup
k,l≥n
|y∗k(y) − y∗l (y)| = δw∗(y∗n),
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where the fourth equality follows from the fact that q is a quotient map. Since X is
c-Grothendieck, δw(q∗y∗n) ≤ cδw∗(q∗y∗n). Together with (2) and (3), it yields δw(y∗n) ≤
cδw∗(y∗n), so Y is c-Grothendieck. �

Proof of Theorem 1.2. By Proposition 3.1, for each n ∈ N we can find an equivalent
norm ‖ · ‖n on `∞ such that the space Xn = (`∞, ‖ · ‖n) is not n-Grothendieck. Set
X = ⊕`2 Xn. Then X is Grothendieck by Lemma 3.2, for all Xn, n ∈ N, are Grothendieck
spaces. Moreover, each Xn is a quotient of X. Suppose that there is some c ≥ 1 such
that X is c-Grothendieck. Find n ∈ N, n > c. Then X is n-Grothendieck and, by Lemma
3.3, Xn should also be n-Grothendieck, which is a contradiction. �

4 More general results
Kalenda’s theorem [15, Example 4.1], which we have used to prove a quantitative
version of Grothendieck’s theorem (Theorem 1.1), can be generalized and then applied
in the same way to obtain more general quantitative results.

Theorem 4.1. Let Γ be a set and E = `∞(Γ). Then (I)-env BE = BE∗∗ .

Proof. The proof of [15, Example 4.1] works here as well. It suffices to replace N by Γ

in the right places. Lemmata 4.4 and 4.5 remain unchanged. We prove Lemma 4.6 for
sequences of measures on Γ by substituting N with Γ wisely. Then we use it to prove
Propositions 4.3 and 4.2 for measures on Γ just as in the original proof. �

Theorem 4.2. The space `∞(Γ) is 1-Grothendieck for each set Γ.

Proof. It follows from Theorem 4.1 and Proposition 2.2. �

Corollary 4.3. Let µ be a σ-finite measure on a measurable space X. Then L∞(µ) is
1-Grothendieck.

Proof. If µ is σ-finite, then L∞(µ) is 1-injective (see for instance [6, (5.91)]) and thus
1-complemented in `∞(Γ) for some set Γ, which is a 1-Grothendieck space by Theorem
4.2. By Lemma 3.3, L∞(µ) is 1-Grothendieck. �

The space in Corollary 4.3 is 1-complemented in `∞(Γ). In fact, not only 1-comple-
mented subspaces but all quotients of `∞(Γ) are 1-Grothendieck.

Corollary 4.4. Let Γ be an arbitrary set. Each quotient of the space `∞(Γ) is
1-Grothendieck.

Proof. It is a consequence of Theorem 4.2 and Lemma 3.3. �

Let us remark finally that we do not know whether the other spaces with the
Grothendieck property mentioned in the Introduction enjoy the quantitative version
as well.
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II. Quantification of the Banach-Saks
property

(with Ondřej F. K. Kalenda and Jiřı́ Spurný)

(Published in J. Funct. Anal. 268 (2015), 1733–1754.)

Abstract: We investigate possible quantifications of the Banach-Saks property and
the weak Banach-Saks property. We prove quantitative versions of relationships of the
Banach-Saks property of a set with norm compactness and weak compactness. We
further establish a quantitative version of the characterization of the weak Banach-
Saks property of a set using uniform weak convergence and `1-spreading models. We
also study the case of the unit ball and in this case we prove a dichotomy which is an
analogue of the James distortion theorem for `1-spreading models.

1 Introduction
A bounded subset A of a Banach space X is said to be a Banach-Saks set if each
sequence in A has a Cesàro convergent subsequence. A Banach space X is said to have
the Banach-Saks property if each bounded sequence in X has a Cesàro convergent
subsequence, i.e., if its closed unit ball BX is a Banach-Saks set.

This property goes back to S. Banach and S. Saks who proved in [7] that, in the
modern terminology, the spaces Lp(0, 1) for p ∈ (1,+∞) enjoy the Banach-Saks prop-
erty. Any Banach space with the Banach-Saks property is reflexive [28] and there are
reflexive spaces without the Banach-Saks property [6]. On the other hand, superreflex-
ive spaces enjoy the Banach-Saks property (S. Kakutani showed in [21] that uniformly
convex spaces have the Banach-Saks property and by [13] any superreflexive space
admits a uniformly convex renorming).

A localized version of the mentioned result of [28] says that any Banach-Saks set
is relatively weakly compact (see [26, Proposition 2.3]). This inspires the definition
of the weak Banach-Saks property – a Banach space X is said to have this property if
any weakly compact subset of X is a Banach-Saks set, i.e., if any weakly convergent
sequence in X admits a Cesàro convergent subsequence. There are nonreflexive spaces
enjoying the weak Banach-Saks property, for example c0 or L1(µ) [17, 30].

In the present paper we investigate possibilities of quantifying the Banach-Saks
property. This is inspired by a large number of recent results on quantitative versions
of various theorems and properties of Banach spaces, see, e.g., [3, 2, 11, 10, 14, 19, 20,
8]. Another approach to quantification of the Banach-Saks property and some related
properties was followed by A. Kryczka in a recent series of papers [22, 23, 24, 25].
More precisely, in the quoted papers mainly quantitative versions of Banach-Saks and
weak Banach-Saks operators are investigated.

The quantification means, roughly speaking, to replace implications between some
notions by inequalities between certain quantities. Let us now introduce the basic
quantities we will use.
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Let (xk) be a bounded sequence in a Banach space. Following [20] we set

ca(xk) = inf
n∈N

sup{‖xk − xl‖ : k, l ≥ n},(1)

c̃a (xk) = inf{ca
(
xkn

)
: (xkn) is a subsequence of (xk)}.(2)

The first quantity measures how far the sequence is from being norm Cauchy. Clearly,
ca(xk) = 0 if and only if the sequence (xk) is norm Cauchy (hence norm convergent).

Since we are interested in Cesàro convergence of sequences, it is natural to define

cca (xk) = ca

1
k

(
k∑

i=1

xi)

 ,(3)

c̃ca (xk) = inf{cca
(
xkn)

)
: (xkn) is a subsequence of (xk)}.(4)

Let us remark that the quantities cca () and c̃ca () behave differently than the quan-
tities ca() and c̃a (). More precisely, the quantity ca() decreases when passing to a sub-
sequence but it is not the case of cca (). Indeed, a subsequence of a Cesàro convergent
sequence need not be Cesàro convergent, in fact, any bounded sequence is a subse-
quence of a Cesàro convergent sequence.

For a bounded set A in a Banach space X we introduce the following two quantities:

bs (A) = sup{c̃ca (xk) : (xk) ⊂ A},(5)
wbs (A) = sup{c̃ca (xk) : (xk) ⊂ A is weakly convergent}.(6)

The first one measures how far is A from being Banach-Saks. Indeed, bs (A) = 0
if and only if A is Banach-Saks by Corollary 4.3 below. Further, the same statement
yields that wbs (A) = 0 if and only if any weakly convergent sequence in A has a Cesàro
convergent subsequence (let us stress that the limit could be outside A). The sets with
the latter property will be called weak Banach-Saks sets.

2 Preliminaries
We use mostly a standard notation. If X is a Banach space, BX denotes its closed unit
ball. If A is any set, we denote by #A the cardinality of A. (We use this notation mainly
for finite sets).

We investigate, among others, quantifications of the relationship of the Banach-
Saks property to compactness and weak compactness. To formulate such results we
need some quantities measuring non-compactness and weak non-compactness. There
are several ways how to do it. We will use the notation from [20]. Let us recall the
basic quantities.

If A and B are two nonempty subsets of a Banach space X, we set

d(A, B) = inf{‖a − b‖ : a ∈ A, b ∈ B},
d̂(A, B) = sup{d(a, B) : a ∈ A}.

Hence, d(A, B) is the ordinary distance of the sets A and B and d̂(A, B) is the non-
symmetrized Hausdorff distance (note that the Hausdorff distance of A and B is equal
to max{̂d(A, B), d̂(B, A)}).
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Let A be a bounded subset of a Banach space X. Then the Hausdorff measure of
non-compactness of A is defined by

χ(A) = inf {̂d(A, F) : ∅ , F ⊂ X finite} = inf {̂d(A,K) : ∅ , K ⊂ X compact}.

This is the basic measure of non-compactness. We will need one more such mea-
sure:

β(A) = sup{c̃a (xk) : (xk) is a sequence in A}.

It is easy to check that for any bounded set A we have

χ(A) ≤ β(A) ≤ 2χ(A),

thus these two measures are equivalent. (And, of course, they equal zero if and only if
the respective set is relatively compact.)

An analogue of the Hausdorff measure of non-compactness for measuring weak
non-compactness is the de Blasi measure of weak non-compactness

ω(A) = inf {̂d(A,K) : ∅ , K ⊂ X is weakly compact}.

Then ω(A) = 0 if and only if A is relatively weakly compact. Indeed, the ‘if’ part is
obvious and the ‘only if’ part follows from [12, Lemma 1].

There is another set of quantities measuring weak non-compactness. Let us men-
tion two of them:

wkX(A) = d̂(A
w∗
, X),

wckX(A) = sup{ d(clustX∗∗(xk), X) : (xk) is a sequence in A}.

By A
w∗

we mean the weak∗ closure of A in X∗∗ (the space X is canonically embedded
in X∗∗) and clustX∗∗(xk) is the set of all weak∗ cluster points in X∗∗ of the sequence (xk).
It follows from [3, Theorem 2.3] that for any bounded subset A of a Banach space X
we have

wckX(A) ≤ wkX A ≤ 2 wckX(A),
wkX(A) ≤ ω(A).

So, putting together these inequalities with the measures of norm non-compactness
we obtain the following diagram:

χ(A) ≤ β(A) ≤ 2χ(A)

≤

ω(A)

≤

wckX(A) ≤ wkX(A) ≤ 2 wckX(A)

Let us remark that the inequality ω(A) ≤ χ(A) is obvious and that the quantities
ω(·) and wkX(·) are not equivalent, see [5, 3].

Some quantities related to the Banach-Saks property were defined and used in [24].
Let us recall them. If (xk) is a bounded sequence in X, we define the arithmetic sepa-
ration of (xk) by

asep(xk) = inf


∥∥∥∥∥∥∥ 1

#F

∑
n∈F

xn −
∑
n∈H

xn


∥∥∥∥∥∥∥ : F,H ⊂ N, #F = #H,max F < min H

 .
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Further, for any bounded set A ⊂ X define

ϕ(A) = sup{asep(xk) : (xk) is a sequence in A},
ϕ′(A) = sup{asep(xk) : (xk) is a weakly convergent sequence in A}.

The quantities asep and ϕ are from [24], the quantity ϕ′ is an obvious modification.

3 Quantitative relation to compactness and weak
compactness

Since any convergent sequence is also Cesàro convergent, relatively norm compact sets
are Banach-Saks. Further, a set is Banach-Saks if and only if it is weakly Banach-Saks
and relatively weakly compact. In this section we investigate quantitative versions of
these relationships. Positive results are summed up in the following theorem.

Theorem 3.1. Let A be a bounded subset of a Banach space X. Then

(7) max{wckX(A),wbs (A)} ≤ bs (A) ≤ β(A).

The second inequality in the theorem quantifies the implication

A is relatively norm compact⇒ A is Banach-Saks,

the first one quantifies the implication

A is Banach-Saks⇒ A is weakly Banach-Saks and relatively weakly compact.

We point out that the latter implication cannot be quantified by using the de Blasi
measure ω and that the converse implication is purely qualitative. This is illustrated by
the following two examples.

Example 3.2. There exists a separable Banach space X such that

∀ε > 0 ∃A ⊂ BX : bs (A) < ε & ω(A) >
1
2
.

Example 3.3. There exists a separable Banach space X such that

∀ε > 0 ∃A ⊂ BX : bs (A) = 2 & wbs (A) = 0 & ω(A) < ε.

The rest of this section will be devoted to the proofs of these results. The proof
of Example 3.3 will be postponed to the next section since we will make use of Theo-
rem 4.1.

Proof of Theorem 3.1. We start by the second inequality. It immediately follows from
the following lemma which is a quantitative version of the well-known fact that any
convergent sequence is Cesàro convergent.

Lemma 3.4. Let (xk) be a bounded sequence in a Banach space X. Then

cca (xk) ≤ ca(xk).
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Proof. Set M = supk ‖xk‖ and fix any c > ca(xk). Further, set ym = 1
m

∑m
i=1 xi for m ∈ N.

We find n0 ∈ N such that ‖xn − xm‖ < c for each n,m ≥ n0. Let ε > 0 be given. We
find n1 ≥ n0 such that Mn0

n1
< ε. Then we have for n1 ≤ n ≤ m inequalities

‖ym − yn‖ =

∥∥∥∥∥∥∥ 1
m

m∑
i=1

xi −
1
n

n∑
j=1

x j

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
m∑

i=1

n∑
j=1

xi − x j

mn

∥∥∥∥∥∥∥
≤

m∑
i=1

n0∑
j=1

∥∥∥xi − x j

∥∥∥
mn

+

n0∑
i=1

n∑
j=n0+1

∥∥∥xi − x j

∥∥∥
mn

+

m∑
i=n0+1

n∑
j=n0+1

∥∥∥xi − x j

∥∥∥
mn

≤
2Mmn0

mn
+

2Mn0(n − n0)
mn

+
(m − n0)(n − n0)c

mn

≤
2Mn0

n1
+

2Mn0

n1
+ c < c + 4ε.

Since ε is arbitrary, cca (xk) = ca(ym) ≤ c. �

Since the inequality bs (A) ≥ wbs (A) is obvious, it remains to prove bs (A) ≥
wckX(A). To do that we first prove the following lemma using an auxiliary quantity γ0

defined by the formula

γ0(A) = sup{ | lim
m

lim
n

x∗m(xn)| :

(x∗m) is a sequence in BX∗ weak* converging to 0,
(xn) is a sequence in A
and all the involved limits exist}.

Lemma 3.5. Let A be a bounded set in a Banach space X. Then

γ0(A) ≤ bs (A) .

Proof. Let γ0(A) > c. Then there exists a sequence (xk) in A and a sequence (x∗j) in
BX∗ weak* converging to 0 such that lim j limk x∗j(xk) > c. Without loss of generality
we may assume that

∀ j ∈ N : lim
k

x∗j(xk) > c.

Let yk = 1
k (x1 + · · · + xk), k ∈ N. Then

∀ j ∈ N : lim
k

x∗j(yk) = lim
k

x∗j(xk) > c.

Let ε > 0 be arbitrary. Fix k ∈ N. Since (x∗j) weak* converges to zero, there exists
j ∈ N such that x∗j(yk) < ε. Then we find l > k such that x∗j(yl) > c. Then

‖yl − yk‖ ≥ x∗j(yl − yk) > c − ε.

Hence cca (xk) = ca(yk) ≥ c. Further, any subsequence of (xk) has the same properties,
hence c̃ca (xk) ≥ c. Therefore bs (A) ≥ c and the proof is complete. �

Let us now complete the proof of the remaining inequality.
Assume first that X is separable. Then (BX∗ ,w∗) is metrizable, and thus angelic.

By [11, Theorem 6.1], γ0(A) = wckX(A), and thus wckX(A) ≤ bs (A) by the previous
lemma.
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Assume now that X is arbitrary and wckX(A) > c for some c > 0. Let (xk) be
a sequence in A with d(clustX∗∗(xk), X) > c. Set Y = span{xk : k ∈ N}. Then Y is
a separable subspace of X and d(clustY∗∗(xk),Y) > c.

Indeed, let y∗∗ ∈ clustY∗∗(xk) be arbitrary. Set x∗∗(x∗) = y∗∗(x∗|Y), x∗ ∈ X∗. Then
x∗∗ ∈ clustX∗∗(xk) and for each y ∈ Y we have due to the Hahn-Banach theorem

‖y∗∗ − y‖Y = sup
y∗∈BY∗

|y∗∗(y∗) − y∗(y)|

= sup
x∗∈BX∗

|(y∗∗(x∗|Y) − x∗(y)|

= ‖x∗∗ − y‖X .

Therefore
dY∗∗(y∗∗,Y) = dX∗∗(x∗∗,Y) ≥ dX∗∗(x∗∗, X),

hence
d(clustY∗∗(xk),Y) ≥ d(clustX∗∗(xk), X) > c.

Hence wckY(A ∩ Y) > c, by the separable case we get

bs (A) ≥ bs (A ∩ Y) ≥ wckY(A ∩ Y) > c,

which concludes the proof of Theorem 3.1. �

Proof of Example 3.2. Let us fix α > 0 and consider an equivalent norm | · |α on `1

given by the formula
|x|α = max{α‖x‖1, ‖x‖∞}

and let
X =

(
⊕∞n=1 (`1, | · |1/n)

)
`1

.

It is clear that X is a separable Banach space. Further, X has the Schur property as
it is an `1-sum of spaces with the Schur property (this follows by a straightforward
modification of the proof that `1 has the Schur property, see [16, Theorem 5.19]).

