Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Jakub Smid

Computational Intelligence Methods in
Metalearning

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the doctoral thesis: Mgr. Roman Neruda, CSc.
Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2016

Pursuing my doctorate has been a long time effort, and I was lucky that many
people supported me along the way.

Roman Neruda, my supervisor, deserves credit for all his advice, inspiring
thoughts, all those late night finishes of our conference papers, and amazing
pancakes he would prepare for us during our stays abroad. Because of him, the
whole period of my study was an extraordinary adventure and one hell of a ride.

I would also like to thank my present and former Ph.D. colleagues — Martin
Pilst, Ondiej Kazik, Kldra Peskova, Tomas Kien, Josef Moudifk, Martin Slapak,
and Jifi Vytasil. I have enjoyed all our discussions and lunches at Konirna. I am
really proud that I had a chance to be a member of the team.

No conference travels or logistics would be possible without the help of Petra
Novotna from our faculty. Many thanks.

[am very grateful to my whole family for their ongoing support during my
research, especially to my parents. They made this journey possible.

I would further like to express appreciation to my friends who were always
there for me. Mainly, Dan Kobr, Veronika Smidova, Jaroslav Svelch, Milan
Plachy, and Tomas Potuzék.

I also deeply value the help of Roman Kucera from Ataccama with speeding
up my experiments by kindly providing some extra computational power.

The biggest " Thank you” belongs to my soulmate Zoénicka. She has bravely
supported me throughout the writing, and awaits me every time I return from a
conference. She is my favourite hello and hardest goodbye.

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, Czech Republic, June 13, 2016

Jakub Smid

Nézev prace: Metody vypocetni inteligence pro metauceni
Autor: Jakub Smid
Katedra: Katedra teoretické informatiky a matematické logiky

Vedouci disertacni prace: Mgr. Roman Neruda, CSc., Ustav informatiky AV CR,
v.v.i.

Abstrakt: Tato préace je zamérena na problematiku vybéru algoritmu, ktera ma za
cil doporuéit algoritmus strojového uceni k nové tloze. Reseni problému vychézi
z myslenky, ze se algoritmy chovaji podobné na podobnych datech. Tato podob-
nost je casto zalozena na extrakci pevného poc¢tu metaatributi z kazdé tlohy.
Vzhledem k tomu, ze pocet atributu se u ruznych iloh typicky lisi, ztracime
tak dulezité informace. V této praci popiseme tiidu algoritmu, ktera dokaze
zpracovat také informace o jednotlivych atributech. Nase metody jsou zalozeny
na prifazovani atributu. Vyslednd vzdalenost mezi ilohami je dana jako soucet
vzdalenosti mezi atributy ur¢enymi optimalnim prifazenim. Dale dokdzeme, ze
za ur¢itych podminek muzeme zarucit, ze vysledna vzdalenost mezi tilohami je
metrika. Provedeme sadu experimentu na datech extrahovanych z OpenML re-
pozitare. Vytvorime vzdélenost mezi atributy prostfednictvim genetickych algo-
ritmu, genetického programovéani a nékolika regularizac¢nich technik, jako je ko-
evoluce a zavedeni vicekriteriality. Vysledky experimenti naznacuji, ze vysledna
vzdalenost mezi tilohami muze byt ispésné pouzita na problematiku vybéru algo-
ritmu. Ackoliv jsme nase metody pouzili vyhradné k metauceni, 1ze je aplikovat
i v jinych oblastech. Navrzené algoritmy jsou aplikovatelné kdekoliv, kde mame
definovanou vzdalenost mezi prvky néjaké mnoziny a potiebujeme navrhnout
vzdalenost mezi prvky potenéni mnoziny ptuvodni mnoziny.

Klicova slova: Metauceni, Strojové uceni, Metriky, Genetické algoritmy,
Prifazovani atributu

Title: Computational Intelligence Methods in Metalearning
Author: Jakub Smid

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Roman Neruda, CSc., Institute of Computer Science, AS CR

Abstract: This thesis focuses on the algorithm selection problem, in which the
goal is to recommend machine learning algorithms to a new dataset. The idea
behind solving this issue is that algorithm performs similarly on similar datasets.
The usual approach is to base the similarity measure on the fixed vector of
metafeatures extracted out of each dataset. However, as the number of attributes
among datasets varies, we may be loosing important information. Herein, we
propose a family of algorithms able to handle even the non-propositional repre-
sentations of datasets. Our methods use the idea of attribute assignment that
builds the distance measure between datasets as a sum of distance given by the
optimal assignment and an attribute distance measure. Furthermore, we prove
that under certain conditions, we can guarantee the resulting dataset distance
to be a metric. We carry out a series of metalearning experiments on the data
extracted from the OpenML repository. We build up attribute distance using
Genetic Algorithms, Genetic Programming and several regularization techniques
such as multi-objectivization, coevolution, and bootstrapping. The experiment
indicates that the resulting dataset distance can be successfully applied on the
algorithm selection problem. Although we use the proposed distance measures
exclusively on metalearning, it is possible to use our methods even beyond this
task. The algorithms can handle every situation where we have a notion of dis-
tance between elements of some set and are looking to define a distance on the
power set of the original set.

Keywords: Metalearning, Machine Learning, Metric, Genetic Algorithms, At-
tribute Assignment

Contents

1 Introduction
1.1 Outline of the Thesis

2 Preliminaries

2.1 Datasets
2.2 Machine Learning Tasks
2.3 Metalearningo

2.3.1 Metalearning Task

2.3.2 Types of Recommendation
2.4 Types of Metafeatures
2.5 Distance Based Ranking 00
2.6 Assessing the Ranking Quality
2.7 Ranking Baseline 0.
2.8 Performance Indicators
2.9 Systems for Algorithm Recommendation
2.10 Related Work
2.11 Principal Component Analysis

3 Global Distance
3.1 Metric Spaces
3.1.1 Metric Examples 0oL
3.2 Distance Using Global Metadata

4 Attribute Assignment

4.1 Dealing with Unstructured Data

4.1.1 Word Embeddings

4.1.2 Kernels
4.2 Non-propositional Approach to Metalearning
4.3 Distance Using Attributes
4.4 Examples
4.5 Theoretical Properties L.
4.6 Distance Using Attribute Metadata
4.7 Combining the Distances
4.8 Normalization Based on the Number of Attributes

5 Obtaining the Data
5.1 ARFF Format
5.2 Machine Learning Repositories

5.3 OpenML Dump

11
11
13
15
18
21
23
24
27
30
31

33
33
34
40

42
43
43
44
49
50
o8
61
70
71
72

5.4 Metadata

5.4.1 Global Metadata
5.4.2 Attribute Metadata
5.4.3 Normalization

6 Experiment Proposal

6.1 Optimization
6.2 Genetic Algorithms
6.2.1 Selection
6.2.2 Mutation
6.2.3 Modifications
6.3 Experiments
6.3.1 Results.
6.3.2 Visualisation of the Distance

7 Metric Relaxation

7.1 Metric Spaces Revisited
7.1.1 Attribute Assignment with Relaxed Attribute Measure

7.2 Genetic Programming
7.2.1 Imitializationo Lo
7.2.2 Crossover o v it e
7.2.3 Mutation
7.2.4 Bloat Problem

7.3 Experiment Proposal
7.3.1 Functions oo
7.3.2 Terminals
7.3.3 Algorithm Specification.
734 Results.

8 Regularization

8.1 GP Modifications
8.1.1 Bootstrapping
8.1.2 Coevolutiono

8.2 Multi-objectivization oo
8.2.1 Multi-objective Optimization
8.2.2 Multi-objective Evolutionary Algorithms

8.3 Experiments
8.3.1 Coevolution o
8.3.2 Antibloat
833 Results.
8.3.4 Multi-objectivization

9 Conclusion
9.1 Future Work

List of Figures

List of Algorithms

90
91
91
93
94
94
94
99
101

106
107
108
109
110
110
111
111
113
114
115
115
117

120
120
120
121
122
122
123
124
124
127
127
129

132
133

145

148

List of Tables 149
Acronyms 151

Attachments 153

Chapter 1

Introduction

The ongoing rapid growth of the available amount of data drives the urge for
automated processing of such data. Data mining — the means of finding new
patterns in datasets — is now widely used in medicine, economics, bioinformatics
and other important areas of human interest. Many different algorithms exist
and are used for this task of pattern extraction. However, even for an expert, it
is hard to choose the most suitable algorithm for a particular dataset. According
to the No Free Lunch theorem (NFL) stated in [124], the average performances
of data mining algorithms on all data mining problems are equal. It means that
elevated performance of any algorithm over one class of problems is paid for in
performance over another class. However, NFL considers all possible problems.
We are mostly interested in so called real world problems. Therefore, the key
to success when dealing with a data mining real world problem is in binding
the problem with an algorithm having elevated performance on the class of the
problem. Since many fields depend on data mining techniques, it is crucial to
propose and improve such bindings.

Metalearning [16] — the learning how to learn — can tackle the issue. The main
idea behind metalearning is that machine learning methods are supposed to per-
form similarly on similar datasets. Therefore, the notion of dataset similarity is
crucial. In most cases, the similarity is computed using data characterizing the
datasets — the metadata. Metalearning techniques use the metadata and previ-
ous experience to predict the performance of machine learning methods on new
datasets. In essence, metalearning does not differ much from the traditional ma-
chine learning. The main difference is that metalearning works with the metadata
of given datasets instead of the actual data, and that the result of metalearning
is a recommendation of a machine learning method to use.

The metadata may contain general information about the dataset, like the
number of instances and attributes, the number of classes, performance of some
algorithm over the dataset, etc. There is, however, a fixed amount of such general
information extracted out of each dataset. Many traditional methods compare
datasets based on such measures.

The attribute-specific metadata include more fine-grained information about
the dataset. On the other hand, each dataset can have a different number of
attributes (and consequently, different amount of attribute-specific metadata),
which leads to a non-propositional representation of the datasets using attribute-
specific metadata. The problem of defining the similarity on the non-propositional

space is non-trivial as stated by Kalousis in [59]. The authors of [16] also explicitly
recognize the problem of handling datasets described by the varying amount
of metafeatures. In the past there were only few attempts to define the non-
propositional similarity. Furthermore, most of these attempts loose important
information in the process.

One of the goal of this thesis is to propose algorithms capable of handling such
a non-propositional representation. We take into consideration other methods
dealing with non-propositional data, either directly in the metalearning field or
in other fields as well. Another goal of this thesis is to investigate theoretical
properties of proposed distance measures and compare them with the related
state of the art methods. We investigate whether the methods satisfy metric
axioms, alternatively, what properties must be satisfied in order to do so.

The performance of the proposed methods should be evaluated on data. Sever-
al machine learning repositories are reviewed. The emphasis is put on the amount
of data provided, types of metadata available, and the fact whether the data are
publicly accessible allowing for the independent re-evaluation of our results.

1.1 Outline of the Thesis

The structure of the thesis is as follows. Chapter 2 introduces the field of met-
alearning. Different types of scenarios addressed by metalearning are presented.
The literature that covers different ideas and advances in metalearning is re-
viewed. The algorithm ranking based on distance measures is addressed in more
depth. Unified workflow for measuring the quality of distance based algorithm
ranking is presented. We also cover some of our contributions related to met-
alearning that are not directly related to the main goals of the thesis. This
includes our recommendation multi-agent system Pikater and a hierarchical clus-
tering approach for metalearning.

Chapter 3 reviews the metric spaces and several well known facts about met-
rics spaces. We look into the commonly used dataset distance measures based on
the fixed amount of metadata extracted from datasets and what properties are
necessary in order to get a metric.

The main contribution of the thesis is presented in Chapter 4. First, we
discuss the motivation behind dealing with objects with variable structure and
review some work not directly related to metalearning, which however served as
an inspiration for the work in this thesis. We also discuss why we cannot use
such techniques to address the variable amount of attributes when comparing the
datasets. We review state of the art approaches to handle the attribute-specific
metadata in metalearning and discuss their strengths and weaknesses. The idea
of attribute assignment is presented. The main idea lies in defining attribute
distance measure and aligning the attributes as best as we can. The desired
distance between datasets is the sum of distances between aligned attributes.
Several algorithms based on this idea are proposed. We also show what properties
we have to maintain in order to get the metric on the dataset space. We also
discuss other ideas we considered, which could, however, violate some of metric
axioms.

Chapter 5 discusses data needed to conduct our experiments. Several databas-
es of machine learning datasets are reviewed including those containing results

of machine learning algorithms over those datasets. We discuss the metadata
available about the datasets and establish attribute-specific metadata that we
will extract ourselves in order to be able to build attribute assignment models.

The first batch of experiments is proposed in Chapter 6. All the pieces and
algorithms are glued together and the workflow is reviewed as a whole. Experi-
ments are proposed in such a way that we always get a metric on the dataset level.
We let the Genetic Algorithms [50] optimize weights of the attribute assignment
techniques. We also review the complexity of the whole workflow that will be
important when proposing the experiment settings. Our experiments will be ac-
tually solving reinforcement learning [104] task with very rare feedback from the
environment. The results of experiments are discussed and compared between
themselves and a baseline algorithm.

Chapter 7 introduces more expressive language to describe attribute distance
measure while relaxing the requirement on dataset metric. We will show that
the relaxation will guarantee a semimetric on the attribute space. We discuss
whether the missing triangle inequality is necessarily important for the distance
measure. We will also prove that the semimetric on the attribute level lead to
a semimetric on the dataset level using our attribute assignment workflow. We
conduct another batch of experiments with the new algorithms, and discuss their
results.

In Chapter 8, we discuss set of techniques that could improve the general-
ization abilities of some of our models. In particular, we discuss coevolution,
bloat control and bootstrapping of the population as an extension of the genet-
ic algorithms. We also discuss using multi-objectivization to split the objective
function into two. The second — added — criterion is the metric similarity. We
also define the multi-objective optimization and describe one algorithm in partic-
ular — NSGA-II [32]. We conduct experiments with coevolution, bootstrapping
and bloat control and compare their results with the previous experiments. We
review one of our previous works with multi-objectivization.

Chapter 9 concludes the thesis. The goals of the thesis are evaluated based
on the expectations. The future work and possible opportunities to improve the
results are outlined.

Chapter 2

Preliminaries

This chapter introduces metalearning — learning how to learn. We begin with
defining instances of data called datasets using a relation theory. We also discuss
possible domains of relations and establish some restrictions for the rest of the
thesis. The space of datasets is defined. We elaborate on specific problems that
are connected with defining a structure on this space. Machine learning tasks
are introduced and divided into three basic types — supervised, unsupervised and
reinforcement learning — based on the amount of feedback received from the en-
vironment. Then, we discuss the means to evaluate the performance of machine
learning algorithms over machine learning tasks, namely root mean squared er-
ror, F-measure and predictive accuracy. We discuss the existence of algorithm
outperforming all other algorithms. We elaborate on the No Free Lunch theorem
[124] and its implication on the machine learning tasks. The work of Smith-Miles
et al. is reviewed [116] as an interesting example of finding algorithms dominat-
ing a subset of data. We define the task of metalearning and we provide several
examples of it — dynamic parameter adjustment, and recommending machine
learning algorithms for a given — not yet seen — task. The different algorithm
recommendation are analysed, depending on the amount of information one re-
quires from recommendation techniques - single algorithm, subset of them, more
detailed ranking or even estimating the performance of algorithms. We discuss
how generic methods for algorithm ranking should look like and define distance
based ranking. We also review some of the related literature including our own
results with hierarchical clustering [67]. Means of measuring the quality of a
ranking are provided. The very simple and often effective baseline algorithm for
the ranking task is introduced. The different types of performance indicators
are reviewed together with some interesting approaches how to combine accuracy
and time. Different types of metadata are defined. State of the art means of
utilizing such metadata for the sake of algorithm recommendation are reviewed.
We introduce a concept of automated systems able to handle the whole task of
metalearning. Our own recommendation system Pikater is reviewed. We discuss
PCA [56] method that can be used for visualization of multi-dimensional data.

2.1 Datasets

Dataset describes the instance of data. It can be a relation, set of graphs, collec-
tion of texts or database of proteins. Throughout this thesis, unless mentioned

otherwise, we will consider the dataset to be of a form of relation [23].

Definition 1. Relation is a set of tuples (dy, ..., d,), where each element d; is a
member of Dj;, a data domain or data type.

Given the relation, the dataset itself has a structure in the sense that every
row is a vector of the same size and from the domain given by Dy, ..., D,. Alter-
natively, one can look at a dataset as a list of columns where every column has a
domain and a collection of values. Sizes of all collections are the same.

We will specify three basic allowed supertypes:

1. Categorical supertype - domain is a finite set of values sometimes referred
to as labels.

2. Numerical supertype - domains are real numbers — R.
3. Integer supertype - domains are integer numbers — N.

Based on these supertypes, we will put domain restrictions on datasets that will
be considered in this thesis. Every domain must be one of the defined supertype,
possibly equal to the supertype or with some other restrictions (e.g. specified
minimum, maximum). In this sense, the numerical supertype is also a supertype
of the integer supertype. We have decided to distinguish this special case, as
additional useful properties may be defined for the integer supertype only. We
will also allow for some values to be undefined (missing).

We will define dataset space as the space of all possible datasets. It is impor-
tant to consider that now the dataset space is merely a set without any added
structure. Although every dataset has a structure defined by the relation, one
cannot easily follow this when proposing a structure on the dataset space for the
following reasons:

e Number of columns may differ: the arity of relations representing datasets
may vary.

e Domains may differ: domains of columns may be different.
e Number of rows may differ: the cardinality of relations may differ.

Adding the structure into the dataset space is one of the main topics in the rest
of the thesis.

2.2 Machine Learning Tasks

Machine learning is a subfield of computer science. We say that algorithm is
learning if it improves its performance on future tasks after making observations
(receiving feedback) about the world [104]. According to the type of feedback,
we can distinguish three main types of machine learning tasks.

Definition 2. In unsupervised learning, no explicit feedback is provided.

A common unsupervised learning task is clustering, when we try to sort input
data to potentially interesting clusters. For example, an algorithm can eventually
develop a concept of sunny and rainy days without ever being told this distinction.

On the opposite side stands the task of supervised learning, when we provide
a teacher knowing the correct answers. Given a dataset, set of columns (usually
only one) is designated as a target.

Definition 3. The task of supervised learning is this:
Given a training set of n example input-output pairs (rows of dataset)

(1’1791)7 L ($n79n>,

where y; is a vector of values of target columns of row i, x; is a vector of values of
the remaining columns, each y; was generated by an unknown function y = f(x),
discover a function h that approximates the true function f.

The function A is called hypothesis. The goal of learning is to search space
of possible hypotheses finding the one that performs well, even on new examples
beyond the training set. Note that in more general case, the input-output pair z
and y do not have to be numbers or vectors, they can be labels, graphs or even
more complex objects.

If the target attribute is only a single column, basic types of supervised learn-
ing can be defined by distinguishing the tasks according to the domain of target
column y — classification or regression. In classification, we are assigning some
labels to the input x. For example, when forecasting tomorrow’s weather based
on today’s lookout, we could assign either sunny, cloudy or rainy.

Definition 4. Classification s a supervised learning task where the output y is
one of the finite set of values. If the cardinality of the set is 2, we say it is a
binary or boolean classification.

On the other hand, in regression we are estimating some numeric value like
tomorrow’s temperature given today outlook.

Definition 5. Regression is a supervised learning task where the output y is a
real number.

To measure the quality of some hypothesis, the testing set of previously unseen
examples is given to the hypothesis. We say that h generalizes well if it correctly
predicts the value y for novel examples in the testing set. Sometimes, the learning
algorithm exhibits low error on the training set while having poor generalization
abilities. This phenomenon is called as overfitting as the algorithm learned prop-
erties that are only specific for the training set. Usually, the algorithm capable
of creating complex models tend to overfit on the simple data. To tackle this,
the concept of Occam’s razor is often used. If we have two hypothesis having
similar performance, we should prefer the model with the lower complexity [104].

There are many ways of how to measure the quality of the hypothesis. We
will list a few:

Definition 6. Root mean squared error (RMSE) of some hypothesis h is defined
as

n

RMSE(h) = Z (h(z;) — f(fﬂz))Z,

- n
i=1

9

where n is the number of samples in the testing set.
In the binary classification we can define precision and recall:

Definition 7. Precision and recall are defined as

.y tp
precision = ————,
tp+ fp
t
recall = P ,
tp+ fn

where tp stands for true positive — number of cases the classifier answered 1 cor-
rectly. Analogically, we can define fp and fn — false positives and false negatives.
They denote number of cases when classifier incorrectly answered 1 or 0 respec-
tively.

The common way to measure the quality of binary classifier is F-measure —
the harmonic mean of precision and recall.

Definition 8. F-measure of the hypothesis is

Fh) = 2preci3i0n X recall

precision + recall”

In classification tasks, we can define the percentage of classes that were clas-
sified correctly or incorrectly resulting into the Predictive Accuracy and Error
Rate.

Definition 9. Predictive Accuracy s defined as

Predictive Accuracy = #(h(w:) = f(xi))’
n

where n 1s the number of samples in the testing set. Error Rate is defined as

ErrorRate = 1 — Predictive Accuracy = #(h(zi) # f@’)),
n

where h is the hypothesis, f is the true function, n is the number of samples and
denotes the number of cases for which the argument is True.

In the real world scenario, the reward is not often associated with every action.
We often get a reward (or punishment) after a series of decisions. For example,
if somebody wants to get from one place A to another place B, with every step
taken he does not know whether the step was right. He can evaluate his decisions
after he successfully gets to place B for example based on the time, money and
energy needed to get to the destination. This concept is formalized as a third
learning scenario — reinforcement learning;:

Definition 10. The basic reinforcement learning model consists of:

1. A set of environment states S.

2. A set of actions A.

3. Rules of transitioning between states.

4. Rules that determine the scalar immediate reward of a transition.
5

. Rules that describe what the agent observes.

10

2.3 Metalearning

This section describes the task of metalearning. Intuitively, it is a task of learning
how to learn. We will discuss the metalearning task in general and then move
to one particular subset of metalearning tasks — algorithm recommendation. We
will create a taxonomy of recommendation based on properties we would like to
recommend.

2.3.1 Metalearning Task

In the recent years, many algorithms were proposed to solve different machine
learning tasks. Usually, every such algorithm has many parameters and its perfor-
mance is heavily dependent on settings of those parameters. Even for an expert,
it is sometimes difficult to choose the right algorithm and set up the parameters
correctly. Furthermore, scientists from different fields than computer science face
great challenges when trying to employ machine learning to solve their tasks. It
would be useful if such a system was provided that would either solve the machine
learning tasks directly or would assist in choosing the right algorithms and pa-
rameters. Such a tool should learn from a previous experience. The common idea
behind such recommendation tool is based on the idea that algorithms perform
similarly on similar datasets.

One could also improve based on the past experience in adjusting the param-
eters. For example, if one non-deterministic machine learning experiment did not
achieve desired performance for hundreds of attempts with the same parameter
settings, it could be perhaps a good idea to try different settings next time. Al-
so, if some indicators would suggest that the algorithm was being stuck in some
local optimum, the parameters of the algorithm could be adjusted ad hoc, so the
local optima are avoided and algorithm hopefully converges to a global optimum.
The authors of [120] review the dynamic control of parameters for many nature
inspired algorithms.

In transfer learning, we try to transfer some learned properties to a new —
similar — task. For example, authors of [126] argue that deep neural networks
often learn a generally useful concept in the top layers and that such knowledge
can be transferred to other tasks. The ability to transfer knowledge depends on
the similarity of tasks.

These scenarios have some common patterns. In each case above, we are
utilizing some extra knowledge — previous experience or notion of dataset simi-
larity — usually referred to as metaknowledge. This continuous process of learning
how to learn is often denoted as metalearning. In [16], we can find more formal
definition of metalearning:

Definition 11. Metalearning is the study of principled methods that exploit meta-
knowledge to obtain efficient models and solutions by adapting machine learning
and data mining processes.

In this thesis, we will focus on the first case — the algorithm selection —in which
we use metaknowledge to recommend the best algorithms, parameters or both to
some machine learning task. The problem was originally stated in 1976 by Rice
[102] and received much attention from the research community ever since. Rice

11

0.2 F

01 -

0.6 . 1 1 1] 1 1 1)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
T

None Bktr HillClimb HEA PartCol TabuCol AntCol

Figure 2.1: Space of optimisation problems was projected to two dimensions by
the PCA algorithm and coloured according to the best algorithm in that area.
Grey colour is for the instances that had multiple best algorithms (according to
some small margin) [116].

devised a general framework to select the best algorithm for a problem at hand.
He suggested to extract set of metafeatures out of a given problem and use these
metafeatures to select an algorithm that maximizes the expected performance of
the algorithm on the problem at hand.

One could naturally ask whether such recommendation is needed in the first
place. Perhaps there exists an algorithm that is outperforming every other algo-
rithm on every task. The answer is no. According to the No Free Lunch theorem
stated in [124], the average performances of data mining algorithms on all data
mining problems are equal. It can still be the case that there are some areas that
are dominated by certain algorithms.

For instance, in [116], Smith-Miles et al. investigated different instances of op-
timization problems and features describing differences between these instances.
The PCA (see Section 2.11) was used to map features into two dimensional space.
Another instances were generated so the projected two dimensional space was bet-
ter covered. The search algorithms were employed to find instances that are hard
for each solver and provided a map of search space based on the expected foot-
steps of different optimization algorithms. The projected space of instances were
coloured according to colour of the dominating optimization technique on that
space. This gave a nice overview of which part of two dimensional space comput-
ed by the PCA algorithm was dominated by which optimisation algorithm. This
can be seen in Figure 2.1.

Another way to look at the No Free Lunch theorem is the fact that lots of
problems from the set of all data mining problems may not be particularly inter-
esting. One could argue that only problems related to some useful problem are
worth considering. This argument is supported by the observation that usually

12

when one learns something, he expects that the function being learned has some
nice properties. For instance, it is continuous and close points have the same or
similar value. For example, a car does not stop being a car if it changes a colour.
One would have to make multiple adjustments to destroy the car properties. This
arguing gives the notion to vaguely defined real world problems. It follows that
one should not be too concerned about the No Free Lunch theorem as it may still
be the case that there is an algorithm outperforming every other algorithms on
the real world problems.

In the rest of the thesis, we will solely focus on the algorithm selection problem.

2.3.2 Types of Recommendation

We can distinguish different types of algorithm selection [16] based on what ex-
actly we want to predict — the metatarget:

1. Best in set.

2. Best subset.

3. Ranking.

4. Performance prediction.

The simplest case is choosing the best algorithm among the set of algorithms.
This case has the advantage that it can be formulated as a classification problem.
The major disadvantage is that if this algorithm produces unsatisfactory result,
the recommendation system does not clue any steps to take further on. One may
also choose to predict the best parameter for a certain algorithm.

More complicated case is when one is interested in some smaller subset of
algorithms or parameters. The algorithms selected are those performing well
— this is often described as performing well within a margin. In the case of
classification, the margin can be defined as

[emin>6min + k\/e (n ‘)> 9 (21)

where e,,;, is the error of the best algorithm, n is the number of examples and &
is a user-defined parameter determining the size of the margin.

Other alternative it to carry out statistical testing. The selected algorithms
will be those with not significantly worse performance than the best. Best subset
address some flaws of the first type, however user does not have any guidance with
the order of algorithms to try. Similarly, there is no guidance if all algorithms
from the subset were tried.

In ranking, the goal is to rank (sort) algorithms or parameters according
to their expected performance. In this case the exact performance value is not
important, one is simply interested in the rank itself. One would naturally expect
complete total ordering between algorithms or parameters. This does not have
to be the case, sometimes this level of granularity is not desirable. For instance,
one can decide that the algorithms with the similar expected performance will
be inserted to a certain class and define the ordering just between the different

13

Figure 2.2: Types of ranking. The left one is linear complete, middle one is weak
and complete and the ranking on the right is linear and incomplete. Adapted
from [16].

classes of algorithms. The ordering between the algorithms of the same class
could remain undefined.

Based on these, we can distinguish different types of ranking based on the lev-
el of granularity provided. We can recognize linear and weak rankings (whether
ranking defines linear order on some set of algorithms) and complete and in-
complete rankings (whether rankings include all algorithms or just a subset).
Rankings can be represented by Hasse diagrams — examples are in Figure 2.2.

In some cases, one is not only interested in the ranking, but also in the per-
formance estimation. This can be useful if there are some requirements for the
minimal performance acceptable or if more detailed information about the ex-
pected outcome are required. It also makes sense if the estimated performance
is the runtime of algorithm, as resources could be either limited or expensive,
and algorithms that are expected to finish quickly are preferred. One could also
expect that faster algorithms produce simpler hypothesis, thus arguing that on
simple problems faster algorithms will have better generalization abilities by Oc-
cam’s razor. The performance estimations can be easily transformed to ranking
by ordering the algorithms by their estimated performance.

Authors of [42] propose a practical model of Evolutionary Program-induction
Algorithms (EPAs) including Genetic Programming (Section 7.2). The model
corresponds to the following equation:

P(t)~ag+ Y ayd(p,t), (2.2)

peS

where a; are coefficients, P(t) is a performance of an EPA on the target function-
ality ¢, S is a subset of a program search space and d is a function of similarity
between the output of the EPA and the target functionality ¢. The paper deals
with the issue of determining the suitable coefficients and the suitable subset of

14

the search space. The model is tested on various tasks.

In [112, 113], we have predicted accuracy and expected time consumption for
some algorithm on a new dataset using the data gathered by our recommender
system Pikater (see Section 2.9). A unique non-propositional distance measure
was used (see Algorithm 9). Estimation functions were evolved by Genetic Pro-
gramming and were represented by two trees: one for estimating accuracy and
another one for estimating time consumption. The GP algorithm included termi-
nals representing distance and the performance result (either accuracy or duration
depending on the tree being evolved) from one of the nearest dataset. Random-
ly initialized constant terminal specified which nearest dataset was used. The
special terminal estimating complexity was proposed:

complexity = Z o(a;) log(Nrows), (2.3)

a;

where n,.,s measures number of rows in the datasets, a; is the i-th attribute and
o(a;) estimates the attribute complexity based on its type:

1; if a; is a boolean or categorical attribute,
o(a;) = < 2; if a; is an integer attribute, (2.4)

3; if a; is a real attribute.

We argued that continuous and numerical attributes are usually hard to process,
hence the increased coefficient. This complexity terminal proved especially useful
for estimating the time needed to conduct the experiment. The example of an
evolved recommendation tree is in Figure 2.3. The recommendation agent utiliz-
ing the evolved estimation trees was implemented into our custom metalearning
system called Pikater (see Section 2.9).

2.4 Types of Metafeatures

As devised in [102], the extraction of metafeatures out of the problem at hand
is needed for the algorithm selection problem. There are two main requirements
for the metafeatures to extract — the efficiency of the extraction and the descrip-
tive factor of the metafeatures. The efficiency requirement is clear. The exact
performance of all algorithms could be extracted as a feature but that would not
give us any time savings at all. The question is what is an acceptable complexity.
For instance, article [92] even suggests to restrict the complexity to O(nlogn) as
bigger complexities are too expensive and it would be better to devote the time
saved to already running some algorithms. We argue that the exact value depends
on the algorithms in portfolio. With lots of algorithms and increased complexity
of algorithms in portfolio, it still makes sense to compute even more expensive
metafeatures. For example, if the portfolio contains NP-Complete problems, it
should not be of concern to compute polynomial metafeatures. Furthermore, the
suggestion is from the year 2000 and the significant increase of the CPU power
and the ability to get more computational power instantly by using virtual servers
in the cloud calls for not being so strict in limiting the complexity of computing
the metafeatures.

15

Figure 2.3: Example of the tree for estimating the algorithm duration on a new
dataset. Terminals are blue, functions are green. The node labelled D:i rep-
resents distance from the i-th nearest dataset. Similarly, the node labelled E:i
denotes error of the algorithm on the i-th nearest dataset. C'om is the complexity
terminal.

16

The second requirement also makes sense, as it is important to use the metafea-
tures that somehow help to distinguish between different algorithms. The rest is
just noise and should be ignored, as even the computation of such noise can be
costly.

We can distinguish metafeatures according to the nature of their computation.

The first category builds on statistic and information theory. Article [48]
distinguishes three subcategories of the first category: simple, statistical and
information-theoretic measures. The simple measures include only very basic
ones, such as the number of rows, the number of attributes or the number of inte-
ger attributes. Among the statistical ones, the article ranks such metafeatures as
skewness, correlation, and kurtosis. Information-theoretic measures are motivat-
ed by information theory and are mostly appropriate for discrete attributes. The
example of information-theoretic feature is entropy of a discrete random variable:

H(X) = _Z%’ log, i, (2.5)

where ¢; is the probability that a variable X takes on the i-th value. Convention-
ally, the entropy is converted to log, as the measured value is in bits.

Authors of [16] recognize two additional types of metadata — model-based and
landmarkers. The model-based metafeatures lies in training some sort of model
on the data and take some properties of the model as metafeatures. For example,
the decision tree [99] predicting the target is built. The number of nodes in the
tree is introduces as a new metafeature. The landmarkers are a quick estimate of
algorithm performance on the dataset. There are two ways how to do this. Either
a simplified version of some algorithm is used to build the model on the whole
data. For instance, the decision tree only with the top node is created and its
performance evaluated on the data. Alternatively, subsampling landmarkers use
the whole algorithm on the subset of the data, which gives again the estimate.

From now on, we will treat dataset, unless stated otherwise, as the entity
described by its metafeatures. We will distinguish two types of metafeatures.
Propositional metafeatures (fixed size vector of metafeatures describing dataset
as a whole) will be referred to in this thesis as global metafeatures. The second
type we will recognize are attribute metafeatures — that is the set of metafeatures
extracted for each attribute in the dataset. As the number of attributes can
vary per dataset, attribute metafeatures are non-propositional as we will have a
vector of variable length of vectors of metafeatures. The vector of metafeatures
does not have to be necessarily of a fixed size. Different types of attributes can
have different types of metafeatures. We will address this in the later chapters.
The set of metafeatures will be also called metadata throughout the thesis. It
can be argued that reshuffling the attributes of the datasets does not change
the dataset at all. Therefore, we will consider two datasets represented by their
metadata equal if and only if:

1. All available global metadata are equal.

2. All available attribute metadata are equal, or there exists a permutation
(reshuffling) of attributes of the first dataset such that attribute metadata
are equal after the reshuffling.

17

2.5 Distance Based Ranking

In the previous sections, we have discussed the problem of algorithm ranking.
The usual approach to the ranking is based on the idea that algorithms perform
similarly on similar datasets. If we want to exploit this idea, we need two things
— a notion of distance between datasets and a way of calculating a ranking from
the previous results on datasets similar to a dataset at hand using the distance
between datasets. In this section, we will focus on the latter and suppose that
we already have the notion of distance. Throughout this thesis, when outlying
the pseudocode of some algorithm, we will treat dataset distance measure as
an interface taking two datasets and outputting a real number — the measured
distance between the both input datasets. This is formalized in Algorithm 1.

