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Abstrakt: Přirozený vzhled vlas̊u je jedńım z kĺıčových aspekt̊u realističnosti
virtuálńıch lidských postav, protože obličej a hlava přirozeně přitahuj́ı lidský
pohled. V pohyblivých scénách je realistické chováńı vlas̊u d̊uležité stejně jako
vzhled. Pro animaci vlas̊u se často použ́ıvaj́ı fyzikálńı principy a dynamická
simulace, protože jiné tradičńı metody animace—jako animace pomoćı kostry
nebo sńımáńı pohybu—se na vlasy aplikuj́ı obt́ıžně. Dynamická animace vlas̊u je
otevřený problém bez známého nejlepš́ıho řešeńı. Důvodem jsou velmi specifické
mechanické vlastnosti vlas̊u spolu s t́ım, jak velké množstv́ı vlas̊u se na hlavě
nacháźı. Realistická a přitom rychlá animace vlas̊u je proto náročný úkol.

V této práci se zaměřujeme na metody dynamické animace vlas̊u, které mohou
pracovat v reálém čase nebo alespoň interaktivně a při tom si zachovat fyzikálńı
věrnost. Na základě výzkumu a analýzy vlastnost́ı vlas̊u z oblasti kosmetického
pr̊umyslu jsme navrhli novou metodu dynamické animace vlas̊u, která poskytuje
realističtěǰśı výsledky než obdobné existuj́ıćı metody a přitom nab́ıźı lepš́ı výkon
i stabilitu. Naši metodu jsme aplikovali na dva r̊uzné př́ıstupy k animaci vlas̊u,
abychom dokázali jej́ı nezávislost na konkrétńı reprezentaci vlas̊u. U jednoho
z těchto př́ıstup̊u nám naše metoda umožňuje nahradit iterativńı minimalizaci
funkce př́ımým výpočtem, č́ımž se tento krok simulace o řád zrychlil a zároveň se
zvýšila jeho stabilita.

Na základě pozorováńı pohybových charakteristik skutečných vlas̊u jsme dále
navrhli novou metodu uspořádáńı simulovaných vlas̊u, která umožňuje reprezen-
tovat větš́ı množstv́ı vlas̊u pomoćı menš́ıho počtu simulovaných primitiv, bez
nutnosti umělé interpolace.

Dále jsme analyzovali chováńı vlas̊u, které se dotýkaj́ı, a na základě této
analýzy jsme navrhli efektivńı metodu řešeńı koliźı mezi vlasy.

Celá naše animačńı metoda je navržena s ohledem na možnost implementace
na současných vysoce paralelńıch výpočetńıch architekturách jako jsou grafické
karty (GPU). Pro ověřeńı tohoto návrhu jsme jádro našeho animačńıho systému
naimplementovali také na GPU.

Kĺıčová slova: vlasy, dynamická animace, GPU
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Abstract: Natural-looking hair is a key component for presenting believable
virtual humans, because the head and face form natural focal points of the human
figure. In non-static scenes, hair behaviour is just as important as its looks.
Principles of physics and dynamic simulation are often used for animating hair,
because other traditional animation approaches—such as skeletal animation or
motion capture—are difficult to apply to hair. Dynamic animation of hair is still
an open problem without a known best solution, because hair has quite specific
mechanical properties which, combined with the high number of hairs typically
comprising a hairstyle, make realistic and efficient simulation challenging.

In this work, we focus on dynamic hair animation methods capable of provid-
ing real-time or interactive performance while staying physically plausible. Basing
on research and analysis of hair properties from the cosmetic industry, we have
devised a novel hair animation method which provides more realistic results than
existing comparable methods while at the same time offering better performance
and stability. We have applied this method to two different approaches to hair
animation in order to prove its independence on any particular representation of
hair. In one of these approaches, our method allows us to replace an iterative
function minimisation with a direct computation, giving a speed-up of about an
order of magnitude in this one stage of the simulation, while at the same time
increasing its robustness.

Based on further observations natural behaviour of real hair, we have also pro-
posed a novel organisation of simulated hair. This allows representing a larger
number of hair strands by simulating fewer primitives without introducing arti-
ficial interpolation.

Additionally, we have analysed behaviour of real hair when in mutual contact
and based on this analysis, proposed an efficient model of collision response for
collisions between hair strands.

Our entire method is designed to be easily usable with current massively
parallel computation architectures such as GPUs. To validate this design decision,
we have also created a proof-of-concept implementation of the core parts of our
simulation system on the GPU.

Keywords: hair, dynamic animation, GPU



Contents

1 Introduction 4
1.1 Scope and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Human Hair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Acquisition and Modelling . . . . . . . . . . . . . . . . . . 7
1.3.2 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Dynamic Animation . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . 12

1.5 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . 14

2 History and State of the Art 15
2.1 Explicit Hair Representation . . . . . . . . . . . . . . . . . . . . . 15
2.2 Volumetric Approaches . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Rod-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Simulating Hair Dynamics 22
3.1 Modelling Individual Hair . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Rod Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Hair Specifics . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Collective Hair Properties . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Hair Volume . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Hair–World Interactions . . . . . . . . . . . . . . . . . . . 32

3.3 Helix-based Hair . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Super-Helix Discretisation . . . . . . . . . . . . . . . . . . 32
3.3.2 Super-Helix Equations of Motion . . . . . . . . . . . . . . 33
3.3.3 Recovering the Hair Shape . . . . . . . . . . . . . . . . . . 35

3.4 Adapting the Super-Helix Model . . . . . . . . . . . . . . . . . . . 37
3.4.1 Simplified Model . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Integrating with Haptics . . . . . . . . . . . . . . . . . . . 39
3.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Explicit Rod Model . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Reduced-coordinate Material Frame Representation . . . . 41
3.5.2 Node+Edge Discretisation . . . . . . . . . . . . . . . . . . 44
3.5.3 Explicit Equations of Motion . . . . . . . . . . . . . . . . 45
3.5.4 Constraint Enforcement . . . . . . . . . . . . . . . . . . . 54

3.6 Simulating Hair as Explicit Rods . . . . . . . . . . . . . . . . . . 56

1



3.6.1 Hair Twisting Model . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Hair–Head Collisions . . . . . . . . . . . . . . . . . . . . . 64
3.6.3 Hair Wisps . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7.1 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7.2 Our GPU Processing Pipeline . . . . . . . . . . . . . . . . 81

4 Handling Hair–Hair Collisions 87
4.1 Flat Hair Wisps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Representation for Collision Detection . . . . . . . . . . . 88
4.1.2 Detecting Collisions . . . . . . . . . . . . . . . . . . . . . . 92
4.1.3 Collision Classification . . . . . . . . . . . . . . . . . . . . 93

4.2 Aligned Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Representing Entanglement . . . . . . . . . . . . . . . . . 95
4.2.2 Attaching Springs . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.3 Spring Management . . . . . . . . . . . . . . . . . . . . . 99

4.3 Unaligned Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Hair–hair Collision Constraints . . . . . . . . . . . . . . . 99
4.3.2 Constraint Conflicts . . . . . . . . . . . . . . . . . . . . . 104

5 Results 105
5.1 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Simplified Super-Helices . . . . . . . . . . . . . . . . . . . 105
5.1.2 Explicit Hair Strands . . . . . . . . . . . . . . . . . . . . . 106

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2



List of Figures

1.1 Uncanny valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Hair composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Latitude and longitude . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Cross section and material axes . . . . . . . . . . . . . . . . . . . 25
3.3 Deformed rod with elliptical cross section . . . . . . . . . . . . . . 25
3.4 Bending elliptical rod . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Twisting and curls . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Flat wisp formation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Super-Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Simplified Super-Helices and haptic interaction . . . . . . . . . . . 39
3.9 Simplified Super-Helix hair . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Computing ηk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.11 Computing θjdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.12 Computing θj when node j is bent . . . . . . . . . . . . . . . . . 62
3.13 Twist on an unbent sequence . . . . . . . . . . . . . . . . . . . . 63
3.14 Wisp and rim strands . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.15 Example wisp distribution . . . . . . . . . . . . . . . . . . . . . . 73
3.16 Tangent-mapped wisp . . . . . . . . . . . . . . . . . . . . . . . . 74
3.17 Relief-mapped wisp . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.18 Wisp rendering mesh . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.19 Wisp spring patterns . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.20 Wisp shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.21 VBO data layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.22 GPU hair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Various hairstyles showing flat wisp formation . . . . . . . . . . . 88
4.2 The skeleton structure of a wisp segment. . . . . . . . . . . . . . . 89
4.3 Sphere-swept triangle . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Segment triangulation . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Arched wisp segment . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Wisp collision configurations . . . . . . . . . . . . . . . . . . . . . 93
4.7 Tangle springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 Possible configurations of colliding triangles . . . . . . . . . . . . 97
4.9 Triangle and plane constraint comparison . . . . . . . . . . . . . . 102

5.1 Screenshots from evaluation scenarios . . . . . . . . . . . . . . . . 108

3



Chapter 1

Introduction

The topic of this thesis is dynamic animation of human hair. Our primary focus
is on utilising properties of real hair to improve realism and efficiency of hair
animation methods. As a secondary goal, we strive to provide a solution capable
of producing results fast by utilising parallel computation on commonly available
hardware such as Graphics Processing Units (GPUs).

1.1 Scope and Motivation

Dynamically animating human hair is a broad topic. Different animation methods
can focus on different aspects such as speed, physical realism of the generated
animation or even artistic control over the result. This largely depends on the
the intended use of the method. Cinematic animation requires extensive artistic
control over the result while still maintaining physical believability. Computation
time is not really an issue, as long as at least a scaled-down interactive preview
is available. For computer games, on the other hand, speed is key and everything
else is secondary.

In this thesis, we focus on approaches to hair animation which offer physically
plausible results at interactive rates. That is, we want to find a method which
is firmly physics-based, but we’re willing to abstract or simplify some details in
order to gain speed.

On a human or human-like character, the face and head form a natural focal
point—when first looking at such a character, our eyes are instinctively drawn
to them (Cerf et al. 2008). This high saliency of the human face is well studied
in the fields of face recognition and cognitive psychology (Sharma et al. 2009).
For this reason, realistic depiction of the face and head plays a key role in the
perceived realism of the observed character. Another important factor is famil-
iarity. We are all extremely familiar with what a human looks like. This means
we’re automatically more demanding on the realism of computer-generated hu-
man characters. There are errors in the realism of the behaviour of a human
character’s hair which will be identified when the same errors in the animation
of a lion’s mane or a horse’s tail would go unnoticed.

Another point which must be considered when dealing with realistic depiction
of virtual humans is the so-called uncanny valley (Mori 2012). This term applies
to a phenomenon of human psychology and perception when viewing an imitation
of a living being, particularly a human. When the imitation, such as an animated
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Figure 1.1: “Uncanny valley” phenomenon—high, but still imperfect levels of
realism induce a negative response in viewers1.

virtual character, is obviously artificial, improving the realism of its appearance or
behaviour is appreciated by viewers and perceived as better. Up to a certain point,
this perception of representation quality continues to grow with increasing realism
of the presentation. However, when the virtual entity comes close to reality but is
still perceptibly distinct, a negative perception or revulsion is induced in viewers.
Only when the presentation realism increases further to match reality extremely
well does the trend reverse again and invoke positive reactions an empathy from
observers. Refer to Figure 1.1 for a graphical representation. This phenomenon
is studied in several fields dealing with presentation of artificial humans such as
digital entertainment (Tinwell 2014) and especially robotics (Ho et al. 2008). The
existence of this phenomenon is further motivation for realism in hair animation.

Unfortunately, realistically animating hair is no easy task. Human hair ex-
hibits several specific physical characteristics. It is practically unstretchable and
unshearable. At the same time it bends and twists easily, but resumes its rest
shape when external load is removed. Additionally, hair strands have a naturally
anisotropic character; the length of a typical strand is several orders of magni-
tude larger than its diameter. This can of course pose problems for accuracy of
numerical computations involving hair. These properties, combined with the fact
that a typical human has over 100,000 individual hair strands, make accurate and
fast physical simulation very difficult.

1.2 Human Hair

Human hair is the subject of extensive study in fields ranging from cosmetics to
biology to forensic science. A detailed analysis of hair physiochemical properties,
behaviour and morphology was given by Robbins (2002).

1 Graph image by Smurrayinchester, licensed under Creative Commons BY-SA-3.0, taken
from http://en.wikipedia.org/wiki/File:Mori_Uncanny_Valley.svg.
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(a) Hair follicle (b) Cuticle scales

Figure 1.2: Cross section of a hair follicle, with the hair shaft delimited by a
blue line (a). Cuticle scales on the surface of hair strands (b)2.

A typical human hairstyle consists of between 100,000 and 150,000 hair strands.
Hair grows from follicles found in the skin of the scalp.

The mean cross-section diameter of human hair varies with ethnicity and is
generally in the range of 80–100µm (Swift 1995). An important property of hair
strands is that they are elliptical in cross section, with eccentricity mainly between
1.2 and 1.7, again dependent on ethnicity (Vernall 1961). This eccentricity is
important to our model, and we will refer to it in Section 3.1.2.

Internally, a hair strand is composed of three main parts: the cuticle, cortex,
and medulla (see Figure 1.2). At the core of the hair shaft is the medulla, com-
posed of loosely connected keratin cells. The middle layer is the cortex which
contains melanin and is therefore responsible for hair colour. It also determines
tensile properties of the strand, and is co-responsible for bending and twisting
elastics, along with the outer cuticle layer composed of overlapping translucent
keratin scales. Overall, keratin accounts for 65–95% of hair composition. It
gives hair its mechanical properties, the most relevant of these being elasticity in
bending and twisting along with extremely high tensile strength and resistance
to shear.

A comprehensive overview of relevant physiochemical properties of hair is
given by Bonanni (2010).

1.3 Related Areas

While our work is in the domain of physically-based hair animation, other as-
pects of virtual hair are also interesting subjects of extensive study. Most of the
properties we have described in the previous section which make hair animation
a difficult task have a similarly complicating effect on the related areas of hair
capture, modelling, and rendering. We describe these areas briefly in this section,
but as they are not central to our work, we refer the reader to existing overview

2 (a) Original image is a faithful reproduction from (Gray 1918), in public domain.
(b) Image by Anne Weston, LRI, CRUK, Wellcome Images, licensed under Creative
Commons BY-NC-ND-2.0, taken from https://www.flickr.com/photos/wellcomeimages/

5814146681/.
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literature (Hadap et al. 2007; Yuksel and Tariq 2010) for more information on
these topics.

1.3.1 Acquisition and Modelling

The sheer number of hairs on typical human head makes modelling a virtual
hairstyle a non-trivial task. Methods of creating virtual hair can be divided
into two broad groups: those based on reconstruction from real-world data, and
modelling approaches.

Compared to solid object reconstruction, methods capturing hair have to deal
with hair’s complex scattering properties and tiny cross-section dimensions. An-
other complication of hairstyle reconstruction is the fact that not only the surface,
but the entire internal structure of the hairstyle must be captured; without it,
subsequent re-lighting, shadow computation, or animation cannot be realistic.
Most methods of reconstructing hair shape from visual images therefore require
carefully controlled lighting and environment set-up and/or a complex capture
apparatus, which generally limits them to use in laboratory conditions. Specific
techniques applied to this problem include utilising depth-of-field information
(Jakob et al. 2009), thermal imaging (Herrera et al. 2012), or reconstruction
guided by a pre-computed database of examples (Hu et al. 2014).

Still, traditional 3D modelling remains by far the most common methodol-
ogy of obtaining a virtual hairstyle. 3D modelling packages such as Maya or 3D
Studio Max generally incorporate their own tools for modelling hair, which com-
bine curve-based approaches, continuum simulation and strand dynamics. Yet
these tools are usually a world unto themselves and their interaction with other
modelling tools from the package can be limited. For 3D artists most famil-
iar with polygonal meshes, this makes such tools rather slow and impractical to
use, the end result being several hours are normally required to model a virtual
hairstyle. An interesting advancement in this field is the method of Yuksel et al.
(2009), who proposed an effective way of representing hair with a polygonal mesh
for modelling. This allows artists to design hairstyles using tools they are most
familiar with.

A specific approach to modelling hair is virtual hairstyling, that is, simulating
the tools used by real-world hairdressers (Magnenat-Thalmann et al. 2006; Ward
et al. 2006). Interaction which seeks to simulate reality requires the hair to
respond to the user’s actions in a physically correct way, which means a dynamic
animation scheme must be employed. This makes styling-based approaches the
modelling most related to our topic, and we will discuss it more in Section 3.4.2.
Such approaches can be very effective due to their intuitiveness, especially if
combined with means of 3D input such as a haptic device. On the other hand,
this also requires new interaction metaphors which will allow artists to make the
best use of all interaction modes (keyboard, traditional 2D mouse/stylus input,
3D/haptics) available. We have explored design of such metaphors for virtual
hair styling in (Bonanni et al. 2009b).
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1.3.2 Rendering

The high number of strands, each of which typically has sub-pixel thickness under
normal zoom, makes rendering hair a challenging task. Matters are complicated
further by the fact that hair is partially translucent, which gives rise to complex
scattering phenomena within the hair volume and makes correct attenuation and
shadow rendering crucial for perceived realism of rendered hairstyles.

Due to the small size of its cross section, hair does not lend itself too well
to lighting using traditional models such as the illumination model of Phong
(1975). An empirical hair-specific lighting model was developed by Kajiya and
Kay (1989) and quickly became the de-facto standard way of shading hair. They
proposed a diffuse component obtained by integrating a Lambertian model over
a perfect half-cylinder, combined with an ad-hoc specular component similar to
that used in Phong shading. An interesting property of their model is that due
to hair’s small cross-section size, the tangent vector is used in place of the normal
for computing incident angles.

In 2003, Marschner et al. performed an extensive set of measurements of
light interacting with human hair fibres and designed a new hair lighting model
based on these measurements. They found that hair lighting has practically no
diffuse component and the colour we normally perceive in hair is caused by a
secondary tinted, but specular reflection of hair which has travelled through the
strand once and reflect towards the observer from the far side of the strand. Its
offset from the primary specular highlight is caused by the tilt of cuticle scales on
the strand surface. A drawback of this model is its high computational intensity,
although faster approximations have been proposed (Scheuermann 2004; Zinke
et al. 2008).

The most intuitive approach to hair rendering is to render each individual
strand. Hair strands can be rendered as poly-lines, generalised cylinders, or
spline curves. Rendering individual hairs generally suffers from sever aliasing due
to the small cross-section size of strands. Due to this, and the high number of
strands which need to be rendered for a believable hairstyle, many simplifications
have been proposed. These include rendering primitives which represent multiple
hairs such as textured triangle strips (Ward and Lin 2003; Koster et al. 2004) or
cylinders (Ward et al. 2003), as well as volumetric approaches based on billboard
splatting (Bando et al. 2003). Realism of results produced by such simplification
methods can be greatly enhanced by using tangent mapping (similar to normal
mapping) or another way of per-pixel tangent variation with along a suitable
lighting model.

Hair is partially translucent, which makes light attenuation and self-shadowing
inside the hairstyle volume a vital component of visual believability. Deep shadow
maps were devised by Lokovic and Veach (2000) for computing hair shadowing.
A deep shadow map is an extension of a plain shadow buffer; each element (pixel)
in the map stores the attenuation function along a ray cast through that element,
encoded as a polyline. Deep shadow maps provide very realistic results, at the
cost of high computation and memory demands. A very efficient approximation
for deep shadow maps was introduced by Yuksel and Keyser (2008). This method,
called deep opacity maps, packs all its data in an ordinary 4-channel texture, one
per light source. Similar to a shadow buffer, one channel stores a depth map from
the point of view of the light source. Each of the remaining channels stores one
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layer of attenuation—layer width is fixed, but in each texel layers start from the
depth of the illuminated surface point. This makes the layers curved, following
the shape of the hairstyle, allowing them to utilise available texture storage space
very efficiently.

1.4 Dynamic Animation

Dynamic animation is animation based on physical simulation. The object to
be animated is represented by a physical system which describes physical effects
acting on the object, and how the object reacts to them. For simulating a solid
object such as hair, these effects will typically be forces and torques. The system’s
description is given as a function of time. This function is then evaluated in time
points which correspond to the animation frames. The system’s state is computed
by the function and used to render the animation frame. This function represents
the equations of motion of the system.

1.4.1 Notation

Before proceeding further, we’ll establish some notation used throughout the
text. Because we’re dealing with dynamic simulation and a system’s evolution
over time, nearly all quantities are functions of time. We want to make it clear
which ones are and which are not, but explicitly spelling out every quantity as a
function of t would lead to clutter and hinder formula readability. We therefore
adopt the convention that if a quantity is not a function of time, it is underlined:
g depends on time while β does not. Exceptions are well-known constants such
as π, and variables used for indexing.

As is common in related literature, we use the dot accent to denote differen-
tiation by time. For a time-dependent value f :

ḟ =
df

dt
(1.1)

Another element of notation we apply consistently is using a bold upright typeface
for vectors, and normal font weight for scalar values. For example, v · w = m
states that the dot product of vectors v and w is m.

To conserve space and keep formulae readable, we also introduce a notation
for the gradient of a function by a vector:

∇zf =
df

dz
(1.2)

We occasionally need to refer to a particular component of a vector. In such case,
we index the components starting from 0 and use double bracket notation. If
more than one coordinate is listed, the result is a vector:ab

c

 J1K = b

ab
c

 J0, 2K =

(
a
c

) (1.3)
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1.4.2 Equations of Motion

Equations of motion are a set of equations which describe how the simulated
system evolves in time. This means they will normally be differential equations
with time as the independent variable.

As we’ve covered above, the primary component of dynamic animation are
forces acting on the system. Since by Newton’s second law force equals mass
times acceleration, use of forces leads to equations of motion being second-order
differential equations (recall that acceleration is the second derivative of position
with respect to time). If we take vector g as describing the state of our system,
the most general form of such equations of motion is this:

g̈ = F (g, ġ) (1.4)

The exact form of the equations of motion depends on the system being simulated
and on the method used to represent/discretise it. We will now present the
method of Lagrangian mechanics, used for both physical models presented in this
thesis.

Lagrangian mechanics is a method of describing the dynamic characteristics
of a system and deriving equations of motion from this description. We present
it here briefly to give foundation to our description of hair simulation methods in
Chapter 3. For further details and proofs, we refer the reader to existing literature
on the subject, such as (Morin 2008).

In Lagrangian mechanics, we describe the system we want to simulate using
generalised coordinates. We denote the vector of generalised coordinates g, and
the corresponding vector of generalised velocities ġ. If the number of generalised
coordinates is γ, then g, ġ ∈ Rγ.

Generalised coordinates parametrise the system in a way which is “natural” for
the system or easy to express. For example, when simulating a body moving along
a fixed trajectory (such as a roller-coaster), we can parametrise the trajectory as
a curve and represent the position of the body using one generalised coordinate,
the curve parameter value at its current position.

Even more important than the reduction of dimensionality (one scalar pa-
rameter instead of a 3-dimensional Cartesian coordinate vector) is the implicit
handling of constraints. When using a Cartesian model, we would have to explic-
itly model the constraints of the motion (staying on the tracks) and account for
them using forces. Lagrangian mechanics allows us to express such constraints
implicitly by our choice of generalised coordinates and by formulating the sys-
tem’s internal energy based on these coordinates.

It is of course perfectly possible to select a suitable set of Cartesian coordinates
as the generalised coordinates. When simulating a mass-spring system, for ex-
ample, the Cartesian coordinates of the mass points make for obvious generalised
coordinates.

The core component of Lagrangian mechanics is the Lagrangian L (g, ġ), a
function which describes the entire dynamics of the system by capturing its kinetic
energy T and potential energy U :

L (g, ġ) = T (g, ġ)− U (g, ġ) (1.5)

Lagrangian mechanics describes how equations of motion are derived from the
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Lagrangian. These, also called the Euler-Lagrange equations, or Lagrange’s equa-
tions of the second kind, take the following form:(

∀i ∈
{

1, . . . , γ
}) d

dt

(
∂L
∂ġi

(g, ġ)

)
− ∂L
∂gi

(g, ġ) = 0 (1.6)

gi and ġi stands for the i-th component of vector g or ġ, respectively.
The form of the equations presented in equation 1.6 assumes potential forces

only. When modelling certain systems, the internal forces can be both potential
and viscous. In such case, we have to add a dissipation term to the equations of
motion. The standard formulation for this dissipation term D was proposed by
Lord Rayleigh (Goldstein 1980) and takes the following form:

D (ġ) =
1

2

γ∑
i=1

γ∑
j=1

γ
ij
ġiġj (1.7)

The constants γ
ij

are related to damping coefficients of the system being mod-

elled. The dissipation energy is then added to the equations of motion:(
∀i ∈

{
1, . . . , γ

}) d

dt

(
∂L
∂ġi

(g, ġ)

)
− ∂L
∂gi

(g, ġ) +
∂D

∂ġi
(ġ) = 0 (1.8)

Equations 1.6 and 1.8 represent the equations of motion when there is no external
input to the system, and only its kinetic and potential energy (and possibly vis-
cous dissipation) affects its dynamic state. In most simulations, we actually want
external influences to be present, such as gravity, air/wind effects, interaction
with other objects, or explicit user interaction. Together, these external forces F
can be included in the equations of motion as the right-hand side:(

∀i ∈
{

1, . . . , γ
}) d

dt

(
∂L
∂ġi

(g, ġ)

)
− ∂L
∂gi

(g, ġ) = F (g, ġ) (1.9)

If the system’s internal forces are viscous, a dissipation term can be added to
equation 1.9 analogously to equation 1.8.

In addition to the implicit constraints embedded in the choice of generalised
coordinates, Lagrangian mechanics can also be used to model systems with ad-
ditional, explicit constraints, if they can be expressed in the following form:

C (g) = 0 (1.10)

We assume there are ζ constraints, meaning C (g) ∈ Rζ .
For each constraint, an additional variable, called the Lagrange multiplier, is

introduced. These are represented as a vector λ ∈ Rζ . The Lagrangian is then
modified as follows:

L̃ (g, ġ) = L+ λ ·C (g) (1.11)

The equations of motion are obtained from equation 1.11 by the same process as
equation 1.6 from equation 1.5:(
∀i ∈

{
1, . . . , γ

}) d

dt

(
∂L
∂ġi

(g, ġ)

)
− ∂L
∂gi

(g, ġ) +

ζ∑
j=1

λj
∂Cj
∂gi

(g) = 0 (1.12)(
∀j ∈ {1, . . . , ζ}

)
Cj (g) = 0 (1.13)

The equations of motion 1.12 are called Lagrange’s equations of the first kind.
Along with the constraint equations 1.13, they form a system of γ + ζ equations
with an equal number of unknowns.
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1.4.3 Numerical Integration

As we’ve shown in the preceding section, the dynamics of a system are de-
scribed by differential equations of motion. Computing the system’s evolution
over time requires solving (integrating) these equations: given the state of the
system at time tn and all preceding states, compute the state of the system at
time tn+1 = tn+∆t. Only for extremely specific systems is a closed-form solution
for these equations available; such luxury is normally reserved for textbook ex-
amples. When simulating a real-life system, we need to apply numerical solution
methods.

Numerically solving a differential equation means computing a solution which
will approximate the true solution to a given degree of accuracy. There are many
methods of solving differential equations numerically; they generally belong into
one of the following categories:

Runge-Kutta methods These methods compute the value in step tn+1 = tn +
∆t by utilising only the current value at time tn. Depending on the exact
method, intermediary values (such as value at time tn+ ∆t

2
) can be computed

and used to better approximate the solution at time tn+1, but they are not
retained once the computation finishes.

Multistep methods In contrast, the basic principle of multistep methods is to
utilise data from more than one previous point in time when computing the
next timestep. The Runge-Kutta methods presented above always start
the computation of each timestep tn+1 from the value and derivative from a
single past time point tn. Higher-order Runge-Kutta methods can compute
intermediary values such as half-steps from this before computing the final
step, but all these inbetween values are discarded after the next timestep
is computed. In contrast to this, multistep methods use two or more past
timesteps tn, tn−1, . . ..

There are also other methods of numerical integration which do not conform to
the above grouping. However, as numerical integration is a tool for us rather
than a core topic of our work, we refer the reader to existing literature (Bradie
2005; Butcher 2003; Hairer et al. 2006) for further details. We will likewise omit
multistep methods from further discussion, as we do not use them.

The simplest Runge-Kutta method is the explicit Euler method. Let us as-
sume we have a system of differential equations of the following form:

ẏ (t) = F
(
t,y (t)

)
(1.14)

The explicit Euler method then computes the value in the next time step using
a finite difference approximation:

y (tn+1) = y (tn) + ∆tF
(
tn,y (tn)

)
(1.15)

Explicit Euler is a first-order method, that is, the error of computing one time

step is O
(

(∆t)1
)

. Higher-order methods exist, their error bounded by a higher

power of the time step. A widely used higher-order method is the 4th order
Runge-Kutta method (sometimes called simply the Runge-Kutta method). This
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method uses a sequence of computed intermediary points to achieve order in

O
(

(∆t)4
)

:

k1 = F
(
tn,y (tn)

)
k2 = F

(
tn +

∆t

2
,y (tn) +

∆t

2
k1

)
k3 = F

(
tn +

∆t

2
,y (tn) +

∆t

2
k2

)
k4 = F

(
tn + ∆t,y (tn) + ∆tk3

)
y (tn+1) = y (tm) +

∆t

6
(k1 + 2k2 + 2k3 + k4)

(1.16)

The final value in the next time step is computed using a weighted average of
values in between time steps. This method offers better stability and more precise
result, at the cost of having to evaluate F and y four times for each time step
computed. In the domain of dynamic animation, evaluating y means updating
object positions, rotations, and other dynamic state; evaluating F amounts to
computing forces, torques and any other interactions between simulated objects.
If collision response is part of the dynamics (such as penalty forces), collisions
must be detected and handled in each intermediate step as well.

