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Abstract:  Heat waves and cold spells have serious impacts on natural environment and 
society. The main aims of this thesis are to examine past variability of Central European heat 
waves and cold spells, to assess severity of recent events in a long-term context, to evaluate 
simulation of heat waves in climate models, and to construct their scenarios for a possible 
future climate. Heat waves and cold spells were primarily investigated as spatial events, using 
gridded data sets. E-OBS gridded data was utilized to assess past variability of heat waves and 
cold spells and to evaluate regional climate model (RCM) simulations from the ENSEMBLES 
and EURO-CORDEX projects. An extremity index that captures joint effects of temperature, 
duration, and spatial extent of individual heat waves and cold spells was proposed and tested. 
The persistent 1994 heat wave was found to be the most extreme over Central Europe in the 
1950−2012 period, and the summer of 2013 was unprecedented at several Central European 
stations according to seasonal heat wave characteristics. The severity of cold spells was 
largest in the winters of 1955/1956 and 1962/1963, and the winter of 2011/2012 was ranked 
as the 6th most severe since the mid-20th century according to seasonal sums of the extremity 
index. Reproduction of heat waves in Central Europe was examined in an ensemble of RCMs 
driven by the ERA-40 reanalysis. The multi-model mean reflected the characteristics of heat 
waves quite well, but considerable differences were found among the individual RCMs and 
deficiencies were identified also in reproducing interannual and interdecadal variability of 
heat waves.  Magnitude of the 1994 heat wave was underestimated in all RCMs and this bias 
was linked to overestimation of precipitation during and before the heat wave. Projections of 
heat waves for a possible future climate were studied using RCM simulations driven by global 
climate models forced by three different concentration scenarios. In the near future (2020–
2049), heat waves are projected to be twice as frequent compared to the historical period and 
a similar increase was found under all concentration pathways. By contrast, the projected 
frequency of heat waves in the late 21st century (2070–2099) depends largely upon 
concentration scenarios. Three to four heat waves per summer are projected in this period 
(compared to less than one in the recent climate) and severe heat waves are likely to become a 
regular phenomenon. These projections may be potentially useful for stakeholders and 
policymakers, however, an interpretation has to be carried out with caution due to substantial 
uncertainties originating mainly from concentration scenarios and different responses of 
climate models to altered radiative forcing. The thesis contributed also to better understanding 
of RCMs’ strengths and weaknesses with respect to simulation of heat waves that might 
eventually lead to improvements of climate models. 
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Abstrakt:  Horké a studené vlny mají závažné dopady na přírodní prostředí i lidskou 
společnost. Hlavními cíli této práce je zhodnotit proměnlivost horkých a studených vln 
v minulosti, analyzovat extremitu nedávných události v dlouhodobém kontextu, vyhodnotit 
simulace horkých vln v klimatických modelech a vytvořit scénáře jejich změn v možném 
budoucím klimatu. Horké a studené vlny byly posuzovány převážně jako prostorové události 
za pomoci dat v pravidelné síti uzlových bodů (gridu). Analýza proměnlivosti horkých a 
studených vln v minulosti a validace regionálních klimatických modelů (RCM) z projektů 
ENSEMBLES a EURO-CORDEX byly provedeny na základě gridové databáze E-OBS. Byl 
navržen a otestován index extremity, který zohledňuje teplotu, délku a plošný rozsah 
jednotlivých horkých a studených vln. Dlouhotrvající horká vlna z roku 1994 byla ve střední 
Evropě v období 1950−2012 nejvýraznější a léto 2013 bylo nejextrémnější na několika 
středoevropských stanicích, pokud jde o celkové charakteristiky horkých vln. Nejsilnější 
studené vlny se vyskytly v letech 1955/1956 a 1962/1963 a zima 2011/2012 byla šestá 
nejchladnější na základě sumy indexu extremity. Zachycení vlastností horkých vln bylo 
studováno pomocí ensemblu RCM řízených reanalýzou ERA-40. Modelový průměr odrážel 
charakteristiky horkých vln poměrně dobře, nicméně byly zjištěny velké rozdíly mezi 
jednotlivými modely a nesprávné bylo rovněž zachycení meziroční i dlouhodobé 
proměnlivosti horkých vln. Všechny RCM podcenily intenzitu horké vlny z roku 1994, 
přičemž tato chyba byla způsobena příliš vydatnými srážkami během horké vlny a před ní.  
Projekce horkých vln pro možné budoucí klima byly vytvořeny na základě simulací RCM 
řízených globálními klimatickými modely za použití tří scénářů socio-ekonomického vývoje. 
V blízké budoucnosti (2020–2049) modely simulují dvojnásobnou četnost horkých vln 
v porovnání s historickým obdobím, přičemž tento nárůst je podobný pro všechny scénáře 
koncentrací skleníkových plynů. Na druhou stranu, na konci 21. století (2070–2099) je 
četnost horkých vln silně závislá právě na výše zmíněných scénářích. V tomto období modely 
simulují 3−4 horké vlny za sezónu v porovnání s méně než jednou v historickém období a 
intenzivní horké vlny se objevují pravidelně. Tyto projekce by mohly být potenciálně užitečné 
pro politické činitele i další zúčastněné strany, nicméně je nutná opatrná interpretace z důvodu 
velkých nejistot plynoucích ze scénářů koncentrací skleníkových plynů a různého chování 
klimatických modelů při změně radiačního působení. Tato práce rovněž přispěla k lepšímu 
pochopení silných a slabých stránek RCM s ohledem na simulaci horkých vln, což může být 
použito i ke zlepšování klimatických modelů. 
 
Klí čová slova: horké vlny; studené vlny; změna klimatu; klimatické modely; střední Evropa 



5 

 

TABLE OF CONTENTS 

 

1 Introduction and motivation ................................................................................................ 8 

2 Literature review ................................................................................................................. 9 

2.1 Definition of heat waves and cold spells ..................................................................... 9 

2.2 Temporal and spatial variability of heat waves and cold spells in Europe ................ 10 

2.3 Driving mechanisms of heat waves and cold spells .................................................. 12 

2.3.1 Heat waves .......................................................................................................... 12 

2.3.2 Cold spells .......................................................................................................... 13 

2.4 Simulation of heat waves and cold spells in climate models ..................................... 14 

2.5 Projections of future heat waves and cold spells ....................................................... 16 

3 Work objectives................................................................................................................. 18 

4 Study area, data and methods ............................................................................................ 19 

5 Overview of research articles used in the thesis ............................................................... 22 

6 Article I: ‘Characterizing joint effects of spatial extent, temperature magnitude and 

duration of heat waves and cold spells over Central Europe’ .................................................. 26 

6.1 Introduction ................................................................................................................ 26 

6.2 Data and methods ....................................................................................................... 28 

6.2.1 Data and area of interest ..................................................................................... 28 

6.2.2 Definition of heat waves ..................................................................................... 30 

6.2.3 Definition of cold spells ..................................................................................... 31 

6.2.4 Characteristics of heat waves and cold spells ..................................................... 32 

6.2.5 Cluster analysis of heat waves and cold spells ................................................... 33 

6.2.6 Statistical testing of heat wave and cold spells characteristics ........................... 33 

6.3 Heat waves ................................................................................................................. 33 

6.3.1 Characteristics and interannual variability ......................................................... 33 

6.3.2 Cluster analysis ................................................................................................... 37 

6.4 Cold spells .................................................................................................................. 38 

6.4.1 Characteristics and interannual variability ......................................................... 38 

6.4.2 Cluster analysis ................................................................................................... 42 

6.5 Discussion .................................................................................................................. 43 

6.5.1 Comparison of characteristics of heat waves and cold spells ............................. 43 

6.5.2 Interannual variability of heat waves.................................................................. 44 



6 

 

6.5.3 Interannual variability of cold spells .................................................................. 45 

6.6 Conclusions ................................................................................................................ 45 

7 Article II: ‘Hot Central-European summer of 2013 in a long-term context’ .................... 51 

7.1 Introduction ................................................................................................................ 51 

7.2 Data and methods ....................................................................................................... 52 

7.3 European mean and extreme summer temperatures .................................................. 55 

7.4 Long-term variability of Central European heat waves ............................................. 58 

7.5 Description of the 2013 heat waves and driving mechanisms ................................... 59 

7.6 Discussion and conclusions ....................................................................................... 62 

8 Article III: ‘Spatial and temporal characteristics of heat waves over Central Europe in an 

ensemble of regional climate model simulations’ .................................................................... 67 

8.1 Introduction ................................................................................................................ 67 

8.2 Data and methods ....................................................................................................... 70 

8.2.1 Regional climate model simulations................................................................... 70 

8.2.2 Area of interest ................................................................................................... 71 

8.2.3 Datasets utilized .................................................................................................. 72 

8.2.4 Definition of heat wave ...................................................................................... 72 

8.2.5 Heat wave characteristics ................................................................................... 73 

8.2.6 Temporal autocorrelation ................................................................................... 74 

8.3 Evaluation of heat wave characteristics and temporal variability in RCMs .............. 74 

8.4 Reproduction of the 1994 heat wave in RCMs .......................................................... 79 

8.5 ‘Erroneous’ 1967 heat wave in RCM simulations ..................................................... 83 

8.6 Discussion .................................................................................................................. 86 

8.6.1 Evaluation of spatial and temporal characteristics of simulated heat waves ...... 86 

8.6.2 Reproduction of the 1994 heat wave .................................................................. 87 

8.6.3 ‘Erroneous’ 1967 heat wave in RCM simulations.............................................. 88 

8.6.4 Evaporative fraction during the 1967 and 1994 heat waves ............................... 89 

8.6.5 Performance of individual RCMs ....................................................................... 90 

8.7 Conclusions ................................................................................................................ 91 

9 Article IV: ‘Climate change scenarios of heat waves in Central Europe and their 

uncertainties’ ............................................................................................................................ 97 

9.1 Introduction ................................................................................................................ 97 

9.2 Data and methods ..................................................................................................... 100 



7 

 

9.2.1 Area of interest and observed data ................................................................... 100 

9.2.2 Climate model simulations ............................................................................... 101 

9.2.3 Definition of heat wave .................................................................................... 103 

9.2.4 Heat wave characteristics ................................................................................. 104 

9.2.5 Temporal autocorrelation and statistical testing ............................................... 105 

9.3 Observed heat waves and evaluation of historical RCM simulations ..................... 105 

9.4 Heat wave scenarios and uncertainties for near future and late 21st century ........... 109 

9.5 Discussion ................................................................................................................ 113 

9.5.1 Observed heat waves and selection of severe events ....................................... 113 

9.5.2 Historical simulations of heat waves ................................................................ 114 

9.5.3 Scenarios of heat waves in the near future (2020–2049) .................................. 115 

9.5.4 Scenarios of heat waves in the late 21st century (2070–2099) ......................... 115 

9.6 Summary and conclusions ....................................................................................... 116 

10 Article V: ‘Long-term variability of heat waves in Argentina and recurrence probability 

of the severe 2008 heat wave in Buenos Aires’...................................................................... 122 

10.1 Introduction .......................................................................................................... 122 

10.2 Data and methodology ......................................................................................... 124 

10.2.1 Data ................................................................................................................... 124 

10.2.2 Heat wave definition ......................................................................................... 127 

10.2.3 Stochastic time series model for daily temperatures ........................................ 128 

10.3 Long-term variability of heat waves in Argentina north of 40° S ........................ 129 

10.4 Recurrence probability of the extreme heat wave of November 2008  in BA ..... 133 

10.5 Discussion and concluding remarks ..................................................................... 135 

11 Conclusions and future perspectives ............................................................................... 139 

12 Acknowledgments ........................................................................................................... 141 

13 References (excluding chapters 6−10) ............................................................................ 142 

14 Appendices ...................................................................................................................... 149 

 



8 

 

1 Introduction and motivation  

Heat waves and cold spells are important phenomena of the European climate. These 

events are traditionally regarded as summer (winter) periods that last several days with 

weather conditions excessively hotter (colder) than normal. Severe heat waves that occurred 

in the past two decades and the very cold 2009/2010 winter in Europe prompted broad 

investigation of these events. 

Heat waves have major consequences for the natural environment and society. Beniston 

et al. (2007) pointed to excess illness and mortality, livestock and wildlife stress, crop 

damage, spread of pests and increased energy demand for cooling. More specifically, the hot 

summer of 2003 in France resulted in tens of thousands excess deaths (Robine et al. 2008), 

reduced crop yields, decreased plant productivity (Bastos et al. 2014) and record-breaking 

loss of Alpine glaciers mass (De Bono et al. 2004). Analogous impacts were observed during 

the 2010 Russian heat wave (Barriopedro et al. 2011) and numerous wildfires triggered by 

this event caused prolonged episodes of extreme air pollution in several Russian cities 

(Konovalov et al. 2011). Among other impacts, cold spells affect human health, infrastructure, 

and vegetation (Vavrus et al. 2006; Barnett et al. 2012).  

Due to an expected rise in global mean air temperature (IPCC 2013), there are concerns 

that losses caused by heat waves will be increasing. Although cold spells are expected to 

become less pronounced in the warming climate, Francis and Vavrus (2012) pointed out that 

possible future strengthening of atmospheric blocking over the Euro-Atlantic region due to 

Arctic Amplification may result in an intensification of cold spells. In addition, cold spells 

may be intensified due to modified wintertime atmospheric circulation (Barriopedro et al. 

2008) triggered by a possible decrease of solar activity in coming decades (Abreu et al. 2008). 

Inasmuch as these extreme events are expected to be more severe and dangerous in a future 

climate, it is vitally important to understand all their aspects in order to establish suitable 

adaptation and mitigation strategies. 
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2 Literature review  

This chapter reviews current scientific literature related to European heat waves and cold 

spells. It contains five sections that summarize: i) common approaches to defining heat waves 

and cold spells, ii) temporal and spatial variability of these events in Europe, iii) driving 

mechanisms of heat waves and cold spells, iv) capability of climate models to simulate these 

events, and v) projections of heat waves and cold spells in a future climate. 

   

2.1 Definition of heat waves and cold spells 

The creation of universal and collective measures of any meteorological extreme, 

including heat waves and cold spells, is difficult (Perkins and Alexander 2013). Both heat 

waves and cold spells can be analysed by means of several meteorological variables. 

Although heat waves are predominantly defined based on daily maximum temperature (Tmax), 

daily minimum temperature (Tmin) is also used because high night-time temperatures are 

important with respect to heat waves’ impacts on human health (e.g. Fischer and Schär 2010). 

Another suitable variable is apparent temperature, which combines temperature and relative 

humidity and is also known as a heat index. This discomfort index is mostly used when 

assessing health risk and mortality during heat waves (e.g. D'Ippoliti et al. 2010), but its usage 

is limited due to less available relative humidity data. In contrast to heat waves, cold spells 

have predominantly been defined using temperature-based variables only (mainly Tmin). 

The severity of individual heat waves and cold spells has traditionally been viewed in 

terms of combined temperature and length. Various criteria have been applied on temperature 

series to estimate if weather conditions are exceptionally hot or cold. One method is based on 

the excess of absolute temperature thresholds. This approach was used by Colombo et al. 

(1999), Gershunov et al. (2009), or Kyselý (2010), and it is suitable when delimiting heat 

waves or cold spells from a single station or from a region with reasonably homogeneous 

climate. Another method applied by Shevchenko et al. (2013) utilizes temperature deviations 

from the climatology at individual stations. This approach respects a local climate and is more 

suitable for regional analyses. Many authors use quantile-based methods to define a heat wave 

or cold spell. The value of the quantile from a temperature distribution depends upon the 

focus of the study. For example, an analysis of major events demands higher quantiles (e.g. 

Meehl and Tebaldi 2004), while statistical and trend analyses (e.g. Della Marta et al. 2007a) 

need larger data samples and thus lower quantiles. Although a wide range of quantiles have 

been used, the majority of studies utilize the 5%/95% (e.g. Della Marta et al. 2007b; Kyselý 
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2008; Stefanon et al. 2012) or 10%/90% (e.g. Fischer and Schär 2010; Peings et al. 2013) 

quantile. The minimum length criterion of a heat wave or cold spell usually varies from 2 

days (Barnett et al. 2012) to 5 or more days (Ballester et al. 2010; Fischer and Schär 2010). 

Due to a relatively recent development and improvement of gridded data, spatial extent of 

heat waves and cold spells was not taken into account in the majority of past studies. The 

spatial extent can be described as a simple fraction of a defined area (Peings et al. 2013) or by 

performing a search in a domain and then distinguishing within which area the extremity of an 

event is largest (Müller and Kašpar 2014). Alongside analysing spatial extent, Stefanon et al. 

(2012) used gridded data to classify European heat waves based on a region of occurrence. 

 

2.2 Temporal and spatial variability of heat waves and cold spells in Europe 

Since the beginning of the 20th century, two major episodes of heightened heat wave 

severity were observed in Europe. The first one occurred in the 1940s and 1950s and was 

especially pronounced over Western Europe (Della-Marta et al. 2007a; Kyselý 2008) and the 

second, ongoing period began in the 1990s. The most notable European events since the 

1990s are listed below: 

 

• 1992: Central European heat wave mainly in July (Kyselý 2002), absolutely highest 

temperature measured in Estonia (35.6°C) 

• 1994: persistent Central European and Baltic heat wave in the transition of July and 

August (Tomczyk and Bednorz 2015), record-breaking temperature observed in 

Lithuania (37.5°C) 

• 2003: extraordinary heat wave in Western Europe often referred to as a ‘mega heat 

wave’ (Barriopedro et al. 2011); temperatures were above their mean climatology 

during almost the entire summer (Black et al. 2004), and absolutely highest 

temperatures were measured in France (44.1°C), Portugal (47.4°C), Switzerland 

(41.5°C), and the United Kingdom (38.5°C) 

• 2006: Western and Central European heat wave (Kyselý 2010) 

• 2007: heat wave mainly over the Balkan Peninsula (Unkašević and Tošić 2011), 

record-breaking temperatures observed in Hungary (41.9°C), Macedonia (45.7°C), 

Montenegro (44.8°C), Serbia (44.9°C), and Slovakia (40.3°C) 
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• 2010: Russian and Eastern European ‘mega heat wave’ (Barriopedro et al. 2011) that 

lasted almost the whole summer, absolutely highest temperature measured in Belarus 

(38.9°C), Russia (45.4°C), and Ukraine (42.0°C) 

• 2012: record-breaking temperature (40.4°C) was observed in the Czech Republic 

during a relatively short heat wave (Holtanová et al. 2015), absolutely highest 

temperature measured also in Moldova (42.4°C) during this summer 

• 2013: Central European heat wave, record-breaking temperatures observed in Austria 

(40.5°C) and Slovenia (40.8°C) 

• 2014: heat wave in Scandinavia and Baltic countries, absolutely highest temperature 

measured in Latvia (37.8°C) 

• 2015: persistent Central European heat wave (Russo et al. 2015), record-breaking 

temperature observed in Germany (40.3°C) 

 

The past 25 years are exceptional also in the long-term context. Kyselý (2010) analysed a 

temperature series from Prague-Klementinum (1775−2006) and the turn of the 20th century 

was found to be the most extreme according to the severity of heat waves. In addition to the 

two aforementioned episodes in the mid-20th century and since the 1990s, other historical 

periods with unusually severe heat waves in Prague-Klementinum were observed at the turn 

of the 18th century and in the mid-19th century. Similar results were obtained from the Swiss 

station Basel (Fink et al. 2004). However, the severity of heat waves during 18th and 19th 

centuries may be overestimated due to a so-called early instrumental warm bias and 

inhomogeneities, which are often reported at European stations (Winkler 2009; Böhm et al. 

2010). In addition, measurements may be affected also by an urban heat island, but its effect 

on summer Tmax is relatively small (Wilby 2003). Brázdil and Budíková (1999), for example, 

found no significant influence of the urban heat island on summer temperatures in Prague. 

Using proxy data, Luterbacher et al. (2004) reconstructed mean European summer 

temperature for the past 500 years and concluded that the summer of 2003 was the warmest 

one within the entire period. Based on the same reconstructed dataset, Barriopedro et al. 

(2011) showed that the summer of 2010 was even warmer than the 2003 summer. These two 

summers markedly surpass others regarding temperature anomaly on the continental scale. 

Research articles dealing with temporal variability of cold spells are considerably less 

frequent compared to those concerning heat waves. According to Kyselý (2008), the most 

severe cold spells since the beginning of the 20th century occurred in the 1940s over most 



12 

 

European areas. Other notable events were observed in winter 1962/1963 (Cattiaux et al. 

2010), in February 1956, in January 1987 (Walsh and Phillips 2001) and in winter 2009/2010 

(Cattiaux et al. 2010). Although severity of cold spells shows negative trend since the 1940s, 

this decline is smaller compared to the increase of heat wave severity (Kyselý 2008). 

 

2.3 Driving mechanisms of heat waves and cold spells 

The development of both heat waves and cold spells in Europe is related to an interruption 

of prevailing zonal flow (Cattiaux et al. 2012) which is linked to atmospheric blocking 

(Barriopedro et al. 2006). Atmospheric blocks are formed by quasi-stationary anticyclones 

lasting one week or more (Buehler et al. 2011). An occurrence of these blocks is linked to 

Rossby wave breaking events (Altenhoff et al. 2008), driven by large-scale meanders in the 

upper troposphere jet stream. According to Shubert et al. (2011), Rossby waves account for 

roughly 60% of temperature variability on monthly sub-seasonal time scales over middle 

latitudes in the northern hemisphere.  

 

2.3.1 Heat waves 

Blocking anticyclones trigger extremely high summer temperatures based on two basic 

mechanisms: i) creating positive anomalies in surface radiation budget through clear-sky 

conditions associated with subsiding motions (mainly in the central part of an anticyclone), 

and ii) causing a meridional advection of warm air masses (mainly in outer regions of an 

anticyclone, Pfahl and Wernli 2012). Shubert et al. (2011) demonstrated a key role of 

atmospheric blocking in development of the 2003 and 2010 heat waves, and Schneidereit et 

al. (2012) concluded that the blocking high over western Russia lasted more than twice as 

long as the mean blocking duration for summer. 

Kyselý (2008) analysed large-scale flow during European heat waves using Hess-

Brezowsky synoptic catalogue (Werner and Gerstengarbe 2010) and found four major 

circulation types conducive to heat waves. The anticyclone was located over Central Europe 

(types HM and BM) or over Scandinavia (type HFA). In the fourth type (SWZ), south-

western cyclonal flow was dominant. Cassou et al. (2005) showed that the occurrence of 

blocking anticyclone over central Europe or Scandinavia may be favoured by the anomalous 

tropical Atlantic heating. These changes of sea surface temperature in the Northern Atlantic 

are quasi-periodic and are referred as Atlantic Multidecadal Oscillation (Sutton and Hodson 
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2005). This oscillation is probably linked to oceanic thermohaline circulation (Knight et al. 

2005) and is well correlated with the duration of heat waves in Europe (Della Marta 2007b). 

Heat waves can be amplified by a soil moisture deficit that results in a reduced latent 

cooling and therefore increased summer Tmax. The majority of severe European heat waves 

were preceded by spring precipitation deficit (Fischer et al. 2007; Barriopedro et al. 2011). 

This finding was supported by model simulations performed by Jaeger and Seneviratne 

(2010), who showed that a soil moisture deficit is able to considerably amplify summer Tmax. 

Haarsma et al. (2009) pointed out possible distant connections between soil moisture deficit in 

Southern Europe and heat waves over Central and Western Europe. Intense surface heating 

due to lack of soil moisture may trigger a large-scale Mediterranean heat low, bringing 

easterly winds over these regions. In addition, the switch from a global dimming to global 

brightening phase in the 1980s due to decline of aerosol emissions may be also reflected in 

increased severity of heat waves (Tang et al. 2012). 

 

2.3.2 Cold spells 

Euro-Atlantic atmospheric blocking occurs most frequently in winter (Croci-Maspoli et al. 

2007), and the relationship between atmospheric circulation and European temperature is 

strongest also during this season (Cattiaux et al. 2012). The severity of cold spells is well 

correlated with the North Atlantic Oscillation index (NAO) that expresses the strength of a 

zonal flow (Scaife et al. 2005). More specifically, winter conditions can be described using 

four ‘weather regimes’ (e.g. Hurell and Deser 2010), which are derived from pressure patterns 

over the Euro-Atlantic domain. These are i) positive NAO phase, ii) negative NAO phase, iii) 

Scandinavian blocking, and iv) Atlantic ridge of high pressure. In addition, occurrence of 

these regimes and winter atmospheric circulation generally is modulated by quasi-periodical 

changes in solar activity (Barriopedro et al. 2008; Huth et al. 2008).   

The aforementioned cold winter of 2009/2010 was related to an exceptionally persistent 

negative NAO phase (Cattiaux et al. 2010). The second most abundant weather regime during 

the 2009/2010 winter was Scandinavian blocking, which is also conducive to cold spells over 

Europe (Kyselý 2008). By contrast, the frequency of positive NAO phase was extremely low 

(5 of 90 days) during the winter of 2009/2010 (Cattiaux et al. 2010). 

Beside atmospheric circulation, the severity of cold spells may be amplified by snow 

cover albedo feedback. Plavcová and Kyselý (2016) showed that the frequency of north-
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eastern cyclonic synoptic types, which are linked to snowfall in Europe (Bednorz 2011), is 

significantly increased before the onset of cold spells in Central Europe.  

A shift to positive NAO phase since the 1970s is likely to be responsible for the majority 

of the aforementioned decline in cold spell occurrence at the end of the 20th century (Scaife et 

al. 2008). Cattiaux et al. (2010), however, concluded using flow analogues method that the 

winter of 2009/2010 was warmer than expected based on its record‐breaking seasonal 

circulation characteristics and attributed this inconsistency to a ‘background warming’. It is 

possible that multidecadal variability of NAO may be also influenced by global climate 

change. Therefore, the higher winter temperatures may be partly either consequence or cause 

of the increased NAO index. 

 

2.4 Simulation of heat waves and cold spells in climate models 

Climate models have become a powerful tool for studying possible climate change 

scenarios. There has been a continuous increase of their horizontal and vertical resolution. 

Present CMIP5 global climate models (GCMs) have the horizontal grid spacing of an 

atmospheric component roughly 0.5−4°, and more than half of them have grids finer than 1.3° 

(Taylor et al. 2012). This resolution is nevertheless still not sufficient to resolve smaller-scale 

processes and thus additional downscaling is needed, especially for regional analyses. There 

are two main branches of downscaling methods: statistical, and dynamical (e.g. Haylock et al. 

2006). 

Statistical downscaling involves deriving empirical relationships that transform large-

scale features of the GCMs to regional scale variables and includes three categories: i) 

weather generators, ii) weather typing and iii) transfer functions (Ghosh and Mujumdar 2007). 

