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(Foody and Mathur, 2004). 
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ABSTRACT 

Meadow vegetation in the Krkonoše Mountains National Park is classified in this master thesis 

using aerial hyperspectral data from sensor AISA and Support Vector Machines (SVM) and Neural 

Networks (NN) classification algorithms.  

The main goals of the master thesis are to determine the best settings of SVM parameters and 

to propose an ideal design for a training dataset for this classification algorithm and mapping of the 

meadows in the Krkonoše mountains. The criterion of the tests will be the result of classification 

accuracy (confusion matrices and kappa coefficient). The additional goal of the master thesis is to 

compare performances of both utilized classifiers, especially regarding the amount of training pixels 

necessary for successful classification of the mountainous meadow vegetation. 

Classification maps of the area of interest and Python scripts are the main outputs of the 

master thesis. These outputs will be handed over to the Administration of the Krkonoše Mountains 

National Park for further utilization in the monitoring and protecting these valuable meadow 

vegetation communities. 

 

Key words: hyperspectral data, AISA, Support Vector Machines, Neural Networks, training dataset, 

mountainous meadow vegetation 

 

ABSTRAKT 

Tato diplomová práce se zabývá vyuţitím leteckých hyperspektrálních dat senzoru AISA a 

klasifikačních metod Support Vector Machines (SVM) a Neural Networks (NN) pro mapování lučních 

společenstev v Krkonošském národním parku. 

Hlavní cíle práce jsou experimentální určení nejlepší kombinace parametrů algoritmu SVM, a 

navrţení ideálního trénovacího datasetu pro tento algoritmus a krkonošská luční společenstva. 

Kritériem úspěšnosti jednotlivých kombinací parametrů SVM a trénovacích datasetů jsou výsledky 

posouzení přesnosti klasifikace pomocí confusion matic a kappa koeficientu. Kromě hlavních cílů je 

účelem práce také porovnání klasifikačních algoritmů SVM a NN, především co se týče počtu 

trénovacích pixelů potřebných pro úspěšnou klasifikaci horských luk. 

 Hlavními výstupy práce jsou klasifikační mapy zájmových území a skripty v jazyce Python, 

které budou předány Správě KRNAP pro další vyuţití v monitoringu a ochraně cenných lučních 

společenstev. 

 

Klíčová slova: hyperspektrální data, AISA, Support Vector Machines, Neural Networks, trénovací 

dataset, horská luční vegetace  
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1. Introduction 

Mountainous ecosystems with plant communities are very sensitive indicator of global 

climate change and should be monitored. Moreover the variety of biotic and abiotic factors 

causes a diverse mosaic of habitats leading to high biodiversity and occurrence of endemites. 

That is the reason why such areas are often protected. Such precious areas should be also 

mapped often and thoroughly because the information can be used for their suitable 

management (Marcinkowska et al., 2014). Meadows in the Krkonoše mountains are, thanks to 

the specific type of their management, an example of such diverse ecosystem and they are one 

of the most precious ecosystems occurring in the Krkonoše mountains. Almost one third of all 

the species of original vegetation of the Krkonoše mountains can be found here, including 

endemites like Campanula bohemica (Pomahačová, 2012). However for maintaining such 

diverse biotope, it is necessary to continue with or re-establish regular mowing, grazing and 

other types of managements which help to maintain high biodiversity. In this matter it is also 

important to control if the planned management activity was realized or not and to map if it 

had any effect on the vegetation communities. Nevertheless due to low accessibility of terrain, 

very short vegetative season and unstable weather conditions mapping of the vegetation and 

its state are often constrained or even impossible using traditional, field mapping techniques 

(Jakomulska et al., 2003). Moreover visual mapping of vegetation in the field can be biased 

by subjectivity of a human factor. Therefore the techniques of remote sensing, which are not 

biased neither by human factor nor limited by terrain, are highly suitable for mapping of these 

valuable areas. In addition remote sensing measurements are repeatable under relatively same 

conditions (e.g. same area and same sensor) and in a comparison with the traditional field 

mapping also in a short time.   

Meadow vegetation in the Krkonoše mountains is classified in this master thesis using 

aerial hyperspectral data and learning machine algorithms. The work is focussed mainly on 

the SVM classifier, but also NN classifier was utilized in the classifications. The main goals 

of the master thesis are to determine best setting of SVM parameters and to propose ideal 

design for a training dataset for the classification of the meadows in the Krkonoše mountains. 

Also the finding of Foody and Mathur (2004, 2006), that the SVM algorithm is able to 

classify datasets with the same or higher accuracy when border training pixels are used 

instead of the conventionally chosen ones (e.g. randomly sampled pixels) will be tested. The 

criterion of tests will be the result of classification accuracy. Results of these experiments 
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could be also used in the future as guidelines for field mapping, to limit extensive whole-area 

mapping to only “hot spots” (e.g. boundaries or centres of polygons). The additional goal of 

the master thesis is to compare performances of both utilized classifiers. Based on the studied 

literature, SVM classifier is anticipated to perform better than NN classifier and to achieve 

comparable accuracies of classification as NN classifier but with less training samples used. 
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2. Theoretical background 

2.1 Remote sensing of vegetation 

Vegetation is present on the majority of Earth’s surface and together with physical 

environmental variables influences ecosystems and climate. Therefore vegetation is often 

subject of remote sensing. The reason, for which vegetation is so precious land cover type is 

photosynthesis. Photosynthesis takes place in chloroplasts, special lens-shapes structures in 

the palisade layer of leaves, where Chlorophyll molecules are located. Chlorophyll is the 

green pigment that is responsible for green colour of vegetation and also, absorbing sunlight, 

makes photosynthesis possible to happen (Campbell and Wynne, 2011). 

 Alongside pigments and other chemical substances present in leaves (nitrogen, 

cellulose, water, lignin etc.) also structure of leaves and their interaction with electromagnetic 

radiation influence spectral behaviour of vegetation (Jensen, 2007). 

As plant usually has a bunch of leaves and plants are further grouped into 

assemblages, spectral properties of vegetation are also affected by interactions between 

leaves, stems and other components of these assemblages or canopies (Jones and Vaughan, 

2010). Therefore it is important to distinguish between spectral behaviour of a leaf, a canopy 

or the whole community of plants.  

 

2.1.1 Spectral properties of a leaf 

The chemical composition of a leaf, especially photosynthetic pigments, determines its 

spectral properties in the visible part of spectrum (Jones and Vaughan, 2010). Regarding 

healthy leaves, chlorophylls are the most significant of all the photosynthetic pigments. 

However chlorophylls do not absorb all parts of visible spectra equally, their molecules 

preferentially absorb at blue and red wavelengths of spectrum (Campbell and Wynne, 2011; 

Jones and Vaughan, 2010).  They may absorb as much as 70–90% of incident light in these 

regions (Campbell and Wynne, 2011).  The carotenoids (lutein and ß-carotene) and 

xanthophylls (violaxanthin and zeaxanthin) extend absorption of a leaf in blue – green region 

of visible spectrum. As leaves senesce in autumn or as a result of environmental stress, 

concentration of chlorophyll decreases and the photosynthetic pigments that absorb in blue – 

green part of spectrum (carotenoids, xanthophylls and anthocyanins) become more apparent. 

Therefore leaves change their colour in autumn or when subjected to environmental stress 

(Jones and Vaughan, 2010).  
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Fig. 1: Spectral features of key components of leaves. Absorption by chlorophyll-a,chlorophyll-b, lutein and 

lycopene (a) and ß-carotene, Violaxanthin, Neoxanthin and a-carotene (c). Graphs b and d show absorption of 

different components scaled according to their typical concentrations in a leaf. Graph e shows comparison of the 

absorption of leaf water (solid line) and pure water (dashed line). Graph f shows absorption coefficients for leaf 

protein (dashed line) and cellulose together with lignin (solid line) (Jones and Vaughan, 2010). 
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The absorption of key pigments in visible spectrum to NIR is in fig.1, the specific 

absorption peaks of main absorption features are in the table 1. 

 

Table 1. The most significant absorption features related to leaf components (Jones and Vaughan, 2010). 

Chemical Wavelength (nm) 
Electronic transition or bond 

vibration 

Chlorophyll 430, 460, 640, 660 Electronic transitions 

Water 970, 1200, 1400, 1940 O-H bond stretching 

Protein, nitrogen 1510, 2180 
N-H stretching and bending, 

C-H stretching 

Oil 2310 C-H stretching and bending 

Lignin 1690 C-H stretching 

Cellulose and sugar 1780 - 

 

 

 
 

Fig. 2.: A spectral curve of a leaf (Jensen, 2007). 
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In the near infrared spectrum, reflection of the leaf is controlled neither by pigments 

nor by other chemical substances (Jones and Vaughan, 2010) but by the structure of the 

spongy mesophyll tissue (Campbell and Wynne, 2011) and other components in plant cell 

walls (Jones and Vaughan, 2010). As the cuticle and epidermis are almost completely 

transparent to IR radiation, only small portion of it is absorbed internally and the majority of 

it is either reflected or transmitted. Consequently NIR reflectance of healthy leaves is very 

high (Campbell and Wynne, 2011). 

 

The sharp change in absorption / reflectance of a healthy leaf between visible and NIR 

(around 700 nm) is called red-edge and is the most important spectral feature in remote 

sensing of vegetation in general (Jones and Vaughan, 2010). Apart from separating vegetated 

areas from non-vegetated (Campbell and Wynne, 2011; Jones and Vaughan, 2010), this 

feature plays the key role also in discrimination between plant communities and single species 

(Campbell and Wynne, 2011). However its precise allocation on a spectral curve is possible 

only using hyperspectral data (Jensen, 2007). 

   In contrast to visible region of spectrum, water is the dominant chemical contributor 

to the radiative properties of vegetation in short-wave infrared (SWIR) (Campbell and 

Wynne, 2011; Jones and Vaughan, 2010). According to Jones and Vaughan, water absorbs 

strongly at wavelengths longer than about 1100 nm (Jones and Vaughan, 2010) but according 

to Campbell and Wynne the absorption occurs at even longer wavelength (about 1300 nm) 

(Campbell and Wynne, 2011). Jones and Vaughan further specify the absorption bands of 

water as: c.1450 nm, 1950 nm and 2500 nm (Jones and Vaughan, 2010), which is in 

agreement with Jensen 2007 (Fig.2).  

 

2.1.2 Spectral behaviour of canopies – “hotspot” phenomenon  

Regarding spectral behaviour of canopies, we cannot consider only interaction of 

incidence radiation with leaves but also with steams and other canopy elements (e.g. 

underlying soil) of canopies. Canopy reflection is also influenced by scattering of radiation 

and secondary and tertiary interactions between its components at different levels of the 

canopy. These depend on the detailed architecture or spatial organization in relation to the 

angular distribution of the incident radiation and the orientation of a sensor (Jones and 

Vaughan, 2010). 



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

16  

 

 

Consequently, the scaling up of information from single leaves and other canopy parts 

to derive the radiative properties of whole canopies is a complex task (Jones and Vaughan, 

2010).  

Important features of canopies are shaded areas (Campbell and Wynne, 2011; Jones 

and Vaughan, 2010). Vegetation canopies are composed of many separate leaves varying in 

their size, orientation, shape and coverage and leaves (and other components) are further 

assembled into many layers, of which the upper ones form shadows that mask the lower ones 

(Campbell and Wynne, 2011). Therefore the overall reflectance of a canopy is a combination 

of reflectance of its elements (leaves, stems etc.) and reflectance of shadows (Campbell and 

Wynne, 2011; Jones and Vaughan, 2010). Shadowing tends to decrease canopy reflectance 

bellow the values normally observed in the laboratory for individual leaves. As a result, the 

reflectance of a canopy is considerably lower than reflectance measured for individual leaves 

(Campbell and Wynne, 2011). 

 

Fig.3: An aerial image of a vineyard from a balloon, showing the changing brightness of the image (Jones and 

Vaughan, 2010). 

 

Moreover, shadows in canopies in connection with the changing of viewing and 

illumination angles cause also another phenomenon, called “hotspot phenomenon” (Fig.3). In 

the fig.3 we can clearly see, that vegetation nearer to the hotspot (the area around the shadow 

of the balloon) displays higher brightness than the vegetation further from the hotspot. The 
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reason for this is increasing ratio of shadows to vegetation visible, as one moves away from 

the hotspot (Jones and Vaughan, 2010). 