Further, let us define the following elements of X:

xn
k = (0, . . . , 0,

n-th
ek , 0, . . . ), n, k ∈ N,

where ek is the k-th canonical basic vector in `1. Fix n ∈ N and set

An = {xn
k : k ∈ N}.

Since ‖xn
k‖ = 1 for k ∈ N, we get An ⊂ BX. Further, ‖xn

k − xn
k′‖ ≥ 1 whenever k , k′,

so β(An) ≥ 1 and hence χ(An) ≥ 1
2 . Since X has the Schur property, we get ω(An) =

χ(An) ≥ 1
2 .

Let (zk) be an arbitrary sequence in An. If it has a constant subsequence, then
c̃ca (zk) = 0. Otherwise there is a one-to-one subsequence (zki). It is clear that∥∥∥∥∥ 1

m
(zk1 + · · · + zkm)

∥∥∥∥∥ =

∥∥∥∥∥ 1
m

(xn
1 + · · · + xn

m)
∥∥∥∥∥ = max

{
1
n
,

1
m

}
for m ∈ N,

hence cca
(
zki

)
≤ 2

n . So bs (An) ≤ 2
n .

This completes the proof. �
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4 Quantitative characterization of weak Banach-Saks
sets

It follows from the results summarized in [26, Section 2] that the following assertions
are equivalent for a subset A of a Banach space:

• A is a weak Banach-Saks set.

• Each weakly convergent sequence in A admits a uniformly weakly convergent
subsequence.

• No weakly convergent sequence in A generates an `1-spreading model.

More precisely, in the quoted paper the authors formulate characterizations of
Banach-Saks sets, adding to the other assertions the assumption that A is relatively
weakly compact. In this section we will prove a quantitative version of these charac-
terizations. To formulate it, we need to introduce some natural quantities related to the
above-mentioned properties:

Let (xk) be a sequence which weakly converges to some x ∈ X. This sequence is
said to be uniformly weakly convergent if for each ε > 0

∃n ∈ N ∀x∗ ∈ BX∗ : #{k ∈ N : |x∗(xk − x)| > ε} ≤ n.

The quantity wu (xk) is then defined to be the infimum of all ε > 0 satisfying this
condition. Further, we set

w̃u (xk) = inf{wu
(
xkn

)
: (xkn) is a subsequence of xk}.

Finally, for a bounded set A we define

wus (A) = sup{w̃u (xk) : (xk) ⊂ A is weakly convergent}.

We continue by a definition related to spreading models. Let (xk) be a bounded
sequence. We say that it generates an `1-spreading model with δ > 0 if

∀F ⊂ N, #F ≤ min F ∀(αi)i∈F ∈ R
F :

∥∥∥∥∥∥∥∑i∈F

αixi

∥∥∥∥∥∥∥ ≥ δ∑i∈F

|αi| .

The sequence (xk) generates an `1-spreading model if it generates an `1-spreading
model with some δ > 0.

For a bounded set A we set

sm (A) = sup{δ > 0: ∃(xk) ⊂ A, xk
w
→ x,

(xk − x) generates an `1-spreading model with δ}.

Now we are ready to formulate the promised quantitative characterizations.

Theorem 4.1. Let A be a bounded set in a Banach space X. Then

(8) sm (A) ≤
1
2

wbs (A) ≤ wus (A) ≤ 2 sm (A) .
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Remark 4.2. For any bounded set A ⊂ X have

(9) sm (A) ≤
1
2
ϕ′(A) ≤ wbs (A) .

Indeed, it is easy to check that cca (xk) ≥ 1
2 asep(xk) for any bounded sequence (xk).

Since the quantity asep cannot decrease when we pass to a subsequence, we get
c̃ca (xk) ≥ 1

2 asep(xk), hence the second inequality in (9) follows. The first inequali-
ty follows from Lemma 4.6 below.

Hence, by (9) and Theorem 4.1 the quantity ϕ′ inspired by [24] is equivalent to our
quantities. Further, since clearly ϕ′ ≤ ϕ, we get

sm (A) ≤
1
2
ϕ′(A) ≤

1
2
ϕ(A) ≤ bs (A) .

The last inequality follows from the previous paragraph. It seems not to be clear
whether the quantity ϕ is equivalent to bs () also for sets which are not relatively weakly
compact.

As a consequence of Theorem 4.1 we get that the introduced quantities wbs () and
bs () really measure the failure of the weak Banach-Saks (Banach-Saks, respectively)
property of a set.

Corollary 4.3. Let A be a bounded set in a Banach space X.

• If wbs (A) = 0, then A is a weak Banach-Saks set.

• If bs (A) = 0, then A is a Banach-Saks set.

To prove the corollary we will use the following lemma, which also proves the
inequality wbs (A) ≤ 2 wus (A) from Theorem 4.1.

Lemma 4.4. Let (xk) be a sequence in a Banach space X which weakly converges to
some x ∈ X. Then cca (xk) ≤ 2 wu (xk).

Proof. Let M = sup
k
‖xk‖. Fix an arbitrary c > wu (xk). Let N ∈ N be such that

(10) ∀x∗ ∈ BX∗ : #{k ∈ N : |x∗(xk − x)| > c} ≤ N.

Set zk = 1
k (x1 + · · · + xk), k ∈ N. Given ε > 0, we find n0 ∈ N such that 2MN

n0
< ε.

Now, for any couple of indices n0 ≤ n < m and x∗ ∈ BX∗ we obtain from (10)

|x∗(zm − zn)| = |x∗(zm − x) + x∗(x − zn)|

=

∣∣∣∣∣∣
(

1
m
−

1
n

)
(x∗(x1 − x) + · · · + x∗(xn − x))

+
1
m

(x∗(xn+1 − x) + · · · + x∗(xm − x))
∣∣∣∣∣

≤
2NM

n
+ c

(
n
(
1
n
−

1
m

)
+

m − n
m

)
≤ ε + c

(
2 − 2

n
m

)
≤ 2c + ε.

Since x∗ ∈ BX∗ is arbitrary,
‖zm − zn‖ ≤ 2c + ε

for each n0 ≤ n < m. Thus cca (xk) = ca(zk) ≤ 2c, which completes the proof. �
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Proof of Corollary 4.3. Suppose that wbs (A) = 0. By Theorem 4.1 we deduce
wus (A) = 0. Let (xk) be a weakly convergent sequence in A. Then we can construct
by induction sequences (yn

k)∞k=1 for n ∈ N such that

• y1
k = xk, k ∈ N;

• (yn+1
k ) is a subsequence of (yn

k);

• wu
(
yn+1

k

)
< 1

n+1 .

Consider the diagonal sequence (zk) = (yk
k). Then (zk) is a subsequence of (xk),

wu (zk) = 0 and hence cca (zk) = 0 (by Lemma 4.4), so (zk) is Cesàro convergent.
This completes the proof that A is a weak Banach-Saks set.

For the second part, suppose that bs (A) = 0. Hence wbs (A) = 0, so by the first
part, A is a weak Banach-Saks set. Further, by Theorem 3.1 we get wckX(A) = 0,
hence A is relatively weakly compact. Therefore A is a Banach-Saks set. �

We continue with the inequality 2 sm (A) ≤ wbs (A). It follows immediately from
the following lemma.

Lemma 4.5. Let (xk) be a bounded sequence in a Banach space X and x ∈ X. Suppose
that (xk − x) generates an `1-spreading model with a constant c. Then c̃ca (xk3) ≥ 2c.

Proof. Since cca (xk − x) = cca (xk), we may without loss of generality suppose that
x = 0. Let M = supk ‖xk‖. Let (zk) be any subsequence of (xk3). We will show that
cca (zk) ≥ 2c. To this end we notice that, for F ⊂ N satisfying #F ≤ (min F)3, we have
‖
∑

i∈F αizi‖ ≥ c
∑

i∈F |αi| whenever (αi) are arbitrary scalars.
Let N ∈ N be given. We set n = N + N2 and m = N + N3. Then the set F =

{N + 1, . . . ,m} satisfies #F ≤ (min F)3, which implies∥∥∥∥∥ 1
m

(z1 + · · · + zm) −
1
n

(z1 + · · · + zn)
∥∥∥∥∥

=

∥∥∥∥∥∥
(

1
m
−

1
n

)
(z1 + · · · + zn) +

1
m

(zn+1 + · · · + zm)

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
(

1
m
−

1
n

)
(zN+1 + · · · + zn) +

1
m

(zn+1 + · · · + zm)

∥∥∥∥∥∥
−

∥∥∥∥∥∥
(

1
m
−

1
n

)
(z1 + · · · + zN)

∥∥∥∥∥∥
≥ c

(
1
n
−

1
m

)
(n − N) +

c
m

(m − n) − MN
(
1
n
−

1
m

)
= c

N2(N3 − N2)
(N + N3)(N + N2)

+ c
N3 − N2

N3 + N
− M

N(N3 − N2)
(N + N3)(N + N2)

.

Since the last term converges to 2c as N tends to infinity, cca (zk) ≥ 2c, which com-
pletes the proof. �

The following lemma provides the promised proof of the first inequality in (9). It
is an easier variant of the previous lemma.

Lemma 4.6. Let (xk) be a bounded sequence in a Banach space X and x ∈ X. Suppose
that (xk − x) generates an `1-spreading model with a constant strictly greater than c.
Then there is n ∈ N such that asep((xk2)k≥n) > 2c.
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Proof. Fix d > c such that (xk − x) generates an `1-spreading model with the constant
d. Let M = supk ‖xk‖. Fix n ∈ N such that n ≥ 2 and

2d −

√
2
n

(d + 2M) > 2c.

If we show that

asep((xk2)k≥n) ≥ 2d −

√
2
n

(d + 2M),

the proof will be completed. To do that fix any m ∈ N and indices

n ≤ p1 < p2 < · · · < pm < q1 < q2 < · · · < qm.

If m ≤ 1
2n2, then 2m ≤ n2 and therefore∥∥∥∥∥∥∥ 1

m

 m∑
i=1

xp2
i
−

m∑
i=1

xq2
i


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥ 1
m

 m∑
i=1

(xp2
i
− x) −

m∑
i=1

(xq2
i
− x)


∥∥∥∥∥∥∥ ≥ d ·

1
m
· 2m = 2d.

Finally, suppose that m > 1
2n2. Let j ∈ {1, . . . ,m} be the smallest number satisfying

p2
j ≥ 2m. Such a number exists since p2

m ≥ m2 ≥ 2m (as m > 1
2n2 ≥ 2). Moreover,

necessarily j ≤
√

2m + 1. Indeed, if p2
i < 2m, then i2 ≤ p2

i < 2m and hence i <
√

2m.
We have ∥∥∥∥∥∥∥ 1

m

 m∑
i=1

xp2
i
−

m∑
i=1

xq2
i


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥ 1
m

 m∑
i=1

(xp2
i
− x) −

m∑
i=1

(xq2
i
− x)


∥∥∥∥∥∥∥

≥

∥∥∥∥∥∥∥ 1
m

 m∑
i= j

(xp2
i
− x) −

m∑
i=1

(xq2
i
− x)


∥∥∥∥∥∥∥ −

∥∥∥∥∥∥∥ 1
m

j−1∑
i=1

(xp2
i
− x)

∥∥∥∥∥∥∥
≥ d ·

1
m
· (2m −

√
2m) −

1
m
· 2M ·

√
2m

= 2d −

√
2
m

(d + 2M) ≥ 2d −

√
2
n

(d + 2M).

This completes the proof. �

Finally we will show wus (A) ≤ 2 sm (A). This follows from the following lemma.
The lemma essentially follows from [26, Theorem 2.1]. However, since this theorem
is not proved in [26] and we were not able to completely recover it from the references
therein and since we, moreover, need to know precise constants, we decided to give
here a complete proof of the lemma using the results of [4, 27].

Lemma 4.7. Let c > 0 and let (xk) be a weakly null sequence with w̃u (xk) > c. Then
there is a subsequence of (xk) generating an `1-spreading model with the constant c

2 .

Proof. Fix δ ∈ (0, 1) such that w̃u (xk) > c + 3δ. We begin by showing that without
loss of generality (up to passing to a subsequence) we may suppose that for any finite
set F ⊂ N the following holds:

(11)

(
∃x∗ ∈ BX∗ ∀k ∈ F : x∗(xk) ≥ c + 3δ

)
=⇒ ∃y∗ ∈ BX∗

(
∀k ∈ F : y∗(xk) > c + 2δ and

∑
k∈N\F

|y∗(xk)| < δ
)
.
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To this end we will use [4, Lemma 2.4.7]. The set

D = {(x∗(xk))∞k=1 : x∗ ∈ BX∗}

is a convex symmetric weakly compact subset of c0. (Indeed, the mapping x∗ 7→
(x∗(xk))∞k=1 is a mapping of BX∗ onto D which is continuous from the weak∗ topology
to the weak topology of c0.) Further, fix ε ∈ (0, 1) such that

(1 − ε)(c + 3δ) > c + 2δ and ε(c + 3δ) < δ.

Then the quoted lemma applied to the set D, the constant c + 3δ in place of δ and ε
yields an infinite set M ⊂ N such that for any finite set F ⊂ M (11) is satisfied with M
in place of N. Up to passing to a subsequence we may suppose that M = N, therefore
without loss of generality (11) holds for any finite set F ⊂ N.

Further, set
K0 = {{k ∈ N : x∗(xk) ≥ c + 3δ} : x∗ ∈ BX∗},

let K be the family of those subsets of N which are contained in an element of K0.
To complete the proof we will use the following lemma which is an easier variant

of [27, Theorem 2] and was suggested to us by the referee:

Lemma 4.8. Let F be a nonempty hereditary family of finite subsets of N. Then there
is an infinite set M ⊂ N such that one of the following conditions is satisfied:

(a) There is some d ∈ N ∪ {0} such that F ∩ P(M) = [M]≤d.

(b) There is a strictly increasing mapping f : M → N such that {F ⊂ M : #F ≤
f (min F)} ⊂ F .

(A family F is heredirary if B ∈ F whever B ⊂ A and A ∈ F. Furhter, by P(M)
we denote the power set of M, by [M]≤d the family of all subsets of M of cardinality at
most d, by [M]d the family of all subsets of M of cardinality exactly d. )

Proof. Suppose that there is an infinite set M ⊂ N and d ∈ N such that F ∩ [M]d = ∅.
Let d0 ∈ N be the minimal number with this property. If d0 = 1, then F ∩ P(M) =

{∅} = [M]≤0. Suppose that d0 > 1. By the classical Ramsey theorem there is an infinite
set N ⊂ M such that either F ∩ [N]d0−1 = ∅ or [N]d0−1 ⊂ F . The first possibility cannot
occur due to the minimality of d0. The second one implies F ∩P(N) = [N]≤d0−1 (as F
is hereditary and F ∩ [N]d0 = ∅). Hence, the condition (a) is satisfied.

Next suppose that such an infinite set M ⊂ N and d ∈ N do not exist. It means that
F ∩ [M]d , ∅ for each inifinite M ⊂ N and each d ∈ N. Using the classical Ramsey
theorem we deduce that for any infinite M ⊂ N and any d ∈ N there is an infinite set
N ⊂ M such that [N]d ⊂ F . Since F is hereditary, automatically [N]≤d ⊂ F. Therefore
we can by induction construct a sequence (Mn) with the following properties.

• N ⊃ M1 ⊃ M2 ⊃ · · ·

• Mn is infinite for each n ∈ N.

• [Mn]≤n ⊂ F for each n ∈ N.

Choose a strictly increasing sequence (mn) of natural numbers such that mn ∈ Mn for
each n ∈ N. Set M = {mn : n ∈ N} and define f : M → N by f (mn) = n. Then f
witnesses that (b) is satisfied for M. �
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Now we continue the proof of Lemma 4.7. We apply the preceding lemma to the
familyK . We observe that the case (a) cannot occur. Indeed, suppose that M ⊂ N is in-
finite and d ∈ N such thatK∩P(M) = [M]≤d. Then, in particular,K0 ∩ P(M) ⊂ [M]≤d,
hence for each x∗ ∈ BX∗ we have

#{k ∈ M : |x∗(xk)| ≥ c + 3δ} = #{k ∈ M : x∗(xk) ≥ c + 3δ}
+ #{k ∈ M : (−x∗)(xk) ≥ c + 3δ} ≤ 2d,

hence w̃u (xk) ≤ c + 3δ, a contradiction with the choice of δ.
Thus the case (b) must occur. Fix the relevant set M and function f . Up to pass-

ing to a subsequence we may suppose that M = N. Now we are going to check
that the sequence (xk) (which was made from the original one by passing twice to
a subsequence) generates an `1-spreading model with the constant c

2 . To do that let
F ⊂ N be a subset satisfying #F ≤ min F and (αi)i∈F be any choice of scalars. Set
F+ = {i ∈ F : αi > 0} and F− = {i ∈ F : αi < 0}. Without loss of generality
we may suppose that

∑
i∈F+ αi ≥

∑
i∈F−(−αi) (otherwise we can pass to (−αi)). Since

#F+ ≤ #F ≤ min F ≤ f (min F) ≤ f (min F+), we get F+ ∈ K . Therefore using (11)
we can find x∗ ∈ BX∗ such that

x∗(xi) > c + 2δ for i ∈ F+ and
∑

i∈N\F+

|x∗(xi)| < δ.