A weather generator creates a large number (thousands) of time series for any meteorological 

variable based on its statistical characteristics (e.g. mean, variance, autocorrelation 

coefficient) and it was used by Kyselý (2010) to estimate future characteristics of heat waves 

in Prague. Although many different statistical downscaling methods are available, allowing 

flexible and computationally inexpensive process, their largest drawback is that empirical 

relationships valid in the present climate may be altered under climate change conditions. 

Dynamical downscaling is represented by regional climate models (RCMs). RCMs are 

nested into coarser-grid driving GCMs that provide boundary conditions and work within 

limited domains (e.g. Europe), thereby allowing the use of a denser grid while preserving 

reasonable computation time. RCMs may also be driven by a reanalysis (i.e. perfect boundary 
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conditions), and these outputs are used for model evaluation. Present RCMs from the EURO-

CORDEX project have a horizontal grid spacing of 12.5 km (Jacob et al. 2014) and very high-

resolution (1−2 km grid) RCMs were recently introduced. These very high-resolution models 

are able to resolve small-scale processes (e.g. atmospheric convection) which mainly improve 

simulation of a diurnal cycle of precipitation. A better representation of orography further 

improves simulation of heavy precipitation, local wind patterns, or urban canopy effects 

(Rummukainen et al. 2015). 

Before analysing climate change projections, model simulations should be evaluated 

against observed data. Realistic simulation of temperature extremes is related to credible 

representation of their driving mechanisms, i.e. atmospheric blocking, soil moisture, or snow 

cover albedo feedback (Section 2.3). Although GCMs are able to simulate a geographical 

location of blocking anticyclones, the frequency of blocks is generally underestimated (Scaife 

et al. 2010). Biases were also found in simulations of snow cover (Peings 2013) and soil 

moisture (Boé and Terray 2008), which may alter future projections. It should be noted that 

successful simulation of heat waves in climate models may originate from compensating 

effect of underestimated blocking condition and overestimated intensity of drought. 

Analogously, successful simulation of cold spells may be based on less frequent blocks and 

overestimated snow-albedo feedback. 

The evaluation of RCMs from the PRUDENCE project was performed by Kjellström et 

al. (2007). RCMs overestimated the 95% quantile of summer Tmax over Mediterranean and 

Balkan Peninsula while underestimation was found mainly in Scandinavia and the British 

Isles. A similar bias pattern is present in RCMs from the ENSEMBLES project (Dosio and 

Parulo 2011). Kjellström et al. (2011) attributed the negative temperature bias in the northern 

parts of the European domain to improper simulation of sea surface temperature and ice 

condition in the North Atlantic, while the positive temperature bias in the south is triggered by 

too-dry model climate in spring and summer in the Mediterranean. These model deficiencies 

and analogous temperature bias patterns are also present in the EURO-CORDEX project 

(Kotlarski et al. 2014), despite the fact that RCMs were driven by the perfect boundary 

conditions. Relatively good simulation of summer Tmax is achieved over Central Europe, 

where Kjellström et al. (2010) found the highest skill scores and only small negative 

temperature bias is usually reported (Nikulin et al. 2011; Plavcová and Kyselý 2011).  

Analogously to summer Tmax, Kjellström et al. (2007) evaluated winter Tmin in 

PRUDENCE RCMs. The bias was positive in Western and Northern Europe (especially in 
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Scandinavia) and negative in the south-eastern regions. The mild winters were attributed to 

overestimated zonal flow in the HadGEM GCM. This is in accordance with Dosio and Parulo 

(2011), who showed that the winter Tmin bias in ENSEMBLES RCMs is strongly related to 

atmospheric circulation provided by driving GCMs. This fundamental dependence on driving 

data resulted in a different bias pattern in EURO-CORDEX RCMs driven by the reanalysis 

compared to ENSEMBLES RCMs driven by GCMs (Kotlarski et al. 2014). 

Reproduction of heat waves (cold spells) requires not only good simulation of the right 

(left) tail of a temperature distribution but also of the persistence of high (low) temperatures. 

Many studies (e.g. Ballester et al. 2010; Fischer et al. 2010; Peigns et al. 2013) define heat 

waves and cold spells based on quantiles calculated for each climate model individually, in 

order to remove temperature bias. The capability of CORDEX RCMs to simulate heat waves 

over Europe was evaluated by Vautard et al. (2013). Even though the RCMs were driven by 

the reanalysis and quantiles were calculated individually for each RCM, the simulated heat 

waves were too persistent and severe, probably due to improper simulation of surface energy 

fluxes. In addition, Plavcová and Kyselý (2015) concluded that the overly persistent 

circulation in ENSEMBLES RCMs driven by the reanalysis contributed to the overestimated 

frequency of long heat waves and cold spells. Overestimated severity of cold spells was found 

also by Peigns et al. (2013), mainly due to too-long left tail of the temperature distribution. 

Most of the utilized CMIP5 GCMs overestimated the duration of cold spells, while their 

spatial extent was generally underestimated (Peigns et al. 2013). 

 

2.5 Projections of future heat waves and cold spells 

Projections of a possible future climate are based on concentration scenarios, which are 

used to provide a description of possible future evolution with respect to socio-economic 

change, technological change, energy and land use, and emissions of greenhouse gases and air 

pollutants (van Vuuren et al. 2011). Depending on the choice of concentration scenarios, 

simulations of GCMs project increase of temperatures over Europe by 2−3°C in the 

2046−2065 period and by 2−6°C in the late 21st century (IPCC 2013).  

In addition to the shift in mean value of the temperature distribution, heat waves and cold 

spells are also influenced by changes in its variance. In summer, GCMs simulate a widening 

of temperature distribution (Cattiaux et al. 2012) that may be caused by increased blocking 

frequency or enhanced soil-moisture feedback. Therefore, in combination with higher mean 

temperatures, heat waves are expected to become more frequent, more intense, and longer 
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lasting in a future climate (e.g. Meehl et al. 2004). According to Fischer and Schär (2010), the 

frequency of Central European heat waves is projected to be four heat waves per decade in the 

2021−2050 period and 13 heat waves per decade in the late 21st century under the SRES A1B 

scenario, while only one heat wave per decade is simulated in a historical period. Although 

these expected changes are usually reported to be driven mainly by higher mean temperature 

(Ballester et al. 2010), Seneviratne et al. (2006) also emphasize the role of increasing 

temperature variance. Increased frequency of heat waves is projected also under the RCP 4.5 

‘low’ concentration scenario (Lau and Nath, 2014). 

Changes in wintertime temperature variance mainly depend on atmospheric circulation. 

CMIP3 GCMs project decreased temperature variance in winter (Cattiaux et al. 2012), which 

is attributable to the increased zonal flow. These results are in accordance with Peings et al. 

(2013), who projected a higher frequency of positive NAO phase in a future climate. By 

contrast, CMIP5 GCMs simulate increased occurrence of negative NAO phase in a future 

climate (Cattiaux et al. 2013) and Francis and Vavrus (2012) suggest that the occurrence of 

wintertime blocking anticyclones may be enhanced due to rapid warming over the Arctic. 

Inasmuch as projections of cold spells are related to many uncertainties, it is difficult to 

conclude possible future scenarios for these events.  
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3 Work objectives 

A general aim of this thesis is to study variability of heat waves and cold spells in the past, 

present, and possible future climate. The study is conducted over Central Europe, which was 

affected by several extraordinary events in recent years. Based on the literature review 

(Section 2.2), an analysis of heat waves and cold spells is carried out with emphasis on their 

spatial extent using gridded data sets, because this characteristic was not often considered in 

previous studies. In addition, use of gridded data sets is suitable for evaluating climate models 

that provide spatial fields of meteorological variables. Nevertheless, ‘point’ station data is 

also utilised in order to assess the magnitude of recent severe heat waves on a centennial 

scale, because no high-quality gridded data is available for these long-term analyses. 

Changes in these events in a possible future climate are analysed with respect to related 

uncertainties originating from the selection of concentration scenarios, combinations of RCM 

× GCM, and climate models’ spatial resolution. Previous studies that analysed heat waves or 

cold spells in a possible future climate did not evaluate these uncertainties in detail. An 

emphasis is given to heat waves as these are regarded as a larger threat in the context of 

climate change compared to cold spells, and partly because the occurrence of cold spells is 

also related to extraterrestrial effects (Section 2.5), which are not taken into account in present 

climate models. Before assessing changes of heat waves under climate change scenarios, the 

capability of climate models to simulate these events is evaluated. Identifying strengths and 

weaknesses of climate models is vital for credible interpretation of simulated heat waves in a 

possible future climate. The aim of the thesis is achieved through completing four work 

packages (WPs) listed below: 

 

• WP1: Analysing temporal variability of heat waves and cold spells using (i) 

meteorological stations with long-term measurements and (ii) gridded data that allow 

investigating the spatial extent of these events 

• WP2: Describing the most prominent heat waves and cold spells and assessing the 

extremity of recent events in a long-term context 

• WP3: Evaluating the capability of RCMs to simulate heat waves in a historical climate 

and identifying possible sources of errors 

• WP4: Investigating possible changes of frequency and characteristics of heat waves in 

a future climate under various concentration scenarios 
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4 Study area, data and methods 

Heat waves and cold spells are analysed over Central Europe, which is defined to 

encompass more than 600,000 km2 approximately between 47−53°N and 8−22°E. This area 

includes Germany (excluding its northern areas and the Rhineland), the south-western part of 

Poland, the Czech Republic, northern Austria (bordered by the northern slope of the Alps), 

Slovakia (excluding its eastern part) and northern Hungary (Figure 4.1). The majority (75%) 

of this area has an elevation below 500 m a.s.l., while the rest is formed by highlands and 

mountains. According to Köppen-Geiger climate classification, almost entire Central Europe 

has warm temperate and fully humid climate with warm summers (Cfb), while the rest of the 

region exhibits snow and fully humid climates (Df) in mountainous areas (Kottek et al. 2006). 

The definition of Central Europe varies slightly among research articles included into the 

thesis, mainly due to the use of different data sets. 

 

Figure 4.1. Definition of Central Europe and World digital elevation model (ETOPO5). 

 

The data sets and meteorological variables utilized in the thesis are listed below. The data 

were used for assessing temporal variability and characteristics of observed heat waves and 

cold spells, evaluating RCMs’ simulations of heat waves, projecting their future changes, and 

performing additional analyses. 
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• European Climate Assessment & Dataset (ECA&D) project (Klein Tank et al. 2002) − 

This data set is receiving daily data from 62 countries (10455 meteorological stations) 

over Europe, Northern Africa, and Western Asia. The majority of these series can be 

downloaded online (http://www.ecad.eu/). Although many stations exhibit some 

inhomogeneities (Wijngaard et al. 2003), this data set nevertheless represents the best 

source of long-term station data over Central Europe and has been used in a variety of 

analyses (e.g. Beniston 2013; Simolo et al. 2014). Daily maximum temperature from 

this data set was used to assess the severity of heat waves at Central European stations 

with long-term measurements.  

• E-OBS gridded data set (Haylock et al. 2008) − These data are based on the 

aforementioned ECA&D station data and are available over most European regions. 

Its grid has a horizontal resolution of 25 or 50 km and data are available from 1950 to 

the present. The data set is still being developed by adding new observations and 

correcting previous errors. Current and previous versions are available online via 

project webpage (http://www.ecad.eu/download/ensembles/download.php). Gridded 

daily maximum (minimum) temperature from this data set was used to delimit heat 

waves (cold spells) with respect to their spatial extent. Links between soil-moisture 

deficit and severity of heat waves were studied through precipitation data, and daily 

mean temperature was utilized to identify hot summers. 

• RCMs from the ENSEMBLES project (van der Linden and Mitchell 2009) − These 

simulations are available in 25 or 50 km grid, covering whole Europe. RCMs are 

driven either by the ERA-40 reanalysis (perfect boundary conditions experiments) or 

by GCMs (historical and A1B scenario runs). RCMs driven by the reanalysis and 

historical runs are available from the mid-20th century to 2000, while scenario runs 

cover the 2001−2100 period. Data can be downloaded from the project website 

(http://ensemblesrt3.dmi.dk/). A capability of RCMs to reproduce severe Central 

European heat waves was evaluated using these simulations driven by the reanalysis. 

Besides daily maximum temperature utilized for identifying and describing severity of 

heat waves, additional analyses were carried out using simulated precipitation and 

surface fluxes data. In addition, GCMs-driven simulations were analysed to examine 

changes in heat wave frequency in a possible future climate.  

• RCMs from the EURO-CORDEX (Jacob et al. 2014) − This project is a successor to 

the ENSEMBLES project. Individual RCMs were subjected to various upgrades, 
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including an improvement of their respective sets of physical parameterizations, while 

keeping their basic principles from the ENSEMBLES stage. The EURO-CORDEX 

project consists of simulations in high resolution (12.5 km grid) and in coarser 50 km 

grid. RCMs are driven either by the reanalysis (ERA-Interim, Dee et al. 2011) or 

GCMs. Scenario runs are forced mostly by RCP 4.5 or RCP 8.5 concentration 

scenarios. Changes in heat wave frequency in a possible future climate were analysed 

also using this data set. 

• NCEP/NCAR reanalysis (Kalnay et al. 1996) − This data set is available from 1948 to 

present with global coverage and a horizontal resolution of 2.5 × 2.5°. Mean sea level 

pressure and 500 mb geopotential height were obtained from this data set in order to 

analyse a large-scale flow during the 2013 heat wave.  

• CLARIS LPB dataset − These data were provided by the Argentine National Weather 

Service and their quality was analysed through the European project CLARIS LPB 

(Penalba et al. 2014). Maximum and minimum daily temperature from 58 stations 

were used to describe temporal variability of heat waves over Argentina. 

 

Due to relatively complex climate of Central Europe, heat waves and cold spells were 

defined in this thesis based on relative thresholds. The 90% or 95% quantiles were applied on 

both station and gridded data. Due to considerable temperature biases in modelled data, these 

quantiles were calculated separately for each simulation, in order to focus rather on the 

behaviour of the right tail of temperature distributions than on the bias itself. This approach 

was widely used in previous studies that analysed heat waves and cold spells in climate model 

simulations (Ballester et al. 2010; Peigns et al. 2013; Vautard et al. 2013). The magnitude of 

heat waves and cold spells in gridded data was assessed using the extremity index that takes 

into account temperature anomaly, length, and spatial extent of the events, while the 

magnitude of heat waves in station data was calculated through combination of temperature 

anomaly and length only. Detailed descriptions of other methods, including cluster analysis, 

calculation of effective precipitation, evaporative fraction and temporal autocorrelation of 

temperature are given in individual research articles in Sections 6−10. 
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5 Overview of research articles used in the thesis 

The thesis is based on five research articles focused on temperature extremes and 

published or submitted to impact factor rated international journals:  

 

Lhotka O, Kyselý J (2015): Characterizing joint effects of spatial extent, temperature 

magnitude and duration of heat waves and cold spells over Central Europe, International 

Journal of Climatology, 35, 1232-1244, DOI: 10.1002/joc.4050 

Lhotka O, Kyselý J (2015): Hot Central-European summer of 2013 in a long-term context, 

International Journal of Climatology, 35, 4399-4407, DOI: 10.1002/joc.4277 

Lhotka O, Kyselý J (2015): Spatial and temporal characteristics of heat waves over Central 

Europe in an ensemble of regional climate model simulations, Climate Dynamics, 45, 

2351-2366, DOI: 10.1007/s00382-015-2475-7 

Lhotka O, Kyselý J (2016): Climate change scenarios of heat waves in Central Europe and 

their uncertainties, Theoretical and Applied Climatology [under review] 

Rusticucci M, Kyselý J, Almeira G, Lhotka O (2016): Long-term variability of heat waves in 

Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires, 

Theoretical and Applied Climatology, 124, 679-689, DOI: 10.1007/s00704-015-1445-7 

 

The first four papers resulted from collaboration with my supervisor, J. Kyselý. I prepared 

the data sets, performed all analyses and was primarily responsible for the manuscripts’ 

preparation. J. Kyselý assisted me with interpretation of results, publication of research 

articles, and he supervised my work. The last study, of which I am not the first author, 

broadens and supplements the topic of the thesis. The specification of my contribution to this 

research article, confirmed by the leading author, is in the appendices (Section 14). 

The first article is entitled ‘Characterizing joint effects of spatial extent, temperature 

magnitude and duration of heat waves and cold spells over Central Europe’ and was published 

in International Journal of Climatology. In this paper, heat waves and cold spells over Central 

Europe were analysed using the E-OBS gridded data set. An extremity index was proposed 

which combines spatial extent, temperature, and duration of heat waves and cold spells. The 

most severe heat waves in the 1950−2012 period occurred in the summers of 1994 and 2006, 

while the most extreme cold spells were observed in winters 1955/56 and 1962/63. The well-

known European heat waves in 2003 and 2010 were not that pronounced over Central Europe, 
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since largest temperature anomalies were observed in France and Russia, respectively. Both 

heat waves and cold spells were classified through a hierarchical cluster analysis of 

temperature amplitude, spatial extent, and duration into four basic types and the list of major 

Central European events was established. This article contains the results from WP1 − 

analysis of temporal variability of heat waves and cold spells in gridded data and WP2 − 

description of the most prominent heat waves and cold spells. 

The second article ‘Hot Central-European summer of 2013 in a long-term context’ was 

also published in International Journal of Climatology. The paper was focused on the 

anomalously hot summer of 2013, and its extremity was analysed using both station and 

gridded data. This summer was ranked as the fifth warmest since 1951 on the European scale, 

with high positive temperature anomalies over Central Europe. In Kremsmuenster and Graz 

(Austria), the 2013 summer was unprecedented according to heat wave characteristics since 

the end of the 19th century and it was extreme also at other Central European stations with 

long-term measurements. The most intense heat wave over Central Europe in early August 

2013 was driven primarily by anticyclonic conditions and was probably amplified by the 

preceding precipitation deficit. The paper contributed to WP1 – analysis of temporal 

variability of heat waves and cold spells using meteorological stations with long-term 

measurements and WP2 − assessment of the extremity of recent events in a long-term context. 

The third article is entitled ‘Spatial and temporal characteristics of heat waves over 

Central Europe in an ensemble of regional climate model simulations’ and was published in 

Climate Dynamics. The study examines the capability of RCMs driven by the reanalysis to 

reproduce spatial and temporal characteristics of severe Central European heat waves, and it 

benefits from the methodology developed and tested in the first article. The multi-model mean 

reflected the observed characteristics of heat waves quite well, but considerable differences 

were found among the individual RCMs. Deficiencies were found also in reproducing 

interannual and interdecadal variability of heat waves. The magnitude of the most severe 

Central European heat wave that occurred in 1994 was underestimated in all RCMs and this 

error was related to overestimated precipitation during and before this event. By contrast, a 

simulated precipitation deficit during summer 1967 in the majority of RCMs contributed to an 

‘erroneous’ heat wave. The results suggest that land–atmosphere interactions are crucial for 

developing severe heat waves, and their proper reproduction in climate models is essential for 

obtaining credible scenarios of future events. This article contributed to WP3 − evaluation of 
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the capability of RCMs to simulate heat waves in a historical climate and the identification of 

possible sources of errors. 

The fourth article ‘Climate change scenarios of heat waves in Central Europe and their 

uncertainties’ was submitted to Theoretical and Applied Climatology. The study examines 

climate change scenarios of Central European heat waves with a focus on related 

uncertainties. A methodology was partly based on the first article and some of the RCMs 

utilized (driven by the reanalysis) were evaluated in the third article. In the fourth article, a 

large ensemble of RCM simulations (62) was analysed in order to calculate several possible 

scenarios. Although the RCMs were found to reproduce the frequency of heat waves quite 

well, those RCMs with the coarser grid considerably overestimated the frequency of severe 

heat waves. This deficiency was overcome in the higher-resolution EURO-CORDEX RCMs. 

In the near future (2020–2049), heat waves are projected to be nearly twice as frequent in 

comparison to the modelled historical period, and the increase is even larger for severe heat 

waves. Uncertainty originates mainly from the selection of RCMs and GCMs, because the 

increase is similar for all concentration scenarios. For the late 21st century (2070–2099), a 

substantial increase in heat wave frequencies is projected, the magnitude of which depends 

mainly upon concentration scenario. Two to four heat waves per summer are projected in this 

period, depending on concentration scenario (compared to less than one in the recent climate), 

and severe heat waves are likely to become a regular phenomenon. The paper contains the 

results from WP4 – investigation of possible changes of frequency and characteristics of heat 

waves in a future climate under various concentration scenarios and partly contributed to WP3 

− evaluation of the capability of RCMs to simulate heat waves in a historical climate and the 

identification of possible sources of errors. 

Some methodological approaches based on analysis of Central European heat waves were 

applied in the fifth article entitled ‘Long-term variability of heat waves in Argentina and 

recurrence probability of the severe 2008 heat wave in Buenos Aires’, which resulted from a 

joint project with the University of Buenos Aires and was published in Theoretical and 

Applied Climatology. The objectives of this work were to study the long-term variability of 

heat waves over Argentina and to estimate recurrence probability of the most severe 2008 

heat wave in Buenos Aires using long artificial time series of Tmax simulated by a first-order 

autoregressive model. A positive trend of heat wave days was found in Buenos Aires, while 

some stations exhibited a decrease of heat wave days. The recurrence probability of the major 
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2008 heat wave was found to be small in the present climate but it is likely to increase 

substantially in the near future even under a moderate warming trend. 
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6 Article I: ‘Characterizing joint effects of spatial  extent, temperature 

magnitude and duration of heat waves and cold spells over Central 

Europe’ 

 

Ondřej Lhotkaa,b and Jan Kyselýa 

 
a Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 

b Faculty of Science, Charles University, Prague, Czech Republic 

 

International Journal of Climatology, 35, 1232-1244, DOI: 10.1002/joc.4050 

 

Abstract: Heat waves and cold spells have pronounced impacts on the natural environment 
and society. The main aim of this study was to identify major Central European heat waves 
and cold spells since 1950 and assess their severity not only from the viewpoint of 
temperature and duration but also as to the affected area. The heat waves and cold spells were 
delimited from the E-OBS gridded data set. An extremity index was proposed that captures 
joint effects of spatial extent, temperature and duration of heat waves and cold spells. During 
the 1950–2012 period, we identified 18 major heat waves and 24 major cold spells over 
Central Europe. The most severe heat wave occurred in summer 1994, followed by the 2006 
heat wave; both these events were far more extreme over Central Europe than heat waves in 
the well-known 2003 and 2010 summers. The most severe cold spells occurred in the winters 
of 1955/56 and 1962/63. The recent winter of 2011/12 was found to be the 6th coldest since 
1950/51 according to the seasonal sum of the extremity index. The heat waves and cold spells 
were classified through a hierarchical cluster analysis of their characteristics (temperature 
amplitude, spatial extent of the core, and duration) into 4 basic types. The established list of 
major Central European heat waves and cold spells might be utilized in further analyses. The 
extremity index may be applied over different areas to perform comparative studies and used 
also for evaluation of regional climate model simulations. 
 
Keywords: heat waves; cold spells; extremity index; interannual variability; cluster analysis; 
E OBS gridded data set 

 

6.1 Introduction 

Heat waves and cold spells are important phenomena of the European climate and have 

major impacts on the natural environment and society. These events are traditionally regarded 

as several days long summer/winter periods when weather conditions are excessively 

hotter/colder than normal. Severe heat waves that occurred during the past two decades and 

the very cold winter of 2009/2010 in Europe have prompted intense investigation of these 

events. De Bono et al. (2004) reported more than 30,000 deaths during the 2003 western 

European heat wave along with other economic losses; however, the number of excess deaths 
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varies across studies and the estimates reach up to 70,000 (Robine et al. 2008). The extreme 

eastern European summer of 2010 was associated with an estimated death toll of 55,000, 

substantial crop failures and more than 1 million ha of burned areas (Barriopedro et al. 2011). 

Heat waves also cause stress for livestock and wildlife, spreading of pests, and increased 

energy demand for cooling (Beniston et al. 2007). Inasmuch as the relationship between 

ambient temperature and mortality is U-shaped (increased risks for both low and high 

temperatures), cold spells also affect public health (Barnett et al. 2012). Harsh conditions 

during cold spells can harm vegetation, and air temperature might fall below the thresholds 

for which buildings and other infrastructural components were designed (Vavrus et al. 2006). 

European heat waves have been analysed by many authors. The influence of a large scale 

forcing on heat waves was evaluated by Della Marta et al. (2007a), who showed that heat 

waves over Europe are related to the Atlantic Multidecadal Oscillation (e.g. Sutton and 

Hodson 2005). A detailed analysis of synoptic factors during the 2003 heat wave was made 

by Black et al. (2004), while the large scale flow during the extreme 2010 summer was 

analysed by Schneidereit et al. (2012). Recurrence probability of recent severe heat waves 

was estimated using simulations with a stochastic time series model by Kyselý (2002, 2010), 

including possible changes under future scenarios. The role of anthropogenic climate change 

was analysed by Stott et al. (2004) for the 2003 European heat wave and by Meehl et al. 

(2007) for temperature extremes over the United States. Another important factor that 

contributes to heat wave amplification is land–atmosphere coupling. Many papers emphasize 

the role of soil moisture deficit during major heat waves (e.g. Fischer et al. 2007; Jaeger and 

Seneviratne 2010). Interannual variability of European heat waves during 1880–2005 was 

investigated by Della Marta et al. (2007b). The duration of heat waves was pronounced in the 

middle of the 20th century and at the end of the examined period, and the positive trend in the 

duration of heat waves was significant at the majority of stations. Analyses of temporal 

variability of heat waves in Central and Eastern Europe were performed by Kyselý (2010) for 

the Czech Republic and by Shevchenko et al. (2013) for Ukraine. 

Recent studies of cold spells over Europe have been mainly focused on the anomalous 

winter of 2009/2010. L'Heureux et al. (2010) showed that the Arctic Oscillation (e.g. 

Thompson and Wallace 1999) contributed greatly to the below-average temperatures over 

Europe. Cattiaux et al. (2010) ranked the winter of 2009/2010 as the 13th coldest over Europe 

since 1949, far behind the cold record for the winter of 1962/1963. Using the flow analogue 

method, authors demonstrated that atmospheric dynamics during the winter of 2009/2010 was 
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favourable to a temperature anomaly comparable in magnitude to the record-breaking winter 

of 1962/1963, and attributed this inconsistency to the background warming. An analysis of 

interannual variability of cold wave days over Europe during 1901–2000 was performed by 

Kyselý (2008) using station data from the ECA data set (Klein Tank et al., 2002). Cold wave 

days were most pronounced in the mid-20th century and almost vanished at the end of the 

examined period. 

Although a lot of work has been done to examine heat waves and cold spells, only several 

studies have considered their spatial extent (e.g. Stefanon et al. 2012; Peings et al. 2013). 

