
Charles University, Prague, Czech Republic
Faculty of Mathematics and Physics

MASTER THESIS

Pavel Ondroušek

Network Repository for Performance Evaluation Results

Department of Software Engineering

Supervisor: Doc. Ing. Petr Tůma, Dr.
Computer Science Program, Software Systems

2006

I would like to thank my supervisor, Petr Tůma, for his expert advice, interesting
observations, brilliant ideas and great patience, which helped me to finish the thesis.

Many thanks also to my sister for proofreading the thesis.

I declare that I have written this master thesis myself, using only the referenced sources. I
give my consent with lending the thesis.

Prague, December 15, 2006 Pavel Ondroušek

1

Contents
1 Introduction 4

1.1 Goals . 4
1.2 Definitions . 4
1.3 Overview of thesis structure . 5

2 Requirements analysis 6
2.1 Storage and Plotting . 6
2.2 Original form . 8
2.3 Parsing . 9
2.4 Configuration description . 11
2.5 Evaluation . 12
2.6 Plotting . 14
2.7 Security . 16
2.8 Summary . 16

3 Repository design 17
3.1 Storage system . 17
3.2 Evaluation . 20
3.3 Plotting . 22

4 Benchmark model 24
4.1 Content elements . 24
4.2 Description elements . 28
4.3 Evaluation elements . 29

5 Implementation details 31
5.1 Repository architecture . 31

5.1.1 Data storage tier . 31
5.1.2 Application tier . 32
5.1.3 Client tier . 32

5.2 Technology overview . 32
5.3 Object model . 32

5.3.1 Repository Server . 33
5.4 Extending repository . 35

6 Related works 38

7 Conclusion 40

Appendices 42

2

Abstract

Název práce: Network Repository for Performance Evaluation Results
Autor: Pavel Ondroušek
Katedra: Katedra softwarového inženrýství KSI
Vedoucí diplomové práce: Doc. Ing. Petr Tůma, Dr.
Email vedoucího: petr.tuma@mff.cuni.cz
Abstrakt: Pro měrení výkonu softwarových systemů se používá benchmarkovaní. Bench-

markovaní vytváří velké množství dat, které je třeba ukládat, zpracovávat a vyhodnoco-
vat. Network Repository slouží jako úložiště výsledků vznikajících během benchmarko-
vani. Cílem diplomové práce je navrhnout a naimplementovat datové úložiště podporu-
jicí různé druhy výsledků s možností konfigurace jejich formátu. Uložené výsledky je
možné dále zpracovávat, vyhodnocovat a používat jako zdroj pro generovaní grafických
výstupů.

Součástí diplomové práce je návrh a implementace obecného frameworku pro uk-
ládání a vyhodnocovaní dat benchmarků a vytvoření vzorové konfigurace pro vybrané
formáty dat výsledků benchmarků.

Klíčová slova: benchmark, úložiště, grafy

Abstract

Title: Network Repository for Performance Evaluation Results
Author: Pavel Ondroušek
Department: Department of Software Engineering, KSI
Supervisor: Doc. Ing. Petr Tůma, Dr.
Supervisor’s email address: petr.tuma@mff.cuni.cz
Abstract: For performance evaluation of software systems, benchmarking is used.

Benchmarking generates a large amount of output data, which is necessary to store,
process and evaluate it. Network Repository serves as a repository of benchmark results.
The goal of the master thesis is to design and implement the data storage with a support
of various result types with the possibility of the format configuration. Stored results can
be processed, evaluated, or used as a source for plotting.

As part of the master thesis, the design and implementation of a general framework
for benchmark storage and evaluation is developed and a sample configuration for the
selected benchmark result data format is established.

Keywords: benchmark, repository, plotting

3

1 Introduction
Software development is closely connected with software testing and performance evalua-
tion. One of the ways to evaluate software performance is software benchmarking. Software
benchmarking is a recurrent process producing a large amount of output data. Along with
the growing complexity of the developed software, the amount and complexity of benchmark
outputs is increasing, which implies the growing requirements for benchmark output stor-
age. To support a variety of result formats, a configurable repository should be created. The
repository should also provide basic evaluation and visualization facilities.

1.1 Goals
The goal of this thesis is to analyze various existing result formats [5-10] and, based on the
analysis, to design and implement a network repository for performance evaluation results
which will be accessible from various platforms. The repository must be able to support
result data in many ad hoc formats, to preserve the original form of results with a detailed
configuration description and information about the author of a result. The variability of the
result formats makes it not convenient to use the existing applications, such as relational or
object databases.

The repository must be able to provide a configurable persistent storage, which allows the
user to store various result types. The stored results must be easily accessible for the user. The
repository should provide the basic visualization facilities; for each supported result type, a
predefined set of basic plot types is supported.

The repository interface must be general enough to be accessible from various bench-
marking applications and frameworks, independently from the used programming language
or the result data format. Both on-line storage by submitting data directly from a running
application and offline storage by submitting the result files should be also supported.

1.2 Definitions
The output from performance evaluation software is called a result. The benchmark results
contain various definitions of timestamps and the associated data. To be similar to the com-
mon statistical terminology a timestamp or another measured value is called an observation.
A set of observations is called a sample. The main features of benchmarks are repetitive-
ness and associations. Each benchmark result can contain multiple samples with different
benchmark setup, which contains some benchmark-specific features, such as the count of ex-
ecuted threads, the count of object instances, the data type, the data size, and the repetition
count. There is a need to describe the relation between the sample and the benchmark setup.
The relation is called an association. Each stored result is also supplied with a configuration
description. The configuration description includes the hardware and software setup, the run-
ning processes, the processor usage, and the memory consumption. These settings are typical
parameters for searching. A configuration description entry is called a property. During an
experiment, the benchmark setup differed for each measured sample, while the configuration
description remained the same.

4

1.3 Overview of thesis structure
The thesis consist of a text-based work and a repository implementation. The text work con-
sists of five sections - requirement analysis, repository design, benchmark model, repository
architecture and related work. The benchmark model section can also serve as a documenta-
tion for the benchmark model description creation.

The XML Schema definition of repository outputs is contained in Appendix A and Ap-
pendix B. In Appendix C, the sample benchmark model description is established. The CD-
ROM detailed content is specified in Appendix D.

The implementation is contained on a CD-ROM. The CD-ROM content consists of the
Network Repository source code, the programming documentation in the Javadoc format, the
binary distribution of Network Repository, the administration guide and sample data. The
administration guide contains the installation manual and the basic configuration settings.

5

2 Requirements analysis
The repository design and implementation are influenced by many requirements that origi-
nate from the benchmark usage and the results structure. These requirements are partially
contained in the assignment and they have also partially emerged during the analysis of
benchmark processes and benchmark results. In this chapter, the main problems of imple-
mentation are analyzed. For each problem, a detailed description, possible choices and a
selected solution are created. In the problem description, the quotation from the assignment
are highlighted.

Assignment

Design and implement a network repository for performance evaluation results. The reposi-
tory should meet the following criteria:

• Customizable support for multiple result formats including plain text and XML formats.
As a proof of concept, support for at least the Sampler, Xampler, RUBiS, ECperf, TAO,
OVM benchmarks.

• Customizable support for multiple display formats including box and whisker plots,
density plots, history plots. As a proof of concept, support for at least the Sampler,
Xampler, TAO, OVM display formats.

• Browsable via web and accessible via web services interface.

• Ability to store configuration description alongside results.

• Ability to export results in original result formats.

• Support for various levels of result trust.

• Implementation environment Linux with PHP and Java, no databases.

Benchmarking

The benchmarking process is usually very sensitive to any operation overhead, such as a
result evaluation or a complex calculation. The benchmark authors, therefore, require that the
benchmark generates the simplest possible output, because the overhead of a time-consuming
operation can misrepresent the obtained results. The generated data have a fixed structure
depending on the type of the measured feature. A human readable summary is also often
present, as the result data are very large for a quick overview. Thus the benchmark variability
leads to the existence of many ad hoc result formats.

2.1 Storage and Plotting
The repository should provide a customizable support for multiple result formats, including
plain text, binary and XML formats. The repository should provide a customizable support
for multiple display formats, including box and whisker plots, density plots, and history plots.

6

Details

The aim of the thesis is to create a repository that will support a large amount of result formats
and generate the possible plots for all of them. The benchmark results are usually large
and complex, and there is a need of preprocessing the data before generating a plot. The
implementation should provide the user with the facility to create a specified plot for each
stored result or a set of results.