The origin of bidirectional pattern of reflection (BR) from a plant canopy is illustrated 

in fig 4. Fig. 4 shows a situation when an array of plants is illuminated by direct sunlight. As 

plant canopies are complex three dimensional structures, some proportion of a canopy is in 

direct sunlight while some is in shadow. The proportions of sun and shade change with the 

view and illumination angle. When we look at a surface (canopy) with the sun behind us, 

majority of a surface is sunlit, but when we look at it while looking towards the sun much of 

the viewed surface is shadowed. This leads to before mentioned changes in the brightness of 

an image creating a “hotspot”.  

 

 

Fig.4: A hotspot diagram (Jones and Vaughan, 2010). 

 

The reflectance properties of a surface are fully described by the bidirectional 

reflectance distribution function (BRDF). The BRDF is a mathematical description of the 

optical behaviour of a surface with to illumination zenith and azimuth angles and view zenith 

and azimuth angles (Campbell and Wynne, 2011; Jones and Vaughan, 2010). The BRDF is 

also commonly a function of wavelength (Jones and Vaughan, 2010).   
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2.2 Hyperspectral data in vegetation mapping  

The term “hyper” has its origin in Greek language and means “over”, “above” or 

“exaggerated amount”. In contrast the term “multi” means “many”. These terms combined 

with “spectral”, which is related to the word “colours”, are combined to the words 

“hyperspectral” and “multispectral”. So the term “hyperspectral” can be translated as 

“exaggerated amount of colours” while the term “multispectral” means “many colours” 

(Borengasser et al., 2008). By this definition of the terms the first difference between 

multispectral and hyperspectral data is given – whereas multispectral imagery contains only 

units of bands, hyperspectral imagery usually contains hundreds of bands. In addition, 

hyperspectral bands are narrower than multispectral bands (units of nanometres versus tenths 

of nanometres) (Cambell and Wynne, 2011) and continuous (Cambell and Wynne, 2011; 

Borengasser et al., 2008). The amount, the narrowness and the continuousness of 

hyperspectral bands are the strengths and the weaknesses of hyperspectral imagery. On one 

hand, thanks to such detailed information even slight variations in spectral features of land 

cover can be noticed (Borengasser et al., 2008) and land cover types can be mapped with 

higher accuracy (Magiera et al., 2013), on the other hand there is lots of redundant 

information (as many of bands are often correlated) (Jones and Vaughan, 2010). The amount 

and the detail of information also mean higher demand on computer hardware and software 

and difficulties with storage and visualizations of such data (Jones and Vaughan, 2010; 

Borengasser et al., 2008). 

 

Fig.5: A hyperspectral cube (Borengasser et al., 2008). 
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Hyperspectral data is commonly visualized using a hyperspectral cube (or an image 

cube) (Campbell and Wynne, 2011; Borengasser et al., 2008) (Fig. 5). A spectral hyper-cube 

is a three-dimensional array containing spatial information of an image on the x and y axes 

and spectral information of an image on the z axis (Borengasser et al., 2008). 

2.2.1 Methods for reducing the dimensionality of hyperspectral data 

As it was mentioned before hyperspectral data contains many narrow bands, which are 

often correlated and carry lots of extra information. Additionally, classification methods are 

usually iterative (Magiera et al., 2013; Verrelst et al.), thus performing iterative methods with 

such mass of data would be very demanding for hardware. Therefore it is necessary to reduce 

the dimensionality of hyperspectral data (Borengasser et al. 2008, Feilhauer et al. 2010). 

2.2.1.1 Principal component analysis (PCA) 

The main purpose of PCA is to generate a new reduced and uncorrelated set of bands, 

while maintaining the same amount of information as in the original image. Usually the first 

principal component contains about 92% to 98% of the total information and typically over 

99% of information is contained in the first three components (Jones and Vaughan, 2010). 

The last PC bands appear noisy because they contain very little variance, much of which is 

cause by noise in the original imagery (ENVI, PCA).  

 

 

Fig.6: Schematics of the new dataset found by PCA (Jones and Vaughan, 2010). 

 

Generating the new set is done by finding a group of orthogonal axes that have their 

origin at the data mean and that are rotated so the data variance is maximized (ENVI, PCA) 
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(Fig.6). These axes, or principal components are then linear combinations of the original 

bands, chosen in such a way that they are uncorrelated with each other (Jones and Vaughan, 

2010). 

 

2.2.1.2 Minimum Noise Fraction Transform (MNF)  

The MNF algorithm, like PCA, is a linear, data reduction transformation. This 

transformation consists of two separate principal component transformations (ENVI, MNF). 

In the first rotation the principal components of the noise covariance matrix are used to 

decorrelate and rescale the noise in data by variance (this process is also knows as noise 

whitening). The transformed data has no band-to-band correlation (ENVI, MNF).  

The second rotation is a standard principal component rotation of the noise-whitened 

data. Eigenvalues are then assigned to associated bands, which can be divided into two parts: 

one part with large eigenvalues and coherent images and a complementary part with near-

unity eigenvalues and noise-dominated images (ENVI, MNF).  
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2.3 Classification methods currently used for grassland vegetation mapping 

There are many classification methods available nowadays, but not all are fully 

suitable for classification of vegetation from several reasons (Magiera et al., 2013; Sha et al., 

2009; Dobrowski et al., 2008; Schmidtlein and Sassin, 2004). At first basic classification 

methods, which rely only on spectral information from an image without any ancillary data 

are likely to be less successful, especially when using multispectral imagery and/or when a 

classification is performed in mountainous areas. Because the same vegetation community 

may have different spectra in different parts of an image (e.g. due to various topography, 

dissimilar percentage cover of particular vegetation on a particular plot or due to BRDF 

caused by backscattering of vegetation), in contrast different vegetation communities may 

have similar spectra (Sha et al., 2009). This problem could be partially solved by using 

hyperspectral data, which has higher spectral resolution and thus it is possible to detect faint 

spectral differences of grassland vegetation types (Magiera et al., 2013). However, the 

problem of having different spectra for the same vegetation community due to topography or 

dissimilar percentage cover will not be solved by using hyperspectral data only. Some 

ancillary data is usually required to successfully map vegetation (Jones and Vaughan, 2010; 

Sha et al., 2009) and therefore also methods which are able to utilize such data, such as 

decision trees and ensemble classifiers (Jones and Vaughan, 2010; Lucas et al., 2007).  

 

2.3.1 Probabilistic approach 

Standard classification methods use „hard classifiers“, where each pixel is assumed to 

be “pure” (contains only single class) (Jones and Vaughan, 2010). However in vegetation 

communities (especially in such diverse communities as are meadows), there are hardly all 

pixels pure and lots of mixed pixels occur (Jones and Vaughan, 2010, Sha et al., 2009). These 

mixed pixels occur either at borders of biotopes or if another class is contained within a pixel 

– for example isolated trees in grasslands. Mixed pixels negatively influence the result of 

classification, where they are usually miss-classified into one of the surrounding classes or 

marked as unclassified. Therefore “soft classifier” methods, such as fuzzy classification may 

be better for classification of vegetation. Fuzzy classification utilizes probabilistic approach to 

classify a pixel and allows “partial membership” of classes per pixel. The output of fuzzy 

classification is set of fractional images, which describe the probability of presence of each 

vegetation community within each pixel (Jones and Vaughan, 2010). The logical decision 
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would be, that the class with the highest probability in particular pixel is contained in this 

pixel, however Sha et al proved in their study that not every time the class with the highest 

probability of presence in particular pixel actually was in the pixel and in several cases the 

classes with the second highest probability occurred in the pixel (Sha et al, 2009). Therefore 

in the future it would be convenient to take into account also classes with the second highest 

probability of presence. In case that classification of image using highest probability 

fractional images fails to classify vegetation communities correctly. 

Another probabilistic approach to classification of mixed pixels of vegetation is linear 

spectral unmixing (LSU). This method is based on the idea that each pixel contains linear 

combination of reflectance spectra of all end-members (Borengasser et al., 2008). 

Furthermore the maximum amount of end-members (component classes) identifiable in a 

pixel is limited by the number of spectral bands available (Jones and Vaughan, 2010). 

Therefore it is clear that linear spectral unmixing is used in connection with hyperspectral 

data (because of abundant spectral bands). The multispectral data would not have probably 

enough spectral bands to successfully identify mixed pixels of grasslands. Another minor 

disadvantage of this method is the presumption that end members in a pixel are linearly 

combined, which, in my opinion might not be true in many cases. 

 

2.3.2 Gradient modelling 

Schmidtlein and Sassin argue in their work, that fuzzy classifiers and linear spectral 

unmixing methods are suitable for classifying transition zones of vegetation communities if 

these transitions represent a mixture of ideal types of species assemblages (end-members). 

But according to Schmidtlein and Sassin these ideal types does not always have to occur in 

scene even though their existence is assumed and this idea is not in agreement with case of 

continua, where any section of a gradient is considered to be pure (Schmidtlein and Sassin, 

2004). Concept of continua is ecological approach to classify vegetation, based on the theory 

that transitions between vegetation units are always continuous and based on the slope of 

environmental gradients (Verrelst et al., 2009, Schmidtlein and Sassin, 2004). “The clash” 

between ecological (botanical) and remote sensing approach in vegetation mapping is obvious 

at this point. Whereas remote sensing usually divides vegetation into groups based on their 

spectral discernibility, ecologists and botanists divide vegetation into either ecologically or 

botanically meaningful groups, which, however does not have to be spectrally distinguishable 
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(Magiera et al., 2013; Verrelst et al., 2009, Schmidtlein and Sassin, 2004). Therefore methods 

are being tested currently how to assemble plants into communities in a way that these 

communities maintain ecological or botanical meaning while they are possible to differentiate 

by remote sensing data (Schmidtlein and Sassin, 2004). Organizing plant community data 

along environmental gradients is also called as species distribution modelling and usually 

requires an extensive amount of predictor variables, and therefore use of multivariate 

statistical methods such as ordination are necessary (Dobrowski et al., 2008). An Ordination 

analysis seeks to detect sets of variables that accounts for the major patterns across all the 

original predictor variables without a substantial loss of information (Verrelst et al. 2009). 

The predictor or environmental variables are such attributes which determine species 

distribution. These are not only physical or chemical environment variables (i.e. elevation, 

slope, aspect, temperature, bedrock geology, soil reaction or occurrence of pollutants) but also 

ecological and biophysical variables (i.e. competition or symbiosis of species; LAI and 

chlorophyll content). Obviously ancillary data (i.e. digital elevation model, geological maps, 

result of chemical analysis of soils) are necessary for deriving environmental physical 

variables and some level of ecological knowledge is necessary to determine relationships 

between species. When employing biophysical variables as predictor variables, it is necessary 

to measure them in-situ by using specialized technology or they can be derived from 

vegetation indices. Even though the gradient modelling can predict well species distribution, 

it characterizes more potential than an actual vegetation distribution and therefore it is used in 

combination with classical image analysis (Dobrowski et al. 2008). 

 

2.3.3 Vegetation indices 

Vegetation indices have been also used for classifying vegetation. Vegetation indices 

are new variables created by mathematical combinations of 2 or more of the original spectral 

bands of an image. These variables are created in the way, that they are better related to 

biophysical parameters of interest, than when only spectral bands are used (Roberts et al., 

2011; Jones and Vaughan, 2010). Biophysical parameters assessed by vegetation indices can 

be divided into 3 major groups – structure (i.e. fractional cover, green leaf biomass, leaf area 

index or fraction of absorbed photosynthetically active radiation); biochemistry (i.e. water, 

pigments, nitrogen-rich compounds or cellulose and lignin content) and plant physiology (i.e. 

changes in chlorophyll content or water moisture in leaves) (Roberts et al., 2011). The indices 
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can be divided into simple indices (such as Difference vegetation index or Ratio vegetation 

index) and into normalized indices (i.e. Normalized difference vegetation index or soil 

adjusted vegetation index). Simple indices are more sensitive to changes in illumination 

conditions and also perform worse when lower vegetation percentage cover occurs (lower 

LAI). Therefore normalized indices were created in order to better manage these problems. 

For example SAVI (soil adjusted vegetation index) is more closely related to LAI over a 

range of soil reflectance than normalized vegetation index (NDVI) (Jones and Vaughan, 

2010). On the other hand, when chlorophyll content is high (and thus higher LAI) the 

saturation of NDVI occurs, because the range of chlorophyll content is higher than what 

NDVI is able to cope with (Wang et al., 2007). Therefore it is possible to use for example 

Green NDVI, where red bands are exchanged for green bands and thus saturation does not 

occur and estimation of LAI gives better results (Jones and Vaughan, 2010; Wang et al., 

2007). For improving accuracy of prediction of biophysical variables and better distinguishing 

particular vegetation species or communities, hyperspectral data has been lately used to 

construct more accurate vegetation indices (Roberts et al., 2008; Jones and Vaughan, 2010).  

