
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Ilias Gerostathopoulos

Model-Driven Development of Software-Intensive

Cyber-Physical Systems

Department of Distributed and Dependable Systems

Advisor: Doc. RNDr. Petr Hnětynka, Ph.D.

Study program: Computer Science

Specialization: Software Systems

Prague 2015

i

Acknowledgement

“As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery. […]”1

And what a wonderful voyage this has been! I would like to express my gratitude to

everyone who stood by me to advise, inspire, and encourage me.

First and foremost, I would like to thank my advisors Petr Hnetynka and Tomas

Bures for their constant support in all matters of research and administration. Thank you

for introducing me to the exciting world of research, for all the interesting conversations

we shared (including the non-research-related ones), and for helping me blend in with

the department. I would like to express my equal gratitude to Frantisek Plasil for his

constant advice, support, and encouragement. I could not have asked for better mentors.

I would also like to thank my friends and colleagues Michal Kit, Rima Al Ali, and

Jaroslav Keznikl for being my fellow travelers, for fighting together the “Laistrygonians

and Cyclops”1 and for sharing my enthusiasm for research that matters. I would like to

thank also my colleagues in the department of Distributed and Dependable Systems who

made (each in their own way) this department a wonderful place to work. A particular

thank-you goes to Andranik Muradyan, Dominik Skoda, Filip Krijt, Jakub Daniel, Jan

Kofron, Jirka Vinarek, Martin Decky, Paolo Arcaini, Pavel Jancik, Pavel Jezek, Pavel

Parizek, Peter Libic, Petr Tuma, Viliam Simko, Vladimir Matena, Vojtech Horky, and

Zbynek Jiracek. It would be a mistake not to thank also Petra Novotna for her patience

and indispensable support in all the administrative tasks.

I am also grateful to the EU project RELATE 264840, part of Marie-Curie Initial

Training Network of the 7th Research Framework Programme, that provided financial

support throughout my doctoral studies and enabled me to spend two months as a re-

search fellow at INRIA research labs in Rennes, France and two months at SEERC re-

search center in Thessaloniki, Greece.

Above all, I am deeply in debt to my girlfriend Rania, my parents Thanasis and

Stella, and the rest of my family for their patience and constant encouragement to “reach

what you cannot”2. This work would not have been completed without you. Σας

ευχαριστώ μέσα από την καρδιά μου.

My final thoughts go to my ninety-year-old grandmother, Dimitra (Toula) Gerostatho-

poulou, who dedicated her life to her husband, sons and grandchildren, being a live

example of determination and perseverance. This thesis is dedicated to her.

1 Constantine P. Cavafy. Ithaka. In Collected Poems. Princeton University Press, 1992.

2 Nikos Kazantzakis. Report to Greco. Touchstone, 1975.

I declare that I carried out this doctoral thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, June 15, 2015 ……….………………………

 Ilias Gerostathopoulos

v

Annotation

Title Model-Driven Development of Software-Intensive Cyber-Physical Systems

Author Ilias Gerostathopoulos

iliasg@d3s.mff.cuni.cz

(+420) 221 914 236

Department Department of Distributed and Dependable Systems

Faculty of Mathematics and Physics

Charles University in Prague

Advisor Doc. RNDr. Petr Hnětynka, Ph.D.

hnetynka@d3s.mff.cuni.cz

(+420) 221 914 143

Mailing

address

Department of Distributed and Dependable Systems

Charles University in Prague

Malostranské náměstí 25

118 00 Prague, Czech Republic

WWW http://d3s.mff.cuni.cz/

Abstract

Software-Intensive Cyber-Physical Systems (siCPS) are modular, open-ended, networked, large-

scale embedded Information and Communication Technology (ICT) systems that are increasingly

depending on software. They need to be both dependable and flexible to adapt to changes in their

dynamic environments. This combination poses challenges in their design and development, as

traditional model-driven design and development techniques cannot account for both dependabil-

ity and self-adaptivity.

The thesis proposes (1) a new, model-based design process for siCPS, which comprises both

appropriate methods and models and deals with dependability and self-adaptivity, and (2) a map-

ping of the design models to implementation-level abstractions, which allows for model-driven

development and early experimentations in siCPS.

Specifically, the thesis delivers (1) by introducing and elaborating on the Invariant Refine-

ment Method (IRM), and its extension for self-adaptivity, for the design of siCPS based on the

ensemble paradigm. IRM was integrated into the ensemble development life cycle, a methodology

for the development of autonomic ensemble-based systems. Contributing to (2), the thesis provides

a mapping of the IRM concepts to the concepts of the DEECo components model. The mapping is

supported by prototype implementations of model manipulation tools. Finally, the feasibility and

effectiveness of the IRM design process has been validated via a controlled experiment.

Keywords
Design process, Software architecture, Self-adaptation

mailto:iliasg@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz
http://d3s.mff.cuni.cz/

vii

Anotace

Název práce Modelem řízený vývoj softwarových cyber-physical systémů

Autor Ilias Gerostathopoulos

iliasg@d3s.mff.cuni.cz

(+420) 221 914 236

Katedra Katedra distribuovaných a spolehlivých systémů

Matematicko-fyzikální fakulta

Univerzita Karlova v Praze

Školitel Doc. RNDr. Petr Hnětynka, Ph.D.

hnetynka@d3s.mff.cuni.cz

(+420) 221 914 143

Adresa Katedra distribuovaných a spolehlivých systémů

Univerzita Karlova v Praze

Malostranské náměstí 25

118 00 Praha

WWW http://d3s.mff.cuni.cz/

Abstrakt

Softwarové cyber-physical systémy (siCPS) jsou modulární, otevřené, propojené a rozsáhlé ICT

systémy, které stále více závisejí na softwaru. Tyto systémy musejí být spolehlivý a zároveň

schopné se adaptovat na změny v proměnlivém prostředí, ve kterém jsou provozovány. Tato kom-

binace činí jejich návrh a realizaci obtížnými, neboť tradiční modelem řízené techniky pro návrh

a vývoj nejsou schopny brát v potaz zároveň spolehlivost a autoadaptivitu.

Tato práce navrhuje: (1) nový, modelem řízený proces návrhu siCPS systémů, který obsahuje

vhodné metodiky a modely a zároveň podporuje spolehlivost i autoadaptivitu; a (2) mapování

vzniklých návrhových modelů do abstrakcí na úrovni implementace, což umožňuje modelem

řízený vývoj a rychlé experimentování v kontextu siCPS.

Konkrétní realizaci bodu (1) představuje zavedení a rozpracování metody Invariant Refine-

ment Method (IRM) – a jejího rozšíření pro podporu adaptivity – určené pro návrh siCPS

založených na konceptu tzv. ansámblů. IRM je integrováno do metodiky vytvořené pro vývoj

autonomních systémů založených na ansámblech. Z hlediska realizace bodu (2) práce navrhuje

mapování z IRM konceptů do konceptů komponentového modelu DEECo. Mapování je podloženo

implementačními prototypy nástrojů pro manipulace s modelem. Důležitou součástí práce je rov-

něž kontrolovaný experiment ověřující použitelnost a efektivnost návrhového procesu IRM.

Klíčová slova
Návrhový proces, softwarová architektura, autoadaptivita

mailto:iliasg@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz
http://d3s.mff.cuni.cz/

ix

Contents

1 Introduction 1

1.1 Towards Software-Intensive Cyber-Physical Systems .. 1

1.1.1 Example of a Software-Intensive Cyber-Physical System 2

1.2 Problem Statement ... 3

1.3 Research Goals .. 4

1.4 Contribution and Publications .. 5

1.5 Structure ... 8

2 State of the Art 9

2.1 Requirements Modeling and Analysis for siCPS ... 9

2.1.1 Goal-Oriented Approaches ... 10

2.1.1.1 KAOS ... 12

2.1.1.2 NFR .. 14

2.1.1.3 i*.. 15

2.1.1.4 FLAGS ... 16

2.1.2 Lessons Learned ... 18

2.2 Software Development Methodologies and Implementation Abstractions for

siCPS ... 19

2.2.1 Agent-Oriented Software Development ... 20

2.2.1.1 Tropos .. 21

2.2.1.2 An Extension of Tropos for Adaptive Systems 23

2.2.2 Component-Based Software Development .. 25

2.2.2.1 Kevoree .. 26

2.2.2.2 Helena .. 28

2.2.2.3 DEECo ... 28

2.2.3 Lessons Learned ... 30

2.3 Goals Revisited.. 32

Contents

x

3 Overview of Contribution 35

4 Commented Collection of Papers 39

4.1 Software Engineering for Software-Intensive Cyber-Physical Systems 41

4.2 Position Paper: Towards a Requirements-Driven Design of Ensemble-Based

Component Systems ... 55

4.3 Design of Ensemble-Based Component Systems by Invariant Refinement 65

4.4 Formalization of Invariant Patterns for the Invariant Refinement Method...... 77

4.5 Model-Driven Design of Ensemble-Based Component Systems 97

4.6 Self-Adaptation in Cyber-Physical Systems: from System Goals to Architecture

Configurations ... 105

4.7 A Life Cycle for the Development of Autonomic Systems: The e-Mobility

Showcase .. 125

5 Evaluation Strategy 133

5.1 Evaluation through Case Studies .. 134

5.2 Evaluation through Prototypes and Experimentation 134

5.2.1 IRM-SA Design and Code Generation Tool .. 134

5.2.2 jDEECo IRM-SA Plugin ... 136

5.2.2.1 Experimentation in Decentralized Settings 137

5.3 Empirical Evaluation .. 137

6 Conclusion & Open Challenges 139

References 143

Web References 159

 Chapter 1

1

1 Introduction

1.1 Towards Software-Intensive Cyber-Physical Systems

The progress in embedded and mobile technologies and networking has brought large

potential for building systems that improve human life and address societal, technical

and environmental challenges, e.g. energy consumption, ambient assisted living, crisis

coordination. In particular, the progress has created the necessary infrastructure to build

large-scale pervasive software systems that combine data from various sources to con-

trol real-world ecosystems. An example is an emergency coordination system, where

first responders’ devices communicate seamlessly across organizational boundaries in

order to head to the most affected areas in a timely fashion. Another example is an intel-

ligent navigation system, where vehicles communicate with each other and with traffic

lights and parking units in order to minimize traffic congestion and optimize parking

allocation. A third example is smart exhibition centers, where visitors’ devices com-

municate with stationary cameras and with each other in order to avoid long queues.

These systems fall into the broad category of cyber-physical systems, that is, “engi-

neered systems that are built from, and depend upon, the seamless integration of com-

putational algorithms and physical components” [23]. Cyber-physical systems are con-

sidered by the European H2020 research agenda “the next generation of embedded In-

formation and Communication Technology (ICT) systems that are interconnected and

collaborating, providing citizens and businesses with a wide range of innovative appli-

cations and services” [10].

Compared to traditional embedded systems, cyber-physical systems are modular,

dynamic, networked, and large-scale. They are also increasingly depending on software,

which has become their most intricate and extensive constituent [HRW08b]. In the con-

text of this thesis, we will call the systems featuring the above properties Software-Inten-

sive Cyber-Physical Systems (siCPS).

An important desired feature of siCPS is that they need to be self-adaptive. The self-

adaptivity requirement stems from the close connection to the ever-changing physical

world. In its general form, self-adaptivity refers to the ability of a software system to

change its structure and/or behavior in response to external stimuli and changes in its

internal state. Although self-adaptivity, together with individual self-* properties such

as self-configuration, self-healing, and self-optimization, has been studied extensively in

Chapter 1. Introduction

2

different domains [CLG+09, ST09], the domain of siCPS introduces distinct challenges

in the application of existing techniques. These include the need to deal with the una-

vailability of a global state and the operational uncertainty, two characteristic properties

of siCPS [GKB+14].

At the same time, siCPS need to be dependable. The dependability requirement

mainly stems from the fact that siCPS often host safety-critical applications. It pertains

to safety and predictability concerns at the first place, followed by the continuous avail-

ability, privacy and security concerns. As a distinct challenge, siCPS often need to oper-

ate in dynamic, often unpredictable and even hostile environments, where the problems

of limited network connectivity and physical mobility of devices loom large.

1.1.1 Example of a Software-Intensive Cyber-Physical System

To illustrate the context and challenges of siCPS, the following text describes a scenario

based on the electric vehicle mobility case study, a case study of ASCENS FP7 project

[SRA+11], which was also used in the evaluation of the thesis (Section 5.1). The scenario

consists of drivers, moving around a city in their electric vehicles. Drivers have to reach

specific destinations within some time limits, which depend on their daily schedule (Fig-

ure 1). Vehicles are equipped with sensors of basic capabilities, e.g. monitoring the bat-

tery level of the car, but also more sophisticated ones, e.g. monitoring the traffic level

along the route, etc. Vehicles can only park and charge their batteries in designated sta-

tions. They can also communicate with each other and with the parking/charging sta-

tions that lie within their transmission spectrum. A key challenge is that no central co-

ordination point is assumed; there is no global control or global planning. The whole

system can be seen a set of mobile devices which form dynamic communication groups

Figure 1. siCPS example: electric mobility case study.

POI: Work
Time: 7AM-4PM

POI: Cinema
Time: 2PM-4PM

POI: Shopping
Time: 4PM-6PM

POI: Shopping
Time: 4PM-6PM

POI: Home
Time: 6:45PM

POI: Home
Time: 6:30PM

1.2. Problem Statement

3

to serve a specific goal: drivers should arrive to their destinations in time, leveraging the

infrastructure resources in a close-to-optimal way. The system operates in a highly dy-

namic and unpredictable environment, as drivers may change their schedules at

runtime, roads may become blocked, sensors may start malfunctioning and emitting in-

accurate data, parking and charging stations may get out of communication reach, etc.

In order to respond to these changes in the physical environment and the drivers’ re-

quirements and to recover from temporary failures, the system has to be self-adaptive,

in particular self-healing and self-optimizing. Under these stringent requirements, it also

has to be dependable in order to serve the drivers continuously and in a predictable way.

1.2 Problem Statement

Traditional software engineering (SE) of ICT systems relies on a number of assumptions

in order to abstract away a lot of complexity pertaining to physical environment and

networking via the operating system and middleware stacks. As dis-

cussed in [GKB+14], these assumptions include the assumption of static physical struc-

ture, stable connections, location obliviousness, reachability and stable connections,

availability of global state, focus on reactive behavior, crisp consistency, and con-

trolled dynamism.

Due to the physical distribution at a large scale, the physical mobility, and the dy-

namicity pertaining to the close connection to the physical environment, the above as-

sumptions do not hold in SE of siCPS. Although some of them may as well be violated

when developing ICT systems with special requirements, such as high availability and

open-endedness, siCPS stand out by the big number of such assumptions that are vio-

lated at the same time. This calls for a radical re-thinking of the computing and network-

ing technologies and abstractions in order to provide an adequate foundation for siCPS

[Lee08]. It also renders traditional SE methods that rely on the above assumptions non-

applicable to siCPS and calls for new SE and in particular architecture design methods

that embrace the distinct characteristics of siCPS.

The new SE methods have to tackle the following major challenges:

C1 Robust context-driven self-adaptivity. The main challenge in inducing self-

adaptivity to siCPS pertains to the inherent dynamism and the unpredictabil-

ity of the physical environment. The physical substratum continuously

evolves as mobile devices move in the environment. As a result, it is hard to

obtain a fully up-to-date snapshot of the global system configuration or archi-

tecture at runtime, upon which the self-adaptation logic can be based. A ro-

bust self-adaptation mechanism for siCPS has thus to deal with partial views

of the system and non-fully-up-to-date data.

C2 Dependability. This challenge is not specific to siCPS; every software system

that hosts critical applications has to be dependable. The extra challenge per-

tains to controlling the emergent behavior in siCPS, i.e. the behavior that

Chapter 1. Introduction

4

comes about as the joint product of behaviors and interactions of the different

entities of a system. As these entities in siCPS are not purely virtual software

entities (software components), but often have their representations in the

physical environment, dealing with the multiple interactions and side effects

that can arise in the system gets very complex. This challenge manifests itself

both at the design and analysis phase, where it pertains to anticipating and

designing for the different interactions in the system, and at runtime, where

the system has to be monitored for faults and deviations from its original spec-

ification.

C3 Open-endedness and development effort. Being large-scale pervasive sys-

tems, siCPS do not have strict boundaries, i.e. they are inherently open-ended.

As classic software development processes, e.g. Object-Oriented Analysis and

Design [AN05], rely on delineating the system boundaries upfront in a rather

strict way, they have to be adapted for the development of siCPS. At the same

time, dealing with large systems imposes that their development has to scale

in terms of design, analysis, coding, and testing effort.

C4 Distributed coordination. As a siCPS is typically a large distributed system,

special attention has to be paid to the means that the different subsystems can

coordinate with each other when needed (for example, when subsystems need

to collectively apply a system-wise adaptation action). Resorting to a design

with one or more arbitrators that would orchestrate the different subsystems

is one choice; more decentralized schemes can also be employed. In any case,

one has to deal with the fact that strict distributed coordination may become

too expensive in siCPS (in terms of messages exchanged, network medium

overload, data inconsistency due to temporary disconnections, etc.).

C5 Operational uncertainty. An overarching issue in the development of siCPS

is the inherent uncertainty related to their infrastructure – operational uncer-

tainty. This type of uncertainty arises from the environment in which the sys-

tem is deployed and, in siCPS, concerns situations such as network unavaila-

bility, hardware failures, and unanticipated resource scarcity. This challenge

is related to the inherent dynamism of siCPS and their close connection to the

continuously changing physical world.

1.3 Research Goals

Responding to the challenges presented in Section 1.2, this thesis focuses on the archi-

tecture design phase of SE of dynamic self-adaptive dependable siCPS and aims to pro-

vide appropriate design abstractions and processes to address these challenges. The pri-

mary intention is to adopt ideas from goal-oriented requirements engineering [VL01],

1.4. Contribution and Publications

5

agent-oriented computing [SLB08], and ensemble-based systems [HRW08a], while fo-

cusing on the software engineering aspects.

Since the area is broad, the thesis primarily focuses on clarifying on the appropriate

design processes and design models and on the mapping of the latter to implementation-

level artifacts. The thesis thus targets the following research goals:

G1 The first goal is to propose an appropriate design process for open-ended

siCPS. The process should be model-based, i.e. rely on appropriate design

models, to allow automation and early validation. The models and the process

should provide both dependability, in the form of correct-by-construction

guarantees and traceability of low-level design artifacts to system-level goals,

and context-driven self-adaptivity, in the form of adjusting to different oper-

ational contexts and situations.

G2 The second goal is to map the proposed design models to implementation-

level abstractions to allow for model-driven development and early experi-

mentations in siCPS. This goal includes a realization of the mapping in terms

of prototypes of model design and manipulation tools that help reduce the

development effort.

The two goals cut across all the identified challenges, while focusing explicitly on

challenges C1-C3.

1.4 Contribution and Publications

The main contribution presented in this thesis consists of a commented collection of co-

authored publications. Most of the results presented in these publications stem from re-

search work and collaboration within the EU FP7 project ASCENS [1], and the EU FP7

Marie Curie ITN project RELATE [28] in which the author participated as Early Stage

Researcher.

The following peer-reviewed papers and technical reports form the core contribu-

tion presented in this thesis. An overview of the contribution is presented in Chapter 3,

while the summaries and full texts of these publications are included in Chapter 4.

[GKB+14] I. Gerostathopoulos, J. Keznikl, T. Bures, M. Kit, and F. Plasil. Software

Engineering for Software-Intensive Cyber-Physical Systems. In IN-

FORMATIK 2014: Proceedings of the 44th Annual Meeting of the German In-

formatics Society, pages 1179–1190. Gesellschaft für Informatik, Bohn, Ger-

many, September 2014.

[GBH13] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position Paper: Towards

a Requirements-Driven Design of Ensemble-Based Component Systems.

In Proceedings of the 2013 International Workshop on Hot topics in Cloud Ser-

vices, pages 79–86. ACM, April 2013.

Chapter 1. Introduction

6

[KBP+13] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and N.

Hoch. Design of Ensemble-Based Component Systems by Invariant Re-

finement. In CBSE ’13: Proceedings of the 16th International ACM Sigsoft

Symposium on Component-based Software Engineering, pages 91–100. ACM,

June 2013. Awarded with the ACM Distinguished Paper Award.

[BGK+15] T. Bures, I. Gerostathopoulos, J. Keznikl, F. Plasil, and P. Tuma. Formali-

zation of Invariant Patterns for the Invariant Refinement Method. In

R. De Nicola and R. Hennicker, editors, Software, Services and Systems, vol-

ume 8950 in Lecture Notes in Computer Science, pages 602–208. Springer

International Publishing, 2015.

[Ger14] I. Gerostathopoulos. Model-Driven Design of Ensemble-Based Compo-

nent Systems. In MODELS ’14: Proceedings of the ACM/IEEE 18th Interna-

tional Conference on Model Driven Engineering Languages and Systems Poster

Session and the ACM Student Research Competition, volume 1258, pages 63–

68. CEUR-WS.org, September 2014. Awarded with the 2nd place award of

the ACM Student Research Competition – Graduate level.

[GBH+15b] I. Gerostathopoulos, T. Bures, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil,

and N. Plouzeau. Self-Adaptation in Cyber-Physical Systems: from Sys-

tem Goals to Architecture Configurations. Technical Report D3S-TR-

2015-02, Department of Distributed and Dependable Systems, April 2015.

[BDNG+13] T. Bures, R. De Nicola, I. Gerostathopoulos, N. Hoch, M. Kit, N. Koch, G.

Valentina Monreale, U. Montanari, R. Pugliese, N. Serbedzija, M. Wirsing,

and F. Zambonelli. A Life Cycle for the Development of Autonomic Sys-

tems: The e-Mobility Showcase. In SASOW ’13: Proceedings of the 7th IEEE

International Conference on Self-Adaptation and Self-Organizing Systems

Workshops, pages 71–76. IEEE, September 2013.

The publications [KBP+13], [BGK+15] and [BDNG+13] are of equal authorship. In

[GKB+14], [GBH13], and [GBH+15b] under helpful guidance and supervision of the

other authors, I came up with the main idea and authored most of the text. Additionally,

in [GBH+15b] I contributed by elaboration and formalization of the main idea, the case

study, and the evaluation. Finally, the single authorship of [Ger14] reflects my individ-

ual participation in the ACM Student Research Competition at MODELS 2014.

The main contributions of this thesis were also included in the following peer-re-

viewed poster publication, which is of equal authorship.

[AABG+14a] R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit,

and F. Plasil. DEECo: an Ecosystem for Cyber-Physical Systems. In ICSE

’14: Companion Proceedings of the 36th International Conference on Software

Engineering, pages 610–611. ACM, June 2014. Poster and extended ab-

stract.

1.4. Contribution and Publications

7

In addition, the following co-authored peer-reviewed publications support the con-

tributions listed above by sharing the underlying topics of software design for siCPS and

software self-adaptation.

[BGH+13] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and

F. Plasil. DEECo – an Ensemble-Based Component System. In CBSE ’13:

Proceedings of the 16th International ACM Sigsoft Symposium on Component-

based Software Engineering, pages 81–90. ACM, June 2013.

[AABG+14b] R. Al Ali, T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil. Architec-

ture Adaptation Based on Belief Inaccuracy Estimation. In WICSA ’14:

Proceedings of the 11th Working IEEE/IFIP Conference on Software Architec-

ture, pages 87–90. IEEE, April 2014.

[BGH+14a] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and

F. Plasil. Gossiping Components for Cyber-Physical Systems. In ECSA

’14: Proceedings of the 8th European Conference on Software Architecture,

pages 250–266. Springer, August 2014. Awarded with the Best Research

Paper Award.

[AAGGH+14] R. Al Ali, I. Gerostathopoulos, I. Gonzalez-Herrera, A. Juan-Verdejo,

M. Kit, and B. Surajbali. An Architecture-Based Approach for Compute-

Intensive Pervasive Systems in Dynamic Environments. In HotTopiCS ’14:

Proceedings of the 2nd International Workshop on Hot Topics in Cloud service

Scalability. ACM, March 2014. Article no. 3.

[BBG+15] L. Bulej, T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, L. Marek,

M. Tschaikowski, M. Tribastone, and P. Tuma. Supporting Performance

Awareness in Autonomous Ensembles. In M. Wirsing, M. Hölzl, N. Koch,

and P. Mayer, editors, Software Engineering for Collective Autonomic Sys-

tems, volume 8998 in Lecture Notes in Computer Science, pages 291–322.

Springer International Publishing, 2015.

[BGH+15] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and

F. Plasil. The Invariant Refinement Method. In M. Wirsing, M. Hölzl,

N. Koch, and P. Mayer, editors, Software Engineering for Collective Auto-

nomic Systems, volume 8998 in Lecture Notes in Computer Science, pages

405–428. Springer International Publishing, 2015.

[FMA+15] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopou-

los, A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein,

F. Krikava, S. Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo,

S. Shevtsov, M. Ujma, and T. Vogel. Software Engineering Meets Control

Theory. In SEAMS’15: Proceedings of the 10th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems. IEEE, May

2015. In press.

Chapter 1. Introduction

8

[GGK+15] S. Goetz, I. Gerostathopoulos, F. Krikava, A. Shahzada, and R. Spalazzese.

Adaptive Exchange of Distributed Partial Models@run.time for Highly

Dynamic Systems. In SEAMS’15: Proceedings of the 10th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems.

IEEE, May 2015. In press.

[KGB+15] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil. An Ar-

chitecture Framework for Experimentations with Self-Adaptive Cyber-

Physical Systems. In SEAMS’15: Proceedings of the 10th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems.

IEEE, May 2015. In press.

[GBH+15a] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, F. Plasil, and

D. Skoda. Meta-Adaptation Strategies for Adaptation in Cyber-Physical

Systems. In ECSA ’15: Proceedings of the 9th European Conference on Software

Architecture. Springer, September 2015. In press.

Notably, the book chapter of [BGH+15] provides a summary of the contributions

originally published in [KBP+13] and [GBH+15b].

1.5 Structure

The thesis is structured in the following way. First, Chapter 2 presents the state of the

art in requirements modeling and analysis and software development methodologies of

large dynamic open-ended systems akin to siCPS, with particular focus on the research

goals G1 and G2. In particular, Section 2.1 overviews representative goal-oriented re-

quirements engineering approaches and evaluates their applicability in the domain of

siCPS. Similarly, Section 2.2 overviews representative agent-oriented and component-

based software engineering approaches and provides a critical evaluation of their ap-

plicability in siCPS. Finally, Section 2.3 refines the initial (and rather abstract) goals G1

and G2 into concrete objectives (O1 to O4) based on the analysis of the state of the art.

Chapter 3 provides an overview of the contribution with respect to the concrete objec-

tives O1 to O4. Chapter 4 includes a commented collection of seven co-authored publi-

cations that form the core of the thesis. Chapter 5 presents the evaluation strategy fol-

lowed, and Chapter 6 concludes the thesis and gives the author’s subjective view of the

promising research directions related to the area of model-driven development of siCPS

with emphasis on dependability and self-adaptivity aspects.

 Chapter 2

9

2 State of the Art

This chapter includes an overview of the state-of-the-art approaches that can be em-

ployed in the systematic analysis and design of siCPS.

Since siCPS is a relatively new class of systems with a number of distinct character-

istics (as overviewed in Section 1.2), there is no approach that can be applied out of the

box. At the same time, siCPS are inherently complex and dynamic systems exhibiting

behavior that is difficult to predict and control (and sometimes emerges from the inter-

action between individuals – emergent behavior). In order to be able to design and de-

velop applications for siCPS in a systematic way, we need to leverage ideas and ap-

proaches from existing methods that span different phases of the software development

life cycle. In particular, a promising direction is to combine approaches that partially

tackle the challenges of open-endedness, dependability and context-driven self-adaptiv-

ity and help reduce the development effort. Such approaches range from the domain of

requirements modeling and analysis for safety-critical, open-ended and self-adaptive

systems (Section 2.1.1), to multi-phase software engineering methodologies for agent-

based systems (Section 2.2.1), to implementation abstractions for large, dynamic and dis-

tributed component-based systems (Section 2.2.2).

2.1 Requirements Modeling and Analysis for siCPS

The measure of success of a software system is the degree to which it satisfies the pur-

pose for which it was intended. Software systems Requirements Engineering (RE) is the

process of discovering that purpose, by identifying stakeholders and their needs, and

documenting these in a form that is amenable to analysis, communication, and subse-

quent implementation [NE00]. It is within the scope of RE to identify, formulate, analyze,

and agree on (i) what problem should be solved, (ii) why it needs to be solved, and (iii)

who should be involved in the responsibility of solving that problem [VL09].

In spite of the differences in aim and supporting techniques, the activities compos-

ing the RE process are highly intertwined. They include the activities of domain analysis,

requirements elicitation, negotiation and agreement, specification, specification analysis,

documentation, and evolution [VL00, VL09]. Each activity has different challenges and

supporting methods. For instance, in domain analysis, techniques from feature-oriented

Chapter 2. State of the Art

10

software development [AK09] can be employed, such as the well-known Feature-Ori-

ented Domain Analysis (FODA) method [KCH+90].

Throughout the RE processes, modeling is an important asset. The existing sys-

tem/organization as well as the possible alternative configurations for the system-to-be

are typically modeled. These models serve as a basic common interface to the various

RE activities. They facilitate requirements elicitation by allowing looking at the domain

systematically, and assist the communication between customers, analysts and develop-

ers. Formal models can be automatically checked for consistency, a process that can re-

veal conflicting and/or infeasible requirements. Models can provide a basis for require-

ments visualization, documentation, and evolution. Finally, following a Model-Driven

Engineering (MDE) methodology, initial requirement models can be refined into archi-

tecture models and finally into code via subsequent model-to-model and model-to-text

transformations.

Traditional requirement modeling techniques, such as structured analysis [RS77]

and object-oriented analysis [AN05] have proven inadequate when dealing with more

and more complex systems [MCY99, C09, Zav97]. When specifying such systems, it is

crucial to view them as composites of the software-to-be together with its environment.

Incorrect assumptions about the environment of a software system can lead to many

errors in requirements specification [VLL04]. Non-functional requirements are also in

general left outside of requirements specifications. Additionally, traditional modeling

and analysis techniques do not consider alternative system configurations where more

or less functionality is automated or different assignments of responsibility are modeled

and compared. Goal-Oriented Requirements Engineering (GORE) [Kav02, MCY99,

VL01] attempts to solve these problems by focusing on the “why” and “who”, instead of

the “what” and “how” questions of RE.

Although this thesis does not focus on the RE phase of siCPS development, nor on

GORE itself, we overview next the prominent models and methods in GORE and iden-

tify key notions and ideas that can be employed in a holistic systematic design and de-

velopment of applications for siCPS. The importance of these RE approaches lies in cap-

turing the high-level behavior of a system and its stakeholders and providing this infor-

mation as input to the subsequent design phases.

2.1.1 Goal-Oriented Approaches

The main abstraction in GORE is the goal. A goal can be defined as a prescriptive state-

ment of intent about some system whose satisfaction in general requires the cooperation

of some agents forming the system [VL04]. Goals are optative statements, as opposed to

indicative ones (such as domain properties). Goals that have a clear-cut satisfaction con-

dition are referred to as hard-goals or just goals; the opposite are usually referred to as

soft-goals.

Another basic abstraction is the agent. Agents are active entities, i.e. entities with a

choice of behavior. They may restrict their behavior to ensure the constraints that they

are assigned. In GORE, agents are assigned responsibility for achieving goals.

2.1. Requirements Modeling and Analysis for siCPS

11

There are a number of benefits associated with using goals for modeling and analy-

sis in RE [VL01]:

 Wider system engineering perspective. Goals should hold in the system made of the

software-to-be and its environment; domain properties and assumptions are ex-

plicitly captured during the requirements elaboration process, in addition to the

usual software requirement specifications.

 Rationale and traceability. Goals allow for understanding requirements with re-

spect to high-level concerns in the problem domain; they provide rationale for

requirements that operationalize them. Goal refinement trees provide traceabil-

ity links from high-level strategic objectives to low-level technical requirements.

 Sufficient completeness criterion. A requirements specification can be considered

complete with respect to a set of goals if all the goals are proven satisfiable from

the specification and the properties known about the domain.

 Pertinence criterion. A requirement is pertinent with respect to a set of goals if its

specification is used in the proof of at least one goal.

 Support for non-functional requirements. The notion of soft-goals, which can be

refined and analyzed, captures the rationale behind non-functional requirements

and helps in their analysis.

 Conflict management. Conflicts among different stakeholder viewpoints and needs

can be detected and managed early on, at the level of system goals.

 Variability. A single goal model can capture variability in the problem domain by

alternative goal refinements and alternative assignment of responsibilities.

Quantitative and/or qualitative analysis of these alternatives is possible.

 Evolution. Whereas traditional approaches "freeze" the solution decisions early

on, goal-orientation separates stable (objectives) from volatile (requirements,

tasks) information and thus provides the basis for system evolution.

 Communication and documentation. Goals provide the right level of abstraction to

(i) communicate the requirements, and (ii) involve decision makers (e.g. custom-

ers, end-users) in the process of choosing between alternatives, proposing new

alternatives, etc. Goal modeling provides also a natural mechanism for structur-

ing complex requirements documents.

It is important to note that the goal-oriented requirements elaboration process ends

where most traditional specification techniques (e.g. UML use cases [AN05]) would start

[VLL04]. Thinking in terms of goals in the early phases of software engineering is a usual

practice, as admitted by UML advocates [Fow03]; in GORE, this practice is just system-

atized.

Chapter 2. State of the Art

12

2.1.1.1 KAOS

A prominent approach in GORE is Keep All Objects Satisfied (KAOS) [VLL04] (origi-

nally abbreviated from Knowledge Acquisition in AutOmated Specification [DVLF93]).

KAOS was one of the first approaches, together with i* (Section 2.1.1.3), that advocated

the use of goal as a main abstraction to drive requirements analysis. KAOS effectively

combines goal-oriented principles with object-oriented and scenario-based ones into a

comprehensive methodology for the elicitation, specification, and analysis (e.g. of com-

pleteness and pertinence) of requirements of virtually any software system.

The methodology includes the (i) goal elaboration, (ii) object modeling, (iii) agent

modeling, and (iv) operationalization steps, optionally followed by the (v) conflict reso-

lution and (vi) obstacle analysis steps. These steps are not performed in strict sequence;

notably (i)-(iii) are typically intertwined. KAOS provides a rich meta-model supporting

multiple views of the composite system (Figure 2), which comprises both the system-to-

be and its environment.

A goal in KAOS is a declarative statement of intent to be achieved by the system

under consideration [DVLF93, VL00]. The identification of relevant goals is the starting

point of the methodology. Goals are identified by looking for intentional keywords in

natural language statements used in requirements elicitation documents, and asking

“why” and “how” questions about such statements. Goals in KAOS may refer to func-

tional properties (services) or extra-functional properties (quality of services) and range

from high-level to low-level concerns. Each goal belongs to one of satisfaction, con-

sistency, safety, privacy, robustness, etc. categories [DVLF93]. Once the initial goals are

identified, they are refined using AND- and OR-decompositions, forming goal decom-

position graphs. A goal model is the collection of such goal decomposition graphs. (An

example of a KAOS goal model is depicted in the paper included in Section 4.2.)

An agent in KAOS is an active component with certain capabilities that plays a spe-

cific role in goal satisfaction. An agent can be either a component of the system-to-be

(e.g. software component) or its environment (e.g. hardware component, human user).

KAOS agents refer to roles rather than individuals. Agent behaviors are modelled by

interaction scenarios at the instance level and by parallel state machines at the class level

[VL07]. The agent model defines the capabilities and interfaces of the various agents,

and is devised in parallel with the goal model.

An object in KAOS is a passive entity that is being referenced by some goal in the

goal model. An object is modeled as an entity, association, or event, depending on

whether it is an autonomous, subordinate, or instantaneous object, respectively. The ob-

ject model is graphically represented by a UML class diagram and is devised in an “on-

demand” basis during goal elaboration, as new domain concepts need to be modeled so

that they can be referenced by goals in the goal model.

An operation in KAOS is a specification of a service to be provided by the composite

system. An operation is performed by an agent and is directly derived from goals

[LVL02]. Operations are declared by their signatures (inputs and outputs) over objects,

and have pre-, post-, and trigger conditions. KAOS distinguishes between domain and

2.1. Requirements Modeling and Analysis for siCPS

13

desired pre-and post- conditions, the former capturing what the application of the oper-

ation means in the domain (indicative statements), the later capturing additional

strengthening of the conditions to ensure that the corresponding goals are met (optative

statements). An operation can be thought of as a use case in object oriented modeling.

An obstacle in KAOS is a concept that captures undesirable yet possible conditions

[VLL00]. An obstacle obstructs a goal in the sense that, when an obstacle gets true the

goal may not be achieved. Hazards and threats are obstacles obstructing safety and se-

curity goals, respectively [VL07]. Obstacle analysis is concerned with the resolution of

obstacles via various techniques such as goal weakening, goal substitution, agent substi-

tution, and obstacle mitigation ([VLL00] provides a detailed account on obstacle analysis

techniques in KAOS). Obstacles are typically identified by negating a goal and refining

the resulting obstacle via iterative AND- and OR-decompositions (as in goal elabora-

tion), forming a fault tree. An obstacle model is a set of goal-anchored fault trees.

The aforementioned models are linked together in KAOS in the following way (Fig-

ure 2). First, iterative decomposition of goals is performed, during which elements of the

object model are identified and modeled. Goals are associated with objects via “con-

cerns” links. Goal decomposition ends once the leaf goals can be realizable by an agent

assigned to it, i.e. the goal has to be expressed in terms of conditions monitorable and

controllable by the agent. A leaf goal is a requirement or an assumption, depending on

whether its satisfaction is assigned to an agent of the system-to-be or of the environment,

Figure 2. KAOS multi-view modeling (from [VL09]). Different models serve

as a common interface to various RE activities.

Chapter 2. State of the Art

14

respectively. Leaf goals are associated with agents via “responsibility” links and with

operations via “operationalization” links. Independently, scenario-based (typically rep-

resented by UML sequence diagrams) and state-based models are associated via “cover-

age” links with the goal model, while an obstacle model is associated with “obstruction”

links with the goal model.

A distinct characteristic of KAOS is its support for formal specification and analysis.

In fact, KAOS employs a “two-button approach”: formal methods are used when and

where needed. Specifically, goals and operations may optionally have a specification in

real-time linear time logic (LTL) [Koy92], a first-order temporal logic. Although abstract

goals near roots of trees cannot usually be directly formalized [DVLF93], lower-level

goals and operations can be formalized in terms of behaviors that they generate or re-

strict. When goals and operations are formalized, the underlying models can be checked

for completeness, minimality, and consistency, providing early validation of the require-

ments artifacts (particularly crucial in mission-critical systems [PMR+07]).

A semi-formal approach is also provided. For instance, goal definition patterns can

be employed in KAOS for lightweight specification of goals at the modeling layer; they

include patterns such as achieve, cease, maintain, and avoid, with the usual semantics in

LTL [DVLF93]. In addition, KAOS provides a set of goal refinement and goal operation-

alization patterns [DVL96, LVL02]. A refinement pattern is a one-level AND-tree of ab-

stract goal assertions such that the set of leaf assertions is a complete refinement of the

root assertion. A catalogue of reusable patterns is intended to aid the analyst in the re-

finement process (e.g. by checking whether decompositions are complete refinements),

while hiding the underlying mathematics. Generic patterns, proven correct once, can be

reused via instantiation in a per-case basis. Similar to goal refinement and operational-

ization patterns, obstruction refinement patterns have been also proposed [VLL00].

2.1.1.2 NFR

Non-Functional Requirements (NFR) is a goal-oriented framework for justifying deci-

sions during the software development process in terms of non-functional requirements

(or qualities) [CNYM99, MCN92, MCY99]. NFR proposes a qualitative treatment of re-

quirements (as opposed to a quantitative one) on the pragmatic basis that it is even

harder to measure an incomplete system than a complete one in a quantitative way (and

quantitatively measuring a complete system is already hard).

The main concept in NFR is that of a soft-goal. A soft-goal is said to be satisficed (an

AI notion introduced in [Her96]), as opposed to satisfied, when it is met to an acceptable

degree rather than absolutely [VL00]. Differently put, a soft-goal is satisficed when there

is sufficient positive and little negative evidence for this claim, and unsatisficeable when

there is sufficient negative and little positive evidence [MCY99]. Soft-goals model both

generic non-functional requirements (e.g. accuracy, performance, maintainability) and

application- and project-specific ones. They are categorized into NFR goals, satisficing

goals, and arguments, depending on whether they belong to a requirements category

(e.g. accuracy), a design decision category (e.g. validated by), or a formal/informal claim,

respectively [MCN92].

2.1. Requirements Modeling and Analysis for siCPS

15

Relations between soft-goals in NFR include decompositions and contributions.

Top-level soft-goals are analyzed using AND- and OR-decomposition relations, forming

soft-goal subtrees. Contribution relations associate soft-goals across subtrees; they can

be positive or negative. This allows a designer to capture the fact that, e.g. the soft-goal

of “Access other staff’s files” is an offspring of the “flexibility” soft-goal, and contributes

negatively to the “security” soft-goal. The outcome of the goal elaboration process is a

(possibly cyclic) graph, amenable to qualitative analysis. The analysis is based on a la-

beling algorithm that assumes an ordering of labels and marks each node (soft-goal) as

satisficed, denied, conflicting, or undetermined.

Analysis of non-functional requirements by means of soft-goals, as originally pro-

posed in [MCN92], is complementary to analysis of functional requirements by means

of (hard) goals (as, e.g. performed in KAOS). In this setting, contribution relations be-

tween goals and soft-goals are modeled and used in conflict analysis and prioritization

among alternative requirements [MCY99].

2.1.1.3 i*

Contrary to KAOS that stands as a formal framework for requirements elicitation and

analysis, the i* modeling framework focuses on the early stages of RE that precede the

specification activities [Yu95, Yu97]. i* centers on the notion “distributed intentionality”

(from which it also takes its name), i.e. on the intentions of the various agents of an in-

formation system. It combines knowledge representation techniques, agent-oriented

principles, and goal-oriented principles into a modeling framework that can be used,

apart from requirements engineering, in business process reengineering, organizational

impact analysis, and software process modeling [Yu95].

The actor in i* is a concept capturing system or environment agents (e.g. a software

component, a human), roles, and positions. Agents are concrete actors with specific ca-

pabilities; roles are abstract actors embodying expectations and responsibilities; posi-

tions are sets of roles played by an actor [LYM03]. The concepts of goal, soft-goal, task,

and resource are used in i* in order to capture the intentions and processes at different

levels of specificity. A goal is a condition or state of affairs in the world that an actor

would like to achieve; a soft-goal is a goal whose satisfaction criteria are not clear-cut

but subject to interpretation; a task is an activity carried out by an actor; a resource is an

entity, physical or informational, provided by an actor. Tasks are more specific than

(soft-) goals, as they specify a particular way – out of many possible – to satisfy the goal.

The framework consists of two models: the Strategic Dependency (SD) and the Stra-

tegic Rationale (SR) models, represented by SD and SR diagrams, respectively. (Exam-

ples of such diagrams are included in the paper of Section 4.2; an overview of the nota-

tion is available in [12]). In the SD model, the system actors and their dependencies are

modeled in order to identify and explore the opportunities and vulnerabilities of each

actor. The dependencies between actors in SD refer to goals that are expected to be sat-

isfied (goal/soft-goal dependencies), tasks to be carried out (task dependencies), and re-

sources to be furnished (resource dependencies). A goal dependency between actors A

(depender) and B (dependee) models the fact that A relies on B for the satisfaction of the

Chapter 2. State of the Art

16

associated goal, without however specifying how; this can be modeled by the task de-

pendency.

In the SR model, the focus shifts from modeling the (external) dependencies be-

tween actors to modeling the rationale behind the (internal) processes within the bound-

aries of a single actor. A SR model captures the viewpoint of a single actor, and, as such,

a separate SR model is “embedded” into each actor of the SD model (whose viewpoint

is of importance). For each actor, the relevant goals, soft-goals, tasks, and resources are

identified and associated with each other by task-decomposition, means-ends, and con-

tribution relations. Task decomposition models the way that a task is AND-decomposed

into an arbitrary number of tasks, goals, and resources. Means-ends models the way a

goal is achieved, a task is performed or a resource is furnished (ends) via another task

(means); it is typically used to model the variability in satisfying a goal. Contribution

relations model the positive or negative contribution of goals, soft-goals, and tasks to the

satisfaction of soft-goals; these relations are typically used for choosing the process con-

figuration (prescribed by the SR model) that best meets the chosen non-functional re-

quirements, in the spirit of the NFR framework (Section 2.1.1.2).

A distinct characteristic of i* is that it helps reveal the organizational context of the

system-to-be by focusing on the different and possibly conflicting intentions of the in-

volved actors. Although the i* meta-model is formally described in the Telos language

[MBJK90], i* does not focus on formal analysis. i* models can still though be analyzed in

terms of ability, workability, viability, and believability [Yu95].

Due to its generality and its rich set of concepts, i* has been embedded in other

frameworks. For example, it has been employed in a methodological framework for an-

alyzing security and privacy requirements in order to supports dependency vulnerabil-

ity, countermeasure, and access control analysis techniques [LYM03]. Most importantly,

it has been employed for the early and late requirements phases of the Tropos method-

ology for agent-based systems, overviewed in Section 2.2.1.1.

2.1.1.4 FLAGS

Fuzzy Live Adaptive Goals for Self-adaptive systems (FLAGS) is an approach for speci-

fying adaptation requirements, i.e. requirements that concern countermeasures to be

taken when application requirements fail [BPS10]. FLAGS relies on the goal, operation,

and object models of KAOS (Section 2.1.1.1) and extends them.

 The main concept proposed by FLAGS is that of adaptation goal, a special type of

goal that corresponds to a countermeasure to be applied when a “conventional” goal

(e.g. à la KAOS) fails to meet its satisfaction criteria [BPS10]. To model such criteria,

FLAGS introduces the notion of fuzzy goal, whose satisfaction, as opposed to a crisp

goal, is the result of a membership function returning a value in the range [0,1] – the

degree of satisfaction. Membership functions are elicited based on user preferences and

typically have trapezoidal or triangular shapes. Fuzzy goals are not necessarily modeled

as soft-goals, although the latter are strong candidates for fuzzification. For the formal

specification of fuzzy goals, both a dedicated language (an extension of LTL with fuzzy

operators) [BPS10, PS11], and the RELAX language have been employed [BP10a, BP11].

2.1. Requirements Modeling and Analysis for siCPS

17

It is important to note that, contrary to KAOS and i*, where variability in requirements

is captured mainly by the use of alternative decompositions or means-ends relations, in

FLAGS variability is captured via adaptation goals.

The FLAGS approach transcends the boundaries of requirements engineering by

considering that goals (both conventional and adaptation ones) are kept as runtime en-

tities that are continuously updated based on monitoring of the application and its envi-

ronment (this is sometimes called “requirements reflection” [BWS+10, SBW+10]). Ac-

cording to the degree of satisfaction of goals at runtime, adaptation goals can be trig-

gered, resulting into counteractions that include adding/removing goals, operations, or

objects, modifying the membership function of goals, and adjusting the pre- and post-

conditions of operations [BPS10].

A realization of the requirements reflection idea of FLAGS has been carried out in

the domain of service compositions [BP10a, BP10b, BP11]. In the proposed runtime in-

frastructure (Figure 3), an existing service coordination engine, based on Business Pro-

cess Execution Language (BPEL) [BBE+07], is instrumented to provide the necessary data

for detecting events, updating the state of objects in the object model, and evaluating

goal satisfaction in the “live” goal model. The satisfaction of goals is determined by plug-

gable analyzers of logic expressions (in LTL or their fuzzy counterparts) specified at the

requirements phase. When needed, adaptation goals are triggered, which in turn trigger

adjustments to the running BPEL processes. To achieve this, a mapping is kept between

the runtime representation of requirement entities such as operations (linked to goals in

the goal model), objects, and agents, and their counterparts in BPEL.

Figure 3. FLAGS runtime infrastructure (from [BP11]). Goals are kept as

runtime entities; they trigger adaptations as countermeasures.

Chapter 2. State of the Art

18

2.1.2 Lessons Learned

In this section, we attempt a critical examination of the advantages and limitations of the

GORE approaches overviewed above in order to evaluate them in terms of their applica-

bility in the analysis and design of siCPS.

A first observation is that the goal abstraction has proven particularly useful in

GORE; goals have been used to model functional requirements (KAOS), non-functional

ones (NFR), and both functional and non-functional requirements in the same model (i*).

Goal-orientation points to the right direction of thinking about the reasons behind the

requirements elaboration and documenting them during the elaboration process. Rely-

ing on goals and other GORE abstractions (e.g. actors’ intentions, dependencies, plans)

during the subsequent architecture design phase, where design decisions need to be cap-

tured together with their rationale, seems promising. Such an approach has been at-

tempted in Tropos, an agent-oriented methodology overviewed in Section 2.2.1.1.

Reflecting on the goal classification schemes used in GORE, and in particular KAOS

that distinguishes between achieve/cease and maintain/avoid goals, the maintain/avoid

goals seem to be more pertinent to the domain of siCPS. The high degree of dynamicity

and operational uncertainty in siCPS thwarts the application of multi-step end-to-end

protocols that typically underlie the achieve/cease goals. On the contrary, the notion of

“striving to achieve”, manifested also in novel RE methods for dynamic self-adaptive

systems, such as SOTA [ABZ12], fits better the domain of siCPS, as computation is typi-

cally targeted at maintaining a form of operational normalcy, i.e. the property of being

within certain limits that define the bound of normal operation. The notion of opera-

tional normalcy roughly corresponds to the maintain/avoid goals in GORE.

Another GORE notion pertinent to the analysis and design of siCPS is that of fuzzi-

fication of goal satisfaction criteria, as proposed in FLAGS and in other approaches (e.g.

RELAX [WSB+10]). Being able to model and reason about properties in a fuzzy way pro-

vides a powerful mechanism to deal with uncertainty. Uncertainty generally manifests

itself in various SE phases (during requirements elicitation, architecture design, deploy-

ment, and others), takes various forms (from imprecise measurements to probabilistic

execution), and stems from various reasons (from vagueness in requirements coming

from stakeholders to unpredictable situations in the environment). In siCPS, there is a

particular need to address uncertainty stemming from the unpredictable and ever-

changing environment (sometimes called external uncertainty [EKM11]). Employing

fuzzy models is a way to embed external uncertainty in system specification, which is a

prerequisite for dealing with it via other means in the next phases (e.g. via switching to

fail-safe modes at runtime in case high external uncertainty is present).

Checking the validity of requirements is also another recurrent topic in GORE,

which is also relevant to the analysis and design of siCPS. As overviewed before, re-

quirements checking can be done both at design time and at runtime, with complemen-

tary methods. While at design time the focus is on checking the completeness and perti-

nence of the whole set of requirements to high-level goals (as done e.g. in KAOS), at

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

19

runtime the focus is on checking whether individual requirements are satisfied – and to

which degree. In particular, the idea of considering requirements as runtime entities, as

proposed in FLAGS and other works advocating requirements reflection (e.g. [BWS+10,

SBW+10, SLRM13]), is particularly suitable for requirements checking in siCPS, as any

form of design-time checking typically relies on strong assumptions about the environ-

ment which are not plausible in most siCPS.

A final important remark is that the focus of KAOS, i*, NFR, and FLAGS, but also

of other RE approaches such as ALBERT [DBP94], GBRAM [Ant96], GRL [AGH+10], RE-

LAX [WSB+10], is at the requirements analysis and not at the architecture design phase.

As summarized in Table 1, the main outcomes of these approaches are a set of require-

ment specifications in both graphical and textual form, amenable to different forms of

analysis ranging from informal stakeholder inspection to formal verification via model

checking. While focusing on requirements analysis is not a limitation per se, these ap-

proaches do not provide a systematic way to translate the requirements artifacts to ar-

chitecture and implementation constructs, in order to bridge the well-known gap be-

tween requirements and architecture [AGH+11, BKW03, KC01]. In this direction, notable

attempts have been made in the context of KAOS (e.g. in [VL03]) and i* (e.g. the Tropos

methodology, overviewed in Section 2.2.1.1). FLAGS also proposes a manual mapping

of goal models to functional models represented by BPEL processes [BP10b].

As the essence of an effective architecture design is precisely this mapping between

requirements and architecture, we focus next on promising methodologies that try to

systematize this in the domain of dynamic distributed systems akin to siCPS.

2.2 Software Development Methodologies and Implemen-

tation Abstractions for siCPS

A software development methodology is a process that guides software development

through different phases, which prescribe different activities. Requirements engineer-

ing, and in particular GORE (Section 2.1.1), is typically one of the first phases, followed

Table 1. Main outcomes of overviewed GORE approaches.

GORE approach Main outcome

KAOS Software Requirements Specification (SRS) document [16]

NFR
Goal graph that justifies design decisions in the development process ac-

cording to the degree to which non-functional requirements are satisfied

i*
A set of goal graphs representing the strategic dependencies and the ra-

tionale of actors in the system

FLAGS
KAOS-like goal and object graphs (where goals are formalized in fuzzy

logic), augmented by a set of adaptation goal graphs

Chapter 2. State of the Art

20

by architecture design, implementation, testing, deployment, and maintenance. A dis-

tinction is often made between methodological models that focus on the development

life cycle (e.g. spiral [Boe00], Unified Process [AN05], agile [SW07], MDE [Sch06]), which

are considered as broad classes of methodologies, and specific instances of development

processes (e.g. Scrum [Coh09], Extreme Programming [Bec99], DARTS [Gom93]) that

typically belong to one or more of the broad classes.

Using the same set of concepts across phases is generally considered an asset, as it

allows for easier mapping of artifacts (e.g. requirements specifications, architecture dia-

grams, code) from one phase to the next. Hence, each specific process (refinement of a

generic methodology) is typically characterized by the paradigms used for modeling and

implementation. For example, although UML [AN05, Fow03] is considered general-pur-

pose, it primarily follows the object-oriented modeling paradigm; this, in turn, charac-

terizes also the development processes that employ UML as “object-oriented”.

Since siCPS are complex and dynamic systems, we are interested in paradigms, im-

plementation abstractions, and corresponding methodologies that can deal with the

complexity of building and maintaining large systems, while accounting for dynamic

and unpredictable environments. Promising paradigms are the agent-oriented and the

component-based modeling and development paradigms, overviewed in Sections 2.2.1

and 2.2.2, respectively.

2.2.1 Agent-Oriented Software Development

In an effort to deal with the increasing complexity of software systems that have to op-

erate in dynamic, unpredictable, and heterogeneous environments, Agent-Oriented

Software Development (AOSD) has been put forward [SS14a, WC01]. AOSD views sys-

tems as organizations of self-governed entities, called multi-agent systems [SLB08], with

independent life cycles and loci of control; this viewpoint is a perfect fit when modeling

complex distributed and decentralized systems [Jen00].

The main abstraction in AOSD is a software agent. An agent is an encapsulated soft-

ware system that is situated in an environment and is capable of autonomous action in

order to meet its design objectives [Woo97]. The properties commonly attributed to an

agent is that of autonomy, reactivity, proactiveness, and social ability [Woo97]. The con-

ceptual autonomy is a main difference between agents and objects; they both encapsu-

late state and behavior, but agents have additional control over behavior activation and

action choice (they are active entities in contrast to passive objects). From a different view-

point, agents provide a higher level of abstraction independent of the implementation

technology, be it objects or components (discussed in Section 2.2.2) [Jen00].

A prominent reference model for AOSD is Belief-Desire-Intention (BDI) [Bra99].

Agents in systems architected according to the BDI model (so-called BDI agents) possess

goals (desires), plans (intentions) and knowledge about the world (beliefs) [RG95]. Goals

are the objectives a BDI agent pursues, plans are the means of achieving certain future

states, and beliefs (or belief base) is the knowledge a BDI agent possesses about the en-

vironment, including the knowledge about other agents. BDI agents follow a reasoning

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

21

cycle where they continuously (i) monitor the environment, (ii) decide on which goals

to achieve, and (iii) activate the plans that are most likely to lead to achievement of their

goals. This reasoning cycle complies with the Monitor-Analyze-Plan-Execute (MAPE-K)

reference model for autonomic computing [IBM06, KC03]. There exist various imple-

mentations of the conceptual BDI architecture model, based on pure Java (e.g. Jadex

[PBL05][18], JACK [Win05][17]), combination of Java and Prolog (e.g. 3APL [HBHM99]),

and first order logic (e.g. AgentSpeak [Rao96], and its Java interpreter, Jason [BH06]).

The new abstractions introduced by the agent-oriented modeling paradigm call for

tailored analysis and design methods that perceive the system as a collection of inten-

tional actors with social abilities. Several AOSD methodologies have therefore emerged

to bridge this gap: Tropos [BPG+04], Gaia [WJK00], MaSE [DWS01], O-MaSE [DeL14],

ADELFE [BGPP03], Prometheus [PW03], IGNENIAS [GS14], etc. Such methodologies

provide guidelines and methods that support AOSD from requirements engineering,

where goal orientation (Section 2.1.1) is typically favored, to architecture design, down

to detailed design and implementation (typically in a BDI platform) [DW04].

A comprehensive review of the state of the art in AOSD methodologies is available

in [SS14b]. In the rest of the section, we delve into the specifics of a representative AOSD

methodology.

2.2.1.1 Tropos

Tropos is a well-known holistic approach towards the development of information sys-

tems perceived as agent-based software systems [BPG+04, CKM01, CKM02, GKMP04].

Tropos combines the agent-oriented modeling paradigm with goal-orientation in re-

quirements into a comprehensive methodology that spans all of the main software de-

velopment phases, from requirements elicitation and analysis to implementation. It pro-

vides guidelines on how to align these phases using concepts from early requirements

engineering such as actors, goals, and dependencies [CKM02]. At the same time, its men-

talistic notions are founded on BDI agent architectures [Bra99, RG95].

Tropos methodology spans five phases: early requirements analysis, late require-

ments analysis, architectural design, detailed design, and implementation.

In the early requirements analysis phase, the organizational setting of the system-

to-be is studied and modeled, focusing on the stakeholders and their intentions. For this

phase, Tropos adopts and i* modeling framework (Section 2.1.1.3) and suggests building

a strategic dependency (SD) and possibly several strategic rationale (SR) models. As de-

scribed in Section 2.1.1.3, a SD model captures the social actors (which represent the

stakeholders of the system-to-be) and their interdependencies in terms of goals/soft-

goals to be achieved, tasks to be completed, and resources to be furnished. A SR model,

on the other hand, captures the goals, soft-goals, resources, and tasks of a single actor,

together with their means-ends and AND/OR decomposition relations and soft-goal

contributions. It also captures how dependencies that enter or exit the actor boundaries

are contributing in fulfilling this actor’s goals. Extending i*, Tropos provides a formal

language for specifying SD and SR models (also called actor models and goal models re-

spectively in the context of Tropos [BPG+04]) termed Formal Tropos [FLM+04, FPMT01].