Choices

The simplest choice is to create a plotting component for each supported benchmark type.
Considering the count of supported benchmark types M and the count of supported plots N
the count of created components is equal to M.N. This solution would lead to the creation
of M new components with adding a new plot or to the creation of N new components with
adding a new benchmark type. So this solution is unacceptable.

The problem can be reduced by defining a common data format. The common data format
is an internal repository data structure, which is general enough to cover the possible result
types. While processing, all supported benchmark results are converted to this data format
without any information loss. The problem of a large amount of plotting components is
solved using the common data format as a resource for the plotting process.

The common data format should reflect the structure of benchmark results. First, the ma-
trix format will be considered. In the matrix format, the observation are stored in arrays. A
sample consists of an array of observation of arrays. A benchmark result is represented with
an array of sample arrays. The advantage of the matrix format is an access to the memory and
easy lookup of a concrete value. A problem occurs when more samples with different obser-
vation and sample counts are processed together. There is also no effective way to associate
the corresponding benchmark setup with the processed observations. The fragmentation of
various benchmark types enforces using a data structure more general than a matrix. After
the analysis of example result structures, a tree representation of data is chosen. The tree
structure is easy to represent in memory, moreover, there is a lot of ways to split and merge
two or more trees. The disadvantage of the tree representation is slower lookup of a concrete
value.

Decision

In order to minimize the number of the created components, a common data format is estab-
lished. The structure of the common data format is based on a tree representation. The tree is
able to preserve the original structure of samples together with an associated benchmark setup
or configuration description. There are two types of nodes, decision nodes and leaves. The
result observations are stored in the leaves as a collection of values. A concrete value is identi-
fied by an ordinal number. Decision nodes represent the associations between the benchmark
setup and the result data. An association is stored as a string value and corresponds to the
node name. The parsing process objective is the correct coverage of the associations.

7

2.2 Original form
The repository should provide the ability to export results in the original result format. During
the realization, no database should be used.

Details

Typically, many tools and utilities working with the original result format exist, therefore
there is a need of the facility to return the results without any change. Keeping the stored
results in the original format is also important because of the credibility of the repository. The
users often think there is an information loss if the returned data are in a different format.

At the same time there is a need to design a storage mechanism independent of any existing
database. In connection with the variability of results and the requirement to preserve the
original format, the usage of a database is not as effective as in case of storing in an internal
data format with a fixed structure.

Choice

The storage realization is based on the requirements that the benchmark results are stored in
the original format, the directory structure is also preserved. The problem of the required
storage mechanism is low performance. There is a need to design basic database facilities on
top of the repository storage structure.

The repository storage structure should be well arranged, so it is necessary to design a
directory structure that would help with the orientation in the repository. The first considered
characteristics is the repetitiveness of the structure for the stored results of the same bench-
mark type. For each benchmark type, the requirements for searching are the same; it is useful
to group benchmarks of the same type together. Thus, there is a common parent directory
for each supported benchmark type. What remains as a problem is sorting the stored results
with the same type. There is a lot of possibilities of creating a useful directory structure. The
results can be differentiated by their content. For every association, a corresponding directory
can be created, and the result can be stored in it. This solution is convenient especially for the
repository administrators if there is a need of manual searching for a particular benchmark
and the required parameters are known. The solution is also difficult to apply in cases where
the classification properties are not available for all results. Another considered solution is to
apply a directory name that corresponds with the date of storing. The date of storing is a use-
ful indication for administrators and also its value is always known. The date the benchmark
was measured was also considered, but this date format differs for each benchmark type. Also
on many machines the system date might not be set correctly. Finally, the date of storing the
benchmark in the repository was chosen as the benchmark directory name.

Another task of the repository design to deal with is to establish effective searching. The
repository must be able to provide a list of benchmarks which satisfy user defined searching
criteria. Keeping results in the original format causes the necessity of recurrent processing.
To avoid the recurrent processing, the internal data structure should be also established. The
internal data structure does not have to copy the whole content of the original format. Search-
ing according to the requested parameters is the most frequently used operation on top of
the benchmark storage. As a result, it is necessary to create a searching structure for each

8

supported property representing the appropriate association of a benchmark result with a con-
figuration description item. At this stage, we can consider using the common data format as
the storage for searching structures. This implies that both the original and the common data
formats are stored alongside each other. Yet this has proved to be ineffective, because the
need of processed data is not so common as the need of properties that hold the configuration
description. For each stored benchmark, a list of properties can be stored alongside the results
in a separate file. While searching, the data structure of stored results will be ignored, so the
searching process is faster. The advantage of the solution is also the possibility of a quick
preview of the stored results without the knowledge of their structure. What is also useful for
the automated processing is the fixed format of the property storage structure that is shared
for all benchmark types.

Decision

The storage is realized using the standard file system without any database. The storage
hierarchy is a tree directory structure. In the root directory, there are subdirectories for each
supported benchmark type. In the benchmark subdirectory, there are directories for each
stored result. The directories are named according to the date of storing. A particular result
directory contains the original structure of the stored data and newly added data obtained
from result processing. The advantage of the solution is a human browsable format of the
repository and no dependency on external software.

In order to replace the database functionality, the repository provides a result indexing
support. There are two types of indices - the main and the property indices. The main index
provides mapping between a storage path and a unique benchmark identifier. The property
indices provide mapping between a value of a property and a benchmark identifier. For each
benchmark type, there is always just one main index. The property indices are created for
every defined property.

The stored files are parsed to get the included configuration description, and the acquired
properties are stored in a separate file alongside the original files. The information necessary
for a benchmark identification is also persistently stored in the same file. The file structure is
common for all benchmark types, so the repository is prepared for the automated processing
while keeping the original format of stored results.

A common data format is generated on demand from result data in the original format.
The advantage of the generation on demand is the recency of acquired data according to the
current processing rules.

2.3 Parsing
The performance evaluation output differs for each type of benchmarking software. Many
of the result formats are proprietary. The repository must provide customizable support for
multiple result formats including plain text and XML formats.

Details

The repository must be able to process all possible benchmark result formats. There is a
need to find a way of parsing that is flexible enough to accept most of the used formats. The

9

benchmarks usually contain more samples which differ in the benchmark setup. The parsing
process should reflect the data structure, preserve the stored information and associations be-
tween samples and benchmark setup values. The parsing should be flexible and configurable
in order to reflect the changes in the result formats or to provide a possibility of adding a new
benchmark type support. Adding the benchmark type support should not cause the necessity
to modify the repository source code.

Choices

In order to realize the requirements for parsing, it is necessary to design a universal set of
parsing rules. The parsing rules should be also readable for the user and provide the ability to
express the detailed structure of benchmark results. In many cases, the token structure must
be defined during the parsing, and the tokenizers can change while processing a file. Because
of the readable format of the parsing rules and the various structure of parsed results, the
usage of context-free grammar was disapproved.

The parsing rules should be general enough to cover all types of benchmark results. There
is a lot of ways to specify the set of rules describing the benchmark data and their associated
attributes. The more general the description is, the more expensive the data processing and
evaluation. So the aim is to find a compromise between the level of generality and speed.
While processing the design, a number of description methods using various levels of gener-
ality were considered.

The first of three considered solution is geared towards speed. The approach is to design
and implement an extensible modular architecture which enables to create new modules or
plug-ins for concrete benchmark types. Thus the solution allows fast processing of the known
data types and results. During the storage process, the user specifies the type of benchmark,
the appropriate module is loaded and the data are processed in the fastest way. The main
disadvantage is the high cost of maintenance and the low level of generality. Even a simple
modification or an extension of the result format would lead to a modification of the source
code. Thus this solution was rejected.

The second considered solution aims for a high level of generality. Elementary benchmark
formats are defined as an output of the result formats analysis. Each stored file is assigned to a
result class according to its structure. Thus, for each benchmark, there is a general description
which determines the result structure and selects the appropriate parser. Now, the repository
is able to parse the stored results and get the required information. A part of the benchmark
description is a configuration description source location and a data type specification. The
specifications are included in property definitions which are configurable without the neces-
sity to modify the source code. The support of various result format classes is realized using
the modular architecture, so adding a new result format class support needs to develop a new
module. The problem of the solution is the speed. Considering the count of properties M
and the count of lines in a file N, the resulting complexity is M.N. So the storage and pro-
cessing of large files with a lot of defined properties is very slow. To optimize the property
location determination, for each module, a preprocessing engine should be established, which
increases the implementation requirements. This solution was also disapproved, because the
file structure is often very complex and many different modules should be created; but the
selected concept is a basis for the next consideration.