Then ∥∥∥∥∥∥∥∑i∈F

αixi

∥∥∥∥∥∥∥ ≥∑
i∈F

αix∗(xi) ≥
∑
i∈F+

αi(c + 2δ) −
∑

i∈F\F+

|αi||x∗(xi)|

≥
1
2

(c + 2δ)
∑
i∈F

|αi| − δ
∑
i∈F

|αi| =
c
2

∑
i∈F

|αi| ,

which completes the argument. �

Remark 4.9. The proof of Theorem 4.1 is inspired by the proof of [26, Theorem 2.4].
More precisely, Lemma 4.4 is straightforward. Lemma 4.5 is a more elementary and
more precise version of the argument in [26, p. 2256, second paragraph]. The quoted
approach would yield wbs (A) ≥ 1

4 sm (A), with a little more care wbs (A) ≥ 1
2 sm (A).

Our approach is more elementary, we use just the triangle inequality and not the possi-
bility to extract a basic subsequence, and we obtain the best possible inequality. Final-
ly, Lemma 4.7 is a more precise version of the proof of [26, Theorem 2.4(a) =⇒ (b)].

We finish this section by giving the last missing proof from the previous section.

Proof of Example 3.3. Let B be the Baernstein space, i.e., the separable reflexive space
constructed in [6] and let (bn) denotes its canonical basis. Let X = B ⊕∞ `1 and (en)
be the standard basis of `1. For ε ∈ [0, 1] set Aε = {(bn, εen) : n ∈ N}. Then Aε ⊂ BX.
Since (bn) converges weakly to zero, the set A0 is weakly compact and hence ω(Aε) ≤
d̂(Aε, A0) ≤ ε.

Fix ε ∈ (0, 1]. It is clear that the sequence (bn, εen) is equivalent to the `1 basis
and hence Aε contains no nontrivial weakly convergent sequences, and thus trivially
wbs (Aε) = 0. Finally, by the very definitions we get bs (Aε) ≥ bs (A0). By the con-
struction of B in [6] we know that (bn) is weakly null and generates an `1-spreading
model with δ = 1. Thus bs (A0) ≥ 2 by Theorem 4.1 and hence bs (Aε) ≥ 2. This
completes the proof. �
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5 Quantities applied to the unit ball
In this section we investigate possible values of the quantities bs () and wbs () when
applied to the unit ball of a Banach space. There are two main results in this section.
The first one is a dichotomy for the quantity wbs (), the second one deals with the
quantity bs () in nonreflexive spaces.

Theorem 5.1. Let X be a Banach space. Then

wbs (BX) =

0 if X has the weak Banach-Saks property,
2 otherwise.

In particular:

• There is a separable reflexive Banach space X with bs (BX) = wbs (BX) = 2.

• There is a nonreflexive Banach space X with separable dual with bs (BX) =

wbs (BX) = 2.

• If X = C[0, 1], then bs (BX) = wbs (BX) = 2.

Theorem 5.2.

1. Let X be a Banach space containing an isomorphic copy of `1. Then bs (BX) = 2.
In particular, bs

(
B`1

)
= 2 and wbs

(
B`1

)
= 0.

2. Let X be a nonreflexive Banach space containing no isomorphic copy of `1.
Then bs (BX) ∈ [1, 2]. In particular, bs

(
Bc0

)
= 1, bs (Bc) = 2 and wbs

(
Bc0

)
=

wbs (Bc) = 0, where c denotes the space of convergent sequences equipped with
the supremum norm.

The key ingredient of the proof of Theorem 5.1 is the following lemma which can
be viewed as a variant of the James distortion theorem for spreading models.

Lemma 5.3. Let X be a Banach space. Then sm (BX) ∈ {0, 1}.

Proof. Assume that sm (BX) > 0. Then there is a sequence (xk) in BX weakly converg-
ing to some x ∈ BX and δ > 0 such that the sequence (xk − x) generates an `1-spreading
model with δ > 0, i.e.,

∀F ⊂ N, #F ≤ min F ∀(αi) :

∥∥∥∥∥∥∥∑i∈F

αi(xi − x)

∥∥∥∥∥∥∥ ≥ δ∑i∈F

|αi| .

We will show that, for any ω > 0, there exists a weakly null sequence (yk) in BX which
generates an `1-spreading model with 1 − ω.

The first step is to replace the sequence (xk − x) by a normalized weakly null se-
quence generating an `1-spreading model. Since (xk − x) generates an `1-spreading
model, no subsequence is norm-convergent and hence inf

k
‖xk − x‖ > 0. Thus, if we

set uk = xk−x
‖xk−x‖ , then (uk) is a normalized weakly null sequence. Moreover, since

‖xk − x‖ ≤ 2 for each k, the sequence (uk) generates an `1-spreading model with δ
2 .

By [1, Proposition 1.5.4] we can suppose (up to passing to a subsequence) that (uk)
is a basic sequence. Moreover, by [15, Theorem 6.6] we may assume (by passing to
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a further subsequence if necessary) that there exists a Banach space (Y, |·|) with a (sub-
symmetric) basis (ek) such that

(12)

∀ε > 0 ∀N ∈ N ∃m(ε,N) ∈ N : m(ε,N) ≤ k1 < k2 < · · · < kN =⇒

∀(αi) : (1 − ε)

∣∣∣∣∣∣∣
N∑

i=1

αiei

∣∣∣∣∣∣∣ ≤
∥∥∥∥∥∥∥

N∑
i=1

αiuki

∥∥∥∥∥∥∥ ≤ (1 + ε)

∣∣∣∣∣∣∣
N∑

i=1

αiei

∣∣∣∣∣∣∣ .
Since (uk) generates an `1-spreading model, the sequence (ek) is equivalent to the
`1-basis, so we may suppose that Y is the space `1 with an equivalent norm |·| and
(ek) is the canonical basis. Hence, if we set

β = inf


∣∣∣∣∣∣∣
∞∑

i=1

αiei

∣∣∣∣∣∣∣ :
∞∑

i=1

|αi| = 1

 ,
then β > 0 and

∀(αi) ∈ `1 :

∣∣∣∣∣∣∣
∞∑

i=1

αiei

∣∣∣∣∣∣∣ ≥ β
∞∑

i=1

|αi| .

To complete the proof choose an arbitrary ω > 0. We can fix η > 0 such that
1−η

(1+η)2 > 1−ω. Using the density of c00 in `1 we find n ∈ N and scalars (αi)n
i=1 such that∑n

i=1 |αi| = 1 and
∣∣∣∑n

i=1 αiei

∣∣∣ < (1 + η)β. Set m0 = m(η, n). For every k ∈ N we set

yk =
1

(1 + η)2β

n∑
i=1

αium0+kn+i.

From (12) and the choice of (αi)n
i=1 we obtain

‖yk‖ ≤
1

(1 + η)2β
(1 + η)

∣∣∣∣∣∣∣
n∑

i=1

αiei

∣∣∣∣∣∣∣ ≤ (1 + η)2β

(1 + η)2β
= 1,

hence yk are elements of BX. Further, the sequence (yk) weakly converges to zero.
Let N ∈ N be fixed. Let k1 < k2 < · · · < kN be indices, where k1n ≥ m(η, nN). If

(β j)N
j=1 are scalars, then we have from (12) and from the definition of β estimates∥∥∥∥∥∥∥

n∑
j=1

β jyk j

∥∥∥∥∥∥∥ =
1

(1 + η)2β

∥∥∥∥∥∥∥
N∑

j=1

β j

 n∑
i=1

αium0+k jn+i


∥∥∥∥∥∥∥

≥
1 − η

(1 + η)2β

∣∣∣∣∣∣∣
N∑

j=1

β j

 n∑
i=1

αie( j−1)n+i


∣∣∣∣∣∣∣

≥
1 − η

(1 + η)2

N∑
j=1

∣∣∣β j

∣∣∣  n∑
i=1

|αi|


=

1 − η
(1 + η)2

N∑
j=1

∣∣∣β j

∣∣∣ ≥ (1 − ω)
N∑

j=1

∣∣∣β j

∣∣∣ .
Hence we have shown the following statement for the sequence (yk):

∀N ∈ N :
(
m(η, nN)

n
≤ k1 < k2 < · · · < kN

=⇒ ∀(β j) :

∥∥∥∥∥∥∥
N∑

j=1

β jyk j

∥∥∥∥∥∥∥ ≥ (1 − ω)
N∑

j=1

∣∣∣β j

∣∣∣ .
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To finish the proof it is enough to extract a further subsequence from (yk) satisfying the
definition of the `1-spreading model with 1 − ω. To this end, we choose an increasing
sequence (n j) of indices satisfying n j ≥

m(η,n j)
n and set z j = yn j , j ∈ N. Let now N ∈ N

and let N ≤ k1 < k2 < · · · < kN be indices and (αi) be scalars. Then∥∥∥∥∥∥∥
N∑

i=1

α jzk j

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
N∑

i=1

α jynk j

∥∥∥∥∥∥∥ ≥ (1 − ω)
N∑

i=1

|αi| ,

because m(η,nN)
n ≤ nN ≤ nk1 < nk2 < · · · < nkN . �

Proof of Theorem 5.1. The equality follows from Lemma 5.3 and Theorem 4.1.
The first example of a separable reflexive space without the Banach-Saks property

is constructed in [6].
As a nonreflexive space with separable dual which fails the weak Banach-Saks

property one can take the Schreier space described for example in [9, Construction
0.2]. It is not reflexive since it contains a copy of c0 by [9, Proposition 0.7], it has
separable dual since it has an unconditional basis and does not contain a copy of `1

[9, Proposition 0.4(iii) and Proposition 0.5]. It fails the weak Banach-Saks property
since the basis is weakly null and generates an `1-spreading model due to [9, Proposi-
tion 0.4(iv)].

The space C[0, 1] fails the weak Banach-Saks property since it contains any sepa-
rable space as a subspace. A direct proof is contained already in [29].

�

Proof of Theorem 5.2. (1) Let (xk) be a bounded sequence and δ > 0 such that

(13)

∥∥∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥∥∥ ≥ δ
n∑

i=1

|αi| , n ∈ N, α1, . . . , αn ∈ R.

Then cca (xk) ≥ 2δ. Indeed, let m ≥ n. Then∥∥∥∥∥∥∥ 1
m

m∑
i=1

xi −
1
n

n∑
i=1

xi

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
(

1
m
−

1
n

) n∑
i=1

xi +
1
m

m∑
i=n+1

xi

∥∥∥∥∥∥∥
≥ δ

(
n
(
1
n
−

1
m

)
+

1
m

(m − n)
)

= 2δ
(
1 −

n
m

)
.

For any fixed n the latter expression has limit 2δ when m → +∞. This shows that
cca (xk) ≥ 2δ. Since any subsequence of (xk) satisfies (13) as well, we get even
c̃ca (xk) ≥ 2δ.

Let X be a Banach space containing an isomorphic copy of `1. By the James distor-
tion theorem there is, given ε ∈ (0, 1), a normalized sequence (xk) in X which satisfies
(13) with the constant 1 − ε in place of δ. It follows that bs (BX) ≥ c̃ca (xk) ≥ 2(1 − ε).
Since ε ∈ (0, 1) is arbitrary, bs (BX) ≥ 2. The converse inequality is obvious.

Finally, the equality wbs
(
B`1

)
= 0 follows from the Schur property of `1.

(2) The inequality bs (BX) ≤ 2 is trivial. The inequality bs (BX) ≥ 1 follows from
Theorem 3.1 since for a nonreflexive space X one has wckX(BX) = 1 (this follows for
example from [18, Theorem 1] and [11, Proposition 2.2]).

The spaces c0 and c are isomorphic and, moreover, they enjoy the weak Banach-
Saks property by [17]. Therefore wbs

(
Bc0

)
= wbs (Bc) = 0.
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To show that bs (Bc) = 2 define a sequence (xk) in Bc by the formula

xk(i) =

1, 1 ≤ i ≤ k,
−1, i ≥ k + 1.

Let (xkn) be any subsequence of (xk). Denote by yn = 1
n

∑n
j=1 xk j for n ∈ N. Let m < n

be two natural numbers. Then

ym(km + 1) = −1 and yn(km + 1) =
1
n

(m · (−1) + (n − m) · 1) = 1 −
2m
n
.

Hence ‖ym − yn‖ ≥ 2 − 2m
n . For any fixed m this value has limit 2 for n → ∞, thus

cca
(
xkn

)
≥ 2. It follows that c̃ca (xk) ≥ 2, so bs (Bc) ≥ 2.

Finally, it remains to show that bs
(
Bc0

)
≤ 1. To do this let us fix a sequence (xk) in

Bc0 . Up to passing to a subsequence we may suppose that the sequence (xk) pointwise
converges to some x ∈ B`∞ . Fix an arbitrary ε ∈ (0, 1). We will construct increasing
sequences of natural numbers (kn) and (pn) using the following inductive procedure:

• k1 = 1;

• |xk(i)| < ε for k ≤ kn and i ≥ pn;

• |xk(i) − x(i)| < ε for i ≤ pn and k ≥ kn+1.

It is clear that this construction can be performed, using the facts that the points xk

belong to c0 and that the sequence (xk) pointwise converges to x. Let us consider the
sequence (xkn) and set yn = 1

n (xk1 +· · ·+xkn) for n ∈ N. Fix an arbitrary i ∈ N. Let m ∈ N
be the minimal number such that i ≤ pm. By the construction we have

∣∣∣xkn(i)
∣∣∣ < ε for

n < m and
∣∣∣xkn(i) − x(i)

∣∣∣ < ε for n > m, thus∣∣∣∣∣xkn(i) −
x(i)
2

∣∣∣∣∣ < 1
2
|x(i)| + ε for n ∈ N \ {m}.

It follows that for any N ∈ N we have∣∣∣∣∣yN(i) −
x(i)
2

∣∣∣∣∣ ≤ 1
N

N∑
n=1

∣∣∣∣∣xkn(i) −
x(i)
2

∣∣∣∣∣ ≤ 1
N

(
(N − 1)

(
1
2
|x(i)| + ε

)
+

3
2

)
≤

1
2
|x(i)| + ε +

3
2N

.

Therefore for any M,N ∈ N we have

‖yN − yM‖ ≤ ‖x‖ + 2ε +
3

2N
+

3
2M

,

so clearly cca
(
xnk

)
= ca(yk) ≤ ‖x‖ + 2ε. Since ε ∈ (0, 1) is arbitrary, we get c̃ca (xk) ≤

‖x‖ ≤ 1. This completes the proof. �
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6 Final remarks and open problems
It is natural to ask whether the inequalities in our results are optimal and which in-
equalities may become strict.

Let us start by Theorem 3.1.

• If X = C[0, 1] and A = BX, then wbs (A) = bs (A) = β(A) = 2, hence we have
equalities. Indeed, wbs (A) = 2 by Theorem 5.1 and obviously β(A) ≤ 2.

• If X = `1 and A = BX, then wbs (A) = 0 by the Schur property of `1, obviously
wckX(A) ≤ 1 (in fact, wckX(A) = 1 since `1 is not reflexive) and bs (A) = β(A) =

2 by Theorem 5.2, hence the first inequality is strict, the second one becomes
equality.

• If X = c0 and A = BX, then wbs (A) = 0 by [17], wckX(A) = 1 since c0 is not
reflexive (in this concrete case the equality can be verified directly by the use
of the sequence (xk) where xk = e1 + · · · + ek), bs (A) = 1 by Theorem 5.2 and
β(A) = 2 (the constant 2 is attained by the sequence xk = e1 + · · · + ek − ek+1),
hence the first inequality becomes equality and the second one is strict.

So, it seems that Theorem 3.1 is optimal.
Further, let us focus on Theorem 4.1. The first inequality may become equality – it

is the case if A = BX by Theorem 5.1 and Lemma 5.3. However, we know no example
when the first inequality is strict. The second inequality may become equality, for
example if X is the Baernstein space from [6] and A is the canonical basis of X. In
this case the last inequality is strict. We do not know any example when the second
inequality is strict. So, we can ask the following question.

Question. Let X be a Banach space and A ⊂ X a bounded set. Is it necessarily true
that

wbs (A) = 2 sm (A) = 2 wus (A) ?
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III. Quantification of Pełczyński’s
property (V)

(Submitted to Studia Mathematica, preprint available at
http://arxiv.org/abs/1509.06610.)