Chapter 2. State of the Art

22

Formal Tropos allows the analyst to specify constraints on the models’ elements in LTL

that allow for consistency checking; in many ways it is close to the formal language of

KAOS (Section 2.1.1.1).

In the late requirements analysis phase, the goals and soft-goals are operationalized

resulting into a complete specification of the system-to-be together with its organiza-

tional setting. This phase takes as input the SD and SR models of the previous phase and

extends them by adding an actor (potentially decomposed into sub-actors) representing

the system-to-be, and modeling its dependencies to/from other actors. The revised SD

and SR models should also contain the final specification of non-functional requirements

(NFRs), after negotiation with stakeholders, by means of positive or negative contribu-

tions to soft-goals. The soft-goal analysis follows the NFR framework (Section 2.1.1.2)

In the architecture design phase, the overall system structure is captured in terms of

subsystems interconnected with data and control flows. As in the previous phases, sub-

systems are captured as actors in SD and SR diagrams. This phase can be broken down

into the following steps.

First, one or more organizational architectural styles are selected and instantiated in

the design of the system-to-be. These include the styles of joint venture, flat structure,

structure-in-5, pyramid, cooperation, and others [KCM01, KGM01, KGM06]. Unlike clas-

sic architecture styles (e.g. pipes and filters, layered systems, etc. [GS93]), they are in-

spired from research in organization management and specifically focus on the domain

of cooperative, distributed and dynamic applications, such as multi-agent systems. Each

style supports some and hinders other NFRs, such as security, adaptability, modularity,

etc. The style that best supports the NFRs that resulted from the soft-goal analysis in the

previous phase is chosen. For example, If “adaptability” and “integrity” were identified

as important NFRs for the system-to-be, then an architectural style that supports them

can be chosen, e.g. the joint venture [CKM02] in this case. The instantiation of the chosen

style can result into re-arrangement of the actors in the SD model, introduction of new

actors, removal of old ones, etc. Note that all these changes are done at a macro level, i.e.

they aim to satisfy the overall goals of the system-to-be, not of a particular goal of a

specific actor.

Second, for each actor, the capabilities needed to fulfill its goals and tasks are iden-

tified by analyzing the in-going and out-going dependencies in the SD model, similar to

identifying API for classes by analyzing the sequence diagrams in object-oriented de-

sign. Then, each actor is mapped to one or more agents. This manual task requires a lot

of expertise. To aid the designer, Tropos provides a set of social patterns that, unlike

organizational styles, focus on the social structure necessary to achieve one particular

goal [FGKM01, KGM01, TMA03]. These patterns are recurrent in multi-agent and coop-

erative systems; they include patterns such as broker, embassy, mediator, and others.

Each pattern defines a set of capabilities associated with the agents involved in the pat-

tern. The application of a pattern can result in introducing new agents (e.g. an interme-

diary agent in the mediator pattern) and, in general, guides the mapping of actors to

agents in a systematic way, much in the same way as popular object-oriented design

patterns systematize best practices in object-oriented systems [GHJV94].

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

23

In the end of the architecture design phase, revised SD and SR models are created,

taking into account changes from instantiating the chosen organizational styles and so-

cial patterns. Also, a mapping between actors and concrete agents with specific capabil-

ities is created.

The detailed design phase that follows is concerned with the specification of the

agents’ micro level, i.e. the agents’ behavior and communication. This step is guided by

the underlying implementation abstractions and corresponding platforms. Since Tropos

is primarily intended as a methodology for building agent-based systems, a subset of the

Agent UML [BMO01, OPB00] is typically adopted. Specifically, AUML class diagrams

are used to capture the structure of actors in the traditional object-oriented way, where

each actor is mapped to a class with attribute and method compartments. Additionally,

AUML sequence diagrams are used to capture the interaction protocol between specific

actors. Capability and plan diagrams (graphs that correspond to directly executable pre-

scriptions of how an agent should behave to achieve a goal or respond to an event

[KG97]) are used to specify the internal processing needed to carry out a specific task

[CKM01, CKM02]. Note that a plan, in this context, is a refinement of a conceptual task

included in the SR models. Classical UML activity diagrams have also been proposed

within Tropos for capability and plan modeling [BPG+04].

Finally, in the implementation phase, the detailed design models are used to gener-

ate executable code in the target BDI platform. Both JACK Intelligent Agents

[Win05][17], and Jadex [PBL05][18] have been used as target platforms. The agents spec-

ified in the previous phases and their capabilities, including plans, beliefs, and events to

be handled, are mapped to JACK constructs [BPG+04] and Jadex constructs [PPS+07] in

a rather straightforward way.

Tropos has been extended in many ways and the research around it followed dif-

ferent paths [31]. Next, we describe an extension that we deem important for the context

of this thesis, as it focuses on context-aware self-adaptation in agent-based systems.

2.2.1.2 An Extension of Tropos for Adaptive Systems

A pragmatic approach towards extending Tropos and applying the extension in the tool-

supported development of self-adaptive agent-based systems is Tropos for self-adaptive

Systems (Tropos4AS) [Mor11, MP08, MPP08a, MPP08b]. Tropos4AS introduces a num-

ber of extensions to the modeling layer of Tropos (and a clear mapping to concepts al-

ready featured in BDI languages such as Jadex) in order to allow designers model self-

adaptive behavior by capturing failure conditions and corresponding countermeasures

at the level of goals and tasks [MP08]. The extensions include:

 Specification of goal types according to their satisfaction criteria as achieve goals

(to be satisfied only once in the lifetime of the agent), maintain goals (to be satis-

fied continuously), and perform goals (without concrete satisfaction criteria) –

similar to goal patterns in KAOS;

 A goal prioritization mechanism based on inhibition relations between goals;

Chapter 2. State of the Art

24

 Modeling of the non-intentional entities of the environment (environment enti-

ties) via standard UML class diagrams – similar to object modeling in KAOS;

 Specification of conditions for goal creation and satisfaction that associate goal

model entities with environment entities;

 Modeling of errors (or failures) and corresponding symptoms (attached to envi-

ronment entities) that represent failure conditions;

 Modeling of recovery activities (attached to symptoms) by means of new goal

models complementary to the main goal model of each agent.

Figure 4 depicts an example of a Tropos4AS model. A mapping is provided between

the requirements-level concepts captured at the goal model and the implementation-

level concepts available in Jadex. In summary, actors are mapped one-to-one to Jadex

agents, actors’ main goals and goals that correspond to recovery activities to Jadex goals,

tasks to agent’s plans, and resources and environment objects to facts in the agents’ belief

bases. The different goal types (maintain, achieve, and perform) and the inhibition rela-

tions between goals are mapped to corresponding concepts already available in Jadex.

Also, means-ends relations are mapped one-to-one to the Jadex plan triggering mecha-

nism (in the sense that activated goals are triggering events for plans). AND, resp. OR,

decompositions are mapped to sub-goal dispatch algorithms that activate and monitor

the execution of all, resp. one, of the subgoals of an activated parent goal, as specified in

Figure 4. A Tropos4AS model (from [MP08]). Rounded rectangles denote

goals, hexagons tasks, jagged circles symptoms, and ellipses errors.

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

25

the non-leaf goal semantics [MPP09]. Finally, dependency relations are mapped to plans

on both the depender and the dependee agent that realize a FIPA-standard communica-

tion protocol [ON98] and rely on Jadex agent messaging functionalities. In order to allow

for advanced decision-making at runtime, the goal model is also stored in the agents’

belief bases. The above mapping is supported by a dedicated tool that provides code

generation to XML-formatted Agent Definition File (ADF) and Java [MPP08a].

Self-adaptation in Tropos4AS is pursued both by choosing among alternatives in

OR-decompositions and between different means-ends relations attached to the same

goal, and by activating goals that correspond to recovery activities. Once a goal is acti-

vated, the “best” plan associated with its satisfaction is triggered, which leads to a series

of actions performed by the agent. Changes in the agent’s belief base may lead to the

activation of new goals, which trigger new plans, and so on.

2.2.2 Component-Based Software Development

Managing the complexity of building and maintaining large software systems is a chal-

lenge. Component-Based Software Development (CBSD) is a widely adopted approach

to tackle this challenge primarily by relying on separation of concerns, decomposition,

and systematic reuse of existing artifacts [CL02]. CBSD adopts an architecture view over

software systems and provides abstractions for software composition, interoperability,

and reuse.

The main abstraction in CBSD is a software component. A component is a software

unit with contractually specified interfaces that are either required or provided; it encap-

sulates and generalizes the popular object abstraction found in object-oriented languages

[CL02, Szy02]. A component can be developed and deployed independently and is sub-

ject to composition by third parties [HC01].

Components in CBSD adhere to a component model, which provides a set of rules (or

standards) for component behavior, composition and interaction [CSVC11, LW07]. A

component model, together with a corresponding runtime platform (sometimes referred

to as execution environment) and related tools supporting design, development, and de-

ployment, are often referred to as component system [CL02, Mal12].

Component systems – both industrial and academic, general-purpose and special-

ized – have been proposed and used in enterprise applications (e.g. CCM [24][WSO01],

EJB [25], Sofa 2 [BHP06], Fractal [BCL+06]), configuration platforms (e.g. Spring [30],

OSGi [27][HPMS11], Google Guice [11]), and embedded and real-time systems (e.g. My-

CCM-HI [BHP09], Koala [VOVDLKM00], Sofa HI [PWT+08], ProCom [SVB+08], RTSJ

component model [PMS08]), among other domains. A comprehensive overview and

classification of existing component systems is provided in [CSVC11].

Chapter 2. State of the Art

26

Attempts for modeling CPS in a component-based fashion in different application

areas have been pursued at a European level within Artemis/ECSEL and FP7/H2020 re-

search frameworks (Table 2 provides a summary of related projects). Indicative of the

importance of the field, CPS has been identified as one of the “essential capabilities” in

the ECSEL roadmap [9].

In the rest of the section we overview three component systems that specifically tar-

get large, dynamic, distributed, and software-intensive systems akin to siCPS. Com-

pared to approaches found in different EU research projects (Table 2), which mostly fo-

cus on deployment by providing component- or service-based runtime platforms, the

component systems reviewed next stand as representatives of a more systematic CBSD

approach that relies on well-defined component models and tooling support for model-

ing, development, and deployment.

2.2.2.1 Kevoree

Kevoree [21] is a component system that relies on the paradigm of models at runtime

(models@run.time). This paradigm proposes to use a self-representation of a system that

Table 2. A sample of EU projects targeting architecture modeling of CPS.

Project name Project description

Smart Objects For

Intelligent Appli-

cations

SOFIA is a glue platform for sharing interoperable information in smart

environment applications. The platform can be discovered and accessed

as a service (e.g. as NoTA, Web, or OSGi Service). Context-awareness,

access control and security may be added in this way. The platform is

agnostic with respect to ontology, programming language, service and

communication levels, as well as hosting device/system.

ARROWHEAD

ARROWHEAD aims at addressing technical and applicative challenges

associated with cooperative automation by providing a service-oriented

framework for integration and cooperation between legacy systems act-

ing as service providers and consumers.

Adaptive Coopera-

tive Control in Ur-

ban (sub)Systems

ACCUS aims at the exploitation of tools that are available for distributed

control systems, e.g. for event-based synchronization. Urban systems are

considered to be a CPS which is controlled as a networked multi-agent

system. The project addresses structural runtime adaptivity for CPS, and

proposes a design methodology for emerging system-level behaviours.

DEsign, Monitor-

ing and Operation

of Adaptive Net-

worked Embedded

Systems

DEMANES aims to provide component-based methods and tools for de-

velopment of runtime adaptive systems, making them capable of reacting

to changes in themselves, in their environment (battery state, availability

and throughput of the network connection, availability of external ser-

vices, etc.) and in user needs (requirements).

Autonomic Service

Component EN-

Sembles

ASCENS focuses on analysis, design and development of systems of en-

sembles, i.e. large complex systems of collaborating entities that form

dynamic groups. It features three case studies from the domains of elec-

tric vehicle mobility, ad-hoc cloud deployment, and smart robotics.

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

27

emphasizes the structure, behavior, or goals of the system from a problem space per-

spective in order to provide a reflection layer that is uncoupled from, yet causally con-

nected to, the running system [BBF09, BFCA14]. Models@run.time is envisioned to en-

dow systems with dynamic state and behavior monitoring, semantic integration, auto-

matic generation of artifacts at runtime, and design evolution capabilities, among others

[BBF09]. In the case of Kevoree, the employed self-representation emphasizes the archi-

tectural aspects, i.e. the architecture model is considered a runtime entity that is casually

connected to the running system [MBJ+09].

The component model of Kevoree includes the concepts of component, channel,

node, and group. A Kevoree component is a traditional CBSD component, i.e. a unit of

development and execution with contractually specified interfaces. In Kevoree, inter-

faces are specified as input and output ports. A Kevoree channel is a traditional CBSD

connector, i.e. a unit that realizes the communication between components according to

some coordination style (e.g. synchronous, asynchronous, sequential, etc.). A Kevoree

node represents a unit of deployment and stands as a container for components. Finally,

a group is special concept used in Kevoree to refer to set of nodes that share the same

(architecture) model, and the way this model is synchronized across the nodes. The idea

is that, once one node of the group applies a reconfiguration strategy (defined in a ded-

icated language – KevScript [FBP+12]) and changes its architecture (reflection) model,

the updated model is propagated and synchronized across all the nodes in the same

group. With its concepts, especially the node and group ones, Kevoree provides proper

support for distributed models@run.time [FBP+12].

Apart from a component model, Kevoree provides several execution environments

(including JVM, Android, and Arduino) and mappings to several mainstream imple-

mentation languages, in particular Java, C++, and Javascript [21]. It also provides tools

supporting design, development, and deployment. For instance, a graphical editor can

be used for specifying the initial architecture (components and channels connecting

them) and deployment (assignment of components to nodes and of nodes to groups) –

an example is depicted in Figure 5.

Figure 5. Example of an architecture created with the Kevoree graphical editor

(from [AAGGH+14])

Chapter 2. State of the Art

28

2.2.2.2 Helena

Helena is a component-based approach for developing large distributed dynamic sys-

tems comprised of groups of entities that collaborate to achieve some common tasks

[HK14, KH14, KMH14]. The Helena approach adopts the core ideas of a component

model (e.g. separation of application logic into components and communication logic

into connectors) and combines them with role-based modeling concepts [HK14]. Helena

was conceived and developed in the frame of ASCENS FP7 project [1].

The main abstractions of Helena are components, roles, role connectors, and ensem-

bles [HK14]. A Helena component is specified by its name, attributes, and supported

operations. The operations are distinguished into incoming/outgoing (corresponding to

required/provided interfaces) and internal. The outgoing and incoming operations are

mapped to sending and receiving of messages. Although they may have operations,

components in role-based approaches (including Helena) are usually passive entities

(data containers), and serve as execution platforms for roles. A Helena role provides

context-specific data and behavior; it is specified via its name, attributes, operations (out-

going, incoming, internal), and set of nodes that can play the role, i.e. exhibit the behav-

ior of the role. Finally, a role connector captures the communication between roles in

much the same way as a classic CBSD connector captures the communication between

CBSD components [IST11]. A role connector specifies which role is the source of the

communication, which is the target, and what message should be communicated (cap-

tured as an output operation of the source that matches an input operation of the target).

Having the concepts of components, roles, and role connectors in place, Helena pro-

poses to models ensembles, i.e. goal-oriented groups of components. From the structural

perspective, an ensemble is modeled as a set of roles, each with a multiplicity, and a set

of role connectors. From the behavioral perspective, it is modeled in terms of role behav-

iors. Each role behavior is a labeled transition system that specifies the sequences of op-

erations that can be executed on the role so that the role contributes the required respon-

sibilities to the ensemble.

The whole approach is backed up by a Java runtime platform for execution of en-

sembles called jHelena [KH14]. Tool support for specification of ensemble-based archi-

tectures in a domain-specific language and subsequent code generation in Java (to be ran

in jHelena) is also provided [KCH14].

2.2.2.3 DEECo

Dependable Emergent Ensembles of Components (DEECo) is a component system that

has been proposed for the development of highly dynamic and distributed cyber-phys-

ical systems [BGAA14, KBPK12, Kez14, BGH+13]. DEECo combines ideas and concepts

from CBSD (e.g. rigorous component model), agent-oriented computing (e.g. entities

with autonomy), and real-time and control systems (e.g. periodic computation) into a

comprehensive synergy. Like Helena, DEECo has been conceived and developed in the

frame of ASCENS FP7 project [1].

The main abstractions in the DEECo component model are the component and the

ensemble [BGH+13]. A DEECo component is an independent unit of development and

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

29

deployment that consists of state, modeled as knowledge, and functionality, modeled as

processes. Knowledge is a hierarchical (tree-like) data structure mapping identifiers to

(potentially structured) values. Values are either statically typed data or functions.

DEECo employs statically typed data and pure functions (without side effects) as first-

class entities. Each of them being essentially a thread, processes operate upon the

knowledge of the component. A process employs a function from the knowledge of the

component to perform its task. As functions are assumed to have no side effects, a pro-

cess defines a mapping of the knowledge to the actual parameters of the employed func-

tion (input knowledge), as well as a mapping of the return value back to the knowledge

(output knowledge). A process can be either event-or time-triggered (periodic). An event

in this context is a change either in the valuation of input knowledge or in the satisfaction

of a condition on component’s knowledge. Contrary to conventional CBSD components,

DEECo components are autonomous in the sense that they do not have required and pro-

vided interfaces, and do not bind with each other to form composites. Instead, each com-

ponent provides part of its knowledge to the outer world (i.e. the other components);

this knowledge then serves as communication medium.

Figure 6. DEECo components can belong to multiple ensembles at the same time.

Chapter 2. State of the Art

30

A DEECo ensemble is a group of components that cooperates to achieve a common

goal. It is dynamically established and disbanded at runtime depending on the state of

the environment and the state of the components. A component can simultaneously be-

long to many ensembles, modeling the case when a component pursues more than one

goals at the same time (Figure 6). Within an ensemble, components communicate indi-

rectly via exchanging knowledge. An ensemble is specified by a membership condition

and a knowledge exchange function. Membership specifies which components to involve

in the ensemble, while knowledge exchange specifies which knowledge should be ex-

changed between these components. Instead of directly referencing components in an

ensemble specification, a role matching mechanism is used: the ensemble roles of coordi-

nator and member are specified; membership and knowledge exchange are then specified

as a condition over the knowledge of coordinator and members, and assignment from

the knowledge of members to the knowledge of coordinator (or vice versa), respectively.

Component roles, i.e. sets of component knowledge, are also specified for each compo-

nent and then dynamically matched to ensemble roles for each instantiated ensemble.

Similar to a DEECo process, an ensemble is event- or time-triggered. When triggered,

the ensemble first evaluates the membership condition and then executes the knowledge

exchange for each member-coordinator pair.

Apart from the component model, DEECo comes with a runtime framework and

corresponding mapping in C++ [2] and Java [19]. While the former targets actual deploy-

ment on embedded devices, the latter is primarily intended for quick prototyping and

experimentation via simulations [KGB+15]. DEECo runtime frameworks provide the

necessary utilities for (i) developing and deploying components and ensembles, (ii)

scheduling of component processes and ensemble evaluations, (iii) managing the

knowledge of each component (including performing knowledge exchange when

needed). The Java implementation, in addition, provides support for rather detailed sim-

ulations comprising network-accurate communication and agent-based environment

representation [KGB+15].

2.2.3 Lessons Learned

In this section, we reflect on the advantages and limitations of agent- and component-

based modeling paradigms, provide a critical evaluation of the overviewed approaches,

and justify our decision to adopt the abstractions proposed in DEECo as our implemen-

tation substratum for siCPS.

The agent-based modeling paradigm provides an effective set of concepts to model

complex interactions between a large number of software entities in a flexible and intu-

itive way. The behavior of each agent can be programmed independently, relying on the

agent’s perception of the world and with compliance to the agent’s goals. Agents’ inter-

actions are also conveniently mapped to massaging between agents supported by un-

derlying service-based platforms that provide the utilities (e.g. service registry) for dy-

namic discovery and addressing. This adds to the conceptual autonomy of each agent

and provides clear separation of concerns in the modeling and implementation phases.

2.2. Software Development Methodologies and Implementation Abstractions for siCPS

31

However, we notice two drawbacks in the application of the agent-based paradigm

in the design and development of siCPS. First, the interactions among the individual

agents in a multi-agent system give rise to joint behavior that cannot be predicted a pri-

ori, let alone modeled and controlled (this is sometimes called emergent behavior [WHS06,

Wol07]). This effect is not necessarily negative in case of large-scale environment simu-

lations (e.g. mobility of vehicles and humans in a city), where agent-based approaches

help in the identification of emerging trends and interactions. However, when develop-

ing large-scale siCPS, the focus is on eliminating – or at least bounding – the emergent

behavior in order to provide a predictable and thus dependable system.

The second limitation concerns the implementation of agent-based platforms. As

they are realized as service-oriented architectures (SOA) [PH07, WH11], they inherit

both the advantages of SOA, namely third-party ownership and deployment, and dy-

namic architecture (via dynamic service binding), but also its limitations, in particular

that of relying on the assumption of guaranteed communication. In siCPS, this assump-

tion is not always plausible, as entities need to operate even detached from their peers

when deployed in ad-hoc infrastructures with no communication guarantees. This mis-

match breaks the notion of autonomy at the implementation level and hinders the

straightforward use of agent-based platforms in the development of siCPS.

With respect to AOSD methodologies, we notice that they point to the right direc-

tion of bridging the gap between the different design and development phases via a set

of guidelines on how to transition between the phases. Tropos, in particular, provides a

small and manageable set of concepts (actors, goals, plans) throughout the phases, from

early requirements to implementation and deployment. On the down side, there is a

small degree of automation in the mapping between the phases; in most case the transi-

tions relies heavily on subjective design decisions requiring experience and ingenuity

from the designers [YLL+08]. This is – in a sense – inevitable, as Tropos addresses a broad

range of software systems (although it initially focused on Internet-based information

systems). Nevertheless, in the development of large complex systems such as siCPS, au-

tomation (e.g. via model-driven techniques) is highly desirable, as it effectively reduces

the development time and effort and helps manage the complexity therein.

The component-based paradigm also helps in reducing the development effort by

providing reusable implementation artifacts (components) and utilities to compose them

together. Contrary to the agent-based paradigm, CBSD emphasizes dependability (e.g.

via model checking of assembled system configurations [HI10]) at the expense of adapt-

ability and flexibility in interactions. That said, component-based approaches that pro-

vide some form of limited adaptability, typically in the form of mode switching

[HKMU06], do exist.

Evaluating the overviewed component-based approaches, Kevoree focuses on the

deployment of reusable software components to computational nodes. It features a rigid

architecture structure that can be adapted at runtime and fits well domains where lim-

ited adaptation is required in response to environment dynamicity (e.g. smart spaces,

where software components have to migrate from node to node to achieve load balanc-

ing). Communication between components in Kevoree relies on predefined connectors

Chapter 2. State of the Art

32

(channels). Helena and DEECo, on the other side, feature the concept of ensembles to

model groups of software components, dynamically created and disbanded via the

runtime platform, that collaborate to achieve a common goal. In both cases, the architec-

ture structure is not static, but “emerges” according to the specification of ensembles

(which take over the role of traditional CBSD connectors). Communication is strictly

bound to components that belong to the same ensemble. The communicating parties are

also not referenced directly (e.g. via specifying the signatures of interacting compo-

nents). Rather, the attributes of the communicating parties, i.e. the roles that components

can undertake, determine the source and target of communication – a concept called

attributed-based communication, featured by novel coordination languages (e.g. SCEL

[DNFLP13]). This provides an effective way to deal with environment dynamicity and

change at runtime, as changes are directly reflected in the architecture of the system,

which is self-organized.

The differences between Helena and DEECo lie in their implementation mecha-

nisms and their underlying assumptions. While Helena relies on an underlying messag-

ing mechanism to bootstrap the creation of an ensemble and enable the managing and

communication of components in an ensemble, DEECo features knowledge exchange as

the only available communication style. While knowledge exchange can be also imple-

mented via message passing, it does not have to; in fact, the Java implementation of

DEECo performs knowledge exchange via directly transmitting data chunks, constitut-

ing the knowledge of each component, via wireless channels and reconstructing the

knowledge on the receiving end [BGH+14a]. The observation is thus that Helena relies

on stable network infrastructure, while DEECo considers temporary disconnections

(typical in wireless ad-hoc networks) and related data inaccuracy as inherent properties

of the underlying infrastructure.

Under this prism, we view DEECo as a comprehensive synergy of conceptual au-

tonomy, featured in AOSD, and separation of concerns, featured in CBSD. In particular,

DEECo abstractions and implementation mechanisms fit to the domain of siCPS, where

high dynamicity in the underlying infrastructure (including the network infrastructure),

physical distribution, and opportunistic communication are the norm. We thus choose

the ensemble-based systems as featured in DEECo as our basis upon which we build the

design methods that form the core of this thesis.

2.3 Goals Revisited

In the light of the state of the art discussed in the previous sections, we revisit here the

research goals set out in Section 1.3 and provide a justification for the research performed

in the context of this thesis in order to meet them.

The domain we are focusing on is that of software-intensive Cyber-Physical Systems

(siCPS), i.e. distributed and highly dynamic cyber-physical systems of which software is

the primary constituent. The design-time problem we are dealing with can be summa-

2.3. Goals Revisited

33

rized in the question: “How to design applications deployed on siCPS so that the appli-

cations’ high-level goals can be consistently mapped to implementation-level artifacts?”

The runtime problem we are dealing with can be summarized in the question: “How to

trace the runtime behavior of applications deployed on siCPS to high-level goals in order

to achieve runtime compliance checking?”

To answer these questions, we are looking into the specifics of the siCPS domain,

namely the physical distribution of nodes, environmental uncertainty, high dynamicity,

etc. To cope with the dynamicity of siCPS at the middleware level, we intend to rely on

the concept of ensemble-based component systems featured by DEECo component

model (Section 2.2.2.3). To come up with a systematic design method for siCPS, we in-

tend to apply principles from goal-oriented requirements engineering (Section 2.1.1) and

embed them to the development life cycle in a similar way as in agent-based software

development methodologies, in particular Tropos (Section 2.2.1.1).

Specifically, our original research goals G1 and G2 (set out in Section 1.3) are refined

into the following concrete objectives:

O1 Identify the specifics of siCPS that prevent the use of contemporary design

approaches (including goal-oriented ones), and specify how principles from

goal-oriented design approaches can be employed to deal with these specifics.

O2 Propose a design process for siCPS consisting of both a dedicated method and

associated models. The method should bridge the gap between requirements

analysis and architecture design and provide traceability between the high-

level goals of a siCPS application and the system activities that maintain its

operational normalcy.

O3 Extend the proposed method and associated models to allow capturing vari-

ability in the design of a siCPS application. The extended method should sup-

port architecture-based self-adaptivity in the form of choosing the system ac-

tivities that collectively satisfy the high-level goals of the application, at each

distinct situation the siCPS might reside in.

O4 Evaluate the proposed design method by mapping the associated design mod-

els to implementation-level abstractions featured by ensemble-based compo-

nent systems. The feasibility of the method should be demonstrated by (i) re-

alizing such a mapping based on existing ensemble-based component sys-

tems, and (ii) by performing empirical studies with software architects. The

applicability of the method should be demonstrated by embedding it to a de-

velopment methodology for ensemble-based systems.

With respect to the original goals, O1 to O3 correspond to G1, while O4 corresponds

to G2.

 Chapter 3

35

3 Overview of Contribution

This chapter highlights the key results of the thesis and then provides a detailed over-

view of the contribution.

In summary, key results of this thesis include:

 An analysis of the siCPS domain and the problems it poses to contemporary

software engineering practices [GKB+14] and requirements-oriented design

methods [GBH13];

 A novel method for designing applications for siCPS that supports both depend-

ability [BGK+15, KBP+13] and self-adaptivity aspects [GBH+15b, Ger14];

 An assessment of the feasibility and applicability of the proposed method via (i)

embedding it to a development methodology for siCPS [BDNG+13], (ii) imple-

mentation, integration, and experiments in an ensemble-based component sys-

tem [GBH+15b], and (iii) performing an empirical study [GBH+15b].

The concrete objectives O1-O4, as set out in Section 2.3, are addressed in the follow-

ing way.

Regarding O1, we identified the specifics of CPS that create the need for a different

approach in their design and development [GKB+14]. We pinpointed several aspects,

such as reachability and availability of global state, that are typically assumed in the

software development processes of general-purpose systems (e.g. Internet-based sys-

tems), but are violated in the domain of siCPS. This hinders the application of ready-

made methods and techniques in the design and development of siCPS. Our main ob-

servation is that time and physical distribution are primary concerns in siCPS and often

neglected in contemporary design and development methods for large distributed dy-

namic systems. For example, agent-based methodologies (e.g. Tropos [BPG+04], Gaia

[WJK00], O-MaSE [DeL14]) do not account for the impact of delays (caused, e.g., by un-

reliable communication) in agent interactions. Component-based approaches (based on

popular component models such as CCM [WSO01] or OSGi [HPMS11]) do not provide

support for reflecting the changes in the physical world (e.g. components moving in the

environment and getting disconnected from their peers) to the level of system architec-

ture. As a remedy, we advocated a novel synergy based on concepts from agent-based,

Chapter 3. Overview of Contribution

36

ensemble-based, component-based, and real-time and control systems centered on

DEECo, an ensemble-based component system (Section 2.2.2.3). In parallel, we over-

viewed contemporary approaches that focus on goal-oriented requirements engineering

and allow for systematic gradual design, and assessed their applicability in the domain

of siCPS [GBH13]. Although elements from these approaches provided useful inspira-

tion towards early validation, e.g. threat modeling in KAOS, and design of open-ended

systems with multiple stakeholders, e.g. roles in Tropos, the conclusion was that they

could not be applied as-is in the software engineering of siCPS. The main problem is

that, by trying to be generally applicable, they do not provide an intuitive way to model

repeatable system activities in siCPS that need to adhere to certain temporal constraints,

and do not provide adequate support for connecting requirements to system design. In

return, we sketched a novel method based on the iterative refinement of predicates that

capture the repeatable activities (operational normalcy) of the system.

Regarding O2, we refined the predicate concept proposed in [GBH13] into the “in-

variant” concept. On this basis, we proposed a novel, requirements-driven, formally

grounded method for the design of siCPS that focuses on the dependability aspect – the

Invariant Refinement Method (IRM) [KBP+13]. In IRM, high-level goals and low-level

system obligations (specifications of system activities) are captured as invariants over

the knowledge of components in the system. Our interpretation of invariants is not that

they should hold always, but frequently enough. Invariants are iteratively decomposed

to the level that they can be mapped to obligations of individual components or to obli-

gations of groups of components (ensembles). The result of the decomposition is an IRM

model, canonically represented as a tree. This model is used in the next steps of the de-

sign process, which involve a straightforward mapping of the leaves of the tree to com-

ponent processes and ensembles complying to DEECo. In order to assist the designer

and provide correct-by-construction guarantees, we proposed [KBP+13] and later for-

malized [BGK+15] a set of invariant patterns for IRM. The patterns have the dual role of

(i) providing a base for formal reasoning on an abstraction level higher than the level of

individual knowledge valuations; (ii) helping a designer perform a correct refinement of

invariants (via decomposing them) by leveraging on the relations between the patterns

[BGK+15]. The value of IRM lies in its intuitive and manageable set of concepts (invari-

ants, components, component knowledge) and in the straightforward connection it pro-

vides between requirements and system design that follows the architecture paradigm

of components forming dynamic collaboration groups. The novelty lies in that it applies

decomposition of requirements based on the temporal constraints associated with each

requirement. To the best of our knowledge, IRM is also currently the only design method

that is tailored to ensemble-based component systems.

Regarding O3, we extended our previous work on IRM to model alternative decom-

positions in the IRM model [GBH+15b, Ger14]. This allows modeling alternative realiza-

tions of system requirements – an essential step for a siCPS to change its behavior in the

context of different runtime situations (system states). The extension, called IRM for self-

adaptation (IRM-SA), allows for capturing the design alternatives and applicable con-

figurations along with their corresponding situations. Design alternatives in IRM-SA are

37

modeled as alternative sub-trees in the IRM-SA model, while situations are modeled via

one or more assumptions, i.e. invariants that should hold in the environment of the sys-

tem. Self-adaptation in IRM-SA takes the form of architecture reconfiguration performed

via three recurrent steps: (i) determining the current situation, (ii) selecting one of the

applicable configurations, and (iii) reconfiguring the architecture towards the selected

configuration. One of the novelties of IRM-SA is the ability to deal with operational un-

certainty (e.g. temporary disconnections, hardware malfunctions) by allowing reasoning

on the inaccuracies of the belief of individual components of an ensemble-based compo-

nent system. This ability is absent in other approaches used in specifying self-adaptive

behavior, such as dynamic software product lines [HPS12]).

Regarding O4, we mapped the IRM-SA concepts to DEECo concepts. The resulting

systematic model-driven process starts with requirements elaboration and architecture

design and ends with the specification of DEECo components, component processes and

ensembles [GBH+15b, Ger14]. In particular, the leaves of the IRM-SA model are trans-

lated to DEECo component processes and ensembles via a systematic process that in-

volves elaborating each individual leaf invariant and corresponds to the detailed design

phase that typically follows architecture design. To support the design task and provide

early structural validation and code generation, we created a GMF-based prototype of

an IRM-SA editor (Section 5.2.1). To support quick prototyping and experimentation, we

implemented an EMF-based IRM-SA self-adaptation mechanism and embedded it as a

plugin to jDEECo (Section 5.2.2). This allowed us to experiment with the application of

IRM-SA self-adaptation in decentralized settings (Section 5.2.2.1). The feasibility and ef-

fectiveness of the IRM-SA design process was evaluated by a controlled experiment with

students (Section 5.3). Finally, the applicability of the proposed approach was demon-

strated by positioning it in the ensemble development life cycle in [BDNG+13], a novel

methodology that emerged within the ASCENS FP7 project [1] for the development of

ensemble-based systems.

 Chapter 4

39

4 Commented Collection of Papers

The main contributions of this thesis were published separately in various international

conference and workshop proceedings. This chapter includes both summaries and full

versions of the selected papers in the order presented in Section 1.4, as well as comments

on the workshops and conferences where the papers were presented.

Chapter 4. Commented Collection of Papers

40

41

4.1 Software Engineering for Software-Inten-

sive Cyber-Physical Systems

Ilias Gerostathopoulos,

Jaroslav Keznikl,

Tomáš Bureš,

Michal Kit,

František Plášil

In proceedings of the 44th Annual Meeting of the German Informatics

Society – 44. Gesellschaft für Informatik Jahrestagung (INFORMA-

TIK 2014).

Published by Gesellschaft für Informatik, Bohn

pages 1179-1190,

ISBN 978-3-88579-626-8,

September 2014.

The original version is available electronically from the publisher's site

at http://subs.emis.de/LNI/Proceedings/Proceedings232/article73.html .

http://subs.emis.de/LNI/Proceedings/Proceedings232/article73.html

Chapter 4. Commented Collection of Papers

42

Summary of the Paper

This paper, published as [GKB+14], serves as an introduction to the domain of software-

intensive Cyber-Physical Systems (siCPS) and sets the context for the rest of the work

presented in this thesis. In the paper, siCPS are defined as “a class of CPS that are soft-

ware-intensive and, at the same time, distributed at a large scale, inherently dynamic,

self-adaptive, self-aware, exhibiting emergent behavior, and safety-critical” – a defini-

tion that corresponds well to the working definition of siCPS provided in the introduc-

tion of this thesis (Section 1.1). Although the paper does not focus specifically on archi-

tecture design of siCPS, it provides useful insight on the problems that can arise in dif-

ferent software engineering (SE) phases of siCPS, including the architecture design

phase, therefore contributing to the fulfillment of objective O1.

The main idea of the paper is to suggest that traditional SE models and methods are

not sufficient in the design and development of siCPS, and give an argumentative ex-

planation as to why this holds. The main line of argumentation is that traditional SE of

general-purpose software systems (GPSS) relies on a number of key assumptions used

to simplify the software development, such as static physical structure, location oblivi-

ousness, clique connectivity, and others. In siCPS, however, most (or even all) of these

assumptions are not plausible. This renders traditional SE models and methods inappli-

cable to the domain of siCPS and calls for new SE abstractions, models and methods that

reflect the specifics of siCPS. Apart from the assumptions that are violated in siCPS,

these specifics also include a number of opportunities that can be advantageously ex-

ploited when developing siCPS.

Contemporary approaches that reflect the siCPS specifics, such as agent- and en-

semble-based systems, are then analyzed in terms of their applicability in the domain of

siCPS. The outcome of the analysis is that each approach deals with the challenges only

partially and that a synergy of them is needed in a holistic framework. As a particular

example of such a synergy, the DEECo component system (Section 2.2.2.3) is put for-

ward. DEECo provides the necessary abstractions for software encapsulation and com-

position, and adequate runtime support to deal with most siCPS specifics. However,

using DEECo has a number of implications that can lead to rethinking the development

process of siCPS. Some of these implications, e.g. viewing DEECo components as auton-

omous agents and the decentralized DEECo-based operation, are discussed last.

Comments on Authorship

My personal contribution to this paper lies in analyzing the approaches that partially

reflect the specifics of siCPS (agent-based systems, ensemble-based systems, real-time

and control systems, and MANET and gossip protocols). Based on this, and under help-

ful guidance and supervision of the other authors, I compiled a list of SE specifics for

siCPS comprising the traditional SE assumptions of general-purpose ICT systems that

are violated in siCPS and the opportunities that can be exploited in siCPS. Moreover,

again under helpful guidance and supervision of the other authors, I authored a majority

of the text.

43

Software Engineering for Software-Intensive
Cyber-Physical Systems

Ilias Gerostathopoulos, Jaroslav Keznikl, Tomas Bures, Michal Kit, Frantisek Plasil

Faculty of Mathematics and Physics
Charles University in Prague

Malostranske Namesti 25
11800 Prague, Czech Republic

{iliasg, keznikl, bures, kit, plasil}@d3s.mff.cuni.cz

Abstract: In software-intensive cyber-physical systems (siCPS) the interplay of
software control with the physical environment has a prominent role. Nowadays,
siCPS are expected to (i) effectively deal with the issues of distribution, scalability,
and environment dynamicity, (ii) control their emergent behavior, and, at the same
time, (iii) be versatile and tolerant in face of changes and threats. Although
approaches that individually meet the above requirements of siCPS already exist,
their synergy in a comprehensive software engineering framework is far from
trivial. In this paper, we pinpoint the important characteristics of engineering
siCPS in an attempt to show that they introduce distinct challenges to traditional
software engineering. We argue that this can be addressed by a synergy and
adaptation of existing models and abstractions, show our proposal towards such a
synergy, and discuss its implications.

1 Introduction
Cyber-physical systems (CPS) are systems of collaborating elements which closely
interact with their environment by sensing and actuating. Typically, CPS are
characterized by being decentralized, distributed, and heterogeneous.

With the proliferation of smart embedded and mobile devices (smart phones, intelligent
cars, etc.) and wireless networks, there is a further trend of CPS becoming large-scale
pervasive systems, which combine data from various sources to control real-world
ecosystems (e.g., intelligent traffic control, which gathers data about traffic from cars
and other sensors in a city and uses them to navigate cars, control the traffic lights, and
manage parking allocation). An important feature of these systems is that they are
adaptive in order to adjust to situations in the physical environment, and they exhibit
emergent behavior (i.e., behavior that comes about as the joint product of behaviors and
interactions of many elements of the system). These CPS are also highly dependent on
software – they are software-intensive systems [HRW08]. This means that software is by
far the most important and most complex constituent of modern CPS.

Continuous dependable operation of CPS is particularly important as the close
connection to the physical environment frequently renders the functionality of CPS
safety-critical (e.g., operation of the traffic lights in the intelligent traffic control). In
addition to being dependable, the software of CPS has to be able to adapt to changing
situations in the physical environment. Ideally, it should possess some self-awareness
and self-healing properties to cope with not fully anticipated situations.

44

Along the lines above, in this paper we consider a class of CPS that are software-
intensive and, at the same time, distributed at a large scale, inherently dynamic, self-
adaptive, self-aware, exhibiting emergent behavior, and safety-critical. It is also
important to note that these CPS are targeted by on going research agendas (e.g., EU
framework Horizon 2020). We will refer to these CPS as software-intensive CPS –
siCPS. We argue that siCPS have a number of specifics, which prevent to fully employ
traditional software models and software engineering methods. This calls for tailored
models and software engineering abstractions that address and potentially take advantage
of the specifics of siCPS [Le08]. In fact, siCPS reach the threshold when it is disputable
whether we are still dealing with tailored traditional software engineering or whether we
are encountering a new paradigm in computing.

As the particular contribution of this paper, (i) we overview these specifics (Section 2)
and analyze how they can be addressed by a synergy and adaptation of existing software
models and software engineering abstractions (Section 3). On the basis of this, (ii) we
give a practical example of such a synergy (Section 4), namely DEECo, an ensemble-
based component system [Bu13]. Finally, based on the lessons learned with DEECo, (iii)
we discuss potential challenges stemming from the interplay of the models and
abstractions in such a synergy (Section 5).

2 Software Engineering Specifics of siCPS
The large-scale physical distribution and interconnectedness within the physical
environment makes siCPS rather specific in terms of software engineering (SE). In this
section, we overview these specifics from the perspective of SE assumptions and
opportunities.

2.1 SE Assumptions Violated in siCPS

A number of assumptions that are typically presumed in traditional SE of general-
purpose software systems (GPSS) are violated in siCPS. The assumptions build on the
fact that a lot of complexity related to networking and the environment can be
considered low-level in GPSS and abstracted away by the operating system and
middleware. Of course, even in traditional SE some key assumptions may be violated
when developing GPSS with special needs (e.g., high-availability, open-endedness).
Nevertheless, siCPS stand out by the large number of such violated assumptions.

Therefore, below we identify and discuss a number of assumptions in traditional SE of
GPSS that we deem to have a significant simplifying effect on software development but
– according to our experience – cannot be preserved in engineering siCPS:

A1 Static physical structure – Even though data and code are subject to mobility in
GPSS, the physical nodes where the code is running are typically stationary. In
siCPS, the physical substratum is continuously evolving, as nodes move in the
physical environment. The fundamental challenge is how to map the ever-changing
substratum to the network of computational nodes so that stringent requirements on
the desired services are always met.

45

A2 Location obliviousness – The cost and profit of reaching a particular node is
typically not significantly influenced by its physical location. This independence
facilitates the creation of open-ended and dynamic distributed GPSS and is
generally considered an asset. In siCPS, locality of peer nodes is a fundamental
design constraint, since physical proximity directly affects reachability and
connectivity on one hand and functional correctness on the other.

A3 Reachability (clique connectivity) – GPSS typically rely on the Internet network
stack for the underlying communication protocols (Internet-based systems [Fr07]).
This means that with high probability any node can successfully establish point-to-
point communication links with any other node in the system. In siCPS there is no
such guarantee, as nodes often operate over dynamic networks lacking a permanent
infrastructure, such as mobile ad-hoc networks (MANETs). This limitation imposes
a fundamental constraint in the design of siCPS, since nodes are expected to
operate in full autonomy, even detached from their peers.

A4 Stable connections – In most GPSS, on top of being able to reach and connect to
remote subsystems, connections are typically considered stable. This is manifested
in the handling of communication errors in such systems: errors are considered
exceptions and have to be handled accordingly. In siCPS, errors in communication
are the rule, not the exception. Thus, they can no more be handled as exceptions.
The property of unstable connectivity has to be acknowledged and ideally be
reflected in the employed SE abstractions.

A5 Availability of global state – Reasoning over the global state of a distributed system
is a requirement for many applications. Although techniques exist for traditional
distributed GPSS (e.g., distributed consensus), they are not directly applicable to
siCPS because of the loose connectivity among the nodes. Also, since the local
state in siCPS evolves continuously with the physical environment, attaining global
state is generally infeasible.

A6 Marginality of real-time aspects – GPSS typically do not impose hard real-time
constraints on their operation and communication. When time matters (e.g.,
Internet-based video streaming applications), it is mostly because late responses
may impede system performance rather than correctness. In siCPS, the passage of
time becomes a central feature of system behavior and design, since stringent
notion of time is fundamental for measuring, predicting and controlling properties
of the physical environment.

A7 Crisp consistency – In traditional distributed GPSS, there is a crisp notion of data
consistency – the data is either consistent or not (this includes also eventual
consistency etc.). On the other hand, in siCPS, where strict distributed
synchronization becomes too expensive, such interpretation of consistency is not
desirable. Rather, in siCPS it is important to quantify and/or guarantee the degree
of (in)consistency [Al14].

A8 Controlled dynamism – Many GPSS are dynamic in the sense that they
dynamically adapt to changes and recover from malign states. This kind of
dynamism, though, is typically a result of actions initiated by the system itself or its
administrator. On the contrary, in siCPS, dynamism is inherent, imposed by the

46

physical environment itself. Thus, siCPS need to detect and recover from
contingent and often unforeseen situations in their environment in a non-disruptive
way and without supervision (they have to be self-aware and autonomic).

A9 Focus on reactive behavior – Outputs of a GPSS are typically reactions to explicit
stimuli, such as service requests and internal/external events (e.g., computation is
initiated as a response to user input). Instead of waiting for an event, siCPS have to
operate proactively in order to react to and also perform changes based on
properties that are either sensed or predicted. Relying on simple (e.g., rule-based)
reaction patterns is insufficient, since it may lead to oscillations and instability.

A10 Stateful communication – GPSS usually assume stateful communication in the
communication protocols they employ. This enables effective synchronization
among distributed components. Moreover, since stable connections are assumed
(A4), errors are treated as exceptional and detected and solved via explicit error
recovery. In siCPS, stateful communication does not scale. In fact, extreme
network dynamism, typical for siCPS, may incur recurrent error recovery.

2.2 SE Opportunities in siCPS

As pointed out in Section 2.1, none of the discussed assumptions can be generally
presumed in siCPS. This makes it a non-trivial challenge to develop siCPS by applying
traditional SE methods. However, it would be wrong to perceive all specifics of siCPS as
impeding their development, since they may provide opportunities for getting around the
violated assumptions. In this perspective, it is desirable to take advantage of such siCPS
specifics instead of aiming at adapting traditional SE methods, e.g., building a complex
middleware to provide a traditional programming model.

To pinpoint this idea, we have compiled a list of specifics, which we believe can be
advantageously exploited in addressing the violated assumptions. Although not
complete, we believe this list gives an important research direction for siCPS design
methods:

O1 Physical mobility – Devices used in siCPS span from stationary to portable and
mobile ones. Computational nodes deployed on mobile devices can carry
information while moving. This contributes to the overall connectedness of the
system, as a mobile node covers a much bigger physical area while moving, and
can effectively spread the information in the area and connect otherwise
disconnected network partitions. For example, a vehicle moving along a street
segment can aggregate temperature data measured from sensors positioned in the
tarmac along its route (which themselves cannot reach any external network), and
publish the data on a remote server, or spread it to other vehicles in the vicinity.

O2 Physical locality – The fact that devices in siCPS are physically close provides a
natural way to partition the system into subsystems based on geographical location.
This is, again, special to siCPS; general-purpose systems are rarely partitioned
based on physical location, because of the otherwise useful assumption on location
obliviousness. Having such a natural partitioning can be easily exploited to achieve
high levels of scalability.

47

O3 Location-dependency of data – Data in siCPS are often location-dependent,
meaning that the value of certain measureable system attributes depend on the
physical location of the sensors that provide the raw data. This dependency, in
combination with the physical proximity of sensor nodes, allows for data sharing
and reuse among nearby nodes and has the potential to contribute to system
robustness (in face of sensor failures, etc.).

O4 Physical laws in data evolution – Since siCPS operation typically involves sensing
physical-environment properties (e.g., position, battery capacity, temperature), one
can take advantage of the physical laws that govern the evolution of the values of
such properties to estimate/predict their real values. In effect, a value that is slightly
stale can still be used, if certain safety bounds on its evolution in time can be
established [Al14]. As an example, consider a wireless-based adaptive cruise
control system: a stale value of the front vehicle’s position can still be used by the
rear vehicle’s cruise control, since it is possible to estimate the actual position
based on the maximum and minimum vehicle acceleration, typically provided by
car manufacturers.

3 Approaches that Partially Reflect the Specifics of siCPS
There are no comprehensive methods or supporting models that address the specifics of
siCPS in their entirety, as far as our research has indicated. Nevertheless, our experience
shows that some SE approaches target these specifics at least partially. In this section we
provide a short overview of such approaches (summarized in Table 1), with the goal to
later show how they can be combined in a comprehensive framework.

Agent-based systems. In order to deal with dynamicity in siCPS, one can be inspired by
autonomous agents. This abstraction brings conceptual autonomy to the loosely coupled
system parts. Each part is designed to operate with a partial view of the whole system,
beneficial when the global state is not available (A5). For example, in the Belief-Desire-
Intention (BDI) architectural model [RG95], agents maintain a belief about the rest of the
system to guide their autonomous decisions. In addition, multi-agent systems [SL08]
feature the concepts of agent roles and groups, which bring the autonomy to architecture
organization and allow building self-organized systems that do not rely on the
assumptions of controlled dynamism (A8) and static physical structure (A1). An
important problem is that industrial agent implementations do not translate the
conceptual autonomy and the other useful agent notions (goals, intentions, roles, groups)
into proper software engineering constructs that satisfy real-life requirements of
autonomous behavior. In particular, they still rely on the assumption of relatively stable
bindings between the agents (A4), which is not plausible in most siCPS.

Ensemble-based systems. Another important specific of siCPS is the opportunistic
fashion of operation in a dynamic environment at a massive scale. To this end, the
paradigm of attribute-based communication in ensemble-based systems has recently
gained attention [De13]. Here, the target of communication is determined according to
the values of its attributes rather than by a direct identifier. This paradigm can be
exploited to model a best-effort, dynamic coordination of components, effectively
dealing with cases when the assumptions of static physical structure (A1), reachability

48

(A3), and controlled dynamism (A8) are violated. However, the application of this
paradigm typically relies on explicit and crisp handling of data consistency (A7).

MANET and gossip protocols. At the network layer, extensive research in the areas of
mobile ad-hoc networks (MANETs) has resulted into a number of routing protocols (see
[NPD12] for a comprehensive review), which are able to operate over infrastructure-less
dynamic networks. In MANETs, each node acts both as a host and as a router. Node
mobility results in dynamically changing network topology. As such, MANET protocols
lift the assumption of static physical structure (A1) and work even when the reachability
assumption (A3) is violated, thus becoming very relevant to siCPS. Moreover, MANET
protocols lift the assumption of location obliviousness (A2), as they enable position-
based packet routing [MWH01] (sometimes called geocast routing). A promising
synergy for siCPS is to combine geocast protocols at the network layer with gossip
protocols at the data dissemination layer, effectively enabling proactive, opportunistic
communication (A9) in MANETs [Fr07]. Integration of gossiping brings a remedy in
cases of unstable connections (A4) and inherent dynamism (A8).

Real-time and control systems. As to strong interaction with physical environment,
many techniques already exist in the domain of embedded real-time systems [Bu05] and
software control systems [Pa12]. Such techniques promote proactive behavior (A9) and
focus on real-time attributes (A6). They employ control feedback loops, which
continuously maintain the operational normalcy (stability) of a system by adequate
scheduling of periodic tasks. These techniques stand as a promising way to handle data
outdatedness in absence of crisp consistency interpretation (A7) in siCPS, by effectively
setting the bounds that define the range of normal system operation. Communication in
embedded real-time systems is also typically stateless (A10); consider, e.g., data
publishing on CAN bus. Nevertheless, real-time analysis and design typically rely on the
assumption of predictable environment, which itself relies on controlled dynamism (A8)
and stable connections (A4) assumptions.

Assumption: A
ge

nt
-b

as
ed

sy

st
em

s

En
se

m
bl

e-
ba

se
d

sy
st

em
s

M
A

N
ET

 &

go
ss

ip
 p

ro
to

co
ls

R
ea

l-t
im

e
&

co

nt
ro

l s
ys

te
m

s

 D
EE

C
o

A1 Static physical structure + + +
A2 Location obliviousness + + +
A3 Reachability + + +
A4 Stable connections - + - +
A5 Availability of global state + + +
A6 Marginality of real-time aspects + (+)
A7 Crisp consistency - + (+)
A8 Controlled dynamism + + + - +
A9 Focus on reactive behavior + + +
A10 Stateful communication + +

Table 1: Assumptions from Section 3 and DEECo: lifting “+”, partially lifting “(+)”, and
specific reliance upon “-”.

49

4 DEECo: A Synergy
In order to evaluate the potential for a synergy of the approaches discussed in Section 3,
as a particular example we present DEECo [Bu13, Ke12] – an Ensemble Based
Component System that we have proposed specifically for architecting siCPS.

In DEECo, we take the approach of adopting component-based development (CBD) as
the basic substratum on top of which we embed selected SE approaches from Section 3.
CBD employs reuse, encapsulation and separation of concerns in order to manage the
complexity of building and maintaining large applications [CL02]. In CBD, and thus
also in DEECo, systems are built around well-defined architectures based on a
composition of components, which themselves are seen as encapsulated, reusable, and
substitutable entities.

In the remainder of this section, we describe the individual constituents of the DEECo
component model with focus on how we approached the synergy. We refer the interested
reader to [Bu13] for a detailed technical description of DEECo and for the formal
semantics of DEECo. Also, a Java implementation is available1.

4.1 Component

Adopting the ideas of agent-based and self-adaptive systems, the concept of component
in DEECo is centered on the features of autonomy, self-adaptation, and belief (A5).
Specifically, a component is an autonomous, encapsulated, and composable software
entity constituting its own state and behavior.

As is typical for software agents, component state is expressed in terms of knowledge
(e.g., line 3 in Figure 1). Note that in DEECo, all the data accessible to a component is
referred to as knowledge. In alignment with the BDI architectural model, knowledge of a
component comprises both the private component state (e.g., calendar) and the
component’s belief about the rest of the system (e.g., parkingAvailability). In slight
difference from traditional BDI approach, rather than being updated explicitly by the
component itself, the belief is updated automatically (by the execution environment,
Section 4.3) as a result of component composition (Section 4.2). This decision further
stresses the component’s autonomy and separation of concerns.

The behavior of a component is represented by a set of processes (e.g., lines 4-7 in
Figure 1). Following the notions of control systems and self-adaptive systems, a process
is essentially a feedback loop, continuously and proactively maintaining the operational
normalcy of a component (A9). At the same time, each process executes concurrently,
independently of the other processes, i.e. it atomically reads its inputs, executes its body,
and atomically writes its outputs. A process operates strictly upon the knowledge of the
corresponding component; it may thus interact with other components only through the
(externally updated) belief (A4, as there is no “direct” communication among
components).

1 https://github.com/d3scomp/JDEECo

50

4.2 Component Composition

For component composition we adopt the approach of ensemble-based systems and
multi-agent systems by employing autonomic self-organization of components into
component ensembles (in multi-agent systems called groups). This self-organization is
based on a declarative representation of a component’s membership in an ensemble,
based on the component’s context (A1 and A3). In order to distinguish in which
ensemble the membership is being decided upon, every ensemble has a coordinator.
Membership in an ensemble with a given coordinator is based on whether a component
is able to assume the role of a member w.r.t. the coordinator. This is expressed
technically via a membership condition, which decides whether two given components
can form a coordinator-member pair. Following the idea of attribute-based
communication, the membership condition is defined upon the attributes (i.e., knowledge
exposed for this purpose) of the components in question (e.g., line 21 in Figure 1). Note,
that the ensemble definition is generic and determines ensemble instantiation for each
group of components meeting the membership condition (w.r.t. particular coordinator).
Also, a component can be a member or coordinator of multiple ensembles at the same
time. Within an ensemble, we adopt the idea of stateless, proactive communication
employed in control systems and gossip-based systems (A9 and A10). Specifically, the
communication takes the form of stateless knowledge exchange. Its objective is to update
the belief of the components within the ensemble recurrently and proactively, based on a
given prescription (e.g., line 23 in Figure 1). This form of communication aligns well
with the proactive, cyclic execution of component processes. Note, that the statelessness
and proactivity make knowledge exchange suitable for cases of faulty connections (A4)
and inherent dynamism (A8).

1. component	 Vehicle	 	
2. knowledge:	
3. calendar,	 parkingAvailability,	 plan,	 ...	
4. process	 computePlan(in	 calendar,	 in	 parkingAvailability,	 out	 plan):	
5. function:	
6. plan	 ←	 JourneyPlanner.computePlan(calendar,	 parkingAvailability)	
7. scheduling:	 periodic(5000ms)	
8. ...	
9. 	
10. component	 ParkingLot	 	 	
11. knowledge:	
12. position,	 availability,	 ...	
13. process	 monitorAvailability(out	 availability):	
14. …	
15. 	
16. //	 updates	 Vehicle’s	 belief	 about	 availability	 of	 all	 ParkingLots	 along	 the	 route	
17. ensemble	 UpdateAvailabilityInformation:	
18. coordinator:	 Vehicle	
19. member:	 ParkingLot	
20. membership:	
21. 	 ∃	 event	 ∈	 coordinator.calendar:	 distance(member.position,	 event.position)	 <	 TRESHOLD	
22. knowledge	 exchange:	
23. coordinator.parkingAvailability	 ←	 members.reduce(member.availability)	
24. scheduling:	 periodic(2000ms)	 	

Figure 1: Example of a DEECo component and ensemble definition in a DSL.

51

4.3 Execution Environment

The main task of the DEECo execution environment is performing knowledge exchange
in a distributed setting. For this purpose, we combine the protocols for geographical
routing in MANETs with gossip protocols so as to enable location-aware communication
of belief (A2) in mobile ad-hoc environments (A1 and A3) with unstable connections
and inherent dynamism (A4 and A8). Specifically, the execution environment
proactively advertises the knowledge of a (source) component to all the other
potentially-interested (target) components via a geocast protocol. Then, in case the
source and target components meet the membership condition of an ensemble, the
execution environment updates the belief of the target component according to the
knowledge exchange prescription of the ensemble.

Adopting the approach of embedded real-time systems, the execution environment is
also responsible for execution of component processes and activities related to
knowledge exchange in a (soft) real-time fashion (A6 and partially A7), featuring both
periodic and event-based scheduling.

5 Discussion of Implications
Engineering siCPS with the basic building blocks (autonomous components, ensembles)
offered by the proposed synergy in DEECo offers several advantages, but also poses new
challenges. As seen in Table 1, DEECo addresses all of the identified challenges of A1-
A10, which we deem a step forward. Certainly, there could be other assumptions, e.g.,
predictability of underlying platform and global synchronization of beliefs, which still
remain to be addressed. Building on our experience in applying the ensemble-based
component system paradigm to two real-life case studies, namely the intelligent vehicle
navigation [Bu13] and the firefighter tactical coordination [Bu14], this section discusses
the implications of merging different methods.