With respect to the requirements and the previously considered solution, the third solution

10

is established. The aim is to propose a speed optimization with keeping the high level of
generality. The main disadvantage of the previously considered solution is the high cost
of determining the property location and a complexity of parsing modules. To eliminate
the problem, there is a necessity to determine the structure format and to specify the exact
location of each property in the stored results. For the detailed description of the whole
result, a benchmark model is established. The benchmark model contains a specification of
result format classes, which provides the tokenization facilities, a detailed description of the
data structure and the exact location and data type of each property occurring in the stored
result. Considering the count of properties M and the count of lines in a file N, the resulting
complexity is M+N. The modification of the benchmark model description does not cause
the need to modify the source code. The repository defines a wide range of modules, which
reflect the result format classes; so there is a need to add a new module only if the new format
class support is added.

Decision

The selected solution supports the highest level of generality. The results are divided accord-
ing to the data structure, and the format classes are established. For example, the format of
text files can be distinguished with the way of token acquirement; the coma, semicolon or
white-space character delimiters are supported. For each supported format class there is a
corresponding module in the repository, which provides the parsing facilities and the correct
data interpretation. There is the benchmark model used for the specification of the results
structure.

The benchmark model describes the data structure and assigns the corresponding result
format to each stored result. There is a possibility to specify a type of stored file. The file type
specification is necessary to choose the correct result tokenizer. The tokenizer is processing
the stored files and provides the elementary structures for next parsing. For each elementary
structure, it is possible to choose an appropriate parser, which converts the input data into
the repository common data format. The model also includes the property definitions. The
model description is general enough to support most of the data structures used for benchmark
results. The requirements for the model are the support of repetitiveness and nesting of data,
and the keeping of the associations between benchmark setup values and a processed sample.
Thus the model is defined as a tree structure, and the model processing is directed by the
content of stored results.

The repository uses the modular architecture for tokenizers and parsers. The aim of the
results analysis and the repository design is to affect the widest possible set of benchmark
types, because the creation of a new module needs an implementation in the source code.

The adding of a new benchmark type support is realized by the creation of an appropriate
benchmark model. After the benchmark structure is analyzed, the corresponding data format
class is found and a detailed result description is created. The processing of a benchmark
of the described type is realized by the predefined parsers, which are used according to the
model definition.

2.4 Configuration description
The repository should provide the ability to store configuration description alongside results.

11

Details

The configuration description is often part of stored results; however, in many cases, it is not
entered correctly or there is a need to extend or specify the stored settings. The values from
the configuration description are often used as parameters for searching, so it is possible to
store it separately from the results data.

During the results processing there is also repository processing data generated. This data
have to be stored alongside the results as well as the configuration description.

Choices

The storage of the configuration description is closely connected with the original form and
parsing problem. It is necessary to keep the stored result directory structure, the associations
with the benchmark model, the benchmark origin, and the storage date and location. During
the storage process, new data is also created. All mentioned items together form metadata.
The metadata is data used to describe other data. The repository uses metadata to describe the
stored results.

There are a lot of ways of implementing metadata. The first of two considered possibil-
ities is to store all metadata together in a separate directory. This concept is convenient for
automated processing, but the human browsable format of the repository is lost. The other
possibility is to store the metadata alongside the appropriate result. The repository keeps the
human browsable format, because in each result directory, the original data are stored together
with the metadata. For the user it is easy to get to know about the structure, the storage date
or the author of the benchmark. The automated processing is also possible using the global
searching indices, which do not need to be stored alongside the results, because their content
is overlapping.

Decision

The benchmark description is realized using the metadata. The metadata structure is the same
for all benchmarks in the repository, so there is a possibility of automated processing. The
metadata consists of the repository processing information, the result origin information and
the stored content description. The description covers the associations between the configu-
ration description and the stored samples.

The metadata content is overlapping particularly with the stored result and the indices
content. The storage capacity overhead is very low in comparison with the benefits of the
metadata, such as the quick overview of a benchmark directory content.

2.5 Evaluation
The repository should provide the facility of the display output generation. The repository
should support a set of observations or a part of a sample, a single sample, and a set of
samples as a source for the output generation. The processed data are usually very large;
there is a need to determine an effective way of graph generation from the benchmark data.

12

Details

The evaluation process interconnects the storage and the plotting systems. The process evalu-
ates the results in a common data format, which is provided by the storage system, and returns
transformed values without the unnecessary content. The set of processed results is very large,
thus an incorrect design of evaluation can lead to memory thrashing and system breakdown.

The evaluation process should provide an effective way of describing values, which are
specified by the user. Additional processing is needed, such as the aggregation functions
calculation. The repository should provide the support for nested function processing.

Choices

The goal of the evaluation is to provide the plotting system with only the values specified
by the user. The input is result data in a common data format, which is represented with a
tree in memory. Other input is a detailed specification of values for selection. Because of
the tree structure of the common data format, it is necessary to specify the tree nodes that
should be selected. The tree contains the data only in its leaves, the decision nodes contain
the representation of the data associations with the benchmark setup. Thus the path through
the correctly created tree covers all important values of the benchmark setup.

The evaluation process imposes high demands on memory usage. For example, the repos-
itory should provide a facility to display the minimum of all measured samples in a plot. The
processing of one request can include all stored samples of a benchmark type, so it is neces-
sary to evaluate the samples in sequence. The maximum memory usage is equal to the sum
of the maximum size of all processed samples and the evaluation output size.

In many cases, it is necessary to process a number of recurrent evaluations on a bench-
mark. The solution should not lead to repetitive reading of benchmark data and creating an
internal data format. The considered solution creates a new output tree structure for each
evaluated function. The input data are shared within the processes of evaluation for one
benchmark data. The output tree structure groups only the nodes that meet the required con-
ditions. The values in the leaves do not need to be copied, as a consequence, the memory
usage will not grow linearly with the number of processed evaluations.

There are many ways of processing the aggregation functions. The first of two considered
solution is based on evaluating functions as part of the plot generation process. The inter-
connection is motivated by the close relationship between the output plot and the processed
function. The disadvantage of the interconnection is the impossibility to compose functions.
The second considered solution examines the composition of functions. The input and output
form of the internal data format is defined for every function. This form is identical for all
functions, as well as for the path request processing. Thus there is a possibility to compose
functions using the nested functions.

Decision

The position of a value in the tree is described with a benchmark path, which consist of a
list of regular expressions and expression separators. The evaluation of the benchmark path
corresponds to a reduction of the source tree for matching nodes. The benchmark path is
closely connected with the benchmark model definition; every element of the benchmark

13

path corresponds to a decision node, which is defined in the benchmark model. For every
selectable value, a variable is defined. Variables can be specified by the user within the plot
request. For example, a query can contain a MessageSize variable, which determines the
message size during an experiment; a plot request with the value of 2048 selects the samples,
which were measured with the message size of 2048 bytes.

Definitions of the used aggregation functions are a part of the configuration file as well.
The repository provides elementary aggregation functions, such as the minimum, maximum,
average or median function. The path evaluation requests and function definition elements
form a hierarchical structure, which is called a query. For each plot request, a query is prede-
fined. The query definition contains also the plot description and constraints for the input set
of benchmarks.

The evaluation of a query is performed on all samples obtained from the storage system.
For each sample, an identical process is used. During the evaluation, there is only one sample
in memory in order to minimize the probability of memory overflow. The complete query is
processed on the sample, and only the output values are stored for future retrieval. The output
from all samples forms the input for a plotting component.

2.6 Plotting
The repository should provide customizable support for multiple display formats including
box and whisker plots, density plots, history plots. The display output should be usable in
web browsers and other existing applications. The generation of display output is a slow
process, so it is necessary to design and implement speed optimizations.

Details

The repository should provide the facility of the display output generation from all support
benchmark types. The resources for a plot can be a single sample or multiple samples from
one or more different results. The repository also provides the aggregation functions. The
output from these functions applied on multiple samples can be also a source of plotting
process.

The other problem solved by the repository is the data type of stored values. The time-
stamps can be represented as a date-time value or a numeric value representing a multiple of
a nanosecond with predefined scale. The output values can be from a specific range, which
depends on a type of sample or type of benchmark, so the display output should be scalable
for users.