There is a need to investigate these events not only regarding the aspects of air temperature 

and duration but also with a view to the affected area. Therefore, we propose an extremity 

index that takes into account all these variables, and use it to evaluate heat waves and cold 

spells over Central Europe. This region was recently affected by exceptionally high 

temperatures in August 2012, when the new record-breaking air temperature (40.4°C) was 

measured in the Czech Republic (Němec, 2012). In addition, Central Europe experienced 

extremely cold conditions in the winter of 2011/2012 which resulted in more than 800 deaths 

due to hypothermia in Central and Eastern Europe (Aon Benfield, 2012).  

The main aim of this study was to identify major Central European heat waves and cold 

spells since 1950 and to assess their severity using an extremity index proposed for 

characterizing joint effects of spatial extent, magnitude and duration of heat waves and cold 

spells.  

 

6.2 Data and methods 

 

6.2.1 Data and area of interest 

The daily temperature data was taken from the E-OBS 9.0 gridded data set (Haylock et al. 

2008) that has spatial resolution of 25 km (0.22 deg. rotated pole grid) and covers the period 

from 1 January 1950 to 30 June 2013. Although Kyselý and Plavcová (2010) published a 

critical remark on the applicability of its second version, it represents the best source of high-

resolution data covering the whole European land area. The analysis of the spatial 

characteristics of heat waves and cold spells would not be straightforward from irregularly 

spaced station data. Another advantage of using E-OBS is that the methodology and the 

extremity index as proposed in the present study might be utilized for evaluation of regional 

climate models (RCMs), due to the same grid being used by E-OBS and many RCMs. 
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Moreover, the E-OBS data set is being developed by increasing the station density and 

correcting previous errors (more information is available at the project website – 

http://www.ecad.eu/download/ensembles/oldversions.php).  

We examined 63 years long series for both seasons (summers of 1950–2012 for heat 

waves and winters of 1950/1951–2012/2013 for cold spells). Summer was defined as the 

period between 1 June and 31 August, while winter was regarded as the period between 1 

December and 28 February. This is a standard definition of seasons in European climate and it 

was adopted also to allow a comparison with other studies.   

The analysis was performed over Central Europe defined by 1,000 grid points (40×25) 

and covering an area of 625,000 km2. This domain is located approximately between 47–

53°N and 8–22°E and includes Germany (excluding its northern areas and the Rhineland), 

northern Austria, the Czech Republic, the south-western part of Poland, Slovakia (excluding 

its eastern part) and northern Hungary (Figure 6.1). The geographical demarcation of Central 

Europe varies across sources, however, we included all countries traditionally regarded as 

Central European. The location of the centre (50°N, 15°E) is in accordance with previous 

works for Central Europe (e.g. Plavcová and Kyselý, 2012). 

 

 

Figure 6.1. Definition of Central Europe (black dashed polygon) and elevation model 

(GTOPO30) used in E OBS 9.0 gridded data set (grayscale). 

 

 



30 

 

6.2.2 Definition of heat waves 

There is no universal definition of heat waves (HWs). Perkins and Alexander (2013) 

summarized definitions of these events and concluded that a HW is traditionally regarded as a 

period of consecutive days when conditions are excessively hotter than normal. Based on this 

definition, a HW can occur anytime during the year. Despite this, we focused on summer 

HWs only because of their serious impacts on the natural environment and society.  

In previous works, various criteria have been applied to delimit HWs. Two main 

approaches have been adopted for estimating whether conditions are ‘excessively hotter’. The 

first one is based on given temperature thresholds (e.g. Colombo et al. 1999; Gershunov et al. 

2009; Kyselý 2010) and it is suitable when delimiting HWs from single station data or from a 

region with quite homogeneous climate. The second approach uses a certain quantile for each 

station/grid point (e.g. Beniston et al. 2007; Cassou et al. 2005; Della-Marta et al. 2007b; 

Fischer et al. 2007). This approach respects the local climatology across the entire area of 

interest and thus is useful when performing regional analyses. Since the climate across 

Central Europe is very diverse (e.g. northern slope of the Alps vs. Pannonian lowlands), we 

adopted the latter approach.  

The definition of a HW was based on the persistence of hot days (HDs). For each day in 

summer, daily maximum air temperature (Tmax) in each grid point over Central Europe was 

transformed into Tmax deviation by subtracting the grid point specific 95% quantile of summer 

Tmax distribution. The 95% quantile was calculated over the 40 years period 1961–2000. 

Using this limited period allows updating the list of HWs without the need of recalculating 

respective quantiles. In addition, this period corresponds to many RCM runs driven by 

reanalysis, such as those from the ENSEMBLES project (van der Linden and Mitchell, 2009), 

which can be utilized in further work dealing with evaluation of HWs in RCM simulations.  

Any day was considered a HD when the average of the Tmax deviations from the 95% 

quantile of summer Tmax distribution over Central Europe (Figure 6.1) was greater than zero. 

Thus, a HD can occur only if a substantial part of Central Europe is affected by Tmax above 

the 95% quantile. Therefore, it is necessary to design the domain with respect to a typical 

extent of synoptic features in order to identify HDs appropriately. 

A HW over Central Europe was defined as a period of at least 3 consecutive HDs. The 

minimum duration of a HW in previous works varies from 2 days (e.g. Barnett et al. 2012) to 

5 or more days (e.g. Ballester et al. 2010; Fischer and Schär 2010). The commonly used 3-day 

minimum duration (e.g. Della Marta et al. 2007a; Kyselý 2010; Meehl and Tebaldi 2004) was 
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applied in our analysis. These relatively strict criteria allow identifying only major heat waves 

that are presumed to have considerable impacts on the natural environment and society. For 

this period (3 or more days), the daily grid maps of positive Tmax deviations were summed up 

into a cumulative map. Negative Tmax deviations were not taken into account.  

To describe the severity of individual HWs, a heat wave extremity index (Ihw) was 

proposed. Ihw is calculated from a cumulative map of positive Tmax deviations, and it is 

analogous to the station based TS30 index, used by Kyselý (2010) to examine severity of 

HWs. Values of individual grid points (TSmax′) are summed up and scaled by the total 

number of grid points in Central Europe (1,000): 

 

 

 

where n is the number of grid points with a positive Tmax deviation in a cumulative map. The 

index uses summed up deviations over the whole period when a HW persists, and hence it 

captures joint effects of spatial extent, temperature magnitude and duration of a HW over the 

area of Central Europe. 

 

6.2.3 Definition of cold spells 

The definition of a cold spell (CS) was made analogous to that of a HW in order to allow 

direct comparison of these events and their characteristics. The definition was based on the 

persistence of cold days (CDs) in winter. A CD occurred when the average of daily minimum 

air temperature (Tmin) deviations from its 5% quantile over Central Europe was less than zero. 

Analogously to HWs, we focus on major CSs that were defined as periods of at least 3 

consecutive CDs. The description of CS severity was based on a cold spell extremity index 

(Ics) that analogously utilizes accumulated negative Tmin deviations over Central Europe and is 

given as an absolute value:  
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6.2.4 Characteristics of heat waves and cold spells 

Besides Ihw and Ics, we calculated several other characteristics of HWs and CSs. The 

temperature amplitude (T [°C]) is the highest daily value of Tmax deviations from the 95% 

quantile of the summer Tmax distribution during a HW (at any grid point in Central Europe) 

and represents the temperature anomaly of its peak. In the case of CSs, temperature amplitude 

is analogously computed from Tmin and its respective 5% quantile and is given as an absolute 

value. The spatial extent of the HW core (A [km2]) is given by an area in which the sum of 

Tmax deviations is greater than 10°C in a cumulative map. This represents the size of the area 

where weather conditions are considered extreme. The spatial extent of the CS core is 

calculated analogously, but the threshold was modified to 20°C. This adjustment was 

necessary due to differences between summer Tmax and winter Tmin distributions, as discussed 

in Section 6.5.1. Although the choice of 10°C and 20°C thresholds is somewhat arbitrary, we 

found it a reasonable compromise between too-low thresholds (in which case almost the 

whole area of Central Europe would be considered) and too-high thresholds (in which case 

many events would have spatial extent equal to zero). The duration of HW/CS (D [days]) is 

the number of days when HW/CS persists. A ratio between the total duration of HWs/CSs and 

the total number of HDs/CDs indicates whether HDs/CDs have a high clustering tendency 

(the ratio is close to 1), or whether HDs/CDs tend to occur separately throughout 

summer/winter (the ratio is close to 0). 

The identified HWs and CSs were visualized over a larger region than just Central Europe 

in order to obtain the larger-scale pattern associated with each event. However, grid points 

outside Central Europe were not taken into account when calculating Ihw, Ics, T, A and D. The 

only characteristic calculated from all visualized grid points (including grid points outside 

Central Europe) was the overall spatial extent of the HW (CS) core (OA [km2]). It was 

computed analogously to A, but for the whole domain. The calculated characteristics of HWs 

and CSs are summarized in Table 6.1. 

 

Table 6.1. Characteristics of heat waves and cold spells.  

Abbreviation Description Units Domain 
Ihw heat wave extremity index °C Central Europe 
Ics cold spell extremity index °C Central Europe 
T temperature amplitude °C Central Europe 
A spatial extent of the HW (CS) core km2 Central Europe 
OA overall spatial extent of the HW (CS) core km2 whole domain 
D duration days Central Europe 
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6.2.5 Cluster analysis of heat waves and cold spells 

Cluster analysis is widely used in atmospheric sciences for separating data into groups 

whose parameters are not known in advance. A broad overview of classification methods is 

presented in Huth et al. (2008). Cluster analysis of HWs and CSs was performed on the basis 

of their temperature amplitude (T), overall spatial extent of the HW (CS) core (OA), and 

duration (D). These variables were centred by subtracting their means and scaled by dividing 

them by their standard deviations. The input to the hierarchical clustering algorithm is a 

distance matrix (distances between observations) that was computed using Euclidean metric. 

It is the most commonly used distance measure in cluster analysis, however, other alternatives 

such as Mahalanobis metrics are also possible (Wilks 2011). The choice of hierarchical 

clustering algorithm determines how distances between clusters are measured. In the present 

study, we used the complete linkage (maximum distance) method in order to prevent the 

chaining of clusters. This method is based on the largest distance between points in two 

groups. The complete linkage method was also applied by Stefanon et al. (2012), who 

classified HWs based on the places of their occurrence over Europe.  

Determining the final number of classes usually requires a subjective choice that depends 

to some degree on the goals of the analysis (Wilks 2011). The final number of HW/CS classes 

was determined by inspecting the plot of the distances between merged clusters, where a rapid 

jump indicates the final number of classes. 

 

6.2.6 Statistical testing of heat wave and cold spells characteristics 

The statistical testing was performed for assessing the significance of differences between 

HW and CS characteristics. We used the non-parametric two-sample Wilcoxon test (e.g. 

Hollander and Douglas 1999) since some HW and CS characteristics do not exhibit normal 

distributions. Statistical significance was assessed at the 0.05 level. 

 

6.3 Heat waves 

 

6.3.1 Characteristics and interannual variability 

Over the 1950–2012 period, the total number of HDs in Central Europe was 188 (3.0 

HDs/year on average). These days formed 18 HWs (defined as periods of at least 3 

consecutive HDs) with a total duration of 84 days. These HWs occurred in 15 individual 
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years. The ratio between the total duration of HWs and the total number of HDs was 0.45. 

The list of observed HWs and their characteristics is given in Table 6.2. 

 

Table 6.2. Major heat waves over Central Europe during 1950–2012. 

Start End Ihw T A OA D 
19520702 19520705 7.7 7.4 179.4 511.3 4 
19520812 19520815 8.8 6.2 281.9 701.3 4 
19570704 19570708 13.9 7.7 432.5 871.9 5 
19590709 19590712 9.6 7.6 296.3 612.5 4 
19630723 19630725 4.3 6.0 66.9 114.4 3 
19640719 19640721 3.1 4.3 0.6 0.6 3 
19740815 19740817 5.5 4.7 6.9 19.4 3 
19760716 19760719 5.7 5.6 45.0 45.0 4 
19830726 19830728 6.7 8.4 145.0 404.4 3 
19920806 19920810 13.6 8.3 499.4 740.0 5 
19940627 19940629 4.0 4.3 18.1 18.1 3 
19940723 19940806 32.0 6.9 593.8 1,713.1 15 
20000620 20000622 7.0 5.9 109.4 196.3 3 
20030802 20030805 6.1 6.5 155.6 873.8 4 
20030808 20030810 6.2 7.5 193.1 917.5 3 
20060718 20060728 21.0 7.4 583.1 1,753.1 11 
20070715 20070717 10.1 7.2 354.4 455.6 3 
20100709 20100712 8.5 6.8 243.1 525.6 4 

 Average: 9.7 6.6 233.6 581.9 4.7 

Ihw – heat wave extremity index [°C], T – temperature amplitude [°C], A – spatial extent of the HW core 

[thousands km2], OA – overall spatial extent of the HW core [thousands km2], D – duration [days]. Dates of start 

and end of HW are in YYYYMMDD format. The spatial extent of the Central European domain is 625.0 

thousands km2. 

 

The most severe HWs over Central Europe (according to Ihw) occurred from 23 July to 6 

August 1994 (15 days) and during 18–28 July 2006 (11 days). These two HWs were markedly 

above the others by their extremity index, spatial extent, and duration (no other HW lasted 

longer than 5 days). On the contrary, the greatest temperature amplitude was found during the 

1983 HW that was only 3 days long and had relatively low extremity index and spatial extent. 

Interannual variability of HWs and HDs is visualised in Figure 6.2. 
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Figure 6.2. Interannual variability of hot days (HDs) and heat waves (HWs) over Central 

Europe during 1950–2012. 

 

Years with a great seasonal sum of Ihw occurred in two sub-periods at the beginning of the 

analysed period and since the early 1990s. The summer of 1994 was exceptional in terms of 

the sum of Ihw and the number of HDs. The 5 year running mean showed a considerably 

increased annual number of HDs in the last two decades of the examined period while in the 

1970s and 1980s, the occurrence of HDs was substantially reduced. 

The most-severe 1994 HW (Figure 6.3) is characterized by a large temperature pattern 

with a centre in Poland and its core (the area where the sum of positive Tmax deviations is 

greater than 10°C) covered Denmark, southern Sweden, Germany, north-western France, the 

Czech Republic, Austria, Slovakia, Hungary, Lithuania, Latvia, western Belarus, and western 

Ukraine. On the contrary, the 2006 HW extended westward, affecting more western European 

countries. The relatively low severity of the 2003 HWs over Central Europe was related to the 

position of their temperature patterns (Figure 6.3). In both cases, the eastern part of Central 

Europe was unaffected by the cores of these HWs, resulting in their small spatial extent over 

this region and therefore relatively low Ihw. Moreover, the largest sums of temperature 

deviations for these HWs were located in France, outside of Central Europe. 
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Figure 6.3. Heat waves in Central Europe during 1950–2012. The heat waves are ranked 

according to Ihw in descending order. Spatial patterns of the sum of positive Tmax deviations 

above the 95% quantile of summer Tmax distribution are plotted. 
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6.3.2 Cluster analysis 

In order to determine similarities among individual HWs and identify basic types of HWs 

as to their characteristics, a hierarchical cluster analysis based on temperature amplitude, 

overall spatial extent of the HW core, and duration was performed. Detailed information is 

given in Section 6.2.5. 

Based upon the cluster analysis, HWs were classified into 4 categories (Figure 6.4). The 

first category is characterized by exceptional overall spatial extent of the HW core and 

duration, and it contains the extremely widespread and persistent 1994 and 2006 HWs (their 

average duration exceeds the average duration in any other heat wave cluster by a factor of 3–

4; Table 6.3). Although their extremity index is very pronounced, these do not exhibit the 

highest temperature amplitude. The second cluster represents weak HWs with the lowest 

values of their characteristics, especially the temperature amplitude and overall spatial extent, 

which is reflected in the low extremity index. Moderate HWs are located in the third cluster; 

these HWs have the extremity index, temperature amplitude and overall spatial extent of the 

HW core close to the average of all HWs. The fourth cluster is characterized by the highest 

temperature amplitude. The very intense 1983 HW (T = 8.4°C) and the 1992 HW (T = 8.3°C) 

fall into this category. 

 

 

Figure 6.4. Dendrogram and the corresponding plot of the distances between merged heat 

wave clusters. Heat waves are labelled by the starting date in YYYYMMDD format. 
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Table 6.3. Mean characteristics of heat waves in individual clusters. 

Cluster Type Number of HWs Ihw T OA D 

1 widespread and long 2 26.5 7.2 1,733.1 13.0 
2 weak 6 5.2 5.3 120.5 3.3 
3 moderate 6 8.5 7.0 613.3 3.8 
4 intense 4 10.1 8.0 733.4 4.0 

 Average of individual HWs: 9.7 6.6 581.9 4.7 

Ihw – heat wave extremity index [°C], T – temperature amplitude [°C], OA – overall spatial extent of the HW 

core [thousands km2], D – duration [days]. 

 

6.4 Cold spells 

 

6.4.1 Characteristics and interannual variability 

Using analogous definition to that for HDs, 201 CDs occurred over Central Europe during 

the 1950/51–2012/13 period (3.2 CDs/year on average). These days formed 24 CSs with total 

duration of 131 days. Although the number of CSs is considerably greater than the number of 

HWs (18), CSs occurred only in 14 individual seasons, which is fewer than in the case of 

HWs (15). This is related to larger interannual variability of winter temperatures and 

enhanced clustering tendency of CDs compared to HDs (the ratio between total duration of 

CSs and the total number of CDs was 0.65, which is substantially greater than in the case of 

HDs (0.45)). The list of observed CSs and their characteristics is given in Table 6.4. 
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Table 6.4. Major cold spells over Central Europe during 1950/51–2012/13. 

Start End Ics T A OA D 
19540125 19540203 35.8 13.5 530.0 2,501.3 10 
19540205 19540207 5.8 8.6 10.6 152.5 3 
19540220 19540222 6.7 9.2 41.3 81.3 3 
19560130 19560203 26.8 13.9 545.6 1,666.9 5 
19560208 19560218 62.0 17.1 625.0 2,836.3 11 
19560224 19560227 11.3 14.1 107.5 151.9 4 
19611224 19611226 8.8 11.6 29.4 37.5 3 
19621222 19621224 7.3 9.9 0.0 0.0 3 
19630111 19630122 41.5 14.6 586.3 2,809.4 12 
19630129 19630205 30.4 12.0 539.4 1,415.0 8 
19630223 19630225 7.6 10.9 1.3 5.6 3 
19680109 19680114 15.3 12.1 171.3 530.6 6 
19691220 19691222 11.6 11.5 88.8 88.8 3 
19710101 19710107 16.7 11.4 206.3 531.9 7 
19790104 19790107 9.2 9.1 55.0 78.1 4 
19850105 19850111 34.4 14.1 520.6 1,711.3 7 
19850211 19850214 17.8 11.0 255.6 371.3 4 
19860224 19860228 13.3 11.1 75.0 79.4 5 
19870111 19870115 30.9 14.5 513.8 1,351.3 5 
19870130 19870202 14.7 14.3 157.5 203.1 4 
19961226 19970102 25.1 11.1 483.1 1,280.6 8 
20060123 20060125 10.9 13.8 131.9 420.6 3 
20120202 20120207 20.6 10.2 358.1 1,085.6 6 
20120209 20120212 11.9 10.0 33.1 369.4 4 

 Average: 19.9 12.1 252.8 823.3 5.5 

Ics – cold spell extremity index [°C], T – temperature amplitude [°C], A – spatial extent of the CS core 

[thousands km2], OA – overall spatial extent of the CS core [thousands km2], D – duration [days]. Dates of CS 

start and end are in YYYYMMDD format. The spatial extent of the Central European domain is 625.0 thousands 

km2. 

 

By far the most severe CS (according to Ics) over Central Europe occurred in February 

1956. In addition to its extreme Ics, this event had the greatest temperature amplitude 

(17.1°C), its core affected the whole of Central Europe, and it persisted for 11 days. In 

general, CSs exhibited significantly (information about statistical testing is given in Section 

6.2.6) greater values of extremity index and temperature amplitude compared to HWs. This 

issue is discussed in Section 6.5.1. On the contrary, the longest CS persisted for 12 days, 

which is 3 days less than the longest 1994 HW.  

Interannual variability of CSs and CDs is shown in Figure 6.5. The greatest values of 

seasonal sums of Ics were identified at the beginning of the examined period. The winters 

1955/1956 and 1962/1963 were the most extreme ones. The recent winter 2011/2012 is 
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ranked as the 6th most pronounced according to the annual sum of Ics over the 1950/51–

2012/13 period. The greatest annual number of CDs occurred in 1962/1963 (29 days). It is 

noteworthy that this exceptional number of CDs (since 1962/63, in only one season did the 

number of CDs exceed 10) was not accompanied by the greatest sum of Ics, mainly due to less 

pronounced temperature amplitude during the 1962/1963 CSs, compared to the 1955/1956 

CSs. The 5 year running mean of CDs revealed their decrease in the mid-1970s and below-

average number of cold days was also observed from the 1990s to the end of the examined 

period. 

 

 

Figure 6.5. Interannual variability of cold spells (CSs) and cold days (CDs) over Central 

Europe during 1950/1951–2012/2013. Note the different scale of Y-axes compared to Figure 

6.2. 

 

 The most-severe CS in February 1956 exhibited extreme cold anomalies (sum of 

temperature deviations below the 5% quantile of winter Tmin distribution > 50°C) over a large 

area of France, Switzerland, Germany, Austria, the Czech Republic, and Poland (Figure 6.6). 

Extreme cold anomalies were much smaller during the following extraordinary cold spells. 
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Figure 6.6. Cold spells over Central Europe during 1950/51–2012/13. The cold spells are 

ranked according to Ics in descending order. Spatial patterns of absolute values of the sum of 

negative Tmin deviations below the 5% quantile of winter Tmin distribution are plotted. 

 

6.4.2 Cluster analysis 

Based on the cluster analysis of temperature amplitude, overall spatial extent of the CS 

core and duration, CSs were also classified into 4 types (Figure 6.7). 

 

 

Figure 6.7. Dendrogram and corresponding plot of distances between merged cold spell 

clusters. Cold spells are labelled by the date of start in YYYYMMDD format. 

 

Similarly to HWs, the first cluster contains CSs with very large overall spatial extent of 

their cores and long duration (the January 1954, February 1956 and January 1963 CSs). These 

CSs also exhibit the greatest values of Ics. The second group associates relatively weak CSs 
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with low values of their characteristics. Long CSs with below average temperature amplitude 

are in the third cluster. The fourth category consists of intense CSs (high temperature 

amplitude) that had relatively short duration. CSs in the third and fourth clusters have similar 

mean extremity index and overall spatial extent of their cores, but they are clearly 

distinguished on the basis of temperature amplitude and duration (Table 6.5). 

 

Table 6.5. Mean characteristics of cold spells in individual clusters. 

Cluster Type Number of CSs Ics T OA D 

1 widespread and long 3 46.4 15.1 2,715.6 11.0 
2 weak 10 10.0 10.3 126.4 3.5 
3 not intense but long 5 21.6 11.4 968.8 7.0 
4 intense but short 6 21.5 14.1 917.5 4.7 

 Average of individual CSs: 19.9 12.1 823.3 5.5 

T – temperature amplitude [°C], OA – overall spatial extent of the CS core [thousands km2], D – duration [days]. 

 

The final number of classes in the plot of the distances was not clear (suggesting a lower 

classificability of CSs), so we preserved the same number of classes as in the analysis of 

HWs. A reduction in the number of classes would result in merging the clearly distinguished 

third and fourth groups, while a greater number of classes would not provide any additional 

information. 

 

6.5 Discussion 

 

6.5.1 Comparison of characteristics of heat waves and cold spells 

Despite using an analogous methodology when delimiting HWs and CSs, HWs exhibited 

significantly lower values of extremity index and temperature amplitude. This relates to the 

greater temperature variance in winter over Europe (e.g. Cattiaux et al. 2012) and the 

negatively-skewed winter Tmin distribution (e.g. Toth and Szentimrey, 1989). Thus, the left 

tail of the winter Tmin distribution has a greater potential for developing extreme temperatures 

than does the right tail of the summer Tmax distribution. Due to this fact, we modified the 

threshold for calculating the spatial extent of the CS core. Preserving the original threshold 

(10°C) would have resulted in too great values of this characteristic, encompassing most of 

Central Europe for the majority of CSs. The difference in mean duration between HWs and 

CSs was not statistically significant.  
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Although the number of HDs and CDs is almost equal, the total duration of CSs was 

considerably greater than in the case of HWs. This greater clustering tendency of CDs relates 

to higher persistence of Tmin in winter compared to Tmax in summer. This feature has been 

studied by, for example, by Kalvová and Nemešová (1998) and Huth et al. (2001), who 

showed higher autocorrelation of winter Tmin than of summer Tmax in Central Europe. In 

addition, this difference grew with increasing lag time. The concentration of CSs into a 

relatively small number of winters might also be caused by high wintertime interannual 

variability compared to that of summer (e.g. Giorgi et al. 2004). 

 

6.5.2 Interannual variability of heat waves 

The analysis of interannual variability of HWs shows that the summer of 1994 was more 

extreme over Central Europe than were the well-known 2003 and 2010 summers. The 

summer of 2010 was record-breaking on a continental scale (Barriopedro et al. 2011), and the 

exceptional severity of the 2003 heat waves in Western Europe has been reported by many 

authors (e.g. Beniston 2004; De Bono et al. 2004), while the summer of 1994 is not listed 

among the five most extreme European summers (Barriopedro et al. 2011). Our findings are 

consistent with those of Shevchenko et al. (2013), who showed that the 2010 HW was record-

breaking only in the eastern part of Ukraine while the 1994 HW remained the most severe one 

over its western part. The exceptionality of the summer of 1994 in Central Europe was also 

documented by Kyselý (2010), who analysed heat waves using station data from the Czech 

Republic. This suggests that the ‘regional’ 1994 HW remains the most severe over certain 

parts of Central and Eastern Europe.  

Enhanced severity of HWs in the 1950s and in the past two decades is in accordance with 

Della-Marta et al. (2007b), who analysed their temporal variability mainly over the western 

part of Europe. This temporal pattern is related to the Atlantic Multidecadal Oscillation that 

probably has a substantial impact on European summer temperatures (e.g. Sutton and Hodson 

2005; Della Marta et al. 2007a). 

The greatest temperature amplitude (8.4°C) observed in the 1983 HW was linked to the 

extremely warm southern advection with peak on 27 July. Maximum temperatures in the 

Czech Republic reached 40°C (Krška and Munzar 1984), having established an all time 

record temperature that held for almost 30 years. The new absolute temperature maximum for 

the Czech Republic (40.4°C) was measured on 20 August 2012 (Němec 2012), but it was not 
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a part of a HW due to low persistence of the extreme heat. During the 1983 HW, a record 

breaking maximum temperature (40.2°C) was measured also in Germany (DWD 2013). 

