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rozdělit na menš́ı podúkoly, které mohou být zpracovány paralelně. Běžnou tech-
nikou je rozděleńı práce mezi v́ıce poč́ıtač̊u za účelem zrychleńı celého procesu.
Většinou se nicméně setkáváme s př́ıstupy, které jsou založeny na architekturách
typu klient-server. V této práci představujeme čistě peer to peer řešeńı, které
umožňuje škálovatelnost, zotaveńı z chyb a snadné spravováńı. V našem frame-
worku neńı vyčleněna žádná speciálńı role a kterýkoli výpočetńı uzel se může
kdykoli připojit nebo odpojit. Systém se také dokáže vyrovnat se selháńımi uzl̊u
při zachováńı dobrého výpočetńıho času. Testováńı ukázalo, že v lokálńıch śıt́ıch
můžeme dosáhnout několikanásobného zrychleńı.
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Supervisor: JUDr., Mgr. Antońın Steinhauser, Department of Distributed and
Dependable Systems

Abstract: Despite today’s computers’ performance there still exist some tasks
that are quite time demanding. Nature of some of these tasks allows to split them
into smaller parts that can be processed in parallel. Distributing work among
more computers in order to speed up such processes is a common technique.
However, most of the approaches use client-server architecture to achieve this goal.
We provide purely peer-to-peer solution which allows high level of scalability, error
recovery and easy maintaining. No special role is needed in our framework and
each node can join the network at any time. Also the system is able to deal with
node failures, keeping the overall computation time reasonable. Tests showed
that significant improvement can be achieved in local area networks.
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Introduction

Motivation

Although the Moore’s law1 still applies and the performance of computers is
now greater than it ever was, there still exist some tasks which require a lot of
computer power. Despite parallelism, their accomplishment takes a non-trivial
amount of time. Among these tasks are for example computations of some special
prime numbers, processing large data sets and many others.

It’s natural to ask, how we can speed up such computations. Obvious possi-
bility is to get better hardware, however this is limited by technical progress and
can be quite expensive. Widely used approach is to parallelize the computation,
that is different parts of the job are run concurrently (in parallel) which results
in reduction of the processing time. Generally, tasks can be parallelized on dif-
ferent levels. We will talk about parallelism on the whole computers level, i.e.
each computing node is represented by a standalone machine. These nodes are
independent and their physical distance can be arbitrary big. The only condition
which has to be fulfilled is, that the nodes are connected together and form a net-
work. It means that they can communicate and exchange data. This approach
makes sense only with sufficiently big tasks, because the network communica-
tion is relatively slow and for many tasks it would be a bottleneck. There are
also different ways how the general term ”parallelism” can be understood. We
will consider so-called data parallelism. That is, each computing node runs the
same program, only the data differs. This is the main difference from the task
parallelism concept in which different nodes can run completely different tasks.

Obviously, not all tasks can be parallelized easily or even are not possible to
parallelize at all. On the other hand, there exist also jobs that can be split into
smaller parts, each of which can be processed independently and the results then
can be joined together in the end. Concurrent processing of such jobs is quite
straightforward and allows to use of the data parallelism. These jobs are suitable
for our framework.

Goal of the thesis

The main goal is to implement a robust framework which should be able to
split the given job and distribute the work among the participating nodes. Each
node then processes the assigned parts and the results are eventually collected
and joined together. The domain of suitable jobs is restricted to those that are
described in the preceding paragraph.

The concept of parallelization has been known for many years and many dif-
ferent approaches have been introduced. Some of them are discussed in chapter
1. Nevertheless, the great majority of them use some kind of hierarchy or need
some control node, whose functionality differs from the others. Our main motiva-
tion was to provide solution, in which all the nodes are equivalent. Furthermore,
each can initiate the process or serve as a computing node. There also exists one
node which controls the process while the rest is working. But the point is, that

1https://en.wikipedia.org/wiki/Moore’s_law
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every single node can become the initiator (master) or serve as a slave or even
both at the same time. Our framework was implemented with the application for
the video encoding in mind. However its essence is generic, so it could be easily
modified to be used with an arbitrary job which fulfills the conditions mentioned
above.

The purpose is to implement framework which conforms to the peer to peer
paradigm as much as possible. We also want to keep the logic in the node which
have demands to be processed in order to ensure better control and more deter-
ministic behavior. Another important goal is to minimize occurrences of errors
in the system and provide good ability to recover from them. The system is also
intended to use personal computers as computing nodes, so the program typically
runs alongside other applications.

Application to the video encoding

Video files are basically sequences of images, so-called frames. When the file is
played, the images are showed sequentially one by one. They are changed many
times per second. so the illusion of smooth video is made. There are many
different ways how to code the video into the digital form. Because of this, the
need arises to convert the files from one format to another. The program which
codes the analog video data to digital or decodes it the other way around is
called codec. Some of the well known codecs are for example H.264 2 or MPEG-
2 3. In order to convert the file, each frame has to be re-encoded, which takes
quite a large amount of time. This makes the video encoding ideal task for our
framework.

Before we use it, some more details have to be revealed. Because we usually
want not only to watch the video but also listen to some sound, the video files are
usually accompanied by one or more audio files. All of them are packed together
in some container. When we want to convert the video, the container has to be
opened, the video extracted, processed and stored again. The audio files are not
our concern and we will simply copy them. Common container formats are avi4

or mkv 5.
There is another important thing. In order to reduce file size and decrease

the requirements of rendering the video, the video file actually contains only
few frames which carry the whole information. These are usually referred to
as the key frames. The rest of them contains only information how the frame
differs from the previous one. This approach greatly reduces the file size and
preserves good ability to recover from errors, e.g. when some part of the file is
damaged. Consequence of this fact is, that we cannot split the video file at an
arbitrary place. This is because if the chunk started with some non-key frame,
the conversion would not be done properly.

Issues connected with video encoding are quite complex and used algorithms
are very sophisticated and advanced. We did not reinvent the wheel and used
third party software for the video encoding, namely the ffmpeg and ffprobe from

2https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
3https://en.wikipedia.org/wiki/MPEG-2
4https://en.wikipedia.org/wiki/Audio_Video_Interleave
5https://en.wikipedia.org/wiki/Matroska
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the FFmpeg6 project. For the sake of simplicity, the program outputs always
video files packed in the Matroska container. The choice of the codec is arbitrary,
however it is restricted by the list of options. All of this software is free and
published under the GNU General Public License7 or GNU Lesser General Public
License8 in case of FFmpeg.

Terminology

To prevent misunderstandings there is a short list of frequently used terms:

• master(or initiating node, initiator) is a node which has job to be done, i.e.
has file to be encoded. It initiates and controls the process.

• task(job) refers to work that should be done, specified by the initiator.

• chunk denotes one part of the split file, which is supposed to be encoded
independently.

• (computing) node is one particular entity which communicates with the
master and encodes chunks for it. Theoretically, there can be more such
entities on one physical computer, because each node is determined by its
communicating port and address.

• neighbor is called every node which is in the list of the node we are consid-
ering.

Thesis organization

In the first chapter is given overview of the existing technologies and approaches
and the description of our framework. Second chapter describes implementation
details. Third chapter introduces some experiments and summarizes the results.
The fourth chapter is dedicated to alternatives and possible future improvements.
In the appendix is then described installation and use of the program.

6https://www.ffmpeg.org/
7https://en.wikipedia.org/wiki/GNU_General_Public_License
8https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
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1. Analysis

1.1 Known approaches

The idea of distributed computing has been known since the 70’s. Different
approaches have been tried since then. Some of them are described in this section
in order to show different concepts.