The output calculation and plotting process is very time- and resource- consuming, so it
is necessary to optimize it. It is necessary to prevent the repetition of completed tasks and
design resource-saving algorithms.

Choices

There is a lot of ways realizing the plotting. The simplest method is to generate a plotting
component for every plot type. With respect to the storage analysis, the input of the plotting
process is the repository common data format, so the plotting components do not need to

14

understand the structure of stored results. Using separate components for each plot type
causes the repetition of some processes, for example the aggregation functions calculation.

To solve the problem, the separation of the plotting resources calculation and the plot
generation is considered. The calculation phase is common for all plot types, so it is possible
to group it into a shared component. The output of the calculation is also common for all
plotting components. The implementation of plot dependent operations is contained in the
plotting components. The plotting components differ in the interpretation of the calculated
values and provide the output with requested features.

The plotting process consist of two phases. The first phase aggregates the relevant data
interpretation and the output values generation. The second phase includes the display output
generation. There is a lot of possibilities to generate the display output. There are bitmap and
vector graphic formats, and there is no requirement for choosing one of them. Both formats
are integrable in external applications, both have specific advantages and disadvantages. The
bitmap formats have a better application support, but there is a possibility of information loss.
In order to support multiple graphic formats, a separation of the calculation and the output
generation phases is needed. The calculation phase is specific to each plot type, the generation
phase depends on the graphic format.

The display output is scalable and configurable, the configuration facility differs for each
plot type. The output generation does not need any specific settings, the facility to generate the
basic primitives is enough to build any output. Thus it is necessary to specify plot description
as an interface that provides the detailed output values description to the display output gen-
eration module. The plot description is represented with an object structure, which is created
by the plot dependent module. This module provides the facilities of the output scalability
and the output range configuration. The plot description is also saved in a persistent storage.

The repeated output generation can be reduced using caching. There are possibilities to
cache the final plot and the plot description. Both possibilities allow the reduction of repeated
calculations. The plot description caching allows the user to generate more plots with the
same source, which differs in the configuration of plot ranges or other details. The final plot
caching still returns the plot faster, because there is no output generation required.

Decision

The plot request processing is realized in three phases. The query evaluation and values
calculation as the first phase is followed by the plot description creation and the display output
generation.

The plot description is generated in a plot type dependent module, which provides the
correct interpretation of calculated data. The input of the plot description generation is a
query, which contains the plot settings and evaluation process output data. Every module
uses specific algorithm for proper interpretation of input data. The output of the phase is
the plot description object structure that is the same for all plotting modules. The structure
is serializable, so it can serve as a source for persistent storage with caching facilities. The
structure consists of a plot type specification, a plot axis description and a set o values, which
contains the required output values.

The display output is generated independently on the plot type from a plot description.
There is a possibility to select appropriate graphic format without the necessity of adding the
plot types support. The output of the display generation can be cached in order to achieve

15

higher speed. The repository does not provide the facility of the final output caching, but it
can be implemented in the application server built on the top of the repository.

2.7 Security
The repository should support various levels of result trust. The results origin varies, so the
repository must provide the facility to distinguish the level of trustworthiness of the stored
data.

Details

There are many benchmark results sources, with respect to the benchmark purpose, there is a
motivation to publish incorrect results. Because the results origin varies, the repository must
provide the facility to distinguish the known and unknown result sources. The identification
should be transparent in the maximum possible way. The access restriction in not requested.

Choices

The repository is designed with respect to easy usage, thus the required login would lead to
complicated cooperation with the repository. The repository provides the facility to set the
benchmark author, the setting is optional.

There is a need of verification of author data. In the network, the basic identification is the
network address. Although the repository is designed to work in the network, the repository
is conceived as a database application without the possibility to get the user network address.
The close cooperation with the application server is needed.

Decision

The repository provides interface for adding the author name, contact and the network identi-
fication. The combination of the author name and network identification is the source for the
level of trust calculation. For each stored result, the author details and the network identifica-
tion are stored in the metadata and can be used as parameters for searching or filtering. The
level of trust is always calculated, because the benchmark author trustworthiness can change
in time.

2.8 Summary
The analysis of the requirements establishes the elementary structure of the repository. The
repository should be conceived as a monolithic application with the emphasis on the maxi-
mum configurability. The configurability is realized using a robust processed data descrip-
tion, which forms a benchmark model. For each stored benchmark result, a set of persistently
stored attributes is also introduced.

16

3 Repository design
This chapter provides a description of a detailed repository design which is based on the
repository requirements. During the analysis, the repository is considered as a monolithic ap-
plication. In the following paragraphs, a detailed description of the repository storage, evalu-
ation process and plotting generation will be established. The definition of public interfaces
and exchange data formats is also mentioned.

3.1 Storage system
The repository provides a configurable persistent storage system that supplies the database
functionality. The purpose of the repository does not require a complete implementation
of the database functionality. In some cases, it is not even desirable. There is no transaction
support; the on-line results storage can be long-running and locking of shared resources a long
time is not effective. Moreover, the locking of resources during the result storage leads to the
increase in the response time. To avoid collisions, locking of shared resources is implemented
for elementary operations.

The storage process is designed with respect to configurability and extensibility; for im-
plementation, a builder design pattern [15] has been chosen. For each supported benchmark
type, an individual builder is created on the basis of benchmark model description in the
repository configuration. The builder prototype instances are created dynamically during the
initialization of the repository and stored in memory.

The insertion of a benchmark causes the retrieval of an appropriate builder prototype ac-
cording to the type of the inserted benchmark. A new instance of builder is created using
the clone method invoked on the retrieved builder prototype. The obtained builder is used for
storage. The storage is split into elementary operations; there is a file insertion and a directory
insertion operation support. Each inserted element is processed and stored to persistent stor-
age. The metadata is kept in memory until the storage finish method is invoked. During the
invocation, the storage of a benchmark result is finished, the metadata is stored in persistent
storage and the benchmark result is registered in the repository searching structures.

Persistent storage

The persistent storage is realized using the file system, the results are stored in separate subdi-
rectories distinguished by the benchmark type and storage date. The storage date is considered
with a second precision. Collisions are solved using a unique suffix, which is an ordinal num-
ber. In each result directory, appropriate metadata is stored alongside the result content in the
original form. The indices are stored separately from the result data.

17

Figure 1: Storage structure

The example is illustrated in the figure 1. In the Repository Root directory, two benchmark
types directories and a shared index directory are stored. The Benchmark Type 2 directory
contains three results stored in particular directories named after the date of storage. Each
result directory contains a file with metadata and a directory structure with measured samples.
The samples structure is individual and is recorded in the appropriate metadata.

Benchmark model

During the result storage process, each stored file must be linked with a description in the
benchmark model. The file is parsed according to the parsing rules defined in the model,
but not converted into the common data format. The aim is to get the included configuration
description that is defined by the properties in the benchmark model. The model also defines
the way files are assigned to the appropriate sample. The association among the stored file,
the benchmark model element definition, and the appropriate sample is persistently stored in
the metadata. Thus the future processing does not need to parse the whole content of the
stored result, only the necessary files are processed to get a sample. The properties are used
for searching the stored results, thus they are inserted into searching indices, and they are also
stored in the metadata.

Results identification

While processing the results, there is a need for a unique identification of each stored sample.
A single result can contain multiple samples, which differ in benchmark setup or configuration
description. To support such a complex result, it is necessary to design a multilevel benchmark
sample identifier, which would cover the type of the stored benchmark, the result storage
identification and the sample.

The benchmark type is used by the repository at all levels of processing. For each specified
benchmark type, there is a separate storage mechanism. The benchmark type is determined

18

by a string constant, which is defined in benchmark model description. Thus each benchmark
identifier contains a benchmark type definition.

The storage process of a single result is an atomic and consistent operation; for each
stored result, a unique storage identifier is assigned. The identifier is mapped to the storage
path and is called a benchmark id. To distinguish more samples in a result, each sample has
a sample identifier assigned. The sample identifier is called a sample id. In the repository
storage system, both identifiers are represented with an ordinal number. In the benchmark
model description, there is a string representation for a sample identifier. The string can
correspond to a variable, an input element name or a definition. During the result storage
process, there is a mapping between the appropriate sample identifiers. After the storage
process has finished, both sample identifiers are persistently stored; however, only the ordinal
number representation is used in the subsequent processing.