 

6.5.3 Interannual variability of cold spells 

Turning to CSs, the winters of 1955/1956 and 1962/1963 were the most extreme over 

Central Europe in the examined period. These two extreme winters occurred during the period 

with low values of the North Atlantic Oscillation index (Hurrel and Deser 2010). Cattiaux et 

al. (2010) regarded the winter of 1962/1963 as the coldest winter since 1949, but the winter of 

1955/1956 was pronounced in their analysis as well. Our results are also in good agreement 

with Walsh and Phillips (2001), who analysed cold outbreaks in the United States and Europe. 

Because they had focused on the western and northern parts of Europe a direct comparison is 

not possible, but the identified very cold anomalies in the winters of 1955/1956 and 

1962/1963 are listed among the most extreme ones in their study. Moreover, the greatest cold 

anomaly in January 1987 (according to Walsh and Phillips 2001), was also captured in our 

analysis as a severe CS.  

Although record breaking cold spells and snowfalls were observed across Europe as well 

as the United States and East Asia during the winter of 2009/2010 (Cohen et al. 2010), no CS 

was present in our analysis from that season. This relates to the fact that the strongest cold 

anomaly was observed mainly in western and northern Europe (Cattiaux et al. 2010), while 

winter weather especially over the eastern part of Central Europe was milder. 

 

6.6 Conclusions 

The main findings of the study are as follows: 

 

• We proposed a methodology for delimiting major heat waves (HWs) and cold spells 

(CSs) from gridded data that is based on the persistence of large regional temperature 

anomalies. 

• An extremity index was introduced that reflects joint effects of spatial extent, 

temperature anomaly and duration of HWs and CSs in order to assess their severity. 

This index allows analogous characterization of HWs and CSs and, because it involves 

no ‘local’ settings, it may be applied also in other regions over the E-OBS domain and 

for other purposes. 
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• Using the E OBS gridded data set, we documented major Central European HWs and 

CSs and analysed their characteristics and interannual variability. These events were 

visualized in “event based” maps and classified according to their characteristics. 

• The most severe HW in Central Europe since 1950 occurred in 1994, followed by the 

2006 HW. The severity of HWs was considerably reduced during the 1960–1990 

period. 

• The cluster analysis revealed 4 types of HWs with different characteristics: those that 

are 1) spatially widespread and long, 2) weak, 3) moderate, and 4) intense.  

• Although the most severe CSs over Central Europe occurred in the beginning of the 

examined period (during 1955/1956 and 1962/1963), we found the winter of 

2011/2012 to be the 6th coldest since 1950/1951 according to the seasonal sum of the 

extremity index. 

• CSs were classified analogously into 4 types with a structure similar to that of HWs: 

1) spatially widespread and long, 2) weak, 3) not intense but long, and 4) intense but 

short. The number of CS types was less obvious and the differences between the types 

less clear than in the case of HWs. 

• The clustering tendency of CDs was considerably greater than was the clustering 

tendency of HDs. Hence, in spite of the analogous definitions, the number of CSs was 

larger than the number of HWs. Nevertheless, the number of winter seasons with a CS 

was smaller than was the number of summer seasons with a HW. 

• We established a list of major Central European HWs and CSs and their 

characteristics. This list can be regularly updated when a new version of the E-OBS 

data set is released and it might be utilized in further studies focusing on temperature 

extremes over Europe. 

 

Due to its general definition, the extremity index may be used over different areas to 

perform comparative studies. The methodology can also be applied to climate model 

simulations; such analysis evaluating the performance of RCMs for the recent climate will 

contribute to better understanding RCMs’ strengths and biases in reproducing joint 

characteristics of the duration, magnitude, and spatial extent of temperature extremes. In 

addition, the extremity index and additional characteristics might be used to analyze projected 

changes in major HWs and CSs in a possible future climate. 
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Abstract:  The European summer of 2013 was characterized by very high temperatures that 
established a new historical maximum in Austria. The extremity of this summer in Europe is 
assessed based on the E-OBS and ECA&D data sets. At the continental scale, it is ranked as 
the fifth warmest summer since 1951, with large positive temperature anomalies over Central 
Europe. According to seasonal heat wave characteristics, the 2013 summer was 
unprecedented in Kremsmuenster and Graz (both Austria) and ranked as the second or third at 
other stations with at least 100 years of measurements in the Czech Republic, Slovakia, 
Croatia and Slovenia. The most intense 2013 heat wave over Central Europe in early August 
was driven primarily by anticyclonic conditions and was probably amplified by the preceding 
precipitation deficit. In combination with major flooding in the Danube and Elbe river basins 
in early June and severe convective storms at the end of July, the hot 2013 summer in Central 
Europe may represent an analog of a future summer climate that will probably be more prone 
to both temperature and precipitation extremes. 
 
Keywords: summer of 2013; climate variability; temperature records; heat waves; effective 
precipitation; Central Europe 
 

7.1 Introduction 

In summer 2013, Europe experienced a series of heat waves that peaked on 8 August, 

when the highest historically recorded maximum temperature (40.5°C) was measured in 

Austria (ZAMG 2013). Such extreme events have substantial impacts on society and the 

natural environment, inasmuch as they cause excess illness and mortality, animal stress, crop 

failure, forest fires, spread of pests and increased energy demand for cooling (De Bono et al. 

2004; Beniston et al. 2007). 

The severity of European heat waves has increased over the past two decades (Della-

Marta et al. 2007a; Kyselý 2010). Barriopedro et al. (2011) concluded that the European 

summer of 2010 was record-breaking for the 1500–2010 period, followed by the summers of 

2003, 2002 and 2006. The 2010 heat wave had greatest impacts in Eastern Europe, while the 
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heat wave of 2003 was pronounced mainly in Western Europe (Fink et al. 2004). Beniston 

(2004) examined the 2003 heat wave and found it to represent an analog for the “shape of 

things to come” in the late 21st century climate. Nevertheless, the major heat wave of 1994 

(Kyselý 2002) remains the most severe one over large parts of Central and Eastern Europe 

(Lhotka and Kyselý 2014; Shevchenko et al. 2014).   

European heat waves are triggered mainly by interruption of the prevailing zonal flow. 

Pfahl and Wernli (2012) concluded that a substantial part of these extremes was driven by 

atmospheric blocking and related positive anomalies in the surface radiation budget and in a 

meridional warm advection. Due to the Arctic Amplification (Francis and Vavrus 2012), these 

blocking conditions are projected to occur more frequently and be prolonged in future 

climate, suggesting enhanced occurrence of European heat waves. Beside this, heat waves are 

expected to become more intense and longer lasting due to the shift of the summer 

temperature distribution (Ballester et al. 2011). The combination of these factors would 

probably result in more severe heat waves under global warming conditions (Fischer and 

Schär 2010), along with the increment of other extremes (IPCC 2012). 

Another important factor for the development of heat waves is precipitation deficit. A lack 

of soil-moisture reduces the latent heat flux and results in an amplification of heat waves 

(Jaeger and Seneviratne, 2011). An important role of preceding dry soils in enhancing major 

European heat waves of 1976, 2003 and 2006 was shown by Fischer et al. (2007). 

The aim of the present study is to assess the extremity of the 2013 summer in Europe. In 

the most affected Central European region, the severity of heat waves during this summer is 

evaluated based on long-term station data series. Finally, an analysis of preceding 

precipitation, mean sea level pressure, and 500 hPa geopotential height is performed in order 

to explore possible drivers of the most intense 2013 heat wave over Central Europe. 

 

7.2 Data and methods 

The extremity of the 2013 summer is assessed over the European domain (Figure 7.1) 

using gridded daily mean and maximum temperatures. Southernmost regions and Iceland 

were excluded due to partially missing data. Temperature data was taken from the E-OBS 

10.0 gridded data set (Haylock et al. 2008), which has a spatial resolution of 0.25° and covers 

the entire land area. European mean summer temperature (TJJA) was calculated as an average 

of all daily mean temperature (Tmean) grid point values during the entire season, weighted by 

their respective areas. Summer was regarded as the period of June to August. High summer 
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temperatures were assessed through daily maximum temperature (Tmax) excesses above the 

90th percentile of summer Tmax distribution (calculated from the 1961–2000 period). These 

excesses in individual grid points were summed for every summer, and hereafter they are 

referred to as TS90. In order to assess interannual variability of TS90 on the European scale, 

this characteristic was averaged over continental grid points, weighted by their respective 

areas (mean TS90). 

 

 

Figure 7.1. European domain, location of the weather stations included in the heat wave 

analysis and elevation model (GTOPO30) used in the E-OBS gridded data set. 

 

In the Central European region (with largest temperature anomalies in the 2013 summer), 

the analysis of heat waves was performed using Tmax data from weather stations involved in 

the European Climate Assessment & Dataset (ECA&D) project (Klein Tank et al. 2002). We 

selected 8 stations with long-term temperature series (more than 100 years), listed in Table 

7.1. No other long-term series involving 2013 is available within ECA&D in this area, 

including Poland and eastern Slovakia. Although the majority of the stations exhibits some 

inhomogeneities (Wijngaard et al. 2003), this data set still represents the best source of long-

term station data over Central Europe and has been used in a variety of analyses (e.g. 

Beniston 2013; Simolo et al. 2014).  
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Table 7.1. Stations included in the heat wave analysis. 

Id Station Country 
Elevation 
[m a.s.l.] 

Start Missing years 

1 Kremsmuenster Austria 383 1876  

2 Graz Austria 366 1894 1945 

3 Wien Austria 199 1876  

4 Zagreb Croatia 157 1881 1886 

5 Milesovka Czech Republic 833 1906 1930–1935 

6 Pecs Hungary 203 1901  

7 Hurbanovo Slovakia 115 1901  

8 Ljubljana Slovenia 299 1900 1919–1922, 1925 

 

The definition of a heat wave was based on excesses above the 90th percentile of summer 

Tmax. The minimum duration of a heat wave was set to 3 days, in accordance with the majority 

of studies (Meehl and Tebaldi 2004; Della-Marta et al. 2007b; Kyselý 2010). The severity of 

individual heat waves was measured using the sum of Tmax excesses above the 90th percentile, 

hereafter referred as HW90. Table 7.2 summarizes the abbreviations used. 

 

Table 7.2. Description of abbreviations used. 

Abbreviation Data character Variable Definition 

TJJA gridded Tmean European mean summer temperature 

TS90 gridded Tmax 
summed daily excesses above the 90th 
percentile of their distribution within 
individual grid points in summer 

mean TS90 gridded Tmax 
same as TS90, but averaged over the European 
domain 

HW90 station Tmax 
summed daily excesses above the 90th 
percentile of their distribution during 
individual heat waves in summer 

 

Precipitation data for a detailed analysis of the most intense 2013 heat wave was taken 

from the E-OBS data set (Haylock et al. 2008). Soil moisture conditions were assessed 

indirectly through effective precipitation (Byun and Wilhite 1999), calculated as the summed 

value of daily precipitation with a time-dependent reduction function: 
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where Pm is precipitation m days before and i is the length of the period considered. We 

utilized the 3-month period prior to the August 2013 heat wave in order to capture also the 

Central European floods at the turn of May and June (Blöschl et al. 2013). However, effective 

precipitation is only little affected by the values at the beginning of the analysed period. Sea 

level pressure and 500 hPa geopotential height data was taken from the NCEP/NCAR 

reanalysis (Kalnay et al. 1996).    

 

7.3 European mean and extreme summer temperatures 

The average of TJJA for the 1961–2000 period was 16.9°C. No summer with negative TJJA 

anomaly occurred after 1993 and the summers of 2003 and 2010 were markedly above the 

others, with positive TJJA anomalies only slightly below +2.0°C. The coldest summer occurred 

in 1978 and had a negative TJJA anomaly of –1.1°C. The 5-year running average showed an 

increase since the mid-1970s, with the greatest values at the end of the series. On the 

continental scale, the summer of 2013 was ranked as the 5th warmest European summer since 

1951 (+1.4°C) and its TJJA was comparable to those of the summers of 2002 and 2006 (Figure 

7.2a). 

The time series of the annual values of mean TS90 is shown in Figure 7.2b. This 

characteristic reflects occurrence of major heat waves rather than mean summer temperature. 

The summer of 2013 was less pronounced in this characteristic and thus it is characterized 

rather by an absence of cold periods than by occurrence of an extraordinary heat wave on the 

continental scale. 

The relationship between TJJA and mean TS90 is shown through a scatter plot in Figure 

7.2c. Values in individual summers were fitted to a logarithmic trend line, which indicates 

that a relatively small increase in TJJA is linked to a substantial increment in heat waves 

magnitude. A TJJA increase of 1°C is associated with an approximate doubling of mean TS90. 
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Figure 7.2. (A) European mean summer temperature for the 1951–2013 period and the 5-year 

running average. The TJJA anomaly was calculated with respect to the 1961–2000 period. (B) 

Seasonal sums of positive daily Tmax excesses above the 90th percentile of the summer Tmax 

distribution averaged over continental Europe (mean TS90) and the 5-year running average. 

(C) Scatter plot of TJJA and mean TS90 with a logarithmic trend line and a coefficient of 

determination (R2), indicating how well data fit a statistical model.  
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Figure 7.3 shows spatial patterns of seasonal TS90 for the 8 European summers with mean 

TS90 exceeding 40°C. In the most extreme summer of 2010, the greatest values of TS90 

(regionally exceeding 200°C) were observed over a vast area in Eastern Europe. TS90 greater 

than 200°C also occurred in 2003 over Western Europe and in 2012 over the Balkan 

Peninsula, but the spatial extents in these cases were smaller than in 2010. In the summer of 

2013, the greatest values of TS90 were located over Central Europe. Although these were less 

pronounced than, for example, the values for the 2010 summer in Eastern Europe, the summer 

of 2013 was one of the most extreme over the Central-European region. In this area, the 

severity of heat waves in 2013 was assessed based on long-term station series. 

 

 

Figure 7.3. Spatial patterns of TS90 for 8 European summers with mean TS90 exceeding 

40°C in Europe during 1951–2013. The areas with TS90 below 20°C are in white. 
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7.4 Long-term variability of Central European heat waves 

We analysed 8 Central-European stations with long-term series of observed data to assess 

the severity of heat waves during the 2013 summer in a long-term context. Interannual 

variability of heat waves was calculated based on HW90 (Section 7.2). 

The majority of stations showed the largest magnitude of heat waves in the past two 

decades (Figure 7.4). This maximum was preceded by considerable decrease of heat wave 

severity in the 1960s and 1970s. The stations located to the south had secondary maxima 

during the 1940s and 1950s, which were especially pronounced in Pecs where heat waves in 

the summers of 1946, 1950, and 1952 were the most severe for the entire period of 

observation. In Kremsmuenster, the secondary maximum was located at the end of the 19th 

century, but this phenomenon was not observed at the other stations with available data. This 

is discussed in more detail in Section 7.6. 

In Kremsmuenster and Graz (Austria), the seasonal sum of HW90 in 2013 was largest for 

the entire period of observation. Heat waves were especially severe in Kremsmuenster, where 

the seasonal sum of HW90 in this summer was 125°C, while the second largest value since 

1876 was only 74°C. At Milesovka (Czech Republic), Wien (Austria), Hurbanovo (Slovakia), 

Ljubljana (Slovenia), and Zagreb (Croatia), the seasonal sum of HW90 in 2013 was ranked as 

the second or the third largest one. The recent tendency to hot summers may also be 

illustrated by the fact that the seasonal sums of HW90 in the last two years of data (2012, 

2013) were among the three highest values since the beginning of available data in Ljubljana, 

Zagreb and Hurbanovo. The extreme 2013 heat waves in Kremsmuenster are examined in 

detail in the next section. 
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Figure 7.4. Long-term variability of heat waves at 8 Central-European stations. The grey bars 

indicate seasonal sums of HW90. Black line represents the 5-year running average, and its 

interruption denotes missing data.  

 

7.5 Description of the 2013 heat waves and driving mechanisms 

During the summer of 2013, 3 heat waves with total duration of 27 days occurred in 

Kremsmuenster. The most intense was the heat wave between 1 and 8 August that had the 

mean daily excess above the 90th percentile of summer Tmax distribution of 6.0°C (Figure 7.5). 

The record-breaking maximum temperature for Austria (40.5°C) occurred during this event 

and was measured in Bad Deutsch-Altenburg on 8 August. The 90th percentile of summer 
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Tmax distribution was exceeded in 6 more days during 2013, but these days did not meet the 

minimum length criterion for heat waves. 

 

 

Figure 7.5. Tmax excesses above the 90th percentile of the summer Tmax distribution in 

Kremsmuenster during the summer of 2013. Horizontal black lines indicate the mean daily 

values of the Tmax excesses during the heat waves that have been detected in this summer. 

 

A more detailed analysis of the most intense August 2013 heat wave was made in order to 

reveal the driving factors of this event. The greatest average of Tmax anomalies from their 

mean value during the heat wave was located in southern regions of Central Europe. These 

anomalies reached nearly 10°C in Austria and Slovenia and anomalies exceeding 5°C were 

observed over large parts of Central Europe. Temperatures were close to the long-term mean 

for this period of year in the rest of Europe (Figure 7.6a). 

The spatial pattern of the effective precipitation anomaly at onset of the heat wave (Figure 

7.6b) showed drier conditions in the area of large temperature anomalies. In this region, the 

lowest values of the effective precipitation were only about 25% of their mean values for this 

period of the year, thus indicating a soil-moisture deficit that might have led to an 

amplification of the heat wave. However, this deficit was not so pronounced on the 

continental scale, since some areas (e.g. the Iberian Peninsula or south-eastern Ukraine) had 

even greater precipitation deficits. By contrast, a precipitation surplus was observed over 

north-western Europe. 

A large high-pressure area over Central Europe extending from the Mediterranean is 

found in the composite map of sea level pressure for the August 2013 heat wave period 

(Figure 7.6c). This circulation pattern together with a low-pressure system located over the 

British Isles controlled an advection of warm air masses into Central Europe. The area of high 
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pressure was centred over Austria, and this supported clear-sky conditions and related positive 

anomalies in the surface radiation budget. The high-pressure ridge is also evident from the 

composite map of the 500 hPa geopotential height (Figure 7.6d). 

 

     

Figure 7.6. A) Average Tmax anomalies for 1–8 August 2013 relative to its mean value for this 

period of year. B) Effective precipitation for 1 May – 31 July 2013 relative to its mean value 

for this period of year. C) Mean sea level pressure for 1–8 August 2013. D) Mean 500 hPa 

geopotential height for 1–8 August 2013. The mean values were calculated over the 1961–

2000 period. The black dot represents the Kremsmuenster station.  
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7.6 Discussion and conclusions 

As concluded by Hartmann et al. (2013), it is certain that global mean surface temperature 

has increased since the late 19th century. Moreover, according to paleoclimatic 

reconstructions, the past two decades were warmest since 1500 (Popa and Kern 2009; 

Luterbacher et al. 2004). The record-breaking European summer of 2010 (Barriopedro et al. 

2011) remained the warmest on the continental scale, but the summer of 2013 was more 

severe in certain regions over Central Europe. 

In relation to the shift of the European summer mean temperature distribution and to the 

increase of its variability (Schär et al. 2004), heat waves have become more frequent and 

severe in the past two decades. According to seasonal heat wave characteristics, the 2013 

summer was the most severe on record at 2 out of the 8 stations in Central Europe, and ranked 

second or third at 5 other stations with long-term data. By contrast, the greatest severity of 

heat waves in Pecs was observed in the mid-20th century. A similar pattern was reported by 

Kyselý (2002) for Basel (Switzerland), thus indicating that this feature may be typical for 

more southerly stations.  

The enhanced severity of heat waves in Kremsmuenster at the end of the 19th century does 

not correspond to other long-term analyses of heat waves (Della-Marta et al. 2007a; Kyselý 

2010). The so-called early instrumental warm-bias was identified at this station, which 

affected temperature measurements at least until 1870 (Böhm et al. 2010). Inhomogeneities in 

long-term European data sets were identified also at other locations (Wijngaard et al. 2003; 

Winkler 2009; Brunet et al. 2011) and some stations are influenced by an urban heat island. 

However, its effect is relatively small on summer Tmax (Wilby 2003). The greatest severity of 

the recent heat waves is evident at the majority of examined locations, including stations on a 

mountain summit (Milesovka) and in small towns (Hurbanovo, Kremsmuenster), and thus is 

quite robust. 

The mean sea level pressure field during the August 2013 heat wave over Central Europe 

corresponds to the second canonical correlation analysis mode between sea level pressure and 

the heat wave index (Della-Marta et al. 2007b). A similar anticyclonic circulation pattern over 

Central Europe was also found conducive to heat waves by Kyselý (2008). The effective 

precipitation anomaly at the onset of the heat wave reveals a soil-moisture deficit in the area 

of pronounced temperature anomalies. This is in accordance with previous studies showing 

that the majority of European heat waves were preceded by a precipitation deficit (Fink et al. 

2004; Fischer et al. 2007). By contrast, the substantial precipitation deficit over the Iberian 
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Peninsula was not associated with a heat wave, probably due to a westerly advection and 

more cyclonic conditions. The precipitation surplus over north-western Europe (including 

north-western parts of Central Europe) was probably linked to intense mesoscale convective 

systems that hit France, the United Kingdom and Germany at the end of July. These 

thunderstorms and associated hailstorms were related to the so-called “Spanish Plume” 

(Holley et al. 2014) and caused record-breaking economic losses (in billions of euro) across 

Germany (Kreibich et al. 2014).  

In general, the early-August 2013 heat wave exhibited both favourable synoptic 

conditions and a lack of preceding rainfall over most of Central Europe that probably had an 

amplifying effect on the heat wave’s magnitude. In combination with major flooding in the 

Danube and Elbe river basins during early June (Blöschl et al. 2013) and severe convective 

storms at the end of July, the 2013 summer may indeed represent ”a shape of things to come” 

for future summer climate – a climate probably more prone to both temperature and 

precipitation extremes. 
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Abstract: The study examines the capability of regional climate models (RCMs) to reproduce 
spatial and temporal characteristics of severe Central European heat waves. We analysed an 
ensemble of 7 RCM simulations driven by the ERA-40 reanalysis over the 1961–2000 period, 
in comparison to observed data from the E-OBS gridded dataset. Heat waves were defined 
based on regionally significant excesses above the model-specific 95% quantile of summer 
daily maximum air temperature distribution and their severity was described using the 
extremity index. The multi-model mean reflected the observed characteristics of heat waves 
quite well, but considerable differences were found among the individual RCMs. The RCMs 
had a tendency to simulate too many heat waves that were shorter but their temperature peak 
was more pronounced on average compared to E-OBS. Deficiencies were found also in 
reproducing interannual and interdecadal variability of heat waves. Using as an example the 
most severe Central European heat wave that occurred in 1994, we demonstrate that its 
magnitude was underestimated in all RCMs and that this bias was linked to overestimation of 
precipitation during and before the heat wave. By contrast, a simulated precipitation deficit 
during summer 1967 in the majority of RCMs contributed to an ‘erroneous’ heat wave. This 
shows that land–atmosphere coupling is crucial for developing severe heat waves and its 
proper reproduction in climate models is essential for obtaining credible scenarios of future 
heat waves. 
 
Keywords: heat waves; regional climate models; land–atmosphere coupling; spatial 
characteristics; interannual variability; ENSEMBLES project  
 

8.1 Introduction 

Heat waves (periods of extremely high air temperature in summer) are important 

phenomena of the European climate. Extraordinary heat waves that were observed in the past 

two decades, mainly the extreme 2003 heat wave in France (Black et al. 2004) and the 

extraordinarily hot summer of 2010 in Russia (Schneidereit et al. 2012), have attracted much 

interest in the climatological community. Heat waves have major impacts on terrestrial 

ecosystems, water resources, forestry, agriculture, the power industry and human health 

(e.g. De Bono et al. 2004; Beniston et al. 2007; Barriopedro et al. 2011). Due to the expected 

rise in global mean air temperature (IPCC 2013) and projected strengthening of atmospheric 
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blocking over the Euro-Atlantic region due to Arctic Amplification (Francis and Vavrus 

2012), there are concerns that the losses caused by heat waves will be increasing. Meehl and 

Tebaldi (2004) and Seneviratne et al. (2012) analysed outputs of global climate models 

(GCMs) to demonstrate that heat waves will become more frequent and intense in a future 

climate. In addition, Fischer and Schär (2010) emphasized that the most pronounced changes 

would occur in low-altitude river basins affecting many densely populated urban centres. To 

verify the credibility of these projections, model outputs for recent climate must be evaluated 

against observed data. 

The evaluation of modelled daily maximum temperature in summer (Tmax) over Europe 

was performed by many authors. Kjellström et al. (2007) examined Tmax from several regional 

climate models (RCMs) from the PRUDENCE project (Christensen and Christensen 2007). 

The RCMs (driven by the HadGEM GCM) generally tend to underestimate Tmax in 

Scandinavia and the British Isles while they overestimate Tmax in Southern and Eastern 

Europe. This bias was larger in the tails of the Tmax distribution. A similar Tmax pattern over 

Europe was reported by Nikulin et al. (2011), who examined the RCA3 regional climate 

model (Samuelsson et al. 2011) driven by the ERA-40 reanalysis (Uppala et al. 2005). 

Christensen et al. (2008) found larger warm biases in extremely warm conditions with the 

implication that climate models may not properly represent future warmer conditions 

correctly. 

Over Central Europe, RCMs tend to slightly underestimate Tmax (Kjellström et al. 2007, 

Nikulin et al. 2011). Plavcová and Kyselý (2011) evaluated Tmax in RCM simulations from 

the ENSEMBLES project (van der Linden and Mitchell 2009). Their results were consistent 

with majority of previous works, indicating negative biases of modelled Tmax over Central 

Europe. It should be noted, however, that Kjellström et al. (2010) reported that the biases in 

this region are the smallest of all those across the entire ENSEMBLES-RCMs domain. 

Central Europe recently experienced exceptionally high temperatures in August 2012, 

when the new all-time temperature record (40.4°C) was set in the Czech Republic (Němec 

2012). In summer 2013, moreover, Central Europe was affected by a series of heat waves that 

peaked on 8 August, when the new absolute maximum temperature (40.5°C) was measured in 

Austria. The previous all-time temperature record for Austria (39.9°C) had been set only a 

few days earlier, on 3 August, 2013 (ZAMG 2013). 

Compared to Tmax simulation, a proper reproduction of heat waves is even more 

challenging. This requires not only a good simulation of the right tail of the Tmax distribution 
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but also of the persistence of extremely high Tmax. The capability of RCMs to simulate heat 

waves over Europe was evaluated by Vautard et al. (2013). They used a high resolution 

(0.11°) ensemble of RCM simulations from the CORDEX project (Giorgi et al. 2009). Due to 

the absence of observed gridded data in very high resolution, they interpolated model outputs 

to the ECA&D stations (Klein Tank et al. 2002) using the nearest-neighbour method with 

elevation adjustment. Modelled Tmax in Central Europe still suffered from biases, which 

influenced the characteristics of modelled heat waves that were too persistent and severe. 