Algorithm 1: [Dataset Distance: dataset distance interface

// Interface for measuring distance between two datasets.
input : a < First dataset

input : b < Second dataset

output: d € R, d is a distance between a,b (d = A(a,b))

This will enable us to plug different algorithms as the part of others. We will
see lots of algorithms conforming to the I Dataset Distance interface throughout
the thesis. To avoid confusion, we will always use the symbol A when referring
to the I Dataset Distance interface in equations or other algorithms.

To allow for obtaining the ranking, we will define another interface called
I Ranking — the one that just takes a dataset and returns the ranking of algo-
rithms to the given dataset. The interface is intentionally very generic, so we can
reuse it later even with the non-distance based ranking.

Algorithm 2: [Ranking: Interface for ranking calculation

// Interface for calculating the ranking to a new dataset.
input :d < dataset to rank
output: Ranking — ordering of algorithms

One could wonder how to implement I Ranking interface using distance based
ranking. The I Ranking interface provides just a dataset on the input. But for
the distance based ranking, at least the distance measure and other datasets need
to be provided.

To solve this, we will use a concept from functional programming. Functional
programming [40] is a programming paradigm — a style of building the structure
and elements of computer programs — that treats computation as the evaluation
of mathematical functions. In this thesis, we will be proposing generic layered
architecture of algorithms. As we want to design generic interface but the sub-
components will be initialized and parametrized differently, we will use specific
functional programming construct know as partial application.

Definition 12. Partial application refers to the process of fixing a number of
arguments to a function, producing another function of smaller arity. Given an

18

integer k and a function f: Xy X --- X X x -+ x X,, =Y, the function partial
is defined as a function X; X -+ X Xp = (Xpo1 X -+ x X, = Y). The k is often
omitted as it can be inferred from the number of input arguments.

This will enable us to preinitialise some parameters and the remaining not yet
assigned parameters will define the generic interface.

Because of the partial application, we have an elegant way to solve the is-
sue. We can define an interface taking all the necessary information to build up
the distance based ranking and then just use partial application to fix all the
arguments except the dataset one. The resulting function now conforms to the
I Ranking interface. More formally, the I Distance Ranking interface is defined
in Algorithm 3.

Algorithm 3: I Distance Ranking: Interface for distance based ranking
calculation

// Interface for calculating the ranking to a new dataset

based on distance.

input : A < IDatasetDistance - Dataset distance measure

input : exp < Previous results

input : d < Dataset to obtain ranking for

output: Ranking — ordering of algorithms

And the transformation of IDistanceRanking interface to a more generic
I Ranking interface is outlined in Algorithm 4.

Algorithm 4: Distance Ranking Transformation: transforming a
I Distance Ranking interface to generic [Ranking interface

// Interface for transforming IDistanceRanking to [Ranking.
input : distanceRanking < I Distance Ranking interface

input : A < IDatasetDistance - Dataset distance measure

input : exp < Previous results

output: I Ranking interface

1 return partial(distanceRanking, A, exp);

Now we can propose several algorithms that can be implemented to conform
to the I Distance Ranking interface.

The k-Nearest Neighbours algorithm (k-NN) [27] is widely used for rank-
ing [16]. For instance, Maratea et al. use k-NN in their system for solving
answer set programming task (ASP) [80, 81]. ASP is a declarative approach to-
wards hard (mainly NP) search problems. The k-NN algorithm for ranking is
aggregating previous results on the k nearest neighbours identified by the dis-
tance measure to estimate the ranking. The whole method is outlined in Al-
gorithm 5. The complexity, provided that a distance is already precomputed,
is O(nglog(ng) + nelog(n,)), where n, is the number of algorithms and n, the
number of datasets. If the ranking is called multiple times for different datasets,
the computation of the distance could be repeated, therefore it is often useful
to compute the distance outside of this function. This was the reason why we

19

stated the complexity for already precomputed distance. This will be our case as
we need lots of ranking computation to evaluate the quality of ranking algorithm.
This is mainly a technicality, so for the sake of simplicity, we will not state explic-
itly in the algorithms that we are computing something outside of the algorithm
when plugging the algorithms into one another.

Algorithm 5: K-NN Ranking: A-NN based implementation of
I Ranking.

// Implementation of [DistanceRanking using k-NN algorithm
input : k < Number of neighbours

input : A < I DatasetDistance Dataset distance measure

input : exp < Previous results

input : d < Dataset to obtain ranking for

output: Ranking

distances <« [[;
foreach dataset € exp.datasets do
current_distance <— A(d, dataset);
distances += [(dataset, current_distance)];
end
distances «— sort(distances, (dataset, distance):distance);
neighbours «+ distances|: kl;
foreach algorithm € exp.algorithms do
‘ Talgorithm — Oa
end
foreach neighbour € neighbours do
foreach algorithm € exp.algorithms do
‘ Talgorithm += €xp.rank(neighbour, algorithms);
end

© 000 N O ok W N =

e T
B W N = O

end

R < [1,... len(exp.algorithms)];
R < sort(R, algorithm: 7aigorithm):
return R;

[S R
w N o o

The k-NN algorithm can be also modified in such a way to involve the weights
into computation, so that closer neighbours have bigger influence on the final re-
sult [35]. The number of neighbours — k — is the crucial parameter of the whole
algorithm. Setting of k£ to 1 or similarly low values usually results in overfit-
ting and corresponding bad generalization abilities of the model. On the other
hand, high values of k defeat the purpose of the local neighbourhood and tend
to have lower performance as the information from the distant regions affect the
decision process. To address this, there has been also some additional modifi-
cations proposed to the k-NN algorithm. The G-means algorithm [45] enhances
the original algorithm by automatically setting the number of neighbours. The
G-means is based on a statistical test for the hypothesis that a subset of data
follows a Gaussian distribution. The G-means runs k-means with increasing k in
a hierarchical fashion until the test accepts the hypothesis that the data assigned
to each k-means centre are Gaussian. Two key advantages are that the hypoth-

20

esis test does not limit the covariance of the data and does not compute a full
covariance matrix. The G-means algorithm was used for algorithm selection by
authors of Autofolio [77]. The G-means is used together with other algorithms
for automatic selection of parameters to solve some artificial intelligence problem
at hand (e.g. satisfiability (SAT), constraint satisfaction programming (CSP) or
quantified boolean formula (QBF)). In [58], the G-means is used in algorithm
portfolio selection of the SAT solvers. Motivated by the observation that solvers
have complementary strengths and therefore exhibit incomparable behaviour on
different problem instances, algorithm portfolios run multiple solvers in parallel
or select one solver, based on the features of a given instance.

In [67], we investigated the possibility of distance based ranking using clus-
tering constructed from the training set. In our case, the clustering was a result
of an agglomerative clustering algorithm [29]. The advantage of this clustering
method is that it does not require creation of centroids as in the case of other
methods. Compared to the k-NN algorithm, the neighbourhood does not have a
fixed size but rather a variable size depending on the cluster method.

The bottom up method was chosen because it is faster than the top down
method. The question arises which criterion of clusters’ distance to use. We have
adopted Unweighted Pair Group Method with Arithmetic Mean (UPGMA), or
average linkage clustering [29], which is used in various applications [34].

In our experiments, ranking was constructed the same way as in the k-NN
ranking algorithm with the exceptions that the nearest neighbours of the given
dataset were selected according to the nearest cluster, given metric and UPGMA
method. In the experiments, we have used the results of 8 Weka [44] algorithms on
the 85 UCI (Dataset Repository of University of California, Irvine) [12] datasets.
The datasets were divided into the training and testing set with the ratio of 2:1.
We have tested various distance metric to estimate the algorithm performance.
Results indicated that such hierarchical clustering can be successfully used for
metalearning. The best dendrogram of the best cluster is shown in Figure 2.4.

2.6 Assessing the Ranking Quality

In this section, we describe techniques to asses the quality of some method for
predicting the ranking of algorithms. Given some [Ranking interface implemen-
tation and a new dataset d, the Spearman’s rank correlation coefficient can be
used to asses the accuracy of the ranking method:

6 (R — RY)?

nd—n

rt =1 : (2.6)
where n is the number of models, R¢ is the actual rank of model i on dataset
d and R;d is the predicted rank of model 7 on dataset d. The Spearman’s rank
correlation coefficient has some interesting properties. The range of the coefficient
is normalized to the interval (—1,1), where 1 is a perfect match, -1 is a perfect
mismatch and 0 indicates results as good as random guessing. Equation 2.6 gives
us the means of measuring ranking quality for a single dataset. If the aim is
to measure the quality over all datasets, it is possible to take Spearman’s rank

21

Figure 2.4:

. T —o

. R —
.‘—o—|_._—°|:§
e

R g S

. ='_.
* ’ o T2
=

servo.arff
fruitfly.arff
elusage.arff
mbagrade.arff
cloud.arff
veteran.arff
strike.arff
housing.arff
wine.arff
machine.arff
sensory.arff
breastTumorarff
echoMonths.arff
lowbwt.arff
fishcatch.arff
schlvote.arff
cleveland.arff
cholesterol.arff
hungarian.arff
auto93.arff
meta.arff
communities.arff
wowel.arff
heart-statlog.arff
kdd_SyskillWebert-BioMedical.arff
glass.arff
diabetes.arff
balance-scale.arff
iris.arff
weather.arff
segment-challenge.arff
segment.arff
ionosphere.arff
zoo.arff
lymph.arff
contact-lenses.arff
tic-tac-toe.arff
cararff
nursery.arff
kdd_UMIX_user_data.arff
magic.arff
letter-recognition.arff
waveform-5000.arff
spambase.arff
mfeat-fourierarff
soybean.arff
vote.arff
primary-tumor.arff
mushroom.arff
audiology.arff
lung-cancer.arff
credit-a.arff
labor.artf
breast-w.arff
heart-c.arff
heart-h.arff
colic.arff
autos.arff
anneal.arff
anneal.ORIG.arff
sleep.arff
autoPrice.arff
gascons.arff
baskball.arff
bolts.arff
vineyard.arff
bodyfat.arff
quake.arff

The dendrogram as a result of the agglomerative clustering [67].
Datasets are assigned to clusters according to their similarity.

22

correlation coefficient averaged over all datasets:

no . d
ry = 2=t (2.7)

n

where n is the number of datasets and r? is the Spearman’s rank correlation
coefficient computed for dataset d.
The whole ranking quality assessment is summarized in Algorithm 6.

Algorithm 6: Ranking Quality Assessment

// Pseudocode for ranking prediction quality assessment
using dataset distance function.

input : datasets < List of datasets

input : predictor - [Ranking Ranking predictor

input : results +— Results of algorithms on datasets indexed by

datasets
input : algorithms <— List of algorithms
output: Ranking Prediction Quality Assessment

rs < 0;

n < len(algorithms);

foreach dataset € datasets do

remaining <— datasets \ dataset;

Rdataset « predictor(dataset, remaining, results, algorithms);
6 2?21(R;_iataset’ . R;iataset)2

n3—n

[S U VI

6 ,r,gataset — 1=

Tdataset

7 Ts < Ts + & ;
n

I

8 end
9 return rg;

Basically, the algorithm for each dataset estimates the ranking of algorithms
by using I Ranking interface. The quality of rankings is measured using Equation
2.7. Provided the predictions are already precomputed, we get a complexity of

the quality evaluation:
O(ngna),

where ng4 is the number of datasets and n, is the number of algorithms.

2.7 Ranking Baseline

Algorithm 6 can give us a good estimate of how good our model is compared
to random guessing. However, there may be trivial methods that are very easy
to implement, yet they exhibit a relatively good performance. Such trivial algo-
rithms are often referred to as baseline algorithms. Their output is usually based
on some statistical knowledge about the data and is calculated using the most
frequent values. Complex algorithms should outperform baseline algorithms, oth-
erwise there is no need for the extra complexity. In the classification tasks, the

23

baseline usually outputs the most frequent class. In the regression task, the me-
dian or average of the target values is usually returned by the baseline algorithm.
We can also define a baseline algorithm for the ranking task. The baseline al-
gorithm can predict the ranking results based on algorithm’s average rank on
all datasets present in the metaknowledge base. If one algorithm is the best in
average on all datasets, baseline algorithm will just assign the first rank to this
algorithm. Again, we will design the baseline algorithm with the I Ranking inter-
face in mind. To calculate the ranking, baseline needs the information about the
average ranking. One could be tempted to use again the trick with the partial
function. In this case this would be a mistake, as that would result in recalculat-
ing the average ranking for each call to the interface. Instead, we will create a
function that takes previous results as an input, calculates average ranking, and
then returns a function conforming to the I Ranking interface. Such course is
outlined in Algorithm 7. The complexity of resulting I Ranking is constant. To
build up the distance, one has to do

O(ngng + nglog(ng))

steps, where ng is the number of datasets and n, is the number of algorithms.
The term (ngn,) represents the cost of two inner loops, the term n, log(n,) is for
sorting the rankings.

2.8 Performance Indicators

In the previous sections, we have discussed the metatarget and ranking in par-
ticular. We did not discuss what should be the performance indicator defining
the metatarget. It can be any of the performance measures mentioned in Section
2.2 or a combination of them. The time complexity can also be predicted or time
can be included into the performance consideration. This is useful when good
and fast learning algorithms are preferred. The time is especially crucial when
the resources are scarce or expensive.

The time cost value of following some ranking strategy is captured by the
top-N evaluation [18]. The N is a parameter that determines how many best
algorithms will be tried on some dataset. Different settings of N can be con-
sequently simulated, and we can observe how the accuracy of the best model
improved compared to the time cost associated with the increase of N.

The top-N strategy has a disadvantage that it is unable to leverage what is
learned from previous evaluations. Alternatively, we can tackle this issue with a
strategy called active testing [74]. It proceeds in a tournament-style fashion, in
each round selecting and testing the algorithm that is most likely to outperform
the best algorithm of the previous round on the new dataset. The next contender
is selected based on the concept of relative landmarkers [41]. These landmark-
ers estimate the relative probability that a particular algorithm will outperform
the current best candidate. The cross-validation [104] of the new contender is
performed. The result is added to the relative landmarkers and the contender
replaces the current best algorithm if the cross-validation result is better or ties
the result of current best algorithm.

One approach of combining time and accuracy was proposed by Brazdil et
al. [17]. The k-Nearest Neighbours algorithm [27] with a distance function based

24

Algorithm 7: Ranking Baseline

© 00 N o oA~ W N =

-
- o

=
N

13
14
15
16
17
18

19

20

// Pseudocode for building the ranking baseline model.
input : datasets < List of datasets
input : algorithms < List of machine learning algorithms

input : results <— Results of algorithms on datasets indexed by datasets

output: [Ranking interface

averageRanking <« [J;

occurrences — [|;

foreach algorithm € algorithms do

averageRanking[algorithm]« 0;

occurrences|algorithm| < 0;

end

foreach dataset € datasets do

resultsOnDataset < results[dataset];

foreach algorithm € algorithms do

if algorithm € resultsOnDataset then
occurrences|algorithm|++;

resultsOnDataset[algorithm]
currentRank < ;
len(resultsOnDataset)

averageRanking|algorithm]+= currentRank;

end
end

end
averageRankingWithAlgorithm < zip(averageRanking,algorithms);
averageRankingWithAlgorithm <—

x

Y);

map(averageRankingWithAlgorithm,A(z, y) — :
occurrences|y|

averageRankingWithAlgorithm«—
sort(averageRankingWithAlgorithm,(z,y) : x);
return \(z) — averageRankingWithAlgorithm;

25

on a set of statistical, information theoretic, and other dataset characterization
measures is employed in order to identify the set of similar already computed
tasks. For the ranking phase, the adjusted ratio of ratios ranking method is
presented, which processes performance information based on accuracy and time.

The relevance of the processed dataset d; to the dataset d; at hand is defined
in terms of similarity between them, according to metafeatures. It is given by a
metric (or a distance function):

A (d;, dj) = Z 0 (Vs Uy) » (2.8)

x

where d; and d; are datasets, v, 4, is the value of metafeature x for dataset d;, and
o (Ux,d“ v%dj) is the distance between the values of metafeature x for datasets d;
and d;. All metafeatures are normalized.

The k-Nearest Neighbours algorithm is then used to identify the k£ cases near-
est to the dataset at hand.

The adjusted ratio of ratios uses information about accuracy and execution
time to rank the given classification algorithms. It is computed by means of the

auxiliary term ARRZ;,% defined as:
SR
4, SRy
ARRy . = —qui, (2.9)
(3
1+ K—Taq

where SRZ; and Tij are the success rate and duration of algorithm a, on the
dataset d;, and K is a user-defined value that represents the amount of accuracy
the user is willing to trade for a 10 times speed-up or slowdown. For example,
K7 = 10% means that the user is willing to trade 10% of accuracy for 10 times
speed-up.

Finally, the overall mean adjusted ratio of ratios for each algorithm is derived:

ARR%
ARR, = <Z @) , (2.10)

m—1 n

where m is the number of algorithms and n is the number of datasets. The ranking
is based on this measure. Authors of [2] including one of original authors of
ARR looks into the ARR measure and argue that ARR should be monotonically
increasing Higher success rate ratios should lead to higher values of ARR and,

similarly, higher time ratios should lead to lower values of ARR. Experiments
d;
were proposed to verify this property on data. The ing was fixed to 1, the

aq

time ratio was sampled from very small 272° to very high values 22° and three
different values of Kr were used (0.2,0.3,0.7). The resulting ARR function was
not monotonic and was even approaching infinity at some point. In general,
this can lead to incorrect rankings provided by the metalearner and can affect
the evaluation results. Authors proposed a solution that addresses this issue by

26

changing the re-sampling used in ARR. The updated formula A3R was proposed:

SR}

d;

, SR
A3RY = (2.11)

ap,aq i

n ap

T

aq

where 7 is a user defined constant representing the importance of time.

The A3N is used in [3] as a performance indicator. The paper proposes
several modification to active testing strategy [74]. The first approach uses faster
sample-based tests to identify competitive algorithms. The second modification
lies in argument that full cross-validation test is not necessary to estimate the
next candidate. Instead, the test is performed on a smaller sample of the new
dataset. This is motivated by the fact that a sample-based test is much faster
than a full cross-validation test. The full cross-validation test is carried out only
if a candidate algorithm beats the currently best algorithm on the sample-based
test.

2.9 Systems for Algorithm Recommendation

Having a viable framework for metalearning is only one side of a coin. The actual
systems built for metalearning are called recommendation system. Their goal is
to allow for a trade-off between human time and machine time. They can also
provide the power of machine learning algorithms to the non-expert users, even
to those with limited computer knowledge. There are many scenarios for such
systems.

Auto-weka [118] is a system integrating into the Weka toolkit [44] and it is
able to perform model selection, and autotune model parameters. It employs the
Sequential Model-based Algorithm Configuration algorithm (SMAC) [52]. SMAC
supports a variety of models of the type p(c|\) to capture the dependence of the
loss function ¢ on hyper-parameters A, including approximate Gaussian process-
es [101] and random forests [19].

Autofolio [77] combines SMAC with algorithm selection framework claspfo-
lio2 [51]. Claspfolio?2 is a flexible framework that provides functionality to train
and assess the performance of different algorithm selection techniques. The exten-
sibility is the main advantage and it provides an unified framework for algorithm
selection problem. The overview of all components is in Figure 2.5. The schedul-
ing system is also integrated.

Our recommendation system called Pikater [91, 65, 66, 64] is implemented us-
ing multi-agent systems (MAS). To be precise, the multi-agent framework JADE
[13] is used as a platform of the system. The extensibility is assured by the use
of the structured ontology language and following the Foundation for Intelligent
Physical Agents (FIPA) [96] international standards of agents’ communication.
The following basic scenarios have been considered.

e In the most simple case, the user knows which method and what parameters
of that method they would like to use.

27

| Training Instances | | Algorithms

|
|
' \l Resources |
.

claspre H Compute Features] [- Assess Performance -}
Data Collection,

. Feature Pn::pmcmsing] Performance A T e O |
Pre iy { Performance Estimation] ,

L Train Scoring Modcl}- -t ‘{ Pm_s;iv:;gp:z?dm I'_

Prediction Scheduling,

; 1 [solvi
| (New) Instance }—i—{ Compule Features)—)[Score Algorithms Rungi:::lfllcvmg

E failed if not successful
! R::n BﬁUp Run Best Scored
! gorthm Algorithm

Solving

Figure 2.5: Overview of claspfolio2 framework [51].

e In the second scenario, the user knows what method to use but does not
know how to set its parameters. The system is able to search the parameter
space of the method and find a setting that provides good results.

e In the third case, the user does not even know what method to use and lets
the system decide by itself. In this case, the system recommends the best
possible method or provides a ranking of the methods based on predicted
errors and duration.

These simple scenarios can be extended into more complex ones. For instance, it is
also possible to combine the recommendation of the best method with parameter
space search, when the system recommends an interval of the parameter’s values.
As a positive side effect, the metaknowledge base for metalearning purposes is
being built up by each experiment.

In order to effectively design our system, we have chosen the organization-
centred formalism AGR (Agent-Group-Role) [38]. The role is a set of capabilities
and responsibilities that the agent accepts by handling the role. Group — the
building block of a MAS — is a set of agents with allowed roles and interactions,
defined by a group structure. The multi-agent system then consists of multiple
groups which can overlap, as agents can belong to more than one group. In this
formalism, we abstract from the algorithmic details and inner logic of the agents
in the MAS. Authors of [64] used the ontological formalism of OWL-DL [109] to
describe the organizational model of Pikater. The following group structures were
defined according to the aforementioned scenarios: administrative group struc-
ture, computational group structure, search group structure, recommendation
group structure, data group structure, and data-management group structure.
Our MAS is composed of groups that are instances of these group structures.
The architecture is depicted in Figure 2.6.

28

v

Group

Figure 2.6: Overview of Agent-Group-Role model of our recommendation system
Pikater [91].

29

The MAS-based solution allows for a flexibility in choice of the parameter
space search algorithms, each of these is encapsulated in a search agent. General
tabulation, random search, simulated annealing [104], or parallel methods, such as
genetic algorithms, are implemented in our system. Another great benefit of the
agent-based approach is the natural capability to parallelly execute multiple com-
putations with various parameters. This significantly decreases the time needed
for the execution of the parameter space search process. One of essential features
of our MAS is its capability of recommending a suitable computational method
for a new dataset, according to datasets similarity and previously gathered experi-
ence. The choice of the similar dataset(s) is based on various previously proposed
metrics [29], which measure the similarity of their metadata. Our database con-
tains over 600,000 records, that are used to suggest the proper method (including
its parameters) and estimate its performance on a new dataset. The latest ver-
sion of our MAS contains the following types of recommenders, which differ in
the metric used and in the number of recommended methods they provide:

e Basic recommender chooses a method based on the single closest dataset
using the unweighted metadata metric.

e Clustering Based Classification [67] chooses the whole cluster of similar
datasets and the corresponding methods, using different sets of metadata
features.

e Evolutionary Optimized Recommenders are similar to the two above de-
scribed recommender types, using different weighted metrics, optimized by
an evolutionary algorithm.

e Interval Recommender recommends intervals of suitable parameter values
and leaves their fine-tuning to the parameter space search methods.

Another functionality of our system is a multi-objective optimization of data
mining configurations. To test this, the search algorithm is employed in order
to find beneficial combinations of pre-processing and machine learning methods
to the presented data. The minimization is performed in error-rate as well as
run-time criteria [63].

2.10 Related Work

In this section, we further review some of the literature related to metalearn-
ing. Authors of [62] define the distance between datasets based on the following
metadata:

o Number of attributes in data,
o Number of instances,

e Data type (Relates to all values of all attributes in the dataset. Four cat-
egories of data are considered — categorical, integer, real, or multivariate —
different attributes are of different types),

30

o Default task type (Set by the user, the most common types are classification
and regression),

e Missing values (Flag whether data contains unknown or unspecified values).

The following metric is defined between two tasks based on their metadata:
A(datasety, datasets) = Z w;o;(datasety [i], datasets]i]), (2.12)
i=1

where dataset;[i] is the i-th metadata of the j-th dataset, w; is the weight of the
i-th metafeature and o; is the distance on the i-th metafeature defined by the
type of the i-th metafeature. For categorical or boolean type the d; is 0 if the
value matches, otherwise 0. For the numerical types of metadata the normalized
difference between their value is taken as a distance.

There is also a work by Graff and Poli [43] based on evolutionary program
induction. They use (among other techniques) genetic programming to predict
the performance of various algorithms, such as neural networks, to solve given
tasks.

Kordik and Cerny [68] propose the evolution of so called templates. Templates
specify the workflow to produce a model and are the collection of ensembling
algorithms, modelling and classification algorithms combined in a hierarchical
manner. These templates are evolved using genetic algorithms in order to pro-
duce the best results. The similarity of templates can be used as a landmarker
metadata.

Misir and Sebag [87] used a completely different approach. They formulated
a more general problem of algorithm selection as a collaborative filtering problem
[73]. In this case, instead of talking about the selection of methods for given
dataset, we can imagine that the various methods rate the datasets based on
their performance. The methods prefer the datasets, on which they have better
performance. Interestingly, such an approach does not require any metadata, it
is possible to run a few of the methods, find their performance and use this infor-
mation to recommend better methods. However, if some metadata are available,
they can be used instead of running the methods.

2.11 Principal Component Analysis

In this section, the Principal Component Analysis (PCA) [56] method is de-
scribed, as it will be used further in the thesis.

PCA is an orthogonal linear transformation to a new coordinate system such
that the greatest variance by some projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on
the second coordinate, and so on.

Given some dataset, we begin the PCA by subtracting the mean of each di-
mension from the dimension itself. We then calculate the covariance matrix of
the data. The next step is calculation of the eigenvectors and eigenvalues of the
covariance matrix. This is possible since the covariance matrix is square. This
gives us the components. If we order the eigenvectors by eigenvalues, we get the

31

ordering by significance. We can reduce the dimension by ignoring the compo-
nents with less significance. Suppose we have decided to keep k£ components.
Now we form the FeatureVector as follows:

FeatureVector = (eigenvectory . .. eigenvectory,).

The FeatureVector is a matrix with eigenvectors as columns. We get the data
in the new coordinate system by the following operation:

NewCoordinates = FeatureVector’ x DataAdjustedByMeans”,

where DataAdjustedByM eans are the original data with the means subtracted.
It is also possible to calculate points back and forth between the original
coordinate systems and the new one. This is useful when we add some new data
(regardless of the encoding).
PCA is often used for visualizing multi-dimensional data, as it can be used to
reduce the number of dimension to two or three dimensions.

32

Chapter 3

Global Distance

In the previous chapter, the concept of distances between datasets was introduced.
In this chapter, we will discuss what are the properties of good distance measures
in general. We will define a metric and metric spaces. We will also define a
concept of norms, which can be intuitively used to form a metric. We give
a few examples of norms — p-norms and their weighted counterparts, and we
outline a recognized fact that p-norms are indeed a norms using the Holder’s
and Minkowski’s inequalities. We summarize a few well known theorems about
metric spaces — that it is possible to rescale the metric space without violating
the metrics axioms and that the sum of metric is also a metric. These facts will
be useful in the chapters to follow. We move back to dataset distance measures
and define a class of such distance measures using the global metafeatures. We
will show that if the distance is based on weighted p-norms, then the resulting
dataset distance is a metric.

3.1 Metric Spaces

In this section, we will define metric, metric spaces and norms. We will also
present few examples of the metrics.

Definition 13. A metric on a set X is a function (called the distance function

or simply distance)
d: X xX —10,00), (3.1)

and for all x, y, z in X, the following conditions are satisfied:
1. d(x,y) > 0 (non-negativity).

(z,y)
2. d(z,y) =0« x =y (coincidence axiom).
(:C?y) - d(y7) (SymmetYY)'

) <

d(z,z) <d(z,y) + d(y, z) (triangle inequality).

Definition 14. Metric space is a tuple (X, d), where M is a set and d is a metric
on M.

The first condition of Definition 13 is sometimes omitted as the following
holds:

33

Theorem 1. Metric conditions 2, 3 and 4 imply condition 1.

Proof.
d(z,z) < d(x,y) +d(y,x) [triangle inequality (3.2)
d(z,z) < 2d(zx,y) |symmetry, 3.2 (3.3)
0 < 2d(x,y) |coincidence, 3.3 (3.4)
d(xz,y) >0 |3.4 (3.5)
[

In this thesis, we will prefer to use all four conditions, as it will later enable us
to relax the definition of a metric a little bit, and propose additional algorithms
for solving the algorithm ranking task.

3.1.1 Metric Examples

In this section, we will list few metric examples that will be later reused further
in the thesis.

Theorem 2. Let M =R" and x,y € M. Then function defined as

d(z,y) = {O; Fo=1, (3.6)

1; otherwise.

1s a metric on M.

Definition 15. We will denote the metric from Theorem 2 as the discrete metric.
It can be easily verified that the discrete metric is indeed a metric.

Definition 16. Let V' be a vector space over F (with F = R or F = C) and
N :V — R a map such that, writing N(u) = ||ul|, the following results hold:

1. Yu eV :||ul]| > 0 (non-negativity).
2. VueV ||lu| =0 < u= K (separates points).
3. YA e F,Yu e V :||A\u|| = |Al||u]| (absolute scalability).
4. Yu,v € V : ||ul| + ||v|| > ||u+v|| (triangle inequality).
Then we call || - || @ norm and say that (V,|| -||) is a normed vector space.
Normed vector space can be easily transformed into a metric space:

Theorem 3. Let (V.|| -]]) be a normed vector space. Then function d : V? — R
defined as:

d(u,v) = [[u—vl| (3.7)
is a metric on V. Consequently, the tuple (V,d) is a metric space.

Proof. We will split the proof according to the different metric axioms.

34

1. We will begin with proving the coincidence axiom:

0=dv,w) <= |jv—w||=0 < vew=10 <= v=uw.

2. Symmetry can be derived using the second axiom of the norm:

d(v,w) = [Jv —wl|[= | = Ulw = o] = |Jv —w|| = d(w,v). (3.8)

3. A proof of triangle inequality uses the fourth norm property:
d(v,w) = [[v = wl|| = [[(v — u) + (u = w)[| < (3.9)
< [l(v = wll + [[(u — w)|| = d(v, u) + d(u, w). (3.10)
4. The first metric axiom is implied by Theorem 1.
As we have proven every metric axiom, we can conclude the proof. n

Definition 17. For p > 1, the p-norm of x € R" is defined as

n 1/p
||z[], = (Z Ixz‘\p) :
i=1

To show that the p-norm is formally a norm, we will first state two theorems
— Holder’s Inequality and Minkowski’s Inequality.

Theorem 4 (Hoélder’s Inequality). Let a,b be vectors in R™ and p,q > 1,p,q € R
satisfy 213 + é =1. Then

n n 1/p n 1/q
> Jaibi| < <Z |ai|p> (Z |biyq> . (3.11)
=1 =1 =1

Proof. We will divide the proof into two steps. In the first step, we will prove
an auxiliary claim that will be used in the step 2 to finally prove the desired
inequality.

e Step 1. We shall show that if x,y > 0,z,y € Rand 0 < A <1, X € R then
2y < e+ (1 - Ay (3.12)

Set t = % Then after dividing both sides of the equation by y, we get the
equivalent equation to prove t* < A\t + (1—=MN).

Set ¢(t) = At + (1 — \) —t*. Then we need to show that ¢(t) > 0. We will
investigate the first derivative of ¢: ¢/(t) = X\ — AM* 1 = X\(1 — t*71), so
<0;ift <1,
O (t)=<=0;if t =1, (3.13)
> (; otherwise.

Since ¢(1) = 0, according to the derivatives this must be a global minimum
of the function and therefore the step 1 is concluded.

35

e Step 2. Let us define A; and B; as
|ai’p ’bi|q
> i lail? i [bil
Let A = %. Then, by Step 1,

APl < 2 (3.15)
p q

as % =1- %. By fully expanding A; and B;, we obtain

a; bz 1 a; p 1 bl q
B N YA S A
(S) (S)~ P el S bl
By summing above equation over 1,...,n we obtain
*a;||b; 1 1
2ic |il|bi] <-4+ -=1. (3.17)

(Z?:1 ’ai‘p)l/p (Z:’Lzl ‘bi|q)1/q S p g

Multiplying both sides by (37, a;[?)"/? (327, |b;]9)"/? concludes the proof
of the Holder’s Inequality.

O

Theorem 5 (Minkowski’s Inequality). Let a,b be vectors in R™ andp > 1,p € N.

Then
n 1/p n 1/p n 1/p
(Zmﬁbiv’) < (Z yaiv’) + <Z|bi|p> : (3.18)

i=1 =1 =1

Proof. If p =1 we can see that the inequality holds using triangle inequality:
lai + bi| < lag| + [bs].

By summing up we get

Z la; + b;| < Z |ai| + Z bl
i—1 i—1

=1

Ifthep>1deﬁneq>lsothat%%—é:l: q:p%l. We have that

Z]ai + bl‘p = Z ’(Zi + bZHaz + bi‘p_l S Z]aiHai -+ bi’p_l + Z]blHaz -+ bi’p_l
i=1 i=1 i=1 =1

n Up s n 1/q n Up s n 1/q
< (Z \am’) <Z jai + b@-|<p1>q) + (Z 1@\10) (Z la; +bir<p”q>
1=1 i=1 i=1 1=1

(3.19)

The last inequality follows from the Holder’s Inequality (Theorem 4). Since
(p—1)g=p,

36

we may rewrite the inequality in Equation 3.19 as

n n 1/p n 1/p n 1/q
D ai+bifP < <Z |az-|?’> + (Z |bi|p> (Z |a; +bi]”) . (3:20)
i=1 i=1 i=1 i=1

Dividing by (3", |a; + b;|)" we get

n 1-1/q n 1/p n 1/p
(Z]ai+b,;|p> < (Zmi\p) + (Z\b#’) . (3.21)
=1 =1 i=1

Since 1 —1/q = 1/p we get

n 1/p n 1/p n 1/p
(Z|ai+bi|p> < (Z |a,~|p> + <Z|bi|p> . (3.22)
i=1 =1 =1

which is the Minkowski’s inequality. O
Theorem 6. P-norm is a norm.
Proof. We will split the proof according to the different axioms of the norms.

1. We will begin with the non-negativity. P-norm is a root of sum of absolute
values raised to power p, therefore it cannot be negative.

2. Root is 0 if and only if the argument is zero. In our case, if the sum of
absolute values raised to power p is zero. That is if and only if all the
absolute values are zero, that is if and only if x is a zero vector.

3. Let A € R. The absolute scalability follows from:

n 1/p n 1/p
|[Azl| = (Z Imlp> = (Z IAI”!%\”> =
=1 i=1

n 1/p n 1/p
=<|Alp2|xilp> ZIAI(ZWI”) = | Al]|z].