Abstract: A Banach space X has Pełczyński’s property (V) if for every Banach
space Y every unconditionally converging operator T : X → Y is weakly compact. In
1962, Aleksander Pełczyński showed that C(K) spaces for a compact Hausdorff space
K enjoy the property (V), and some generalizations of this theorem have been proved
since then. We introduce several possibilities of quantifying the property (V). We
prove some characterizations of the introduced quantitative versions of this property,
which allow us to prove a quantitative version of Pelczynski’s result about C(K) spaces
and generalize it. Finally, we study the relationship of several properties of operators
including weak compactness and unconditional convergence, and using the results ob-
tained we establish a relation between quantitative versions of the property (V) and
quantitative versions of other well known properties of Banach spaces.

1 Introduction
A Banach space X is said to have Pełczyński’s property (V) if for every Banach space Y
every unconditionally converging operator T : X → Y is weakly compact. Recall that
a linear operator T : X → Y is weakly compact if the image under T of the unit ball
of X is a relatively weakly compact set in Y . We say that a bounded linear operator
T : X → Y is unconditionally converging if

∑
n T xn is an unconditionally convergent

series in Y whenever
∑

n xn is a weakly unconditionally Cauchy series in X.
Spaces known to enjoy the property (V) are for example C(K) for a compact Haus-

dorff space K; this result from 1962 is due to A. Pełczyński [24]. Several general-
izations of Pełczyński’s theorem have been proved since then. W. B. Johnson and M.
Zippin have shown that all real L1 preduals have the property (V) (see [16]). H. Pfitzner
has proved that all C∗-algebras enjoy it as well (see [26]).

The aim of this paper is to explore some possibilities of quantifying Pełczyński’s
property (V). Our inspiration comes from plenty of recently published quantitative re-
sults. Let us mention for example quantitative versions of Krein’s theorem [10, 14, 12,
6], the Eberlein-Šmulyan and the Gantmacher theorem [2], James’ compactness theo-
rem [7, 13], weak sequential continuity and the Schur property [19, 20], the Dunford-
Pettis [18] and the reciprocal Dunford-Pettis property [21], the Grothendieck property
[4], and the Banach-Saks property [5].

The main idea of quantifying an existing qualitative result is simple – to replace an
implication by an inequality. In case of the property (V) we will attempt to replace the
implication

(1) T is unconditionally converging ⇒ T is weakly compact

by an inequality

measure of weak non-compactness of T
≤ C ·measure of T not being unconditionally converging,
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where C is some positive constant depending only on X. These two measures should be
positive numbers for each operator T and should equal zero if and only if T is weakly
compact or unconditionally converging, respectively. This inequality then trivially
includes the original implication, but it says even more.

In Section 2 we explain how to define the above mentioned measures and we intro-
duce a quantitative version of the property (V). Section 3 is devoted to characterizations
of a quantitative version of the property (V). Using these characterizations, in Section 4
we prove quantitative versions of the above-mentioned theorem of Pełczyński and that
of Johnson and Zippin. Section 5 describes a relationship of various properties of oper-
ators including weak compactness and unconditional convergence. These relationships
are quantified, which enables us to establish a relation between a quantitative version
of the property (V) and quantitative versions of some other well known properties of
Banach spaces.

Throughout the paper, all Banach spaces can be considered either real or complex
(most of the results are valid in both cases), unless stated otherwise. By an operator
we always mean a bounded linear operator. If X is a Banach space, we denote by BX

its closed unit ball {x ∈ X : ‖x‖ ≤ 1} and by UX its open unit ball {x ∈ X : ‖x‖ < 1}.
Every Banach space X is considered canonically embedded into its bidual X∗∗.

2 Quantification of Pełczyński’s property (V)
In this section we remind the definition of the property (V). Then we define a few relat-
ed quantities, which allow us to quantify the property (V). We first focus on a quantity
which measures how far is an operator from being unconditionally converging. Then
we remind some well known measures of weak non-compactness of sets and operators.
Eventually, we introduce a quantitative version of the property (V).

2.1 Unconditionally converging operators and related quantities
Definition. A series

∑∞
n=1 xn in a Banach space X is

• unconditionally convergent if the series
∑∞

n=1 tnxn converges whenever (tn) is
a bounded sequence of scalars,

• weakly unconditionally Cauchy (wuC for short) if for all x∗ ∈ X∗ the series∑∞
n=1 |x

∗(xn)| converges.

Definition. Let X, Y be Banach spaces. An operator T : X → Y is unconditionally
converging (uc) if for every weakly unconditionally Cauchy series

∑∞
n=1 xn in X the

series
∑∞

n=1 T xn is unconditionally convergent.

It is easy to see that an operator T is unconditionally converging if and only if for
every weakly unconditionally Cauchy series

∑
xn in X the series

∑
T xn is convergent.

Indeed, the “only if implication” is trivial since every unconditionally convergent series
is convergent. Suppose that T sends wuC series to convergent series. If

∑
xn is a wuC

series in X and (tn) is a bounded sequence of scalars, then
∑

tnxn is also wuC and hence∑
tnxn converges. Therefore T is uc.
Let (xn) be a bounded sequence in a Banach space X. Set

ca
(
(xn)

)
= inf

n∈N
sup{‖xk − xl‖ : k, l ∈ N, k, l ≥ n}.
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This quantity is a measure of non-cauchyness of the sequence (xn). More precisely,
ca

(
(xn)

)
is a positive number for every bounded sequence (xn) and it is equal to zero

if and only if (xn) is Cauchy. Since we deal with Banach spaces only, the quantity ca
measures non-convergence of sequences.

We are now prepared to define a quantity which measures how far is an operator T
from being unconditionally converging. Let T : X → Y be an operator between Banach
spaces X and Y . We set

uc(T ) = sup

ca

( n∑
i=1

T xi

)
n

 : (xn) ⊂ X, sup
x∗∈BX∗

∞∑
n=1

|x∗(xn)| ≤ 1

 .
Clearly, uc(T ) = 0 provided T is unconditionally converging. On the other hand, if∑

xn is a wuC series in X, then the sets

Mk =

{
x∗ ∈ X∗ :

∞∑
n=1

|x∗(xn)| ≤ k
}
, k ∈ N,

are closed, and
⋃∞

k=1 Mk = X∗. If we use Baire’s theorem, it is not difficult to find
a constant C > 0 such that

∑∞
n=1 |x

∗(xn)| ≤ C for all x∗ ∈ BX∗ . From this we see that
uc(T ) = 0 if and only if T is unconditionally converging.

2.2 Measuring non-compactness and weak non-compactness of
sets and operators

We will use the following notation. For A, B subsets of a Banach space X we set

dist(a, B) = inf{‖a − b‖ : a ∈ A, b ∈ B},

d̂(A, B) = sup{dist(a, B) : a ∈ A}.

The former is the ordinary distance between the sets A and B, the latter is the non-
symetrized Hausdorff distance from A to B.

Let A be a bounded subset of a Banach space X. The Hausdorff measure of
non-compactness of the set A is defined by

χ(A) = inf{d̂(A,K) : ∅ , K ⊂ X is compact}

= inf{d̂(A, F) : ∅ , F ⊂ X is finite}.

It is easy to see that χ(A) = 0 if and only if the set A is relatively compact.
There are many ways of measuring weak non-compactness. The de Blasi measure

of weak non-compactness of the set A, which is an analogue of the Hausdorff measure
of non-compactness, is defined by

ω(A) = inf{d̂(A,K) : ∅ , K ⊂ X is weakly compact}.

Clearly, ω(A) = 0 for any relatively weakly compact set A. De Blasi has proved (see
[8]) that ω(A) = 0 if and only if A is relatively weakly compact. For every bounded
subset A of a Banach space X the inequality

(2) ω(A) ≤ χ(A)

trivially holds.

39



Other most commonly used quantities measuring weak non-compactness are

wkX(A) = d̂
(
A

w∗
, X

)
,

wckX(A) = sup{dist(clustw∗(xn), X) : (xn) is a sequence in A},
γ(A) = sup{| lim

n
lim

m
x∗m(xn) − lim

m
lim

n
x∗m(xn)| : (xn) is a sequence in A,

(x∗m) is a sequence in BX∗ , and the limits exist}.

Here A
w∗

stands for the weak∗ closure of the set A in the bidual space X∗∗ and
clustw∗(xn) is the set of all weak∗ cluster points of the sequence (xn) in X∗∗. The
quantity wckX is related to the Eberlein-Šmulyan theorem and the quantity γ to the
Grothendieck double limit criterion for weak compactness.

The above defined quantities are studied for example in [2] and the following rela-
tionships between them are proved there [2, Theorem 2.3]. For every bounded subset
A of a Banach space X

(3) wckX(A) ≤ wkX(A) ≤ γ(A) ≤ 2 wckX(A),

(4) wkX(A) ≤ ω(A).

Moreover, all these quantities are measures of weak non-compactness in the sense
that they are equal to zero if and only if the set A is relatively weakly compact. The
estimates (3) say that the measures wkX, wckX, and γ are equivalent. The quantity ω
is, however, not equivalent to the other three (see [2, Corollary 3.4]), i.e. a Banach
space X exists such that there is no constant C satisfying for every bounded A ⊂ X the
inequality ω(A) ≤ C wkX(A).

An operator T : X → Y between Banach space X and Y is weakly compact if the
image T (BX) of the unit ball of X under T is relatively weakly compact. A natural way
to measure how far is an operator T : X → Y from being weakly compact is to measure
weak non-compactness of T (BX). We do it using the above defined measures of weak
non-compactness of sets. Let us denote ω(T (BX)) simply by ω(T ). Analogously γ(T ),
wkY(T ), and wckY(T ) stand for γ(T (BX)), wkY(T (BX)), and wckY(T (BX)), respectively.

The Gantmacher theorem states that an operator T : X → Y between Banach spaces
X and Y is weakly compact if and only if the dual operator T ∗ : Y∗ → X∗ is weakly
compact. This theorem has a quantitative version [2, Theorem 3.1]. It says that for any
operator T

(5) γ(T ) ≤ γ(T ∗) ≤ 2γ(T ).

The analogous result with the quantity ω in place of γ does not hold (see [3, Theo-
rem 4]).

2.3 Quantitative version of Pełczyński’s property (V)
Definition. Let X be a Banach space. We say that X has Pełczyński’s property (V) if for
every Banach space Y every unconditionally converging operator T : X → Y is weakly
compact.

The property (V) can be now quantified as follows.
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Definition. We say that a Banach space X has a quantitative version of Pełczyński’s
property (V) – let us denote it by (Vq) – if there exists a constant C > 0 such that for
every Banach space Y and every operator T : X → Y

(6) γ(T ) ≤ C · uc(T ).

If X has a quantitative version of Pełczyński’s property (Vq), then it also enjoy the
original qualitative property (V). Indeed, for any uc operator T we have uc(T ) = 0,
hence γ(T ) = 0 which means that T is weakly compact.

One may ask what would happen if we use a different measure of weak non-
compactness in (6). By replacing γ with wkX or wckX we achieve nothing new since
these quantities are equivalent. However, if we use ω instead of γ, we obtain a stronger
assertion. Proposition 4.3 (ii) shows that this quantification is really different.

Definition. We say that a Banach space X has the property (Vq)ω if there exists a con-
stant C > 0 such that for every Banach space Y and every operator T : X → Y

ω(T ) ≤ C · uc(T ).

There are other possibilities of quantifying the property (V). As we will see later,
it sometimes seems to be more natural to quantify the inequality

T is uc ⇒ T ∗ is weakly compact

which is equivalent to (1) by Gantmacher’s theorem.

Definition. We say that a Banach space X has the property (Vq)∗ω if there exists a con-
stant C > 0 such that for every Banach space Y and every operator T : X → Y

ω(T ∗) ≤ C · uc(T ).

Here we have no choice concerning the measure of weak non-compactness. If we
used γ(T ∗) in place of ω(T ∗), it would only yield a reformulation of the property (Vq)
by the quantitative Gantmacher theorem (5).

3 Characterizations of a quantitative Pełczyński’s
property (V)

Pełczyński’s property (V) has multiple different characterizations. It turns out that
some of these characterizations can also be quantified. We will show that their quanti-
tative versions are equivalent to a quantitative version of Pełczyński’s property (V).

3.1 Characterization through subsets of the dual space
Proposition 3.1. Let X be a Banach space. The following assertions are equivalent.

1. X has Pełczyński’s property (V).

2. Every K ⊂ X∗ which satisfies the condition (∗) below is relatively weakly com-
pact.

(∗) lim
n→∞

sup
x∗∈K
|x∗(xn)| = 0 for every wuC series

∞∑
n=1

xn in X.

This proposition, proven by Pełczyński [24, Proposition 1], has its quantitative
analogue. We have already explained in the previous section how to reformulate the
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former assertion quantitatively. We now define a quantity which is essential for quanti-
fying the latter one, and then we prove that also quantitative versions of the assertions
(1) and (2) are equivalent.

Let X be a Banach space and K be a bounded subset of X∗. We set

η(K) = sup
{

lim sup
n

sup
x∗∈K
|x∗(xn)| : (xn) ⊂ X, sup

x∗∈BX∗

∞∑
n=1

|x∗(xn)| ≤ 1
}
.

This quantity measures to what extent K fails to satisfy the condition (∗) from the
Proposition 3.1 (2). Obviously, η(K) is positive for every bounded K ⊂ X∗ and equals
zero if and only if K satisfies the condition (∗).

Proposition 3.2. Let X be a Banach space. The following assertions are equivalent.

(1q) X has the property (Vq), i.e. there exists C > 0 such that for any Banach space
Y and any operator T : X → Y

γ(T ) ≤ C · uc(T ).

(1′q) There exists C > 0 such that for every operator T : X → `∞

γ(T ) ≤ C · uc(T ).

(2q) There exists C > 0 such that for each bounded K ⊂ X∗

γ(K) ≤ C · η(K).

This proposition follows immediately from the next one and the quantitative ver-
sion of Gantmacher’s theorem (5). The preceding and the following proposition are
much alike, in the latter one γ(T ) is replaced by γ(T ∗). Then the three assertions are
equivalent “with the same constant” C > 0. Thus the quantification of the property (V)
of the form

γ(T ∗) ≤ C · uc(T )

seems to be more natural here.

Proposition 3.3. Let X be a Banach space and C > 0. The following assertions are
equivalent.

(1q)C For any Banach space Y and any operator T : X → Y

γ(T ∗) ≤ C · uc(T ).

(1′q)C For every operator T : X → `∞

γ(T ∗) ≤ C · uc(T ).

(2q)C For each bounded K ⊂ X∗

γ(K) ≤ C · η(K).
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Proof. We follow Pełczyński’s original proof [24, Prop. 1], it only needs to be done
more carefully. The implication (1q)C ⇒ (1′q)C is obvious.

Let us prove (1′q)C ⇒ (2q)C. Let K be a bounded subset of X∗ and δ < γ(K).
From the definition of γ it is easily seen that a sequence (x∗n) in K exists such that
γ({x∗n : n ∈ N}) > δ. Let us define T : X → `∞ by T (x)(n) = x∗n(x), n ∈ N, x ∈ X.
For each n ∈ N set pn

(
(ak)

)
= an, (ak) ∈ `∞. Then pn ∈ (`∞)∗, ‖pn‖ = 1. Moreover,

T ∗pn = x∗n, because for x ∈ X we have T ∗pn(x) = pn(T x) = x∗n(x). Thus

γ(T ∗) = γ(T (B(`∞)∗) ≥ γ({T ∗pn : n ∈ N}) = γ({x∗n : n ∈ N}) > δ.

From (1′q)C it follows that uc(T ) > δ
C . By the definition of the quantity uc there is

a wuC series
∑

xn in X with supx∗∈BX∗

∑
|x∗(xn)| ≤ 1 such that ca

((∑n
i=1 T xi

)
n

)
> δ

C .
The definition of ca gives indices k1 < l1 < k2 < l2 < . . . such that for each n ∈ N

(7)

δ

C
<

∥∥∥∥∥∥∥
ln∑

i=kn

T xi

∥∥∥∥∥∥∥
`∞

= sup
m∈N

∣∣∣∣∣∣∣
ln∑

i=kn

T (xi)(m)

∣∣∣∣∣∣∣
= sup

m∈N

∣∣∣∣∣∣∣
ln∑

i=kn

x∗m(xi)

∣∣∣∣∣∣∣ ≤ sup
x∗∈K

∣∣∣∣∣∣∣
ln∑

i=kn

x∗(xi)

∣∣∣∣∣∣∣ .
Let us define x̃n =

∑ln
i=kn

xi, n ∈ N. Then the series
∑

n x̃n is wuC since
∑

i xi is wuC and
for every x∗ ∈ X∗

∞∑
n=1

|x∗(x̃n)| =
∞∑

n=1

∣∣∣∣∣∣∣
ln∑

i=kn

x∗(xi)

∣∣∣∣∣∣∣ ≤
∞∑

n=1

ln∑
i=kn

|x∗(xi)| ≤
∞∑

i=1

|x∗(xi)|.

Moreover,

sup
x∗∈BX∗

∞∑
n=1

|x∗(x̃n)| ≤ sup
x∗∈BX∗

∞∑
i=1

|x∗(xi)| ≤ 1.