 

2.3.4 Machine learning algorithms    

Last but not least, “machine learning” classification algorithms, such as artificial 

neural networks (or neural networks; ANN) or support vector machines (SVM), are also part 

of “pixel based” classifiers (Petropoulos et al., 2012, Camps-Valls et al., 2004). Both methods 

are supervised non-parametric methods, which means that there is no assumption made about 

the data distribution (e.g. they do not presume normal distribution of data), which is on the 

contrary of other conventional classifiers, such as maximum likelihood classifier (Jones and 

Vaughan, 2010). This fact is a big advantage of ANN and SVM because remotely sensed data 

have, in majority, unknown statistical distribution. Furthermore hyperspectral remote sensing 

data have usually distribution far from normal because as dimensionality of data increase, its 

density tends to be higher in tails (Mountrakis et al., 2011, Melgani and Bruzzone, 2004). 

 

2.3.4.1 Neural Networks 

ANN is algorithm designed to simulate human learning process by establishing 

linkages between input and output data via one or more hidden layers (fig.7). The algorithm is 
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reinforced by repeated learning (Jones and Vaughan, 2010). Basic unit of each layer in ANN 

set-up is neuron (node). The neuron has many inputs, while only one output. Input signals 

represent an activity of neural impulses delivered by another neuron to this particular neuron 

(Benediktsson et al., 1990). Neurons are linked by weighted connections according to a 

specified architecture. Whether the signal is passed from particular neuron to another neuron 

depends on a magnitude of input signals and on an activation function. If a weighted sum of 

all incoming signals according to activation function exceeds given threshold, the neuron is 

activated and the signal passes to a following neuron (Petropoulos et al., 2012; Benediktsson 

et al., 1999). Learning in ANN algorithm occurs by adjusting the weights in the nodes and 

optionally the node thresholds to minimize the difference between the output node layer and 

desired response (Petropoulos et al., 2012). 

 

 

Fig. 7: A schema of a neural networks setup. MLP setup on the left (with sigmoidal activation function) and 

RBF setup on the right (with Gaussian activation function) (Camps-Valls et al., 2004). 

 

Regarding the set-up of ANN network, there is always one input layer, one output 

layer and one or more hidden layers. The nodes in the input layer represent variables used as 

an input into neural network, such as spectral bands, textural features or other features derived 

from a remotely sensed image.  The nodes of the output layer represent classes, there is one 

node for each class (Petropoulos et al., 2012). The hidden layer(s) are made up of multiple 

nodes, which number depends solely on a network architecture and complexity of 

classification task and differs greatly throughout studies from 26 (Pal and Mather, 2005) to 93 

(Chen et al., 2012). There are several models of ANN based on how neurons are connected or 

which activation function is used. The classic model of a feed-forward multilayer neural 

network, known as multilayer perceptron (MLP)  has fully-connected neurons between all 
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layers (input, output and hidden), which means that each neuron of given layer feeds all the 

neurons in the next layer (Camps-Valls et al., 2004). Most common activation function in 

MLP is sigmoidal or hyperbolic activation function (Petropoulos et al., 2012). And this model 

is also the most commonly used in classifications (Huang et al., 2002).  In radial basis 

functions neural networks (RBF) layers are connected in the same manner as in previously 

mentioned model, however the sigmoidal or hyperbolic function is replaced by Gaussian 

function. According to Camps-Valls et al., this model tends to overfit when it has to deal with 

noisy inputs (Camps-Valls et al., 2004). Lately also neuro-fuzzy approach has been applied, 

in which neural networks principles are combined with fuzzy logic. The components of such 

NN are layer of neurons, which apply fuzzy membership function to inputs, and modular 

network, which applies functional rules to the inputs. In the end the combiner needs to be 

used to apply membership function outputs to modular network outputs. The best 

classification results are according to Camp-Valls et al., given by neuro-fuzzy models, 

especially when classifying vegetation. Fuzzy component helps to catch soft boundaries 

between particular vegetation classes; however these are also the most complicated and the 

most difficult to set-up (Camps-Valls et al., 2004). According to several authors, the model 

with one hidden layer is sufficient for the majority of classification tasks (Petropoulos et al., 

2012; Camps-Valls et al., 2004; Pal and Mather, 2005; Huang et al., 2002; Benediktsson et 

al., 1999). 

 

2.3.4.2 Support Vector Machines 

Another machine learning algorithm is support vector machines algorithm (SVM) 

(fig.8). This algorithm is based on use of statistical learning theory and aims to find the best 

hyperplane in a multidimensional feature space that optimally separates classes (Jones and 

Vaughan, 2010; Mountrakis et al., 2011). The term best hyperplane is used to refer to a 

decision boundary obtained in a training step and minimizing misclassifications (Petropoulos 

et al., 2012; Mountrakis et al., 2011). According to Chan et al. good classifier should be 

capable of generalization to correctly assign classes based only on few training samples (Chan 

et al., 2012). According to Camps-Valls et al and Mountrakis et al., the SVM algorithm has 

good generalization capabilities because the separation hyperplane is constructed based on 

only fragment of all training examples (Mountrakis et al., 2011; Camps-Valls et al., 2004). 

Training examples used for construction of hyperplane are called support vectors. Support 
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vectors lie on the margin of classes to be classified and are extracted automatically by 

algorithm (Petropoulos et al., 2012; Mountrakis et al., 2011, Camps-Valls et al., 2004). 

According to Petropoulos et al. using only fragment of all the training samples to construct 

hyperplane is also measure against computational overload of algorithm (Petropoulos et al., 

2012).  

 

Fig.8: An example of linear SVM (Mountrakis et al., 2011). 

 

The basic type of SVM – linear SVM assumes linear separability of classes. However 

this is not usually a case of real life scenarios, where clusters of different classes overlap one 

another (Mountrakis et al., 2011).  This problem is in SVM algorithm solved by two ways, 

which can be applied separately, but mostly they are applied both. First is introducing so-

called slack variables, in other words allowed errors. The magnitude of allowed errors is 

determined by parameter C, chosen by user, in the way that larger C corresponds to assigning 

higher penalty to errors (Camps-Valls et al., 2004). This method is as well called soft-margin 

method (Mountrakis et al., 2011). The parameter C is not positively given yet and in assessed 

studies has always been found by experiment (e.g. Petropoulos et al., 2012, Vyas et al., 2011, 

Camps-Valls et al., 2004).  Another way of mapping non-linear relationships between clusters 

of different class memberships is using of kernels. By using kernel the input data are 

transformed into higher dimensional space where they are linearly separable (Camps-Valls et 

al., 2004) (fig.9). There are several types of kernels, which can be used for this task, such as 
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linear, polynomial, sigmoid or Gaussian (radial basis function). A kernel and its parameters 

have to be chosen carefully as kernel function and kernel parameters often have a bearing on 

the results of analysis. Too low values may lead to over-fitting, while too high values may 

lead to over-smoothing (Mountrakis et al., 2011). 

 

 

Fig.9: The transformation of input space into higher dimensional feature space and constructing a separating 

hyperplane. The variable symbolizes non-linear kernel function (Redd.it, machine learning). 

 

SVM algorithm was originally constructed as binary algorithm. However, the 

classification of land cover usually involves a simultaneous discrimination of numerous 

classes (Melgani and Bruzzone, 2004). Therefore there have been developed principles how 

to extend this classifier also for classification of more than 2 classes –a one-against-one 

strategy and one-against-all strategy (Petropoulos et al., 2012, Melgani and Bruzzone, 2004). 

In the one-against-one strategy, N*(N-1)/2 SVM classifiers are created (N is number of 

information classes), in this way all possible pair-wise classifications are modelled. These 

classifiers are then processed in parallel to get a final result (Melgani and Bruzzone, 2004). In 

one-against-all strategy, one particular class is trained against all other classes and this is 

repeated for all the N information classes (Petropoulos et al. 2012). The classifiers are then 

again processed in parallel to final result. According to Melgani and Bruzzone the problem of 

one-against-all strategy is that discrimination between an information class and all the others 

often leads to the estimation of complex discriminant functions. Furthermore Melgani and 

Bruzzone investigated the influence of multi-class strategies on the accuracy of classification 

and also on computational time. Both strategies yielded comparable results regarding the 

classification, but computation time of the one-against-all strategy was higher by one order 



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

29  

 

 

(hundred seconds for the one-against-one strategy versus thousands seconds for the one-

against-all strategy) (Melgani and Bruzzone, 2004). 

 

To sum up, both ANN and SVM are supervised machine learning classifiers, the main 

strength of which is that they do not make presumptions about statistical distribution of data 

classified. SVM use only a fragment of training data, namely support vectors, which are 

samples defining margins of classes and thus separating hyperplanes.  Therefore there is no 

requirement to fully describe the classes in a feature space, but only their decision boundaries. 

This is different from other conventional classifiers which usually require a full description of 

classes (Foody and Mathur, 2004). Foody and Mathur furthermore proved that for quite 

accurate classification only 35 of actual 150 training samples were necesary. Thus only a 

small training set is needed for SVM to perform satisfactory. This is welcome advantage 

because gathering training and also testing samples is always tedious and very time 

consuming work (Foody and Mathur, 2004). On the contrary ANN needs more training 

samples for successful training than SVM (Benediktsoon et al., 1990). Additionally there is 

no need for repetition of classifier training, such as for ANN (back-propagation of an error). 

Even though SVM seems as better performing classifier than ANN in several ways, there is 

one major drawback – the choice of kernel (Mountrakis et al., 2011). As it was explained 

before there are many types of kernels and choice of the kernel has impact on the result of 

analysis. But there are no guidelines so far, for using specific kernels and this matter was not 

yet discussed much in literature, therefore this matter still remains a question (Belousov et al., 

2002). 

 

2.3.5 Object-oriented classification 

The before mentioned methods are all “pixel based” and do not take into account 

contextual or topological information (Debeir et al., 2002). Therefore an object-oriented 

image classification (OBIA) was developed. According to Dobrowski et al., it is possible to 

use this method when the spatial resolution of an image becomes finer and image structure 

becomes correlated to vegetation structures (Dobrowski et al., 2008). Homogeneous areas in 

an image are identified based on pre-defined attributes (spectral, textural or topological 

features) and these areas are then assigned to a particular class. This method is usable for 

example when end-members are not clear or available or are overlapping in a spectral space 
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(Jones and Vaughan, 2010). From the stated facts about the object-oriented classification it is 

obvious that this is one of the promising methods, which can be used for classifying grassland 

communities where spectral responses of some groups may be similar, while texture not or 

where some kind of topological relationship occurs (i.e. some vegetation communities are 

exclusively bind to others or on the other hand would never exist next to some). Nevertheless 

object-oriented classification is a “hard classifier” (Jones and Vaughan, 2010), therefore the 

continuous transitions between vegetation communities may be classified wrongly. Given this 

fact, it is important to decide whether it is more important to classify image with emphasis to 

continuous transitions between plant communities or if it is more profitable to use object-

oriented techniques. And also as it was mentioned before it is possible to combine object-

oriented classification with fuzzy approach or gradient modelling to achieve desired result. 

 

2.4 Methods used for the vegetation classification in the Krkonoše 

Mountains 

The meadows vegetation in the Krkonoše Mountains have been classified already as 

part of previous master and bachelor theses. The results of those are noted below, ordered 

chronologically. 

Michaela Pomahačová (2012) classified meadows vegetation in the Krkonoše 

Mountains using multispectral data from satellite sensors WorldView 2 and Quickbird. A 

satellite sensor Quickbird is the traditional multispectral VNIR sensor, while sensor 

WorldView 2 has several bands added in comparison with Quickbird – coastal blue, yellow, 

red-edge and NIR 2. The additional bands were added to WorldView 2 sensor to improve 

different mapping analysis, vegetation included. Both of the sensors have very good spatial 

resolution (regarding other satellite sensors) – 1.84 m for multispectral data and 0.5 m for 

panchromatic data. The grasslands in Pomahačová´s thesis were classified according to 2 

legends. The first legend was created by a botanist to encompass valuable or abundant 

species, while the second legend was inspired by NATURA 2000. The legend created by the 

botanist had approximately a half of the items similar to the legend created for my master 

thesis (stands dominated by Vaccinium species, waterlogged grasslands and degraded 

grasslands dominated by N. stricta), however the legend for Pomahačová´s thesis was created 

with the higher emphasis to grasslands under some management. The main method used for 

classfication of grasslands was ANN and the conventional classifier MLC was used for the 
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comparison. There were always two images classified for each satellite sensor, the first from 

August 2011 and the second from September 2011. The overall accuracies achieved for 

Quickbird for August and September were 74.7% and 76.5% respectively. The overall 

accuracies achieved for WorldView 2 for August and September were 90.7% and 91.1% 

respectively. The accuracies achieved by conventional MLC classifier were lower in all the 

cases and therefore not noted here (Pomahačová, 2012). 