1.1.1 Client/server architecture

It’s very common example of centralized system. In this pattern is one central
node, known as the server. The rest of nodes, clients, are all connected to it.
All the information is stored at the server. Also all the important computations
happen there. The communication is typically initialized by the client, which
sends a request. The server processes it and returns the desired result. Pros of
this approach are relatively simple implementation and easy control of the traffic,
because all the data passes through server. Also the data flow can be controlled
easily. However the huge disadvantage is, that the server is by definition a single
point of failure, i.e. if it goes down, the whole system becomes unusable. Also,
thanks to the asymmetric nature of the system, there usually has to be more
parts of the software, one to run on the server and the other to run on the clients.
The system is dependent on the server’s performance too.

1.1.2 Peer to peer architectures

Pure peer to peer network

Peer to peer paradigm is virtually the opposite of the previous model. Nodes are
completely equivalent to each other. Any of them can join the network at any
time, as well as leave it. This approach means great scalability and fault tolerance.
On the other hand, it requires more complex design and can encounter problems
with security and management of the network. Our framework implements this
model.

Hybrid peer to peer network

This approach combines the previous two. There exists one node which is ded-
icated to serve as a control server. Each node contacts this server and all the
control information pass through it while the data are exchanged in the same
manner as in the pure peer to peer networks. This approach removes possible
problems with the control of the data flow and provides information coherence
while scalability is preserved. However, the issue with the single point of failure
is reintroduced here.

Super peer architecture

Another try to improve the architecture introduces the concept of the so-called
super peer. It is a computer, usually with slightly better performance than other
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nodes, that plays the role of the control server, but only for a restricted group of
nodes. Autonomous groups (clusters) are thus formed. It has the same advan-
tages as the hybrid network but the potential super peer failure is not so crucial.
Also each super peer can have backup so the robustness of the network can be
very good.[1]

1.1.3 Summary

We showed different implementations of the idea of distributing the work. Each
has its own specifics and may be suitable for some application. We have chosen
to implement our framework to conform to the pure peer to peer paradigm as
much as possible. Although the super peer architecture offers better control,
we decided not to use it for several reasons. Mainly because our framework is
supposed to be used in rather small networks where this paradigm could be quite
exaggerated. Also we did not use the hybrid network because we definitely want
to avoid presence of the single point of failure.

1.2 Existing solutions

Since encoding of the video files is quite reasonable task, there was a few imple-
mentations of the similar issue. Some of them served for academic purposes only,
but others found good use case in practice.

1.2.1 DVE (Distributed Video Encoding)

D. Hughes and J. Walkerdine from the Lancaster university published in their
paper a solution which is using Lancaster’s P2P Application Framework. They
implemented a Java plug-in for this framework which uses Microsoft Windows Me-
dia Encoder SDK1. Their approach was quite similar to ours and they achieved
quite persuasive results. However their solution was usable in the specific envi-
ronment only.[2]

1.2.2 Apache Hadoop

It is sophisticated distributed framework written for the Java platform. It serves
for processing large amount of data and also as a storage. It provides very good
ability to deal with hardware failures. The framework consists of the HDFS
(Hadoop Distributed File System) and the processing part. The HDFS is a dis-
tributed file system which uses TCP/IP2 sockets for communication between
nodes. It uses replication of data to achieve reliability. It is optimized to store
large immutable files (range of gigabytes or even terabytes). The framework could
use different file system, however, one of its main advantages is the knowledge
about the data locality, hence unnecessary data transfers can be avoided. This
feature may not be available when using some different file system. The process-
ing part is based on the MapReduce engine, based on functional programming
concept. It basically consists of three steps.

1https://en.wikipedia.org/wiki/Windows_Media_Encoder
2https://en.wikipedia.org/wiki/Internet_protocol_suite
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1. Map - A special function is applied to the local data on each worker node,
data are associated with a key. This step can be processed in parallel.

2. Shuffle - The data are redistributed, according to keys. Each worker node
obtains data sets with the same key

3. Reduce - The data are processed, in parallel.

A special master node is needed which ensures effective task scheduling. Gen-
erally, the framework is suitable for processing large data sets. It needs dedicated
infrastructure and can achieve very good results. It can be used in many different
applications including image processing, marketing analysis or data mining. It
differs a lot from our solution - among its complexity and suitability for wide
range of tasks, it needs some nodes with special functionality and also the net-
work of specialized nodes. In contrast, our solution can operate in almost any
computer network and the computing nodes can serve for other purposes.[3] [4]

1.2.3 BOINC (Berkeley Open Infrastructure for Network
Computing)

It is a distributed system, developed on the Berkeley university, which utilizes
computing power of personal computers around the world and interconnects them
in the huge network. It supports multiple operating systems (the client part).
Anyone can voluntarily join the network and scale it up by granting his computer’s
performance. After installing the client application, the system is able to exploit
free CPU or GPU capacity of the computer. The server provides him with a
portion of the given task. After the computation, the results are verified and
uploaded. The system is used mainly for scientific computations. For example
it is used by the well known project SETI@home. The framework is based on
the client-server architecture. The server runs on UNIX OS3, using common
technologies such as the Apache web server and the MySQL database server. A
PHP language is used.There are also CGI programs and daemons running on the
server. The obvious difference is in use of the client-server model, nevertheless
the philosophy of using regular computers as the computing nodes corresponds
to ours. [5]

1.2.4 Gnutella

Gnutella is a peer to peer framework used for file sharing. The nodes use flood
technique with limited number of hops for searching of the desired data. The
positive acknowledgement message is sent when this data was found, employing
the UDP protocol. The file transfer can be negotiated then. The system is
based on the super peer architecture, which makes it possible to reduce maximum
number of hops. Though it is not used for distributed computation, the data
transfers are used which makes it comparable with our system.[6]

3https://en.wikipedia.org/wiki/Unix
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1.2.5 BitTorrent protocol

Another interesting file sharing technique is introduced in the BitTorrent network.
The files offered by the node are stored in special list and a single file download
can (and usually do) use more nodes. This is possible, because the files are
divided into pieces and when the node downloads some piece, it becomes source
of this piece for the others. The pieces are marked so they can be downloaded
in random order. The system provides good redundancy. Another advantage
is, that as the file spreads through the network, the requirements on original
distributor’s bandwidth decrease. Eventually the node could not be needed at
all. This protocol is used for file sharing by the BOINC framework, among many
others. It is certainly an interesting alternative to handle the file transfers. In
our framework, the use of this protocol would not be very convenient and useful,
since once the chunk is processed, it becomes useless.[7]

1.3 Framework description

1.3.1 Basic overview

The heart of the program is one executable file, that should be accompanied by
the configuration file. This is discussed in detail in appendix A. Main options
that should be set are IP address and a number of port which the program should
listen on. It is also essential to provide credentials (i.e. address and port) of some
node which should be contacted by default. When more nodes are spawned,
the network is formed and the computation may be initialized. Note that the
information about neighbors spread in a nondeterministic manner, it matters who
is contacted by whom. So it’s good to have one or more nodes which are online
most of the time and the rest contacts only these nodes initially. Otherwise the
distribution of the neighborhood knowledge may be quite slow. Once the network
is established, the computation can begin. If one (or more) nodes have tasks to be
done, it can start the process. The file is then processed and divided into chunks
in the initiating node. These chunks are distributed among neighbors, processed
and returned back. Once the initiator has all chunks back, it joins them together
and the process ends.

C++ language has been chosen for the implementation. It allows us to use
standard POSIX socket 4 API (Application Programming Interface) which is
widely used and has been proven by thousands of applications. Also it provides
convenient functionality thanks to its Standard Template Library while allowing
to use C library functions so it can cooperate well with the OS. Because it com-
piles to the native code, it does not need any interpreter, so its requirements are
lower than other languages’ such as Java and C#. This fact is positive, because
it means, that if the application runs in background and computes nothing, it
does not spend many system resources. The program is supporting Linux oper-
ating system, it has been tested on several Linux distributions. Nevertheless, it
conforms to the POSIX standard 5, so after some modifications it could be used
with any UNIX or UNIX-like operating system.