Metadata description

Metadata is the output of the storage phase. Metadata contains information about the result
type, result origin and result structure. The result structure information contains a detailed
description of samples present in the result.

The repository metadata forms an object structure, which is defined using XML Schema.
Thus the object structure is serializable to well defined and standardized XML files. The fixed
form of metadata is convenient for automated processing, each metadata can be processed in
the same way, irrespective of the original result format. The metadata structure contains a
benchmark identifier, a benchmark type, a storage date, a storage path, and benchmark author
information. These values are shared for all samples in a result. Within metadata, each
sample has its own section assigned. A section is identified by a sample identifier, moreover,
it contains a description of the storage structure in the file system and a set of properties
that contains the configuration description associated with the appropriate sample. The list of
properties available for each benchmark type is specified in the benchmark model description.

Indices

Since a direct access to the stored result is not effective, optimization must be established.
Its goal is speeding up searching, which is one of the most frequently performed tasks. This
is realized using indices. In the repository storage system, there are the main index and
the property index. Both indices are based on a common persistent implementation, only the
purpose and the interface differ. The persistent indices are implemented using the serialization
of objects.

The main index provides persistent mapping between a storage path and a benchmark
identifier. In the repository, there is only one main index for each benchmark type. During the
storage process, a unique benchmark identifier is assigned for each newly stored benchmark.
The obtained benchmark identifier is stored together with the appropriate storage path to the
main index. Thus, having the benchmark identifier, the main index can be used to locate the
storage path.

The property indices provide mapping between a value of a property and a benchmark
identifier. In the property index, there is a list of sample identifiers referring to the appropriate
result for each property. The storage system distinguishes among various samples within a

19

stored result, so the property index has to refer to the stored sample, which is represented by
a sample identifier. Each property index is able to generate a list of stored property values.
This list can be used in the graphical user interface as a list of permitted values for searching
requests.

Searching

The repository provides a facility for searching within the stored results. Searching is realized
through the cooperation with property indices, which implies that the supported parameters
for searching are defined in properties. For each property, a list of available values can be
obtained to provide the user with the relevant data. The repository supports four types of
searching input; there is a simple, set, range, and regexp input.

The simple input allows the user to search according to a single value. The set input
allows the user to search according to a set of vales. The values must be provided explicitly
as an enumeration. The range input allows the user to search within a specified range of
values. This kind of searching parameters is supported by the repository only for the property
types, which allows their mutual comparison. The regexp search input allows the user to
search depending on the match with a regular expression. The supported format of regular
expressions is the Java regexp format. This kind of searching parameters is supported only
for the string property types.

The searching algorithms are implemented in indices. The searching interface provides
only a high-level abstraction, which is usable in other applications and comparison for the
users. The result of every searching process is a set of sample identifiers.

3.2 Evaluation
The process of evaluation covers all operations performed on the stored results. There is no
write operation during the process. The goal of the evaluation design is a detailed specification
of searching, parsing and common data format construction.

The evaluation usually starts with finding samples matching the given criteria. The output
of the search is a set of sample identifiers. Having the sample identifier, the storage system
is able to locate the storage path, read the metadata description, find the proper sample files,
load and parse the stored data.

Use of benchmark model

The storage layer provides a facility to generate a common data format for each sample stored
in the repository. For the common data format generation, a benchmark model is used. The
benchmark model provides a set of parsing rules. The model processing and result data pars-
ing are done simultaneously, the process is directed by the result content, which is taken from
the appropriate metadata. During the benchmark model processing, the property definitions
are ignored, because the configuration description is not necessary for the common data for-
mat construction. First, the metadata is loaded and the appropriate files are selected according
to the required sample content. Then, the selected files are read and parsed according to the
parsing rules obtained from the benchmark model.

20

The output of the process is a common data format represented with a tree structure in
memory. The tree leaves contain all observations of the processed sample and the decision
nodes contain the associations of the observations with the sample setup values. The gen-
eration of the tree can be influenced by the modification of the benchmark model descrip-
tion. Thus, for each benchmark, the generated common data format corresponds to the actual
model. The model updates take effect without the necessity of the repeated result import. The
output structure is optimized for the query evaluation and output generation.

Benchmark path evaluation

During the evaluation, the benchmark path requests are processed. Samples converted into
the common data format are the input of the process. For each sample on the input, the same
request is processed. The benchmark path request evaluation consists of traversing a tree
from its root to the leaves. In each decision node, the appropriate regular expression from the
benchmark path is tested against the node name. If the regular expression does not match the
node name, the whole branch including the tested node is removed. Finally, the leaves with
result observations are grouped.

The decision nodes structure is omitted, the output observations are inserted into a new
output node, which is identified by the sample name. The output node structure is standard-
ized and serves as the input for function evaluation or plot generation.

Figure 2: Benchmark path evaluation

21

Calculation

The calculation process is defined in the benchmark model as a query. For each benchmark
type, a set of queries is defined in the model. A query definition consists of a plot resource
description and a calculation process description. The calculation process includes benchmark
path evaluation tasks, aggregate function calculation task and operation tasks upon the two
given sets of tasks. The tasks can be nested, thus it is possible to define a very detailed
description of result data processing.

Function Description

Min calculates minimum of values for each node

Max calculates maximum of values for each node

Avg calculates average of values for each node

Med calculates median of values for each node

Sum calculates a sum of values for each node

BaW calculates box and whisker values (min, max, lq, hq, median) for each node

Merge merges values of all nodes into one node

Table 1: List of Functions

Operation Description
Sub process a subtraction for all values in child nodes; the structure is preserved
Add process an addition for all values in child nodes; the structure is preserved

Table 2: List of Operations

3.3 Plotting
The plotting process is realized on the common data format, which is generated during the
evaluation process. Plotting is designed with respect to generality, configurability and exten-
sibility. The process is split into two independent phases, the plot description generation and
the display output generation phase.

Plot description generation

The plot description generation is plot-type dependent. The plot-type dependency is solved
using the builder design pattern [15]. For each supported plot type there is an appropriate
builder. The builder functionality is the relevant interpretation of values obtained from the
calculation phase.

22

The output from the generation is a plot description, which is represented by an object
structure. This structure is defined in the XML Schema, thus the class instances can be se-
rialized into well defined and standardized XML files. The plot description contains a plot
identifier, plot resources identifiers, a plot type, a plot description, a description of both axis, a
scale and ranges, and calculated values. After the generation has finished, there is a possibility
to modify the scale and the ranges of the plot.

Display generation

The display generation is realized independently from the results and plot types. The input
for the display generation is a plot description. The plot description contains only the defini-
tions of plotting primitives. The display generation is realized in plotting components, which
provide the plotting primitives interpretation functionality. There are two types of plotting
components: internal and external components. The internal components are realized in the
repository as modules. The output of the display generation is the plot image, which is inte-
grable in the existing applications, for example, a module for PNG format generation. The
external components are realized by postponing the plot generation to a client. In this case,
the plotting is realized by a XSL transformation, which creates the SVG format from the in-
put plot description in the XML format. In the repository, no image generation module is
implemented. The plot description to image converter is a future extensibility objective.

Plots caching

The process of the result evaluation and plot generation is extremely time-consuming. In
many cases, the requests for the plot generation are repeated. In order to avoid the repeated
processing, it is possible to use a caching mechanism. Two caching mechanisms are designed
in the repository; there is a plot description cache and a display output cache.

The generation of the plot description is the most time-consuming process. The output
from this process is an object structure, which is serializable into XML files. So the plot
description phase cache stores the XML files into a given directory. For the identification of
stored files, hashing is used. A hash string is calculated from a list of used results and a plot
request specification. The hash string is a part of the file name. Hash collisions are not solved
with an algorithm; the colliding files are overwritten.

The processing of an incoming plotting request begins with a hash string calculation.
From the calculated hash string, a file name is generated. If the file already exists, it is deseri-
alized to an object structure and the calculation parameters are compared. If the comparison
fails, the plot is calculated again and the generated file is cached instead of the previously
stored file. If the comparison succeeds, the loaded object structure is used for the next pro-
cessing.

The display output caching uses the same caching mechanism and file naming convention
as the plot description caching. This mechanism is designed, but not implemented in the
repository, because the display generation is not so time-consuming and the generated files
are expected to be larger than the plot description cached files. So the existence of the second
phase caching is not critical.