Exploitation of the opportunities. A close synergy of geocast MANET protocols and
attribute-based communication, and an integration of membership evaluation and routing
in particular, allows exploiting new opportunities based on physical locality (O2) and
location-dependency of data (O3) (i.e., membership can effectively exploit physical
location). Further, the proactive gossip-based advertisement of belief enables exploiting
the physical mobility (O1). The cyclic and real-time nature of component processes also
facilitates use of models that estimate/predict the safety bounds of knowledge evolution
[Al14]. This is done by exploiting the physical laws that govern the evolution of certain
knowledge values (O4).

Components as autonomous agents. Borrowing the ideas of belief and autonomous
operation from agent-based systems and coupling them with the encapsulation and
deployment facilities of component-based systems results into a dependable platform for
robust component-based agent implementations. The robustness is achieved by grafting
such “agents” with implicit component binding and communication. Contrary to other
agent-based frameworks, the autonomous components thus do not communicate directly,
e.g., via sending messages; instead, component knowledge serves as a communication
medium. A component’s belief, i.e., the part of its knowledge that reflects knowledge of

52

other components, plays a role of “smart” sensors and actuators. For instance, a belief
could represent a “smart” sensor providing “positions of up to 10 closest parking lots,
which are available”. All in all, a component’s belief is updated externally – via
knowledge exchange handled by execution environment.

Stateless interaction. Adopting the idea of attribute-based communication in component
interaction has many advantages when considering that components in siCPS recurrently
appear and disappear and form dynamic groups of best-effort coordination. At the same
time, having no means of direct component binding and addressing makes it challenging
– but certainly not impossible, as we have observed – to realize some forms of protocol-
based communication. This is essential in certain interactions, e.g., reserving of a
parking place by a specific vehicle at a specific parking lot. Stateless interaction dictates
knowledge design in a way that it is always possible to reconstruct the state of the
session from the knowledge, e.g. by assigning each parking reservation request a
globally unique identifier (GUID), so that a reservation response could refer to it.

Embedded feedback loops. When designing siCPS, special means have to be provided
for feedback loops. By building on the ideas of control and real-time systems, DEECo
embeds the feedback loop operation both at design time and runtime. Systems based on
feedback loops typically require a description of operational normalcy, usually in terms
of periodic scheduling of tasks. However, the adoption of this idea needs a paradigm
change in the design process, to explicitly focus on the normalcy that each process is
expected to maintain as opposed to goals to be achieved [Ke13].

Decentralized operation. Coupling best-effort data dissemination of MANET protocols
with attribute-based communication and decentralized system operation can result in
situations when different parties act based on inconsistent local beliefs – so-called split-
brain scenarios. For instance, a component can believe itself to be a member of an
ensemble, while the ensemble’s coordinator does not recognize this situation (or vice-
versa). This behavior is in a way inevitable, however it has to be accounted for in the
design, e.g., by making components only weakly synchronized or by relying on an
underlying network or physical environment to provide some guarantees (thus making
these split-brain situations temporary with an upper bound for duration).

Ensembles as component connectors. The duality between components and ensembles
resembles the classical problem of components and connectors – especially whether
connectors are only special types of components and what functionality should be in
connectors and what functionality should be in components. In particular, this holds
when connectors comprise complex adaptation logic. In DEECo though, this problem is
partially remedied by distinguishing that (i) although stateful, a component has a direct
access solely to its local knowledge, (ii) an ensemble embodies only stateless exchange
of knowledge among its member components. This is a strong conceptual difference
pushing ensembles into the role of simple connectors and components into the role of
entities performing the actual computation and data aggregation.

Parallel process execution. The physical world is inherently concurrent. Software
engineering abstractions for engineering siCPS have to deal with concurrency by
allowing execution of processes in parallel. This leads to challenges with regard to the
handling of shared resources, which, if not dealt with, can result into race conditions,

53

deadlocks, etc., effectively jeopardizing the safety of the system. Similar to actor-based
design, where the exchanged data are considered immutable, DEECo avoids introducing
any dedicated synchronization constructs. Rather, it employs the simple semantics of
atomically operating over knowledge while applying the rule of single-writer for each
knowledge field. The downside of the approach is that it sometimes leads to the
necessity of having a special “aggregation” process in a component, which merges data
coming from different sources (similar situation happens in actor-based approaches as
well). However, this seems a reasonable price to pay for preventing race conditions by
design.

6 Related Work

Since CPS is an emerging class of systems, there are multiple research efforts trying to
shed light on the state of the art and the challenges ahead [KK12, Sh09]. Unfor- tunately,
not as many solutions are proposed, especially when considering guidance via proper
software engineering abstractions specific to CPS. Our work highlights the problems in
CPS software engineering, while, at the same time, we propose solutions to these
problems and evaluate their implications. In the same spirit, in [DLS12], Derler, Lee and
Vincentelli focus on the challenges with modeling CPS caused by the intrinsic
heterogeneity, concurrency, and sensitivity of such systems. Backed up by a hybrid-
system-modeling environment called Ptolemy II, their approach emphasizes determinism
and predictability in modeling and simulations of safety-critical CPS. In [Le08], Lee
reviews the requirements/specifics of CPS and identifies the absence of timing behavior
in core abstractions in computing as the main impediment in developing future CPS. In
our work, we focus on the subset of CPS that is software-intensive, where structural
models and systematic engineering methods become more relevant.

Our aim at a synergy can be compared to frameworks proposed for self-adaptive/self-
organizing systems, e.g., [DFR10], and autonomic agent-based systems, e.g., [LPH04].
In [DFR10], Di Marzo Serugendo, Fitzgerald and Romanovsky propose a synergy of
self-organization, agent-inspired autonomy and rule-based reasoning into a service-
oriented architectural framework. Their approach is centered around the concepts of self-
describing components, component metadata and interaction policies executed at
runtime, resembling the concepts of components, component knowledge and ensembles,
respectively. In [LPH04], Liu, Parashar and Hariri present a component-based
framework for autonomic agents building on agent-based middleware infrastructure. The
difference from these and other similar approaches lies in the fact that we deal with the
specifics of siCPS, where unreliable communication and extreme dynamism loom large.

7 Conclusion
Building software for software-intensive cyber-physical systems (siCPS) is far from
trivial. In this paper, we attempted to pinpoint the challenges and pitfalls associated with
applying traditional software engineering (SE) methods in siCPS and to show how these
challenges can be met by a comprehensive synergy and adaptation of existing SE
models, methods and abstractions. This we exemplified on the DEECo component
model. The evaluation of the proposed synergy in DEECo outlines a number of

54

interesting research topics in terms of addressed and waiting-to-be-addressed issues,
such as design based on maintaining operational normalcy.

References
[Al14] Al Ali, R. et al.: Architecture Adaptation Based on Belief Inaccuracy Estimation. In:

Proc. WICSA’14, Sydney, Australia, 2014. IEEE, 2014; pp. 87-90.
[Bu05] Buttazzo, G. et al.: Soft Real-Time Systems: Predictability vs. Efficiency. Springer,

2005.
[Bu13] Bures, T. et al.: DEECo: An Ensemble-based Component System. In: Proc. CBSE’13,

Vancouver, Canada, 2013. ACM, 2013; pp. 81-90.
[Bu14] Bures, T. et al.: Adaptation in Cyber-Physical Systems: from System Goals to

Architecture Configurations. Tech. Rep. D3S-TR-2014-01, Charles University.
[CL02] Crnkovic, I.; Larsson, M.: Building Reliable Component-Based Software Systems.

Artech House, Inc., Norwood, MA, USA, 2002.
[De13] De Nicola, R. et al.: A Language- Based Approach to Autonomic Computing. In:

Formal Methods for Components and Objects, Springer, 2013; pp. 25-48.
[DFR10] Di Marzo Serugendo, G.; Fitzgerald, J.; Romanovsky, A.: Meta-Self: An Architecture

and a Development Method for Dependable Self-* Systems. In: Proc. 25th ACM
Symp. on Applied Computing, Sierre, Switzerland, 2010. ACM, 2010; pp. 457–461.

[DLS12] Derler, P.; Lee, E. A.; Sangiovanni-Vincentelli, A.: Modeling Cyber-Physical Systems.
In: Proceedings of the IEEE, 100(1):13-28, Jan 2012.

[Fr07] Friedman, R. et al.: Gossiping on MANETs: The Beauty and the Beast. In: ACM
SIGOPS Operating Systems Review, 41:67–74, 2007.

[HRW08] Hölzl, M.; Rauschmayer, A.; Wirsing, M.: Software-Intensive Systems and New
Computing Paradigms. In: Engineering of Software-Intensive Systems: State of the Art
and Research Challenges, Springer-Verlag, 2008; pp. 1-44.

[Ke12] Keznikl, J. et al.: Towards Dependable Emergent Ensembles of Components: The
DEECo Component Model. In: Proc. of WICSA/ECSA’12. IEEE, 2012; pp. 249–252.

[Ke13] Keznikl, J. et al.: Design of Ensemble-based Component Systems by Invariant
Refinement. In: Proc. of CBSE’13, Vancouver, Canada, 2013. ACM, 2013;pp. 91-100.

[KK12] Kim, K.-D.; Kumar, P.R.: Cyber-Physical Systems: A Perspective at the Centennial.
In: Proceedings of the IEEE, 100 (Special Centennial):1287-1308, May 2012.

[Le08] Lee, E. A.: Cyber Physical Systems: Design Challenges. In: Proc. ISORC’08, Orlando,
Florida, USA, 2008. IEEE, 2008; pp. 363–369.

[LPH04] Liu, H.; Parashar, M.; Hariri, S.: A Component-Based Programming Model for
Autonomic Applications. In: Proc. ICAC’04, New York, USA, 2004. IEEE; pp. 10-17.

[MWH01] Mauve, M.; Widmer, A.; Hartenstein, H.: A Survey on Position-based Routing in
Mobile Ad Hoc Networks. In: IEEE Network, 15(6):30-39, Nov 2001.

[NPD12] Natesapillai, K.; Palanisamy, V.; Duraiswamy, K.: A Review of Broadcasting Methods
for Mobile Ad Hoc Network. In: International Journal of Advanced Computer
Engineering, Serial Publications, New Dehli India, Sep 2012.

[Pa12] Patikirikorala, T. et al.: A Systematic Survey on the Design of Self-Adaptive Software
Systems using Control Engineering Approaches. In: 2012 ICSE Workshop on Soft.
Eng. for Self-Adaptive and Self-Managing Systems, Jun 2012. ACM; pp. 33–42

[RG95] Rao, A. S.; Georgeff, M. P.: BDI Agents: From Theory to Practice. In: Proc. of the 1st
Int. Conf. on Multi-Agent Systems, 1995; pp. 312–319.

[Sh09] Sha, L. et al.: Cyber-Physical Systems: A New Frontier. In: Machine Learning in
Cyber Trust, Springer US, 2009; pp. 3–13.

[SL08] Shoham, Y.; Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game- Theoretic,
and Logical Foundations. Cambridge University Press, 2008.

55

4.2 Position Paper: Towards a Requirements-

Driven Design of Ensemble-Based Compo-

nent Systems

Ilias Gerostathopoulos,

Tomáš Bureš,

Petr Hnětynka

In proceedings of the 2013 International Workshop on Hot Topics in

Cloud Services (HotTopiCS 2013).

Published by ACM,

pages 79-86,

ISBN 978-1-4503-2051-1,

April 2013.

The original version is available electronically from the publisher's site

at http://dx.doi.org/10.1145/2462307.2462325.

http://dx.doi.org/10.1145/2462307.2462325

Chapter 4. Commented Collection of Papers

56

Summary of the Paper

This paper, published as [GBH13], positions the work leading to this thesis in the context

of requirements-driven design of siCPS. In the paper, the term ensemble-based component

systems (EBCS) is used to refer to siCPS modeled according to the ensemble paradigm,

as proposed by component-based approaches such as Helena (Section 2.2.2.2) and

DEECo (Section 2.2.2.3). The term “requirements-driven design” refers to architecture

design that starts from the requirements elaboration phase and continues in a systematic

way to the next phases, i.e. the architecture and detailed design phases.

The main idea of the paper is to identify and elaborate on the characteristics of EBCS

(i.e. the notion of belief and its explicit management, the isolated component computa-

tion, and the dynamic component bindings), the challenges that they pose in a system-

atic requirements-driven design of EBCS, and the promising methods and abstractions

that can be employed in such a design. As such, it directly addresses the objective O1.

Having identified goal-oriented requirements engineering (GORE – Section 2.1.1) as an

area worth exploring, two contemporary approaches are described and evaluated in

terms of their applicability in the requirements-driven design of EBCS. The outcome is

that both KAOS (Section 2.1.1.1) and i* (Section 2.1.1.3) combined with Tropos (Section

2.2.1.1) have their limitations. In particular, KAOS provides little guidance into mapping

a set of requirements to architecture artifacts, and i*/Tropos fail to address the challenges

related to emergent architectures and real-time computation needs in EBCS. Neverthe-

less, they both point to the right direction of focusing on system-level goals that provide

a high-level view over the nonvolatile information that needs to be captured and elabo-

rated in a systematic design process.

The inspiration drawn from the overviewed GORE approaches, together with the

analysis of the EBCS specifics, leads to proposing a novel design method tailored to the

domain of EBCS – the Predicate Refinement Method (PRM). PRM is the precursor of the

Invariant Refinement Method (Section 4.3). The main idea of PRM is modeling require-

ments as predicates over the knowledge of the stakeholders (components in a DEECo-

based system). Such predicates become invariants in the idealized case where computa-

tion and communication are instantaneous; in a real-word system, however, they should

hold “frequently enough”. Although PRM is presented in this paper as a method that

complements DEECo abstractions at the design level, it can be generalized to any EBCS.

Comments on Authorship

My personal contribution in this paper lies in surveying the state of the art in goal-ori-

ented requirements engineering and identifying the two representatives – KAOS and

i*/Tropos – and critically evaluating their applicability, their strengths and weaknesses

in the domain of siCPS. I also came up with the running example of intelligent vehicle

navigation, and elaborated the idea behind the Predicate Refinement Method, which

originally stemmed from the collaboration with my supervisors (co-authors in this pa-

per). Finally, under the indispensable guidance of my supervisors, I authored a majority

of the text.

57

Position Paper: Towards a Requirements-Driven Design of
Ensemble-Based Component Systems

Ilias Gerostathopoulos, Tomas Bures and Petr Hnetynka
Faculty of Mathematics and Physics

Charles University in Prague
Malonstranske namesti 25, Prague, Czech Republic

iliasg,bures,hnetynka@d3s.mff.cuni.cz

ABSTRACT
Although approaches that effectively address the distribu-
tion and dynamism of adaptive systems at a middleware
level exist, the design of complex, ensemble-based systems
still remains a significant challenge. This hinders the de-
velopment of real-life applications based on the ensemble
paradigm. A promising approach appears to be the cou-
pling of proven low-level concepts with high-level ones, re-
visiting requirements modeling in the realm of ensemble-
based systems. To this end, the goal of this paper is to
point out the specific challenges related to the design of
ensemble-based systems and show that classic requirements
models and methods cannot be applied out-of-the-box in a
requirements-driven design of ensemble-based applications.
In response to this problem, a novel design method based on
the iterative refinement of system requirements expressed by
predicates on stakeholder’s knowledge is discussed.

Keywords
Ensemble based, requirements engineering, system design

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

1. INTRODUCTION
Current trends in the area of information technology fo-

cus on the development of highly distributed systems com-
prised of sophisticated on-demand computing services, of-
ten characterized as cloud systems. A subset of such sys-
tems is the ones operating in the so-called ad-hoc clouds,
i.e., in highly dynamic environments (typically over ad-hoc
networks), where no guarantees regarding the availability
and responsiveness of their constituting parts exist. Ex-
amples are systems of intelligent vehicle navigation, decen-
tralized flight planning and healthcare monitoring. These
systems feature a significant level of autonomy [24], which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotTopiCS’13, April 20–21, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2051-1/13/04 ...$15.00.

connected with (self-) awareness [26] and (self-) adaptation
[19] properties. At the same time, they feature a number
of challenges in their development, as traditional software
development approaches rely on static software architecture
and static pre-defined behavior and fail to efficiently capture
the dynamic architecture and support the overall develop-
ment process.

In response to this problem, the new paradigm of ensemble-
based development has been suggested to guide the develop-
ment of large-scale adaptive systems operating in dynamic
environments, termed Ensemble-Based Component Systems
(EBCSs) [5]. These systems are typically composed of au-
tonomous service-components, forming dynamic groups, which
encapsulate knowledge, interaction, and goals specific to the
groups. These dynamic groups of components are termed
ensembles [10].

The goal of this paper is to point out the specific chal-
lenges related to the design of EBCSs and suggest ways to
deal with them. First, EBCSs are described (section 2),
then the challenges are articulated (section 3) and finally
two ”classic” and one novel approach are assessed on how
well they deal with the identified challenges (sections 4 and
5). The last two sections present key related work (section
6) and conclude (section 7).

2. ENSEMBLE BASED COMPONENT SYS-
TEMS

Investigating ways to model and design systems based on
the ensemble paradigm is the core of the European project
ASCENS (Autonomic Service-Component ENSembles) [11].
A first attempt to formalize the concept of ensembles within
ASCENS has led to the development of SCEL (Service-
Component Ensemble Language) [8], a formal language for
modeling component systems enabling them for further anal-
ysis and verification. Relying on the concepts of SCEL,
DEECo (Dependable Emergent Ensembles of Components)
component model [5, 13] has been conceived and is currently
under development and refinement.

The goal of DEECo is to allow for building systems con-
sisting of autonomous, self-aware, and adaptable compo-
nents, which are implicitly organized in ensembles. To this
end, DEECo suggests a slightly different way of perceiving
a component than is common in component-based software
engineering; i.e., as a self-aware unit of computation, relying
solely on its local data that are subject to modification dur-
ing the execution time. The whole communication process
relies on data exchange among components (prescribed by
ensembles), entirely externalized and automated within the

58

runtime. This way, the components have to be programmed
as autonomous units, without relying on whether/how the
distributed communication is performed, which makes them
very robust and suitable for rapidly changing environments.

Apart from being perceived and articulated in terms of
autonomous components and ensembles, EBCSs are built
around three key ideas:

• The notion of belief and its explicit management have
a central role. Every component in an EBCS operates
upon its local ”private” knowledge, which represents
the component’s view of the environment and of the
other components. Since this knowledge is at any time
subject to change by the runtime framework, which
is responsible for mapping parts of one component’s
private knowledge body to knowledge bodies of other
components, it is better viewed as the ”belief” that a
component preserves. In that sense, ensembles, being
prescriptions of knowledge mappings between compo-
nents, stand as the belief management mechanism.

• Component computation is performed in isolation. In
EBCSs, there are no means for a component to explic-
itly communicate with others. Component commu-
nication is realized implicitly by knowledge exchange
externalized from the components and performed by
the underlying framework. Thus, every computation
is necessarily performed within a component’s bound-
aries, which strengthens the notion of component au-
tonomy.

• Component bindings are dynamic. In EBCSs, there
are no explicit bindings between components. En-
sembles bind components implicitly by prescribing the
appropriate knowledge exchange. However, ensembles
are formed only when specific conditions hold in the
system, not always. This dynamic nature of ensem-
bles makes the architecture of EBCSs ”emerge” during
runtime.

As an example illustrating the main concepts of EBCSs,
let us consider a system of intelligent vehicle navigation.
The system consists of drivers, moving around a city in their
”smart” vehicles. Drivers have to reach particular destina-
tions within some time limits, which depend on their daily
schedule. Vehicles are equipped with sensors of basic capa-
bilities, e.g., monitoring the fuel and battery level of the car,
but also more sophisticated ones, e.g., monitoring the traffic
level along the route. Vehicles can only park and refuel in
designated stations. They can also communicate with each

Vehicle

fuelLevel

trafficLevel

plan

route

eventsCalendar

reservations

isFeasible

checkPlanFeasibility

In : fuelLevel, trafficLevel,
 plan.route
Out : plan.isFeasible

computePlan

In : plan.eventsCalendar,
 stationAvailability
Out : plan.route,
 plan.reservations

Knowledge Processes

stationAvailability

Figure 1: Vehicle component specification in
DEECo.

POI: Shopping
Time: 17:00 – 18:00

POI: Cinema
Time: 14:00 – 16:00

POI: Home
Time: 19:00 – 20:00

Figure 2: Possible ensembles between a Vehicle com-
ponent and several Parking/Refueling Station com-
ponents.

other and with the parking/refueling stations that lie within
their transmission spectrum. No central coordination point
is assumed; there is no global control or global planning.
The whole system can be seen as a set of nodes which form
dynamic communication networks (ad-hoc clouds) to serve
a specific goal: vehicles should arrive at their destinations
in time, leveraging the infrastructure resources in a close-to-
optimal way.

When viewing the above system as an EBCS, the obvious
candidates for (DEECo) components are vehicles, parking
stations and refueling stations. For example, the Vehicle

component can be specified in terms of its knowledge and
processes as in Figure 1.

Possible (DEECo) ensembles are identified by looking at
the different interaction scenarios among the components.
For example, when a vehicle is close to a parking station, it
may need to contact it to get informed about the available
parking lots and reserve a lot if possible. This interaction
is prescribed by one ensemble operating between a vehicle
and (possibly multiple) parking stations, where the Vehi-

cle obtains a belief over the lot availability information of
the Parking Stations. A graphical representation of pos-
sible ensembles between a vehicle and parking or refueling
stations is shown in Figure 2.

3. PROBLEM STATEMENT
It is clear that the number of different components and

possible combinations of them in ensembles grows together
with the magnitude of the system and the number and com-
plexity of interactions we want to model. Consequently, even
if we are able to engineer the above intelligent navigation
system in terms of DEECo concepts, it remains challenging
to design such a emergent system and retain some guaran-
tees regarding its overall behavior and interactions.

This stems from the fact that DEECo concepts are rather
low-level and focus primarily on supporting the implementa-
tion and deployment. They lack a broader system view that
will take into account the system requirements and design
alternatives. A broad, high-level view is crucial when deal-
ing with systems of high complexity as it allows abstract-
ing away from details of computation and interaction and
reasoning about properties of the (distributed) system as a
whole. Examples of interesting properties are performance-
related ones, like communication overhead, information uti-
lization, etc., and stability-related ones, like immunity to
environmental changes, adaptability, robustness, etc.

59

Another issue is that it is problematic to map the ar-
chitecture of the system (naturally comprising a number of
components and ensembles) to the purpose it serves (its ra-
tionale). This is especially true for complex systems with
numerous components and ensembles: in such cases tracing
a low-level design decision, like the inclusion of a dynamic
communication link in the system, back to its origin in the
requirements analysis gets extremely difficult. At the same
time, in such cases, specifying why an interaction has to take
place is as important as specifying the interaction itself, as
it allows for design justification and system predictability.

4. REQUIREMENTS MODELING
In order to be able to design and reason about an EBCS,

we need to differentiate between stable and volatile infor-
mation by obtaining a high-level view over the system. In
this section, we will focus on approaches that capture the
high-level behavior of a software system. For that, we need
to draw our attention into the early phases of software de-
velopment, such as the requirements analysis phase. It is
thus necessary to examine prominent approaches in require-
ments modeling and assess their applicability in the domain
of EBCSs.

A useful abstraction in Requirements Engineering (RE) is
proven to be the system goal. A goal can be defined as a pre-
scriptive statement of intent about some system whose sat-
isfaction in general requires the cooperation of some agents
forming the system. Goal-Oriented Requirements Engineer-
ing (GORE) [21] is concerned with the identification of sys-
tem requirements through the elicitation and analysis of sys-
tem goals.

Another useful abstraction is that of the agent. Agents are
active components, i.e., with a choice of behavior, which may
restrict their behavior to ensure the constraints that they are
assigned. In GORE, agents are assigned responsibility for
achieving goals.

In the rest of the section, the two most prominent ap-
proaches in GORE, KAOS and Tropos/i* methods are pre-
sented and discussed.

4.1 KAOS
KAOS is a goal-oriented requirements engineering method-

ology with a rich set of formal analysis techniques. KAOS
stands for Keep All Objects Satisfied [15]. It is grounded on
the following main ideas:

• The notion of goals has a prominent role during the re-
quirements acquisition and analysis processes, offering
the common advantages of goal-oriented approaches in
RE [21].

• Formal methods are used when and where needed for
RE-specific tasks. This allows different levels of ex-
pression and reasoning: semi-formal for modeling and
structuring goals, qualitative for selection among alter-
natives, and formal for more accurate reasoning. This
is possible, as each element modeled in KAOS has,
in general, a two-level structure: the outer, semantic
layer where the concept is declared together with its
attributes and relationships to other concepts and the
inner, formal layer for formally defining the concept.
Formal reasoning can be used e.g., for checking goal re-
finement [7] and goal operationalization [16], conflict

Avoid[Vehicles

out of fuel]

Maintain[Vehicles

refueled in stations]

Achieve[Alarm issued

when fuel low]

Achieve[Alarm

handled when issued]

Achieve[Lot in station

reserved if available]

Refueling stations

 available

Refueling stations

operational

Vehicle Station Operator

Achieve[Vehicles

meet their deadlines]

Achieve[Trip

plan is followed]

Goal

Requirement

Domain
Property

Assumption

LEGEND

Figure 3: An excerpt of a KAOS goal model of the
intelligent navigation case study.

management [22] and obstacle (hazard,threat) analy-
sis [23].

A KAOS specification is a collection of complementary
core models, which represent different views over the target
system. In order to assess the applicability of KAOS models
in the design of EBCSs, we will exemplify the process of
deriving a KAOS specification on our intelligent navigation
case study. The process spans four (practically interleaved)
steps:

Goal elaboration step.
Goals are primarily obtained through the inspection of in-

tentional keywords in natural language of stakeholders and
by asking why and how questions about such statements.
Goals are defined at different levels of abstraction: high-level
goals capture global, strategic objectives; low-level goals
capture local, technical objectives. After the elicitation of
main goals, goals are organized into AND/OR refinement
hierarchies with obvious semantics.

Goal refinement ends when every terminal goal is real-
izable by a single agent assigned to it. This means that
the goal must be expressible in terms of conditions that are
monitorable and controllable by the agent. In particular, a
goal assigned to a software agent is a software requirement,
whereas a goal assigned to an environment agent (e.g., a
human agent) is an expectation or assumption.

Figure 3 depicts a possible goal refinement in the intelli-
gent navigation case study, where the parent goal of having
the vehicles refuel in the designated stations is decomposed
into a requirement (vehicles reserve their places in the sta-
tions), an assumption (stations continue to operate) and a
domain property (refueling stations are available). Domain
properties are descriptive statements (as opposed to pre-
scriptive ones, like goals or assumptions) that are explicitly
captured in the goal model and serve for checking its com-
pleteness.

As an example of a complete goal specification, Figure 4
depicts the goal that vehicles should reserve their places in

60

Name Lot in Station reserved if
available
Def If a place is available it must be
booked by the vehicle in order to refuel
Type Achieve
Category Satisfaction
Source interview with companies
Priority Medium
FormalSpec
∀ v: Vehicle, rl: RefuelingLot:
LowFuel(v) ∧ Available(rl) ⇒
◊≤1min Booked(v,rl)

Achieve[Lot in station
reserved if available]

Figure 4: Formal specification of a goal in KAOS.

the refueling stations. Apart from its semantic layer, the
goal’s formal layer is captured in real-time Linear Temporal
Logic (LTL). This enables the automatic verification of the
goal model.

Agent modeling step.
An agent is an active object of the system, which acts as

processor for operations. Agents can be software entities,
but also environment entities, like human agents, devices,
etc. They appear in the system in order to handle some re-
quirement or assumption assigned to them during goal elab-
oration. For example, in Figure 3, the Vehicle and Station

Operator agents are introduced. There is no single correct
agent assignment; as with choosing among alternative goal
refinements, assigning terminal goals to agents represents a
design choice.

Object modeling step.
Objects are things of interest in the system whose in-

stances may evolve from state to state. An object is modeled
as an entity, association or event, depending on whether it is
independent, dependent or instantaneous, respectively. Ob-
jects are derived by traversing the goal model and inspecting
which entities are concerned in every goal. In our case study,
examples of objects are the Refueling station entity, the
Reserved association and the Alarm issued event.

Operationalization step.
The functions the agents need to employ in order to oper-

ationalize (fulfill) their assigned requirements is defined in
terms of operations. An operation is an input-output re-
lation over objects (specifically, object instances), whereas
the application of the operation defines object creation and
object state transition. Operations are derived both by goal
fluents and from interaction scenarios, identified during re-
quirements acquisition. Operations are declared by signa-
tures over objects and have pre-, post-, and trigger condi-
tions, specified in real-time LTL. As an example from our
case study, a Reserve lot operation receiving a Reserva-

tion request object and creating the Lot reservation ob-
ject could operationalize the ”Lot in station reserved if avail-
able” requirement (Figure 3).

4.1.1 Discussion
Overall, KAOS is a well-developed methodology which ex-

hibits the virtues of goal-oriented analysis in the field of re-
quirements engineering. It successfully separates the stable
(goals, assumptions, properties) from the volatile informa-
tion (agents, operations) and provides a high-level view over
the target system.

Another strong point of KAOS methodology is its formal

+
1. captures the (intended) system behavior at a high

level

2. allows for automatic formal reasoning

–
1. does not align requirements with architecture

2.
is intended for requirements analysis and docu-
mentation, not system design

Table 1: KAOS positive and negative points.

reasoning support. When goals, domain properties, assump-
tions and operations are specified formally, the underlying
models can be checked for consistency and completeness,
typically by employing a SAT solver or theorem prover [17].
A semi-formal approach is also provided: during goal refine-
ment and goal operationalization, the analyst can rely on
instantiations of formal refinement patterns (extracted from
a patterns catalogue) that are proven once and for all [7,
16].

A limitation of KAOS is that it does not provide a con-
nection between requirements and architecture. Preliminary
efforts towards this direction can be found in [14], where a
process of deriving an architectural draft from goal, agent
and operation models, is proposed. This draft is then itera-
tively refined based on instantiation of pre-defined architec-
tural styles and patterns. This is a preliminary and rather
generic attempt towards bridging the well-known gap be-
tween requirements and architecture [14]. When designing
EBCSs, a tailored approach, dealing with the specific do-
main intricacies (high distribution, dynamism), seems more
viable.

The main problem in directly applying KAOS towards
meeting our goal of designing EBCSs is that the (classic)
outcome of KAOS analysis is a Software Requirements Spec-
ification (SRS) document. While this serves the needs of re-
quirements analysis, a successful design of complex, ensemble-
based systems demands a mapping of the high-level models
to lower-level ones and eventually to implementation arti-
facts.

The applicability of KAOS in the design of EBCSs is sum-
marized in Table 1.

4.2 Tropos and i*
Tropos [3] is a methodology for building agent-oriented

software systems that uses the i* modeling notation [25] (i-
star refers to distributed intentionality). Tropos is based on
the following key ideas:

• The notion of agent and related notions (e.g., goals,
plans) are used in all software development phases,
from early requirements down to actual implementa-
tion. To qualify as an agent, a software (or hardware)
system is often required to have properties such as au-
tonomy, social ability, reactivity, proactivity and ra-
tionality.

• The early phases of requirements analysis, i.e., the
phases which precede the prescriptive requirements spe-
cification of the system-to-be, are considered equally
important to the later phases and are thus elaborated
in detail. This allows for a deeper understanding of the
environment (organizational context) where the soft-
ware must operate and facilitates the early resolution
of conflicts between stakeholders.

61

Vehicle

Journey

Planner

Availability(Station)

D

D

Plan journey

D

D

Meetings

Calendar

D

D

D

D

OptimalRoute

D

D

Parking /

Refueling

Station

User

ArriveAtDestinations
D

D

D

D

Stations

AvailabilityD

D

Reservation

Requests

D

D

DD

DD

DD

DD

Depender Dependee

Resource Dependency

Task Dependency

Goal Dependency

Softgoal Dependency

Actor

LEGEND

EnterMeetings

Reservation

Confirmations

Figure 5: A possible i* Strategic Dependency model
of the intelligent vehicle navigation case study.

The Tropos methodology spans four levels:

Early requirements.
The early requirements phase is concerned with the under-

standing of a problem by studying its organizational setting
(the system-as-is). The output of this phase is an i* Strategic
Dependency (SD) and an i* Strategic Rationale (SR) model.
The SD model captures the relevant actors and their inter-
dependencies in terms of goals to be achieved, tasks to be
performed and resources to be furnished. The SR model
determines through a means-end analysis how the goals can
be fulfilled through contributions of other actors.

Late requirements.
During late requirements phase the system-to-be (target

system) is described within its operational environment. The
output of this phase is a requirements specification in the
form of SD and SR models (refined versions of the early
requirements phase models), which describes all functional
and non-functional requirements of the system-to-be. The
difference from the early requirements phase is that now the
software to be developed comes into the picture as one or
more intentional actors.

Figure 5 depicts a possible SD graph of our intelligent
navigation case study at the late requirements phase. As
depicted, the User actor depends on Vehicle to arrive at
his destinations in time and, vice-versa, Vehicle depends
on the fact that User will follow the routine of entering the
meetings in the calendar. Dependencies exist between the
Vehicle and the Parking/Refueling Station (modeled to-
gether for brevity) as well. Journey Planner has been intro-
duced at this phase as part of the software to be developed.
Journey Planner is delegated the responsibility of comput-
ing an (optimal) journey plan.

A means-end analysis of the Vehicle and the Parking/Re-
fueling Station actors is depicted in the SR model of Fig-
ure 6. Specifically, the Vehicle’s goal of meeting the sched-
uled deadlines is decomposed into sub-goals, which are op-
erationalized into tasks. As an example, the goal of being
able to stop at the meeting points is satisfied by performing
(in advance) reservations at the parking/refueling stations,

Vehicle

Availability(Station)

D
Parking /

Refueling

Station

Reservation

Requests

D

Obtain

Availability

Obtain Reservation

Requests

Meet deadlines

Follow optimal

route

Acquire Route
Reserve places

in stations

Stop at meeting

points

Optimal

Route

Not run out

of fuel

M
ak

e

Obtain reservation

confirmations

D

D

Reservation

Confirmations

Reserve

Places

Satisfy

Requests

Update availability

information

Data

Accuracy

Assign places

D

D

Resource

Task

Goal

Softgoal

Actor

LEGEND

Actor boundary

Means-end link

Decomposition link

Send Reservation

Requests

Send Reservation

Confirmations

S
om

e
+

Some +

Make

Contributions to
Softgoals

Figure 6: A possible i* Strategic Rationale model
for Vehicle and Parking/Refueling Station actors.

which in turn is decomposed into the tasks of obtaining the
station availability information, requesting a place in the rel-
evant stations, and receiving reservation confirmations. At
the Station’s side, the identified goals and tasks are decom-
posed in a similar manner.

Architectural design.
Architectural design defines the system’s global architec-

ture in terms of sub-systems, interconnected through data
and control flows. The SD and SR models derived from
previous levels are further refined. The refinement – inclu-
sion and removal of actors and dependencies – is determined
by a quality analysis (analysis and refinement of softgoals).
The quality analysis guides the selection between alterna-
tive architectural styles from a catalogue of organizational
styles (pre-defined in terms of the i* concepts of actors, de-
pendencies, goals and tasks) [9]. For example, if during the
requirements phase of our intelligent navigation case study
the ”response time” softgoal was identified, we could choose
an organizational style which ensures low response time, e.g.,
the ”joint venture” or the ”pyramid” style.

After the refinement of the actor and goal models, the
capabilities needed by the actors to fulfill their goals and
plans are identified by inspecting the extended SD (actor)
diagram, presuming that each actor’s dependency relation-
ship can give place to one or more capabilities triggered by
external events.

As a final step, a set of system agents is identified and
for each of them one or more capabilities are assigned. In
general, the process of assigning capabilities to agents is not
unique and depends heavily on the designer’s view of the
system (in terms of agents). Nonetheless, Tropos offers a
set of pre-defined social patterns recurrent in multi-agent
literature like Bidding, Broker, Matchmaker, Embassy, etc.,
to guide this process [9].

62

Detailed design.
Detailed design deals with the specification of the agents’

micro level, that is, the agents’ behavior and communica-
tion. During detailed design, multiple capability and plan
diagrams are created. Additionally, Agent-UML (AUML)
sequence diagrams are employed to specify the interaction
protocols.

Following the detailed design, a concrete implementation
of the system is produced by using one of the agent-oriented
development environments. For example, JACK Intelligent
Agents [20] can be employed, which stands as a reification
of the conceptual Belief-Desire-Intention (BDI) [18] agent
model in Java programming language.

4.2.1 Discussion
The main contribution of Tropos methodology is that it

tries to align requirements analysis with system design and
implementation. Its novel idea is to base such an align-
ment on early requirements concepts, such as actors, goals
and plans, rather than implementation-level concepts, like
classes and methods. A strong point of Tropos is that it
provides a small and manageable set of knowledge level no-
tions, which are used throughout the software development
process.

At the same time, the biggest shortcoming of this method-
ology is the plethora of design phases and models (actor/goal
models, capability/plan/sequence models, BDI agent model),
which complicates the design process. Moreover, the transi-
tion between the phases is in most cases manual and relies
heavily on subjective design decisions. In the design of com-
plex EBCSs the automatic transition between abstraction
levels is a necessity and cannot be overlooked.

To conclude, the direct application of Tropos method in
the design of EBCSs would eventually result into mapping
one or more system agents to (DEECo) components and
agent communication to (DEECo) ensembles. However, cur-
rent agent development frameworks [2, 20] assume static
bindings between the system actors and therefore fail to
cope with the dynamic, emergent architecture (captured in
terms of ensembles), which is one of the key characteristics
of EBCSs.

The applicability of Tropos in the design of EBCSs is sum-
marized in Table 2.

5. TOWARDS AN ENSEMBLE-BASED DE-
SIGN METHOD

Having evaluated KAOS and Tropos methods, it is clear
that they are not directly applicable in the design of EBCSs.
On their background, in this section we will describe a novel
design method termed Predicate Refinement Method (PRM)
[4], which employs similar concepts. We will also justify why
PRM successfully deals with the intricacies of EBCSs, by ac-
counting for what is missing in KAOS and Tropos.

PRM builds upon the idea of iterative refinement of sys-
tem specification, employed in goal-oriented requirements
engineering. The main goal of PRM is to complement DEECo
low-level concepts with design-level abstractions that will al-
low for a) design-time reasoning, and b) automatic prepara-
tion of DEECo artifacts.

PRM is based on capturing the high-level system goals
expressed in terms of propositional claims (predicates). It
consists of three levels (phases): system level design, en-

+
1.

aligns the requirements phase with architecture
and implementation phases

2.
preserves a manageable set of concepts throughout
the software development phases

–
1.

comprises a number of models with manual map-
pings between them

2. does not cope with the emergent architecture of
EBCSs

Table 2: Tropos positive and negative points.

There is a feasible plan
The parking/refueling stations are

reserved according to the plan

All destinations are visited
by the vehicle

Driver follows the route
 of the plan

1

Belief over vehicles’
reservation requests is correct

*

Reservation requests are
served by the station

1
1{Driver:

route, plan}

1{ReservationServer:
reservations[valid],
reservations[invalid],
spaceAvailabilities}

1{BookingService:
reservations[valid]}

1{Customer:
reservations[valid]}

Parking/Refueling
Station

reservations
spaceAvailabilities

Vehicle

route
plan
reservations

stakeholder

predicate

AND-
decomposition

1{R:k}
role R with

knowledge k

1

*

local
predicate

exchange
predicate

Figure 7: A partial decomposition of the main sys-
tem predicate in the intelligent mobility case study.

semble level design, and component level design, followed
directly by implementation.

As a starting point, at the system level, PRM elaborates
on the questions ”which (global) goals must be achieved?”
and ”which system attributes must be maintained?”. The
next question is ”who is responsible for achieving/maintaining
these attributes?”. Answering these questions yields the sys-
tem’s initial stakeholders and interaction predicates.

A stakeholder is a participant/actor of the system. Each
stakeholder is defined in particular by its knowledge (i.e.,
its domain-specific data). For example, when applying the
method in the running case study (Figure 7), the Vehicle

and Parking/Refueling Stations stakeholders are identi-
fied. At this level, the system goals are expressed by pred-
icates over the stakeholders and their knowledge; each in-
volvement of a stakeholder in an predicate is a role of the
stakeholder in the predicate. Unlike i*, PRM does not cap-
ture the dependencies of actors at a strategic level, but at
the lower level of data that has to be exchanged and ”be-
lieved”; stakeholders contribute their knowledge (interfaced
by roles) for the assessment of each predicate they take a
role in. Predicates represent system properties that should
hold over the whole system lifetime. In an idealized sys-
tem, predicates would become system invariants, whereas
in a real system predicates should hold ”frequently enough”.
As opposed to goals in KAOS, predicates have a more de-
scriptive nature, and typically refer to the present state, not
some future actions.

After identifying all top-level predicates, the process con-

63

tinues into refining them into sets of sub-predicates. The
refinement is essentially an AND-decomposition, with the
conjunction of sub-predicates implying the parent predicate.
The iterative refinement process in PRM ends once all the
leaf predicates are directly mappable to DEECo computa-
tional or communication semantics, that is, to component
and ensemble processes. In particular, a predicate needs
no further decomposition when a) it involves a single stake-
holder and can be ensured by manipulation of this stake-
holder’s knowledge (via an underlying component process)
– local predicate – or b) the predicate involves exactly two
stakeholders and can be ensured by mapping one stake-
holder’s knowledge part(s) to the other (via an underlying
knowledge exchange mechanism) – exchange predicate.

Figure 7 depicts a partial decomposition tree of the top-
level predicate of having all destinations visited by the Ve-

hicle. This predicate is refined into three ”necessities”, in-
dependent to each other: the necessity a) to have a feasible
plan, b) to follow it, and c) to have places in stations re-
served accordingly. Following the plan’s route is essentially
a local predicate, as it involves the Vehicle stakeholder only.
In contrast, the predicate of having a correct belief over the
reservation requests (Figure 7) is an example of an exchange
predicate, as it involves both the Vehicle and the Station

stakeholder.
At the next phases of PRM, the predicates are trans-

formed to precise system specifications. Specifically, during
ensemble level design, the exchange predicates are turned
into DEECo ensembles, by specifying the necessary con-
dition for knowledge exchange along with the information
of which knowledge parts are going to be exchanged. In
component level design, finally, stakeholders are turned into
DEECo components, comprising the stakeholders’ knowl-
edge and ”operationalizing” (in terms of KAOS) the local
predicates they are involved in by means of (DEECo) pro-
cesses.

Compared to PRM, KAOS and Tropos address well the
high-level modeling, however naturally they do not provide
constructs for alignment with the emergent architecture of
EBCSs. This is summarized in Table 3. Further, to complete
this picture, we evaluate below in more detail how PRM
addresses the three fundamental characteristics of EBCSs.

Belief handling.
The semantics of the belief that components in EBCSs

preserve about the other components and the environment
is what remains stable throughout the system phases (over
the whole lifetime of the system) and provides an effective
way to reason about global properties of interest. In PRM,
we explicitly capture this semantics at a higher level by mod-
eling the knowledge flow in terms of knowledge that has to
be distributed and ”believed”. Moreover, the mapping of
exchange predicates to ensembles provides a convenient be-
lief managing mechanism. Although the concept of belief
is not new (agent-based approaches like Tropos employ the
same concept in the design of agent-based architectures, like
BDI), the novelty of PRM lies in featuring belief as the base
abstraction that aligns requirements with architecture and
implementation phases.

Isolated computation.
In order for component autonomy to be reified, compo-

nents in DEECo perform their tasks in isolation. This is re-

KAOS Tropos PRM

high-level modeling + + +

req/ments & architecture
alignment

– + +

dynamic, emergent archi-
tecture support

– – +

Table 3: A comparison of PRM with KAOS and
Tropos methods.

flected in the design by introducing local predicates, which
are mapped to component processes as the process pro-
gresses. In that sense, PRM captures both the requirements
of the whole system (higher-level predicates) and of isolated
components (local predicates), in contrast with requirements
elicitation a là KAOS, which is necessarily system-wise.

Dynamic component links.
Dynamic component links, reified by ensembles in DEECo,

provide the way to deal with the emergent architecture of
EBCSs. In PRM, dynamic links are reflected by exchange
predicates. This property of EBCSs is not directly sup-
ported either by KAOS or Tropos methods.

6. RELATED WORK
As we are not aware of any work that combines the en-

semble paradigm with goal-oriented requirements analysis
to devise a design method for EBCSs, in this section we will
refer to general approaches towards the requirements mod-
eling and design of EBCSs. We have already extensively
described, in section 4, two prominent approaches in goal-
oriented modeling and design, namely KAOS and Tropos/i*
methods.

Recent work in requirements modeling and in particular
targeting the domain of EBCSs has been carried out within
the scope of the ASCENS project and has been integrated
into Statement of the Affairs (SOTA) [1], General Ensembles
Model (GEM)[12] and POEM [11] models.

SOTA is concerned with the overall domain and the re-
quirements of the system. The key idea is to abstract the
behavior of a system with a single trajectory through a state
space (or state-of-the-affairs space), which represents the set
of all possible states of the system at a single point of time.
Similarly to PRM, the requirements of a system in SOTA
are captured in terms of goals. A goal is an area of the
SOTA space that a system should eventually reach, and
it can be characterized by a goal pre-condition, its post-
condition, and utilities (non-functional requirements or con-
straints). To support adaptation, SOTA relies on the goal
model to help understand according to which (self-adaptive)
architectural scheme a system should be architected so goals
can be achieved [6].

For a more detailed specification of behaviors and goals,
POEM [11] model has been proposed and is currently at
a rather preliminary stage. Finally, GEM [12] stands as a
formal system model which represents ensembles as relations
that describe the complete behavior of the ensemble over its
lifetime. GEM is intended to serve as a semantic foundation
for various kinds of calculi and formal methods that often
have a particular associated logic.

64

7. CONCLUSION
In this paper, the specific characteristics of systems based

on the ensemble paradigm have been described. The chal-
lenges related to the design of EBCSs have also been identi-
fied. A successful design method should be able to capture
the high-level objectives of the system under consideration
in a model amenable to design-time analysis, and, at the
same time, simplify the transition towards architecture-level
models, like DEECo model. As possible ways to construct
models of the system at a high-level we have looked into
two prominent methods in requirements modeling, KAOS
and Tropos/i*. They both possess their strong points but
also feature serious limitations, when employed in the de-
sign of EBCSs. In response to that, a novel method based
on the iterative refinement of system requirements expressed
by predicates on stakeholders’ knowledge was outlined. The
novelty of the proposed method lies in reasoning along the
line of what needs to hold in the system at every time in-
stant (predicates), instead of what needs to be performed
(actions) or achieved (goals).

As future work, we plan to work on a prototype implemen-
tation of PRM, which will exhibit the advantage of deriving
the system components and ensembles from requirements in
a (semi-) automatic way. We also plan to formalize the con-
cepts of predicate and predicate refinement in such way that
will allow for formal verification of the design model.

8. ACKNOWLEDGMENTS
This work is a part of RELATE project supported by

the European Commission under the Seventh Framework
Programme FP7 with Grant agreement no.: 264840ITN.

9. REFERENCES
[1] D. Abeywickrama et al. SOTA: Towards a General

Model for Self-Adaptive Systems. In WETICE ’12,
pages 48–53. IEEE CS, 2012.

[2] F. L. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. John
Wiley & Sons, 2007.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[4] T. Bures et al. Language extensions for
implementation-level conformance checking. ASCENS
Deliverable D1.5, 2012.

[5] T. Bures et al. DEECo – an Ensemble-Based
Component System. Tech. Rep. D3S-TR-2013-02,
D3S, Charles University in Prague, 2013.

[6] G. Cabri, M. Puviani, and F. Zambonelli. Towards a
taxonomy of adaptive agent-based collaboration
patterns for autonomic service ensembles. In CTS ’11,
pages 508 –515, May 2011.

[7] R. Darimont and A. van Lamsweerde. Formal
refinement patterns for goal-driven requirements
elaboration. SIGSOFT Softw. Eng. Notes,
21(6):179–190, Oct. 1996.

[8] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese.
A Language-based Approach to Autonomic
Computing. In FMCO ’11, volume 7542 of LNCS,
pages 25–48. Springer-Verlag, 2012.

[9] P. Giorgini et al. A Goal-Based Organizational
Perspective on Multi-Agents Architectures. In ATAL
’01, Seattle, USA, Aug. 2001.

[10] M. Holzl et al. Engineering of Software-Intensive
Systems: State of the Art and Research Challenges. In
Software-Intensive Systems and New Computing
Paradigms, volume 5380 of LNCS, pages 1–44.
Springer Berlin / Heidelberg, 2008.

[11] M. Holzl et al. Engineering Ensembles: A White
Paper of the ASCENS Project. ASCENS Deliverable
JD1.1, 2011. Available: http://www.ascens-ist.eu.

[12] M. Holzl and M. Wirsing. Towards a System Model
for Ensembles. In Festschrift in honor of Carolyn
Talcott, volume 7000 of LNCS. Springer, 2011.

[13] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. In WICSA/ECSA ’12.
IEEE CS, Aug. 2012.

[14] A. V. Lamsweerde. From System Goals to Software
Architecture. In FSM ’03, volume 2804 of LNCS,
pages 25–43. Springer-Verlag, 2003.

[15] A. V. Lamsweerde and E. Letier. From Object
Orientation to Goal Orientation: A Paradigm Shift for
Requirements Engineering. In RISSEF ’12, volume
2941 of LNCS, pages 325–340. Springer-Verlag, 2004.

[16] E. Letier and A. van Lamsweerde. Deriving
operational software specifications from system goals.
SIGSOFT Softw. Eng. Notes, 27(6):119–128, 2002.

[17] C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut,
A. V. Lamsweerde, and H. T. Van. Early verification
and validation of mission critical systems. Form.
Methods Syst. Des., 30(3):233–247, June 2007.

[18] A. S. Rao and M. P. Georgeff. BDI Agents: From
Theory to Practice. In ICMAS ’95, pages 312–319,
1995.

[19] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[20] A. O. Software. JACK Intelligent Agents Manual,
Release 5.3. http://www.agent-software.com, 2005.

[21] A. van Lamsweerde. Goal-Oriented Requirements
Engineering: A Guided Tour. In RE ’01. IEEE CS,
2001.

[22] A. van Lamsweerde, R. Darimont, and E. Letier.
Managing conflicts in goal-driven requirements
engineering. IEEE Trans. Softw. Eng., 24(11):908
–926, Nov. 1998.

[23] A. van Lamsweerde and E. Letier. Handling obstacles
in goal-oriented requirements engineering. IEEE
Trans. Softw. Eng., 26(10):978–1005, Oct. 2000.

[24] E. Vassev and M. Hinchey. The Challenge of
Developing Autonomic Systems. Computer, 43(12):93
–96, Dec. 2010.

[25] E. Yu. Towards Modeling and Reasoning Support for
Early-Phase Requirements Engineering. In RE ’97,
pages 226–. IEEE CS, Jan. 1997.

[26] F. Zambonelli et al. On Self-Adaptation,
Self-Expression, and Self-Awareness in Autonomic
Service Component Ensembles. In SASOW ’11, pages
108 –113, Oct. 2011.

65

4.3 Design of Ensemble-Based Component

Systems by Invariant Refinement

Jaroslav Keznikl,

Tomáš Bureš,

František Plášil,

Ilias Gerostathopoulos,

Petr Hnětynka,

Nicklas Hoch

In proceedings of the 16th International ACM Sigsoft Symposium on

Component-Based Software Engineering (CBSE ‘13).

Awarded with the ACM Distinguished Paper Award.

Published by ACM,

pages 91-100,

ISBN 978-1-4503-2122-8,

June 2013.

The original version is available electronically from the publisher's site

at http://dx.doi.org/10.1145/2465449.2465457.

http://dx.doi.org/10.1145/2465449.2465457

Chapter 4. Commented Collection of Papers

66

Summary of the Paper

This paper, published as [KBP+13], provides one of the main contributions of the thesis,

which is an architecture design method for siCPS. The focus of this paper is on the do-

main of dynamically evolving resilient distributed systems (RDS), which was casted into the

domain of software-intensive Cyber-Physical Systems (siCPS) in subsequent works. As

in the paper included in Section 4.2, the term ensemble-based component systems (EBCS) is

used to refer to siCPS modeled according to the ensemble paradigm. EBCS is used

throughout the paper as the reference architecture model of the proposed design

method, whereas DEECo (Section 2.2.2.3) is used as a concrete instance of EBCS.

The main idea of the paper is to tackle the challenge of systematic architecture de-

sign of RDS that comply to the EBCS reference model. Due to the dynamic and stateless

nature of the ensemble concept, it is problematic to determine a proper EBCS architec-

ture (comprising components, component) from the system-level goals and require-

ments. This stems from the conceptual gap between the high-level system goals and the

relatively low-level computation and communication constructs as featured by EBCS.

In response to this challenge, a novel design method, the Invariant Refinement Method

(IRM), is introduced and elaborated. The goal of IRM is to guide the refinement of high-

level goals to low-level architecture concepts so that the compliance of design decisions

with the overall system goals is captured, validated, and – if possible – formally verified.

As such, IRM directly addresses the objective O2.

IRM builds on the idea that siCPS have to maintain a certain level of operational nor-

malcy, i.e. the property of being within certain bounds that define a range of normal op-

eration. As a result, a component process or an ensemble in an EBCS architecture can be

expressed in terms of the particular operational normalcy it maintains. IRM features the

concept of invariant to express this normalcy in terms of knowledge evolution of the

associated components or group of components. At the same time, invariants in IRM are

also used to describe high-level system goals. The objective of the design process be-

comes then to link the high-level invariants to low-level ones via a series of decomposi-

tion steps with formal refinement semantics. At each refinement, the conjunction of sub-

invariants implies the parent invariant.

Since a formal refinement of invariants is a relatively complex task, the paper also

proposes a formal framework for invariant refinement, which is the second main contri-

bution. The framework relies on defining invariant patterns capturing the specifics of in-

variants at different abstraction levels and using them in the definition of rules that gov-

ern the decomposition at the same level or across adjacent levels of abstraction.

Comments on Authorship

Overall, the main idea of the paper is of equal authorship. I personally contributed to

the elaboration of the idea and the technical details, and in the positioning of the work

in the context of ensemble-based component systems and against the related work. I was

also responsible for the design of the case study of cooperative e-vehicles used in the

evaluation of this work.

67

Design of Ensemble-Based Component Systems by
Invariant Refinement

Jaroslav Keznikl1,2

keznikl@d3s.mff.cuni.cz
Tomas Bures1,2

bures@d3s.mff.cuni.cz
Frantisek Plasil1

plasil@d3s.mff.cuni.cz

Ilias Gerostathopoulos1

iliasg@d3s.mff.cuni.cz
Petr Hnetynka1

hnetynka@d3s.mff.cuni.cz
Nicklas Hoch3

nicklas.hoch@volkswagen.de
1Charles University in Prague

Faculty of Mathematics and Physics
Prague, Czech Republic

2Institute of Computer Science
Academy of Sciences
of the Czech Republic

Prague, Czech Republic

3Corporate Research Group
Volkswagen AG

Wolfsburg, Germany

ABSTRACT
The challenge of developing dynamically-evolving resilient
distributed systems that are composed of autonomous components
has been partially addressed by introducing the concept of
component ensembles. Nevertheless, systematic design of
complex ensemble-based systems is still a pressing issue. This
stems from the fact that contemporary design methods do not
scale in terms of the number and complexity of ensembles and
components, and do not efficiently cope with the dynamism
involved. To address this issue, we present a novel method –
Invariant Refinement Method (IRM) – for designing ensemble-
based component systems by building on goal-based requirements
elaboration, while integrating component architecture design and
software control system design.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications; C.3 [Special-purpose and
Application-based Systems]: real-time and embedded systems;
D.2.2 [Software Engineering]: Design Tools and Techniques –
miscellaneous; D.2.11 [Software Engineering]: Software
Architectures – patterns.

Keywords
Component; ensemble; refinement; requirements engineering;
system design

1. INTRODUCTION
Addressing the challenge of developing large-scale distributed
autonomic and adaptive systems [26], the EU FP-7 project
ASCENS [15] strives for modeling and designing such systems of
service components and service component ensembles. For large-
scale adaptive systems, the ASCENS case studies indicate the
need to deal with large amounts of distributed information both
highly dynamically and intelligently, while ensuring resilience to
changes in the environment. This has been partially targeted by

the work on resilient distributed systems (RDS) based on
ensembles [15] of autonomous adaptive [16] components. In this
context, an ensemble is seen as a dynamically formed group of
autonomous components which encapsulates knowledge,
interaction, and goals specific to the group.

The ASCENS project employs three case studies from different
domains, of which we target the e-mobility case study within the
scope of this paper. This case study aims at resource optimization,
such as travel time, energy consumption, and parking lot and
charging station usage of electric-powered vehicles. Its objective
is to coordinate planning of journeys in compliance with parking
and charging strategies in the highly-dynamic, complex, and
heterogeneous traffic environment, where information is
distributed.

Currently, widely accepted semantics of the ensemble concept is
still an open issue. In [5][19], we have contributed to this by
introducing the concept of Ensemble-Based Component Systems
(EBCS) and specifically the DEECo component model
(Dependable Emergent Ensembles of Components), our
contribution to the EBCS family. Although the concept of
ensemble in EBCS effectively addresses the distribution and
dynamism of RDS at a middleware level, the design of complex,
ensemble-based systems remains a significant challenge. Our
early experiments indicate that traditional software engineering
methods cannot be directly employed [13], since they cannot cope
with the dynamism involved and do not cover all the required
design steps. Specifically, it appears that the design of ensemble-
based systems requires a synergy of goal-oriented requirements
refinement, architecture design, and (real-time) process
scheduling. In response to this problem, this paper proposes a
novel method – Invariant Refinement Method (IRM) – for
systematical derivation of an EBCS-based RDS architecture from
high-level requirements. In particular, IRM builds on gradual
refinement of invariants that are employed as a concept for
reflecting both requirements and architectural elements.

The rest of this paper is structured as follows: Section 2 explains
the specifics of EBCS in the context of the e-mobility case study
in DEECo. Section 3 elaborates on the lessons learned from the
case study and articulates the problem statement. Section 4
presents an overall description of IRM, while Section 5 elaborates
on guidelines for refinement by presenting invariant patterns. The
evaluation and discussion is provided in Section 6 and related
work in Section 7. Section 8 concludes the paper and identifies
future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright © ACM 978-1-4503-2122-8/13/06...$15.00.

68

2. ENSEMBLE-BASED COMPONENT
SYSTEMS: A CASE STUDY

To illustrate the challenges in RDS development, we exploit the e-
mobility case study mentioned in Section 1. Electric vehicles (e-
vehicles) compete for e-mobility resources, such as parking lots
and charging stations (infrastructure) in order to achieve optimal
journeys with respect to the drivers’ daily activities (calendars). A
calendar consists of a set of points of interest (POIs), together
with timing constraints specifying the expected POI arrival and
departure times. For brevity, we assume that each driver is bound
to his/her own private vehicle and that parking lots are the only
infrastructure entities. An e-vehicle uses a planner in order to
create its individual journey plan, stemming from the driver’s
calendar and including parking/charging periods when necessary.
The system is fully decentralized – every e-vehicle plans and
executes its route individually.