Both methods we’ve shown above are explicit. Implicit numerical integration
methods also exist. They offer excellent stability at the price of being compu-
tationally intensive. An example is the implicit (also called backwards) Euler
method:

y (tn+1) = y (tn) + ∆tF
(
tn+1,y (tn+1)

)
(1.17)

Notice that while the explicit Euler method given in equation 1.15 can be com-
puted directly, the implicit equation 1.17 requires solving a dense system of equa-
tions of the unknown y (tn+1). As a consequence, implicit methods are less com-
monly used in real-time animation systems due to their high computation cost.

All methods we’ve discussed so far are designed to solve first-order differential
equations; that is, ẏ is present in the equations, but higher order derivatives
like ¨vcy are not (the order of a differential equation is not to be confused with
the order of the solution method; the latter refers to the method’s error bounds,
as we’ve outlined above). However, note that most systems used for dynamic
animation (including Lagrangian mechanics we’ve covered in Section 1.4.2) work
with forces and acceleration, which is a second derivative of position. In general,
the equations of motion have the following form:

ÿ (t) = F
(
t,y (t) , ẏ (t)

)
(1.18)

The standard approach is to transfer this into a system of twice the number of
variables by introducing new variables z to stand for ẏ:

z (t) = ẏ (t)

ż (t) = F
(
t,y (t) , z (t)

) (1.19)

The second order equations in y and ẏ have thus been transformed to first-order
equations in y and z. Another way of viewing this transformation is treating ẏ
as an independent variable rather than as dy

dt
.
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This is a largely theoretical construct. In practical implementation, the equa-
tion z (t) = ẏ (t) is considered implicitly true and the computation simply uses
the values of position (y), velocity (ẏ), and acceleration (ÿ). All equations of
motion which we present in Chapter 3 assume this principle is applied.

1.5 Contribution of this Thesis

In order to present our work in a logical fashion, we found it necessary to in-
terleave it with description of existing methods throughout the thesis. These
methods generally provide the context necessary for proper explanation of our
work. To prevent any confusion regarding which parts of this thesis present
original research, our contributions are summarised here, with references to the
relevant sections where they are presented and explained in detail.

� Building on research from the hair cosmetics industry which has—to the
best of our knowledge—never been applied in the area of computer graphics
or animation, we have devised a new approach to modelling hair bending
behaviour in dynamic simulation. In Sections 3.4 and 3.6, we apply this
approach to two existing hair animation methods and show how it improves
both realism and performance of the simulation.

� Based on observations of real-world hair behaviour, we have proposed a
specific representation of hair volume which captures a broad range of real-
world hairstyles and lends itself both to efficient simulation and collision de-
tection. We couple this with a collision response scheme modelling different
interactions observed in real hair. These topics are covered in Section 3.6.3
and Chapter 4.

� Our hair animation algorithm is designed to be GPU-friendly. In Sec-
tion 3.7, we present a proof-of-concept implementation which offloads the
core part of the simulation to the GPU.

Finally, Section 5.1 presents our hair animation algorithms in compact form suit-
able for global overview.
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Chapter 2

History and State of the Art

This chapter presents an overview of existing work on the subject of dynamic hair
animation. We go rather further back in history in this overview, to provide a
solid foundation and put the field of dynamic hair animation in context. Also, we
have found that some ideas presented in older works and not usually considered
in more recent ones can actually be applied to modern animation methods with
good effect. In fact, several of this thesis’ contributions were partly inspired by
such ideas, and in this chapter we concentrate on the works which introduced
them.

The methods presented are grouped according to the fundamental model or
mechanism they use to represent the physical behaviour of hair. The main division
is between methods which model hair behaviour in some explicit way, presented
in Section 2.1, and approaches which use an alternative principle such as fluid
dynamics, which are covered in Section 2.2. An essential point in the evolution
of explicit methods was the introduction of the Kirchhoff and Cosserat theory of
elastic rods to hair animation. Because of this model’s importance, we present
methods using it in separate Section 2.3 instead of grouping them with other
explicit approaches.

2.1 Explicit Hair Representation

Most dynamic animation methods use some form of explicit representation of hair.
This means that the dynamically simulated entities correspond to hair strands.
This need not be a one-to-one correspondence—several methods simulate entire
clumps of many strands as a single dynamic entity—but the core point is that the
dynamic entity is intended to capture behaviour of a well-defined set of concrete
strands.

Most methods representing hair explicitly use the notion of a rigid multi-body
chain. A rigid multi-body chain is a sequence of rigid bodies, usually thin and
cylindrical, connected by mechanical joints. The exact shape and properties of
the bodies and joints vary between methods. Overall, approaches based on rigid-
body chains tend to provide more accurate simulation results, at the cost of high
computational intensity.

An alternative to rigid bodies is a mass-spring system. Such models are based
on a set of objects with mass, usually point masses, connected by massless springs.
Again, the exact configuration of springs used to represent hair varies between
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approaches. Mass-spring methods generally offer fast computation and lend them-
selves to simpler integration schemes, as long the springs are not too stiff. Results
they produce tend to be less realistic; recall from Section 1.2 that human hair is
practically inextensible, an effect hard to represent correctly with springs. Rigid
body and spring approaches are sometimes combined to mitigate each other’s
drawbacks.

One common feature of explicit representation methods is use of guide strands.
To keep the size of the simulated system manageable, only a small number of
strands (or other primitives such as wisps) are actually simulated using a full
dynamic simulation. Typically, the number of simulated entities will be on the
order of hundreds for a full hairstyle. Compared to the 100,000–150,000 strands
comprising a typical human hairstyle, the guide strands alone could not produce
believable visual results. More strands are then interpolated from the guide
strands solely for purposes of rendering. This enables visual representation of a
full hairstyle while keeping the computational requirements of the simulation at a
manageable level. Being a simplification, the method is not without drawbacks,
the chief of them being uniformity of the resulting hairstyle. Different authors use
different approaches to mitigate this effect of interpolation, and we will mention
them where applicable.

One representative of rigid multi-body chains is the method of Chang et al.
(2002). They use a model of point masses connected by rigid segments to repre-
sent sparse guide strands. The joints themselves are modelled as a cascade of two
separate one-dimensional joints with a fixed rotation axis. Rotations around the
hair’s longitudinal axis are prohibited, resulting in just two degrees of freedom
per joint. Such neglecting of twist deformations is commonly found in other ex-
plicit approaches to hair animation as well; however, as we show in Section 3.1.2,
not considering twist prevents the simulation from correctly capturing important
behaviour of real hair, especially in regards to curliness.

To account for hair-hair interaction, the method introduces two auxiliary
structures. The first one are static links, acting on selected pairs of hair vertices
(joints). When the relative position of the two linked vertices change, spring
forces are applied to draw the vertices back to their original relative configura-
tion. As these links represent static charges, cosmetics, curly intertwining, and
similar effects which can be broken by excessive force, there is a threshold set for
each link and when the vertices separate by more than this threshold, the link is
broken permanently.

The other structure employed are triangle strips connecting guide strands
with nearby roots. These triangle strips simulate dense hair between the sparse
guide strands and when a strand intersects with a triangle, damped spring force
is applied to the strand to simulate hair-hair collision. The triangles are not used
for rendering purposes; instead, dense hair is interpolated from the guide strands
for rendering. Parts of our method, described in Section 3.6.3 and Chapter 4,
employ features partly inspired by these structures.

Hair–body collisions are not solved using forces. Instead, if a hair vertex
comes too close to the body, its velocity is set to that of the body. Further
acceleration deeper into the body is prohibited; the vertex can still move away
or slide along the body, but a frictional force is applied. Penetrating collisions
with other parts of the scene are solved by relocating the penetrating vertices
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away from the penetrated object and propagating this offset along the length of
the strand. Hair-body and hair-object collisions are solved for all hair strands,
not just the guide strands. At the time of its publishing, the method worked
offline, requiring about 20 seconds to simulate one animation frame using 200
guide strands of 15 segments each.

A slight variation on the multi-body chain is used by Choe et al. (2005). In
their method, rigid segments are connected with a linear and an angular spring
rather than with joints. The presence of the angular spring allows the method to
capture torsional effects.

The method does not simulate individual strands: the segment chains are
used as skeletons of cylindrical wisps. Individual strands are created for rendering
purposes only, as slightly varied copies of the wisp skeleton.

To account for hair-hair interaction within a wisp, its cross-section diame-
ter increases in proportion to its speed. Wisp–wisp collisions are simulated by
applying penalty forces and viscous drag to interpenetrating wisps. Wisp–body
collisions are detected by predicting the next simulation state and when a col-
lision occurs, corrective forces are applied to prevent the actual collision. This
solves more than 99% of all collisions. The rest is simply dealt with at rendering
time by slightly altering the wisp shape. This method also worked in offline sim-
ulation times when published, requiring 1–5 seconds to compute an animation
frame when simulating 100–300 wisps with a 10 ms time step.

Rigid segments connected by angular springs are also used by Koh and Huang
(2001) for simulating strips of hair. The segments are connected by resistance-
free joints; bending stiffness is provided by two angular springs at each joint, and
torsion is not considered. This dynamic model is applied to control points of a
spline surface. The surface is used to represent hair dynamically, and tesselated
into a mesh for rendering. Hair–head collisions are solved by approximating
the head with an ellipsoid and applying penalty forces to penetrating segments.
Springs between strips are used for hair–hair collision avoidance.

A hierarchical approach to dynamic hair simulation was presented by Bertails et
al. (2003). They simulate dynamic clustering of hair using a pre-computed tree
of cluster hierarchy. Each hair wisp has such a tree associated with its skeleton.
When the wisp moves with sufficient acceleration, nodes close to the tip are split,
allowing the hairs in the wisp to spread. When acceleration decreases and the
individual strands come together, they can be merged again. This process saves
from having to compute detailed animation of those parts of the hairstyle where
natural clustering causes the strands to behave uniformly.

The dynamic model itself varies based on hair character. Straight hair is
modelled by a rigid multi-body chain, whereas curly hair is represented by point
masses connected by springs. The reason is the dynamic skeleton controls an
entire wisp of hair and not individual strands. The choice of springs for curly
hair then enables these wisps to stretch or compress (the curls of the wisp coming
farther apart or closer together), while the individual strands retain their length;
such behaviour is indeed observed in real curly hair.

For wisp–wisp collision detection, wisps are treated as cylinders. Collision
response depends on the mutual orientation of the colliding wisps. If they are
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well aligned, they can penetrate each other, but a frictional force is applied. If
the colliding wisps are perpendicular, repulsive forces are applied instead.

For hair-body collisions, the head model has several bounding spheres, which
are tested for intersection with the wisp cylinders. When penetration occurs,
the colliding node is moved out of the body and a frictional force is applied.
The method offers considerable acceleration compared to simulating the finest
level of detail, but it did not reach interactive frame rates when published; the
performance was about 1 s to compute 4 integration time steps of 10 ms each.

A similar hierarchy is used by Ward and Lin (2003) when extending the simula-
tion model of Ward et al. (2003). The method uses three levels of abstraction
for hair: individual strands, clusters represented as generalised cylinders, and flat
strips modelled as subdivision surfaces. For simulation, the underlying skeleton
is the same in all three levels: a chain of nodes represented as point masses and
connected by rigid segments, with angular springs at the nodes modelling bending
stiffness (the model does not consider torsion). Rendering and collision detection
are handled differently for each abstraction level. Subdivision forms the basis of
rendering, with curves used for strands and surfaces used for clusters (represent-
ing the generalised cylinder’s surface) and strips (rendering the strip directly).
Collision detection uses sphere-swept volumes around the appropriate represen-
tation (polyline, cylinder, surface), with bounding volume hierarchies used for
the higher-level abstractions as well as for the scene. Collisions are handled by
explicit relocation and velocity changes applied to skeletons of interpenetrating
hair.

The different abstraction levels are used as a level-of-detail (LOD) scheme.
Ward and Lin (2003) extend this LOD scheme with a precomputed hierarchy
of subdivisions for each abstraction level, to make transitions between LODs
smoother and faster to evaluate. In addition, they introduce a notion of classifying
hair–hair collisions based on the mutual orientation of colliding strands. This
dynamic LOD scheme is further extended by Ward et al. (2006) for use in a
virtual hair-dressing scenario using a 3D input device. Based on a regular voxel
grid, simulation is selectively disabled for hair which with which the user is not
currently interacting.

A complex mass-spring system for hair animation was presented by Selle et al.
(2008). The stated objective of their method is to simulate an entire hairstyle of
100,000–150,000 strands explicitly, without using any interpolated strands. To
enable simulation of such a large number of strands, the method uses a mass-
spring system, as these are generally faster to compute. An inherent property
of spring-based systems is difficulty in modelling twist. Selle et al. mitigate
this by introducing additional torsional springs in a tetrahedral structure. This
is possible directly for curly hair, but adding virtual particles is necessary for
straight hair.

To be able to use stiff springs to capture hair inextensibility, the authors
propose a novel discretisation of linear springs which makes the springs’ elastic
forces linear in position. Strain limiting is used to prevent excessive stretching
during violent head motions. Hair sticking together due to styling products, fric-
tion etc. is also modelled by additional springs. Hair–hair collisions are handled
as edge/edge repulsion, and for performance reasons, collision detection is not
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performed between strand segments connected by a spring which simulates them
sticking together. For hair–body collisions, the body is represented using level
sets interpolated from motion capture data.

While the method did not reach the full number of strands found in a real
hairstyle, explicit simulation of up to 10,000 (1,000,000 particles) strands was
presented. The method uses a short time step (typically 6 · 10−4 s, although the
exact length is adaptive), and at time of publishing, it took 4–40 minutes to
simulate one such frame on four quad-core Opteron machines.

Lin et al. (2011) use a combination of rigid-body chains and particles to simulate
wet hair. Hair strands, simulated as a rigid-body chains, interact with fluid
particles simulation water and can absorb them. This absorption leads to an
increase in clustering, an effect readily observed in real hair.

The method of Chai et al. (2014) combines dynamic animation of a reduced
model with data-driven corrections utilising a detailed pre-computed database
of simulated motion. Collision handling is decoupled from the simulation and
applied as a detail-preserving correction on top of the reduced simulated model.
Skinning is used when interpolating from guide strands.

2.2 Volumetric Approaches

Volumetric methods are a class of dynamic hair animation methods which pri-
marily seek to capture the large-scale behaviour of an entire hairstyle rather than
the detailed motion of individual hair strands. Every hair simulation method
has to make some compromises and simplifications when simulating an entire
hairstyle; fully simulating the 100,000–150,000 strands found in a typical human
hairstyle is beyond current capabilities (Selle et al. 2008). Explicit methods do
this simulating only a subset of hair (guide strands) or by simulating larger for-
mations of hair as a single entity (wisps). Various techniques are then used to
restore the impression of volume to the hairstyle; we’ve described several in the
previous section.

Volumetric methods take the opposite approach. They sacrifice the fine details
of individual strands’ motion and instead approach hair animation as the task
of simulating the behaviour of the hairstyle as a whole. The tool employed to
this effect is usually fluid dynamics. For this reason, such approaches are usually
well-suited to hairstyles with a certain level of uniformity. Highly specific local
features or hair with complex styling can usually not be replicated faithfully by
volumetric methods.

The idea of dynamically simulating hair using fluid dynamics was introduced by
Hadap and Magnenat-Thalmann (2001). They represent individual strands as
rigid multi-body chains of segments connected by 3-DOF joints are thus able to
simulate torsion. The dynamics of the chain is expressed using spatial algebra
(Featherstone 1987).

Unlike other multi-body chain approaches, Hadap and Magnenat-Thalmann
use no explicit mechanism for interactions of the simulated strands with each
other or with the surrounding world. Instead, the entire hairstyle is treated as
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a volume of abstract “hair matter” continuum, which is simulated as a fluid
using smoothed particle hydrodynamics (Desbrun and Gascuel 1996). The fluid
continuum is represented by particles. These particles are glued to the segments
of individual hair strands. All forces acting on hair (hair–hair interaction, gravity,
air drag etc.) are calculated in the particle system and then applied to the multi-
body chains, which are used for rendering. In effect, the rigid segments and
continuum particles form a coupled system, exerting forces on each other. The
continuum is only used for the simulation, rendering is done on the explicit hair
strands only.

Hair collisions with solid objects (including hair–body collisions) are handled
by boundary particles placed along the boundary of the solid object. These
particles are not affected by forces coming from the hair particle system, but
they exert repelling forces on approaching hair particles. This method gave offline
performance when published.

Bando et al. (2003) take the approach of treating hair as a continuum even
further. Geometric representation of individual strands is dropped altogether and
hair is simulated entirely using smoothed particles, which thus bear no connection
to any concrete strands.

Hair–body collisions are solved by applying repulsive forces to particles col-
liding with the body. The force is chosen so that it dissipates the relative velocity
of the particle normal to the body. For such particles, friction is also applied.

Since there is no notion of individual strands usable for rendering, hair is
rendered using texture splatting. The method is limited to simple hairstyles,
but it provided interactive frame rates when published, simulating and rendering
2,000 particles at around 7 frames per second.

Further performance improvement is obtained by Volino and Magnenat-Thalmann
(2006). In their method, hair animation is reduced to free-form deformation us-
ing a three-dimensional lattice. Nodes of the lattice are treated as particles and
simulated as a fluid particle system using the Conjugate Gradient method (Press
et al. 1992). Hair segments are attached to the lattice using viscoelastic springs
called lattice stiffeners. Air, gravity and similar effects are expressed as lattice
stiffeners acting on all lattice nodes.

Only guide strands are simulated using the lattice, with more hair strands
interpolated from these using small random offsets to prevent unnatural unifor-
mity of the hair. Hair–hair interactions are captured in the lattice computation
and thus don’t have to be modelled explicitly. Hair–body collisions are solved by
approximating the surface of the body using metaballs (Bloomenthal and Bajaj
1997). These exert forces on the lattice nodes penetrating them. To save up com-
putation time, few metaballs are used and they are parametrised adaptively for
different lattice nodes. The method provided interactive to real-time simulation
rendering when published. Gupta and Magnenat-Thalmann (2005) improved the
method by computing self-shadows from hair density in the lattice while still
offering interactive frame rate.
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2.3 Rod-based approaches

This section describes approaches based on simulating hair using the Kirchhoff
and Cosserat theory of the physics of elastic rods. Technically, such methods
would be classified as explicit in the taxonomy we’ve established, but we feel the
introduction of rod theory to hair representation was sufficiently novel to warrant
separate discussion.s

A rod is defined as a deformable body such that one of its dimensions—its
length—is significantly larger than the remaining two dimensions, which make up
the rod’s cross section. Rod theory has been the subject of many works from the
domain of physics and structural engineering (e.g. Kirchhoff 1859; Love 1906; Dill
1992). It was first introduced into computer graphics by Pai (2002) for simulation
of sutures used during laparoscopic surgery.

Our own approach is based on the Cosserat formulation of Kirchhoff rod
theory as well. As such, we give an extended overview of the rod physics model
and some methods using it in Chapter 3. We present it here briefly to provide
context for other methods which we do not describe to such depth, but please
refer to Section 3.1.1 for a detailed discussion of the rod theory.

An elastic rod is defined by the position of its centreline in 3-D space and
by the shape and orientation of its cross section at each point of the centreline.
A fully general rod can undergo arbitrary deformations: bending, twisting, ex-
tension, compression, and shear. The Cosserat and Kirchhoff theory provides
formulae for the rod’s internal energy and reaction to external loads; we present
these in Section 3.1.1. Methods using it for dynamic hair animation generally
differ in ways in which they discretise the model and simulate it.

Rod theory was first used for solving hair statics by Bertails et al. (2005b),
and later applied to dynamic hair animation by Bertails et al. (2006). They
discretise the rod into an implicit representation as a piecewise helical curve.
We build a part of our approach on this method, so we discuss it in-depth in
Section 3.3.

Sobottka et al. (2008) use a different rod discretisation for hair animation. They
treat the simulation as a two-point boundary value problem instead of the usual
initial value postulation, and integrate the resulting equations of motion using the
generalised α-method, an implicit integration scheme from the domain of struc-
tural dynamics (Chung and Hulbert 1993; Goyal et al. 2003). When published,
the method reached interactive rates around 8 frames per second for simulating
a single wisp of hair. It should be noted that the method requires boundary
conditions to be specified for both ends of the simulated rod.
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Chapter 3

Simulating Hair Dynamics

We have investigated several different approaches to modelling physical behaviour
of hair in Chapter 2. This chapter will present the specific method we have chosen
to model hair in our simulation.

Terminology Occasionally, we need to refer to hair follicle/root positions or
configurations on the scalp. We borrow the geography terms latitude and lon-
gitude for such descriptions. For us, the latitudinal direction goes from the top
of the head vertically downwards, when in an upright position; it could also be
called the cranial–caudal direction. Longitude then refers to going around the
head horizontally. Refer to Figure 3.1 for an illustration.

3.1 Modelling Individual Hair

We first define an explicit model for individual hair strands. We start from prop-
erties of real hair as outlined in Chapter 1 and introduce several simplifications
to arrive at a manageable model.

1 Head image by Robin Fredman, arrows and labels added by Petr Kmoch, licensed un-
der Creative Commons BY-SA-3.0, taken from http://undeadstawa.deviantart.com/art/

Human-Head-back-view-195491403.

La�tude

Longitude

Figure 3.1: Latitudinal and longitudinal directions on the scalp1.
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First, we neglect internal structure, treating the entire strand as homogeneous.
This is a fairly safe simplification, as most data on material properties of hair is
actually available for entire strands rather than separately for the cuticle, cortex,
and medulla (Swift 1995; Wortmann and Schwan-Jonczyk 2006).

For the purpose of strand dynamics, we also neglect the fact that real hair
cuticle consists of overlapping tilted scales, and treat the hair surface as smooth.
We do model the effects of cuticle scales on interactions between two strands
touching each other, though. These are covered by our use of wisps (described
in Section 3.6.3) and by tangling effects in of hair–hair collisions, discussed in
Chapter 4.

Finally, we treat the cross section as a perfect ellipse, with eccentricity con-
stant along the strand. Variations in cross section size (scaling) along the strand
length are possible, and eccentricity can of course vary between strands. There-
fore, the final model is in effect a generalised cylinder of elliptical cross section.

Once we define a hair strand this way, we model its behaviour using the
dynamics of an elastic rod. A rod is a deformable body whose one dimension
(length) is significantly larger than the other two (cross section). This perfectly
matches properties of human hair strands, where the difference between length
and diameter is 4 orders of magnitude.

The idea of using rod theory for animation is not new—it was first introduced
into computer graphics by Pai (2002), and used for hair animation by Bertails et
al. (2006) and Sobottka et al. (2008). Rod dynamics are also used in computer
graphics outside of hair animation, for example by Bergou et al. (2008) and
Spillmann and Teschner (2007). In the next section, we formulate the rod theory
as it is used by many animation methods, before introducing our own approach
in subsequent sections.

3.1.1 Rod Mechanics

The theory of elastic rods has been laid down by Kirchhoff (1859) and built upon
by many later works (such as Love 1906; Dill 1992). The Kirchhoff theory applies
to rods whose deformation is dominated by bending and twisting while shear and
extension are small and slowly varying. As we’ve stated in Chapter 1, human
hair is practically inextensible and unshearable. Therefore, we can safely ignore
these deformation modes altogether.

In the rest of this section, we will present the Kirchhoff analysis of rods,
simplified to deal with inextensible and unshearable rods only. The configuration
of such a rod is given by its centreline and the shape and orientation of its
cross section. We formalise these components as functions defined over the rod’s
length L:

� Position of the rod’s centreline in 3D space:

x (s) : [0, L]→ R3 (3.1)

� Unit vector of the major axis of the rod’s cross section:

m1 (s) : [0, L]→ R3 (3.2)
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� Unit vector of the minor axis of the rod’s cross section:

m2 (s) : [0, L]→ R3 (3.3)

� Scaling factor of the rod’s cross section:

S (s) : [0, L]→ (0,+∞) (3.4)

Remember that we have limited ourselves to rods with elliptical cross sec-
tions of constant eccentricity, so a scaling factor is all that is necessary to
describe the cross-section shape. We also define a1 and a2 to be the rod’s
reference major and minor axis length, respectively. The major and mi-
nor axis radii of the rod at point s are then equal to S (s) a1 and S (s) a2,
respectively. See Figure 3.2 for an illustration of these concepts.

Figure 3.3 shows a rod with material frame orientation depicted.

Notation When working with these (and other) functions defined over the rod’s
length, we will sometimes need to differentiate them with respect to the arc length
parameter s. We introduce the prime accent as notation for such differentiation;
for any function f (s, . . .) defined along the rod:

f ′ (s, . . .) =
df

ds
(s, . . .) (3.5)

Because the cross section is an ellipse, m1 and m2 are orthonormal vectors in the
cross-section plane. Additionally consider the tangent of the rod’s centreline:

t (s) =
x′ (s)∥∥x′ (s)∥∥ (3.6)

The tangent is of course perpendicular to the cross section. Therefore, t, m1,
and m2 together form an orthonormal frame adapted to the rod—its material
frame, denoted M. The rate of change of the tangent then corresponds to the
rod’s curvature. We denote the curvature vector κ:

κ (s) = t′ (s) (3.7)

κ (s) =
∥∥κ (s)

∥∥ (3.8)

The curvature is collinear with the rod’s normal vector n:

n (s) =
κ (s)

κ (s)
(3.9)

We also define the rod’s (unit) binormal vector b:

b (s) = t (s)× n (s) (3.10)

The vector κb is called the rod’s curvature binormal and can also be defined like
this:

κb (s) = t (s)× κ (s) (3.11)
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m1(s)

m2(s)

S(s) · a1 ·m1(s)

S(s) · a2 ·m2(s)

x(s)

Figure 3.2: Unit-length material axes m1 (s) and m2 (s) determine the orienta-
tion of the cross section. The cross-section size is computed from the per-strand
reference lengths a1,2 which also specify eccentricity, and from S (s) which repre-
sents size variation along the strand.

Figure 3.3: Deformed rod with elliptical cross section. Material frame orientation
along the rod is shown: red arrows depict the tangent, green and blue arrows are
material axes of the cross section.
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To be able to use a rod as a dynamic model for our hair simulation, we need its
equations of motion (see Section 1.4.2). To formulate these, we need to express
elastic energy, or internal energy, of the rod. For this in turn, we’ll need functions
which describe strain on the rod, and a formulation for its stiffness.

Strain functions can be formulated as rate of change of the material frame
expressed in the material frame coordinates:

ω1 (s) = t′ (s) ·m1 (s)

ω2 (s) = t′ (s) ·m2 (s)

τ (s) = m′1 (s) ·m2 (s)

(3.12)

We know from equation 3.7 that the rate of change of the tangent is the rod’s
curvature. ω1 and ω2 therefore represent the curvature vector expressed in the
rod’s material frame. This measures the rod’s bending in the direction of the
respective material frame axis. That is, ω1 measures bending in the direction of
the major axis, which can alternatively be phrased as bending over the minor
axis. Analogously for ω2. We will sometimes refer to these quantities collectively
as components of the bending vector ω:

ω (s) =

(
ω1 (s)
ω2 (s)

)
(3.13)

To be able to express the rod’s internal energy, we also need formulae for its
stiffness–that is, its resistance to deformation. Stiffness values of the rod depend
on its material and its cross-section shape. We use the following notation for
them:

� Bending stiffness for bending along the major axis m1 and minor axis m2,
respectively:

α1,2 (s) : [0, L]→ (0,+∞) (3.14)

� Twisting stiffness.
β (s) : [0, L]→ (0,+∞) (3.15)

Notice that we present the stiffness values as invariant in time. That is because we
assume the material properties of the rod’s material do not change throughout
the simulation. If we were to simulate application of cosmetic substances, for
example, this assumption would not necessarily hold. The cross-section shape and
area does not change either, because we have limited ourselves to inextensible and
unshearable rods. This means all constituent components of the stiffness values
are time-independent, and so are the stiffness values themselves.

The material property which affects bending stiffness is Young’s modulus E.
The cross-section shape affects the stiffness by its second moment of area I (s).
Knowing that the cross section is an ellipse, and using standard engineering
formulae for the second moment of area of an ellipse (Beer 2010), we can express
bending stiffness as follows:

α1 (s) = EI1 (s) =
π

4
E
(
S (s)

)4
a1a

3
2

α2 (s) = EI2 (s) =
π

4
E
(
S (s)

)4
a3

1a2

(3.16)
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Analogously, twisting stiffness is affected by shear modulus µ and the cross-section
moment of inertia J (s). The moment of inertia for an elliptical cross section can
be found in engineering literature (Irgens 2008), leading to the following formula
for twist stiffness:

β (s) = µJ (s) = πµ
(
S (s)

)4 a3
1a

3
2

a2
1 + a2

2

(3.17)

Because we treat the rod as a perfectly elastic deformable body, it has exactly
one “natural” configuration—one which the rod would take if not subjected to
any external forces. It is the configuration which minimises the rod’s internal
energy. We refer to this as the natural or rest configuration. The rest shape is an
intrinsic property of the rod and can in principle involve arbitrary bending and
torsion. As an example, the rest shape of a typical spring is a helix.