4https://en.wikipedia.org/wiki/Berkeley_sockets
5https://en.wikipedia.org/wiki/POSIX#POSIX.1-2001
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1.3.2 Neighbor maintaining

The diagram which describes the process can be seen in the Figure 1.1. When
the node wants to use other computer’s computation capacity, it naturally has
to contact them first. But the node has no prior explicit knowledge of the net-
work’s infrastructure, moreover, this infrastructure can change dynamically. To
solve this, each node maintains the list of its neighbors. It contains addresses of
the nodes which it has contacted successfully in the past. The list is refreshed
periodically, so the node keeps track of the current network state. Besides this
main list exists another list, which contains potential neighbors. Generally, each
node that has communicated with the given one sometime in the past is added to
the list of potential neighbors. The purpose of this list is to reduce the amount of
time spent with maintaining the neighbors list. That is, no more than required
count of neighbors is maintained, but if needed, suggestions can be found in this
backup list.

Neighbors are uniquely identified by the pair consisting of address and com-
municating port. This is sufficient for the potential neighbors, because before the
neighbor is added to the main list, it has to be contacted. Additional informa-
tion is then added, so more complex structure is needed for storing neighbors.
This structure contains information about neighbor’s quality, last known state
etc. The quality of the neighbor helps to prefer one neighbor to another while
picking the one to contact. It is updated after each chunk is delivered from the
given neighbor and reflects the neighbors computation power together with the
speed of the connection.

Initialization and discovery

This may be the most important part of the process. Its overview is given in
Figure 1.1. The node is provided with the address and port of the neighbor
which should be contacted by default, that is, when the neighbors list is empty.
Each node has minimum count of neighbors which should be in its list. This
number is checked periodically. In case that the count of confirmed neighbors is
too small, the list of potential neighbors is checked. If it’s empty, the node has
to obtain more neighbors so it picks one of its neighbors, contacts it and receives
some suggestions. If it has no neighbors, the default node is contacted. Once the
suggestions are received, the node adds the new addresses to the list of potential
neighbors. When the list contains some potential neighbors, the node can contact
them, confirm, and add as regular neighbors.

Gathering neighbors

When the initiating node has not enough neighbors and it needs more neighbors
with free computation power, it can use another mechanism to collect them. This
mechanism uses a flood technique to spread the request among the nodes in the
network. The request is send to each neighbor, which spreads it further in the
same manner. However, the request is equipped with time to live value that is
decreased after each hop. Because of this, it does not spread forever nor too far.
Once the node receives a request and is not busy, it contacts the initiator directly.
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Figure 1.1: Maintaining the neighbors

It can then add him to the list of potential neighbors and later possibly as the
regular neighbor.

Withdrawing from the network

When the node wants to leave the network it has to abort the process, if it is the
initiator. Then a special message is sent to each neighbor, which informs them so
they can react accordingly. That is, if the neighbor has tasks to be processed for
the leaving one, it removes them from the queue and then removes the neighbor
itself. Removed neighbors are completely lost, they are no longer stored in either
of the lists. The process of saying goodbye to neighbors is asynchronous, the
withdrawing node does not wait for any confirmation. There are several reasons
for this behavior. Waiting for the response could cause a deadlock under some
specific circumstances, e.g. if the contacted neighbor went down unexpectedly.
Also, there is no need for it, since there is no possibility to stop the node from
withdrawing.

Neighbor’s failure

There is no guarantee that all the neighbors leave the network properly. The pro-
gram itself can encounter error or be terminated violently. Another possibility
is some unpredictable error of physical character, for example power failure, net-
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work problem etc. In those cases it’s essential for the other nodes in the network
to be informed about this fact. Especially it’s very important for the initiator
who had some tasks processed by this node. In order to ensure handling of this
possibility, the neighbors list is checked periodically. If some neighbor does not
respond, it is removed from the list and all the data connected with it are treated
accordingly. Namely the chunks assigned to it are resent.

1.3.3 Distribution of chunks

Once the file is split, the chunks has to be distributed, processed and finally
collected. To achieve this, we must deal with several issues, which are described
further.

Life cycle of the chunk

Its description is displayed in the Figure 1.2. Firstly, we have to keep track of
every chunk’s state. That is, we have to know whether the chunk is waiting in
the queue, has been sent to be processed or has returned already. Each chunk is
represented by the dedicated structure, which holds information about it. It also
carry information essential for the transfer. This structure is further described
in chapter 2. From now on we will use the term chunk for both the physical file
and the reference.

Typical chunk’s life cycle looks like this: The chunk is created and pushed to
the waiting queue. Later it’s popped out and transfered to the processing node.
There it is enqueued for processing, then processed and sent back. Meanwhile the
initiator holds the reference in the list of tasks being processed. In case of failure
of the processing node, the chunk is pushed to the waiting queue again. Also
when the chunk waits for return, it’s checked periodically and if the computation
takes too long, it’s resent too. This happens because the respective chunk’s
encoding could fail or there were some problems with it. There is a possibility,
that it will be computed sooner by another neighbor. Note that this can cause
the situation, when one task is being processed by more than one node. However
it’s not a problem at all, because if the chunk returns more than once, it simply
is not accepted. Furthermore, when the chunk returns, all neighbors that have
it assigned are notified, so this situation should not happen at all. Once the
chunk returns successfully, the reference is moved to another list, where it waits
for completion of the task. When all the chunks are collected, the joining process
may begin and the task execution ends.

Storing files

Tightly coupled with this process is the problem of storing the files. Four files
have to be created during the processing of every chunk. The first one is created
when the original file is split. This file can’t be removed until the processed chunk
returns, because it has to be available in case that the conversion fails for some
reason. Another two files are created at the processing node, one for the input
and one to store the output. The last file is created at the initiating node again
to hold the processed chunk. This means, that the initiator has to have free disk
space at least twice larger than the resulting file.

12
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Figure 1.2: Processing a chunk - initiator part

Picking neighbors

Last but not least we have to choose policy to whom the chunks are distributed.
We want to achieve as big speedup as possible, while preserving rather small list of
neighbors. When the chunk is popped out from the queue, the initiator looks for
suitable neighbor. That is the neighbor which has free status in the corresponding
structure. If no such neighbor is found, the chunk is re-queued and another try is
postponed. Also the gathering process described in the previous section begins. If
some neighbor is available, the chunk is assigned to it and the transfer may begin.
The initiator keeps track how many chunks were sent to the particular neighbor
and it does not send more than specified count to one neighbor because it could
potentially cause delay. The flag indicating whether the neighbor is free helps to
control the flow. Each time chunk is assigned to the neighbor, the flag is set to
false value to prevent sending more chunks in parallel. It’s set to true again after
the successful completion of the transfer. When the neighbor is too busy, it can
express it in the communication, so the flag is set to false to prevent overloading
of the neighbor. The flag is also refreshed during every periodic check.

1.3.4 Security issues

The present implementation is possibly vulnerable to some security threat. This
is caused partly by the pure peer to peer nature, because it is difficult to control
the traffic and authorize all nodes in dynamic environments like this. It also was
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not our aim to solve this issue. The framework is supposed to be used mostly
in LANs (Local Area Network) where all the peers are trustworthy. Otherwise it
could be compromised easily. For example when the encoded chunk arrives, it is
not checked whether it has been sent to this node or not. So a malicious chunk
could be infiltrated causing bad output or even failure of the joining process.

1.3.5 Networking handling

The network communication is the most important part of the framework. Stan-
dard C library functions and structures were used which are conforming to POSIX.1-
20016 standard. Although the program is intended to be used on the UNIX7 or
UNIX-like operating systems, it should be portable to the Microsoft Windows
systems as well thanks to the use of this standard. To preserve simplicity, all
the network communication makes use of the TCP (Transmission Control Proto-
col) 8. The system primarily uses the IPv6 9 addresses, but it can be run in the
mode which uses addresses of the IPv4 family only. Additional and more detailed
information can be found in chapter 2.