Another master thesis, which was focused on the classification of meadows in the 

Krkonoše mountains was the one of Jan Jelének (2013). Jelének was using hyperspectral data 

from APEX sensor for the classification (Jelének, 2013). The sensor APEX is airborne 

pushbroom imaging spectrometer and is a result of a joint Swiss/Belgian project funded by 

ESA (Meuleman, 2012). APEX is able of recording hyperspectral data in approximately 300 

bands in the wavelength range between 400 nm and 2500 nm. The spatial ground resolution 

of APEX is from 2 m to 5 m (APEX – ESA).  The Jelének´s thesis was focused on mapping 

invasive species, rather than on management or structure of vegetation and thus only one item 

classified was similar (grasslands dominated by N.stricta). The method used for classification 

was a decision tree (DT) with the use of vegetation indices (VI), which Jelének created 

himself based on the studied literature. Spectral angle mapper (SAM) was used as a reference 

method (Jelének, 2013). Based on the studied literatue, this method was not used as 

frequently as other methods and also as it is shown further, this method was not successful in 

the mapping of mountainous grasslands, therefore it is not described in the chapter 2.3. The 

highest accuracy achieved for Jelének´s classification by DT with use of VI was 67.9%, while 

with SAM only 21.4% (Jelének, 2013). 

Roman Dorič (2013) was also mapping meadows in the Krkonoše Mountains. His 

work could be considered as a follow-up to Pomahačová´s thesis because, besides the data 

from the optical airbone sensor, the data from the WorldView 2 sensor (imagery from 

September 2011) was used in the Dorič´s thesis too. Nevertheless the legend was slightly 

different than in the Pomahačová´s thesis, more similar to the legend created for my master 

thesis (approximately 80% of the items is similar). Dorič used object oriented classification 

with the help of SVM algorithm as a classifying method. The overall accuracy achieved was 

59.0% for the WorldView 2 data and 54.1% for the airborne sensor data (Dorič, 2013). The 

work of Dorič could be assumed as the main reference work for my master thesis for two 

reasons, firstly – because of the similar legend and secondly – the SVM algorithm was used 
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as well. However there is one significant difference. Unlike in the Dorič´s thesis, where solely 

multispectral data was utilized, hyperspectral data was used in my master thesis. 

Martina Andrštová (2014) classified the biotopes quite similar to the meadows in the 

Krkonoše mountains – the non-forested areas above the treeline. However, as the biotope is 

not influenced by management as much as the meadows, the legend used in the Andrštová’s 

thesis was different. Andrštová utilized several classification methods – SAM, LSU, SVM, 

MESMA (Multiple Endmember Spectral Mixture Analysis) and NN, and hyperspectral data 

from two sensors AISA and APEX. The accuracies achieved by SAM, LSU, SVM, MESMA 

and NN were 99.6%, 99.8%, 82.0%, 86.3% and 96.2% respectively. It was also confirmed 

that the data with the higher spatial resolution gives better results (Andrštová, 2014). 

The non-forested areas above the treeline were also mapped in the bachelor thesis of 

Lucie Jakešová (2014). The legend used in this bachelor thesis was alike to the legend in 

Andrštová’s thesis. Jakešová utilized data from an airborne optical sensor with 4 bands (blue, 

green, red and NIR band) and 12.5 cm ground spatial resolution. She also made use of DEM 

and DSM, which were derived from laser scanned data. The object oriented classification 

algorithm and vegetation indices were employed in this bachelor thesis, yielding the overall 

classification accuracy 76% (Jakešová, 2014).  

Matouš Karvánek (2014) analysed land cover change and landscape state in the 

Krkonoše mountains between years 1999 and 2007, using ML, NDVI and landscape metrics 

calculations, thus his legend was broader than the legends utilized in the other mentioned 

theses. It contained traditional landscape categories, e.g. water areas, deciduous trees, 

coniferous trees and also a few additional vegetation categories such as stands with Pinus 

mugo, sparse woodland vegetation or grasslands. The analysis was performed with the use of 

archived airborne imagery of map server Mapy.cz. The accuracy of classification was on 

average 82% (Karvánek, 2014). 
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3. The study area 

The study area is situated in The Krkonoše Mountains, in northeast part of Bohemia. 

Thanks to a mountainous landscape, the flora on the locations is diverse and range of 

individual communities varies greatly over the study area. The vegetation of The Giant 

Mountains belongs to a group of central European woodland flora (Hercynicum), with 

subgroup of Sudeticum.  Furthermore, the vegetation of this group is usually not as rich as in 

The Krkonoše Mountains.  The reason for this exception is the unique biogeographic position 

of the mountain range. Consequently, Krkonoše became a “home” for northern and alpine 

plant species during glacial periods, and thus great amount of glacial relicts can be found in 

this mountain range. As the area is quite isolated from other ones with similar climate a lot of 

endemic species developed there too. Therefore the flora of The Krkonoše Mountains is the 

most diverse of all the Central European mountain ranges (KRNAP, flora). 

According to a preliminary plan, about thirty locations should have been classified. 

However, because of problems with field data, only six locations have been chosen in the end. 

The names of the study enclaves are as follows (fig.10): Friesovy Boudy, Husí Boudy, 

Klínové Boudy, Lahrovy Boudy, Přední Rennerovky and Zadní Rennerovky. The size of the 

classified area in total was 2 square kilometres. The partial areas of locations are in table 2. 

 

Table 2: The area of the classified enclaves (source: own ArcGIS analysis). 

Name of location Area (km
2
) 

Friesovy Boudy 0.20 

Husí Boudy 0.17 

Klínové Boudy 0.51 

Lahrovy Boudy 0.29 

Přední Rennerovky 0.16 

Zadní Rennerovky 0.60 

  

3.1 Climate 

The Giant Mountains form a natural barrier to moist westerly from The Atlantic 

Ocean. As a result, the climate of The Giant Mountains is more humid, colder and generally 

harsher than the climate of The Tatry Mountains or of The Šumava Mountains, moreover its 

character is rather oceanic. One feature of such climate is strong variability in very short time 

intervals (KRNAP, climate). What’s more, westward winds usually bring clouds and heavy 
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precipitation. Thanks to it there are only 30 to 40 sunny days and about 1500 sunlight hours 

throughout the year (KRNAP, sunlight). The strongest winds occur in winter and their speed 

can reach over 150 km/h (KRNAP, wind). 

 

 

Fig. 10: A map of the classified enclaves (source: own ArcGIS output). 
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The average annual air temperature is between 6°C and 0°C (depending on a location). 

The warmest month is July (11°C on average) the coldest is January (-6°C on average). 

“Temperature inversions” are also regular in The Giant Mountains, especially during autumn 

and winter, lasting typically several days, rarely several weeks (KRNAP, temperature). 

Precipitation increases with the increasing altitude. Snow, hail and hoarfrost are at 

high altitudes more common than rain. The average annual precipitation ranges from 800 mm 

to 1400 mm, with the highest frequency in August and the lowest in March (KRNAP, 

precipitation). Continuous snow cover is formed in November and its average depth is around 

200 cm. Snow is accumulated on leeward slopes in winter and later causes snow avalanches 

during thawing periods. While avalanches are thread to tourists, they are important natural 

factor for biodiversity of the vegetation in The Giant Mountains (KRNAP, snow). 

 

3.2 Classified types of biotopes 

3.2.1 Legend 
 

There are many ways how to categorize vegetation of the Krkonoše grasslands into 

classes, for example with regard to invasive plants, unique communities or management. 

However after consultations with the botanist of KRNAP, it was decided to create legend 

similar to some of the legends according to which grasslands in The Krkonoše Mountains 

have been already classified (e.g. in the master theses of Michaela Pomahačová or Roman 

Dorič) so the results of the classification are better comparable. The original legend was thus 

created by the botanist of KRNAP as follows: 

 

1. Water surfaces; watercourses 

2. Walls; piles of stones, rocks 

3. Paved areas (objects, communications), dwellings, shacks 

4. Solitary conifers and their self-seeded species 

5. Solitary deciduous trees and their self-seeded species; scrubs 

6. Stands dominated by Vaccinium species 

7. Herbaceous vegetation under some management: 

a. Stands dominated by Nardus stricta 

b. Oligotrophic grasslands without dominance of Nardus stricta 
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c. Mesophile grasslands 

d. Waterlogged grasslands 

8. Herbaceous vegetation under none management: 

a. Degraded meadows dominated by grass species (Poales except Nardus 

species) 

b. Degraded meadows dominated by Dicotyledons 

Furthermore, the first five items of the legend were masked to fully use the potential of 

SVM classifier for meadows classification (chapter 6.1.2.4) and based on several initial 

unsuccessful classifications, it was necessary to ignore categorization according to 

management, as multi-temporal data and field mapping during the time of acquisition would 

be needed to classify the meadows according to this aspect properly (Sulzer at el., 2013; 

Lucas et al. 2007). The resultant legend was then: 

 

1. Stands dominated by Nardus stricta 

2. Oligotrophic grasslands without dominance of Nardus stricta 

3. Mesophile grasslands 

4. Waterlogged grasslands 

5. Degraded meadows dominated by Dicotyledons 

6. Degraded meadows dominated by grass species (Poales except Nardus  stricta) 

7. Stands dominated by Vaccinium species 

8. Springs 

9. Subalpine tall-fern vegetation  

This legend is very similar to the legend used in the master thesis of Roman Dorič 

(Roman Dorič, 2013), except classes 8 and 9, which have not been classified in Dorič’s thesis.  

 

3.2.2 Description of the classified biotopes 

3.2.2.1 Closed alpine grasslands (with dominating Nardus stricta) 

This biotope is comprised of heavily closed grasslands of mostly only one dominating 

species – Nardus stricta (fig.11). Closed alpine grasslands occur usually on flat mountains 

ridges, plateaus and on mild mountainous slopes, on oligotrophic but well-developed soils. 
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There are many complementary species (e.g. Anthoxanthum alpinum, Carex bigelowii, 

Homogyne alpine, Luzula sudetica, Molinia caerulea or Potentilla erecta) however these 

occur in minority. The biggest threat to this unique biotope is trampling by tourists and 

eutrophication (Chytrý et al., 2001). 

 

 

Fig. 11: Closed alpine grasslands dominated by Nardus stricta (source: author). 

 

3.2.2.2 Nardus grasslands (oligotrophic grasslands) 

Nardus grasslands are oligotrophic grasslands with maximum height of 40 cm. We can 

find here low stature grasses, often forming clumps (especially Nardus stricta and also 

Agrostis capillaris, Avenella flexuosa, Carex pallescens, Festuca ovina, Festuca rubra s. lat., 

Luzula campestris and L. sudetica etc.) and also great amount of herbaceous oligotrophic 

species (Campanula brabata, Gentiana spp., Galium pumilum, Hieracium spp., Homogyne 

alpina, Hypericum maculatum, Potentilla aurea, Pulsatila scherfelii, Rhiantus pulcher or 

Thesium alpinum) (Chytrý et al., 2001) (fig.12).  

This group can be divided into three smaller ones, according to zone where it occurs. 

Subalpine Nardus grasslands can be found around the tree line and can be further divided into 
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primary Nardus grasslands, occurring naturally, and secondary Nardus grasslands, occurring 

on oligotrophic soils after deforestation. Montane Nardus grasslands are often combination of 

alpine species and submontane species. Interesting species of montane Nardus grasslands are 

for example Campanula bohemica or Viola lutea subsp. sudetica. Last group are submontane 

Nardus grasslands, where we can find for example Campanula rotundifolia, Pedicularis 

sylvatica or Viola canina (Chytrý et al., 2001). 

 

 

Fig. 12: Oligotrophic grassland, dominant species – Avenella flexuosa (source: author). 

 

These biotopes are the most endangered by eutrophication and abandonment of 

traditional mowing, locally by forestation. To preserve this biotope regular mowing and 

occasional grazing is needed (Chytrý et al., 2001).  