From (7) we have for each n ∈ N

sup
x∗∈K
|x∗(x̃n)| = sup

x∗∈K

∣∣∣∣∣∣∣
ln∑

i=kn

x∗(xi)

∣∣∣∣∣∣∣ > δ

C
,

and so
lim sup

n∈N
sup
x∗∈K

x∗(x̃n) >
δ

C
.

Hence η(K) > δ
C . As δ < γ(K) has been chosen arbitrarily, we obtain γ(K) ≤ C · η(K).

It remains to prove the implication (2q)C ⇒ (1q)C. Let Y be a Banach space and
T : X → Y an operator. Let us fix δ < γ(T ∗) = γ(T ∗(BY∗)). Set K = γ(T ∗(BY∗)). Then
K is a bounded subset of X∗ and from (2q)C we have C · η(K) ≥ γ(K) > δ. By the
definition of η there is a wuC series

∑
xn in X with supx∗∈BX∗

∑
|x∗(xn)| ≤ 1 such that

δ

C
< lim sup

n
sup
x∗∈K
|x∗(xn)| = lim sup

n
sup

y∗∈BY∗

|T ∗y∗(xn)|

= lim sup
n

sup
y∗∈BY∗

|y∗(T xn)| = lim sup
n
‖T xn‖.

Thus ca
((∑n

i=1 T xi
)

n

)
> δ

C and hence uc(T ) ≥ δ
C . Since δ < γ(T ∗) is arbitrary, we

conclude that γ(T ∗) ≤ C · uc(T ). �
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The following proposition provides an analogous characterization of the property
(Vq)∗ω.

Proposition 3.4. Let X be a Banach space and C > 0. The following assertions are
equivalent.

(1ω
q )C For any Banach space Y and any bounded linear operator T : X → Y

ω(T ∗) ≤ C · uc(T ).

(2ω
q )C For each bounded K ⊂ X∗

ω(K) ≤ C · η(K).

Proof. This proposition has the “same” proof as the previous one. The implication
(2ω

q )C ⇒ (1ω
q )C can be proven exactly the same way, we simply substitute ω for γ.

As for the converse implication, suppose that (1ω
q )C holds, and let K be a bounded

subset of X∗ and δ < ω(K). Let us define T : X → `∞(K) by T x(x∗) = x∗(x), x∗ ∈ K,
x ∈ X. For each x∗ ∈ K set Fx∗( f ) = f (x∗), f ∈ `∞(K). Then Fx∗ ∈ (`∞(K))∗, ‖Fx∗‖ = 1,
and T ∗Fx∗ = x∗, x∗ ∈ X∗. Hence

ω(T ∗) = ω(T ∗(B(`∞(K))∗) ≥ ω({T ∗Fx∗ : x∗ ∈ K}) = ω(K) > δ.

By (1ω
q )C, uc(T ) > δ

C . We then continue just as in the proof of the implication
(1′q)C ⇒ (2q)C in the previous proposition to get (2ω

q )C. �

From the estimates (3) and (4) it follows that if some Banach space X satisfies the
condition (1ω

q )C from the previous proposition 3.4, then it also satisfies the condition
(1q)2C from Proposition 3.3.

Propositions 3.2, 3.3, and 3.4 characterize only the properties (Vq) and (Vq)∗ω. We
do not have a similar characterization of the property (Vq)ω.

3.2 Characterization of uc operators and its consequence
The following theorem is a well known characterization of unconditionally converging
operators due to Pełczyński (see e.g. [9, p. 54, Exercise 8]). It gives rise to anoth-
er characterization of the property (V). Pełczyński’s result has its quantitative ver-
sion (Theorem 3.6 below), which yields another characterization of a quantitative
version of the property (V).

Theorem 3.5. Let X, Y be Banach spaces and T : X → Y an operator. Then T is
unconditionally converging if and only if it does not fix any copy of c0, i.e. there is no
subspace X0 ⊂ X isomorphic to c0 such that T �X0 is an isomorphism.

To quantify this proposition we will need the quantity fixc0 which measures the
failure of the condition that T does not fix a copy of c0. For a bounded linear operator
T : X → Y we set

fixc0(T ) = sup
{
(‖U‖‖V‖)−1 : ∃X0 ⊂ X such that T �X0 is an isomorphism

onto T (X0), and (T �X0)
−1 = U ◦ V for some

onto isomorphisms U : c0 → X0, V : T (X0)→ c0

}
.
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If the set on the right is empty, we set fixc0(T ) = 0. This happens if and only if T does
not fix a copy of c0, for otherwise the set contains (‖U‖‖V‖)−1, where U : c0 → X0 ⊂ X
is an isomorphism onto X0 such that T �X0 is an isomorphism, and V = (T ◦ U)−1.

Let us explain why may this quantity be considered a measure of the failure of the
condition that T does not fix a copy of c0. First of all, note that fixc0(cT ) = c fixc0(T ),
c > 0. This is important, for we need fixc0 to be positively homogeneous like all the
other quantities that we use. Now, suppose that T is an operator of norm 1 which fixes
a copy of c0. Let X0 be a subspace of X isomorphic to c0 such that T �X0 is an iso-
morphism onto T (X0) ⊂ Y . If we wanted to measure how “nice” is this isomorphism,
we would have to take a closer look at ‖(T �X0)

−1‖. If it equals 1, then T �X0 is an
isometry. The greater is ‖(T �X0)

−1‖, the more “deforming” is the isomorphism T �X0 .
We thus see that ‖(T �X0)

−1‖−1 is a natural measure of “niceness” of T �X0 . In our case,
we would like to measure how nice is the isomorphism T �X0 and how nice copy of c0

is X0 in X simultaneously. The operator (T �X0)
−1 factors through c0 in a way that there

are isomorphisms U and V like in the definition of fixc0 such that (T �X0)
−1 = U ◦ V .

So we replace ‖(T �X0)
−1‖ by ‖U‖‖V‖. The quantity (‖U‖‖V‖)−1 not only measures

“niceness” of U ◦ V , but it also takes into account the isomorphism U : c0 → X0 itself.
Eventually, the supremum over all suitable X0, U and V is taken to measure how nicest
an isomorphism on some nice copy of c0 can we get.

The following theorem is a quantitative version of Theorem 3.5. Both implications
of the equivalence are replaced by inequalities between relevant measures.

Theorem 3.6. Let X be a Banach space. For every Banach space Y and every bounded
linear operator T : X → Y

1
2

uc(T ) ≤ fixc0(T ) ≤ uc(T ).

Proof. Let us start with the second inequality. If fixc0(T ) = 0, it holds trivially.
Suppose that fixc0(T ) > 0, i.e. T fixes a copy of c0. Take X0 a subspace of X iso-
morphic to c0 and U : c0 → X0, V : T (X0) → c0 onto isomorphisms which satisfy
(T �X0)

−1 = U ◦ V . Is it enough to show that uc(T ) ≥ (‖U‖‖V‖)−1.
For the series

∑
en in c0 we have

sup
x∗∈B(c0)∗

∑
|x∗(en)| = sup

(an)∈B`1

∑
|an| = 1

and ca
((∑n

i=1 ei
)

n

)
= 1. Set fn = 1

‖U‖Uen, n ∈ N. Then
∑

fn is a wuC series in X0 ⊂ X,
since

∑
en is wuC and U is continuous. We have even

sup
x∗∈BX∗

∑
|x∗( fn)| = sup

x∗∈BX∗

∑∣∣∣∣( 1
‖U‖ x

∗ ◦ U
)

(en)
∣∣∣∣ ≤ sup

y∗∈B(c0)∗

∑
|y∗(en)| = 1.
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Moreover,

ca

( n∑
i=1

T fi

)
n

 = inf
n∈N

sup
k>l≥n

∥∥∥∥∥∥∥
k∑

i=l+1

T
(

1
‖U‖Uei

)∥∥∥∥∥∥∥
=

1
‖U‖‖V‖

inf
n∈N

sup
k>l≥n
‖(T ◦ U)−1‖

∥∥∥∥∥∥∥
k∑

i=l+1

(T ◦ U)ei

∥∥∥∥∥∥∥
≥ (‖U‖‖V‖)−1 inf

n∈N
sup
k>l≥n

∥∥∥∥∥∥∥
k∑

i=l+1

ei

∥∥∥∥∥∥∥
= (‖U‖‖V‖)−1 ca

( n∑
i=1

ei

)
n


= (‖U‖‖V‖)−1.

It follows that uc(T ) ≥ (‖U‖‖V‖)−1, which is what we need.
We proceed to show the inequality uc(T ) ≤ 2 fixc0(T ). It is trivial if uc(T ) = 0.

Suppose that uc(T ) > 0 and fix 0 < δ < uc(T ). First we find ε > 0 satisfying
uc(T ) > δ(1 + ε), and we set δ′ = δ(1 + ε). The definition of uc(T ) gives a wuC series∑

xn in X with supx∗∈BX∗

∑
|x∗(xn)| ≤ 1 such that ca

((∑n
i=1 T xi

)
n

)
> δ′. By the definition

of the quantity ca we find indices k1 < l1 < k2 < l2 < . . . such that
∥∥∥∑ln

i=kn
T xi

∥∥∥ > δ′,
n ∈ N. Let us set x̃n =

∑ln
i=kn

xi, n ∈ N. Then
∑

x̃n is a wuC series in X with

sup
x∗∈BX∗

∞∑
n=1

|x∗(x̃n)| ≤ sup
x∗∈BX∗

∞∑
n=1

|x∗(xn)| ≤ 1.

For each n ∈ N we have ‖T x̃n‖ > δ′, and so ‖x̃n‖ >
δ′

‖T‖ > 0. The series
∑

x̃n is
wuC and therefore x̃n → 0 weakly. By [1, Proposition 1.5.4], there is a subsequence
(x̃nk) of (x̃n) which is basic. Since T x̃nk → 0 weakly by the continuity of T , and
inf{‖T x̃nk‖ : k ∈ N} ≥ δ′ > 0, we can use theorem [1, Proposition 1.5.4] again to
obtain a subsequence (zm) of (x̃nk) such that (Tzm) is a basic sequence in Y with a basic
constant bc(Tzm) < 1 + ε.

Since (zn) is a basic sequence in X for which
∑

zn is wuC, and inf{‖zn‖ : n ∈ N} > 0,
(zn) is equivalent to the canonical basis of c0 by [23, Theorem 6.6]. For the same reason
the sequence (Tzn) in Y is also equivalent to the canonical basis of c0. Hence both
span{zn : n ∈ N} and span{Tzn : n ∈ N} are isomorphic to c0, and T �span{zn: n∈N} is an
isomorphism onto span{Tzn : n ∈ N}.

Let us set X0 = span{zn : n ∈ N} and define U : c0 → X0 by U(en) = zn, n ∈ N.
Then U is an onto isomorphism. Further, set V = (T ◦ U)−1. We will prove that
(‖U‖‖V‖)−1 ≥ δ

2 . For (an) ∈ c0 we have

∥∥∥U
(
(an)

)∥∥∥ =

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ = sup
x∗∈BX∗

∣∣∣∣∣∣∣x∗
 ∞∑

n=1

anzn


∣∣∣∣∣∣∣

≤ sup
x∗∈BX∗

∞∑
n=1

|an||x∗(zn)| ≤ sup
n∈N
|an| sup

x∗∈BX∗

∞∑
n=1

|x∗(zn)|

≤ ‖(an)‖ sup
x∗∈BX∗

∞∑
i=1

|x∗(x̃i)| ≤ ‖(an)‖,
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and hence ‖U‖ ≤ 1. If (an) ∈ c0, we also have for each n ∈ N

δ′|an| ≤ |an|‖Tzn‖ = ‖anTzn‖ =

∥∥∥∥∥∥∥
n∑

i=1

aiTzi −

n−1∑
i=1

aiTzi

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
n∑

i=1

aiTzi

∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥
n−1∑
i=1

aiTzi

∥∥∥∥∥∥∥ ≤ 2 bc(Tzk)

∥∥∥∥∥∥∥
∞∑

k=1

akTzk

∥∥∥∥∥∥∥
= 2 bc(Tzk)

∥∥∥(T ◦ U
)(

(ak)
)∥∥∥ ,

which gives

‖(an)‖ = sup
n∈N
|an| ≤

2 bc(Tzn)
δ′

∥∥∥(T ◦ U
)(

(an)
)∥∥∥

≤
2(1 + ε)
δ(1 + ε)

∥∥∥(T ◦ U
)(

(an)
)∥∥∥ =

2
δ

∥∥∥(T ◦ U
)(

(an)
)∥∥∥ .

Hence ‖V‖ =
∥∥∥(T ◦ U)−1

∥∥∥ ≤ 2
δ
, and we thus obtain (‖U‖‖V‖)−1

≥ 1 · δ2 = δ
2 . Conse-

quently, fixc0(T ) ≥ δ
2 . This yields the desired inequality uc(T ) ≤ 2 fixc0(T ). �

4 Quantitative version of Pełczyński’s theorem and its
generalizations

A theorem of A. Pełczyński from 1962 asserts that the space C(K) of continuous real
functions on a compact Hausdorff space K has the property (V) (see [24, Theorem 1]).
Using a characterization of a quantitative Pełczyński’s property (V) from the section
3 we prove a quantitative strengthening of this theorem. The proof is inspired by
Pełczyński’s original proof and it uses some results of [21].

Theorem 4.1. Let Ω be a locally compact space. Then the space C0(Ω) enjoys the
quantitative property (Vq)∗ω (and hence also (Vq)). More precisely, for every Banach
space Y and every operator T : C0(Ω)→ Y

ω(T ∗) ≤ π uc(T ).

In the real case (i.e. if C0(Ω) are real functions) the constant π can be replaced by 2.

Remark. It might seem that the quantification with ω in this theorem is stronger than
the quantification through the inequality γ(T ∗) ≤ C uc(T ) (which is equivalent to (Vq)),
but it is not. In fact, by [18, Theorem 7.5] the quantities ω, wkX, and wckX coincide on
M(Ω). Therefore the properties (Vq) and (Vq)∗ω are equivalent for C0(Ω).

Proof. Throughout the proof we identify the dual of C0(Ω) with the spaceM(Ω) of all
finite complex (or signed in the real case) Radon measures on Ω. By Proposition 3.4 it
suffices to show that for every K ⊂ (C0(Ω))∗ = M(Ω) bounded ω(K) ≤ πη(K). Let K
be a bounded subset ofM(Ω). From [21, Proposition 5.2] it follows that

1
π
ω(K) ≤ sup

{
lim sup

k→∞
sup
µ∈K
|µ(Uk)| : Uk ⊂ Ω, k ∈ N, pairwise disjoint, open

}
(in the real case 1

π
can be replaced by 1

2 ).

47



Let us fix an arbitrary δ < ω(K). Using the above inequality we find a sequence
(Un) of pairwise disjoint open subsets of Ω and a sequence (µn) in K such that
|µn(Un)| > δ

π
. For each n ∈ N we find a continuous function fn on Ω with a com-

pact support such that ‖ fn‖ = 1, fn = 0 outside Un, and

(8) |µn( fn)| =
∣∣∣∣∣∫

Ω

fndµn

∣∣∣∣∣ > δ

π
.

Then for every µ ∈ (C0(Ω))∗ and n ∈ N

n∑
i=1

|µ( fi)| ≤
n∑

i=1

|µ|(| fi|) = |µ|

 n∑
i=1

| fi|

 ≤ |µ|(1) = ‖µ‖,

hence
∑

fn is a wuC series in C0(Ω), and supµ∈B(C0(Ω))∗

∑∞
i=1 |µ( fi)| ≤ 1. By (8) we have

lim sup
n

sup
µ∈K

∣∣∣∣∣∫ fndµ
∣∣∣∣∣ ≥ lim sup

n

∣∣∣∣∣∫ fndµn

∣∣∣∣∣ ≥ δ

π
.

From this we conclude that η(K) ≥ δ
π
, and since δ < ω(K) has been chosen arbitrarily,

ω(K) ≤ πη(K). In the real case we obtain the similar inequality with 2 instead of π. �

Recall that a Banach space X is an L1 predual, if the dual space X∗ is isometrical
to a space L1(Ω,Σ, µ) for some measure space (Ω,Σ, µ). In 1973 Johnsson and Zip-
pin proved that every real L1 predual has the property (V) (see [16, Corrollary (i)]).
We prove a quantitative version of this theorem using results of their paper and the
quantitative version of Pełczyński’s theorem.

Theorem 4.2. Let X be a real L1 predual. Then X has the quantitative properties (Vq)
and (Vq)∗ω.

Proof. Let Y be a Banach space and T : X → Y be an operator. We prove that γ(T ) ≤
4 uc(T ), that is, X enjoys (Vq). From this is follows that γ(T ∗) ≤ 8 uc(T ) by the
quantitative version of the Gantmacher theorem (5). But the quantities γ and ω are
equivalent on X∗ – by [18, Theorem 7.5] and (3) we obtain ω(T ∗) ≤ 16 uc(T ), which
means that X has (Vq)∗ω.