=1 i=1

4. The triangle inequality results from:

n 1/p
|Ju+vf| = (Z |Ui+vi|p> ,
i=1

which is by Minkowski’s Inequality less or equal to

n 1/p n 1/p
(Zlui!p) +<Z!vilp> = [[ul| + [Jv]]-
=1 =1

As we have proven every norm axiom, we can conclude the proof. O]

37

Theorem 7. Let M = R",p > 1,p € R and z,y € M. Then the function
d, : M — R defined as

dp(,y) = (Z s — yalP)” (3.23)

1s a metric on M.

Proof. Follows from the fact that p-norm is a norm (Theorem 6) and the fact
that derived metric according to Theorem 3 is a metric. This metric corresponds
to the function d, in question.]

We will define metrics for special values of p from Theorem 7:
Definition 18. Let d,, be a metric from Theorem 7. Then:

1. Let us call dy defined as di(x,y) = iy |xi — yi| the tazicab or Manhattan
distance.

2. Let us call dy defined as day(x,y) = \/(Zle(xl —y;)?) the Euclidean dis-
tance.

3. Let us call dy defined as lim dy(x,y) = max(|x; — y;|) the Chebyshev dis-

p—0o0
tance or maximum metric.

Furthermore, we can weight the p-norms.

Definition 19. For p > 1,w € R", the weighted p-norm of x € C" is defined as
_ n i |p l/p
x|, = (Zi:l |wiz;]) .

We will show that weighted p-norm is a norm as long as weights are strictly
positive:

Theorem 8. Let w = (wy,...w,) € R” and Vw; € w : w; > 0. Then weighted
P-NOTM 1S @ NOTM.

Proof. We will split the proof according to the different axioms of the norms.

1. We begin the proof by validating the non-negativity axiom. Vuw;,z; is
|w;x;| > 0, therefore the chain of exponentiation, summing and p-th root
will also be non-negative.

2. To prove the second axiom we have to verify both directions of the equiva-
lence:

e => [f weighted p-norm is zero, then all elements in the summation
must be zero, and because weights are non-negative, all z; must have
been zero.

e <= If z is zero vector then all elements in the sum are zero.

38

3. Let A € R. The absolute scalability follows from:

n 1/p n 1/p
|[AzwT|| = (Zuxiwﬂp) = <Z le’!x@-wilp> =
=1

=1

1/p

n 1/p n
= (MlpZ lxiwil”> = [Al (Z Ixiwilp) = [Al[Jzw|].
=1 =1

4. The triangle inequality results from:

n 1/p n 1/p
|(u + v)wT|| = (Z |(u; + Ui)wiyp) = (Z |u;w; + iniw) . (3.24)
=1

i=1

which is an instance of Minkowski’s inequality (Theorem 5) where a = u;w;
and b = v;w;. Therefore Equation 3.24 is less or equal to:

n l/p n 1/17
(Z \uz-wm) - (Z |viwi\p> = [JuwT || + |fow]|

i=1 i=1
As we have proven every norm axiom, we can conclude the proof. O]

Again, we can obtain weighted metrics from weighted p-norms through The-
orem 3.

We will also state a few theorems that will be useful when we will propose
the new algorithms. First, we will show that we can rescale the metric without
breaking the axioms:

Theorem 9. Let (M, o) be a metric space and k € R,k > 0. Then o' defined as
o'(z,y) = ko(x,y) is a metric on M.

Proof. We will split the proof according to the different metric axioms.

1. The non-negativity follows from the fact that multiplying by positive num-
ber does not change the sign.

2. The coincidence axiom results from that multiplying by positive number
returns zero if and only if the multiplied value is zero.

3. The fact that multiplying by positive number does not change the symmetry
of the function is enough to prove the symmetry.

4. The triangle inequality remains to be proved: o'(z,y) = ko(x,y) < ko(x, z)+
ko(z,y) = d'(z,2) + d'(z,y).

As we have proven every metric axiom we can conclude the proof. O

The rescaling would not work by zero or a negative number, as we would
immediately break non-negativity or coincidence axiom. The metric is also closed
under addition:

39

Theorem 10. Let (M, «), (M, B) be metric spaces. Let 0 = o+ 3, then (M, o)
18 also a metric space.

Proof. We will split the proof according to the different metric axioms.

1. The non-negativity axiom follows from the non-negativity of o and 3. As
they are both non-negative, their sum must be also non-negative.

2. For the coincidence axiom it is enough to realize that both metrics are equal
to zero if and only if x = y. Otherwise both metrics are positive.

3. The symmetry axiom follows from:

—~

o(r,y) = a(z,y) + B(x,y) =
=a(y,z) + By, z) = o(y, 2).

4. The triangle inequality results from:

o(z,y) = a(z,y) + B(z,y) < o, 2) + Bz, 2) + a2, y) + B(z,y) =
o(x,z) +o(z,y).

As we have proven every metric axiom, we can conclude the proof. O

The closure under addition together with the rescaling of the metric gives us
the following corollary:

Corollary 1. Let {(M,aq),...(M,a,)} be a set of metric spaces and K =
{k1,...k,} C RZ, be the set of weights. Let o = Y. kioy, then (M, o) is
also a metric space.

Proof. First we rescale each o; by k;. This rescaling results into another metric by
Theorem 9. Now we iteratively merge the rescaled metric using that the metric
is closed under addition (Theorem 10). O

This enables us to construct a metric using weighted sum of other metrics.
Note that in this case negative values of some k; do not necessary break the
metric if some metric would produce always higher values. However, for our
purpose Corollary 1 is sufficient.

3.2 Distance Using Global Metadata

In this section, we discuss group of several algorithms to measure distance between
two datasets using global attributes only. Given a distance measure between
global metadata o, an algorithm for measuring the distance between datasets A
using the o can be naturally designed, as per Algorithm 8.

As global _metafeatures property returns fixed sized real-valued vector, we can
intuitively use any metric on R", and Algorithm 8 will produce a metric on the
dataset space. Therefore, we can use any metric defined in this chapter including
the weighted p-norms. This one is particularly interesting, as it allows for testing
different settings of weights and see how this change affects our metalearning
framework.

40

Algorithm 8: Distance A using global metadata: I DatasetDistance

// Pseudocode for measuring dataset distance measure using
global attributes.

input : o < Global metadata distance measure

input : z < First dataset

input :y < Second dataset

output: Distance between two datasets

global, < z.global_metafeatures;
global, < y.global metafeatures;
distance < o(global,, global,);
return distance;

AW N =

41

Chapter 4

Attribute Assignment

In Chapter 2, we defined the problem of metalearning, particularly the problem
of algorithm selection and ranking. We have presented a general workflow that
— given some distance measure between attributes and a new dataset — can rank
algorithms based on previous experience. We also presented a distance measure
based on the vector of global metadata. We have shown that this distance measure
can be a metric on the space of datasets if the distance between the vector of
global metafeatures is a metric. The room for improvement lies in the fact that for
each dataset with arbitrary number of attributes, rows, and attribute domains,
the number of global metadata extracted is always the same for each dataset.
The ability to deal with such unstructured data has been recognized as a difficult
and important task [16, 59].

The main contribution of this thesis lies in the proposal and analysis of algo-
rithms that can handle non-propositional representation of datasets without los-
ing information that can occur when extracting fixed amount information from
the common structure of the datasets. We start by discussing the importance
of dealing with unstructured data and by presenting unstructured domains and
algorithms that are able to tackle associated issues. Namely, we will discuss
vector embeddings on the space of strings together with kernel methods on ar-
bitrary spaces. We will explain why such techniques cannot be applied directly
to the space of datasets. We will review recent attempts of how to handle non-
propositional representations in the metalearning domain. Finally, we propose
concept of attribute assignment given some attribute distance measure. If the
datasets have different number of attributes, dummy attributes are added to the
dataset with less attributes. Dataset distance is computed based on sum of at-
tribute distances given by the assignment. We will present several algorithms
derived from this concept. The first supports only simple attribute distance
measures but can be computed quickly. The second is based on the Hungarian
algorithm and can handle arbitrary attribute distance measure. We will present
some examples to give the reader a clear idea about the algorithms.

Then, theoretical properties of the proposed algorithms are discussed. It
turns out that if the distance on the space of attributes extended by the dummy
attribute is a metric then the resulting distance measure between datasets must
also be a metric. We will also show that the same holds for the other direction.
Yet we will discuss that the former direction is somewhat stronger if we only
care about a metric on some subsets of dataset and attribute space. This can be

42

useful if we optimize metric properties on some training data. These theorems
also mean that we can use attribute metrics based on p-norms and their weighted
counterparts and we get a metric on dataset space as well. We will discuss
conditions that are necessary for the resulting dataset distance to be a metric. We
will especially discuss the addition of dummy attribute followed by the discussion
on what is the best way how to add such dummy attributes into the attribute
distance. We also show that if we normalized the resulting dataset distance by
the number of attributes, we could break the metric properties.

4.1 Dealing with Unstructured Data

During last decades, many machine learning and data mining techniques emerged.
Almost all of them were designed to handle propositional data, usually encoded
as a vector of fixed size. However, not all data have this nice structure and there
are lots of real world problems that are defined on unstructured data. Natural
language processing (NLP) tasks are defined on the space of strings (words and
texts) and many traditional methods are therefore not applicable. Another ex-
ample of such unstructured space is the space of graphs. Many things such us
social network connections can be naturally described using graphs. Therefore, it
is important to investigate means of modifying machine learning tools to handle
various non-propositional representations. In this section, we shall present two
notable approaches to deal with unstructured data.

4.1.1 Word Embeddings

Word embeddings is the set of natural language processing techniques where
words or phrases are mapped to the real-valued vectors. A well known example
of word embedding is word2vec [84, 85]. Word2vec uses two different types of
models to learn the vectors. The first one — Continuous Bag-of-Word Model or
CBOW - tries to predict the target word given the surrounding words (so called
context). The CBOW uses the probabilistic feedforward neural network [14] to
estimate the probabilities of current word. The desired vector is the weight vector
between the hidden layer and the neuron in the output neuron corresponding to
the word in question. The Skip-Gram Model is the opposite of CBOW. The goal
now is to guess the context given the word in the middle.

The interesting part is that the trained vectors capture many linguistic regu-
larities [86]. For example the vector operation CzechRepublic — Prague should
yield vector similar to the result of Japan — Tokyo. Similarly, the operation
King — Man + Woman should resemble the vector of Queen. This is illustrated
in Figure 4.1.

A similar algorithm for learning vectors is GloVe (Global Vectors for Word
Representation) [90]. GloVe is essentially a log-bilinear model with a weighted
least-squares objective. The main intuition underlying the model is the simple ob-
servation that ratios of word-word co-occurrence probabilities have the potential
for encoding some form of meaning. The authors of [108] shows that GloVe and
Skip-Gram model of word2vec, one explicitly factorizing a co-occurrence matrix
and one implicitly factorizing a shifted-PMI matrix, are actually sharing similar
objectives, though not completely the same.

43

WOMAN QUEENS
/ AUNT
MAN / KINGS
UNCLE
QUEEN QUEEN
KING KING

Figure 4.1: Linguistic regularities preserved by the word2vec algorithm [84, 85].

It is important to note that the word-embedding techniques are using the
fact that the order of words in text is important. This is not applicable for the
non-target attributes within the datasets as the order is not important. We could
easily permutate all the attributes and still argue that the information required
to learn the features is still the same. In comparison, the order of words usually
matters in the texts written by humans — which is one of the reasons why the
vector embeddings show such nice results.

The key factor in the performance of word2vec and similar methods is the size
of the corpus. Common choice is up to one billion of words [84].

There has also been ongoing research to use the vector embeddings on different
domains than just natural languages. For example, protein-vectors (ProtVec) [9]
uses word2vec ideas. The paper uses Skip gram neural network to build a dense
distributed representation for biological sequences. The method was evaluated
by classifying protein sequences obtained from Swiss-Prot [24] and outperformed
existing classification methods. Furthermore, the method is applicable to other
bioinformatics problem such as protein visualization, structure prediction, domain
extraction, and interaction prediction.

4.1.2 Kernels

The kernel approach tackles the problem by looking at the similarities between
objects. In general, kernel [49] is a function taking two objects and returning a
measurement:

Definition 20. Let 2 be a set. Then kernel K is a real-valued function of two
variables from €1, i.e.,
OxQ—R (4.1)

To get a similarity, only the so called dot-product kernels are usually consid-
ered:

Definition 21. Let Q be a set. Then dot-product kernel K is a real-valued
function of two variables from € satisfying

where ¢ is a feature map X — V and (-,)y is an inner product on V.

44

If ©2 is a space of real vectors, the dot product is a commonly considered
inner product, and we can easily get so called linear kernel just by using the dot
product:

K(z,y) = 2'y,Vz,y € R". (4.3)

It is possible to use ¢ for rescaling and increase of dimensions. For instance, the
polynomial kernel defined as

K(x,y) = (z'y +b)", 2,y € R",7 > 0,n € N,n > 0. (4.4)

computes the product in (d;r2)—dimensional feature space where d is a dimension
of input vectors and b is a parameter describing the influence of higher order
terms versus lower order terms. For example, for n = 2 the product is given by

the (implicitly defined) mapping

¢(<x17" xn)) -
(z2,... ml,\/—xlxg,\/_ml,xg,...,ﬁxn_lxn,\/%xl,...,\/%xn,c).

Other popular kernel is the so called radial basis function (RBF) kernel:
K(z,y) = e M=l

where 7 is a parameter of the kernel.

What makes the kernel approach particularly interesting is that {2 can be an
arbitrary set, not just real numbers. If we can define a mapping {2 to some space
with inner product, we can have a kernel even for objects with variable structure.

For instance, strings over some alphabet have variable structure as they can be
of arbitrary length. One of the kernels defined over strings is string subsequence
kernel [78], which defined the similarity of two strings by the number of their
common subsequences (not-necessarily contiguous):

Definition 22. Let A be an alphabet and x,y € A. The string subsequence
kernel is defined as:

3PP I

€A™ u=x[i] j:u=yli]

where A" is the set of all strings of length n, si] is a subsequence of s given by
some set of indices i, X\ is a decay factor and l(i) denote the total length of sli]
i s — the biggest index in © minus the smallest index in 1 plus one.

While this computation appears very expensive, recursive computation can
be reduced to O(n|z||y|) [78].

Another example of the string kernel is a spectrum kernel [75], which bases
the similarity on common substrings of some predefined length.

Definition 23. Given a number k > 1, the k-spectrum of an input sequence is
the set of all the k-length (contiguous) subsequences that it contains.

We defined a kernel with a feature map indexed by all possible subsequences
a of length k from alphabet A.

45

Definition 24. K -spectrum kernel is defined as:
K(x,y) = ((9a(2))acar, a(y))acar),

where ¢q(x) denotes number of times a occurs in x.

A very efficient method for computing spectral kernel is to build a suffix tree
for the collection of k-length subsequences of x and y, obtained by moving a
k-length sliding window across each of z and y. At each depth-k leaf node of
the suffix tree, store two counts, one representing the number of times a k-length
subsequence of x ends at the leaf, the other representing a similar count for y.
Note that this suffix tree has O(kn) nodes. Using a linear time construction
algorithm for the suffix tree [119], we can build and annotate the suffix tree in
O(kn) time. Now we calculate the kernel value by traversing the suffix tree and
computing the sum of the products of the counts stored at the depth-£ nodes.
The overall cost is thus O(kn).

We would like to mention another string kernel called local alignment as it
directly influenced our work.

Definition 25. An alignment (with gaps) m of p > 0 positions between two
sequences x,y 1s a pair of p-tuples:

7= ((m(1),...,m(p), m2(1),...,m(p)) € N?

that satisfies
1<m(1) <m(2) <...m(n) < |z

1 <m(l) <m(2) <...m(n) <ly|
We can score the alignments as follows:

Definition 26. The local alignment score of an alignment 7 is equal to

] |1
$s,9(m) = Z STy (3) Ymali)) — Z [g(m1 (i + 1) — m1(4)) + g(ma(i + 1) — m2(i))],

where S is a substitution matriz encoding score for aligning letters with other
letters and g is a gap penalty function.

The Smith- Waterman (SW) score is a local alignment score of the best align-
ment:

SWsy,= max sg,(m).

mell(z,y)

The SW score can be calculated in O(|z||y|) by dynamic programming with
Smith-Waterman algorithm [115].

0,
maxy SW (i — k,j) — g(k),
max; SW (i, j — 1) — g(1).

SW (i, 7) = max (4.5)

SW (i, j) stands for the similarity of two segments ending in z; and y; respectively.

46

Unfortunately, SW score does not have to be a valid inner-product kernel [106].
However, a convolution kernel can be defined as follows:

Efl(@y)= > efsam, (4.6)

mell(z,y)

where [is a parameter. It can be shown that the SW score is approached by the
limit: 1
lim — In(K) (2, y)) = SW(z,). (4.7)
B0 3
Furthermore, it can be shown that if there is no gap penalty a SW score is a
kernel [105].

Another domains where kernels were applied is the space of graphs [122] and
images [46]. Again, we cannot apply string or graph kernels directly to the dataset
space as the order of character or vertices matters.

Having an inner product kernel has many advantages. Computation of the
inner product kernel can be carried out without explicitly using the ¢ function
and computing the inner product. Mapping to the feature space can be very
expensive or not feasible at all. For example, the RBF kernel with v = 1 is
actually computing the inner product in an infinite dimensional feature space:

eyl = Me(—;mn%(—;m
= 7

Such computation of inner product in the feature space using only values in the
input space is sometimes being referred to as a kernel trick.

Many methods benefit from the kernel trick or can be extended to do so. For
example, support vector machine (SVM) [26] can use the kernel to separate non-
linearly separable sets by performing the separability in the feature space instead.
The ability of kernels to be used in such a way is demonstrated in Figure 4.2 by
using the scikit-learn library [89]. First, two categories of points are generated
— blue points distributed over the circle with some small noise and red circles
distributed around the circle with bigger radius. Clearly, the blue set is not
linearly separable from the red set. Using another method enhanceable by the
kernel trick — kernelized PCA with the RBF kernel [107] — we can achieve the
linear separability.

The kernelized PCA opens many options as it can map arbitrary space with
kernel to the vector of the desired length. Reducing the dimensions to two or
three is especially useful as it can be visualized easily.

Metalearning is also used to aid the methods with kernels as choosing a right
kernel can be crucial to solve the problem at hand. Authors of [§8] use meta-
learning to select the right kernel for SVM by measuring the problem character-
istics using classical, distance and distribution-based statistical information. In
[7] the kernel is automatically selected based on knowledge transferred from the
results on related data.

47

Original space

15
[. i
1.0 fw .‘.6%
05} 'b ._!: |
)
g 00 .t 1
* Y
-051 '5‘; . .a.‘... |
10l 2V PR |
-15

~15 -1.0 -05 0.0 0.5 1.0 1.5
Iy

Projection by KPCA

0.4 T
03} ®
0.2 |
= 01
o
2
g 00r
£
S 01} . .
o ° °
& —02l ."."." % e o %V
- et s ‘e %Wt .
[° ol
03} . ° oo . [3] *
o.o. * ..o e S ... we ® ﬁ..""z b
04l ® o ® s ® e, ":..
o LA % aq e
—05 \ \ . \ \ a® e
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1st principal component in space induced by ¢

Figure 4.2: Example of using the kernelized PCA in the scikit-learn library [89]
to make the data linearly separable.

48

4.2 Non-propositional Approach to Metalearn-
ing

All of the methods for algorithm selection problem discussed so far used the
propositional approach — every dataset was represented by the metadata vector
of fixed size. However, the problem is highly non-propositional as the number
of attributes varies throughout the datasets. According to the authors of [16],
the most common approach to deal with this problem is to do some form of ag-
gregation, for example use mean skewness as an aggregation of every attribute
with skewness. It is expected that important information will be lost in the pro-
cess. In [61], we partially addressed the problem by adding the special attribute
metadata. First, we identified the most significant attributes. The significance of
attribute was identified by the joint entropy of a target class and attribute:

HAO) = - 3 AW s~ mlE) aAw)

veval(a) U tevalo) n(Av)) 7% n(A(v))

where n is the number of observations, n(A(v)) is the number of observation with
the value v of the attribute and n;(A(v)) is the number of observations with the
value v of the attribute and with the value ¢ of the target attribute. For the
continuous attributes (for them the direct entropy computation is not desirable)
the discretization of the values was used instead. We then chose a number k
and the attribute metadata of k£ most significant attributes were added to the
propositional representation of the datasets. We specifically used entropy (see
Equation 2.5) of the i-th most significant attribute. It is however easy to extend
the approach with the arbitrary attribute metadata.

Alternatively, in [60] two measures of association are used, one for continuous
attributes and one for discrete ones. For continuous attributes, the absolute value
of the correlation coefficient is used, for discrete attributes, the Goodman and
Kruskal’s tau [6] coefficient also known as the concentration coefficient is used.
The problem of the various number of attributes is dealt with by introducing a
histogram of these attributes with the fixed number of bins.

Both the approaches above are merely pushing the problem further. As we
have chosen fixed number of most significant attributes or bins, what happens if
we have to deal with datasets with billion times more attributes than the number
of bins?

Kalousis et al. [59] solve the problem of varying attributes by defining a
distance measure on the attribute space. The dataset distance is then simi-
lar to the distances used in clustering — either Single Linkage Based Similarity
(similarity taken is the maximum similarity between the attributes) or Average
Linkage Based Similarity is used. Attribute similarity is calculated as 1 minus
the Manhattan distance defined on the attribute metadata. This can handle
the non-propositional approach and the authors demonstrated that such distance
function is useful in metalearning. However, we can still imagine datasets that are
very different but whose Single Linkage Based Similarity is high (one common
attribute, many very different attributes) and similar datasets whose Average
Linkage Based Similarity is low (many similar attributes but distant from oth-
ers). A possible explanation is that the Single Linkage Based Distance does not
necessarily produce a metric:

49

Observation 1. Given arbitrary metric § on the attribute space whose cardinality
18 at least two there exist datasets a,b,c such that the distance between datasets
A induced by Single Linkage Clustering

A(a,b) = min (d(e;,€)))

L,ei€a,j,e;€b
18 not a metric on the dataset space.

Proof. The attribute space has at least two distinct elements, we will call them
e1,ez. Let a ={e1}, b ={es} and ¢ = {e1,e2}. Then

Ala,c) + A(b,c) =0+ 0 < A(a,b),
which breaks the triangle inequality. O]

We can also find the similar counterexample for the Average Linkage Based
Distance:

Observation 2. Given arbitrary metric on the attribute space whose cardinality
1s at least two there exist datasets a,b such that the distance between datasets A
induced by the Average Linkage Clustering

Ala, |aHb[Z Z d(es€5))

i,e;€a j,e;€b
18 not a metric on the dataset space.

Proof. The attribute space has at least two distinct elements, we will call them
e1,e9. Let a =b = {e1,es}. Then

1 1
d(a,b) = Z(O +d(e1,e0) +0+d(eer)) = 55(61,62) >0,

which breaks the coincidence axiom. O

4.3 Distance Using Attributes

As discussed in the beginning of this chapter, ability to process unstructured data
can significantly improve the tasks defined on those data as we can use bigger
palette of approaches. Unfortunately, the methods proposed on the strings and
graph spaces are not out of the box applicable to the space of datasets but rather
can serve as an inspiration. For example, the Smith-Waterman algorithm looks
interesting, but it was designed with the fact that the order of letter matters in
mind. With the datasets, it should not matter if we permutate the attribute.
The target function should be learnable all the same as we can preprocess the
attributes by inverse permutation. The non-propositional approaches reviewed
in the previous section are either losing information or lacking properties usually
important for the distance functions.

Authors of [125] review possible ways of using the distance measures defined
on X in order to define distance measures on the power set 2% of X. The most
promising is the distance measure defined as follows:

DA B) = in (3 dlaxby) + (B R(A) + A\ RABI)G), (49)
(ak,bj)ER;

50

where ¢ is a distance between elements of some space S, A, B C S, R; is a match-
ing (each element at most once) on A x B, and M is a maximum distance of ¢
on S. D); can be also viewed as a distance that finds optimal mapping between
elements of A, B and can decide to omit some elements by getting % penalty.
Authors of [100] prove that the Dy is a metric if 0 is a metric. Furthermore,
D, is computable in the polynomial time. We can treat datasets as composed
by attributes and use Dj; by defining a distance ¢ on attribute space. However,
there are still reasons that render this approach impractical for metalearning. The
distance measure D), requires M. The computation of M may not be feasible
or not known in advance, especially if the attribute distance was not normal-
ized. Additionally, some attributes may be more significant than the others. Not
matching some insignificant attributes because of fewer attributes in the second
dataset (for example with low entropy for predicting the target attribute) will still
result in % distance. Also, algorithm can decide not to match some attributes
with high difference and get only % penalty. For example, when comparing two
datasets with single attributes, the results will be the same if the attributes are
really distant (M) or somewhat distant (4f). In both cases the Dy, will return
M

5 -
In this section, we propose several approaches that can handle the non-

propositional dataset representations without any trade-offs. We have already
published their descriptions and experiments validating their asset in [112, 113,
110, 114, 111]. Each one is based on the idea of attribute aligning where the order
of attributes is not important. By supplying a function measuring the distance
between individual attributes (like in [59]), we could try to align the attributes
in the way that minimizes the sum of distances between aligned attributes. To
avoid confusion, we will always denote attribute distance measure as 6. The name
was not chosen randomly. The upper case A — as always — will denote the final
dataset distance measure. As we will see, we will piece A out of smaller ds, hence
the name.

Although we are aiming to handle the non-propositional approach, we will
start with propositional situation to describe the approach, and extend it later
to handle varying amount of attributes. For now let us suppose that there is
the same number of attributes in every dataset (and hence the same number of
attribute metafeatures).

Definition 27. Given a distance function between attributes §, two datasets a,b
and a bijection f between the attributes of a,b we define the dataset distance
mduced by the bijection between the datasets as:

n

Ag(a,b) = (d(ax, flar))), (4.10)

k=1

where ay, is the k-th attribute of a and f(ag) corresponding attribute in dataset b
given by the bijection f. We will sometimes refer to the Ay as the cost of f.

We would like to match the attributes as best as possible to get the lowest
possible distance A, so optimally we are looking for f*:

J* = argmin (Ay). (4.11)

51

We will denote f* as an optimal alignment.
From this, the general distance between datasets can be derived:

A(a,b) = Ap(a,b). (4.12)

Now suppose that the number of attributes is different. We transform this
case to the previous one by adding dummy attributes into the dataset with less
attributes. We can think of a dummy attribute in a similar way as of a gap
penalty in the Smith-Waterman algorithm. There are two approaches how to do
this. Suppose A is a space of attributes. Either dummy € A or dummy ¢ A. In
the former case, nothing is needed, as the distance function between attributes
is already defined if the dummy attribute is on the input. In the latter case,
it is needed to extend the distance function by defining the distance between a
regular attribute and the dummy one. In the further text, we will refer to the
attribute space with the dummy attribute as to the extended attribute space. If
it is clear from the context, we will sometimes refer to extended attribute space
simply as attribute space. Dummy attribute will be referred to as dummy or
specifically to dummy, if the dummy attribute is already in the attribute space
and dummy, if the attribute is newly created. We will discuss the pros and cons
of these approaches as well as how to choose the right attribute for the dummy
one, and how to define the distance between a regular attribute and a dummy
one respectively in Section 4.5.

From now on, we can suppose that if we are aligning two datasets that they
have the same number of attributes, and that one dataset was to some extent
enriched with some number of dummy attributes, so the amount of attributes
matches.

There are n! bijections from a to b. It is costly to enumerate them, so it is
desired to eliminate some of the bijections in advance. In this work, we came
up with two approaches that vary in the generality of the attribute distance and
computational complexity.

Definition 28. Evaluation function o is a function mapping attributes to R.

In our first approach, we suppose we have o (for example, number of distinct
values), and the attribute distance is defined as follows:

o(ax, flax)) = lo(ar) — o (f(ar))]- (4.13)

Theorem 11. Given datasets a,b and a bijection f, if we sort a and b by o in
the ascending order obtaining a',b" we can find f" such that

Af/(a’, b/) = Af(a, b) (4.14)
Proof. Let 7., m, be the permutations used to sort a,b. Define [’ as follows:
f(ai) = m(f (g ' (a))))- (4.15)

We have to prove that for every k there is j such that [0 (ax) —o(f(ar))| = |o(a})—
o(f'(a}))]. As a candidate for j we take such j that a) = 7,(ax). Such j exists
and it is unique as 7, is a permutation. Observe that sorting permutation does

52

@ o(A;)=1 @ o(A,)=3 @ o(A;)=8 @ o(A,)=8
\ | | |

v v v \j
@cr(Bl):l @c(BZkS @0(Bg)=8 @0(54)=9

Figure 4.3: Example of the identity alignment. If the attributes are sorted by o,
each attribute is aligned to the attribute with the same order.

not affect 0. Therefore o(a}) = o(ma(ax)) = o(ay). Directly from the observation
the following equation can be derived:

o(f'(a))) = o(m(f(mg"(a})))) = o(f(7 " (d}))) = o(f(ar)), (4.16)
which concludes the proof as the j is unique and it always exists. O]

Corollary 2. We can exclusively use this canonical representation and without
the loss of generality, suppose that a,b are sorted by o.

Definition 29. We say that the bijection f is the identity alignment if Vi, a; €
a: f(a;) =0b;.
The example of the identity alignment is shown in Figure 4.3.

Theorem 12. Identity alignment is optimal.

Proof. Given the bijection f that is not an identity alignment and is optimal,
we will show that it can be either transformed to identity alignment or it is not
optimal, which leads to a contradiction. Find the lowest ¢ such that f(a;) # b;.
Such ¢ exists, because f is not an identity alignment. We mark the index of
attribute f(a;) as z. Because f is a bijection, we can find j such that f~1(b;) = a;.
Take a bijection f’ that is the same as f with the exception of arguments ¢ and
z:

f(ai) = bi,
f(a;) =b.. (4.17)

In other words, f’ is more similar to identity alignment than f. The whole
transformation is shown in Figure 4.4.
We have to verify that:

dy

v

(4.18)

dy.
n n

> (lofar) = o(fla)) = Y (lo(ar) = o f'(ax)))- (4.19)

k=1 k=1

The dy and d) differs only in positions i and j. Thus we can simplify the
equation to:

> (ola) =o(fla)l) = D (lo(ar) — o (f'(ar)))- (4.20)

ke, ke,

93

o(A)=p QG(AJ:O QG(AJ')=F)

—_ | |

_// v v
QG(BH eo(sz)w QO(B»H @owi)n

Figure 4.4: Example of transformation. Find attributes that falsify identity align-
ment and switch them. At least one less pair of attributes now falsifies the identity
alignment.

|o(a:) = o (b:)] + lo(a;) — o (bi)| = |o(ai) — o (bi)| + |o(a;) —o(bz)]. (4.21)

If we denote values o(a;),o(a;), o(b;),0(b,) as o, p, ¢, r, we can simplify the equa-
tion further:
lo=rl+p—dl =lo—q/+Ip—r| (4.22)

Because we use sorted canonical representation and because of the fact we have
taken the lowest ¢ possible we know that:

0 <p, (4.23)

q=sT. (4.24)

There are 6 possible orderings of o, p, ¢, that fulfils these two equations. The
enumeration of these 6 cases is in Table 4.1.

Table 4.1: Equation 4.22 holds for every possible case.

ORDER |r —o| + g — p| lg — o] + |r — p| >
opar | [g—r|+2x*|g—pl+|p—o| | lg—r[+2%|¢g—p|l+|p—of | =
oqpr | [t —pl+2x|q—p|l+|g— o lg —o| + |r — p| >
oqrp | 2% |g —r[+|g—of + |r —p| lqg —o| + |r —p| >
qopr | |r—p|l+]g—o|+2*|p—o lg — o + |r — p| >
qorp | 2% |r —o| +[g —of + |r — p| lg —o| + |r — p| >
qrop | 2x|r—o|+[g—r[+lp—o| | 2x|r—o|+lg—r|+[p—0o| | =

In every presented case, the f’ is at least as good as f, and the position 4
no longer falsifies the identity alignment. If f’ is still not the identity alignment,
we can repeat the previous step until we get an identity alignment because the
number of attributes is finite. m

Corollary 3. Based on Theorem 12, a more efficient algorithm for the attribute
alignment can be derived with the complexity of alignment equal to O(nlog(n)),
where n is the number of attributes.

The pseudocode is outlined in Algorithm 9.

From the algorithm, the total computational complexity can be inferred. The
sorting can be done in O(nlog(n)), where n is the number of attributes. The
enumeration can be done in O(n), the evaluation of o for every attribute takes

o4

Algorithm 9: Attribute alignment

// Pseudocode for an attribute alignment algorithm with
constrained attribute distance function running in
O(nlog(n)).

input :a « List of attributes

input :b <« List of attributes

input : o < Attribute evaluation function: A — R

output: Distance between a and b

Add dummy attributes into the list with less attributes;
Sort both list of attributes by o;
totalDistance < 0;
for i <— 0 to i < len(a) do
‘ totalDistance < |o(ali]) — o (bli])];
end
return totalDistance;

N 0 kW

O(ne(o)) steps, where ¢(o) is a cost of calling the evaluation function for a single
attribute. Therefore, the total complexity of Algorithm 9 is O(n(log(n) + c(0))).

In our second approach, we allow arbitrary function § measuring the distance
between two attributes. Given two datasets a,b and attribute distance function
0, a distance matrix M can be easily built up:

Mi,j = 5(&1-, b]) (425)

We can see the distance matrix M as the cost function and the aligning of at-
tributes as an assignment, which leads to an assignment problem. The assignment
problem is well known. The polynomial algorithm — in the graph theory known
as the Hungarian algorithm — solving the assignment problem in O(n*) was de-
scribed in [70]. The O(n?) implementation of the Hungarian algorithm was later
published in [36]. Before the algorithm itself we will state few definitions needed.
Given a graph G = (V, E):

Definition 30. A matching is a subset M C E such that Yv € V' at most one
edge in M 1is incident upon V.

Definition 31. A perfect matching is an M in which every vertex is adjacent to
some edge in M.

Definition 32. A vertex labelling is a functionl:V — R.

Definition 33. Verter v is matched if it is an endpoint of edge in M, otherwise
it s free.

Definition 34. The equality graph with the respect to the labelling | is G =
(V. Ey), where By = {(z,y)|z,y € V,l(x) + l(y) = w(z,y)}.

Definition 35. A path is alternating if its edges alternate between M and E\ M.

Definition 36. An alternating path is augmenting if both endpoints are free.

95

Definition 37. Define neighbour of u € V and set S C 'V to be:
Ni(u) =v: (u,v) € Ej, Ni(S) = UyesNi(u). (4.26)

Given the definitions above, the pseudocode for the Hungarian algorithm can
be outlined, as per Algorithm 10.