1.3.6 User interface

To provide interaction with the user, the curses10 library is used. This library
makes it possible to control the terminal screen. That means, the application
does not require any special GUI (Graphical User Interface) libraries and is able
to run interactively even on machines without the X server. The control is rather
simple, offering possibilities to load the file, start or abort the process, show
information about neighbors and so on. The interaction require only a keyboard,
no mouse is needed at all. Concrete information together with some examples can
be found in appendix A. Detailed information about the implementation, namely
the synchronization problems are discussed in chapter 2.

6https://en.wikipedia.org/wiki/POSIX#POSIX.1-2001
7https://en.wikipedia.org/wiki/Unix
8https://en.wikipedia.org/wiki/Transmission_Control_Protocol
9https://en.wikipedia.org/wiki/Internet_Protocol

10https://en.wikipedia.org/wiki/Curses_(programming_library)
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2. Implementation

This chapter describes some of the used mechanisms in more detail. It also in-
troduces some classes and methods, but it is not supposed to serve as a detailed
and full documentation. The Doxygen1 software has been used to generate doc-
umentation so the complete overview of the code can be found in the attached
HTML2 documents. The program is implemented in the C++ language. This
allows us to use the standard C library functions. Also the functionality provided
by the C++ STL3 is exploited. Some of its containers are used as a base for
containers with synchronized access implemented in the framework. Some of the
functionality from the C++114 standard is also used, so the use of the program
is limited to computers with compiler supporting this standard.

2.1 Networking

One of the most important issue is how to handle the networking. The chosen
approach will be described in this section. As it has been said already, the pro-
gram uses TCP for network communication. This is certainly good option when
we want to handle data transfers, however, it can be considered unnecessarily de-
manding for simple tasks. To preserve the implementation simple, we chose not
to use UDP. To utilize the possibilities of the operating system, standard sock-
et API is used. Information about addresses are stored in the sockaddr storage
structures which are suitable for storing both IPv4 and IPv6 addresses. There
are also some helper functions to work with address structures which are generic
in the use of an address family. To provide easy manipulation with addresses, the
structure MyAddr was created which groups the related functionality together.
This approach makes it possible to switch between both IP versions easily.

2.1.1 Spawning connections

The ultimate class to handle the connections is the NetworkHandler class. It
provides all the necessary functionality. Each instance of the program binds to
the given listening port and starts accepting connections. When the connection
is accepted, new thread is spawned to handle the connection. When the program
wants to make the connection, it provides structure referring to a given neighbor
together with the commands to be executed to the NetworkHandler instance.
The connection is then spawned and handled.

Here we encounter the topic of commands. Each action is represented by a
set of commands that implements it. Commands are instances of a class which
inherits the class Commnand. Each command consists of two parts. When one
node initiates the connection, it provides the vector of commands to be executed.
They are processed in the loop in the following manner: The command’s execute
method is invoked. It communicates over the network. First it sends name of the

1https://en.wikipedia.org/wiki/Doxygen
2https://en.wikipedia.org/wiki/HTML
3https://en.wikipedia.org/wiki/Standard_Template_Library
4https://en.wikipedia.org/wiki/C++
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command to be invoked in the peer node. The peer’s thread loops too. First it
reads the name of the command and then it invokes it. In that moment there are
command methods running in both nodes and they can communicate. When they
end, the receiving node waits for another action. Meanwhile the initiating node
spawns next command from the vector. If the vector is empty, the initiator ends
the connection. This mechanism is used to handle all the network communication.
What happens in case of problems is described in the section about handling
errors.

Incoming connections are always handled asynchronously. Nevertheless, the
outgoing connections may be handled in the synchronous way. It can be essential
sometimes. For example if the node needs to obtain some potential neighbors
because his list is empty, it has to wait until the action ends, because if it just
sent the request and continued, it would probably find the list still empty.

2.1.2 Protocol

As it was said, the communication uses commands. Thread that handles the
incoming connection is provided with respective file descriptor and address of
the communicating node. First data that appears are considered as the listening
port number of the node, so it can be identified in the neighbors list or added to
the list of potential neighbors. Then the name of the command is sent, which is
represented by the enum type. If no error occurs, the confirmation is send and
the appropriate command’s method is invoked. After returning from the method,
another command is read. If there are no data left, the connection is closed. The
most important commands are listed below.

1. Commands for maintaining

• Confirm - Confirms the potential neighbor, adds the node to the
neighbors list.

• Ask - Asks the neighbor for the list of addresses, receives the list and
adds the addresses to the potential neighbors list.

• Ping - Verifies that the neighbor is alive, refreshes its status.

• Cancel - Cancels the request for particular chunk’s encoding.

• Goodbye - Notifies the neighbor that the node itself is withdrawing
from the network.

2. Commands regarding transfers

• Distribute - Sends both the reference and the chunk itself during
distribution.

• Return - Returns the encoded chunk back, together with the refer-
encing structure, which is updated with the data about encoding and
transfers.

• Gather - Spreads the request of the initiator to obtain more neighbors.
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2.1.3 Transferring the data

First problem every network application has to deal with considers the byte order.
The POSIX sockets API provides set of functions to deal with it. Namely it’s
htons and ntohs, or htonl and ntohl respectively. These functions convert the
native representation of short (long) data types to the network byte order. The
framework uses these function.

Basic transfer functions

Each of the functions mentioned in this paragraph has basically two parts. One
for sending and its receiving counterpart. Integers are stored as the int64 t type
which ensures correct communication even between 32 and 64 bit nodes. They
are sent using the mentioned converting functions. When the string is trans-
fered, first is sent the length of the string, followed by the appropriate number of
characters. Commands are sent as numbers, wrapper functions are used which
converts between the enum type and int32 t explicitly. Sending the structures
containing the addresses is managed by another special function. It converts the
address to string and sends it in this form, followed by the port number. This
allows to handle both IPv4 and IPv6 addresses, the format is recognized during
the reversed conversion.

Transfering files

The most delicate network task is to transfer the files. The file is first check, and
its size is determined. Then it is sent and then the function repeatedly reads
part of the file to buffer and sends it until whole file is processed. The count of
sent bytes is compared with the actual file size in the end. The receiving side
accepts the bytes and writes it to the file continuously, the file size is checked in
the end. The data are first written to a temporary file which is renamed after the
successful transfer. This mechanism prevents inconsistency of the received files.
Each file is referenced by the structure. Among other things this structure stores
counter of unsuccessful sent tries. If the counter exceeds given limit, the neighbor
is treated as invalid and his state is set to non-free. The file is also checked, if it is
not valid for some reason (the splitting process has encountered some error), the
whole process has to be aborted because there is no way how to fix one specific
chunk file.

2.1.4 Handling errors

Unfortunately the network environment is quite error prone and all the action
has uncertain results. Moreover, the communication can be interrupted at any
time. Because of this it is important for the network application to be able to
deal with different error situations.

Errors during the connection handling

Almost all the functions indicates error state by the negative return code. These
codes are checked so the error can propagate. If some error happens during the
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control communication, the loop that handles the connection simply brakes, so
the connection is closed. The commands are invoked in the try-catch block, so
if the data have been corrupted or the synchronization has been lost, the next
invalid command name raises an exception and the error is handled. The loss of
synchronization may be detected thanks to the obligatory confirmation of every
command.

Other errors

If an error happens during the file transfer, the receiving side detects inconsistency
thanks to checking of the file size, so the bad file can be removed. Generally, if
any error is encountered during the communication, the corresponding execute
method indicates it by its return value, so it can be propagated further. The signal
handler also has to be set to cover situations when the connection is destroyed
unexpectedly and the SIGPIPE5 is delivered.