 

3.2.2.3 Mesophile grasslands 

These regularly mowed or grazed meadows occur on soils with mediocre 

concentration of nutrients. Mesic Arrhenatherum meadows and Montane Trisetum meadows 

are included in this group.  
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The first biotope is a subalpine type of meadows with dominating low stature grasses – 

Agrostis capillaris, Anthoxanthum odoratum, Festura rubra s. lat., Trisetum flavescens, 

Dactylis glomerata, Holcus lanatus, Poa pratensis etc. Herbaceous plants as Geranium 

pratense, Trifolium pratense, Campanula patula or Knautia arvensis can be also seen often in 

these meadows. Height of these meadows can reach up to 1 metre, Bryophytes are almost 

absent. The types with dominating Festura rubra s. lat. are more common in higher altitudes 

and, regarding environmental protection, these are also the most precious biotopes (Chytrý et 

al., 2001).  

The second biotope of this group – Montane Trisetum meadows occur in montane zones from 

around 600 metres above sea (fig. 13). The upper boundary of the occurrence of these 

meadows is the tree line. These meadows are characterized by grasses like Agrostis capillaris, 

Anthoxantum odoratum s. lat., Festuca rubra s. lat., Phleum rhaeticum, Poa chaixii or 

Trisetum flavescens. The dominant herbaceous species are Bistorta major, Geranium 

sylvaticum, Meum athamanticum, Phyteuma nigrum or Silene dioica. The species specific for 

this biotope in The Giant Mountains are Campanula bohemica and Viola lutea subsp. sudetica 

(Chytrý et al., 2001). 

 

 

Fig. 13: A montane Trisetum meadow (source: author). 
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Over-fertilization and abandonment followed by succession of forests, other montane 

herbaceous biotopes or invasive plants influence negatively these biotopes. To prevent these 

negative effects, regular mowing and occasional grazing are necessary. Liming and 

fertilization is recommended in case of the occurrence of Nardus grasslands (Chytrý et al., 

2001). 

  

3.2.2.4 Waterlogged grasslands 

Waterlogged grasslands can be divided into two groups, depending on the prevailing 

type of vegetation (grasses versus herbaceous vegetation) (fig.14).  

 

 

Fig. 14: Waterlogged grasslands. A meadow with dominating Cirsium rivulare (on the left) and a meadow with 

Filipendula ulmaria subsp. ulmaria and Geranium palustre (on the right) (Chytrý et al., 2001). 

 

Wet Cirsium meadows are meadows with dominating grasses (Agrostis canina, Carex 

spp., Juncus effusus, Poa palustris, Scirpus sylvaticus), however also herbaceous vegetation 

occur here (Angelica sylvestris, Caltha palustris, Trollius altissimus and of course Cirsium 
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spp.). Also other species from surrounding biotopes can be present, for example species of 

Nardus, peat or mesophile meadows. Bryophytes are not present, except at stands where the 

process of ulmification occurs. The vegetation in the wet Cirsium meadows can withstand 

short-termed flooding. Drainage, abandonment and overgrowing trees endanger this biotope. 

The regular mowing is the only way how to preserve it (Chytrý et al., 2001). 

Wet Filipendula grasslands are often stands with monodominant vegetation, usually 

Filipendula ulmaria subsp. ulmaria, Geranium palustre or Lysimachia vulgaris. However also 

species from wet Cirsium meadows described previously can occur. Specific species present 

at higher altitudes is Valeriana excelsa subsp. procurrens. This biotope usually develops from 

fallow abandoned wet Cirsium meadows (Chytrý et al., 2001).   

Locally waterlogged parts of other biotopes occurring in the study area with the 

measure of waterlogging equal or higher than 4 and species Myosotis palustris, Ranunculus 

spp or Deschampsia cespitosa were also considered as waterlogged grasslands. 

 

 

Fig. 15: A locally waterlogged area with Myosotis palustris (source: author). 
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Fig. 16: Degraded grasslands – dominating species: Calamagrostis villosa (upper left), Holcus mollis (upper 

middle), Carex brizoides (upper right), Deschampsia cespitosa (lower left), Rumex alpinus (lower middle) and 

Veratrum album (lower right) (source: author).  

 

3.2.2.5 Degraded grasslands dominated by Poales (except Nardus stricta) 

The grassy stands (mostly oligotrophic) damaged by wrong or none management 

belong to this category. Under none management, these meadows undergo natural succession. 

This means that some of species become more abundant than others, diversity decreases and 

meadows become mono dominant. Other characteristic features of these degraded grasslands 

are the cumulation of old biomass and the absence of traditional meadow species (Krahulec et 

al., 1997).  
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The species usually dominating these grasslands are: Calamagrostis villosa, Holcus 

mollis, Deschampsia cespitosa and Carex spp. in more waterlogged areas (fig. 16).  

 

3.2.2.6 Degraded grasslands dominated by Dicotyledons 

As in the previous class, these grassy stands have been damaged by wrong or 

insufficient management. Again these grasslands show decreased species diversity in 

comparison with their non-degraded counterparts and they also lack traditional meadow 

species. However as these biotopes usually occur on soils richer in nutrients (naturally or as a 

result of over-fertilization), different species become dominant here (Krahulec et al., 1997). 

The most prevailing species are Rumex alpinus and Veratrum album (fig.16). 

 

3.2.2.7 Subalpine Vaccinium vegetation 

Subalpine Vaccinium vegetation occurs on windward and leeward sides of the 

mountain slopes at altitudes close to the tree line. The biotope is represented especially by low 

scrubs of Vaccinium myrtillus, less often also by Vaccinium vitis-idaea species. The main 

species occur often in mosaic with juvenile woody plants (e.g. Picea abies, Pinus mugo or 

Sorbus aucuparia subsp. glabrata) or grasses (Calamagrostis villosa or Avenella flexuosa). 

Herbaceous species like Gentiana asclepiadea, Homogyne alpine, Melampyrum pratense or 

Trientalis europaea are also common. Eutrophication and trampling by tourists and skiers 

have the most negative effect on Vaccinium scrubs (Chytrý et al., 2001). 

Secondary submontane and montane heathlands also belong to this category. This 

category encompasses secondary heathlands which developed as a result of deforestation of 

acidophilous beech forests or montane spruce forests. Calluna vulgaris together with already 

mentioned Vaccinium species occur here. Other present species are e.g. Solidago virgaurea 

subsp. virgaurea, Potentilla erecta, Bryophytes and lichens. Common management 

performed on these biotopes is removing of self-seeding woody plants and grazing (Chytrý et 

al., 2001).  

 

3.2.2.8 Springs 

Meadow springs without tufa formation and also subalpine springs belong to this 

class.  
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Meadow springs are springs with short-stemmed herbaceous or mossy vegetation with 

dominating Montia spp. or Stellaria uliginosa. Other common species of vegetation are e.g. 

Agrostis stolonifera, Glyceria fluitans, Holcus spp., Poa trivialis, Carex canescens and Carex 

nigra. Cardamine amara or Equisetum fluviatile can be also found here. Bryophytes 

(Rhizomnium punctatum, Philonotis Fontana, Calligeron spp. or Bryum spp.) can create 

continuous vegetation cover or they are suppressed by Montia spp. and Stellaria spp. Meadow 

springs are endangered by eutrophication, drainage or mechanical destruction and it is 

important to maintain non-forested areas in their surroundings for their preservation (Chytrý 

et al., 2001). 

  Subalpine springs are non-continuous type of springs usually occurring above tree 

line. Both, herbaceous vegetation and Bryophytes can be dominating. From herbaceous 

species Carex nigra, Trichophorum alpinum, Allium schoenoprasum subsp. alpinum, 

Epilobium alsinifolium or Swertia perennis can be found in this biotope. Common Bryophytes 

are Cratoneuron commutatum, Dicranella palustris and Brachythecium, Bryum and 

Philonotis spp. Subalpine springs are endangered by the same factors as the previously 

described spring biotope (Chytrý et al., 2001). 

 

3.2.2.9 Subalpine tall-fern vegetation 

This biotope is present at wind-protected spots above the tree line, on the slopes and 

cirques and shadowed spots at or under the tree line. The dominant plants are Athyrium 

distentifolium, Dryopteris filix-mas and less often Athyrium filix-femina. The dominant 

species are complemented by herbaceous vegetation like Aconitum callibotryon, Adenostyles 

alliariae, Cicerbita alpine or Veratrum album subsp. lobelianum. The vegetation is usually 80 

to 120 cm tall and closed. Bryophytes are not common because of abundant old fern 

vegetation (Chytrý et al., 2001). 
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4. Data 

4.1 Aerial imagery 

The data utilized in this master thesis, is hyperspectral aerial data acquired by AISA 

DUAL. Scanning and pre-processing of data was performed by Geodis (Czech Republic) 

(AISA, 2013).  

 

 

Fig.17: A sketch of utilized flight lines (source: own ArcGIS output). First four digits mean the date of 

acquisition (in format MMDD); last four digits mean the time of acquisition (in format HHMM, before noon).  
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Five flight lines were used for the classification of the vegetation in the study area 

(fig.17).  All these lines were recorded on 20
th

 June 2013. The time of acquisition was 

between 8:45 am and 11:00 am, which is not appropriate time of recording as the sun is still 

very low on the horizon casting long shadows. This problem will be discussed later in the 

chapter 6.1.3. Cloud cover during acquisition was reported as 13% (AISA 2013). 

The images were taken in 498 spectral bands (244 spectral bands for AISA EAGLE 

and 254 spectral bands for AISA HAWK) covering wavelengths from 400nm to 2500 nm 

(AISA DUAL, datasheet). Pixels in AISA HAWK images were resampled from 3m spatial 

resolution to 1m spatial resolution in order to match the spatial resolution of AISA EAGLE 

images.   

 

4.1.1 The description of utilized AISA sensors 

4.1.1.1 AISA DUAL 

AISA DUAL is a high-performance airborne hyperspectral sensor for simultaneous 

acquisition of images in VNIR and SWIR part of spectrum (fig. 18). It is comprised of two 

airborne pushbroom hyperspectral sensors AISA EAGLE and AISA HAWK and therefore 

able to record data in 498 bands at wavelengths from approximately 400 nm to 2500 nm. 

AISA DUAL sensor was employed in dual computer data acquisition setup (AISA DUAL, 

datasheet). 

The comparison of AISA EAGLE and AISA HAWK sensors is in table 3. 

 

Fig.18: AISA DUAL sensor (AISA DUAL, datasheet). 
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4.1.1.2 AISA EAGLE 

 AISA EAGLE is airborne VNIR pushbroom hyperspectral sensor recording up to 488 

spectral bands at wavelengths from 400 nm to 970 nm (fig.19). Sensor is part of a bigger 

system including GPS/IMU, a unit recording data and a robust computer to store data. AISA 

EAGLE sensors have been part of many applications, such as forestry management, 

vegetation cultivation, environmental investigations, precision farming, target identification, 

water assessment and land use planning (AISA EAGLE, datasheet). 

 

 

Fig.19: AISA EAGLE sensor (AISA EAGLE, datasheet). 

 

Table 3: A comparison of AISA EAGLE and AISA HAWK sensors. The information about sensors was gained 

from their datasheets. Abbreviation CCD means charge-coupled devices this type of detector is often used in 

pushbroom sensors (Jones and Vaughan, 2010). MCT means mercury-cadmium-tellurium and is the only 

common material for detecting IR radiation (Norton, 2002).  

Sensor AISA EAGLE AISA HAWK 

Type of sensor pushbroom pushbroom 

Detector CCD matrix MCT matrix with cooler 

FOV (degrees) 29.9 / 37.7 17.8 / 24.0 / 35.5 

Ground resolution at 1000 m alt. 

(FOV dependent; m) 
0.52 / 0.68 0.97 / 1.34 / 2.0 

Spectral range (nm) 400 - 970 970 - 2450 

Spectral resolution (nm) 3.3 8.5 

Number of spectral bands 488 / 244 / 122 /60 254 

Spectral sampling  

(bands dependent; nm) 
1.15 / 2.3 / 4.6 5.8 

Output 12 bits digital 14 bits digital 

SNR 
1250:1 

(maximum theoretical) 

800:1 

(peak) 

Storage temperature (°C) - 20 … + 50  - 20 … + 50 

Operating temperature (°C) 
+ 5 … + 40 

(non-condensing) 

+ 5 … + 40 

(non-condensing) 
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4.1.1.3 AISA HAWK 

AISA HAWK is the first maintenance free airborne SWIR hyperspectral sensor on the 

market (fig.20). Its biggest advantage is the distinctive size as the AISA HAWK is also the 

smallest of all the airborne SWIR hyperspectral sensors. AISA HAWK sensors are utilized in 

applications where characteristic signatures of chemical compounds are necessary and VNIR 

range is not sufficient (AISA HAWK, datasheet). 