23

4 Benchmark model
The benchmark model is used for the description of the result data structure, the transforma-
tion from the original format into a common data format, the configuration description and
plotting requests related to the appropriate benchmark type. The benchmark model consists
of a description and an object structure, which corresponds to the description element struc-
ture. The benchmark model object structures provide the facility to interconnect the defined
processing, parsing and plotting rules with other repository components. The benchmark
model description is realized using the XML configuration file. The XML format was chosen
because of the flexibility and extensibility.

The benchmark model consists of three types of elements: content elements, description
elements and query elements. A benchmark model example is mentioned in the Appendix C.

4.1 Content elements
The goal of the benchmark content is to define a fixed data structure, which is able to describe
both the known structural types and the types where the structure is not implicitly given.
The content elements can be nested in themselves, so they are formed into a hierarchical
structure. The base of the structure is formed with the directory and file elements. The file
elements contain other elements according to the type of described data and the file structure.
For text files, the following content elements are defined: line, sequence, choice, property,
and variable. For XML files, the following content elements are used: xmlelement, xmltext,
property and variable.

Directory element

The directory element is used to describe a stored directory. Although the directory does not
contain any parse-able data yet, it can be an important part of storage process; the directory
name can be used as an association with a benchmark setup value. The name of the directory
also distinguishes its content to the appropriate sample.

Attribute Description Allowed values Required

id directory identification string yes

bid sample identification dirname, constant, variable no

bname sample identification no

Table 3: Directory attributes

24

File element

The file element is used to describe a stored file. The type attribute specifies the appropriate
reader used to read the file content. The file element should be present as a child element of a
directory element.

Attribute Description Allowed values Required

id file identification string yes

type type of file text, xml, html, log yes

Table 4: File attributes

Line element

The line element is used to describe a line of a text file. The type attribute determines the
parser type for the line content parser processing. It is the only element able to parse the
text file input data. The parsing is described in the attributes. The line elements also build
a simple tree which is provided to parent elements. Each line can be a part of one or more
samples. The node attribute specifies, wheather create a node of a common data format from
a particular element. The true value means the node is created, the false value means the node
is not created, but the node content is placed into the parent node. The none value means the
node content is dropped.

Attribute Description Allowed values Required

type type of line format
simple, config,
separator, bracket yes

separator separator, only for separator type no
datatype data type of line content no
source source of data type definition yes
node node creation flag true, false, none no

nodename node name definition no
nametype type of node name source no

Table 5: Line attributes

25

Sequence element

The sequence element is used to describe an iteration of its child elements. The attributes
specify the count of repetitions and the source of this information. The nesting of sequence
elements can be used for specifying a tree structure.

Attribute Description Allowed values Required
type type of count definition word, number, variable yes
count count definition yes
node node creation flag true, false, none no

nodename node name definition no
nametype type of node name source no

Table 6: Sequence attributes

Choice element

The choice element is used to describe an alternative of its child elements. The alternative
consists in the sequential evaluation of the child elements; the first matching element is used
as a result of the alternative. Child elements of the choice element can be only line elements.

Attribute Description Allowed values Required
node node creation flag true, false, none no

nodename node name definition no
nametype type of node name source no

Table 7: Choice attributes

XmlElement element

The xmlelement element is used to describe the structure of XML files; it represents an ele-
ment of the XML document, the name of the element is used for identification. Xmlelements
can be nested, their structure reflects the structure of XML file. The unnecessary elements for
processing need not be present in the benchmark model. Child elements of the xmlelement
element can be xmlelement and xmltext elements.

26

Attribute Description Allowed values Required
name name of XML element yes

datatype data type of XML element content no
source source of data type definition no
node node creation flag true, false, none no

nodename node name definition no
nametype type of node name source no

Table 8: XmlElement attributes

XmlText element

The xmltext element is used to describe the structure of XML files; it represents an inner text
of a XML element. The inner text is processed using the text reader and the appropriate parser
specified with the type attribute.

Attribute Description Allowed values Required

type type of inner in XML element
simple, config,
separator, bracket yes

separator separator, only for separator type no
datatype data type of XML text content no

node node creation flag true, false, none no
nodename node name definition no
nametype type of node name source no

Table 9: XmlText attributes

Property element

The property element is used for locating the configuration description values. The prop-
erty elements are used only during the insertion of files, when the metadata is created. The
properties forms the source for indices.

The property elements cannot be nested. The only relevant parent elements are the line
element and xmlelement element.

Attribute Description Allowed values Required
name name of property yes
field source definition of property yes
type data type of property yes

27

Table 10: Property attributes

Variable element

The variable element is used for description of values, which are necessary to determine the
result structure. The list of variables is stored in a parsing context, the value of a variable is
used when the appropriate variable is referenced from other content element.

The variable elements cannot be nested. The only relevant parent element are the line
element and xmlelement element.

Attribute Description Allowed values Required
name name of variable yes
field source definition of variable yes
type data type of variable yes

Table 11: Variable attributes

4.2 Description elements
The description section is used for description of repository features that are not related to the
content of the benchmark. The description elements cannot be nested. Currently the search
subsection is available.

Search element

The search section is used for description of searching parameters. The section cannot be
nested and contains a list of the index elements.

Index element

The index element is used for definition of used indices. For each element, the appropriate
index is defined. Only the defined indices are created. Index definition is related to a property,
the appropriate property is specified with the property attribute. The property need not be
defined in the content section, the concrete property can be inserted directly.

Attribute Description Allowed values Required
name name of index yes

property name of property yes

28

Table 12: Index attributes

4.3 Evaluation elements
The evaluation section is used for definition of request templates for plotting. The evaluation
section contains a list of query elements.

Query element

The query element is used for definition of a plotting request template, which consists of a
data evaluation definition and description of searching parameters. Query element contain
a xasix element, a yaxis element and a root of evaluation elements hierarchy. The element
cannot be nested.

Attribute Description Allowed values Required
name name of plotting request yes
graph type of graph simple, histogram, density, baw yes

Table 13: Query attributes

Xaxis and Yaxis element

The xaxis and yaxis elements are used for definition of a plotting axis properties. The elements
cannot be nested and cannot contain child elements.

Attribute Description Allowed values Required
name name of axis no
type data type of axis no
unit unit on the axis no
min minimum value no
max maximum value no

Table 14: Function attributes

29

Function element

The function element is used for definition of a function calculation. The function element
can be nested, and can contain one child element of the following type: a function, a operator
or a path element.

Attribute Description Allowed values Required
type type of function yes

Table 14: Function attributes

Operator element

The operator element is used for definition of an operator calculation. The operator element
can be nested, and can contain two child elements of the following type: a function, an op-
erator and a path element. The order of the child elements matters if the operator is not
commutative.

Attribute Description Allowed values Required
type type of operator yes

Table 15: Operator attributes

Path element

The path element is used for definition of a benchmark path expression on the top of a com-
mon data format. The path element cannot be nested, and do not contain any child element.

Attribute Description Allowed values Required
value benchmark path definition yes

Table 16: Path attributes

30

5 Implementation details
In this section, the architecture of the repository is described. The implementation details
on the level of object model are established. The future extension possibilities are also men-
tioned.

5.1 Repository architecture
The repository is designed using the three-tier model in which the client interface, application
logic and data storage and access are developed as independent modules. The advantage of
three-tier model is possibility of running modules on separate platforms.

The repository uses web services, thus the published interface is platform-independent.
Thus there is a possibility to create various multi-platform client applications.

Figure 3: Deployment diagram

5.1.1 Data storage tier

The data storage tier forms the most important part of the repository. The tier is conceived
as a server application, which uses the Java RMI technology to provide its functionality. The
server is represented with a class, which is designed with the usage of the facade design
pattern [15] in order to simplify the interaction with the repository.

The server is assembled from modules which correspond to the internal components. The
user is separated from these components using the facade. Each internal component is defined
as an interface. Concrete objects implementing the interfaces are obtained using the factory
method and abstract factory patterns [15]. For each module, there is a proper factory class.

31

5.1.2 Application tier

The application tier is realized as a web service and provides the platform independent in-
terface. The repository web service does not contain any application logic, all requests are
propagated to the underlying repository server. For each request, a new instance of the Java
RMI client is created. The request processing is stateless and satisfies the SOA requirements.

There is an exception in the storing of a benchmark result. For each stored benchmark
result, the repository server creates a builder, which is referenced with a numeric identifier. It
is necessary to supply the identifier for the insertion of all elements that form the benchmark.
This identifier is held in client context and does not influence the web service functionality.