We use a hat accent to denote the value a quantity has for the rod’s rest
configuration. For example, ω (s) is the rod’s bending vector at point s in time
t, while ω̂ (s) is the rod’s natural bending in the rest configuration.

We use Γ to denote the entire definition of the simulated rod:

Γ =
{

x,m1,m2, S, α1, α2, β, ω̂, τ̂
}

(3.18)

With the strains and stiffness values in place, it is possible to express the internal
elastic energy of a rod. This has been formulated by Audoly and Pomeau (2010):

U (Γ) = Utwist (Γ) + Ubend (Γ) (3.19)

Utwist (Γ) =
1

2

∫ L

0

β (s)
(
τ (s)− τ̂ (s)

)2
ds (3.20)

Ubend (Γ) =
1

2

∫ L

0

2∑
i=1

αi (s)
(
ωi (s)− ω̂i (s)

)2
ds (3.21)

Alternatively, equation 3.21 can also be formulated using bending vectors:

Ubend (Γ) =
1

2

∫ L

0

(
ω (s)− ω̂ (s)

)T
B (s)

(
ω (s)− ω̂ (s)

)
ds (3.22)

B is the bending stiffness matrix:

B (s) =

(
α1 (s) 0

0 α2 (s)

)
(3.23)

The fact that off-diagonal elements of B are zero follows from the strain analysis
presented by Love (1906).

Notice that the above formulation is based on the Kirchhoff theory of rod
dynamics which only holds when the rod’s extension and shear deformation is
small. We therefore rely on hair’s high resistance to these deformation modes (as
discussed in Section 1.2) for validity of its representation as a Kirchhoff rod.

We now have all the components necessary for building the equations of mo-
tion: centreline position x (s) specified in equation 3.1, strain functions given
by equation 3.12, stiffness values (equations 3.16 and 3.17), and internal energy
formulation (equations 3.19–3.22). All that is left to do is come up with a suit-
able set of generalised coordinates—in other words, a suitable discretisation of
the continuous rod model presented above. But before moving to that, we first
present an analysis of properties specific to hair.
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(a) Eccentric rod (b) Bend over
major axis

(c) Bend over
minor axis

Figure 3.4: Rod with elliptical cross section of eccentricity 1.67. Notice that
while bending over the major axis (b) leads to similar deformations of the rod’s
material, bending over the minor axis (c) would require extreme compression of
the material on one side and extension on the other.

3.1.2 Hair Specifics

So far, we have simplified away some properties of hair strands in order to be able
to model them as elastic rods. This allows us to describe their dynamics using
well-known physics mechanisms outlined above. Now that we have a physics
description, we shall look at whether the fact that we’re modelling hair can help
us either improve or simplify the model.

We have already used hair’s inextensibility and unshearability to limit the
physical model we’ve just presented to bending and twisting. A generic rod
can twist and bend in arbitrary ways, meaning that no further simplifications
are possible. In this form, the model forms the basis of several state-of-the-art
approaches to hair animation (Bertails et al. 2006; Sobottka et al. 2008).

However, a very important observation about human hair has been made by
Swift (1995):

Due to its elliptic cross section, hair tends to preferably bend over its
major axis.

See Figure 3.4 for an illustration.
Importance of this observation is easily demonstrated on the fact that this

behaviour is one of the two main components giving rise to curliness in real
human hair. The other component is intrinsic twist. A naturally untwisted hair
strand will be straight or wavy when at rest. A strand with intrinsic twist will
form a curl. The reason is that in a naturally twisted hair strand, the direction of
the cross-sectional major axis m1 gradually changes. Since bending favours the
major axis, the shape will naturally tend to a helical shape, i.e. a curl. This is
demonstrated in Figure 3.5. With no intrinsic twist, the direction of the major
axis stays constant along the strand and bending thus leads to a circular shape
(Figure 3.5b), or to a wavy shape if the bending orientation changes. When the
strand is intrinsically twisted, however, the direction of the major axis along the
strand changes and so bending over it will produce a curl, as in Figure 3.5d. This
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(a) Zero twist (b) Zero twist:
bends into circle

(c) Twisted (d) Twisted:
bends into curl

Figure 3.5: A naturally untwisted rod (a) forms a circle when bent over its major
axis (b). A rod with non-zero natural twist (c) will form a curl instead (d). Note
that the total amount of bending, as well as the amount of bending in each point
of the rod, is exactly the same in both scenarios (b) and (d).

is how real hair bends naturally—when made to bend in a certain direction, it
will actually twist so that the bending happens over the major axis of its cross
section.

Computer simulations are of course capable of accurately capturing and mod-
elling hair curliness. However, to the best of our knowledge, no existing method
of simulating hair dynamics uses this property of major-axis preference explicitly.

For us, it is a key property and forms the cornerstone of our model of hair
dynamics. We primarily use it to reduce the number of degrees of freedom of
the model, constraining bending so that it happens over the major axis. This is
useful in and of itself by reducing the size of the problem we have to solve. More
importantly, however, it can allow us to employ specialised solutions to some parts
of the problem. Later in this chapter, we will show two existing approaches to
discretisation of the Kirchhoff rod model (Sections 3.3 and 3.5) and demonstrate
how exactly each of them can be simplified by application of this principle, in
Sections 3.4 and 3.6, respectively.

3.2 Collective Hair Properties

In the previous section, we’ve established the model we’ll be using for simulating
individual hair strands. However, our goal is to simulate an entire hairstyle, that
is, a full hair volume. A typical human has between 100,000 and 150,000 hairs.
Since our goal is to approach real-time simulation on hardware plausible for a
desktop workstation, simulating all strands in a full hairstyle individually is not
an option (Selle et al. 2008).

Fortunately, simulating each individual strand is not necessary for a plausible,
or even realistic, result. In effect, the sheer number and proximity of hair strands
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causes them to behave in a collective fashion. Features of this collective behaviour
can be studied and applied to a simulation system. As we’ve shown in Chapter 2,
elements of individual strand behaviour and collective behaviour can be mixed
and meshed in many different ways. Recall that some methods go so far as to
treat the hairstyle as an actual volume of abstract “hair matter” whose behaviour
is governed by fluid dynamics (Hadap and Magnenat-Thalmann 2001; Bando et
al. 2003; Volino and Magnenat-Thalmann 2006).

Analysing properties of an individual hair strand quickly leads to the physics
model of a rod as the best way to represent it. Collective behaviour of an entire
hairstyle doesn’t offer a similarly clear-cut model for its representation. In the
following sections, we will analyse different aspects of collective hair behaviour
and see what features we can extract from it to add to our simulation model.

3.2.1 Hair Volume

Individual hair strands in a volume of hair are constantly interacting in complex
ways. These include:

Mechanical friction The effect of friction in hair is generally larger and more
erratic than might be expected. This is caused by the surface structure of
hair; recall from Section 1.2 that hair has overlapping tilted scales on its sur-
face. This makes friction response highly dependent on mutual orientation
of touching strands.

Electrostatic effects Hair is near the very top of the triboelectric series, which
means it easily generates static charge via the triboelectric effect (AlphaLab
Inc. 2015). Given hair strands’ minuscule mass, such static charge can have
significant impact on their behaviour. It can make hair stretch out and
“stand on end,” or cause strands to stick to negatively charged objects.

Lipid cohesion Sebum (oil) is transferred to hair from the scalp sebaceous
glands and hair follicles, giving strands a shiny appearance and causing
them to clump together more.

Cosmetics Cosmetic products can affect hair behaviour in a vast range of ways,
both increasing and decreasing elasticity, rigidity, and tendency to cluster
(Robbins 2002).

More often than not, the above effects make hair strands stick together. It is
therefore not surprising that in most hairstyles, hair tends to form clumps or
wisps.

In these structures, hair strands close to each other will generally behave very
consistently. Many methods use this fact to simplify their model by fully simulat-
ing the dynamics of only a small number of guide strands. More strands are then
interpolated from these guide strands for rendering, sometimes participating in
collision detection as well. Examples of these methods include (Daldegan et al.
1993; Chang et al. 2002; Kim and Neumann 2002; Bertails et al. 2005a).

We want to take advantage of this hair behaviour too. We observe that for a
large class of hairstyles, not only does hair form wisps, the wisps are of a specific
structure. They tend to be “flat,” somewhat similar to ribbons—hair with roots
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(a) (b) (c)

Figure 3.6: Illustration of flat wisp formation from strands with roots of similar
latitude (a); latitudinal distance exaggerated for illustration purposes. (b) and
(c) show different hair styles where flat wisps are visible2.

of similar latitude often cling together, forming a wisp which can be about 1–2 cm
wide, but is typically only a few millimetres thick (see Figure 3.6).

We use these flat wisps as another basic principle of our hair animation
method. Where the major-axis bending directly shapes the dynamics of indi-
vidual strands, the flat-wisp paradigm controls a strand’s behaviour through its
interaction with other strands. We also use it to guide distribution of simulated
hair on the scalp. Details of applying this principle are presented in Section 3.6.3
and Chapter 4.

Together, the observations of preferential bending over the major axis and for-
mation of flat wisps form the basis of our approach to hair animation. However,
it is important to realise that these two principles are independent. The obser-
vation that hair bends over the major axis only is valid even for hairstyles where
flat wisps do not form. To demonstrate this, we apply the bending principle to
one hair simulation method, without considering flat wisps. This is described in
Section 3.4.

Nevertheless, utilising the tendency of hair to form flat wisps can give signifi-
cant savings in computing power while maintaining realistic behaviour. We show
this by applying both principles, i.e. the entirety of our approach, to a different
rod discretisation in Section 3.6. There, we show how these two principles can be
utilised together to improve both performance and realism.

Due to the constant contact of strands in a hairstyle, any hair simulation
method based on explicit representation of strands must be able to handle hair–
hair collisions. In our approach, a significant part of this is solved by the flat

2 (b) Image by Boss Tweed, licensed under Creative Commons, BY-2.0, taken from
https://commons.wikimedia.org/wiki/File:Maria_Sharapova_at_the_2007_US_Open_

(Cropped).jpg.
(c) Image by avilasal, licensed under Creative Commons, BY-2.0, taken from
https://www.flickr.com/photos/7608209@N08/4310706981/.
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wisp paradigm described above. Naturally, collision handling is still necessary;
we describe our method in Chapter 4.

3.2.2 Hair–World Interactions

In any realistic setting, hair will always be interacting with other bodies in the
scene. Even in a very minimalistic set-up, there is always at least one other
object constantly interacting with the hair: the head (and, depending on the
hair’s length, shoulders and torso as well). This means that any hair simulation
method must be able to handle hair–world interactions.

An important observation can be made: hair is much lighter than almost
anything else it can come in contact with. This leads to very lopsided collision
scenarios, where other objects are hardly affected by coming into contact with
hair (unless they are small enough to become entangled). This is advantageous
for simulation in a number of ways.

When considering collisions of hair with a heavy object (such as the head), it
is a feasible simplification to have only the hair react to the collision, the other
object not being affected at all. One immediate advantage is that the object’s
reaction does not need to be computed. But it can also simplify the collision
response of hair itself: it is valid to assume that the object’s behaviour will
remain unaffected by whatever response the hair takes, which generally leads to
simpler computation.

We limit ourselves to simulating such collisions in our method. Our way of
handling them is described in Section 3.6.2.

3.3 Helix-based Hair

In this section, we will present one way of discretising the Kirchhoff rod model.
This discretisation scheme, called Super-Helices, was introduced by Bertails et
al. (2006). We first repeat their model here as originally presented, before we
apply our bending-based simplifications to it in Section 3.4. Note that while
the principles are taken from (Bertails et al. 2006), we use our notation for
consistency.

3.3.1 Super-Helix Discretisation

We choose a set of (N + 1) points Si in the strand’s arc [0, L] such that 0 =
S1 < S2 < . . . < SN+1 = L. The length of the strand, is then divided into N
intervals SQ =

[
SQ, SQ+1

]
, for Q = 1 . . . N . These segments need not have the

same length. Where typical discretisation might approximate the centreline with
straight line segments, the Super-Helix segments are helices. A helix is a curve
with constant curvature and torsion. That is, twist τQ and bending ω1,Q, ω2,Q

are constant, but not necessarily 0, on segment SQ. A Super-Helix is therefore a
piecewise helical curve, as illustrated in Figure 3.7.
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Let us denote the constant values of twist and bending on each segment thus:

q0,Q = τQ

q1,Q = ω1,Q

q2,Q = ω2,Q

(3.24)

These values form the generalised coordinates used by the Super-Helix model.
They are collected into a vector q of 3N components. This vector q fully describes
the configuration of a strand discretised using the Super-Helix model.

From these generalised coordinates, the twist and bending of the entire strand
can then be reconstructed like this:

τ (s) =
N∑
Q=1

q0,Q1Q (s)

ω1 (s) =
N∑
Q=1

q1,Q1Q (s)

ω2 (s) =
N∑
Q=1

q2,Q1Q (s)

(3.25)

where 1Q (s) is the characteristic function of the segment SQ:

1Q (s) =

{
1 s ∈ SQ
0 s 6∈ SQ

We follow to express equations of motion of the strand in these generalised coor-
dinates.

3.3.2 Super-Helix Equations of Motion

In their Super-Helix model, Bertails et al. (2006) use Lagrangian mechanics with
the dissipation term included (see equation 1.8) to derive the equations of motion
for the strand: (

∀i ∈ {0, 1, 2}
) (
∀Q ∈ {1, . . . , N}

)
d

dt

(
∂T

∂q̇i,Q

)
(q, q̇) − ∂T

∂qi,Q
(q, q̇)

+
∂U

∂qi,Q
(q, q̇) +

∂D

∂q̇i,Q
(q, q̇) =

= fi,Q (q, q̇)

(3.26)

The terms on the left-hand side describe the physics of the system: T (q, q̇) is
the kinetic energy of the strand, U (q, q̇) is its internal elastic energy, and finally
D (q, q̇) is the dissipation potential capturing visco-elastic effects.

The right-hand side represents external forces: fi,Q (q, q̇) is the generalised
external force acting on generalised coordinate qi,Q. It can be computed from
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m1

m2

Figure 3.7: Rod discretised as a Super-Helix of 4 segments shown in alternating
colours. Material frame at one point of the curve is also depicted.

cartesian force density F (s) of external forces acting on the strand using the
following formula:

fi,Q (q, q̇) =

∫ L

0

Ji,Q (s,q) · F (s) ds (3.27)

where Ji,Q (s,q) is the Jacobian matrix:

Ji,Q (s,q) =
∂x

∂qi,Q
(s,q) (3.28)

The external forces F (s) come from the simulated environment, and typically
include phenomena like gravity, air drag and interaction with other objects.

Next, we will present formulae for the individual energy terms which make up
the internal forces appearing in equation equation 3.26.

Kinetic energy T is defined in the classical way, mass times square of velocity:

T (q, q̇) =
1

2

∫ L

0

ρA (s)
(
ẋ (s,q)

)2
ds (3.29)

ρ is material density of the hair matter and A (s) is the area of the cross section.
The Super-Helix generalised coordinates are very abstract and do not directly
correspond to the hairs’ position. For this reason, it is not possible to simply
use q̇ when computing kinetic energy; the actual velocity of the strand has to be
used, which is why equation 3.29 above still contains an integral. x and ẋ depend
on q in a highly complex, non-linear fashion; we discuss this in more detail in
Section 3.3.3.

The formula for internal energy U is obtained by applying the Super-Helix
discretisation to equation 3.19:

Utwist (q, q̇) =
1

2
β

N∑
Q=1

(
q0,Q − τ̂Q

)2

Ubend (q, q̇) =
1

2

N∑
Q=1

2∑
i=1

αi

(
qi,Q − ω̂i,Q

)2

(3.30)
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Here, τ̂Q and ω̂Q refer to the rest-state values of twist and bending on segment
SQ, respectively. Per the generalised coordinate definition (equation 3.24), these
are effectively the rest-state values of qi,Q.

The final component, the dissipation potential D, uses the standard formula
of the Rayleigh dissipation function:

D (q, q̇) =
1

2
γ

N∑
Q=1

2∑
i=0

q̇2
i,Q (3.31)

γ is an empirical internal friction coefficient. Bertails et al. (2006) determine its
value in a calibration process by matching the behaviour of the simulation with
real hair in a vertical oscillatory motion.

3.3.3 Recovering the Hair Shape

Due to the extremely implicit nature of the generalised coordinates used by the
Super-Helix model, it is not trivial to reconstruct the actual shape of the hair
strand. This reconstruction is required for computing the velocity ẋ and Jacobian
Ji,Q (s,q) in the equations of motion (equations 3.29 and 3.27, respectively), as
well as for purposes such as rendering or collision detection.

The reconstruction is based on using the Darboux vector ΩM of the strand’s
material frame, for which these equations hold:

t′ (s) = ΩM (s)× t (s)

m′1 (s) = ΩM (s)×m1 (s)

m′2 (s) = ΩM (s)×m2 (s)

(3.32)

By substituting these equations into equation 3.12, we find that the strain of the
strand represents the coordinates of the Darboux vector in the material frame:

ΩM (s) = τ (s) t (s) + ω1 (s) m1 (s) + ω2 (s) m2 (s) (3.33)

We compute Ω′M (s):

Ω′M (s) = τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s)

+ τ (s) t′ (s) + ω1 (s) m′1 (s) + ω2 (s) m′2 (s)

= τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s)

+ τ (s)
(
ΩM (s)× t (s)

)
from eq. 3.32

+ ω1 (s)
(
ΩM (s)×m1 (s)

)
+ ω2 (s)

(
ΩM (s)×m2 (s)

)
= τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s) (3.34)

+ ΩM (s)×
(
τ (s) t (s)

)
+ ΩM (s)×

(
ω1 (s) m1 (s)

)
+ ΩM (s)×

(
ω2 (s) m2 (s)

)
= τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s)

ΩM (s)×
(
τ (s) t (s) + ω1 (s) m1 (s) + ω2 (s) m2 (s)

)
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= τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s)

ΩM (s)×ΩM (s) from eq. 3.33

= τ ′ (s) t (s) + ω′1 (s) m1 (s) + ω′2 (s) m2 (s)

Notice that for each segment SQ, twist and bending are constant (their derivatives
are 0). It follows that Ω′M (s) = 0 for s ∈ SQ, which means that the Darboux
vector is constant on each segment. We will use this property to reconstruct
the material frame and from it, the centreline, by integrating the appropriate
equations.

Notation We start by introducing notation for the length of the Darboux vector
on segment SQ and a unit vector collinear with it:

ΩQ =
∥∥ΩM (s)

∥∥
~ΩQ =

ΩM (s)

ΩQ

for s ∈ SQ (3.35)

We also define superscripts ‖ and⊥ for the parallel and perpendicular components

of the projection of an arbitrary vector v onto the axis ~ΩQ:

v‖ =
(
v · ~ΩQ

)
~ΩQ

v⊥ = v − v‖
(3.36)

With these tools in hand, we seek to reconstruct the material frame at any point

s on the strand.
We do this integrating equation 3.32 over each segment. Because the Dar-

boux vector constant on the segment, such integration amounts to rotating the
material frame around ~ΩQ with rotation speed ΩQ per unit of arc length along
the centreline. Let us assume we have already reconstructed the tangent vector
on the root-end of segment SQ: tQ = t

(
SQ
)
. From this, we obtain the tangent

at any point s ∈ SQ by rotating around ~ΩQ by angle ΩQ

(
s− SQ

)
:

t (s) = t
‖
Q + t⊥Q cos

(
ΩQ

(
s− SQ

))
+ ~ΩQ × t⊥Q sin

(
ΩQ

(
s− SQ

))
(3.37)

Replacing t with m1 and m2 in the above equation finds the major and minor axis,
giving us the complete material frame at each point in the segment. By processing
segments sequentially starting at the strand’s root, we obtain the material frame
of the entire strand.

To reconstruct the centreline on a segment, let us again assume we already
have xQ = x

(
SQ
)
. We integrate equation 3.6 to obtain the following:

x (s) = xQ +
(
s− SQ

)
t
‖
Q

+
sin
(

ΩQ

(
s− SQ

))
ΩQ

t⊥Q

+
1− cos

(
ΩQ

(
s− SQ

))
ΩQ

~ΩQ × t⊥Q

(3.38)
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The centreline of the entire strand is again obtained by processing segments
sequentially starting from the root.

The equations above are applicable when the segment is a non-degenerate
helix, that is, both its twist and bending are non-zero. If τQ = 0 and ωQ 6= 0,
the segment is an arc of circle; if ωQ = 0, the segment is a straight line. In both
of these cases, reconstruction amounts to trivial application of formulae for these
geometric shapes.

3.4 Adapting the Super-Helix Model

We will now describe how our hair animation principles can be applied to the
Super-Helix discretisation of Bertails et al. (2006) which we have presented in
the previous section.

Recall from Section 3.1.2 that the cornerstone of our approach is the fact that
hair bends over its cross-section major axis only. Due to the fact that generalised
coordinates of the Super-Helix discretisation are based on the strand’s curvature,
this observation can be applied directly. It simply means setting ω1 = 0 and thus
removing it as a free variable.

Our motivation for doing this is twofold. First, thanks to the fact that the
application of our approach to the Super-Helix model is so direct, we can eas-
ily measure the effect on computation speed, simulation stability, and perceived
realism with minimum potential for distortion. In this way, application to Super-
Helices can serve as validation of our bending model. Second, applying it to mul-
tiple rod discretisation approaches (we will build on an entirely different model
in Section 3.6) proves that our approach applies directly to the theoretical rod
model and is independent of any particular discretisation.

At the same time, the Super-Helix model is quite specific in its highly implicit
nature, and other hair-specific observations we have made in Section 3.2 would
not transfer to it nearly as easily. We therefore only apply the basic bending
model to Super-Helices; the other components of our model are only applied to
the explicit discretisation introduced in Section 3.5.

3.4.1 Simplified Model

Our model builds on the fact that hair tends to bend over its major axis only.
The Super-Helix model uses bending over the material frame axes directly as
generalised coordinates, so we can simply eliminate the one corresponding to
bending over the minor axis, and treat it consistently as 0 in all formulae. We
have first presented this modification in (Bonanni and Kmoch 2008).

Recall from equation 3.12 that the bending values ω1 and ω2 correspond to
the rod’s curvature vector projected onto the major and minor axis, respectively.
Since the curvature vector points in the direction of the centreline bending, its
projection onto a cross-section frame axis gives the amount of bending along that
axis. This is equivalent to bending over the other axis. The variable we want to
remove is therefore ω1.

To emphasise the fact that bending over the minor axis is unconditionally 0
in our model and therefore only one bending value can be nonzero, we omit the
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index from ω2 and α2, spelling them just ω and α in this section. We renumber
the generalised coordinates accordingly:

q0,Q = τQ

q1,Q = ωQ
(3.39)

The size of the generalised coordinate vector decreases by 33% from 3N to 2N .
The equations of motion, given by equation 3.26 for the full model, become:(

∀i ∈ {0, 1}
) (
∀Q ∈ {1, . . . , N}

)
d

dt

(
∂T

∂q̇i,Q

)
(q, q̇) − ∂T

∂qi,Q
(q, q̇)

+
∂U

∂qi,Q
(q, q̇) +

∂D

∂q̇i,Q
(q, q̇) =

= fi,Q (q, q̇)

(3.40)

We next apply the bending simplification to the individual terms of these equa-
tions. Where practical, we present both the energy formulation and its required
derivative.

Internal energy, introduced in equation 3.30, is simplified as follows:

U (q) =
1

2

N∑
Q=1

(
β
(
τQ − τ̂Q

)2

+ α
(
ωQ − ω̂Q

)2
)

∂U

∂τQ
(q) = β

(
τQ − τ̂Q

)
∂U

∂ωQ
(q) = α

(
ωQ − ω̂Q

)
(3.41)

The dissipation potential (equation 3.31 becomes:

D (q̇) =
1

2
γ

N∑
Q=1

(
τ̇ 2
Q + ω̇2

Q

)
∂U

∂τ̇Q
(q̇) = γτ̇Q

∂U

∂ω̇Q
(q̇) = γω̇Q

(3.42)

The kinetic energy formulation, as presented in equation 3.29, does not change
with the coordinate reduction. It still depends on the non-trivial hair shape
reconstruction necessary to go from the abstract generalised coordinates to the
3D shape. The reconstruction itself works as presented in Section 3.3.3, except
that the Darboux vector of the material frame is orthogonal to the minor axis:

ΩM (s) = τ (s) t (s) + ω (s) m1 (s)

Ω′M (s) = τ ′ (s) t (s) + ω′ (s) m1 (s)
(3.43)
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Figure 3.8: Screenshots from haptic interaction with hair simulated by our sim-
plified Super-Helix model.

3.4.2 Integrating with Haptics

In (Bonanni and Kmoch 2008), we have combined our simplified Super-Helix
animation method described above with haptic interaction. Our goal was to
provide a proof-of-concept implementation of haptic interaction with hair focused
on hairstyling operations. In our set-up, the user operates a tool (represented by
a brush model, see Figure 3.8) to interact with the hair.

Collisions are detected between the tool and a mesh representation of the
hair obtained from the reconstruction process (Section 3.3.3). The first tool–
hair collision constrains the tool to stick to the hair until it has combed the hair
over its whole length or is explicitly detached. If we denote the tool velocity ḣ,
interaction forces can be computed in the following way:

Fhap = υḣ
⊥

+ χ
(
γ
)

ḣ
‖
, where

ḣ
‖

=
(
ḣ · t

)
t

ḣ
⊥

= ḣ− ḣ
‖

(3.44)

Here, ‖ and ⊥ denote projection parallel/perpendicular to the hair’s tangent at
point of contact.

The perpendicular component υḣ
⊥

captures the tool moving against the
strand and thus bending it. υ is a scaling factor applied to the hair bending
stiffness to account for the force range of the haptic device and the desired per-
ceived rigidity.

The parallel component χ
(
γ
)

ḣ
‖

applies when the tool moves along the

strand, brushing it. The factor χ captures the resistance felt when combing,
and it is a function of the hair’s dissipation coefficient γ.

We tested the described system with a Force Dimension Omega haptic device.
We implemented the haptic rendering based on the library CHAI3D by Conti et
al. (2005). This allows the implementation to support most commercial haptic
devices based on impedance control.

The haptic model was further developed by Bonanni et al. (2009b) and Bo-
nanni (2010).
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Figure 3.9: Screenshots from hair reacting to wind, animated by our simplified
Super-Helix model.

3.4.3 Evaluation

We have successfully applied the simplified model to a hair animation system.
Figure 3.9 shows several screenshots from an animation of hair in wind, simulated
using our simplified Super-Helices.

Our motivation for this was two-fold. First, to validate our idea of simplifying
hair animation methods by explicitly prohibiting bending over the hair’s minor
axis. The Super-Helix model fit this purpose perfectly, as bending over cross-
section axes forms an explicit degree of freedom of the model and bending over
the minor axis is therefore straightforward to eliminate. Our second motivation
was to demonstrate that the principle can be applied independent of our other
observations (such as flat wisp formation).

We consider both of these goals achieved, as the simplified model was suc-
cessfully used for virtual hairstyling, providing sufficient update rate for haptic
interaction (Bonanni et al. 2009b; Bonanni et al. 2009a). However, the imple-
mentation also exposed certain shortcomings of an implicitly-parametrised model
such as Super-Helices. The need for an expensive reconstruction process to re-
cover the shape of the simulated hair is chief among them. It poses a challenge
especially for collision handling, which would be greatly facilitated by a more
direct correspondence between the dynamic variables and 3D representation of
the simulated hair. An obvious way in which an explicit representation would be
useful is collision detection; with an implicit model, reconstruction has to be per-
formed to detect collisions even if simulation runs in a faster loop than rendering.
However, this is largely an issue of efficiency.

The aspect of collision handling which is actually hindered more by the im-
plicit representation is collision response. Because of the complex and indirect
relationship between simulation variables and hair shape, the only way in which
collisions can realistically affect hair behaviour is through forces. The original
method of Bertails et al. (2006) also handles collision response exclusively through
forces: penalty and friction forces for hair–head collisions and anisotropic friction
forces for hair–hair collisions. However, force-based methods are not always the
best collision response approach, as they can introduce instability issues.

The ability to explore a wider range of options for collision response in hair is
one of the reasons we chose an explicit representation as the next base model to
which to apply our approach. We describe the base model and our method built
on top of it in the remainder of this work.
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3.5 Explicit Rod Model

As we’ve stated in Section 3.3.3, the Super-Helix discretisation uses an implicit
representation of hair, capturing the entire configuration of the strand with rel-
atively few generalised coordinates. Non-trivial effort is required to reconstruct
the actual shape of the strand. While this allows the dynamic equations solved
to be small (as the number of variables is limited), it poses a problem for other
parts of the simulation which must process the 3D shape of the strand. The most
important of these is collision detection.

Other rod-based simulation methods exist which take a more explicit ap-
proach. We will describe one such method introduced by Bergou et al. (2008),
called Discrete Elastic Rods. We start by presenting the method in this section as
formulated by its authors; further on, we will apply our hair modelling principles
to it, yielding a method with better performance and realism.