2.2 Structures’ overview

This section describes two main structures that are used in the framework. They
common sign is, that they inherit from the Listener class, so they have to im-
plement the invoke method. This fact makes it possible to use them as periodic
listeners.

2.2.1 The TransferInfo structure

This structure serves for referencing the chunk. It contains flags used for transfer,
addresses (source and destination), information about the video and path locating
the physical position of the file. This field is important because it makes it possible
to reference the file. It is changed several time during the process; as the state
of the chunk changes, it it located in various directories and it is important to
keep the value of the field actual. The structure also contains information which
help to determine the encoding process and some statistics which describes the
result. These are used to compute and update the quality of the neighbor. The
structure is also equipped with a pair of methods that make it able to transfer it
over the network. This simplifies the usage of the structure. When the referenced
chunk is waiting for return, the corresponding method is invoked periodically. It
decreases the timer. For the first time the timer reaches zero the neighbor which
has this chunk assigned is checked. If it is alive, the timer is set one more time.
If the neighbor doesn’t respond or the timer reaches zero for the second time, the
chunk is resent.

2.2.2 The NeighborInfo structure

Instances of this structure are kept in the NeighborStorage class. They represent
the neighbor, that is its address and listening port. It also keeps the information
about quality of the neighbor. The time elapsed from the last check is stored

5https://en.wikipedia.org/wiki/Unix_signal
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too. Periodic invocation causes the timer to decrease and possibly contact the
neighbor to refresh the state.

2.3 Important classes

2.3.1 The NeighborStorage class

It is used for storing the NeighborInfo structures. It provides several methods to
maintain neighbors list while preserving synchronization. This is crucial, because
the information about neighbor can change any time but it’s desirable to keep
our knowledge consistent. The class exists in one instance and helps to keep the
information about neighbors in one place, so the manipulation can be controlled.

2.3.2 The NetworkHandler class

This class is used to handle all the networking issues. It provides functionality
to spawn the connections or contact neighbors. It also holds the list of potential
neighbors. This list differs from the neighbors list, because besides address and
port, which are necessary, no further info is stored about potential neighbors.
Also, most of the other classes have not got a notion about this list. When the
lack of neighbors appears, simply the function obtainNeighbors is invoked, which
uses the list internally. This class also handles adding of the new neighbors.

2.3.3 The Data class

It is a singleton class which helps to keep all the data at one place. It also makes
the data accessible from anywhere in the program. It holds the instances of the
NeighborStorage, State and all the queues that are used during the transfer and
the encoding process.

There are more significant classes such as TaskHandler and WindowPrinter,
which will be discussed in the corresponding sections.

2.4 Periodic actions

The framework uses a mechanism which invokes some actions periodically. Pros
and cons of this approach are described in the respective sections, namely the
alternatives. To implement this mechanism, separate thread runs that loops and
once after each time quantum it invokes methods of structures that inherit from
the Listener abstract class and are stored in the special queue. The time quantum
is defined as a constant, so all timers actually express count of the quanta left.
Obvious disadvantage of this approach is busy waiting that is used in the loop.
Alternative approach could use a signal handler and setting an alarm. However,
this could lead to not necessary asynchronous interrupts. Since the mutexes are
used to avoid race conditions, a problem could occur if the signal interrupted
some method holding a “bad” mutex.
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2.5 Queues

As it is described in the corresponding section, the references to chunks can
appear in different queues. The chunk’s placement depends on the state in which
it is. Since the whole process is nondeterministic, different conditions may occur
and more than one thread could need to work with the queue at one moment.
This means, that some way of serialization has to be provided. Because of this,
the SynchronizedQueue structure has been created. Basically it provides usual
functionality that could be requested from the queue, but ensures handling race
conditions because only one thread at a time can access the underlying data.
This is ensured by the mutex. The pop method also uses the conditional variable,
so if there are no data that can be popped at the moment of invocation, it blocks
and waits for a signal.

2.6 Working with input and output

All the file operations are customized for use on the UNIX operating system.
Nevertheless, there is possibility to implement respective functions to work on
different operating systems easily.

File operations

Each chunk is stored in a separate file. For this reason several functions were
implemented to allow easier work with the file system. These include functions
for manipulation with the filenames, controlling files and working with directo-
ries. Also there is a generic function which spawns an external process. This
function uses process forking, spawns the desired process and returns contents
of its standard output and standard error. The function also accepts value of
timeout after which it kills the process. This ensures, that it will not hang. The
result of the process’ run propagates in the function’s return value so the caller
can react accordingly. This mechanism is used to work with video. Especially for
splitting, encoding and joining it.

Working with the video

The video processing is secured by the TaskHandler class. When it is loaded,
some useful piece of information is obtained thanks to the ffprobe program. To
allow easy processing, the output is in the JSON6 format which is then parsed
with the help of the rapidjson7 library. This library consists of header files only
and is distributed as a part of the source code. It is available under the MIT
license which makes it suitable for our usage. Parsed values can be showed using
the F6 key. More importantly, they are used to compute the number of chunks
that will be created. Note, that the number of chunks can change slightly after
the splitting process. It is caused by the fact, that the theoretically computed
count does not consider the positions of key frames. So the chunks can actually
have different sizes and thus their count differs. This fact also implies, that each

6https://en.wikipedia.org/wiki/JSON
7https://github.com/miloyip/rapidjson
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chunk has got slightly different size. When the task execution starts, the instance
of ffmpeg program is spawned which splits the file. The result files are then
stored in the special subdirectory of the working directory. For easy identification,
each process has a unique code assigned to it. This code is generated from the
time stamp. The chunks are numbered in increasing order. Chunk names are
stored in the referencing structures that are created after the split finishes. Then
the chunks are distributed as described in the section about distributing. Each
processing neighbor encodes the chunks using the ffmpeg and then sends it back.
The information about the chunk, such as the level of the encoding quality is
stored in the referencing structure. When all the chunks are collected, a list of
files to be joined is created. Then the ffmpeg is used again to join all these files
to the output file. The process can be aborted at any time. This action stops
the distribution, cleans the storages and notifies neighbors which are processing
some chunks so they can trash it.

An alternative approach to splitting the file was used during the development.
Firstly the position of every split was computed. Then it was spawned one process
per each chunk. The advantage was, that the distribution could begin after
the first chunk was created and therefore some time was saved. However, this
approach turned out to be bad because of the existence of key frames. It does not
allow to split the file at the arbitrary position so certain shifts were observable in
the result file.

User interaction

To provide interaction with the user, the curses library is used. User can provide
input from the keyboard. There is set no delay of the input, so the buffering
is disabled. Because of this, we need to handle the user input manually. On
the other hand, it also makes it possible to control the input and accept the
commands immediately. The output is provided using the WindowPrinter class.
This class stores the queue of records and provides functionality to add or remove
some of them. Each record holds the line to be outputted together with the style
of the line. So each line can be displayed differently than the others.

The screen is divided into four parts. Each part spans the whole width. There
is a line displaying available commands at the top. The biggest portion of the
vertical space belongs to two windows of equal height. The first one displays
different information about processing, neighbors or file properties. The second
window displays the status changes, notifications and potentially some debugging
messages. The bottom part shows a prompt when user input is required.

Because there is usually a lot of threads that can cause the screen to refresh
(this means the particular WindowPrinter instance is updated), it is important
to allow only one graphical update at the moment, otherwise it could cause
inconsistency of the graphical data. This is ensured by a mutex assigned to
each WindowPrinter instance.

2.7 Synchronization

Because of the nondeterministic nature of the application, it is necessary to pro-
vide some kind of synchronization to ensure data and information consistency.
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Mutex and conditional variable templates, available in the C++ standard library,
helps to deal with this issue. We created implementations of queue and map like
structures which ensure serialized access. These classes use containers from the
STL and the synchronization primitives mentioned above. Namely they are Syn-
chronizedMap and SynchronizedQueue and are used to store chunk references.
Operations with the list of neighbors have to be synchronized too. For example
a race condition could occur, when one thread would be working with the neigh-
bor’s reference while other would want to remove the same neighbor from the
list.