5.1.3 Client tier

The repository provide a console utility for importing the results into the repository. The
importing utility is conceived as a web service client. All parameters are taken from the
command line, and the benchmark result insertion is performed automatically.

The repository can be easily extended for other clients. There is a possibility to build the
dynamic web site using the web services.

5.2 Technology overview
All modules of the repository are realized in Java. The implementation requires the Java 2 SE
platform with Java Web Services Development Pack (JWSDP) 2.0 or the Java EE 5 platform.
For XML parsing, it is necessary to supply a SAX parser module, such as the Xerxes parser.

For building of the repository, Apache Ant is used. For web services, the Sun Java System
Application Server from the Sun Java EE 5 package is needed.

For data exchange and storage, the XML data format is chosen. This was done especially
due to the ability to store and restore an object structure and native tree hierarchy support.
Next, the existence of many quality tools and libraries is of equal importance. In the repos-
itory, XML is used for the representation of metadata and plot description. For both, the
easy serialization and deserialization is needed, because they are created and used in memory
as object structures and stored in the persistent storage as XML files. For these purposes,
the Java Architecture for XML Binding (JAXB) is used. JAXB is a part of the JWSDP, and
provides standardized interface for serialization and deserialization of XML files to object
structures in memory. The XML files must be defined using XML Schema. The description
of the metadata format and the plot description format in XML Schema allows wide range of
extensibility in future.

For benchmark model description, the XML format is also used. The processing is done
using the Simple API for XML (SAX). The SAX parsing is chosen because the benchmark
model processing is connected with many actions during the repository initialization and the
benchmark model description is only read.

5.3 Object model
In this section, the detailed design including class diagrams is outlined. The object model
serves as an introduction to implementation details. The detailed description of the repository

32

source code is present in the generated programming documentation on the CD-ROM. The
repository consists of three parts; the web services and the console client are not mentioned,
only the repository server is described.

5.3.1 Repository Server

The repository server is implemented in Java, thus for each component, there is a separate
package. The main packages are the main, storage, search, query, graph, and util packages.

The main package contains the NetworkRepository interface, which provides the wrapper
for the RMI server. The class contains an instance of the RepositoryManager class, which is
designed using the facade design pattern [15]. This package also contains the ReposException
exception, which is thrown if an error occurs during the repository processing.

The storage package contains an implementation of parsing, benchmark model process-
ing and storage system. For benchmark insertion, the BenchmarkBuilder class is used. An
instance of the class is obtained using the prototype design pattern. The appropriate builder is
found, and an initialized copy is created.

The BenchmarkBuilder prototypes are created on the basis of the benchmark model de-
scription and are held in the BuilderCreator class instance. For each benchmark defined in the
model description, a BenchmarkBuilder instance is created. The instances differ in the con-
tent description. The BuilderCreator uses the SAX parser. The product of building process is
the BenchmarkInfo class, which encapsulates the metadata object structure created using the
JAXB library.

Figure 4: Benchmark builder

33

The parsing of stored files is defined in the BenchmarkParser interface. The Benchmark-
ParserXmlImpl class and BenchmarkParserTextImpl implement the BenchmarkParser inter-
face for XML and text files. The BenchmarkManager class contains a support for the persis-
tent operation for benchmark of an identical type. For each benchmark type, there is just one
instance of this class in the RepositoryManager class. Each stored sample is represented with
a Benchmark class. The Benchmark class provides access to a sample in the common data
format.

Parsing is closely connected with the benchmark model definition, which is contained in
the storage.model package. For each model element, there is a class with a corresponding
name. The storage.util package contains a definition of unique identifiers and an internal tree,
which is used for a common data format representation. The BenchmarkId, SampleId and
DataNode classes are also contained in the package. The input results readers and low-level
parsers are placed in the storage.reader package.

The search package provides the interface for searching facilities upon the data stored
in the repository. Actual searching is implemented in the storage system and indices. The
searching algorithms are implemented in the SearchProcessor class. The searching parame-
ters are exchanged using the SimpleSearchParameter, SetSearchParameter, RangeSearchPa-
rameter, and RegexpSearchParameter classes. The searching input is stored in the SearchRe-
quest class. The output of searching is realized with the SearchResponse class.

The query package provides evaluation facilities and representation of plot requests of
the benchmark model. Each plot request is represented with a Query class. A Query class
contains the object structure defined with the IQueryNode interface. The interface is imple-
mented in the PathNode, FunctionNode and OperatorNode classes. The appropriate instance
is created using the QueryNodeFactory class. The calculation algorithms are implemented in
the NodeFunction and the NodeOperator classes. For operations upon queries, the QueryPro-
cessor class is implemented.

The graph package implements plotting facilities of the repository. The plotting process
is designed using the builder pattern. The GraphDirector class is used as a building director,
which contains the building algorithm definition. The builder is provided by the GraphBuilder
interface. There is an implementation for each supported plot type. The product of building is
the Graph class. This class encapsulates the plot description object structure, which is easily
serializable into a XML file.

34

Figure 5: Graph builder

The util package implements configuration, logging and indexing facilities. The config-
uration settings are provided using the ConfigManager class. The logging facilities are pro-
vided with the Logger class. The indexing is available using the Index interface. The reposi-
tory indices are build using this interface in the BenchmarkIndex and SearchIndex classes. An
instance of an appropriate index can be acquired with the IndexFactory class.

The util package also contains the util.data subpackage, which provides the data types
hierarchy. The implementation is based on the Abstract Factory design pattern [15]. For each
data type, a DataType factory class is established. The factory provides the parse() method,
which return a Data class instance as a product. The input for the parse method is a string
value representing an observation. The appropriate factory is created in DataTypeFactory
class according to data type definition in the benchmark model for particular observation.

Figure 7: DataType abstract factory

5.4 Extending repository
The repository is designed as a modular system, so it is possible to add a new functionality
or to extend the existing interface implementations. There are the abstract factory and the
factory method design patterns used, so the adding of a extension means the creating of an
interface implementation.

35

Parsing extensions

The parsing refers to two possible problems. The first problem is a new result class. In this
case, a new reader and appropriate parsers must be established. The current version of Net-
work Repository supports both content driven parsing, represented with XML files process-
ing, and benchmark model driven parsing, represented with text files processing. The newly
added result class support may lead to creating a complete reading and parsing facilities.

The second problem is a new type of results appears. To overcome this problem, the
existing parsing facilities can be used. But the benchmark model description can rapidly
grow because of properties repeated specification. Other possibility to solve the problem is
a new implementation of a file reader or a line parser. The text file reader is specified in the
ITextReader interface and is used for reading text files and for generating text lines, which
are used as an input for line parsers. A new instance of this interface is created with the
TextReaderFactory class. While processing a file, the factory method is called according to
the benchmark model definition. The line parser is specified in the ISourceParser interface.
The purpose of this interface is to tokenize a text line and return an instance of the ParsedLine
class, which is used as a basis for a result processing and a common data format building. A
new instance of the interface can be created with the TextReaderFactory class during the file
processing in the SourceLine class.

The using of a newly created reader or line parser can be invoked with the specification of
the appropriate reader or parser in the benchmark model description file. The repository must
be restarted to reflect the changes in the benchmark model description.

Indexing extensions

In the repository, there are the low level and application level indices implementation. Both
types of indices are created with the IndexFactory class, which is conceived as an abstract
factory design pattern. The purpose of the application level indices is to provide a logic layer
upon the low level indices, which are related to storage system. The application level indices
are defined in the BenchmarkIndex and SearchIndex interfaces. The modification of these
classes influences the functionality of the repository.

The low level index is defined in the Index interface. The particular implementation of
this interface is used with both application level indices. The interface provides the persistent
index with support of multiple values for one key. The low level indices can be replaced
with a more powerful implementation. The problem of the replacement is modification of the
persistent storage format. This will lead to a failure in reading of previously created files, so
the of re-indexation of stored data must be performed. In the repository, a migration utility
is designed. The migration utility reads the content of a repository and loads metadata stored
in the root directory for each stored result. The obtained acquired values are indexed in the
newly created indices.

Plotting extensions

The plotting system is designed using the builder design pattern. The plotting output is the
same plot description structure for all plots, but its construction differs. The difference is
realized with the particular builder. The implementation of a builder is an extension of the

36

GraphBuilder abstract class, which provides the facility of persistent storage and general
settings. The insertValue methods must be reimplemented. The builder is created using the
GraphFactory abstract factory, so the factory implementation must be extended to make the
new builder accessible.