The Discrete Elastic Rod method rests on two core principles. The first of
these is special representation and handling of twist; we will elaborate on this in
sections 3.5.1 and 3.5.3.

The second principle is that major sources of stiffness, such as the rod’s in-
extensibility, are expressed as constraints and removed from the equations of
motion. A separate constraint-enforcing step then follows each integration step.
This improves stability of the simulation while allowing use of a fast-to-compute
explicit integration method. We will present details of this set-up in Section 3.5.4.

We chose to base our work on this method because both of these principles
align well with our approach. The method’s representation and handling of twist
lends itself extremely well to simplification based on our observations of real
hair behaviour (strong preference of major axis bending). Low equation stiffness
allows for stable simulation even when using single-precision arithmetic, which
is important for an efficient GPU implementation. Furthermore, it turns out
most of the computations involved in integration and computing forces are easily
parallelisable.

3.5.1 Reduced-coordinate Material Frame Representation

Recall from Section 3.1.1 that in the general case, for each point s on the strand,
we have 9 variables which vary with time: the components of the 3-dimensional
vectors x (s), m1 (s), and m2 (s). However, these variables are not independent:
the vectors m1 (s) and m2 (s) are orthonormal, so their components are closely
coupled. Bergou et al. (2008) seek to expose this coupling by reducing the number
of variables. To this end, they turn to differential geometry and the concept of
the Bishop frame.

The Bishop frame F (s) =
{
t (s) ,u1 (s) ,u2 (s)

}
is an adapted orthonormal

frame with no twist. That is, the following holds:

(∀s) u′1 (s) · u2 (s) = −u′2 (s) · u1 (s) = 0 (3.45)

Because of this, specifying u1 (s0) and u2 (s0) for any one point s0 is enough to
define the entire frame for every point s on the rod. The most convenient place
is to specify it at the root (s = 0), where it can be made identical to the material
frame. We will now show how the frame is defined at the entire length of the rod,
based on this initial specification.
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Let us use ΩB to denote the Darboux vector of the Bishop frame; it has the
following properties:

t′ (s) = ΩB (s)× t (s)

u′1 (s) = ΩB (s)× u1 (s)

u′2 (s) = ΩB (s)× u2 (s)

(3.46)

We will prove that ΩB (s) is orthogonal to t (s). From equation 3.46:

u′1 (s) = ΩB (s)× u1 (s)

u′1 (s) · u2 (s) =
(
ΩB (s)× u1 (s)

)
· u2 (s) multiplied by u2

0 = ΩB (s) ·
(
u1 (s)× u2 (s)

)
from equation 3.45

(3.47)

The vector
(
u1 (s)× u2 (s)

)
is collinear with t (s), which means ΩB (s) is orthog-

onal to t (s).
From equation 3.46, ΩB (s) is also orthogonal to t′ (s) = n (s), making it

collinear with the centreline’s curvature binormal κb (s). In fact, we can show
that ΩB (s) = κb (s). We substitute equation 3.7 into equation 3.46 and proceed
as follows:

κ (s) = ΩB (s)× t (s)

κ (s) · κ (s) = κ (s) ·
(
ΩB (s)× t (s)

)
multiplied by κ (s)(

κ (s)
)2

= ΩB (s) ·
(
t (s)× κ (s)

)
by triple product rules(

κ (s)
)2

= ΩB (s) · κb (s) from equation 3.11

κ (s) = ΩB (s) · b (s) divided by κ (s)

κb (s) = ΩB (s) multiplied by b (s)

(3.48)

If the curvature κ is 0, the rod is unbent and therefore the Bishop frame will not
vary. Hence the Bishop frame derivatives are 0 and so again ΩB = 0 = κb.

Equation 3.48 allows us to express the rod’s bending (equation 3.13) in terms
of the curvature binormal:

ω (s) =

(
t′ (s) ·m1 (s)
t′ (s) ·m2 (s)

)

=

((
κb (s)× t (s)

)
·m1 (s)(

κb (s)× t (s)
)
·m2 (s)

)
by eq. 3.46 & 3.48

=

(
κb (s) ·

(
t (s)×m1 (s)

)
κb (s) ·

(
t (s)×m2 (s)

)) by triple product rules

=

(
κb (s) ·m2 (s)
−κb (s) ·m1 (s)

)
right-handed frame

(3.49)

Next, we follow Bergou et al. (2008) in using ΩB to define parallel transport as
the process of transporting a vector z from one point on the centreline to another
by integrating the following equation:

z′ (s) = ΩB (s)× z (s) = κb (s)× z (s) (3.50)
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Notice that parallel transport is essentially a rotation about the binormal (or
curvature binormal). Because it is based on the Bishop frame, applying parallel
transport to a vector causes it to proceed along the centreline in a twist-free
manner. Equation 3.46 shows that the axes of the Bishop frame evolve using
parallel transport. Parallel transport is therefore the process which defines the
entire Bishop frame based on its assignment at the root.

Bergou et al. (2008) note that having such a uniquely-defined frame allows for
a very efficient parametrisation of the material frame (Langer and Singer 1996).
At every point on the rod, we can express the material frame using a single scalar
θ (s): the angle between the material frame and the Bishop frame, understood as
rotation around the tangent.

m1 (s) = cos θ (s) u1 (s) + sin θ (s) u2 (s) (3.51)

m2 (s) = − sin θ (s) u1 (s) + cos θ (s) u2 (s) (3.52)

Bergou et al. (2008) make a key observation that the rod’s twist can be expressed
using θ like this:

τ (s) = θ′ (s) (3.53)

We proceed to prove this claim. To keep the notation brief, we omit the depen-
dency on s.

m′1 = (cos θu1 + sin θu2)′

= −θ′ sin θu1 + cos θu′1 + θ′ cos θu2 + sin θu′2
(3.54)

By substituting equation 3.54 and equation 3.52 into the definition of twist in
equation 3.12, we get:

τ = m′1 ·m2

=
(
−θ′ sin θu1 + cos θu′1 + θ′ cos θu2 + sin θu′2

)
· (− sin θu1 + cos θu2)

= θ′ sin2 θu1 · u1 − sin θ cos θu′1 · u2 − θ′ sin θ cos θu1 · u2 − sin2 θu1 · u′2−
θ′ sin θ cos θu1 · u2 + cos2 θu′1 · u2 + θ′ cos2 θu2 · u2 + sin θ cos θu2 · u′2

(3.55)

Equation 3.46 tells us that u′1 is orthogonal to u1, and similarly u′2 is orthogonal
to u2. u1 and u2 are orthogonal as well, and each of them is a unit vector. Using
these properties and equation 3.45, we can simplify equation 3.55 as follows:

τ = θ′ sin2 θ + θ′ cos2 θ = θ′ (3.56)

Which proves equation 3.53
This way, the problem has been re-stated using only 4 time-dependent vari-

ables: the components of the 3-dimensional vector x (s) and the material frame
angle θ (s). The twisting component of the rod’s internal energy, originally given
in equation 3.20, can therefore equivalently be expressed as follows:

Utwist (Γ) =
1

2

∫ L

0

β (s)
(
θ′ (s)

)2
ds (3.57)
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3.5.2 Node+Edge Discretisation

We now follow Bergou et al. (2008) in discretising the rod model using concepts
introduced in Section 3.5.1. We choose a set of (N + 2) points Si in the rod’s arc
[0, L] such that 0 = S0 < S1 < . . . < SN+1 = L. The centreline is then discretised
into a set of (N + 2) vertices xi = x (Si). These vertices are connected by (N + 1)
line segment edges e0, e1, . . . , eN , where ei = xi+1−xi. Notice the use of different
index placement for vertices and edges. This notation is used consistently, using
lower indices for vertex-related quantities and upper indices for edge-related ones.

We need to assign a material frame to this discretised curve. Notice that there
is a clear definition of the tangent of an edge: a vector collinear with the edge
itself. On the other hand, trying to assign a tangent direction to a vertex would
be ambiguous. An orthonormal material frame Mi =

{
ti,mi

1,m
i
2

}
is therefore

assigned to each edge ei. The frame is adapted to the curve:

ti =
ei

‖ei‖ (3.58)

The vectors mi
1 and mi

2 represent the major and minor axis of the cross section,
respectively.

Recall from Section 3.5.1 that we can represent the material frame using
scalar rotation of the Bishop frame. We can do this in the discrete setting as
well by introducing a discrete version of the Bishop frame: F i =

{
ti,ui1,u

i
2

}
.

Analogously to the continuous case, we then define θi as the angle between the
material frame and the Bishop frame on edge i:

mi
1 = cos θi ui1 + sin θi ui2 (3.59)

mi
2 = − sin θi ui1 + cos θi ui2 (3.60)

Just like in the continuous case, we want to use parallel transport to define
the Bishop frame on edges 1, 2, . . . N based on its assignment on edge 0. As
stated previously, parallel transport corresponds to a rotation about the binor-
mal/curvature binormal. In the continuous setting, the curvature binormal at
a point is simply an appropriately scaled binormal. In the discrete setting, this
is no longer the case. The reason is that the “ordinary” binormal, bi, is natu-
rally assigned to edge i, while the curvature binormal (κb)j describes the rod’s
bending and is therefore better assigned to node j. As we want to use parallel
transport to transform a frame assigned to edge (j−1) to one assigned to edge j,
it makes sense to assign parallel transport to the node j between these edges. A
vector assigned to node j is therefore ideal as an axis of this transformation, more
precisely rotation. With this in mind, we will consider discrete parallel transport
as a rotation around the curvature binormal.

When tj−1 and tj are not collinear (i.e. (κb)j is nonzero), they span the
osculating plane of the centreline at node j. The curvature binormal is then
orthogonal to this osculating plane. As such, it must be collinear with tj−1 ×
tj. We therefore define discrete parallel transport as a set of rotation matrices
{P1,P2, . . . ,PN} such that:

Pi

(
tj−1 × tj

)
= tj−1 × tj (3.61)

Pi t
i−1 = ti (3.62)
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Equation 3.61 defines the axis of rotation, while equation 3.62 defines the angle.
This definition cannot be used when ti−1 and ti are collinear; in such case, we
define Pi as the identity matrix when ti = ti−1, and consider it undefined when
ti = −ti−1. Notice the latter case implies a 180° turn in one point of the centreline,
something which the underlying physical simulation is not supposed to allow.

With discrete parallel transport in place, we can define the discrete Bishop
frame for all edges iteratively:

ui1 = Pi u
i−1
1

ui2 = ti × ui1
(3.63)

u0
1 can be defined arbitrarily; we generally set it equal to m0

1 at the start of the
simulation.

Pointwise & Integrated Quantities

In the continuous setting, quantities are represented as functions defined over the
interval [0, L], that is, the rod’s length. Energy is then expressed by integrating
the appropriate quantities along that interval.

In the discrete case, quantities are defined at discrete points. Some of these
simply represent the value of the continuous function at that point (such as
xi = x (Si)). However, other discrete quantities already represent an integrated
value. We call such quantities integrated, as opposed to the former, pointwise
ones.

An integrated quantity assigns a value to a domain D ⊆ [0, L], representing an
integral of a function over that domain. An integrated quantity can be converted
to a pointwise one by dividing its value by |D|.

In the discrete case, for an integrated quantity occurring at node xi, the
domain Di consists of the closer halves of edges ei−1 and ei:

Di =

[
1

2
(Si−1 + Si) ,

1

2
(Si + Si+1)

]
(3.64)

If we define li =
∣∣ei−1

∣∣+
∣∣ei∣∣, then the length of this domain is |Di| = li/2.

3.5.3 Explicit Equations of Motion

Our goal for dynamic animation is to express the equations of motion, which
capture how the system reacts to internal and external forces. Recall that we
describe the system using 3 (N + 2) + (N + 1) time-varying quantities: the first
N+2 are 3-dimensional vectors x0,x1, . . . ,xN+2 describing the centreline position,
the remaining N + 1 are scalars θ0, θ1, . . . , θN describing the orientation of the
material frame.

Again, Lagrangian mechanics are used to obtain the equations of motion. We
use only the node positions x and velocities ẋ as generalised coordinates. θ is not
included; we treat it as a function of x instead.

We start from equation 1.9; by substituting our generalised coordinates, we
obtain the following as the equation of motion for one node xi:

d

dt

(
dT

dẋi
(x, ẋ, θ)− dU

dẋi
(x, ẋ, θ)

)
− dT

dxi
(x, ẋ, θ) +

dU

dxi
(x, ẋ, θ) = Fi (3.65)
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Fi is the external force acting on node i; external forces include effects such as
gravity and air drag, or interaction with objects in the scene. Kinetic energy is
defined in the classical way, mass times square of velocity:

T (x, ẋ, θ) =
1

2
ẋT M ẋ (3.66)

Notice that it does not depend on x. From studying equations 3.20 and 3.21,
it seems that internal energy U does not depend on ẋ. We will prove this later
when we show the exact formula for U , but let us simply assume it for now. By
substituting equation 3.66 into equation 3.65 and applying this assumption, we
simplify the equations of motion considerably:

d

dt

d

dẋi

(
1

2
ẋT M ẋ

)
= − dU

dxi
(x, θ) + Fi

M iẍi = − ∂U

∂xi
(x, θ)−

N∑
j=0

∂U

∂θj
(x, θ)

∂θj

∂xi
+ Fi

(3.67)

Notice that the total derivative dU
dxi

captures both explicit and implicit (through θ)

dependence on the centreline position, while the partial derivative ∂U
∂xi

only reflects

the explicit one.

Notation We introduce the following notation to simplify equations where a
gradient of a quantity z with respect to the rod parameters is involved:

∇iz =
∂z

∂xi

∇jz =
∂z

∂θj

(3.68)

We rewrite the equations of motion in this more compact form:

M iẍi = −∇iU (x, θ)−
N∑
j=0

∇jU (x, θ)∇iθ
j + Fi (3.69)

We will now proceed to express the constituent terms of these equations.

Discrete Curvature Binormal

The first step will be to find the formula for the curvature binormal in the dis-
crete model. Bergou et al. (2008) turn to differential geometry and the concept
of holonomy for it. When parallel transporting a frame around a closed loop,
holonomy of the loop measures the difference in the frame’s orientation at the
start and end. It is therefore a scalar quantity—the angle of rotation (around
the tangent) between the initial frame and the same frame parallel transported
around the loop once.

In this section, we consider how the quantities we’re interested in change
with slight variation of the centreline. We therefore view them as functions of
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one variation-controlling parameter, where an argument value of 0 represents the
original, unvaried state. We take this variation to be arbitrary, but small. We
will later use the formulations discovered here for computing derivatives.

We take two consecutive edge tangent vectors ti−1 (0) and ti (0) and their
corresponding varied state ti−1 (ε) and ti (ε). Parallel transport Pi (0) transports
a frame from unvaried edge i−1 to edge i, and analogously Pi (ε) transports along
the varied edges. Finally, there is also parallel transport along the variation—
a rotation P̃i (ε) such that:

P̃i (ε) ti (0) = ti (ε) (3.70)

P̃i (ε)
(
ti (0)× ti (ε)

)
= ti (0)× ti (ε) (3.71)

Next, we will form a closed loop by following this sequence of transformations:
ti−1 (0) → ti (0)  ti (ε) → ti−1 (ε)  ti−1 (0). Straight arrows correspond to
moving along the rod, while wavy arrows represent variation. The whole sequence
can be expressed in matrix form like this:

Ri−1 (ε) =
(

P̃i−1 (ε)
)T (

Pi (ε)
)T

P̃i (ε) Pi (0) (3.72)

From the definitions of the constituent matrices, it follows that Ri−1 (ε) ti−1 (0) =
ti−1 (0), so Ri−1 (ε) is just a rotation around the axis ti−1 (0). We denote the angle
of this rotation ψi (ε). This angle is in fact the holonomy of the closed loop of
parallel transports which make up Ri−1 (ε).

In the equations of motion, we will need the gradient of ψi for all i = 1, . . . , N .
Building on the work of Vries (2005), Bergou et al. (2008) arrive at the following
formula for the variation of ψi for a centreline variation δx:

δψi =
−2ti−1 × ti

1 + ti−1 · ti
(

1

2

δxi − δxi−1

‖ei−1‖ +
1

2

δxi+1 − δxi
‖ei‖

)
(3.73)

The continuous equivalent is as follows:

δ

(∫ L

0

ψ (s) ds

)
= −

∫ L

0

κb (s) · ∂δx
∂s

(s) ds (3.74)

Comparing equation 3.73 and equation 3.74 shows general symmetry between
them—the second factor in equation 3.73 is a finite-difference approximation of
the corresponding factor in equation 3.74. It is therefore natural to use the first
factor as the discrete equivalent of the integrated curvature binormal. Notice that
this makes discrete curvature binormal an integrated quantity.

We can re-write the formula using edge vectors instead of tangent vectors like
this:

(κb)i =
2ei−1 × ei

‖ei−1‖‖ei‖+ ei−1 · ei (3.75)

Bishop Frame Evolution

Our next goal is to describe the variation of the Bishop frame with respect to
changes of the centreline. By the same reasoning as above, the change will take
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form of a rotation of the frame around the tangent. ψi is the angle needed to
align the result of parallel transport P̃i (ε) Pi (0) to the result of parallel trans-
port Pi (ε) P̃i−1 (ε). Since the Bishop frame evolves under parallel transport,
it is also the angle between Pi (ε) P̃i−1 (ε) F i−1 (0) and P̃i (ε) F i (0) (which is
P̃i (ε) Pi (0) F i−1 (0)).

Let us denote Ψi the angle between the result of Pi (ε) · · ·P1 (ε) P̃0 (ε) F0 (0) =
F i (ε) and P̃i (ε) Pi (0) · · ·P1 (0) F0 (0) = P̃i (ε)F i (0). Iterative application of
the above rule leads to this formula:

Ψi =
i∑

j=1

ψj (3.76)

What we need for computing forces in the equations of motion is the gradient with
respect to change in the centreline positions. For ψi, we substitute equation 3.75
into equation 3.73, perform differentiation and obtain the following:

∇i−1ψi =
(κb)i

2‖ei−1‖

∇i+1ψi =
(κb)i
2‖ei‖

∇iψi = −∇i−1ψi −∇i+1ψi

∇jψi = 0 for j 6∈ {i− 1, i, i+ 1}

(3.77)

Differentiating equation 3.76 yields:

∇iΨ
j =

j∑
k=1

∇iψk (3.78)

Equation 3.77 guarantees that this sum has no more than three non-zero terms.

Post-integration Update The Bishop frame forms our reference for the ma-
terial frame orientation θ. We must therefore make sure that the Bishop frame is
kept consistent. When a new time step is computed, it is possible that the new
tangent t0 (tn+1) is not orthogonal to the Bishop axis u0

1 (tn). We must therefore
update the Bishop frame at edge 0.

The correct way updating the Bishop frame is via parallel transport. What
we need is parallel transport in time, which will update u0

1 (tn) to u0
1 (tn+1). As

we’ve shown above, parallel transport is a rotation. When t0 (tn+1) 6= t0 (tn), we
compute the rotation T required to align these two vectors:

axis (T) =
t0 (tn)× t0 (tn+1)∥∥t0 (tn)× t0 (tn+1)

∥∥
angle (T) = arccos

(
t0 (tn) · t0 (tn+1)

) (3.79)

We then apply this rotation to u0
1 (tn) and compute the updated Bishop frame of

the root segment:
u0

1 (tn+1) = T u0
1 (tn)

u0
2 (tn+1) = t0 (tn+1)× u0

1 (tn+1)
(3.80)
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Discrete Internal Energy

With the above apparatus, we can now express equation 3.19 using the discrete
model.

We will start with the bending energy Ubend and discretise it per node:

Ubend (Γ) =
1

2

∫ L

0

(
ω (s)− ω̂ (s)

)T
B (s)

(
ω (s)− ω̂ (s)

)
ds

=
1

2

N∑
i=1

li
2

(Ubend)i

(3.81)

(Ubend)i is a pointwise quantity representing the bending energy coming from
node xi. Recall from equation 3.49 that the bending vector ω is the curvature
binormal expressed in the material frame (rotated by π/2 around the tangent). The
curvature binormal (κb)i is an integrated quantity over the domain Di, spanning
half each of edge ei−1 and ei. Let us denote ωji the bending at node i expressed
in the material frame of edge j ∈ {i− 1, i}:

ωji =

(
(κb)i ·mj

2

− (κb)i ·mj
1

)
(3.82)

The integrated bending at node i is then:

1

2

i∑
j=i−1

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)
(3.83)

We convert it to a pointwise quantity by dividing each occurrence of (κb)i with
li/2:

(Ubend)i =
2

(li)
2

i∑
j=i−1

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)
(3.84)

Substituting equation 3.84 into equation 3.81 gives us the final formula for discrete
bending energy:

Ubend (Γ) =
1

2

N∑
i=1

1

li

i∑
j=i−1

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)
(3.85)

For twisting energy Utwist, we again start with a discretisation using pointwise
per-node twisting energy (Utwist)i:

Utwist (Γ) =
1

2

∫ L

0

β (s)
(
τ (s)

)2
ds

=
1

2

N∑
i=1

li
2

(Utwist)i

(3.86)

Bergou et al. (2008) do not consider rods with a natural twist, hence there is no
τ̂ (s) term in the equation. Recall from equation 3.53 that twist τ (s) = θ′ (s).
The discrete equivalent is integrated discrete twist:

τi = θi − θi−1 (3.87)
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We convert this to a pointwise quantity and substitute into equation 3.81 to
obtain the final form of discrete twist energy:

Utwist (Γ) =
N∑
i=1

β
i

(τi)
2

li
=

N∑
i=1

β
i

(
θi − θi−1

)2

li
(3.88)

The discrete form of equation 3.19 is then as follows:

U (x, θ, t) =
N∑
i=1

β
i

(
θi − θi−1

)2

li
+

1

2

N∑
i=1

1

li

i∑
j=i−1

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)

=
N∑
i=1

1

li

β
i

(
θi − θi−1

)2

+
1

2

i∑
j=i−1

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)
(3.89)

Twist Evolution

Since we’ve limited ourselves to inextensible and unshearable rods, the equations
of motion of the rod describe its bending and twisting. Bergou et al. (2008) note
that these two deformation modes propagate through the rod at vastly different
time scales.

Twist waves propagate faster in rods with smaller rotational inertia of the
cross section. In the limit, as the cross section inertia vanishes, twist propagates
instantly—the rod’s twist would always depend on its centreline shape only, min-
imising internal elastic energy (equation 3.19).

The speed of bending wave propagation, on the other hand, is proportional to
a1/λ, where a1 represents the cross-section size and λ is the wavelength. Notice
that for the motions we want to simulate, λ � a1, so bending waves propagate
much slower than twist ones.

We are interested in the dynamics and temporal evolution of the rod’s shape,
i.e. its bending. Twist waves propagate so fast that unless our simulation time
step is extremely short, we can consider their propagation instantaneous and
simply remove them from the equations of motion. We therefore assume that the
material frame is always oriented such that the rod’s internal energy U is minimal
for the given centreline positions, with the following implication:

∇iU (x, θ) = 0 (3.90)

Equation 3.90 applies to all segments i on which the rod can twist freely. However,
the simulation model allows some segments to be clamped. The material frame
orientation on a clamped segment j is then an external constraint:

(∀t) θj = θjclamp (3.91)

Because we’re dealing with hair, we generally constrain segment 0, where the hair
strand is attached to the scalp.

During simulation, the material frame orientation is updated in a quasistatic
fashion in each simulation step, before computing forces, by applying equa-
tion 3.90 to all unclamped segments j. Bergou et al. (2008) use Newton minimi-
sation of U (x, θ, t) with respect to θ. This requires expressing the gradient and
the Hessian of the internal energy.
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We start by differentiating equation 3.85. We introduce the following short-
hand notation for computing ∇jUbend:

Wi =
1

li

(
ωji − ω̂ji

)T

Bj
(
ωji − ω̂ji

)
(3.92)

This allows us to write:

∇jUbend (x, θ) =
1

2

(
∇jWj +∇jWj+1

)
(3.93)

Differentiating Wi yields:

∇jWi =
2

li

(
∇jωji

)T

Bj
(
ωji − ω̂ji

)
(3.94)

Differentiating equations 3.51 and 3.52 gives us the following:

∇jmj
1 = mj

2

∇jmj
2 = −mj

1, therefore

∇jωji = J ωji

(3.95)

where J is counter-clockwise rotation by π/2:

J =

(
0 −1
1 0

)
(3.96)

J−1 = JT = −J (3.97)

Next, we differentiate equation 3.88, which is straightforward:

∇jUtwist (x, θ) = 2

(
β
j

τj
lj
− β

j+1

τj+1

lj+1

)
(3.98)

By combining these results, we get the following gradient of internal energy:

∇jU (x, θ) =
1

lj

(
ωjj

)T

J Bj
(
ωjj − ω̂jj

)
+

1

lj+1

(
ωjj+1

)T

J Bj
(
ωjj+1 − ω̂jj+1

)
+ 2

(
β
j

τj
lj
− β

j+1

τj+1

lj+1

) (3.99)

The next step is to compute the Hessian by differentiating equation 3.99. Notice

that
∂2Wi

∂θj∂θk
= 0 for j 6= k. So we differentiate just equation 3.94:

∂2Wi

∂θj2 =
2

li

(
−J ωji

)T

J Bj
(
ωji − ω̂ji

)
+

2

li

(
ωji

)T

J Bj
(
−J ωji

)
= −2

li

(
ωji

)T

JT J Bj
(
ωji − ω̂ji

)
− 2

li

(
ωji

)T

J Bj J ωji

=
2

li

(
ωji

)T

JT Bj J ωji −
2

li

(
ωji

)T

Bj
(
ωji − ω̂ji

) (3.100)
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The last step follows from appropriate application of equation 3.97.
Again, differentiating equation 3.98 is straightforward. By combining these

results, we get the Hessian:

∂2U

∂θj∂θj−1
= −

2β
j

lj

∂2U

∂θj∂θj+1
= −

2β
j+1

lj+1

∂2U

∂θj2 =
1

lj

(
ωjj

)T

JT Bj J ωjj −
1

lj

(
ωjj

)T

Bj
(
ωjj − ω̂jj

)
+

1

lj+1

(
ωjj+1

)T

JT Bj J ωjj+1 −
1

lj+1

(
ωjj+1

)T

Bj
(
ωjj+1 − ω̂jj+1

)
+

2β
j

lj
+

2β
j+1

lj+1

∂2U

∂θj∂θk
= 0 for k 6∈ {j − 1, j, j + 1}

(3.101)

Material Frame Gradient

Our eventual goal is to express all components of equation 3.69. One of these
is the gradient of θj with respect to xi. Recall what θj actually represents:
the rotational angle between the material frame and the Bishop frame at edge j.
We’ve established above that varying the centreline by ε rotates the Bishop frame
at edge j by Ψj; refer to equation 3.76 and the discussion preceding it. Therefore,
the same material frame orientation is obtained by subtracting Ψj from the varied
θj. In other words:

∇iθ
j = −∇iΨ

j (3.102)

Internal Energy Gradient

The final part missing from equation 3.69 is the gradient of internal energy U
(equations 3.88 and 3.85) with respect to node positions. Notice that equa-
tion 3.88 only depends on θ and not on x, which means that:

∇iU = ∇iUbend (3.103)

Straightforward differentiation of equation 3.85 gives us:

∇iUbend (x, θ) =
N∑
k=1

1

lk

k∑
j=k−1

∇iω
j
k Bj

(
ωjk − ω̂jk

)
(3.104)

By differentiating ωjk and applying equation 3.102, we obtain the following:

∇iω
j
k =


(
mj

2

)T

−
(
mj

1

)T

 ∇i (κb)k − J ωjk

(
∇iΨ

j
)T

(3.105)
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The only missing bit is the gradient of the curvature binormal. We introduce a
shorthand notation and re-write equation 3.75:

E i =
∥∥∥ei−1

∥∥∥∥∥∥ei∥∥∥+ ei−1 · ei (3.106)

(κb)i =
2ei−1 × ei

E i (3.107)

We proceed to differentiate equation 3.107:

∇i−1 (κb)i =
2∇i−1

(
ei−1 × ei

)
E i

(E i)2 − 2
(
ei−1 × ei

)
∇i−1E i

(E i)2 (3.108)

ei does not depend on xi−1:

∇i−1 (κb)i =
2
[
ei
]

E i −
2
(
ei−1 × ei

)
∇i−1E i

(E i)2 (3.109)

The notation [v] denotes a 3 × 3 matrix such that [v] z = v × z. To compute
∇i−1E i, we employ the premise that the rod is inextensible and thus

∥∥ei−1
∥∥ does

not depend on xi−1. This, along with equation 3.75, allows us to reach the
following form of the gradient:

∇i−1 (κb)i =
2
[
ei
]

E i −
2
(
ei−1 × ei

)
E i

∇i−1E i
E i

=
2
[
ei
]

E i + (κb)i

(
ei
)T

E i

=
2
[
ei
]

+ (κb)i
(
ei
)T

‖ei−1‖‖ei‖+ ei−1 · ei

(3.110)

By following analogous steps, we obtain:

∇i+1 (κb)i =
2
[
ei−1

]
+ (κb)i

(
ei−1

)T

‖ei−1‖‖ei‖+ ei−1 · ei (3.111)

∇i (κb)i = −∇i−1 (κb)i −∇i+1 (κb)i (3.112)

∇k (κb)i = 0 for k 6∈ {i− 1, i, i+ 1} (3.113)

Integration

We now have all the components of the equations of motion (equation 3.69) in
place: equations 3.75, 3.77, 3.78, 3.82, 3.89, 3.99, 3.102, 3.103, 3.104, and 3.105.
This allows us to apply an integration scheme and evolve the system in time.
Following Bergou et al. (2008), we use the symplectic Euler integration method
(Hairer et al. 2006).