Having outlined the application domain of EBCS, in the rest of
this section we first elaborate on the context of EBCS and then
illustrate the basic concepts on an example from the case study.

2.1 From Agent and Control-based Systems
to Ensemble-Based Component Systems

In principle, EBCS [5] combine the advantages of component-
based software engineering [9][10], ensemble-oriented
systems [14][15], agent-based computing [18][24], and (soft) real-
time embedded software control systems [7][25] in highly
dynamic, open-ended environments that lack reliable
communication channels (Figure 1).
Exploitation of the concepts from agent-oriented computing
allows for composing systems from a number of autonomous
entities, so that the overall behavior of the system is an emergent
result of behaviors of the entities. In particular, the autonomous
entities are designed to operate only with a partial view of the
whole system; i.e., BDI model [21] where agents maintain a belief
about the rest of the system to guide their autonomous decisions.

A disadvantage of the agent-oriented computing concepts at the
software-engineering level is its strong dependence on reliable
communication channels (as, e.g., in the case of JADE platform
[3]), which is, however, not achievable in the target application
domain due to the extreme dynamism. Instead, EBCS rely on the
concept of attribute-based communication [12] (i.e., the target of
communication is determined according to the values of attributes
rather than by a direct identifier), which models the
communication as best effort and localized to dynamically
changing groups – ensembles – of components.

The EBCS communication model however implies that the
components’ belief is essentially always outdated. To efficiently
cope with outdated belief, EBCS employ concepts of (soft) real-
time software control systems, which achieve robustness by

adequate scheduling of periodic tasks recurrently maintaining the
operational normalcy of the system. Here, operational normalcy
expresses the property of being within certain limits that define
the range of normal functioning of the system. The required level
of robustness is achieved by adjusting the periods of the tasks.

As extreme dynamism is involved, components should be also
capable of continuous self-adaptation, following the concept of
feedback loops [17]. An ensemble-based system can be thus
understood as a dynamic system of conditionally interacting
feedback loops.
In this context, components in EBCS are perceived as software-
engineering means for implementing resilient agents that deal
with ensemble-oriented, best-effort communication and outdated
belief.

2.2 Illustration of the Concepts on the Case
Study

The case study has been implemented in our DEECo component
model – an instance of EBCS. Here, a component comprises
knowledge (i.e., the data of the component), exposed via a set of
interfaces, and processes, each of them being essentially a thread
operating upon the knowledge of the component. Figure 2
illustrates several artifacts we have developed for the case study.
In particular, it shows a specification of the Vehicle0123
component, featuring the AvailabilityAggregator interface and the
computePlan process. The latter is responsible for the computation
of the vehicle’s plan, which is based on the vehicle’s calendar
(calendar) and the availability information of the relevant parking
lots (availabilityList) and is executed whenever one of these inputs
changes.

Figure 1: Context of Ensemble-Based Component Systems

(EBCS).

 interface	 AvailabilityAggregator:
 calendar, availabilityList

interface	 AvailabilityAwareParkingLot:
 position, availability

component	 Vehicle0123 features	 AvailabilityAggregator, ... :
 knowledge:
 calendar, availabilityList, plan, planFeasibility, ...
 process	 computePlan(in	 calendar, in	 availabilityList, out	 plan):
 function:
 plan ← JourneyPlanner.computePlan(

calendar, availabilityList, planFeasibility)
 scheduling: triggered(changed(planFeasibility) ∨ changed(availabilityList))
 ...

component	 ParkingLot01 features	 AvailabilityAwareParkingLot, ... :
 knowledge:
 position, availability, ...
 process	 observeAvailability(out	 availability):
 function:
 availability← Sensors.getCurrentAvailability()
 scheduling: periodic(2000ms)
 …

 ensemble	 UpdateAvailabilityInformation:
 coordinator: AvailabilityAggregator
 member: AvailabilityAwareParkingLot
 membership:
 ∃ poi ∈ coordinator.calendar:
 distance(member.position, poi.position) ≤ TRESHOLD
 knowledge	 exchange:
 coordinator.availabilityList ← members.reduce(member.availability)
 scheduling: periodic(5000ms)

Figure 2: Example of a DEECo component and ensemble
definition in a DSL.

Agent-‐oriented	
computing
autonomy

Ensemble-‐oriented	
systems

attribute-‐based
communication

Control	 system	
engineering

operational normalcyEBCS
Component-‐based	

engineering
software engineering

69

For the purpose of separation of concerns and effective handling
of dynamism and communication errors, DEECo introduces
ensemble, a first-class concept, encapsulating dynamic grouping
of components and the interaction within the group. In an
ensemble a component plays the role of the ensemble’s
coordinator or one of the members. This is determined
dynamically (the task of the runtime framework) according to the
membership condition specified upon the interfaces expected for
the coordinator and members. Specifically, the membership
condition determines which components form the coordinator-
member pairs of an ensemble. The separation of concerns is
brought to such extent, that individual components are not capable
of explicit communication with other components. Instead, the
interaction among the components forming an ensemble takes the
form of knowledge exchange, carried out implicitly (by the
runtime framework). For example, Figure 2 shows a specification
of the UpdateAvailabilityInformation ensemble, an instance of
which is to be created for every coordinator, i.e., every component
that features the interface AvailabilityAggregator (such as the
component Vehicle0123). The members of such an ensemble are
all the components featuring AvailabilityAwareParkingLot that are
in the proximity (TRESHOLD) to one of the POIs of the
coordinating e-vehicle. This effectively includes all the parking
lots that are relevant to journey planning of the coordinating e-
vehicle. The knowledge exchange, scheduled periodically every
5000ms, ensures that the coordinating e-vehicle obtains the
current availability information of all the member parking lots.
This periodicity guarantees that the “belief” of the e-vehicle about
the availability of parking lot components is current enough.

In summary, a component operates only upon its own local
knowledge, which is implicitly updated via knowledge exchange
whenever the component is part of an ensemble (technically this is
handled by the underlying runtime framework).

3. PROBLEM STATEMENT
The lesson from implementing the case study is that it is
problematic to determine a proper EBCS architecture (i.e.,
components, component processes and ensembles) of the system
from the overall goals and requirements. This gets more difficult
when we take into account the extent to which knowledge can
become outdated (due to delays in knowledge exchange and
parallel execution of component processes) and its impact on the
overall system behavior.
This problem stems from the conceptual gap between the high-
level system goals and relatively low-level architectural concepts
of EBCS. A broad, high-level view of the goals is critical when
reasoning about global properties of a complex (distributed)
system as a whole; e.g., stability-related properties including
robustness, adaptability, non-functional properties such as tradeoff
between communication overhead and outdated knowledge, etc.
Focus on the low-level concepts is equally important for a detailed
design and implementation of components and ensembles.

Overall, the key objective of both the component process and
ensemble concepts is to maintain a form of operational normalcy
of the component/group of components. Therefore, they can be
described declaratively in terms of the particular operational
normalcy they maintain. In addition, we assume that the high-
level system goals can be also described declaratively. Thus, both
high-level requirements and low-level architectural concepts can
be reflected in the same declarative manner.

Hence, the key challenge we address in this paper is to guide the
EBCS design process transparently from high level goals to low-
level concepts of system architecture in such a way that the

compliance of design decisions with the overall system goals and
requirements is explicitly captured and (if possible) formally
verified. As a result, tracing a low-level design decision back to
its rationale in the system goals and requirements would allow for
design validation and verification.

4. DESIGNING ENSEMBLES VIA
INVARIANT REFINEMENT

To address this challenge, we propose IRM (Invariant Refinement
Method) – a novel design method specifically focused on EBCS.
Building on goal-based requirements elaboration [22], IRM is
based on systematic, gradual refinement (i.e., elaboration) of
invariants that reflect goals and requirements of the system-to-
be [1]. In this context, we are concerned with goals and
requirements from the global perspective of the system, rather
than the perspective of the individual components and ensembles.

In principle, the invariants describe a desired state of the system-
to-be at every time instant; i.e., describe the operational normalcy
of the system-to-be, essential for its continuous operation. For
example, the main goal of the case study is expressed by the
invariant (1): “All Vehicles meet their calendar” (Figure 3).
The objective of IRM is to start the refinement with the overall
system goal and end up by determining the invariants reflecting
detailed design of the particular system constituents –
components, component processes, and ensembles.

4.1 Invariants and Assumptions
A key concept of system design is component, i.e., a participant of
the system-to-be (e.g., Vehicle and Parking lot in Figure 3). Each
component comprises specific knowledge, i.e., its domain-specific
data (in Figure 3 left out for brevity). The valuation of
components’ knowledge evolves in time as a result of their
autonomous behavior (i.e., execution of the associated component
processes) and knowledge exchange. In principle, an invariant is a
condition on the knowledge valuation of a set of components that
captures the operational normalcy to be maintained by the system-
to-be (i.e., that should be preserved as knowledge valuation
evolves in time). If a component’s knowledge is referenced by an
invariant, we say the component takes a role in the invariant (e.g.,
in the invariant (1) from Figure 3 the component Vehicle takes the
role V, while Parking lot takes the role P).
As a special case, component knowledge may reflect information
about the environment. Consequently, an invariant may represent
an assumption about the environment, i.e., a condition that is
expected to hold during knowledge evolution and thus is not

Figure 3: Top-level design of the case study.

(1) All Vehicles meet their calendar

(2) Up-‐to-‐date V::plan, w.r.t.
information from P, reflecting

V::calendar is available

(4) an up-‐to-‐date plan can always
be followed by the vehicle and it always
schedules reaching the destination in

time

(3) V::position is in
alignment with the V::plan

Vehicle Parking lot[V] [P]

1[V]

P A

1[V]

[V]

[P]

V::plan

invariantcomponent [R] role R
knowledge
dependency invariant refinement

assumption
process
invariant

exchange
invariant

A P X

70

intended to be maintained explicitly by the system-to-be (in
figures marked by A; e.g., (4) in Figure 3).

4.2 Invariants vs. Computation Activities
The underlying idea of IRM is that each invariant which is not an
assumption is essentially associated with a computation activity –
an abstract computation producing output knowledge given a
particular input knowledge. In fact, the computation activity
provides a dual view on the invariant – while the invariant reflects
an operational normalcy, the computation activity represents
means for maintaining it. For example, Figure 4 provides the dual
view on the invariants in Figure 3. The invariants thus express the
relation between the input and output knowledge of the
computation activity. A component process, as well as ensemble
knowledge exchange, is a specific form of computation activity.

This dual view gives the convenient option to refer to invariants
for the purpose of logic-based reasoning on system-to-be
properties and to refer to computation activities when low-level
implementation aspects are of concern.

As an aside, we will refer to the relation between component
knowledge and input/output knowledge of a computation activity
as knowledge flow. For example, Figure 4 shows the knowledge
flow between Vehicle and the computation activity associated with
(3) from Figure 3 (with V::plan, resp., V::position as its input, resp.,
output knowledge).

The activities associated with high-level system invariants (goals)
are abstract, representing the system implementation at a high
level of abstraction. For such an abstract computation activity, the
input knowledge constitutes the part of the components’
knowledge that is out of control of the system-to-be, while the
output knowledge is fully in its control. For example, as shown in
Figure 4, the input knowledge of the computation activity
associated with (1) from Figure 3 comprises V::calendar and
potentially some knowledge of parking lots (since it is not yet
clear at this level of abstraction, it is denoted by P::?), while its
output knowledge comprises V::position.

Thus, in the dual perspective of computation activities, the goal of
IRM is to refine such abstract activities into the very concrete
component processes and knowledge exchange.

4.3 Invariant Refinement
The core of IRM is a systematic, gradual refinement of a higher-
level invariant by means of its decomposition (i.e., structural
elaboration) into a conjunction of lower-level sub-invariants.
Formally, decomposition of a parent invariant 𝐼! into a
conjunction of sub-invariants 𝐼!!,… , 𝐼!" is a refinement if the

conjunction of the sub-invariants entails the parent invariant, i.e.,
if it holds that:

1. 𝐼!! ∧ … ∧ 𝐼!" ⇒ 𝐼! (entailment)
2. 𝐼!! ∧ … ∧ 𝐼!" ⇏ 𝑓𝑎𝑙𝑠𝑒 (consistency)

This definition complies with the traditional interpretation of
refinement, where the composition of the children exhibits all the
behavior expected from the parent and (potentially) some more.
The refinement is applied recursively, starting with high-level
invariants reflecting the overall system goals and involving a
number of components and ending with low-level ones involving
a single component or an ensemble of components. Note that
since a decomposition step may involve a design decision, it is
critical to ensure that this decision complies with the entailment
and consistency conditions.

During refinement, only the components that take a role in the
parent invariant may also take a role in the sub-invariants.
Nevertheless, as a part of the design decision, new knowledge can
be added into the components taking a role in the sub-invariants
(e.g., V::planFeasibility in Figure 5).

In Figure 3, the design decision is to refine the invariant (1) into a
conjunction of three sub-invariants: (2) – having an up-to-date
plan, (3) – keeping the vehicle’s position in alignment with the
plan, and (4) – an assumption that an up-to-date plan can always
be followed by the vehicle (i.e., the environment dynamics –
traffic, parking availability, etc. – will never prevent the car from
following an up-to-date plan) and that it always schedules
reaching the destination in time.

The sub-invariants can exhibit knowledge dependency due to
references to the same knowledge of a specific component. For
example, in Figure 3 there is a knowledge dependency between
(2) and (3) due to references to V::plan.

From the dual (computation-activity-based) perspective of
refinement, a simultaneous (i.e., parallel) execution of the
computation activities associated with the sub-invariants forms
the computation activity of the parent. In a refinement with
knowledge dependencies, an adequate scheduling of these
activities is to be determined in the refinement.

4.4 Leaves of Refinement
The rule of thumb is that refinement is finalized when each leaf
invariant of the refinement tree is either an assumption or is
associated with a “real” computation activity – a process or
knowledge exchange.

Specifically, an invariant that is referring to a single component
captures only the operational normalcy to be maintained by a
process of the component. Such an invariant is called a process
invariant (in diagrams marked by P, e.g., (3) in Figure 3).

In a general case when several components take a role in an
invariant, e.g., (5) in Figure 5, the situation is more complex. To
refine an invariant 𝐼!, referencing the components 𝐶!,… ,𝐶! into
sub-invariants 𝐼!!,… , 𝐼!" that are eventually associated with “real”
computation activities need to apply the concept belief of 𝐶! over
the knowledge of 𝐶!,… ,𝐶!: the belief 𝐵!!

!!,…,!!(𝐾) is knowledge
of 𝐶! that represents 𝐶!’s snapshot of a part 𝐾 of the knowledge of
𝐶!,… ,𝐶!. For instance, in Figure 5, the belief V::availabilityList of
Vehicle over the knowledge P::availability of Parking lots is an
example of such a knowledge snapshot (denoted as
V::availabilityList = 𝐵Vehicle

Parking lot P::availability).

Figure 4: Dual, computation-activity-based view on the top-

level design of the case study from Figure 3.

(2) Vehicle keeps its V::plan
reflecting V::calendar up-‐to-‐date

w.r.t. information from Parking lots

(3) V moves according to the
V::plan

Vehicle Parking lot

V::plan

activity refinement
computation
activity

knowledge
flow

knowledge
dependency

V::posi tion

V::calendar

P::?(1) The system-‐to-‐be drives all Vehicles
by using information from Parking lots so
that the Vehicles meet their V::calendar

V::plan

V::posi tionV::plan

V::calendar P::?

component

71

Thus, 𝐼!! formulates the operational normalcy properties of
𝐵!!
!!,…,!! , whereas 𝐼!!,… , 𝐼!" refine 𝐼! while substituting the

references to the knowledge of 𝐶!,… ,𝐶! by references to
𝐵!!
!!,…,!! . Note that 𝐵!!

!!,…,!! is a new knowledge introduced into
𝐶!. For example, in Figure 5, (7) formulates the condition on
creating the belief V::availabilityList = 𝐵Vehicle

Parking lot P::availability ,
whereas (8) refines (5) while substituting the references to
P::availability by references to V::availabilityList.

As a result, 𝐼!! becomes an exchange invariant (in diagrams
marked by X, such as (7) in Figure 5), since it corresponds to
knowledge exchange as its “real” computation activity.

Furthermore, 𝐼!!,… , 𝐼!" are potentially process/exchange
invariants, since, in general, the number of components taking a
role in 𝐼!!,… , 𝐼!" is, compared to 𝐼!, decreased at least by one due
to references to the belief 𝐵!!

!!,…,!! (such as when comparing (5)
and (8) in Figure 5).

4.5 From Invariants to Final Architecture
After the set of components is identified and refinement tree of
invariants is completed, the design continues by refining each
process invariant into a component process and each exchange
invariant into an ensemble. For example, as illustrated in Figure 2,
Vehicle is reified by Vehicle0123, while (8) from Figure 5 is
refined into its computePlan process and (7) from Figure 5 is
refined into the UpdateAvailabilityInformation ensemble. Thus,
determined by the invariant refinement, this step yields the final
architecture of the system. The details are beyond the scope of this
paper; we refer the interested reader to [4].

5. BRIDGING ABSTRACTION LEVELS
VIA INVARIANT PATTERNS

While high-level invariants capture general operational normalcy,
low-level ones – reflecting architectural elements – capture the
EBCS-specific aspects (e.g., periodic scheduling of component

processes and knowledge exchange). In this section we elaborate
on how to bridge this abstraction gap during refinement. In
particular, we describe five patterns of invariants we have
identified to reflect the way operational normalcy is captured at
four adjacent abstraction levels that bridge this abstraction gap.
The contribution lies in the fact that we are able to rigorously
describe (and provide guidelines for) the refinement between
invariants on the same/adjacent levels of abstraction by assuming
that each invariant is an instantiation of a corresponding invariant
pattern.
Thus, we can (iteratively) exploit these patterns and guidelines
during refinement to continuously lower the level of abstraction
until we reach the level of architectural elements. Namely, these
patterns are (from the most abstract to the least abstract): (i)
general invariants, (ii) present-past invariants, (iii) activity
invariants, (iv) process invariants, and (v) exchange invariants
(as an exception, (iv) and (v) are at the same level of abstraction).
Figure 6 illustrates the patterns on the case study.

To give a more exact perspective of the patterns, we use
a predicate formalization of invariants. Note that in this paper the
goal of the formalization is to illustrate the conceptual differences
between the patterns rather than to provide their rigorous
description, which is beyond the scope of this paper. For formal
pattern definition, we refer the interested reader to [6]. Recall that
an invariant expresses the operational normalcy in terms of a
condition to be maintained during knowledge evolution in time
(Section 4.1). Thus, the formalization provides means for
referring to timed sequences of knowledge values, which gives a
complete view on the knowledge value evolution over time.
Specifically, since EBCS-based systems are inherently
asynchronous, we are interested in such a formalization that
captures the evolution in terms of asynchrony and delays. For
example, considering the knowledge evolution illustrated in
Figure 7, we are interested in a formalization of the form “The
value of V::pAvailable always equals the value of P::available

Figure 5: Invariant refinement of “V has an up-to-date V::plan reflecting V::calendar”.

invariantcomponent [R] role R
knowledge
dependency invariant refinement

assumption
process
invariant

exchange
invariant

A P X

(2) Up-‐to-‐date V::plan, w.r.t.
information from P, reflecting

V::calendar is available

(6) V::planFeasibility w.r.t.
V::energy and V::traffic is determined

(7) V::availabilityList -‐ V’s belief
over P::availability of trip-‐relevant

parking lots -‐ is up-‐to-‐date

(5) Up-‐to-‐date V::plan, w.r.t.
P::availability and V::planFeasibility,
reflecting V::calendar is available

X

Parking lot

1[V]

1[V]

*[P]

(8) Up-‐to-‐date V::plan, w.r.t.
V::availabilityList and V::planFeasibility,

reflecting V::calendar is available

P

[P]

[V]

[V]

[P]

[V]

Vehicle

V::availability

V::planFeasibility

(9) V::energy and V::traffic are
monitored

(10) V::planFeasibility w.r.t. the monitored
V::energy and V::traffic is determined

P

V::energy, V::traffic

1[V]
[V]

72

that is not older than the period” rather than “V::pAvailable
equals P::available” (which does not always hold).

Thus, we formalize the invariants as follows. Time is represented
by a non-negative real number, i.e., 𝕋 ≝ ℝ!!. Knowledge is a set
𝒦 = {𝑘!,… , 𝑘!} of knowledge elements, where the domain of 𝑘!
is denoted as 𝑉!. Knowledge valuation of an element 𝑘! is a
function 𝕋 → 𝑉! which for a time 𝑡 yields a value of 𝑘! (denoted
as 𝑘![𝑡]). An invariant is thus a predicate (in a higher-order
predicate logic with arithmetic) over a knowledge valuations and
time.

Note that in general it is possible to use other forms of
formalization; e.g., real-time LTL [2]. However, in this paper the
choice of the formalization is driven by the aim of describing
invariant refinement rather than model checking. Thus, we
consider the proposed predicate formalization more practical (i.e.,
it is more suitable for formulating and proving relevant theorems).

5.1 General Invariants
General invariants at the top-level of abstraction capture the
operational normalcy in terms of relating the past and current
knowledge valuation to a future knowledge valuation.

An example of this pattern is the invariant (1) from Figure 3: “All
Vehicles meet their calendar”, which can be formalized as follows
(assuming only a single POI in the calendar, which does not
change in time for brevity):

∃𝑡 ∈ 𝕋, 𝑡 ≤ 𝑉∷calendar.deadline[0]:
𝑉∷position[𝑡] = 𝑉∷calendar.destination[0]

Note that the invariant does not refer to current time; instead, it
refers to a particular time instant in the future.

5.2 Present-past Invariants
Less-general are present-past invariants capturing the operational
normalcy in terms of the current and/or past knowledge
valuations. This reflects the fact (abstracted away at the level of
general invariants) that software systems cannot cope with future
data, but have to depend on current and/or past data instead.
Further, to determine how much of past data is needed, we define
the lag of a present-past invariant as the maximal distance in the

past that is needed to formulate the operational normalcy of the
invariant. Similar to real-time software control systems, we
assume that the smaller the lag, the bigger precision and
robustness; lag equal to 0 denotes an idealized case where the
beliefs of all components are always up-to-date and their actions
are instant.
An example of this pattern is the invariant (2) from Figure 3: “Up-
to-date V::plan, w.r.t. information from P, reflecting V::calendar is
available”, which can be for parking lots 𝑃!…𝑃! and a lag 𝐿
formalized as follows:

“At any time, for the current valuation of V::plan there is
a valuation of knowledge of 𝑃!…𝑃! and V::calendar not older
than the lag L such that they together meet the condition
expressed by the UpToDatePlan predicate.”
In the predicate logic, it can be captured as follows:

∀𝑡!"# ∈ 𝕋,∃𝑡!,… , 𝑡! , 𝑡!"# ∈ 𝕋, 0 ≤ 𝑡!"# − 𝑡! ≤ 𝐿 𝑖 ∈ 1. .𝑛, 𝑐𝑎𝑙 :

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛 𝑃! 𝑡! ,… ,𝑃! 𝑡! ,𝑉∷calendar 𝑡!"# ,𝑉∷plan 𝑡

Here, 𝐿 equal to 0 reflects the case where the V::plan is at each
time instant up-to-date with respect to the current knowledge of
the parking lots. The bigger L the more outdated parking-lot
knowledge valuation is considered.

For all present-past invariants of this syntactic structure, we can
use the following shortcut expressing the above-described
formalization of (2) from Figure 3 (note, that the “p-p” subscript
indicates that this shortcut pertains to the present-past invariant
pattern):

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!!!! 𝑃!,… ,𝑃! ,𝑉∷calendar 𝑉∷plan

Such a shortcut can be also exploited during invariant refinement
for introducing new present-past invariants; it would serve as
a “macro” that transforms a time-oblivious predicate (e.g.,
𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛) into a formalized present-past invariant of the
above-described structure.

5.3 Activity Invariants
Based on the dual concept of computation activities, an activity
invariant captures the operational normalcy in terms of the current
valuation of the output knowledge of the associated computation
activity and the current/past valuation of the input knowledge.
This follows the idea that a computation activity in EBCS
maintains the operational normalcy periodically by reading the
input knowledge, performing the computation and writing the
output knowledge.

Being relatively low-level, an activity invariant reflects detailed
properties of a computation activity that corresponds to software
computation. First, it captures the requirement that the output
knowledge changes only as a result of the computation activity.
Here, we assume that no activities have the same output
knowledge. Moreover, an activity invariant captures read
consistency of the input knowledge, i.e., that each output

Figure 6: Patterns of invariants in the case study.

Figure 7: Example of knowledge evolution in time when

employing (periodic) knowledge exchange.

(2)

(6)(5)

invariant invariant refinement

(1)

(7)

X

(8)

P

(3)

P

(4)

A

Ge
ne
ra
l

In
va
ria
nt
s

Pr
es
en
t-‐p

as
t

In
va
ria
nt
s /

As
su
m
pt
io
ns

Ac
tiv
ity

In
va
ria
nt
s

Pr
oc
es
s/
En
se
m
bl
e

In
va
ria
nt
s

(9)

(10)

P

time

P::available

V::pAvailable

0

1

knowledge
valuation

0
1

Knowledge exchange
V::pAvailable := P::available

≤ period ≤ period

knowledge valuation
at the given time instant

73

knowledge valuation is based on the same or newer input
knowledge valuation than the previous one. In an ideal case, the
computation is instant, relating thus the current valuation of both
the input and output knowledge. Similarly to present-past
invariants, the maximal distance in the past needed to formulate
the operational normalcy is expressed by the lag of the invariant.
An example of this pattern is the invariant (5) from Figure 5: “Up-
to-date V::plan, w.r.t. P::availability and V::planFeasibility, reflecting
V::calendar is available”, which can be for parking lots 𝑃!…𝑃!
and lag 𝐿 formalized as follows:
“There is an execution of the planning activity maintaining the
condition UpToDatePlan such that at any time the valuation of
V::plan corresponds to the outcome of the activity applied on the
valuation of the input knowledge P::availability, V::planFeasibility,
and V::calendar not older than lag L. Moreover, each valuation of
V::plan is based on newer valuation of the input knowledge than
the previous one.”
In the predicate logic, it can be captured as follows:

∃𝑎!,… , 𝑎! , 𝑎!" , 𝑎!"#: 𝕋 → 𝕋,
0 < 𝑥 − 𝑎! 𝑥 ≤ 𝐿 ∀𝑖 ∈ 1. .𝑛, 𝑝𝐹, 𝑐𝑎𝑙 ,

𝑎! 𝑥 ≤ 𝑎! 𝑦 ∀𝑥, 𝑦: 𝑥 ≤ 𝑦 ∀𝑖 ∈ 1. .𝑛, 𝑝𝐹, 𝑐𝑎𝑙 ,
∀𝑡 ∈ 𝕋:

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑃!∷availability 𝑎! 𝑡 ,
⋮

𝑃!∷availability 𝑎! 𝑡 ,
𝑉∷planFeasibility 𝑎!" 𝑡 ,

𝑉∷calendar 𝑎!"# 𝑡
𝑉∷plan 𝑡

Here, the usage of a non-decreasing function 𝑎!: 𝕋 → 𝕋 rather
than a particular 𝑡! ∈ 𝕋 captures the read consistency and the fact
that V::plan may change only as the result of an execution of
a planning activity.

Again, 𝐿 equal to 0 reflects the case where the valuation of V::plan
is at each time instant up-to-date with respect to the current
valuation of P::availability of the parking lots and V::planFeasibility
of the vehicle. In other words, the associated computation activity
computes infinitely fast and infinitely often. The bigger L the
more outdated valuation of P::availability and V::planFeasibility is
considered; i.e., the slower/less often is the computation activity
expected to execute.

Similar to present-past invariants, the shortcut for the above-
described formalization of (5) from Figure 5 is:

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!"#!

𝑃!∷availability,
⋮

𝑃!∷availability,
𝑉∷planFeasibility,

𝑉∷calendar

𝑉∷plan

5.4 Process invariants
Refining an activity invariant at the lowest level of abstraction, an
invariant may take the form of a process invariant – referring to a
single component, capturing the operational normalcy to be
maintained by a (periodic) process of the component
(Section 4.4).

Such an invariant captures detailed properties of the periodic
scheduling of the process. The difference to activity invariants lies
in the fact that not only the output knowledge valuation may
change as a result of performing the computation activity alone
and must be based on current-enough input knowledge valuation,
but also that the computation activity is performed exactly once in
each period. In this context, the period is an elaboration of the
activity-predicate lag. Specifically, since we assume a component

process to be periodic and (soft) real-time, the output knowledge
valuation is determined by the release time and finish time of the
process in each period [7].

An example of this pattern is the invariant (8) from Figure 5: “Up-
to-date V::plan, w.r.t. V::availabilityList and V::planFeasibility,
reflecting V::calendar is available”, which can be for period 𝐿
formalized as follows:

“If the current time is before the finish time of the process in the
current period, then the V::plan valuation is the same as in the
previous period; i.e., it corresponds to the outcome of the process
w.r.t. the inputs V::availabilityList, V::planFeasibility, and
V::calendar at the release time of the process in the previous
period. Otherwise, V::plan corresponds to the outcome of the
process w.r.t. the inputs at the release time in this period.”
In the predicate logic, it can be captured as follows:

∃𝑅,𝐹: ℕ → 𝕋,𝑃 𝑥 − 1 ≤ 𝑅 𝑥 < 𝐹 𝑥 < 𝑃 𝑥 ,
∀𝑝 ∈ ℕ,∀𝑡 ∈ 𝑃 𝑝 − 1 ,𝑃 𝑝 :

𝑡 < 𝐹 𝑝 ⇒ 𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑉∷availabilityList 𝑅 𝑝 − 1 ,
𝑉∷planFeasibility 𝑅 𝑝 − 1 ,

𝑉∷calendar 𝑅 𝑝 − 1 ,
𝑉∷plan 𝑡

𝑡 ≥ 𝐹 𝑝 ⇒ 𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑉∷availabilityList 𝑅 𝑝 ,
𝑉∷planFeasibility 𝑅 𝑝 ,

𝑉∷calendar 𝑅 𝑝 ,
𝑉∷plan 𝑡

where 𝑃(𝑛): ℕ! → 𝕋 = 𝑛 ∗ 𝐿; i.e., the end of the n-th
period. 𝑅(𝑛) and 𝐹(𝑛) denote the release and finish time of the
real-time process in the n-th period.

Here, L approaching 0 reflects the case, where the V::plan is at
each time instant infinitely close to the up-to-date plan with
respect to the current V::availabilityList, V::planFeasibility, and
V::calendar of the vehicle.

Again, the shortcut for the above-described formalization of (8)
from Figure 5 is:

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!"#$!
𝑉∷availabilityList,
𝑉∷planFeasibility,

𝑉∷calendar
𝑉∷plan

5.5 Ensemble invariants
An activity invariant may at the lowest level of abstraction be
refined also into an ensemble invariant – capturing the operational
normalcy to be maintained by (periodic) knowledge exchange of
an ensemble among the referred components (Section 4.4).

Such an invariant captures detailed properties of the periodic
scheduling of knowledge exchange. Compared to process
invariants, an exchange invariant further accounts for the delay
connected with potential transfer of the knowledge over the
network (as required in distributed systems). The invariant thus
describes a composite computation activity consisting of the
knowledge transfer (with an upper time bound on its duration)
followed by periodic evaluation of the membership condition and
the knowledge exchange. Further, it is assumed that such
composite activities may be partially overlapping (mostly in
situations when the knowledge transfer takes longer than the
period of the knowledge exchange).

An example of this pattern is the invariant (7) from Figure 5:
“V::availabilityList – V’s belief over P::availability of trip-relevant
parking lots – is up-to-date”, which can be for parking lots 𝑃!…𝑃!,
period 𝐿, and upper bound for knowledge transfer 𝑇 formalized as
follows:

74

“If the current time is before the finish time of the knowledge
exchange for V in the current period, then the V::availabilityList
valuation is the same as in the previous period. Otherwise,
V::availabilityList equals the set of P::availability for all relevant 𝑃!
as available at V at the release time in this period. It takes at most
T for the knowledge of 𝑃! to become available at V. Further
always the newest knowledge of 𝑃! is taken into account.”
In the predicate logic, it can be captured as follows:

∃𝑎!,… , 𝑎! , : 𝕋 → 𝕋,

0 < 𝑥 − 𝑎! 𝑥 ≤ 𝑇 ∀𝑖 ∈ 1. .𝑛 ,
𝑎! 𝑥 ≤ 𝑎! 𝑦 ∀𝑥, 𝑦: 𝑥 ≤ 𝑦 ∀𝑖 ∈ 1. .𝑛 ,

∃𝑅,𝐹: ℕ → 𝕋,𝑃 𝑥 − 1 ≤ 𝑅 𝑥 < 𝐹 𝑥 < 𝑃 𝑥 ,
∀𝑝 ∈ ℕ,∀𝑡 ∈ 𝑃 𝑝 − 1 ,𝑃 𝑝 :

𝑡 < 𝐹! 𝑝 ⇒ 𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1) ,
⋮

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1) ,
 𝑉∷availabilityList 𝑡

𝑡 ≥ 𝐹! 𝑝 ⇒ 𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1) ,
⋮

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1) ,
 𝑉∷availabilityList 𝑡

where 𝑃(𝑛): ℕ! → 𝕋 = 𝑛 ∗ 𝐿; i.e., the end of the n-th
period. 𝑅(𝑛) and 𝐹(𝑛) denote the release and finish time of the
real-time knowledge exchange in the n-th period. Finally, 𝑎!(𝑡)
denotes the time at which the value of knowledge from 𝑃! that is
available at V at time 𝑡 has been sent to V.

Here, L approaching 0 reflects the case, where the
V::availabilityList is at each time instant infinitely close to the set of
the current P::availability of all the relevant parking lots.

The shortcut for the above-described formalization of (7) from
Figure 5 is:

𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡!"#
!,!

𝑃!∷availability,
⋮

𝑃!∷availability
𝑉∷availabilityList

5.6 Refinement among Invariant Patterns
Having described the invariant patterns, we will now briefly
elaborate on the refinement between invariants following the
patterns on the same/adjacent levels of abstraction in order to
provide guidelines for decomposition. In particular, we list the
expected variants of decomposition and discuss when each of the
variants is a refinement. This can serve as guidelines during
decomposition at the corresponding levels of abstraction in order
to guarantee refinement. Note that the claims below are articulated
in an informal way, while formal proofs can be found in [6].

General→Present-past. At the top level of abstraction, during
refinement of a general invariant into a conjunction of present-
past invariants, it is necessary to introduce assumption invariants
(e.g., (4) in Figure 3). Technically, these assumptions are
necessary to guarantee that maintaining the operational normalcy
based on the current and/or past knowledge valuation will
eventually result in reaching the operational normalcy based on a
future knowledge valuation. The correctness of this step has to be
proved for each case separately (e.g., via a theorem prover), which
makes it the most demanding from the formal point of view.

Present-past→Present-past. In a refinement of one present-past
invariant by means of other present-past invariants, it holds that
the combined lag of the sub-invariants is lesser or equal to the

parent’s lag. The combination is determined by the knowledge
dependencies among the sub-invariants.

Present-past→Activity. It holds that the activity invariant pattern
is a strict refinement of the present-past invariant pattern; i.e.,
𝑃!"#! 𝐼 𝑂 ⇒ 𝑃!!!! 𝐼 𝑂 for each 𝑃, 𝐼, and 𝑂.

Activity→Activity. The refinement of one activity invariant by
means of other activity invariants is similar to the case present-
past→present-past. For our predicate formalization, it is possible
to determine this form of refinement solely based on the time-
oblivious skeletons of the invariants and the structure of the
decomposition (i.e., without interpreting the full invariants via a
theorem prover).

Activity→Process. It holds that the process invariant pattern is a
refinement of the activity invariant pattern with lag equal twice
the period of the process invariant pattern; i.e.,
𝑃!"#$! 𝐼 𝑂 ⇒ 𝑃!"#!! 𝐼 𝑂 for each 𝑃, 𝐼, and 𝑂. This complies with
the well-known fact in the area of real-time scheduling: in order to
achieve a particular end-to-end response time with a real-time
periodic process with relative deadline equal to period, the period
needs to be at most half of the response time [7].

Activity→Exchange. Similarly, it holds that the exchange
invariant pattern is a refinement of the activity invariant pattern
with lag equal twice the period of the exchange invariant pattern
plus the time for distributed transfer of the knowledge; i.e.,
𝑃!"#
!,! 𝐼 𝑂 ⇒ 𝑃!"#!!!! 𝐼 𝑂 for each 𝑃, 𝐼, and 𝑂.

6. EVALUATION AND DISCUSSION
6.1 Case Study
To evaluate IRM, we have employed it during design of the case
study. As a final step, we have successfully validated the resulting
EBCS/DEECo architecture by implementing it in the jDEECo
component framework1. Since the detailed models created within
the study are proprietary, we present only a summary and lessons
learned. For a concise version of the case study, which includes
detailed design, we refer the reader to [23].

While having a single top-level goal, the design included 2
components and 20 invariants in total. In particular, 4 of them
were exchange invariants, 8 process invariants, 2 present-past
invariants, and the other 5 (excluding the top-level goal) activity
invariants.

Eventually, the design led to an EBCS/DEECo architecture
consisting of 4 ensembles among the 2 components, where one
component constituted 3 processes maintaining 6 process
invariants, while the other component constituted 1 process
maintaining 2 process invariants.

As a significant benefit, not only we were able to gradually design
a desired architecture (which could be in fact potentially obtained
using conventional design methods), but the invariant
decomposition tree also constituted a “proof of correctness” of the
design with respect to the top-level goal.

Although IRM is in general a top-down process, the important
lesson learned from the case study was that refinement is
inherently too complex to be done correctly just this way. Thus,
several iterations, series of top-down and bottom-up steps, had to
be performed to get a satisfactory design.

1 The current implementation of jDEECo is available at

https://github.com/d3scomp/JDEECo

75

6.2 Correctness by Construction
So far, we have used the predicate formalization only to illustrate
the individual invariant patterns. However, if applied consistently
throughout the whole design, it would be possible to formally
verify each of the refinement steps in support of achieving
correctness by construction.

An obvious obstacle of verification of such a complete predicate
formalization is that the predicate logic we use is fairly complex
(continuous time, quantifiers over function symbols, etc.). Thus,
verification via a theorem prover is not a viable option due to lack
of efficiency.

Nevertheless, as already indicated in Section 5.6, correctness of
particular kinds of refinement can be decided without interpreting
full invariants via a theorem prover. To date, we have formulated
and proved a theorem deciding correctness of activity→activity
predicate refinement. In particular, we have been focusing on so
called “flow decomposition” [6] where the sub-invariants
constitute a simple pipe-and-filter architecture (i.e., the kind of
decomposition used in the examples of Sections 4 and 5).

6.3 Runtime Verification
Unfortunately, not all forms of refinement can be verified via
application of theorems (e.g., general→present-past refinement).
The correctness of such refinement can, however, be addressed by
runtime verification. Although this does not provide design-time
assurances, it at least helps in detection and localization of design
errors.

An important feature of IRM with respect to runtime verification
is that IRM refinement hierarchy actually over-specifies the
system-to-be. This is because there is an implies relationship
between the sub-invariants and the parent invariant in a
refinement (recursively up to the top-level invariant). However, at
runtime it is possible to evaluate not only the lower-level
invariants but also the parent. This allows distinguishing different
types of errors from unexpected behavior. In particular, given an
invariant 𝐼 and its refinement into 𝐼!,… , 𝐼! (which means that by
definition 𝐼!,… 𝐼! ⇒ 𝐼), we can distinguish 4 different cases:

(1) All 𝐼!,… , 𝐼! hold and 𝐼 holds: Correct operation of the
system.

(2) All 𝐼!,… , 𝐼! hold and 𝐼 does not hold: Error in design –
mostly because of neglecting a hidden assumption in
refinement of 𝐼.

(3) At least one 𝐼!,… , 𝐼! does not hold and 𝐼 holds: Potential
for improvement of the design – refinement of 𝐼 is likely
to have more strict assumptions than necessary.

(4) At least one 𝐼!,… , 𝐼! does not hold and 𝐼 does not hold:
Incompatible environment – this particular refinement of 𝐼
cannot be used in the current environment.

Obviously a modification of the design may be needed when any
of cases (2) – (4) has been detected. However, the goals of the
redesign are different. While in (2) it is for correcting an obvious
error, in (3) it is to generalize the design and in (4) it is to either
extend the design or provide another design alternative suitable
for a given environment.

6.4 Novelty and Benefits
The strength of IRM lies in the fact that it directs reasoning along
the lines of what needs to hold at every time instant (expressed via
invariants) as opposed to what needs to be performed (actions) or
what should hold in the future (goals). Thus, it allows expressing
the relation of a component to its environment and itself, which is
particularly valuable for the design of autonomous adaptive RDS

that continuously interact with their environment to achieve the
desired goals.

Technically, IRM is novel in employing ensembles as a
systematic foundation for capturing knowledge interdependence
(logical and temporal) of otherwise autonomous components. This
allows keeping an appropriate level of abstraction and separation
of concerns when designing a component for an adaptive and
autonomous operation. In particular, IRM benefits from recursive
step-by-step top-down decomposition with precise refinement
semantics. The refinement semantics is special in the sense that it
reflects operational and communication delays (inherent to actual
RDS implementations) by exploiting the concepts of belief and
knowledge exchange.

7. RELATED WORK
The iterative refinement of invariants found in IRM is reminiscent
of goal-oriented requirements analysis from the field of
requirements engineering [22]. In particular, the Keep All Object
Satisfied (KAOS) method [20] is a well-established method for
capturing and analyzing system requirements in form of goals,
assumptions, and domain properties. The idea is to decompose the
abstract high-level goals into more concrete sub-goals up to the
level where goals represent requirements that can be handled by
individual system agents. Since goals can be formulated in first-
order linear temporal logic [2], the goal model can be formally
checked for consistency and completeness [20]. Pre-defined,
verified patterns can also be used to guide the goal decomposition
process [11]. A similar approach is employed within Tropos
method [8], where goals, soft-goals, tasks and dependencies are
modeled and analyzed from the perspective of the autonomous
agents. However, these models either do not map effectively to
the later development phases (KAOS), or do not support mapping
to emergent architectures (Tropos), which are typical in
EBCS [13].
Recent work in requirements modeling specifically targeting the
domain of EBCS has been carried out within the scope of the
ASCENS project and has been integrated into the Statement of the
Affairs (SOTA) [1] and POEM [15] models. The key idea of
SOTA is to abstract the behavior of a system with a single
trajectory through a state space, which represents the set of all
possible states of the system at a single point of time. The
requirements of a system in SOTA are captured in terms of goals.
A goal is an area of the SOTA space that a system should
eventually reach, and it can be characterized by its pre-condition,
post-condition, and utilities. Thus SOTA provides the means to
capture the early requirements of different component cooperation
schemes. IRM, on the other hand, stands as an intermediate
method, which guides the transition from early (high-level)
requirements to system architecture in terms of components and
ensembles.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel Invariant Refinement
Method (IRM), targeting architectural design of Resilient
Distributed Systems (RDS) by building on the concepts of
Ensemble-Based Component Systems (EBCS). IRM is
a systematic design method which starts with the overall system
goal and ends up by establishing a system architecture composed
of components and ensembles. Building on goal-based
requirements elaboration, IRM integrates additional aspects such
as architecture refinement and (soft) real-time scheduling.

IRM raises a number of interesting questions for further research.
In particular, they include: (i) providing a formal framework (i.e.,

76

definitions and theorems) for deciding correctness of refinement
within a suitable predicate formalization of invariants, (ii)
focusing on RDS with respect to changes in the environment on
efficient representation of the environment during the design; (iii)
thoroughly exploring the application of IRM for runtime
verification. Also, as a future work, we aim at obtaining
automated tools for IRM that would help guide design decisions
during refinement and check correctness of the resulting design.
These include technical tools for checking (syntactic) consistency
of the design, as well as tools exploiting a formal framework
and/or employing formal reasoning for checking (semantic)
correctness.

9. ACKNOWLEDGMENTS
This work was partially supported by the EU project ASCENS
257414 and the Grant Agency of the Czech Republic project
P103/11/1489. The work was also partially supported by Charles
University institutional funding SVV-2013-267312.

10. REFERENCES
[1] D.B. Abeywickrama, N. Bicocchi, and F. Zambonelli.

SOTA: Towards a General Model for Self-Adaptive
Systems. In Proc. of WETICE ’12, 2012.

[2] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-
time properties. In Proc. of FSTTCS ‘06, 2006.

[3] F. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley, 2007.

[4] T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, J.
Kofron, M. Loreti, and F. Plasil. Language Extensions for
Implementation-Level Conformance Checking. ASCENS
Deliverable 1.5. Available at: http://www.ascens-
ist.eu/deliverables, 2012.

[5] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl,
M. Kit, and F. Plasil. DEECo – an Ensemble-Based
Component System. In Proc. of CBSE 2013, ACM, 2013.

[6] T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil.
Formalization of Invariant Patterns for the Invariant
Refinement Method. Technical Report no. D3S-TR-2013-04.
D3S, Charles University in Prague. Available at:
http://d3s.mff.cuni.cz/publications, 2013.

[7] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-
Time Systems: Predictability vs. Efficiency, ser. Series in
Computer Science, R. G. Melhem, Ed. Springer US, 2005.

[8] J. Castro, M. Kolp, L. Liu, and A. Perini. Dealing with
Complexity Using Conceptual Models Based on Tropos. In
Conceptual Modeling: Foundations and Applications. Ser.
LNCS, Springer Berlin, Heidelberg, vol. 5600, 2009.

[9] I. Crnkovic. Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[10] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based
development process and component lifecycle. Software
Engineering Advances, 44, 2006.

[11] R. Darimont, and A. van Lamsweerde. Formal refinement
patterns for goal-driven requirements elaboration. In Proc. of
SIGSOFT ’96, 1996.

[12] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A
Language-based Approach to Autonomic Computing. In
Proc. of FMCO ’11, 2012.

[13] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position
Paper: Towards a requirements-driven design of ensemble-
based component systems. In Proc. of International
Workshop on Hot Topics in Cloud Services, ICPE ’13, 2013.

[14] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of
software-intensive systems: State of the art and research
challenges. In Software-Intensive Systems and New
Computing Paradigms. Ser. LNCS, Springer Berlin,
Heidelberg, vol. 5380, 2008.

[15] M. Holzl, et al. Engineering Ensembles: A White Paper of
the ASCENS Project. ASCENS Deliverable JD1.1.
Available at: http://www.ascens-ist.eu/whitepapers, 2011.

[16] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing–degrees, models, and applications. ACM
Computing Surveys, 40, 3, 2008.

[17] IBM. An architectural blueprint for autonomic computing.
IBM White Paper, 2003.

[18] N. R. Jennings. On agent-based software engineering.
Artificial intelligence. 117, 2000.

[19] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. In Proc. of WICSA/ECSA 2012,
IEEE CS, 2012.

[20] A. Lamsweerde. Requirements engineering: from craft to
discipline. In Proc. of SIGSOFT ’08/FSE-16, 2008.

[21] A. Rao, and M.P. Georgeff. BDI agents: From theory to
practice. In Proc. of ICMAS ’95, 1995.

[22] N. U. Rehman, S. Bibi, S. Asghar, and S. Fong. Comparative
Study of Goal-Oriented Requirements Engineering. In Proc.
of NISS ’10, 2010.

[23] N. Serbedzija, et al. Ensemble Model Syntheses with Robot,
Cloud Computing and e-Mobility. ASCENS Deliverable 7.2.
Available at: http://www.ascens-ist.eu/deliverables, 2012.

[24] Y. Shoham, and K. Leyton-Brown. Multiagent Systems:
Algorithmic, GameTheoretic, and Logical Foundations,
Cambridge University Press, 2008.

[25] J. A. Stankovic , T. He , T. Abdelzaher , M. Marley , G. Tao,
S. Son , and C. Lu. Feedback control scheduling in
distributed real-time systems. In Proc. of RTSS ‘01, 2002.

[26] E. Vassev, and M. Hinchey. The Challenge of Developing
Autonomic Systems. Computer, 43, 12, 2010.

77

4.4 Formalization of Invariant Patterns for the

Invariant Refinement Method

Tomáš Bureš,

Ilias Gerostathopoulos

Jaroslav Keznikl,

František Plášil,

Petr Tůma

In the Software, Services and Systems.

Volume 8950 of Lecture Notes in Computer Science,

published by Springer International Publishing,

pages 602-618,

print ISBN 978-3-319-15544-9,

online ISBN 978-3-319-15545-6,

2015.

The original version is available electronically from the publisher's site

at http://dx.doi.org/10.1007/978-3-319-15545-6_34.

http://dx.doi.org/10.1007/978-3-319-15545-6_34

Chapter 4. Commented Collection of Papers

78

Summary of the Paper

This paper, published as [BGK+15], is a direct continuation of the research work on the

Invariant Refinement Method (IRM), introduced in the paper included in Section 4.3; it also

contributes to meeting the objective O2. As in that paper, the focus is on the domain

ensemble-based systems, i.e. software-intensive Cyber-Physical Systems modeled accord-

ing to the ensemble paradigm (Section 2.2.2).

The main idea of the paper is to elaborate on the formal framework of IRM (pro-

posed in the paper of Section 4.3) that guides the decomposition of higher-level invari-

ants into conjunctions of lower-level sub-invariants. At each decomposition, the conjunc-

tion of sub-invariants implies the parent invariant. This complies with the traditional

interpretation of refinement in software engineering, where the products of refinement

(sub-invariants, sub-components, etc.) collectively exhibit the behavior of the refined el-

ement (parent invariant, composite component, etc.) and potentially more. In order to

help the designer in the invariant refinement process, a set of patterns of invariants at

different levels of abstraction, and a number of rules to transition between them have

been previously proposed (see Section 4.3). In this paper, the invariant patterns are for-

malized, and formal means are given to decide upon the correctness of the refinement.

Following the formally proven refinement rules automatically endorses an IRM design

with “correctness by construction” guarantees, and adds to the overall dependability of

the underlying ensemble-based system.

 Technically, each of the five identified invariant patterns – general, present-past,

activity, process, and exchange invariant – are defined as logic predicates (in a second

order predicate logic with arithmetic) according to the knowledge evolution that they

describe. Correctness by construction is provided by establishing the relations that have

to hold between invariant patterns involved in a correct decomposition in the form of

mathematical proofs in the aforementioned logic. An important proof is that of a recur-

rent type of decomposition termed pipeline decomposition. In a pipeline decomposition

the children reflect simple pipeline-like flows among the corresponding activities that

refine the parent activity. Finally, more complex refinement types are discussed and

common mistakes that arise in their formal proofs are identified.

Comments on Authorship

In this paper, I personally contributed in the elaboration and refinement of the definition

of the different invariant patterns and their formalization, and of the formal proofs for

their correct decomposition. I was also responsible for positioning the work against the

related work, in particular that of KAOS, Tropos, and UML 2 interaction diagrams.

79

Formalization of Invariant Patterns for the
Invariant Refinement Method

Tomáš Bureš, Ilias Gerostathopoulos, Jaroslav Keznikl,
Frantǐsek Plášil, and Petr Tůma

Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic
{bures,iliasg,keznikl,plasil,tuma}@d3s.mff.cuni.cz

Abstract. Refining high-level system invariants into lower-level soft-
ware obligations has been successfully employed in the design of ensemble-
based systems. In order to obtain guarantees of design correctness, it is
necessary to formalize the invariants in a form amenable to mathemati-
cal analysis. This paper provides such a formalization and demonstrates
it in the context of the Invariant Refinement Method. The formalization
is used to formally define invariant patterns at different levels of abstrac-
tion and with respect to different (soft) real-time constraints, and to
provide proofs of theorems related to refinement among these patterns.

Keywords: architecture refinement, requirements, assume-guarantee

1 Introduction

Invariant-based design is advantageous for designing adaptive self-organizing sys-
tems formed by ensembles of autonomic components [7–9] – see e.g. SOTA [1] –
as it explicitly captures the valid states of the system, i.e., the invariant proper-
ties of a correct system. Such ensemble-based systems [2] operate autonomously
in an open-ended environment, and invariants are well-suited for capturing the
properties of a component with respect to its environment.

The problem of invariant refinement is that the requirements of a system
are typically described in a much higher level of abstraction than the properties
(invariants) of the individual constituents of system architecture (components,
component processes, ensembles). The transition from high-level obligations to
low-level constraints includes a number of design choices without firm borders
and guidelines, and thus is prone to errors.

In our work we have proposed to bridge this gap by gradual step-wise refine-
ment (decomposition) of invariants, which ends up with detailed specification
of the behavior of the involved architectural elements – ensembles, components.
We call this approach Invariant Refinement Method – IRM [2, 10]. IRM how-
ever requires the steps of the refinement to be well-defined (ideally formally), so
that the refinement itself represents a proof of the correctness of the design. In

80

other words, it is necessary to have (formal) means allowing for deciding upon
the correctness of the refinement.

Having a formal framework that formalizes these relations allows for (i)
design-time guarantees of design correctness, i.e., guarantees that the system
design truly addresses the high-level requirements, and (ii) runtime monitoring,
i.e., detection of discrepancies in system design during execution.

In this paper we provide such a formal framework, and also provide math-
ematical proofs of “correctness by construction”, as a continuation of the work
presented in [10]. To do so, we first describe and formalize the invariant con-
cept and invariant refinement in the light of our running example (Section 2).
We then provide a formal account of the invariant patterns that can guide the
IRM design (Section 3), and provide the main contribution of the paper, i.e.,
the set of theorems and lemmas that formally ground the relations between the
invariant patterns (Section 4). Finally, we discuss some of the implications of
our approach and conclude (Section 5).

Personal Note: Ideas presented in this paper have been inspired by the work of
Martin Wirsing in the field of formal software engineering of autonomous service-
components. We have known Martin for a long time, and we have been able to
stay up-to-date with the advancements of his research group at LMU, as one of
the authors has been a visiting professor at LMU for the past years. We have also
had the opportunity to work with him and his colleagues from his department
in the ASCENS project, which he was coordinating. Cooperating with Martin
is always both enjoyable and inspiring, not only because of his firm knowledge
and fresh ideas, but also because of his kind and welcoming personality.

1.1 Running Example

To illustrate the IRM-based design, we use a running example from the ASCENS
e-mobility case study [14]. In this case study, electric vehicles (e-vehicles) have
to coordinate in order to reach particular places of interest (POIs) within cer-
tain time constraints specifying the expected POI arrival and departure times,
as prescribed by the drivers’ daily schedules (calendars). At the same time, e-
vehicles compete for stopovers in limited energy charging stations (CSs) along
their route. Specifically, each e-vehicle has to plan its individual trip according
to the driver’s calendar and the (perceived) available time slots for charging at
each relevant charging station. This results in a fully decentralized – and thus
scalable – system.

To simplify the presentation of our approach, we assume for the running
example that each vehicle has a single driver and a single destination POI. This
results in the scenario where the goal of every vehicle is to reach its POI in
time, while visiting charging stations during the trip if necessary. The charging
stations may however become unavailable at any time and thus it is necessary
to introduce monitoring of charging stations and potential re-planning.

81

2 Background

2.1 Invariant refinement

In principle, IRM employs invariants to describe a desired state of the system-
to-be at every time instant; i.e., to describe the operational normalcy of the
system-to-be, essential for its continuous operation. When using IRM to design
ensemble-based systems, the objective is to refine the overall system goal(s) in
an iterative way and end up with the invariants that concern the individual
constituents of system architecture – components, component processes, and
ensembles.

The refinement is performed by decomposing a higher-level invariant into a
set of lower-level sub-invariants (AND-decomposition). In order for the decom-
position of a parent Ip into the children Is1, . . . , Isn to be an actual refinement,
the conjunction of the children have to entail the parent, i.e., it has to hold:

Is1 ∧ . . . ∧ Isn ⇒ Ip (entailment)
Is1 ∧ . . . ∧ Isn 6⇒ false (consistency)

This type of decomposition is applied iteratively, starting from the high-
level invariants that reflect system-level goals and ending with low-level ones
that refer to a single component or an ensemble of components. The outcome is
a graph capturing the structural elaborations and design decisions at different
abstraction levels. Since each decomposition step may involve a design decision,
it is important to ensure that this decision complies with the entailment and
consistency conditions.

Invariant refinement of the running example. An invariant-based design
of a system targeting the running example is presented in Figure 1. A description
of each individual invariant follows.

(1) This is the main goal of the scenario.
(2) This expresses a specific requirement on the designed system and the vehi-

cle’s planner input in particular. In this context, a plan is a black-box giving
for each time instance the expected position of the vehicle at that time.

(3) This reflects the assumption that the plan is always realistic (i.e., that it is
actually possible to follow it given the traffic and car characteristics), and
that the driver would follow it precisely.

(4) This expresses the assumption that charging station availability does not
change too quickly and that the initial set-up of the environment is “planning-
friendly”.

(5) A specific system requirement that constrains the input and timing of the
planner. In particular, we assume read consistency with respect to the belief
(i.e., new plan is always based on the same or newer belief than the previous
plan). Moreover, (5) and (6) together represent the design decision of divid-
ing the activity of computing the plan from remote data into two activities
of (i) creating a local belief of the remote data and (ii) computing the plan
from the local belief.

82

(1) The vehicle reaches its

destination in time

(4) When considering CS
data no older than 10
minutes, the planner

schedules reaching the

destination in time.

(3) The vehicle’s position is
always in sync with the

current plan.

(6) The belief of the vehicle
over CS data is at most 4

minutes old.

(8) The vehicle updates its
belief (over CS data)

periodically every 2 minutes.

(2) The vehicle’s plan is
always based on CS data at

most 6 minutes old.

(5) The vehicle's plan is
always computed from the
local belief (over CS data) at

most 2 minutes old.

(7) The vehicle computes
the plan from the local

belief (over CS data)

periodically every 1 minute.

Fig. 1. Invariant refinement of the running example.

(6) A specific system requirement that constrains the timing of charging station
monitoring and belief updating.

(7) A specific system requirement precisely determining the input and timing of
the planner. In particular, we assume real-time periodic computation.

(8) A specific system requirement precisely determining the timing of CS moni-
toring. In particular, we assume (distributed) real-time periodic monitoring.

Note that the invariant-based design such as the one presented in Figure 1
is hardly ever a product of a top-down design process. In practice, a mixed
top-down/bottom-up process is followed, where sub-invariants are identified by
asking “how can this invariant be satisfied” and parent invariants are identified
by asking “why should this invariant(s) be satisfied”.

2.2 Invariant formalization

In general, the goal of invariant-based system design is to formally capture prop-
erties of a valid system. Thus, we will first discuss the necessary characteristics
of such formalization (i.e., characteristics implied by the domain).