Algorithm 10: Hungarian algorithm

// Pseudocode of the Hungarian Algorithm solving assignment
problem in O(n?).

input : (X UY, F) < Weighted bipartite graph

output: Minimal assignment

1 Generate initial labelling [and matching M in Fj. ;
2 while M is not perfect do
3 u <— pick free vertex € X;
4 S <« {u};
5 T+ {};
6 if Ny(S) =T then
7 update labels (forcing N;(S) # T ;
8 a; mingegyer(l(z) + U(y) — w(z,y));
[(v) —a; ifves,
9 U'(v) <= S l(v) +a; ifveT,

[(v); otherwise.

10 end

11 if N;(S) # T then

12 pick y € Ni(S) —T;

13 If y free, u — y is augmenting path. Augment M and go to 2;
14 If y matched, say to z, extend alternating tree:

15 S+ SuUzT<+ TUy. Go to 6;

16 end

17 end

18 return minimalAssignment;

We can use this algorithm to find the best assignment of the attributes. From
the assignment the total distance between attributes can be computed as the sum
of individual distances defined by the alignment as already seen in Algorithm 9. If
0 was defined in the same manner as in the first approach, we would get the same
result (Algorithm 9 is a special case of Algorithm 12). The difference is that this
version allows for an arbitrary function measuring distance between attributes as
an input.

For the sake of generalization, we will define I Attribute Distance interface that
will represent such attribute distance. This interface is outlined in Algorithm 11.
The total complexity of the algorithm depends on the complexity of this function
and is O(n® 4+ n?c(n)), where n is the number of attributes and o(n) is the
complexity of the attribute distance function. The whole algorithm that uses the
Hungarian Algorithm and [AttributeDitance is outlined in Algorithm 12.

It is arguable whether we should come with the distance function between
attributes that covers all cases including the distance between categorical and

56

Algorithm 11: [Attribute Distance: Dataset distance interface

// Interface for measuring distance between two attributes.
input : a < First attribute

input : b < Second attribute

output: d € R,d is an attribute distance ¢ between a, b.

Algorithm 12: Attribute assignment

// Pseudocode for an attribute alignment algorithm using
Hungarian Algorithm for the alignment.

input : a < First list of attributes

input : b < Second list of attributes

input : 9 < [AttributeDistance Function

output: Distance between a and b

Add dummy attributes into the list with less attributes;
MTi, j] <= d(ald], bl]);
assignments <— HungarianAlgorithm (M);
totalDistance < 0;
for i < 0 to i < len(a) do
| totalDistance < M|i][assignments[i]];
end
return totalDistance;

® N OO oA W N =

numerical attribute. We suppose that the attribute metafeatures of categorical
and numerical attributes will vary, thus making it difficult to specify the distance.
To solve this problem, the distance could be split into two parts: the distance
between numerical attributes and the distance between categorical attributes.
The final distance would be then the total of the sub-distances. To generalize
this idea, we could go a step further and define selectors over the list of attributes.
The selector would be a function accepting a list of attributes and returning a
subset of the list. The selector interface is described in the I SelectorInter face
(Algorithm 13). Specific examples conforming to this ISelectorInter face are
Algorithms 14 (numerical selector) and 15 (categorical selector). An attribute
distance function could then be provided for each selector. Optionally, weights
could be defined for each selector describing the importance of such selector (e.g.
categorical attributes could be weighted more than numerical). This is outlined
in Algorithm 16. To illustrate how to invoke this algorithm for the example
above (sum of distances of categorical and numerical attributes), we would set
the selectors to just defined ones:

[Numerical AttributesSelector, Categorical AttributesSelector].

The attribute distance between categorical attributes and numerical attributes
would be needed to invoke the whole algorithm. Also, note that Algorithm 16 is
a generalization of Algorithm 12. To obtain the equal results we have to invoke
Algorithm 16 with the single distance, selector that filters nothing and weight
1. This will allows us to reuse some theorems that are valid for Algorithm 10.
We can also use the idea with selectors for the Attribute Alignment algorithm

o7

(Algorithm 9). We will call the modified Attribute Alignment with selectors
as Combined Attribute Alignment. However, we will not explicitly provide the
outline of this algorithm as it is just Algorithm 16 with the Attribute Alignment
algorithms instead of Attribute Assignment.

The last thing remaining is to make the assignments algorithms compatible
with the I DatasetDistance. The first accepts two lists of attributes, the latter
two datasets. As the transformation of dataset is trivial and more of a technical-
ity we will treat the dataset to be implicitly convertible to the list of attributes
(but not vice-versa) by just extracting all the attributes out of a dataset. This
will make all assignment type algorithms compatible with I Dataset Distance in-
terface.

Algorithm 13: [SelectorInter face: Interface for selecting subset of at-
tributes.

// Interface for selecting subset of attributes.

input : a < List of attributes

output: d,a’ Ca

Algorithm 14: Numerical AttributesSelector: 1SelectorInter face for se-
lecting numerical attributes

// Selector for selecting numerical attributes.
input : a < List of attributes
output: d,d C a.

1 return a.where(z : z is Numerical);

Algorithm 15: Categorical AttributesSelector: ISelectorInter face for se-
lecting numerical attributes

// Selector for selecting categorical attributes.
input : a < List of attributes
output: d,d C a.

1 return a.where(x : z is Categorical);

4.4 Examples

In this section, we will demonstrate the use of our algorithms. Let us start with
Algorithm 9. Suppose that we have two datasets a and b. The possible values of
individual attributes are shown in Tables 4.2 and 4.3.

Let us define ¢ as the number of categories in each attribute. We will extend
the attribute space using dummy,. To allow that, we need to define distance
between a regular attribute and dummy,. It suffices to define o of dummy,
attribute. In our case we will set this value to 0. Add one dummy,, attribute to
the dataset b. Now the number of attributes is the same. Sort both datasets by

58

Algorithm 16: Combined Attribute Assignment

© 0 N O ok W Ny =

// Pseudocode for distance measure combining multiple
attribute assignments for each selectors.

input
input
input
input
input

: a < First list of attributes

: b < Second list of attributes

: selectors «— List of selectors

: w < List of weights

: distanceMeasures <— List of I AttributeDistance functions

output: Distance between a and b

totalDistance < 0;
for i < 0 to i < len(selectors) do

end

a’ < selectors[i](a);

b+ selectors[i](b);

d < distanceMeasures|i[;

Add dummy attributes into a’ or b’ - whichever has less attributes;
totalDistance <— wli|xattributeAssignment(a’, V', §);

return totalDistance;

Table 4.2: Possible values of dataset a.

Attl Att2 Att3

Blue Small | Common
White | Medium Rare

Red Huge

Pink

Table 4.3: Possible values of dataset b.

Attl Att2

Wool Slow
Cotton Fast

Straw | Faster than light
Bamboo
Seaweed

59

Dataset a Dataset b
{common, rare} {}
|| —p |
o(A)=2 o(A,)=0
— \. U
— E——
{small,medium,huge} - {sln::;Laﬁtg,;.atiter
olA;)=2 o(A;)=3
— —
n {blue,white,red,pink} - 5L {g;;tggfgzg;;?;}”
0(A3)=4 G'(A3)=5

Figure 4.5: Method one - attributes of datasets a and b were aligned according
to their o.

0. The results are shown in Figure 4.5. Now enumerate every aligned pair and
sum up the differences between sigma values of each pair. The total distance is
2—0[+13—3]+1]4—5|=24+0+1=3.

We will use the same distance measure and the same datasets to demonstrate
Algorithm 10. Let us define I Attribute Distance function by building a distance
matrix. The values of the distance matrix are in Table 4.4.

Table 4.4: Distance matrix of the attributes of datasets a and b. The matrix will
serve as an input of the Hungarian algorithm.

a- Attl | a - Att2 | a - Att3
b- Attl 1 2 3
b - Att2 1 0 1
b - Att3 (dummy) 4 3 2

By applying the Hungarian algorithm, we obtain the optimal alignment. The
optimal alignment can be found in Table 4.5.

Algorithm 16 adds selectors to the process. Imagine we have dataset ¢ defined
in Table 4.6. Suppose we have two selectors — one for numerical and one for
categorical attributes. New datasets emerge from the input dataset according
to the selectors. In the case of dataset ¢ processed by the selectors, we will get
two datasets. The first consisting solely of Attl for the numerical selector and

Table 4.5: Results of application of the Hungarian algorithm. The optimal align-
ment is coloured.

a- Attl | a - Att2 | a - Att3
b- Attl 1 2 3
b- Att2 1 0 1
b - Att3 (dummy) 4 3 2

60

the second consisting solely of Att2 for the categorical selector. This gives us
a new assignment task for every selector. Such tasks are processed by attribute
assignment algorithm (Algorithm 10) demonstrated above. The algorithm finishes
by weighting the inputs for each assignment result according to the given weights.

Table 4.6: Possible values of dataset c.

Attl Att2
1 Good
4.5 | Better
3.7 Best
5
2

Complexity Concerns

The complexity of the assignment may be of a concern — even though Hungarian
algorithm is polynomial, its power can be too high. We do not expect this to be
the case very often, since the model training usually takes quite a long time (for
example, the problem of training the Neural Network with 3 hidden neurons is
an NP-Complete problem [15]). Polynomial complexity for the recommendation
is still just a negligible part of the whole process that can significantly reduce
time of the training phase. Still, we would like to address the issue in case the
complexity would be of concern. The complexities above are related to quality
assessment of some algorithm. This is relevant when training new models, as the
model assessment is part of the training. In the case of recommendation system
being in production and new dataset arrives, the dataset distance is not needed
for every pair of datasets but rather for the input and every other dataset. In case
of the attribute assignment, the main burden lies in the Hungarian Algorithm.
This can be mimicked by using approximate algorithms to solve the assignment
problem:

Definition 38. Let w(M) denote the weight of a matching in G, and M* a
minimum-cost perfect matching in G. We call a perfect matching M c-approximate,
fore>1, if w(M) < cw(M*).

In case the underlying matrix for assignment is a metric, we can use results
of [5]. For any o > 0, the authors present an algorithm that, in

O(n** lognlog®(1/0))

time, computes a O(1/0%)-approximate matching of G, where a = log; 2 ~ 0.631.

4.5 Theoretical Properties

In this section, we will explore interesting properties of the algorithms proposed
in the previous section. We will show how the Assignments algorithm preserves
metric properties, whether the same holds in opposite directions, and also we will

61

_ JOION
00
1
0000
Q@000

Figure 4.6: Extending optimal assignment by row of dummy attributes without
changing the cost.

be arguing about the best way of extending an attribute space with a dummy
attribute.

Before we proceed to exploring the theoretical properties, we have to address
a technicality. Consider the following situation. If the dummy, is taken directly
from the attribute space, it may theoretically happen that dummy, will be com-
pared to the equal attribute that was not dummy. However, to have at least a
hope of obtaining a metric, we have to consider the case where the dataset with
some attributes equal to dummy, will be compared to almost the same dataset
except that it will be missing the dummy, attributes. The metric would require
the distance between these datasets to be a non-zero. We have two ways to over-
come this. We can also consider datasets equal if their attribute metadata are
equal except any number of dummy, like attributes. Another possibility is to
modify the algorithm to distinguish between an artificial dummy, attribute and
equal regular one and output some small non-negative number € instead. At the
same time, we would return e+ §(z, y) for non-matching input. In here we will use
the former approach, as it will not clutter the text. However, we do not expect
that this situation will happen often (or happen at all) as the attribute space will
usually be of infinite size.

Theorem 13. Let a, b be lists of attributes, f optimal alignment between a and
b. Attribute distance measure 6 is a metric on the extended space of attributes.
Let a' = a U {dummy,} and ' = bU {dummys}, then f" defined as

o) = {f(fﬁ); if v €a,

dummys; otherwise.

is an optimal alignment between a’ and b' with the same cost as f. This assignment
extension is depicted in Figure 4.6.

Proof. Suppose f’is not an optimal assignment between a’ and b and some f* is.
Observe that cost of f’ is the same as cost of f because 0(dummy,, dummys,) = 0.
Choose z so that f*(dummy,) = z. If z is a dummy attribute, we can modify
f* to f* by swapping z and dummys. Therefore f™*(dummy,) = dummy,. As
both z and dummysy are dummy attributes, this will not affect the cost of f*. If
f* has lower cost than f’ (and thus consequently f), we can improve original f,
which is a contradiction. If it has the same cost then f’ must have been optimal
which is also the contradiction.

62

The remaining case is that z is not dummy. Let k be f*~!(dummys,). Modify
f* as follows:
z; ifx =k,
f*(x) = < dummys; if £ = dummuy,,

f*(x); otherwise.

Let us examine cost of f*. We want to prove that this modification of f* to f"™*
did not increase the cost. As everything is the same except dummy, and k, we
need to investigate only those. We want to prove that

d(k, 2) + d(dummyy, dummys) < §(k, dummys) + 6(dummyy, 2).
Using the coincidence axiom the above is equivalent to
d(k, z) < d(k, dummys) + 6(dummyy, z)

as 0(dummy, dummys) = 0. This is of course true because it is an instance of
triangle inequality.

Now we can make the same argument we did with the z being a dummy
attribute: If f* has lower cost than f’ (and thus consequently f), we can improve
original f, which is a contradiction. If it has the same cost then f’ must have
been optimal, which is also the contradiction. In all cases, f’ must have been
optimal alignment. O]

By applying this theorem multiple times, we can add an arbitrary number of
dummy attributes without changing the optimality of alignment.

Theorem 14. Let a, b are list of attributes, 0 is a metric on the extended space of
attributes. Then Algorithm 12 preserves all metric axioms and resulting distance
A on the dataset space is a metric.

Proof. We will split the proof according to the different metric axioms.

1. We will begin with proving the non-negativity axiom. Since J is a metric,
it satisfies non negativity axiom. The cost of the minimal assignment must
be non-negative as well.

2. For the coincidence axiom we have to prove both direction of the equiva-
lence:

o =:If A(z,y) =0, the cost of minimal assignment was 0. As 0 satisfies
non-negativity, it must be the case that all attributes were equal since
0 also satisfies coincidence axiom. As all attributes were equal, the x
and y must also be equal (up to permutation).

e =: If z = y, all attributes must be equal (up to a permutation).
Optimal solution is for every attribute assign the equal attribute. As
0 satisfies coincidence and non-negativity, this optimal solution cost is

0.

63

3. The proof of the symmetry axiom is as follows: given two datasets a and
b, the a and b are either of the same cardinality or the dataset with fewer
attributes is extended by the appropriate number of dummy attributes,
so the cardinalities of the datasets match. This is done regardless of the
order of the arguments. Therefore, for the rest of this part, we can assume
that the dataset have the same number of attributes. Hungarian algorithm
would find an optimal alignment f — a bijection from a to b. If we would
switch the arguments, algorithm would find the optimal bijection g from
b to a. However, in both cases the algorithm would optimize the same
thing, therefore the cost(f) = cost(g), which would be the output of the
algorithms regardless of their order.

4. The remaining axiom to prove is the triangle inequality axiom. Let z,y
and z be arbitrary datasets, 6 metric on the attribute space and A dataset
distance measure produced by the algorithm. We want to prove that
A(z,y) < Az, z) + A(z,y). The algorithm would produce optimal assign-
ments f, g and h between 2/, ¢/, x, z and z, y respectively. We can reformu-
late our goal to proving that cost(f) < cost(g) + cost(h). If the cardinality
of the datasets would not match the corresponding amount of dummy at-
tributes would be added to the datasets for the sake of the assignments.
Now we will take maximum cardinality of the domains of the assignments:

Maxeqrq = max(card(domain(f), card(domain(g), card(domain(h)).

We will now extend the datasets by adding extra dummy attributes so
the number of attributes matches the maz...q. We get datasets 2.y’ and
z'. Corresponding new optimal assignments would be f’,¢" and h'. We
will argue that we did not change the costs of the assignments. If needed,
algorithm would first add the dummy attributes to get the original assign-
ments. If the domain does not match the max.,,q we could use Theorem
13. With its help we could add the desired amount of dummy attributes
finally reaching to extended datasets and another optimal assignment with

the same cost as the original one. Note that the following now holds:

card(domain(f’) = card(domain(g') = card(domain(h’)).

We proceed with creating the suboptimal assignment f° from domain(f”)
to range(f’) by function composition of ¢' and h' — f© = h' o ¢’. We can
do that as domain(f’) = domain(g’) and range(f’) = range(h’). As f’ is
optimal we get

len(z’

)
cost(f) = cost (/") < cost(f*) = 3 o(alil, (1))

According to the fact that ¢ satisfies triangle inequality and the fact that
fe=hog we get

len(z’) len(z')

Q
=

0000 000
0000 000
0000

..’. 0000
0000 0000
o

0000

Figure 4.7: Proof of Theorem 14 — metric axiom 4 is preserved. Alignment f is
extended and then reshuffled so the triangle inequality can be applied. Yellow
nodes are original attributes of dataset x, green nodes are attributes of dataset y
and blue of dataset z. Red nodes are dummy attributes used for extending the
datasets so the corresponding assignments are of the same cardinality.

As range(g’) = domain(h’) and every assignment function is a bijection,
summing over elements of 2’ is the same as summing over the permutation
of elements of 2’ given by assignments, we can conclude the proof:

len(z’

)
(0[], g'(x[d])) + &g (w[i]), 1 (g (x[i])))) = cost(g") + cost(h')

=1
= cost(g) + cost(h).

The whole proof of the triangle inequality is illustrated in Figure 4.7.
As all metric axioms are proven, we can conclude the proof. O
The previous theorem also holds for Algorithm 16:

Corollary 4. Let a, b are lists of attributes, {01,...,0,} are metrics on the
extended space of attributes, {s1,...,S,} are selectors, {wn,...,w,} are positive
weights of each selector. Then Algorithm 16 preserves all metric axioms and
resulting distance on the dataset space is a metric.

Proof. Follows from the previous theorem and the fact that sum of metrics with
positive weights is also a metric (Corollary 1). O

It may be interesting to see how to extend attribute space by an artificial
dummy, attribute. A following theorem gives us some clue:

65

k‘k
@ .. ©

Figure 4.8: Part of proof of Theorem 15. Constant k representing a distance
between a regular and an artificial dummy,, attribute needs to be big enough in
order not to create the shortcut between the most distant points.

Theorem 15. Let &' be a metric on a non-empty attribute space A. Let § be a
distance derived from 0" by extending A by artificial dummy, attribute. We set
the §(dummy,,, x) and §(x, dummy,) to some constant k Vx € A. Finally, we set
d(dummyy,, dummy,) = 0. Let ey = maxy yea 0(z,y). If 6 is a metric on the

extended attribute space then 0 < k and 5”5“” < k.

Proof. 1f k < 0 then §(dummy,,,) < 0, which would contradict non-negativity. If
k = 0 then 6(dummy,, x) = 0 and for every = € A is x # dummy,,, which contra-
dicts coincidence axiom. The idea of the remaining part is as follows: we cannot
short-cut our way when going on the longest way in the space by going through
dummy,, attribute which has the constant distance from every other point in the
space — this is depicted in Figure 4.8. Find zg, yo so that §(xo, ¥o) = dmae- From
triangle inequality we get Vo,y € A : §(z,y) < d(z, dummy,) + d(dummy,,y).
All the more true that §(zo,v0) < 0(zo, dummy,,) + 6(dummy,,,yo). As Vz €
A o(dummyy,, z) = 6(z, dummy,) = k we get Oma, < 2k which is equivalent to
omaz < f.. O
5 =

If we want to have metric attribute distance, and at the same time, a constant
distance from artificial dummy,, attributes, we have to choose this constant from
quite large values. Doing this can create unwanted side affects. The penalty for
adding dummy,, attributes can become the most significant part of the distance,
especially if the number of attributes varies by large amounts. It can be argued
that if some attributes are not very relevant for the prediction of the target (for
example attributes with low entropy), the two datasets should not differ too much
if one dataset is missing such not very relevant attributes. Furthermore, in some
cases it may be impossible to compute 6,4, or to learn the value in advance.

We get no such problems if we use the element of the attribute space itself, if
we already made sure that the attribute distance is a metric. Using the dummy,
attribute from the space will not break the metric axioms (if the attribute distance
J is a metric).

Theorem 14 is also valid in the opposite direction, as shown in the following
theorem.

Theorem 16. Let a, b are list of attributes, 0 is a distance between attributes.
If A is a distance over dataset space produced by Algorithm 12 and A is a metric
on the dataset space, then J is a metric on the extended attribute space A.

Proof. Again, we will split the proof according to the different metric axioms.

66

1. We will begin with proving the non-negativity axiom. For the sake of con-
tradiction, let us suppose that ¢ does not satisfy non-negativity axiom. It
must be the case that 3z, y € A so d(x,y) < 0. We define datasets X and
Y consisting solely of x and y respectively. There is only a single assign-
ment f available — mapping x to y and is therefore optimal. Algorithm 12
will output the cost(f): A(X,Y) S, 6(X[i], f(X[i])) = d(z,y). We get a
contradiction as A(X,Y) > 0 and 6(z,y) < 0.

2. For the coincidence axiom we have to prove both direction of the equiva-
lence:

o =: If 6(z,y) = 0Nz # y, we define datasets X and Y consist-
ing solely of x and y respectively. X # Y and as A is a metric
we get A(X,Y) > 0. As card(X) = card(Y) = 1 there is only
a single assignment f available and must be the optimal alignment
returned by Algorithm 10. The cost outputted by Algorithm 12 is
AX, V)L 0(XTi], f(X[i])) = 6(x,y) = 0, which is a contradiction.

o =:Ifz=yAd(z,y) > 0 we define datasets X and Y consisting solely
of x. X =Y and as A is a metric we get A(X,Y) =0. As card(X) =
card(Y') = 1 there is only a single assignment f available and must be
the optimal alignment used by Algorithm 12. The cost outputted by
the algorithm is A(X,Y) Y, 6(X[i], f(X[i])) = 6(z,y) > 0, which is

a contradiction.

3. The proof ot the symmetry axiom is as follows. For the sake of contradic-
tion, let us assume that ¢ does not satisfy symmetry axiom. It must be the
case that Jz,y € A so §(x,y) # d(y,x). We will define datasets X and Y
consisting solely of x and y respectively. There is only a single assignment f
from X to Y available — mapping x to y and is therefore optimal. Similarly,
there is only a single assignment g from Y to X available — mapping y to =
and is therefore optimal. Algorithm 12 will output the cost(f):

1

AX,Y) Y O(X[, F(XT) = b(x,y).

i=1
The cost(g) is computed analogically:

1

A(Y, X)) 6(YTi,g(YTi) = 6(y.).

i=1

We get a contradiction. As A satisfies symmetry axiom we get A(X,Y) =
A(Y, X). However, at the same time we have A(X,Y) # A(Y, X) from

assumptions.

4. The remaining axiom to prove is the triangle inequality axiom. For the sake
of contradiction, let us suppose that does not satisfy triangle inequality.
It must be the case that Jz,y,z € A so d(z,y) > 6(x,2) + 6(z,z). We
will define datasets X, Y and Z consisting solely of z,y and z respectively.
There is only a single assignment f from X to Y available — mapping x to

67

y and is therefore optimal. Similarly, there is only a single assignment g
from X to Z available and only a single assignment h from Z to Y — both
are also optimal. Algorithm 12 will output the cost(f):

1

A(X,Y) Y 8(X[d, f(X[]) = 8(x,y)-

i=1
Again, the cost(g) and cost(h) are computed analogically:

1

A(X, 2) Y 8(X[i), 9(X[d)) = 6(x, 2),

i=1

A(ZY) 25(2[@']7 h(Z[i])) = 6(z,y)-

As A satisfies triangle inequality we have A(X,Y) < A(X,Z) + A(Z,Y).
At the same time we have A(X,Y) > A(X, Z)+A(Z,Y) from assumptions,
which is a contradiction.

As all metric axioms are proven, we can conclude the proof. O]

Similar theorem holds for Algorithm 16 with addition that all selectors must
be distinct:

Corollary 5. Let a, b are list of attributes, {61, ...,d,} are the distances on the
extended space of attributes, [s1, ..., s,| are selectors, [wy, ..., w,| are weights of
each selector. IfVk,j € {1,...,n} VA" C A : sp(A")(s;(A") = 0 and distance A
produced by Algorithm 16 is a metric on the dataset space then {61,...,6,} are
metrics on the extended attribute space defined by the corresponding selector.

Proof. We can prove the corollary by following the proof of the previous theorem.
When creating dataset of a single element, we now do this for every ¢; that does
not satisfy axiom in question. As selectors are distinct, other selectors will return
() from single element datasets and therefore will output 0 for corresponding
selector distance, as the resulting distance is the sum over all attributes returned
by the selector. O

It is intuitive to have each selector distinct, if we think of a selector in the sense
we have introduced them: selector selects specific attributes (e.g. categorical or
numerical) so more fine grained distance functions can be applied. In this sense
the selectors will be distinct as the subset of categorical attributes is clearly
disjunct to subset of numerical attributes.

We can wonder whether Corollary 5 holds even without the constraint for
distinct selectors.

Observation 3. The requirement for distinct selectors is an essential part of
Corollary 5.

Proof. We will show a counterexample: let attribute space be the set of two
elements: A = ay,as. Let 51,52 be two selectors defined as s;(X) = s9(X) = X.
Let 1 be a metric and d, be a distance function defined as ds(x, y) = —0.101(x, y).

68

o is not a metric on the attribute space as it violates non-negativity — d2(ay, as) =
—0.161(a1,az) < 0. It still satisfies symmetry and coincidence though. We can
combine §; and &9 to form d3: d3(z,y) = §1(x,y)+d2(x,y) = 0.96(z,y). A induced
by 41, d2, and s; = sy is the same as A’ induced by d3. d3 is a metric on the
attribute space according to Theorem 9 as it is positively rescaled d;. Therefore,
it does not matter if we use the combination of d,ds or just d3 alone. Resulting
A is a metric on the dataset space according to Theorem 14 even-though d, is
not a metric on the dataset space. O

Theorems 14, 16 and Corollaries 4 and 5 are useful as they state that if we
can get a metric on the attribute or dataset space, we get other metric on the
other space for free when using attribute aligning. During training, we could
define a function measuring metric similarity on the attribute or dataset samples.
As the samples would usually be just small finite subsets of attribute or datasets
space, we could be wondering whether by optimizing metric on some dataset or
attribute subset, we would get also metric on the other subset as Theorems 14, 16
and Corollaries 4, 5 are valid only for the whole spaces. We will try to formalize
this motion:

Definition 39. Let A be attribute space, let A be the subset of A. Let D be a
dataset space. Then we will denote dataset subspace D as supported by attribute
subspace A if D C D and if Vd € D,Vatt € d : att € A.

In other words, datasets in D are only composed of elements in A. This
definition allow us to investigate metric properties in just the subset of attribute
spaces and conclude properties in supported subspaces of datasets (like training
and testing subset) and vice-versa.

Definition 40. Let A be attribute space, let D be a dataset space and D its subset.
We will call the subset A of A as the source of D if Vatt € A : att € A <—
dd € D : att € d.

In other words, elements of A are just enough in order to create all elements in
D. Similarly to the remark to Definition 39, we can use this definition to reason
about whether properties that are valid for some distance function on some set
of datasets are also valid for the attribute source of these datasets.

If we optimize metric on subset of attributes, we also get metric on all datasets
that can be combined by this subset of attributes when using Algorithm 12:

Theorem 17. Let A be extended space of attributes and A its extended subset,
0 is a metric on A, D space of datasets. Then YD C D, D supported by A:
Algorithm 12 preserves all metric axioms and resulting distance A on the D is a
metric.

Proof. From following the proof of Theorem 14 as the proof does not require
elements outside of D or A and we can replace the whole D by D and A by
A. O

Intuitively, the same works for Algorithm 16.
This enables us to define our algorithms in such a way, that if we can create
a metric on all the attributes in the training and testing samples, we can also

69

Table 4.7: Counterexample that metric on some subspace of datasets does not
imply metric on its source attribute subspace

aq a9 as
ap | 0150150
az | 50 | -5 | 50
as | 50 [50 | 5

guarantee the resulting metric on all supported subsets of the dataset space. The
training and testing datasets must be among them, as they are supported by the
testing and training attributes.

Note that Theorem 17 is valid because there is nothing in the proof of Theo-
rem 14 that would require elements (datasets) outside of the subset D and A. As
for the other direction, when observing the proof of Theorem 16, we use the trick
that we artificially create datasets with a single element. However, such datasets
can be outside of D. We can then wonder whether Theorem 17 is valid also in the
other direction considering Algorithm 12. It is not according to Observation 4.

Observation 4. Let A be space of attributes and ID space of datasets. Let D
be a subset of D and A a metric on D. Let A be the source of D and § be a
distance measure on A, such that Algorithm 12 induces A using 6. Then § is not
necessarily a metric on A.

Proof. We will show a counterexample. Let A be the space of attributes, D be
the subspace of datasets consisting of single dataset d = {a;,as,a3}. Let A =
{a1,a2,a3} C A the source of D. Let A be a metric on D. Since D consists of only
one element, in order d to be a metric all we need to do is set A(d,d) = 0. Let ¢
be attribute distance function on A. We will show that even though A is a metric,
0 does not have necessarily to be a metric. We can define ¢ as shown in Table 4.7.
As there are some negative values, the attribute distance 0 is not a metric. The
optimal alignment f between d and d is coloured and is defined as f(a;) = a;.
The cost(f) = d(ar,ar) + d(az,az) + d(as,az) =0+ 5—5=0= A(d,d). O

Same counterexample can be found when using Algorithm 16 as this algorithm
is a generalization of Algorithm 12, therefore the same argument can be applied.
This implies that we cannot guarantee metric on the subspace of attributes ap-
pearing in the training and testing datasets even if we can guarantee resulting
distance to be a metric on the training and testing dataset subspace.

Another argument favouring a metric for the attributes is that specialized
algorithms can be used for the assignment such as [5].

4.6 Distance Using Attribute Metadata

In Section 3.2, we discussed distance based on a vector of global metafeatures.
We can analogically define a distance on the attribute space or subspace defined
by some selector. This can be then the I Attribute Distance input for Algorithms
12 and 16.

Attribute_metafeatures is a property returning real value vector of attribute
metafeatures for a given attribute. This property does not have to be necessarily

70

Algorithm 17: Vectorized Attribute Distance: [AttributeDistance

// Pseudocode for measuring distance between attribute
treating attributes as real valued vector.

input : o < Vector distance measure

input : x < First attribute

input :y < Second attribute

output: Distance between two attributes

VeCtOI"x < Zattribute_metafeatures;

VeCtOI"y < Yattribute_metafeaturess
distance < o(vector,, vector,);

return distance;

N

defined on the whole attribute space. For example, in the case of Algorithm 16 it
must be defined only on the subspace of attributes defined by the corresponding
selector, e.g. it can return vector of features specific for numerical attributes in
the case of numerical selector.

Again, note that both variables vector,, vector, are real valued vectors of
the same length n. This allows us to use any metric defined on R" including
all the metrics based on p-norms (Theorem 6) and their weighted counterparts
(Theorem 8) and the resulting attribute measure will also be a metric. Using such
metric in Algorithms 12 and 16 will preserve the metric and the resulting dataset
distance will be also a metric according to Theorems 14 and 17, and Corollary 4
and its selector counterpart.

4.7 Combining the Distances

We have dedicated lots of effort to utilize extra information from the attributes.
We have the whole workflow that builds the distance on the datasets from the
attribute distance through aligning and selectors. In this section, we would like to
address the fact that global attributes store useful information as well — this was
proven in the literature. Even though the attribute alignment was competitive to
global dataset distances, it does not necessarily mean that we have to use them
separately from each other. In fact, it could be useful to combine their powers to
get even better distance measure between datasets. In order to achieve this we
have proposed Algorithm 18.

This algorithm takes list of dataset distance measures and weights their re-
sults. If the underlying datasets measures are metric and weights are positive,
the algorithm will also produces a metric on the datasets space according to the
fact that weighted sum of metrics is also a metric, if the weights are positive
(Corollary 1). As usual, using the partial application we can conform to the
I Dataset Distance interface, if we fix all the arguments except the last two.

71

Algorithm 18: Dataset Distance Aggregation: I Dataset Distance

// Pseudocode for combining multiple dataset distance measure
and producing their weighted combination.

input : distances < List of dataset distance measures A

input : weights < List of weights

input :z < First dataset

input :y < Second dataset

output: Distance between two datasets

distance < 0;
for i in {1,...,len(distances)} do
| distance < distance + weights[i]distances|i](z, y);
end
return distance;

[S R

4.8 Normalization Based on the Number of At-
tributes

When using Algorithms 9, 12 and 16, after getting the total distance defined by
the optimal alignment, we could think about normalizing this distance by the
number of attributes. This would amend the algorithms. Algorithm 12 would
return NuZZZi%Ztti:sztes instead. Algorithm 16 would do this amendment for each
selector (and number of attributes would be based on the number of attributes
selected by the selector). Such amendments would normalize this distance to a
count independent on the attribute number. This may or may not be beneficial,
but in this section we show that there are theoretical reasons against it.

There are two natural ways how to normalize by the number of attributes.
Given two datasets a and b with the number of attributes |a| and [b|, we can
either divide the total distance by min(|al, |b|) or by max(|al, |b]). We will start
by exploring the latter case — max(|a|, |b]). Without the normalization, if the
underlying attribute distance is a metric, the metric preservation to the dataset
distance is ensured by Theorem 14. We will show that this is not necessary true
if we do the normalization according to the max(|al, |]).

Observation 5. Normalizing the distance by max(|al, |b|) can violate metric azx-
10ms.

Proof. Let § be a metric on the extended attribute space A, dummy € A, a =
{a1},b = {b1} are datasets. Let us define the d(a1, b;) as 1 and set 6(a1, dummy) =
d(b1, dummy) = 10. The optimal alignment is the only one possible, max(|a/, |b|)
is 1, therefore distance A returned by the normalized Algorithm 12 is % We will
show that the triangle inequality does not have to be preserved. We will define
dataset z as {a;, dummy}. For the triangle inequality to hold, it must be the case
that A(a,b) < A(a, z)+A(z,b). Let us see what A(a, z) is. One dummy attribute
will be added, as d(dummy, dummy) = 0, we get optimal alignment of the cost
of zero as it will align a; to a; and dummy to dummy. The zero will be divided
by max(|al, |z|) resulting in A(a, z) = 0. As for the A(z,b), one dummy attribute
is again added to b, the optimal alignment is either a; — by, dummy — dummy

72

or a; — dummy, dummy — by. The cost of the former is 1, the cost of the latter
is 2 x 10 = 20 . Therefore, the former is optimal. As max(|b|,|z]) = 2 we get
A(z,b) = 1/2. Finally we get 1 = A(a,b) < A(a, z) + A(z,b) = 1/2 which is
not valid and distance on the dataset space A is not a metric, as the triangle
inequality was broken. O]

The same holds for the former case — min(|al, |b]).

Observation 6. Normalizing the distance by min(|al, |b|) can violate metric az-
10mMs.