The symplectic (or semi-implicit) Euler method requires the integrated differ-
ential equation to be expressible as a pair of equations in the following form:

da

dt
= f (t, b) (3.114)

db

dt
= g (t, a) (3.115)
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The integration is then computed as follows:

bn+1 = bn + g (tn, an) ∆t (3.116)

an+1 = an + f (tn, bn+1) ∆t (3.117)

We use the classic set-up for integrating acceleration-based equations of motion
using a first-order scheme which we’ve described in Section 1.4.3:

dẋ

dt
= −M−1 dU

dx
(x, θ) + F (x) (3.118)

dx

dt
= ẋ (3.119)

From this formulation, it is clear that our equations conform to the preconditions
of the symplectic Euler method, with

a = ẋ

b = x

Recall that thanks to quasistatic treatment of twist, the gradient of internal
energy with respect to θj is zero for all unclamped edges j. The actual equations
of motion for i = 1, . . . , N + 1 are therefore as follows:

ẍi = − 1

M i

∇iUbend +
1

M i

∑
j:clamped

∇jU∇iΨ
j (3.120)

The energy derivatives ∇iUbend and ∇jU are given by equations 3.104 and 3.99,
respectively.

3.5.4 Constraint Enforcement

As we’ve outlined in the introduction to this method, the equations of motion
presented above do not enforce the rod’s inextensibility.

In contrast to the Super-Helix method, inextensibility is not used in the defi-
nition of the generalised coordinates we use, so it must be expressed as an explicit
constraint. Other constraints are also possible: coupling the position of a node
and the material frame orientation on the adjoining edge to the position and
rotation of a rigid body, which is simulated separately.

Introducing explicit constraints means that we must base our system on equa-
tion 1.12. We could proceed by adopting it as our equations of motion and apply-
ing normal integration to evolve our system in time. However, hard constraints
lead to stiff equations, which must be solved with costly integration methods
and/or very small time steps. An alternative approach is to split one step of
evolving the dynamic system into two sub-steps: unconstrained integration fol-
lowed by constraint enforcement.

Bergou et al. (2008) take the two-step approach. We will first present it as a
generic mechanism in Lagrangian mechanics, before applying it to our rods.
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Lagrangian Mechanics with Explicit Constraint Enforcement

For this generic presentation, we turn back to the notation of Section 1.4.2: our
generalised coordinates are the vector g ∈ Rγ. We will also assume a direct form
of kinetic energy in the generalised coordinates:

T (g, ġ) =
1

2
ġT N ġ (3.121)

N is a generalised mass matrix.
The first step is to perform integration of the unconstrained equations of

motion (equation 1.6). After this integration step, we have the unconstrained
coordinates ğ at time tn = t0 +n∆t, where ∆t is the time step of the integration.
We apply a constraint enforcement step which seeks to find a configuration g
which will be “similar” to the unconstrained one, but satisfy the constraints.
There are multiple ways of enforcing constraints after integration; Bergou et al.
(2008) use a manifold projection method of Goldenthal et al. (2007).

Manifold projection is a family of methods (Hairer et al. 2006) which work by
projecting the unconstrained solution ğ onto the constraint manifold C defined
as follows:

C =
{
z : C (z) = 0

}
(3.122)

The projection is defined as finding a vector δg such that ğ + δg = g ∈ C. The
projection should try to find a point g on the manifold which is “close” to the
unconstrained point ğ. For this, we need to establish a measure of distance. The
metric adopted by Goldenthal et al. (2007) is generalised kinetic energy:

T (δg) = (δg)T N (δg) (3.123)

In the case where generalised coordinates represent 3-dimensional coordinates of
discrete nodes (as is the case in our rod simulation), this metric represents a
displacement of the individual nodes weighted by the mass of each node.

The projection is then defined as minimisation of the following objective func-
tion:

W (δg,λ) =
1

2 (∆t)2 (δg)T N (δg) + C (g) · λ (3.124)

The closest point on C can be found e.g. by using Newton minimisation on W :
find increasingly better approximations of the “shortest” (in terms of T ) valid
step δg. Due to this iterative approach, this method of solution is known as
step-and-project. Other approaches are possible (Goldenthal et al. 2007; Bergou
et al. 2008), but as we use Newton minimisation in our hair simulation, we will
not discuss them here.

After the constraint enforcement step finishes, ġ must be updated to reflect
the actual change in g from time tn−1 to tn; the one computed by integration only
reflects the change g (tn−1)→ ğ (tn). This update can be expressed as follows:

ġ = ˘̇g
1

∆t
(g − ğ) (3.125)

Constraints for Rods

We proceed to introduce constraints as they are used in the Discrete Elastic Rod
method. Its authors employ two types of constraints: inextensibility and rigid
body coupling.

55



Inextensibility An inextensibility constraint is introduced for each edge of the
rod:

CIj = ej · ej − êj · êj (3.126)

Rigid Body Coupling Any edge of the rod can be attached to a rigid body.
The position of the edge’s endpoints and the orientation of its material frame
have to correspond to the position and rotation of the attached rigid body. Let
us assume R rigid bodies 1, . . . , R are attached to the rod at edges a1, . . . , aR.
ri ∈ R3 denotes the position of body i. Its rotation is represented by the unit
quaternion qi ∈ H. The coupling is then expressed using these constraints:

CUi = qi · qi − 1 (3.127)

CB1
i = qix̂aiq

∗
i + ri − xai (3.128)

CB2
i = qix̂ai+1

q∗i + ri − xai+1
(3.129)

q∗ is the conjugate of q. Equation 3.127 ensures unit length of qi, so that qix̂aiq
∗
i

is a rotation. The other two equations ensure that both ends of the rod’s edge
stay in sync with the rigid body. Material frame orientation is maintained by
clamping, as discussed in Section 3.5.3.

The variables r and q do not enter the rod equations of motion, as the body
is simulated separately. However, they do form part of the constraint enforce-
ment step. The following generalised coordinates g, generalised velocity ġ, and
generalised mass matrix N, are therefore used for the constraint enforcement step:

g = (q1, . . . ,qR, r1, . . . , rR,x0, . . . ,xN+1)T (3.130)

ġ =
(
q−1

1 q̇1, . . . ,q
−1
R q̇R, ṙ1, . . . , ṙR, ẋ0, . . . , ẋN+1

)T
(3.131)

N =



4I1
. . .

4IR
w1 [1]3×3

. . .

wR [1]3×3

M


(3.132)

Here, [1]3×3 represents a 3×3 identity matrix. wi is the scalar mass of rigid body
i, and Ii is its moment of inertia tensor, expressed as a 3× 3 matrix in reference
coordinates.

After constraint enforcement, velocities have to be updated according to equa-
tion 3.125: q̇

ṙ
ẋ

 =

˘̇q
˘̇r
˘̇x

− 1

∆t

2q̆q−1

r̆− r
x̆− x

 (3.133)

3.6 Simulating Hair as Explicit Rods

We build on the Discrete Elastic Rod method of Bergou et al. (2008) as laid
out in the previous section, applying the core principles of our hair animation
approach to it.
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We adopt their basic premise of discretising the rod which represents the
hair strand into nodes connected by straight edges. We also use the coordinate
reduction representing material frame orientation as deviation from the Bishop
frame. We introduce our own algorithm for computing twist, which is significantly
better for hair than the Newton minimisation used by the generic method. This
algorithm is presented in Section 3.6.1.

Equations of motion presented by Bergou et al. (2008) (equation 3.120) reflect
the rod’s internal energy only. We need to extend them with external forces acting
on the strand:

dẋi
dt

= − 1

M i

∂Ubend

∂xi
+

1

M i

∑
j:clamped

∂U

∂θj
∂Ψj

∂xi
+

1

M i

Fi (3.134)

The basic external force present in our simulation is gravity:

Fgravity
i = M ig (3.135)

Other external forces are added to this term as applicable; we describe them later
in the text.

In the constraint-enforcement step, we use the same inextensibility constraints
as the original method. We take a different approach to rigid body coupling,
however.

The only rigid body normally coupled to a hair strand is the head. Due to
the immense difference in mass and inertia between hair and the head, we do not
model this coupling with constraints. Instead, we neglect any dynamic effect hair
might have on the head and simply treat the node x0 (which corresponds to the
strand’s root) as immovably attached to one point on the scalp. We generally
operate in the coordinate system attached to the head, which makes the root
simply stationary.

We also introduce additional constraints for hair–head interaction, as detailed
in Section 3.6.2. Finally, we model hair configurations commonly found in real-
world hairstyles by adding extra elements to the simulation, described in Sec-
tion 3.6.3.

Hair–hair collisions are the topic of Chapter 4.

3.6.1 Hair Twisting Model

The cornerstone of our approach to hair animation is the fact that hair prefers
to bend over its major axis. This is in line with the observation Bergou et al.
(2008) make about the speed of twist wave propagation (see Twist evolution
in Section 3.5.3): when a hair bends, it will actually twist so that the bending
happens over the major axis. The implication is that the current shape (bending)
of the centreline is the chief factor determining the strand’s twist.

Recall that the Discrete Elastic Rod method (Bergou et al. 2008) uses Newton
minimisation to find the twist configuration which minimises the rod’s internal
energy, given a fixed shape of the centreline. In theory, the same approach could
be used for hair as well. Bending stiffness over the minor axis is significantly
larger than that over the major one, so the minimisation would find the proper
twist. However, this approach is not optimal.
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First, human hair is a remarkably stiff material. The stiffness values appro-
priate for a hair strand are 2–3 orders of magnitude larger than those used in
the examples presented by Bergou et al. (2008). Such high stiffness makes the
Newton minimisation numerically unstable.

Second, Newton minimisation is an iterative process. Each iteration requires
the solution of a system of linear equations, making the whole process computa-
tionally expensive.

Fortunately, a better solution exists. Since we know that hair will twist so
that it bends over the major axis, we do not need to compute twist iteratively—
given the bent centreline shape, we can compute the appropriate twist in a direct,
explicit fashion.

In the continuous setting, the strand could always twist so that it bends
exclusively over the major axis. In the discrete case, this is not fully possible.
Bending exclusively over the major axis is reached when the curvature binormal
is collinear with the major axis. However, recall that the discrete curvature
binormal (κb)i is defined for each node i, while material frames are assigned to
segments. Since (κb)i and (κb)i+1 are unlikely to be collinear, an orientation of
the major axis mi

1 such that no bending over the minor axis occurs is principally
impossible. Instead, we present an algorithm to compute twist such that it merely
minimises bending over the minor axis, not eliminates it.

We have first introduced our hair-specific algorithm for computing twist in
(Kmoch et al. 2009). In the following text, we present an improved version of
the algorithm which handles edge cases better.

Hair Twisting Algorithm

The algorithm makes use of the notion that bending over the minor axis is to be
avoided as much as possible. It assumes that any decrease of bending over the
minor axis leads to lower internal energy, regardless of the amount of extra twist
introduced. In other words, the assumption is that effective bending stiffness over
the minor axis is much larger than effective twisting stiffness:∣∣∣∣ dUdω2

∣∣∣∣� ∣∣∣∣dUdτ
∣∣∣∣∣∣∣∣ dUdω2

∣∣∣∣� ∣∣∣∣ dUdω1

∣∣∣∣ (3.136)

Note that both of these hold for real hair, and form the physical basis of the
observations of Swift (1995).

Our goal is to find the material frame orientation, that is, the value of the
angles θj for all edges j. The algorithm itself consists of two sequential steps:

1. For each edge j, find the unoriented direction of the major axis mj
1 which

will minimise bending over the minor axis at nodes xj and xj+1. This
establishes the value of θj up to a whole multiple of π: θj = θjdir + hjπ,
where hj ∈ Z represents the unknown multiple.

2. Within the direction obtained in step 1, find the orientation which will
minimise elastic energy. This determines θj completely by fixing hj in the
above equation.
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Figure 3.10: Computing angle ηk, k ∈ {j, j + 1} between uj1 and (κb)dir
k . Red and

blue are used for the root-facing and tip-facing nodes and segments, respectively.
Figure (a) shows the angles ηj and ηj+1 we want to compute. (b) demonstrates

finding (κb)dir
k by computing (κb)k · uj2, and (c) shows how ηk is found from

uj1 · (κb)dir
k .

Step 1 is illustrated in Figures 3.10 and 3.11. For each (unclamped) edge j we
first find the angles ηj and ηj+1 between the Bishop axis uj1 and the unoriented
direction of respective curvature binormals (κb)j and (κb)j+1 at adjoining nodes.
Note that the curvature binormal at a node is orthogonal to the adjoining edges,
which means that all nonzero vectors involved are coplanar. The exact formula
for ηk, k ∈ {j, j + 1} is as follows:

(κb)dir
k =

{
(κb)k if (κb)k · uj2 ≥ 0

− (κb)k if (κb)k · uj2 < 0
(Figure 3.10b)

(3.137)

ηk =

arccos

(
1

‖(κb)dirk ‖u
j
1 · (κb)dir

k

)
if (κb)dir

k 6= 0

not defined if (κb)dir
k = 0

(Figure 3.10c)

(3.138)

For each edge j, there are three possible scenarios:

One bent node When ηk is defined for only one k ∈ {j, j + 1}, we simply set
θjdir = ηk. We call such edge j a half-bent edge.

Two bent nodes When both ηj and ηj+1 are defined, we need to find a direc-

tion which will bisect the smaller angle between (κb)dir
j and (κb)dir

j+1 (see
Figure 3.11):

θjdir =

{
1
2

(
ηj + ηj+1

)
if
∣∣ηj − ηj+1

∣∣ ≤ π/2
1
2

(
ηj + ηj+1 + π

)
if
∣∣ηj − ηj+1

∣∣ > π/2
(3.139)

Then, we add or subtract a whole multiple of π so that 0 ≤ θjdir < π. Such
an edge j is called a fully-bent edge.
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No bent nodes If neither ηj nor ηj+1 is defined, we call such an edge j an unbent
edge. Unbent edges on one strand form a set of zero or more contiguous
sequences. We denote this set U ; material frame orientation of unbent
edges will be computed in the second step of the algorithm. The important
property of unbent edges is that their material frame orientation is not
constrained by bending—it can be arbitrary.

With the first step completed, we now have a set U of unbent edges, and for each
edge k not in this set, a major axis direction θkdir such that bending over the minor
axis is minimised on both adjoining nodes.

We now need to find the actual major axis orientation, θj, for each edge j,
both bent and unbent. Notice that this cannot affect the bending component
of elastic energy (Ubend, equation 3.85), as that depends on the (unoriented)
directions of the cross-section axes only. We therefore only seek to find material
frame orientation which will minimise the twist component of internal energy
(Utwist, equation 3.88). This is valid thanks to equation 3.136, from which it
follows that decreasing twist energy by increasing bending over the minor axis
cannot lead to an overall decrease of internal energy.

To find the material frame orientation minimising twist energy, we process
the edges sequentially, starting at the root (j = 0).

If the edge j is bent (fully or half), finding the orientation amounts to find-
ing hj, the whole multiple of π to add to θjdir; such a situation is depicted in
Figure 3.12. Remember that this choice will have no impact on bending energy—
that has already been minimised by minimising bending over the minor axis. We
therefore simply need to find hj which will minimise twist deviation:

τj − τ̂ j = θj − θj−1 − τ̂ j = θjdir + hjπ − θj−1 − τ̂ j (3.140)

Because we’re processing the strand sequentially, the andle θj−1 has already been
found (assume θ−1 = 0). The only unknown in equation 3.140 is therefore hj and
the minimisation boils down to a trivial rounding operation:

hj = round

(
1

π

(
τ̂ j −

(
θjdir − θj−1

)))
(3.141)

If, on the other hand, the edge j is unbent, it is actually a start of a contiguous
sequence of K unbent edges; even if the next edge j + 1 is not unbent, we view
edge j as a sequence of length K = 1. Which means our situation is thus:

� θj−1 has already been fully determined.

� Either j +K = N + 1, or θj+Kdir is known (from step 1).

� For all k ∈ {j, . . . , j +K − 1}, θkdir is not defined.

If the unbent sequence covers the entire rest of the strand (that is, j+K = N+1),
the solution is trivial. The strand will simply adopt the rest-state twist on the
entire unbent sequence:

(
∀k ∈ {j, . . . , N}

)
θk = θj−1 +

k∑
i=j

τ̂ i (3.142)
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Figure 3.11: Finding θjdir for an edge with two bent nodes. We need to choose the
smaller from the two angles between the lines collinear with curvature binormals
(dotted red and blue). Figure (a) shows the case when the angle between (κb)dir

j

and (κb)dir
j+1 (solid green) is smaller; θjdir is then between ηj and ηj + 1 (b). The

second case, when the smaller angle is between − (κb)dir
j and (κb)dir

j+1, is shown

in (c); π/2 is then added to θjdir (d).

When the sequence is followed by a bent edge j +K, then θj+Kdir is known (from
step 1). We start by finding hj+K . To be able to employ equation 3.141, we need
θj+K−1; refer to Figure 3.13 for an illustration of this algorithm. We assign this
tentatively:

θj+K−1
tentative = θj−1 +

j+K−1∑
i=j

τ̂ i (3.143)

This basically represents the entire unbent sequence twisting so that it assumes
rest-state twist. We use this value in equation 3.141 to determine hj+K which will

minimise the twist deviation
(
θj+K − θj+K−1

tentative

)
− τ̂ j+K . We have thus computed

the best possible orientation of the material frame at edge j+K, assuming twist
of the unbent sequence identical to rest twist. This probably still leaves the twist
τj+K different from the corresponding rest twist. We denote this difference τ̃ :

τ̃ = τj+K − τ̂ j+K =
(
θj+K − θj+K−1

tentative

)
− τ̂ j+K (3.144)
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Figure 3.12: Computing θj when node j is bent. The green arrow represents
mj

1 which would produce zero twist deviation on segment j, but this cannot be
achieved exactly. Only whole multiples of π can be added to θjdir. Figure (a)
shows an example where the best multiple is hj = 0, while (b) shows a case
where adding hj = 1 times π is better for minimising twist deviation. The blue
arrow depicts the computed major axis mj

1 in both cases.

Recall from equation 3.88 that the internal energy is quadratic in deviation from
rest twist. We can therefore minimise it by distributing the “error” τ̃ evenly along
the entire unbent sequence:

(
∀k ∈ {j, . . . , j +K − 1}

)
θk = θj−1 +

k∑
i=j

(
τ̂ i +

τ̃

K + 1

)

= θj−1 +
k∑
i=j

τ̂ i + (k − j + 1)
τ̃

K + 1

(3.145)

Notice that all formulae for computing orientation on individual edges in the
unbent sequence feature a sum of rest-state twists. We can either compute the
sum on the fly, processing the edges of the sequence one after the other, or we
can employ a pre-computed lookup table of cumulative twist. The latter solution
makes the edges within the sequence independent, allowing them to be processed
in parallel.

Twist Algorithm Evaluation

We have implemented both the Newton minimisation as used by Bergou et al.
(2008) and our algorithm we’ve just presented. We compare their performance in
Table 3.1; the original implementation of our algorithm as presented in (Kmoch
et al. 2009) is also included in the comparison. The basic metric we choose for
comparison is absolute time required for the twist computation. You can see from
the table that our twist computation clearly outperforms Newton minimisation.
The table also shows that the improved version of our algorithm is faster than
the original one.
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Figure 3.13: Computing twist on an unbent sequence. Edges on the sequence are
depicted in black (the illustration corresponds to K = 3). Figure (a) shows how
the major axis orientation on the bent edge immediately following the sequence is
found by assuming orientation θj+K−1

tentative corresponding to rest-state twist. In the
next step, the twist “error” τ̃ is computed, using equation 3.144 (b); the figure
shows the twist error in orange, divided into K+ 1 parts. Finally, material frame
orientation θ is computed on the entire sequence by distributing the error evenly
among all edges, as per equation 3.145 (c).
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# strands # nodes Newton Hair Better hair
1 30 0.14 0.06 0.02
3 90 0.41 0.18 0.05

Table 3.1: Comparing the performance of updating the material frame after inte-
gration using different methods: Newton minimisation, our hair-specific twisting
algorithm presented in (Kmoch et al. 2009), and an improved version of this
algorithm presented in this thesis. The times are given in milliseconds.

# strands # nodes Time step DER Hair
1 49 1.0 84% 9%
11 275 1.0 131% 9%
31 2158 0.1 74% 6%

Table 3.2: Time spent updating material frames as a percentage of time used
to compute forces. Time steps given in milliseconds. Numbers for DER method
were taken from (Bergou et al. 2008, Table 1). Comparison is only approximate
due to inability of our system to exactly recreate scenes used by Bergou et al.

To prevent our measurements from potentially being skewed by differences in
implementation of Newton minimisation between our work and that of Bergou
et al. we also express time required for twist computation relative to the time
spent integrating equations of motion, and compare our implementation against
the numbers published by Bergou et al. (2008). For this, we have tried to re-
create some of the scene set-ups of Bergou et al. Exact replication is not possible
because our simulation system is geared towards hair, not arbitrary rods, but
we’ve matched the number of nodes and time-step size where practical. This
results of this comparison are presented in Table 3.2. The comparison is not
on equal terms, as our hair simulation framework does not allow us to exactly
recreate the test scenes of Bergou et al. but even if we allow for a compensating
factor of 5 to our disadvantage, it is still clear that our algorithm is very efficient
for hair.

3.6.2 Hair–Head Collisions

A significant number of human hair strands is constantly in contact with the
head. Any hair simulation method must therefore implement collision detection
and response for the head, even if collision with other rigid bodies is not con-
sidered. The head is also very specific in that its shape, as well as its position
and orientation relative to the strands’ roots, does not change. We have used
these properties to devise a very efficient yet cheap collision detection & response
system for hair–head collisions.

Collision Response Methods

In general, there are many ways to respond to collisions.
Force-based collision response methods compute a repulsion or penalty force
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when objects collide. The simplest approach is to detect collisions at the begin-
ning of the time step, and if a collision occurs, add penalty forces which would
move the colliding bodies out of collision. One popular mechanism is to use a
spring-like penalty force proportional to the bodies’ interpenetration. This ap-
proach is fast, because the force computation is trivial. The downside is that
collisions are not prevented—by the time a response force is added to the simula-
tion, the collision has already happened. This may be tolerable for some systems
but unacceptable for others. A further disadvantage is that these suddenly ap-
pearing forces can cause the simulation to become unstable if they are too large.
Tuning the “stiffness” of penalty-based collision response so that it successfully
prevents undesired collisions effects without destabilising the integration is not
easy.

A more sophisticated force-based approach evaluates collisions at the end of
the time step. Collisions are detected and reaction forces computed. The time
step is then discarded and re-computed again, with the collision response forces
added in right from the start. This approach is much better at actually preventing
collisions from happening and is also more numerically stable. The price to pay
is performance, as basically the entire simulation has to be computed twice for
each time step.

Some methods use a response other than forces, like simply re-positioning
colliding bodies into a contact-only configuration. These tend to suffer from
energy conservation problems.

Our Hair–Head Collisions

The objective of detecting and handling hair–head collisions is to keep the sim-
ulated hair from penetrating into the head model. In other words, the hair is
constrained to stay out of the volume of the head. Notice that our simulation
method already contains a constraint-enforcement step. We use this and handle
hair–head collisions by formulating them as extra constraints to be enforced.

This approach has a number of advantages. Constraint enforcement is already
a part of the process, which makes hair–head collision resolution very efficient.
There is of course an increase in computation required to actually enforce the
head-collision constraints, but there is no additional overhead for facilitating a
separate collision handling subsystem. Most importantly, however, it produces
an effective and stable response.

Because constraints are enforced as part of the simulation step, this approach
actually prevents collisions from happening. There are no stiff forces which could
destabilise the integration, and energy conservation is handled by the velocity
update step (equation 3.125).

We first presented this approach in (Kmoch et al. 2009). A sphere of centre
h and radius H is used to represent the head for collision purposes. Our use
of a sphere is motivated by efficiency of computation, but more complex shapes
such as an ellipsoid or even metaballs (Bloomenthal and Bajaj 1997) could also
be used. The choice of collision representation of the head is a trade-off between
representation accuracy and efficiency of computing node–head distance. The
only hard requirement on the representation is that the gradient of the node–head
distance must be computable, for use in constraint enforcement. Nevertheless,
we will use the sphere representation in this text.
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After each integration step, all nodes are tested for head penetration, and
those which are inside the head are gathered into set P :

P =
{
i : (xi − h) · (xi − h) < H2

}
(3.146)

Nodes in P are then subjected to the following constraint:

(∀i ∈ P) CHi = (xi − h) · (xi − h)−H2 (3.147)

This approach worked well, but it had drawbacks:

� Some nodes originally not in P could penetrate the head as a result of
relocating to satisfy the constraints, because the set P is only computed
once in each time step. Given the short time step we use (1–2ms), this does
not introduce any noticeable artifacts, but it means the method does not
totally prevent collisions in all cases.

� The constraints actually force the node to touch the head instead of merely
forcing it out of it. We later discovered this posed convergence problems in
complex collision scenarios.

We seek to improve the method to remove these drawbacks.
We achieve this by extending the constraint enforcement step to handle in-

equality constraints in addition to equality constraints. We will first present
this as a theoretical extension of the constraint enforcement mechanism, before
detailing its use in our hair animation method.

For this, we again turn back to the notation used in Section 1.4.2: we have
a system described using Lagrangian mechanics with generalised coordinates g
and generalised velocities ġ, both γ-dimensional vectors. The system is subject
to the following set of constraints:

C (g) = 0 (3.148)

D (g) ≥ 0 (3.149)

C (g) ∈ Rζ and D (g) ∈ Rρ are vectors of equality and inequality constraints,
respectively.

We follow the Discrete Elastic Rod method in integrating the unconstrained
equations of motion to obtain a solution ğ which can violate the constraints. We
then perform a constraint enforcement step using a step-and-project method (see
Section 3.5.4) to find the final solution g = ğ + δg. The step-and-project method
will find suitable δg while minimising weighted deviation from ğ.

To be able to use Lagrange multipliers for minimisation, we need to transform
equation 3.149 into equality constraints. We do this by introducing auxiliary slack
variables s ∈ Rρ (Boyd and Vandenberghe 2004) for these constraints:

D (g) + s = 0 (3.150)

s ≥ 0 (3.151)

It is obvious that when equation 3.150 holds, Di (g) < 0 if and only if si < 0.
So far, we have transformed each original (general) inequality constraint into one
equality constraint and one inequality constraint of a simple form of “variable
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is nonnegative.” The method of Lagrange multipliers will take care of main-
taining the equality constraints, but we still need to ensure the slack variable
nonnegativity (equation 3.151).

The function we want to minimise (subject to these constraints) is the gen-
eralised kinetic energy (equation 3.123) of the projection (or displacement). To
force slack variables to be nonnegative, we extend the objective function as fol-
lows:

T (δg, s) =
1

2 (∆t)2 (δg)T N (δg)−
ρ∑
i=1

ln si (3.152)

The crucial point is:
lim
si→0+

− ln si = +∞ (3.153)

Remember that our goal is to minimise the objective function (equation 3.152).
If any of the slack variables approaches 0, the term −∑ρ

i=1 ln si and with it the
entire objective function will grow beyond bounds; this is something the minimi-
sation will prevent, effectively guaranteeing equation 3.151. As we’ve shown, that
is equivalent to equation 3.149, our original inequality constraints.

We have thus defined our projection operator and can apply the step-and-
project method. Due to the presence of the slack variable term, we cannot use
the fast manifold projection (Goldenthal et al. 2007) originally used by Discrete
Elastic Rods. Instead, we use the more general Newton minimisation. We formu-
late the Lagrangian out of our objective function (equation 3.152) and constraints
(equations 3.148 and 3.150):

W (δg, s,λ,µ) =
1

2 (∆t)2 (δg)T N (δg)−
ρ∑
i=1

ln si+C (ğ + δg) ·λ+D (ğ + δg) ·µ

(3.154)
Newton minimisation works by solving the following non-linear system:

∇δgW (δg, s,λ,µ) = 0

∇sW (δg, s,λ,µ) = 0

∇λW (δg, s,λ,µ) = 0

∇µW (δg, s,λ,µ) = 0

(3.155)

This gives the stationary points of both the Lagrangian and the objective func-
tion. The system is solved using the iterative Newton-Raphson method. This

starts from an initial approximate solution
(
δg0, s0,λ0,µ0

)
and iteratively com-

putes progressively better solutions:
δgn+1

sn+1

λn+1

µn+1

 =


δgn

sn

λn

µn

+


∆δgn

∆sn

∆λn

∆µn

 (3.156)

The process continues until equation 3.155 is solved to within a pre-specified
tolerance threshold.
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Each step proceeds by using Taylor expansion of ∇W to first order:

∇W
(
δgn+1, sn+1,λn+1,µn+1

)
=

∇W (δgn, sn,λn,µn) +
(
∇2W (δgn, sn,λn,µn)

)
(∆δgn,∆sn,∆λn,∆µn)T

(3.157)

Notice that this is a system of linear equations in the variables ∆δgn, ∆sn, ∆λn,
∆µn. We simplify the system by substituting equation 3.154:

1
(∆t)2

N 0
(
∇δgC

)T (
∇δgD

)T

0 − [1] 1
s2

0 − [1]
∇δgC 0 0 0
∇δgD 0 0 0




∆δgn

∆sn

∆λn

∆µn

 =


1

(∆t)2
N (δg) +

(
∇δgC

)T
λ+

(
∇δgD

)T
µ

−1
s
− 1

C
D

 (3.158)

This becomes more handy if re-written like this:(
1

(∆t)2
N 0

0 − [1] 1
s2

)(
∆δgn

∆sn

)
+

((
∇δgC

)T (
∇δgD

)T

0 − [1]

)(
∆λn

∆µn

)
=(

1
(∆t)2

N (δg) +
(
∇δgC

)T
λ+

(
∇δgD

)T
µ

−1
s
− 1

) (3.159)

(
∇δgC
∇δgD

)(
∆δg

)
=

(
C
D

)
(3.160)

Written this way, it is clear that the way to solve the system is by isolating
(∆δg,∆s) in equation 3.159 and substituting it into equation 3.160, then using
the obtained (∆λ,∆µ) to solve equation 3.159.