Let us fix δ < γ(T ) = γ
(
T (BX)

)
. By the definition of γ we can find a sequence

(xn) in BX for which γ
(
{T xn : n ∈ N}

)
> δ. The space span{xn : n ∈ N} is a closed

separable subspace of the L1 predual X, hence by [22, § 23, Lemma 1] we can find
a separable L1 predual Z such that span{xn : n ∈ N} ⊂ Z ⊂ X.

By [16], Z is a quotient of C(∆), where ∆ = {0, 1}N is the Cantor space. Let
q : C(∆) → Z be a quotient map, i.e. q

(
UC(∆)

)
= UZ. Then T ◦ q : C(∆) → Y is

a bounded linear operator, and

2ω((T ◦ q)∗)
(3),(4)
≥ γ((T ◦ q)∗)

(5)
≥ γ(T ◦ q) = γ

(
T ◦ q

(
BC(∆)

))
= γ

(
T

(
q
(
UC(∆)

)))
= γ (T (UZ)) = γ (T (BZ)) ≥ γ ({T xn : n ∈ N}) > δ.

Since ∆ is compact, Theorem 4.1 gives ω((T ◦ q)∗) ≤ 2 uc(T ◦ q), and we
thus get uc(T ◦ q) > δ

4 . Hence we can find a wuC series
∑

fn in C(∆) with
supµ∈B(C(∆))∗

∑
|µ( fn)| ≤ 1 such that ca

((∑n
i=1 T (q fi)

)
n

)
> δ

4 .
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We set zn = q( fn), n ∈ N. Then
∑

zn is a wuC series in Z ⊂ X with

sup
x∗∈BX∗

∞∑
n=1

|x∗(zn)| = sup
x∗∈BX∗

∞∑
n=1

|(x∗ ◦ q)( fn)| ≤ sup
µ∈B(C(∆))∗

∑
|µ( fn)| ≤ 1.

Furthermore, ca
((∑n

i=1 Tzi
)

n

)
> δ

4 . Hence uc(T ) > δ
4 . This inequality holds for every

δ < γ(T ), therefore γ(T ) ≤ 4 uc(T ). �

Proposition 4.3.

(i) If Ω is a scattered locally compact space, then C0(Ω) has the properties (Vq),
(Vq)∗ω, and also (Vq)ω.

(ii) If Ω is an uncountable separable metrizable locally compact space, then C0(Ω)
has the properties (Vq) and (Vq)∗ω, but it does not enjoy the property (Vq)ω.

Proof. Let Ω be a scattered locally compact space. The space C0(Ω) has the properties
(Vq) and (Vq)∗ω by Theorem 4.1. Let Y be a Banach space and T : C0(Ω) → Y an
operator. Since for Ω scattered C0(Ω)∗ is isometric to `1(Ω), we have ω(T ) ≤ 2ω(T ∗)
by [18, Theorem 8.2]. Combining it with Theorem 4.1 we obtain ω(T ) ≤ 2π uc(T ),
that is, C0(Ω) has the property (Vq)ω.

The second statement is proved in Section 5.2. �

The proposition above shows that (Vq)ω differs from the other two quantifications,
but we do not know whether there is any difference between the properties (Vq) and
(Vq)∗ω.

Question 4.4. Is there a Banach space which has the property (Vq) but not the property
(Vq)∗ω?

There is one even more interesting open question whether the Pelczynski’s property
(V) is automatically quantitative or not.

Question 4.5. Is there a Banach space which has Pełczyński’s property (V) but not the
quantitative version (Vq)?

5 Some other properties of Banach spaces, their
quantification and relationship to the property (V)

In this section we remind the definitions of some known properties of operators be-
tween Banach spaces, relationships between them, and their relation to unconditionally
converging operators. These relationships are then quantified. The introduced prop-
erties of operators give rise to some properties of Banach spaces which are related to
Pełczyński’s property (V). These properties can be quantified in the same way as the
property (V). Using the proved quantitative relationships between different kinds of
operators we establish the relation between quantitative versions of relevant properties
of Banach spaces, including the property (V). Finally, we apply these results and those
of [18] to some C0(Ω) spaces.
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5.1 Some properties of operators, their relation to unconditionally
converging operators, and their quantification

Let X be a Banach space. We will denote by ρ the topology of uniform convergence on
weakly compact subsets of X∗. This topology is called the Right topology and it is the
restriction to X of the Mackey topology µ(X∗∗, X∗) on X∗∗ with respect to the dual pair
(X∗∗, X∗). An operator from X into a Banach space Y is weakly compact if and only if
it is Right-to-norm continuous (see [25]).

We say that an operator between Banach spaces is

• completely continuous (cc) if it is weak-to-norm sequentially continuous,

• pseudo weakly compact (pwc) if it is Right-to-norm sequentially continuous,

• weakly completely continuous (wcc) if it maps weakly Cauchy sequences to
weakly convergent sequences,

• Right completely continuous (Rcc) if it maps Right-Cauchy sequences to Right-
convergent sequences.

M. Kačena has proved in [17, § 3] (using also [25]) that for every operator T between
Banach spaces the following implications hold:

(9)

T is w-compact =⇒ T is pwc

T is compact =⇒=⇒ =⇒
=⇒

=⇒

=⇒
T is Rcc =⇒ T is uc

T is cc =⇒ T is wcc

Some of these implications have already been quantified in [18, § 3,4]. In this section
we quantify the rest.

Let X, Y be Banach spaces and T : X → Y an operator. We set

cc(T ) = sup
{
ca

(
(T xn)

)
: (xn) is a weakly Cauchy sequence in BX

}
,

ccρ(T ) = sup
{
ca

(
(T xn)

)
: (xn) is a Right-Cauchy sequence in BX

}
.

The former quantity measures how far is T from being completely continuous, the
latter one measures how far is T from being pseudo weakly compact.

As for the other properties mentioned above, let us first remind that a bidual space
X∗∗ is complete with respect to both the weak∗ and the Mackey topology and that the
weak∗ topology is coarser than the Mackey topology. Therefore every weakly Cauchy
sequence in a Banach space X is weak∗-convergent in X∗∗, every Right-Cauchy se-
quence in a Banach space X is µ(X∗∗, X∗)-convergent and hence also weak∗-convergent
in X∗∗. Each bounded linear operator, which is by definition norm-to-norm continuous,
is also weak-to-weak continuous and Right-to-Right continuous (see [25, Lemma 12]).
Let X, Y be Banach spaces and T : X → Y an operator. Let us set

wcc(T ) = sup
{
dist(w∗- lim(T xn),Y) : (xn) is a w-Cauchy sequence in BX

}
= sup

{
wkY

(
{T xn : n ∈ N}

)
: (xn) is a w-Cauchy sequence in BX

}
,

wccω(T ) = sup
{
ω
(
{T xn : n ∈ N}

)
: (xn) is a w-Cauchy sequence in BX

}
,

Rcc(T ) = sup
{
dist(µ(Y∗∗,Y∗)- lim(T xn),Y) : (xn) is a ρ-Cauchy sequence in BX

}
= sup

{
dist(w∗- lim(T xn),Y) : (xn) is a ρ-Cauchy sequence in BX

}
= sup

{
wkY

(
{T xn : n ∈ N}

)
: (xn) is a ρ-Cauchy sequence in BX

}
,

Rccω(T ) = sup
{
ω
(
{T xn : n ∈ N}

)
: (xn) is a ρ-Cauchy sequence in BX

}
.
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The first two quantities measure (in two different ways) weak non-complete continuity
of T , the last two are measures of Right non-complete continuity of T .

The following theorem contains quantitative versions of all the implications in (9).

Theorem 5.1. Let X, Y be Banach spaces and T : X → Y an operator. Then

2ω(T ∗)

≤

ccρ(T ) ≤ cc(T ) ≤ 4· χ(T )

≤ ≤ ≤

Rccω(T ) ≤ wccω(T ) ≤ ω(T )

≤ ≤ ≤

1
4 uc(T ) ≤ Rcc(T ) ≤ wcc(T ) ≤ wkY(T ).

Proof. All the inequalities

4χ(T )
≤

cc(T ) ≤ χ(T )

≤ ≤
wccω(T ) ≤ ω(T )

≤ ≤

wcc(T ) ≤ wkY(T )

has already been proved (or simply observed) in [18, § 3]. The inequality ccρ(T ) ≤
2ω(T ∗) follows from [18, (2.1) and (4.1)].

The inequalities ccρ(T ) ≤ cc(T ), Rcc(T ) ≤ wcc(T ), and Rccω(T ) ≤ wccω(T ) are
trivial, since every Right-Cauchy sequence is weakly Cauchy. By (4), wkY(A) ≤ ω(A)
for every bounded A ⊂ Y . Therefore Rcc(T ) ≤ Rccω(T ) (as well as wcc(T ) ≤ wccω(T ),
which has already been noted).

Let us show that Rccω(T ) ≤ ccρ(T ). Suppose that ccρ(T ) < δ. Let (xn) be a Right-
Cauchy sequence in BX. Then ca

(
(T xn)

)
< δ, hence we can find n0 ∈ N such that

‖T xn − T xn0‖ < δ whenever n > n0. Set K = {T x1, . . . ,T xn0}. Then K is weakly
compact, and d̂({T xn : n ∈ N},K) ≤ δ. Therefore ω({T xn : n ∈ N}) ≤ δ. We thus get
Rccω(T ) ≤ δ, and consequently Rccω(T ) ≤ ccρ(T ).

Finally, we prove the inequality uc(T ) ≤ 4 Rcc(T ). By Theorem 3.6, it is enough
to show that fixc0(T ) ≤ 2 Rcc(T ). If fixc0(T ) = 0, then it is obvious. Suppose that
fixc0(T ) > 0 and fix 0 < δ < fixc0(T ). By the definition of fixc0(T ) we find a subspace
X0 of X isomorphic to c0 and onto isomorphisms U : c0 → X0, V : T (X0) → c0 such
that (T �X0)

−1 = U ◦ V , and
(
‖U‖‖V‖

)−1
> δ.

Set fn =
∑n

i=1 en ∈ c0, n ∈ N. Then ( fn) is a weakly Cauchy sequence in c0. Since
the space c0 enjoys the Dunford-Pettis property (see e.g. [11, p. 597]), the weak and
the Right topology coincide sequentially on it by [17, Proposition 3.17]. Therefore the
sequence ( fn) is Right-Cauchy. Let us define xn = 1

‖U‖U fn, n ∈ N. By the continuity
of U, (xn) is a Right-Cauchy sequence in BX. Since T is bounded, we also have that
(T xn) is a Right-Cauchy sequence in Y . Let y∗∗ be its µ(Y∗∗,Y∗)-limit in Y∗∗. We will
show that dist(y∗∗,Y) > δ

2 .
Let us set Y0 = span{T xn : n ∈ N} = span{(T ◦ U) fn : n ∈ N} = span{(T ◦ U)en :

n ∈ N} = (T ◦ U)(c0). If T ◦ U is regarded as an isomorphism from c0 onto Y0, then
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(T ◦U)∗∗ is an isomorphism from c∗∗0 onto Y∗∗0 , and ‖((T ◦U)∗∗)−1‖ = ‖(T ◦U)−1‖ = ‖V‖.
Let y0 ∈ Y0 be arbitrary. We find z ∈ c0 which satisfies 1

‖U‖ (T ◦ U)z = y0. Then

‖y∗∗ − y0‖ =
∥∥∥∥µ(Y∗∗,Y∗)- lim

(
1
‖U‖ (T ◦ U) fn

)
− 1
‖U‖ (T ◦ U)z

∥∥∥∥
=

1
‖U‖

∥∥∥(T ◦ U)∗∗
(
(µ(Y∗∗,Y∗)- lim fn) − z

)∥∥∥
≥

1
‖U‖

∥∥∥∥((T ◦ U)∗∗
)−1

∥∥∥∥−1
‖(µ(Y∗∗,Y∗)- lim fn) − z‖

= ‖U‖−1‖V‖−1 ‖(w∗- lim fn) − z‖ ≥ (‖U‖‖V‖)−1,

where the last inequality follows from the fact, that w∗- lim fn = (1, 1, 1, . . . ) ∈ `∞ � c∗∗0
whereas z ∈ c0, so the distance between these two elements is at least
limn→∞ |1 − z(n)| = 1. Therefore dist(y∗∗,Y0) ≥ (‖U‖‖V‖)−1 > δ. By [15, Lemma
2.2], dist(y∗∗,Y0) ≤ 2 dist(y∗∗,Y), and hence dist(y∗∗,Y) > δ

2 .
We thus have Rcc(T ) > δ

2 . It follows that fixc0(T ) ≤ 2 Rcc(T ), which completes the
proof. �

Remark. The inequality ccρ(T ) ≤ 2ω(T ∗) from the above theorem quantifies the im-
plication

T is weakly compact ⇒ T is pseudo weakly compact

due to the Gantmacher theorem. We cannot obtain a better quantification either with
γ(T ) or with ω(T ) instead of ω(T ∗). The space X constructed in [18, Example 10.1(v)]
forms a counterexample. Since this space enjoys the Dunford-Pettis property, the weak
and the Right topology coincide sequentially on X (see [17, Proposition 3.17]), thus
cc(T ) = ccρ(T ) for each operator T : X → Y (Y a Banach space). But there are
operators Tn : X → c0, n ∈ N, such that cc(Tn) ≥ 1 for each n ∈ N and ω(Tn) =

wkc0(Tn) → 0. The measures wkc0 and γ are equivalent by (3), hence there is no
constant C > 0 such that ccρ(T ) = cc(T ) ≤ Cγ(T ) or ccρ(T ) = cc(T ) ≤ Cω(T ) for each
operator T : X → c0.

5.2 Properties of Banach spaces related to above-defined
properties of operators and a relationship between their
quantitative versions

Let us recall some properties of Banach spaces, whose definitions use the above-
introduced properties of operators. We follow the the notation of [17]. Let X be
a Banach space. We say that

• X has the reciprocal Dunford-Pettis property (RDP) if for every Banach space Y
every cc operator T : X → Y is weakly compact,

• X has the Dieudonné property (D) if for every Banach space Y every wcc opera-
tor T : X → Y is weakly compact,

• X has the Right Dieudonné property (RD) if for every Banach space Y every Rcc
operator T : X → Y is weakly compact,

• X is sequentially Right (SR) if for every Banach space Y every pwc operator
T : X → Y is weakly compact.
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The following implications are an immediate consequence of (9):

(10)

X is (SR)

X has (V) =⇒ X has (RD) =⇒=⇒
=⇒

=⇒
X has (RDP)

X has (D)

All these properties have their quantitative versions, obtained in a standard way. First
we define quantitative versions of the properties (SR) and (RDP) analogous to (Vq),
(Vq)ω, (Vq)∗ω.

Definition. We say that a Banach space X has the property (RDPq), (RDPq)ω, or
(RDPq)∗ω if there is a constant C > 0 such that for every Banach space Y and every
operator T : X → Y

γ(T ) ≤ C cc(T ), ω(T ) ≤ C cc(T ), or ω(T ∗) ≤ C cc(T ),

respectively. Analogously we define the properties (SRq), (SRq)ω, and (SRq)∗ω – we
just replace cc in the above inequalities by ccρ.

For the details about a quantification of the reciprocal Dunford-Pettis property
we refer the reader to [21]. Regarding the properties (D) and (RD), there are even
more possibilities of quantification. Besides the measures of weak non-compactness
of T , we can also choose between two different quantities which measure weak non-
complete continuity and Right non-complete continuity of T .

Definition. We say that a Banach space X has the property (Dq), (Dq)ω, (Dq)∗ω, (Dω
q ),

(Dω
q )ω, or (Dω

q )∗ω if there is a constant C > 0 such that for every Banach space Y and
every operator T : X → Y

γ(T ) ≤ C wcc(T ), ω(T ) ≤ C wcc(T ), ω(T ∗) ≤ C wcc(T ),

γ(T ) ≤ C wccω(T ), ω(T ) ≤ C wccω(T ), or ω(T ∗) ≤ C wccω(T ).

The properties (RDq), (RDq)ω, (RDq)∗ω, (RDω
q ), (RDω

q )ω, and (RDω
q )∗ω are defined in the

same way, the quantities wcc and wccω are replaced by Rcc and Rccω, respectively.

Clearly, if X has the property (Pq)ω or (Pq)∗ω, then it also has the property (Pq) by
(3), (4), and (5). Here P stands for V, RD, D, SR, or RDP. From Theorem 5.1 we obtain
the following relationships between the quantitative versions of the properties defined
above.

Theorem 5.2. For a Banach space X the following implications hold:

X has (Vq) =⇒ X has (RDq) =⇒ X has (RDω
q ) =⇒ X has (SRq)=

⇒

=
⇒

=
⇒

X has (Dq) =⇒ X has (Dω
q ) =⇒ X has (RDPq),

X has (Vq)ω =⇒ X has (RDq)ω =⇒ X has (RDω
q )ω =⇒ X has (SRq)ω=

⇒

=
⇒

=
⇒

X has (Dq)ω =⇒ X has (Dω
q )ω =⇒ X has (RDPq)ω,

X has (Vq)∗ω =⇒ X has (RDq)∗ω =⇒ X has (RDω
q )∗ω =⇒ X has (SRq)∗ω=

⇒

=
⇒

=
⇒

X has (Dq)∗ω =⇒ X has (Dω
q )∗ω =⇒ X has (RDPq)∗ω.
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Now we are ready to prove Proposition 4.3 (ii).