In the domain of (soft) real-time component ensembles, the way of expressing
properties of a valid system is, as indicated by the running example, to capture a
valid evolution of knowledge values in time. To do that, the underlying formalism
has to provide means for referring to knowledge values at arbitrary time instants.
When generalized, we can say the formalism needs to refer to timed sequences
of knowledge values (i.e., timed streams of data), which provide a complete view
on the knowledge value evolution in time.

83

This is explicitly formalized in the following definitions, where we consider

time to be a non-negative real number, i.e., T def
= R+

0 .

Definition 1. (Knowledge and its valuation) Knowledge is a set K = {k1, . . . kn}
of knowledge elements, where the domain of ki is denoted as Vi. Knowledge val-
uation of element ki is a function T → Vi which for each time t yields a value
of ki (denoted ki[t]).

Definition 2. (Invariant) An invariant is a predicate (in a higher-order predi-
cate logic with arithmetic) over knowledge valuation and time.

In general, an invariant may refer to the knowledge valuation at an arbitrary
time point/interval.

As further illustrated by the running example, when formalizing system de-
sign, it is critical to introduce formal assumptions about the environment of
the system. Although this is often omitted in informal design approaches, with-
out explicit assumptions the formalized system design is neither complete nor
correct. Thus we differentiate between two types of invariants:

– System invariants reflect properties of the individual architectural elements
of the system. Their validity is to be ensured by the implementation of the
system.

– Assumptions reflect the properties of the system’s environment assumed by
system invariants. Validity of these invariants is usually out of control of the
designer and is necessary for correct operation of the implementation.

For example, invariant (2) from the running example is a system invariant
while invariant (4) is an assumption.

3 Invariant patterns

In general, the form of invariants is not explicitly restricted. However, at par-
ticular levels of abstraction (when describing architectural elements) there are
several patterns virtually omnipresent in any invariant-based design [10]. It is
thus beneficial to have means for concise and consistent representation of such
invariant patterns.

General invariants. At the highest abstraction level, general invariants relate
to system-level goals. They capture the operational normalcy of a system by re-
lating the past and current knowledge valuations to future knowledge valuations.
Therefore, a general invariant can have an arbitrary internal structure.

Present-past invariants. At a lower abstraction level, the invariants express
that some knowledge is based on other knowledge, which, at the same time, is
no older than a particular time interval – lag. This reflects the fact (abstracted
by general invariants) that software systems cannot employ future knowledge to

84

maintain their operational normalcy, but have to depend on present and/or past
knowledge instead.

In this case, such invariants typically capture that there is a particular rela-
tion (frequently capturing a post-condition P of a computation) between current
knowledge and knowledge no older than the lag L. In the idealized case where
all components have always up-to-date beliefs and their actions are instant the
lag is equal to zero. In general, though, the lag is inversely proportional to the
observed precision (assuming that precision depends on the oldness of observed
data) and robustness (as in the case of real-time software control systems).

Definition 3. (Present-past invariants) For a predicate P capturing the relation
between valuation of knowledge elements I1, . . . , In and O1, . . . , Om, and the lag
L, the expression PLp−p[I1, . . . , In][O1, . . . , Om] denotes the following present-past
invariant:

∀t ∈ T,∃t1, . . . , tn : 0 ≤ t− ti ≤ L, i ∈ 1..n :

P (I1[t1], . . . , In[tn], O1[t], . . . , Om[t])

In this context, we call I1, . . . , In “input” variables and O1, . . . , Om “output”
variables of the invariant so as to denote the correspondence of these variables
to the inputs/outputs of the computation that is responsible for maintaining the
invariant.

During refinement of a general invariant into (a conjunction of) present-past
invariants, it is necessary to introduce assumptions to guarantee that main-
taining the operational normalcy based on the current and/or past knowledge
valuation will eventually result in reaching the operational normalcy based on a
future knowledge valuation – e.g. assumption (4) in Figure 1.

Activity invariants. Another frequent form of timed invariants, used at a lower
level of abstraction, closely reflects properties of a (soft) real-time activity while
assuming read consistency with respect to the input knowledge of this activity,
i.e., that each output knowledge valuation is based on the same or newer input
knowledge valuation than the previous one. This is illustrated in Figure 2.

In this case, an activity invariant captures that the output knowledge val-
uation changes only as a result of performing the activity. Moreover, although
reading the input knowledge of the activity, as well as computing and writing
the output knowledge, takes some time, it never (altogether) exceeds the corre-
sponding time limit (i.e., lag).

More rigorously, at any time the output knowledge valuation corresponds
to the outcome of the activity applied on input knowledge valuation not older
than the lag. Moreover, each output is based on same or newer inputs than the
previous output.

Definition 4. (Activity invariant) For a predicate P reflecting the post-condition
of an activity with inputs I1, . . . , In and outputs O1, . . . , Om, and for lag L, the

85

time

I1

I2

O

0

0

0

1

1

1

2

2

4

t1a2(t1)a1(t1) a1(t2) t2a2(t2) a1(t3)a2(t3) t3

≤L ≤L ≤L

valuation

Fig. 2. Illustration of a valid knowledge valuation with respect to an activity where
the output O represents sum of inputs I1 and I2, while meeting lag L.

expression PLact[I1, . . . , In][O1, . . . , Om] denotes the following activity invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ L, ai non-decreasing, i ∈ 1..n :

P (I1[a1(t)], . . . , In[an(t)], O1[t], . . . , Om[t])

where the non-decreasing function ai gives for each time t the corresponding
time t′ such that the valuation of Ii at t′ was “used to compute” the valuation
of O1, . . . , Om at t, as shown in Figure 2.

Process invariants. At the lowest level of abstraction (i.e., in the leaves of the
invariant decomposition), an activity invariant that captures local computation
(i.e., with no distributed knowledge involved) while assuming read consistency
is refined into an invariant capturing a periodic real-time component process –
a process invariant.

Compared to activity invariants, process invariants introduce the additional
constraint that the activity is performed exactly once in every period. The period
thus becomes an elaboration of the activity lag, and the output knowledge eval-
uation is determined by the release time (time at which a task becomes ready
for execution) and finish time in each period [3].

Specifically, such an invariant captures that if the current time is before the
finish time of the process in the current period, then the outputs are the same as
in the previous period (i.e., they correspond to the inputs used in the previous
period). Otherwise, the outputs correspond to the inputs at the release time of
the process in this period.

Definition 5. (Process invariant) For a predicate P reflecting the post-condition
of a periodic real-time process with inputs I1, . . . , In, outputs O1, . . . , Om, and

86

period L, the expression PLproc[I1, . . . , In][O1, . . . , Om] denotes the following pro-
cess invariant:

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[R(p− 1)], . . . , In[R(p− 1)], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[R(p)], . . . , In[R(p)], O1[t], . . . , Om[t])

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time process in the n-th period.

Note that unlike activity invariants, there is the same R for each I, reflecting
that at the release time the process reads all the inputs atomically.

Exchange invariants. Similar to a process invariant, an activity invariant at
the lowest level of abstraction that captures establishment of a belief (that can
be addressed by ensemble knowledge exchange) while assuming distributed read
consistency is refined into an invariant capturing periodic knowledge exchange
of an ensemble – an exchange invariant.

Contrary to process invariants, exchange invariants assume that the input
values might have been read at different times, since the inputs are potentially
distributed (however, the times have to fit into the same period). Another differ-
ence is that exchange invariants consider also the knowledge propagation delays
stemming e.g. from delays in data transfer over the network. An exchange invari-
ant thus models a composite activity consisting of (i) knowledge transfer (with
an upper bound on its duration), and (ii) periodic evaluation of the membership
condition and knowledge exchange.

An important assumption is that each component executes the incoming
knowledge exchange (i.e., knowledge exchange that updates the local compo-
nent’s knowledge) on its own, while the other components asynchronously send
the required input knowledge. These composite activities may be partially over-
lapping to cater for situations where the knowledge transfer time is larger than
the knowledge exchange period.

Definition 6. (Exchange invariant) Let P be a predicate reflecting the post-
condition of a periodic knowledge exchange with inputs I1, . . . , In, outputs O1, . . . ,
Om, and period L. Provided that it takes at most T for the knowledge to be-
come available at the component executing the knowledge exchange, the expres-
sion PL,Texc [I1, . . . , In][O1, . . . , Om] denotes the following exchange invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ T, ai non-decreasing, i ∈ 1..n :

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[a1(R(p− 1))], . . . , In[an(R(p− 1))], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[a1(R(p))], . . . , In[an(R(p))], O1[t], . . . , Om[t])

87

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time knowledge exchange in the
n-th period. Finally, ai gives for each time t the corresponding time t′ such that
the valuation of Ii that was available to the component executing the knowledge
exchange at t was sent to the component at t′.

Note, that there is a (potentially) different ai for each Ii, reflecting that
the inputs can be sent to the component executing the knowledge exchange at
different times. Moreover, there is the same t for each Oi, which corresponds to
the assumption, that knowledge exchange is unidirectional, i.e., it writes only
into the knowledge of one component, and thus the writes can be atomic.

3.1 Illustration of invariant patterns on the running example

Using the above-defined invariant patterns, the case-study invariants can be
formalized as follows. Note that the patterns are not applicable for invariants 1
and 3, and are only partially applicable for invariant 4 (only for the left hand side
of the implication), since 1 is a general invariant and 3 and 4 are assumptions.

(1) The vehicle reaches its destination in time:

∃t ∈ T, t ≤ DEADLINE : v.pos[t] = DEST

(2) The vehicle’s plan is always based on CS data at most 6 minutes old:

Plan6min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

where the Plan predicate denotes the post-condition of the planning algo-
rithm given the current time, current position, current charge, and CS data.

(3) The vehicle’s position is always in sync with the current plan:

∀t ∈ T : v.pos[t] = v.plant

(4) When considering CS data no older than 10 minutes, the planner schedules
reaching the destination in time.

Plan10min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

⇒ ∃t′ ∈ T, t′ ≤ DEADLINE : v.plan[t](t′) = DEST

(5) The vehicle’s plan is always computed from the local belief (over CS data)
at most 2 minutes old.

Plan2min
act [t, v.pos, v.charge, v.belief][v.plan]

(6) The belief of the vehicle over CS data is at most 4 seconds old.

Belief4min
p−p [CS1, . . . , CSn][v.belief]

where the Belief predicate denotes the condition of the vehicle’s belief being
equal to the CS data.

88

(7) The vehicle computes the plan from the local belief (over CS data) periodically
every 1 minute.

Plan1min
proc [t, v.pos, v.charge, v.belief][v.plan]

(8) The vehicle updates its belief (over CS data) periodically every 2 minutes.

Belief2min
exc [CS1, . . . , CSn][v.belief]

Naturally, the usage of invariant patterns particularly simplifies the lower-
level, more technical invariants that capture computation activities. This allows
for more concise and consistent invariant-based design.

4 Correctness by construction

A simplification of invariant-based design is not the only benefit of using the
invariant patterns during invariant-based design. The main advantage is the
ability of formal reasoning on the level of patterns instead of reasoning on the
level of predicate logic upon knowledge valuations (since state-of-the-art theorem
provers for such complex logics still do not have the necessary performance).

Thus, we propose a formal framework allowing for formal reasoning on the
level of invariant patterns.

4.1 Basic pattern relations

First, we elaborate on the basic relations of the invariant patterns which cor-
respond to the natural relations among the related software concepts of activ-
ity/activity with read consistency/process/ensemble.

A straightforward observation for a present-past invariant is that, given a
particular knowledge valuation, if the outputs are always based on inputs within
the given time limit, increasing the limit maintains this property. A similar obser-
vation holds for activity invariants. This is formalized in the following theorem.

Theorem 1. (Maximal lag refinement) For K ≤ L:

PKp−p[I1, . . . , In][O1, . . . , Om]⇒ PLp−p[I1, . . . , In][O1, . . . , Om]

PKact[I1, . . . , In][O1, . . . , Om]⇒ PLact[I1, . . . , In][O1, . . . , Om]

Proof. A direct corollary of the lag/activity invariant definition. In particular,
the existence of ti such that 0 < t− ti ≤ K in PKp−p[I1, . . . , In][O1, . . . , Om] guar-

antees the existence of ti such that 0 < t−ti ≤ L in PLp−p[I1, . . . , In][O1, . . . , Om]
(similarly for ai and 0 < x− ai(x) ≤ L). �

One can also observe that the requirement of read consistency of inputs in
addition to the time limit (in activity invariants) is a stronger requirement than
the time limit only (in present-past invariants); this is formalized in the following
theorem.

89

Theorem 2. (Activity invariant implies present-past invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PLact[I][O]⇒ PLp−p[I][O]

Proof. The existence of t1, . . . , tn for PLp−p[I][O] is given by a1, . . . , an of PLact[I][O].
In particular, ∀t we set ti = ai(t). �

A similar theorem can be formulated for the process and activity invariants.
Here, the idea is that, in reality, a periodic process is actually a strict refinement
of an activity with read consistency and time limit on input data. However,
instead of considering the same time limit for both invariants as in previous
cases, the activity invariant needs twice the time limit of the process invariant.
This also complies with the well-known fact in the area of real-time scheduling: in
order to achieve a particular end-to-end response time with a real-time periodic
process, the period needs to be at most half of the desired response time [3]. For
our invariant patterns, this fact is formalized in the following theorem.

Theorem 3. (Process invariant implies activity invariant) Assuming that I =
I1, . . . , In and O = O1, . . . , Om, it holds:

PLproc[I][O]⇒ P 2L
act[I][O]

Proof. Without loss of generality let us assume that |I| = |O| = 1. Given t ∈ T
let p =

⌈
t
L

⌉
. The required a : T → T for P 2L

act[I][O] is given by R and F from
PLproc[I][O] as follows:

a(t) =

{
R(p− 1) if t < F (p)
R(p) if t ≥ F (p)

First, we prove that 0 < t− a(t) ≤ 2L. Since p =
⌈
t
L

⌉
, then also (p− 1) ·L ≤

t ≤ p · L. According to Definition 5, E(p − 1) ≤ R(p) < F (p) ≤ E(p), where
E(p) = p·L. Therefore, given the properties of R, F , and a(t), we have E(p−2) ≤
R(p − 1) ≤ a(t) and a(t) < t. Together, we have (p − 2) · L ≤ a(t) < t ≤ p · L.
Therefore, 0 < t− a(t) ≤ 2L.

Further, a is non-decreasing since R and F are non-decreasing. Thus, from
PLproc[I][O] we get P 2L

act[I][O]. �

Similarly, it holds that the exchange invariant pattern is a refinement of
the activity invariant pattern with lag equal twice the period of the exchange
invariant pattern plus the time for distributed transfer of the knowledge, as
formulated by the following theorem.

Theorem 4. (Exchange invariant implies activity invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PL,Texc [I][O]⇒ P 2L+T
act [I][O]

90

Proof. The proof is similar to Theorem 3, differing only in the part relevant
to knowledge transfer over network. For the purpose of the proof, we denote
Ri(p) = ai(R(p)),∀p ∈ N for R and ai from PL,Texc [I][O].

Given t ∈ T let p =
⌈
t
L

⌉
. The required ai : T → T for P 2L+T

act [I][O] is given
by Ri and F from PL,Texc [I][O] as follows:

ai : (t) =

{
Ri(p− 1) if t < F (p)
Ri(p) if t ≥ F (p)

First, we prove that 0 < t − ai(t) ≤ 2L + T . Since p =
⌈
t
L

⌉
, then also

(p − 1) · L ≤ t ≤ p · L. According to Definition 6, E(p − 1) − T ≤ R(p) − T ≤
Ri(p) < F (p) ≤ E(p), where E(p) = p·L (recall that x−aensi (x) ≤ T). Therefore,
given the properties of Ri, F , and a(t), we have E(p− 2)−T ≤ Ri(p− 1) ≤ a(t)
and a(t) < t. Together, we have (p − 2) · L − T ≤ a(t) < t ≤ p · L. Therefore,
0 < t− a(t) ≤ 2L + T .

Further, ai is non-decreasing since Ri and F are non-decreasing. Thus, from
PL,Texc [I][O] we get P 2L+T

act [I][O]. �

4.2 Pipeline decomposition

Here, we present a logical framework that would enable for formal reasoning
about refinement in a particular form of decomposition – pipeline decomposi-
tion, which due to its relative generality covers most practical cases of invariant
decomposition. Specifically, we focus on the level of activity invariants, as they
represent a suitable level of abstraction, generalizing both process and exchange
invariants.

As an important observation, the fact that a decomposition is actually a
refinement of the parent invariant is, with respect to time, largely affected by
sharing of invariant variables among the child invariants. Thus, we introduce the
concept of dependency chain. A vector of activity invariants forms a dependency
chain if some of the output variables of a invariant in the vector are among
the input variables of the next invariant in the vector. This is formalized in the
following definition.

For brevity, we introduce the following notation. Given an activity (or pro-
cess/exchange) invariant PLact[I1, . . . , In][O1, . . . , Om], In(P) denotes the set {I1,
. . . , In}, while Out(P) denotes the set {O1, . . . , Om}.

Definition 7. (Dependency chain) Each vector
(
P1

L1
act, . . . , Pp

Lp

act

)
of invariants

forms a dependency chain iff:

∀i ∈ {1, . . . , p− 1} ∃O, I :

O ∈ Out(Pi) ∧ I ∈ In(Pi+1) ∧O = I

In a pipeline decomposition the children reflect simple pipeline-like flows
among the corresponding activities that refine the parent activity. A formal
interpretation is given in the following definition.

91

Definition 8. (Pipeline decomposition) Having a parent invariant PLact, a set

of child invariants
{
Pi
Li
act, i = 1..p

}
forms a pipeline decomposition of PLact iff:

(i) each input variable of the parent is an input variable of exactly one child:

∀I ∈ In(P) ∃!j ∈ {1, . . . , p} : I ∈ In(Pj)

(ii) each output variable of the parent is an output variable of exactly one child:

∀O ∈ Out(P) ∃!j ∈ {1, . . . , p} : O ∈ Out(Pj)

(iii) the decomposition includes only such dependency chains, in which (a) all
input variables of the first invariant are input variables of the parent, (b) all
output variables of the last invariant are output variables of the parent,
(c) for each two consecutive invariants within the dependency chain, the
output variables of the former are exactly the input variables of the latter:

∀C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C dependency chain:

In(Pi1) ⊆ In(P) ∧Out(Piq) ⊆ Out(P)

∧ ∀j = i1..iq−1 Out(Pj) = In(Pj+1)

(iv) the decomposition includes only such dependency chains that do not share
input/output variables:

∀C1 =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C1 dependency chain,

∀C2 =
(
Pj1

Lj1
act , . . . , Pjr

Ljr
act

)
, {j1, . . . , jr} ⊆ {1, . . . , p} , C2 dependency chain,

∀PkLk
act ∈ C1,∀Pl

Ll
act ∈ C2 :

C1 6= C2 ⇒
(
In(Pk

Lk
act) ∪Out(Pk

Lk
act)
)
∩
(
In(Pl

Ll
act) ∪Out(Pl

Ll
act)
)

= ∅

An example is the decomposition of (2) into (5) and (6) in the running example.
Intuitively, the definition of pipeline decomposition requires the children to

reflect simple parallel pipeline-like flows (dependency chains) among the corre-
sponding activities that refine the parent activity.

For pipeline decomposition, a straightforward rule for determining refinement
can be formulated. In a correct refinement, provided that the decomposition is
logically consistent with the parent invariant when not considering time, the lag
of the parent invariant should be at least the sum of the lags of the invariants
in the longest (in terms of time) pipeline (i.e., dependency chain) of the decom-
position. Indeed, this intuitive observation was confirmed in our invariant-based
formalism as demonstrated in the following theorem.

Theorem 5. (Activity invariant pipeline refinement) Having invariant PLact

[I1, . . . , In][O1, . . . , Om] and its pipeline decomposition D =
{
P1

L1
act, . . . , Pp

Lp

act

}
,

the decomposition is a refinement of the parent, i.e., it holds that P1
L1
act ∧ · · · ∧

Pp
Lp

act ⇒ PLact, if:

92

(i) P1 ∧ · · · ∧ Pp ⇒ P , i.e., the decomposition is logically consistent without
considering time

(ii) for each dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D it holds that∑iq

j=i1
Lj ≤ L, i.e., the lag of the parent invariant is at least the sum of

the lags of the longest (in terms of time) dependency chain among the child
invariants.

Proof. To prove the above theorem, we need to prove that given D, P , and the
assumptions (i) and (ii), the following lemma holds:

P1
L1
act ∧ · · · ∧ Pp

Lp

act ⇒ (P1 ∧ · · · ∧ Pp)
L
act

Then, the correctness of the theorem is an immediate result of this lemma and

the assumption (i). To prove the lemma, let QL
act

def
= (P1 ∧ · · · ∧ Pp)

L
act.

Without loss of generality, let us assume that each dependency chain C =(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D, its first invariant Pi1

Li1
act in particular, has only one

input variable (i.e., IC). Also, let us assume that C, its last invariant Piq
Liq

act in
particular, has only one output variable (i.e., OC). Similarly, we assume that
all the intermediate invariants within C have exactly one input and one output
variable. This assumption is safe since the multiple input/output variables can
be merged into one as they are referred exactly from one other invariant (which
is also in C).

For the variable IC , we define the aC : T→ T required for QL
act (according to

the Definition 4) as follows:

aC(t)
def
= ai1

(
ai2
(
. . . aiq (t) . . .

))
where ai1 , . . . , aiq are taken from to Pi1

Li1
act , . . . , Piq

Liq

act .

Because
∑iq
j=i1

Lj ≤ L and 0 < x − ai1(x) ≤ Li1 , . . . , 0 < x − aiq (x) ≤ Liq ,
it holds that 0 < x− aC ≤ L.

The assumption of the above lemma (i.e., P1
L1
act ∧ · · · ∧ Pp

Lp

act) and the prop-

erties of the dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
as a part of the pipeline

decomposition D give us the following corollary:

Pi1(IC [ai1(ai2(. . . aiq (t) . . .))], Oi1 [ai2(. . . aiq (t) . . .)]) ∧Oi1 = Ii2∧
Pi2(Ii2 [ai2(ai3(. . . aiq (t) . . .))], Oi2 [ai3(. . . aiq (t) . . .)]) ∧Oi2 = Ii3∧

...
Piq (Iiq [aiq (t)], OC [t])

By combining these corollaries for each dependency chain in the pipeline
decomposition D of Q (i.e., each input and output variable of Q), we get:

Q (I1 [a1 (t)] , . . . , In [an (t)] , O1 [t] , . . . On [t])

where Ii, Oi, and ai correspond to the dependency chain Ci in D.

By combining all the above facts, we get: P1
L1
act ∧ · · · ∧ Pp

Lp

act ⇒ QL
act

�

93

time

x

v

0

0

2

1

1

valuation

u
0

1

y

0

1

a vx (t 1) a vy (t 1) t 1
a y (a vy (t 1))

t 2
a y (a vy (t 2))

a vy (t 2)

a x (a vx (t 2))

1

a vx (t 2)
a x (a vx (t 1))

≤ 2s

Fig. 3. A counterexample illustrating the importance of the pipeline refinement as-
sumption in Theorem 5.

4.3 More complex types of refinement

The assumption of pipeline decomposition in Theorem 5 is essential for its cor-
rectness. This means that in the case of a decomposition that does not respect
all four points of Definition 8, applying Theorem 5 can lead to the wrong re-
sults. To support this claim and highlight the importance of strictly following
the above-mentioned definition, we present the following counterexample to the
relaxed Theorem 5 (where the assumption of pipeline decomposition is lifted).

Counterexample to relaxed Theorem 5. Consider the parent invariant Pp
def
=

(v = 2u)
2s
act[u][v], that is decomposed into three sub-invariants:

Pα
def
= (x = u)1sact[u][x], Pβ

def
= (y = u)1sact[u][y], Pγ

def
= (v = x + y)1sact[x, y][v].

This decomposition is not a pipeline decomposition, because the input variable
of the parent (variable u) is input of more than one children in the decomposition
(both Pα and Pβ), thus invalidating the first point of Definition 8. The relaxed
Theorem 5 would ensure that this decomposition is a refinement. However, if we
consider the trace illustrated in Figure 3, it is obvious that although the trace
is valid for all the sub-invariants Pα, Pβ , and Pγ , it is not valid for the parent
invariant Pp, as there cannot be an ap(t) such that v[t1] = 1 = 2 ∗ u[ap(t1)]. �

The reason why the relaxed Theorem 5 does not work for the counterexample
is that while the parent works with the valuation of a at a single time instant,
the decomposition employs the valuation of a at two different time instants (by

94

aliasing to x and y). This observation applies in general. Moreover, for some
decompositions it appears that it is not possible to formulate similar theorems.

5 Discussion and Conclusions

The choice of the proposed formalization of invariants and invariant patterns
in higher-order predicate logic was driven by the practical reason of being able
to formulate and prove the relevant theorems that hold in different invariant
refinements. Other forms of formalization would have been more appropriate
when different goals are pursued by the formalization task. For example, the use
of a real-time temporal logic [12] would have been a sensible choice if we would
like to use IRM model fragments as input for model-checking purposes.

Indeed, formalization of goals in goal models in real-time LTL has already
been pursued in the context of both KAOS [13] and Tropos [6] (e.g., Formal
Tropos [5]), two of the most prominent requirements engineering frameworks.
Our invariant refinement patterns can be compared to the goal refinement pat-
terns à la KAOS [4], which encode known refinement tactics. The difference is
that KAOS patterns can be formally checked with a theorem prover, while our
patterns have to be manually proven, as state-of-the-art theorem provers cannot
cope with the complexity of our expressive logic.

The invariant decomposition in IRM is inspired by the decomposition of
system-level goals into sub-goals, assumptions and domain properties in KAOS.
A similar approach is also pursued within Tropos, where goals, soft-goals, tasks,
and dependencies and identified and iteratively decomposed from the perspective
of the individual agents. The differences lie in that (i) neither KAOS nor Tropos
provide a direct translation to the implementation-level concepts of autonomic
components and ensembles; (ii) the objective of IRM is not to produce require-
ments documents (like KAOS), but software architectures; (iii) IRM invariants
do not focus on future states (like goals in Tropos), but on knowledge valuation
at every time instant, fitting better the design of feedback-based systems.

The diagrams used to illustrate the knowledge valuation in time in IRM (e.g.,
Fig. 2 and 3) are reminiscent of timed UML 2 interaction diagrams [11], as they
capture the system behavior over time in a declarative way. However, UML 2
activity diagrams focus on the message exchange between predefined instances,
whereas IRM invariants capture the evolution in the knowledge of distributed
components (which could be implemented by exchange of messages among them)
that is necessary in order for certain system-level requirements to be met.

To conclude, in this paper we have provided a formal framework for in-
variant refinement in the context of the Invariant Refinement Method (IRM).
Our approach is modeling the invariants in higher-order predicate logic and
identifying common invariant types (patterns) at different levels of abstraction.
Some of the refinement relations between different patterns have also been for-
mally proven (via mathematical theorems): present-past to activity invariants,
activity to process/exchange invariants, and pipeline decomposition of activ-
ity/process/exchange invariants. More complex types of refinement have to be

95

investigated separately in order to be able to formulate similar theorems. This
is the focus of our future work.

Another element of future work is to test the proposed design method in a
real-scale case study with real system designers.

Acknowledgements. This work was partially supported by the EU project AS-
CENS 257414 and by Charles University institutional funding SVV-2014-260100.
The research leading to these results has received funding from the European
Union Seventh Framework Programme FP7-PEOPLE-2010-ITN under grant
agreement no264840.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General
Model for Self-Adaptive Systems. In: Proc. of WETICE. pp. 48–53. IEEE (2012)

2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13, Vancou-
ver, Canada. pp. 81–90. ACM (Jun 2013)

3. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. Springer, 3rd edn. (2011)

4. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In: Proceedings of FSE’96. pp. 179–190. ACM (1996)

5. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model Checking Early Re-
quirements Specifications in Tropos. In: Proc. of RE’01, Toronto, ON, Canada. pp.
174–181. IEEE (Aug 2001)

6. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology: An
Overview. In: Methodologies And Software Engineering For Agent Systems, pp.
89–106. Kluwer Academic Publishers (2004)

7. Hölz, M., Wirsing, M.: Towards a System Model for Ensembles. In: Formal mod-
eling, pp. 241–261. Springer-Verlag (2012)

8. Hölzl, M., et al.: Engineering Ensembles: A White Paper of the ASCENS Project.
ASCENS Deliverable JD1.1 (2011), Online: http://www.ascens-ist.eu/whitepapers

9. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software engineering for ensembles. In:
Software-Intensive Systems and New Computing Paradigms, pp. 45–63. Springer-
Verlag (2008)

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE’13, Vancouver, Canada. pp. 91–100. ACM (Jun 2013)

11. Knapp, A., Störrle, H.: Efficient Representation of Timed UML 2 Interactions.
In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) System Analysis and
Modeling: Models and Reusability, LNCS, vol. 8769, pp. 110–125. Springer (2014)

12. Koymans, R.: Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. v. 651 of LNCS, Springer-Verlag (1992)

13. Lamsweerde, A.V.: Requirements engineering in the year 00: a research perspective.
In: Proceedings of ICSE’00, Limerick, Ireland. pp. 5–19. ACM (Jun 2000)

14. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N.,
Werther, B.: Requirement Specification and Scenario Description of the AS-
CENS Case Studies. Deliverable D7.1 (2011), available online: http://www.ascens-
ist.eu/deliverables

96

97

4.5 Model-Driven Design of Ensemble-Based

Component Systems

Ilias Gerostathopoulos

In Joint Proceedings of the ACM/IEEE 18th International Conference

on Model Driven Engineering Languages and Systems (MODELS

2014) Poster Session and the ACM Student Research Competition.

Published electronically by CEUR Workshop Proceedings,

volume 1258,

pages 63-68,

September 2014.

The original version is available electronically from the publisher's site

at http://ceur-ws.org/Vol-1258/.

http://ceur-ws.org/Vol-1258/

Chapter 4. Commented Collection of Papers

98

Summary of the Paper

This paper, published as [Ger14], serves as an overview of the model-driven design and

development process proposed in this thesis. It has the form of a research abstract for

the ACM Student Research Competition at MODELS 2014 conference. Following the re-

spective call for participation [22], the paper describes the (i) research problem and mo-

tivation, (ii) background and related work, (iii) approach and uniqueness, (iv) results,

and (v) contributions. As such, it provides a preliminary account on the different ele-

ments of the work described in detail in this thesis.

At the same time, the paper introduces an extension of the Invariant Refinement

Method (IRM) to account for alternative invariant decompositions, and sketches its ap-

plication at design time and at runtime. The extension, called IRM for Self-Adaptation

(IRM-SA) was originally described in [BGH+14b], and refined in the technical report in-

cluded in Section 4.6. The main idea of IRM-SA is to accommodate different invariant-

based designs in the same invariant model (graph) by allowing invariants to be OR-de-

composed – in the work so far, invariants could only be AND-decomposed. This sup-

ports designing for self-adaptivity in software-intensive Cyber-Physical Systems mod-

elled according to the ensemble paradigm (called ensemble-based component systems in this

paper), as different configurations corresponding to alternative invariant decomposi-

tions can be selected at runtime.

The paper provides a first version of the IRM-SA design process, comprising the steps

to be followed in order to obtain a complete design represented by an IRM-SA model of

the system-to-be. The process is backed up by a graphical editor and a model-driven

toolchain capable of producing jDEECo code artifacts (Section 5.2.1). A refined version

of the IRM-SA design process is described in the technical report of Section 4.6.

Moreover, the paper introduces the idea of using the IRM-SA model at runtime to

provide self-adaptation via switching between different configurations prescribed by al-

ternative invariant decompositions. The initial efforts for implementing such a function-

ality in jDEECo (which led to the jDEECo IRM plugin described in Section 5.2.2) are also

reported.

Comments on Authorship

Although the main ideas of the paper were formed in collaboration with my supervisors,

the single authorship of this paper reflects my individual participation in the ACM Stu-

dent Research Competition at MODELS 2014 conference, where I received the 2nd place

Graduate level award.

99

Model-Driven Design of Ensemble-Based
Component Systems

Ilias Gerostathopoulos

Faculty of Mathematics and Physics
Charles University in Prague

Malostranske Namesti 25, 11800, Prague, Czech Republic
iliasg@d3s.mff.cuni.cz

Abstract. In this research abstract we describe our approach towards
the design of ensemble-based component systems. Our motivation lies
in the fact that, in these systems, tracing the behavior of individual
constituents to system-level goals and requirements is challenging. Our
approach is based on a novel invariant-based model that achieves the
desired traceability. Along with using the model in a method that allows
for systematic contractual design, we employ the model at runtime to
achieve dynamic adaptation on the basis of requirements reflection.

Keywords: ensembles, invariants, system design, traceability

1 Introduction

In the beginning, things were not going well. The heavy storm had damaged the
network infrastructure so heavily that temperature and moisture sensors on the
tarmac could not communicate with their base stations any longer. This meant
that continuous analysis of tarmac condition had to stop until the network cables
were back in place and sensors started providing fresh measurements to the base
stations. In face of the danger of failing in their task to disseminate the sensed
data, the sensors switched to ad-hoc communication mode: they propagated their
data to software modules inside the vehicles heading towards the base stations;
the vehicles acted as network relays for the ad-hoc network and “augmented”
sensors for the base stations. Even with considerable delays compared to the
default mode, the system managed to keep a sufficient level of operation stability.

Although developing a software-intensive cyber-physical system (siCPS) [12]
such as the above road sensing system is already technically feasible, there are
challenges related to streamlining the design and development of such systems.

DEECo component model [1,4] has been proposed within the ASCENS FP7
project [11] as a modeling approach suitable for the development of siCPS. A
DEECo application consists of a number of components and interaction tem-
plates, based on which dynamic component groups – ensembles [11] – are estab-
lished at runtime. A DEECo component comprises state (referred to as knowl-
edge) and processes which periodically read and/or update its knowledge, similar

100

1 ensemble PropagateTemperatureToVehicles:
2 coordinator: TemperatureSensor
3 member: Vehicle
4 membership:
5 distance(coordinator.position, member.position) < THRESHOLD
6 exchange:
7 member.temperatureMap ←(coordinator.id, coordinator.temperature)
8 scheduling: periodic(15 secs)

Fig. 1. Example of a DEECo ensemble definition in the road sensing system.

to processes in a real-time system. Interaction is allowed only between compo-
nents within an ensemble and takes the form of knowledge exchange. An en-
semble definition (Fig. 1) specifies (i) a membership condition, i.e., under which
condition (evaluated on components’ knowledge) one coordinator and potentially
many member components should interact, and (ii) an exchange function, i.e.,
which knowledge exchange should be performed within the established group.
We view DEECo as an instantiation of the new class of ensemble-based compo-
nent systems (EBCS), and use it to demonstrate our EBCS design approach.

The problem in EBCS is that it is difficult to associate the low-level con-
cepts of periodic computation and conditional knowledge exchange to system-
level goals and requirements applicable in different operational contexts. This
problem manifests itself both at design time and at runtime. At design time the
challenge is: “How to design an ensemble-based system so that its situation-
specific system-level goals are consistently mapped to implementation-level arti-
facts?”; at runtime the challenge becomes: “How to trace the runtime behavior
to situation-specific system-level goals to achieve runtime compliance checking?”.

The objective of this research is thus to investigate the design dimension of
ECBS and propose a model that provides dependability (in the form of traceabil-
ity to system-level goals) and adaptability (in the form of adjusting to different
operational contexts/situations). We aim for using the model both to guide the
design of EBCS (Sect. 2.1), and to achieve runtime compliance checking and
model-based adaptation (Sect. 2.2).

2 Approach: Invariant-Based Model

Our approach is based on the observation that component processes and knowl-
edge exchange activities in EBCS are feedback loops that constantly maintain
the property of being within the bounds of normal operation – operational nor-
malcy. We have thus proposed the invariant concept to model the operational
normalcy at every time instant [13]. Syntactically, an invariant is an expression
that relates the input and output knowledge of an (abstract) activity, e.g. “Vehi-
cle’s V belief over sensor S::temperature – V::temperatureMap – is updated every
30 secs.”. A key assumption here is that system-level goals in EBCS can also
be described declaratively and thus modeled with the invariant construct. For
instance, one such high-level invariant in our running example is “Temperature
readings must reach the base stations within 120 secs”.

101

Solver

Running System

M2M
transf.

Generated at startup, kept
in sync with EMF listeners

Generated
at startup

Generated at runtime by
knowledge valuation of

active components

Used in system
development

Processes to run

Predicate logic
formula

DEECo runtime
metamodel

IRM-SA runtime
metamodel

Traceability
metamodel

IRM-SA design
metamodel

DEECo design
metamodel

M1 level

conforms toconforms toconforms toconforms to conforms to

Design time Runtime

M2T
transf.

M2 level

Traceability
model

IRM-SA runtime
model

DEECo runtime
model

IRM-SA design
model

DEECo design
model

Skeletons of DEECo
components and
ensembles

Fig. 2. Overview of the IRM-SA approach.

Armed with the invariant concept, we have proposed the Invariant-Refinement
Method for Self-Adaptation – IRM-SA [5,13], whose goal is to link high-level in-
variants (corresponding to system-level goals) to low-level ones (corresponding
to concrete activities of the software system). The output of the method is the
IRM-SA design model ; this model can be used (i) to generate DEECo code skele-
tons via the series of model transformations depicted on the left part of Fig. 2
and (ii) to enable online checking of invariant satisfaction and system adaptation
via a models@runtime approach (illustrated on the right part of Fig. 2).

2.1 Design with IRM-SA

In this section we present the design process of IRM-SA. It is a mixed top-
down/bottom-up iterative process where invariants are refined into sub-invariants
by means of decomposition (e.g. structural elaboration). The process comprises:

1. Identification of the top-level goals and specification of top level invariants
of the system-to-be, e.g. invariant [i1] in Fig. 3.

2. Identification of the design components by asking “which knowledge does
each invariant involve and where is this knowledge obtained from?”. At the
design stage, a component is a participant/actor of the system-to-be, com-
prising internal state. In our example, the identified components are the
TemperatureSensor, BaseStation, and Vehicle.

3. Decomposition of each non-leaf invariant by asking “how can this invariant
be satisfied?”. Leaf invariants are either process invariants (e.g. invariant
[p1]) or exchange invariants (e.g. invariant [e2]) that can be mapped 1-to-1 to
component processes or ensemble definitions, respectively. For instance, the
exchange invariant [e2] can be mapped to the PropagateTemperatureToVe-

hicles ensemble of Fig. 1.
4. Identification of any other activities that have to be performed in the system

and specification of invariants out of them (not demonstrated here).

102

Fig. 3. Example of an IRM-SA design model.

5. Composition of dangling invariants together by asking “why do we need to
satisfy these invariants?”. This step is also not demonstrated in our example.

6. Capturing of the situation that conditions every situation-specific invariant
using assumptions (e.g. invariant [a1]). An assumption is a special type of
invariant that is expected to be maintained by the environment.

7. Identification of alternative (OR) decompositions according to the different
situations identified at step 6. In our example, the right-most part of the
top-level decomposition is OR-decomposed to capture the fact that different
invariants should hold when a BaseStation is out of direct reach.

The IRM-SA design process is backed up by a prototype design tool (used
to produce the IRM-SA model of Fig. 3) and a Java code generation tool, based
on Eclipse’s EMF and Epsilon toolchains; both are accessible via http://d3s.

mff.cuni.cz/projects/components_and_services/irm-sa/.

2.2 Runtime compliance checking and adaptation

To check which invariants hold at runtime and adapt the system accordingly,
we follow a models@runtime approach [17]. As a first step, the running system
is reflected into an architectural model (DEECo runtime model in Fig. 2) that
captures the running component processes and established ensembles. Along
with a traceability model, which contains the mapping between design and run-
time artifacts, DEECo runtime model is used to generate another model that
captures the runtime state at the requirements level (IRM-SA runtime model).
This is basically an instantiation of the IRM-SA design model in which design
components are mapped to concrete component instances and invariants are as-
sociated with boolean values. This is done by associating the invariants and the

103

computable assumptions to monitors (implemented as Boolean methods in Java)
that evaluate the condition under which each invariant is considered to hold.

The second step involves reasoning on the generated IRM-SA runtime model.
As an illustration of one possible way to do this, we are translating the model
into a predicate logic formula which can be automatically evaluated by a solver
(we use Sat4j [16]). The result of the solver is then used to enact changes on the
DEECo runtime model (currently by starting/stopping processes corresponding
to invariants chosen in the OR-decompositions), which are eventually propagated
to the running system, as illustrated on the right-most part of Fig. 2.

A proof-of-concept implementation of IRM-SA-based adaptation is accessible
via http://d3s.mff.cuni.cz/projects/components_and_services/irm-sa/.

On-going work. We are currently investigating (i) the fuzzification of invariant
evaluation to achieve more fine-grained control, and (ii) more elaborate adapta-
tion actions (e.g. changing a component’s period at runtime). To evaluate our
approach we are conducting experiments to measure the applicability of our
adaptation loop in practical settings (e.g. in face of frequent component discon-
nections). We have also designed and conducted a pilot of a controlled experiment
(empirical study) to evaluate the effectiveness of the IRM-SA process.

3 Related Work

Systematic elaboration of requirements has been advocated by goal-oriented
requirements engineering approaches, such as KAOS [7,15] and Tropos [3,9].
Although we draw inspiration from them we differentiate in the following [8]:
(i) neither KAOS nor Tropos are tailored for ensemble-based systems, whereas
IRM-SA provides a direct translation to the implementation-level concepts of
autonomous components and ensembles; (ii) compared to KAOS, the objective
of the IRM-SA method is not to create requirements documents (e.g., SRS),
but software architectures; (iii) compared to Tropos, which also supports design
of dynamic systems, IRM-SA concepts (i.e., invariants) do not focus on future
states (like goals in Tropos), but on knowledge evaluation at every time instant,
fitting better the design of feedback loop-based systems.

Our approach towards adaptation fits into the conceptual model proposed by
Kramer and Magee [14], where the IRM-SA model stands as a domain-specific
goal management layer. Our adaptation mechanism also follows the proposals
for explicit representation of requirements as runtime entities [2,6].

Compositional definition of architecture configurations based on individual
variation points and runtime reconfiguration is also employed in Dynamic Soft-
ware Product Lines [10]. Our main difference is that, in IRM-SA, decomposition
carries the formal semantics of refinement, i.e., in an AND (resp. OR) decom-
position the conjunction (resp. disjunction) of the children entails the parent.

Acknowledgments. The research leading to these results has received funding
from the European Union Seventh Framework Programme FP7-PEOPLE-2010-
ITN under grant agreement no264840.

104

References

1. Al Ali, R., Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.,
Plasil, F.: DEECo: An Ecosystem for Cyber-Physical Systems. In: Companion
Proc. of ICSE’14, Hyderabad, India. pp. 610–611. ACM (Jun 2014)

2. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements
Reflection: Requirements as Runtime Entities. In: Proc. of ICSE ’10, Cape Town,
South Africa. pp. 199–202. ACM (2010)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (May 2004)

4. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13, Vancou-
ver, Canada. pp. 81–90. ACM (Jun 2013)

5. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.,
Plouzeau, N.: Adaptation in Cyber-Physical Systems: from System Goals to Ar-
chitecture Configurations. Tech. rep., D3S-TR-2014-01, Charles University (Jan
2014), http://d3s.mff.cuni.cz/publications/download/D3S-TR-2014-01.pdf

6. Cheng, B., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems, LNCS, vol. 5525, pp. 1–
26. Springer Berlin Heidelberg (2009)

7. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(April), 3–50 (1993)

8. Gerostathopoulos, I., Bures, T., Hnetynka, P.: Position Paper: Towards a
Requirements-Driven Design of Ensemble-Based Component Systems. In: Proc.
of HotTopiCS workshop of ICPE’13. pp. 79–86. ACM (Apr 2013)

9. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology: An
Overview. In: Methodologies and Software Engineering for Agent Systems, pp.
89–106. Kluwer Academic Publishers (2004)

10. Hinchey, M., Park, S., Schmid, K.: Building Dynamic Software Product Lines.
Computer 45(10), 22–26 (Oct 2012)

11. Hölzl, M., et al.: Engineering Ensembles: A White Paper of the ASCENS
Project. ASCENS Deliverable JD1.1 (2011), Online: http://www.ascens-ist.eu/
whitepapers

12. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of Software-Intensive Sys-
tems: State of the Art and Research Challenges. In: Wirsing, M., Banâtre, J.P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing
Paradigms, LNCS, vol. 5380, pp. 1–44. Springer Berlin Heidelberg (2008)

13. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE’13, Vancouver, Canada. pp. 91–100. ACM (Jun 2013)

14. Kramer, J., Magee, J.: A Rigorous Architectural Approach to Adaptive Software
Engineering. Journal of Computer Science and Technology 24(2), 183–188 (2009)

15. Lamsweerde, A.V., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE Trans. on Soft. Engin. 24(11), 908–926 (1998)

16. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Boolean Modeling and
Computation 7, 59–64 (2010)

17. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models at Runtime
to Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

105

4.6 Self-Adaptation in Cyber-Physical Sys-

tems: from System Goals to Architecture Con-

figurations

Ilias Gerostathopoulos,

Tomáš Bureš,

Petr Hnětynka,

Jaroslav Keznikl,

Michal Kit,

Frantisek Plášil,

Noël Plouzeau

Tech. Report No. D3S-TR-2015-02,

Department of Distributed and Dependable Systems,

Charles University in Prague,

April 2015.

Available online on the department’s site: http://d3s.mff.cuni.cz/publi-

cations/download/D3S-TR-2015-02.pdf

An article based on this technical report has been submitted to a journal

and is presently at major review stage.

http://d3s.mff.cuni.cz/publications/download/D3S-TR-2015-02.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2015-02.pdf

Chapter 4. Commented Collection of Papers

106

Summary of the Paper

This technical report, available as [GBH+15b], provides the second main contribution of

this thesis, i.e. the extension of the Invariant Refinement Method (IRM) to allow design

for self-adaptivity. As such, it directly addresses the objective O3 (Section 2.3). The focus

is on the domain of “self-adaptive Cyber-Physical Systems (CPS) with operating in dy-

namic environments”, which coincides with the domain of software-intensive CPS

(siCPS) that is the focus of this thesis.

The main idea of the report is to tackle the challenge of designing siCPS that are

both dependable and self-adaptive, and can cope with situations of high operational un-

certainty, i.e. uncertainty related to the infrastructure of siCPS and leads to temporary

network disconnections, hardware failures, communication delays, and others. The

problem lies in that is that the properties of dependability and self-adaptivity are to an

extent contradictory, as the easier it is for a system to adapt itself at runtime, the less

predictable, thus less dependable it is. In response to this challenge, the report elaborates

on IRM for Self-Adaptivity (IRM-SA), an extension of IRM to accommodate alternative

system designs by allowing for alternative invariant decompositions. IRM-SA was orig-

inally proposed in [BGH+14b]. Dependability in IRM-SA is provided by tracing system

configurations to high-level requirements through the decomposition links of the IRM-

SA model (graph). Self-adaptivity is provided by switching between available configu-

rations at runtime, corresponding to alternative decompositions in the IRM-SA model.

The report details a number of aspects of IRM-SA. First, it describes the IRM-SA

modeling process (a preliminary description appeared in the paper of Section 4.5). Sec-

ond, it describes how the idea of quantifying the inaccuracy of belief (originally pro-

posed in [AABG+14b]) is integrated into the IRM-SA model in order to add to the de-

pendability of siCPS by self-adapting in anticipation of critical situations. Third, the re-

port describes a technical approach, based on monitoring of assumptions and SAT solv-

ing, of using the IRM-SA model at runtime as a self-adaptation mechanism. Fourth, it

explains why self-adaptation in siCPS should be performed in a decentralized way.

On the evaluation side, the report details on how the IRM-SA self-adaptation mech-

anism is embedded in jDEECo, and how the experiments conducted with jDEECo pro-

vide evidence that IRM-SA can cope with operational uncertainty in decentralized de-

ployments. It also describes an empirical study, which took the form of a controlled ex-

periment, whose goal was to evaluate the effectiveness of the IRM-SA process.

Comments on Authorship

My personal contribution lies in elaborating the main idea, which involved extending

IRM with alternative decompositions and using them at runtime to support runtime re-

configuration, and coming up with running example of the fire fighters collaboration

system. I was responsible for documenting the IRM design process, performing the ex-

perimental evaluation (both the implementation of the IRM-jDEECo plugin and the em-

pirical study), and positioning IRM-SA against the related work. Finally, under helpful

guidance and supervision of the other authors, I authored a majority of the text.

107

Self-Adaptation in Cyber-Physical Systems: from System
Goals to Architecture Configurations

Ilias Gerostathopoulos1

iliasg@d3s.mff.cuni.cz

 Tomas Bures1,2

bures@d3s.mff.cuni.cz

Petr Hnetynka1

hnetynka@d3s.mff.cuni.cz

Jaroslav Keznikl1,2

keznikl@d3s.mff.cuni.cz

Michal Kit1

kit@d3s.mff.cuni.cz

Frantisek Plasil1

plasil@d3s.mff.cuni.cz

 Noël Plouzeau3

noel.plouzeau@irisa.fr

1Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic

2Institute of Computer Science
Academy of Sciences
of the Czech Republic

Prague, Czech Republic

3IRISA
University of Rennes 1

Rennes, France

ABSTRACT
Design of self-adaptive Cyber-Physical Systems (CPS) operating

in dynamic environments is a significant challenge when a

sufficient level of dependability is required. This stems partly

from the fact that the concerns of self-adaptivity and

dependability are to an extent contradictory. In this paper, we

introduce IRM-SA (Invariant Refinement Method for Self

Adaptation) – a design method and associated formally grounded

model targeting CPS – that addresses self-adaptivity and supports

dependability by providing traceability between system

requirements, distinct situations in the environment, and

predefined configurations of system architecture. Additionally,

IRM-SA allows for self-adaptation at runtime and copes with

operational uncertainty, such as temporary disconnections and

network delays. As a proof of concept, it was implemented in

DEECo, a component framework that is based on dynamic

ensembles of components. Furthermore, its feasibility was

evaluated in experimental settings assuming decentralized system

operation.

Keywords

Cyber-physical systems; Self-adaptivity; Dependability; System

design; Component architectures

1. INTRODUCTION
Cyber-physical systems (CPS) are characterized by a network of

distributed interacting elements which respond, by sensing and

actuating, to activities in the physical world (their environments).

Examples of CPS are numerous: systems for intelligent car

navigation, smart electric grids, emergency coordination systems,

to name just a few.

Design of such systems is a challenging task, as one has to deal

with the different, and to an extent contradictory, concerns of

dependability and self-adaptivity. Since they often host safety-

critical applications, they need to be dependable (safe and

predictable in the first place), even when being highly dynamic.

Since CPS operate in adversarial environments (parts of the

ever-changing physical world), they need be self-adaptive [44].

An additional issue is the inherent operational uncertainty related

to their infrastructure. Indeed, modern CPS need to remain

operable even in adversarial conditions, such as network

unavailability, hardware failures, resource scarcity, etc.

Achieving synergy of dependability and self-adaptivity in

presence of operational uncertainty is hard. Existing approaches

typically succeed in addressing just one aspect of the problem. For

example, agent-oriented methodologies address conceptual

autonomy [18, 46]; component-based mode-switching methods

bring dependability assurances with limited self-adaptivity [23,

30]. Operational uncertainty is typically viewed as a separate

problem [15]. What is missing is a design method and associated

model that would specifically target the development of

dependable and self-adaptive CPS while addressing operational

uncertainty.

Self-adaptive CPS need to be able to adapt to distinct runtime

situations in the environment (i.e., its states as observed by the

system). This takes the form of switching between distinct

architecture configurations of the system (products in SPLs [2]).

Being reflected in system requirements, these configurations and

the associated situations can be systematically identified and

addressed via requirement analysis and elaboration, similar to

identification of adaptation scenarios in a Dynamically Adaptive

System (DAS) [26].

A problem is that an exhaustive enumeration of configurations

and situations at design time is not a viable solution in the domain

of CPS, where unanticipated situations can appear in the

environment (external uncertainty in [20]). Moreover, another

challenge is that self-adaptive CPS need to base their adaptation

actions not only on the current situation, but also on how well the

system can currently operate, e.g., whether certain components

can properly communicate (issue similar to agent capabilities

[58]).

In this paper we tackle these challenges by proposing an extension

to IRM [37] – a design method and associated formally grounded

model targeting CPS requirements and architecture design. This

extension (IRM for Self-Adaptation – IRM-SA) supports self-

adaptivity and, at the same time, accounts for dependability. In

particular, dependability is provided in the form of (i) traceability

between system requirements and configurations, and (ii)

mechanisms to deal with the operational uncertainty. Self-

adaptivity is provided in the form of switching between

configurations at runtime (architecture adaptation) to address

specific situations.

To evaluate the feasibility of IRM-SA we have applied it on a

firefighter coordination case study – Firefighter Tactical Decision

System (FTDS) – developed within the project DAUM1. As proof

of the concept, we implemented self-adaptation based on IRM-SA

by extending DEECo [11] – a component model facilitating open-

ended and highly dynamic CPS architectures. This allowed us to

1 http://daum.gforge.inria.fr/

108

evaluate the capability of IRM-SA to cope with adversarial

situations. We also evaluated the design process of IRM-SA via a

controlled experiment.

In summary, key contributions of this paper include:

 The description of a design method and associated model

that allows modeling design alternatives in the

architecture of a CPS pertaining to distinct situations via

systematic elaboration of system requirements;

 An automated self-adaptation method that selects the

appropriate architecture configuration based on the

modeled design alternatives and the perceived situation;

 An evaluation of how the proposed self-adaptation

method deals with operational uncertainty in fully

decentralized settings;

 A discussion of strategies to deal with unanticipated

situations at design time and runtime.

The paper is structured as follows. Section 2 describes the running

example, while Section 3 presents the background on which IRM-

SA is based. Then, Section 4 overviews the core ideas of IRM-

SA. Section 5 elaborates on the modeling of different design

alternatives in IRM-SA by extending IRM, while Section 6

focuses on the selection of applicable architecture configurations

at runtime. Section 7 describes an evaluation covering both (i) a

realization of IRM-SA in the DEECo component system and

experiments in decentralized simulation settings, and (ii) an

empirical study of IRM-SA effectiveness via a controlled

experiment. Section 8 is focused on the intricacies of self-

adaptation in decentralized settings and coping with unanticipated

situations. Section 9 discusses the related work, while Section 10

concludes the paper.

2. RUNNING EXAMPLE
In this paper, we use as running example a simple scenario from

the FTDS case study, which was developed in cooperation with

professional firefighters. In the scenario, the firefighters belonging

to a tactical group communicate with their group leader. The

leader aggregates the information about each group member’s

condition and his/her environment (parameters considered are

firefighter acceleration, external temperature, position and oxygen

level). This is done with the intention that the leader can infer

whether any group member is in danger so that specific actions

are to be taken to avoid casualties.

On the technical side, firefighters in the field communicate via

low-power nodes integrated into their personal protective

equipment. Each of these nodes is configured at runtime

depending on the task assigned to its bearer. For example, a

hazardous situation might need closer monitoring of a certain

parameter (e.g., temperature). The group leaders are equipped

with tablets; the software running on these tablets provides a

model of the current situation (e.g., on a map) based on the data

aggregated from the low-power nodes.

The main challenge of the case study is how to ensure that

individual firefighters (nodes) retain their (a) autonomy so that

they can operate in any situation, even entirely detached from the

network and (b) autonomicity so that they can operate optimally

without supervision, while still satisfying certain system-level

constraints and goals. Examples of challenging scenarios include

(i) loss of communication between a leader and members due to

location constraints, (ii) malfunctioning of sensors due to extreme

conditions or battery drainage, and (iii) data inaccuracy and

obsoleteness due to intermittent connections. In all these cases,

firefighters have to adjust their behavior according to the latest

information available. Such adjustments range from simple

adaptation actions (e.g., increasing the sensing rate in face of a

danger) to complex cooperative actions (e.g., relying on the

nearby nodes for strategic actions when communication with the

group leader is lost).

3. BACKGROUND
Invariant Refinement Method (IRM) [37] is a goal-oriented design

method targeting the domain of CPS. IRM builds on the idea of

iterative refinement of system objectives yielding low-level

obligations which can be operationalized by system components.

Contrary to common goal-oriented modeling approaches (e.g.,

KAOS [40], Tropos/i* [8]), which focus entirely on the problem

space and on stakeholders’ intentions, IRM focuses on system

components and their contribution and coordination in achieving

system-level objectives. IRM also incorporates the notion of

feedback loops present in autonomic and control systems, i.e. all

“goals” in IRM are to be constantly maintained, not achieved just

once. A key advantage of IRM is that it allows capturing the

compliance of design decisions with the overall system goals and

requirements; this allows for design validation and verification.

The main idea of IRM is to capture high-level system goals and

requirements in terms of invariants and, by their systematic

refinement, to identify system components and their desired

interaction. In principle, invariants describe the operational

normalcy of the system-to-be, i.e., the desired state of the system-

to-be at every time instant. For example, the main goal of our

running example is expressed by INV-1: “GL keeps track of the
condition of his/her group’s members” (Figure 1).

IRM invariants are agnostic on the language used for their

specification. Ιn this paper, plain English is used for simplicity’s

sake; passive voice has been chosen in order to adopt a more

descriptive than prescriptive style. Other possible choices include

adopting a style based on SHALL statements commonly used in

requirements specifications, or a complete textual requirements

specification language, such as RELAX [63].

In general, invariants are to be maintained by system components

and their cooperation. At the design stage, a component is a

participant/actor of the system-to-be, comprising internal state.

Contrary to common goal-oriented approaches (e.g., [41], [8]),

only software-controlled actors are considered. The two

components identified in the running example are Firefighter and

Officer.

As a special type of invariant, an assumption describes a condition

expected to hold about the environment; an assumption is not

expected to be maintained by the system-to-be. In the example,

INV-8 in Figure 1 expresses what the designer assumes about the

monitoring equipment (e.g., GPS).

As a design decision, the identified top-level invariants are

decomposed via so-called AND-decomposition into conjunctions

of more concrete sub-invariants represented by a decomposition

model – IRM model. Formally, the IRM model is a directed

acyclic graph (DAG) with potentially multiple top-level

invariants, expressing concerns that are orthogonal. The AND-

decomposition is essentially a refinement, where the composition

(i.e., conjunction) of the children implies the fact expressed by the

parent (i.e., the fact expressed by the composition is in general a

specialization, following the traditional interpretation of

refinement). Formally, an AND-decomposition of a parent

109

invariant 𝐼𝑝 into the sub-invariants 𝐼𝑠1, … , 𝐼𝑠𝑛 is a

refinement, if it holds that:

1. 𝐼𝑠1 ∧ … ∧ 𝐼𝑠𝑛 ⇒ 𝐼𝑝 (entailment)

2. 𝐼𝑠1 ∧ … ∧ 𝐼𝑠𝑛 ⇏ 𝑓𝑎𝑙𝑠𝑒 (consistency)

For example, the top-level invariant in Figure 1 is

refined to express the necessity to keep the list of

sensor data updated on the Officer’s side (INV-4) and

the necessity to filter the data to identify group
members that are in danger (INV-5).