We now apply this approach to our hair model. For each edge j, an equality
constraint CIj is used to guarantee the hair’s inextensibility, as defined in equa-
tion 3.126. Inequality constraints are used to prevent hair–head collisions, each
constraint controlling one node:

(∀i ∈ P) CHi = (xi − h) · (xi − h)−H2 (3.161)

The constraint equations are:

(∀j ∈ 0, . . . , N) CIj = 0 (3.162)

(∀i ∈ P) CHi ≥ 0 (3.163)

Thanks to the fact that we can now express inequality in constraints, it is bene-
ficial to activate the hair–head collision constraints when the nodes approach the
head, before collision actually occurs. We therefore slightly modify the definition
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of P (originally equation 3.146) by introducing a collision avoidance threshold R
added to the head radius H for this purpose:

P =
{
i : (xi − h) · (xi − h) < (H +R)2

}
(3.164)

Our experiments have shown that setting the value of R to around half the average
segment length works as the best compromise between computational efficiency
and effective hair–head collision avoidance. Notice that R is used during the test
for inclusion in P only—the value of the constraint remains the squared distance
from the head (equation 3.161).

To actually enforce our extended constraints, we substitute the following into
equation 3.154:

g = x (3.165)

C = CI (3.166)

D = CH (3.167)

N = M (3.168)

This gives us the following Lagrangian:

W (δx, s,λ,µ) =
1

2 (∆t)2 (δx)T M (δx)−
∑
i∈P

ln si

+ CI (x̆ + δx) · λ+ CH (x̆ + δx, s) · µ
(3.169)

To solve equations 3.159 and 3.160, we also need the gradients of constraint.
These are obtained using straightforward differentiation:

∇iCIj =


−2xi if i = j

2xi if i = j + 1

0 if i 6∈ {j, j + 1}
(3.170)

∇iCHj =

{
2xi if i = j

0 if i 6= j
(3.171)

After constraint minimisation finishes, velocities must be updated. In our hair
system, the general form of this update (equation 3.133) is simplified as follows:

ẋ = ˘̇x− 1

∆t
(x̆− x) (3.172)

Evaluation

We test the impact of hair–head collision handling by comparing the time required
for constraint enforcement with hair–head collisions enabled and disabled. We
report the time spent each time step on constraint enforcement in these scenarios:

� Hair–head collisions disabled

� Hair–head collisions enabled, detection margin R = 0.5 cm (half a segment
length)
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� Hair–head collisions enabled, detection margin R = 1 cm (one segment
length)

Our findings are given in Table 3.3. At first sight, the overhead shown for straight
hair seems surprisingly high. The reason for these high numbers is that straight
hair tends to move smoothly and thus does not normally violate its inextensibility
constraints too much. For straight hair, hair–head collisions therefore form the
primary need to iterate constraint enforcement. This can be seen from the fact
that the more complex the hair shape gets (wavy and curly), the smaller the
relative overhead of hair–head collisions is. Our observations from full simulations
including hair–hair collisions indicate that when hair attains more complex shapes
due to mutual interaction, the relative overhead of hair–head collision constrains
becomes small.

At the same time, the table shows that the effect of of the collision avoid-
ance threshold R on performance is significant. Setting the value too low or not
using the threshold at all leads to instances of hair penetrating the head, while
unnecessarily high values of the threshold markedly slow down the simulation. A
value of half the average segment length has proven a good compromise between
effectiveness and efficiency.

In these tests, hair–hair collision constraints (discussed in Section 4.3.1) were
not applied in order to not skew the results—handling hair–hair collisions was
disabled altogether.

3.6.3 Hair Wisps

In the preceding sections, we have presented how we simulate an isolated hair
strand. We will now turn our attention to simulating a full volume of hair.

As we’ve discussed in Section 3.2, fully simulating all the strands in a typical
hairstyle is absolutely beyond the limits of the class of hardware we want to target
with our method. To simulate a full hairstyle, we need to introduce some form
of simplification. As our approach is based on an explicit simulation model of
an individual strand, it makes the most sense to extend it either by using guide
strands and interpolation, or by simulating multi-strand wisps as a single entity.

Of these two approaches, we consider explicit wisp simulation the better
choice. Methods which use direct interpolation from guide strands tend to pro-

Hair shape # strands
& nodes

No
collisions

R = 0.5 cm R = 1 cm

Straight 50 : 1500 3.67 6.78 (85%) 8.08 (120%)

Straight 25 : 750 1.85 3.19 (73%) 3.95 (114%)

Wavy 50 : 1500 4.69 6.84 (46%) 8.20 (75%)

Wavy 25 : 750 2.41 3.41 (41%) 3.99 (66%)

Curly 50 : 1500 6.21 7.05 (14%) 8.36 (35%)

Curly 25 : 750 3.14 3.54 (13%) 4.12 (31%)

Table 3.3: Effect of handling hair–head collisions on computation time. Time
shown is for the constraint enforcement step only, given in milliseconds.
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duce a uniform look which is appropriate for straight hair, but less so for hair
which is wavy or curly. The reason is that slight variations in the deformation
shape between nearby curled strands tend to mis-align the cuticle scales on the
strands’ surface, leading to increased friction and cohesion—distinct wisps are far
more likely to form in curly hair than in straight hair. Such wisps are something
a fully interpolation-based method cannot truly represent.

A method which simulates wisps explicitly clearly does not have this problem.
It is however also able to simulate uniform hair. If the individual wisps behave
like straight hair, they will have equally little reason to stay too disjoint and will
form the uniform hairstyle naturally.

A hybrid approach combining interpolation and wisp-based rendering was in-
troduced by Bertails et al. (2006). In this method, non-simulated strands are
generated from guide strands using a linear blend of interpolation and extrapo-
lation. Interpolation from two or more guide strands is used near the root of the
strands, progressively being replaced by extrapolation of just one of them towards
the tip. Parameters of this progression can be tuned to accommodate hair styles
with different tendencies to form disjoint wisps. This approach is very good in
providing the best of both worlds, provided the simulation method conforms to
two conditions.

First, a wisp must use the same mechanical model as a single strand uses,
because with this approach, a wisp is simply a group of strands extrapolated
from one guide. From this, the second condition follows as well: all strands must
be rendered individually. Wisps are only formed visually, they are not represented
as separate objects in the simulation.

This hybrid approach mirrors well how wisps actually form in real hair. How-
ever, recall that the reason we have to resort to such simplifications in the first
place is to reduce the complexity of simulating all strands individually. In a way,
this semi-interpolation method restricts the simplifications we can use to those
which still treat all strands as distinct, just not simulated separately.

Rendering individual strands is much cheaper than simulating them, but it
is still costly. Bearing in mind that our goal is achieving a fast simulation and
display, we want to find a way of representing wisps which will require handling
individual strands neither during simulation nor rendering. We want to model and
render wisps explicitly as first-class objects, not just as a collection of individual
strands.

Our strand simulation model relies heavily on the large eccentricity of the
strand’s cross section, which makes it ill-suited to simulate an arbitrary wisp.
However, recall that in Section 3.2.1 we have shown that in a large class of
hairstyles, hair strands tend to naturally form flat, ribbon-like wisps. We seek to
capture this effect in our simulation.

Our first intuition was that in many aspects, a flat wisp resembles a strand
with eccentricity taken to the extreme: the major axis size would be the wisp
width (usually around 1–2 cm), while the minor axis would represent the wisp
thickness (a few mm at most). This is similar to the strip representation used by
Ward et al. (2003), where a flat subdivision surface is extruded from a dynam-
ically simulated polyline skeleton. However, a quick proof-of-concept implemen-
tation found that representing a wisp this way gives highly unrealistic behaviour
with our model—the entire wisp does not twist the same way a single strand
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Figure 3.14: Flat wisp represented as a quad strip. Rim strands highlighted in
colour.

would. Ward et al. do not account for torsion in their simulation, which is
why their representation does not experience these issues. At the same time,
as we have shown in Section 3.1.2 and elsewhere in this thesis, twist effects are
important for correctly representing all aspects of hair behaviour, especially for
non-straight hair. Abandoning torsion to be able to simulate the wisp as a single
rod is therefore not an option.

Yet we found that with proper rendering, the visual aspect of such a flat wisp
was quite acceptable. Building on these findings, we have devised a proper way
of representing flat wisps. We will detail it in the rest of this section.

Representation

Wisp-based methods normally represent a centre or skeleton of the wisp in their
dynamic simulation. We take a different approach, representing a wisp with two
dynamic strands located at its edges. We call them the rim strands of the wisp.
In formulae, we use the subscript/superscript L or R to denote quantities belong-
ing to the left and right rim strand, respectively. Left and right are arbitrary
identifiers we use to distinguish the strands, and they do not have any specific
relation to the strands’ position on the scalp.

The wisp itself is then represented as the strip between its rim strands; see
Figure 3.14. We define the strands so that they have the same edge lengths. This
makes the wisp a strip of quads, although these are not planar in the general
case.

By observing real-world hairstyles, we’ve found that flat wisps tend to form
in a certain pattern. On the scalp, the wisp is formed from strands whose roots
are arranged in a roughly horizontal line. We mimic this by placing the rim
strands’ roots at nearly identical “latitude” on the scalp, with about 1–2 cm of
“longitudinal” separation. Figure 3.15 shows an example of wisp distribution.
The wisp width, as well as latitudinal variation between the two rim strands, are
parameters of the hairstyle.
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Figure 3.15: Example of flat wisps distributed on the scalp. Each red segment
connects the root points of the left and right rim strand of a wisp.

Rendering

We dynamically simulate the rim strands only, but we want to render the entire
wisp. One advantage of our wisp representation is that it can be rendered in
multiple different ways. We describe them below and provide examples of those
we have implemented.

The simplest form is just to render it as a quad strip textured with a hair
texture. This is by far the fastest approach, although it leaves much to be desired
in terms of visual realism.

A significantly better technique is to actually emulate the individual hair
strands being represented by the wisp. There are different ways to effect this, but
the core principle is the same: in a fragment shader, compute “virtual geometry”
of the hair strands comprising the wisp, and shade accordingly. Figure 3.16 shows
an image rendered using a simple tangent map with random perturbations used
for representing the strands, combined with a visual shader implementing the
hair lighting model of Kajiya and Kay (1989).

Another simple form of representing the non-simulated strands could be based
on the U-shaped strips originally introduced by Liang and Huang (2003) to add
volume to strip-based hair representation. Other options for simulating the vir-
tual strands include procedural computation, potentially influenced by the cur-
rent dynamic state.

An advanced shader-based technique is applying relief mapping (Policarpo
et al. 2005; Policarpo and Oliveira 2006) to the wisp to actually compute the
full virtual geometry, including occlusions and shadows; see Figure 3.17 for an
example. The relief texture can of course be varied by random quantities and/or
fed dynamic data from the simulation.

Finally, if we have the resources to spare, nothing stops us from interpolating
real strands from the rim guides and rendering them as individual strands.

It is also of course perfectly possible to combine one or more of the techniques
mentioned above, such as rendering the wisp using tangent mapping and adding
a few interpolated strands to break uniformity.

Combining the techniques can also be used as a level-of-detail scheme. Generic
level-of-detail approaches, such as those based on distance, performance, or ren-
dered area, can be applied easily. Since we know the topology of the wisps and
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(a) Tangent-mapped wisp (b) Tangent map used

Figure 3.16: Wisp rendered using a tangent map (a). The Kajiya-Kay hair light-
ing model uses the tangent instead of the normal, so this is equivalent to normal
mapping for polygonal meshes. The texture specifies the tangent vector of the
virtual strand in tangent space of the wisp’s segment. The tangent map texture
is shown in (b). Latitudinal component is encoded in the red channel, normal
component in blue. In the real texture, these variations are minor compared to
the longitudinal component; the colours have been scaled to increase contrast for
visualsation.

(a) Relief-mapped wisp (b) Relief map used

Figure 3.17: Wisp rendered using relief mapping (a). A depth map is used for
modifying the 3D position of each fragment by simple ray casting in the fragment
shader. The image was rendered by combining a depth map with the tangent
map from Figure 3.16b. In the depth map visualisation (b), grayscale encodes
depth, with black being closer to the surface. For this visualisation, empty texels
(maximum depth) are rendered in blue instead of white.
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Figure 3.18: Mesh used for rendering a wisp, comprised of triangle fans around
centroids of segments.

their layering within the hairstyle, we can also apply worse rendering to wisps—
or their parts—which are close to the scalp and likely to be obscured by further
hair.

Notice that most of the techniques above treat the wisp as a textured and/or
shaded strip of primitives. While the wisp is essentially a strip of quads, these
are usually not planar, which is a problem when rendering using a rasterisation
library such as OpenGL. We solve this by breaking down each quad into a fan
of four triangles by computing a centroid point for it. The centroid is computed
as a simple average of the four nodes comprising the quad, see Figure 3.18. This
centroid & triangle fan structure is used not only for rendering, but also for
hair–hair collision detection, as we will describe in Chapter 4.

Dynamics

Simply rendering the wisp between the rim strands without modifying their be-
haviour in any way would quickly lead to unsatisfactory results, as the strands
could drift apart or even cross over, which real wisps normally do not do. We
therefore need to introduce a dynamic representation of the wisp as well. Study-
ing the behaviour of real hair in hairstyles which form flat wisps, we’ve made the
following observations:

1. Wisps stretch or compress somewhat in their cross section, and this defor-
mation can vary along the wisp’s length.

2. It is very rare for a single wisp to come apart completely, and usually
requires interaction with an external object such as a comb.

3. Wisps can become entangled with each other, but these tangles are usually
weaker than those which hold the hair strands in a wisp together.

We want to find a model for this behaviour which will capture it with sufficient
accuracy without introducing too much extra work into the simulation. As our
integration method relies on low equation stiffness, we must also choose a model
which will not violate this precondition.

Point 3 concerns interaction between different wisps. It implies that we do
not need to consider wisps merging permanently, but otherwise does not directly

75



(a) (b) (c)

Figure 3.19: Different patterns of wisp springs between nodes of the rim strands,
with springs rendered as white lines.

affect the dynamic model of a single wisp. We therefore defer representing this
behaviour to Chapter 4, where we describe our hair–hair collision handling. To-
gether with point 2, they also tell us that we can generally treat the set of existing
wisps as stable.

We go even further and treat the number, distribution, and identity of wisps
as properties which are defined at initial scene set-up and do not change during
the simulation. This is a simplification to save on having to somehow detect when
wisps merge. Implementing such a merge could also destabilise the simulation.
Once we have prohibited wisps from permanently merging, we also prohibit them
from splitting up as that would then be an irreversible change.

Note that this is a deliberate design decision rather than an essential char-
acteristic of our wisp representation. It would be entirely possible to add wisp
splitting/merging functionality; we simply choose not to do that for performance
reasons. In this, we rely on observations 2 and 3 above as assurance that such
occurrences are rare in real hair and we are thus not missing important behaviour.
We are nonetheless aware that applying this choice does somewhat limit the scope
of situations we can represent; if we were to simulate a hairstyling process, for
example, wisp splitting and formation would definitely have to be added.

Having dealt with inter-wisp behaviour, we still need to find an appropriate dy-
namic model for the wisp itself. We notice that point 1 can easily be modelled
by connecting the rim strands with springs; we call these wisp springs. This ap-
proach is similar to the static links use by Chang et al. (2002), and was partially
inspired by them.

If we keep the wisp springs’ stiffness low, they will allow all the deformations
we want to capture, such as the wisps expanding, compressing, or twisting, while
at the same time preventing the wisp from coming apart altogether. Low stiff-
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(a) (b)

Figure 3.20: Effect of different wisp spring patterns on wisp deformation; the
spring patterns are arranged the same as in Figure 3.19. Notice how the left-hand
wisp “shears” while its springs remain at rest length; this does not correspond to
real hair behaviour. The diagonal springs in the other two configurations lead to
the wisps twisting correctly under the deformation (here, gravity pull). Spring
compression is rendered as a blue tint proportional to the compression, which can
be be observed near the root of the two right-hand side wisps (a). The presence
of latitudinal springs in the right-hand wisp increases its rigidity, causing it to
twist less. This can be best observed in the amount of specular reflection present
in the hair in (b).

ness will also keep the equations integrable with our chosen method. The exact
stiffness value is related to the hair’s tendency to entangle. The rest length of
the wisp springs is computed from the length they achieve when the rim strands
of the wisp are in their rest configuration.

We have experimented with several patterns of connecting the rim strands
with wisp springs; a few notable ones are shown in Figure 3.19. The most basic
configuration simply connects with the same indices (Figure 3.19a); we call such
springs horizontal. This has the advantage of having relatively few springs to
compute; on the downside, it is possible for the wisp to “shear” with the springs
staying at rest length (see Figure 3.20). Such a deformation does not correspond
to real wisp behaviour and disturbs the visual impression from the simulation.
To correct for this, it is advisable to introduce diagonal springs (Figure 3.19b).
The wisp’s shear would compress or expand these; the resisting force they exert
on the wisp leads to a more natural deformation, also shown in Figure 3.20.

It is also possible to combine both of these spring patterns, as in Figure 3.19c.
This increases the overall rigidity of the wisp, so adding the horizontal springs
can be used as an extra parameter controlling behaviour of the simulated hair.
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Next, we formalise the inclusion of wisp springs in the system dynamics. We use
S to denote the set of springs attached to node i. Each spring j in this set has
the following parameters: indices aL

j and aR
j of the nodes connected by the spring,

stiffness kj, and rest length d̂
j

computed as follows:

d̂
j

=
∥∥∥x̂L

aLj
− x̂R

aRj

∥∥∥ (3.173)

Wisp springs are created and attached as part of scene set-up and do not change
during the simulation. We incorporate them into the equations of motion (equa-
tion 3.134) in a straightforward way by adding them to the external force term:

Fsprings
i =

|S|∑
j=1

−kj

∥∥∥∥xL
aLj
− xR

aRj

∥∥∥∥
d̂
j

(
xL
aLj
− xR

aRj

)
(3.174)

The same equation is also used for springs representing mutual entanglement of
two wisps, as discussed in Section 4.2.

3.7 GPU Implementation

One of the goals of our hair animation method is to provide good performance on
hardware on par with a higher-end consumer workstation. Fully programmable
Graphics Processing Units (GPUs) have been a part of this class of hardware for
several years now. These units present a vast resource of floating-point processing
power. Being aware of this, we have designed our method for easy and efficient
implementation on a modern GPU, and proven this concept by implementing a
subset of the simulation as a closed-loop GPU system. In this section, we will
describe the details of this implementation, concentrating on specifics which make
the implementation optimised for the GPU’s computation model.

3.7.1 CUDA

The technology we use to implement our method on the GPU is nVidia’s CUDA.
We give a brief overview of the relevant parts of this framework in this section;
for more information, please refer to (NVIDIA Corporation 2015).

Computation Model

CUDA’s computation model is based on the notion of a kernel, which is a function
started from host (CPU) code, but executed on the GPU (a “device” in CUDA
terminology). Each invocation of a kernel executes the same device code in a
number of device threads. Threads are organised into blocks of one, two or three
dimensions.

The GPU’s cores are grouped into multiprocessors. The exact number of cores
depends on the particular device, usually ranging in the tens. Each thread block
is assigned to one multiprocessor and executes on that multiprocessor only. The
threads in a block all have access to an area of shared memory dedicated to
that block. It is possible for more than one block to be assigned to the same

78



multiprocessor, but the multiprocessor’s resources (registers and shared memory)
have to be split between blocks—resources are allocated to blocks for the entire
duration of the kernel invocation. Using too many resources can therefore reduce
opportunities for parallelism by reducing the number of blocks which can be
assigned to a multiprocessor.

Threads in a block are split into warps for execution. Each warp consists of 32
threads, consecutive within the block structure. In one processing step, all threads
in a warp must perform the same instruction. If that is not possible because
of e.g. branching, some threads are masked out and the divergent branches are
performed sequentially, reducing processor utilisation. It is therefore desirable to
structure code so that branching is aligned with warp size: all threads in a warp
should ideally follow the same branch.

Blocks themselves can be arranged into a one- or two-dimensional grid. This is
largely organisational—while threads within one block can communicate through
shared memory and mutual synchronisation, there is very little synchronisation
possible between threads in different blocks.

Memory Model

There are different memory areas available to device code, with different access
characteristics.

The fastest memory are registers, unique to each thread. The GPU has a
large register pool to support its purpose as a fast massively parallel computing
device. Of similar speed as registers is shared memory, an area accessible to all
threads in a block.

The main memory of the GPU is called global memory. Compared to shared
memory and registers, access to global memory is significantly slower and as such
has to be optimised so as not to degrade overall performance. Alignment and
access locality is also important in global memory, because accesses happen in
transactions. A single transaction generally reads or writes 128 contiguous bytes
from a 128-byte aligned address; details depend on the capabilities of the actual
hardware device. Newer GPUs offer an automatically managed L1 and L2 cache
for global memory.

In addition to these general-purpose memory areas, there are two special types
of memory. Constant memory is a an area of read-only memory optimised for
frequent reads of small pieces of data, with its own dedicated cache; cache misses
have the same latency as global memory. Texture memory is accessed through
the GPUs texturing units. It is cached, optimised for spatial locality of reads,
and can be accessed with automatic linear interpolation in the same way textures
are accessed in graphics processing. Just like constant memory, it can only be
written from host code, and its latency in case of a cache miss is the same as for
global memory.

It should be noted that using graphics interoperability, CUDA allows kernels
both reading and writing access into OpenGL Buffer Objects stored in GPU
memory. Access to these is no different from normal access to global memory.
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Execution Model

While GPUs are programmed in common programming languages (C++ in the
case of CUDA), the underlying hardware architecture is different enough from
today’s CPUs to make it necessary to consider entirely different paradigms with
regards to performance. CPUs generally try to compensate for stalls dues to
branching, memory latency, and similar occurrences by sophisticated instruction
scheduling strategies, out-of-order instruction execution, memory pre-fetching,
branch prediction etc. Basically, a desktop CPU consists of units (or tens at best)
of cores, relying on their sophistication for performance. Similarly, CPU threads
are heavyweight—switching context from one thread to another is generally an
expensive operation which requires saving and restoring register state, memory
maps, and other information.

GPUs take a very different approach. Where a CPU is sophisticated, the
GPU is designed to be simple and streamlined. A GPU processor is a simple
in-order pipeline processor. Any performance benefits which can be obtained by
instruction re-ordering, such as exposing instruction-level parallelism, have to be
discovered and implemented by the compiler when compiling the kernel code.
The GPU itself will execute the code in exactly the order the compiler produced
it.

GPU threads are lightweight as well; the entire system is designed so that a
context switch is an extremely fast operation. All of that is because GPUs follow
a different philosophy regarding latency. They are designed for scenarios where
the number of threads is much bigger than the number of cores, and a lot of
these threads follow the same or very similar paths of execution. The individual
cores are simple, but the GPU derives its performance from the sheer number
of them—hundreds or thousands of cores on a mid-range through high-end GPU
board. Any instruction or memory latency is then masked by switching out the
blocked threads and executing other ones in the meantime. To fully utilise a
GPU, enough threads must always be available for execution to mask latency.

Performance

In summary, these points are important for getting good performance from the
GPU:

� Have enough threads and enough work to do on them to mask instruction
and especially memory latency.

� Access global memory within contiguous, aligned blocks, to prevent access
fragmenting into multiple transactions.

� Minimise access to global memory, preferring storage in shared memory or
registers.

� Organise branching in code to minimise the number of divergent warps
(warps where threads follow different branches).

Adhering to these principles generally requires adapting the block size, for things
like memory access alignment of branch divergence. When constructing blocks,
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resource requirements should also be considered, to potentially allow more blocks
to share a multiprocessor.

While we use CUDA for our implementation, it would be a matter of straight-
forward programming work to port the implementation to a different GPU-
programming API such as OpenCL. The optimisations we have presented in this
section are aimed at GPU architecture in general and are not tailored to specifics
of CUDA in any way. It should be noted that our method is therefore not tied
to a particular API of a particular hardware vendor.

3.7.2 Our GPU Processing Pipeline

We have implemented the basic simulation loop on the GPU, using several ker-
nels (Kmoch et al. 2010). This implementation includes integration of strand
dynamics, constraint enforcement, and updating material frame orientation. All
data required for these computations and for rendering is always present in the
GPU memory. This means that when not considering hair–hair collisions, the
implementation forms a closed-loop GPU system.

We have not implemented hair–hair collision detection on the GPU. Collision
detection is a task which is generally not well suited to the architecture of to-
day’s GPUs, because it necessarily requires accessing data at random locations
in memory. Even so, GPU algorithms for collision detection acceleration do exist
(Le Grand 2007). It should therefore be possible to implement this part of our
hair animation method on the GPU as well, thus arriving at a truly GPU-only
solution. How well the GPU could accelerate collision detection of the many hair
primitives normally found in close proximity during hair simulation would have
to be subject to further investigation.

An alternative approach to this problem would be to utilise the fact that our
simulation uses a short time step (usually 1–2 ms) and perform collision detection
on the CPU in parallel to GPU-based simulation. In effect, the CPU would be
detecting collisions in the system configuration at time tn in parallel to the GPU
computing the new state tn+1. Detected collisions would then be applied to the
next step. This way, collision response would be one step “behind” the simulation,
but thanks to the short time step and thus minor changes in system state in one
simulation step, we would not expect any noticeable artefacts. We have not
implemented this mixed CPU/GPU approach, but believe it viable and consider
it a good direction for future evolution of our method.

In the remainder of this section, we describe our GPU implementation.

Rendering Data

Our GPU simulation is coupled with rendering of individual simulated strands as
camera-facing billboards. Some hair data, most importantly positions of centre-
line nodes, must be shared between the simulation and rendering. Hair shading
also generally requires the directional vector of the strands, so tangents must be
accessible to rendering as well. We store such shared data in an OpenGL vertex
buffer object (VBO) and use CUDA graphics interoperability to access it from
the kernels.
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Figure 3.21: Layout of vertex buffer object storing data which is computed by
the simulation kernels and accessed during rendering. The layout was chosen
to provide a good access pattern to the kernels: the dashed cyan lines indicate
192-byte alignment boundaries which make the data properly aligned both for
CUDA kernel access and OpenGL rendering.

The camera-facing billboard used for strand rendering are computed in the
vertex shader. For this purpose, two geometry vertices are assigned to each
centreline node. During simulation, the coordinates of both of them are updated
to move along with the node.

When rendering, the vertex shader is used to project them using the ordinary
model–view matrix; then, the projected vertices are offset slightly in the projec-
tion plane, providing a very efficient way of obtaining a camera-facing billboard
in the shape of the strand.

In addition to node positions and tangent vectors, this also requires an “offset”
attribute for each vertex. The value of this attribute is −1 or 1 and it controls
the direction of the offset along the x axis of the projection plane. Figure 3.21
describes the data layout of a vertex buffer object used for individually rendered
strands.

Kernel Overview

Computing one simulation step is split into multiple kernels based on thread
configurations and memory size required to compute the necessary pieces of data.
The individual phases are:

1. Integration kernel, which evaluates forces and computes new node posi-
tions.

2. Constraint kernel, which computes the values of constraints and their
gradients. This kernel is called once for each constraint enforcement itera-
tion (see below).

3. Curvature binormal kernel, which computes curvature binormals, their
gradients, and the gradient of holonomy.
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4. Twist kernel, which computes twist and updates the material frame.

5. Bending kernel, which computes bending.

6. Bending gradient kernel, which computes bending gradient.

Each of these kernels is described in more detail below. For each of them, we
specify its interface: Arguments describe value objects (such as a scalar or a
float3 object) which are passed as parameters directly to the kernel. Inputs are
data stored in device memory, which the kernel reads through pointers passed as
parameters. Outputs are likewise stored in device memory, but we use it for data
which the kernel writes into memory. It is perfectly possible for a kernel to both
read and write the same data, in which case we list it in both inputs and outputs.