Proof of Proposition 4.3 (ii). If we take the space Y constructed in [21, Example 3.2],
then there is a sequence (Tn) of operators from C0(Ω) to Y which satisfies

lim
n→∞

cc(Tn)
ω(Tn)

= 0.

Therefore C0(Ω) does not have the property (RDPq)ω, hence not even the property
(Vq)ω by Theorem 5.2. But it follows from Theorem 4.1 that C0(Ω) enjoys the property
(Vq). �

5.3 Some corollaries for C0(Ω) spaces
Corollary 5.3. Let Ω be a locally compact space, Y be a Banach space, and
T : C0(Ω)→ Y an operator. Then

wcc(T ) wccω(T ) cc(T )

= = =

1
4 uc(T ) ≤ Rcc(T ) ≤ Rccω(T ) ≤ ccρ(T ) ≤ 2ω(T ∗) ≤ 2π uc(T )

≤ =

wkY(T ) ≤ γ(T ) ≤ γ(T ∗) ≤ 2 wkY(T ∗)

≤
ω(T )

≤

χ(T ).

In particular, all the quantities except for ω(T ) and χ(T ) are equivalent.

Proof. Since C0(Ω) has the Dunford-Pettis property, the weak and the Right topology
coincide sequentially on X by [17, Proposition 3.17]. That is why Rcc(T ) = wcc(T ),
Rccω(T ) = wccω(T ), and ccρ(T ) = cc(T ). The equality ω(T ∗) = wkY(T ∗) follows from
[18, Theorem 7.5]. By (3) and (5) we have wkY(T ) ≤ γ(T ) ≤ γ(T ∗) ≤ 2 wkY(T ∗).
Theorem 4.1 gives ω(T ∗) ≤ π uc(T ). The rest follows from Theorem 5.1. �

Remark. Almost the same assertion holds for every operator T : X → Y if X is a real
L1 predual and Y a Banach space. We only need to adjust the constant in the inequality
ω(T ∗) ≤ π uc(T ). From the proof of Theorem 4.2 we see that it is enough to replace π
by 16. All the quantities except for ω(T ) and χ(T ) are still equivalent.

Corollary 5.4. Let Ω be a scattered locally compact space, Y be a Banach space, and
T : C0(Ω)→ Y an operator. Then

wcc(T ) wccω(T ) cc(T )

= = =

1
4 uc(T ) ≤ Rcc(T ) ≤ Rccω(T ) ≤ ccρ(T ) ≤ 2ω(T ∗) ≤ 2π uc(T )

≤

≤

wkY(T ) ≤ ω(T ) ≤ χ(T )

Hence all the involved quantities are equivalent.

Proof. The assertion follows from Corollary 5.3 and [18, Theorem 8.2] since C0(Ω)∗

for Ω scattered is isometric to `1(Ω). �
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IV. C*-algebras have a quantitative
version of Pełczyński’s property (V)

(Accepted to Czechoslovak Math. J. (2016), preprint available at
http://arxiv.org/abs/1605.04900.)

Abstract: A Banach space X has Pełczyński’s property (V) if for every Banach
space Y every unconditionally converging operator T : X → Y is weakly compact.
H. Pfitzner proved that C∗-algebras have Pełczyński’s property (V). In the preprint [8]
the author explores possible quantifications of the property (V) and shows that C(K)
spaces for a compact Hausdorff space K enjoy a quantitative version of the property
(V). In this paper we generalize this result by quantifying Pfitzner’s theorem. More-
over, we prove that in dual Banach spaces a quantitative version of the property (V)
implies a quantitative version of the Grothendieck property.

1 Introduction
In 1994, H. Pfitzner proved that C∗-algebras have Pełczyński’s property (V) (see [10]).
The aim of this paper is to prove a quantitative version of Pfitzner’s result. In this way
we continue the study of quantitative versions of Pełczyński’s property (V) presented
in the preprint [8].

Section 2 summarizes all essential definitions and basic facts contained mostly in
the preprint [8]. In Section 3 we slightly improve Behrends’s quantitative version of
Rosenthal’s `1–theorem [2, Section 3], which we use to prove the main theorem in Sec-
tion 4. Section 5 is devoted to the relationship of quantitative versions of Pełczyński’s
property (V) and the Grothendieck property in dual Banach spaces.

2 Preliminaries
We follow the notation of [8] with one exception. Because we deal also with
C∗-algebras, we write X′ (instead of X∗) for a dual to a Banach space X, since the
∗ in C∗-algebras is already reserved for the involution. All Banach spaces are consid-
ered either real or complex, unless stated otherwise. The closed unit ball of a Banach
space X is denoted by BX.

2.1 Pełczyński’s property (V) and its quantification
Let us recall some essential definitions and facts (explained in more detail in [8] with
many comments). A series

∑∞
n=1 xn in a Banach space X is said to be

• unconditionally convergent if the series
∑∞

n=1 tnxn converges whenever (tn) is
a bounded sequence of scalars,

• weakly unconditionally Cauchy (wuC) if for all x′ ∈ X′ the series
∑∞

n=1 |x
′(xn)|

converges.
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A bounded linear operator T : X → Y between Banach spaces X and Y is called uncon-
ditionally converging if

∑
n T xn is an unconditionally convergent series in Y whenever∑

n xn is a weakly unconditionally Cauchy series in X. It is not difficult to show that T
is unconditionally converging if and only if for every series

∑
n xn in X with

sup
x′∈BX′

∞∑
n=1

|x′(xn)| < ∞

the series
∑

n T xn converges. We say that a Banach space X has Pełczyński’s property
(V) if for every Banach space Y every unconditionally converging operator T : X → Y
is weakly compact.

To quantify the property (V) means to replace the implication

(1) T is unconditionally converging ⇒ T is weakly compact

by an inequality

measure of weak non-compactness of T
≤ C ·measure of T not being unconditionally converging,

where C is some positive constant depending only on X, and the two measures are
positive numbers for each operator T and are equal to zero if and only if T is weakly
compact or unconditionally converging, respectively. This inequality is a strengthening
of the original implication (1).

For this purpose we use the following quantities. For a bounded sequence (xn) in
a Banach space X we define

ca
(
(xn)

)
= inf

n∈N
sup{‖xk − xl‖ : k, l ∈ N, k, l ≥ n}.

It is a measure of non-Cauchyness of a sequence (xn), hence in Banach spaces it mea-
sures non-convergence. Let T : X → Y be a bounded linear operator between Banach
spaces X and Y . We set

uc(T ) = sup

ca

( n∑
i=1

T xi

)
n

 : (xn) ⊂ X, sup
x′∈BX′

∞∑
n=1

|x′(xn)| ≤ 1

 .
Then uc(T ) measures how far is the operator T from being unconditionally converging.

Let A be a bounded subset of a Banach space X. The de Blasi measure of weak
non-compactness of the set A is defined by

ω(A) = inf{d̂(A,K) : ∅ , K ⊂ X is weakly compact},

where
d̂(A,K) = sup{dist(a,K) : a ∈ A}.

De Blasi has proved that ω(A) = 0 if and only if A is relatively weakly compact (see
[4]). Other quantities which measure relative weak non-compactness are for example

γ(A) = sup{| lim
n

lim
m

x′m(xn) − lim
m

lim
n

x′m(xn)| : (xn) is a sequence in A,

(x′m) is a sequence in BX′ , and the limits exist}
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or
wckX(A) = sup{dist(clust(X′′,w∗)(xn), X) : (xn) is a sequence in A},

where clust(X′′,w∗)(xn) stands for the set of all w∗-cluster points of the sequence (xn)
in X′′. The quantities γ(A) and wckX(A) are equivalent by [1, Theorem 2.3] in the
following sense:

(2) wckX(A) ≤ γ(A) ≤ 2 wckX(A).

However, the quantity ω(A) is not equivalent to the other two (see [1, Corollary 3.4]).
We have only

(3) wckX(A) ≤ ω(A)

by [1, Theorem 2.3].
For measuring weak non-compactness of a bounded linear operator T : X → Y be-

tween Banach spaces X and Y we use the quantities ω(T (BX)), γ(T (BX)), and
wckY(T (BX)), which we denote simply by ω(T ), γ(T ), and wkY(T ).

We say that a Banach space X has a quantitative version of Pełczyński’s property
(V) – we denote it by (Vq) – if there is a constant C > 0 such that for every Banach
space Y and every operator T : X → Y

(4) γ(T ) ≤ C · uc(T ).

If it is possible to replace γ(T ) in (4) with ω(T ), we say that X has the property (Vq)ω.
If γ(T ) in (4) is replaced by ω(T ′), where T ′ : Y ′ → X′ denotes the dual operator to T ,
we say that X has the property (Vq)∗ω.

In [8, Proposition 3.2] it is proved that a Banach space X has the property (Vq) if
and only if there exists a constant C > 0 such that for each bounded subset K of the
dual space X′

γ(K) ≤ C · η(K),

where

η(K) = sup
{

lim sup
n

sup
x′∈K
|x′(xn)| : (xn) ⊂ X, sup

x′∈BX′

∞∑
n=1

|x′(xn)| ≤ 1
}
.

Using the above-described characterization we will prove in Section 4 that C∗-algebras
have the property (Vq).

Note that the quantity η is translation-invariant, that is,

(5) η(K) = η(K + z′), K ⊂ X′, z′ ∈ X′.

This follows from the fact that (xn) weakly null whenever
∑

xn is a wuC series in X.

2.2 Measures of weak and weak∗ non-Cauchyness of sequences in
Banach spaces

In sections 4 and 5 we will use the following standard quantities, analogous to the
quantity ca, which measure how far is a sequence in a (dual) Banach space from being
weakly (weak∗) Cauchy.
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Let X be a Banach space and let (xn) be a bounded sequence X. We set

δ(xn) = sup
x′∈BX′

lim
n→∞

sup
k,l≥n
|x′(x′k) − x′(x′l)|.

This quantity is a measure of weak non-Cauchyness of the sequence (xn). Furthermore,
let us set

δ̃(xn) = inf
{
δ(xnk) : (xnk) is a subsequence of (xn)

}
.

It measures how close can subsequences of (xn) be to be weakly Cauchy.
If (x′n) is a bounded sequence in X′, we set

δw∗(x′n) = sup
x∈BX

lim
n→∞

sup
k,l≥n
|x′k(x) − x′l(x)|.

The last quantity is a measure of weak∗ non-Cauchyness of the sequence (x′n). The
quantity δ(xn) equals 0 if and only if the sequence (xn) is weakly Cauchy. Analogously,
δw∗(x′n) = 0 if and only if (x′n) is weak∗ Cauchy. If δ̃(xn) = 0, it it not clear whether (xn)
admits a weakly Cauchy subsequence.

2.3 Selfadjoint elements and selfadjoint functionals
Let A be a C∗-algebra. Let us denote by Asa the selfadjoint elements of A, that is
Asa = {a ∈ A : a = a∗}. Then Asa is a real Banach space and A = Asa + iAsa. If f is
a bounded linear functional on A, f ∗ is the functional defined by f ∗(x) = f (x∗), x ∈ A.
Let (A′)sa denote the set { f ∈ A′ : f = f ∗} of selfadjoint functionals on A. Then (A′)sa

is a real Banach space, and is isometrically isomorphic to (Asa)′. We will write A′sa for
both these spaces. Every functional x′ ∈ A′ can be decomposed as x′ = f + ig where
f , g ∈ A′sa. It suffices to set f = (x′ + (x′)∗)/2, g = (x′ − (x′)∗)/(2i).

3 A quantitative version of Rosenthal’s `1–theorem
For proving the main result we need the quantitative version of Rosenthal’s `1–theorem
proved by E. Behrends in [2, Section 3]. In this section we revise his theorem, because
it turns out that one of the estimates there can be easily improved. We will then use
this improved version.

Let us remind Behrends’s definition [2, 3.1].

Definition. Let (xn) be a bounded sequence in a Banach space X and ε > 0. We say
that (xn) admits ε–`1–blocks if for every infinite M ⊂ N there are scalars a1, . . . , ar

with
∑
|ar| = 1 and i1, . . . , ir in M such that

∥∥∥∑ aρxiρ

∥∥∥ ≤ ε.

The revised version of the quantitative Rosenthal’s `1–theorem for complex Banach
spaces is the following.

Theorem 3.1. Let X be a complex Banach space X and ε > 0. Let (xn) be a sequence
in X which admits ε–`1–blocks. Then there is a subsequence (xnk) of (xn) such that for
every x′ ∈ X′ with ‖x′‖ = 1 the diameter of the set of cluster points of the sequence
(x′(xnk))k is at most πε.

Remark. In the original Behrends’ theorem [2, Theorem 3.3] there is a larger constant
8/
√

2 in place of π. A similar result with the better constant π has been obtained (in
a different way) by I. Gasparis [5].
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Sketch of the proof of Theorem 3.1. The proof is essentially the same as the original
one. Suppose that the conclusion were not true. We can find δ > 0 such that the
number

sup
x′∈S X′

{
diameter of the set of accumulation points of (x′(xnk))k

}
is greater than πε + δ for any subsequence (xnk) of (xn). Fix τ ∈ (0, 1) such that
(2 + supn ‖xn‖)τ < δ

π
.

Similarly to the one in the proof of [2, Theorem 3.3 (or 3.2)] we can prove the
following lemma.

Lemma. The sequence (xn) admits a subsequence (without loss of generality still de-
noted by (xn)) which satisfies the following conditions:

(i) Whenever C and D are disjoint finite subsets of N, there are z0,w0 ∈ C with
|w0| ≥ πε + δ and x′ ∈ X′ with ‖x′‖ = 1 such that |x′(xn) − z0| ≤ τ for n ∈ C and
|x′(xn) − (z0 + w0)| ≤ τ for n ∈ D.

(ii) There are i1 < · · · < ir in N and a1, . . . , ar ∈ C which satisfy

r∑
ρ=1

|aρ| = 1,

∣∣∣∣∣∣∣
r∑
ρ=1

aρ

∣∣∣∣∣∣∣ ≤ τ,
∥∥∥∥∥∥∥

r∑
ρ=1

aρxiρ

∥∥∥∥∥∥∥ ≤ ε.
Finally, the time has come for the modification. By [11, Lemma 6.3] we find

D ⊂ {1, . . . , r} such that ∣∣∣∣∣∣∣∑
ρ∈D

aρ

∣∣∣∣∣∣∣ ≥ 1
π

r∑
ρ=1

|aρ| =
1
π
.

Set C = {1, . . . , r} \ D. For these sets C and D we find z0, w0, and x′ from (i) of the
lemma. It follows that

ε ≥

∥∥∥∥∥∥∥
r∑
ρ=1

aρxiρ

∥∥∥∥∥∥∥ ≥
∣∣∣∣∣∣∣

r∑
ρ=1

aρx′(xiρ)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∑
ρ∈C

aρx′(xiρ) +
∑
ρ∈D

aρx′(xiρ)

∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣∑
ρ∈C

aρz0 +
∑
ρ∈D

aρ(z0 + w0)

∣∣∣∣∣∣∣ − τ
r∑
ρ=1

|aρ| =

∣∣∣∣∣∣∣∑
ρ∈D

aρw0 +

r∑
ρ=1

aρz0

∣∣∣∣∣∣∣ − τ
≥ |w0|

∣∣∣∣∣∣∣∑
ρ∈D

aρ

∣∣∣∣∣∣∣ − |z0|

∣∣∣∣∣∣∣
r∑
ρ=1

aρ

∣∣∣∣∣∣∣ − τ ≥ |w0|

π
− |z0|τ − τ ≥

πε + δ

π
− (1 + |z0|)τ

= ε +
δ

π
− (1 + |z0|)τ ≥ ε +

δ

π
− (2 + sup

n
‖xn‖)τ > ε,

which is a contradiction. �

4 Main theorem
This section is devoted to our main result – a quantitative version of Pfitzner’s theorem
(Theorem 4.1 below). We also prove a “real version” of this theorem (Theorem 4.2).
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Theorem 4.1. Let A be a C∗-algebra. Then for every bounded K ⊂ A′

(6) wckA′(K) ≤ π · η(K).

Therefore A has the property (Vq).

Proof. The quantities γ(K) and wckA′(K) are equivalent by [1, Theorem 2.3], more
specifically, the inequality (6) implies γ(K) ≤ 2π · η(K). If this holds for each bounded
K ⊂ A′, Proposition [8, 3.2] mentioned also in Section 2 gives that A has the property
(Vq). Let us show the inequality (6).

Let K ⊂ A′ be bounded. The case wckA′(K) = 0 is trivial. Suppose that
wckA′(K) > 0 and fix an arbitrary λ ∈ (0,wckA′(K)). By the definition of the quantity
wckA′(K) we find a sequence (x′n) in K such that

dist
(
clust(A′′′,w∗)(x′n), A′

)
> λ.