Proof. Again, let 0 be a metric on the extended attribute space A, dummy €
A. But this time we define a = {a1,a2},b = {b1}. Let us define §(as,b;) =
d(az, dummy) = 1 and set d(az, by) = 10. The optimal alignment is — after adding
one dummy attribute dummy to b — a; — by and as — dummy. The cost of this
alignment is 2 and as min(|al, |b|) = 1 the resulting A(a,b) = 2/1 = 1. Again, we
break the triangle inequality. We will define dataset z as {b1, dummy}. For the
triangle inequality to hold, it must be the case that A(a,b) < A(a, z) + A(z,b).
The A(a, z) is calculated according to the optimal alignment. As z is the same
as b with one added dummy attribute, the optimal alignment must be the same
as the optimal alignment from a to b. The cost is therefore also 2. But this time
min(|al, |z]) = 2 and we get A(a,z) = 2/2 = 1. As for the A(z,b) we use the
same argument — z is the same as b with added dummy. During the alignment,
one dummy will be truly added to b and consequently the cost of the optimal
alignment will be zero. A(z,b) is therefore 0. Finally we get 2 = A(a,b) <
A(a,z) + A(z,b) = 1, which again breaks the triangle inequality and therefore A
is not a metric. [

We have given the counterexamples for Algorithm 12, however the same is
valid for Algorithm 16. As already stated in Section 4.3, Algorithm 12 is a
special case of Algorithm 16 and every counterexample is therefore valid even for
more generic algorithm.

According the theoretical results stated in this section, we will not use this
normalization in the rest of the thesis as this modification could violate metric
axioms of the resulting dataset distance.

73

Chapter 5

Obtaining the Data

To train the models, as proposed in the previous chapters, and to validate their
ranking qualities, data has to be obtained beforehand. We also need to know what
metadata will be available before specifying global and attribute distances. There-
fore, we need to gather datasets, metafeatures of those datasets, machine learning
algorithms and experiment results prior to conducting the experiments with the
ranking algorithms. The potential sources of such data and what metafeatures to
use is the topic of this chapter. We will begin by defining the common format for
storing datasets. Then we will discuss machine learning repositories and discuss
their pros and cons. The differences lie mainly in the types of data available.
We will discuss one particular machine learning repository — OpenML — in more
details as it will be used as the main datasource. We then describe the dump
we downloaded from the OpenML, filters we used to clean the dump, and the
total amount of data we had after the filtering. This will include the decision
to perform the ranking on the classification algorithms, therefore including the
filter on classification tasks and algorithms only. We list the global metadata
provided by the OpenML and discuss the subset that will be used for the ex-
periments. As OpenML does not provide attribute metadata, we then review
the types of attribute metadata we extracted. We look into the distribution of
attribute metatadata in more detail and identify few potential problems in the
distribution of attribute metadata. To tackle them, we introduce another at-
tribute metafeatures that are calculated based on the previous metadata but do
not suffer from the same problems.

5.1 ARFF Format

In Section 2.1, we introduced the concept of datasets as a relation. That was
however a mere theoretical description. The specification of mapping this theo-
retical description to a file is still needed. In this section, we describe the popular
format called ARFF (Attribute-Relation File Format) for storing datasets and
therefore also classification and regression tasks. Its importance lies in that al-
most every machine learning tool and library supports ARFF and large amount
of public datasets is distributed using this very format.

ARFF is a file format usually recognizable by the ”.arff” file extension. An
ARFF file is an ASCII text file that describes a list of instances sharing a set
of attributes [1]. The file consists of two sections. The first one — called Header

74

— contains descriptions, name of the relation and the list of attributes and their
types. Description lines start with ”%” and can contain arbitrary information.

The relation name is defined as the first line in the ARFF file. The format is:
”@relation $relation-name”, where $relation-name is a string. The string must be
quoted if the name includes spaces. The format for the @attribute statement is:
”@attribute $attribute-name $datatype”, where the $attribute-name must start
with an alphabetic character. If spaces are to be included in the name, then the
entire name must be quoted.

The $datatype can be any of the following:

® numeric
e integer

nominal

e string

e date

The header can contain arbitrary number of attributes.

The second section — called Data — starts with the @Qdata declaration on a
single line followed by lines of instances — one data instance per line. Every
instance consists of the list of values of the attributes in the same order. Missing
values are encoded by 77”.

The example of the ARFF format describes header and few instances of the
Iris dataset [39] and is as follows:

75

5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

All declarations are case insensitive.

The advantage of this file format is its simplicity. No special tools or libraries
are required to parse ARFF files. This advantage inevitably comes with a big
disadvantage — there is no guarantee that the information stored in the file is
consistent, especially entries stored in the Header section are often corrupted, or
do not follow the format completely.

5.2 Machine Learning Repositories

In this section, we discuss machine learning repositories that provide machine
learning capabilities that may include datasets, algorithms, results and metada-
ta. Therefore they make ideal candidates for the potential source of data for
conducting machine learning experiments.

In the past, perhaps the most popular machine learning repository was the
repository of University of California, Irvine abbreviated only as UCI [12]. The
sole purpose of the repository was to provide public datasets (mostly in the ARFF
format) for machine learning and metalearning experiments. Many works re-
viewed in this thesis used UCI as the source of data (including some of our
works). The major drawback is that the repository does not provide any addi-
tional data besides datasets. Even if we used the UCI repository for datasets,
additional data would still be needed. In our previous experiments, we combined
the repository with our recommendation system Pikater (see Section 2.9) to gath-
er the rest of the data. We used the search agents in Pikater for hyperparameter
tuning of machine learning algorithms over UCI datasets. This resulted in a huge
database containing 600,000 machine learning experiments results, which we used
for our previous experiments with metalearning [110]. The purpose of building
such experiments results was mainly in finding the best settings of hyperparam-
eters for some machine learning algorithm on some datasets. Therefore, in terms
of datasets, only 85 unique UCI datasets and 8 WEKA models were in these
600,000 results. This is a common phenomenon. Despite the fact that many
machine learning experiments are conducted every day, the number of public
datasets used for the experiments is small. We wanted to conduct the experi-
ments in the thesis on the bigger dataset. One option was to use the system to
create another batch of experiments.

Another option was to use the OpenML [121] machine learning repository
that emerged in the recent years. It is a repository of datasets, tasks, machine
learning algorithms, and experiment results called runs. Most of UCI datasets
are already present in OpenML, although many more datasets are also in the
repository. OpenML user can also specify whether the dataset is private or pub-
lic, however major number of datasets is public. When a new dataset is uploaded
to a repository, OpenML automatically extracts metafeatures. There are in total

76

106 different metafeatures that can be extracted, however not every metafea-
ture is extracted for each dataset. An OpenML task defines experiment over
some dataset. It specifies the goal (e.g. supervised classification over the target
attribute), estimation procedure (e.g. 10-fold cross-validation) and evaluation
measures used (RMSE, PredictiveAccuracy). An OpenML run is the result of
some machine learning algorithm on some task.

As the experiment results are standardized, it is easy for researchers to com-
pare the results of machine learning and metalearning methods. Furthermore, as
some metafeatures are automatically computed by OpenML, it makes implemen-
tation of other metalearning approaches faster, thus speeding up the research.
OpenML also exposes data via its REST API. Specialized connector packages
for communication with this interface are available for R, Java, .Net (which was
created by us) and Python. However, it is possible to write a custom connector,
as almost all languages support REST API. Another benefit is that the whole
project is under active development and there is a growing community around it.

Not even OpenML is without drawbacks. All datasets are visible including the
testing data. With many experiments, there is no guarantee that users will not
eventually carry information out of testing datasets into the training by looking
at the results of previous experiments on the testing datasets (the phenomenon
referred to as peeking by authors of [104]). The potential solution can be the
gamification used for example in the Kaggle site [11]. The testing dataset is not
available and researchers have only a limited amount of time or submissions to
submit their models. Therefore, the model cannot be built infinitely to reach the
best testing result.

With the pros and cons in mind, OpenML was chosen as the source of data
mainly because of its public availability, many experiments and datasets including
those from UCI and global metadata autocomputed by the repository.

The choice of the data is very important for the quality of experiments. Re-
sults can be affected by many factors — amount of errors in the data, whether
the data are general or domain specific only, etc. It should be taken into con-
sideration that OpenML repository is very general and public. Therefore, it may
contain errors or noise, and our algorithms have to handle every type of dataset.

5.3 OpenML Dump

In the previous section, we discussed the potential source of data and have chosen
OpenML as the main data source. Originally, our OpenML dump contained 791
public datasets. We have placed extra requirements on the datasets in order to
fulfil following two requirements:

e Keep the computation of alignment reasonable for all pairs of datasets in
the chosen subset. This will speed up the evaluation of quality of alignment
predictor. The computation cost depends on the number of attributes, the
goal is to find a good compromise between the amount of datasets that we
can use and the cost of alignment of their attributes.

e In order to be able to easily compare metalearning approaches, it is de-
sirable that every dataset has the same types of metafeatures extracted.

7

70

Dataset Count

10

) |

0 1000 2000 3000 4000 5000 6000 7000
Number of Attributes

Figure 5.1: Distribution of number of attributes among datasets in the OpenML
dump.

This may not be possible in every case, as some global metafeatures are
only computable for classification/regression tasks. Because of this, some
compromises may be needed. Similarly, some attribute metafeatures may
be computable only for classification/numerical attributes but this does not
concern us too much, as we will be using selectors (see Algorithm 16) to
handle different types of attributes).

To find out the optimal compromise between the amount of datasets and at-
tributes, we have plotted the distribution of number of attributes among datasets.
The distribution is shown in Figure 5.1. It should be clear from the figure that
only a very small number of datasets have large number of attributes. The align-
ment of this minority of datasets would take the majority of time. We have
decided to filter the datasets with more than 50 attributes.

The remaining datasets were examined for the distribution of the OpenML
global metafeatures. The distribution is shown in Figure 5.2. Not all global
metafeatures are computed for each dataset. Luckily for us, in this case few
metafeatures have useful property ensuring that if this metafeature was computed,
then all others are computed (example of such metafeature was kKNN_3NKappa).
To fulfil the second criterion, it was then sufficient enough just to create a filter
that one of these metafeatures cannot be null. After application of this filter,
only classification datasets remained.

This data preprocessing included only dataset specific view. However, in
our experiments the experiment results are also needed, which — in the case of
OpenML — are covered by OpenML tasks and runs. First requirement was clear
— we can include only those datasets with the results available. Before stating
another requirements, we have to choose some sort of performance criterion that
will be used. We have already made the choice of restricting the datasets to
classification datasets only. There are lots of performance measures possible for

78

600

ture available

ts with the metaf

00 ’ i
20 I

Count of dat

i

2
Metafeature name

Figure 5.2: Distribution of global metafeatures computed by OpenML.

the classification task. When choosing a suitable measure, we wanted to include
the criterion that is often used. This would minimize the filtering of datasets as
this performance measure will be often available for each classification task. Based
on this reasoning, we have chosen Predictive Accuracy (see Definition 9). There
could still be multiple classification tasks defined with Predictive Accuracy as the
performance measure — they could still differ in the estimation procedure (simple
training/testing split of the dataset, cross-validation, etc.). In order not to filter
the data further, we have decided to neglect this difference, as the performance
indicator is well defined regardless of the estimation procedure. Given the above,
we can state the second requirement: we will include only those datasets that
have some experiments results available with the Predictive Accuracy as one of
the evaluation measures.

There could be multiple results for a pair of algorithm, dataset. The question
was which result to choose when arguing about the actual ranking of the algo-
rithms on datasets. We argued that we want to asses the maximal potential of
some algorithm. The best result also usually corresponds with a solution found
by a hyper-parameter optimizer. Therefore, we have used the result with the best
Predictive Accuracy.

Finally, the results of ensemble algorithms like bagging, boosting, stacking and
rotation forests [103] were omitted. These ensembles are encompassing different
number of other machine algorithms and can take advantage of such combined
power. Such composite behaviour resulted in heavily outperforming every other
algorithm in the database, thus changing the results significantly. Furthermore,
their performance relies heavily on the parameters that specify what algorithms
should be used in the ensemble and as such, every parameter setting should be
better treated as a separate algorithm. More careful examination is thus necessary
before including ensemble algorithms into our experiments.

Application of the filters resulted in 351 datasets with 20,719 rows of the best
results with Predictive Accuracy for some pair of algorithm and dataset. That
included 115 unique algorithms.

79

These amounts may seem low for machine learning experiments, but they
are still much bigger that in our previous experiments, and are very high also
compared to the rest of the metalearning experiments found in the literature.

Unfortunately, not every algorithm was run over every dataset. Therefore,
results of some algorithms did not have to appear in the neighbourhood consid-
ered by the k-NN algorithm. We decided to calculate the ranking only for the
algorithms that were available in the neighbourhood. This could affect the qual-
ity of ranking evaluation, however, such negative consequences can be minimized
by choosing high enough k, so the neighbourhood is more likely to contain more
algorithms. Furthermore, high values returned by ranking quality evaluator still
means high quality ranking, although not on every dataset. This can be seen as
a noise or as missing values presented in the data.

The final question was splitting the data into the training and testing datasets.
As the space was not very dense, and the k-NN that we were going to use is very
dependent on the space density, we decided to split the datasets with 1:1 ratio.
This enabled better estimation of the overfitting. If we used a different ratio, even
the model with good generalization abilities could have much different results on
the testing dataset, because of the space with much different density.

5.4 Metadata

This section will discuss which metadata were available or computed. First, we
are going to discuss global data. Second, attribute metadata are described. This
section also discusses normalization of both the global and attribute metadata.
Note that different algorithms use different metadata, this will be elaborated
when discussing experiment details.

5.4.1 Global Metadata

As discussed in the previous section, we have filtered the OpenML dump in such
a way that every metadata is available for each dataset. We have argued whether
we should include all the types of global metadata or just the simple, statistical,
and information-theoretic ones. There are two reasons for this. First, we will base
the attribute metafeatures on the simple, statistical, and information-theoretic
types. Including the model based and landmarker features would make it harder
to see whether the aggregation of attribute metafeatures indeed lose important
information. Second reason is that model based and landmarkers metafeatures
can contain information about performance on the the training and testing set.
We would have to filter the training and testing set for such use to mitigate
this risk. For these reasons, we have decided to use only the simple, statistical,
and information-theoretic global metafeatures. In the production use, we would
however include metadata of every type.

OpenML machine learning repository contained the following simple, statistic,
and information theoretic global metadata:

e ClassEntropy — entropy of the target attribute.

e DefaultAccuracy — default accuracy obtained by the baseline algorithm. In
this case by predicting always the majority class.

80

Dimensionality — number of attributes divided by the number of instances.
InstanceCount — number of instances (rows) of the dataset.

MajorityClassSize — number of instances with the most frequent class of the
target attribute.

MaxNominalAttDistinct Values — the maximum number of distinct values
among attributes of the nominal type.

MinNominal AttDistinct Values — the minimal number of distinct values among
attributes of the nominal type.

MinorityClassSize — number of instances with the least frequent class of the
target attribute.

NumAttributes — number of attributes (columns) of the dataset.
NumBinaryAtts — count of binary attributes.

NumNominalAtts — count of nominal attributes.
NumNumericAtts — count of categorical attributes.
PercentageOfBinaryAtts — percentage of binary attributes.
PercentageOfNominal Atts — percentage of nominal attributes.
PercentageOfNumericAtts — percentage of numerical attributes.
NumberOfClasses — number of classes for the classification task.

IncompletelnstanceCount — number of instances with at least one value
missing.

NumMissingValues — number of missing values in the dataset.
PercentageOfMissingValues — percentage of missing values.

PositivePercentage — percentage of rows with the class with the highest
assigned index. In the case of binary classification this is equal to percentage
of positive instances.

NegativePercentage — percentage of rows with the class with the lowest
assigned index. In the case of binary classification this is equal to percentage
of negative instances.

MeanAttributeEntropy — mean of entropy among attributes.

MeanKurtosisOfNumericAtts — mean kurtosis among attributes of the nu-
meric type.

MeanMeansOfNumericAtts — mean of means among attributes of the nu-
meric type.

81

o MeanMutuallnformation — mean of mutual information between the nomi-
nal attributes and the target attribute.

e MeanNominalAttDistinctValues — mean of number of distinct values among
the attributes of the nominal type.

e MeanSkewnessOfNumericAtts — mean skewness among attributes of the
numeric type.

e MeanStdDevOfNumericAtts — mean standard deviation of attributes of the
numeric type.

e NoiseToSignalRatio — ClassEntropy divided by MeanMutuallnformation.
Returns -1 if MeanMutuallnformation is zero.

e EquivalentNumberOfAtts — The difference of (MeanAttributeEntropy - Mean-
Mutuallnformation) divided by MeanMutuallnformation. Returns -1 if
MeanMutuallnformation is zero.

e StdvNominalAttDistinctValues — standard deviation of the number of dis-
tinct values among nominal attributes.

We have also identified some duplicates among the meatefatures:
NumberOfMissingValues as a duplicate of NumMissingValues, ClassCount as
a duplicate of NumberOfClasses, NumberOflnstances as a duplicate of Instance-
Count, NumberOfFeatures as a duplicate of NumAttributes, NumberOfNumer-
icFeatures as a duplicate of NumNumericAtts, NumberOfSymbolicFeatures as
a duplicate of NumNominalAtts and NumberOflnstancesWithMissingValues as
a duplicate of IncompletelnstanceCount metafeature. We have removed the du-
plicates out of a set of metafeatures used.

The last few attributes beginning with the MeanAttributeEntropy represent
exactly those attributes where some important information may be lost during
the aggregation, as discussed in Section 4.2.

The excluded metadata (of model based or landmarker type) are listed in
Table 5.1. We will omit their description, as they are no longer relevant.

To sum up, we had 31 global metafeatures available for each dataset.

5.4.2 Attribute Metadata

There is no such public repository as OpenML that would have attribute metada-
ta available for each dataset. Some information could be available in the header
of the ARFF files (see Section 5.1), but as already discussed, there is no guar-
antee that the information really corresponds to values in the data. Indeed, we
have encountered datasets that were corrupted this way. Furthermore, this infor-
mation is optional, thus not available in every header. Based on these facts, we
decided to build our own ARFF analyser. The analyser was able to read the input
ARFTF file and extract various attribute metadata. In the rest of this section, we
describe the attribute metafeatures extracted. As our algorithms are capable of
handling type-specific attribute metadata using selectors (see Algorithm 16), we
will list them according to the type of attribute they were extracted for.

82

Table 5.1: Excluded global metafeatures.

RandomTreeDepth1AUC
RandomTreeDepthlErrRate
RandomTreeDepthlKappa
RandomTreeDepth2AUC
RandomTreeDepth2ErrRate
RandomTreeDepth2Kappa
RandomTreeDepth3AUC
RandomTreeDepth3ErrRate
RandomTreeDepth3Kappa
HoeffdingAdwinChanges
HoeffdingAdwinWarnings
HoeffdingDDMChanges
HoeffdingDDMWarnings
NaiveBayesAdwinChanges
NaiveBayesAdwinWarnings
NaiveBayesDdmChanges
NaiveBayesDdmWarnings
REPTreeDepth1AUC
REPTreeDepthlErrRate
REPTreeDepthlKappa
REPTreeDepth2AUC
REPTreeDepth2ErrRate
REPTreeDepth2Kappa

REPTreeDepth3AUC

REPTreeDepth3ErrRate

REPTreeDepth3Kappa
DecisionStumpAUC
DecisionStumpErrRate
DecisionStumpKappa
SimpleLogisticAUC
SimpleLogisticErrRate
SimpleLogisticKappa
NaiveBayesAUC
NaiveBayesErrRate
NaiveBayesKappa
SVMelKappa
SVMe2Kappa
SVMe3Kappa
kNN3NErrRate
kNNI1NKappa
J480001Kappa
NBTreeKappa
J4800001AUC
kNN2NKappa
JRipAUC
kNN3NKappa

J480001ErrRate
J48001ErrRate
JRipErrRate
NBTreeErrRate
SVMe2ErrRate
kNN1NErrRate
NBTreeAUC
kNN2NErrRate
J480001AUC
JRipKappa
SVMe3ErrRate
SVMelAUC
SVMe2AUC
SVMe3AUC
J48001AUC
kNNINAUC
kNN2NAUC
J48001Kappa
SVMelErrRate
J4800001ErrRate
kKNN3NAUC
J4800001Kappa

83

In order to be able to compute some metafeatures for the categorical at-
tributes, a conversion to the integers was made. Distinct number was assigned
to each category. The number was chosen based on the order of appearance
beginning with one.

Measures common for both the categorical and numerical metafeatures:

ForRegression — whether the target was of numerical type (this was not
used as we have used only classification tasks).

ValuesCount — number of values.

NonMissingValuesCount — number of non missing values.
MissingValuesCount — number of missing values.

Distinct — number of distinct values (classed).

AverageClassCount — average count of occurrences among different classes.
Entropy — entropy of the values.

MostFequentClassCount — count of the most probable class.
LeastFequentClassCount — count of the least probable class.
ModeClassCount — mode of the number of distinct values.
MedianClassCount — median of the number of distinct values.

PearsonCorrellationCoefficient — Pearson Correlation Coeeficient of the val-
ues and the values of target attribute.

SpearmanCorrelationCoefficient — Spearman Correlation Coeeficient of the
values and the values of target attribute.

CovarianceWithTarget — covariance of the values with the values of the
target attribute.

Numerical metadata:

IsUniform — whether statistical test did not reject that the attribute values
corresponds to a uniform distribution.

IntegersOnly — whether attribute values contained only integers.
Min — minimal value of the attribute values.

Max — maximal value of the attribute values.

Kurtosis — kurtosis of the values.

Mean — mean of the values.

Skewness — skewness of the values.

StandardDeviation — standard deviation of the values.

84

e Variance — variance of the values.

e Mode — mode of the values.

e Median — median of the values.

e ValueRange — difference between maximum and minimum of the values.
e LowerOuterFence — lower outer fence of the values.

e HigherOuterFence — higher outer fence of the values.

e LowerQuartile — lower quartile.

e HigherQuartile — higher quartile of the values.

e HigherConfidence — higher confidence interval of the values.
e LowerConfidence — lower confidence interval of the values.
e PositiveCount — number of positive values.

e NegativeCount — number of negative values.

Categorical metadata:

e Uniform Discrete — result of Pearson’s chi-squared test for discrete uniform
distribution.

e 2 Statistic — statistic value for the Pearson’s chi-squared test.

e Ratio of attribute values that after sub-setting the dataset to that attribute
value lead to different distribution of the target as indicated by the following
statistical test:

— Kolmogorov-Smirnoff test (continuous target only),
— Mann-Whitney U-test (continuous target only),
— x*-test (categorical target only).

To sum up, we have extracted 15 types of attribute metadata available for
both the numerical and categorical attributes, another 20 types for numerical
attributes and 3 types for categorical attributes only.

5.4.3 Normalization

Our algorithms were designed with no prior distinction of the metafeatures. Some
metafeatures put on much bigger values than the others. If we used the vector
of constant weights, the p-norm distance could yield distance mainly derived out
of big valued attributes. This would mitigate the influence of the attributes
with small absolute values even though those could contain important informa-
tion. To be precise, some metafeatures in our database have values as high as
445694751099523.38 (variance metafeature) and as low as -142020048 (minimum

85

metafeature), other metafeatures have by definition values constrained to some in-
terval (for example (Spearman’s Correlation Coefficient with the range of (—1,1)).

For this reason, we have normalized most metafeatures into the interval (0, 1).
Attributes already naturally constrained to that or similar interval (Spearman’s
Correlation Coefficient) were the exception. The normalization was performed
regardless of whether the metafeature was global or attribute specific. We have
used the min — max normalization given by the following equation:

/ Ty — MNgex

3 Y
maxxex - mlnzex

where min,cx and min,cx are minimal and maximal values of the given metafea-
ture X, z; is specific value of the i-th metafeature before rescaling, and z) the
value of that metafeature after rescaling.

This solved the original problem, but sometimes another problem emerged.
In some cases the majority of values lied in some small subinterval of (0, 1). Even
when the metafeature had been assigned with high weight, the distance on this
single metafeature would still be around zero between most of the metafeature
values and very high between few outliers and the rest of the values. This would
neglect the usefulness of such metafeatures including one that could be expected
to bring high discriminative factor into the distinguishing of attributes, such as
maximum and minimum values.

The box plots after min-max normalization are plotted for categorical metafea-
tures in Figure 5.3 and for the numerical attributes in Figure 5.4. The metafea-
tures suffering from such problem are those whose boxplot is small compared
to the interval. In some cases, the boxplot quartiles are blending together and
such cases are the most problematic ones. To partially mitigate the problem, we
have introduced virtual metafeatures, that means metafeatures computed given
different features that were independent of the values and size of the dataset - per-
centage or boolean values calculated out of metafeatures. Percentage or boolean
are naturally normalized between (0, 1) and should not have some outliers as in
the case of metafeatures based on counts. The virtual metafeatures added were
the following:

Measures common for both the categorical and numerical metafeatures:

e MissingValues — Boolean whether count of missing values is greater than 0.

e AveragePercentageOfClass — Percentage of the occurrences among classes,
calculated by AverageClassCount/Values count.

e PercentageOfMissing — Percentage of missing values in the attribute, calcu-
lated by MissingValuesCount/Values count.

e PercentageOfNonMissing — Percentage of non missing values in the at-
tribute, calculated by 1 - Percentage of missing.

e PercentageOfMostFrequentClass — Percentage of the most frequent class
calculated as Most Frequent Class Count/Values count.

e PercentageOfLeastFrequentClass — Percentage of the least frequent class
calculated as Least Frequent Class Count/Values count.

86

e ModeClassPercentage — Percentage of mode of class count calculated as
Mode Frequent Class Count / Values count.

e MedianClassPercentage — Percentage of median of class count calculated as
Median Frequent Class Count / Values count.

Numerical metafeatures:

PositiveCount

e PositivePercentage — Percentage of positive values calculated as :
ValuesCount

NegativeCount

e NegativePercentage — Percentage of negative values calculated as <7-7-—===""=.

e HasPositiveValues — Boolean whether attribute values contain positive val-
ues. Determined as the result of PositiveCount > 0.

e HasNegativeValues — Boolean whether attribute values contain negative
values. Determined as the result of NegativeCount > 0.

Adding the virtual attributes does not mean that the rest of the problematic
features should be thrown away. They could still be valuable for detecting outliers
in the data, thus useful for identifying distant attributes (or datasets).

In total we have added 8 virtual metafeatures available regardless of attribute
type and 4 virtual attributes for the numerical attributes. With the number of
original attributes, it made 23 attributes for all types, 24 for numerical attributes,
and additional 3 for categorical attributes.

87

20
o
90
20
ol

°
3
AverageClassCount H]~ -{

AveragePercentage OfClass B _‘

ChiSquareUniformDistribution

CovarianceWithTarget ‘

Distinct

Frirepy B2 E ______

ForRegression)— __

LeastFequentClassCount |”»‘

MedianClassCount |D» {

MedianClassPercentage

MissingValues)— __ ‘
MissingValuesCount)— __ ‘

ModeClassCount |H~‘

ModeClassPercentage - — «{ ‘ }, ,,,,,,,,,,,,,,,,,,,,,,,,,

MostFequentClassCount H:|» —‘

NonMissingValuesCount H]»‘

PearsonCorrellationCoefficient

PercentageOfLeastFrequentClass | — «{ | }» _________________________ ‘

PercentageOfMissing)» ,, ‘

PercentageOfMostFrequentClass - - = = = = = = = = = = = = — = - - - «{ }» __________ .{
PercentageOfNONMissSing — = = = = = = = = = = = & & & — & — e e e e o oo oo o - - - - - <‘
RationOfDistinguishingCategories | = = = = = = = = = = - — % ‘ ‘
RationOfDistinguishingCategoriesByUtest }. ________________________ <{ ‘

SpearmanCorrelationCoefficient)» 77777777 E ,,,,,,,, {

UniformDiscrete }- __
ValuesCount m‘
Figure 5.3: Distribution of values of categorical metafeatures after normalization.

38

=) o = o -
= S = > & >
AverageClassCount |
AveragePercentageOfClass | — «{ H
CovarianceWithTarget
Distinet H—{
Entropy [=S="="="=S='='e = o «{ }» ———————————————————————

FOrRegreSsi0N [i e e |
HasNegativeValugs - = = = = = = = = = = s = e = cc - - - e - - s s s s m s s - s s m s e s s - - == |
HasPositiveValues = = = = = = = = e e o e === = «{
HigherConfidence .
HigherOuterFence .

HigherQuartile ‘

IntegersOnly | ‘

IsUniform

Kurtosis
LeastFequentClassCount |- — = — — = — = — — = & & & & L Lo
LowerConfidence .
LowerOuterFence ‘
LowerQuartile .
Max .
Mean ‘
Median ‘

MedianClassCount

MedianClassPercentage D:l» ---
Min |
MissingValues - — — — — — — — = — — — - & & & & & & - o |
MissingValuesCount | — — — — — — — — — — — — — — — — — — |
Mode .
ModeClassCount | — = = = = = — = = = = = — = — = & & & & m o — e m e m e e m e — o — o — = — = |
ModeClassPercentage D =4
MostFequentClassCount l-(
NegativeCount | — = = = — = = — — — — = — = = = — = o oo oo |
NegativePercentage | — — = = = = = = — — — — — — — = - — oo |
NonMissingValuesCount H]— =
PearsonCorrellationCoefficient o - - oo oo oo oo _l:l:l_ ___________
PercentageOfLeastFrequentClass D— -4
PercentageOfMissing = = = = = = = = = = = = = - — - m m e o e = e s e e e s = m e e e == === == =
PercentageOfMostFrequentClass EI:F ,,,,,,,,,,,,,,,,,,,,,]
PercontageOfNonMissing [IEuunaee eSS S S S SIS S IS {
PositiveCount ﬂ]» 4
PositiveParcentage e e L {
Skewness | ﬂ |
SpearmanCorrelationCoefficient (SOSIRCROSSRRDRIRG: SR E ,,,,,,,,,,, 1

StandardDeviation

ValueRange |
ValuesCount D\

Variance |
Figure 5.4: Distribution of values of numerical metafeatures after normalization.

89

Chapter 6

Experiment Proposal

In the previous chapters, we have discussed algorithms related to the algorithm
ranking problem. We are able to rank algorithms based on distance and evaluate
the quality of such ranking. As was discussed in Sections 2.5 and 2.6, we can easily
plug distance based ranking into the quality evaluator. The remaining argument
missing is to provide [DatasetDistance interface. We have discussed several
algorithms being able to conform to this interface. Some of these algorithms
need extra information as an input — weights. This enables us to optimize the
weights in order to maximize the quality of ranking. We begin by defining the
optimization problem in which some space of parameters is searched in order
to get the optimal solution given some evaluation criteria. We then introduce
the class of optimization algorithms called Genetic Algorithms (GAs) that are
inspired by the evolution of species occurring in the nature. The general form of
the algorithms is outlined and different parts are discussed — selection, crossover
and mutation in more details.

We can use the GAs to optimize the weights of the algorithms for measuring
the dataset distance. Metadata available was discussed in the previous chap-
ter. Several experiments are proposed on the data available. Baseline, attribute
alignment, and global attribute distance measure based on weighted p-norm with
different values of p explored and weights optimized by the evolution. Further, at-
tribute assignment with the attribute distance measure based on weighted p-norm
with different values of p tried and weights optimized by the evolution. Final ex-
periment proposed in this section is the aggregation of the global and attribute
distance measures with the importance of both counterparts also optimized.

A big picture of all algorithms plugged together is provided. This will be
possible because we have been careful in proposing algorithms in such a way that
algorithms are easily pluggable to others, as they conform to the same interfaces.
This overview is useful, as the number of algorithms plugged in together is large,
and the whole workflow is complicated. We also discuss the choice of all other
settings of all algorithms (extending attribute space by dummy attributes, pa-
rameters for the GA, etc.) The parameters will be chosen according to the results
of Theorems 14, 15, and 16, so the resulting distance between datasets is a met-
ric. We will review the results of our experiments and discuss them. As we will
see, new proposed algorithms can outperform the baseline and even improve the
global attribute distance with statistical significance.

90

6.1 Optimization

We have provided a means of measuring the quality of distance based ranking.
Some of the distances are based on weighted p-norms. We could try to find out
such weights that result in the best ranking according to the evaluator. This is
captured by the following definition:

Definition 41. In the optimization problem we have an objective function f
over a domain (or search space) A: f : A — R. In the case of a minimization
problem, the solution is x € A such thatVy € A: f(x) < f(y). The maximization
solution is x € A such that Yy € A: f(x) > f(y).

In some cases, it may be hard to find the solution of the optimization prob-
lem. Some algorithms do not guarantee the optimal solution and returns its
approximation instead.

6.2 Genetic Algorithms

Genetic algorithm is a meta search heuristic based on Charles Darwin’s evolution
theory [28] and the laws of inheritance inferred from Gregor Mendel’s inheritance
theory [82]. According to the evolution theory, the following facts hold:

e Every species is fertile enough that if all offspring survived to reproduce the
population would grow.

e Despite periodic fluctuations, populations remain roughly the same size.
e Resources such as food are limited and are relatively stable over time.

e Individuals in a population vary significantly from one another, and much
of this variation is inheritable.

From these assumptions, the theory infers the following:
e A struggle for survival ensues.

e Individuals less suited to the environment are less likely to survive and less
likely to reproduce; individuals more suited to the environment are more
likely to survive and more likely to reproduce, and leave their inheritable
traits to future generations, which produces the process of natural selection.

e This slowly effected process results in populations changing to adapt to
their environments, and ultimately, these variations accumulate over time
to form new species.

According to the inheritance theory, inherent properties of each organism are
encoded in a structure called genotype. Genotype consists of genes. Each gene
corresponds to some trait in organism (e.g. colour of eyes). Genotype is inferred
from parents’ genotype by crossing over their genetic material. Genotype may be
also altered during organism lifetime by mutation. A phenotype is the compos-
ite of an organism’s observable characteristics or traits, such as its morphology,
development, biochemical or physiological properties, phenology, behaviour, and

91

products of behaviour. Relationship between genotype and phenotype is often
conceptualized as follows:

genotype + environment — phenotype.

Genetic algorithms (GA) were described by Holland [50], who utilized princi-
ples of the evolution and inheritance theory. Given an optimization problem, GA
views the solution to the problem as an individual. In the original John Holland’s
work, the individual was binary encoded, but other encodings are suitable as well.
The algorithm can also treat genotype equal as phenotype and the individual di-
rectly maps to the solution. In other situation, phenotype can be derived from
the individual either deterministically or stochastically. Example of the former
would be treating negative values of the individual as positive or encoding of the
neural network, the example of the latter would be creating an individual accord-
ing to the grammar described in the genotype with different rules applicable at
the same time.