Many papers have focused on potential sources of these biases, and especially on 

atmospheric circulation and land–atmosphere coupling. Although the relationship between 

atmospheric circulation and surface air temperature in Europe is most significant in winter 

(e.g. Cattiaux et al. 2012), extreme high summer temperatures are also related to specific 

circulation patterns (Della-Marta et al. 2007; Kyselý 2008). The capability of RCMs to 

reproduce circulation indices (flow direction, strength and vorticity) in Central Europe was 

investigated by Plavcová and Kyselý (2012). Driven by the ERA-40 reanalysis, the utilized 

RCMs reproduced the circulation indices relatively well. These results are in concordance 

with Blenkinsop et al. (2009), who evaluated simulated circulation indices over England. 

Plavcová and Kyselý (2012) also demonstrated that differences between frequency 

distributions of circulation indices were higher when the model ensemble contained one RCM 

driven by various GCMs. On the contrary, these differences were smaller when the model 

ensemble involved various RCMs driven by one GCM. This reflects the fact that atmospheric 

circulation is primarily given by lateral boundary conditions and is little modified by 

individual RCMs. 

The significant influence of land–atmosphere coupling on high summer air temperatures 

was shown by Fischer et al. (2007) who performed RCM simulations of Tmax during the most 

severe European heat waves with coupled and uncoupled soil-moisture scheme. They found 

major differences between these two types of simulations, thus indicating that improper 

simulation of soil-moisture content can dramatically alter a reproduction of Tmax and heat 

waves. These results were confirmed by Jaeger and Seneviratne (2010) who studied RCM 

simulations of Tmax over Europe under several soil-moisture scenarios. A reduction of soil-

moisture content led to increase of Tmax and prolonged mean heat wave length. 

Although a lot of work has been done to evaluate summer Tmax in RCM simulations 

(including an attribution of biases) and a number of studies examined heat wave 

characteristics for individual grid points as well, little attention has been given to evaluating 
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heat waves as spatial temperature patterns. In this study, we analysed spatial and temporal 

characteristics of heat waves in an ensemble of RCM simulations from the ENSEMBLES 

project. These simulated heat waves were evaluated against observed ones delimited from the 

E-OBS gridded dataset (Haylock et al. 2008). We investigated the capability of RCMs to 

reproduce their spatial extent, interannual variability, temperature amplitude and length. 

Furthermore, the capability of RCMs to reproduce the most severe Central European heat 

wave observed in 1994 (Lhotka and Kyselý, 2014) was analysed, and simulation of an 

‘erroneous’ heat wave at the turn of July and August, 1967 was examined in detail. Because 

soil-moisture feedback can significantly alter the heat wave pattern (e.g. Fischer et al. 2007), 

we focused on this aspect when studying variations among individual RCMs during these 

events. 

 

8.2 Data and methods 

 

8.2.1 Regional climate model simulations 

We examined 7 RCM runs driven by the ERA-40 reanalysis from the ENSEMBLES 

project (Table 8.1). The simulations cover the 1961–2000 period. The model runs were 

selected on the basis of their cartographic projection (rotated latitude/longitude grid with 

South Pole coordinates –39.25 N, 18.00 E and 25 km resolution). This specification 

corresponds to the E-OBS gridded dataset (0.22° rotated grid version). In addition, all RCMs 

have metadata available. The number of vertical levels in the RCMs varies from 24 

(SMHIRCA) to 40 (KNMI-RACMO2), orography was adopted from the GTOPO30 dataset 

(except for METO-HC_Had, which uses the US Navy 10′ dataset). Each RCM utilizes its own 

land–surface scheme with different types of land cover with specific behaviours and have 

several soil layers for modelling heat and moisture storage and fluxes. An example of how 

these processes are described in one of the RCMs is given in Samuelsson et al. (2011). The 

depth of model bottom varies across individual RCMs, and that creates some difficulties when 

analysing soil moisture conditions. Further descriptions of individual models are available in 

metadata files at the ENSEMBLES RT3 data portal (http://ensemblesrt3.dmi.dk/). 
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Table 8.1. Examined RCMs driven by ERA-40 reanalysis. 

Acronym Institution Model 

C4IRCA3 Community Climate Change Consortium for Ireland RCA ver. 3 
ETHZ-CLM Federal Institute of Technology in Zurich CLM ver. 2.4.6 
KNMI-RACMO2 Royal Netherlands Meteorological Institute RACMO ver. 2.1 
METNOHIRHAM Norwegian Meteorological Institute HIRHAM ver. 2 
METO-HC_Had Hadley Centre HadRM ver. 3Q0 
MPI-M-REMO Max-Planck Institute REMO ver. 5.7 
SMHIRCA Swedish Meteorological and Hydrological Institute RCA ver. 3 
 

8.2.2 Area of interest 

The analysis was performed over Central Europe as defined by 1,000 grid points (40×25) 

and covering an area of 625,000 km2 (Figure 8.1). This region is located in the area within 

approximately 47–53° N and 8–22° E. It includes Germany (excluding northern areas and the 

Rhineland), northern Austria, the Czech Republic, the south-western part of Poland, Slovakia 

(excluding its eastern part) and northern Hungary.  

 

 

Figure 8.1. Definition of Central Europe (black dashed polygon), the larger domain (grey 

solid polygon) and the elevation model (GTOPO30) used in the E-OBS 9.0 gridded dataset. 
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8.2.3 Datasets utilized 

To evaluate spatial and temporal characteristics of Central European heat waves, we 

examined modelled time series of Tmax that had a length of 3,680 days for each RCM (92 days 

in each summer over the 1961–2000 period; summer was regarded as the period between 1 

June and 31 August). Observed data (E-OBS) for the same period were taken from the E-OBS 

9.0 gridded dataset (Haylock et al. 2008) with the same projection and resolution as the 

modelled data. 

For evaluating precipitation rates during and before heat waves, we used modelled daily 

precipitation data. This data was compared with observed precipitation from the E-OBS 

gridded dataset (Haylock et al. 2008). Due to different thickness of soil layers among 

individual RCMs and various depths of RCM bottoms, it is impossible to compare simulated 

soil moisture content directly between individual RCMs. Inasmuch as wet soils yield a high 

evaporative fraction (e.g. Small and Kurc 2003), soil moisture conditions were estimated on 

its basis. The evaporative fraction (EF) is defined as the ratio between latent heat flux (Qe) 

and available energy (sum of latent heat flux and sensible heat flux (Qe+Qh)) and it is related 

to the Bowen ratio (β): 

 

 

 

8.2.4 Definition of heat wave 

The definition of a heat wave (HW) was based on the persistence of hot days (HDs) and is 

the same as that in Lhotka and Kyselý (2014), who dealt with HWs in the E-OBS gridded 

dataset. For each day in summer, daily maximum air temperature (Tmax) in each grid point 

over Central Europe was transformed into Tmax deviation by subtracting the grid point specific 

95% quantile of summer Tmax distribution (calculated from the 1961–2000 period). Any day 

was considered a HD when the average of these Tmax deviations over all grid points in Central 

Europe (Figure 8.1) was greater than zero. Thus, a HD can occur only if a substantial part of 

Central Europe is affected by Tmax above the 95% quantile.  

A HW over Central Europe was defined as a period of at least three consecutive HDs. For 

this period, the grid maps of positive Tmax deviations (excesses) were summed into a 

cumulative map. The relatively strict criteria allow identifying only major HWs that are 

presumed to have considerable impacts on the natural environment and society. This 
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definition was applied for both simulated and observed data. Due to biases in the modelled 

95% quantile of the Tmax distribution and because our intention was to focus on spatial and 

temporal characteristics of HWs rather than the Tmax bias itself, we utilized respective 

95% quantiles (calculated for each RCM) when delimiting HWs from modelled data. The 

respective quantiles were applied also by Vautard et al. (2013) who evaluated HWs in 

CORDEX-RCM simulations over Europe. 

To describe the severity of individual HWs, we used a heat wave extremity index (Ihw; 

Lhotka and Kyselý 2014) that is calculated from a cumulative map of positive Tmax 

deviations. Values of individual grid points (TSmax′) are summed up and scaled by the total 

number of grid points in Central Europe (1,000): 

 

 

 

where n is the number of grid points with a positive Tmax deviation in a cumulative map. This 

index uses summed deviations over the whole period during which a HW persists, and hence 

it captures joint effects of temperature magnitude, spatial extent and also length of a HW. 

Detailed evaluation and discussion of the extremity index is given in Lhotka and Kyselý 

(2014). 

 

8.2.5 Heat wave characteristics 

In addition to using Ihw, we evaluated several other characteristics of HWs. The 

temperature amplitude (Tamp) is the highest daily value of Tmax deviations from the 95% 

quantile of summer Tmax distribution during the HW (in any grid point in Central Europe) and 

represents an anomaly of its peak temperature. The length of a HW (L) is the number of days 

during which a HW persists (the number of consecutive HDs). The spatial extent (A) is given 

by an area where the Tmax deviations from the 95% quantile of summer Tmax distribution 

were positive for at least 3 days. This is the only characteristic that was calculated over the 

larger domain (Figure 8.1) in order to capture the larger-scale pattern associated with each 

HW. The larger domain is defined by 10,000 grid points (100×100), but we excluded grid 

points over the sea and used only 7,016 continental grid points in order to allow a comparison 

with E-OBS. Although HWs were visualised over this larger region, grid points outside 
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Central Europe were not taken into account when calculating Ihw, Tamp and L. The 

characteristics of HWs are summarized in Table 8.2. 

 

Table 8.2. Characteristics of heat waves. 

Abbreviation Description Units Domain 
Ihw heat wave extremity index °C Central Europe 
Tamp temperature amplitude °C Central Europe 
L length days Central Europe 
A spatial extent km2 larger domain 
 

The ratio between the total duration of HWs and the total number of HDs indicates 

whether HDs have a high clustering tendency (a ratio close to 1), or whether HDs tend to 

occur separately throughout summer (a ratio close to 0). This ratio is hereafter referred as the 

clustering index (Icl). 

 

8.2.6 Temporal autocorrelation 

Persistence of Tmax over Central Europe was assessed by temporal autocorrelation 

computed as Pearson product-moment coefficients for lagged data pairs, which is the most 

commonly used method (Wilks 2011). For each day in summer, Tmax values across 1,000 grid 

points over Central Europe were averaged into a regionally averaged Tmax, which was used to 

compute correlation coefficients. Since the Tmax series is not continuous, we computed 

correlation coefficients individually for each summer and averaged them thereafter. 

 

8.3 Evaluation of heat wave characteristics and temporal variability in RCMs 

During the 1961–2000 period, the RCMs simulated 104.6 hot days on average (Table 8.3), 

which is comparable to E-OBS (105). By contrast, the multi-model mean of the total duration 

of HWs was larger than in E-OBS, which is due to a higher clustering tendency of hot days in 

the RCM simulations (manifested in greater values of Icl). The temperature amplitude was 

overestimated in the majority of the RCMs, and especially in METO-HC_Had. This RCM 

suffered from unrealistically hot isolated grid points that caused the highest average 

temperature amplitude (14.3°C), far exceeding the observed value (6.0°C). The average 

length of HWs was too short in modelled data, and the only RCM that simulated too long 

HWs on average was KNMI-RACMO2. Although the multi-model mean of simulated spatial 

extent was similar to E-OBS, large variations were present among individual RCMs. 

SMHIRCA simulated low average values (796,100 km2), while the spatial extent of HWs was 



75 

 

considerably enhanced in KNMI-RACMO2 and METNOHIRHAM (Table 8.3). Pronounced 

differences among the RCMs exist also in average and total extremity index. For example, 

both average and total Ihw were more than twice as great in KNMI-RACMO2 as in 

SMHIRCA (Table 8.3). In the multi-model mean, the average value of Ihw (characteristic of a 

single HW) was underestimated while the total Ihw was overestimated, which is related to the 

greater number of HWs in modelled data.  

 

Table 8.3. Comparison of HW characteristics in RCM simulations and observed data (1961–

2000). 

 HD HW 
HW 

duration 
Icl Tamp L A 

Average 
Ihw 

Total 
Ihw 

C4IRCA3 102 13 48 0.47 6.1 3.7 924.3 5.5 71.6 
ETHZ-CLM 102 13 49 0.48 7.2 3.8 945.4 7.8 100.9 
KNMI-RACMO2 111 13 69 0.62 6.4 5.3 1259.2 10.6 137.6 
METNOHIRHAM 112 14 62 0.55 8.3 4.4 1279.2 9.8 136.6 
METO-HC_Had 101 12 47 0.47 14.3 3.9 1016.6 10.6 126.7 
MPI-M-REMO 99 14 49 0.49 7.9 3.5 937.1 6.1 84.7 
SMHIRCA 105 14 53 0.50 5.1 3.8 796.1 4.9 68.5 

Multi-model mean 104.6 13.3 53.9 0.51 7.9 4.1 1022.5 7.9 103.8 

          
E-OBS 105 9 42 0.40 6.0 4.7 924.5 9.1 81.7 

HD – number of HDs, HW – number of HWs, HW duration – total duration of HWs [days], Icl – clustering index 

of HDs, Tamp – average temperature amplitude of HWs [°C], L – average length of HWs [days], A – average 

spatial extent of HWs [thousands km2], Average Ihw – average heat wave extremity index [°C], Total Ihw – total 

heat wave extremity index [°C]. 

 

Because Icl was overestimated in all RCMs, we evaluated a temporal autocorrelation of 

regionally averaged Tmax among individual RCMs in comparison to E-OBS (Figure 8.2). In 

general, most RCMs (except for METO-HC_Had) exhibited slightly greater values of 

autocorrelation coefficients than E-OBS. The lowest values of Icl in C4IRCA3 and METO-

HC_Had are linked to relatively low correlation coefficients (but still higher than the observed 

one in the case of C4IRCA3). The second highest value of Icl in METNOHIRHAM is 

accompanied by the highest correlation coefficients, particularly for lags of 2 days and more. 

Although the relationship between Icl and the correlation coefficients is not perfectly 

expressed, the results suggest that the generally enhanced clustering tendency of hot days in 

the RCMs is related to an overestimated autocorrelation of Tmax. 

 



76 

 

 

Figure 8.2. Temporal autocorrelation of regionally averaged Tmax in RCM simulations and E-

OBS during the 1961–2000 period. 

 

The substantial overestimation of the total Ihw by the RCMs was analysed with respect to 

precipitation rates during the HWs (Table 8.4). The observed summer precipitation 

climatology (238.8 mm) and the average summer daily precipitation (2.6 mm) over Central 

Europe were simulated reasonably well in all RCMs and they are captured almost perfectly by 

the multi-model mean. In E-OBS, the average daily precipitation during HWs was 0.9 mm, 

which is approximately one third of average summer daily precipitation (35%). This ratio was 

considerably underestimated in KNMI-RACMO2 (9%) that simulated virtually no 

precipitation during HWs, which is probably related to the generally overestimated severity of 

heat waves in this RCM (expressed by the greatest value of average Ihw as well as total Ihw). 

Overestimated values of total Ihw in ETHZ-CLM, METNOHIRHAM and METO-HC_Had are 

also linked to low average daily precipitation during the HWs, while lower values of total Ihw 

in the rest of the RCMs are associated with higher average daily precipitation during HWs. 

 

 

 

 

 

 

 

 

 



77 

 

Table 8.4. Precipitation rates during the HWs in RCM simulations and observed data (1961–

2000). 

 
R_JJA 
[mm] 

R_day 
[mm/day] 

R_HW-day 
[mm/day] 

% 

C4IRCA3 247.7 2.7 0.9 31.7 
ETHZ-CLM 233.3 2.5 0.3 10.8 
KNMI-RACMO2 192.4 2.1 0.2 9.1 
METNOHIRHAM 199.7 2.2 0.4 20.2 
METO-HC_Had 281.3 3.1 0.7 23.5 
MPI-M-REMO 239.8 2.6 1.4 52.7 

SMHIRCA 291.0 3.2 1.3 42.2 

Multi-model mean 240.7 2.6 0.7 28.3 

     

E-OBS 238.8 2.6 0.9 35.3 

R_JJA – summer precipitation climatology (1961–2000), R_day – average summer daily precipitation, R_HW-

day – average daily precipitation during the HWs, % – the ratio (given as percentage) between R_HW-day and 

R_day.  

 

Interannual variability of modelled hot days and HWs in each RCM and E-OBS is shown 

in Figure 8.3. Generally, the RCMs had a tendency to overestimate the number of hot days 

and severity of HWs in the first decade (1961–1970), especially METNOHIRHAM. In 1967, 

all RCMs simulated more hot days compared to E-OBS. Moreover, all RCMs simulated at 

least one HW in 1967 while no HW occurred in E-OBS that year. 

The 1971–1990 period was typical for a small number of hot days and low Ihw values in E-

OBS. This feature was well depicted by the majority of RCMs, however, KNMI-RACMO2 

and METO-HC_Had clearly simulated too many hot days and HWs. On the contrary, 

METNOHIRHAM simulated no HW and very few hot days in this period. It should be noted 

that the observed 1974, 1976 and 1983 HWs were not captured by most RCMs. In addition, 

MPI-M-REMO simulated a very high annual sum of Ihw in 1986 while the sum of Ihw in 1986 

was equal to 0 in E-OBS. 

The last analysed decade (1991–2000) was punctuated by the extreme summers of 1992 

and 1994. These severe HWs were only reasonably well reproduced in ETHZ-CLM, 

KNMI-RACMO2 and METNOHIRHAM while the rest of the RCMs failed to simulate major 

HWs in these years. In addition, METNOHIRHAM and MPI-M-REMO simulated very high 

annual sums of Ihw and severe HWs in 1996, which contradicts observations. 
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Figure 8.3. Temporal variability of the number of hot days (HD, red dots) and the annual sum 

of the heat wave extremity index (Ihw, grey bars) in RCM simulations and observed data 

during the 1961–2000 period. DIFF represents the difference between the multi-model mean 

and E-OBS.  
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The difference between the multi-model mean and E-OBS showed that the RCMs 

overestimated the severity of HWs mainly in 1967 and 1996 while the severity of HWs was 

underestimated in 1992 and especially in 1994. Possible causes of these discrepancies for the 

summers of 1994 and 1967 are investigated in detail in Sections 8.4 and 8.5, respectively. 

 

8.4 Reproduction of the 1994 heat wave in RCMs 

In this section, we investigated the capability of RCMs to reproduce the most severe 

Central European HW (according to Ihw) that occurred in 1994 and persisted for 15 days (July 

23 – August 6). This was a record breaking HW across Central Europe over the 1950–2012 

period for which E-OBS data were available (Lhotka and Kyselý 2014). For the 15-day heat 

wave period, we summed the grid maps of positive daily Tmax deviations for each RCM into 

the cumulative maps in order to obtain simulated temperature patterns. While all RCMs 

agreed with E-OBS that Tmax deviations were largest in the area north of Central Europe, we 

found major differences between the observed 1994 HW pattern and individual RCM 

simulations (Figure 8.4). 

Relatively good reproduction of the major 1994 HW was found in ETHZ-CLM, KNMI-

RACMO2 and METNOHIRHAM. In particular, ETHZ-CLM and METNOHIRHAM 

simulated the spatial distribution of cumulative temperature deviations quite well, however, 

the Ihw was slightly reduced (Figure 8.4). In KNMI-RACMO2, a distinct area of extreme hot 

anomalies (sum of temperature deviations above the 95% quantile of summer Tmax 

distribution > 50°C) was simulated over north-eastern Germany, north-western Poland and 

southern Sweden. On the contrary, the south-eastern part of Central Europe was only little 

affected, thus resulting in a lower Ihw also in this RCM. In the rest of the RCMs, the severity 

of the 1994 HW was substantially underestimated. Especially C4IRCA3, MPI-M-REMO and 

SMHIRCA simulated only small temperature anomalies, thus resulting in low values of Ihw 

(Figure 8.4). In 3 RCMs (C4IRCA3, METO-HC_Had, MPI-M-REMO), no HW according to 

the definition applied was simulated during the period corresponding to the observed HW. 
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Figure 8.4. Cumulative maps of positive Tmax deviations between 23 July and 6 August 1994 

for each RCM, the multi-model mean and E-OBS. 

 

In order to determine the causes of these large differences among the RCMs, we analysed 

the simulated precipitation and soil-moisture conditions. First, we evaluated the accumulated 

amount of precipitation in the RCMs averaged over Central Europe during the 1994 HW 

(Figure 8.5). 
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In E-OBS, the accumulated average precipitation over Central Europe during the 1994 

HW was 7.3 mm, which is considerably below the normal precipitation amount for this period 

(36.3 mm). We found large differences in this characteristic among the RCM simulations and 

a clear relationship to the simulated temperature patterns. The reproduction of precipitation 

during the 1994 HW was most realistic in ETHZ-CLM and METNOHIRHAM (Figure 8.5), 

i.e. in the two RCMs with the most realistic temperature patterns (Figure 8.4). In these RCMs, 

the accumulated average precipitation was close to E-OBS. Almost no precipitation was 

simulated by KNMI-RACMO2 (the third RCM with a pronounced HW) during the whole 

period of the 1994 HW. By contrast, the rest of the RCMs substantially overestimated 

precipitation over Central Europe during the period corresponding to the observed HW, 

especially MPI-M-REMO and METO_HC-Had. This suggests that quite realistic 

reproduction of temperature patterns for the 1994 HW in ETHZ-CLM and METNOHIRHAM 

was linked to credible simulation of precipitation rates during this period. Almost no 

precipitation in KNMI-RACMO2 was probably related to unrealistically hot anomalies in the 

northern part of Central Europe, while considerably overestimated precipitation rates (by a 

factor of 3–6) in C4IRCA, METO-HC_Had, MPI-M-REMO and SMHIRCA were associated 

with reduced temperature patterns during the HW period. 

 

 

Figure 8.5. Accumulated average precipitation over Central Europe during the 1994 heat 

wave (23 July – 6 August). 
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We also investigated the precipitation amount over Central Europe in the early-summer 

period preceding the HW (from 1 June to 22 July). The precipitation deficit was simulated by 

all RCMs but it was less pronounced than in E-OBS (Table 8.5). While this might have 

contributed to the fact that the 1994 HW was simulated as less severe over Central Europe 

(according to Ihw) in all RCMs, we found no relationship between the precipitation rates in the 

previous period and the simulated temperature patterns for the 1994 HW in individual RCMs. 

In fact, the deficits were larger in those RCMs that did not reproduce the HW. 

 

Table 8.5. Precipitation rates for the period 1 June – 22 July. 

 
R_1961–2000 

[mm] 
R_1994 
[mm] 

% 

C4IRCA3 148.5 104.5 70.4 
ETHZ-CLM 137.4 114.7 83.5 
KNMI-RACMO2 117.5 95.5 81.3 
METNOHIRHAM 123.6 111.6 90.3 
METO-HC_Had 178.1 143.9 80.8 
MPI-M-REMO 150.0 120.3 80.2 
SMHIRCA 171.1 125.4 73.3 

Multi-model mean 146.6 116.6 79.5 

    

E-OBS 142.6 94.4 66.2 

R_1961–2000 − the 1961–2000 climatology of precipitation amount during June 1 – July 22, R_1994 − 

precipitation in year 1994 during June 1 – July 22, % − the ratio (expressed as percentage) between the 1994 

precipitation and the 1961–2000 climatology.  

 

The development of evaporative fraction (EF) during the 1994 HW is shown in Figure 

8.6. EF is the ratio between the latent heat flux and the available energy (Section 8.2.3). These 

variables are not available in E-OBS, so our analysis was limited to inter-comparison of the 

RCMs. Above-average EF values (moister conditions) during the 1994 HW period were 

simulated by MPI-M-REMO (0.82), SMHIRCA (0.81) and C4IRCA (0.77) in which weak 

temperature patterns were found for the 1994 HW (Figure 8.4). Below-average values of EF 

(drier conditions), simulated in the rest of the RCMs (METO-HC_Had (0.59), ETHZ-CLM 

(0.60), METNOHIRHAM (0.62), KNMI-RACMO2 (0.67)), were related to the more 

pronounced temperature anomalies (Figure 8.4), although this link was not well expressed 

compared to the precipitation amount during the HW. It is noteworthy that although METO-

HC_Had simulated high precipitation rates (Figure 8.5) its mean EF was lowest (Figure 8.6). 
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Moreover, KNMI-RACMO2 had moderate EF values (Figure 8.6) despite almost no 

precipitation simulated (Figure 8.5). This issue is discussed in more detail in Section 8.6.4. 

 

 

Figure 8.6. Development of evaporative fraction over Central Europe during the 1994 heat 

wave (23 July – 6 August). 

 

8.5  ‘Erroneous’ 1967 heat wave in RCM simulations 

All examined RCMs except ETHZ-CLM simulated a HW between 31 July and 4 August 

1967 while only a single hot day was observed during this period in E-OBS. Analogously to 

Section 8.4, we summed the grid maps of positive Tmax deviations for each RCM into 

cumulative maps in order to obtain simulated temperature patterns for this period that were 

compared against observations (Figure 8.7). In E-OBS, only small positive Tmax anomalies 

were found over Central Europe that resulted in a low value for Ihw (Figure 8.7). By contrast, 

all RCMs considerably enhanced temperature patterns, especially METNOHIRHAM that 

simulated a severe HW over Central Europe. 
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Figure 8.7. Cumulative maps of positive Tmax deviations between 31 July and 4 August 1967 

for each RCM, the multi-model mean and E-OBS. 

 

As in Section 8.4, we evaluated the accumulated amount of precipitation averaged over 

Central Europe between 31 July and 4 August 1967. The accumulated precipitation in E-OBS 

for the examined period was 17.3 mm (Figure 8.8), which was slightly more than the average 

precipitation for this period of year (13.2 mm). Precipitation was considerably underestimated 
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in all RCMs, which supported development of the ‘erroneous’ HW. The lowest amount of 

precipitation (1.3 mm) was simulated by METNOHIRHAM, in which temperature anomalies 

over Central Europe were most pronounced. A similar amount of precipitation (1.6 mm) in 

KNMI-RACMO2 was associated with much less pronounced temperature anomalies (Figure 

8.7), but this RCM has generally very low precipitation amounts during heat waves (Section 

8.3). Between one-third and one-half of the observed precipitation was simulated for the HW 

period in the remaining RCMs. 

 

 

Figure 8.8. Accumulated average precipitation over Central Europe between 31 July and 4 

August 1967. 