Since every dual of a C∗-algebra is a predual of a von Neumann algebra, we deduce
from [13, Theorem III.2.14] (see also [6, Example IV.1.1(b)]) that A′ is L-embedded –
it means that A′ is complemented in A′′′ by a projection P satisfying

‖x′′′‖ = ‖Px′′′‖ + ‖x′′′ − Px′′′‖, x′′′ ∈ A′′′.

Consequently, from [7, Theorem 1] we have

δ̃(x′n) = inf{δ(x′nk
) : (x′nk

) is a subsequence of (x′k)}
≥ 2 dist

(
clust(A′′′,w∗)(x′n), A′

)
> 2λ.

Fix an arbitrary ε > 0. We now prove the following claim.

Claim. There is a sequence of self-adjoint elements (xk) in BA satisfying xix j = 0,
i, j ∈ N, i , j, and a subsequence (x′nk

) of the sequence (x′n) such that

∣∣∣x′nk
(xk)

∣∣∣ > (1 − ε)2λ

π
, k ∈ N.

Proof. Each x′n is canonically decomposed in the following way: x′n = fn + ign, where
fn, gn ∈ A′ are selfadjoint functionals. It suffices to find (xk) and (x′nk

) such that

∣∣∣ fnk(xk)
∣∣∣ > (1 − ε)2λ

π
or

∣∣∣gnk(xk)
∣∣∣ > (1 − ε)2λ

π
.

Indeed, since selfadjoint functionals attain real values on selfadjoint elements of A, we
have

∣∣∣x′nk
(xk)

∣∣∣ =
∣∣∣ fnk(xk) + ignk(xk)

∣∣∣ ≥ 
∣∣∣ Re( fnk(xk) + ignk(xk))

∣∣∣ = | fnk(xk)|∣∣∣ Im( fnk(xk) + ignk(xk))
∣∣∣ = |gnk(xk)|

.

We begin by proving that there is a strictly increasing sequence of indices (nk)
such that δ̃( fnk) > λ or δ̃(gnk) > λ. If δ̃( fn) > λ, the proof is over, so suppose that
δ̃( fn) ≤ λ. Let us find τ > 0 satisfying δ̃(x′n) > 2λ + 2τ. By the definition of δ̃( fn)
there is a subsequence ( fnk) of the sequence ( fn) with δ( fnk) < λ + τ. We claim that the
corresponding subsequence (gnk) of (gn) satisfies δ̃(gnk) > λ. To obtain a contradiction,
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suppose that δ̃(gnk) ≤ λ. Using the definition of δ̃(gnk) we find a strictly increasing
sequence of indices (kl) such that δ(gnkl

) < λ + τ. Then

δ(x′nkl
) = δ( fnkl

+ ignkl
)

= sup
x′′∈BA′′

lim
l→∞

sup
p,q≥l

∣∣∣x′′( fnkp
+ ignkp

) − x′′( fnkq
+ ignkq

)
∣∣∣

≤ sup
x′′∈BA′′

lim
l→∞

sup
p,q≥l

(∣∣∣x′′( fnkp
) − x′′( fnkq

)
∣∣∣ +

∣∣∣x′′(gnkp
) − x′′(gnkq

)
∣∣∣)

≤ sup
x′′∈BA′′

lim
l→∞

sup
p,q≥l

∣∣∣x′′( fnkp
) − x′′( fnkq

)
∣∣∣

+ sup
x′′∈BA′′

lim
l→∞

sup
p,q≥l

∣∣∣x′′(gnkp
) − x′′(gnkq

)
∣∣∣

= δ( fnkl
) + δ(gnkl

) < λ + τ + λ + τ = 2λ + 2τ,

which contradicts the fact that δ̃(x′n) > 2λ + 2τ.
Without loss of generality we may assume that we have found a subsequence ( fnk)

of the sequence ( fn) with δ̃( fnk) > λ and such that ( fnk) = ( fn). By passing to a further
subsequence we can also ensure that

infn∈N ‖ fn‖

supn∈N ‖ fn‖
> 1 − ε.

Indeed, the sequence ( fn) is bounded, hence we can find its subsequence ( fnk) such
that the limk→∞ ‖ fnk‖ exists. This limit is nonzero, because otherwise we would have
δ̃( fn) = 0. We thus obtain the desired subsequence by omitting finitely many members
of ( fnk).

The inequality δ̃( fn) > λ says that for every subsequence ( fnk) of ( fn) there is some
x′′ ∈ A′′ with ‖x′′‖ = 1 such that the diameter of the set of accumulation points of the
sequence (x′′( fnk))k is greater than λ. By Theorem 3.1 the sequence ( fn) does not admit
λ
π
–`1–blocks, i.e. there is an infinite M ⊂ N such that whenever a1, . . . , ar ∈ C satisfy∑r
i=1 |ai| = 1, and n1 < · · · < nr are indices in M, we have

∥∥∥∑r
i=1 ai fni

∥∥∥ > λ
π
. Hence

there is a subsequence ( fnk) of ( fn) such that for each nonzero (αk) ∈ `1 and N ∈ N
large enough ∥∥∥∥∥∥∥

N∑
k=1

αk∑N
k=1 |αk|

fnk

∥∥∥∥∥∥∥ > λ

π
.

By letting N → ∞ we obtain

λ

π

∞∑
k=1

|αk| ≤

∥∥∥∥∥∥∥
∞∑

k=1

αk fnk

∥∥∥∥∥∥∥ .
Therefore we have for each (αk) ∈ `1

λ

π supk∈N ‖ fnk‖

∞∑
k=1

|αk| ≤
λ

π

∞∑
k=1

|αk|

‖ fnk‖
≤

∥∥∥∥∥∥∥
∞∑

k=1

αk
fnk

‖ fnk‖

∥∥∥∥∥∥∥ ≤
∞∑

k=1

|αk|.

Let us set

r =
λ

π supk∈N ‖ fnk‖
and θ = (1 − ε) r inf

k∈N
‖ fnk‖.
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Then
θ = (1 − ε)

λ

π

infk∈N ‖ fnk‖

supk∈N ‖ fnk‖
≥ (1 − ε)

λ

π

infn∈N ‖ fn‖

supn∈N ‖ fn‖
≥ (1 − ε)2λ

π
.

Without loss of generality we can assume that ( fnk) = ( fn). Then
( fn
‖ fn‖

)
n is a basic

sequence consisting of selfadjoint elements which satisfies

r
∞∑

k=1

|αk| ≤

∥∥∥∥∥∥∥
∞∑

k=1

αk
fk

‖ fk‖

∥∥∥∥∥∥∥ ≤
∞∑

k=1

|αk|, (ak) ∈ `1,

that is (36) of [10] (where a′k = fk). By Pfitzner’s proof of [10, Theorem 1] we obtain
a sequence (xk) in A and a subsequence ( fnk) of ( fn) for which (35) of [10] is valid
(where a′nk

= fnk), i.e. xk are selfadjoint elements in BA such that xix j = 0, i, j ∈ N,
i , j, and

∣∣∣ fnk(xk)
∣∣∣ > θ ≥ (1 − ε)2 λ

π
, k ∈ N. This completes the proof of the claim.

Let (xk) and (x′nk
) be sequences obtained by the claim. Since |x′nk

(xk)| > (1 − ε)2 λ
π
,

k ∈ N, we have

lim sup
k→∞

sup
x′∈K
|x′(xk)| ≥ (1 − ε)2λ

π
.

But
∑

xk is a wuC series in A satisfying supx′∈BA′

∑
|x′(xk)| ≤ 1. Indeed, all xk are

contained in a commutative subalgebra B of A, which can be identified with the space
C0(Ω) for some Ω by the Gelfand representatiton. Then xk, k ∈ N, are real continuous
functions on Ω with ‖xk‖ = supξ∈Ω |xk(ξ)| ≤ 1 and {xi , 0} ∩ {x j , 0} = ∅, i , j. Let
x′ ∈ A′, and let us set µ = x′ �B∈ B′ = C0(Ω)′ =M(Ω). For each N ∈ N we get

N∑
k=1

|x′(xk)| =
N∑

k=1

|µ(xk)| =
N∑

k=1

∣∣∣∣∣∫
Ω

xk dµ
∣∣∣∣∣ ≤ N∑

k=1

∫
{xk,0}

|xk| d|µ|

≤

∫
Ω

1 d|µ| = ‖µ‖ ≤ ‖x′‖.

Therefore supx′∈BA′

∑∞
k=1 |x

′(xk)| ≤ 1.
We thus obtain η(K) ≥ (1 − ε)2 λ

π
. Since ε > 0 and λ < wckA′(K) were chosen

arbitrarily, it follows that η(K) ≥ 1
π

wckA′(K), which completes the proof. �

Remark. It is not clear whether C∗-algebras have also the property (Vq)∗ω. From
[8, Theorem 4.1] it follows that the answer is affirmative for commutative C∗-algebras.
In fact we do not know any example of a Banach space with the property (Vq) but not
(Vq)∗ω. Regarding the property (Vq)ω, we know from [8, Proposition 4.3] that some
(commutative) C∗-algebras enjoy this property and some do not.

The following theorem is a kind of “real version” of Theorem 4.1.

Theorem 4.2. Let A be a C∗-algebra. Then the space Asa has the property (Vq), more
precisely, for every bounded K ⊂ A′

sa

(7) wckA′(K) ≤ η(K).

Proof. The proof is analogous to the previous one, it suffices to use real versions of the
theorems that have allowed us to prove Theorem 4.1. Let us sketch it briefly.
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Consider a bounded set K ⊂ A′sa with wckA′sa(K) > 0 and an arbitrary λ ∈
(0,wckA′sa(K)). We find ( fn) in K such that

dist
(
clust((A′sa)′′,w∗)( fn), A′sa

)
> λ.

Since A′ is L-embedded, the real version of A′ (let us denote it by (A′)R) is al-
so L-embedded. But (A′)sa is a 1-complemented subspace of (A′)R and is therefore
L-embedded by [6, Proposition IV.1.5]. We thus get

δ̃( fn) > 2λ

from [7, Theorem 1]. Let us fix ε > 0. By passing to a subsequence we arrange that

infn∈N ‖ fn‖

supn∈N ‖ fn‖
> 1 − ε.

By the real version of the quantitative Rosenthal’s `1–theorem [2, Theorem 3.2] the
sequence ( fn) admits λ–`1–blocks, which yields a subsequence ( fnk) of the sequence
( fn) that for every (αn) ∈ `1 satisfies

λ

supk∈N ‖ fnk‖

∞∑
k=1

|αk| ≤

∥∥∥∥∥∥∥
∞∑

k=1

αk
fnk

‖ fnk‖

∥∥∥∥∥∥∥ ≤
∞∑

k=1

|αk|.

Then we proceed exactly as in the proof of Theorem 4.1 to obtain the desired conclu-
sion.

�

5 Relation to the Grothendieck property
Let us remind that a Banach space X has the Grothendieck property if every weak∗

convergent sequence in its dual is weakly convergent. It is well known that for dual
Banach spaces the property (V) implies the Grothendieck property. In this section
we prove that this implication holds even for suitable quantitative versions of these
properties.

One possible quantification of the Grothendieck property has already been stud-
ied in [3] and [9]. Let us remind the definition: Let c > 0. A Banach space X is
c-Grothendieck if

(8) δ(x′n) ≤ c · δw∗(x′n)

whenever (x′n) is a bounded sequence in X′.
A Banach space X has the Grothendieck property if and only if for every sequence

(x′n) in X′ the following implication holds:

(x′n) is weak∗ Cauchy ⇒ (x′n) is weakly Cauchy.

The inequality (8) quantifies this implication. But we can look at the Grothendieck
property also in another way: X has the Grothendieck property if and only if every
sequence (x′n) in X′ satisfies the implication

(x′n) is weak∗ Cauchy ⇒ {x′n : n ∈ N} is a relatively weakly compact set.
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If we replace this implication by an inequality

wckX′
(
{x′n : n ∈ N}

)
≤ c · δw∗(x′n)

where c > 0 is some constant not depending on (x′n), we obtain another quantitative
version of the Grothendieck property. We will prove that all dual Banach spaces with
the property (Vq) have this kind of quantitative Grothendieck property (see Corollary
5.2). We do not know whether the latter quantitative Grothendieck property implies
the former one (with a larger constant).

Theorem 5.1. Let X be a Banach space. Then for every bounded sequence (x′′n ) in X′′

η
(
{x′′n : n ∈ N}

)
≤ 1

2δw∗(x′′n ).

Proof. Let (x′′n ) be a bounded sequence in X′′. The case η
(
{x′′n : n ∈ N}

)
= 0 is

trivial. Suppose that η
(
{x′′n : n ∈ N}

)
> 0 and fix δ ∈

(
0, η

(
{x′′n : n ∈ N}

))
. Let us

find ε > 0 such that η
(
{x′′n : n ∈ N}

)
> δ + ε. By the definition of the quantity

η we can find a wuC series
∑∞

k=1 x′k in X′ with supx′′∈BX′′

∑∞
k=1 |x

′′(x′k)| ≤ 1 such that
lim supk→∞ supn∈N |x

′′
n (x′k)| > δ + ε. Since (x′k) is a weakly null sequence, there are

subsequences of (y′′n ) of (x′′n ) and (y′k) of (x′k) which for all n ∈ N satisfy |y′′n (y′n)| > δ+ε.
The sequence (y′n) is weakly null in X′ and (y′′n ) is a bounded sequence in X′′, hence by
Simons’ extraction lemma [12, Theorem 1] there is a strictly increasing sequence of
indices (nk) such that for all k ∈ N∑

m∈N
m,k

|y′′nk
(y′nm

)| < ε.

Let us define

αk =

(−1)k sgn−1 (
y′′nk

(y′nk
)
)
, y′′nk

(y′nk
) , 0,

0, y′′nk
(y′nk

) = 0,
k ∈ N,

where sgn denotes the complex signum function, i.e. sgn(z) = z
|z| , z ∈ C \ {0}. Set

x′ = w∗- lim
N→∞

N∑
k=1

αky′nk
∈ X′.

Then x′ ∈ BX′ because for all x ∈ BX

|x′(x)| =

∣∣∣∣∣∣∣
∞∑

k=1

αkz′nk
(x)

∣∣∣∣∣∣∣ ≤
∞∑

k=1

|z′nk
(x)| ≤

∞∑
n=1

|x′n(x)| ≤ sup
x′′∈BX′′

∞∑
n=1

|x′′(x′n)| ≤ 1.

For each k ∈ N even

Re y′′nk
(x′) = αky′′nk

(y′nk
) + Re

( ∑
m∈N

m,k/2

y′′nk
(α2my′n2m

)
)

− Re

∑
m∈N

y′′nk
(α2m−1y′n2m−1

)


≥ |y′′nk

(y′nk
)| −

∑
m∈N

m,k/2

|y′′nk
(y′n2m

)| −
∑
m∈N

|y′′nk
(y′n2m−1

)|

= |y′′nk
(y′nk

)| −
∑
m∈N
m,k

|y′′nk
(y′nm

)|

> (δ + ε) − ε = δ.
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Analogously, for each k ∈ N odd

Re y′′nk
(x′) = αky′′nk

(y′nk
) + Re

∑
m∈N

y′′nk
(α2my′n2m

)


− Re

( ∑
m∈N

m,(k+1)/2

y′′nk
(α2m−1y′n2m−1

)
)

≤ −|y′′nk
(y′nk

)| +
∑
m∈N
m,k

|y′′nk
(y′nm

)|

< −(δ + ε) + ε = −δ.

Therefore

inf
n∈N

sup
k,l≥n
|y′′nk

(x′) − y′′nl
(x′)| ≥ inf

n∈N
sup
k,l≥n

∣∣∣ Re
(
y′′nk

(x′) − y′′nl
(x′)

)∣∣∣ ≥ 2δ.

It follows that δw∗(x′′n ) ≥ δw∗(y′′nk
) ≥ 2δ. Since δ < η

(
{x′′n : n ∈ N}

)
was chosen

arbitrarily, we obtain the desired inequality. �

Corollary 5.2. Let X be a Banach space and C > 0. Suppose that each bounded
K ⊂ X′′ satisfy

(9) wckX′′(K) ≤ C · η(K)

(i.e. X′ enjoys the property (Vq)). Then for every bounded sequence (x′′n ) in X′′

wckX′′
(
{x′′n : n ∈ N}

)
≤ 1

2C · δw∗(x′′n ).

Proof. It suffices to combine the previous theorem with the inequality (9) applied to
K = {x′′n : n ∈ N}. �

Corollary 5.3. Let A be a von Neumann algebra. Then A has a quantitative version of
the Grothendieck property – more precisely, for every bounded sequence (x′n) in A′

wckA′
(
{x′n : n ∈ N}

)
≤ 1

2π δw∗(x′n).

Proof. Since every von Neumann algebra is a C∗-algebra and a dual Banach space, the
assertion follows from Theorem 4.1 and Corollary 5.2. �
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