Sensors for acquiring images at SWIR wavelengths are highly influenced by 

temperature. Therefore AISA HAWK sensors have also in-built coolers to prevent changes in 

temperature and consequent lower quality of data even on long flights (AISA HAWK, 

datasheet). 

Fig.20: AISA HAWK sensor (AISA HAWK, datasheet). 

 

4.1.2 Pre-processing of aerial imagery 

The reflected signal from surface is usually recorded as a simple digital number. 

Digital number describes intensity of the radiation in a particular wavelength range at a sensor 

and can be converted to radiance at the sensor (fig.21). However for majority of remote 

sensing applications reflectance at surface is needed. Therefore imagery needs to be corrected 

for atmospheric absorption and the scattering of electromagnetic radiation travelling between 

the sun, the surface and the sensor (Jones and Vaughan, 2010). 

Furthermore data are corrected for radiometric and geometric errors, e.g. for errors caused by 

faulty detectors (banding or stripping), non-linear scanning and response of detectors, motion 

of the platform on which sensors are mounted and panoramic distortion (a “bowtie” effect). 

Geometric corrections are of high importance especially when airborne data is utilized, 

because such data is sensitive to changes in attitude (yaw, roll and pitch) and altitude (Jones 

and Vaughan, 2010). Regarding hyperspectral pushbroom sensors one has to be also aware of 
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spectral distortion, called “spectral smile”, caused by a shift in wavelength in the across-track 

direction of the sensor (Imaging spectroscopy, 2013).  

 

 

Fig. 21: An illustration of the relation between the radiance received at a sensor (LSENSOR), the radiance reflected 

from a surface (LSURFACE) and the incoming radiances at the top of the atmosphere (LTOA) and at the surface 

(LINCOMING) (Jones and Vaughan, 2010). 

  

If a true geometric representation is required, the image must be warped (geo-located) 

so that it will correspond exactly with map coordinates or with other images, this is achieved 

by using a series of ground control points (GCP) in the image and on the map (Jones and 

Vaughan, 2010). 

 

4.1.2.1 Pre-processing in GEODIS 

Specialized software CaliGeoPro and ENVI/IDL was utilized for pre-processing of 

AISA aerial imagery. Spectral properties of calibration areas were measured by ASD field 

spectrometers (AISA, 2013).   

Hyperspectral imagery was calibrated radiometrically using measured spectral 

characteristics of small areas with uniform reflectance properties. Imagery was also corrected 

for geometric distortions (fig.22). Atmospheric corrections were performed on radiometric 

and geometric corrected data, also using measured characteristics from the field (AISA, 
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2013). The result of pre-processing in GEODIS was level 2 product (geo-coded, 

radiometrically, geometrically and atmospherically corrected imagery).  

 

 

Fig.22: Workflow for pre-processing of hyperspectral imagery in GEODIS (AISA, 2013).  

 

4.1.2.2 Layer stacking and mosaicking 

Upon receiving the data from GEODIS, its volume was lowered by multiplying the 

reflectance values by 10000 and converting the data format from double to unsigned integer, 

because this type of a number needs less space to store (16-bit for unsigned integer versus 64-

bit for double). As the dual computer data acquisition setup was utilized during hyperspectral 

imaging, it was necessary to put together spectra from both sensors AISA EAGLE and AISA 

HAWK. This was done by Layer Stacking tool in SW ENVI 4.7 with following parameters: x 

pixel size and y pixel size was set as 1 m and resampling method was chosen as nearest 

neighbour. The layers were stacked only in the area of interest (under spatial subset) and also 

spectral subset was defined. While spatial subset was needed because of the huge file sizes 

(about 200 GB per line per sensor) and computational burden, spectral sub-setting was 

performed because of spectra overlap (fig.23). The bands to be preserved were chosen in a 

way so the majority of bands from AISA EAGLE sensor were kept, because AISA EAGLE 
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has better spatial and spectral resolution. Therefore bands number 1 to 252 of AISA EAGLE 

and bands number 4 to 244 of AISA HAWK were kept for further processing. 

Based on previous bad experience with mosaicked images (consultations with the 

supervisor) and on significant differences in brightness values between lines, it was decided 

that lines would be processed separately without mosaicking. 

 

 

Fig. 23: Spectra overlap of AISA EAGLE and AISA HAWK sensors (source: own ENVI analysis). The area 

between blue and red lines is the area of overlap. The image on the left shows spectrum of a particular pixel after 

layer stacking without spectral subset, the image on the right shows spectrum of the same pixel after layer 

stacking with spectral subset. 

 

4.1.2.3 Principal component analysis 

The PCA was performed in order to decrease computational demand on hardware and 

also to get rid of noisy bands. The traditional PCA method was utilized as described in 

chapter 3.1.1. SW ENVI 4.7 and Principal Components / Forward PC Rotation tool was used 

for the analysis. Based on the result of the PCA analysis, first seven bands of the new dataset 

actually carried any information and thus these bands were used in further pre-processing and 

for the experiments.  

 

4.1.2.4 Masking of non-classified classes 

To fully use the potential of hyperspectral data in the classification of meadows, masks 

for shadowed areas, for areas outside of the area of interest and for legend classes A1 to A5 

were created. Masks were built in several-step process including: 
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 classifying the PCA images using unsupervised IsoData classification to 

automatically distinguish land cover types to be masked 

 making additional polygons in SW ArcGIS 10.2 for areas which were not 

identified by IsoData classifier (e.g. some roads and deciduous trees) 

 building masks by Build Mask tool in SW ENVI 4.7 

 applying masks on the PCA processed imagery by Apply Mask tool in SW 

ENVI 4.7 

IsoData classifier was run with the following specifications: number of classes was set 

from 10 to 50; maximum number of iterations was set to 100 and every other parameter was 

left as default. The unsupervised classification produced usually around 30 – 50 classes, these 

were combined into meaningful groups using Class colour mapping and Combine classes 

tools in SW ENVI 4.7. As it was mentioned before, it was necessary to create additional 

polygons for some roads and deciduous trees. This was done in ArcGIS 10.2 utilizing tools in 

Editor. Polygons were mapped according to ortophoto maps, which are available via WMS 

services of State Administration of Land Surveying and Cadastre. Ortophotos were used 

because of their high spatial resolution and timeliness (ČÚZK, ortophoto).  

The third step was to build actual masks. Masks were built in SW ENVI 4.7 in two-

step procedure. First of them, with IsoData classified rasters (range set to classes to be 

masked) and shapefiles of additional polygons of roads and trees as attributes and using 

selected areas “off” and logical “OR”, resulted in a sub-mask showing only meadows. The 

sub-mask was further processed in the second step, where it was subset to contain only the 

area of interest. 

Finally masks were applied to the PCA images making them ready for the 

experiments.  

 

4.1.3 Errors in the aerial data 

Some errors in the aerial data were found during its pre-processing. 

The major drawback of several lines of the hyperspectral imagery is the time of 

acquisition. The line where Husí Boudy and part of Lahrovy Boudy are situated was imaged 

at around 8:45 am. Therefore huge shadows are present in these images, which make many 
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pixels impossible to use for the analysis (fig. 24). It would be convenient in the future to 

avoid acquiring images during such early hours of the day. 

  

Fig. 24: Errors in the aerial imagery, example from the location Lahrovy Boudy (source: own ENVI analysis). 

The upper images show shadows due to early daytime of acquisition (line_0620_0845 on the left, 

line_0620_1046 on the right). Obviously there are more shadows in the imagery which was recorded earlier 

(8:45am versus 10:46am). The plots show differences in brightness values of the same pixel. The lower images 

show geometric distortions on the edge of a line. A vector layer was added to better illustrate the distortions. The 

imagery on the left (line_0620_0845) is considered as not distorted.  



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

54  

 

 

Furthermore, there have been observed differences in brightness between lines (fig. 

24). In fig. 24 can be clearly seen that same places have different brightness depending on the 

line. This suggests that the radiometric or the atmospheric corrections were not performed 

properly or that wrong areas were chosen for calibration measurements. However as the 

experiments do not include deriving the qualitative information from the imagery, this error 

should not have strong impact on the results of experiment. 

Moreover, geometric distortions and misplacing of objects can be observed as one 

moves towards the edge of the line (fig. 24, lower images). These errors may result in 

inaccurate classifications as the spectral information of a misplaced pixel may not be of the 

same vegetation as it was mapped in the field. Nevertheless, such distortions are common on 

the edges of an image and are due to lower amount of GCPs available (Campbell and Wynne, 

2011). One solution for this problem may be to intentionally collect more GCP at the spots 

where the known edges of lines are. 

At last, it was learnt, that some enclaves (Lahrovy Boudy and Zadní Rennerovky) 

were not whole on any of available flight lines. This is not error in the true sense of the word, 

however as the lines were processed separately, this fact hinders the quality of analyses on 

these enclaves. 

Given all the mentioned errors and shortcomings in the aerial imagery, the enclaves 

Přední Renerovky and Friesovy Boudy, where these were of the lowest magnitude, were 

chosen as acceptable for the experiments. 

      

4.2 Field mapping 

Field mapping was realized in July and August 2014. The mapped polygons were 

drawn in the printed orthophoto maps and simultaneously parameters of interest of the 

vegetation in the polygons were noted into tables. The recorded parameters were, for 

example, a measure of waterlogging of soil, a type of vegetation and height of vegetation. In 

the end, mapped vegetation was categorized into classes according to the legend in chapter 

5.2.1. 

  

4.2.1 Pre-processing of the field data 

The field data were pre-processed using SW Microsoft Access, Microsoft Excel, 

ArcGIS 10.2 and Python scripts (module ArcPy). 
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The drawn polygons had to be transformed into shapefiles. This was done using 

ArcScan tool. In order to be able to use this tool, lines of polygons were first redrawn on 

transparent foils and scanned into digital form (raster format).  Shapefiles were then also 

georeferenced utilizing standard ArcGIS methods.  

As the next step, description of vegetation classes had to be linked with the polygons 

in shapefiles. A Python script was written to perform this task (appendix I). During this step 

georeferenced vector layers, containing information on classes, were also divided into several 

smaller vector layers in the way that the polygons of each class occurring on the location were 

in one vector layer. Furthermore a buffer with the distance value of -2 was applied to 

polygons to deal with possible mapping inaccuracies (chapter 6.2.2) and geometrical 

distortions of the aerial images (chapter 6.1.3).  

A fishnet was then created (snapped to the aerial image of a particular location) for 

each location and also the masks were converted to vector layers and only the areas to be 

classified were selected in these vector layers. After that, selection by location was made in 

the fishnet so only the cells of the fishnet being within buffered polygons were selected. This 

selection was then intersected with the selection made in the mask vector layer and saved as a 

new shapefile. 

 

 

Fig. 25: An example of a set of pixels prepared for the experiments. The red, ochre and blue pixels are the pixels 

of classes 1 to 3 ready for the selection of training and validating pixels, the blue lines depict field mapping 

polygons and the black pixels are the masked pixels (source: own ArcGIS analysis). 
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The intersection step might seems as unnecessary because masks were already applied 

to the aerial images, but as the experiments also involve tests with amount of training pixels, 

it is needed  to define precisely the area from which the training pixels may be selected. Since 

the situation could happen, where pixels would be chosen in the masked area and later 

ignored by the classifier, or worse the spectral signature of the mask would be taken as 

training one for a particular vegetation class. At this point the field mapping data was 

prepared for the next stage – defining of training and validating pixels (fig. 25). The form of 

squared fishnet cells was chosen because it resembles the most the shape of the pixels in the 

aerial images. 

 

4.2.2 Problems with the field data 

As a botanist sees the vegetation communities in a different way than a remote sensing 

scientist, it is always difficult to reach a compromise. Challenges might occur when creating a 

legend in a meaningful way for both, the botanist and the remote sensing scientist during a 

field mapping. Furthermore the field mapping for this master thesis has been done by a 

botanist hired by KRNAP and a remote sensing scientist was present only during the mapping 

of few locations. Moreover, the mapping was performed also as a source of information for 

another, entomological analysis. Therefore the result of the field mapping is a kind of 

“hybrid” between what is suitable for remote sensing and what is suitable for entomologists 

and thus it presents several disadvantages for a remote sensing analysis. 

At first, as the field mapping was performed without GPS, only by simple drawing 

polygons into orthophotos, there were some spatial discrepancies between the reality and 

drawn polygons (fig. 26). Moreover, these discrepancies could have been caused also during 

georeferencing by not having accurate points of known coordinates in the image. The 

positions of the objects that were separable using the orthophotos provided by ČÚZK were 

fixed in SW ArcGIS 10.2 during the pre-processing of the field data. However the different 

types of meadows could not be distinguished in the orthophotos and therefore it was 

impossible to fix their positions. Consequently it is assumed that the accuracy of the 

classification is lower than what the potential of hyperspectral data is. 