Integration Kernel

Arguments: ∆t,g
Inputs: x, ẋ,ω, ω̂,B, l,∇ω
Outputs: x, ẋ

The integration kernel evaluates forces acting on the strand and integrates the
equations of motion, computing the (unconstrained) position and velocity of
nodes. Each thread block computes one strand. Block size is 3 × (N + 2),
so that each thread deals with one component of a node’s position or velocity
(which are vectors of size 3). A thread computing the c-th coordinate of node i
thus computes the c-th coordinate of the force using equation 3.104:

∇iUJcK =
N∑
k=1

1

l̂k

k∑
j=k−1

(
∇iω

j
k

)T

Jc 0, c 1K Bj
(
ωjk − ω̂jk

)
(3.175)

There are two interesting points in this kernel, both related to memory organiza-
tion. The kernel’s input consists of these arrays: bending ωji , rest-state bending

ω̂ji , bending matrices Bj and domain length l̂i; 13N + 22 floats in total. If we
make use of the symmetry of Bj, we reduce the size to 12N+21 floats. By loading
a float4 per GPU thread, the entire block can read 12N + 24 floats from global
memory in parallel. So storing this data in one continuous array for each strand
leads to efficient, fully coalesced reads.

The kernel also reads (∇iω
k
j )

T
, a 3D array of 3 × 2 matrices, which doesn’t

fit into shared memory. However, we notice that each element of (∇iω
k
j )

T
is used

by exactly one thread, and exactly once (the c-th thread of node i uses the c-th
row once for each j and k). Therefore, when arranged correctly, the elements can
be read directly from global device memory when needed. Coalesced reads are
achieved by storing the gradient as a 4D array of float2 rows, with dimensions
sorted like this, from the fastest varying index to the slowest: column, i, j, k.
Note that this is the opposite of the “natural” storage of a 4D array.
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Constraint Kernel

Arguments: ∆t,H2

Inputs: x,‖ê‖2

Outputs: CI,CH, (∇C)T ,M−1 (∇C)T

The constraint kernel is called once for each iteration of constraint enforcement;
inextensibility constraints (equation 3.126) and equality-based hair–head colli-
sion constraints (equation 3.147) are supported. Each thread block computes one
strand. Block size is 3 × (N + 2); the motivation is that each thread can com-
pute one component (column) of the constraint gradient matrix ∇C. The kernel
starts by computing the values of all constraints and comparing them against the
convergence threshold. Logical and is applied to the results of these comparisons
via parallel reduction. If all constraints are satisfied, the kernel terminates.

Otherwise, the kernel computes matrices which will then be used by the linear
equation solver. The fist of these is the matrix of constraint gradients ∇C of size(
N +|P|

)
× 3 (N + 2). Notice that while the number of columns of the matrix

is fixed, the number of its rows is not known when the kernel starts, because
it depends on the number of nodes which collide with the head (these collisions
are detected by the kernel itself while computing constraints). To access the
matrix in a coalesced manner, however, we would need neighbouring threads to
access neighbouring matrix rows. For this reason, the kernel actually computes
the transpose of the constraint gradient matrix, (∇C)T. At the same time, the
premultiplied matrix M−1 (∇C)T is also computed.

It is for this computation that the size of the block was chosen, because
3 (N + 2) is the number of the matrices’ rows. This is important, as the matrices
are only written to once and therefore stored directly in global memory. Aligning
the block size with matrix size thus allows the threads to fill the matrices in a
simple loop with perfectly coalesced memory accesses.

When this kernel finishes execution, two outcomes are possible. One is that the
kernel exited early because all constraints were satisfied (beneath the convergence
threshold). In such case, constraint enforcement is over.

The other possible outcome is that at least one constraint was violated, in
which case a step of minimisation must be performed. We do this using CULA3,
a GPU implementation of the LAPACK linear algebra library. Remember that
all matrices involved are already present in the GPU memory, having just been
computed by this kernel.

Curvature Binormal Kernel

Arguments: none
Inputs: x,‖ê‖
Outputs: κb,∇κb,∇Ψ

In addition to computing curvature binormals, this kernel takes advantage of the
fact that it has curvature binormal data in shared memory, and also computes
other quantities for whose computation curvature binormal is one of the inputs.

3http://www.culatools.com
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Each thread block computes one strand; block size is 3 × (N + 2), so that each
thread deals with one component of a node’s position.

The kernel runs in three phases. In the first one, κb and ∇κb are computed
(using equation 3.75 and equations 3.110–3.112) and stored in shared memory.
In the second phase, ∇ψ is computed using equation 3.77 and stored in shared
memory as well. The data is laid out so that ∇ψ is at the start of shared memory,
with curvature binormals and their gradients following. Finally, κb and ∇κb are
written to global memory.

The third phase computes ∇Ψ. The only input to this computation is ∇ψ,
stored at the start of shared memory. The kernel therefore re-uses all shared
memory space beyond that to store the large 2D array which is ∇Ψ. When
computed, it is written to global memory.

Notice that ∇ψ is never needed outside of this kernel and is thus never stored
in global memory.

Twist Kernel

Arguments: none
Inputs: x,u0

1, t
0, κb, τ̂

Outputs: u0
1, t,m1,m2

The twist kernel computes the material frame, using the original version of the
algorithm from (Kmoch et al. 2009). Each thread block computes one strand,
with block size 3×(N+2): one thread for each component of a 3D vector assigned
to a node or an edge.

The kernel starts by updating the Bishop axis u0
1 at the root based on the

value of t0 from the previous integration step using equation 3.80. The rest of
the Bishop frame is then computed into shared memory; it is local to this kernel.

With the Bishop frame ready, tangents are computed and the algorithm for
computing θ is applied. Finally, m1 and m2 are computed, and all output data
written to global memory.

Bending Kernel

Arguments: none
Inputs: κb,m1,m2

Outputs: ω

The bending kernel is extremely straightforward, computing bending using equa-
tion 3.82. Each thread block computes bending for one strand. Block size is
3× (N + 2), to guarantee coalesced access to input data.

Recall that for each node i, there are two bending vectors ωi−1
i and ωii. Being

2-vectors, they are stored in memory as one float4 vector.
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Figure 3.22: Hair simulated and rendered by our GPU implementation.

Bending Gradient Kernel

Arguments: none
Inputs: κb,m1,m2,ω,∇Ψ
Outputs: ∇ω

The bending gradient kernel computes∇ω. We’ve introduced the optimum mem-
ory layout for it when discussing the integration kernel. Each thread block com-
putes one strand. In this kernel, we use 3-dimensional blocks of 3×3×Z threads.
The 3× 3 part of the block size is related to the structure of ∇κb data—for each
j, k pair, there are only 3 values of i such that ∇i (κb)k j is non-zero (per equa-
tions 3.110–3.113); this is covered by one block dimension. The other is simply
for working with 3-dimensional vectors.

The entire 4D array of 2-dimensional vectors which stores ∇ω does not fit
into shared memory and is too large to be computed by block threads directly,
which means iteration in the kernel is necessary. The thread block dimension Z
is therefore chosen for maximum utilisation. On CUDA devices with block size
limited to 512 threads, maximum Z is 56 (as 3× 3× 57 = 513 > 512). On newer
compute capabilities, the maximum value of Z is 64 (which is the maximum z
size of a thread block). ∇ω is then computed in blockwise iteration, Z columns
at a time.

Discussion

Our implementation serves to demonstrate that the method we have chosen is
suitable for implementation on the specific architecture of modern GPUs. While
not fully optimised, it does outperform our CPU implementation on larger scenes,
where the massively parallel nature of the GPU pays off. Figure 3.22 shows
several screenshots from an animation computed and rendered fully on the GPU;
hair–hair collisions are not detected.
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Chapter 4

Handling Hair–Hair Collisions

In Section 3.2, we have discussed how important collective hair effects are in
shaping overall hair behaviour. The most important of these effects is the constant
contact between individual hair strands. We capture a lot of these effects in the
very efficient abstraction of combining hair strands into flat wisps instead of
simulating their contact individually. The wisps themselves are still subject to
collisions, however, and we need to handle these. We present our method in this
chapter.

4.1 Flat Hair Wisps

In Section 3.2.1, we have presented our observation that in a large class of
hairstyles, hair strands tend to clump into more or less flat wisps. We will elab-
orate on it here, because it forms a cornerstone of our collision handling scheme.
The core observation is that hair tends to form “layers” or “sheets” on the head,
in effect clustering along the latitudinal direction. These layers are then usually
broken down into wisps along the longitudinal direction. While these are not
perfectly flat, their longitudinal dimension is much larger than their cross-section
thickness. See Figure 4.1 for examples of hairstyles where this phenomenon oc-
curs. Notice that these cover a large class of hair varieties—long and short,
straight and wavy.

For our hair–hair interaction scheme, we restrict ourselves to hairstyles com-
posed entirely from such flat wisps. Furthermore, we take the wisps as primitives
of our simulation; they are created as part of model set-up and we do not allow
them to form up or split during simulation runtime. This is certainly a simpli-
fication, but it allows us simulate a full hairstyle efficiently. Importantly, this
simplification is not arbitrary, but based on modelling an actual phenomenon
readily observed in real hair.

Our method is not the first one to use triangle or quad strips in hair simulation;
similar approaches have been taken by Daldegan et al. (1993), Chang et al.
(2002), Liang and Huang (2003), and Ward et al. (2003). However, to the best
of our knowledge, we are the first to use them for modelling actual behaviour
of real hair, as opposed to just an arbitrary model reduction. This is reflected
in capturing the wisp behaviour in the dynamics of the simulation, and in our
specific collision responses presented later in this chapter.
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Figure 4.1: Various hairstyles showing flat wisp formation1.

4.1.1 Representation for Collision Detection

Our representation of these flat wisps was sketched out in Section 3.6.3. For
the purposes of simulating dynamics, the wisp consists of a pair of rim strands
connected by springs. For collision handling, we want to view the wisp as a
continuous strip delimited by the rim strands, like a ribbon. Edges of the rim
strands form natural segmentation of the wisp; segment i is formed by the four
vertices xL

i , xL
i+1, xR

i+1, xR
i .

Because the rim strands are only loosely coupled through wisp springs but
otherwise act independently, the segments of the wisp are seldom planar. Indeed,
they are a simplification of the actual shape of hair strands comprising the wisp,
each of which deforms slightly differently. The overall shape remains that of a thin
wisp, but that while we describe the wisps as “flat,” they are not 2-dimensional.
Their thickness is small compared to their longitudinal size, but still non-zero.
To model wisp interactions accurately, we need to capture the shape and volume
of the wisps somehow. Because we only compute dynamics of the rim strands,
our simulation does not provide us with any information about the shape of the
hair strands between the rims. We therefore need to approximate it somehow.
We however know that it will roughly remain a flat wisp. We therefore create

1Image sources and licenses:

� Top left-hand image: By joshuaBentley, licensed under Creative Commons BY-
ND-2.0, taken from https://www.flickr.com/photos/joshwachaos/281027390/in/

photostream/.

� Bottom left-hand image: By Carlos Espinoza Leon, licensed under Creative
Commons NC-BY-SA-3.0 , taken from http://desmatrix.deviantart.com/art/

Flowing-hair-exercise-134659516.

� Middle image: By Girls hair, licensed under Creative Commons BY-SA-3.0, taken from
http://commons.wikimedia.org/wiki/File:Beautiful_healty_hair.JPG.

� Right-hand image: By Titus Tscharntke, in the public domain, taken from http://

commons.wikimedia.org/wiki/File:Blonde_hair_detailed.jpg.
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Figure 4.2: The skeleton structure of a wisp segment.

a skeleton structure for the wisp; first, the centroid point of each segment is
computed:

ci =
1

4

(
xL
i + xL

i+1 + xR
i+1 + xR

i

)
(4.1)

The skeleton for the segment then consists of a fan of four triangles sharing the
centroid as their apex (see Figure 4.2a). We introduce names for the individual
triangles comprising a segment (see also Figure 4.2b):

Triangle Name

4xL
i c

ixR
i root triangle

4xL
i+1c

ixL
i left triangle

4xR
i+1c

ixL
i+1 tip triangle

4xR
i cixR

i+1 right triangle

Notice that we consistently mark the triangles in counter-clockwise order when
looking down the negative minor axis of the wisp, with tangent pointing down
(this orientation is also used in Figure 4.2).

Chang et al. (2002) also use triangle strips between simulated strands for
collision handling. For them, however, the strip is an auxiliary data structure
representing non-simulated hair in an abstract way. Hair–hair collisions are cap-
tured by detecting collisions between the auxiliary triangle strips and individual
strands, even those interpolated for rendering only. The triangles thus serve as a
purely abstract representation of some volume of non-simulated hair. We take a
different approach, treating the triangle strip as a concrete representation of a flat
wisp of hair. This is also reflected in the fact that we detect collisions between
these wisps as first-class participants, where Chang et al. (2002) use triangle
strips just to simulate strand–strand collisions in an accelerated way. For this,
we also assume the wisps to have volume.

To model this fact that the wisp has non-zero thickness, the actual represen-
tation of the wisp is obtained as a swept-sphere volume of the skeleton triangles:
centre a sphere of a given radius on each point within the triangle, and take the
convex envelope of this set of spheres. The resulting shape is depicted in Fig-
ure 4.3. These sphere-swept triangles are used as the wisp’s representation for
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Figure 4.3: Sphere-swept triangle, the basic primitive comprising the collision-
handling representation of wisps. The corresponding skeleton triangle is shown
at the centre in dotted line.

collision detection. We use σi to denote the radius of the sphere swept around
triangles in segment i. This radius can vary along the wisp, normally getting
smaller closer to the tip. Different wisps can naturally use different radius values.

There are two reasons why we have chosen this representation. The major
one is computation efficiency of collision detection. Determining whether two
sphere-swept triangles intersect is equivalent to finding the distance between the
skeleton triangles, which is a reasonably efficient operation.

The second reason is related to rendering. As we’ve discussed in Section 3.6.3,
many ways of rendering wisps need to represent them as triangle meshes, so it
is advantageous if we can reuse elements of the representation both for collision
detection and rendering. The easiest way to triangulate a non-planar quad is
to choose a diagonal and form two triangles from the quad. However, this has
the downside of being asymmetric—the representations of the same segment with
the other diagonal chosen can be quite different. See Figure 4.4 for an illustra-
tion. Additionally, the centroid-based representation is always smoother than the
diagonal-based one. As we know, the wisp stays largely flat during motion, so
the smoother representation is also more accurate.

We are fully aware that it is still only an approximation, though. It will
smooth out any minor “creases” in the wisp’s shape. For example, if the two
edges comprising the segment lie in the same plane, the segment will lie in that
plane as well, even if the corresponding wisp would arch in its cross section a bit
(see Figure 4.5). We choose to ignore this drawback, because we perceive it as
minor. The wisp width is generally small enough that the neglected deformations
are small as well, and our simulation does not give us any indication of actual
wisp shape in between the rim strands anyway. Furthermore, it should be noted
that such deformations are only ignored for collision detection purposes. It is still
perfectly possible to render the wisp as arched, using virtual geometry techniques
such as normal or relief mapping.

The radius of the swept spheres corresponds to thickness of the wisp. Notice
that the spheres extend to the sides of the triangles as well as above and below
them, so the wisp representation is effectively wider than the distance between
the rim strands (by this small margin of half the wisp’s thickness). We accept
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Figure 4.4: Splitting a segment into just two triangles can give vastly different
results based on segment diagonal chosen: (a), (b). Splitting using the centroid
guarantees consistency: (c). A rather extreme deformation of the segment is
depicted, to make the difference obvious.
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Figure 4.5: If the segment edges are coplanar, the segment is considered flat for
collision detection purposes (a), even if real hair in the wisp would arch out of
the plane (b).
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this slight imprecision for sake of efficiency. The collision detection computation
(presented in Section 4.1.2) is substantially simplified by using a sphere-swept
volume without exceptional cases. Do not forget that the whole wisp model is a
simplification in the first place. It even makes more sense to base the movement
of the entire wisp on strands which are not on the absolute edge of the wisp,
where they could be more easily influenced by neighbouring hair. Treating the
rim strand as slightly inside the wisp, where the wisp interaction dominates, is
consistent with the model.

4.1.2 Detecting Collisions

With the wisp representation in place, we have to actually detect when collisions
between wisps occur. Because the wisps are generally long and flexible, we have
to account for the wisp looping back and colliding with itself as well.

To accelerate collision detection, we use a hierarchy of bounding volumes con-
structed over the wisp’s segments. We use axis-aligned bounding boxes (AABBs)
in our implementation, but any other collision detection acceleration structure
could be used as well. An axis-aligned bounding box is defined as a rectangular
cuboid whose edges are parallel to axes of the coordinate system. It is uniquely
defined by two points amin and amax on opposite ends of its body diagonal, such
that amin ≤ amax component-wise.

Our choice of AABBs was motivated by their efficiency: both in terms of
update and intersection testing. The trade-offs AABBs normally make for fast
update and testing is a lot of false positives, i.e. occasions when the boxes intersect
but their actual contents don’t. Tighter bounding volumes generally offer less
false positives at the cost of computationally more intensive intersection testing
and updates. However, we notice that hair tends to be in very tight contact, with
many wisps close to each other. We can therefore see that false positives are very
likely to occur with all but the tightest-fitting bounding volumes, whose cost to
compute an intersection or update could easily be prohibitive in our scenario of
short time steps.

Still, we try to minimise false positives by making use of these specifics of
hair when constructing the AABB hierarchy. We start by creating an AABB for
each triangle of each segment. Then we build a binary hierarchy above them
recursively, creating a parent AABB par encompassing its two children 0 and 1:

(
∀i ∈ {0, 1, 2}

) apar
minJiK = min

{
a0

minJiK, a
1
minJiK

}
apar

maxJiK = max
{
a0

maxJiK, a
1
maxJiK

} (4.2)

On the first level above triangles, we consistently group the root and left triangles
under one parent and the right and tip ones under another, but this choice is
arbitrary.

The hierarchy is constructed as part of scene set-up and its structure is not
modified during simulation, to keep its update fast. The positions and dimensions
of the bounding boxes are updated in each simulation step, but the parent-child
relationships between the bounding volumes stay the same.

As we have mentioned, hair is constantly in close proximity. Furthermore, the
length of a wisp is generally much larger than its width and thickness. Above a
certain level in the hierarchy, the AABB contains a large length of the wisp and it
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(a) Unaligned (b) Aligned

Figure 4.6: Examples of commonly-occurring wisp collision configurations. In
both cases, the wisps collide with their flat sides. In (a), strands in the wisps
are not mutually aligned, resulting in a blocking or sliding collision. In (b),
the strands are aligned and so tangling occurs. Notice how the entangled wisps
penetrate each other to some degree.

is generally so big that intersection is pretty much guaranteed to occur for nearby
wisps, making the test pointless. We therefore limit the maximum height of the
hierarchy; at the very high levels, the AABBs are just too huge to be useful.

We process the hierarchy using a standard recursive descent algorithm (Eberly
2005, pp. 540–553). On the lowest level, we have to determine whether the wisp
representations actually intersect. This is where our choice of sphere-swept trian-
gles for representation pays off. Let us assume we’re currently processing triangles
4i and4j from segments i and j. The two sphere-swept triangles intersect if and
only if the distance between the base triangles is less than σi + σj. This is equiv-

alent to stating that the square of the triangles’ distance is less than
(
σi + σj

)2
.

Such reformulation is significant, as it can save us from having to compute a
square root to get the final distance, which is a computationally expensive op-
eration compared to most normal floating-point operations such as addition or
multiplication (Eberly 2015).

In our implementation, we use the software library Wild Magic (Eberly 2015)
for computing the squared distance dist2

(
4i,4j

)
between the triangles. Then,

if dist2
(
4i,4j

)
<
(
σi + σj

)2
, we mark both the triangles and their containing

segments as in collision.
Collision detection is performed once in each simulation step, after equations

of motion were integrated but before constraint enforcement occurs. The reason
is that we use constraints to handle certain types of collisions, as presented in
Section 4.3.

4.1.3 Collision Classification

We’ve shown in the preceding section how we detect when two wisp segments
collide. For individual strands, a collision would mean they have penetrated each
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other, a physical impossibility which would have to be corrected. In the case of
wisps, the matter is not so clear-cut.

Remember that our wisp model is an abstraction for many hair strands close
together, without specifics on where each individual strand is within the triangle-
based wisp representation. So we must determine what happens when two such
wisps come in contact with one another.

We have made several experiments with a synthetic-hair wig, analysing the
outcomes of wisps colliding under different velocities and angles. Results of these
match anecdotal observations we’ve made of real hair. The factor determining
the outcome of such a collision is mutual orientation of the colliding wisps.

One possible mutual alignment is depicted in Figure 4.6a. The wisps come in
contact through their flat sides, and the strand directions are not aligned. In such
case, the wisps will slide over each other. One can potentially push the other if
it has much larger energy on impact, but otherwise they just act as a barrier for
themselves and once they separate, there is no lasting effect of the collision.

In the same flat side contact, if the strands of the two wisps are aligned in a
roughly similar direction, a very different effect is observed (shown in Figure 4.6b).
The individual hair strands from the two wisps entangle, forcing the wisps to stick
together and follow each other during movement. Note that we have observed
that during casual hair movement, this effect is temporary—the strands are not
entangled so strongly as to merge the wisps, and sufficient separation can cause
them to disentangle and move freely again.

It is also possible for the flat side of a wisp to come up against the rim of
another one, or vice versa. In such case, the outcome again depends on the
relative orientation of strands inside the wisps. If they are aligned, the wisps will
entangle slightly. If they are not aligned, they simply block each other, but can
slide along themselves or move apart easily.

There are two more configurations possible, which occur very rarely in real
hair motion. The tip of one wisp can move against the flat side or rim of another.
In such case, the wisps do not entangle readily. Our explanation is that doing so
would require force acting along the length of the strands in the first wisp. Given
the relatively low effective bending stiffness of a single hair strand, the strands
bend under this force instead of being pushed into the other wisp and becoming
entangled. Almost no entanglement is observed in a tip–flat side contact, and
only minimal one in case of a tip–rim contact.

We need a way to capture these different responses in our model. Analysing
the different scenarios presented above, it becomes clear that the primary factor
responsible for the collision response quality is mutual strand orientation. When
the wisps entangle, the degree to which they do so depends somewhat on the
configuration of the collision (whether it’s a flat–flat or a flat–side contact), but
this effect is no prominent and is hard to measure. As a simplification, we there-
fore choose to ignore it altogether and use just two possible responses to a wisp
collision:

� The strands are aligned, which means the wisps entangle and should affect
each other during movement.

� The strands are not aligned, which means the wisps can not come closer to
each other than they are now, but are otherwise not restricted in movement.
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A similar collision classification scheme is used by Bertails et al. (2003) and Ward
and Lin (2003).

For each collision, we need to decide which response to apply. Let use assume
a collision of a triangle from segment i with a triangle from segment j; these
can come from different wisps or even from the same wisp, if it loops unto itself.
We first compute how well the strands in the colliding segments are aligned.
The cosine of their angle is a good enough measure of this, and very efficient to
compute:

Ai,j = ti · tj (4.3)

The actual measure of how aligned the strands are is then
∣∣Ai,j∣∣. We need a

threshold for this value. Below the threshold, the strands are not aligned and the
wisps should block; above the threshold, the strands are aligned and entangling
should occur. This threshold is a parameter of the simulation, related to the
collective properties of the hair we simulate. Clumpy hair with tightly-pressed
strands in a wisp is less likely to entangle than more loose hair. The composition
of the wisp is also a factor. For this reason, we actually assign a potentially
different value of this entanglement threshold to each wisp, within a range of
values based on the hairstyle properties. We then average these thresholds before
comparing with the alignment from equation 4.3.

There is an imprecision here in that we’re averaging the cosines instead of the
angles, but these thresholds are largely empirical values anyway, so this matters
little. Furthermore, the threshold angles are usually in the

[
π/6, π/3

]
range,

where the discrepancy between the angle and its cosine is less pronounced.
Handling collisions of wisps with aligned strands (alignment value above the

threshold) is described in Section 4.2. Unaligned collisions are the subject of
Section 4.3.

4.2 Aligned Collisions

In this section, we describe how we handle collisions where the strands in the
colliding wisps are aligned. Let us assume the colliding segments are i and j, the
colliding triangles being 4i = 4aic

ibi and 4j = 4ajc
jbj. In both triangles, a

and b are nodes from one or both rim strands of the respective wisp. An aligned
collision occurs when

∣∣ti · tj∣∣ is above the tangle threshold. Such collisions result
in the two wisps entangling.

4.2.1 Representing Entanglement

When two wisps entangle, they start to move in a joint fashion—not only can
they not move closer together, as in the case of a blocking collision, but each one
is also able to pull the other to a certain degree. Vastly different influences (such
as being actively pulled apart) can of course disentangle the wisps and make them
behave independently again, but subjected to less dramatic effects, the entangled
wisps tend to drag one another along.

Our model already contains a representation for entangled hair—the wisps
themselves. Recall these are just an approximation of a clump of hair sticking
together because of mutual entanglement. Wisps are represented as sphere-swept
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Figure 4.7: Springs representing entanglement of two wisps, created as a reaction
to an aligned collision. Springs in rest-state length are rendered in white. Red and
blue are used for springs extended or compressed, respectively, with saturation
proportional to the deformation size.

triangles for collision detection, but for dynamics, which is the important part
here, the tangle effect is captured by the springs connecting the rim strands of
the wisp.

Springs have a number of advantages. They are simple to set up and fast to
evaluate; and most importantly, they readily represent all the interactions we need
for entangled wisps. They allow one to pull the other along when moving, and
prevent the colliding wisps from coming closer together. Furthermore, springs are
not a “hard” effect, but a gradual one. This again matches behaviour of entangled
wisps, where the effects of interaction are also “fuzzy.” We therefore choose
springs to model wisp entanglement caused by aligned collisions. Figure 4.7 shows
the tangle springs resulting from the aligned collision depicted in Figure 4.6b.

4.2.2 Attaching Springs

To use springs, we have to attach them to something. This is not straightforward,
because our dynamics only works on the nodes of the wisps’ rim strands. But
the collision we have detected is between two triangles, one from each wisp. In
each of these triangles, two vertices are nodes of a strand and the third one is the
centroid of the segment.

The simplest solution would be to attach a spring to the centroids of the
colliding segments, but segment centroids are not simulated dynamically, so they
cannot be subject to spring forces. What we do instead is attach springs to the
nodes which form the vertices of the colliding triangles.

For this, we have to correctly identify which node to connect with which. This
depends on which triangles make up the collision we’re processing, and the mutual
orientation of the wisps in the place of collision. For the purpose of this discussion
of mutual wisp configuration, we recognise two flavours of triangles: we will refer
to root and tip triangles as transverse triangles and to left and right triangles
as longitudinal triangles (refer to Figure 4.2b for the triangle name definition).
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Figure 4.8: Possible configurations of colliding triangles. Projected 4ajc
jbj

is shown in grey; where unambiguous vertex correspondence can be found, it is
marked in dotted lines.

Notice that each triangle shares two sides with triangles of flavour opposite to
itself; this fact will be important in the discussion below.

To match up the nodes correctly, we need to (virtually) map them to a com-
mon reference frame. For this, we take the following mental exercise (note that
the transformations described are done purely for the purpose of discussion and
do not happen in code). We start by projecting one of the triangles into the plane
of the other; their relationship is symmetric so the choice of triangle to project is
arbitrary and does not affect the result. Without loss of generality, let us assume
we project 4j into the plane of 4i. Then, we translate the projected 4j so that
the projected cj becomes collocated with ci.

Because we’re dealing with an aligned collision, the two triangles will be
roughly “adjacent” to each other if they are of different flavours (one transverse
and one longitudinal), and they will be roughly “overlapping” or “opposite” if
they are of the same flavour. See Figure 4.8 for examples. We can see that in
the same-flavour case, an unambiguous way exists to establish simple correspon-
dence between the two triangles’ vertices (also depicted in Figure 4.8). In the
case of different-flavour triangles colliding, there is no obvious reason to prefer
one pairing over another, and neither of them promises consistent and satisfac-
tory behaviour. The choice faces the same problems as trying to triangulate a
segment into two triangles (as discussed in Section 4.1.1 and Figure 4.4).

However, by analysing the situation further, we find that we can safely ignore
collisions of a transverse triangle with a longitudinal one, without losing any
information from the wisps’ contact. The reason is simple: on and near the
triangle’s sides, the sphere-swept volume of the triangle overlaps the sphere-swept
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volume of its neighbouring triangle sharing the same side. Geometrically, the
only way in which 4i could collide with 4j without colliding with any of 4j’s
neighbour triangles is for a vertex of 4i to be within the collision distance of the
internal area of 4j. But there are two sides of 4i which meet at the vertex, and
least one of them will be shared with a triangle of a flavour different from that of
4i, that is, the same as the flavour of 4j. Which means that that triangle will
also register a collision with 4j, and that collision will involve two triangles of
the same flavour.

We have now determined which vertex to join with which in the projection.
However, we still need to determine which unprojected vertex corresponds to the
projected one, which depends on the wisps’ mutual orientation in 3D space. For
this, we count the number of flips required to align the projected 4j to 4i. Each
of these counts as one flip:

� 4i and 4j have different names (e.g. 4i is a tip triangle and 4j is a root
one)

� The wisps point in opposite directions: Ai,j < 0 (equation 4.3)

� The wisps are touching with opposite flat sides:(
ti ×

(
xR
i − xL

i

))
·
(

tj ×
(
xR
j − xL

j

))
< 0

The term ti ×
(
xR
i − xL

i

)
represents the “normal” of the flat side of the wisp at

segment i.
When the number of flips is even, the triangles are aligned in the projection

plane and we attach one spring between ai and aj, and another spring between
bi and bj. If the number of flips is odd, the triangles are opposite each other in
the projection plane and the attachments are as follows: ai with bj, bi with aj.
Care has to be taken not to attach a second spring between two nodes if they are
already connected by one.