Decomposition steps ultimately lead to a level of

abstraction where leaf invariants represent detailed

design of the system constituents. There are two types

of leaf invariants: process invariants (labeled P, e.g.,

INV-5) and exchange invariants (labeled X, e.g., INV-
7). A process invariant is to be maintained by a single

component (at runtime, in particular by a cyclic

process manipulating the component’s state –

Section 7.1.1). Conversely, exchange invariants are

maintained by component interaction, typically taking

the form of knowledge exchange within a group of

components (Section 7.1.1). In this case, exchange invariants

express the necessity to keep a component’s belief over another

component’s internal state. Here, belief is defined as a snapshot of

another component’s internal state [37] – often the case in systems

of autonomous agents [58]; inherently, a belief can get outdated

and needs to be systematically updated by knowledge exchange in

the timeframe decided at the design stage.

4. IRM-SA – THE BIG PICTURE
To induce self-adaptivity by design so that the running system can

adapt to situations, it is necessary to capture and exploit the

architecture variability in situations that warrant self-adaptation.

Specifically, the idea is to identify and map applicable

configurations to situations by elaborating design alternatives

(alternative realizations of system’s requirements); then these

applicable configurations can be employed for architecture

adaptation at runtime.

Therefore, we extended the IRM design model and process to

capture the design alternatives and applicable configurations

along with their corresponding situations. For each situation there

can be one or more applicable configurations. To deal with

operational uncertainty, we also extend the model by reasoning on

the inaccuracies of the belief.

At runtime, the actual architecture self-adaptation is performed

via three recurrent steps: (i) determining the current situation, (ii)

selecting one of the applicable configurations, and (iii)

reconfiguring the architecture towards the selected configuration.

The challenge is that mapping configurations to situations

typically involves elaborating a large number of design

alternatives. This creates a scalability issue both at design-time

and runtime, especially when the individual design alternatives

have mutual dependencies or refer to different and possibly nested

levels of abstraction. To address scalability, we employ (i)

separation of concerns via decomposition at design time; (ii) a

formal base of the IRM-SA design model and efficient reasoning

based on SAT solving for the selection of applicable

configurations at runtime (Section 6).

5. MODELING DESIGN ALTERNATIVES

5.1 Concepts addressing Self-Adaptivity
Although providing a suitable formal base for architecture design

via elaboration of requirements, IRM in its pure form does not

allow modeling of design alternatives.

Therefore, we extended the IRM design model with the concepts

of alternative decomposition – OR-decomposition – and situation.

The running example as modelled in IRM-SA is depicted in

Figure 2.

Essentially, OR-decomposition denotes a variation point where

each of the children represents a design alternative. Technically,

OR-decomposition is a refinement, where each of the children

individually implies (i.e., refines) the fact expressed by the parent.

OR-decompositions can be nested, i.e., a design alternative can be

further refined via another OR-decomposition. Formally, an OR-

decomposition of a parent invariant 𝐼𝑝 into the sub-invariants

𝐼𝑠1, … , 𝐼𝑠𝑛 is a refinement if it holds that:

1. 𝐼𝑠1 ∨ … ∨ 𝐼𝑠𝑛 ⇒ 𝐼𝑝 (alternative entailment)

2. 𝐼𝑠1 ∨ … ∨ 𝐼𝑠𝑛 ⇏ 𝑓𝑎𝑙𝑠𝑒 (alternative consistency)

Each design alternative addresses a specific situation which is

characterized via an assumption. Thus, each 𝐼𝑠𝑖 contains at its top-

most level a characterizing assumption as illustrated in Figure 2.

For example, consider the left-most part of the refinement of INV-
3: “GL keeps track of the condition of the relevant members”,

which captures two design alternatives corresponding to the

situations where either some firefighter in the group is in danger

or none is. In the former case (left alternative), INV-7 is also

included – expressing the necessity to inform the other firefighters

in the group that a member is in danger. In this case, INV-6 and

INV-8 are the characterizing assumptions in this OR-

decomposition.

The situations addressed in an OR-decomposition may overlap,

i.e. their charactering assumption can hold at the same time. This

is the case of INV-13 and INV-18 capturing that both one

Firefighter is in danger and a nearby colleague as well.

Consequently, there are more than one applicable configurations

and therefore a prioritization is needed (Section 6.2). As an aside,

Figure 1: IRM decomposition of the running example.

+ id
+ groupLeaderId
+ sensorData
+ position
+ temperature
+ acceleration

Firefighter

+ id
+ sensorDataList
+ GMInDanger

Officer

INV-2
GM::groupLeaderId==GL::id

INV-1 GL keeps track of the condition
of his/her group s members

INV-3 GL keeps track of the
condition of the relevant members

INV-4 Up-to-date GL::sensorDataList,
w.r.t. GM::sensorData, is available

INV-6 GM::sensorData is
determined

INV-5 GL::GMInDanger is determined
from the GL::sensorDataList every 4 secs

P

INV-7 GL::sensorDataList - GL s belief over the
GM::sensorData – is updated every 2 secs

X

INV-8 Monitoring
equipment is functioning

INV-9 GM::acceleration is
monitored every 1 sec

P

INV-11 GM::position is
determined every 1 sec

P

[GL]

1[GM]

*[GM]

1[GL]

[GM]

INV-10 GM::temperature
is monitored every 1 sec

P

Takes-role
relation

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposition

Component

PX
[GM]

GroupMember
role

GroupLeader
role

[GL]

110

allowing situations in an OR-decomposition to overlap also

provides a built-in fault-tolerance mechanism (Section 8.1.1).

Technically, if a design alternative in an OR-decomposition is

further refined in terms of an AND-decomposition (or vice-versa),

we omit the invariant representing the alternative and connect the

AND-decomposition directly to the OR-decomposition to

improve readability (e.g., design alternatives of INV-12).

We distinguish two kinds of invariants: computable and non-

computable. While a computable invariant can be

programmatically evaluated at runtime, a non-computable

invariant serves primarily for design and review-based validation

purposes. Thus, the characterizing assumptions need to be either

computable or decomposed into computable assumptions.

An example of a non-computable characterizing assumption is

INV-16: “No life threat”. It is AND-decomposed into the

computable assumptions INV-20 and INV-21, representing two

orthogonal concerns, which can be evaluated by monitoring the

Firefighter’s internal state.

Dependencies may also exist between invariants in design

alternatives across different OR-decompositions (cross-tree

dependencies), reflecting constraints of the physical world. These

dependencies are captured in the IRM-SA model by directed links

between invariants labeled with “requires”, resp. “collides”, which

capture the constraint that the source invariant can appear in a

configuration only with, resp. without, the target invariant. For

example, in order for INV-32 to appear in a configuration, INV-30

has to be included as well, capturing the real-life constraint where

the Personal Alert Safety System (PASS) is attached to the self-

contained breathing apparatus (SCBA) of a firefighter; thus if the

SCBA is not used, then the PASS cannot be used as well. The

“collides” dependency is not illustrated in our running example.

5.2 Concepts Addressing Dependability
In IRM-SA, dependability is mainly pursued by tracing the low-

level processes to high-level invariants. Moreover, to deal with

the operational uncertainty in dynamic CPS, IRM-SA goes

beyond the classical goal-modeling approaches and allows self-

adaptation based not only on valuations of belief (snapshot of a

remote component’s internal data), but also on valuations of

associated metadata (timestamp of belief, timestamp of

sending/receiving the belief over the network, etc.). This

functionality also adds to the dependability by self-adapting in

anticipation of critical situations. Nevertheless, IRM-SA support

for dependability does not cover other dependability aspects, such

as privacy and security.

A key property here is that a belief is necessarily outdated,

because of the distribution and periodic nature of real-time

sensing in CPS. For example, the position of a Firefighter as

perceived by his/her Officer would necessarily deviate from the

actual position of the Firefighter if he/she were on the move.

Instead of reasoning directly on the degree of belief outdatedness

(on the time domain), we rely on models that predict the evolution

of the real state (e.g., state-space models if this evolution is

governed by a physical process), translate the outdatedness from

the time domain to the data domain of the belief (e.g. position

inaccuracy in meters) and reason on the degree of belief

inaccuracy. For this, we build on our previous work in

quantifying the degree of belief inaccuracy in dynamic CPS

architectures [1].

For illustration, consider an assumption “inaccuracy(GM::
position) < 20 m”, which models the situation where the

difference of the measured and actual positions is less than 20

meters. In this case, belief inaccuracy is both (i) inherent to the

sensing method (more GPS satellites visible determine more

 Figure 2: IRM-SA model of the running example.

+ id
+ groupLeaderId
+ sensorData
+ position
+ temperature
+ acceleration
+ oxygenLevel
+ nearbyGMsStatus

Firefighter

+ id
+ sensorDataList
+ GMInDanger

Officer

INV-2
GM::groupLeaderId==GL::id

INV-1 GL keeps track of the condition
of his/her group s members

INV-3 GL keeps track of the
condition of the relevant members

INV-7 GM::nearbyGMInDanger – GMs belief of
GL::GMInDanger – is updated every 4 secs

X

INV-6
GL::GMInDanger > 0

INV-8
GL::GMInDanger==0

INV-5 Up-to-date GL::sensorDataList,
w.r.t. GM::sensorData, is available

INV-10 GL::sensorDataList - GL s belief over the
GM::sensorData – is updated every 2 secs

X

INV-9 GM::sensorData is
determined

INV-18 Nearby GM in
danger/critical stateINV-13 GM in danger

INV-15
GM::temperature is
monitored every 1 sec

P

INV-11
GM::acceleration is
monitored every 1 sec

P

INV-17
GM::temperature is
monitored every 5 secs

P

INV-19
AVG(GM::acceleration)==0 in
 past 20 sec

INV-12 GM::position is
determined

INV-16 No life threat

INV-14 GM::oxygenLevel is
monitored when possible

INV-20
AVG(GM::acceleration)>0 in
 past 20 sec

INV-21
GM:nearbyGMsStatus==OK

INV-22
 GM::nearbyGMsStatus==DANGER

INV-29 Breathing
apparatus is used

INV-28 Breathing apparatus is
not used

INV-30 GM::oxygenLevel
is monitored every 1 sec

P

INV-24 GM indoors INV-26 GM outdoors

INV-27 GM::position is
determined from GPS
every 1 sec

P
INV-25 GM::position is
determined from indoors tracking
system every 1 sec

P

Subtree for
 Search and Rescue

situation

INV-31 PASS alert is sounded
when needed

INV-32 PASS alert is
sounded every 5 secs

P

requires

INV-23
 possibility(GM::nearbyGMsStatus==CRITICAL)

INV-4 GL::GMInDanger is determined from
the GL::sensorDataList every 4 secs

P

*[GM]

[GM]

[GL]

1[GL]

1[GM]

[GM]

GroupMember
role

GroupLeader
role

[GL]

Takes-role
relation

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposit ion

Component

PX

Dependency
relation

OR
decomposit ion

Characterizing
Assumption

111

accurate position), and (ii) related to the network latencies when

disseminating the position data (more outdated data yield more

inaccurate positions – since firefighters are typically on the move,

their position data are subject to outdating). As a result, an Officer
has to reason on the cumulative inaccuracy of the position of

his/her Firefighter.

When the domain of the belief field is discrete instead of

continuous, we rely on models that capture the evolution of

discrete values in time, such as timed automata. For illustration,

consider assumption INV-23: “possibility(GM::nearbyGMsStatus
== CRITICAL)”, which models the situation where the

nearbyGMsStatus enumeration field with values OK, DANGER,

and CRITICAL is possible to evaluate to CRITICAL. This presumes

that the designer relies on a simple timed automaton such as the

one depicted in Figure 3,which encodes the domain knowledge

that a firefighter gets into a critical situation (and needs rescuing)

at least 5 seconds after he/she gets in danger.

All in all, the invariants that are formulated with inaccuracy and

possibility provide a fail-safe mechanism for adversarial

situations, when the belief of a component gets so inaccurate that

special adaptation actions have to be triggered. This adds to the

overall dependability of the self-adaptive CPS.

5.3 The Modeling Process
As is usually the case with software engineering processes, IRM-

SA modeling process is a mixed top-down and bottom-up process.

As input, the process requires a set of use cases/user stories

covering both the main success scenarios and the associated

extensions. The main steps of the process are illustrated in

Figure 4. After the identification of the main situations, goals and

components, the architect starts to specify the knowledge of each

component together with its takes-role relations (step 4), while, in

parallel, he/she starts refining the invariants (step 5). These two

steps require potentially several iterations to complete. In step 6,

the architect composes the dangling invariant trees that may have

resulted from the previous steps, i.e., the trees the roots of which

are not top-level invariants. Contrary to the previous steps, this is

a bottom-up design activity. In the final steps, as an optimization,

the subtrees produced in the previous steps that are identical are

merged together, and requires/collides dependencies are added.

The result is a DAG – this optimization was applied also in

Figure 2.

The workings of a single refinement are depicted in Figure 5.

Based on the whether the invariant under question is to be

satisfied in a different way in different situations (e.g. “position

reading” will be satisfied by using the GPS sensor when outdoors

and by using the indoor positioning system when indoors), the

architect chooses to refine the invariant by OR- or AND-

decomposition. Obviously, in the former case, the refinement

involves specifying the characterizing assumption for each design

alternative (situation). Note that, if the characterizing assumption

Figure 3: Timed automaton capturing the transitions in the

valuation of the nearbyGMsStatus field.

Figure 4: Steps in the IRM-SA modeling process.

Figure 5: Steps in a single invariant refinement.

DANGER

OK

CRITICAL
t>5 sec

t:=0

t>0 sec
(1) Identify the situations that warrant self-

adaptation from main scenarios and extensions

(4) Identify components' knowledge and
takes-role relations by asking which

knowledge does each invariant involve and
from which component is the knowledge

obtained from?

(3) Identify the components of the system

(2) Identify the top-level goals of the system and

specify the top-level invariants

(6) Compose dangling invariant trees together by

asking why should their roots be satisfied?

(5) Refine each invariant into sub-invariants
that correspond to activities that can be

performed in isolation by asking how can

this invariant be satisfied?

(7) Merge subtrees that reuse the same situations

to create a directed acyclic graph (DAG)

(8) Add any cross-tree dependencies (requires/

collides) to the DAG

Is it a process/invariant/exchange
invariant/computable assumption?

[YES]

[NO]

OR-decompose invariant into

sub-invariants

AND-decompose invariant

into sub-invariants

Specify the characterizing

assumption for each situation

[YES]

Does the invariant cover more than one situations?

[NO]

112

is not computable, it will get refined in a next step as any other

invariant in such a case.

The process of systematic identification of all the possible

variation points and modeling of the corresponding design

alternatives and situations is closely related to the identification of

adaptation scenarios in a Dynamically Adaptive System (DAS)

[26]. Here, one can leverage existing approaches in requirements

engineering ranging from documentation of main use-case

scenarios and extensions to obstacle/threat analysis on goal

models [42]. Performance and resource optimization concerns can

also guide the identification of variation points and corresponding

design alternatives.

For example, the rationale behind the OR-decomposition of the

left-most part of the AND-decomposition of INV-9 is resource

optimization: under normal conditions the accuracy of external

temperature monitoring can be traded off for battery consumption

of the low-power node; this, however, does not hold in danger

(e.g., a firefighter is not moving, INV-19), when higher accuracy

of external temperature monitoring is needed.

On the contrary, the OR-decomposition of INV-12 has its rationale

in a functional constraint: since GPS is usually not available

within a building, a firefighter’s position has to be monitored

differently in such a case, e.g., through an indoors tracking system

[13]. This is an example of a technology-driven process of

identification of design alternatives, where the underlying

infrastructure significantly influences the possible range of

adaptation scenarios [26]. For example, it would not make sense

to differentiate between the situations of being indoors and

outdoors, if there were no way to mitigate the “GPS lost signal”

problem using the available infrastructure.

This highlights an important point: IRM-SA allows for modeling

the environment via assumptions, but, at the same time, guides the

designer into specifying only the pertinent features of the

environment, avoiding over-specification.

For a complete example of this modeling process, we refer the

reader to the online IRM-SA User Guide2. To support the

modeling process, we have also developed a prototype of a GMF-

based IRM-SA design tool [33].

2 http://www.ascens-ist.eu/irm

6. SELECTING ARCHITECTURE

CONFIGURATIONS BY SAT SOLVING
As outlined in Section 4, given an IRM-SA model, the selection

of a configuration for a situation can be advantageously done by

directly reasoning on the IRM-SA model at runtime. In this

section we describe how we encode the problem of selecting an

applicable configuration into a Boolean satisfiability (SAT)

problem (6.1), our prioritizing strategy with multiple applicable

configurations (6.2), and how we bind variables in the SAT

instance based on monitoring (6.3).

To simplify the explanation, we use the term “clause” in this

section even for formulas which are not necessarily valid clauses

in the sense of CNF (Conjunctive Normal Form – the default

input format for SAT), but rely on the well-known fact that every

propositional formula can be converted to an equisatisfiable CNF

formula in polynomial time.

6.1 Applicable Configurations
Formally, the problem of selecting an applicable configuration is

the problem of constructing a set 𝐶 of selected invariants from an

IRM-SA model such that the following rules are satisfied: (i) all

the top-level invariants are in 𝐶; (ii) if an invariant 𝐼𝑝 is

decomposed by an AND-decomposition to 𝐼1, … , 𝐼𝑚, then 𝐼𝑝 ∈ 𝐶

Figure 6: An architecture configuration of the running example.

1. // 1. configuration constraints based of the IRM model
2. // top level decomposition in Figure 2
3. 𝑠11_1 ∧ 𝑠27 ∧ 𝑠28 ⇔ 𝑠11 // s11_1 represents the anonymous

 invariant in the AND decomposition of INV-9
4. 𝑠33_1 ∨ 𝑠33_2 ∨ s20

′ ⇔ 𝑠33 // s20
′ is a copy of s20

5.
6. // decomposition level 1 in Figure 2
7. 𝑠11_1_1 ∨ 𝑠11_1_2 ∨ 𝑠11_1_3 ⇔ 𝑠11_1
8. 𝑠28_1 ∨ 𝑠28_2 ⇔ 𝑠28
9. 𝑠34 ∧ 𝑠13

′ ⇔ 𝑠33_2 // s13
′ is a copy of s13

10.
11. // decomposition level 2 in Figure 2
12. 𝑠13 ∧ 𝑠14 ∧ 𝑠15 ⇔ 𝑠11_1_1

13. 𝑠20 ∧ 𝑠21 ⇔ 𝑠11_1_2
14. 𝑠24 ∧ … ⇔ 𝑠11_1_3
15. 𝑠30 ∧ 𝑠29 ⇔ 𝑠28_1

16. 𝑠32 ∧ 𝑠31 ⇔ 𝑠28_2
17.
18. // decomposition level 3 in Figure 2
19. 𝑠16 ⇔ 𝑠13
20. 𝑠16

′ ⇔ 𝑠13
′

21. 𝑠14_1 ∨ 𝑠19 ⇔ 𝑠14
22. 𝑠22 ∧ 𝑠23 ⇔ 𝑠20
23. … // similar for 𝑠20

′ , 𝑠24
24.
25. // decomposition level 4 in Figure 2
26. 𝑠17 ∧ 𝑠18 ⇔ 𝑠14_1
27.
28. // 2. only applicable invariants may be selected into a configuration
29. (𝑠11 ⇒ 𝑎11) ∧ … ∧ (𝑠32 ⇒ 𝑎32) ∧ …
30.
31. // 3. determining acceptability according to monitoring
32. // (current configuration as shown in Figure 6)
33. // 3.1. active monitoring
34. 𝑎11 = ⋯ // true or false based on the monitoring of INV-9
35. … // repeat for 𝑎16, 𝑎16

′ , 𝑎17, 𝑎19, 𝑎21, 𝑎22, 𝑎22
′ , 𝑎23, 𝑎23

′ , 𝑎25, 𝑎27, 𝑎28, 𝑎32, 𝑎33
36.
37. // 3.2. predictive monitoring
38. 𝑎15 = ⋯
39. … // repeat for the rest

Figure 7: Encoding the IRM-SA model of running example into

SAT.

X

X

P

P

P

P

PP

P

requires

P

Process/Ensemble Invariants involved in
the architecture configuration

113

iff all 𝐼1, … , 𝐼𝑚 ∈ 𝐶; (iii) if an invariant 𝐼𝑝 is decomposed by an

OR-decomposition to 𝐼1, … , 𝐼𝑚, then 𝐼𝑝 ∈ 𝐶 iff at least one of

𝐼1, … , 𝐼𝑚 is in 𝐶; (iv) if an invariant 𝐼𝑝 requires, resp. collides

(with), 𝐼𝑞, then 𝐼𝑝 ∈ 𝐶 iff 𝐼𝑝 ∈ 𝐶, resp. 𝐼𝑝 ∉ 𝐶. The set C

represents an applicable configuration. The rules above ensure

that 𝐶 is well-formed with respect to decomposition and cross-tree

dependencies semantics. Figure 6 shows a sample applicable

configuration (selected invariants are outlined in grey

background).

Technically, for the sake of encoding configuration selection as a

SAT problem, we first transform the IRM-SA model to a forest by

duplicating invariants on shared paths. (This is possible because

the IRM-SA model is a DAG.) Then we encode the configuration

𝐶 we are looking for by introducing Boolean variables 𝑠1, … , 𝑠𝑛,

such that 𝑠𝑖 = 𝑡𝑟𝑢𝑒 iff 𝐼𝑖 ∈ 𝐶. To ensure 𝐶 is well-formed, we

introduce clauses over 𝑠1, … , 𝑠𝑛 reflecting the rules (i)-(iv) above.

For instance, the IRM-SA model from Figure 2 will be encoded as

shown in Figure 7, lines 1-26.

To ensure that 𝐶 is an applicable configuration w.r.t. a given

situation, we introduce Boolean variables 𝑎1, … , 𝑎𝑛 and add a

clause 𝑠𝑖 ⇒ 𝑎𝑖 for each 𝑖 ∈ {1 … 𝑛} (Figure 7, line 29). The value

of 𝑎𝑖 captures whether the invariant 𝐼𝑖 is acceptable; i.e., 𝑡𝑟𝑢𝑒

indicates that it can be potentially included in 𝐶, 𝑓𝑎𝑙𝑠𝑒 indicates

otherwise. The variables 𝑎1, … , 𝑎𝑛 are bound to reflect the state of

the system and environment (Figure 7, lines 31-39). This binding

is described in Section 6.3.

In the resulting SAT instance, the variable 𝑠𝑡 for each top-level

invariant 𝐼𝑡 is bound to true to enforce the selection of at least one

applicable configuration. A satisfying valuation of such a SAT

instance encodes one applicable configuration (or more than one

in case of overlapping situations – see Section 6.2), while

unsatisfiability of the instance indicates nonexistence of an

applicable configuration in the current situation.

6.2 Prioritizing Applicable Configurations
Since the situations in an OR-decomposition do not need to be

exclusive but can overlap, SAT solving could yield more than one

applicable configurations. In this case, we assume a post-

processing process that takes as input the IRM-SA model with the

applicable configurations and outputs the selected configuration

based on analysis of preferences between design alternatives. For

this purpose, one can use strategies that range from simple total

preorder of alternatives in each decomposition to well-established

soft-goal-based techniques for reasoning on goal-models [16]. In

the rest of the section, we detail on the prioritization strategy used

in our experiments, which we view as just one of the many

possible.

For experimental evaluation (Section 7.1.2), we have used a

simple prioritization strategy based on total preorder of design

alternatives in each OR-decomposition. Here, for simplicity, a

total preorder - numerical ranking is considered (1 corresponds to

the most preferred design alternative, 2 to the second most

preferred, etc.). The main idea of the strategy is that the

preferences loose significance by an order of magnitude from top

to bottom, i.e., preferences of design alternatives that are lower in

an IRM-SA tree cannot impact the selection of a design

alternative that is above them on a path from the top-level

invariant.

More precisely, given an IRM-SA tree, every sub-invariant 𝐼𝑖 of

an OR-decomposition is associated with its OR-level number 𝑑𝑖,

which expresses that 𝐼𝑖 is a design alternative of a 𝑑𝑖-th OR-

decomposition on a path from the top-level invariant (level 1) to a

leaf. For each OR-level, there is its cost base 𝑏𝑗 defined in the

following way: (a) the lowest OR-level has cost base equal to 1,

(b) the 𝑗-th OR-level has its cost base 𝑏𝑗 = 𝑏𝑗+1 ∗ (𝑛𝑗+1 + 1),

where 𝑛𝑗+1 denotes the number of all design alternatives at the

level 𝑗 + 1 (i.e., considering all OR-decomposition at this level).

For example, the 2nd OR-level in the running example has 𝑏2 =
𝑏3 ∗ (𝑛3 + 1) = 1 ∗ (4 + 1) = 5, since the 3rd OR-level (lowest)

has in total 4 design alternatives (2 from the OR-decomposition of

INV-14 and 2 from that of INV-18).

Having calculated the base for each OR-level, the cost of a child

invariant 𝐼𝑖 of a 𝑑𝑖-th OR-decomposition with a cost 𝑏𝑑𝑖
 is defined

as 𝑟𝑎𝑛𝑘 ∗ 𝑏𝑑𝑖
, where 𝑟𝑎𝑛𝑘 denotes the rank of the design

alternative that the invariant 𝐼𝑖 corresponds to. Finally, a simple

graph traversal algorithm is the employed to calculate the cost of

each applicable configuration as the sum of the cost of the

selected invariants in the applicable configuration. The applicable

configuration with the smallest cost is the preferred one –

becomes the current configuration.

6.3 Determining Acceptability
Determining acceptability of an invariant 𝐼𝑖 (i.e., determining the

valuation of 𝑎𝑖) is an essential step. In principle, a valuation of 𝑎𝑖

reflects whether 𝐼𝑖 is applicable w.r.t. the current state of the

system and the current situation. Essentially, 𝑎𝑖 = 𝑓𝑎𝑙𝑠𝑒 implies

that 𝐼𝑖 cannot infer an applicable configuration.

We determine the valuation of 𝑎𝑖 in one of the following ways

(alternatively):

(1) Active monitoring. If 𝐼𝑖 belongs to the current configuration

and is computable, we determine 𝑎𝑖 by evaluating 𝐼𝑖 w.r.t. the

current knowledge of the components taking a role in 𝐼𝑖.

(2) Predictive monitoring. If 𝐼𝑖 does not belong to the current

configuration and is computable, it is assessed whether 𝐼𝑖 would

be satisfied in another configuration if chosen.

In principle, if 𝐼𝑖 is not computable, its acceptability can be

inferred from the computable sub-invariants.

For predictive monitoring, two evaluation approaches are

employed: (a) The invariant to be monitored is extended by a

monitor predicate (which is translated into a monitor – Section

7.1.1) that assesses whether the invariant would be satisfied if

selected, and (b) the history of the invariant evaluation is observed

in order to prevent oscillations in current configuration settings by

remembering that active monitoring found an invariant not

acceptable in the past.

Certainly, (a) provides higher accuracy and thus is the preferred

option. It is especially useful for process invariants, where the

monitor predicate may assess not only the validity of process

invariant (e.g. by looking at knowledge valuations of the

component that take a role in it), but also whether the underlying

process would be able to perform its computation at all. This can

be illustrated on the process invariant INV-27, where the process

maintaining it can successfully complete (and thus satisfy the

invariant) only if GPS is operational and at least three GPS

satellites are visible.

6.4 Decentralized Reasoning
Though the selection of an applicable configuration is relatively

straightforward from the abstract perspective of SAT formulation,

its actual decentralized implementation is more complex. This is

because of the inherent distribution and dynamicity of CPS, which

114

in particular implies that: (1) communication is inherently

unreliable; (2) all data perceived by components are inevitably to

an extent outdated; (3) the whole CPS has to observe and control

the environment in real-time, no matter whether it was able to

coordinate the selection and execution of the applicable

configuration or not.

Such a context makes it rather impossible to employ any solution

which relies on a strict synchronization of components’

knowledge – such as a selected arbiter would collect all the

necessary knowledge from components, solve the SAT problem,

and reliably communicate the result back to the components (the

classical centralized approach). Interestingly enough, even the

decentralized approaches requiring distributed consensus fail in

this case because of unbounded message delays.

Instead of trying to reach consensus among components, it is

sufficient that each node has up-to-date enough data and solves

independently the same SAT problem. Since SAT solving is

deterministic, all nodes are supposed to reach the same solution

(assuming they employ the same prioritization strategy).

The problem is that this would require zero communication delay

though – something that is certainly not true in a real CPS

infrastructure. Therefore we exploit the fact that temporary de-

synchronization of components’ knowledge is not harmful in

major cases, but only reduces the overall performance. We

provide a discussion on the factors that characterize the impact on

performance in Section 8.2.

7. EXPERIMENTAL EVALUATION
The evaluation of IRM-SA has been two-fold – experiments of

applicability of IRM-SA self-adaptation in practical settings

(Section 8.1), and small-scale empirical study on the feasibility

and effectiveness of the IRM-SA modeling process (Section 8.2).

7.1 Self-adaptation in jDEECo

7.1.1 Realization
We implemented the self-adaptation method of IRM-SA as a

plugin (publicly available [33]) into the jDEECo framework [34].

This framework is a realization of the DEECo component model

[11, 38] . For developing components and ensembles, jDEECo

provides an internal Java DSL and allows their distributed

execution.

DEECo Component Model. Dependable Emergent Ensemble of

Components (DEECo) is component model (including

specification of deployment and runtime computation semantics)

tailored for building CPS with a high degree of dynamicity in

their operation. In DEECo, components are autonomous units of

deployment and computation. Each of them comprises knowledge

and processes. Knowledge is a hierarchical data structure

representing the internal state of the component. A process

operates upon the knowledge and features cyclic execution based

on the concept of feedback loop [50], being thus similar to a

process in real-time systems. As an example, consider the two

DEECo components in Figure 8, lines 7-13 and 15-23. They also

illustrate that separation of concerns is brought to such extent that

individual components do not explicitly communicate with each

other. Instead, interaction among components is determined by

their composition into ensembles – groups of components

cooperating to achieve a particular goal [19, 31] (e.g.,

PositionUpdate ensemble in Figure 8, lines 27-34). Ensembles are

dynamically established/disbanded based on the state of

components and external situation (e.g., when a group of

firefighters are physically close together, they form an ensemble).

At runtime, knowledge exchange is performed between the

components within an ensemble (lines 32-33) – essentially

updating their beliefs (Section 3).

jDEECo Runtime. Each node in a jDEECo application contains a

jDEECo runtime, which in turn contains one or more local

components – serving as a container (Figure 10). The runtime is

responsible for periodical scheduling of component processes and

knowledge exchange functions (lines 12, 23, 34). It also possesses

reflective capabilities in the form of a DEECo runtime model that

provides runtime support for dynamic reconfigurations (e.g.,

starting and stopping of process scheduling). Each runtime

manages the knowledge of both local components, i.e.,

1. role PositionSensor:
2. missionID, position
3.
4. role PositionAggregator:
5. missionID, positions
6.
7. component Firefighter42 features PositionSensor, …:
8. knowledge:
9. ID = 42, missionID = 2, position = {51.083582, 17.481073}, …
10. process measurePositionGPS (out position):
11. position ← Sensor.read()
12. scheduling: periodic(500ms)
13. … /* other process definitions */
14.
15. component Officer13 features PositionAggregator, …:
16. knowledge:
17. ID = 13, missionID = 2, position = {51.078122, 17.485260},
18. firefightersNearBy = {42, …}, positions = {{42, {51.083582,
19. 17.481073}},…}
20. process findFirefightersNearBy(in positions, in position, out
21. firefightersNearBy):
22. firefightersNearBy← checkDistance(position, positions)
23. scheduling: periodic(1000ms)
24. … /* other process definitions */
25. … /* other component definitions */
26.
27. ensemble PositionUpdate:
28. coordinator: PositionAggregator
29. member: PositionSensor
30. membership:
31. member.missionID == coordinator.missionID
32. knowledge exchange:

33. coordinator.positions ← { (m.ID, m.position) | m ∈ members }
34. scheduling: periodic(1000ms)
35. … /* other ensemble definitions */

Figure 8: Example of possible DEECo components and ensembles

in the running example.

Figure 9: Models and their meta-models employed for self-

adaptation in jDEECo.

Solver

Running System

Generated at deployment, kept
in sync with EMF listeners

Generated at
deployment

Generated at runtime by
knowledge valuation of

active components

Processes to run

Predicate logic
formula

DEECo runtime
metamodel

IRM-SA runtime
metamodel

Traceability
metamodel

IRM-SA design
metamodel

conforms toconforms toconforms toconforms to

Traceability
model

IRM-SA runtime
model

DEECo runtime
model

IRM-SA design
model

M1 level

M2 level

Outcome of the design phase

115

components deployed on the same node, and replicas, i.e., copies

of knowledge of the components that are deployed on different

nodes but interact with the local components via ensembles.

Self-Adaptation in jDEECo. For integration of the self-

adaptation method of IRM-SA (jDEECo self-adaptation) with

jDEECo, a models-at-runtime approach [47] is employed,

leveraging on EMF-based models (Figure 9). In particular, a

Traceability model is created at deployment, providing the

association of entities of the DEECo runtime model (i.e.,

components, component processes, and ensembles) with the

corresponding constructs of the IRM-SA design model (i.e.,

components and invariants). This allows traceability between

entities of requirements, design, and implementation – a feature

essential for self-adaptation. For example, the process

measurePositionGPS in Figure 11 is traced back to INV-27 (line

7), while the Firefighter component is traced back to its IRM-SA

counterpart (line 2). Based on the Traceability model and the

DEECo runtime model, an IRM-SA runtime model is generated by

“instantiating” the IRM-SA design components with local

components and replicas. Once the IRM-SA runtime model gets

used for selecting an architecture configuration, the selected

configuration is imposed to the DEECo runtime model as the

current one.

A central role in performing jDEECo self-adaptation is played by

a specialized jDEECo component Adaptation Manager (AM). Its

functionality comprises the following steps (Figure 10): (1)

Aggregation of monitoring results from local components and

replicas and creation of IRM-SA runtime model. (2) Invocation of

the SAT solver (Sections 6.1-6.3). (3) Translation of the SAT

solver output into an applicable configuration (including

prioritization). (4) Triggering the actual architecture adaptation –

applying the current configuration. As an aside, internally, AM

employs the SAT4J solver [43], mainly due to its seamless

integration with Java.

The essence of step (4) lies in instrumenting the scheduler of the

jDEECo runtime. Specifically, for every process, resp. exchange

invariant in the current configuration, AM starts/resumes the

scheduling of the associated component process, resp. knowledge

exchange function. The other processes and knowledge exchange

Figure 10: Steps in jDEECo self-adaptation: (1) Aggregate monitoring results from local component and replicas and create

IRM-SA runtime model; (2) Translate into SAT formula, bind monitoring variables; (3) Translate SAT solver output to

current configuration; (4) Activate/ deactivate component processes and knowledge exchange processes according to current

configuration. At each node, self-adaptation is a periodically-invoked process of the “Adaptation Manager” system component

(which is deployed on each node along with the application components).

1. @Component
2. @IRMComponent(“Firefighter”)
3. public class Firefighter {
4. public Position position;
5. ...
6.
7. @Invariant(“27”)
8. @PeriodicScheduling(period=500)
9. public static void monitorPositionGPS(
10. @Out("position") Position position
11.) {
12. // read current position from the GPS device
13. }
14. ...
15.
16. @InvariantMonitor(“27”)
17. public static boolean monitorPositionGPSMonitor(
18. @In("position") Position position
19.) {
20. // check health of GPS device
21. // check if at least 3 satellites are visible
22. }
23. ...
24. }

Figure 11: Firefighter component definition and process-

monitor definition in the internal Java DSL of jDEECo.

. . .

P
ro

ce
ss

2
in

ac
ti

ve

A
ss

u
m

p
ti

o
n

M
o

n
it

o
r1

M
o

n
it

o
r

P
ro

ce
ss

1
a

ct
iv

e

M
o

n
it

o
r

K
n

o
w

le
d

ge

E
xc

h
a

n
ge

1
a

ct
iv

e

Node #3

Adaptation Manager

IRM-SA design model

DEECo runtime model

Traceability model

Se
lf

-a
d

ap
ta

ti
o

n

A
rc

hi
te

ct
u

re

R
ec

o
nf

ig
u

ra
to

r

SA
T

So
lv

er

4

jDEECo runtime

Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

 r
un

ti
m

e

m
od

e
l g

en
er

at
o

r

. . .

P
ro

ce
ss

2
in

ac
ti

ve

A
ss

u
m

p
ti

o
n

M
o

n
it

o
r1

M
o

n
it

o
r

P
ro

ce
ss

1
a

ct
iv

e

M
o

n
it

o
r

K
n

o
w

le
d

ge

E
xc

h
a

n
ge

1
a

ct
iv

e

Node #2

Adaptation Manager

IRM-SA design model

DEECo runtime model

Traceability model

Se
lf

-a
d

ap
ta

ti
o

n

A
rc

hi
te

ct
u

re

R
ec

o
nf

ig
u

ra
to

r

SA
T

So
lv

er

jDEECo runtime

Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

 r
un

ti
m

e

m
od

e
l g

en
er

at
o

r

. . .

P
ro

ce
ss

2
in

ac
ti

ve

A
ss

u
m

p
ti

o
n

M
o

n
it

o
r1

M
o

n
it

o
r

P
ro

ce
ss

1
a

ct
iv

e

M
o

n
it

o
r

K
n

o
w

le
d

ge

E
xc

h
a

n
ge

1
a

ct
iv

e

Node #1

Adaptation Manager

IRM-SA design model

DEECo runtime model

Traceability model

1

Se
lf

-a
d

ap
ta

ti
o

n

A
rc

hi
te

ct
u

re

R
ec

o
nf

ig
u

ra
to

r

SA
T

So
lv

er

23

4

jDEECo runtime

Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

 r
un

ti
m

e

m
od

e
l g

en
er

at
o

r

116

functions are not scheduled any more.

Monitoring. AM can handle both active and predictive

monitoring techniques (Section 6.3). In the experiments described

in Section 7.1.2, predictive monitoring was used for both

component processes and knowledge exchange functions (based

on observing the history of invariants evaluation), while for

assumptions, only active monitoring was employed.

Technically, monitors are realized as Boolean methods associated

with invariants in the Traceability model. For instance, a monitor

for INV-27: “GM::position is determined from GPS” is illustrated

in Figure 11, lines 16-22; it checks whether the corresponding

process operates correctly by checking the health of the GPS

device and the number of available satellites. The execution of

monitors is driven directly by AM and is part of the first step of

the jDEECo self-adaptation (Figure 10).

7.1.2 Coping with Operational Uncertainty
A key goal of the experiments was to support the claim

“temporary de-synchronization of components’ knowledge is not

harmful in major cases, but only reduces the overall performance

of the system compared to the ideal case of zero communication

delay”.

More specifically, the questions that we investigated by

experiments were the following.

 Q1: Do temporary network disconnections (and associated

communication delays) reduce the overall performance

of an application that employs jDEECo self-adaptation?

 Q2: Does using the IRM-SA method to cope with operational

uncertainty increase the overall performance of an

application that employs jDEECo self-adaptation?

In the experiments we employed an extended version of the

running example. This IRM-SA model consists of 4 components,

39 invariants, and 23 decompositions [33]. In the experiments,

teams of firefighters consisting of three members and one leader

were considered. In the simulated scenario, a firefighter A senses

temperature higher than a pre-specified threshold (indication of

being “in danger”); this information is propagated to the A’s

leader who in turn propagates the information that A is in danger

to a firefighter B; then, B performs self-adaptation in the

anticipation of the harmful situation of a having a group member

in danger (proactive self-adaptation) and switches the mode to

“Search and Rescue” (the situation captured by INV-18 in

Figure 2). At the point when the leader determines that A is in

danger, a temporary network disconnection occurs. The overall

performance was measured by reaction time – the interval

between the time that A sensed high temperature and the time that

B switches to “Search and Rescue”. Note that the overall

performance corresponds to the cumulative utility function

𝑢(𝑎, Δ𝑡max), as characterized in Section 8.2.

Simulation setup. The experiments were carried out using the

jDEECo simulation engine [34]. Several simulation parameters

(such as interleaving of scheduled processes) that were not

relevant to our experiment goals were set to firm values. The

simulation code, along with all the parameters and raw

measurements, are available online [33].

To obtain a baseline, the case of no network disconnections was

also measured. The result is depicted in dashed line in Figure 12.

To investigate Q1 and Q2, a number of network disconnections

with preset lengths were considered; this was based on a prior

experience of working with deployment of DEECo on mobile ad-

hoc networks [10].

To answer Q2, the timed automaton (Figure 3) associated with

INV-23: “possibility(GM::nearbyGMsStatus == CRITICAL)” was

modified: the transition from DANGER to CRITICAL was made

parametric to experiment with different critical threshold values –

critical threshold in the context of the experiments is the least time

needed for a firefighter to get into a critical situation after he/she

gets in danger (in Figure 3 the critical threshold is set to 5 sec).

The reaction times for different critical thresholds and different

disconnection lengths are in Figure 12.

To answer Q1 (as well as obtain the baseline), the critical

threshold was set to infinity – effectively omitting INV-23 from

the IRM-SA model – in order to measure the vanilla case where

self-adaptation is based only on the values of data transmitted

(belief) and not on other parameters such as belief outdatedness

and its consequent inaccuracy.

Analysis of results. From Figure 12 it is evident that the reaction

time (a measure of the overall performance of the system)

strongly depends on communication delays caused by temporary

disconnections. Specifically, in the vanilla case the performance is

inversely proportional to the disconnection length, i.e., it

decreases together with the quality of the communication links.

This is in favor of a positive answer to Q1.

Also, the IRM-SA mechanisms to cope with operational

uncertainty – temporary network disconnections in particular – are

indeed providing a solution towards reducing the overall

performance loss. Proactive self-adaptation yields smaller reaction

times (Figure 12) – this is in favor of a positive answer to Q2. In

particular, for the lowest critical threshold (2000ms) the reaction

time is fast; this threshold configuration can, however, result into

Figure 12: Reaction times for different network disconnection

lengths and different critical thresholds. The results for each

case have been averaged for different DEECo component

knowledge publishing periods (400, 500 and 600 ms).

0

5000

10000

15000

20000

25000

1000 3000 5000 8000 12000

re
ac

h
ti

o
n

 t
im

e
(m

s)

disconnection length (ms)

critical threshold: 2000 ms

critical threshold: 5000 ms

critical threshold: 8000 ms

critical threshold: infinity

no network disconnections

117

overreactions, since it hardly tolerates any disconnections. When

setting the critical threshold to 5000ms, proactive self-adaptation

is triggered in case of larger disconnections (5000ms and more)

only. A critical threshold of 8000ms triggers proactive self-

adaptation in case of even larger disconnections (8000ms or

more). Finally, when critical threshold is set to infinity, proactive

self-adaptation is not triggered at all.

7.2 IRM-SA Modeling: Feasibility and

Effectiveness
To evaluate the feasibility of the IRM-SA modeling process,

described in section 5.3, and the impact of using IRM-SA on the

effectiveness of the architects, we carried out an empirical study

in the form of a controlled experiment.

7.2.1 Experiment Design
The experiment involved 20 participants: 12 Master’s and 8 Ph.D.

students of computer science. The participants were split into

treatment (IRM-SA) and control groups. Each participant was

assigned the same task, which involved coming up with a

specification (on paper) of system architecture comprised of

DEECo components and ensembles for a small system-to-be. The

requirements of the system-to-be were provided in the form of

user stories. The task’s effort was comparable in size of

invariants, situations and decompositions to the running example

in this paper. The suggested time to accomplish the task was 4

hours, although no strict limit was imposed.

The independent variable/main factor of the experiment was the

design method used: Participants in the IRM-SA group followed

the IRM-SA modeling process to come up with an IRM-SA

model, and then manually translated it to the system architecture,

whereas participants in the control group were not recommended

to use any specific method for designing the system architecture.

The dependent variables of the experiment are mapped to the

hypotheses in Tables 1 and 2. We assessed (i) the correctness of

system architecture [0-100] ratio scale, and (ii) several other

variables capturing the intuitiveness of IRM-SA, perceived

effort, adequateness of the experiment settings, etc. in Likert 5-

point ordinal scale (1: Strongly disagree, 2: Disagree, 3: Not

certain, 4: Agree, 5: Strongly agree). While (i) was based on

manual grading each architecture based on a strict grading

protocol where each error (missing knowledge, missing role,

wrong process condition, wrong process period, wrong ensemble

membership condition, etc.) was penalized by reducing certain

number of points, assessment of (ii) was provided by the

participants in pre- and post-questionnaires.

7.2.2 Results and Interpretation
To analyze the results and draw conclusions, for each hypothesis,

we formulated a null hypothesis and ran a one-sided statistical test

to reject it. In the case of two-sample tests (Table 1), the null

hypothesis stated that the medians of the two groups were

Figure 13: Box-and-whisker diagrams of the two samples

measuring correctness of system architectures.

Table 1: Two-sample tests to compare the populations of IRM-SA and control groups.

id Alternative (Null) Hypothesis test
median

control

median

IRM-SA

reject

null-H?
p-value

1
The correctness of the final system architectures is lower (null: the same)

in the control group than in the IRM-SA group
t-test 81.30 86.09 Y 0.0467

2
The IRM-SA group witnessed less (null: the same) difficulties in coming

up with a DEECo architecture than the control group

Mann-

Whitney
4 4 N 0.5164

3
The IRM-SA group perceived the design effort as more (null: equally)

likely to be too high for an efficient use of the methodology in practice

Mann-

Whitney
2 2.5 N 0.4361

Table 2: One-sample Wilcoxon Signed-Rank tests to assess a hypothesis specific to a group. Only conclusive results are shown; for

the complete list of results we refer the interested reader to the experiment kit [33].

id Alternative Hypothesis median p-value

4 IRM-SA group will find it easy to think of a system in IRM-SA concepts (invariants, assumptions) 3.5 0.02386

6 IRM-SA group will find IRM-SA concepts detailed enough to captured the design choices 4 0.00176

9 IRM-SA group will have increased confidence over the correctness of the architecture via IRM-SA 4 0.00731

Figure 14: Histogram with distribution of grades per group.

0

1

2

3

4

5

<75 75-80 80-85 85-90 90-95 95-100

N
u

m
b

er
 o

f
sy

st
em

 a
rc

h
it

ec
tu

re
s

Grades [0-100]

control IRM-SA

118

significantly different, whereas in the case of one-sample tests

(Table 2) it stated that the answer is not significantly more

positive than “Not certain” (point 3 in Likert). We adopted a 5%

significance level, accepting the null hypothesis if p-value<0.05.

(The p-value denotes the lowest possible significance with which

it is possible to reject the null hypothesis [64]).

The correctness of the system architectures showed a statistically

significant difference (with p=0.0467) in favor of the IRM-SA

group (Table 1, H1). Figure 13 depicts the dispersion of grades

around the medians for the two groups, while Figure 14 depicts

the frequencies of grades per group. From H9 (Table 2) we can

also conclude that participants of the IRM-SA group perceived

IRM-SA as an important factor of their confidence on the

correctness of the system architecture they proposed. These two

results allow us to conclude that IRM-SA increased both the

actual and the perceived effectiveness of the modeling process to

a statistically significant extent.

Regarding the rest of the conclusive results, participants of the

IRM-SA group found the IRM-SA modeling process intuitive

(H4) and the IRM-SA concepts rich enough to capture design

choices (H6).

7.2.3 Threats to Validity
Conclusion validity. To perform the parametric t-test for

interval/ratio data for H1, we assumed normal distribution of

samples [57]. Since Likert data were treated as ordinal, we used

the non-parametric Mann-Whitney tests for H2-H3 and Wilcoxon

tests for H4, H6 and H9 [57]. Grading was based on a strict pre-

defined protocol, which we made available together with the

anonymized raw data and the replication packages in the

experiment kit [33].

Internal validity. We adopted a simple “one factor with two

treatments” design [64] to avoid learning effects. The number of

participants (20) was high enough to reach a basic statistical

validity. We used a semi-randomized assignment of participants

to groups so that each group is balanced both in terms of Master’s

vs Ph.D. students and in terms of their experience with DEECo.

Although the average time to completion of the assignment varied

greatly, the mean (140 mins) and minimum (75 mins) values

indicate that participants spent enough time to understand, think

about and perform the task and fill in the questionnaires. The

material and the experiment process was beta-tested with 4

participants beforehand.

Construct validity. We dealt with mono-method bias by using

both subjective (questionnaires) and objective (grades) measures.

We also measured more constructs than needed for H1 in order to

obtain multiple sources of evidence. However, we introduced

mono-operation bias by using only one treatment (IRM-SA) and

one task. Mitigating this threat is subject of additional future

studies.

External validity. Our population can be categorized as junior

software engineers, since it was formed by graduate students in

the last years of their studies [32]. Nevertheless, we used a rather

simple example and no group assignments. Therefore, the results

can be generalized mainly in academic settings.

8. DISCUSSION

8.1 Coping with Unanticipated Situations
Although IRM-SA modeling and self-adaptation as described in

the previous sections relies on anticipated situations, we are aware

of the fact that CPS often need to operate in situations that reside

out of their “envelope of adaptability” [7]. In this section, we

explain how IRM-SA tackles this problem both at runtime and

design time. The driving idea is to control the decline of

dependability in the system caused by unanticipated situations, so

that the system’s operations degrade gradually in a controlled

manner.

To illustrate the problem using the running example, consider a

scenario of a vegetation fire where firefighters, as a part of

coordinating their actions, periodically update their group leader

with information about their position as captured by personal GPS

devices. A problem arises when GPS monitoring fails for

whatever reasons (battery drainage etc.) – the system would no

longer be able to adapt, since this failure was not anticipated at the

design time. Below, we explain several strategies we propose to

cope with such unanticipated situations in IRM-SA.

8.1.1 Runtime Strategy
The principal strategy for coping with unanticipated situations is

to specify alternatives of OR-decompositions in such a way that

they cover situations in an overlapping manner. This increases

overall system robustness and fault-tolerance by providing a

number of alternatives to be selected in a particular situation in

the following way: when the system fails due to an unanticipated

situation, there is a chance, that another alternative may be

selected to preserve the top-level invariants and be unaffected by

this concealed assumption.

A special case is when an IRM-SA model contains one or more

design alternatives that have very weak assumptions, i.e.,

assumptions that are very easily satisfied at runtime, and

minimum preference in an OR-decomposition. Such a design

alternative is chosen only as the last option as a fail-safe mode,

typical for the design of safety-critical systems. Figure 15 (a)

depicts such a case, where the situation 3, reflecting a fail-safe

mode, overlaps with both the situation 1 and 2.

In the running example, the runtime strategy is employed in two

OR-decompositions (Figure 2). The left-most part of the

decomposition of INV-9 “GM::sensorData is determined” has to

be maintained differently when the associated group member is in

danger (INV-13), when a nearby group member is in

danger/critical state (INV-18), and when no life is in threat (INV-
16). The situation characterized by INV-16 stands as a counterpart

of the other two, nevertheless they are not mutually exclusive.

This case is depicted in Figure 15.b.

Figure 15: Overlap of situations when (a) situation 3 is a “fail-

safe” mode, (b) situations overlap in the running example.

(a)

Situation 1 Situation 2

Situation 3

(b)

Overlapping
of situations

1 & 2

Situation 1
(INV-13)

Situation 2
(INV-18)

Situation 3 (INV-16)

119

Further, the INV-12: “GM::position is determined” has to be

maintained in the two situations characterized by the INV-24: “GM
indoors” and INV-26: “GM outdoors”. The last two also

potentially overlap, corresponding to the real-life scenario where a

firefighter repeatedly enters and exits a building. In this case, the

firefighter can also use the indoors tracking system to track his

position; this design alternative is automatically chosen when the

GPS unexpectedly malfunctions.

8.1.2 Re-design Strategy
The re-design strategy is applied in the design evolution process –

occurrences of the adaptation actions that led to a failure in the

system are analyzed and the IRM-SA model is revised

accordingly. Such a revision can range from inclusion of a single

invariant to restructuring of the whole IRM-SA model.

In such a revision, an important aid for the designer is the fact that

each invariant refinement implies relationship between the sub-

invariants and the parent invariant (Section 5.1). By monitoring

the satisfaction of the parent invariant 𝐼𝑝 and sub-

invariants 𝐼1, … , 𝐼𝑛, it is possible to narrow down the adaptation

failure and infer a suitable way of addressing it. In particular, an

adaptation failure occurs when:

(a) 𝐼𝑝 is AND-decomposed, all non-process invariants among

𝐼1, … , 𝐼𝑛 hold but 𝐼𝑝 does not hold. This points to a concealed

assumption in the refinement of 𝐼𝑝.

(b) 𝐼𝑝 is OR-decomposed, none of its alternatives holds, but 𝐼𝑝

holds. This points to the fact that the refinement of 𝐼𝑝 is likely to

have more strict assumptions than necessary.

(c) 𝐼𝑝 is OR-decomposed, none of its alternatives holds, and 𝐼𝑝

does not hold as well. This points to such an unanticipated

situation, which requires either a new alternative to be introduced

or an alternative that provides “close” results to be extended.

For illustration (of the case (c) in particular), consider the scenario

of a non-responsive GPS. In this case, both “GM::position is
determined from GPS every 1 sec” (INV-27 in Figure 2) and its

parent “GM::position is determined” (INV-12) do not hold, which

is a symptom for an unanticipated situation. Indeed, the root cause

is that GPS signal was considered accurate. To mitigate this

problem, we employ the evolution of the running example as

presented in Figure 16. There, the unanticipated situation has

become explicit and is used to drive the adaptation. Specifically,

in this new situation, the system still satisfies INV-12 by switching

to the right-most alternative. In such a case, the Firefighter’s

position is determined by aggregating the positions of the nearby

firefighters (INV-36) and estimating its own position based on

these positions and the radius of search, through determining the

maximum overlapping area (INV-37).

8.2 Self-Adaptation in Decentralized Settings
In decentralized settings, each node has up-to-date enough data

and solves independently the same SAT problem. Communication

delays may however cause temporary de-synchronization of

components’ knowledge and, therefore, components may reach

different solutions. While this de-synchronization decreases the

overall performance of the system, it is not harmful in major

cases, as long as the system has revertible and gradual responses.

To assess the harmfulness of such de-synchronization we expect

the existence of a relative utility function 𝑟(Δ𝑡max), which

measures the ratio of utilities: (i) where the SAT solving is based

on values that are as much old as maximum communication

delays expected in the correct functioning of the system, and (ii)

the ideal case of SAT solving having instantaneous access to the

freshest values. The exact notion of the relative utility function

𝑟(Δ𝑡max) is formalized in Appendix A.

There are several factors the influence the value of 𝑟(Δ𝑡max).

Essentially, this depends on the shape of the utility function and

(as the utility function is cumulative), on the duration of situations

when the system is de-synchronized (divergence). During

divergence, some nodes of the system arrive at different solutions

due to their differently outdated knowledge. (Formally, this

corresponds to condition 𝑎𝑐,𝑑(𝑡) ≠ 𝑎(𝑡) – see Appendix A.) More

specifically, it means that there are assumptions in the IRM-SA

model that one component considers satisfied, while another

considers violated. Following this argument, we identify three

categories of system properties that collectively contribute to the

value of 𝑟(Δ𝑡max) and characterize the ability of the system to

work well with the decentralized SAT solving employed in IRM-

SA:

Criticality of a particular system operation affected by

divergence. For critical operations, the utility function tends to

get extreme negative values, thus even a short operation under

divergence yields very low overall utility. On the other hand if the

environment has revertible and gradual responses, it hardly

matters whether the system is in divergence for a limited time

(e.g., if the system controls a firefighter walking around a

building, then walking in a wrong direction for a few seconds

does not cause any harm and its effect can be easily reverted).

Dynamicity of process in the environment. As the system reacts

to changes in the environment, it is impacted by the speed these

changes happen. Such a change creates potential divergence in the

system. What matters then is the ratio between the time needed to

converge after the divergence and the interval between two

consecutive changes. For instance, if house numbers were to be

observed by firefighters when passaging by, then walking speed

would yield much slower rate of changes then passing by in a car.

Sensitivity of assumptions. This is a complementary aspect of

the previous property. Depending on the way assumptions are

refined into computable ones, one can detect fine-grained changes

in the environment. For example, consider an assumption that

relies on computing position changes of a firefighter moving in a

city. Computing position changes based on changes in the house

number obviously yields more frequent (observable) changes in

Figure 16: Design evolution scenario – the new

“inaccuracy(GM::position) < 20m” situation is added to the

model and drives the adaptation.

INV-33
inaccuracy(GM::position)<20m

INV-34
inaccuracy(GM::position)>=20m

INV-27 GM::position is
determined from GPS
every 1 sec

P

INV-37 GM::position is estimated based
on GM::nearbyGMsPositions and on the
search radius for nearby FFs

P

+ id
+ sensorData
+ position
+ temperature
+ acceleration
+ groupLeaderId
+ oxygenLevel
+ nearbyGMsStatus
+ nearbyGMsPositions

Firefighter

INV-36 GM::nearbyGMsPositions – belief of
GM over nearby FFs positions – is up-to-date

X

INV-12 GM::position is
determined

INV-26 GM outdoors

INV-35 GM::position is
determined by nearby GMs

...

1[GM]

[GM]

*[GM]

120

the environment than computing changes based on the current

street number.

8.3 Applicability of IRM-SA beyond DEECo
The IRM-SA concepts of design components and invariants, and

the process of elaborating invariants via AND- and OR-

decomposition are implementation-agnostic. The outcome

therefore of the design – the IRM-SA model – can be mapped to a

general-purpose (e.g., OSGi [27], Fractal [9], SOFA 2 [12]) or

real-time component model (e.g., RTT [61], ProCom [56]) that

provides explicit support for modeling entities that encapsulate

computation (components) and interaction (connectors). In a

simple case, the mapping involves translating the process and

exchange invariants to local component activities and to

connectors, respectively.

That said, the mapping of IRM-SA to DEECo is particularly

smooth. This is because IRM-SA is tailored to the domain of

dynamic self-adaptive CPS, where the management of belief of

individual components via soft-real-time operation and dynamic

grouping has a central role. In this regard, component models

tailored to self-adaptive CPS (e.g., DEECo) and architectural

styles for group-based coordination (e.g., A-3 [3]), are good

candidates for a smooth mapping, since they provide direct

implementation-level counterparts of the IRM-SA abstractions.

9. RELATED WORK
Recently, there has been a growing interest in software

engineering research for software-intensive systems with self-

adaptive and autonomic capabilities [53]. Since our approach is

especially close to software product lines approaches and their

dynamic counterparts, we first position IRM-SA against these

approaches; then we split the comparison into three essential

views of self-adaptation [14], namely requirements, assurances,

and engineering.