A number of individuals form a population. At first, a population of individ-
uals is created (either randomly or by using some known sub-optimal solutions).
Individuals are then evaluated based on their ability to solve the problem by a
function known as fitness. Individuals proceed to next generation with probability
proportional to their fitness (this step is known as selection). In each generation,
new individuals are created from random parents in the current population (this
step is known as crossover) and some individuals in the current population are
altered (this step is known as mutation). New generations continue to be created
until a termination criterion is satisfied (usually conditions on fitness of some
individual, average fitness in population, number of generations or time elapsed
since the start of the algorithm). A pseudocode of simple genetic algorithm is
shown in Algorithm 19.

Algorithm 19: Genetic Algorithm
// Pseudocode of the main loop of the genetic algorithm.

1 Py <« initialize-population();

2 t+1;

3 while termination-criterion not satisfied do
4 P, i1 < selection(F,);
5 crossover(Pyy1);

6 mutation(P1);

7 t+—t+1;

8 end

9 return bestIndividual(F7;);

Since genetic algorithms are stochastic and do not guarantee finding an op-
timal solution, it could be sometimes beneficial to repeat the whole process and
take the best individual from all runs. Mutation, crossover and other steps alter-
ing the population are often generalized as genetic operators. Genetic operators
will be described when applied to one or several individuals; expansion of the
operators on the whole population is typically done by applying the operator on
each individual or on a sample of individuals from the population.

92

\LPoint of crossover \LPoint of crossover

T T
Figure 6.1: Example of the crossover genetic operator.

6.2.1 Selection

Selection determines how many offspring the individuals will have in the next
generation. This should be based on fitness - in general, fitter individuals should
have more offspring than those less fit. Common approaches to the selection are:

e Roulette selection — let fi be a fitness of an individual k. Let F be the sum
of the fitness of all individuals (Fy = > | f;, where n is the population
size). For each position in the next generation, the roulette is spun. In each

spin an individual is selected with probability %
S
e Scaling — same as the roulette selection, except that fitness is scaled at the
beginning. The most common scaling function is linear function. This can
solve some problems in case all individuals have similar fitness (more like
random walk) or when there are very large fitness gaps between individuals
(high pressure on selecting best individuals).

e Rank based — individuals are sorted by fitness in ascending order. Probabil-
ity of selection is higher with higher index in the sorted set of individuals.

e Tournament selection — for each position in next generation, a tournament
of n individuals is held. The best individual is selected by the tournament
with some fixed probability p. If the best individual is not selected, the sec-
ond best individual is selected with probability p and so on. If all previous
individuals are not selected, select the worst individual from the tourna-
ment. This rescales the population and thus the evolution pressure remains
constant (extraordinary good individuals does not flood entire population
and even the minor differences between individuals are recognized).

Some alternations of GAs perform the selection not only among the new off-
spring, but also among parents. Furthermore, the best solution found so far may
be lost during the process. To counter this, the best individuals are sometimes
guaranteed to be inserted into the next generation. This is referred to as elitism.

In binary coding, crossover is typically implemented as a one point crossover —
two parents are selected, then one point in both parents is chosen randomly, and
the parts induced by the point chosen are swapped. This creates two offspring
individuals. A more general alternative is the n-point crossover, where more
points are chosen when creating the offspring. One point crossover is illustrated
in Figure 6.1.

93

Points of mutation

HNNEEEEEENE NN B EEEN

Figure 6.2: Example of the mutation genetic operator.

6.2.2 Mutation

Mutation operator alters a part of an individual, thus introducing new features
into population. Mutation helps explore those parts of the search space that
would be otherwise hard to reach with selection and crossover only. In particular,
mutation helps the genetic algorithm get out of the local optima. In binary
coding, mutation is typically implemented in a way that each bit has some small
probability prutation Of being flipped. This is illustrated in Figure 6.2.

6.2.3 Modifications

One of the advantages of genetic algorithms is their versatility. It is easy to
change different parts of the algorithm to accustom for the needs. For example if
we have some knowledge about the problem we aim to solve, we may introduce
operators tailored to the problem. Such operators often achieve better results
than classic non-specialized operators. Alternatively, we can create additional
evolutionary pressure if the evaluation of the fitness is costly (either time or
money) so the algorithm converges quickly. Other approaches include controlling
the parameters, so the algorithm does not get stuck in local optima and the
diversity of individuals in the population is empowered.

6.3 Experiments

We have all the pieces we need to propose different experiments settings. We have
different ranking measures, different distances measures that can be optimized,
optimization algorithm, data, metadata, and we are also able to evaluate the
quality of different ranking algorithms. In this chapter, we finally connect these
components together. Since we have designed the system interfaces in a versatile
way, we will be able to plug in different components into algorithms, thus changing
the behaviour in a certain way. This will enable us to use the same framework
for evaluation although the settings used may be totally different.

When proposing the full framework for experiments, we will use the top-down
approach. This is because the algorithm on the top will be either the same or will
not change so often and will be providing the unified experiment framework. The
experiment part will be mainly carried in the bottom of the framework where
we will be trying different settings and combination. The rest of this section is
dedicated to the description of our experiments.

The goal of the experiments is to find a good settings for solving the rank-
ing problem. We will use the OpenML dump discussed in Chapter 5 as the
data source. The quality of settings will be verified by the Ranking Quality As-
sessment algorithm (Algorithm 6). The Ranking Quality Assessment needs an
implementation of I Ranking interface as an input. According to the discussion

94

in Section 2.7, the baseline algorithm is useful in order to verify that the extra
complexity present in different models has indeed improved the ranking quality.
Therefore, as the first setting to try, we will add the baseline algorithm built by
Algorithm 7. This algorithm does not need any additional information other then
data, thus we are finished with this experiment branch. Different implementation
of I Ranking interface discussed in the thesis were distance based rankings. One
suitable algorithm was k-NN algorithm (Algorithm 5).

Other distance based algorithms were also discussed but we were inclined to
use the simpler algorithm, as the whole framework is quite large and we did
not want to add an extra layer of logic or complexity without a specific reason.
The transformation of I DistanceRanking to I Ranking is done by the partial
application as described in Algorithm 4. The k-NN algorithm needs, besides
data, a parameter k and a notion of distance between datasets, as captured by
the I Dataset Distance interface (Algorithm 1). As discussed in Section 5.3, the
size of the neighbourhood should be set high enough so it is probable that the
neighbourhood will contain all algorithms. We have set the k to 17 (10 percent
of the training datasets).

Throughout the thesis, we have discussed many options how to implement
the I DatasetDistance. In this chapter, our aim will be to set up all the algo-
rithms conforming to the I Dataset Distance interface so the resulting distance is
a metric. We will explore the non-metric settings in the chapters to follow. In
Section 3.2 we reviewed distance based on global attributes. As we have shown,
any distance defined on global metafeatures based on the weighted p-norm is a
metric. The corresponding [Dataset Distance implementation was outlined in
the Global Metadata Distance algorithm (Algorithm 8). We will try the most
common types of p-norms — that is 1-norm, 2-norm and oo-norm. We let the
Genetic Algorithm optimize the weights of the p-norms. The settings and the
genetics operators used for optimizing the weights will be discussed later.

Other implementations of the I DatasetDistance interface were proposed in
Chapter 4. These algorithms were able to deal with the unstructured dataset
space by attribute assignment. We will discuss them starting with the simpler
ones. Algorithm 9 needs just the mapping of attribute into a single number —
o. We have decided to use selectors for this approach. Concrete mapping for
attributes were number of categories in the case of categorical attributes and dif-
ference between maximum and minimum in the case of the numerical attributes.
We could also try different attribute evaluation functions ¢ but regarding the
time complexity to conduct the experiments, we decided to focus computation-
al power on more expressive languages. Furthermore, Algorithm 9 is a special
case of Algorithm 16, and it is sufficient to try the more generic version to ass-
es the potential of attribute assignment techniques. Other attribute assignment
algorithms were Attribute Assignment algorithm (Algorithm 12) and the more
generalised version the Combined Attribute Assignment algorithm (Algorithm
16) that split the assignments into multiple assignments given by the selectors.

As discussed in Section 4.3, we found it more sensible to calculate assignments
of numerical and categorical attributes separately and not to mix numerical and
categorical attributes together. The latter would limit the number of metafea-
tures that could be used. Furthermore, we argued that the distance between a
categorical and a numerical attribute should be naturally high — possibly reached

95

by the penalization for addition of the dummy attributes to each selector. We
thus decided not to use the Attribute Assignment algorithm but rather to use its
more generic version — Algorithm 16. We used two selectors — one selecting cat-
egorical attributes and the other selecting the numerical attributes (Algorithms
15 and 14). According to Corollary 4, the Combined Attribute Assignment al-
gorithm produces a metric if the attribute distance measures of corresponding
selectors are metric on the attribute space. According to this, we have to define
categorical and numerical attribute distance as a metric. Again, we will use the
most common weighted p-norms — 1-norm, 2-norm and oco-norm. We shall set
the p of the norm in the same manner and we will not try one value of p for
the categorical distance and a different value for the numerical distance. How-
ever, we let weights to be set independently (also, the number of metafeatures
is different). We will also optimize the weight of each assignment result. Again,
we will use Genetic Algorithm for the optimization with the settings discussed
later. Finally, we will carry out experiments with the aggregation of global and
attribute metafeatures (Algorithm 18 — Dataset Distance Aggregation). We will
use Algorithms 8 and 16 as sub-distances. The selectors used will be the same
as in the rest of the experiments. Again, we will use the same value of p for
each algorithm and selector. We let GA optimize all weights occurring in the
algorithm including weight of each sub-distance.

We have prepared a cluster of computers to conduct the experiments with
various hardware and operating system. The system was composed of MySQL
database for storing the results, local SQLite database with metadata and experi-
ment results that were distributed together with the application. As this database
was large and was needed to be retrieved before each experiment, we decided to
add to the application to reduce network load with multiple runs and to allow
for faster queries to the database. The experiments run on the Microsoft .Net
platform using C# programming language. This is a platform that is currently
supported by Windows, although there is .Net runtime called Mono for Unix-like
system that has limited capability compared to the whole framework. However,
we made sure to use the part of .Net that can be run by Mono, therefore we
could use all the major OS platform - Windows, Unix and Mac OS. To allow
for really easy redistribution, the Docker Image [83] was created. Docker is an
open-source project that automates the deployment of applications inside soft-
ware containers, by providing an additional layer of abstraction and automation
of operating-system-level virtualization on Linux. This means that every docker
image should be deployable to every computer that has docker installed. The
image also has all the requirements installed like installed shared libraries and
packages. This allows for smooth running of the experiments just by running the
image. The image is automatically downloaded form the docker repository after
entering the run command.

Before we discuss the concrete settings for the experiments, we would like to
recapitulate the complexities of the whole workflow and underlying algorithms.

If the ranking is precomputed, the computation of ranking quality has a com-
plexity of O(ng4n,) where ng is the number of datasets and n, is the number
of algorithms. The complexity of ranking is constant for the baseline (whereas
building up the baseline function takes O(ngn, + n,log(n,)) time). For the dis-
tance based ranking, the k-NN algorithm takes O(nglog(ng) + n,log(n,)) time

96

per dataset, provided we have a distance matrix precomputed. This results in
O(ng(nqlog(ng)+n,log(n,))) steps for all datasets. We will conduct the distance
computation outside to save time as discussed in Section 2.5. To compute the
distance between every pair of dataset we need O(n2c(A)), where ¢(A) is the
cost of computing the distance A between some pair of datasets. The complex-
ity of computing the distance A using the global metadata for some parameter
p is O(n,,), where n,, is the size of the vector of global metadata. The miss-
ing complexity is computing A using the assignment techniques. The selectors
we use merely check whether attribute is numerical or categorical, therefore the
complexity of each selector is O(ngy).

The Attribute Alignment (Algorithm 9) in our case has the complexity of
O(ngylog(ngy)), where ngy is the bound of number of attributes in datasets
(given by the selector). This is because computing the evaluation function o is
easy if the o represents number of categories or difference between maximum and
minimum. The complexity of Attribute Assignment with selectors (Algorithm
16) is O(c(0)n?,, + n3,,), where ¢(9) is the cost of attribute distance function. In
our case the ¢(6) is O(nap_met) — the size of the vector of attribute metadata. The
c(6)n?,, part is for computing the distance matrix between two sets of attributes
and the rest is for the Hungarian method. Finally, the complexity of Dataset
Distance Aggregation (Algorithm 18) is the sum of complexities of individual
sub-distances.

The exact values of different variables influencing the complexities are shown

in Table 6.1.

Table 6.1: Values of variables influencing the complexity given by the training
data.

Variable Description Value
ng Number of attributes 170
Na Number of algorithms 115
N Number of global metafeatures 31
Nait Bound of number of attributes 50

Natt.met | Number of attribute metafeatures 47

The total complexity for the whole workflow for different setups of the ranking
algorithms are in Table 6.2.

When optimizing the weights of either attribute distance or dataset distance,
the complexity provided is the complexity to evaluate one individual. It is inter-
esting that given one weight, we have to evaluate the weighted p-norm O(n?(n2,,)
times to build up a distance matrix. As the weights are all that compose the
individual in this case, we can look at our task as a reinforcement learning task,
as we get a feedback from environment after O(n2(nag_men2,)) steps.

Apparently, workflows including attribute assignments are the most costly
ones. Just expression n3(Nau metn>y, +no,) in our case is equal to 1702(47 4+ 50% +
503) ~ 2 % 170?503 = 7,225,000,000. Note that this is not the exact amount of
steps taken as the expression is in O, it merely gives the idea about the complexity
of the workflow for our data. It takes up to three days to compute the ranking
quality of the Attribute Assignment algorithm optimized by evolution with 100
individuals and 100 generations on the Intel I7 computer with sufficient amount

97

Table 6.2: Total complexity of the whole workflow for ranking quality evaluation
for different ranking algorithms.

Algorithm Total Complexity (in O) Optimizing

Baseline NaNa + Nala + Ng log(ng) No

Nala + na(nglog(ng) + nglog(ng))

Attribute Alignment) No
+ nna log(nar)
NgNg + ng(nglog(ng) + n, log(n,
Global Distance ¢ a(nalog(na) 8(1)) Yes
+ n2nm,
NgNg + ng(nglog(ng) + n, log(n,
Attribute Assignment ¢ a(nalog(na) 8(1a)) Yes

2 2 3
+ nd(nattfmfftnatt + natt)

_ Nang + na(nglog(ng) + nglog(ng))
Aggregation Yes

2 2 3
+ 15 (Nattmet gy + Moy + N

of memory. This was a value that had to be taken into account when proposing
the settings for assignment algorithms.

In algorithms with attribute assignments, the decision about how to extend
attribute space with dummy has to me made. We did not want to penalize too
heavily for having different number of attributes. As we want to have a metric
and such small penalization is not possible for artificial dummy, attributes by
Theorem 15, we decided to use dummy, attribute from the attribute space. Based
on the same argument with small penalizations, we created dummy, attribute
that has the value of every metafeature equal to the median value of all values of
that metafeature in both the training and testing set.

The settings for the evolution was set according to our previous experiments
and few short preliminary experiments we performed to estimate good values. We
were not able to tune the parameters because of the computation times mentioned
above. We decided to use tournament selection with elitism to preserve the best
values. The tournament probability of better individual winning was set to 60
percent and the tournament size was set to three. This was to discourage earlier
convergence and to boost the generalization ability. We have used crossover
with the probability of 75 percent and the mutation with the probability of 10
percent. Population size was set to 100 in order to have reasonably big population
and still be able to finish the computation in reasonable time. The number
of generation was set as a termination criterion. The exact value was set to
70. This was again chosen based on the time of computation, while allowing
for some sufficient amount of evolution cycles to evolve interesting properties.
Furthermore, we did not want to have too many generations so the algorithm
does not have a big opportunity to overfit the found solutions. The weights were
randomly initialized out of (0, 1) uniform distribution. However some operators
could push the weight values outside of this interval — even to zero or negative
values. According to Theorem 8, the weights must be strictly positive to have a
metric. Therefore we use genotype to phenotype mapping by using the absolute
value of the weights. We still allow weights to be zero. This would break the
coincidence metric axiom but we rather interpret it as the algorithm decided that

98

the corresponding metafeature is a noise, and therefore the attribute space should
not contain this metafeature.

6.3.1 Results

The results of experiments proposed in this chapter are described in the following
paragraphs. Our framework uses Algorithm 6 to measure average Spearman’s
rank correlation coefficient (Equation 2.7) on the training and testing data. The
higher value the better, whereas value 1 is a theoretical maximum, value -1 is a
theoretical minimum, and value 0 is as good as a random guessing.

The baseline scored 0.551659 on the training set and 0.540807 on the testing
set. Attribute Alignment algorithm had both testing and training score below
0.5. We believe this was because we did not optimize this algorithm. We will
not discuss this algorithm further, as it is a special version of the Attribute
Assignment algorithm.

The raw results of all metric-producing experiments on the testing set can be
seen in Table 6.3. As the runs did not have any order by definition, we sorted
the values so that the first run of every algorithm corresponds to the best result
of that algorithm and so on.

From the raw results it can be seen that some algorithms are better than
others. From the point of view of the median of the results, the order of algo-
rithms is as follows (from best to worst): (Aggregation with p = 1), (Aggregation
with p = 2), (Global with p=00), (Global with p = 1), (Global with p = 2),
(Aggregation with p = 00), (Assignment with p = 2), (Assignment with p = 00),
(Assignment with p = 1), baseline.

To have a proper comparison, results of each algorithm on the testing set were
compared based on the result of two tailed Mann-Whitney U Test [25]. This test
is a non-parametric test with the null hypothesis that both samples come from
the same population. The « statistics used was 0.05. The results of the tests
are in Table 6.4. All algorithms except the Assignment algorithm with the p =1
were significantly better than the baseline. The best results had the aggrega-
tion of assignment and global metadata. There was no algorithm that would
be significantly better than any of the Aggregated algorithms. On the contrary,
Aggregated algorithms with p = 1 and p = 2 were significantly better than every
other algorithm. There was no clear winner between those two. The results proof
our hypothesis that algorithms based on attribute assignment produce useful re-
sults for ranking prediction. Also, our theory that the best results are probably
obtainable by the aggregation of assignment and global distance is also supported
by the results. Interesting observation is that the assignment with p = 1 produces
the worst results but the aggregation with the same p provides the best results.
Perhaps alignment with p = 1 provide best additional information to support
decision by the global metadata.

The best results on the testing set were produced by the aggregation of global
and attribute metafeatures where the p was set to 1. The evolution progress is
shown together with the baseline in Figure 6.4. We have measured evaluation
score of the currently best individual only for statistics purpose and such mea-
surement did not influence the run of the algorithm. It is however useful to see
whether some overfitting occurred. As can be seen, the baseline was surpassed

99

getRanking(Dataset)

getRanking(DistanceMeasure, Dataset)

distance(datasetA, datasetB)

select(attributes)

distance(attributeA, attributeB)

Figure 6.3: UML diagram of the whole workflow. Violet rectangles represent
different ranking algorithms that will be tried in the experiments. Global Dataset
Distance, Combined Attribute Assignment and Dataset Distance Aggregation
will have their weights optimized by the genetic algorithm. The fitness will be
provided by the Ranking Quality Evaluation.

100

0.565

0.560
0.555
w
w
i}
£
[
0.550
0.545
0.540
0 10 20 30 40 50) 70
Generation

Figure 6.4: Evolution progress of the individual with the best result on the testing
set together with the baseline. Results on the training set are blue, on the testing
set are green. On the z-scale is the evolution progress, on the y-scale is the quality
of ranking measured by the Spearman’s correlation coefficient.

after the first generation on the training set and was above the testing baseline
at all times. We can also see very high correlation between the improvement on
the training set with the improvement on the testing set. At some points, some
decrease of performance on the testing set can be seen but is compensated for in
the further generations.

6.3.2 Visualisation of the Distance

The visualization can be important for humans to interpret the results. This can
be possible using kernel methods described in Section 4.1.2. Using kernelized
PCA, we can project the space into two dimensions, which can be easily visual-
ized. This requires inner product kernel. However, algorithms we use are produc-
ing metrics instead of kernels. There is a connection between these two concepts
as metric represents dissimilarities and kernels similarities. We can transform dis-
tance to similarity by subtracting the distance from some large enough constant.

101

This may not be an inner product kernel, however lots of kernel methods perform
well enough with similarities close to inner products [125]. Other approach is to
repair the resulting similarity by one of the techniques proposed in [37]. We have
used kernelized PCA by taking the distance evolved during the run of aggrega-
tion of global and attribute approach with the best result on the testing set. The
distance to similarity was transformed as follows:

similarity (z,y) = 100 — A(z, y).

The visualization of the training set is depicted in Figure 6.5. We can see few
clusters, but the space is mostly well covered. To check the plausibility of the
visualization, we investigated the cluster of datasets in the top right region defined
by z-component > 1.3 and y-component > 0.2. The datasets are listed in Table
6.5 together with several selected metafeatures. Every dataset in the cluster is
a binary classification tasks with very similar Default Accuracy. Therefore, the
visualization seems to be plausible. Being able to visualize the data is important,
as it allows for a much easier interpretation.

102

Projection of dataset distance A by KPCA

1.0 T
s &
@
%%u *e 0" %’
] @ © o
05} Oooe. o °o° ° B
° ° °
o ° =] =] -] o
s ° 8 °
° L]
R o o °e " o ?
o® o ° o °
* . o ® o o o ©°°
0.0} © e o ° . s i
oo. ° .
.oo ° & o .
AR Y .
. ‘. o ° @
a L] ®,
5 . . e o
5 o « ° °
£ -05/| . |
8 ™ .] . o o
= ° . o
.
o .c G
. °
°
. L *
-— . ° 4
1.0 .
o®
. °
.
=15} .
L]
°
-2.0 L L L . L .
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1st principal component in space induced by ¢

Figure 6.5: Projection of the training datasets using kernelized PCA and similar-
ity based on the aggregation of global and attribute distance with the best result
on the testing set.

103

Table 6.3: Evaluation of ranking quality of metric algorithms on the testing
dataset.

Run p=1
Global Assignment Aggregation
1 0.556977 0.5495 0.563649
2 0.556756 0.54561 0.563345
3 0.556341 0.545248 0.563046
4 0.556282 0.543699 0.56146
5 0.555896 0.542449 0.560571
6 0.55554 0.540697 0.559257
7 0.555343 0.540422 0.558868
8 0.555299 0.540328 0.558767
9 0.555105 0.54024 0.556617
10 0.554622 0.53886 0.556128

Median 0.555718 0.541573 0.559914

Run p=2
Global Assignment Aggregation

0.554876 0.553777 0.563032
0.554851 0.547558 0.560352
0.554324 0.547426 0.560273
0.554175 0.547255 0.558913
0.554089 0.54587 0.55852
0.553832 0.544282 0.557389
0.553628 0.543237 0.556919
0.553458 0.543211 0.556625
0.553423 0.542909 0.556509
10 0.553093 0.542443 0.554418
Median 0.553961 0.545076 0.557955

© 00 1O U W N =

p =00
Run
Global Assignment Aggregation

1 0.557636 0.549426 0.560815

2 0.55736 0.546354 0.560662

3 0.557084 0.544777 0.556537

4 0.557026 0.544307 0.552372

5 0.556069 0.543048 0.551713

6 0.55585 0.542675 0.551215

7 0.555551 0.541701 0.55055

8 0.555429 0.540912 0.550265

9 0.555058 0.540544 0.545764

10 0.554629 0.537932 0.545444
Median 0.555959 0.542861 0.551464

104

Table 6.4: Statistical comparison of different algorithms and their ranking quality
results on the testing set. Row i defines what algorithms had significantly worse

results than algorithm 7. N stands for no and Y for yes.

NS &
AN AN
NN 9 V9 R N
RO I 7R N RS
ST R I G S S
&£ L y>d L LSS
Qgé %éé \60 O \60 Qgé’ %&}% %é\éo %%\QO ;b?sé
YR Y Y Y YR
Aggregation, p =1 N Y Y Y Y Y Y Y Y
Aggregation, p = 2 Y Y Y Y Y Y Y Y
Global, p = o0 N Y N Y Y Y Y
Global, p =1 Y N Y Y Y Y
Global, p =2 N Y Y Y Y
Aggregation, p = oo Y Y Y Y
Assignment, p = 2 N N Y
Assignment, p = oo N Y
Assignment, p = 1 N

Table 6.5: Datasets in one of the clusters in the visualization of the distance

(Figure 6.5).

Name OpenMLId Attributes Classes DefaultAccuracy Rows
fri_c0-250_5 776 6 2 0.5 250
fri_c3.250_5 744 6 2 0.564 250

no2 886 8 2 0.502 500

wind 847 15 2 0.532552 6574

pbc 810 19 2 0.550239 418
analcatdata_apnead 764 4 2 0.535715 450

105

Chapter 7

Metric Relaxation

In the previous chapters, the means of algorithm ranking have been discussed.
Lots of effort has been dedicated to design algorithms that produce metrics on
the dataset space induced by the attribute assignment. These algorithms were
derived from the weighted p-norms on the attribute space. This enabled us to
optimize the weights using evolutionary algorithms. We have also proven the ef-
fectivity of such approach. On the other hand, we could argue that more complex
distance measure can be build on the attribute space. For instance, it seems like a
good idea to enable the model to ask questions whether the attribute contain only
integers or also continuous values. But instead of weighting difference of zeroes
and ones, it would be perhaps a better idea to split the distance computation
based on these value. For such elaborate decision, a more expressive language
will be required than just a fixed-size vector of real numbers. With such added
complexity we can however lose the guarantee of the attribute metric. We begin
this chapter of defining relaxed versions of metrics. Semimetric and quasimetric
are derived from metric by omitting one of the axioms — triangle inequality and
symmetry axiom respectively. We discuss which metric axioms are more impor-
tant when defining a distance measure. We present a simple way of modifying
arbitrary distance measure to be at least a semimetric. Then we revisit the the-
orems about preservations of metric from the space of attribute to the space of
datasets when using attribute alignment, and we will show that the same facts
hold for the preservation of semimetric. We then define a class of algorithms
derived from Genetic Algorithms (see Section 6.2) called Genetic Programming
(GP). Genetic Programming, compared to the Genetic Algorithms, tries to evolve
a function (or program) solving the problem instead of finding a solution to an
instance of problem. Genetic Programming algorithms can be configured to pro-
duce the functions of arbitrary expression power, which will be suitable for finding
more delicate attribute distance measures. We also show examples of typical GP
operators. We review one of the phenomenon sometimes observable in the GP
experiments — the bloat problem. Bloat is the tendency of some GP functions to
grow in complexity, which is often accompanied by the decrease in generalization
abilities of the evolved programs. In the rest of the section, we propose new
batch of experiments. We discuss their expressive abilities and set their param-
eters in alignment with our theoretical results. We review the results of the new
algorithms compared to the previous ones.

106

7.1 Metric Spaces Revisited

In the definition of the metric (Definition 13), we have opted to use a redundant
definition as the axiom 1 can be derived from the remaining axioms (Theorem
1). This enables us however to relax the definition of the metric to introduce the
terms semimetric and quasimetric:

Definition 42. A semimetric on a set X is a function satisfying the first three
axioms but not necessarily the fourth (triangle inequality).

d: X xX —[0,00), (7.1)
and for all x, y, z in X, the following conditions are satisfied:
1. d(x,y) > 0 (non-negativity).
2. d(z,y) =0< x =y (coincidence axiom).

3. d(z,y) = d(y,x) (symmetry).

Definition 43. A quasimetric on a set X is a function satisfying all azioms
except symmetry.

d: X xX —[0,00), (7.2)

and for all x, y, z in X, the following conditions are satisfied:
1. d(x,y) > 0 (non-negativity).
2. d(z,y) =0« x =y (coincidence axiom).
3. d(z,z) < d(x,y) +d(y,z) (triangle inequality).

In both quasimetrics and semimetrics, it is no longer possible to derive non-
negativity axiom using the rest of the axioms. This is the reason why we explicitly
included the first axiom into the metric definition.

There has been a long debate in the community whether all these properties
are equally important for the similarity function in metalearning. For example,
there are arguments against the triangle inequality [10], a popular example is as
follows: “a man is similar to a centaur, the centaur is similar to a horse, but
the man is completely dissimilar to the horse”. This example clearly violates the
triangle inequality and speaks against using it. Moreover, it seems the coincidence
axiom is also not very important. We can for example imagine, that the algorithm
decides, that some of the metadata are not important for the similarity, thus
returning zero even in cases where these values are different. We have addressed
this by treating the attributes with the weight of zero as a noise. Regarding the
symmetry axioms, there are some examples from the real world that are against
it. For example, if we would go from place A to place B, the distance could be
different from going back as we could go uphill, some paths could be blocked in
one direction, etc. However, in the case of datasets, this example is not very useful
because distance in the sense of dataset rather means dissimilarity than actual
distance. When comparing two objects, we do not mind whether the comparison
is made in a different order. Therefore, we did not consider quasimetrics further
in the thesis.

107

Given an arbitrary distance measure d on some space, we can repair the
measure in such a way that it is a semimetric. For example function d’ defined
as follows:

is always non-negative and symmetric. To enforce coincidence axiom, we can
easily detect equal arguments on the input and return 0 otherwise. Similarly,
if the d’ would return 0 for a non-matching input we could return some small
non-negative number ¢ instead. Or we could return € + d(z,y), for small ¢ >
0. Both approaches results in semimetric, however there is a distinction. The
former approach could break triangle inequality in the case d was a metric. If
we found three objects k, [, z such that d(k,z) < ¢/2, d(z,1) < ¢/2, we could
break the triangle inequality. That would happen if the ¢ was returned for the
tuple k, [instead of 0. For the triangle inequality to hold, it must be the case
that the distance ¢ = d(k,l) < d(k, z) + d(z,1). But at the same time, we have
d(k,z)+d(z,1) < % + % = ¢ from the assumptions, which is a contradiction. We
cannot do the same argument for the latter approach, as ¢ was amended to all
distances of non equal objects.

7.1.1 Attribute Assignment with Relaxed Attribute Mea-
sure

In Section 4.5, we have discussed how Algorithm 12 preserves the metric prop-
erties. It turns out that Theorems 14, 17 and Observation 4 are valid also for a
semimetric:

Corollary 6. Let a, b are lists of attributes, 0 is a semimetric on the space
of attributes A. Then Algorithm 12 preserves all semimetric axioms and the
resulting distance A on the dataset space D is a semimetric.

Proof. By following the proof of Theorem 14, as the proof does not use deriva-
tion of the first metric axioms from the others (Theorem 1), and proof of each
axiom uses only the corresponding axiom on the attribute distance to prove the
preservation without the use of the rest of the axioms. O

Corollary 7. Let A space of attributes and A its subset, § is a semimetric on A,
D space of datasets. Then YD C D, E supported by A, Algorithm 12 preserves
all semimetric azioms and resulting distance A on E is a semimetric.

Proof. By following the proof of Corollary 6 as the proof does not require elements
outside of D and A and we can replace the whole D by D and the whole A by A
respectively. O

Observation 7. Let A be space of attributes and D space of datasets. Let D be
a subset of D and A a semimetric on D. Let A be the source of D and § be a
distance measure on A, such that Algorithm 12 induces A using §. Then 0 is not
necessarily a semimetric on A.

108

Proof. By following the proof of Observation 4, where we have shown that even
though dataset distance A is a metric (thus consequently semimetric), we can
define attribute distance ¢ to violate non-negativity. n

We can draw the similar conclusions as with metric spaces. If we have a choice
of optimizing between semimetric on attribute level and semimetric on dataset
level, choosing the former implies optimizing the latter. This is not valid in the
opposite direction.

7.2 Genetic Programming

To create more elaborate distance measures, more expressive language than the
one used in the previous sections is required. We will also need a tool that can
search in the language space and can find expressions that give a good similarity
for the ranking prediction. Genetic programming (GP) can provide the needed
functionality.

Genetic programming is based on the same idea as genetic algorithms, where
the encoding is often linear and of a fixed-length, but the search space is different.
Genetic algorithms search the space of possible solutions to the problem, while
genetic programming algorithms search the space of functions or programs (hope-
fully able to solve the problem) instead. There are many ways of representing
a program. Three common ways of representation used in genetic programming
are [95]:

e Tree representation: tree representation is traditional in genetic program-
ming, and we will also use this representation in this thesis. Inner nodes
of the tree represent operators (number of successors of the node equals
arity of the operator) and leaves represent operands. Tree structures can
be easily evaluated and are easy to interpret. Genetic operators are also
easy to implement, as we will see later in this chapter. Usual assumption of
tree representation is the property called closure [95]. It says that every in-
ner node should handle arbitrary input from other operators and operands.
The closure is usually obtained by using auto-conversion and/or defining
operands of the same type and furthermore, every operator takes input of
that type and return the output of that type. This is called type consisten-
cy. Finally, the faulty values for some operator can be handled by returning
a default value for faulty input, extending the domain of that operator or
decrease the fitness if the exception is thrown.

e Linear representation: programs are represented as a sequence of some
programming language. As we are interested in more in the actual functions
taking two attribute metafeatures and not in elaborate functions taking
lists or other more complex structures, Linear representation will not be
considered further in this thesis.

e Strongly typed Genetic Programming: proposed in [88]. It removes the
closure requirements by defining types. This is done by introducing some
restrictions into the process. We gain more freedom in defining functions.
Furthermore, it can reduce the search space, as the algorithm can avoid
generating some invalid input.

109

The search space is determined by a language L consisting of two sets — the
function set (having arity greater than zero) and the terminal set (having zero
arity). Terminals are either constants or input variables, and they occur only
in the leaves of the tree representing the program. Functions are aggregating
other functions and terminals, and they occur only in the inner nodes of the
tree. The choice of L is very important. Program solving the problem have to
be encodable in this language - on the other hand, a too complex language will
increase the search space exponentially, thus making finding a sufficiently good
program nearly impossible. Genetic programming was used successfully in many
domains.

7.2.1 Initialization

At the beginning of the GP run, each individual in the initial population has to
be randomly initialized. This can be achieved using following methods:

e [ull method: This method receives an integer specifying the depth of a
new individual as an input. This method creates layers sequentially. If the
depth of the layer is lower than the target depth, new nodes are created by
using functions, otherwise only terminals are used. This method creates a
full tree of the target depth.

e Grow method: This method takes an integer specifying maximum depth as
an input. New layers are created by using both functions and terminals at
random. If maximum depth were to be violated, only terminals are used.
By allowing terminals in the inner nodes, the distance between the root
node and lists may be less than the specified maximum depth.

e Ramped half-and-half: This method creates half of the new individuals by
using the full method and the other half by using the grow method.

When generating subtrees, we have to worry only about arity and generate
required number of arguments. Because of the closure property we can use arbi-
trary inputs for every operator.