Secondly, the field mapping was not performed in such a detail as it would be 

necessary for the hyperspectral data with 1 m spatial resolution. The example is in the fig. 27. 

The big polygon has been described as a huge pasture with dominating Deschampsia 
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cespitosa, locally waterlogged and occupied by Rumex alpinus and it has been categorized as 

class 6 – degraded meadows with dominating grasses. Such a description is appropriate for 

entomologists, but not for a remote sensing analysis, as it can be seen also other classes has 

been detected by a classifier and assigned to a different class, than what the polygon had been 

categorized to. It is clear that it is not possible to map all the pixels correctly as they might not 

be distinguishable in the field. Nevertheless, at least the most significant parts with Rumex 

alpinus and the waterlogged parts could have been mapped individually as they were also 

described separately and they cover substantial part of the polygon. We can also observe in 

the fig. 30 that as a result of the coarse field mapping, also the lines of the outlying polygon 

are coarser in comparison with the imaginary lines of the polygons detected by a classifier. 

  

 

Fig. 26: Mapping inaccuracies (example from the location of Friesovy boudy). Red lines show the inaccurate 

lines from the field mapping, yellow lines show the fixed lines (missing polygons or shifted polygons) and the 

orange lines are the correct lines from the field mapping (or those which were used also in the fixed polygons) 

(source: own ArcGIS output).  

 

In order to properly check the influence of the assessed factors (the amount and the 

sampling design of training pixels, the choice of a kernel and the setting of other SVM 

parameters) on the accuracy of classification, a new set of spectrally uniform polygons, 
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assigned to classes with a certainty, was needed. Therefore the unsupervised IsoData 

classification was performed on the masked images of Přední Rennerovky and Friesovy 

Boudy and these results were checked in the field. The spectrally uniform polygons which 

were classified accurately were marked and the new set of polygons was created according to 

these. Based on the new field mapping, the location Přední Rennerovky was chosen as the 

model one and the experiments were conducted on this location. 

 

 

Fig.27: An example of not enough detailed field mapping. All (or maximum) pixels in the polygon should have 

green colour (class 6 – degraded meadows with dominating grasses). However also pixels of R.alpinus (class 5, 

black), waterlogged grasslands (class 4, blue), oligotrophic grasslands (class 2, yellow) and mesophile grasslands 

(class 3, red) were detected (source: own ArcGIS and ENVI analysis).  
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5. Methods 

From the previous descriptions of methods currently used for classification of 

grassland vegetation (chapter 2.3) it can be seen, that the gradient modelling is probably the 

best method in terms of proximity to real world relationships (Magiera, 2013; Schmidtlein 

and Sassin, 2004). However this method is extremely demanding, for both measuring 

vegetation or ancillary data (environmental variables) and its computational burden. Therefore 

it would be too time-consuming and maybe even impossible to classify the whole study area 

using this method. On the other hand, methods as NN or SVM are quite easily applicable, 

with appropriate properties for classifying hyperspectral data, while they have shown 

satisfactory accuracies (table 4) and thus seem as the most suitable for this task. 

 

Table 4: The examples of the studies comparing performance of SVM and NN classifier (source: author). 

Biotope classified Data used 

SVM accuracy 

(highest 

achieved) 

NN accuracy 

(highest 

achieved) 

Reference 

Grasslands and woodlands in 

the eastern Maryland (USA) 
Landsat TM 75% 74% 

Huang et al., 

2002 

Crops in Barrax (Spain) HyMap 96% 94% 
Camps-Valls et 

al., 2004 

Indiana Pines (northwest 

Indiana) 
AVIRIS 94% 88% 

Melgani and 

Bruzzone, 2004 

Crops around Littleport (eastern 

England) and crops and pastures 

near La Mancha Alta (central 

Spain)  

Landsat ETM+ 

and  

DAIS 

87.5% and 94% 85% and 90% 
Pal and Mather, 

2005 

Rural area in the South-West 

Florida 
Landsat TM 79.2% 78.4% 

Dixon and 

Candade, 2008 

Tropical forest of 

Shoolpaneshwar Wildlife 

Sanctuary 

Hyperion 70.7% 80.5% 
Vyas et al.,  

2011 

Mediterranean vegetation of 

Attica and Voiotia prefectures 

(central Greece) 

Hyperion 89.26% 85.95% 
Petropoulos et 

al., 2012 

 

As it can be seen accuracies achieved by both classifiers in different studies vary from 

under 80% to over 90%, mostly depending on data used (multispectral versus hyperspectral), 

spatial resolution and complexity of classified classes. However in 6 out of 7 studies SVM 

classifier outperformed NN, regarding accuracy and computational time. Authors attributed 

SVM´s higher performance to several reasons, but the major reason stated was, that SVM is 

able to identify an optimal separating hyperplane to distinguish between different vegetation 

communities, even when limited amount of training samples is available. On the contrary NN 

classifier may not be able to place such a decision boundary under the given circumstances 
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(Petropoulos et al., 2012; Melgani and Bruzzone, 2004, Huang et al, 2002). In addition, 

training a neural network requires the tuning of several parameters (activation function, 

learning rate, network architecture, training algorithm, stopping criterion and others), while 

for the training of SVM only few parameters have to be selected (the type of kernel, 

parameter and C parameter) (Camps-Valls et al., 2004) and in the case of polynomial 

kernels also the degree of polynomial (Huang et al., 2002). The problem of kernel choice is at 

the moment the biggest drawback of the SVM classifier, because there are not any general 

guides in the literature about the suitable selection of kernels for particular applications 

(Mountrakis et al., 2011). 

Based on the studies mentioned in the table 4 (where in majority SVM outperformed 

NN) and also based on the properties of the SVM classifier (only a few parameters to tune 

and faster computational times), it has been chosen as the main classifier to experiment with. 

Nevertheless, NN classifier has shown satisfactory results too, therefore it has been chosen as 

the reference classifier. 

The experiments with the SVM classifier included tuning SVM parameters (the type 

of kernel, parameter, C parameter and in the case of the polynomial kernel – the degree of 

polynomial) and experimenting with the size of training dataset and the spatial sampling of 

training pixels. At first, the SVM parameters were defined using certain amount and spatial 

sampling design of training dataset and then the rest of the amount–sampling design 

combinations of the training dataset were investigated. The random sampling design was used 

as the initial one for tuning parameters, because according to Huang et al., the pixels collected 

using this sampling design are not spatially correlated and the spectral variability of each class 

is not underestimated (Huang et al., 2002). The initial amount of pixels to tune parameters 

with was chosen based on the studied literature and HW requirements as 200 for each class 

(more information in chapter 5.2.1). 

All the experiments and classifications were performed in SW ENVI 4.7. 

 

5.1 Tuning parameters of the SVM classifier (step 1) 

First of all, the different types of kernel functions were tested (linear, RBF and all 

types of polynomial kernels offered by ENVI). Furthermore several values of  parameter for 

RBF kernel and the best performing polynomial kernel were tested. In the end the range of 

penalty parameter values was tested for the best combination of RBF kernel and its  
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parameter and also for the best performing polynomial kernel and its  parameter. The 

classification probability threshold value was set to default (0.0) in all the cases, forcing all 

pixels to be classified. 

 

5.1.1 The penalty parameter 

The penalty parameter (or C parameter) defines the magnitude of allowed errors 

(Camps-Valls et al., 2004), in other words it lets you control the trade-off between allowing 

training errors and forcing rigid margins (ENVI, SVM background). A high value of the 

penalty parameter forces the SVM classifier to avoid classification errors (Dixon and 

Candade, 2008) and creates more accurate model, such model however might not generalize 

well (ENVI, SVM background).  

In ENVI this value is a floating-point value greater than 0.01, the default value is 

100.0 (ENVI, SVM background). The penalty parameter was tested between 0.01 and 100 

with the increment of 10. The values of the penalty parameter to be tested were determined 

based on the studied literature (table 5) with the emphasis on the values which were used by 

the scientists working with ENVI (e.g. Marcinkowska et al., 2014; Petropoulos et al., 2012; 

Vyas et al., 2011). 

 

Table 5: The summary of the kernels, the values of the penalty parameter  and the amount of training pixels 

utilized in the studied literature. The number in the brackets after the polynomial kernel notes its degree. The 

symbol “-” means that the information was not mentioned in the cited article (source: author). 

Type of the kernel used 
Values of the penalty 

parameter used 

Number of training 

pixels used for each class 
Reference 

RBF 2 - 100 42, 84 and 147 pixels Belousov et al., 2002 

RBF, polynomial (1 - 4) - 
2 – 20 pixels and  

2 – 20 % of pixels 
Huang et al., 2002 

RBF, polynomial (1 - 8) 1 - 100 150 pixels Camps-Valls et al., 2004 

RBF 16 75 pixels Foody and Mathur, 2004 

linear, RBF 1 - 100 236 – 1245 pixels 
Melgani and Bruzzone, 

2004 

RBF 5000 100 pixels Pal and Mather, 2005 

RBF, polynomial (3) 1000 1 % of pixels Dixon and Candade, 2008 

RBF 10 - 1000 95 – 1434 pixels Demir et al., 2009 

linear, RBF, polynomial 

(-) 
- - Vyas et al., 2011 

RBF 1.4 – 8.3 16 – 188 pixels Chan et al., 2012 

RBF 100 - Petropoulos et al., 2012 

linear - 400 pixels Marcinkowska et al., 2014 
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5.1.2 The choice of a kernel 

Chan et al and Vyas et al. have tested the accuracy of classification using different 

kernels. According to Chan et al. the linear kernel gave poor accuracies (Chan et al, 2012), 

which is in agreement with results of Vyas et al (Vyas et al, 2011). Furthermore Chan et al 

stated that although polynomial kernels gave satisfactory accuracies they were too time-

consuming with three parameters to tune, so the kernel of their choice was Gaussian because 

it produced quite high accuracies while computing time was shorter than for polynomial 

kernels (Chan et al., 2012). Vyas et al used only accuracy criteria for choosing kernel, but also 

in their case the Gaussian kernel gave the best accuracy results (Vyas et al., 2011). 

Petropoulos et al chose as well Gaussian kernel, but their decision was based on the fact that it 

requires the definition of only one parameter to run (Petropoulos et al., 2012). On the contrary 

Huang et al report that polynomial kernels gave slightly higher accuracies than Gaussian 

kernels, however they also admitted that as order of polynomial kernel increases the 

computational time for classifier increases even more rapidly (Huang et al., 2002). 

Marcinkowska et al. report that the linear kernel gave the best results, which is quite the 

opposite from other studies (Marcinkowska et al., 2014). 

SW ENVI offers four types of kernels: linear, RBF (Gaussian), sigmoid and 

polynomial. From those, only three (linear, RBF and polynomial) were tested in the 

experiments because those gave the reasonable accuracies according to the references (table 

5). The mathematical representation of the utilized kernels is as follows (ENVI, SVM 

background): 

 

  Linear kernel:   K(xi,xj) = xi
T
xj; 

  RBF kernel:  K(xi,xj) = exp(-||xi – xj||
2
),  > 0; 

  Polynomial kernel: K(xi,xj) = (xi
T
xj + r)

d
,  > 0; 

 

  where:  

   

   is the gamma parameter in the kernel function 

  d is the polynomial degree in the kernel function 

  r is the bias term in the kernel function. 
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Furthermore all degrees possible to choose for the polynomial kernel (1 to 6) were 

tested. The gamma parameter was tested in the whole range selectable in ENVI 4.7 – from 

0.01 to 10000 with increment of one order on a logarithmic scale. The logarithmic scale and 

the increment were chosen especially because of the wide range of the selectable values. The 

ENVI default value of the gamma parameter is the inverse of the number of bands in the input 

image (ENVI, SVM).   

 

5.2 Defining a training and a validating dataset (step 2) 

As it was necessary to choose training pixels objectively (without bias caused by a 

human factor) and in the most cases randomly with the possibility to repeat the selection (in 

the case of changes of the legend or different categorization of polygons into classes), a 

Python script was written also for this task (appendix II) using Python version 2.7 and ArcPy 

module. Based on the studied literature and the field mapping experience, 24 combinations of 

amount and sampling design of the training dataset were created (table 6). These 

combinations were tested in SW ENVI using the SVM classifier and its parameters which 

yielded the highest accuracy in the step 1 of the experiments. The combination with the 

highest overall accuracy was then used to classify the remaining locations (Husí boudy, 

Friesovy Boudy, Lahrovy boudy, Klínové Boudy and Zadní Rennerovky).  