Another area which have to deal with some race conditions is output which
is displayed on the screen. The output is handled by the curses library which
provides practically raw access to the graphical data. This means, that if more
threads try to work with the screen at one moment, there is high possibility that
they would compromise each other and nonsensical data would be displayed at
the output. Moreover, this situation can also possibly result in the segmentation
fault. To avoid these situations, the data that are supposed to appear on the
screen are stored in the respective instances of the WindowPrinter. Mutexes are
used to allow only one thread to change the content of the storage or refresh
the screen. This approach has a disadvantage, that each call of the routine that
produces some output could be blocking.

2.8 Error detection and recovery

During the process, various types of errors can occur. Errors connected with the
networking are discussed in the respective section. Here we will describe other
errors that could possibly happen.

Neighbor failure

If an unexpected failure of some node occurs, the other nodes which has it in
their lists must react. If the communication is interrupted in the middle, there is
no way how the other node can recognize the failure, so the command’s execution
just fails. Nevertheless, this usually leads to repetition of the command. This is
able to register the failure. Generally, the failure is noted when the try to estab-
lish a connection with the given neighbor fails. It can occur during processing
a command, checking a neighbor or when the timer assigned with some chunk
reaches zero. In every of these situations the same function is used, so the situ-
ation is always treated in the same way. The unresponsive neighbor is removed
from the list. If it has some chunks assigned, i.e. they has been sent to it already,
they are queued for send to another neighbor. If it has sent some chunks to be
processed by the current node, those chunks are trashed, because there will not
be any use for them, since there is no neighbor they should be returned to.

Chunk disappearance

After the chunk is sent to be processed, it is pushed into the queue which invokes
its members periodically. When the time is up for the first time, the respective
neighbor is checked. If it responses, the timeout is set again. If it does not
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respond, or the timer reaches zero for the second time, the chunk is queued for
sent. Also, in case of the neighbor failure, the neighbor is removed. This can lead
to a situation, when one chunk is being processed by two different neighbors at the
same time. However, after it returns for the first time, it is put into the dedicated
storage, so if it returns afterwards, it is simply rejected. But this situation should
not occur, because when the chunk returns, all neighbors that have it assigned are
notified. They can cancel the computation then. It can also occur the situation,
when one node receives by accident one chunk more times. The files are checked
and what is more, the transfer uses temporary files so the worst scenario involves
wasteful encoding of the chunk for the second time. For this reason, each node
remembers all the chunks it has processed, so this can be avoided. It is important
to store only the successfully processed ones, because if the chunk was damaged
during the transfer, the initiator could ask for its repeated encoding and it would
be valid in this case. Another issue which has to be solved is how to set the
timeout. When the neighbor is involved in the computation for the first time, we
have no information about its performance. The timeout is thus set respectively
to the size of the chunk, default multiplication factor is used. When the neighbor
has already quality factor assigned, it is used to compute the timeout. So the
quality coefficient can be seen as time needed to encode and transfer some unit of
data. This coefficient is recomputed with every chunk delivered by the respective
neighbor.

Other errors

Errors can also be encountered during the manipulation with the video. Because
all the video related problems are manipulated by the external programs, the
mechanism is used, which can control the process. The approximate upper bounds
are set for each task that is supposed to be executed and if the process’ execution
takes too long, the signal is sent that terminates the process. Then the error code
is returned.
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3. Experiments

The purpose of the application is to speed up the computation process. Thus it
should be verified, whether the improvement makes sense or do not. The improve-
ment should correspond to the number of nodes involved in the computation. Our
wish is, that the dependence is of some linear form, that is, the computation gets
faster with every additional node and it improves by the same steps. In this
hypothetical ideal case two nodes means two times faster computation and one
hundred nodes means one hundred times faster achievement of the result. How-
ever, this is impossible for several reasons. At first, we must consider time that is
taken by the division process. Additional time is consumed by the transfers and
final join operation. Another problem arises from the fact, that the transfers are
quite demanding themselves. So when more transfers are ongoing at a particular
moment, the initiator is more utilized and the process can be slowed down due
to this fact. This also implies that the improvement does not raise linearly when
adding more nodes. Finally, we must consider delays which can appear due to
technical reasons, network congestion or node failures.

3.1 Approach to testing

If we want to obtain reasonable data, the measurements must be repeated several
times to prevent deviations. Also we want to keep the measurements indepen-
dent to make its statistical processing easier. Our approach to the testing and
gathering results is described in this chapter. Our main goal is to measure the
improvement, but we would also like to measure the impact of the particular
setting on the result.

The tests were run in the school laboratory. The network consists of several
computers connected together with common ethernet twisted pair cables. Each
computer has currently installed 64 bit Gentoo Linux1 with the Linux kernel
version 3.18. The machines are equipped with Intel Core i7 processors and 6 GB
of operation memory. The MTU2 is set to 1500B and the network uses Gigabit
Ethernet3.

Because of the number of tests, it is desirable for the testing process to be
automated. Special Bash script was created for this reason. The script is tailored
to be used at the testing laboratory, so it may need little modifications to work in
some different environment. It is distributed with the source code of the frame-
work. To allow automated and robust execution of the tests, special functionality
was added to the program. It is invokable by option given at the start time and
causes the program to run in a non-interactive mode. No input is accepted in
this mode, the program just processes given file and ends. This options assumes
all the essential data are given at the start time of the program. To keep the
measurements independent, all the instances (on every node) of the program are
started when the test begins and they are killed in the end. Communication

1https://www.gentoo.org/
2https://en.wikipedia.org/wiki/Maximum_Transmission_Unit
3https://en.wikipedia.org/wiki/Ethernet
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with the remote nodes is handled by the ssh program4. The testing script uses
a special file which describes the particular run. Working example of such file
together with explanations of the values is given below.

v6 // use IPv6

/afs/ms/u/h/hudecekv/futu.avi // location of the file to be re-encoded

2 // run the whole scenario twice

slower // quality of the encoding

10000 // chunk size [KByte]

2048576 // transfer buffer size

spawn u-pl1 2221 // spawn the program on the machine ’u-pl1’, use port 2221

spawn u-pl2 2222

spawn u-pl4 2224

spawn u-pl5 2225

spawn u-pl6 2226

spawn u-pl7 2227

wait 10 // wait for ten seconds before next action

kill u-pl4 // kill the instance of program running on machine ’u-pl4’

spawn u-pl8 2228

spawn u-pl9 2229

spawn u-pl10 2230

Thanks to this mechanism, various scenarios can be run easily without the
need of human interaction.

The data were collected by running each test ten times for the given config-
uration. The count of involved nodes varied from one to ten. Each test was run
once with chunks of 40 000 kB in size and once with 10 000 kB chunks. The
same file was used each time as well as the encoding quality. The sample input
file was packed in the avi container, encoded with the msmpeg codec. It was re-
encoded with H264 codec and stored in the mkv container. Each test gathered
various results, among others the average times needed for transfer and encoding,
number of chunks, quality and count of involved nodes. Because we had not the
chance to run the tests in some dedicated network, the computation times may
vary for the given settings. It depends on the conditions during the test. This is
obviously a problem, because we can’t compare such results. The tests showed,
that if we multiply the average time needed to encode one chunk by the count
of chunks, the product corresponds to the time that the serial encoding process
would take. This allows us to deal with the problem, because we can use this
computed estimation to obtain the improvement and the error will be minimal.

The desired values have been gathered in two ways. Some of them, for example
average transfer and encoding times, are measured directly in the program and
then outputted to a special file. The testing script just reads it from this file.
The rest of the values is measured by the script.