7.2.2 Crossover

The principle of the crossover operator is the same as in the original genetic
algorithms. Given two parents, one node from each parent is randomly selected.
Subtrees corresponding to these nodes are swapped afterwards. This is a valid
operation because of the closure property. The whole process is illustrated in
Figure 7.1. Crossover points does not have to be selected with uniform probability.
Typical GP primitive sets lead to trees with an average branching factor (the
number of children of each node) of at least two, therefore the majority of the
nodes will be leaves. Consequently, the uniform selection of crossover points leads
to crossover operations frequently exchanging only very small amounts of genetic
material (i.e., small subtrees); many crossovers may in fact reduce to simply
swapping two leaves. To counter this, authors in [69] suggested the widely used
approach of choosing functions 90% of the time and leaves nodes 10% of the time.

110

Points of crossover

—
J/ l(Crossover
2, 1TeY o,

Figure 7.1: Example of the crossover in the Genetic Programming with the tree
representation.

New tree

iPoint of mutation Mutati
i E = !: uazon; i E

Figure 7.2: Example of the mutation in the Genetic Programming with the tree
representation.

7.2.3 Mutation

Mutation alters part of the tree. A node in the parent is randomly selected. A
random tree is initialized by one of the initialization method and the selected
node is replaced by the new tree. Again, the closure property guarantees this to
be a valid operation. The whole process is illustrated in Figure 7.2.

7.2.4 Bloat Problem

Bloat refers to a rapid growth of individual sizes without corresponding significant
increase of fitness in later generations. In general, software bloat means that a
computer program contains features that are never or rarely used. Growth alone
could be beneficial, after all we are often searching complex program spaces, but
without the fitness improvement it is nearly always bad. Larger individuals take
more time to evaluate, take more space to store, are harder to interpret, and their
ability to generalize is greatly reduced. There are three main theories explaining
bloat [95]:

1. Replication accuracy theory states that the success of a GP individual de-
pends on its ability to have offspring that are functionally similar to the
parent. As a consequence, GP evolves towards (bloated) representations
that increase replication accuracy.

2. Remouwal bias theory divides nodes in a GP tree into two categories — active
code and inactive code. Inactive code is either not executed, or it is executed
and its output is then discarded (for example, an inactive code would be a

111

subtree consisting of +(0 + 0+ 0+ 0)). All remaining code is considered
active. The theory observes that inactive code in a GP tree tends to be
low in the tree, residing, therefore, in smaller-than-average-size subtrees.
Crossover events excising inactive subtrees produce offspring with the same
fitness as their parents. On average, the inserted subtree is bigger than the
excised one, thus such offspring are bigger than average while retaining the
fitness of their parent leading ultimately to growth in the average program
size.

3. The nature of the program search spaces theory predicts that above a certain
size, the distribution of fitness does not vary with size. Since there are more
long programs, the number of long programs of a given fitness is greater
than the number of short programs of the same fitness. Over a time GP
samples longer and longer programs simply because there are more of them.

Techniques were designed to prevent or decrease bloat. More comprehensive
survey is in [79], we will list some of the approaches:

1. Size and depth limits. This approach checks after applying genetic operator
whether the offspring is beyond the size or depth limit. If it is not, the
offspring enters the population. If, instead, the offspring exceeds the limit,
one of the parents is returned. Obviously, this implementation does not
allow programs to grow too large. However, there is a serious problem with
this way of applying size limits, or more generally, constraints to programs:
parent programs that are more likely to violate a constraint will tend to
be copied (unaltered) more often than programs that do not. That is, the
population will tend to be filled up with programs that nearly infringe the
constraint, which is typically not what is desired. The problem can be fixed
by not returning parents if the offspring violates a constraint. This can
be realized using two different strategies. Firstly, we can just return the
oversized offspring, and assign it a fitness of 0, so that the selection will
get rid of it in the next generation. Secondly, we can simply declare the
genetic operation failed, and try again. This can be done in two alternative
ways: a) the same parent or parents are used again, but new mutation or
crossover points are randomly chosen (which can be done up to a certain
number of times before giving up on those parents), or b) new parents are
selected and the genetic operation is attempted again.

2. Anti-Bloat genetic operators. This approach modifies genetic operators to
reduce the bloat. Among the bloat-control methods are size fair crossover
and size fair mutation [72]. These work by constraining the choices made
during the execution of a genetic operation so as to actively prevent growth.
In size-fair crossover, for example, the crossover point in the first parent is
selected randomly, as in standard crossover. Then the size of the subtree to
be excised is calculated. This is used to constrain the choice of the second
crossover point so as to guarantee that the subtree chosen from the second
parent will not be “unfairly” big.

3. Anti-Bloat selection modifies the selection so that bloated individuals have
lower probability to be selected into next generation. Tarpeian method

112

[94] controls bloat by acting directly on the selection probabilities in the
following equation:

Elu(t +1) — u(0)] = Y _Up(l,1) = ¢(1.t)), (7.4)

where F is the expectation operator, u(t + 1) is the mean size of the pro-
grams in the population at generation ¢t 4 1, [is the program size, p(l,t) is
the probability of selecting programs of size [from the population in gen-
eration t and ¢(l,t) is the proportion of programs of size [in generation ¢.
This is done by setting the fitness of randomly chosen longer-than-average
programs to 0. This prevents them from being parents. By changing how
frequently this is done, the anti-bloat intensity of Tarpeian control can be
modulated. An advantage of the method is that the programs whose fitness
is zeroed are never executed, thereby speeding up runs. Parsimony pressure
method [69] changes the selection probabilities by subtracting a value based
on the size of each program from its fitness. Clearly, bigger programs have
lower fitness and potentially less offspring under this approach. That is,
the new fitness function is: frew(x) = f(z) — cl(x), where [(x) is the size
of program z, f(x) is its original fitness and c¢ is a constant known as the
parsimony coefficient.

7.3 Experiment Proposal

We want to extend our whole framework with more expressive attribute distance.
Again, we would like to get attribute distance in the form that can fit into our
workflow. In the metric experiments we decided to use attribute alignment with
selectors, as we wanted to utilize even metadata specific numerical and categorical
attributes. We will do the same decision again. That gives us more specific idea
for what we are looking for — we need two functions, first computing distance be-
tween two numerical attributes and the second computing distance between two
categorical attributes. In the previous section, we argued that we will use tree
representation for evolved functions. To get there, we need to specify functions,
terminals, make sure that we maintain the closure property, decide on the ini-
tialization and genetic operators. The main thing we need to keep in mind when
proposing the whole design of the GP algorithm is that we want to generate more
expressive functions. However, we will make one exception. The algorithm from
Section 6.3 also evolves the weights of each selector. To evolve them using GP
we would have to combine GP with GA as the vector of weights is not a tree.
We decided to use the same weights for the numerical and categorical selector
instead of evolving them.

If not said otherwise, the proposed functions and terminals can be used re-
gardless of the type of program evolved. All functions and terminals will be type
consistent, which means that all functions will have all arguments and output
of the same type. This type will be a real number in our case. If some n-ary
function is not defined on the whole R", we will propose its extended definition
on the whole R".

113

7.3.1 Functions

When discussing which function to use, we have argued that if we want to create
trees with more expressive power than the previous experiments with the metric
based on p-norms. To do that we should start by enabling the same functionality
— to add function for addition, division, square root (as we were using only p €
{1,2,00}), maximum of two values (required by the infinity norm), p-th power
and abs. We should initialize the function set of the GP accordingly.

e Basic mathematical functions: add, subtract, multiply and divide will be
used. Only division needs to be generalized. The following generalization
was chosen:

0; if y =0,
Divide(z,y) = 1 Y ,

ot otherwise.

Based on the discussion above, we also included maximum. We decided

not to include power of p explicitly, as for p = 1 or p = 2 it can be easily

evolved by the times function.

e Boolean functions: normally, boolean function returns tree and false, which
is usually used for branching further in the program. This would however
break the closure. For the sake of type consistency, we used a trick to design
Boolean functions and we proposed boolean functions (with some arity)
according to the following pattern:

; if b(aq, ..., an),
Boolean(al’ Ny 'a/n’x’y) _ x5 1 (0117‘ , A)
y; otherwise.

Namely:
x; if a; < as,

LessThan(ay, as, z,y) =)
y; otherwise.

z ifa; <a
LessThanOrEqual(ay, as, x,y) = 3 1 = 2,
y; otherwise.

In theory, maximum function can be obtained by these boolean functions.
However, it is quite complicated to evolve as max(x,y) corresponds to
LessThan(z,y,y,z) and all four inputs must match. As the maximum
function is quite important, we decided to add the maximum as an extra
function nevertheless.

e Other functions: we have introduced square root and base 2 logarithm.
These functions were generalized by following:

\/E; if 2 07
SquareROOt(x) = {\/m otherwise

log,(z); if z >0,
Logy(z) =< 0; if 2 = 0,

log,y(|z]); otherwise.

114

Some other functions were also discussed:

e Polynomial functions: We did not want to expand the domain too much,
and this type of functions can be expressed by combining basic functions,
so we did not introduce polynomials into population.

e Periodic functions: like sin, cos. We have argued that an evolving program
will not benefit from periodicity, thus we did not introduce such functions
into GP domain.

e Boolean functions greater than, greater than or equal. These were not
introduced into the domain because they can be expressed by the means of
Boolean functions already in the domain:

GreaterThan(ay, as, x,y) = LessThanOrEqual(as, aq, x, y),

GreaterThanOrEqual(ay, as, x,y) = LessThan(as, a1, x, y).

7.3.2 Terminals

1. Constant terminals: we have proposed terminals that represent real and
integer numbers. When creating such a terminal, a random number is
generated and set as a value of the new terminal.

2. Metadata Terminals: again, we wanted to make the GP at least expressively
strong enough to be able to evolve the same functions created in the previous
section. In order to do this, we should cover all the attribute metadata used
in the metric experiments. By the nature of metadata, some of them will
be available only for the categorical trees and some for the numerical trees
being evolved. Every metadata will be initialized with either one or zero.
As the distance tree computes the distance function of two datasets a and b,
the zero or one will define whether the value of the terminal variable should
be taken from the metadata of dataset a or b.

Random number terminals were also discussed. We have argued that an
evolved program would not benefit from stochasticity, therefore we did not in-
troduce such terminals into domain. Note that this is different from generating
constants, because random number terminals generate a new number each time
they are evaluated.

The example with the individual generated for the numerical distance is in
Figure 7.3.

7.3.3 Algorithm Specification

We need to evolve two trees. We are going to evolve these two trees as one
individual. The mutation and crossover will be first applied on the categorical
trees and then also on the numerical trees. As the initialization methods for the
evolution, we will use the ramped half-and-half to initialize every tree. Ramped
half-and-half was chosen because according to some authors [95], it creates more
diversity. The initial maximal depth was set to 6. The mutation and crossover

115

Figure 7.3: Example of the tree evolved by the GP for the numerical distance
between two attributes. The terminals are blue compared to inner-nodes which
are true. The label in the node describes the type. For instance, label [repre-
sents LessThan function, similarly UD:0 is a variable gaining a value depending
whether an attribute corresponding to the left argument (left is determined by
the number 0) correspond to an uniform distribution.

116

probabilities were set regardless of whether they are used for the categorical or
numerical part of an individual. The mutation chance was set according to our
previous experiments to 0.2. The probability of crossover happening was set to
0.7. The termination criterion was set to the generation count. We did not want
to encourage bloating and over-fitting, so the generation target was set to 80.
We believe this was the reasonable amount of generation to evolve reasonably
good distance measures. Compared to the previous experiments with genetic
algorithm, we also increased the population size to 120 individuals. GP is more
dependent on bigger populations, as a lot of distance measures generated really
bad input compared to the genetic algorithms where everything was a p-norm,
and even the worst weights produced somewhat reasonable output.

For the rest of the workflow settings, we will not make any changes. We set
up number of neighbours for the k-NN to 17 and use the dummy attribute as the
one already in the attribute space given by the median of every metafeature.

Given two datasets a and b, respectively their numerical and categorical
metafeatures, the evolved tree can now compute the distance using Algorithm
16. This does not guarantee any of the metric properties. For instance, algo-
rithm can produce zero easily by instantiating the minus node with two children
— each of them initiated by a constant of the same value. It would be very hard
to constrain the GP algorithm to evolve only metrics or semimetrics. It would
require either a limited set of functions the algorithm can use, or complicated
operators, which would ensure these properties. Instead, based on the discussion
in Section 7.1, we decided to amend the values produced by the trees accord-
ing to Equation 7.3, return 0 if x = y and add a small € > 0 if é(x,y) = 0
and x # y. This will guarantee that we will have a semimetric on the attribute
space. According to Corollary 6, the resulting distance A on the dataset space is
a semimetric. Thus, we sacrificed triangle inequality to gain more expressive lan-
guage to describe attribute distance measures. Other option would be to repair
the resulting distance between datasets. We have decided to repair the attribute
distance, as aligned to the results of Corollary 7 and Observation 7.

The increase in the population size slightly increased the amount of time to
conduct the experiments. Also, if the GP tree was deep enough, its evaluation
usually took slightly more time compared to p-norms. This was a major factor
as the function was evaluated many times. Despite this fact, we decided not to
lower the number of runs so the results are easier to compare. Therefore, the
number of runs was again set to 10.

The whole workflow with the GP and the semimetric repairment is shown in
Figure 7.4.

7.3.4 Results

The results are shown in Table 7.1. The GP managed to get above the baseline on
the validation set in three out of 10 cases. It is not surprising that the statistical
comparison of the GP and other algorithms shown in Table 7.2 resulted in all
algorithms except the baseline outperforming the GP.

These poor results could be explained by overfitting, as the training results
were decent enough. For example, bloating occurred — in the first generation the
average number of nodes was around one hundred after the initialization. We

117

i
i

11

Figure 7.4: UML diagram of the workflow for the GP experiments. This time
the focus will be on the GP tree, which is going to be evolved using the genetic
programming by the fitness from the Ranking Quality Evaluator.

118

Table 7.1: Evaluation of the ranking quality of the trees produced by the GP
algorithm on the testing dataset.

Run GP Result
0.546221
0.542101
0.541881
0.540339
0.538439
0.536444
0.536215
0.532274
0.530289
10 0.512501
median 0.537441

© 00 I O Ot = W N =

could observe values above one thousand in the generation 70. This is not a rare
behaviour of algorithms with high expression capabilities, as they can very easily
learn some noise present in the training data. In the next chapter, we will try to
improve generalization abilities of the trees being evolved.

Table 7.2: Statistical comparison of GP and previous algorithms and their ranking
quality results on the validation set. Y stands for GP significantly worse than
algorithm in the corresponding column, N stands for Not able to reject the null
hypothesis (algorithms equally performing).

o
//x //q’gx 7 //q’ OO//\

AN 2L 0 SV IV

.3 .3 V o < &g Q'\ Q'\

X XY Q N Q %},\ Q Q & o

F FF TG & T P Y L
IS SOOI C O Sl S S S
GP|Y Y Y Y Y Y Y Y Y N

119

Chapter 8

Regularization

In the previous chapter, we relaxed the metric assumptions a little bit, and we
proposed a genetic programming algorithm to evolve trees measuring attribute
distance that fit into our workflow. In the experiments, we observed very poor
results of the algorithm ranking model produced by the GP caused by overfitting.
In this chapter, we will focus on improving the generalization abilities of the GP
algorithm. There are many ways how to do that. We will review some of them.
The so called bootstrapping modifies the initialization phase. Some individuals
with already interesting fitness are inserted into populations and their useful
blocks may be distributed over the population. Regularization [4] is a set of
techniques aiming for boosting the generalization abilities of machine learning
model. This is done by penalizing complex hypothesis or by encouraging the
properties that we think help in generalization. In this chapter, we will introduce
two regularization techniques that we believe could help in improving our models
— both of them have been already used in our experiments in [114, 111]. The first
approach uses technique called coevolution during the evolution of the trees. The
second approach — called multi-objectivization — splits the single objective into
multiple objectives in which we can measure some other interesting properties.
To do that, we will need a multi-objective optimization algorithm. We will present
NSGA-II algorithm as it is one of the best for two-objective optimization. We
will propose new batch of experiments combining genetic programming algorithm
from the previous chapter with some of the techniques discussed in this chapter.
We will again compare their results with the rest of the algorithms. We also review
some of our previous experiments using multi-objectivization for the algorithm
ranking problem.

8.1 GP Modifications

In this section, we will review two techniques of modifying the GP algorithm —
bootstrapping and coevolution. Both can be used to improve the generalization
abilities of the GP algorithms.

8.1.1 Bootstrapping

The bootstrap problem may occur in complex domains. When the population is
initialized, all individuals often have very low fitness. This happens especially

120

when the ratio of good to bad solutions is very small. It is then hard for the
genetic programming algorithm to estimate good places to evaluate and the run
of the algorithm is similar to the random walk algorithm.

One approach to deal with the bootstrap problem is proposed in [47]. The
problem and/or domain is simplified, so there is a better chance that some good
individuals are generated during initialization. After sufficient solutions are found
for the simplified problem/domain, we increase the difficulty of the problem but
let the population as it is. We expect that the solutions for simplified problems
will not have very low fitness for the more difficult problem (as would probably
happen with random initialization). The whole process is repeated until the
more difficult problem is equal to our original problem. This approach is called
the incremental evolution.

The second approach arises from the research about initializing the popula-
tion [33]. If the initial population to the GA is good, then the algorithm has a
better possibility of finding a good solution [21], [128] to seed the GP with that
information [22], i.e., the initial population is seeded with some of those possible
solutions or partial solutions of the problem. It can be easily combined with some
other algorithms. Let other algorithms find some possible or partial solution and
pass these solution for the GP initialization.

The bootstrapping can be also used to boost the generalization abilities of the
GP. We can insert individuals with good generalization abilities with the expec-
tation that useful blocks of information will be distributes over the population,
changed in then novel ways while still maintaining the generalization abilities of
the original blocks.

8.1.2 Coevolution

In some cases, it may be beneficial to evolve different part of an individual sepa-
rately. For example, the GP algorithm presented in the previous chapter simul-
taneously evolves two tree - one for measuring the distance between numerical
attributes, second for evolving distance between categorical attributes. Instead of
thinking about this as individuals consisting of pair of trees, we could think of this
as two species - categorical and numerical one. The fitness of an individual would
be based on a cooperation of this individual with one or more individuals of the
other species. In this case, for one tree for measuring distance between numerical
attributes, in each generation, we would choose one or more categorical trees and
evaluate ranking quality of this tuple. This has the negative effect that the fitness
has to be reset after each generation as the fitness of an individual can change,
as the fitness is dependent on the population of other species, which increase the
computation time as we cannot pass the fitness of unchanged individuals to the
next generation. This does not concern us too much, as this increase is not in
the order of magnitudes. The major benefit is that the individual does not have
time to overfit, as the stable part is needed for overfitting. Since each generation
connects different representations of each species together, only those properties
that are generally useful are usually kept in the individuals. More information
about coevolution can be found in [123, 57, 98, 97].

121

8.2 Multi-objectivization

Even if some problem at hand is in fact single-objective (we try to minimize the
error rate of the algorithm), it can be sometimes also expressed as a problem
with more objectives. Such an approach is called multi-objectivization and it has
been shown that it can improve the performance of single-objective optimization
algorithms, especially in cases where the optimized function contains plateaus
[20]. Pilat and Neruda [93] used multi-objectivization for the hyper-parameter
tuning of classifiers. They added two objectives to guide the search — the root
mean squared error and the kappa statistic — while they tried to optimize the
hyper-parameters for the best accuracy of the model. In the field of machine
learning, multi-objective optimization can also be used for regularization [55].
In such case, the regularizing term is added as another objective rather than
summing it with the optimized criterion.

Throughout this thesis, we discussed many attribute distance measures. We
began with attribute distance measures that were metric, in Chapter 7 we relaxed
this a little bit and discussed semimetrics. We can use the multi-objectivization
to add an extra objective to the original one — resulting ranking quality. The
second criterion will be the similarity of a distance measure to a metric. We
have two choices for which measure we would like to use. We have an attribute
and dataset distance measures. As our training set covers only a limited number
of datasets and attributes out of dataset and attribute space, Theorem 17 and
Observation 4 will be useful. According to those, the optimization towards a
metric on the training datasets does not optimize metric on the attributes in the
training dataset, but the opposite is true. In that sense, the optimization towards
metric on the attribute space is somewhat stronger.

As the multi-objective optimization is more complex than single-objective
optimization, we will devote some space to a brief introduction. We will formally
define a multi-objective optimization problem, discuss Pareto dominance and the
first Pareto front. We also introduce NSGA-II algorithm and discuss why it is
suitable for our needs.

8.2.1 Multi-objective Optimization

Definition 44. A multi-objective optimization problem is defined as a tuple
(D,0,F,C), where D is the design (decision) space, O C R™ is the objective
space, F'= (f1,..., fn) with f; : D — R is the set of n objective functions, and
C ={c1,...,q} is the set of | constraints.

There are some challenges to overcome compared to single-objective optimiza-
tion. With the single optimization, the solutions are linearly order according to
f. This may not apply to multi-objective problems, as it may be the case that
fi(z) is better than fi(y) but at the same time f5(y) has better objective value
than fo(z). This is formalized by the definition of Pareto dominance.

Definition 45. Individual x Pareto dominates individual y (v < y)(equivalently,
individual y is Pareto dominated by the individual x), if for each objective f; :
fi(z) < fiy), and there is at least one objective f; for which f;(x) # fi(y).

If neither (x < y) nor (xr > y), we say that x and y are (mutually) non-
dominated.

122

Pareto dominance is not a total order on D, if there is a pair that is mutually
non-dominated. This gives a notion to a goal of the multi-objective optimization,
as we will be looking for the set that is not dominated by other elements in D.

Definition 46. The solution of multi-objective optimization problem (D, O, F, C')
1s a Pareto set P C D, such as for each x € D and y € P, the indiwvidual y is not
dominated by the individual x. The image of the Pareto set P under the objectives
F is a subset of O called the Pareto front.

In practise, finding the enumeration of the solution of the multi-objective op-
timization problem is often not possible because the solution may be uncountable
because it can be uncountable subset of R. If the goal is to enumerate the solution
and not to provide function of all elements in the Pareto set, no algorithm can
provide a complete solution. This gives a notion of approximation of the solution:

Definition 47. A Pareto set approximation A € D 1is a finite set of pints in
the decision space such that for each two points x,y € A, x and y are mutually
non-dominated.

8.2.2 Multi-objective Evolutionary Algorithms

There has been a large number of multi-objective evolutionary algorithms pro-
posed in the past. Examples are the Non-dominated Sorting Genetic Algorithm
(NSGA [117]), NSGA-II [32] and Multi-objective Covariance Matrix Adaptation
Evolution Strategy (MO-CMA-ES) [53]. For more complete survey of multi-
objective evolutionary algorithms please refer to [76] and [127].

In this thesis, we will use NSGA-II. Although this algorithm is rather old, it is
still among the best optimizers for two-objective problems [54]. Newer algorithms
usually outperforms NSGA-IT when the number of objective functions is high. In
this case, almost all solutions in the population become non-dominated and the
convergence property of the algorithm becomes severely deteriorated. In this
thesis, we will have at most two objectives, therefore the NSGA-II algorithm is a
suitable choice. The main idea of the algorithm is its environmental selection. The
evolution prefers individuals who dominate more and who bring more diversity
to the population. NSGA-II first sorts individuals to numbered sets called fronts.
Individuals from some front dominate all individuals from the fronts with the
higher number. Each individual is assigned the number of its front called rank.
Compared to its predecessor NSGA where assigning the individuals according to
their front took O(M N?) time, where N is the population size and M number
of objectives, the fast Non-dominated sort outlined in Algorithm 20 reduced the
time complexity to O(MN?). The diversity in each front is empowered by so
called distance. Individuals in each front with bigger differences in its objectives
are preferred. The boundary individuals (with at least one objective being the
highest or the lowest in its front) are labelled as most distant. The assignment
of the distance to each individuals is outlined in Algorithm 21. Given the notion
of rank and distance, we can define the partial order <,, that the algorithm uses
to guide the evolution:

x <, if x.rank <y.rank,

x <, if x.rank = y.rank and x.distance > y.distance.

123

That is we prefer solutions with better rank. In the case of a tie, we prefer indi-
viduals with better distance. To ensure elitism (i.e. the fact that the best found
solutions are not lost during the selection), NSGA-II first merges the parent and
children population and the ranks are assigned based on the merged population.
Another important feature of NSGA-II are the operators which are used. The
usual crossover operator is the so called simulated binary crossover (SBX) [30].
This operator performs arithmetic crossover (i.e. it makes a weighted average
of two parents), but the weights are selected in such a way that the change in
the values of the variables is similar to the change of variables when one-point
crossover on binary encoded strings is used. Basically, it means that the vari-
ables of the offspring have higher probability to be closer to one of the parents
than if the weights are selected uniformly. The mutation operator [31] — called
Polynomial Mutation uses a similar idea. The relative changes in the values of
the variables should be similar to those of a bit-flip mutation on binary strings.
The generation increment of the NSGA-II is described in Algorithm 22. The
complexity of each increment is as follows:

1. Nondominated sorting is O(M(2N)?).
2. Crowding-Distance assignment is O(M2N log(2N)).
3. Sorting on <, is O(2N log(2N)).

The N stands for the population size and M is the number of objectives. Total
complexity of the generation increment is O(M N?).

8.3 Experiments

In the new experiments, we will be amending the experiments used in Chapter 7.
We will propose experiments using bootstrapping, coevolution and antibloat oper-
ators and compare their results with the rest of the algorithms used in this thesis.
We will also present the results of our multi-objectivization experiments for the
algorithm ranking problem. These were performed over the similar, though not
the same, dataset.

8.3.1 Coevolution

To implement coevolution, we will amend the GP algorithm presented in Chap-
ter 7. The algorithm evolved both trees as one individual. We will split the
population into two, one will correspond to the numerical and second to the cat-
egorical population. The functions and terminals for each population will be also
split accordingly. In every generation we will generate random bijection between
categorical and numerical trees. We will calculate the fitness as if these two trees
would be a single individual, and we will still use the fitness from the original GP
algorithm.

We would require about 150 nodes to represent the weighted attribute metric
from Chapter 6. It is difficult for the GP to find similar distance measures as
the search space is very big. Therefore, we decided to try bootstrapping so
the GP can use the useful components of the metric evolved in the previous

124

Algorithm 20: Fast-non-dominated Sort

// Pseudocode for computing the rank of individuals.
input : I < List of individuals

1 foreach p in I do

2 Sy < 0;

3 n, < 0;

4 foreach ¢ in I do

5 if p < ¢ then

6 ‘ Sp < Sp U{a}s
7 end

8 else if ¢ < p then
9 ‘ ny < n, + 1;
10 end
11 end
12 if n, = 0 then
13 Prank < O;
14 F «— F U}
15 end
16 end

17 1= 1;

18 while F; # () do

19 Q + 0;
20 foreach p in F; do
21 foreach ¢ in S, do
22 Nng < ng — 1;
23 if n, = 0 then
24 Qrank < i+ 17
2s Q < QUi{a}:
26 end
27 end
28 end
29 14— 1+ 1;
30 | I« Q;
31 end

125

Algorithm 21: Crowding Distance Assignment

© 00 N O A W N =

=
=)

11

12
13

// Pseudocode for computing distance between individuals in
the Pareto front. The distance is used by the NSGA-II to
maintain diversity in the Pareto front.

input : F' < List of objectives

input : I « List of individuals

size = len(/);
foreach i in I do
‘ t.distance <— 0;
end
foreach f € F do
I < sort(1, f);
I[0].distance < I[size — 1].distance < oo;
fmin <~ f(I[ODa
Jmax < f(I[Size - 1]);
for kin {1,..., size — 2} do
Pl —1]) + F(Ik + 1))

I[k].distance « I[k].distance + A ;

end
end

Algorithm 22: NSGA-II

© 0w N o oA~ W N =

[R
N R O

// Pseudocode for population increment of the NSGA-II
algorithm.

input: P, «+ Parent population in the time ¢

input:); < Offspring population in the time ¢

Ry + Q. P;

F + fast-non-dominated-sort(R;);

Py < 0

1+ 1;

while |P,1| + |F;| < N do
crowding-distance-assignment (F;);
Py~ P UFE;
141+ 1;

end

sort(Fy, <n);

Pr = P UF[L: (N = |Peal)];

Qi+1 < apply-operators(Py1);

126

experiments. As in the GP experiments, we do not evolve weights. Therefore,
we decided to use individuals who did not discriminate between categorical and
numerical attributes and whose selector weights were around the same value. We
also decided not to use the best individual as we wanted to allow GP algorithm
to fine tune the distance itself. It could be hard otherwise to beat the given
distance thus creating the same problem again that we are addressing with the
bootstrapping.

We have chosen the individual with the numerical weight equal to 2.508826
and categorical to 2.250011. With the weights included, the training fitness was
equal to 0.554701 on the training set and to 0.54561 on the testing set respec-
tively. As the GP did not incorporated the weights, the fitness slightly changed
to 0.553206 on the training set and to 0.544519 on the testing set respectively.

We have not changed any other parameters.

8.3.2 Antibloat

In the antibloat experiments we have reused the framework from Chapter 7. We
have only amended the tournament selection. If the size of the individual exceeds
the limit, we decrease the fitness of the individual. This decrease is only for
the selection purposes, we have not amended this for the sake of elitism and
ranking quality reporting. Let us suppose that we have some individual with
fitness f € (0,1). We rescaled the fitness by every of the following, once per each
penalty:

1. One percent down per each 10 nodes above 200 in the categorical tree.
2. One percent down per each 10 nodes above 200 in the numerical tree.

3. One percent down per each 5 points above 20 measured in the maximum
width of the levels in the categorical tree.

4. One percent down per each 5 points above 20 measured in the maximum
width of the levels in the numerical tree.

5. One percent down per each 5 points above 20 measured in the maximum
depth of the levels in the categorical tree.

6. One percent down per each 5 points above 20 measured in the maximum
depth of the numerical tree.

We set a cap to every such rescaling to 0.9, as we did not want a single penalty to
completely negate the fitness of particular individual. Furthermore, we did not
allow the fitness to become less than zero.

8.3.3 Results

The results of individual runs of the GP algorithm with antibloat operator and
coevolution with bootstrapping can be found in Table 8.1. Statistical compari-
son with the results of the previous algorithms can be found in Table 8.2. The
algorithm with bootstrapping and coevolution managed to beat the baseline and
all the pure assignment based algorithms. It also managed to match the level of

127

Table 8.1: Evaluation of the ranking quality of the trees produced by the GP
algorithm using antibloat operator and bootstrapping with coevolution on the
testing dataset.

Run Coevolution+Bootstrap Antibloat

1 0.559953 0.553059
2 0.553473 0.54562
3 0.552748 0.543022
4 0.551044 0.541717
5 0.550729 0.5394
6 0.548995 0.539193
7 0.548331 0.533419
8 0.548253 0.532851
9 0.544634 0.53082
10 0.544221 0.528787
median 0.549862 0.539297

the first combination of the global metafeatures and assignments. In some runs
the overfitting was still present — although the algorithm managed to improve
the fitness on the training set, in some cases it did not improve the results on
the validation set. That significantly decreased its score in the overall results.
However, one run managed to outperform every other run using the global at-
tributes only and produced one of the best results using solely the assignments.
This suggest that attribute assignment has a very good potential to be improved
with further empowering the generalization abilities of GP algorithm. The runs
with the antibloat operator reduced bloating, however we did not observe a big
difference in the resulting ranking quality. This suggests that the bloating is not
the only factor reducing the generalization abilities.

Table 8.2: Statistical comparison of GP using antibloat operator and coevolution
with bootstrapping and previous algorithms and their ranking quality results on
the validation set. W stands for GP statistically worse than the algorithm in
the corresponding column, I stands for inconclusive and B stands for statistically
better.

N
@OOK} 4 //%K 4 //q} //CP //\’
N S L A S S S
& .. v o o> {@« &)« va
F XX VNN F S 3
K H D DD TS N
& & RO RN S S-S ©
T O O W S
Coev+Boot W wW W W W I B B B B B
Antibloat | W W W W W W W W 1 I 1 I

128

8.3.4 Multi-objectivization

We have experimented with the multi-objectivization for the algorithm ranking
in [111]. Herein, we have used similar OpenML dump. The difference was in
fewer filters applied, as we did not compare with propositional approaches and
therefore we did not include the requirements that all datasets have all global
metadata available.

The whole workflow was derived from the one used in Chapter 7, although we
did not explicitly repair the distance function to a semimetric.

As discussed in Section 8.2, it is better to include metric similarity of the
attribute distance instead of dataset distance. For that reason we have used
resemblance of attribute distance measure d to a metric as a second criterion. To
be precise, for each selector we measured

€1+€2+€3+€4
4)

Eselector -

where e; is the ratio of instances (tuples of triples) where metric axiom ¢ did
not hold. We then based the second criterion on the aggregation of £ over all

selectors:
ZséSelectors ES

|Selectors|

f=1-

If we repaired the distance function to a semimetric, as we have already men-
tioned, it would be enough to measure just the amount of cases where triangle
inequality held.

As a multi-objective algorithm the NSGA-IT was chosen. The size of the
population was set to 200. The tournament approach was selected as the selection
mechanism. A better individual was chosen according to rank and crowding
distance. The probability of better individual winning the tournament was set
to 0.7. Also, the NSGA-II uses elitism, so the best individual were guaranteed
to be copied to the next generation. Tree mutation and crossover were used as
genetic operators. The probabilities of mutation and crossover were set to 0.2 and
0.7 respectively. The termination criterion was set to 80 generations. This was
mainly we noticed that the bloating usually appeared around this generation.

We have performed seven runs and we obtained significantly better results
compared to the baseline algorithm. Furthemore, we have observed the high
correlation of the metric similarity and prediction accuracy. This supports the
hypothesis that the metric properties are important for the generalization abilities
of the induced dataset similarity measure. This was the most obvious during the
second run, whose results are depicted in Figures 8.1 (training) and 8.2 (testing).
The Spearman’s rank correlation coefficient between the first and second criterion
of the second run on the testing set was 0.734. This means that in the testing
set the individuals more similar to a metric had better results for the prediction
of the algorithm ranking.

129

Training

1.000 + foe] s ® 1
S e,
=z °
|-
o []
E 0.999 | * ouy]
(7]
=
D ®
£
. 0.998 | i
=
S
.g ® DEN
b []
2 0.997| i
o
&)
@
(73]
0.996 | oo -
i@

0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585
First criterion - Spearman's rank correlation coefficient

Figure 8.1: Results of the first Pareto front of the second run on the training set.

130

Testing

1.000} oD §
.“.. o
[]

-
.E‘ []
©
£ 0.999| “ s o o °]
w
=
D ®
£
. 0.998 | _
| -
)
g 20 D
; []
2 0997} i
S
@
(751

0.996 | oo -

[]
0.545 0.550 0.555 0.560 0.565 0.570 0.575

First criterion - Spearman's rank correlation coefficient
Figure 8.2: Results of the first Pareto front of the second run on the testing set.