 

The precipitation in the RCMs and E-OBS during the preceding period from 1 June to 30 

July is given in Table 8.6. In observed data, the precipitation amount was only slightly below 

the 1961–2000 climatology (91%). In the majority of the RCMs, by contrast, considerable 

precipitation deficits were simulated, especially in METNOHIRHAM (41%). The 

combination of this major precipitation deficit and almost no precipitation during the 

simulated HW most probably contributed to the greatest temperature anomalies among all the 

RCMs. The precipitation deficit in June and July and reduced soil moisture in the other RCMs 

(except for METO-HC_Had) have also supported the development of a HW at the turn of July 

and August in their simulations. 
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Table 8.6. Precipitation rates for the period June 1 – July 30. 

 
R_1961–2000 

[mm] 
R_1967 
[mm] 

% 

C4IRCA3 168.9 134.4 79.6 
ETHZ-CLM 156.5 104.5 66.8 
KNMI-RACMO2 133.8 91.1 68.1 
METNOHIRHAM 138.6 56.8 41.0 
METO-HC_Had 202.1 231.8 114.7 
MPI-M-REMO 170.7 122.2 71.6 
SMHIRCA 195.2 149.7 76.7 

Multi-model mean 166.5 123.4 74.1 

    

E-OBS 162.2 147.9 91.2 

R_1961–2000 − the 1961–2000 climatology of precipitation amount during 1 June – 30 July, R_1967 − 

precipitation in year 1967 during 1 June – 30 July, % − the ratio (expressed as percentage) between the 1967 

precipitation and the 1961–2000 climatology.  

 

8.6 Discussion 

 

8.6.1 Evaluation of spatial and temporal characteristics of simulated heat waves 

In evaluating spatial and temporal characteristics of heat waves, substantial differences 

became apparent among individual RCMs and between the RCMs and observations. 

Inasmuch as we calculated 95% quantiles of Tmax distribution for each RCM separately to 

delimit heat waves, these errors were not caused by simple Tmax biases. 

The clustering index of hot days (the ratio between the total duration of heat waves and 

the total number of hot days) revealed a generally greater clustering tendency for hot days in 

the RCMs than in the observed data. Higher temporal autocorrelation of summer Tmax found 

in most RCMs, and particularly for lags of 2 days and more, is likely associated with the 

enhanced clustering tendency of hot days.  

Vautard et al. (2013) showed that RCMs from the CORDEX project (Giorgi et al. 2009) 

tend to overestimate amplitude and persistence of heat waves, even when respective 

percentiles (calculated for each RCM) are used. The greater mean amplitude of heat waves 

accords with our study, but a comparison of persistence is more complex. Vautard et al. 

(2013) demonstrated that all RCMs overestimated the number of heat waves that persisted 

more than a few days at the expense of shorter events, and the overestimation generally 

increased with duration. Such attribute was not present in our study, since only KNMI-

RACMO2 simulated a longer heat wave than was observed (18 days long heat wave between 
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25 July and 11 August, 1994), and the average length of heat waves was shorter in most 

RCMs compared to observation.  

These seemingly contrasting results are probably associated with different definitions of 

events. While our definition of a heat wave was based on at least 3 consecutive hot days and a 

larger area’s being affected, Vautard et al. (2013) evaluated also single-day events and no 

requirement on their spatial extent was imposed. This definition, then, resulted in 

substantially greater number of events. Moreover, a higher respective temperature quantile 

(95%) was applied in our study. If single-day events would be included in our study as well, 

then the average length of HWs would decrease more in observed than simulated data (as the 

clustering index of hot days is smaller in the observed data) and the results would be more 

consistent. Increasing overestimation for heat waves of longer duration (Vautard et al. 2013) 

is also consistent with greater overestimation of autocorrelation of daily Tmax for longer lags, 

as found for most RCMs in our study. 

Substantial biases in precipitation rates during heat waves among the RCMs were 

detected; these differences were linked to the total extremity index of heat waves and may be 

related to different convection schemes. The influence of convection schemes on the heat 

wave development in RCM simulations was recently studied by Stegehuis et al. (2014), who 

demonstrated their crucial role for a simulation of heat waves. 

The general overestimation of heat waves severity in the 1960s and its contrasting 

underestimation in the 1990s is related to underestimated temperature trends in the RCM 

simulations. Lorenz and Jacob (2010) showed that most RCMs from the ENSEMBLES 

project driven by the ERA-40 reanalysis failed to simulate the observed temperature trend 

properly. This feature was consistent in all domains over Europe. 

 

8.6.2 Reproduction of the 1994 heat wave 

Using as an example the most severe Central European heat wave observed between 23 

July and 6 August 1994, we demonstrated that the temperature patterns were model-

dependent and differed considerably from observations in most RCMs. Since RCMs driven 

by the ERA-40 reanalysis reproduce persistence of weather regimes (Sanchez-Gomez et al. 

2009) and flow indices (Plavcová and Kyselý 2012) over Central Europe relatively well, we 

focused on land–atmosphere coupling as a possible driver for the errors in simulations of this 

event. 
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The importance of realistically simulating soil-moisture conditions in RCMs for the 

development of heat waves was emphasized by Fischer et al. (2007) and Vautard et al. (2013). 

We identified a pronounced overestimation of precipitation amount during the period of the 

1994 heat wave in all RCM simulations that considerably underestimated the magnitude of 

the temperature pattern (4 out of 7), while the simulated precipitation was much closer to 

reality in the 3 RCMs that captured the 1994 heat wave reasonably well. This is also in 

accordance with model simulations performed by Jaeger and Seneviratne (2010), who 

concluded that heat waves are strongly affected by the total amount of soil-moisture. 

Since Fischer et al. (2007) found no precipitation deficit in Central Europe in spring 1994, 

we analysed the preceding precipitation amount only from 1 June to the onset of the July–

August 1994 heat wave. The precipitation deficit was present in all examined RCMs, but it 

was smaller in each case than that actually observed and was not linked to the magnitude of 

the temperature pattern of the 1994 heat wave. This suggests that the precipitation deficit 

during this heat wave was more important for its development than was the preceding 

precipitation amount. However, the slightly overestimated early-summer precipitation in all 

RCM simulations might also have contributed to the general underestimation of the July–

August 1994 heat wave. 

 

8.6.3 ‘Erroneous’ 1967 heat wave in RCM simulations 

Analogously to the most severe Central European heat wave in 1994, we investigated also 

the substantial overestimation of Tmax and the ‘erroneous’ heat wave that appeared in 6 out of 

7 RCMs between 31 July and 4 August 1967. During this period, all RCMs simulated 

considerably lower precipitation amounts compared to observed data. Although the 

precipitation was underestimated by a factor of 2–10, the relationship between the magnitude 

of temperature pattern and precipitation during this event was weaker than in case of the 1994 

heat wave and it was probably not the only major source of errors. 

The analysis of preceding precipitation rates revealed a major deficit in 

METNOHIRHAM that simulated the most pronounced temperature pattern over Central 

Europe in 1967. This suggests that these errors were caused by a joint effect of precipitation 

underestimation during this event amplified by the preceding precipitation deficit and 

associated drying. The importance of dry soils in driving and/or enhancing heat waves was 

reported by several previous studies (e.g. Fischer et al. 2007). Errors in the 1994 heat wave 

simulations, by contrast, were caused primarily by incorrect simulation of precipitation during 
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this event, while the role of the preceding precipitation deficit was relatively small. This is 

probably related also to the different lengths of the events. 

 

8.6.4 Evaporative fraction during the 1967 and 1994 heat waves 

Since the examined RCMs have different thickness of soil layers and a various soil depths, 

we analysed soil-moisture conditions in the RCMs indirectly through evaporative fraction 

(Section 8.2.3). Although this micrometeorological characteristic is today measured 

worldwide within the FLUXNET project (Baldocchi et al. 2001), measurements of 

evaporative fraction before the beginning of the 21st century were rather sparse. The typical 

annual values for evaporative fraction range from 0.01 in very dry areas to 0.8 in quite humid 

regions (Jung et al. 2011). According to Hartmann (1994), the estimated average value of 

evaporative fraction over Europe is 0.6, and Fischer et al. (2007) pointed out that the 

evaporative fraction was about 0.1 during the severe 1976 heat wave over the British Isles. 

Hence, the simulated evaporative fraction during the 1994 heat wave seems to be 

overestimated (average values among the RCMs range from 0.6 to 0.8). A systematic 

overestimation of evapotranspiration, which is closely related to evaporative fraction, was 

found by Mueller and Seneviratne (2014) in GCMs, and it is possible that a similar bias is 

also present in the examined RCMs. 

We found some signs of suspicious relationships between precipitation and evaporative 

fraction in our study. Although KNMI-RACMO2 simulated virtually no precipitation over 

Central Europe during the whole 1994 heat wave, the evaporative fraction in this RCM was 

relatively high. In addition, KNMI-RACMO2 underestimated precipitation amount in the 

period preceding the heat wave, which is inconsistent with the high evaporative fraction. 

Meijgaard et al. (2008) noted that the RACMO 2.1 land surface scheme was modified since 

the previous model simulated insufficient soil drying. The suspiciously high evaporative 

fraction might be related to the persistence of this issue also in the examined KNMI-

RACMO2 simulation. A similar feature was found in METNOHIRHAM that simulated high 

values of evaporative fraction during the ‘erroneous’ 1967 heat wave (around 0.9, not shown), 

despite the fact that this RCM simulated considerable precipitation deficit in the early summer 

and during the heat wave. By contrast, METO-HC_Had had low evaporative fraction, despite 

relatively high precipitation rates during the 1994 heat wave. The low evaporative fraction 

might enable a development of relatively hot conditions despite substantially overestimated 

precipitation during this event. These results suggest that realistic reproduction of soil 
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moisture is a critical issue in the RCMs, and this is particularly relevant for heat waves and 

the credibility of their scenarios in a possible future climate. 

 

8.6.5 Performance of individual RCMs 

The main features of the individual RCMs with respect to the simulation of spatial and 

temporal heat wave characteristics over Central Europe can be summarized as follows: 

C4IRCA3 simulated the average temperature amplitude and spatial extent of heat waves 

well. By contrast, the 1994 heat wave was poorly reproduced, interannual variability of heat 

waves was distorted and the total heat wave extremity index was slightly underestimated. 

ETHZ-CLM simulated temperature amplitude and spatial extent of the heat waves 

reasonably well. The 1994 heat wave was also captured. Some insufficiencies were found in 

the simulated interannual variability of heat waves, and the total heat wave extremity index 

was overestimated. 

KNMI-RACMO2 best reproduced the interannual variability and its simulation of the 

1994 heat wave was relatively good too. By contrast, this RCM substantially overestimated 

the spatial extent and total extremity index of heat waves, which is probably related to large 

underestimation of precipitation during heat waves. 

METNOHIRHAM best reproduced the 1994 heat wave and it simulated relatively well 

the average length of heat waves. However, this RCM suffered most from ‘erroneous’ severe 

heat waves in 1967 and 1996 when no heat waves were observed. Similarly to KNMI-

RACMO2, the spatial extent and total extremity index of heat waves were substantially 

overestimated. 

METO-HC_Had had difficulties in reproducing the characteristics and the interannual 

variability of heat waves. The largest drawbacks were found in temperature amplitude, which 

was simulated unrealistically due to isolated hot grid points. 

MPI-M-REMO simulated the spatial extent and total extremity index of heat waves 

relatively well. By contrast, the average length of heat waves was considerably 

underestimated, the 1994 heat wave was not properly reproduced and the interannual 

variability of heat waves was distorted. 

SMHIRCA substantially underestimated temperature amplitude, spatial extent and total 

extremity index of heat waves. The reproduction of the 1994 heat wave was poor and the 

interannual variability of heat waves was simulated insufficiently. 
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Although there is no single RCM that outperforms others as to the simulation of all heat 

wave characteristics over Central Europe, ETHZ-CLM performed relatively well in most 

characteristics. Previous studies (Christensen et al. 2010; Holtanová et al. 2012) indicated that 

KNMI-RACMO2 performed best among RCMs from the ENSEMBLES project. The 

drawbacks of KNMI-RACMO2 found in our study suggest important limitations in 

reproducing temporal and spatial structure of daily temperatures also in this RCM. The RCMs 

with the worst simulation of heat waves over Central Europe in the examined ensemble were 

probably METO-HC_Had and SMHIRCA. 

 

8.7 Conclusions 

We investigated the ability of RCMs to reproduce spatial and temporal characteristics of 

heat waves over Central Europe, using the ensemble of 7 RCM simulations driven by the 

ERA-40 reanalysis over the 1961–2000 period. We utilized the E-OBS 9.0 gridded dataset as 

a source of observed data. Since soil-moisture feedback enhances temperature amplitude and 

prolongs duration of heat waves, we also focused on land–atmosphere coupling in the RCM 

simulations during the most severe Central European heat wave in 1994 as well as during an 

‘erroneous’ heat wave found in the RCM simulations in 1967. The main conclusions are as 

follows: 

 

• The RCMs simulated more heat waves despite the fact that the number of hot days is 

almost the same as in the observed data. The overestimation of the clustering tendency 

of hot days is probably related to enhanced temporal autocorrelation of summer Tmax, 

particularly for lags of 2 days and more. 

• On average, heat waves tended to be shorter but with a too-pronounced temperature 

peak in most RCMs. The spatial extent and heat wave extremity index were 

reproduced reasonably well in the ensemble mean, although considerable differences 

were found among individual RCMs. 

• Substantial variations in precipitation rates during heat waves in the RCMs were 

found, and they were related to the total extremity index of heat waves. 

• We found major differences among the RCMs when reproducing interannual and 

interdecadal variability of heat waves and hot days. In general, the RCMs 

overestimated the severity of heat waves and the number of hot days in the 1960s and 

underestimated both during the extreme 1992 and 1994 summers. 
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• Focusing on the ability of the RCMs to reproduce the most severe 1994 heat wave, we 

found considerable differences between observations and the RCMs that were linked 

to the simulated precipitation during this event. Only those RCMs that reproduced the 

precipitation deficit captured the 1994 heat wave reasonably well, while the heat wave 

was weak or entirely missing in all RCMs that substantially overestimated 

precipitation during this period. 

• Analogously, unrealistically overestimated temperature anomalies in 1967 in all 

RCMs were related to unrealistic precipitation deficits simulated during the heat wave 

as well as in the preceding early-summer period. 

• The evaporative fraction was suspiciously high in the RCMs during the 1994 heat 

wave. This suggests a possible contribution of other factors such as cloud cover and 

associated downward radiation that might strongly affect heat wave development in 

the RCMs. Moreover, the link between simulated evaporative fraction and 

precipitation was poorly expressed, indicating deficiencies in land surface schemes 

among the RCMs. 

• Although there is no single RCM that outperforms others as to the simulation of all 

heat wave characteristics over Central Europe, ETHZ-CLM performed relatively well 

in most characteristics. By contrast, METO-HC_Had and SMHIRCA were probably 

the least performing RCMs in the examined ensemble as to the simulation of heat 

waves over Central Europe. 

 

Regional climate models have become a powerful tool for exploring impacts of global 

climate change on a regional scale. Further work is needed to determine the relationships 

between extreme high temperature, atmospheric circulation, soil-moisture conditions, cloud 

cover and associated incoming shortwave radiation in RCM simulations. Evaluating these 

driving processes before and during simulated heat waves can provide a better attribution of 

errors in reproducing such extreme events. It is important to better understand the strengths 

and weaknesses of RCMs also for assessing the credibility of projected regional changes of 

heat waves in future climate and, ultimately, for improving the RCMs.  
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Abstract:  The study examines climate change scenarios of Central European heat waves with 
a focus on related uncertainties in a large ensemble of regional climate model (RCM) 
simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970–
1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data 
set in the first step. Although the RCMs are found to reproduce the frequency of heat waves 
quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the 
frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) 
EURO-CORDEX RCMs. In the near future (2020–2049), heat waves are projected to be 
nearly twice as frequent in comparison to the modelled historical period, and the increase is 
even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs 
and GCMs because the increase is similar for all concentration scenarios. For the late 21st 
century (2070–2099), a substantial increase in heat wave frequencies is projected, the 
magnitude of which depends mainly upon concentration scenario. Three to four heat waves 
per summer are projected in this period (compared to less than one in the recent climate) and 
severe heat waves are likely to become a regular phenomenon. This increment is primarily 
driven by a positive shift of temperature distribution, but changes in its scale and enhanced 
temporal autocorrelation of temperature also contribute to the projected increase in heat wave 
frequencies.  
 

Keywords: heat waves; climate change; regional climate models; CORDEX; Central Europe 

 

9.1 Introduction 

Heat waves are one of the main concerns in relation to the ongoing climate change. The 

severity of heat waves has increased across European regions in the recent decades (Della-

Marta et al. 2007; Kyselý 2010; Valeriánová et al. 2015). The most notable events occurred in 

2003 over Western Europe (Fink et al. 2004) and in 2010 over Eastern Europe and Russia 

(Schneidereit et al. 2012). Recently, Central Europe was affected by several extraordinary 

heat waves in summer 2015, during which the highest historically recorded daily maximum 

temperature (Tmax, 40.3°C) was measured in Germany (DWD 2015). Central Europe 

experienced extremely hot weather conditions also in summer 2013, which ranked as the fifth 



98 

 

warmest since 1951 at the continental scale, and the heat wave severity broke historical 

records at several stations with long-term measurement (Lhotka and Kyselý 2015b). In 2013, 

the highest historically recorded Tmax (40.5°C) was reached in Austria (ZAMG 2013) and the 

highest temperature for the Czech Republic (40.4°C) was observed one year earlier, in August 

2012 (Holtanová et al. 2015). It is estimated that the probability of severe heat waves has 

increased by a factor of 2–4 due to climate change (Coumou and Rahmstorf 2012), and 

Fischer and Knutti (2015) concluded that about 75% of hot extremes over land in the past six 

decades are attributable to the observed warming. 

Heat waves cause excess illness and mortality, losses in agricultural production, forest 

fires, increased energy demand for cooling, and other related hazards (Beniston et al. 2007), 

and there is growing evidence that the European agricultural sector will need to adopt suitable 

adaptation strategies in relation to more frequent heat stress (Iglesias et al. 2012). The 2003 

heat waves caused 70,000 excess deaths in Europe, mainly in the elderly population (Robine 

et al. 2008), and the 2010 heat wave in Russia was associated with a death toll of 55,000 

(Barriopedro et al. 2011). Bastos et al. (2014) showed that both events led to a marked 

decrease of plant productivity. In addition, numerous wildfires that occurred in 2010 caused 

continuous episodes of extreme air pollution in several Russian cities (Konovalov et al. 2011). 

In general, heat waves are expected to become more frequent, more intense, and longer 

lasting in a future climate (Meehl and Tebaldi 2004; Lau and Nath 2014; Lemonsu et al. 

2014). More specifically, based on ENSEMBLES regional climate models (RCMs) driven by 

global climate models (GCMs) forced by the SRES A1B scenario, Fischer and Schär (2010) 

showed that the occurrence of heat waves is projected to increase substantially by the end of 

the 21st century in most European regions and their peak temperature may be enhanced by 

approximately 5°C. These changes are usually reported to be driven rather by higher mean 

temperature than by larger temperature variability (Ballester et al. 2010). There is 

nevertheless a considerable spread among individual climate models, causing substantial 

uncertainties in future projections. 

The evaluation of uncertainties is fundamental for any application (Déqué et al. 2012) 

and presents a key challenge for adaptation planning. Uncertainties in climate projections 

originate from three main sources: the choice of emission/concentration scenario, internal 

variability of climate, and model uncertainties (Hawkins and Sutton 2009). Concentration 

scenarios represent possible ways of human society’s development that alter a radiative 

forcing on climate (Moss et al. 2010), mainly through a modification of atmospheric 
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chemistry and land-cover changes. In the extratropics, the uncertainty based on internal 

climate variability is mainly associated with atmospheric dynamics, dominated at the 

hemispheric scale by annular modes (Deser et al. 2012), such as the North Atlantic Oscillation 

(Hurrel and Deser 2010). The model uncertainty arises from the nature of model design, as 

different RCMs exhibit various internal behaviour and their simulations are driven by 

different GCMs.  

Identifying typical features of individual models related to heat waves in the historical 

climate is crucial for credible interpretation of their projections. Kjellström et al. (2007) 

demonstrated that RCMs tend to underestimate high summer temperatures over Scandinavia 

and the British Isles, while an overestimation was found over Eastern Europe, the 

Mediterranean, and the Iberian Peninsula. In Central Europe, a negative bias of daily 

maximum temperature is often reported (Nikulin et al. 2011; Plavcová and Kyselý 2011), but 

Kjellström et al. (2010) showed that this bias is one of the smallest across the European 

domain. Reproduction of heat waves nevertheless requires not only a good simulation of the 

right tail of a temperature distribution but also of the persistence of high temperatures. The 

capability of RCMs to simulate heat waves over Europe was evaluated by Vautard et al. 

(2013), who found that biases in modelled temperature influenced characteristics of heat 

waves that were too persistent and severe. A different approach to defining heat waves was 

adopted by Lhotka and Kyselý (2015c), who took into account their temperature magnitude, 

length, and spatial extent. Simulated heat waves were then shorter but more frequent, and 

their peak temperatures were substantially overestimated. 

Previous studies on climate change scenarios have not evaluated in detail the 

aforementioned uncertainties when analyzing heat waves in a future climate. The focus of the 

present study is on uncertainties connected with the choice of emission/concentration scenario 

(RCP 4.5, RCP 8.5, and SRES A1B), model resolution (12.5, 25, and 50 km), and the climate 

model (31 RCM × GCM combinations). The changes and uncertainties are assessed for the 

near future (2020−2049) and the late 21st century (2070−2099). An evaluation of the RCMs is 

performed against the E-OBS gridded data set over the 1970–1999 historical period. Since the 

study involves a large ensemble of RCMs with various characteristics, this approach allows 

analysing magnitude of projected changes with respect to the related uncertainties.  
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9.2 Data and methods 

 

9.2.1 Area of interest and observed data 

Heat waves are analysed over Central Europe that is situated approximately between 47–

53°N and 8–22°E (Figure 9.1). The area contains 4,160 (80 × 52), 1,040 (40 × 26), or 260 (20 

× 13) grid points, depending on horizontal grid spacing of a particular data (12.5, 25 or 50 

km, respectively). This region’s location is designed for the most common rotated pole grid 

and is identical for observed data and all 3 horizontal grid spacings of the RCMs. The E-OBS 

11.0 gridded data set (0.22 rotated grid, Haylock et al. 2008) is used as a source of 

observations. This data set covers whole continental Europe over the 1950–2014 period, but 

the evaluation of model simulations is performed during the shorter 1970–1999 period due to 

the limited time span of modelled data. 

 

 

Figure 9.1. Definition of Central Europe (black dashed polygon) and the 90th percentile of 

summer daily maximum temperature calculated for the 1970−1999 period (colour shading) in 

the E-OBS 11.0 gridded data set. 
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9.2.2 Climate model simulations 

Modelled data are taken from the EURO-CORDEX (Jacob et al. 2014) and ENSEMBLES 

(van der Linden and Mitchell 2009) projects. While EURO-CORDEX provides RCM 

simulations in 50 km and 12.5 km resolutions driven by RCP scenarios (van Vuuren et al. 

2011), the ENSEMBLES project is valuable in that it provides RCMs in the 25 km resolution 

forced by the SRES A1B scenario (Arnell et al. 2004). Individual RCMs had been subjected 

to various upgrades during the time period between the ENSEMBLES project phase and the 

EURO-CORDEX simulations. The EURO-CORDEX models investigated in this study had 

improved their respective sets of physical parameterizations while keeping their basic 

principles from the ENSEMBLES stage. Another notable change is the use of more recent 

surface properties data sets and improved restart techniques, for example in RCA4 

(Strandberg et al. 2014) and CLM (Davin et al. 2011). The majority of the model simulations 

are available up to the end of the 21st century (Table 9.1), and all simulations have available 

their historical runs (1970−1999) driven by the same GCM. 

 

Table 9.1. Number of model simulations from the EURO-CORDEX and ENSEMBLES 

projects for the near future and the late 21st century. Decimal numbers represent the horizontal 

grid spacing, “RCP” or “SRES” denote the concentration scenario. 

 2020−2049 2070−2099 
CORDEX - 0.11 - RCP 4.5 10 10 
CORDEX - 0.11 - RCP 8.5 10 10 
CORDEX - 0.44 - RCP 4.5 13 13 
CORDEX - 0.44 - RCP 8.5 13 13 
ENSEMBLES - 0.22 - SRES A1B 16 13 
Total 62 59 

 

Individual model simulations from the EURO-CORDEX project are listed in Table 9.2. 

These models have 0.11° (12.5 km) or 0.44° (50 km) horizontal grid spacing and are forced 

by the RCP 4.5 or RCP 8.5 scenarios. The RCP 4.5 scenario represents stabilization of 

concentrations without overshooting effective radiative forcing (ERF) of 4.5 W/m2 relative to 

pre-industrial values (~650 ppm CO2 equivalent). This is achieved by implementing 

mitigation policies (Thomson et al. 2011). The total ERF is 2.3 W/m2 in year 2020, 3.4 W/m2 

in 2050, 3.8 W/m2 in 2070, and 3.9 W/m2 in 2100 (Prather et al. 2013). By contrast, the RCP 

8.5 scenario represents a long-term large energy demand without implementation of 

mitigation policies, thus leading to high greenhouse gas emissions (Riahi et al. 2011). This 
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scenario is presumed to reach ERF of 8.5 W/m2 (~1370 ppm CO2 equivalent) and the total 

anthropogenic ERF is 2.3 W/m2 in year 2020, 4.4 W/m2 in 2050, 5.9 W/m2 in 2070, and 8.0 

W/m2 in 2100 (Prather et al. 2013). It should be mentioned that the CORDEX ensemble may 

be unbalanced due to the majority of RCA4 RCM simulations (especially in the 0.44° grid), 

which has to be taken into account when interpreting the model outputs. 

 

Table 9.2. RCM × GCM matrix for the EURO-CORDEX project. “g12” (“g50”) denotes 

simulations available only in the 12.5 (50) km grid and “G” denotes simulations available in 

both grids. All simulations are forced by both RCP 4.5 and RCP 8.5 scenarios. 

  CCCma CNRM CSIRO HadGEM ICHEC IPSL MIROC MPI NCC NOAA 

CLM-CCLM  g12   g12   G    

DMI-HIRHAM     G       

KNMI-RACMO     G       

SMHI-RCA4 g50 G g50 G G G g50 G g50 g50 

 

The ENSEMBLES project contains 16 simulations that use rotated grid and the 0.22° 

(25 km) horizontal grid spacing (Table 9.3). These simulations are forced by the SRES A1B 

concentration scenario that represents rapid economic growth with increasing globalisation, 

fast technological change, and low population increase (Arnell et al. 2004). The total 

anthropogenic ERF is 2.2 W/m2 in year 2020, 4.2 W/m2 in 2050, 5.3 W/m2 in 2070, and 6.0 

W/m2 in 2100 (Prather et al. 2013). 