9.1 IRM-SA vs. Dynamic Software Product

Lines
Variability modeling at design time has been in the core of

research in software product lines (SPLs) [17]. Recently,

numerous approaches have proposed to apply the proven SPL

techniques of managing variability in the area of runtime

adaptation, leading to the concept of dynamic SPL (DSPL) [29].

The idea behind DSPL is to delay the binding of variants from

design to runtime, to focus on a single product than a family of

products, and to have configurations be driven by changes in the

environment than by market needs and stakeholders. In this spirit,

IRM-SA can be considered as a DSPL instance.

Within DSPLs, feature models are an effective means to model

the common features, the variants, and the variability points of a

self-adapting system [35]. However, they fall short in identifying

and modeling the situations that the system may encounter during

operation [55]. This results in maintaining an additional artifact as

a context model (e.g., an ontology [49]) in parallel with the

feature model at runtime, in order to bind the monitoring and

planning phases of the MAPE-K loop [36]. IRM-SA provides an

explicit support for capturing situations, pertinent to system

operation and self-adaptation, via the assumption concept. At the

same time, by building on the iterative refinement of invariants

and the assignment of leaf invariants to design components, IRM-

SA integrates the problem space view (requirements models) with

the solution space view (feature models) into a single manageable

artifact (IRM-SA model).

Finally, compared to existing approaches in DSPLs that use goal

models to describe the configuration space [55], IRM-SA does not

focus on the prioritization between applicable configurations, but

on the gradual degradation of overall system performance when

dealing with operational uncertainty in decentralized settings.

9.2 Requirements and Assurances
In an effort to study the requirements that lead to the feedback

loop functionality of adaptive systems, Souza et al. defined a new

class of requirements, termed “awareness requirements” [59],

which refer to the runtime success/failure/quality-of-service of

other requirements (or domain assumptions). Awareness

requirements are expressed in an OCL-like language, based on the

Tropos goal models [8] produced at design time, and monitored at

runtime by the requirements monitoring framework ReqMon [52].

The idea is to have a highly sophisticated logging framework, on

top of which a full MAPE-K feedback loop [36] can be

instantiated. Our approach, on the other hand, features a tighter

coupling between monitoring and actuating, since both aspects are

captured in the IRM-SA model.

Extending goal-based requirements models with alternative

decompositions to achieve self-adaptivity has been carried out in

the frame of Tropos4AS [45, 46]. System agents, together with

their goals and their environment are first modeled and then

mapped to agent-based implementation in Jadex platform.

Although IRM-SA is technically similar to Tropos4AS, it does

not capture the goals and intentions of individual actors, but the

desired operation of the system as a whole, thus promoting

dependable operation, key factor in CPS.

For dealing with uncertainty in the requirements of self-adaptive

systems, the RELAX [63] and FLAGS [4] languages have been

proposed. RELAX syntax is in the form of structured natural

language with Boolean expressions; its semantics is defined in a

fuzzy temporal logic. The RELAX approach distinguishes

between invariant and non-invariant requirements, i.e.,

requirements that may not have to be satisfied at all times. In [15],

RELAX specifications are integrated into KAOS goal models.

Threat modeling à la KAOS [42] is employed to systematically

explore (and subsequently mitigate) uncertainty factors that may

impact the requirements of a DAS. FLAGS is an extension to the

classical KAOS goal model that features both crisp goals (whose

satisfaction is Boolean) and fuzzy goals (whose satisfaction is

represented by fuzzy constrains) that correspond to invariant and

non-invariant requirements of RELAX. The idea of using a

FLAGS model at runtime to guide system adaptation has been

briefly sketched in [4], but to the best of our knowledge not yet

pursued. Compared to IRM-SA, both RELAX and FLAGS focus

on the requirements domain and do not go beyond goals and

requirements to design and implementation.

One of the first attempts to bind requirements, captured in KAOS,

with runtime monitoring and reconciliation tactics is found in the

seminal work of Fickas and Feather [21, 22]. Their approach is

based on capturing alternative designs and their underlying

assumptions via goal decomposition, translating them into

runtime monitors, and using them to enact runtime adaptation.

Specifically, breakable KAOS assumptions (captured in LTL) are

translated into the FLEA language, which provides constructs for

expressing a temporal combination of events. When requirements

violation events occur, corrective actions apply, taking the form of

either parameter tuning or shifting to alternative designs. There

are two main differences to our approach: (i) in KAOS-FLEA the

designer has to manually write and tune the reconciliation tactics,

whereas we rely on the structure of an IRM-SA model and the

121

solver for a solution; (ii) contrary to KAOS-FLEA we do not treat

alternative designs as correcting measures, but as different system

modes, which is more suitable for CPS environments.

9.3 Design and Implementation
At the system design and implementation phases, the component-

based architectural approach towards self-adaptivity is favored in

several works [23, 51]. Here, mode switching stands as a widely

accepted enabling mechanism, introduced by Kramer and Magee

[30, 39]. The main shortcoming is that mode switching is

triggered via a finite state machine with pre-defined triggering

conditions, which is difficult to trace back to system requirements.

Also, although partially addressed in [48], modes and the

triggering conditions are usually designed via explicit

enumeration, which may cause scalability problems given the

number and complex mutual relations of the variation points

involved. In IRM-SA, architecture configurations act as modes.

However, IRM-SA complements mode switching by enabling for

compositional definition of architecture configurations and

providing the traceability links, which in turn allows for self-

explanation [54].

Another large area of related work focusing specifically on

decentralized operation to achieve a common joint goal is found

in distributed and multi-agent planning. Here the main questions

are centered around the issue of how to compute a close-to-

optimal plan for decentralized operation of agents with partially

observable domains. The typical solution is to model the

environment of an agent via a Decentralized Partially Observable

Markov Decision Process [6]. This is further extended to include

imperfect communication [60, 66] and taken even a step further,

when decentralization is strengthened by not requiring prior

coordination (and strict synchronization) – either by resigning on

the inter-agent communication [5, 65] or by performing

communication simultaneously to planning [62]. The major

difference to our work is that multi-agent planning requires a

model of the environment in order to predict the effect of an

action. A complete model of an environment becomes a rather

infeasible requirement. IRM-SA does not require the complete

model of an environment as the plan is not computed, but

specified by a designer. By including high-level invariants, the

IRM-SA however still able to reason about the efficiency of the

configuration being currently executed and it also drives

decentralized decisions on the configuration selection.

Finally, architecture adaptation based on various constraint

solving techniques is not a new idea. A common

conceptualization, e.g., in [24, 28], is based on the formal

definition of architecture constraints (e.g., architecture styles,

extra-functional properties), individual architecture elements (e.g.,

components), and, most importantly, adaptation operations that

are supported by an underlying mechanism (e.g., addition/removal

of a component binding). Typically, the objective is to find an

adaptation operation that would bring the architecture from an

invalid state to a state that conforms to the architecture constraints

(architecture planning). Although these methods support

potentially unbounded architecture evolution (since they are based

on the supported adaptation operations rather than predefined

architecture configurations), they typically consider only

structural and extra-functional properties rather than system goals.

Consequently, they support neither smooth, gradual degradation

in unanticipated situations, nor offline evolution of the design.

10. CONCLUSION AND FUTURE WORK
In this paper, we have presented the IRM-SA method – an

extension to IRM that allows designing of self-adaptive Cyber-

Physical Systems (CPS) with a focus on dependability aspects.

The core idea of the method is to describe variability of a system

by alternative invariant decompositions and then to drive system

adaptation by employing the knowledge of high-level system’s

goals and their refinement to computational activities.

A novel feature of IRM-SA is that it allows adaptation in presence

of operational uncertainty caused by inaccuracies of sensed data

and by unreliable communication. This is achieved by reasoning

not only on the values of belief on component knowledge, but

also on the degree of belief inaccuracy, which is based on the

degree of belief outdatedness and the model that governs the

evolution of belief.

As a proof of concept, we have implemented IRM-SA within

jDEECo (a Java realization of the DEECo component model) and

showed its feasibility by modeling a real-life scenario from an

emergency coordination case study. Moreover, we have provided

a proof-of-concept demonstration of the benefits of IRM-SA by

experiments carried out by simulation. We have also tested the

feasibility and effectiveness of the IRM-SA modeling process via

a controlled experiment.

Future work. When the SAT solver fails to find an applicable

configuration, self-adaptation based on IRM-SA reaches its limits.

In this case, a promising idea is to rely on machine learning and

other AI techniques to provide complementary strategies for the

system dynamically extend its envelope of adaptability [25].

Investigating the concrete impact of applying these strategies in

the frame of IRM-SA and coming up with new strategies is a

subject of our current and future work.

11. ACKNOWLEDGEMENTS
This work was partially supported by the EU project ASCENS

257414 and by Charles University institutional funding SVV-

2015-260222. The research leading to these results has received

funding from the European Union Seventh Framework

Programme FP7-PEOPLE-2010-ITN under grant agreement

n°264840.

12. REFERENCES
[1] Ali, R. Al, Bures, T., Gerostathopoulos, I., Keznikl, J. and

Plasil, F. 2014. Architecture Adaptation Based on Belief

Inaccuracy Estimation. Proc. of WICSA’14 (Sydney,
Australia, Apr. 2014), 1–4.

[2] Arcaini, P., Gargantini, A. and Vavassori, P. 2015.

Generating Tests for Detecting Faults in Feature Models.

Proc. of the 8th IEEE International Conference on Software

Testing, Verification and Validation (ICST ’15), to appear.
(Apr. 2015).

[3] Baresi, L. and Guinea, S. 2011. A-3: An Architectural Style

for Coordinating Distributed Components. 2011 9th Working

IEEE/IFIP Conference on Software Architecture (WICSA)
(Jun. 2011), 161–170.

[4] Baresi, L., Pasquale, L. and Spoletini, P. 2010. Fuzzy Goals

for Requirements-Driven Adaptation. 2010 18th IEEE

International Requirements Engineering Conference. (Sep.
2010), 125–134.

[5] Barrett, S., Stone, P., Kraus, S. and Rosenfeld, A. 2013.

Teamwork with Limited Knowledge of Teammates.

Proceedings of the 27th AAAI Conference on Artificial
Intelligence (Jul. 2013).

[6] Bernstein, D.S., Givan, R., Immerman, N. and Zilberstein, S.

2002. The Complexity of Decentralized Control of Markov

122

Decision Processes. Math. Oper. Res. 27, 4 (Nov. 2002),
819–840.

[7] Berry, D.M., Cheng, B.H.C. and Zhang, J. 2005. The Four

Levels of Requirements Engineering for and in Dynamic

Adaptive Systems. Proc. of the 11th International Workshop

on Requirements Engineering Foundation for Software
Quality, Porto, Portugal (2005), 95–100.

[8] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and

Mylopoulos, J. 2004. Tropos: An Agent-Oriented Software

Development Methodology. Autonomous Agents and Multi-
Agent Systems. 8, 3 (May 2004), 203–236.

[9] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V. and

Stefani, J.-B. 2006. The Fractal component model and its

support in Java. Software: Practice & Experience. 36, 11-12
(2006), 1257–1284.

[10] Bures, T., Gerostathopoulos, I., Hnetynka, P. and Keznikl, J.

2014. Gossiping Components for Cyber-Physical Systems.

Proc. of 8th European Conference on Software Architecture

(2014), 250–266.

[11] Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J.,

Kit, M. and Plasil, F. 2013. DEECo – an Ensemble-Based

Component System. Proc. of CBSE’13 (Vancouver, Canada,

Jun. 2013), 81–90.

[12] Bures, T., Hnetynka, P. and Plasil, F. 2006. SOFA 2.0 :

Balancing Advanced Features in a Hierarchical Component
Model. SERA ’06 (2006), 40–48.

[13] Chang, N., Rashidzadeh, R. and Ahmadi, M. 2010. Robust

indoor positioning using differential wi-fi access points.

IEEE Transactions on Consumer Electronics. 56, 3 (Aug.

2010), 1860–1867.

[14] Cheng, B. et al. 2009. Software Engineering for Self-

Adaptive Systems: A Research Roadmap. Software

Engineering for Self-Adaptive Systems. Springer Berlin
Heidelberg. 1–26.

[15] Cheng, B.H.C., Sawyer, P., Bencomo, N. and Whittle, J.

2009. A Goal-Based Modeling Approach to Develop

Requirements of an Adaptive System with Environmental

Uncertainty. Proc. of the 12th International Conference on

Model Driven Engineering Languages and Systems,
MoDELS ’09 (2009), 1–15.

[16] Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. 1999. Non-

Functional Requirements in Software Engineering. Springer.

[17] Clements, P. and Northrop, L. 2002. Software Product Lines:
Practices and Patterns. Addison Wesley Professional.

[18] Dalpiaz, F., Chopra, A.K., Giorgini, P. and Mylopoulos, J.

2010. Adaptation in Open Systems: Giving Interaction its

Rightful Place. Proceedings of the 29th International

Conference on Conceptual Modeling (ER ’10) (Vancouver,

Canada, Nov. 2010), 31–45.

[19] DeNicola, R., Ferrari, G., Loreti, M. and Pugliese, R. 2013.

A Language-based Approach to Autonomic Computing.

Formal Methods for Components and Objects. 7542, (2013),
25–48.

[20] Esfahani, N., Kouroshfar, E. and Malek, S. 2011. Taming

uncertainty in self-adaptive software. Proc. of SIGSOFT/FSE

’11 (2011), 234–244.

[21] Feather, M.S., Fickas, S., van Lamsweerde, A. and Ponsard,

C. 1998. Reconciling System Requirements and Runtime

Behavior. Proceedings of the 9th International Workshop on
Software Specification and Design (1998), 50–59.

[22] Fickas, S. and Feather, M.S. 1995. Requirements monitoring

in dynamic environments. Proceedings of 1995 IEEE

International Symposium on Requirements Engineering

(RE’95). (1995), 140–147.

[23] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. and

Steenkiste, P. 2004. Rainbow: Architecture-Based Self-

Adaptation with Reusable Infrastructure. Computer. 37, 10
(2004), 46–54.

[24] Georgiadis, I., Magee, J. and Kramer, J. 2002. Self-

organising software architectures for distributed systems.

Proceedings of the first workshop on Self-healing systems -
WOSS ’02 (2002), 33–38.

[25] Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A.,

Plasil, F. and Skoda, D. Meta-Adaptation Strategies for

Adaptation in Cyber- Physical Systems. Technical Report

#D3S-TR-2015-01, April 2015. Department of Distributed

and Dependable Systems. Available at:
http://d3s.mff.cuni.cz/publications/.

[26] Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C. and

Hughes, D. 2008. Goal-Based Modeling of Dynamically

Adaptive System Requirements. Proc. of the 15th Annual

IEEE International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS 2008) (Mar.
2008), 36–45.

[27] Hall, R., Pauls, K., McCulloch, S. and Savage, D. 2011.

OSGi in Action: Creating Modular Applications in Java.

Manning Publications, Stamford, CT.

[28] Hansen, K.M. 2012. Modeling and Analyzing Architectural
Change with Alloy. SAC ’10 (2012), 2257–2264.

[29] Hinchey, M., Park, S. and Schmid, K. 2012. Building

Dynamic Software Product Lines. Computer. 45, 10 (Oct.
2012), 22–26.

[30] Hirsch, D., Kramer, J., Magee, J. and Uchitel, S. 2006.

Modes for software architectures. Proc. of the 3rd European

conference on Software Architecture, EWSA ’06 (2006),
113–126.

[31] Hoelzl, M., Rauschmayer, A. and Wirsing, M. 2008.

Engineering of Software-Intensive Systems: State of the Art

and Research Challenges. Software-Intensive Systems and
New Computing Paradigms. 1–44.

[32] Höst, M., Regnell, B. and Wohlin, C. 2000. Using Students

as Subjects—A Comparative Study of Students and

Professionals in Lead-Time Impact Assessment. Empirical
Software Engineering. 214, (2000), 201–214.

[33] IRM-SA Website: 2015. http://d3s.mff.cuni.cz/projects/irm-
sa. Accessed: 2015-04-23.

[34] jDEECo Website: 2015.

https://github.com/d3scomp/JDEECo. Accessed: 2015-04-

23.

[35] Kang, K.C., Jaejoon, L. and Donohoe, P. 2002. Feature-

oriented product line engineering. IEEE Software. 19, 4
(2002), 58–65.

[36] Kephart, J. and Chess, D. 2003. The Vision of Autonomic
Computing. Computer. 36, 1 (2003), 41–50.

[37] Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I.,

Hnetynka, P. and Hoch, N. 2013. Design of Ensemble-Based

Component Systems by Invariant Refinement. Proc. of
CBSE’13 (Vancouver, Canada, Jun. 2013), 91–100.

[38] Keznikl, J., Bures, T., Plasil, F. and Kit, M. 2012. Towards

Dependable Emergent Ensembles of Components: The

123

DEECo Component Model. Proc. of WICSA/ECSA’12 (Aug.
2012), 249–252.

[39] Kramer, J. and Magee, J. 2007. Self-managed systems: an

architectural challenge. Proc. of FOSE’07 (Minneapolis,

USA, May 2007), 259–268.

[40] Lamsweerde, A. Van 2008. Requirements engineering: from

craft to discipline. 16th ACM Sigsoft Intl. Symposium on the

Foundations of Software Engineering (Atlanta, USA, Nov.
2008), 238–249.

[41] Lamsweerde, A. Van 2009. Requirements Engineering:

From System Goals to UML Models to Software

Specifications. John Wiley and Sons.

[42] Lamsweerde, A. Van and Letier, E. 2000. Handling obstacles

in goal-oriented requirements engineering. IEEE

Transactions on Software Engineering. 26, 10 (2000), 978–
1005.

[43] LeBerre, D. and Parrain, A. 2010. The Sat4j Library, release

2.2. Journal on Satisfiability, Boolean Modeling and

Computation. 7, (2010), 59–64.

[44] McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng,

B.H.C. 2004. Composing adaptive software. Computer. 37, 7
(2004), 56–64.

[45] Morandini, M., Penserini, L. and Perini, A. 2008. Automated

Mapping from Goal Models to Self-Adaptive Systems. 2008

23rd IEEE/ACM International Conference on Automated

Software Engineering (Sep. 2008), 485–486.

[46] Morandini, M. and Perini, A. 2008. Towards Goal-Oriented

Development of Self-Adaptive Systems. Proceedings of the

2008 International Workshop on Software Engineering for

Adaptive and Self-managing Systems - SEAMS ’08 (Leipzig,

Germany, May 2008), 9–16.

[47] Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and

Solberg, A. 2009. Models at Runtime to Support Dynamic
Adaptation. Computer. 42, 10 (2009), 44–51.

[48] Morin, B., Barais, O., Nain, G. and Jezequel, J. 2009.

Taming Dynamically Adaptive Systems Using Models and

Aspects. Proc. of the 31st International Conference in

Software Engineering, ICSE ’09 (2009), 122–132.

[49] Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó. and Lopez-

Herrejon, R.E. 2014. Context Variability Modeling for

Runtime Configuration of Service-based Dynamic Software

Product Lines. Proceedings of the 18th International

Software Product Line Conference: Companion Volume for

Workshops, Demonstrations and Tools - Volume 2 (New
York, NY, USA, 2014), 2–9.

[50] Murray, R.M., Astrom, K.J., Boyd, S.P., Brockett, R.W. and

Stein, G. 2003. Future Directions in Control in an

Information-Rich World. Control Systems, IEEE. 23, 2

(2003), 1–21.

[51] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,

Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.

and Wolf, A.L. 1999. An Architecture-Based Approach to

Self-Adaptive Software. Intelligent Systems and their

Applications, IEEE. 14, 3 (1999), 54 – 62.

[52] Robinson, W.N. 2005. A requirements monitoring

framework for enterprise systems. Requirements
Engineering. 11, 1 (Nov. 2005), 17–41.

[53] Salehie, M. and Tahvildari, L. 2009. Self-Adaptive Software:

Landscape and Research Challenges. ACM Transactions on
Autonomous and Adaptive Systems. 4, 2, May (2009), 1–40.

[54] Sawyer, P., Bencomo, N., Whittle, J., Letier, E. and

Finkelstein, A. 2010. Requirements-Aware Systems: A

Research Agenda for RE for Self-adaptive Systems. Proc. of

the 18th IEEE International Requirements Engineering
Conference (Sep. 2010), 95–103.

[55] Sawyer, P., Rocquencourt, I., Mazo, R., Diaz, D., Salinesi, C.

and Paris, U. 2012. Using Constraint Programming to

Manage Configurations in Self-Adaptive Systems.
Computer. 45, 10 (2012), 56–63.

[56] Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J. and

Crnkovic, I. 2008. A component model for control-intensive

distributed embedded systems. Proc. of the 11th

International Symposium on Component-Based Software
Engineering (Oct. 2008), 310–317.

[57] Sheskin, D.J. 2011. Handbook of Parametric and

Nonparametric Statistical Procedures. Chapman and

Hall/CRC.

[58] Shoham, Y. and Leyton-Brown, K. 2008. Multiagent

systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press.

[59] Souza, V.E.S., Lapouchnian, A., Robinson, W.N. and

Mylopoulos, J. 2013. Awareness Requirements. Software

Engineering for Self-Adaptive Systems II. Springer Berlin

Heidelberg. 133–161.

[60] Spaan, M.T.J., Oliehoek, F.A. and Vlassis, N. 2008.

Multiagent Planning under Uncertainty with Stochastic

Communication Delays. Proc. of Int. Conf. on Automated
Planning and Scheduling (2008), 338–345.

[61] The Orocos Real-Time Toolkit:
http://www.orocos.org/wiki/orocos/rtt-wiki.

[62] Valtazanos, A. and Steedman, M. 2014. Improving

Uncoordinated Collaboration in Partially Observable

Domains with Imperfect Simultaneous Action

Communication. Proc. of the Workshop on Distributed and
Multi-Agent Planning in ICAPS (2014), 45–54.

[63] Whittle, J., Sawyer, P. and Bencomo, N. 2010. RELAX: A

Language to Address Uncertainty in Self-Adaptive Systems

Requirements. Requirements Engineering. 15, 2 (2010), 177–
196.

[64] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,

B. and Wesslen, A. 2012. Experimentation in Software
Engineering. Springer.

[65] Wu, F., Zilberstein, S. and Chen, X. 2011. Online Planning

for Ad Hoc Autonomous Agent Teams. Proc. of the 22nd

International Joint Conference on Artificial Intelligence
(2011), 439–445.

[66] Wu, F., Zilberstein, S. and Chen, X. 2011. Online planning

for multi-agent systems with bounded communication.
Artificial Intelligence. 175, 2 (Feb. 2011), 487–511.

124

Appendix A – Formalization of System Utility

This appendix provides formalization of the relative system utility

and related assumptions, as used in Section 8.2.

Definition 1 (Utility of a system run). For a given run 𝑟 of a

system:

– Let 𝑎(𝑡) be a function that for time 𝑡 returns the set of

active processes as selected by the SAT procedure.

– Let 𝑑(𝑡, 𝑘) be function that for time 𝑡 and a knowledge field

𝑘 returns the time Δ𝑡 that has elapsed since the knowledge

value contained in 𝑘 was sensed/created by the component

where the knowledge value originated from.

– Let 𝑎𝑐,𝑑(𝑡) be a function that for given time 𝑡 returns a set

of active processes of component 𝑐 as selected by the SAT

procedure assuming that knowledge values outdated by

𝑑(𝑡, 𝑘) have been used. Further, we denote 𝑎𝑑1,…,𝑑𝑛
(𝑡) =

⋃ 𝑎𝑐𝑖,𝑑𝑖
(𝑡)𝑖 as the combination over components existing in

the system. (In other words, each component selects active

processes itself based on its belief, which is differently

outdated for each component.)

– Let 𝑢(𝑎) be a cumulative utility function that returns the

overall system utility when performing processes 𝑎(𝑡) at

each time instant 𝑡.

– Let 𝑢(𝑎, Δ𝑡max) be a cumulative utility function constructed

as min{𝑢(𝑎𝑑1,…,𝑑𝑛
) | 𝑑(𝑘) ≤ Δ𝑡max}. (In other words,

𝑢(𝑎, Δ𝑡max) denotes the lowest utility if components decide

independently based on knowledge at most Δ𝑡max old.)

Definition 2 (Expected relative utility). Let E(𝑢(𝑎)) be the

expected value of 𝑢(𝑎) and E(𝑢(𝑎, Δ𝑡max)) be the expected value

of 𝑢(𝑎, Δ𝑡max). Assuming that E(𝑢(𝑎)) > 0 (i.e. in the ideal case

of zero communication delays the system provides a positive

value), we define expected relative utility as 𝑟(Δ𝑡max) =

E(𝑢(𝑎, Δ𝑡max))/E(𝑢(𝑎)).

In the frame of these definitions, we assume systems where

𝑟(Δ𝑡max) is close to 1 (and definitely non-negative) for given

upper bound on communication delays Δ𝑡max. In fact 𝑟(Δ𝑡max)

provides a continuous measure of how well the method works in a

distributed environment.

Considering that the communication in the system happens

periodically and that an arriving message obsoletes all previous

not-yet-arrived messages from the same source, Δ𝑡max can be set

to 𝑞𝑙 + 𝑞𝑑𝑇, where 𝑞𝑙 is a close-to-100% quantile of the

distribution of message latencies, 𝑇 is the period of message

sending and 𝑞𝑑 is a close-to-100% quantile of the distribution of

the length of sequences of consecutive message drops. Naturally,

if there is a chance of some (not necessarily reliable

communication), Δ𝑡max can be set relatively low while still

covering the absolute majority of situations.

125

4.7 A Life Cycle for the Development of Au-

tonomic Systems: The e-Mobility Showcase

Tomáš Bureš,

Rocco De Nicola,

Ilias Gerostathopoulos,

Nicklas Hoch,

Michal Kit,

Nora Koch,

Giacoma Valentina Monreale,

Ugo Montanari,

Rosario Pugliese

Nikola Serbedzija,

Martin Wirsing,

Franco Zambonelli

In proceedings of the 7th IEEE International Conference on Self-Ad-

aptation and Self-Organizing Systems Workshops (SASOW 2013).

Published by IEEE,

pages 71-76,

ISBN 978-1-4799-5086-7,

September 2013.

The original version is available electronically from the publisher's site

at http://dx.doi.org/10.1109/SASOW.2013.23.

http://dx.doi.org/10.1109/SASOW.2013.23

Chapter 4. Commented Collection of Papers

126

Summary of the Paper

This paper, published as [BDNG+13], positions the work performed in this thesis, in par-

ticular the proposed Invariant Refinement Method (IRM), within the development of auto-

nomic systems as featured by the EU project ASCENS [1]. The focus of this paper, and

of ASCENS, is on software engineering of large distributed and dynamic systems akin

to software-intensive Cyber-Physical Systems (siCPS). The concept of component ensem-

bles (Section 2.2.2) is put forward as a promising way to engineer such systems.

The main idea of the paper is to introduce a methodological model that guides the

development of ensemble-based systems and exemplify it on the ASCENS case study of

electric vehicle navigation. The model, called ensemble development life cycle (EDCL) com-

prises an offline and an online feedback loop (referred to as “double-wheel” model),

each comprising three activities [HKP+15]. The offline loop features the design activities

of requirements engineering, modeling and programing, and verification and validation,

whereas the online loop features the runtime activities of monitoring, awareness, and

self-adaptation (being comparable to the MAPE-K loop for autonomic systems [KC03]).

These two loops are connected via the activities of deployment and feedback.

From the perspective of the EDLC, IRM is a method that provides a transition from

the requirements engineering phase to the modeling and programing phase. In particu-

lar, IRM provides a mechanism to translate the requirements of an ensemble-based sys-

tem, expressed as high-level invariants, to low-level obligations of components and com-

ponent ensembles. It thus can be used for the high-level (architecture) design phase

(which is not explicitly represented in the double-wheel EDLC model). Within the

EDLC, IRM receives input from SOTA [ABZ12], a requirements engineering method,

and provides its output to SCEL [DNFLP13], a language for process modeling inspired

by process algebra formalisms.

Although this paper focuses on IRM and does not take into account IRM’s extension

for self-adaptivity (IRM-SA), its results apply also to IRM-SA: since IRM-SA is an exten-

sion of IRM, it can also be used in the architecture design phase of the EDLC.

Comments on Authorship

Overall, the paper and its main idea of the ensemble development lifecycle are of equal

authorship and reflect the collaboration among several partners participating in the AS-

CENS project [1]. I was personally focusing on the high-level architecture design phase

of the life cycle, where I contributed in proposing IRM as a possible design method and

elaborated on how it can be employed to model the running example of cooperative e-

vehicles.

127

A Life Cycle for the Development of Autonomic
Systems: The e-Mobility Showcase

Tomas Bures1, Rocco De Nicola2, Ilias Gerostathopoulos1, Nicklas Hoch3, Michal Kit1,
Nora Koch4, Giacoma Valentina Monreale5, Ugo Montanari5, Rosario Pugliese6, Nikola Serbedzija7,

Martin Wirsing4, Franco Zambonelli8
1Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

2IMT Institute for Advanced Studies Lucca, Italy
3Corporate Research Group, Volkswagen AG, Wolfsburg, Germany

4Ludwig-Maximilians-Universität München, Germany 5Dipartimento di Informatica, Università di Pisa, Italy
6Università di Firenze, Italy 7Fraunhofer FOKUS Berlin, Germany 8Università di Modena e Reggio Emilia, Italy

Abstract—Component ensembles are a promising way of build-
ing self-aware autonomic adaptive systems. This approach has
been promoted by the EU project ASCENS, which develops the
core idea of ensembles by providing rigorous semantics as well as
models and methods for the whole development life cycle of an
ensemble-based system. These methods specifically address adap-
tation, self-awareness, self-optimization, and continuous system
evolution. In this paper, we demonstrate the key concepts and
benefits of the ASCENS approach in the context of intelligent
navigation of electric vehicles (e-Mobility), which itself is one of
the three key case studies of the project.

Keywords—autonomic systems; life cycle; ensembles;

I. INTRODUCTION

The development of massively distributed and highly dy-
namic systems which interact with and control the physical
world is one of the major challenges in software engineer-
ing [1]. This is because the dynamicity of these systems
and the not well foreseeable context brought by the external
physical environment demand that software operating in these
systems is highly self-aware, autonomic and adaptive. While
self-awareness and adaptivity has been relatively well mastered
in case of small-scale localized control (especially in the field
of control systems), it is still a major problem for large-
scale distributed systems, which are open-ended and dynamic
(meaning that components of the system may freely appear and
disappear as well as change their communication partners).

Within the EU project ASCENS1 an approach based on
ensembles of components is pursued. Contrary to classical
component-based software engineering, it features important
concepts of knowledge and ensembles. The knowledge of a
component is a structured repository of facts with well-defined
relations. The facts in the knowledge change at runtime to
reflect the state of the component and its belief about its
environment, thus effectively addressing the self-awareness of
a component. The ensembles are dynamic goal-oriented com-
munication groups of components. The ensembles are formed

This work has been sponsored by the EU project ASCENS, FP7 257414.
1http://www.ascens-ist.eu

on demand to reflect intentions of components with respect
to the current state of their environment. This way, ensembles
address the dynamicity and adaptivity of components.

In addition to providing basic concepts and their semantics,
ASCENS wraps this into a holistic ensemble development life
cycle (EDLC) framework, which covers the full development
life cycle and addresses design and development for adapta-
tion, self-awareness, self-optimization, and continuous system
evolution.

In this paper we take a practitioner’s approach and demon-
strate the application of the EDLC on the development of one
of the key ASCENS case-studies – the intelligent navigation
of electric vehicles (e-Mobility).

The paper is structured as follows: Section II describes the
e-Mobility case study and Section III outlines the EDLC and
describes a high-level strategy of applying it to e-Mobility.
Sections IV–IX demonstrate the particular EDCL steps ap-
plied. The evaluation and related work is presented in Sec-
tion X, while Section XI concludes the paper.

II. E-MOBILITY CASE STUDY

The e-Mobility scenario focuses on avoiding contingency
situation in an open-ended systems of interacting electric
vehicles. Such a scenario is highly dynamic. This stems mostly
from the fact that it includes unforseeable human user actions
which influence the availability of travel resources.

Technically, we assume in the case-study that travels are
initiated by personal activities. A journey is thus defined as a
sequence of trips, with each trip being initiated by a single
activity. Trips may consist of multiple stages. A stage can
be executed in different travel modes such as walking mode
or driving mode. For example, consider a user that leaves
for work in the morning. Work is the activity that initiates
travel. The first trip contains a walking stage from home to the
vehicle’s parking lot, a driving stage from the parking lot at
home to the one at work and lastly a walking stage to the office.
The working time at the office is considered to be the activity
duration. Throughout that time the vehicle is parked at the car
park. If it has access to a charging station, it may recharge.

128

After work the user continues his journey. The number of
consecutive trips follows from the number of activities.

In this scenario the main components are the user, the
electric vehicle, the parking lot and charging station. Parking
lot and charging station are commonly referred to as infras-
tructure components. Component temporarily form ensembles.
These ensembles include (i) collection of charging stations, (ii)
collection of parking lots, (iii) collection of users and electric
vehicles and (iv) collection of at least one user, one electric
vehicle and one infrastructure component, etc.

Throughout runtime, contingency situations may occur.
Components and ensembles require self-adaptive actions to re-
solve these situations. Examples of contingency situations that
need to be resolved by the electric vehicle component include
(i) unavailability of a reserved parking lot, (ii) unavailability
of a reserved charging station, (iii) falling below minimum
battery energy level and (iv) missing a scheduled arrival time.
Examples of contingency situations that need to be handled
by the parking lot or charging station component include (i)
early or late arrival of a vehicle at a parking lot or charging
station, (ii) early or late departure of a vehicle from a parking
lot or charging station, (iii) missed initiation of a scheduled
charging action and (iv) deviation from the expected power
profile during charging.

III. APPLYING EDLC TO E-MOBILITY – BIG PICTURE

Within the scope of the ASCENS project we propose a
“double-wheel” ensemble development life cycle (EDLC) – see
Fig. 1 – for autonomic systems such as the e-Mobility. The
aim is to provide a conceptual framework that covers the main
aspects of the engineering process required for such systems.
The “first wheel” is used for representing the phases that are
performed offline, which are mainly those related to design.
The “second wheel” focus on the phases related to online
activities that are performed at runtime. Both are connected
by the transitions deployment and feedback from design to
runtime, and vice versa, respectively. This software life cycle is
designed to specifically support the development of ensembles
characterized by their complexity and self-* properties, such
as self-awareness, self-expression and self-adaptation.

The offline activities are grouped into requirements en-
gineering, modeling and programming, and verification and
validation phases. In addition to model functional and non-
functional requirements as in traditional requirements engi-
neering, the focus is on modeling aspects of self-adaptation
and self-awareness. These specific requirements need to be
validated and verified as well.

The online activities comprise monitoring, awareness and
self-adaptation. Monitoring consists on the observation of the
environment and the behavior of the systems. Reasoning on
the collected data is also a key aspect. Finally, adaptation
is performed in order to change the system according to
the knowledge acquired during monitoring and the reasoning
performed by the awareness engine.

In this paper we describe how we have applied the EDLC
on the e-Mobility case study. In the spirit of EDLC, we have
employed several interrelated methods developed in ASCENS

Design Runtime

Deployment

Feedback

Figure 1. Ensemble Development Life Cycle (EDLC).

to address the application life cycle of the e-Mobility. In
particular, we start with the specification of requirements and
their reflection in the operation space of the system and
system’s self-awareness (described in Section IV). Following
the requirements specification, we focus on the high-level
architectural design, both in terms of adaptation patterns (Sec-
tion V) and in goals decomposable into individual components
and ensembles (Section VI). Next, emphasis is put on low-
level design of component activities. For that, we employ the
SCEL language, which is specifically intended for ensemble-
based description of communication and coordination-oriented
concerns (Section VII). Along with SCEL we also employ
(Section VIII) the SCLP (soft-constraints logic programming),
which provides a natural way of describing optimization re-
lated tasks, which are very frequent in self-adaptive systems.
The final step is the implementation of components and the
deployment of the system (Section IX), for which we use a
dedicated ensemble-based component model and component
runtime (called DEECo).

IV. REQUIREMENTS ENGINEERING WITH SOTA

Requirements engineering is of paramount importance to
understand the adaptation needs of a system-to-be [2]. In the
area of adaptive systems, and more in general of open-ended
systems, the most appropriate approach is to adopt a goal-
oriented requirements engineering one, and accordingly model
requirements in terms of goals [3].

A goal represents a desirable state of the affairs that an
entity, let it be a software component or an ensemble, aims
to achieve. The idea of goal-oriented modeling of require-
ments naturally matches goal-oriented and intentional entities,
such as organizations and multi-agent systems. However, self-
adaptation too is naturally perceivable as an “intentional”
quality. In fact, a self-adaptive component/ensemble should be
engineered not simply to “achieve” a functionality or state of
the affairs, but rather to “strive to achieve” such functionality,
i.e., be able to take self-adaptive decisions and actions so
as to preserve its capability of achieving despite unexpected
contingencies and environmental changes.

Within the ASCENS development life cycle, SOTA [4]
proposes itself as an extension of existing goal-oriented re-
quirements engineering approaches that integrates elements of
dynamical systems modeling, so as to account for the general
needs of dynamic self-adaptive systems and components.

129

SOTA, which stems for “state of the affairs”, models the
entities of a self-adaptive system as if they were immersed in
n-dimensional space S, each of the n dimensions representing
a specific aspect of the current situation of the entity/ensemble
and of its operational environment. As the entity executes,
its position in S changes either due to its specific actions
or because of the dynamics of environment. Thus, system
evolution can be seen as movements in S.

The activity of requirements engineering for self-adaptive
systems in SOTA requires identifying the dimensions of the
SOTA space, which means modeling the relevant information
that the different components and ensembles of a system have
to collect to become aware of their location in such space. In
e-mobility, the space S includes the spatial dimensions related
to the street map, but also dimensions related to the current
traffic conditions, the battery conditions, etc.

Once the SOTA space is defined, a goal in SOTA can
be expressed in terms of a specific state of the affairs to
aim for, that is, a specific point or a specific area in S
which the component or ensemble should try to reach in its
evolution, in spite of external contingencies that can move
the trajectory farther from the goal. For instance, a goal
for a vehicle could imply reaching a position in the SOTA
space that, for the dimensions representing the spatial location,
trivially represents the final destination and for the dimension
representing the battery condition may represent a charging
level ensuring safe return.

V. FROM SOTA TO HIGH-LEVEL DESIGN WITH
ADAPTATION PATTERNS

The SOTA modeling approach is very useful to understand
and model the functional and adaptation requirements, and to
check the correctness of such specifications (as described in
[4]). However, when a designer considers the actual design
of the system, it is important to identify which architectural
schemes need to be chosen for the individual components and
ensembles.

To this end, in previous work [5], we defined a taxon-
omy of architectural patterns for adaptive components and
ensembles of components. This taxonomy has the twofold
goal of enabling reuse of existing experiences and providing
useful suggestions to a designer on selecting the most suitable
patterns to support adaptability.

At the center of our taxonomy is the idea that self-adaptivity
requires the presence (explicit or implicit) of a feedback loop
or control loop. A feedback loop is the part of the system that
allows for feedback and self-correction towards goal achieve-
ment, i.e., self-adjusting behavior in response to changes in
the system. Feedback loops provide a generic mechanism
for adaptation as they provide the means for inspecting and
analyzing the system at the component or ensemble level and
for reacting accordingly.

However, when it comes to choosing among a variety
of possible architectural schemes that can be employed for
feedback loops [5], it becomes clear that the specific character-
istics of goals identified in the requirements engineering phase
directly guides the choice of specific feedback loop patterns.

(2) Vehicle has an up-to-
date and feasible plan

(1) Vehicle meets its
calendar

 (5) Plan is kept updated

(7) Availability of relevant
PLCSs is kept updated

(6) Plan feasibility w.r.t.
battery level is checked

1{ route}

PLCS

position
availability

1{ batteryLevel,
feasibility}

1{ route,feasibility,
availabilities,position}

*{position, availability}

1{calendar,availabilities}

(9) Battery sufficiency
w.r.t plan is checked

P

(8) Plan is kept computed
w.r.t. availability & feasibility

P

X

(4) an up-to-date plan can always
be followed by the vehicle

A

(3) Driver follows the route
 of the plan

P

Vehicle

calendar
position
route
feasibility
availabilities
batteryLevel

component invariant

invariant refinementx{k} role with knowledge k

exchange
invariant

Xprocess
invariant

P
assumptionA

Figure 2. E-Mobility system level graph – IRM method.

In particular, the choice of a specific pattern depends on how
(and to which extent) the components of the system have
component-specific goals with very different characteristics,
or rather they share the same ensemble-level goals or goals
with very similar characteristics.

As an example, the goal-oriented component pattern con-
siders autonomic components with internal control loops. Goal
oriented behavior is explicit in the actions determined by the
control loop, which can select actions to actively pursue goals
in an adaptive way. A pattern of this kind, in which the
feedback loop is embedded within the component, is suitable
for those components that have very specific goals, that no
other components share.

As another example, the autonomic service component pat-
tern is characterized by an explicit external feedback loop. That
is, the control loop is realized by “attaching” via appropriate
interfaces an external controller that turns a simple service
component into a component whose activities can be externally
controlled to make the component itself goal-oriented and
adaptive.

In a coordinated system for e-mobility, the e-vehicles of
a car-sharing company may all share the same basic adapta-
tion goals, thus making it suitable to model them as simple
components all sharing the same class of external controller.
Also, at the level of the fleet of e-vehicles, the presence of a
single stakeholder makes it possible to exploit a pattern of an
ensemble with a global control loop to orchestrate the overall
behavior of the fleet.

VI. HIGH-LEVEL DESIGN – ARCHITECTURE

In order to guide the design of an ensemble-based system
from high-level strategic goals, requirements and patterns
(described by SOTA) to their low-level realization in terms
of system architecture (components and ensembles) we use
the Invariant Refinement Method (IRM) [6].

The main idea of IRM is to capture the high-level system
goals and requirements in terms of interaction invariants.

130

In compliance to SOTA’s notion of “striving to achieve”,
invariants describe the desired state of the system-to-be at
every time instant. In general, invariants are to be maintained
by the coordination of the different system components. At
the design stage, by component we refer to a participant or
actor of the system-to-be. A special type of invariant, called
assumption, describes a condition that is expected to hold
about the environment; an assumption is not intended to be
maintained explicitly by the system-to-be.

As a design decision, identified top-level invariants are
decomposed into more concrete sub-invariants forming a de-
composition graph (Figure 2). The decomposition is essentially
a refinement, where the composition of the children exhibits all
the behavior expected from the parent and (potentially) some
more. By this decomposition, we strive to get to the level
of abstraction where the (leaf) invariants represent detailed
design of the particular system constituents – components,
component processes, and ensembles. Two special types of
invariants, namely the process invariants (denoted by “P”) and
exchange invariants (denoted by “X”), are used to model the
low-level component computation (processes) and interaction
(ensembles), respectively.

A possible system-level graph corresponding to the simpli-
fied e-Mobility scenario is depicted in Figure 2. In this case,
the IRM design mainly captures the necessity to keep the
vehicle’s plan updated (invariant (5)) and to check whether the
current plan remains feasible with respect to measured battery
level (invariant (6)). The identified leaf invariants are easily
mappable to component activities, which are further formally
captured by SCEL or SCLP.

VII. MODELING COMPUTATIONAL ACTIVITIES: SCEL

To complement the high-level, architectural design, we have
proposed specific linguistic and programming abstractions
aiming at dealing with the challenges posed to language de-
signers by massively distributed and highly dynamic systems.
Our starting points have been the notions of autonomic compo-
nents (ACs) and autonomic-component ensembles (ACEs) that
are used to structure systems into independent and distributed
building blocks that interact and adapt in different ways. Based
on the notions of ACs and ACEs, we have introduced a
number of specific abstractions and linguistic constructs that
permit building up ACs, defining ACEs and programming their
behaviors and interactions. The proposed abstractions are the
basis of SCEL (Software Component Ensemble Language)
[7], [8].

ACs are entities with dedicated knowledge units and re-
sources that can cooperate while playing different roles. Each
AC is equipped with an interface, consisting of a set of
attributes, such as provided functionalities, spatial coordinates,
group memberships, trust level, response time, etc. Attributes
are used by the ACs to dynamically organize themselves into
ACEs.

Indeed, one of the main novelties of SCEL is the way
sets of partners are selected for interaction and thus how
ensembles are formed. Individual ACs not only can single
out communication partners by using their identities, but they

can also select partners by exploiting the attributes in the
interfaces of the individual ACs. Predicates over such attributes
are used to specify the targets of communication actions, thus
providing a sort of attribute-based communication. In this way,
the formation rule of ACEs is endogenous to ACs: members
of an ensemble are connected by the interdependency relations
defined through predicates.

Starting from the IRM model presented in Figure 2, we
can identify two kinds of SCEL components: PLCSs ad
Vehicles. A PLCS identifies a parking lot/charging station and
is characterized by a position and by its availability. These are
the attributes that are exposed in the component interface and
that respectively identify the location of the PLCS and the
number of available slots in the area. As expected, Vehicle
components identify cars involved in the scenario and will
expose in their interface a set of attributes describing the state
of the component (position, batterylevel,. . .). Attributes of both
PLCSs and Vehicles are obtained as the projection on the
interface of the local knowledge of each component.

The user associated to a vehicle is modeled by a process
that, according to the local Vehicle interface, will interact with
PLCSs in order to identify the next stop in the travel. This
task is largely simplified thanks to the use of attribute based
communication. Indeed, if poi is the next point-of-interest to
visit in the travel, then the next PLCS to use can be identified
by sending a reservation request to all the PLCSs components
that are close to poi up-to a given walking distance and that
can be reached with the current battery level.

However, when the battery level of a vehicle decreases under
a given threshold, the actual behaviour can be adapted so to
force the reservation of a PLCS that can be used to recharge
the battery and then continue with planned trip.

VIII. ADAPTATION VIA SOFT-CONSTRAINTS SOLVING
AND OPTIMIZATION

As a complement to SCEL specifically targeting intuitive
specification of optimization problems that frequently appear
in self-adaptive systems, we have used our approach on Soft
Constraint Logic Programming.

Constraint logic programming (CLP) [9] extends logic pro-
gramming (LP) by embedding constraints in it. However, only
classical constraints can be handled. So, in [10], a further
extension has been proposed to also handle soft constraints.
This has led to a high-level and flexible declarative pro-
gramming formalism, called Soft CLP (SCLP), allowing to
easily model and solve real-life problems. Roughly speaking,
SCLP programs are logic programs where logical constants
and operations are replaced by those of the semiring (a
structure representing the levels of satisfiability or the costs
of a constraint). Consequently, assignments of variables to the
items of the Herbrand universe yield the levels of satisfiability
or the costs of the constraints.

We have applied the SCLP framework [11] to the e-Mobility
travel optimization problem described in [12], by modelling
in Ciao [13]2 two scenarios: the (i) trip; and (ii) journey
optimization problems. A solution to (i) finds the best trip

2We would like to thank the Clip group for its technical support.

131

in terms of travel time and energy consumption, while (ii)
determines the optimal sequence of trips, guaranteeing that
the user reaches each appointment in time and that the state
of charge of the electric vehicle never falls below a given
threshold.

Besides optimizing trips and journeys of single users, that
we can call local problems, the e-Mobility case study aims at
solving global problems, involving large ensembles of vehicles.
For such large problems, solution is often unfeasible, with both
SCLP and more efficient tools. To tackle these, we propose
a coordination of declarative and procedural knowledge: the
global problem is decomposed into several local problems,
which can be separately solved by the SCLP implementation
(e.g. [13]), and whose parameters can be iteratively determined
by a programmable coordination strategy. The latter guarantees
a suboptimal, yet acceptable global solution.

Let us consider for example the parking optimization prob-
lem, which consists in finding the best parking lot for each
vehicle of an ensemble in terms of three factors: the distance
from the current location of the vehicle to the parking lot,
the distance from the parking lot to the appointment location
and the cost of the parking lot. Solving a global optimization
procedure which assigns the best parking lot to each vehicle of
the ensemble would be rather expensive, and also not flexible
(replanning could require lots of time). So we propose to
use SCLP to solve the local problems and some procedural
language to programme the orchestrator. In this setting, SCLP
is convenient since the orchestrator will be able to access much
more easily the parameters of its fact/clause-based declarative
implementation than an ordinary imperative module structure.

In particular, the orchestrator could be programmed using
an extension of SCEL or simply Java. The orchestrator, after
receiving the requests from the vehicles which want to park,
asks the SCLP tool to solve the local optimization problems,
determining the best parking lot for each vehicle. Then, it
verifies if the local solutions all together form an admissible
global solution, that is, if each parking lot is able to satisfy
the requests of the vehicles planning to park in it. If it is so,
the problem is solved, otherwise the orchestrator queries the
declarative knowledge again, but now by increasing the costs
of the parking lots which received too many requests. The
procedure is repeated, with suitable variations, until a global
solution is found. Notice that in this way the orchestrator
has a hypothetical, transactional behavior, with the options of
committing (a solution is found) or partially backtracking (on
the parkings which are overfull).

IX. IMPLEMENTATION AND DEPLOYMENT

Next steps in the EDLC, following the architectural design
and detailed specification of component activities, is imple-
mentation and deployment. For these steps, we employ our
DEECo (Dependable Emergent Ensembles of Components)
component model [14] to provide us with the relevant software
engineering abstractions that ease the programmers’ tasks.

A component in DEECo, features execution model based
on the MAPE-K autonomic loop [15]. In compliance with
SCEL, it consists of (i) well-defined knowledge, being a

1 component Vehicle features AvailabilityAggregator:
2 knowledge:
3 batteryLevel = 90%,
4 position = GPS(...),
5 calendar = [POI(WORKPLACE, 9AM−1PM), POI(MALL, 2PM−3PM), ...],
6 availabilities = [],
7 plan = { route = ROUTE(...), isFeasible = TRUE }
8 process computePlan:
9 in plan.isFeasible, in availabilities, in calendar, inout plan.route

10 function:
11 if (!plan.isFeasible) plan.route← planner(calendar, availabilities)
12 scheduling: periodic(5000ms)
13 ...
14 ensemble UpdateAvailabilityInformation:
15 coordinator: AvailabilityAggregator
16 member: AvailabilityAwareParkingLot
17 membership:
18 ∃ poi ∈ coordinator.calendar:
19 ‘ distance(member.position, poi.position)≤ TRESHOLD &&
20 isAvailable(poi, member.availability)
21 knowledge exchange:
22 coordinator.availabilities←{ (m.id, m.availability) | m ∈ members }
23 scheduling: periodic(2500ms)

Figure 3. Examples of identified DEECo components & ensembles.

set of knowledge items and (ii) processes that are executed
periodically in a soft real-time manner. The component concept
is complemented by the first-class ensemble concept. An en-
semble stands as the only communication mechanism between
DEECo components. It specifies a membership condition,
according to which components are evaluated for participation.
The evaluation is based on the components’ knowledge (their
attributes in SCEL). An ensemble also specifies what is to
be communicated between the participants, that is, the ap-
propriate knowledge exchange function. Similar to component
processes, ensembles are invoked periodically in a soft real-
time manner. (See Figure 3 for an excerpts of components and
ensembles descriptions as found in the e-Mobility case study.)

In order to bring the above abstractions to practical use we
have used jDEECo3 – our reification of DEECo component
model in Java. In jDEECo, components are intuitively repre-
sented as annotated Java classes, where component knowledge
is mapped to class fields and processes to class methods.
Similarly, appropriately annotated classes represent DEECo
ensembles.

Once the necessary components and ensembles are coded,
they are deployed in jDEECo runtime framework, which takes
care of process and ensemble scheduling, as well as low-level
distributed knowledge manipulation.

X. EVALUATION AND RELATED WORK

Having described the application of EDLC to the e-Mobility
case study, we relate it in this section to other approaches
having the same aim and we describe benefits that we have ob-
served in performing the case study. In particular, we structure
this section along three main topics addressed in the case study,
namely (i) requirements engineering and architectural design,
(ii) modeling of activities, (iii) programming and deployment.

As to requirements engineering and architectural design in
the area of autonomic systems, the most recognized approaches

3http://github.com/d3scomp/JDEECo

132

Table I. SUMMARY OF METHODS/TOOLS USED.

Requirements engineering: SOTA
High-level design: IRM
Process/activities modeling: SCEL
Adaptation/optimization modeling: SCLP
Implementation/runtime: DEECo / jDEECo

are KAOS [16] and Tropos [17]. Similar to our approach, they
fall into the category of goal modeling and elaboration, espe-
cially in the area of agent-based systems. In our experience,
they provide a very solid ground for requirements engineering,
but fall short to an extent when continuous control with self-
adaptivity (as in the case of e-Mobility case study) is sought
for. For this reason, we have employed SOTA and IRM, which
are centered around the notion of continuously “striving to
achieve” and thus make the reasoning about a guided evolution
of a system easier.

As for the activity modeling, our approach builds on the
body of work carried out in coordination languages (e.g.,
KLAIM [18]) and process algebras. However, it extends it by
providing a tailored semantics to describe and reason about
cooperating groups of components (i.e. ensembles). In the
same vein, SCLP builds on the experience with constraint
solving, but adds the option of soft-constraints and integration
with SCEL. Indeed, in the e-Mobility case study, we found
the interplay of SCEL with SCLP very useful for description
of mutually related activities of interaction and coordination
among vehicles combined with finding a tradeoff between
local-global optimums (reflecting the need of harmonizing the
selfish and cooperative concerns of vehices in the case-study).

Finally, at the programming and deployment stage, our
approach has been backed up by DEECo component model
and its Java-based reification jDEECo. In this respect, it is
possible to find a plethora of component models and SOA-
based approaches (e.g. SCA, Fractal, OSGi). However, these
typically fall short in well-defined dynamicity (as captured by
the ensembles) as well as in autonomicity and self-adaptation
capabilities (as featured by the special design of components
as distributed MAPE-K based entities). Similar problems apply
even to the agent-based approaches with their Belief-Desire-
Intention model (e.g., JADE). On the other hand, the explicit
support of DEECo for ensembles and components – based on
knowledge and cyclic activities – proved to make the tran-
sition from SOTA/IRM-based design (together with activities
captured by SCEL/SCLP) to runtime very smooth.

XI. CONCLUSIONS AND FUTURE WORK

We have presented the EDLC framework for development
of self-aware autonomic adaptive systems applied to the e-
Mobility case study, a driving case-study in the ASCENS
FP7 project. We have particularly shown the offline processes
of EDLC, starting from requirements modeling and pattern
identification with SOTA, to refinement of system invariants
with IRM, ending in activity modeling with SCEL and SCLP
formalisms. We have also outlined the programming and
deployment phases using DEECo/jDEECo. The summary of
methods and tools used is provided in Table I.

Due to space constraints and present work organization
we have focused on requirements analysis, modeling and
programming phases and deployment transaction of EDLC.
The further phases (i) verification and validation of functional
and non-functional properties at design and runtime and (ii)
system evolution, where historical data monitored at runtime
are used to improve the system design, are subject of the
current and future research.

REFERENCES

[1] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,
M. Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex
IT systems,” Commun. ACM, vol. 55, no. 7, pp. 71–77, Jul. 2012.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM TAAS, vol. 4, no. 2, pp. 1–42, 2009.

[3] J. Mylopoulos, L. Chung, and E. S. K. Yu, “From Object-Oriented to
Goal-Oriented Requirements Analysis,” Communications of the ACM,
vol. 42, no. 1, pp. 31–37, 1999.

[4] D. B. Abeywickrama and F. Zambonelli, “Model Checking Goal-
Oriented Requirements for Self-Adaptive Systems,” in Proc. of ECBS.
IEEE, Apr. 2012, pp. 33–42.

[5] G. Cabri, M. Puviani, and F. Zambonelli, “Towards a Taxonomy of
Adaptive Agent-based Collaboration Patterns for Autonomic Service
Ensembles,” in Proc. of CTS. IEEE, May 2011, pp. 508–515.

[6] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and
N. Hoch, “Design of Ensemble-Based Component Systems by Invariant
Refinement,” in Proc. of CBSE ’13. Vancouver, Canada: ACM, 2013.

[7] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “SCEL: a
Language for Autonomic Computing,” IMT Lucca, Tech. Rep., January
2013. [Online]. Available: http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

[8] R. De Nicola, G. L. Ferrari, M. Loreti, and R. Pugliese, “A Language-
Based Approach to Autonomic Computing,” in Revised Selected Papers
of FMCO. Springer, 2011, pp. 25–48.

[9] J. Jaffar and J. L. Lassez, “Constraint Logic Programming,” in POPL.
ACM Press, 1987, pp. 111–119.

[10] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-Based Constraint
Logic Programming: Syntax and Semantics,” ACM TOPLAS, vol. 23,
no. 1, pp. 1–29, 2001.

[11] G. V. Monreale, U. Montanari, and N. Hoch, “Soft Constraint Logic
Programming for Electric Vehicle Travel Optimization,” CoRR, vol.
abs/1212.2056, 2012.

[12] N. Hoch, K. Zemmer, B. Werther, and R. Y. Siegwarty, “Electric
Vehicle Travel Optimization - Customer Satisfaction Despite Resource
Constraints,” in Proc. of IEEE IVS. IEEE, 2012.

[13] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a,
and G. Puebla, “The Ciao Prolog System. Reference manual,” School
of Computer Science, Technical University of Madrid (UPM), Tech.
Rep. CLIP3/97.1, 1997.

[14] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil, “DEECo – an Ensemble-Based Component System,” in Proc.
of CBSE ’13. Vancouver, Canada: ACM, 2013.

[15] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[16] A. V. Lamsweerde, “Requirements Engineering: from Craft to Disci-
pline,” in SIGSOFT ’08/FSE-16. ACM, 2008, pp. 238–249.

[17] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An Agent-Oriented Software Development Methodology,”
Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–
236, May 2004.

[18] R. De Nicola, G. Ferrari, and R. Pugliese, “KLAIM: A Kernel Language
for Agents Interaction and Mobility,” Software Engineering, IEEE
Transactions on, vol. 24, no. 5, pp. 315–330, 1998.

Chapter 5

133

5 Evaluation Strategy

This chapter describes the strategy used throughout the research leading to this thesis in

order to evaluate the proposed ideas and methods, in particular the Invariant Refine-

ment Method (IRM), and its extension to self-adaptivity (IRM-SA). Where appropriate,

we point to specific papers from Chapter 4 for detailed explanation and results.

The evaluation strategy is grounded in three complementary pillars (Figure 7), rep-

resenting the three directions that were followed for evaluation:

1. Through case studies, by modeling non-toy examples of real-world applications

stemming from industrial and project collaboration.

2. Through implementation of tools for graphical design, model transformations

and code generation, and experimentation with self-adaptation with jDEECo.

3. Through an empirical study evaluating the feasibility and effectiveness of IRM-

SA.

Each of the pillars 1 to 3 is further detailed in Sections 5.1 to 5.3, respectively.

Figure 7. The three pillars of the employed evaluation strategy.