4https://en.wikipedia.org/wiki/Secure_Shell
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3.2 Results

3.2.1 Interpreting the results

In the Figure 3.1 are showed the achieved results, interpreted with respect to time
needed by the single node. The x-axis shows count of nodes, the y-axis the portion
of time needed by the distributed process. The blue dashed line represents the
estimate which is based on the model which used hyperbolic function to predict
the data. The obtained data are visualized as black crosses, red squares show
respective mean values.

Figure 3.1: Achieved improvement - all measurements

The figures 3.2 - 3.4 shows the achieved speedup. The y-axis shows the ob-
tained speedup. Model that was used is further described in the next section.
The data are represented by gray crosses, the estimation based on the model is
visualized by the blue dashed line. The red line shows the linear function, which
would be the ideal case. This linear function is of the form

y = q ∗ x

where coefficient q represents the influence of the time consumed by the data
transfers. The Figure 3.4 shows, that for this chunk size the time spent with the
distribution causes latency when more nodes are employed. This is caused by the
fact, that too many transfers are processed in parallel. Consequently, some of the
nodes have to wait for the chunks for too long.

In the Figures 3.5 and 3.6 are displayed ratios between particular operations
performed during the process. The ratios are displayed with respect to the time
that would be taken by the serial execution. Each column represents one mea-
surement (process). The first image displays data for chunks with 10 MB in size,
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Figure 3.2: Achieved speedup - all measurements

the second shows 40 MB chunks. The data are sorted according to the number
of neighbors used in the process. We can see that portion of time spent with
network transfers is relatively small in our case. These charts were generated
using the LibreOffice package5

Figure 3.7 shows results of the experiment, in which one of the nodes was killed
during the process and then spawned again. As a result, several chunks were sent
more times, depending on the conditions in the network. The plot shows average
number of chunk sent and achieved improvement. In this experiment, 40 MB
chunks were used, displayed in the left side. Also, some of the experiments were
intentionally run with no failure, so we can see results achieved with normal run
in the left down corner and we can compare it. Those values are highlighted. We
can see, that resending of chunks has great impact on the result. This problem
could be reduced by using smaller chunks. When we used 5 MB chunks, the
results improved significantly as showed in the right image in the Figure. This
is caused by the fact, that with the same number of faults, the amount of work
that needs to be done again is smaller when using smaller chunks. However,
disadvantage of this approach is, that the split and join operations take slightly
more time.

5http://www.libreoffice.org/
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Figure 3.3: Achieved speedup - 10 MB chunks

3.2.2 Linear Model

Work with the data and the model was performed in the R Studio program6. To
evaluate the data, simple linear regression model was used. Specifically, subse-
quent formula was used:

single node time
distributed time

= β0 + β1 × neighbor count+ β2 × neighbor count2 + εi

Higher powers were not used in order to not over fit the model. The analysis
of the model showed, that it makes sense to use this model. The assumptions such
as homoscedasticity (constant variance) and independence of errors were explored
using plots and results given by the R Studio. Some of the mentioned outputs
are given in the Figures 3.8 and 3.9. We can see, that according to the p-values
corresponding to coefficients, all of them are significant for the model. Residual
standard error shows, that the variance is not too big. In the plots we can see
that the residuals unfortunately has not constant variance. The second plot also
suggests, that they probably are not distributed normally. However, citation
says: “heteroscedasticity has never been a reason to throw out an otherwise
good model.”[8] So we used this model in our modeling. It may be questionable,
whether we had enough measurements, however, the model seems to be good
enough to describe the data and predict the behavior for more nodes. We can also
notice, that the β2 coefficient is negative and since the squared value rises faster,
there is some point at which the improvement stops raising, which corresponds
to reality.

6https://www.rstudio.com/
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Figure 3.4: Achieved speedup - 40 MB chunks

3.2.3 Upper Bounds

Overall time of the process can be divided into operations split, send, encode,
receive and join (in this order). It is also influenced by searching appropriate
neighbors, but it will not be taken into account in this analysis. Also, based on
the data we can observe, that the time taken by the split operation is not very
significant, therefore we can omit it. If we ask how big speedup can be achieved,
we can use the Amdahl’s law7 to model the situation. The join operation can not
be parallelized. The encoding itself is parallelized completely. The data transfer
operations are performed theoretically in parallel, however, in practice we are
limited by the network throughput and the system resources of the initiator,
i.e. how many data transfers it can handle in parallel. This can be influenced by
the OS, disk speed or even operation memory. Because this number is limited, the
initiator can not employ arbitrary number of nodes effectively. If we want to deal
with this problem, we have to consider several facts. The speed of the distribution
is influenced by the ability of the nodes to receive the data with no delay, so we
assume that buffering and disk operations do not slow down the process. Also,
the full network capacity cannot be used because of other ongoing transfers. Some
portion of the capacity is consumed by the redundant information used by the
TCP/IP too. For the sake of simplicity, we will make the assumption, that the
capacity corresponds to the actual amount of useful data transfered. We also
must not forgot, that the sizes of original and received chunks differs. Finally,
we treat the parallel transfer over the network as it took the same time as the
serial, which does not have to be always true. We will consider the size of received
chunks to be k times bigger than the size of the send ones and count with this
size. Let c be the amount of data that can be transfered over the network per
one second, s chunk size and t time needed to encode one chunk (here we assume
the encoding times are the same for all the nodes). Then maximum number n of
effectively employed nodes must fulfill the inequality:

n×s
c

≤ t

7https://en.wikipedia.org/wiki/Amdahl’s_law
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Figure 3.5: Comparison of operation times - 10 MB chunks

since otherwise the transfer would take more time than the encoding, so the
encoded chunks would have to wait.

To applicate the Amdahl’s law, we must determine the fraction of the algo-
rithm that is strictly serial. This involves the splitting and joining. We consider
the data transfers to be parallelized with the preceding paragraph in mind. Ac-
cording to the results, the split and join operations take approximately 7.5%
of time in average. So according to the basic form of the law, the theoretical
maximum speedup should be obtained from the following formula:

S = limn→+∞
1

B+ 1
n
(1−B)

= 1
B

= 1
0.075

= 13.33

Where B represents the serial fraction. This result is strictly theoretical and
does not correspond to real situation, mainly because of the problems mentioned
above. We can obtain more realistic results by using the formula to estimate the
parallel fraction of time.

Pest =
1

speedup
−1

1
nodecount

−1

For our data the estimation equals 0.89, which gives us theoretical maximum
speedup 9.09.
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Figure 3.6: Comparison of operation times - 40 MB chunks

Figure 3.7: Impact of resending on the result
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Figure 3.8: Summary of the model

Figure 3.9: Graphical representation of the model data
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4. Problems, alternatives and
possible improvements

Some alternative approaches were also considered during the designing. One of
them was not to use periodical checking at all. It was based on the idea, that there
would exist permanent connection with each neighbor and the state changes would
be indicated by the events related to this connection. However it was rejected
due to the requirements connected with keeping the connection. Furthermore, the
changes of ready state of the node would have to be checked either periodically
or the node would have to inform all its neighbors (even potential) about each
change which would lead to another problems to deal with. It is in contrast with
passivity of the slaves too.

Another issue was related to more sophisticated way of distributing the chunks.
Namely some kind of hierarchy was considered in which the chunk references
would be distributed to neighbors in packs. At the neighbor it would be further
split and distributed among neighbor’s neighbors and so on. A kind of a tree
structure would be formed this way. The transfer of the file would be processed
directly between the initiator and the leaf node. However this approach turned
out to be complicated and brings many problems. For example in case of failure
of some node which is high in the hierarchy a lot of chunks would have to be
re-distributed. Also the initiator’s ability to control the distribution would be
reduced. Moreover, the advantages of this approach are not so significant at all,
because the biggest portion of time is spent during transfers and processing the
chunks. The time spent with distribution of references is not important at all.