 

Table 9.3. RCM × GCM matrix for the ENSEMBLES project. “X” denotes simulations 

covering the whole 1970–2099 period while “I” represents the limited 1970–2050 period. 

Hadley Centre (HC) models are considered as three individual simulations, due to their 

different climatic responses to radiative forcing.  

  ARPEGE BCM CGCM3 ECHAM5 HadCM3Q0 HadCM3Q3 HadCM3Q16 IPSL 

C4I-RCA3       X   

DMI-HIRHAM X X  X      

ETHZ-CLM     X     

GKSS-CLM        I 

HC-HadRM3Q0     X     

HC-HadRM3Q3      X    

HC-HadRM3Q16       X   

KNMI-RACMO    X      

MPI-REMO    X      

NO-HIRHAM  I   I     

SMHI-RCA3  X  X  X    
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In some studies, a relatively large numbers of gaps in RCM × GCM matrices were 

completed using statistical methods for data reconstruction. Nevertheless, Heinrich et al. 

(2014) showed that seasonal mean climate change of the ENSEMBLES RCM projections is 

not significantly biased due to the lack of driving GCMs. This technique is therefore not 

employed in the present study, and we analyse only the available simulations.  

 

9.2.3 Definition of heat wave 

Heat waves are defined with respect to their temperature magnitude, length, and spatial 

extent. First, all data are recalculated to the 0.44° (50 km) grid through averaging 4 (16) 

respective grid cells when transforming the original 25 km (12.5 km) grid. Inasmuch as a 

sensitivity study had shown the occurrence of heat waves to be identical in selected 0.22° 

(25 km) data sets and in their recalculated 0.44° versions, we found this approach useful for 

direct comparison of heat wave characteristics among all data sets involved. An analogous 

procedure was applied by Kotlarski et al. (2014) when comparing the performance of 

CORDEX and ENSEMBLES models driven by reanalyses. We note that some heat wave 

characteristics (e.g. temperature amplitude) cannot be directly compared between different 

resolutions, and this approach also overcomes the issue with the missing observed 0.11° 

(12.5 km) grid data for the evaluation of historical runs. 

The definition of heat waves is based on the occurrence of hot days over Central Europe 

and is similar to that proposed in Lhotka and Kyselý (2015a). A hot day occurs when the 

average of Tmax deviations from the 90th percentile of their summer distribution is positive 

over Central Europe (calculated in the 1970−1999 period). The percentiles are calculated 

individually for observed data and each model simulation in order to remove a Tmax bias. This 

approach is suitable when focusing rather on behaviour of the right tail of the Tmax distribution 

and the spatial and temporal structure of daily temperatures (which are essential for heat 

waves) than on the Tmax bias itself. The use of the respective percentiles has already been 

employed in previous studies (Ballester et al. 2010; Fischer and Schär 2010; Vautard et al. 

2013). In future time slices, the calculated percentiles from the historical period are kept. A 

heat wave is defined by at least three consecutive hot days. Therefore, a heat wave is regarded 

as a several days long period with high temperatures over large Central European areas. 
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9.2.4 Heat wave characteristics 

Four characteristics of a heat wave are calculated so that each event is described by (i) 

temperature amplitude, (ii) length, (iii) spatial extent, and (iv) extremity index. Temperature 

amplitude is the highest daily Tmax excess above the 90th percentile of the summer Tmax 

distribution during a heat wave (at any grid point in Central Europe) and represents the 

temperature anomaly of its peak. Length is the number of consecutive hot days that form a 

heat wave (minimum of 3 hot days). Spatial extent is represented by an area where Tmax 

deviations above the 90th percentile of summer Tmax distribution are positive for at least 3 

successive days, and it is given as a ratio (1.0 means that whole Central Europe is affected by 

a heat wave). The extremity index is adopted from Lhotka and Kyselý (2015a) and is defined 

as a sum of positive Tmax deviations in all Central European grid points during a heat wave, 

scaled by the total number of (recalculated) grid points over Central Europe (260). This index 

captures joint effects of temperature, length, and spatial extent of heat waves. An example of 

the heat wave definition and calculation of its characteristics is given in Figure 9.2. 

 

 

Figure 9.2. Theoretical example of the heat wave definition and calculation of heat wave 

characteristics over a hypothetical area represented by 4 grid points. Positive (red), negative 

(blue), and zero (black) deviations from the 90th percentile of summer Tmax distribution are 

shown. 

 

 



105 

 

9.2.5 Temporal autocorrelation and statistical testing 

Analogously to Lhotka and Kyselý (2015c), persistence of Tmax over Central Europe is 

analysed by temporal autocorrelation computed as Pearson product moment coefficients for 

lagged data pairs. For each day in summer, Tmax values across 260 grid points over Central 

Europe are averaged into a regionally averaged Tmax, which is used to compute correlation 

coefficients. Since the summer Tmax series is not continuous, we calculated correlation 

coefficients individually for each summer and averaged them thereafter. Statistical 

significance of changes in temporal autocorrelation is assessed using the two-sided Wilcoxon 

rank sum test. This non-parametric test is chosen because the criterion of data normality is not 

always met. 

 

9.3 Observed heat waves and evaluation of historical RCM simulations 

Because the study includes evaluating performance of the RCMs’ historical simulations, 

observed heat wave characteristics are analysed first. In the E-OBS data, 22 heat waves are 

found in the 1970−1999 period (7.3 heat waves per decade). Their temperature amplitude 

ranges from 4.1 to 9.8°C, the length varies from 3 days (by definition) to 16 days, the spatial 

extent ranges from 0.24 to 1, and the extremity index varies from 2.5 to 51.4°C. Median 

values of heat wave characteristics are 5.7°C (temperature amplitude), 4 days (length), 0.64 

(spatial extent), and 7.4°C (extremity index, Figure 9.3). Hereafter, a heat wave is considered 

“severe” when all its characteristics are equal to or exceed these median values. 

Only 5 of the 22 heat waves (in 1971, 1974, 1976, 1992, and 1994) meet this severe heat 

wave criterion (1.7 severe heat waves per decade). The heat wave of 1994 is exceptional due 

to its length (16 days) and a very high extremity index. This long-lasting event affected whole 

Central Europe, but its temperature amplitude is not extremely pronounced (Figure 9.3). 

Larger-scale temperature patterns associated with each severe heat wave are shown in Figure 

9.4.  
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Figure 9.3. Histograms of heat wave characteristics (temperature amplitude, length, spatial 

extent, extremity index) for observed heat waves in the 1970−1999 period. Green vertical 

lines represent median values and red vertical lines indicate values for the extraordinary 1994 

heat wave. 

 

 

Figure 9.4. Severe heat waves over Central Europe during the 1970−1999 period. Colour 

shading represents the sum of positive Tmax deviations from the 90th percentile of its summer 

distribution. Note that only grid points located within the Central European domain are used 

to compute heat wave characteristics.  



107 

 

Evaluation of simulated frequencies of heat waves and severe heat waves is performed 

individually for (i) EURO-CORDEX RCMs with the 0.11° grid, (ii) EURO-CORDEX RCMs 

with the 0.44° grid, and (iii) ENSEMBLES RCMs with the 0.22° km grid. These groups are 

hereafter referred to as COR11, COR44, and ENS22, respectively. In all three groups, 

frequencies of ‘all’ heat waves are reproduced considerably better compared to severe heat 

waves. Although a large variance is present in ENS22, the observed frequency of heat waves 

(7.3/decade) fits into the simulated interquartile range (IQR). The IQR in COR11 and COR44 

is beyond the observed frequency, but the variance is smaller and no substantial outliers are 

present in COR11. For severe heat waves, a large overestimation of their frequencies is found, 

which is mainly linked to substantial overestimation of median temperature amplitude in the 

RCMs. Although the observed frequency of severe heat waves (1.7/decade) is located in the 

lower quartile in all three RCM groups (Figure 9.5a,b,c), the higher-resolution COR11 

performed best, because the RCMs in this group are able to capture median spatial extent of 

heat waves reasonably well. On the other hand, an event with equal or higher characteristics 

compared to the exceptional heat wave that occurred in 1994 (temperature amplitude = 8.5°C, 

length = 16 days, spatial extent = 1.0, extremity index = 51.4°C) was found only in 3 of the 39 

model simulations for the historical period. 

Changes in temporal autocorrelation of regionally averaged Tmax (hereafter simply 

referred as autocorrelation) are assessed for lags from 1 to 10 days. In E-OBS, the 

autocorrelation for lag 1 is 0.85 and then it decreases exponentially to 0.06 for lag 10. COR11 

and COR44 (historical simulations) significantly underestimate the autocorrelation for the 

first two lags (Table 9.4). This underestimation is particularly pronounced and highly 

significant for the lag of 1 day (at the 1% significance level). By contrast, the autocorrelation 

was overestimated from lag 5 compared to E-OBS, but these changes are found to be 

insignificant. In ENS22, the autocorrelation is significantly enhanced for lags 4–9, while the 

underestimation for lag 1 is small and insignificant (Table 9.4).  

In order to investigate an effect of model resolution on the simulation of heat wave and 

severe heat wave frequencies, eight models from the CORDEX project which are available in 

both grids (Table 9.2) were selected (Figure 9.5d,e). The overall patterns of probability 

density functions (PDFs) are similar to those in Figure 9.5a,b, which means that the 

differences between COR11 and COR44 are related to different model resolutions rather than 

different composition of ensembles in these groups.  
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Figure 9.5. Probability density functions (PDFs) of heat waves (orange) and severe heat 

waves (red) frequencies for (A) COR11, (B) COR44, and (C) ENS22. CORDEX models that 

are available in both grids (which allows for a fair comparison) are shown in (D) – 0.11° grid 

and (E) – 0.44° grid. Solid vertical lines represent the frequency in E-OBS while dashed 

vertical lines delimit the interquartile ranges of model historical simulations.  

 

Table 9.4. Temporal autocorrelation of summer daily maximum temperature for the historical 

period (1970−1999). L1–L10 represents lags from 1 to 10 days, bold (bold underlined) values 

are significantly different from E-OBS at the 5% (1%) significance level.  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

E-OBS 0.85 0.61 0.42 0.30 0.22 0.17 0.14 0.11 0.08 0.06 

COR11  0.79 0.53 0.38 0.30 0.24 0.19 0.16 0.13 0.11 0.09 

COR44  0.80 0.53 0.38 0.29 0.23 0.18 0.15 0.13 0.10 0.08 

ENS22  0.83 0.61 0.46 0.37 0.31 0.26 0.21 0.18 0.15 0.11 
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9.4 Heat wave scenarios and uncertainties for near future and late 21st century 

In the near future time slice (2020−2049), both heat waves and severe heat waves are 

projected to become more frequent in comparison to the modelled historical climate 

(1970−1999). Relatively large uncertainty was found, inasmuch as the IQRs for frequencies 

of these events are considerably widened compared to the historical simulations. The largest 

increment of the heat wave frequency is present in CORDEX groups forced by the ‘low 

concentration’ RCP 4.5 scenario, however, it should be noted that differences among 

scenarios are small in this period. There is no clear dependence on model resolution, because 

in both COR11 and COR44 groups heat waves and severe heat waves are projected to be 

more enhanced under RCP 4.5 (Figure 9.6). 

 

 

Figure 9.6. Probability density functions (PDFs) of heat waves (orange) and severe heat 

waves (red) frequencies for (A, B) COR11 and COR44 forced by the RCP 4.5 scenario, (C) 

ENS22 forced by the SRES A1B scenario and (D, E) COR11 and COR44 forced by the RCP 

8.5 scenario. Solid vertical lines delimit the interquartile ranges of model simulations for the 

near future while dashed vertical lines represent the interquartile ranges of model simulations 

for the historical runs. 
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The frequency of heat waves is projected to be nearly twice higher compared to the 

modelled historical period. The largest increase is found for COR44 forced by RCP 4.5, 

which relates to the largest change in the scale of the Tmax distribution and also enhanced 

temporal autocorrelation (Table 9.5). Although the increase in median Tmax is comparable 

across all model groups, the location of the 90th percentile is particularly shifted in COR44 

forced by RCP 4.5. The lowest increment of the heat wave frequency was present in 

ENSEMBLES simulations, which corresponds with generally negative changes in temporal 

autocorrelation of Tmax and only a small positive change of the scale parameter. A link 

between the increment of heat waves and changes in temporal autocorrelation is poorly 

expressed in this period, compared to the shift of the 90th percentile (Figure 9.7). 

 

Table 9.5. Projected changes in shift and scale of summer daily maximum temperature 

distributions and temporal autocorrelation for the near future (2020−2049) compared to their 

respective historical runs. MED (P90) represents changes in median and the 90th percentile of 

summer daily maximum temperature (°C) over Central Europe. L1–L10 represents lags from 

1 to 10 days, bold values are significant at the 5% significance level. ‘%’ represents 

percentage of the 90th percentile increase that is explained by the shift of median. 

 MED P90 % L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

COR11 – RCP 4.5 +1.1  +1.5  73 +0.01 +0.02 +0.02 +0.02 +0.02 +0.03 +0.03 +0.03 +0.02 +0.02 

COR44 – RCP 4.5  +1.3 +1.9 68 +0.06 +0.04 +0.04 +0.04 +0.04 +0.04 +0.04 +0.04 +0.04 +0.03 

COR11 – RCP 8.5 +1.2 +1.5 80 +0.01 +0.01 +0.01 +0.01 +0.01 +0.02 +0.02 +0.02 +0.02 +0.02 

COR44 – RCP 8.5 +1.3 +1.7 76 +0.05 +0.03 +0.02 +0.02 +0.03 +0.02 +0.02 +0.02 +0.03 +0.03 

ENS22 – SRES A1B  +1.3 +1.4 93 0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 

 

In general, severe heat waves are expected to be more enhanced than heat waves (by a 

factor of 2–3 compared to historical simulations) and their frequency is projected to become 

comparable to the frequency of all heat waves in the 1970–1999 period. It should be 

emphasized, however, that the model simulations considerably overestimated the severe heat 

wave frequencies in the recent climate, and thus this projection might be biased. Analogously 

to the historical period, the frequency of exceptional events with magnitude equal to or higher 

than the 1994 heat wave is analysed. In the 30-year period 2020−2049, 29 of the 62 model 

simulations project at least one such event, and 6 RCM simulations project this type of event 

to occur at least once per decade. These exceptional heat waves are found in all model groups 

and they are not linked to specific concentration scenarios. Despite the substantial increment 
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of these events compared to the historical simulations, they are still rather rare in the near 

future projections. 

 

 

Figure 9.7. Relationships between (A) changes in 90th percentile and heat waves frequency 

and (B) changes in temporal autocorrelation and heat waves frequency in near future 

(2020−2049). Green colour represent simulations using the low-concentration RCP 4.5 

scenario, orange colour depicts mid-concentration SRES A1B and red colour represents high-

concentration RCP 8.5. Standard triangles illustrate simulations with 12.5 km grid, squares 

represents 25 km grid and inverse triangles depicts 50 km grid. Linear regression lines with 

95% confidence interval are fitted. 

 

Changes of heat wave and severe heat wave frequencies are clearly linked to the 

concentration scenarios in the late 21st century time slice (2070−2099). The largest increases 

of these events are found in COR11 and COR44 driven by RCP 8.5. In these groups, the 

frequency of heat waves is projected to be enhanced by a factor of 4–5 compared to the 

historical simulations, indicating 3–4 heat waves per year on average at the end of the 21st 

century. By contrast, the increase in the heat wave occurrence is roughly halved under the 

RCP 4.5 scenario (about two heat waves per year on average). ENS22, with the SRES A1B 

scenario, projects an increase between the two RCP scenarios, which is in line with the 

average effective radiative forcing for 2070–2099 (Figure 9.8). The largest increment under 

RCP 8.5 is related to a large shift of the Tmax distribution and positive significant changes in 

temporal autocorrelation of Tmax (Table 9.6). A relationship between the increment of heat 

waves and changes in temporal autocorrelation is tighter in this period compared to near 

future, but changes in frequency of heat waves are mainly driven by temperature increase and 

increase in temporal autocorrelation has only a secondary effect (Figure 9.9). 
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Figure 9.8. Same as Figure 9.6, but for the late 21st century. Note the different scale of the x-

axis. 

 

Table 9.6. Same as Table 2, but for the late 21st century. The bold underlined values are 

significant at the 1% significance level.  

 MED P90 % L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

COR11 – RCP 4.5 +1.9  +2.3 83 +0.01 +0.02 +0.03 +0.03 +0.03 +0.04 +0.03 +0.03 +0.03 +0.03 

COR44 – RCP 4.5  +2.1  + 2.7  78 +0.06 +0.04 +0.03 +0.03 +0.04 +0.03 +0.03 +0.03 +0.04 +0.04 

COR11 – RCP 8.5 +3.8 +4.6 83  +0.02 +0.03 +0.03 +0.04 +0.04 +0.04 +0.04 +0.03 +0.03 +0.02 

COR44 – RCP 8.5 +4.2 +5.6 75 +0.07 +0.05 +0.05 +0.05 +0.06 +0.05 +0.05 +0.05 +0.06 +0.05 

ENS22 – SRES A1B  +3.5 +4.0 88 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.01 0.03 

 

A similar pattern is found also when assessing the changes in severe heat wave 

frequencies. Under RCP 8.5, the frequency of severe heat waves is projected to be enhanced 

by a factor of 6–7 compared to the modelled historical period, which corresponds to more 

than two events per year. The severe heat waves are projected to occur regularly (at least once 

per year on average) also in the other scenarios. Nevertheless, a possible bias resulting from 

the overestimated severe heat wave frequencies in the historical simulations should be 

considered. For 2070–2099, an event with equal or higher magnitude than the observed 1994 
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heat wave is projected in a large majority (50 of 59) of model simulations. Moreover, in 30 

model simulations such an event occurs at least once per decade, indicating a considerable 

increase compared to the near future. Alongside the substantial increase of heat wave 

frequencies, considerable uncertainties represented by wide IQRs and flat PDFs (Figure 9.8) 

must be taken into account. The width of the IQRs increased roughly by a factor of 2 

compared to the near future, thus indicating a large variance among the individual model 

simulations. 

 

 

Figure 9.9. Same as Online Resource 1, but for the late 21st century. Note different scales of 

axes. 

 

9.5 Discussion 

 

9.5.1 Observed heat waves and selection of severe events 

In the observed (E-OBS) data, 5 of 22 heat waves are regarded as ‘severe’ and may 

represent a type of events having particularly pronounced impacts on society and ecosystems. 

The 1994 heat wave is found to be the most distinctive during the 1970–1999 period, and it 

was associated with large excess mortality in the Czech Republic (Kyselý and Huth 2004), 

Poland (Kuchcik 2001) and other Central European countries. Lhotka and Kyselý (2015a) 

ranked this heat wave as the most severe in Central Europe over the whole 1950–2012 period. 

In addition to Central Europe, this event was extraordinary also in Western Ukraine 

(Shevchenko et al. 2014) where it was more pronounced than the well-known 2010 heat 

wave. Extreme weather conditions during the summer of 1994 were also present over Western 

Europe (Della-Marta et al. 2007). The 1976 heat wave was especially pronounced in Western 

Europe (Tomczyk and Bednorz 2016), and the other three severe heat waves (1971, 1974, and 

1992) are well recognized in the Central European series of summer temperature (e.g. Kyselý 
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2002). The 1983 heat wave, which is characterized by the highest temperature amplitude, was 

not classified as ‘severe’ in our study due to its short length (3 days). 

 

9.5.2 Historical simulations of heat waves 

In the historical period, differences related to the model resolution are found. EURO-

CORDEX models with the coarser 50 km grid substantially overestimated the frequency of 

severe heat waves, while this behaviour was improved when using their higher-resolution 

versions. This is in accordance with Vautard et al. (2013), who showed that the number of 

heat waves persisting more than a few days is overestimated in the EURO-CORDEX models 

but this feature is improved using the 12.5 km version of the RCMs. Vautard et al. (2013) 

supposed this characteristic to be linked to the simulation of precipitation, but this aspect was 

not analysed in their study. A possible mechanism may be related to a better representation of 

orography in COR11, which is important for proper function of convective schemes in the 

relatively complex terrain of Central Europe. Smoothed elevation in the coarser (50 km) grid 

in COR44 provides less occasions for orographic convection (Im et al. 2009) and may 

contribute to more frequent precipitation deficits that amplify a heat wave’s severity (e.g. 

Fischer et al. 2007). In addition, RCMs with the coarser grid have lower proportion of 

resolved precipitation compared to higher-resolution models (Rauscher et al. 2009) and thus 

more precipitable water is processed through their convective scheme and they are more 

prone to errors originating from these sub-grid processes. 

Links between the magnitude of heat waves and precipitation in RCMs were studied by 

Lhotka and Kyselý (2015c). In general, models that overestimate total magnitude of heat 

waves exhibit drier conditions during these events compared to observed data and vice versa. 

An analogous mechanism might be present in our study, inasmuch as Kotlarski et al. (2014) 

demonstrated that a majority of EURO-CORDEX models with the 50 km grid exhibit drier 

summer conditions compared to their higher-resolution versions. Another possible mechanism 

contributing to the overestimated frequency of severe heat waves relates to atmospheric 

circulation. Plavcová and Kyselý (2016) concluded that overly persistent circulation in 

ENSEMBLES RCMs (driven by reanalysis) contributes to the overestimated frequency of 

long heat waves. The pronounced persistence of circulation patterns might be present also in 

our study, because the overestimated temporal autocorrelation of Tmax for lags of 5 days and 

longer was found in all model groups. 
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Although the historical simulations overestimated the frequency of severe heat waves, 

only few simulated such a severe event as occurred in 1994. Lhotka and Kyselý (2015c) 

showed that ENSEMBLES RCMs, driven by perfect boundary conditions, have difficulties to 

reproduce the 1994 heat wave, mainly due to unrealistic simulation of precipitation. Although 

this issue might have influenced our study, it is nevertheless necessary to consider to what 

extent such extreme events are typical for the recent climate and thus whether they should be 

simulated in RCMs driven by GCMs.  

 

9.5.3 Scenarios of heat waves in the near future (2020–2049) 

In the near future, EURO-CORDEX models forced by the ‘low’ RCP 4.5 concentration 

scenario exhibit the largest increase of heat waves frequency (especially simulations with the 

coarser 50 km grid), which relates to the largest change in the scale of the Tmax distribution 

and also enhanced temporal autocorrelation. Although the increment in median Tmax is 

comparable across all model groups, the location of the 90th percentile is particularly shifted 

in COR44 forced by RCP 4.5, and the largest increase of temporal autocorrelation was also 

found in this group. In general, the increased variance of the Tmax distribution might originate 

from changes in surface energy budget, soil moisture, and atmospheric circulation (Fischer 

and Schär 2009). It is possible that extreme temperatures might be enhanced in models forced 

by the RCP 4.5 scenario due to drier summer conditions and suppressed latent cooling, thus 

resulting in a longer upper tail of the Tmax distribution. The lowest increment of the heat wave 

frequency was present in ENSEMBLES simulations, which corresponds with generally 

negative changes in temporal autocorrelation of Tmax and only a small positive change of the 

scale parameter. This little change in spread of the Tmax distribution for the ENSEMBLES 

RCMs was found also by Fischer and Schär (2010), who showed only a small increase of 

standard deviation in the mid-21st century. 

 

9.5.4 Scenarios of heat waves in the late 21st century (2070–2099) 

The late 21st century is characterized by a substantial increase in heat wave frequencies, 

which is linked to ERF and is largest under the RCP 8.5 scenario. Analogous results were 

obtained by Jacob et al. (2014) using EURO-CORDEX models forced by both RCP 4.5 and 

8.5 scenarios. The scale parameter is less important in this period compared to the near future, 

which corresponds to Ballester et al. (2010), who concluded that future changes in Central 

European heat waves are expected mostly to follow summer mean warming. Using 
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ENSEMBLES models forced by the SRES A1B concentration scenario, Fischer and Schär 

(2010) projected 13 heat waves per decade over Central Europe at the end of the 21st century. 

Because their definition of heat waves was based on six-day temporal criteria, this frequency 

is rather comparable to severe heat waves in our study and matches our results quite well. 

 

9.6 Summary and conclusions 

We analysed 62 regional climate model simulations from the ENSEMBLES and EURO-

CORDEX projects in order to assess possible changes in Central European heat waves under 

climate change scenarios for the late 21st century along with related uncertainties. The main 

results can be summarised as follows: 

 

• The RCMs simulate the frequency of heat waves relatively well in the historical period 

(1970–1999), but the frequency of severe heat waves is overestimated. The EURO-

CORDEX RCMs with the 12.5 km grid perform better with respect to the simulation 

of severe heat waves compared to their low resolution (50 km grid) versions. 

• In the near future (2020–2049) simulations, the frequency of heat waves is projected to 

be nearly twice higher compared to the historical period, while the frequency of severe 

heat waves increases by a factor of 2–3. The largest uncertainty originates from the 

selection of models. Differences between the concentration scenarios are small in this 

period, and the largest effective radiative forcing in RCP 8.5 is not associated with the 

highest frequency of heat waves. 

• The largest increase of heat wave frequency in the CORDEX RCMs under the RCP 

4.5 scenario in the near future is related to positive changes in temporal 

autocorrelation and relatively large change in the scale parameter of the Tmax 

distribution, while the smallest increment in the ENSEMBLES RCMs under SRES 

A1B is linked to negative changes in temporal autocorrelation of Tmax and only a small 

positive change in the scale parameter of the Tmax distribution.  

• For the late 21st century (2070–2099), the largest uncertainty relates to the 

concentration scenario. Under RCP 8.5, 3–4 heat waves per summer are projected, 

compared to about two heat waves under RCP 4.5. Roughly two severe heat waves per 

summer are found on average for the RCP 8.5 simulations, and they are projected to 

become a regular phenomenon (once per summer on average) also under the other 

scenarios. 



117 

 

• The substantial increase of heat waves under RCP 8.5 is connected not only with the 

largest shift of the Tmax distribution but also with significant positive changes in 

temporal autocorrelation of Tmax, especially for lags of 5 days and more. Changes in 

the scale parameter of the Tmax distribution are less important than in the near future. 

• Extraordinary heat waves such as the one that occurred in 1994 are projected to be still 

rather rare in the near future, but the large majority of RCMs simulate at least one 

event per decade in the late 21st century. 