It is also possible to modify the output format of the plotting phase. The modification of
the plotting description is done with editing the Graph XML Schema file and regeneration of
the code. The changes must be included in the Graph and GraphBuilder classes in order to
keep the relevant cooperation with the rest of the repository. Adding of a new attribute or a
new tag is a backward compatible operation.

37

6 Related works
The concept of Network Repository as a general storage for various benchmark result types
is rather unique. During the research, no software project with identical goals was found.
Usually, the benchmark vendors provide a set of utilities together with the testing suite. The
utilities are able to parse and process the measured data from its suite and generate visual-
izations. These utilities are not usable for results of different benchmark types, moreover,
these utilities are often proprietary. In connection with the regression benchmarking[2], many
on-line browsable repositories are established. These repositories usually monitor a concrete
software product and the published results are read-only.

BEEN

BEEN[11] is partially a similar project. The goal of this project is to provide automatizing all
steps of benchmark experiment from software building and deployment through measurement
and load monitoring to evaluations of results. What is similar to Network Repository are the
separation of the measurement process from the evaluation and visualization. A difference is
that the BEEN project covers all steps of benchmark experiments for a particular benchmark
type, using an internal data format for storing results, while Network Repository covers only
storage and evaluation, taking into consideration the generality and preserving the original
data format. The implementation is currently in beta stage.

CLIF

The CLIF [12]project is a framework dedicated to performance testing. The primary objective
of the project is deploying, controlling the execution of, and monitoring of performance tests.
CLIF uses the Fractal component model. The measured values are recorded into internal data
storage. The data storage includes monitoring of response times, throughput, error rate or
computing resource consumptions. Analysis and visualization tools are also provided. The
storage is only secondary objective of the project. In comparison with Network Repository,
the CLIF project is more comprehensive and the goals of both projects are different.

CCPsuite

The CCPsuite [13] project provides a comprehensive benchmarking platform, which consists
of five separate projects complementing each other. The platform covers CORBA bench-
marking suites, plotting utilities and a benchmark result browser. The suite does not contain a
managed storage; the results from benchmarking suites are stored on file system and serve as
a source for the plotting utilities and the result browser. The Network Repository concentrates
for storage as a main goal, which makes a difference with the CCPsuite objective.

SPEC

The SPEC [14]is a non-profit corporation, which maintain a set of relevant benchmarks. The
measured results are published in a public on-line repository. The concept of searching and
on-line browsing is very similar to Network Repository, but the SPEC repository supports
only the native corporation benchmarks. The on-line repository fits to the set of supported

38

benchmarks. The implementation details are not published, thus the design of its storage
system is not discussed.

Rubis

The Rubis [9] project is an example of a benchmarking software, which have own repository
for its result. Rubis is an auction site prototype and is used for evaluation of the application
server performance. The results are generated in a format, which is accepted in the repository
without the necessity of futher processing. The repository is on-line browsable, but do not
allow to generate the user specified reports. The specialization for the particular benchmark
type provides better interconnections among measured results than Network Repository.

39

7 Conclusion
The assignment of the master thesis covers all operations with benchmark results data, from
the data storage to the plot generation. Based on the complexity of the assignment, the web
interface was not implemented in order to treat a narrowed topic in depth rather to deal with a
complex task without examining the requested details. The limits to the assignment received
approval from the thesis supervisor.

During the analysis, the universal, flexible and extensible storage for various benchmark
result types was considered to be the most important part of the thesis. The variety of bench-
mark result types only underlines the importance of creating a robust benchmark model,
which forms the basis for processing. The configuration of the model is realized with a
benchmark model description that is represented with a XML file.

As part of the realization a benchmark model description, covering the assigned bench-
mark formats [5-10] was established. The example configuration is mentioned in the Ap-
pendix C. The benchmark model description can be easily extended with adding a support for
a new benchmark type according to the benchmark model section of this thesis.

The storage implementation uses metadata. The metadata provides a description of a par-
ticular benchmark result which is stored in a XML file. Its structure is defined with a Metadata
XML Schema, which is visualized in the Appendix A. The standardization of the metadata
description allows future automatized processing performed on the existing repository storage
structure.

The plotting implementation is realized using a plotting description, which contains the
output from evaluation of stored results. The plotting description serves as a data source for
image generation and is realized as a XML file, which is defined with XML Schema. The
Graph XML Schema is visualized in the Appendix B.

The repository is realized as a server application, written in Java. The public interface for
communication is realized via web services. The web services implementation provides all
functionality of the repository, so many platform independent clients can be established. Thus
Network Repository is prepared to store benchmark results, which were measured on various
platforms. Network Repository can be also used as a resource for an on-line browsable web
repository.

40

References
[1] Kalibera T., Bulej L., Tůma P.: Generic Environment for Full Automation Of Bench-

marking, in proceedings of Net.ObjectDays 2004

[2] Bulej L., Kalibera T., Tůma P.: Regression Benchmarking with Simple Middleware
Benchmarks, in proceedings of IPCCC 2004

[3] Bulej L., Kalibera T., Tůma P.: Repeated Results Analysis for Middleware Regression
Benchmarking, accepted for publication in Performance Evaluation: An International
Journal

[4] Tůma P., Buble A.: Open CORBA Benchmarking, in proceedings of SPECTS 2001

[5] Sampler Performance Evaluation Tool, http://nenya.ms.mff.cuni.cz/mbench

[6] Xampler Performance Evaluation Tool, http://nenya.ms.mff.cuni.cz/mbench

[7] ECperf Performance Evaluation Tool, http://java.sun.com/j2ee/ecperf

[8] OVM Performance Evaluation, http://ovmj.org/bench

[9] RUBiS Performance Evaluation Tool, http://rubis.objectweb.org

[10] TAO Performance Evaluation, http://www.dre.vanderbilt.edu/stats/performance.shtml

[11] BEEN - Benchmarking Environment, http://dsrg.mff.cuni.cz/been/project/

[12] CLIF - The CLIF Project, http://clif.objectweb.org/

[13] CCPsuite, http://dsrg.mff.cuni.cz/~ceres/prj/CCPsuite/

[14] SPEC - Standard Performance Evaluation Corporation, http://www.spec.org/

[15] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

41

Appendices
Appendix A. Metadata XML Schema

Figure A: Metadata XML Schema visualization

42

Appendix B. Graph XML Schema

Figure B: Graph XML Schema visualization

43

Appendix C. Example TAO configuration
<benchmark name="TAO">
<content>
<directory id="logs" bid="dirname" >
<directory id="log" >
<file id="log" type="text" >
<sequence type="word" count="unbounded" >
<choice >
<line type="colon" >
<property name="Count" field="count" type="int" />

</line>
<line type="simple" />

</choice>
</sequence>

</file>
</directory>

</directory>
<directory id="stats" >
<file id="stat" type="text" node="true">
<sequence type="word" count="unbounded" node="true" nodename="StatName" name-

type="variable" >
<line type="skip" node="false" />
<line type="simple" >
<variable name="StatName" field="1" type="string" />

</line>
<sequence type="number" count="4" >
<line type="config" />

</sequence>
<line type="simple" />

</sequence>
</file>

</directory>
<directory id="data">
<file id="throughput" type="text" node="false">
<line type="simple" node="none" />
<sequence type="number" count="6" node="true" >
<line type="simple" node="none">
<variable name="MessageSize" field="3" type="string" />

</line>
<sequence type="number" count="4" node="true" nodename="MessageSize" name-

type="variable" >
<line type="simple" node="true" datatype="float" />

</sequence>
</sequence>
<line type="skip" node="none" />

44

</file>
</directory>

</content>
<description>
<search>
<index name="Count" property="Count" />

</search>
</description>
<queryset>
<query name="Minimum_Troughput" graph="Simple" >
<xaxis name=”Sample” />
<yaxis name=”Minimum Throughput” unit=”MBps” />
<function type="Min" >
<path value="throughput/${MessageSize}/.*/2" />

</function>
</query>

</queryset>
</benchmark>

45

Appendix D. CD-ROM content
List of directories:

doc electronic documentation including administration guide

bin binary distribution

src source code

conf benchmark model description for assigned benchmark types [5-10]

xsd XML Schema specification

javadoc programming documentation

data sample testing data

46