Case studies

Cooperative
electric vehicle

navigation

Fire fighter
coordination

system

Prototypes &
experimentation

IRM-SA designer

Code generation
tool

jDEECo IRM-SA
plugin

Empirical
evaluation

Controlled
experiment

Chapter 5. Evaluation Strategy

134

5.1 Evaluation through Case Studies

In order to evaluate the appropriateness of modeling siCPS with IRM and IRM-SA, we

applied the methods in two real-life case studies.

The first case study concerns the design and implementation of a system for coop-

erative navigation of electric vehicles in a city – already overviewed in Section 1.1.1. This

case study stemmed from one of the ASCENS project case studies [SRA+11]. It was fur-

ther elaborated in a bilateral project between the Department of Distributed and De-

pendable Systems of Charles University and Volkswagen AG (only partial results of this

project have been published, as the complete results fall under a non-disclosure agree-

ment). The cooperative electric vehicle navigation case study has been an important

driver of the research leading to this thesis; it was employed as running example in a set

of papers including the papers presented in Sections 4.2, 4.3, 4.4, and 4.7.

The second case study concerns the design and implementation of an emergency

coordination system for fire fighters. The case study was developed within the project

DAUM, which serves as an exemplar for the evaluation of real-life real-scale distributed

systems, developed in cooperation with professional fire fighters [4]. It has been em-

ployed as running example for the technical report included in Section 4.6. In the work

reported in the same paper, an extended version of the running example was used in the

experimental evaluation of IRM-SA-based jDEECo self-adaptation (Section 5.2.2.1).

5.2 Evaluation through Prototypes and Experimentation

To allow for experimentation with self-adaptation based on IRM-SA, tool support allow-

ing the definition of IRM-SA models, structural checks, and code generation, along with

an implementation of IRM-SA-based self-adaptation as a plugin to the jDEECo platform,

was provided. These two (publicly available) projects are detailed in this section.

5.2.1 IRM-SA Design and Code Generation Tool

The IRM-SA design and code generation tool allows a designer to create an IRM-SA

model using a graphical editor [14]. The designer can specify the (non-leaf) invariants,

process and ensemble invariants, assumptions, and also the components and the com-

ponent knowledge of the system-to-be. For each of these entities, different attributes can

be specified. For example, for a process invariant, the signature and period of the process

operationalizing it can be specified as an attribute. Invariants can be associated with each

other through AND- and OR-decompositions; they can also be associated with compo-

nents via contribution links. Validation via simple structural checks is also provided. For

example, an IRM-SA model can be checked on whether each leaf invariant is associated

with a component. Figure 8 depicts a snapshot of the IRM-SA graphical editor.

5.2. Evaluation through Prototypes and Experimentation

135

Once an IRM-SA model is created and validated, it can be used for code generation.

Since our target implementation and deployment platform was jDEECo, the code gen-

eration utility emits properly annotated Java code of jDEECo components and ensem-

bles. The code generation also creates traceability links from the Java code to the IRM-

SA models in the form of additional (IRM-SA-specific) jDEECo annotations. Technically,

the generation is performed in two steps: first, the IRM-SA model is transformed into a

DEECo model (model-to-model transformation), and then the DEECo model is used to

generate the relevant code snippets (model-to-text transformation).

The tool has been implemented using Eclipse Modeling Framework (EMF) technol-

ogies, specifically the Epsilon tool suite [7]. All the models created or generated by the

tool comply with the Ecore meta-model [6]. The implementation of the graphical editor

is based on Eugenia [7], a front-end tool for Graphical Modeling Framework (GMF) [8],

while the model-to-model and model-to-text transformations are based on Epsilon

Transformation Language (ETL) [KRGDP14] and Epsilon Generation Language (EGL)

[KRGDP14], respectively.

Figure 8. A snapshot of the IRM-SA graphical editor with a preliminary IRM-SA

model of an example from the electric vehicle mobility case study.

Chapter 5. Evaluation Strategy

136

Among other uses, the IRM-SA design and code generation tool was used to create

the IRM-SA model and generate the code skeletons for the non-trivial evaluation exam-

ple of the fire fighter coordination system (comprising 4 components, 39 invariants, and

23 decompositions), reported in the technical report of Section 4.6.

The implementation of the tool helped in refining and validating the modeling con-

cepts of IRM-SA. In particular, a first step towards creating the modeling tool was to

formalize the IRM-SA concepts and their relations into an Ecore-compliant meta-model

(Figure 9). This provided insight into the semantics of several syntactic constructs that

were allowed for a more intuitive design. In particular, the semantics of (i) an invariant

participating in the decomposition of more than one higher level invariants (shared in-

variant), and (ii) the chaining of AND- and OR-decompositions were clarified.

5.2.2 jDEECo IRM-SA Plugin

In order to enable the use of an IRM-SA model at runtime to provide runtime (architec-

ture) reconfiguration via switching between alternative invariant decompositions, a

Figure 9. The IRM-SA meta-model employed in the IRM-SA design

and code generation tool.

5.3. Empirical Evaluation

137

jDEECo plugin has been implemented [15]. The plugin builds on the requirements re-

flection idea and allows the application of reconfiguration actions so that the underlying

DEECo system continuously meets its requirements, as prescribed in the IRM-SA model.

Technically, the plugin relies on EMF technology for the creation and dynamic up-

date of the involved models. Internally, the plugin uses a Boolean Satisfiability Solver

(Sat4j [LBP10][29]) to find an applicable configuration, according to the current state of

the system as reflected at the model level. To propagate the changes done at the model

level down to the running system, EMF listeners have been used. The IRM-SA-based

self-adaptation for jDEECo was first introduced in the paper of Section 4.5, and further

elaborated in the technical report of Section 4.6.

5.2.2.1 Experimentation in Decentralized Settings

Implementing the jDEECo IRM-SA plugin allowed the experimentation with self-adap-

tation in real-world settings comprising decentralized deployment and realistic commu-

nication delays. For this, the jDEECo platform (and its network plugins) was used as a

test bed. Self-adaptation was performed locally within each DEECo deployment node,

instead of having a global “oracle” (e.g. a process of a dedicated component that gathers

the knowledge of every other component, plans, and disseminates the self-adaptation

actions back to each component). Thus, each node was running its own reasoning cycle

based on its local view of the world (its belief). The objective was to evaluate and quantify

the effects of (i) outdated belief (because of delays in knowledge transmission over un-

reliable ad-hoc networks) in self-adaptation, and (ii) local self-adaptation actions (which

can be conflicting) in system-level performance. The experiments’ settings and results

are reported in the technical report of Section 4.6.

5.3 Empirical Evaluation

A major claim of this thesis is that IRM-SA (and thus also IRM) helps in the design of

siCPS that are architected based on the ensemble paradigm. To provide evidence for this

claim, an empirical study was designed, piloted, and conducted. The study took the

form of a controlled experiment with students. Regarding the object(s) of study, purpose,

quality focus, perspective, and context (as prescribed in a standard goal template for

empirical studies [BR88, WRH+12]), the scope of the experiment was to:

 Analyze IRM-SA

 for the purpose of evaluation

 with respect to feasibility and effectiveness

 from the point of view of the researcher

 in the context of M.Sc. and Ph.D. students producing DEECo artifacts.

In the experiment, the focus was on the design process that needs to be followed to

create a DEECo architecture, i.e. on how to specify the appropriate DEECo components

(together with their knowledge and processes) and DEECo ensembles, from an initial set

of requirements (given as user stories). The main hypothesis was that using IRM-SA in

Chapter 5. Evaluation Strategy

138

this process would increase the accuracy of the final architecture artifacts. To obtain a

baseline, participants of a control group followed their intuition to translate the user sto-

ries directly to a DEECo architecture. On the contrary, participants that used IRM-SA

(treatment group) first created an IRM-SA model of the system-to-be, by specifying the

relevant components, invariants and associations between them, and then used the

model to specify a DEECo architecture.

The experiment planning, results, and threats to validity are reported in the tech-

nical report of Section 4.6. The material handed to the participants of the control and

treatment groups during the experiment (including the background material, task de-

scription, and questionnaires) are available online [13].

Overall, the results showed that (i) there is a need for guidance in the design of

DEECo-based systems from initial requirements, as the ensemble-based modeling para-

digm is rather new, and (ii) IRM-SA indeed helps, as it systematizes the design process

and drives the focus on the timing requirements that the underlying processes need to

meet.

Chapter 6

139

6 Conclusion & Open Challenges

This thesis has introduced and elaborated the Invariant Refinement Method (IRM), a

method for the design of software-intensive Cyber-Physical Systems (siCPS) based on the

ensemble paradigm. The grounding idea of IRM is to capture system requirements in

terms of invariants, i.e. obligations that need to be continuously met, and iteratively de-

compose them until the level where they can be mapped one-to-one to system computa-

tion and communication activities. This thesis has also introduced and elaborated an

extension of IRM for self-adaptation (IRM-SA). IRM-SA provides dependability in the

form of (i) design patterns guiding the correct decomposition of higher-level invariants

to lower-level ones, (ii) traceability between system requirements and architecture

configurations, and (iii) mechanisms to deal with operational uncertainty. It provides

self-adaptivity in the form of switching between configurations at runtime (architecture

reconfiguration) to address specific situations that the system may reside in. IRM has

been integrated into the ensemble development life cycle, a holistic process for building au-

tonomic systems. The joint product of the above results leads us to the conclusion that

the first research goal (G1), as outlined in Section 1.3, has been achieved.

In order to evaluate the proposed methods and models, this thesis provided a map-

ping of IRM-SA concepts to concepts of DEECo component model, a component system

following the ensemble paradigm. This was supported by a graphical editor and model-

to-model and model-to-text transformations, which allow for tool-supported model-

driven development of siCPS. Additionally, an implementation of self-adaptation based

on IRM-SA was provided as a plugin to jDEECo platform, a Java reification of DEECo.

This allows for quick experimentations with self-adaptation based on IRM-SA, so that

problems can be identified and corrected early on in the development life cycle. The

above results provide sufficient evidence for concluding that the second research goal

(G2) has also been achieved.

Since the design and development of siCPS in a model-driven fashion is an over-

arching topic with long history (e.g. in the areas of embedded and real-time systems and

multi-agent systems), but also pressing challenges for future research, this thesis does

not attempt to address every aspect of the challenges related to model-driven develop-

ment of siCPS. Rather, it aims to provide a pragmatic yet scientifically grounded baseline

for further research in the area.

Chapter 6. Conclusion & Open Challenges

140

To conclude the thesis, in the remainder of this chapter, the author’s subjective view

on the important and exciting research challenges that remain open in the area of model-

driven development of siCPS are presented.

Human in the loop. One of the disputes within the self-adaptive systems community is

on the role of humans in the autonomic loop (and specifically with reference to the

MAPE-K model for autonomic systems). This is particularly important for self-adaptive

cyber-physical systems, as they are increasingly becoming sociotechnical systems with

stringent requirements on their safe operation and large influence in social life [Eve14].

Challenging questions in this context include “To which extend should siCPS perform

their actions without human supervision?” and “How to design and develop siCPS so

that human users can intervene only when and where needed?”

In order to involve human users in the operation of siCPS, a crucial step is to under-

stand what a system is doing (e.g. what adaptation action is undertakes) and why it is

doing it, a property sometimes called self-awareness [HS06] or self-explanation [SBW+10].

This idea has been pointed out in research around requirements reflection [BWS+10].

A promising direction is to establish a feedback between runtime and design. This

has been identified as an essential step in the “two-wheel” model of the ensemble devel-

opment life cycle [HKP+15]. A particular challenge is to provide the user with as much

information as needed about the running system and not more, in order to be able to process

the information needed for evolving the system. In this direction, approaches for analy-

sis and visualization of large amounts of data (e.g. mega-modeling of big data analytics

[CVPT12]) seem promising.

Another direction is to investigate sophisticated methods for decision making,

which do not involve human users directly, but take into account user preferences and

priorities – so-called user-centric adaptation [GGPTRC14]. In this context, research on in-

tegrating non-functional requirements, whose satisfaction criteria are elicited by stake-

holders [ZSL14], in the runtime decision-making process (the Analyze and Plan phases

of the MAPE-K loop) is highly relevant.

Ideally, self-adaptive siCPS should decide by themselves when to involve humans

in their operation and in which way. These decisions invariably need to take into account

the unpredictability and spontaneity of human agents. One promising direction is to

formalize human behaviors and the factors that affect them (e.g. as stochastic multi-

player games [CMG15]) and use this formalization in the analysis and design of human-

system-environment interactions.

Taming uncertainty. Uncertainty appears lately as a recurrent topic in the software en-

gineering community, as there is increasing awareness over uncertainty aspects that

creep in at different phases of the software development life cycle, from requirements

elicitation to operation [Gar10, LSB14, TMC+13, WSB11]. Indeed, it seems that uncer-

tainty in user needs, assumptions about the environment, behavior of third-party com-

ponents, etc. is the primary driver for making software systems self-adaptive. While a

driver for self-adaptivity, uncertainty (or rather ignoring uncertainty) may lead to a se-

vere decrease in safety and dependability.

141

 In siCPS, uncertainty in the norm, not the exception: siCPS usually operate in envi-

ronments difficult to anticipate and model a priori; they possess multiple loci of control

resulting in complex and often emergent behaviors; they continuously interact with un-

predictable users and imprecise and unreliable sensors and actuators.

While research in requirements engineering methods to deal with uncertainty (e.g.

as in [LSB14, WSB+10]) is important, a largely open research challenge in siCPS – elabo-

rated also in Section 1.2 – is related to finding ways to fight operational or external uncer-

tainty, i.e. the uncertainty that arises from the environment in which the system in de-

ployed [EKM11]. In IRM, we have provided a mechanism to deal with external uncer-

tainty that relies on reasoning on the inaccuracy of components’ belief [GBH+15b].

A direct result of external uncertainty is that it makes it hard to anticipate at design

time all possible situations that a system may reside in and to provide corresponding

adaptation actions. In such cases, a promising idea is to endow a system with some kind

of meta-adaptation mechanism that allows the adaptation of the adaptation logic itself

(e.g. via employing models@runtime [PMC+12]) to deal with unforeseen situations. In

[GBH+15a], we have discussed a possible realization of this idea in the domain of siCPS.

Alignment of software engineering with other disciplines. One of the grand challenges

in software engineering of siCPS is to devise ways to integrate software engineering

principles and practices with disciplines such as mechanical and electrical engineering,

control engineering, and physics [DLV12, KK12]. This alignment is challenging, as dif-

ferent disciplines adopt different views over the siCPS world, and base their models and

analysis and design methods in different sets of assumptions. It is also essential, as siCPS

is by its own nature a complex multi-disciplinary domain.

One of the relevant questions is on which basis to attempt such an alignment. A

promising direction is to use software architecture models as the common vocabulary

across disciplines and as the vehicle to map different views into a representation that is

commonly understood and used by software engineers [Gar15]. In this respect, software

architectures become “richer”, as they integrate information not only about the structure

of a siCPS, but also about other aspects such as performance or even physical constraints

and laws. In [AABG+14b], we have explored this idea by integrating laws about the

physical evolution of data in a distributed system (e.g. position, velocity, acceleration of

vehicles modeled as autonomous components), in the form of ordinary differential equa-

tions, into the architecture description of a siCPS.

In the development of siCPS with self-adaptive capabilities, there also seems to be a

large potential in integrating well-studied and formally proven techniques from control

engineering [FGLM11, FMA+15]. Control engineering also gains benefit from a new, ex-

citing, and highly challenging field of application.

The software engineering community is only beginning to investigate the alignment

(or, rather, the lack thereof) between software engineering and other disciplines in the

siCPS domain and beyond. More research is needed in understanding, quantifying and

bridging this gap in order to unlock the potential for game-changing applications of soft-

ware-intensive cyber-physical systems.

Chapter 6. Conclusion & Open Challenges

142

143

References

[AABG+14a] R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and

F. Plasil. DEECo: an Ecosystem for Cyber-Physical Systems. In ICSE ’14: Compan-

ion Proceedings of the 36th International Conference on Software Engineering, pages

610–611. ACM, June 2014. Poster and extended abstract. Author’s copy available

online: http://d3s.mff.cuni.cz/publications/.

[AABG+14b] R. Al Ali, T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil. Architecture Ad-

aptation Based on Belief Inaccuracy Estimation. In WICSA ’14: Proceedings of the

11th Working IEEE/IFIP Conference on Software Architecture, pages 87–90. IEEE,

April 2014.

[AAGGH+14] R. Al Ali, I. Gerostathopoulos, I. Gonzalez-Herrera, A. Juan-Verdejo, M. Kit, and

B. Surajbali. An Architecture-Based Approach for Compute-Intensive Pervasive

Systems in Dynamic Environments. In HotTopiCS ’14: Proceedings of the 2nd Inter-

national Workshop on Hot Topics in Cloud service Scalability. ACM, March 2014. Ar-

ticle no. 3.

[ABZ12] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli. SOTA: Towards a General

Model for Self-Adaptive Systems. In WETICE ’12: Proceedings of the 21st Interna-

tional IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-

prises, pages 48–53. IEEE, 2012.

[AGH+10] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu. Evalu-

ating Goal Models Within the Goal-oriented Requirement Language. Int. J. Intell.

Syst., 25(8):841–877, August 2010.

[AGH+11] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistrik. Relating Software Re-

quirements with Architecture. Springer, 2011.

[AK09] S. Apel and C. Kästner. An Overview of Feature-Oriented Software Develop-

ment. Journal of Object Technology (JOT), 8(5):49–84, 2009.

[AN05] J. Arlow and I. Neustadt. UML 2 and the Unified Process: Practical Object-Oriented

Analysis and Design. Addison-Wesley, 2005.

[Ant96] A. Anton. Goal-based requirements analysis. In ICSE ’96: Proceedings of the Second

International Conference on Requirements Engineering, pages 136–144. IEEE, April

1996.

[BBE+07] C. Barreto, V. Bullard, T. Erl, J. Evdemon, D. Jordan, K. Kand, S. Moser, R. Stout,

R. Ten-hove, I. Trickovic, D. V. D. Rijn, and A. Yiu. Web Services Business Process

Execution Language Version 2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/-

OS/wsbpel-v2.0-OS.html.

http://d3s.mff.cuni.cz/publications/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

References

144

[BBF09] G. Blair, N. Bencomo, and R. France. Models@ run.time. Computer, 42(10):22–27,

October 2009.

[BBG+15] L. Bulej, T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, L. Marek, M. Tschai-

kowski, M. Tribastone, and P. Tuma. Supporting Performance Awareness in Au-

tonomous Ensembles. In M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, editors,

Software Engineering for Collective Autonomic Systems, volume 8998 of Lecture Notes

in Computer Science, pages 291–322. Springer International Publishing, 2015.

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani. The Fractal

component model and its support in Java. Software: Practice & Experience, 36(11-

12):1257–1284, 2006.

[BDNG+13] T. Bures, R. De Nicola, I. Gerostathopoulos, N. Hoch, M. Kit, N. Koch, G. Valen-

tina Monreale, U. Montanari, R. Pugliese, N. Serbedzija, M. Wirsing, and F. Zam-

bonelli. A Life Cycle for the Development of Autonomic Systems: The e-Mobility

Showcase. In SASOW ’13: Proceedings of the 7th IEEE International Conference on

Self-Adaptation and Self-Organizing Systems Workshops, pages 71–76. IEEE, Septem-

ber 2013.

[Bec99] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-

fessional, Reading, MA, October 1999.

[BFCA14] N. Bencomo, R. France, B. H. C. Cheng, and U. Aßmann, editors. Mod-

els@run.time, volume 8378 of Lecture Notes in Computer Science. Springer Interna-

tional Publishing, Cham, 2014.

[BGAA14] T. Bures, I. Gerostathopoulos, and R. Al Ali. DEECo: Software Engineering for

Smart CPS. ERCIM News, April 2014. Published online: http://ercim-news.er-

cim.eu/en97/special/deeco-software-engineering-for-smart-cps.

[BGH+13] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil.

DEECo – an Ensemble-Based Component System. In CBSE ’13: Proceedings of the

16th International ACM Sigsoft Symposium on Component-based Software Engineer-

ing, pages 81–90. ACM, June 2013.

[BGH+14a] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil. Gos-

siping Components for Cyber-Physical Systems. In ECSA ’14: Proceedings of the

8th European Conference on Software Architecture, pages 250–266. Springer, August

2014.

[BGH+14b] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, and

N. Plouzeau. Adaptation in Cyber-Physical Systems: from System Goals to Ar-

chitecture Configurations. Technical Report D3S-TR-2014-01, Department of Dis-

tributed and Dependable Systems, April 2014. Available online: http://-

d3s.mff.cuni.cz/publications/.

[BGH+15] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil. The

Invariant Refinement Method. In M. Wirsing, M. Hölzl, N. Koch, and P. Mayer,

editors, Software Engineering for Collective Autonomic Systems, volume 8998 of Lec-

ture Notes in Computer Science, pages 405–428. Springer International Publishing,

2015.

http://ercim-news.ercim.eu/en97/special/deeco-software-engineering-for-smart-cps
http://ercim-news.ercim.eu/en97/special/deeco-software-engineering-for-smart-cps
http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications/

References

145

[BGK+15] T. Bures, I. Gerostathopoulos, J. Keznikl, F. Plasil, and P. Tuma. Formalization of

Invariant Patterns for the Invariant Refinement Method. In R. De Nicola and

R. Hennicker, editors, Software, Services and Systems, volume 8950 of Lecture Notes

in Computer Science, pages 602–208. Springer International Publishing, 2015.

[BGPP03] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard. ADELFE: A Methodol-

ogy for Adaptive Multi-agent Systems Engineering. In P. Petta, R. Tolksdorf, and

F. Zambonelli, editors, Engineering Societies in the Agents World III, volume 2577

of Lecture Notes in Computer Science, pages 156–169. Springer Berlin Heidelberg,

2003.

[BH06] R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak Using

Jason. In F. Toni and P. Torroni, editors, Computational Logic in Multi-Agent Sys-

tems, volume 3900 of Lecture Notes in Computer Science, pages 143–164. Springer

Berlin Heidelberg, 2006.

[BHP06] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in

a Hierarchical Component Model. In SERA ’06: Proceedings of the Fourth Interna-

tional Conference on Software Engineering Research, Management and Applications,

pages 40–48. IEEE, August 2006.

[BHP09] E. Borde, G. Haik, and L. Pautet. Mode-based reconfiguration of critical software

component architectures. In DATE’09: Design, Automation & Test in Europe Con-

ference & Exhibition, pages 1160–1165. IEEE, 2009.

[BKW03] D. Berry, R. Kazman, and R. Wieringa. STRAW’03: Proceedings of the Second Inter-

national SofTware Requirements to Architectures Workshop. 2003.

[BMO01] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A Formalism for Specifying Mul-

tiagent Software Systems. In P. Ciancarini and M. J. Wooldridge, editors, Agent-

Oriented Software Engineering, volume 1957 of Lecture Notes in Computer Science,

pages 91–103. Springer Berlin Heidelberg, 2001.

[Boe00] B. Boehm. Spiral Development: Experience, Principles, and Refinements. Special

Report CMU/SEI-2000-SR-008, Carnegie Mellon University, July 2000. Available

online: http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5053.

[BP10a] L. Baresi and L. Pasquale. Adaptive Goals for Self-Adaptive Service Composi-

tions. In ICWS ’10: Proceedings of the 2010 IEEE International Conference on Web Ser-

vices, pages 353–360. IEEE, July 2010.

[BP10b] L. Baresi and L. Pasquale. Live Goals for Adaptive Service Compositions. In

SEAMS ’10: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adap-

tive and Self-Managing Systems, pages 114–123. ACM, 2010.

[BP11] L. Baresi and L. Pasquale. Adaptation Goals for Adaptive Service-Oriented Ar-

chitectures. In P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistrík, editors,

Relating Software Requirements and Architectures, pages 161–181. Springer, 2011.

[BPG+04] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An

Agent-Oriented Software Development Methodology. Autonomous Agents and

Multi-Agent Systems, 8(3):203–236, May 2004.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5053

References

146

[BPS10] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy Goals for Requirements-driven Ad-

aptation. In RE ’10: Proceedings of the 18th IEEE International Requirements Engi-

neering Conference, pages 125–134. IEEE, September 2010.

[BR88] V. Basili and H. Rombach. The TAME project: Towards Improvement-Oriented

Software Environments. IEEE Transactions on Software Engineering, 14(6):758–773,

June 1988.

[Bra99] M. E. Bratman. Intention, Plans, and Practical Reason. Center for the Study of Lan-

guage and Information, Stanford, California, USA, March 1999.

[BWS+10] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements

Reflection: Requirements as Runtime Entities. In ICSE ’10: Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering, pages 199–202. IEEE,

2010.

[CKM01] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-Driven Development

Methodology. In CAiSE ’01: Proceedings of the 13th International Conference on Ad-

vanced Information Systems Engineering, pages 108–123. Springer Berlin Heidel-

berg, 2001.

[CKM02] J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven information

systems engineering: the Tropos project. Information Systems, 27(6):365–389, 2002.

[CL02] I. Crnkovic and M. Larsson. Building Reliable Component-Based Software Systems.

Artech House, Inc., Norwood, MA, USA, 2002.

[CLG+09] B. Cheng, R. d. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,

N. Bencomo, Y. Brun, B. Cukic, G. D. M. Serugendo, S. Dustdar, A. Finkelstein,

C. Cacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Ma-

lek, R. Mirandola, H. A. Muller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,

and J. Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. In Software Engineering for Self-Adaptive Systems, pages 1–26. Springer

Berlin Heidelberg, 2009.

[CMG15] J. Camara, G. A. Moreno, and D. Garlan. Reasoning about Human Participation

in Self-Adaptive Systems. In SEAMS ’15: Proceedings of the 10th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems. IEEE, 2015.

To appear.

[CNYM99] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in

Software Engineering. Springer, 1999.

[Coh09] M. Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-Wes-

ley Professional, Upper Saddle River, NJ, November 2009.

[CSVC11] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron. A Classification Frame-

work for Software Component Models. IEEE Transactions on Software Engineering,

37(5):593–615, 2011.

[CVPT12] S. Ceri, E. D. Valle, D. Pedreschi, and R. Trasarti. Mega-modeling for Big Data

Analytics. In P. Atzeni, D. Cheung, and S. Ram, editors, Conceptual Modeling, vol-

ume 7532 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin Hei-

delberg, 2012.

References

147

[DBP94] E. Dubois, P. D. Bois, and M. Petit. ALBERT: An Agent-Oriented Language for

Building and Eliciting Requirements for Real-Time Systems. In Proceedings of the

27th Hawaii International Conference on System Sciences, pages 713 – 722. IEEE, 1994.

[DeL14] S. A. DeLoach. O-MaSE: An Extensible Methodology for Multi-agent Systems. In

O. Shehory and A. Sturm, editors, Agent-Oriented Software Engineering, pages 173–

191. Springer Berlin Heidelberg, 2014.

[DLV12] P. Derler, E. a. Lee, and a. S. Vincentelli. Modeling Cyber-Physical Systems. Pro-

ceedings of the IEEE, 100(1):13–28, January 2012.

[DNFLP13] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A Language-based Approach

to Autonomic Computing. Formal Methods for Components and Objects, 7542:25–48,

2013.

[DVL96] R. Darimont and A. Van Lamsweerde. Formal Refinement Patterns for Goal-

Driven Requirements Elaboration. In FSE’96: 4th ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 179–190. ACM, 1996.

[DVLF93] A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed requirements ac-

quisition. Science of Computer Programming, 20(1):3–50, April 1993.

[DW04] K. H. Dam and M. Winikoff. Comparing Agent-Oriented Methodologies. In

P. Giorgini, B. Henderson-Sellers, and M. Winikoff, editors, Agent-Oriented Infor-

mation Systems, volume 3030 of Lecture Notes in Computer Science, pages 78–93.

Springer Berlin Heidelberg, 2004.

[DWS01] S. A. Deloach, M. F. Wood, and C. H. Sparkman. Multiagent systems engineering.

International Journal of Software Engineering and Knowledge Engineering, 11(03):231–

258, June 2001.

[EKM11] N. Esfahani, E. Kouroshfar, and S. Malek. Taming Uncertainty in Self-Adaptive

Software. In SIGSOFT/FSE ’11: Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering, pages 234–

244. ACM, 2011.

[Eve14] C. Evers. The Human in the Loop: User Participation in Self-Adaptive Software. PhD

thesis, Faculty of Electrical Engineering and Computer Science University of Kas-

sel, August 2014.

[FBP+12] F. Fouquet, O. Barais, N. Plouzeau, J.-m. Jezequel, B. Morin, and F. Fleurey. A

Dynamic Component Model for Cyber Physical Systems. In CBSE’12: Proceedings

of International ACM SIGSOFT Symposium on Component Based Software Engineer-

ing, pages 135–144. ACM, 2012.

[FGKM01] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. Information Systems as So-

cial Structures. In FOIS ’01: Proceedings of the International Conference on Formal

Ontology in Information Systems, pages 10–21. ACM, 2001.

[FGLM11] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. Self-Adaptive Software Meets Con-

trol Theory: A Preliminary Approach Supporting Reliability Requirements. In

ASE ’11: Proceedings of the 26th IEEE/ACM International Conference on Automated

Software Engineering, pages 283–292. IEEE, 2011.

References

148

[FLM+04] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Speci-

fying and Analyzing Early Requirements in Tropos. Requirements Engineering,

9(2):132–150, March 2004.

[FMA+15] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos, A. B.

Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava,

S. Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma,

and T. Vogel. Software Engineering Meets Control Theory. In SEAMS’15: Pro-

ceedings of the 10th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems. IEEE, May 2015. In press. Author’s copy available online:

http://d3s.mff.cuni.cz/publications/.

[Fow03] M. Fowler. UML Distilled. Addison-Wesley, 2003.

[FPMT01] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model Checking Early

Requirements Specifications in Tropos. In RE’01: Proceedings of the Fifth Interna-

tional Symposium on Requirements Engineering, pages 174–181. IEEE, August 2001.

[Gar10] D. Garlan. Software Engineering in an Uncertain World. In Proceedings of the

FSE/SDP Workshop on Future of Software Engineering Research, pages 125–128.

ACM, 2010.

[Gar15] D. Garlan. Modeling Challenges for CPS Systems. In Proceedings of the 1st Interna-

tional Workshop in Software Engineering for Smart Cyber-Physical Systems, Keynote

Talk. IEEE, 2015. In press.

[GBH13] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position Paper: Towards a Re-

quirements-Driven Design of Ensemble-Based Component Systems. In Proceed-

ings of the 2013 International Workshop on Hot topics in Cloud Services, pages 79–86.

ACM, April 2013.

[GBH+15a] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, F. Plasil, and D. Skoda.

Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems. In ECSA

’15: Proceedings of the 9th European Conference on Software Architecture. Springer,

September 2015. To appear. Author’s copy available online: http://-

d3s.mff.cuni.cz/publications.

[GBH+15b] I. Gerostathopoulos, T. Bures, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, and

N. Plouzeau. Self-Adaptation in Cyber-Physical Systems: from System Goals to

Architecture Configurations. Technical Report D3S-TR-2015-02, Department of

Distributed and Dependable Systems, April 2015. Available online: http://-

d3s.mff.cuni.cz/publications/.

[Ger14] I. Gerostathopoulos. Model-Driven Design of Ensemble-Based Component Sys-

tems. In MODELS ’14: Proceedings of the ACM/IEEE 18th International Conference

on Model Driven Engineering Languages and Systems Poster Session and the ACM Stu-

dent Research Competition, volume 1258, pages 63–68. CEUR-WS.org, September

2014.

http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications
http://d3s.mff.cuni.cz/publications
http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications/

References

149

[GGK+15] S. Götz, I. Gerostathopoulos, F. Krikava, A. Shahzada, and R. Spalazzese. Adap-

tive Exchange of Distributed Partial Models@run.time for Highly Dynamic Sys-

tems. In SEAMS’15: Proceedings of the 10th International Symposium on Software En-

gineering for Adaptive and Self-Managing Systems. IEEE, May 2015. In press. Au-

thors’ copy available online: http://d3s.mff.cuni.cz/publications/.

[GGPTRC14] J. García-Galán, L. Pasquale, P. Trinidad, and A. Ruiz-Cortés. User-Centric Ad-

aptation of Multi-tenant Services: Preference-Based Analysis for Service Recon-

figuration. In SEAMS ’14: Proceedings of the 9th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, pages 65–74. ACM, 2014.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edition, 1994.

[GKB+14] I. Gerostathopoulos, J. Keznikl, T. Bures, M. Kit, and F. Plasil. Software Engineer-

ing for Software-Intensive Cyber-Physical Systems. In INFORMATIK 2014: Pro-

ceedings of the 44th Annual Meeting of the German Informatics Society, pages 1179–

1190. Gesellschaft für Informatik, Bohn, Germany, September 2014.

[GKMP04] P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore. The Tropos Methodology:

An Overview. In Methodologies and Software Engineering for Agent Systems, pages

89–106. Kluwer Academic Publishers, 2004.

[Gom93] H. Gomaa. Software Design Methods for Concurrent and Real-Time Systems. Addi-

son-Wesley Professional, Reading, Mass, August 1993.

[GS93] D. Garlan and M. Shaw. An Introduction to Software Architecture. In Advances

in Software Engineering and Knowledge Engineering, pages 1–39. World Scientific,

1993.

[GS14] J. J. Gomez-Sanz. Ten Years of the INGENIAS Methodology. In O. Shehory and

A. Sturm, editors, Agent-Oriented Software Engineering, pages 193–209. Springer

Berlin Heidelberg, 2014.

[HBHM99] K. V. Hindriks, F. S. D. Boer, W. V. D. Hoek, and J.-J. C. Meyer. Agent Program-

ming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, Novem-

ber 1999.

[HC01] G. T. Heineman and W. T. Councill, editors. Component-based Software Engineer-

ing: Putting the Pieces Together. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2001.

[Her96] Herbert A. Simon. The Sciences of the Artificial. MIT Press, 3rd edition, 1996.

[HI10] K. M. Hansen and M. Ingstrup. Modeling and Analyzing Architectural Change

with Alloy. In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied Compu-

ting, pages 2257–2264. ACM, 2010.

[HK14] R. Hennicker and A. Klarl. Foundations for Ensemble Modeling – The Helena

Approach. In S. Iida, J. Meseguer, and K. Ogata, editors, Specification, Algebra, and

Software, volume 8373 of Lecture Notes in Computer Science, pages 359–381.

Springer Berlin Heidelberg, 2014.

http://d3s.mff.cuni.cz/publications/

References

150

[HKMU06] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for Software Architectures.

In V. Gruhn and F. Oquendo, editors, Software Architecture, volume 4344 of Lec-

ture Notes in Computer Science, pages 113–126. Springer Berlin Heidelberg, 2006.

[HKP+15] M. Hölzl, N. Koch, M. Puviani, M. Wirsing, and F. Zambonelli. The Ensemble

Development Life Cycle and Best Practices for Collective Autonomic Systems. In

M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, editors, Software Engineering for

Collective Autonomic Systems, volume 8998 of Lecture Notes in Computer Science,

pages 325–354. Springer International Publishing, 2015.

[HPMS11] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in Action: Creating Modular

Applications in Java. Manning Publications, Stamford, CT, 2011.

[HPS12] M. Hinchey, S. Park, and K. Schmid. Building Dynamic Software Product Lines.

Computer, 45(10):22–26, October 2012.

[HRW08a] M. Hölzl, A. Rauschmayer, and M. Wirsing. Software engineering for ensembles.

In Software-Intensive Systems and New Computing Paradigms, pages 45–63. 2008.

[HRW08b] M. Hoelzl, A. Rauschmayer, and M. Wirsing. Engineering of Software-Intensive

Systems: State of the Art and Research Challenges. In Software-Intensive Systems

and New Computing Paradigms, pages 1–44. 2008.

[HS06] M. Hinchey and R. Sterritt. Self-managing software. Computer, 39(2):107–109,

February 2006.

[IBM06] IBM. An architectural blueprint for autonomic computing. IBM White Paper, June

2006. Available online: http://www-03.ibm.com/autonomic/pdfs/AC Blueprint

White Paper V7.pdf.

[IST11] P. Inverardi, R. Spalazzese, and M. Tivoli. Application-Layer Connector Synthe-

sis. In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal Networked

Software Systems, volume 6659 of Lecture Notes in Computer Science, pages 148–190.

2011.

[Jen00] N. R. Jennings. On agent-based software engineering. Artificial Intelligence,

117(2):277–296, March 2000.

[Kav02] E. Kavakli. Goal-Oriented Requirements Engineering: A Unifying Framework.

Requirements Engineering, 6(4):237–251, January 2002.

[KBP+13] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and N. Hoch.

Design of Ensemble-Based Component Systems by Invariant Refinement. In

CBSE ’13: Proceedings of the 16th International ACM Sigsoft Symposium on Compo-

nent-based Software Engineering, pages 91–100. ACM, June 2013.

[KBPK12] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards Dependable Emergent Ensem-

bles of Components: The DEECo Component Model. In Proceedings of 2012 Joint

Working Conference on Software Architecture (WICSA) & 6th European Conference on

Software Architecture (ECSA), pages 249–252. IEEE, August 2012.

[KC01] J. Kramer and J. Castro. STRAW’01: Proceedings of the First International SofTware

Requirements to Architectures Workshop. 2001.

http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

References

151

[KC03] J. Kephart and D. Chess. The Vision of Autonomic Computing. Computer,

36(1):41–50, 2003.

[KCH+90] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Ori-

ented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-

90-TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

[KCH14] A. Klarl, L. Cichella, and R. Hennicker. From Helena Ensemble Specifications to

Executable Code. In I. Lanese and E. Madelaine, editors, Formal Aspects of Compo-

nent Software, volume 8997 of Lecture Notes in Computer Science, pages 183–190.

Springer International Publishing, September 2014.

[KCM01] M. Kolp, J. Castro, and J. Mylopoulos. A Social Organization Perspective on Soft-

ware Architectures. In STRAW’01: Proceedings of the First International SofTware

Requirements to Architectures Workshop, 2001. Available online: http://-

www.cin.ufpe.br/~straw01/.

[Kez14] J. Keznikl. Dynamic Software Architectures for Resilient Distributed Systems. PhD

thesis, Charles University in Prague, Department of Distributed and Dependa-

ble Systems, 2014.

[KG97] D. Kinny and M. Georgeff. Modelling and Design of Multi-Agent Systems. In J. P.

Müller, M. J. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III Agent

Theories, Architectures, and Languages, volume 1193 of Lecture Notes in Computer

Science, pages 1–20. Springer Berlin Heidelberg, 1997.

[KGB+15] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil. An Architecture

Framework for Experimentations with Self-Adaptive Cyber-Physical Systems. In

SEAMS’15: Proceedings of the 10th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems. IEEE, May 2015. In press. Author’s copy

available online: http://d3s.mff.cuni.cz/publications/.

[KGM01] M. Kolp, P. Giorgini, and J. Mylopoulos. A Goal-Based Organizational Perspec-

tive on Multi-Agent Architectures. In ATAL ’01: Proceedings of the Eighth Interna-

tional Workshop on Agent Theories, Architectures, and Languages, pages 128–140.

Springer, 2001.

[KGM06] M. Kolp, P. Giorgini, and J. Mylopoulos. Multi-Agent Architectures as Organiza-

tional Structures. Autonomous Agents and Multi-Agent Systems, 13(1):3–25, Febru-

ary 2006.

[KH14] A. Klarl and R. Hennicker. Design and Implementation of Dynamically Evolving

Ensembles with the Helena Framework. In ASWEC’14: Proceedings of the 23rd Aus-

tralian Software Engineering Conference, pages 15–24. IEEE, April 2014.

[KK12] B. K.-d. Kim and P. R. Kumar. Cyber-Physical Systems: A Perspective at the Cen-

tennial. Proceedings of the IEEE, 100(Special Centennial):1287–1308, 2012.

[KMH14] A. Klarl, P. Mayer, and R. Hennicker. Helena@Work: Modeling the Science Cloud

Platform. In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal

Methods, Verification and Validation. Technologies for Mastering Change, volume 8802

of Lecture Notes in Computer Science, pages 99–116. Springer Berlin Heidelberg,

October 2014.

http://www.cin.ufpe.br/~straw01/
http://www.cin.ufpe.br/~straw01/
http://d3s.mff.cuni.cz/publications/

References

152

[Koy92] R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal

Logic. Springer Berlin Heidelberg, 1992.

[KRGDP14] D. Kolovos, L. Rose, A. García-Domínguez, and R. Paige. The Epsilon Book, April

2014. Available online: https://eclipse.org/epsilon/doc/book/.

[LBP10] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,

Boolean Modeling and Computation, 7:59–64, 2010.

[Lee08] E. A. Lee. Cyber Physical Systems: Design Challenges. In ISORC’08: Proceedings

of the 11th IEEE International Symposium on Object Oriented Real-Time Distributed

Computing, pages 363–369. IEEE, May 2008.

[LSB14] E. Letier, D. Stefan, and E. T. Barr. Uncertainty, Risk, and Information Value in

Software Requirements and Architecture. In ICSE ’14: Proceedings of the 36th In-

ternational Conference on Software Engineering, pages 883–894. ACM, 2014.

[LVL02] E. Letier and A. Van Lamsweerde. Deriving Operational Software Specifications

from System Goals. In FSE’02: Proceedings of the 10th ACM SIGSOFT Symposium

on Foundations of Software Engineering, pages 119–119. ACM, 2002.

[LW07] K.-K. Lau and Z. Wang. Software Component Models. IEEE Transactions on Soft-

ware Engineering, 33(10):709–724, October 2007.

[LYM03] L. Liu, E. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis

within a Social Setting. In RE’03: Proceedings of the 11th IEEE International Require-

ments Engineering Conference, pages 151–161. IEEE, September 2003.

[Mal12] M. Malohlava. Variability of Execution Environments for Component-based Systems.

PhD thesis, Department of Distributed and Dependable Systems, Charles Uni-

versity in Prague, 2012.

[MBJ+09] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Models at Runtime

to Support Dynamic Adaptation. Computer, 42(10):44–51, 2009.

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing

Knowledge About Information Systems. ACM Trans. Inf. Syst., 8(4):325–362, Oc-

tober 1990.

[MCN92] J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach. IEEE Transactions on Software En-

gineering, 18(6):483–497, June 1992.

[MCY99] J. Mylopoulos, L. Chung, and E. Yu. From Object-Oriented to Goal-Oriented Re-

quirements Analysis. Communications of the ACM, 42(1):31–37, 1999.

[Mor11] M. Morandini. Goal-Oriented Development of Self-Adaptive Systems. PhD thesis,

University of Trento, 2011.

[MP08] M. Morandini and A. Perini. Towards Goal-Oriented Development of Self-Adap-

tive Systems. In SEAMS ’08: Proceedings of the 2008 International Workshop on Soft-

ware Engineering for Adaptive and Self-Managing Systems, pages 9–16. ACM, May

2008.

https://eclipse.org/epsilon/doc/book/

References

153

[MPP08a] M. Morandini, L. Penserini, and A. Perini. Automated Mapping from Goal Mod-

els to Self-Adaptive Systems. In ASE’08: Proceedings of the 23rd IEEE/ACM Inter-

national Conference on Automated Software Engineering, pages 485–486. IEEE, Sep-

tember 2008.

[MPP08b] M. Morandini, L. Penserini, and A. Perini. Modelling Self-Adaptivity: A Goal-

Oriented Approach. In SASO ’08: Proceedings of the Second IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems, pages 469–470. IEEE, October

2008.

[MPP09] M. Morandini, L. Penserini, and A. Perini. Operational Semantics of Goal Models

in Adaptive Agents. In AAMAS ’09: Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems - Volume 1, pages 129–136. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2009.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements Engineering: A Roadmap. In ICSE

’00: Proceedings of the Conference on The Future of Software Engineering, pages 35–

46. ACM, 2000.

[ON98] P. D. O’Brien and R. C. Nicol. FIPA – Towards a Standard for Software Agents.

BT Technology Journal, 16(3):51–59, July 1998.

[OPB00] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for Agents. In Proceed-

ings of the Agent-Oriented Information Systems Workshop at the 17th National confer-

ence on Artificial Intelligence, pages 3–17, 2000.

[PBL05] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In

R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, editors, Multi-Agent

Programming, volume 15 of Multiagent Systems, Artificial Societies, and Simulated

Organizations, pages 149–174. Springer US, 2005.

[PH07] M. P. Papazoglou and W.-J. v. d. Heuvel. Service oriented architectures: ap-

proaches, technologies and research issues. The VLDB Journal, 16(3):389–415,

March 2007.

[PMC+12] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. L. Traon, O. Barais, and

J.-M. Jezequel. Towards Flexible Evolution of Dynamically Adaptive Systems. In

ICSE ’12: Proceedings of the 34th International Conference on Software Engineering,

pages 1353–1356. IEEE, 2012.

[PMR+07] C. Ponsard, P. Massonet, A. Rifaut, J. F. Molderez, A. Van Lamsweerde, and

H. Tran Van. Early Verification and Validation of Mission Critical Systems. For-

mal Methods in System Design, 30(3):233–247, 2007.

[PMS08] A. Plsek, P. Merle, and L. Seinturier. A Real-Time Java Component Model. In

ISORC ’08: Proceedings of the 11th IEEE International Symposium on Object Oriented

Real-Time Distributed Computing, pages 281–288. IEEE, May 2008.

[PPS+07] L. Penserini, A. Perini, A. Susi, M. Morandini, and J. Mylopoulos. A Design

Framework for Generating BDI-agents from Goal Models. In AAMAS ’07: Pro-

ceedings of the 6th International Joint Conference on Autonomous Agents and Multia-

gent Systems, pages 610–612. ACM, 2007.

References

154

[PS11] L. Pasquale and P. Spoletini. Monitoring Fuzzy Temporal Requirements for Ser-

vice Compositions: Motivations, Challenges and Experimental Results. In RESS

’11: Proceedings of the 2011 Workshop on Requirements Engineering for Systems, Ser-

vices and Systems-of-Systems, pages 63–69. IEEE, August 2011.

[PW03] L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intel-

ligent Agents. In F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-Oriented

Software Engineering III, volume 2585 of Lecture Notes in Computer Science, pages

174–185. Springer Berlin Heidelberg, 2003.

[PWT+08] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, and J. Adamek. A Component-

Oriented Framework for Spacecraft On-Board Software. In DASIA’08: Proceedings

of Data Systems In Aerospace, volume 665 of ESA Special Publication. European

Space Agency, 2008.

[Rao96] A. S. Rao. AgentSpeak(L): BDI Agents Speak out in a Logical Computable Lan-

guage. In MAAMAW ’96: Proceedings of the 7th European Workshop on Modelling

Autonomous Agents in a Multi-agent World: Agents Breaking Away, pages 42–55.

Springer Berlin Heidelberg, 1996.

[RG95] A. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice. In ICMAS ’95:

Proceedings of the First International Conference on Multi-Agent Systems, pages 312–

319. AAAI Press, Palo Alto, California, USA, 1995.

[RS77] D. T. Ross and K. E. Schoman, Jr. Structured Analysis for Requirements Defini-

tion. IEEE Transactions of Software Engineering, 3(1):6–15, January 1977.

[SBW+10] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-

Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In RE’ 10:

Proceedings of the 18th IEEE International Requirements Engineering Conference,

pages 95–103. IEEE, September 2010.

[Sch06] D. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, February 2006.

[SLB08] Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,

and logical foundations. Cambridge University Press, 2008.

[SLRM13] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos. Awareness

Requirements. In Software Engineering for Self-Adaptive Systems II, pages 133–161.

Springer Berlin Heidelberg, 2013.

[SRA+11] N. Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli, N. Hoch, and

B. Werther. Requirement Specification and Scenario Description of the ASCENS

Case Studies. Deliverable D7.1, 2011. Available online: http://www.ascens-

ist.eu/deliverables.

[SS14a] A. Sturm and O. Shehory. Agent-Oriented Software Engineering: Revisiting the

State of the Art. In O. Shehory and A. Sturm, editors, Agent-Oriented Software En-

gineering, pages 13–26. Springer Berlin Heidelberg, 2014.

[SS14b] A. Sturm and O. Shehory. The Landscape of Agent-Oriented Methodologies. In

O. Shehory and A. Sturm, editors, Agent-Oriented Software Engineering, pages 137–

154. Springer Berlin Heidelberg, 2014.

http://www.ascens-ist.eu/deliverables
http://www.ascens-ist.eu/deliverables

References

155

[ST09] M. Salehie and L. Tahvildari. Self-Adaptive Software: Landscape and Research

Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2, May):1–

40, 2009.

[SVB+08] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic. A Component

Model for Control-Intensive Distributed Embedded Systems. In CBSE ’08: Pro-

ceedings of the 11th International Symposium on Component-Based Software Engineer-

ing, pages 310–317. Springer, October 2008.

[SW07] J. Shore and S. Warden. The Art of Agile Development. O’Reilly, 2007.

[Szy02] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[TMA03] T. Tung Do, Manuel Kolp, and Alain Pirotte. Social Patterns for Designing Mul-

tiagent Systems. In SEKE ’03: Proceedings of the 15th Int. Conf. on Software Engineer-

ing and Knowledge Engineering, pages 103–110. Knowledge Systems Inst, Skokie,

Illinois, USA, 2003.

[TMC+13] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske. Model-based

Performance Analysis of Software Architectures under Uncertainty. In QoSA’13:

Proceedings of the 9th international ACM Sigsoft conference on Quality of software ar-

chitectures, pages 69–78. ACM, 2013.

[C09] A. Caplinskas. Requirements Elicitation in the Context of Enterprise Engineering:

A Vision Driven Approach. Informatica, 20(3):343–368, August 2009.

[VL00] A. Van Lamsweerde. Requirements Engineering in the Year 00: A Research Per-

spective. In ICSE ’00: Proceedings of the 22nd International Conference on Software

Engineering, pages 5–19. ACM, 2000.

[VL01] A. Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

In Proceedings of the Fifth IEEE International Symposium on Requirements Engineer-

ing, pages 249–262. IEEE, 2001.

[VL03] A. Van Lamsweerde. From System Goals to Software Architecture. In Formal

Methods for Software Architectures, volume 2804 of Lecture Notes in Computer Sci-

ence, pages 25–43. Springer Berlin Heidelberg, 2003.

[VL04] A. Van Lamsweerde. Elaborating Security Requirements by Construction of In-

tentional Anti-Models. In ICSE ’04: Proceedings of the 26th International Conference

on Software Engineering, pages 148–157. IEEE, May 2004.

[VL07] A. Van Lamsweerde. Engineering Requirements for System Reliability and Secu-

rity. In Software System Reliability and Security, pages 196 – 238. IOS press, 2007.

[VL09] A. Van Lamsweerde. Requirements Engineering: From System Goals to UML Models

to Software Specifications. John Wiley and Sons, 2009.

[VLL00] A. Van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented Require-

ments Engineering. IEEE Transactions on Software Engineering, 26(10):978–1005,

October 2000.

References

156

[VLL04] A. Van Lamsweerde and E. Letier. From Object Orientation to Goal Orientation:

A Paradigm Shift for Requirements Engineering. In M. Wirsing, A. Knapp, and

S. Balsamo, editors, Radical Innovations of Software and Systems Engineering in the

Future, volume 2941 of Lecture Notes in Computer Science, pages 325–340. Springer,

2004.

[VOVDLKM00] R. Van Ommering, F. Van Der Linden, J. Kramer, and J. Magee. The Koala Com-

ponent Model for Consumer Electronics Software. Computer, 33(3):78–85, 2000.

[WC01] M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The

State of the Art. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Soft-

ware Engineering, volume 1957 of Lecture Notes in Computer Science, pages 1–28.

Springer Berlin Heidelberg, 2001.

[WH11] M. Wirsing and M. Hölzl, editors. Rigorous Software Engineering for Service-Ori-

ented Systems, volume 6582 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2011.

[WHS06] T. D. Wolf, T. Holvoet, and G. Samaey. Development of Self-organising Emergent

Applications with Simulation-Based Numerical Analysis. In S. A. Brueckner,

G. D. M. Serugendo, D. Hales, and F. Zambonelli, editors, Engineering Self-Organ-

ising Systems, volume 3910 of Lecture Notes in Computer Science, pages 138–152.

Springer Berlin Heidelberg, 2006.

[Win05] M. Winikoff. Jack Intelligent Agents: An Industrial Strength Platform. In R. H.

Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, editors, Multi-Agent Pro-

gramming, volume 15 of Multiagent Systems, Artificial Societies, and Simulated Or-

ganizations, pages 175–193. Springer US, 2005.

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,

3(3):285–312, September 2000.

[Wol07] T. D. Wolf. Analysing and Engineering Self-Organising Emergent Applications. PhD

thesis, Katholieke Universiteit Leuven, May 2007.

[Woo97] M. Wooldridge. Agent-based software engineering. Software Engineering. IEE Pro-

ceedings, 144(1):26–37, February 1997.

[WRH+12] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. Ex-

perimentation in Software Engineering. Springer-Verlag Berlin Heidelberg, 2012.

[WSB+10] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel. RELAX: a

language to address uncertainty in self-adaptive systems requirement. Require-

ments Engineering, 15(2):177–196, March 2010.

[WSB11] K. Welsh, P. Sawyer, and N. Bencomo. Towards Requirements Aware Systems:

Run-time Resolution of Design-time Assumptions. In ASE ’11: Proceedings of the

26th IEEE/ACM International Conference on Automated Software Engineering, pages

560–563. IEEE, November 2011.

[WSO01] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the CORBA Component Model.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

References

157

[YLL+08] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. P. Leite. From Goals

to High-Variability Software Design. In Foundations of Intelligent Systems, volume

4994 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg,

2008.

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, Grad-

uate Department of Computer Science, University of Toronto, 1995.

[Yu97] E. Yu. Towards Modeling and Reasoning Support for Early-Phase Requirements

Engineering. In RE’97: Proceedings of the 3rd IEEE International Symposium on Re-

quirements Engineering, pages 226–235. IEEE, 1997.

[Zav97] P. Zave. Classification of Research Efforts in Requirements Engineering. ACM

Comput. Surv., 29(4):315–321, December 1997.

[ZSL14] P. Zoghi, M. Shtern, and M. Litoiu. Designing Search Based Adaptive Systems: A

Quantitative Approach. In SEAMS ’14: Proceedings of the 9th International Sympo-

sium on Software Engineering for Adaptive and Self-Managing Systems, pages 7–16.

ACM, 2014.

References

158

159

Web References

[1] ASCENS: Autonomic Service-Component Ensembles.

www.ascens-ist.eu

[2] CDEECo.

https://github.com/d3scomp/CDEECo

[3] Computing Research and Education Association of Australasia (CORE). The CORE

Conference Ranking.

http://core.edu.au/index.php/categories/conference%20rankings/1

[4] DAUM project.

http://daum.gforge.inria.fr

[5] DEECo.

http://d3s.mff.cuni.cz/projects/components_and_services/deeco/

[6] Eclipse. Eclipse Modeling Framework.

https://www.eclipse.org/modeling/emf/

[7] Eclipse. Epsilon language family and tool suite.

http://www.eclipse.org/epsilon/

[8] Eclipse. Graphical Modeling Framework.

https://wiki.eclipse.org/Graphical_Modeling_Framework

[9] ECSEL Joint Undertaking. ECSEL Multi-Annual Strategic Plan, ECSEL-GB-2014.22,

2015.

http://www.ecsel.eu/web/downloads/Documents_GB/ecsel-gb-2014-22_masp_2015.pdf

[10] European Union Horizon 2020, Smart Cyber-Physical Systems, ICT-01-2014.

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/top-

ics/78-ict-01-2014.html

[11] Google. Google Guice.

http://code.google.com/p/google-guice/

[12] i* Quick Guide.

http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide

[13] IRM-SA empirical study. Department of Distributed and Dependable Systems.

http://d3s.mff.cuni.cz/projects/components_and_services/irm/empiricalstudy/

[14] IRM-SA editor.

https://gitlab.d3s.mff.cuni.cz/iliasg/irm-sa-tool

[15] IRM-SA jDEECo plugin.

https://github.com/d3scomp/IRM-SA

http://www.ascens-ist.eu/
https://github.com/d3scomp/CDEECo
http://core.edu.au/index.php/categories/conference%20rankings/1
http://daum.gforge.inria.fr/
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/
https://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epsilon/
https://wiki.eclipse.org/Graphical_Modeling_Framework
http://www.ecsel.eu/web/downloads/Documents_GB/ecsel-gb-2014-22_masp_2015.pdf
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/78-ict-01-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/78-ict-01-2014.html
http://code.google.com/p/google-guice/
http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide
http://d3s.mff.cuni.cz/projects/components_and_services/irm/empiricalstudy/
https://gitlab.d3s.mff.cuni.cz/iliasg/irm-sa-tool
https://github.com/d3scomp/IRM-SA

Web References

160

[16] ISO/IEC/IEEE 29148:2011(E) – Systems and software engineering – Life cycle processes

– Requirements engineering, December 2011.

http://dx.doi.org/10.1109/IEEESTD.2011.6146379

[17] JACK Intelligent Agents, Autonomous Decision-Making Software.

http://aosgrp.com/products/jack/

[18] Jadex.

http://www.activecomponents.org/

[19] jDEECo.

https://github.com/d3scomp/JDEECo

[20] jRESP: Java Runtime Environment for SCEL Programs.

http://jresp.sourceforge.net/

[21] Kevoree.

http://kevoree.org/

[22] MODELS 2014. Call for ACM Student Research Competition.

http://models2014.webs.upv.es/acmsrc.htm

[23] National Science Foundation, Cyber Physical Systems, nsf15541.

http://www.nsf.gov/pubs/2015/nsf15541/nsf15541.htm

[24] Object Management Group. CORBA Component Model Specification v4.0.

http://www.omg.org/spec/CCM/

[25] Oracle. Enterprise JavaBeans specification v3.2.

http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html

[26] OSGi Alliance. OSGi service platform, core specification, release 5.

http://www.osgi.org/Specifications/HomePage

[27] OSGi Alliance. OSGi service platform, core specification, release 5.

http://www.osgi.org/Specifications/HomePage

[28] RELATE: Trans-European Research Training Network on Engineering and Provision-

ing of Service-Based Cloud Applications.

http://www.relate-itn.eu/

[29] Sat4j: The Boolean satisfaction and optimization library in Java.

http://www.sat4j.org/

[30] SpringSource. Spring Framework.

http://www.springsource.org/

[31] Tropos project – research areas.

http://www.troposproject.org/node/276

http://dx.doi.org/10.1109/IEEESTD.2011.6146379
http://aosgrp.com/products/jack/
http://www.activecomponents.org/
https://github.com/d3scomp/JDEECo
http://jresp.sourceforge.net/
http://kevoree.org/
http://models2014.webs.upv.es/acmsrc.htm
http://www.nsf.gov/pubs/2015/nsf15541/nsf15541.htm
http://www.omg.org/spec/CCM/
http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html
http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/Specifications/HomePage
http://www.relate-itn.eu/
http://www.sat4j.org/
http://www.springsource.org/
http://www.troposproject.org/node/276