 

The enhanced occurrence of heat waves in a future climate is robust and was found under 

all concentration scenarios. This emphasizes an importance to implement suitable adaptation 

strategies, such as those recommended by the European Climate Adaptation Platform 

(http://climate-adapt.eea.europa.eu). Designing green spaces and corridors in urban areas, 

supporting urban farming and gardening, performing agro-forestry and crop diversification, 

improving water retention in agricultural areas, and establishing early warning systems would 

mitigate impacts of heat waves in a changing climate. 
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Abstract:  Heat waves are one of the main concerns related to the impacts of climate change, 
because their frequency and severity are projected to increase in a future climate. The 
objective of this work is to study the long-term variability of heat waves over Argentina, and 
to estimate recurrence probability of the most severe 2008 heat wave in Buenos Aires. We 
used 3 definitions of heat waves that were based on (1) daily maximum temperature above the 
90th percentile (MaxTHW), (2) daily minimum temperature above the 90th percentile 
(MinTHW), and (3) both maximum and minimum temperatures above the corresponding 90th 
percentiles (EHW). The minimum length of heat wave was 3 days and the analysis was 
performed over the October–March period. Decadal values of heat wave days in Buenos Aires 
experienced increases in all definitions, but at other stations, combinations of different trends 
and decadal variability resulted in some cases in a decrease of extreme heat waves. In the 
northwestern part of the country, a strong positive change in the last decade was found, 
mainly due to the increment in the persistence of MinTHW but also accompanied by increases 
in MaxTHW. In general, other stations show a clear positive trend in MinTHW and decadal 
variability in MaxTHW, with the largest EHW cases in the last decade. We also estimated 
recurrence probability of the longest and most severe heat wave in Buenos Aires (over 1909–
2010, according to intensity measured by the cumulative excess of maximum daily 
temperature above the 90th percentile) that occurred from 3 to 14 November 2008, by means 
of simulations with a stochastic first-order autoregressive model. The recurrence probability 
of such long and severe heat wave is small in the present climate but it is likely to increase 
substantially in the near future even under a moderate warming trend. 
 

Keywords: heat waves; long-term variability; climate extremes 

 

10.1 Introduction 

Impacts from recent climate-related extremes, such as heat waves, reveal significant 

vulnerability and exposure of some ecosystems and human society to current climate 

variability (Field et al. 2013). These impacts include enhanced morbidity and mortality 
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(Robine et al. 2008; Barriopedro et al. 2011), crop failures, forest fires, stress for livestock 

and wildlife, spreading of pests and increased energy demand for cooling (De Bono et al. 

2004; Beniston et al. 2007).  

On the global scale, there is only a medium confidence that the length and frequency of 

warm spells, including heat waves, have increased since the middle of the twentieth century 

(Hartmann et al. 2013). This uncertainty was mostly caused by the lack of data and studies 

over South America and Africa. However, models project near-term increases in the duration, 

intensity and spatial extent of heat waves and warm spells over most land regions (Kirtman et 

al. 2013).  

Focusing on South America, Cerne and Vera (2011) showed that the majority of heat 

waves defined over a single station in Argentina are related to the progression of the South 

Atlantic convergence zone, which is regarded as an elongated convective band typically 

originating in the Amazon basin and protruding into the southeastern subtropical Atlantic 

Ocean (Carvalho et al. 2004). This large-scale synoptic pattern determines the warm 

meridional flow that drives high temperatures over the eastern subtropical coast of South 

America (e.g. Alessandro and de Garín 2003). A meridional transport of air masses over 

South America is the most intense over the entire Southern Hemisphere, mainly due to the 

presence of the mountain ridge of Andes (Rusticucci 2012).  

The study of the occurrence of heat waves needs an extended quality-controlled data base 

containing daily data. Over Argentina, there have been studies related to the variability of 

extreme temperatures, but the spells were analysed during short periods because of 

incomplete data or their limited availability (Rusticucci and Vargas 1995, 2001). More 

recently and over a larger area, Alexander et al. (2006) considered one parameter related to 

warm spells, the Warm Spell Duration Index (WSDI). It is defined as the annual count of days 

with at least 6 consecutive days when maximum temperature exceeds the 90th percentile. This 

definition takes into account warm spells over the whole year, without consideration of the 

season, and it is restrictive about the number of missing data. The results over Argentina in 

the 1951–2003 period showed no significant linear trends, and these trends were both positive 

and negative over different regions. In an update of that paper, Donat et al. (2013) present 

HadEX2, which extended the number of stations and the period up to 1901–2010, and found 

the same sign and spatial inconsistency of the trends.  

Without considering several days-long spells (only the number of days above or below 

some threshold individually), the number of warm nights (minimum temperature above the 
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90th percentile) has been increasing and the number of cold nights (minimum temperature 

below the 10th percentile) and days (maximum temperature below the 10th percentile) has 

been decreasing over Argentina, as well as over most land regions. However, the frequencies 

of warm days (maximum temperature above the 90th percentile) have been decreasing in some 

regions over Argentina (Rusticucci and Barrucand 2004; Alexander et al. 2006; Donat et al. 

2013).  

A definition of heat waves varies over literature but it is mainly related to the number of 

consecutive days that exceed a defined threshold. A relation between extreme temperature 

occurrence and their impacts on human health could provide useful thresholds for delimiting 

heat waves. As enhanced mortality in summer is related to temperature excesses of both 

minimum and maximum temperatures, so, we used these limits to define a heat wave. The 

analysis of this relationship is also useful for an installation of an operative alert system 

through the National Weather Service of Argentina (www.smn.gov.ar) that could contribute 

to the population preparedness in order to avoid health impacts.  

The first main objective of this work is to study the long-term variability in the occurrence 

of heat waves over Argentina, with focus on the warm period of the year and considering 

different heat wave definitions. The second main aim is to estimate recurrence probability of 

the most severe and longest heat wave in Buenos Aires by simulations with a stochastic time 

series model. These simulations were performed for the present climate as well as under 

several climate change scenarios.  

The paper is structured as follows: a description of data, definition of a heat wave and 

information about stochastic time series model are given in Section 10.2. Results concerning 

long-term variability of heat waves over Argentina are shown in Section 10.3. Estimates of 

recurrence probability of the most severe and longest heat wave in Buenos Aires are presented 

in Section 10.4. Finally, discussion and conclusions follow in Section 10.5. 

 

10.2 Data and methodology 

 

10.2.1 Data 

The data were obtained from 58 stations located over Argentina north of 40° S (Figure 

10.1). This is the most populated region, and it is prone to severe heat waves. We utilized all 

available stations with long-term daily maximum and minimum temperature series (with less 

than 2 % of missing data). Originally, the data were provided by the Argentine National 
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Weather Service and their quality was analysed through the European project CLARIS LPB, 

generating the open data base CLARIS LPB (Penalba et al. 2014). Table 10.1 shows all 

stations used for the analysis of long-term variability of heat waves, including their station ID, 

name, geographical coordinates and elevation. In this article, the term Buenos Aires 

represents the Autonomous City of Buenos Aires (Ciudad Autónoma de Buenos Aires). 

 

 

Figure 10.1. Locations of stations and the elevation model (ETOPO5) over the continental 

parts of Argentina. 
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Table 10.1. Stations utilized. 

station ID Name Latitude (ºS) Longitude (ºW) Altitude (m) 
1 LA QUIACA OBS. 22.10 65.60 3459 
2 ORAN AERO 23.09 64.19 357 
3 LAS LOMITAS 24.42 60.35 130 
4 SALTA AERO 24.51 65.29 1221 
5 IGUAZU AERO 25.44 54.28 270 
6 FORMOSA AERO 26.20 58.23 64 
7 POSADAS AERO 27.22 55.58 125 
8 CERRO AZUL INTA 27.39 55.26 270 
9 RESISTENCIA AERO 27.45 59.05 52 
10 CORRIENTES AERO 27.45 58.77 60 
11 SANTIAGO DEL ESTERO AERO 27.46 64.18 199 
12 TINOGASTA 28.04 67.34 1201 
13 RECONQUISTA AERO 29.11 59.42 53 
14 LA RIOJA AERO 29.23 66.49 429 
15 PASO DE LOS LIBRES AERO 29.41 57.09 70 
16 CERES AERO 29.53 61.57 88 
17 MONTE CASEROS AERO 30.16 57.39 54 
18 CORDOBA AERO 31.19 64.13 474 
19 CORDOBA OBSERVATORIO 31.24 64.11 425 
20 PILAR OBS. 31.40 63.53 338 
21 SAUCE VIEJO AERO 31.42 60.49 18 
22 PARANA AERO 31.47 60.29 78 
23 VILLA DOLORES AERO 31.57 65.08 569 
24 SAN JUAN AERO 31.57 68.42 62 
25 MARCOS JUAREZ AERO 32.42 62.09 114 
26 MENDOZA AERO 32.5 68.47 704 
27 MENDOZA OBSERVATORIO 32.53 68.51 827 
28 ROSARIO AERO 32.55 60.47 25 
29 GUALEGUAYCHU AERO 33.00 58.37 21 
30 SAN MARTIN (MZA) 33.05 68.25 653 
31 RIO CUARTO AERO 33.07 64.14 421 
32 SAN LUIS AERO 33.16 66.21 713 
33 VILLA REYNOLDS AERO 33.44 65.23 486 
34 SAN CARLOS (MZA) 33.46 69.02 940 
35 PERGAMINO INTA 33.56 60.33 65 
36 LABOULAYE AERO 34.08 63.22 137 
37 JUNIN AERO 34.33 60.55 81 
38 BUENOS AIRES 34.35 58.29 25 
39 SAN RAFAEL AERO 34.35 68.24 748 
40 CASTELAR INTA 34.40 58.39 22 
41 EZEIZA AERO 34.49 58.32 20 
42 LA PLATA AERO 34.54 57.56 4 
43 PUNTA INDIO B.A. 35.22 57.17 22 
44 NUEVE DE JULIO 35.27 60.53 76 
45 MALARGUE AERO 35.30 69.35 1425 
46 GENERAL PICO AERO 35.42 63.45 145 
47 PEHUAJO AERO 35.52 61.54 87 
48 TRENQUE LAUQUEN 35.58 62.44 95 
49 DOLORES AERO 36.21 57.44 9 
50 SANTA ROSA AERO 36.34 64.16 191 
51 AZUL AERO I 36.45 59.50 132 
52 TANDIL AERO 37.14 59.15 175 
53 CORONEL SUAREZ AERO 37.26 61.53 233 
54 PIGUE AERO 37.36 62.23 304 
55 MAR DEL PLATA AERO 37.56 57.35 21 
56 BAHIA BLANCA AERO 38.44 62.10 83 
57 NEUQUEN AERO 38.57 68.08 271 
58 RIO COLORADO 39.01 64.05 79 
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10.2.2 Heat wave definition 

Considering the impacts of heat waves on mortality in Buenos Aires, the extreme cases of 

excess mortality over the warm season (October–March) of the year are related to the 

occurrence of minimum temperature (MinT) above 20°C (where the curve changes its 

curvature) and maximum temperature (MaxT) above 32°C (Figure 10.2). These values 

correspond to the mean daily 90th percentile calculated over the warm season (October–

March) of the year in the 1961–1990 period. Therefore, the 90th percentiles of both MinT and 

MaxT were taken to define a heat wave for the warm season of the year. To specify the 

minimum number of consecutive days that define a heat wave, their persistence was analysed. 

 

 

Figure 10.2. Minimum and maximum daily temperature vs. mean daily mortality in Buenos 

Aires (2011−2012) warm season. 

 

In Buenos Aires, the analysis of persistence of days with MaxT above 32°C and 

simultaneously MinT above 20°C in the warm season (October to March) during the 1959–

2010 period showed that 77% of the spells lasted 1 or 2 days, and the longest one persisted for 

12 consecutive days. Based on this distribution, and because the objective was to analyse 

more persistent events, a heat wave was defined when temperature was above the threshold 

(the seasonally varying 90th percentile) for at least 3 consecutive days. The station-specific 

90th percentiles of MinT and MaxT calculated over 1961–1990 were used to define and 

analyse heat waves over the complete data base (period 1961–2010). Using this limited 1961–

1990 period allows updating the list of heat waves without recalculating the percentiles and 

provides a better comparison with other studies.  

We use three different definitions of heat waves: spells of 3 or more consecutive days with 

(1) MinT above the daily 90th percentile of MinT (heat waves based on MinT: MinTHW), (2) 

Max Tabove the daily 90th percentile of MaxT (heat waves based on MaxT: MaxTHW) and 
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(3) the joint occurrence of MinT and MaxT above their 90th percentiles. These latter will be 

called extreme heat waves (EHW), due to the severity of the definition. In these three types of 

heat waves, we analyse long-term variability and decadal occurrence of the number of days in 

heat waves, the persistence and the intensity.  

We considered the warm half of the year from October to March, in order to capture early 

and late heat wave occurrences, too. These cases, although not necessarily associated with 

extreme absolute temperatures, could have huge impacts on society as well. For example, 

Campetella and Rusticucci (1998) presented synoptic conditions during a strong heat wave in 

the last days of summer (end of March) with a pronounced impact on society, as schools in 

Buenos Aires were temporarily closed. 

 

10.2.3 Stochastic time series model for daily temperatures 

In order to estimate recurrence probability associated with the 2008 heat wave in Buenos 

Aires, we make use of long artificial time series of MaxT simulated by a first-order 

autoregressive model (AR(1)). The AR(1) model provides characteristics of heat waves and 

temperature threshold exceedances that are generally in good agreement with observations 

(e.g. Mearns et al. 1984; Macchiato et al. 1993; Colombo et al. 1999; Kyselý 2010). Several 

variants of the AR(1) model exist; herein, we apply a model in which the seasonal cycle of 

MaxT is considered as a deterministic part and only deviations from this cycle are simulated 

as a stochastic component (Macchiato et al. 1993; Kyselý and Kim 2009; Kyselý 2010). For 

the present climate experiment, parameters of the model (mean, variance and the first-order 

autocorrelation coefficient) are estimated from MaxT data in Buenos Aires over 1961–2009; 

100,000-year-long artificial time series of MaxT are then generated with the AR(1) model, 

from which recurrence probability of events analogous to (or exceeding) the 2008 heat wave 

is estimated. In a similar way, experiments for a climate warmer by 1, 2, and 4°C are carried 

out. Over Argentina, values of 2 to 3°C correspond to the projected 75th percentile of the 

distribution from the ensemble of CMIP5 models, for the RCP 4.5 scenario and the end of the 

21st century (IPCC 2013), so the range from 1 to 4°C covers low- to high-climate change 

scenarios for Argentina and the late twenty-first century. 
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10.3 Long-term variability of heat waves in Argentina north of 40° S 

Since the number of heat waves is small each year, we aggregated the number of days 

during heat waves (heat wave days) in decades, in order to analyse temporal changes in their 

occurrence. The first decade starts in the October 1960–March 1961 warm season. 

The mean numbers of heat wave days per decade during the warm season for the whole 

1961–2010 period, considering the three definitions MinTHW, MaxTHW and EHW, are 

shown in Figure 10.3. As an example, the city of Buenos Aires experienced, on average, 8 

heat wave days per year for MinTHW, 6.5 heat wave days per year for MaxTHW and, if we 

consider MinT and MaxT simultaneously above their 90th percentiles, 2.5 heat wave days per 

year for the EHW definition. The most persistent extreme warm temperatures occurred over 

the north and north-eastern part of Argentina, for all three heat wave definitions. 

 

 

Figure 10.3. Mean number of days under a heat wave per decade, considering MinTHW, 

MaxTHW and EHW (summer) 

 

Figure 10.4 shows the geographical distribution of the number of heat wave days for each 

decade. There is great variability among regions, but in general, the decade 2001–2010 was 

typical for the highest number of heat wave days according to all definitions. Although the 

occurrence of heat wave days by the MaxTHW definition decreased in some regions by the 

end of the twentieth century, the occurrence of MinTHW increased, and when combining both 

limits, EHW also showed the largest number of occurrences in the last decade, surpassing the 

1981–1990 warm decade. 
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Figure 10.4. Number of days under a heat wave per decade, considering MinTHW, MaxTHW 

and EHW (summer). 
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Decadal frequency of heat waves (according to MinTHW, MaxTHW and EHW) at four 

typical stations is shown in Figure 10.5. Decadal values in Buenos Aires experienced clear 

increases in heat waves according to MinTHW and EHW, with the highest frequency for both 

in the 2001–2010 decade, while a less pronounced increase in heat waves according to 

MaxTHW. The combination of different trends and decadal variability at other stations 

resulted in some cases in the decrease of the extreme heat waves (EHW), as shown in 

Córdoba (Central Argentina). In the central-western part of the country, Mendoza shows an 

increment in the last decade, particularly for MinTHW. In the north-western part of the 

country, La Quiaca presents a huge increment in the last decade in EHW, mainly due to the 

increment in the persistence of MinTHW but also accompanied by increases in MaxTHW. 

Due to the sharp increase in the number of heat waves in the north-western region of 

Argentina (La Quiaca, Tinogasta), we checked again the data quality. The comparison with 

hourly data at other nearby stations in the 1991–2010 period confirmed the observed change 

in the last decade. 

In general, most other stations over the analysed region show a clear positive trend in 

MinTHW, and decadal variability in MaxTHW, with the largest EHW cases in the last 

decade. 

In order to analyse the variability of more frequent shorter heat waves, we separate the 

heat waves into two main groups according to their length, 3 to 5 days and longer. The 

difference in the number of short heat waves between the last (2001–2010) and the first 

(1961–1970) decades shows an increase in most of the country, for all three definitions 

(Figure 10.6). All stations present significant increasing trends for MinTHW (not shown). 

Considering only these short heat waves, the north-western part of the country 

experienced from 10 to 30 more heat wave days for MinTHW in the last decade compared to 

the first decade, which is a substantial increase. All over the country, up to 5 more heat wave 

days for EHW occurred, with more than 10 heat wave days in the north-western region. The 

zero increment of heat wave days over central Argentina (according to MaxTHW) was related 

to the warm 1961–1970 decade in this region, as shown in Figure 10.4. A similar pattern but 

with generally insignificant linear trends was found for long heat waves. 

To summarize this variability, all heat waves and stations are analysed together. The time 

series of the number of heat waves shows positive significant trend in all definitions, mainly 

driven by the short heat waves (Figure 10.7). 
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Figure 10.5. Number of MinTHW, MaxTHW and EHW over decades from 196170 to 

20012010 at stations Buenos Aires, Cordoba Observatorio, Mendoza Aero and La Quiaca 

(from top to botton). 

 

 

Figure 10.6. Differences in the number of short (3 to 5 days) heat waves between 2001–2010 

and 1961–1970, considering MinTHW, MaxTHW and EHW. 
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Figure 10.7. Time series of the number of heat waves, all lengths and stations over Argentina 

(1961−2010). Linear trend is fitted to the data. 

 

Beside the duration, we considered the intensity of heat waves, measured by the sum of 

degrees C above the 90th percentile (cumulative excess of temperature). For comparison, the 

degree days were computed for each event, as the ratio between the intensity and length in 

each event. The degree days were accumulated for decades, and the differences in degrees C 

between two decades (2001–2010, 1961–1970) were computed. The short heat waves had the 

largest differences. A strong warming can be seen mainly over the northwest in MinTHW, 

while less warming or cooling in other regions (not shown). 

 

10.4 Recurrence probability of the extreme heat wave of November 2008  in BA 

Since Buenos Aires is the location with the longest and most complete temperature record 

in Argentina, and also the area where most of the country’s total population lives, we focused 

on the most severe heat wave in Buenos Aires in more detail. 

Over the whole period of available data (1909–2010), the November 2008 heat wave was 

the longest and most extreme one, mainly considering MaxT. It lasted for 12 days (from 3 to 
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14 November) and was associated with the cumulative MaxT excess above the 90th percentile 

of 32.6°C. The heat wave was rather exceptional as to its length and the cumulative MaxT 

excess compared to other heat waves in Buenos Aires, as the second most severe heat wave 

since 1909 (March 1952) had the cumulative MaxT excess of only 26 °C and lasted 11 days. 

This November 2008 heat wave was also exceptional in MinT and EHW, compared to the 

March 1952 heat wave, which lasted 11 days, the cumulative excess was 54 vs 16°C in EHW 

and 22 vs 4°C in MinT. Its spatial extent, considering persistence, covers a region in central-

eastern Argentina (Figure 10.8). 

 

 

Figure 10.8. Number of days under 2008 November heat wave, considering MaxTHW. 

 

Its recurrence probability was estimated from simulations of time series of MaxT by a 

first-order autoregressive (AR(1)) model (see Section 10.2.3). We generated 100,000-year-

long series for the present climate (with parameters of the AR(1) model estimated over 1961–

2009) in the first step and analogous series for a climate warmer by 1, 2 and 4°C, to represent 

possible climate change scenarios for the late twenty-first century.  

We focused on three heat wave characteristics that define severity of the 2008 heat wave: 

 

1. Cumulative MaxT excess above the 90th percentile ≥ 32.6 °C, 

2. Length ≥ 12 days, 

3. Both conditions 1 and 2 met. 

 

Table 10.2 shows that the recurrence probability of a heat wave similar or exceeding the 

November 2008 heat wave in Buenos Aires is small in the present climate. The return periods 
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are estimated in the order of several hundreds to several thousands years, depending on the 

chosen characteristic. However, even a moderate warming substantially increases probability 

of such event: in a climate warmer by +1°C, the return periods decline by an order of 

magnitude, and in a climate warmer by +4°C, such heat waves are likely to occur regularly 

(once every 1–3 years). 

 

Table 10.2. Return periods of the 2008 heat wave in Buenos Aires, estimated with the AR(1) 

model for the present climate and three climate change scenarios. 

Return period [in years] of a heat 
wave with 

Present climate 
(1961–2010) 

+1°C 
warming 

+2°C 
warming 

+4°C 
warming 

1) cumulative MaxT excess above the 
90th percentile (TS) >= 32.6°C 

610 95 18 1.3 

2) length >= 12 days 3700 380 55 3 
3) TS >= 32.6°C and length >= 12 
days 

6250 670 80 3.5 

 

10.5  Discussion and concluding remarks 

The frequency of heat waves has been increasing in Argentina for all examined definitions 

over the 1961–2010 period. This finding brought more evidence for the IPCC statement that 

there is a worldwide increment of heat waves, since Hartmann et al. (2013) noted that the 

medium confidence is caused by a lack of studies, among others, over South America. 

Generally, we found pronounced decadal variability, but the largest number of heat waves 

was observed in the last 2001–2010 decade, surpassing the warm 1981–1990 decade. The 

relatively cold 1991–2000 decade might be related to a lower activity of the South Atlantic 

Convergence Zone compared to the previous decade, as shown in Carvalho et al. (2004). 

However, Cerne and Vera (2011) demonstrated that heat waves over central Argentina occur 

even when the activity of the South Atlantic convergence zone is suppressed. 

Focusing on individual stations, decadal values in Buenos Aires experienced increases in 

MinTHW and EHW, while the combination of different trends and decadal variability 

resulted in some cases (e.g. Córdoba and Las Lomitas) in the reduction of extreme heat waves 

in the last decade. The stations over the north-western part of the country (La Quiaca, Orán, 

Salta and Tinogasta) showed a strong positive change in the last decade, mainly due to 

increased persistence of MinTHW, but also accompanied by increases in MaxTHW. 

In general, other stations showed a clear positive trend in heat waves in the light of 

MinTHW, and decadal variability in MaxTHW, with the most severe cases in the last decade 

when the simultaneous combination of MaxT and MinT excesses was most frequent. There 
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was a particularly strong increase in the intensity and number of heat waves of short lengths 

(3 to5 days) in all three heat wave definitions. 

Recurrence probability of the longest and most severe heat wave in Buenos Aires (over 

1909–2010, according to intensity measured by cumulative excess of MaxT above the 90th 

percentile) that occurred in 2008 was estimated by simulations with a stochastic first-order 

autoregressive model that reproduces structure of the time series of daily temperatures. The 

results show that the recurrence probability of such long and severe heat wave is small in the 

present climate, but it is likely to increase substantially in the near future even under a 

moderate warming trend: by a factor of 6–10 with only a 1°C warming, by a factor of ∼30–70 

with a 2°C warming and by a factor of ∼500–1000 with a 4°C warming. These results should 

be taken into account also in the design of adaptation and mitigation measures to protect 

society against adverse effects of extreme events in a changing climate. 
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11 Conclusions and future perspectives 

According to IPCC (2013), it is very likely that human influence has contributed to 

observed global scale changes in the frequency and intensity of daily temperature extremes 

since the mid-20th century. It is virtually certain that there will be more frequent hot and fewer 

cold temperature extremes over most land areas, and it is very likely that heat waves will 

occur with a higher frequency and duration in a possible future climate. The thesis aimed to 

strengthen the evidence from the observed data, critically evaluated the capability of climate 

models to simulate heat waves, and constructed climate change scenarios for heat waves over 

Central Europe. Principal outcomes of the doctoral dissertation are summarized as follows:    

 

• The extremity index of heat waves (cold spells) was proposed and tested over Central 

Europe. This index is based on joint effects of temperature magnitude, duration, and 

spatial extent of individual events. Because it involves no ‘local’ settings, it may be 

applied also in other regions and data sets. The extremity index was found suitable for 

evaluating magnitude of heat waves in climate models and a similar index may be also 

used to assess severity of droughts, persistent rainfall, snowfall and other 

meteorological hazards. 

• The list of severe heat waves and cold spells that occurred over Central Europe since 

1950 was established. Spatial patterns of temperature anomalies for each event were 

visualized in maps, and heat waves (cold spells) were classified into four groups based 

on their characteristics. The methodology enables updating the list when a new version 

of the E-OBS data set is released. Enlisted events may be used as future analogues for 

comparison with simulated heat waves and cold spells in climate models and for other 

purposes. The list may also be broadened by including additional information about 

each event (observed losses, driving factors, etc.) 

• Regional climate models driven by the reanalysis tend to underestimate the magnitude 

of the extraordinary 1994 heat wave. Those errors were linked to simulation of 

precipitation, because the largest underestimation was related to substantial 

overestimation of rainfall and vice versa. Inasmuch as extraordinary heat waves are 

expected to become one of the largest hazards of global climate change, their improper 

simulation is a serious deficiency of current climate models. 
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• Heat wave scenarios for a possible future Central European climate were constructed. 

In the near future (2020–2049), the mean projected frequency of heat waves is nearly 

twice higher (15 events/decade) compared to the historical period and this value is 

similar in all concentration scenarios. By contrast, the projected frequency of heat 

waves in the late 21st century (2–4 events/summer, 2070–2099) depends largely on 

concentration scenarios, so the climate change mitigation strategies are projected to be 

effective rather in the long term. However, it is possible to implement suitable 

adaptation strategies, such as those recommended by the European Climate Adaptation 

Platform (http://climate-adapt.eea.europa.eu), which would partially reduce impacts of 

heat waves in a changing climate. 

 

There is still a need to improve climate models in order to obtain more credible simulation 

of heat waves in a possible future climate. Especially projections of persistent heat waves 

(such as those of 1994 and 2015) have to be interpreted with caution, because present climate 

models tend to underestimate such events. In addition to improving climate models, a focus 

should be given on broad collaboration within the geosciences community because many 

fundamental aspects of climate change extend beyond climate science. Estimating possible 

future socio-economic scenarios, population growth, ecosystem response, and climate change 

impacts on agriculture and forestry cannot be undertaken without widely ranging cooperation.  
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