The rest length of the spring is set to its length at creation time, i.e. when the
collision first occurs. Depending on the current deformation of the colliding wisps,
it is possible for the triangles to collide on one end, while their vertices on the other
end are quite distant from each other. Introducing tangle springs between such
widely separated nodes would give unnatural-looking results of wisps behaving as
entangled even when they are visually far apart. To prevent this, we introduce a
maximum length of tangle springs, and simply do not create springs whose rest
length would exceed this maximum. The value can vary between wisps and it
is related to the “fuzziness” of the wisp—the higher the rest length allowed, the
more likely the wisp is to tangle. This corresponds to a less compact wisp, with
more hair sticking out.

At scene set-up, each wisp is also assigned a value for tangle stiffness. This
value is inversely proportional to the wisp’s tangle threshold—the less likely a
wisp is to entangle, the easier it is for it to disentangle again, which means that
its tangle stiffness is lower. The stiffness of the actual spring being created is
then the average of the tangle stiffness values of the colliding wisps.
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4.2.3 Spring Management

Once the spring is created, it becomes part of the simulation starting in the next
time step (remember that collision detection follows after integration).

As we’ve stated in our observations in Section 3.6.3, wisp entanglement is
temporary. If their motion forces the wisps sufficiently apart, they disentangle.
To model this effect in our simulation, we compare the tangle spring’s length to its
rest length at the beginning of each time step, and if it past a certain threshold,
we remove the spring.

Suddenly removing a spring which was considerably elongated (and thus ex-
erted considerable force) could easily introduce instabilities and unrealistic effects
into the simulation. To remedy this, it is possible to use an approach introduced
for solving a very similar issue by Bando et al. (2003). The effective stiffness of
the spring is scaled by a reciprocal of its elongation, which means that it gradually
becomes weaker as it extends. This helps keep the simulation stable, prevents
undesired motion artefacts, and realistically models the entanglement weakening
as the wisps pull farther apart and more and more strands come loose from the
other wisp. Note that no stiffness scaling should be applied in case the spring
compresses—a steady response is desired in such case, preventing the wisps from
coming too close together.

4.3 Unaligned Collisions

This section is dedicated to the description of handling collisions in which the
strands of the colliding wisps are not aligned. We again assume the colliding
segments are i and j, and the colliding triangles4i = 4aic

ibi and4j = 4ajc
jbj.

A collision is unaligned when
∣∣ti · tj∣∣ is below the tangle threshold. Such a collision

means the wisps physically block each other’s movement, without entangling.
This means that the wisps should be prevented from moving closer to one

another, without otherwise restricting their movement (they are free to slide
along each other). Worded differently, their movement in the direction to each
other is constrained. This suggests we could model these unaligned conditions as
constraints and use our constraint-enforcement mechanism to resolve them.

4.3.1 Hair–hair Collision Constraints

A collision is detected when the swept-sphere volumes associated with the two
triangles intersect. As we’ve covered in Section 4.1.2, this can be reformulated

using (squared) distance of the triangles: dist2
(
4i,4j

)
<
(
σi + σj

)2
. We use

this formulation as the basis; ideally, we would like the constraint to be:

dist2
(
4i,4j

)
−
(
σi + σj

)2

= dist2
(
4aic

ibi,4ajc
jbj

)
−
(
σi + σj

)2

≥ 0 (4.4)

We will now show that while achieving this exact formulation would be imprac-
tical, we can use it to guide us to a working solution.

dist2
(
4i,4j

)
depends on all vertices of both the triangles. However, the

centroids ci and cj are not subject to dynamics and therefore cannot directly
participate in constraint enforcement. Instead, their coordinates depend on all
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four nodes comprising their respective segment. This means that the condition
expressed in equation 4.4 depends on 8 nodes in total. Most importantly, however,
these nodes come from two rims of two wisps—four distinct strands in total (or
two, in the case of a wisp’s self-collision).

Directly implementing this constraint would therefore force us to combine
constraint enforcement of the involved strands into one set of equations. This
would be a fundamental change to our method, which has so far been able to
process each strand independent from all other strands. Furthermore, since each
wisp normally collides with several other wisps, it is perfectly possible that the
transitive closure of the collides-with relation would be the entire hairstyle. Recall
from Section 3.5.4 that constraint enforcement requires repeated solution of a
system of equations whose size depends on the number of nodes and constraints
involved. Trying to do this for the entire hairstyle at once would far exceed
the memory and computation power available. We have to find an alternative
formulation of the constraint which will enable us to keep processing each strand
separately.

Equation 4.4 considers both triangles reacting to the constraint simultane-
ously. We will first introduce a simplification which allows separate handling for
each wisp. When processing 4i, we will treat 4j as fixed in space, and vice
versa. During such processing, we use the term active to refer to the wisp whose
constraints are being enforced; the wisp treated as fixed is called blocking.

The active/blocking distinction basically transforms the constraint like this:

dist2
(
4aic

ibi,4ăj c̆
jb̆j

)
−
(
σi + σj

)2

≥ 0

dist2
(
4ăic̆

ib̆i,4ajc
jbj

)
−
(
σi + σj

)2

≥ 0
(4.5)

We again use the notation introduced in Section 3.5.4: z̆ refers to the uncon-
strained value of vector z, that is, the value after integration but before constraint
enforcement.

Equation 4.5 allows us to treat each wisp independently, but the two rim
strands of each wisp are still connected in these equations. As the next step,
we treat ci as an independent variable, ignoring its dependence on the strands’
nodes. This amounts to fixing its position:

dist2
(
4aic̆

ibi,4ăj c̆
jb̆j

)
−
(
σi + σj

)2

≥ 0

dist2
(
4ăic̆

ib̆i,4aj c̆
jbj

)
−
(
σi + σj

)2

≥ 0
(4.6)

Notice that this has already solved our problem when the triangle we’re solving
for is longitudinal (as defined in Section 4.2.2). In such triangles, both ai and bi
are nodes of the same strand.

For transverse triangles, we apply the same trick once more, considering the
position of the node from the other strand fixed. This is what the constraint
formula looks like when 4i is a root triangle, that is, when ai = xL

i and bi = xR
i :

dist2
(
4xL

i c̆
ix̆R
i ,4ăj c̆

jb̆j

)
−
(
σi + σj

)2

≥ 0 (4.7)

Thus, we have transformed a joint constraint for 8 nodes from 4 strands into a
set of 2–4 constraints for 1–2 nodes each, each constraint limited to one strand.
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The next problem we have to tackle is the fact that to enforce the constraints,
we need to be able to express their gradient as well as their value. Computing the
distance of two triangles has no nice closed-form solution to differentiate, which
makes a triangle-based formula unsuitable for our purposes. Our goal is therefore
to transform the constraints into expressions for which computing the gradient
efficiently is possible.

Let us deal with transverse triangles first (equation 4.7). We take another
simplification and base the constraint on the distance from 4j to the node in-
volved on segment i, rather than to the entire triangle 4i. Equation 4.7 for the
root triangle thus becomes:

dist2
(
xL
i ,4ăj c̆

jb̆j

)
−
(
σi + σj

)2

≥ 0 (4.8)

For the tip triangle, xL
i+1 appears instead of xL

i .
For longitudinal triangles, where both non-centroid vertices of the triangle are

nodes of the same strand, we formulate the constraint as the distance between
4j and the edge connected by these nodes. For the left triangle, the formula is
as follows:

dist2
(
xL
i x

L
i+1,4ăj c̆

jb̆j

)
−
(
σi + σj

)2

≥ 0 (4.9)

These simplifications actually weaken the constraints, but we find the imprecision
is acceptable given the overall “soft” nature of hair.

We still cannot apply these constraints in this form, though. At the mo-
ment the collision is detected, the triangles are already closer to each other than(
σi + σj

)2
, which means the nodes in question could be closer as well. However,

due to the way we handle inequality constraints, they must never actually be
violated. The slack variable corresponding to a violated inequality constraint
would be negative. The objective function (given in equation 3.152) contains the
logarithm of each slack variable, so it would not be well-defined in such case.

We solve this by dropping the swept-sphere radius term from the constraints,
simply constraining the nodes not to touch the triangle. This basically turns
the hard constraint into a soft one: it allows the wisps to penetrate each other
slightly, but the closer the skeleton triangles get, the more the collision constraint
will dominate the objective function. This in turn causes constraint enforcement
to drive them away from each other more strongly.

While the primary motivation here is implementation validity, it does actually
capture a real phenomenon in hair. When wisps get into an unaligned collision,
they can compress somewhat; they are not a rigid shape. In our simulation
model, this translates to the skeleton triangles getting closer to each other, which
is precisely what these relaxed constraints allow. This further vindicates the
simplification to node- and segment-based constraints. It is even possible to
store information about the depth of penetration with the wisps and use it during
rendering to compress the virtual shape of the wisp.

Putting this all together, we arrive at the following collision constraint formu-
lae for the left rim strand participating in collision of triangle 4i:

CC4
i,4j

=


dist2

(
xL
i ,4ăj c̆

jb̆j

)
4i is root triangle

dist2
(
xL
i x

L
i+1,4ăj c̆

jb̆j

)
4i is left triangle

dist2
(
xL
i+1,4ăj c̆

jb̆j

)
4i is tip triangle

(4.10)
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Figure 4.9: Figure (a) shows difference between node–triangle distance (red) and
node–plane distance (blue). Figure (b) demonstrates movement of node x which
moves it further from the triangle, but closer to the plane. When such movement
occurs, it is incorrectly penalised by the simplified node–plane distance constraint.

Constraints for the right rim strand and for the other wisp’s strands are con-
structed analogously.

We have implemented these constraints, again using the Wild Magic library
(Eberly 2015) to compute the constraint values. For computing gradients, the
formulae were obtained by symbolic differentiation, and the computation itself
implemented based on the same principles as Schneider and Eberly (2002) use
for computing point–triangle and segment–triangle distances.

This approach works, but the amount of computation required to evaluate a
collision constraint and its gradient is disproportionate to that required by other
types of constraints. Inextensibility constraints (equation 3.126) and hair–head
collision constraints (equation 3.161), as well as their gradients (equation 3.170),
require little more than a dot product. In comparison, the distance-based colli-
sion constraints presented in equation 4.10 require substantial computation and
branching (Schneider and Eberly 2002).

Given the fact that hair wisps are far from rigid, it is a question whether such
constraint accuracy at a cost of substantially more computation is necessary. Let
us analyse the situation in which collision constraints apply, and see whether we
can devise a suitable simplification.

Collision constraints are effected by unaligned wisp collisions—flat sides of
two unaligned wisps collide, or the flat of one wisp perpendicularly hits the rim
of another. In both of these cases, the desired outcome is the same: the affected
segments of the wisp should not be allowed to move closer to the other wisp.
In the equations above, we have represented this as the node/segment in ques-
tion not coming closer to the other wisp’s segment triangle. We now consider
what the effect would be if we broadened the constraint to be the distance be-
tween the node/segment and the entire plane of the triangle (demonstrated in
Figure 4.9a). This way, the constraint is stronger—there are some trajectories
for the node/segment which bring it closer to the plane without approaching the
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blocking triangle, as shown in Figure 4.9b. Most of these trajectories correspond
to the active wisp bending over the blocking one. This is behaviour we would not
want to lose, as it is readily observable in real hair.

Fortunately, it turns out that the behaviour is preserved even when using
the entire plane as the source of the constraint. The reason is the fact that
the collision is unaligned. The wisps’ tangents are therefore close to orthogonal,
which means segments adjacent to the colliding ones are unlikely to be in collision
as well. They can therefore move freely, which allows the wisps to bend over each
other. It is important to bear in mind that while we use the entire plane as the
constraint, it is still only the colliding node to which the constraint is applied.
Nodes not participating in the collision can move towards the constraint plane
uninhibited.

The complexity of computing the distance between a point and a plane is
comparable to that of other constraints in the system, which was our goal. We
can thus safely use it as the constraint value for latitudinal triangles, from which
only one node on each strand participates in the collision.

The direct equivalent for longitudinal triangles would be the distance be-
tween the plane and the edge connecting the triangle’s vertices. Unfortunately,
this would again bring undesired complexity to the constraint computation—
computing the distance between a plane and a line segment requires branching,
which leads to complexity in computing gradients. Constraint enforcement is an
iterative process, which means constraints and their gradients are evaluated mul-
tiple times in each simulation time step; we therefore want these calculations to
be as straightforward as possible. For this reason, we add one more simplification.
When a collision of a longitudinal triangle 4i is first detected, we compute the
distance of both the nodes on 4i (its non-centroid vertices) from the blocking
plane, and treat only the closer one of them as participating in that collision.
This is computed once and does not change as long as that particular collision
(triangle–triangle pair) lasts. We find that this simplification does not degrade
the simulation behaviour in any perceivable way. If the difference between the
nodes’ distances from the plane is large (that is, the edge is more or less or-
thogonal to the plane), changes in the distant node’s position will not affect the
triangle’s distance from the plane. Conversely, if the nodes are roughly equidis-
tant from the plane (the edge being close to parallel to the plane), the farther
node is likely to be involved in another collision with the same blocking wisp as
well, which can provide a constraint for it also.

With all these simplifications in place, each unaligned collision is represented
by 2–4 constraints based on point–plane distance, one constraint for each partic-
ipating strand. We now present the relevant formulae, again assuming an active
triangle 4aic

ibi colliding with a blocking triangle 4ăj c̆
jb̆j. The collision plane

is defined as follows:
Pi,j =

{
z : Ni,j

P · z−Di,j
P = 0

}
(4.11)
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When the collision is detected, the plane’s normal vector Ni,j
P and absolute

term are computed from the triangle:

Ni,j
P =

(
ăj − c̆j

)
×
(
b̆j − c̆j

)
∥∥∥∥(ăj − c̆j

)
×
(
b̆j − c̆j

)∥∥∥∥ (4.12)

Di,j
P = Ni,j

P · c̆j (4.13)

These are updated once each time step, during collision detection. The values
are then used for that time step’s constraint enforcement.

The collision constraint itself is then pretty straightforward. Similar to equa-
tion 4.10, we present formulae for the left rim strand of triangle 4i:

CC4
i,4j

=


Ni,j

P · xi −Di,j
P 4i is root triangle

Ni,j
P · xi+1 −Di,j

P 4i is tip triangle

Ni,j
P · xi −Di,j

P 4i is left triangle, xi is closer Pi,j

Ni,j
P · xi+1 −Di,j

P 4i is left triangle, xi+1 is closer to Pi,j

(4.14)

Denote the participating node as xk; the constraint gradient is simply the collision
plane normal:

∇kCC4
i,4j

= Ni,j
P (4.15)

4.3.2 Constraint Conflicts

When we’ve implemented the above mentioned collision constraints for the first
time, we’ve observed frequent instabilities in the constraint enforcement system.
We’ve traced these to a conflict between hair–head and hair–hair collision con-
straints. When hair wisps stack on top of each other on the head, the bottom
wisp is subject to a constraint from the head which prevents it from moving down,
and to a constraint from its collision partner which prevents it from moving up.
This leads to instabilities or convergence failures.

To alleviate this issue, we introduce a thin proximity zone around the head,
inside which unaligned collisions are considered a one-way interaction. That is,
when two wisps collide in an unaligned way inside this proximity zone, the colli-
sion constraint is only applied to the top wisp. The bottom wisp is not considered
constrained and can move towards its collision partner if enforcement of head
collision constraints requires it. Zone thickness on the order of millimetres has
proven sufficient to eliminate this problem. Any wisp interpenetration artefacts
which can result from these one-way collisions are generally obscured by higher
layers of hair.

A wisp “sandwiched” between two other wisps does not cause the same insta-
bility issues, because hair–hair collision constraints are soft in nature: constraint
enforcement causes both wisps to move away from the collision, something which
is not possible when colliding with the immovable head.
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Chapter 5

Results

5.1 Method Summary

This section describes both hair animation systems we have developed based on
our method. Two distinct systems were developed as proof that our method does
not depend on any particular underlying system. They also helped to test appli-
cability of the hair bending principle (introduced in Section 3.1.2) independent
of other features of our method (such as flat wisps).

Throughout the previous chapters, the order in which we have presented the
individual parts of our hair animation method was driven by the context required
for introducing and explaining them. In this section, we repeat them in the order
they are executed at runtime.

5.1.1 Simplified Super-Helices

Our first hair animation method is based on the Super-Helix discretisation of
Kirchhoff rod theory presented by Bertails et al. (2006). We have presented it in
Sections 3.3 and 3.4.

The strand being simulated is discretised into N helical segments. Each seg-
ment Q is parametrised by its twist τQ and bending ωQ; bending happens over
the major axis of the cross section. These 2N variables are gathered into vector
q and form the dynamic variables of the system.

System initialisation consists of setting the initial values of generalised coor-
dinates q and generalised velocities q̇ which correspond to the initial shape and
movement of the hair.

The equations of motion, formulated using Lagrangian mechanics, are given
by equation 3.40. The mass matrix is dense and depends non-linearly on q, which
makes the solution rather costly.

After each step of the integration, if rendering is requested, the shape of the
strand must be reconstructed. This means performing the process from Sec-
tion 3.3.3 (with equation 3.43 applied) to compute x, t,m1, and m2. Reconstruc-
tion is also necessary if collision handling is required.

105



5.1.2 Explicit Hair Strands

The method we present here is based on the Discrete Elastic Rod model of Bergou
et al. (2008). We have previously described it in Sections 3.5, 3.6, 3.7, and
Chapter 4.

The simulated strand is discretised into a polyline of N + 1 edges e0 . . . eN .
The nodes of the polyline, x0, . . . ,xN+1, form the dynamic variables of the sys-
tem. Material frame orientation is assigned to edges and expressed as a single
scalar θ, the angle of rotation around the tangent between the material frame
and a canonical Bishop frame at the edge. This material frame orientation is
computed quasistatically after each integration step and is not a free variable in
the equations of motion.

For each strand, scene set-up requires setting the initial position xi and ve-
locity ẋi of each node i. The Bishop frame axes at the root segment u0

1 and u0
2

are initialised with the material frame axes m0
1 and m0

2 at the root segment, and
the rest of the Bishop frame is computed using parallel transport (Section 3.5.3).

For strands which form rims of flat wisps (Section 3.6.3), wisp springs are
attached to their nodes and the springs’ stiffness coefficients k and rest lengths
d̂ are initialised. In our implementation, we also compute the bounding volume
hierarchy of axis-aligned bounding boxes over wisps at this point (Section 4.1.2).

Simulation Loop

With the set-up complete, the simulation loop then proceeds as follows:

1. For all strands, compute all constituent terms of the equations of motion:

1.1. (∀i) compute curvature binormal (κb)i from ei−1, ei using
equation 3.75.

1.2. (∀j) compute Bishop frame u1, u2 from t0, e0 using equations 3.80
and 3.63.

1.3. Compute material frame (θ, m1, m2) using algorithm presented in
Section 3.6.1.

1.4. (∀i)
(
∀j ∈ {i− 1, 1}

)
compute bending ωji from (κb)i, mj

1, mj
2 using

equation 3.82.

1.5. (∀i) compute curvature binormal gradients ∇i−1 (κb)i, ∇i (κb)i,
∇i+1 (κb)i from (κb)i, ei−1, ei using equations 3.110–3.112.

1.6. (∀i) compute holomy gradients ∇i−1ψi, ∇iψi, ∇i+1ψi from (κb)i,
ei−1, ei using equation 3.77.

1.7. (∀i) compute gradients of total holonomy ∇iΨ
i−1, . . . ,∇iΨ

N from
∇iψi−1, ∇iψi, ∇iψi+1 using equation 3.78.

1.8. (∀i, k)
(
∀j ∈ {k − 1, k}

)
compute bending gradient ∇iω

j
k from mj

1,

mj
2, ∇i (κb)k, ω

j
k, ∇iΨ

j using equation 3.105.

2. Compute new velocities ẋ and positions x of all strands by integrating the
equations of motion (equation 3.134) using values computed in step 1. This
includes evaluation of external forces such as gravity and springs.
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3. Perform collision detection, as described in Section 4.1.2. This includes
updating the bounding volume hierarchy.

� For all aligned collisions, introduce collision springs into the dynamic
system (Section 4.2).

� For all unaligned collisions, register collision constraints into the con-
straint enforcement system (Section 4.3).

4. Enforce constraints on each strand:

4.1. Compute values of constraints for inextensibility (equation 3.126),
hair–head collisions (equation 3.161) and hair–hair collisions (equa-
tion 4.14).

4.2. If all constraint values are below the convergence threshold, proceed
to step 4.6.

4.3. Compute constraint gradient matrix (equations 3.170 and 4.15).

4.4. Compute one step of Newton minimisation (equations 3.159 and 3.160).

4.5. Return to step 4.1.

4.6. If any minimisation steps were computed, update velocities using equa-
tion 3.172.

5.2 Evaluation

In this section, we evaluate the results of using our explicit method for simulating
a variety of scenarios summarised in Table 5.1. The basic set-up is always the
same: a number of wisps is distributed in a uniform pattern with random jittering
applied (an example distribution is shown in Figure 3.15). Parameters of the
wisps such as thickness and wisp spring stiffness, as well as parameters of the
strands such as length, cross-section scale and initial material frame orientation
are randomly varied as well. Figure 5.1 shows screenshots from two tests of
scenario F1.

All data presented here was obtained by running our implementation on a
system with an Intel®Core�2 Quad 2.66 GHz CPU with 8 GB of RAM.

Table 5.2 lists the performance we have measured in the basic scenario of hair
falling under gravity. One fact is immediately obvious from the table: for these
scene sizes, the method does not run in real-time, and collision detection is the
bottleneck. This happens to be an unfortunate artefact of our implementation.

The axis-aligned bounding box hierarchy in the way we have implemented
it (Section 4.1.2) is clearly insufficient as an acceleration structure for collision
detection in our case. However, it is important to bear in mind that the method
of collision detection is not coupled to our animation method in any way. For
us, collision detection is merely a tool which we use as a “black box” to obtain
the list of colliding wisp triangles, on which we then apply our method’s specific
collision handling. We apparently chose the wrong tool for the job; unfortunately,
we have not been able to implement a better collision detection method due to
time constraints. Still, we feel that this does not invalidate our method itself—
if a more efficient collision detection mechanism was put in place instead of the
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Figure 5.1: Screenshots from two tests of scenario F1.
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Scene Shape Length Wisps Segment
length

Nodes

F1 straight 30 cm 120 1 cm 7440
F2 straight 30 cm 60 1 cm 3720
F3 wavy 30 cm 60 1 cm 3720
F4 curly 30 cm 60 1 cm 3720
R1 straight 30 cm 60 2 cm 1920
R2 straight 30 cm 15 2 cm 480
R3 straight 50 cm 15 1 cm 1530
R4 wavy 30 cm 15 2 cm 480
R5 curly 30 cm 15 2 cm 930
I1 straight 15 cm 10 1 cm 320
I2 straight 30 cm 2 1 cm 124
I3 wavy 30 cm 6 1 cm 372

Table 5.1: Our test scenes. F scenes feature a full head of hair, and are intended
to measure our method’s performance on a plausible representation of a normal
hairstyle. R scenes use a reduced set of hair; they can be used for comparison
with F scenes to assess impact of scene complexity on performance. They also
showcase some parameter variations which are easier to test and evaluate in a
reduced scene. Finally I scenes were chosen of a size which offers interactive rates
with our method.

Scene Int. CD CR Const. Update Total
F1 47.88 1123.77 5.63 38.07 26.18 1239.60
F2 23.59 240.70 1.04 19.20 13.06 297.13
F3 23.58 241.72 1.14 20.49 13.19 299.81
F4 23.85 241.82 0.87 18.91 13.11 294.50
R1 6.28 130.89 0.50 5.04 5.29 148.24
R2 1.45 9.37 0.04 1.42 1.35 13.63
R3 15.35 9.28 0.02 14.70 6.68 46.09
R4 1.36 1.12 0.01 1.10 1.38 4.96
R5 1.23 8.75 0.03 1.30 1.30 12.63
I1 0.68 2.50 0.01 1.01 0.80 5.03
I2 0.57 0.48 0.00 0.78 0.38 2.22
I3 1.90 0.65 0.00 2.30 1.27 6.15

Table 5.2: Average time taken in each scenario by different parts of our simu-
lation. Times are given in milliseconds. Times include random user interaction
(rotating the head) in I scenes. The columns give times for different stages:
Int.—computing forces, integrating node velocities and positions. CD—collision
detection and update of AABB hierarchies. CR—collision response, i.e. regis-
tering collision constraints or creation of collision springs. Const.—constraint
evaluation and enforcement, including velocity update. Update—Bishop frame
and material frame update, plus computing bending and holonomy gradients for
the next integration step.
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Scene Int. CR Const. Update
F1 41.3% 4.9% 32.9% 22.6%
F2 41.8% 1.8% 34.0% 23.1%
F3 40.6% 2.0% 35.3% 22.7%
F4 45.3% 1.7% 35.9% 24.9%
R1 36.2% 2.9% 29.0% 30.5%
R2 34.0% 0.9% 33.3% 31.7%
R3 41.7% 0.1% 39.9% 18.1%
R4 35.4% 0.3% 28.6% 35.9%
R5 31.7% 0.8% 33.5% 33.5%
I1 26.9% 0.4% 39.9% 31.6%
I2 32.8% 0.0% 44.8% 21.8%
I3 34.5% 0.0% 41.8% 23.1%

Table 5.3: Average time taken by each stage as percentage of total step duration*.

current one, no other part of our simulation would have to change and all collision
responses could be applied exactly as they are now. With this in mind, for the
rest of this chapter, we will not consider the time spent on collision detection
and AABB hierarchy update when evaluating the performance of our method.
To avoid an unintentionally misleading impression, all total times from which
collision detection is excluded are marked with an asterisk*.

Table 5.3 presents the simulation step times in relative form as percentage
of the total duration of the step. The relative effect of constraint enforcement
is higher in the I scenes because the interaction was geared towards making the
wisps collide with each other or slide along the head. Unsurprisingly, the effect
of collision response is closely related to the density of hair in the scene.

In Table 5.4, we present the time required for features unique to our method.
This means the time to compute spring forces arising from both wisp and tangle
springs. The time taken by our twist computation is also shown. The data shows
that our twisting algorithm is largely linear in the number of nodes in the scene.

5.3 Conclusion

In this thesis, we have presented a novel method of dynamic hair animation which
specifically exploits properties and behaviour of real hair to improve both realism
and efficiency. At the core of our method is the observation of Swift (1995) that
due to its elliptical cross section, human hair bends preferably over its minor
cross-section axis. This property influences twisting and bending behaviour of
hair, including curliness. To the best of our knowledge, no existing hair animation
method makes explicit use of this behaviour.

We have shown how this observation and its implications can be applied to
a theoretical model of hair. We have further demonstrated this application in
practice on two different approaches to simulation, an implicit representation
model by Bertails et al. (2006) and an explicit approach by Bergou et al. (2008).
We have thus obtained two distinct animation models both utilising our method’s
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Scene Springs /Int. Twist /Total* /Nodes
F1 2.81 5.9% 3.96 3.4% 5.32
F2 0.95 4.0% 1.96 3.5% 5.27
F3 1.20 5.1% 2.09 3.6% 5.62
F4 1.13 4.7% 2.06 3.9% 5.54
R1 0.50 7.9% 1.04 6.0% 5.42
R2 0.13 9.0% 0.27 6.3% 5.63
R3 0.28 1.8% 0.78 2.1% 5.10
R4 0.10 7.3% 0.29 9.2% 6.04
R5 0.10 8.1% 0.28 7.2% 3.01
I1 0.06 8.8% 0.18 7.1% 5.63
I2 0.04 7.0% 0.07 4.0% 5.65
I3 0.08 4.2% 0.21 3.8% 5.65

Table 5.4: Time spent on computing spring forces and our twisting algorithm,
given in milliseconds. The time for spring forces relative to the whole integration
stag is also given, and likewise the relative effect of our twist computation on
total step time. The last column is twist computation relative to the number of
nodes, scaled by a factor of 104 for presentation purposes.

core principles. This proves that our approach is independent of the underlying
simulation principle, making it applicable to a wide range of scenarios.

In addition to the bending behaviour mentioned above, we have identified
other phenomena commonly found in real hair which can be used to improve ani-
mation, namely tendency of hair to form flat wisps. Incorporating this behaviour
is easier with an explicit representation, so we have applied it to our method
based on explicit rods. This improves the method by reducing the number of
primitives which must be simulated to obtain satisfactory visual results.

In addition, we have proposed a new natural and efficient collision response
mechanism for hair–hair collisions, based on the same phenomenon of wisp for-
mation. This mechanism was also demonstrated in our explicit animation model.

Our explicit approach is designed with considerations for today’s massively
parallel architectures such as GPUs. We have proven this concept by implement-
ing the core part of our simulation on the GPU. We have also proposed how this
implementation could be extended to a closed-loop GPU system or to a system
where the CPU and GPU collaborate for maximum performance.
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