Interesting alternative would be use of the anycast1 mechanism provided by
the IPv6 protocol. The nodes would be addressed with an anycast address and
each chunk would be simply sent to this address. Obvious disadvantage of this
approach is the loss of the control of the distribution. More sophisticated variant
would use special node which would maintain the list of free nodes and schedule
the distribution. However this would break the peer to peer paradigm because of
the centralization of control to one specific node.

Maybe the biggest unnecessary delay could appear when the whole process
waits for some lost chunk. This is partially solved by resending chunks after the
timeout. Also some form of redundancy could help, which on the other hand
would certainly affect the effectiveness. If some node is processing more tasks
sequentially while using approximately the same set of neighbors, the framework
could also determine optimal chunk size to achieve good ratio of transfer and
computing times. The chunks should not be too small because of the delays tied
with its distribution. Optimal chunk size could significantly reduce the possible
delay caused by waiting for re-encoding of some lost chunk. We could see at the
end of the chapter 3, that use of smaller chunk size leads to better performance,
especially when the failure of some node occurs, the difference can be quite big.

Also the current implementation creates a separate connection for each data
transfer. Alternatively, each chunk could be delivered and returned using the
same connection which would lessen the demands of the communication. The

1https://en.wikipedia.org/wiki/Anycast
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connection’s termination would also indicate problem with the chunk’s processing
or the neighbor itself. But the connection termination does not necessarily mean
the failure of the process. Because it is desirable to avoid needless re-encoding of
the chunks, this situation would has to be treated specially which would introduce
additional problems. Also this approach does not fit very well to the current
design in which each logical action is executed as the sequence of commands and
for each sequence there is a special connection.
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Conclusion

Based on the results of the experiments it can be said, that the framework works
fine and it can be successfully used to speed up computation in the local network.
Although the achieved speed up does not grow linearly with the increasing num-
ber of nodes, it can be quite significant. It was not tested in WAN environments,
however, according to the results, the transfers of the data takes indispensable
portion of the whole processing time, so the improvement depends on the net-
work throughput. We have also shown, that for some count of involved nodes
the optimum is reached. Adding more nodes slows the process down instead of
speeding it up. This count depends on conditions in the network and chunk size.

As is being discussed in chapter 4, the framework could be further improved.
To achieve more effective distribution of the work, more sophisticated scheduling
could be employed that would take into account network topology or each node’s
performance and possibly create chunks of different sizes etc. It would require
some better network knowledge. Also it was showed, that some redundancy for
prevention of re-computing all chunks from one particular node in the case of
failure could be useful. However, this would cause worse performance and also
the advantages are quite unsure. Because of the speed of the network the data
transfers generally seems to be a bottleneck. Thus good scheduling algorithm
appears to be very important, together with optimal choice of the chunk size.
This leads us to an idea, that in reliable network environments the logic could be
centralized to a special node in order to achieve better performance. Potential
malfunctions caused by the control node failure would have to be accepted. The
control node would schedule the process for each client that would ask. Another
advantage of this approach is the fact, that this node could use a knowledge of
the current network state, that is, which nodes are employed and how.

Nevertheless, a lot of computer networks can suffer from unreliability and
there always is a possibility of node failure. That is the reason, why our frame-
work can be very useful. It is able to deal with error situations and does not
require any special nodes. Among video encoding, it could be easily modified to
process different tasks, such as processing large data sets or images. Although
the efficiency is dependent on the current conditions, mainly the network speed,
the achieved speedup can be quite significant.
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Attachments

Appendix A - Installation and use

Download

First it’s essential to get the source code. You can clone the code directly from
the git repository using command

# git clone https://github.com/vojtsek/VideoCompression.git

Alternatively you can download the zip file and unpack it in some directory.

Requirements, installation and first run

You must have ffmpeg and ffprobe installed on your computer, if you want to run
the program successfully. Although technically it doesn’t matter which codec is
used, the program currently uses H.264 standard as a default, so it assumes the
ffmpeg has been compiled with the x264 codec support. Otherwise the program
does not have any special requirements except standard libraries which should be
available on all UNIX systems. When you install these programs, you can change
to the directory containing the source code and run the installation script:

# cd VideoCompression

# ./install.sh

The installation script is a regular Bash script, so the Bourne again shell inter-
preter is required to run it successfully. It uses utilities that are common part
of every Linux distribution. If some of it is not present, you can either install it
or do the preparation yourself. The script explores your computer, i.e. gets the
IP address, finds location of ffmpeg binaries etc. Then it creates home directory
for the program. The home directory contains data of the program’s run. These
include intermediate results as well as the final result and log files. The installa-
tion continues with generating the configuration file. This file is crucial for the
framework. Before setting each option, the script prompts you for confirmation
of the value. If you type nothing and just press the Enter key, the suggested
value is used, otherwise the script uses your input. The result configuration file
is stored in the bin/ directory which is created during the installation. It’s a
plain text file so you can edit it anytime in the future. The script then continues
with compilation of the program. If everything is all right, you can change to
the newly created bin/ directory and continue. The directory bin/lists/ contains
some supporting files that should not be changed. Otherwise the program could
behave improperly.

The last step before you can run the program is to check the configuration.
The configuration is saved in the bin/CONF file, which is created by the in-
stallation script. It’s important to provide valid path to the ffmpeg and ffprobe
executables and address with port of the neighbor that should be contacted ini-
tially. Otherwise you won’t be able to join the network. The field MY IP is not
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essential as long as the initial neighbor is alive - it will be recognized automati-
cally.

Then you can finally run the program. Some of the settings can be changed
by providing options, the available ones are listed in the table 4.1.

-s no address will be contacted initially
-n [address]:port number node to contact initially
-a [address]:port number address and port to bound to
-h directory path to the home directory
-i file file to encode
-p port number listening port
-d level debug level
-q quality quality of encoding

Table 4.1: Table of the possible options.

If the string IPv4 appears among parameters, the program will use only the
IPv4 addresses2, in which case should be the CONF file changed appropriately.

Using the program

When you run the program, the initial screen appears. You can perform desired
action using function keys. You can see the initial screen in the Figure 4.1.
Available options are highlighted.

Figure 4.1: Initial screen after joining.

The important key bindings are listed in the table 4.2.

2https://en.wikipedia.org/wiki/IPv4
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F6 Show information
F7 Start the process
F8 Load the file
F9 Set values
F10 Abort the process
F12 Quit the program
Up, Down Traverse available options
Enter Confirm the input

Table 4.2: Table of the control keys.

First you should load the video file. When the corresponding function key
is pressed, the program prompts you for the file location. You can type in the
absolute path of the file. Once you use the file, it is stored in history which you
can browse using up and down arrow keys. This can be seen in the Figure 4.2.

Figure 4.2: Loading the file.

Then you can set some parameters or show different information using F6
respectively F9 function keys. These keys provides set of options which you can
choose from. When you are satisfied with the settings, you can start the process.
The program then starts splitting the file and distributing the chunks. It also
keeps informing you about the progress. When the process is done, the file is
joined and you can do further actions. You can find the result in the provided
work directory. There should appear new folder with a timestamp of the current
job. It contains the file named orig output.mkv, where orig is the base name of
the input file. Some screenshots from the ongoing process are displayed in the
Figures 4.3, 4.4 and 4.5

Figure 4.3: Overview of the process.

To obtain more information about what is going on, the -d option may be
used which allows to specify level of debug messages that will be showed.

42



Figure 4.4: Processing of the tasks.

Figure 4.5: Joining the file.

Appendix B - Attached software

All the attached software can be found on the attached CD. It contains:

1. Sources of the framework, together with the installation script in the Video-
Compression/ directory. This directory also contains the rapidjson library
and license agreements.

2. Documentation in the doc/ directory. To view this documentation, it is
recommended to open the index.html file in your favorite html browser.

3. FFmpeg and x264 codec sources in the ffmpeg/ and x264/ directory.
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