Note the high correlation between both criteria - the higher values of the accuracy
criterion are associated with higher values of the metric similarity criterion.

131

Chapter 9

Conclusion

In this thesis, we have studied the non-propositional approach for comparing
two datasets. We have focused on algorithm ranking problem in metalearning.
However, our approach is not limited solely to this area and can be easily reused
even in other fields. Specifically, the distance measures defined on some set X
can be transformed by attribute assignment algorithms to a distance measure on
the power set 2% of X.

The main contribution lies in the design of multiple algorithms for measuring
the distance between two datasets that can handle non-propositional metada-
ta and their unique theoretical properties. The difference between them is in
the computational complexity, expression power and guarantees on the resulting
dataset distance measure.

When proposing our algorithms, we built our work on the related approach-
es. The literature suggested several methods to handle the non-propositionality,
either directly in the metalearning fields or in some other areas of computational
intelligence. However, we have identified several areas that could improve the
reviewed literature. For instance, the current approaches are either losing impor-
tant information, lack metric properties or assume that the order is important
(although we can reshuffle attributes in datasets without changing the informa-
tion). This drove our motivation to propose new methods in the first place.
Furthermore, authors of [59] recognized the problem of building the distance over
non-propositional datasets as non-trivial.

The main idea behind our algorithms rests upon the idea of attribute assign-
ment. To measure distance between two datasets, we first propose an attribute
distance measure. We first amend the datasets so their cardinalities match, by
inserting artificial attributes into the dataset with less attributes. Then we find
bijection of attributes from the first dataset to another so the sum of the distances
defined by the bijection and the attribute is minimized. This sum of distances is
also the desired distance between datasets.

We have proven that under certain conditions, the resulting distance between
datasets is a metric. The main condition for this is that the underlying attribute
distance measure itself is a metric. Other conditions include several restrictions
on extending the attribute space by a dummy attribute. We have also proven
that the above is valid also in the other directions. However, the first direction
is somewhat stronger if we have only training data and is optimizing towards a
metric on either dataset or attribute subspace defined by training data. Some

132

other ideas were considered, for instance the normalization of the sum of attribute
distances by the number of attributes. However, we have proven that this can
break the triangle inequality axiom.

We have designed our algorithm to be extensible. It is possible to use the
metadata specific for some attribute types, for instance for categorical and nu-
merical metadata. This is achieved by splitting the distance into two, one for
each metadata type. We have verified that this does not affect the metric prop-
erties of the algorithms. It is also possible to combine multiple metric distance
into one. This allows our assignment approach to be combined with propositional
approaches. As both approaches return useful information, we argued that by
combining them, even more accurate sense of distances between datasets should
be obtained.

We have designed generic workflow for measuring quality of ranking. As we
made sure that all our algorithms conform to specified interfaces, it is possible
to replace different parts of the workflow. This allowed us to compare different
algorithms and their combinations proposed in the thesis in a unified way. We
have also proven that it is possible to optimize distance based measures without
changing their properties. This enabled us to employ optimization methods to
boost the performance of our algorithms. We have employed genetic algorithms
and genetic programming for this purpose.

Results of genetic algorithm experiments suggest that attribute alignment al-
gorithms can be successfully used for algorithm ranking. Every parameter settings
we optimized produced statistically better results than the baseline algorithm
with a single exception. The aggregation of global and attribute approach pro-
duced the best results. With genetic programming, we traded triangle inequality
for higher expression power. It was so powerful that it could overfit the training
data very easily. To counter this, we have employed several approaches to improve
generalization abilities. With this we managed to further improve the results of
the assignment algorithms on our data. Especially coevolution combined with
bootstrapping of the population managed to obtain promising results. We also
reviewed one of our previous work where we used multi-objectivization to boost
the generalization abilities of models being evolved. We introduced metric resem-
blance as a second criterion. Results suggested that there is a high correlation
between the second criterion and generalization abilities of the models.

We have also demonstrated visualization of non-propositional dataset repre-
sentation using the kernelized PCA. We investigated the visualization in more
depth, and the results seems to be plausible as the visualisation rendered similar
datasets in the same cluster.

9.1 Future Work

The work presented in this thesis can be extended in several directions. We
wanted to focus on the attribute based distance. As the whole workflow of all
the pieces plugged together became quite complicated, we did not want to add
extra parts that would distract from the main idea by increasing the complexity
of the workflow. It would be possible however to use ensemble based learning on
top of our models to get the combined accuracy of our models.

As we are using distance based algorithms, it could be beneficial to try better

133

methods, such as weighted k-NN, that would make use of the distances of the
nearest neighbours. It would also help to have more data. As we are dealing with
high dimensional dataset space, hundreds of datasets is still very small amount
to reasonably cover the space.

Our algorithms need lots of parameters. As our resources are limited and the
training of models took significant amount of time, we could not dedicate much
space to tuning of the parameters, and parameters we used were based on the
previous experiments or short preliminary experiments. We would like to tune
the parameter of k of the k-NN, different parameters and genetic operators of
genetic algorithms used, with different strategies for adding the dummy attribute
(either constant or different attribute when selected from attribute space). Even
in this thesis, we have observed that parameters can significantly improve the
overall results of experiments.

We would also like to enhance Genetic Programming algorithm with types.
Typed genetic programming [88, 71] can help reduce the space that is searched
and allows for more elaborate constructs and operators.

A room for improvement can be also seen in the metafeatures we are ex-
tracting from the attributes. Currently, only simple, statistical and theoretical
metafeatures are extracted. It could be interesting whether we can extract some
sort of landmarks on the attribute level. For example, we can try to predict target
values using only a single attribute and use the results as a new metafeatures. It
could also help to find metafeatures that are really useful for the generalization.
It may well be the case that some metafeatures are just used to overfit the data
and instead of contributing to the generalization abilities of the models, they are
just downgrading the validation results.

We also see an opportunity in expanding the theoretical work. After the align-
ment, we use the sum of individual attribute distances given by the assignments
to get the metric on datasets provided that certain conditions hold. It could be
interesting to see whether some other aggregations can be used without sacrific-
ing the nice property of metric preservations. It could be also beneficial to define
sort of normalization of the resulting dataset distance that does not violate metric
axioms.

134

Bibliography

1]
2]

[4]

[5]

[10]

Attribute-Relation File Format (ARFF), January 2001.

Salisu Abdulrahman and Pavel Brazdil. Measures for combining accuracy
and time for meta-learning. In Proceedings of the International Workshop
on Meta-learning and Algorithm Selection co-located with 21st Furopean
Conference on Artificial Intelligence, MetaSel@QECAI 2014, Prague, Czech
Republic, August 19, 2014., pages 49-50, 2014.

Salisu Abdulrahman, Pavel Brazdil, Jan N. van Rijn, and Joaquin Van-
schoren. Algorithm selection via meta-learning and sample-based active
testing. In MetaSel@PKDD/ECML, volume 1455 of CEUR Workshop Pro-
ceedings, pages 55-66. CEUR-WS.org, 2015.

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learn-
ing From Data. AMLBook, 2012.

Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for
bipartite matching with metric and geometric costs. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 201/, pages 555-564. ACM, 2014.

A. Agresti. Categorical Data Analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, 2nd edition, 2002.

Fabio Aiolli. Transfer learning by kernel meta-learning. In Isabelle Guyon,
Gideon Dror, Vincent Lemaire, Graham W. Taylor, and Daniel L. Silver,
editors, ICML Unsupervised and Transfer Learning, volume 27 of JMLR
Proceedings, pages 81-95. JMLR.org, 2012.

Shawkat Ali and Kate A. Smith-Miles. A meta-learning approach to au-
tomatic kernel selection for support vector machines. Neurocomputing,
70(1-3):173 — 186, 2006. Neural NetworksSelected Papers from the 7th
Brazilian Symposium on Neural Networks (SBRN ’04)7th Brazilian Sym-
posium on Neural Networks.

Ehsaneddin Asgari and Mohammad R. K. Mofrad. Protvec: A continuous
distributed representation of biological sequences. CoRR, abs/1503.05140,
2015.

E Gregory Ashby and Nancy A. Perrin. Toward a unified theory of similarity
and recognition. Psychological Review, 95:124-150, 1988.

135

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]

[21]

[22]

23]

[24]

George Athanasopoulos and Rob J. Hyndman. The value of feedback in
forecasting competitions. International Journal of Forecasting, 27(3):845 —
849, 2011. Special Section 1: Forecasting with Artificial Neural Networks
and Computational IntelligenceSpecial Section 2: Tourism Forecasting.

K. Bache and M. Lichman. UCI machine learning repository, 2013.

Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi.
Jade - a java agent development framework. In Rafael H. Bordini, Mehdi
Dastani, Jiirgen Dix, and Amal El Fallah-Seghrouchni, editors, Multi-Agent
Programming, volume 15 of Multiagent Systems, Artificial Societies, and
Simulated Organizations, pages 125-147. Springer, 2005.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.
A neural probabilistic language model. J. Mach. Learn. Res., 3:1137-1155,
March 2003.

Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is
np-complete. Neural Networks, 5(1):117 — 127, 1992.

Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, and Ricardo
Vilalta. Metalearning — Applications to Data Mining. Cognitive Technolo-
gies. Springer, 2009.

Pavel B. Brazdil and Carlos Soares. Zoomed ranking: Selection of classifica-
tion algorithms based on relevant performance information. In Proceedings
of Principles of Data Mining and Knowledge Discovery, 4th European Con-
ference (PKDD 2000), pages 126-135. Springer, 2000.

Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto da Costa. Ranking
learning algorithms: Using ibl and meta-learning on accuracy and time
results. Machine Learning, 50(3):251-277.

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, October 2001.

Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein,
Frank Neumann, and Eckart Zitzler. On the effects of adding objectives
to plateau functions. Trans. Fvol. Comp, 13(3):591-603, June 2009.

Edmund K. Burke, Steven Gustafson, and Graham Kendall. Diversity in
genetic programming: An analysis of measures and correlation with fitness.
IEEE Transactions on Evolutionary Computation, 8(1):47-62, 2004.

Darren A. Casella and Walter D. Potter. New lower bounds for the snake-
in-the-box problem: Using evolutionary techniques to hunt for snakes. In
Ingrid Russell and Zdravko Markov, editors, FLAIRS Conference, pages
264-269. AAAIT Press, 2005.

E. F. Codd. Further normalization of the data base relational model. IBM
Research Report, San Jose, California, RJ909, 1971.

The UniProt Consortium. UniProt: a hub for protein information. Nucleic
Acids Research, 43(D1):D204-D212, January 2015.

136

[25]

[26]

[27]

28]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Gregory W. Corder and Dale I. Foreman. Nonparametric Statistics: A
Step-by-Step Approach. Wiley, 2014.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273-297, 1995.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. I[EEFE
Transactions on Information Theory, 13(1), 1967.

Charles Darwin. On the origin of species by means of natural se-
lection; or, The preservation of favoured races in the struggle for
life / by Charles Darwin. New York :D. Appleton and Co.,.
http://www.biodiversitylibrary.org/bibliography /39967 — Includes index.
— [2] p. of publisher’s advertisements at end.

Peter Dawyndt, Hans De Meyer, and Bernard De Baets. {UPGMA} clus-
tering revisited: A weight-driven approach to transitive approximation. In-
ternational Journal of Approzimate Reasoning, 42(3):174 — 191, 2006.

Kalyanmoy Deb, Ram Bhusan Agrawal, and Ram Bhushan Agrawal. Sim-
ulated Binary Crossover for Continuous Search Space. 1995.

Kalyanmoy Deb and Mayank Goyal. A Combined Genetic Adaptive Search
(GeneAS) for Engineering Design. 1996.

Kalyanmoy Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii. FEvolutionary Computation,
IEEE Transactions on, 6(2):182-197, 2002.

Pedro A. Diaz-Gomez and Dean F. Hougen. Initial Population for Genetic
Algorithms: A Metric Approach. 2007.

Alexei Drummond and Allen G. Rodrigo. Reconstructing genealogies of
serial samples under the assumption of a molecular clock using serial-sample
upgma. Molecular Biology and Evolution, 17(12):1807-1815, 2000.

S. A. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Trans-
actions on Systems, Man, and Cybernetics, SMC-6(4):325-327, April 1976.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. Journal of the ACM, 19(2):248-
264, April 1972.

Gregory E Fasshauer. Positive definite kernels: past, present and future.
Dolomite Research Notes on Approximation, 4:21-63, 2011.

Jacques Ferber, Olivier Gutknecht, and Fabien Michel. Agent-Oriented
Software Engineering 1V: Jth International Workshop, AOSE 2003, Mel-
bourne, Australia, July 15, 2003. Revised Papers, chapter From Agents
to Organizations: An Organizational View of Multi-agent Systems, pages
214-230. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

R. A. Fisher. Annals of Fugenics.

137

[40] Neal Ford. Functional thinking. O’Reilly Media, Sebastopol, CA, 2014.

[41] Johannes Fiirnkranz and Johann Petrak. An evaluation of landmarking
variants. In Proceedings of the ECML/PKDD Workshop on Integrating
Aspects of Data Mining, Decision Support and Meta-Learning (IDDM-2001,
pages 5768, 2001.

[42] Mario Graff and Riccardo Poli. Practical performance models of algo-

rithms in evolutionary program induction and other domains. Artif. Intell.,
174(15):1254-1276, October 2010.

[43] Mario Graff and Riccardo Poli. Practical performance models of algorithms
in evolutionary program induction and other domains. Artificial Intelli-
gence, 174(15):1254-1276, October 2010.

[44] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and [an H. Witten. The weka data mining software: an update.
SIGKDD Ezplorations Newsletter, 11(1):10-18, 2009.

[45] Greg Hamerly and Charles Elkan. Learning the k in k-means. In In Neural
Information Processing Systems, page 2003. MIT Press, 2003.

[46] Z. Harchaoui and F. Bach. Image classification with segmentation graph
kernels. In 2007 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1-8, June 2007.

[47] Inman Harvey, Phil Husbands, and Dave Cliff. Seeing the Light: Artificial
Evolution, Real Vision. 1994.

[48] R. J. Henery. Methods for comparison. In Donald Michie, D. J. Spiegel-
halter, C. C. Taylor, and John Campbell, editors, Machine learning, neural

and statistical classification, pages 107-124. Ellis Horwood, Upper Saddle
River, NJ, USA, 1994.

[49] Thomas Hofmann, Bernhard Scholkopf, and Alexander J. Smola. Kernel
methods in machine learning, 2008.

[50] John H. Holland. Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial Intel-
ligence. MIT Press, Cambridge, MA, USA, 1992.

[51] Holger Hoos, Marius Thomas Lindauer, and Torsten Schaub. claspfolio
2: Advances in algorithm selection for answer set programming. CoRR,
abs/1405.1520, 2014.

[52] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Learning and In-
telligent Optimization: 5th International Conference, LION 5, Rome, Italy,
January 17-21, 2011. Selected Papers, chapter Sequential Model-Based Op-
timization for General Algorithm Configuration, pages 507-523. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

138

[53]

[54]

[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adap-
tation for multi-objective optimization. Evol. Comput., 15(1):1-28, March
2007.

Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary
many-objective optimization: A short review. In IEEE Congress on Evo-
lutionary Computation, pages 2419-2426. IEEE, 2008.

Y. Jin. Multi-objective machine learning, volume 16. Springer, 2006.
I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

Kenneth A. De Jong and Mitchell A. Potter. Evolving complex structures
via cooperative coevolution. In Fvolutionary Programming, pages 307-317,
1995.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm selection and scheduling. In Proceedings of
the 17th International Conference on Principles and Practice of Constraint
Programming, CP’11, pages 454-469, Berlin, Heidelberg, 2011. Springer-
Verlag.

Alexandros Kalousis and Melanie Hilario. Representational issues in meta-
learning. In ICML, pages 313-320. AAAI Press, 2003.

Alexandros Kalousis and Theoharis Theoharis. Noemon: Design, imple-
mentation and performance results of an intelligent assistant for classifier
selection. Intelligent Data Analysis, 3(5):319-337, 1999.

0. Kazik, J. Smid, and R. Neruda. Evolutionary optimization of meta data
metric for method recommendation. In Cybernetics and Intelligent Systems
(CIS), IEEE Conference on, pages 123-127, Nov 2013.

Ondrej Kazik, Klara Peskova, Martin Pilat, and Roman Neruda. Meta
learning in multi-agent systems for data mining. In International Con-
ference on Intelligent Agent Technology (IAT 2011), pages 433-434. IEEE
Computer Society, 2011.

Ondrej Kazik and Roman Neruda. Data Mining Process Optimization in
Computational Multi-agent Systems, pages 93-103. Springer International
Publishing, Cham, 2015.

Ondrej Kazik and Roman Neruda. Ontological modeling of meta learning
multi-agent systems in OWL-DL. TAENG International Journal of Com-
puter Science, 39(4):357-362, Dec 2012.

Ondrej Kazik, Klara Peskova, Martin Pilat, and Roman Neruda. Imple-
mentation of parameter space search for meta learning in a data-mining
multi-agent system. In Proceedings of the 2011 Tenth International Con-
ference on Machine Learning and Applications, ICMLA '11, pages 366—3609.
[EEE Computer Society, 2011.

139

[66]

[75]

[76]

[77]

Ondrej Kazik, Klara Peskova, Martin Pilat, and Roman Neruda. Meta
learning in multi-agent systems for data mining. Web Intelligence and In-
telligent Agent Technology, IEEE/WIC/ACM International Conference on,
2:433-434, 2011.

Ondiej Kazik, Klara Peskovd, Jakub Smid, and Roman Neruda. Clustering
based classification in data mining method recommendation. In Interna-
tional Conference on Machine Learning and Applications (ICMLA 2013),
pages 356-361. IEEE Computer Society, 2013.

Pavel Kordik and Jan Cerny. On performance of meta-learning templates
on different datasets. In IJCNN, 2012.

John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

Harold W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83-97, 1955.

T. Kien and R. Neruda. Generating lambda term individuals in typed
genetic programming using forgetful A*. In FEvolutionary Computation
(CEC), 2014 IEEE Congress on, pages 1847-1854, July 2014.

W. B. Langdon. Size fair and homologous tree genetic programming
crossovers. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H.
Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, vol-
ume 2, pages 1092-1097, Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A comparative study of
collaborative filtering algorithms. CoRR, abs/1205.3193, 2012.

Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. Machine Learning and
Data Mining in Pattern Recognition: Sth International Conference, MLDM
2012, Berlin, Germany, July 13-20, 2012. Proceedings, chapter Selecting
Classification Algorithms with Active Testing, pages 117-131. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel
for SVM protein classification. Proc. Pacific Symposium on Biocomputing,
7:566-575, 2002.

Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-objective evo-
lutionary algorithms: A survey. ACM Comput. Surv., 48(1):13:1-13:35,
September 2015.

M. Lindauer, H. Hoos, F. Hutter, and T. Schaub. Autofolio: An auto-
matically configured algorithm selector. Journal of Artificial Intelligence,
53:745-778, August 2015. To appear.

140

78]

[79]

[30]

[81]

[90]

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and
Chris Watkins. Text classification using string kernels. J. Mach. Learn.
Res., 2:419-444, March 2002.

Sean Luke and Liviu Panait. A comparison of bloat control methods for
genetic programming. Evol. Comput., 14(3):309-344, September 2006.

M. Maratea, L. Pulina, and F. Ricca. The Multi-engine ASP Solver ME-
ASP: Progress Report. ArXiv e-prints, May 2014.

Marco Maratea, Luca Pulina, and Francesco Ricca. AI*IA 2013: Advances
in Artificial Intelligence: XIIIth International Conference of the Italian As-
sociation for Artificial Intelligence, Turin, Italy, December 4-6, 2013. Pro-
ceedings, chapter Automated Selection of Grounding Algorithm in Answer
Set Programming, pages 73-84. Springer International Publishing, Cham,
2013.

Gregor Mendel. Versuche iiber Pflanzen-Hybriden. Verhandlungen des
naturforschenden Vereines in Brinn, 42:3-47, 1866.

Dirk Merkel. Docker: Lightweight linux containers for consistent develop-
ment and deployment. Linuz J., 2014(239), March 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space. CoRR, abs/1301.3781,
2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositional-
ity. CoRR, abs/1310.4546, 2013.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regulari-
ties in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL-HLT-2013).
Association for Computational Linguistics, May 2013.

Mustafa Misir and Michele Sebag. Algorithm Selection as a Collaborative
Filtering Problem. Research report, December 2013.

David J. Montana. Strongly typed genetic programming. Fvolutionary
Computation, 3:199-230, 1994.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),

141

[92]

98]

[99]

[100]

[101]

[102]

pages 1532-1543, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics.

Klara Peskové, Jakub Smid, Martin Pilat, Ondfej Kazik, and Roman Neru-
da. Hybrid multi-agent system for metalearning in data mining. In Pro-
ceedings of the International Workshop on Meta-learning and Algorithm Se-
lection co-located with 21st Furopean Conference on Artificial Intelligence,
MetaSel@QECAI 2014, Prague, Czech Republic, August 19, 201/., pages 53—
54, 2014.

Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier.
Meta-learning by landmarking various learning algorithms. In In Pro-
ceedings of the Seventeenth International Conference on Machine Learning,
pages 743-750. Morgan Kaufmann, 2000.

Martin Pilat and Roman Neruda. Multi-objectivization and surrogate mod-
elling for neural network hyper-parameters tuning. In Emerging Intelligent
Computing Technology and Applications, pages 61-66. Springer Berlin Hei-
delberg, 2013.

Riccardo Poli. Genetic Programming: 6th European Conference, FuroGP
2003 Essex, UK, April 1/-16, 2003 Proceedings, chapter A Simple but
Theoretically-Motivated Method to Control Bloat in Genetic Programming,
pages 204-217. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field
Guide to Genetic Programming. Lulu Enterprises, UK Ltd, 2008.

Stefan Poslad. Specifying protocols for multi-agent systems interaction.
ACM Trans. Auton. Adapt. Syst., 2(4), November 2007.

Mitchell A. Potter. The Design and Analysis of a Computational Model of
Cooperative Coevolution. PhD thesis, Fairfax, VA, USA, 1997. UMI Order
No. GAX97-28573.

Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evol. Comput., 8(1):1-
29, March 2000.

J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81-106,
March 1986.

Jan Ramon and Maurice Bruynooghe. A polynomial time computable met-
ric between point sets. Acta Informatica, 37(10):765-780, 2001.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Process-
es for Machine Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2005.

John R. Rice. The algorithm selection problem. Advances in Computers,
15:65-118, 1976.

142

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

114]

[115]

J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation forest: A new
classifier ensemble method. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(10):1619-1630, Oct 2006.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (8rd Edition). Prentice Hall, 3 edition, December 2009.

H. Saigo, J-P. Vert, and T. Akutsu. Optimizing amino acid substitution
matrices with a local alignment kernel. BMC' Bioinformatics, 7(246):1-12,
May 2006.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu.
Protein homology detection using string alignment kernels. Bioinformatics,
20(11):1682-1689, 2004.

Bernhard Scholkopf, Alexander J. Smola, and Klaus-Robert Miiller. Ad-
vances in kernel methods. chapter Kernel Principal Component Analysis,
pages 327-352. MIT Press, Cambridge, MA, USA, 1999.

Tianze Shi and Zhiyuan Liu. Linking glove with word2vec. CoRR,
abs/1411.5595, 2014.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semant., 5(2):51-53,
June 2007.

J. Smid and R. Neruda. Comparing datasets by attribute alignment. In
Computational Intelligence and Data Mining (CIDM), 2014 IEEE Sympo-
sium on, pages 56-62, Dec 2014.

J. Smid, M. Pilat, K. Peskov4, and R. Neruda. Multi-objective genetic pro-
gramming for dataset similarity induction. In Computational Intelligence,
2015 IEEE Symposium Series on, pages 1576-1582, Dec 2015.

Jakub Smid. Agent optimization by means of genetic programming. Mas-
ter’s thesis, Charles University in Prague, Prague, Czech Republic, 2012.

Jakub Smid and Roman Neruda. Using genetic programming to estimate
performance of computational intelligence models. In Marco Tomassini,
Alberto Antonioni, Fabio Daolio, and Pierre Buesser, editors, Adaptive and
Natural Computing Algorithms (Proceedings of ICANNGA 2013), volume
7824 of Lecture Notes in Computer Science, pages 169-178. Springer Berlin
Heidelberg, 2013.

Jakub Smid, Martin Pildt, Klédra Peskovd, and Roman Neruda. Co-
evolutionary genetic programming for dataset similarity induction. In Fvo-
lutionary Computation (CEC), 2015 IEEE Congress on, pages 1160-1166.
IEEE, 2015.

T.F. Smith and M.S. Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195 — 197, 1981.

143

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127)

[128]

Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis.
Towards objective measures of algorithm performance across instance space.
Comput. Oper. Res., 45:12-24, May 2014.

N. Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using non-
dominated sorting in genetic algorithms. FEwvol. Comput., 2(3):221-248,
September 1994.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA:
Combined selection and hyperparameter optimization of classification algo-
rithms. In Proc. of KDD-2013, pages 847-855, 2013.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249—
260.

Fevrier Valdez, Patricia Melin, and Oscar Castillo. A survey on nature-
inspired optimization algorithms with fuzzy logic for dynamic parameter
adaptation. Ezpert Systems with Applications, 41(14):6459 — 6466, 2014.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
Openml: Networked science in machine learning. SIGKDD FEzplorations,
15(2):49-60, 2013.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M.
Borgwardt. Graph kernels. J. Mach. Learn. Res., 11:1201-1242, August
2010.

Rudolf Paul Wiegand. An Analysis of Cooperative Coevolutionary Algo-
rithms. PhD thesis, Fairfax, VA, USA, 2004. AAI3108645.

David H. Wolpert. The supervised learning no-free-lunch theorems. In
In Proc. 6th Online World Conference on Soft Computing in Industrial
Applications, pages 25-42, 2001.

Adam Woznica, Alexandros Kalousis, and Melanie Hilario. Distances and
(indefinite) kernels for sets of objects. In ICDM, pages 1151-1156. IEEE
Computer Society, 2006.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? CoRR, abs/1411.1792, 2014.

Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagarat-
nam Suganthan, and Qingfu Zhang. Multiobjective evolutionary algo-
rithms: A survey of the state of the art. Swarm and Evolutionary Compu-
tation, 1(1):32-49, 2011.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of mul-
tiobjective evolutionary algorithms: Empirical results. FEwvol. Comput.,
8(2):173-195, June 2000.

144

List of Figures

2.1

2.2

2.3

2.4

2.5
2.6

4.1
4.2

4.3

4.4

4.5

4.6

4.7

Space of optimisation problems was projected to two dimensions by
the PCA algorithm and coloured according to the best algorithm
in that area. Grey colour is for the instances that had multiple
best algorithms (according to some small margin) [116]. 12
Types of ranking. The left one is linear complete, middle one
is weak and complete and the ranking on the right is linear and
incomplete. Adapted from [16]. 14
Example of the tree for estimating the algorithm duration on a new
dataset. Terminals are blue, functions are green. The node labelled
D:i represents distance from the ¢-th nearest dataset. Similarly, the
node labelled E:i denotes error of the algorithm on the i-th nearest

dataset. C'om is the complexity terminal. 16
The dendrogram as a result of the agglomerative clustering [67].
Datasets are assigned to clusters according to their similarity. . . 22
Overview of claspfolio2 framework [51]. 28
Overview of Agent-Group-Role model of our recommendation sys-
tem Pikater [91].o 29

Linguistic regularities preserved by the word2vec algorithm [84, 85]. 44
Example of using the kernelized PCA in the scikit-learn library

[89] to make the data linearly separable. 48
Example of the identity alignment. If the attributes are sorted by
o, each attribute is aligned to the attribute with the same order. . 53

Example of transformation. Find attributes that falsify identity
alignment and switch them. At least one less pair of attributes

now falsifies the identity alignment. 54
Method one - attributes of datasets a and b were aligned according
totheiro. 60
Extending optimal assignment by row of dummy attributes with-
out changing the cost. 62

Proof of Theorem 14 — metric axiom 4 is preserved. Alignment f
is extended and then reshuffled so the triangle inequality can be
applied. Yellow nodes are original attributes of dataset =, green
nodes are attributes of dataset y and blue of dataset z. Red nodes
are dummy attributes used for extending the datasets so the cor-
responding assignments are of the same cardinality. 65

145

4.8

5.1
5.2

5.3
5.4

6.1
6.2
6.3

6.4

6.5

7.1

7.2

7.3

7.4

8.1

Part of proof of Theorem 15. Constant k representing a distance
between a regular and an artificial dummy,, attribute needs to be
big enough in order not to create the shortcut between the most

distant points. 66
Distribution of number of attributes among datasets in the Open-

ML dump. 78
Distribution of global metafeatures computed by OpenML. 79

Distribution of values of categorical metafeatures after normalization. 88
Distribution of values of numerical metafeatures after normalization. 89

Example of the crossover genetic operator. 93
Example of the mutation genetic operator. 94
UML diagram of the whole workflow. Violet rectangles represent
different ranking algorithms that will be tried in the experiments.
Global Dataset Distance, Combined Attribute Assignment and
Dataset Distance Aggregation will have their weights optimized by
the genetic algorithm. The fitness will be provided by the Ranking
Quality Evaluation. 0o 100
Evolution progress of the individual with the best result on the
testing set together with the baseline. Results on the training set
are blue, on the testing set are green. On the x-scale is the evolu-
tion progress, on the y-scale is the quality of ranking measured by
the Spearman’s correlation coefficient. 101
Projection of the training datasets using kernelized PCA and sim-
ilarity based on the aggregation of global and attribute distance

with the best result on the testing set. 103
Example of the crossover in the Genetic Programming with the
tree representation.o Lo 111
Example of the mutation in the Genetic Programming with the
tree representation. 111

Example of the tree evolved by the GP for the numerical distance
between two attributes. The terminals are blue compared to inner-
nodes which are true. The label in the node describes the type.
For instance, label [represents LessThan function, similarly UD:0
is a variable gaining a value depending whether an attribute cor-
responding to the left argument (left is determined by the number
0) correspond to an uniform distribution. 116
UML diagram of the workflow for the GP experiments. This time
the focus will be on the GP tree, which is going to be evolved using
the genetic programming by the fitness from the Ranking Quality
Evaluator. 118

Results of the first Pareto front of the second run on the training

146

8.2

Results of the first Pareto front of the second run on the testing
set. Note the high correlation between both criteria - the higher
values of the accuracy criterion are associated with higher values
of the metric similarity criterion.

147

List of Algorithms

=~ W o

N O Ot

10
11
12
13
14

15

16
17
18

19

20
21
22

I Dataset Distance: dataset distance interface 18
I Ranking: Interface for ranking calculation 18
I DistanceRanking: Interface for distance based ranking calculation 19
Distance Ranking Transformation: transforming a I Distance Ranking

interface to generic I Ranking interface 19
K-NN Ranking: k-NN based implementation of [Ranking. 20
Ranking Quality Assessment 23
Ranking Baselineo 25
Distance A using global metadata: [DatasetDistance 41
Attribute alignment Lo 55
Hungarian algorithm L. 56
I Attribute Distance: Dataset distance interface 57
Attribute assignment oL 57
ISelectorInter face: Interface for selecting subset of attributes. . . 58
Numerical AttributesSelector: 1SelectorInter face for selecting nu-

merical attributes L 58
Categorical AttributesSelector: [SelectorInter face for selecting

numerical attributeso 58
Combined Attribute Assignment 59
Vectorized Attribute Distance: [AttributeDistance 71
Dataset Distance Aggregation: I DatasetDistance 72
Genetic Algorithm oo 92
Fast-non-dominated Sort 125
Crowding Distance Assignment 126
NSGA-IT 126

148

List of Tables

4.1
4.2
4.3
4.4
4.5

4.6
4.7

5.1
6.1

6.2

6.3

6.4

6.5

7.1

7.2

8.1

Equation 4.22 holds for every possible case.
Possible values of dataset a.
Possible values of dataset b.
Distance matrix of the attributes of datasets a and b. The matrix
will serve as an input of the Hungarian algorithm.
Results of application of the Hungarian algorithm. The optimal
alignment is coloured. oo L oo
Possible values of dataset ¢.
Counterexample that metric on some subspace of datasets does
not imply metric on its source attribute subspace

Excluded global metafeatures.

Values of variables influencing the complexity given by the training

Total complexity of the whole workflow for ranking quality evalu-
ation for different ranking algorithms.
Evaluation of ranking quality of metric algorithms on the testing
dataset. L
Statistical comparison of different algorithms and their ranking
quality results on the testing set. Row ¢ defines what algorithms
had significantly worse results than algorithm . N stands for no
and Y foryes.
Datasets in one of the clusters in the visualization of the distance
(Figure 6.5).

Evaluation of the ranking quality of the trees produced by the GP
algorithm on the testing dataset.
Statistical comparison of GP and previous algorithms and their
ranking quality results on the validation set. Y stands for GP
significantly worse than algorithm in the corresponding column,
N stands for Not able to reject the null hypothesis (algorithms
equally performing).

Evaluation of the ranking quality of the trees produced by the GP
algorithm using antibloat operator and bootstrapping with coevo-
lution on the testing dataset. L.

149

83

8.2 Statistical comparison of GP using antibloat operator and coevolu-
tion with bootstrapping and previous algorithms and their ranking
quality results on the validation set. W stands for GP statistically
worse than the algorithm in the corresponding column, I stands
for inconclusive and B stands for statistically better.

150

Acronyms

AGR
ARFF
ASP

CBOW
CSP

EPA
FIPA

GA
GloVe
GP

JADE
k-NN
MAS
ML
NFL

NLP
NSGA-II

OpenML
OWL-DL

PCA
QBF

RBF

Agent-Group-Role.
Attribute-Relation File Format.
Asnwer Set Programming.

Continuous Bag-of-Word Model.

Constraing Satisfaction Programming.
Evolutionary Program-induction Algorithms.
Foundation for Intelligent Physical Agents.

Genetic Algorithm.
Global Vectors for Word Representation.

Genetic Programming.
Java Agent DEvelopment Framework.
k-Nearest Neighbours algorithm.

Multi-agent system.

Machine Learning.
No Free Lunch theorem.

Natural language processing.

Non-dominated Sorting Genetic Algorithm II.

Open Machine Learning repository.

One of Web Ontology Language.
Principal Component Analysis.
Quantified Boolean Formula.

Radial Basis Function.

151

RMSE

SAT
SMAC
SVM
SW

UCI
UPGMA

WEKA

Root Mean Squared Error.

Satisiability Problem.
Sequential Model-Based Algorithm Configuration.
Support Vector Machine algorithm.

Smith-Waterman score.

Dataset Repository of University of California, Irvine.

Unweighted Pair Group Method with Arithmetic Mean.

Waikato Environment for Knowledge Analysis.

152

Attachments

All auxiliary materials including OpenML data dump and the text of the thesis
are available at https://github.com/jaksmid/dissertation.

153