 

Table 6: The tested combinations of sampling design and amount of pixels (source: author). 

 
Random sampling 

design 

Clustered 

sampling design 

“Real life 

scenario” (RL) 

Pixels at 

boundaries 

50 pixels Random 50 pixels 
Clustered 50  

pixels 
RL 50 pixels 

50 pixels  

at boundaries 

100 pixels Random 100 pixels 
Clustered 100 

pixels 
RL 100 pixels 

100 pixels  

at boundaries 

200 pixels Random 200 pixels 
Clustered 200 

pixels 
RL 200 pixels  

200 pixels  

at boundaries 

2.5% of pixels 
Random 2.5%  

of pixels  

Clustered 2.5%  

of pixels 
RL 2.5% of pixels 

2.5% of pixels  

at boundaries 

5% of pixels 
Random 5%  

of pixels 

Clustered 5%  

of pixels 
RL 5% of pixels 

5% of pixels  

at boundaries 

10% of pixels 
Random 10%  

of pixels 

Clustered 10%  

of pixels 
RL 10% of pixels 

10% pixels  

at boundaries 

 

5.2.1 The amount of training pixels 

There are two sampling rates, which can be utilized when selecting a training dataset. 

One is called equal sample rate (ESR), in which a fixed percentage of pixels is sampled from 
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each class. And the other is called equal sample size (ESS), in which a fixed number of pixels 

are sampled from each class (Huang et al., 2002). Both of these strategies were utilized for the 

determination of the experimental training datasets in this master thesis. Furthermore another 

rule stated by Pal and Mather 2006 was followed. The relationship between the amount of 

training pixels and the amount of validating pixels is defined by this rule in a way, that there 

should be at least double amount of the validating pixels as there is training pixels (Pal and 

Mather, 2006). Thus the amount of the experimental training pixels was determined according 

to the references in the table 5, the stated rules and HW requirements as: 50, 100 and 200 

pixels of each class and 2.5%, 5% and 10% of the pixels of each class (fig. 28). In the case 

there were not enough pixels in the class to select 50, 100 or 200 pixels and still have twice 

the amount left for the validation, 30% of the pixels of the particular class were chosen. 

 

 

Fig. 28: The different amounts of pixels tested in the experiments shown in random stratified sampling design: 

a) 50 pixels, b) 100 pixels, c) 200 pixels,  d) 2.5% of pixels in the class, e) 5% of pixels in the class and f) 10% 

of pixels in the class (source: own ArcGIS output). 

 



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

65  

 

 

5.2.2 Sampling design 

There are several spatial sampling strategies, which are commonly used when 

determining training datasets. The most statistical tests generally assume a random spatial 

sampling, thus this type of sampling is considered as the most suitable. However randomly 

allocated points are often inaccessible because of difficult terrain or other obstacles, moreover 

small categories might be undersampled or missed. Another type of spatial sampling is 

clustered sampling. Clustered sampling can be a solution when there is limited time and 

resources for the field campaign as it reduces travel time in the field (Jones and Vaughan, 

2010). Nevertheless the results can be spatially correlated when sampling sites are too close to 

each other (Jones and Vaughan, 2010; Huang et al., 2002). And like in the previous case, 

small categories can be missed (Jones and Vaughan, 2010). To prevent undersampling of 

small classes, we can choose stratified versions of sampling strategies (Jones and Vaughan, 

2010; Belousov et al., 2002). This means that the study area is at first divided into polygons 

according to classes and then samples are collected according to chosen sampling design from 

each polygon. According to Jones and Vaughan (2010) stratified random sampling strategy is 

often the most efficient strategy. 

In addition to the above mentioned strategies, also random boundary sampling 

(samples of mixed spectral responses selected from geographical boundaries of the classified 

communities) and “real life scenario” sampling (one or more bigger polygons grown from one 

or more seeding pixels to contain certain amount of pixels) were utilized in the experiments. 

The boundary sampling has been already used for classification of crops by the SVM 

classifier. Foody and Mathur (2004, 2006) tested the effect of border training patterns on the 

accuracy of SVM classification, using either geographical boundaries or boundaries defined 

by physical variables. It was learnt, that these purposefully selected samples can provide 

higher or comparable accuracy as conventionally defined training sets. The “real life 

scenario” spatial sampling was tested because it is convenient and common to collect training 

pixels in that way. 

All the tested sampling strategies were performed in the stratified way. 

  

5.2.2.1 Random sampling design 

The randomly sampled pixels were determined using random.sample function. The 

IDs of the pixels were sampled from the list of IDs of all the pixels. These pixels were then 
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selected using arcpy.SelectLayerByAttribute_management and saved as a new vector layer 

(fig. 29). The selection was then switched and the rest of the pixels were used as validating 

pixels. 

 

 

Fig. 29: Random sampling design (source: own ArcGIS output). 

 

5.2.2.2 Clustered sampling design 

The creation of clustered training pixels involved several steps (fig. 30). At first, the 

area from where the centres of cluster can be chosen was defined. This area contained every 

pixel which was further than 1 or 2 metres from the boundary of a polygon.  

Secondly, the centres of clusters were randomly defined using the same method as is 

mentioned in chapter 5.2.2.1, only the amount of pixels was different (1% of the total amount 

of pixels in the class for ESR and 3, 6 and 12 centres for 50, 100 and 200 pixels, 

respectively). Then the neighbourhood around these centres was defined. 8-N neighbourhood 

was defined as all pixels within a distance of 0 metres from the centres and 24-N 

neighbourhood was defined as all pixels within a distance of 1 metre from the centres. The 8-

N neighbourhood was utilized in the case of 2.5% and 5% of the total amount of pixels in the 

class and the 24-N neighbourhood was utilized in all the other cases. 

Finally a certain amount of pixels was randomly selected from the defined 

neighbourhoods using the technique mentioned in chapter 5.2.2.1 and saved as training 

dataset. The remaining pixels were then used as a validating dataset. 
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Fig. 30: Clustered sampling design: a) area from which centres of clusters can be chosen, b) randomly chosen 

centres of clusters c) neighbourhoods around randomly chosen centres, d) clusters of training pixels (source: own 

ArcGIS output). 

 

5.2.2.3 “Real life scenario” sampling design 

To simulate a common sampling strategy where polygons of spectrally uniform pixels 

are collected the “real life scenario” sampling design was tested (fig. 31). In the first place, 

one or more seeding pixels were manually chosen from the polygons, based on the notes of 

the botanist made during the field mapping. The seeding pixels were chosen in the polygons, 

which were supposed to be the most spectrally uniform and the amount of the seeding pixels 

depended on the number of sub-communities included in a class. 
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The polygons were then grown around these seeding pixels until they reached or 

exceeded the given amount of pixels. In majority, the given amount of pixels was exceeded so 

it was necessary to remove the exceeded number of pixels. This was done by defining outer 

line of a polygon, creating a list of IDs of the pixels contained in the line and then randomly 

selecting the desired amount of pixels, which were removed from the polygon. The pixels 

which left in the polygon were then used as the training dataset and all the other pixels as 

validating dataset. 

 

 

Fig. 31: “Real life scenario” sampling design: a) seeding pixels, b) grown polygons, c) grown polygons together 

with pixels selected to be removed (red), d) training dataset for “real life scenario” sampling design (source: own 

ArcGIS output). 
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5.2.2.4 Random pixels at boundaries 

To create a training dataset with pixels at boundaries of classes (fig. 32), the boundary 

had to be identified first. All the pixels within 1 metre from the outer line of a polygon were 

considered as boundary pixels. 

In the second step, a certain amount of pixels were randomly selected from the 

boundary pixels and the selection was saved as a new vector layer with training pixels. The 

rest of the pixels were utilized as validating pixels. 

 

 

Fig. 32: Random pixels at boundaries: a) defined boundary from which training pixels are chosen randomly,  

b) training pixels at boundaries (source: own ArcGIS output). 

5.3 ANN setup 

The basic guidelines for setting parameters of NN classifier were adapted from 

Pomahačová 2012 , where it was learnt that the number of training iterations, training rate 

(TR) and training threshold contribution (TTC) have the highest impact on the accuracy of  

the classification of meadows in the Krkonoše mountains (Pomahačová, 2012). The training 

rate determines the magnitude of the adjustments of the weights. A higher rate speeds up the 

training, however it also increases the risk of oscillations or non-convergence of the training 

result. The training threshold contribution is used to adjust the changes to a node’s internal 

weight. If TTC is set to 0, the algorithm does not adjust the node’s internal weights. 
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Adjustments of the node’s internal weight can lead to better classifications of a certain area of 

interest, but too many adjustments can also lead to a poor generalization ability of a classifier 

(ENVI, NN). The best values of these parameters were stated by Pomahačová as follows: 

15000 training iterations, 0.1 for training rate and 0.2 for training threshold contribution 

(Pomahačová, 2012).  

These values were used as initial values for testing the NN set up. However it was 

learnt that when 15000 iterations were used the computational time of the algorithm was too 

long with no increase in accuracy, probably due to high spatial resolution of the utilized data 

(1m) and many training pixels. Therefore only 1000 to 5000 iterations with an increment of 

2000 were tested. The training rate of 0.1 and 0.2 was tested. The threshold training 

contribution was tested in a range from 0.2 to 0.8 with an increment of 0.2. Furthermore only 

one hidden layer was used as it is enough in the majority of cases and logistic activation 

function was utilized as it gave the best results in the experiments mentioned in the studied 

literature (chapter 2.3.4.1; Petropoulos et al., 2012; Camps-Valls et al., 2004). The rest of the 

parameters were left as default like in the case of Pomahačová (2012). The testing of NN 

setup was also performed on the enclave Přední Rennerovky and the best results were used to 

classify the remaining enclaves of the interest. The sampling design and amount of pixels 

which yielded the best classification accuracy for the SVM classifier was used also for the 

NN classifier. 

 

5.4 Assessment of the accuracy of classification 

The error matrix and kappa analysis were used to determine the accuracy of 

classifications. Moreover none of the training pixels was utilized as a reference pixel for the 

assessment of the accuracy of classification to avoid estimation of overoptimistic result of 

true classification accuracy (Jones and Vaughan, 2010). 

The error matrix (also referred to as a confusion matrix or a classification matrix) 

contains several measures of accuracy. The first and the most straightforward measure is the 

overall accuracy (OA). OA is defined as the total amount of correctly classified pixels (values 

in the major diagonal) divided by the total amount of classified pixels. Furthermore also 

measures of accuracy for each class can be derived from the error matrix. Depending on what 

we are interested in, we can count the number of the correctly classified pixels of a particular 

class either as a fraction of the “true” number of pixels of that class, or as a fraction of the 
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number of the pixels classified in that class. The first option (correctly classified pixels 

divided by the “true” number of pixels of a particular class) is a measure of producer’s 

accuracy (PA). The complement of producer’s accuracy is called omission error (OE) and it 

indicates the number of pixels for a particular class which were misclassified into other 

classes. The PA together with omission error is usually noted in the columns at the far right of 

the error matrix. The second option (correctly classified pixels divided by the number of the 

pixels classified into a particular class) is a measure of user’s accuracy (UA) and it indicates 

the reliability of the classification of a particular class. The complement of user’s accuracy is 

called commission error (CE). The UA and commission error are usually noted in the 

lowermost rows of the error matrix (Jones and Vaughan, 2010). 

The kappa analysis is a widely used method of accuracy assessment involving 

normalization of the data and taking into account omission and commission errors in addition 

to the values in the major diagonal. This is the main difference from the overall accuracy 

measurement. The kappa coefficient () is calculated as: 

 

       
 ∑     ∑ (       )

 
   

 
   

   ∑ (       )
 
   

 

 

where xii are the diagonal cells of the matrix, the xi+ are the row marginal totals and the x+i are 

the column marginal totals and the n is the total number of elements in the matrix. The kappa 

coefficient is a measure of agreement after chance agreement is removed. Therefore kappa is 

used to determine if the classification is significantly better than chance. Kappa coefficient 

greater than 0.75 means that classifier performs well, on the other hand kappa coefficient 

lower than 0.40 suggests poor performance of a classifier (Jones and Vaughan, 2010). 
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6. Results 

6.1 The SVM classifier 

6.1.1. The parameters of the SVM classifier 

The results of SVM parameters testing on the model enclave of Přední Rennerovky are 

summarized in the tables 7.A, 7.B and 7.C. With regard to given conditions (amount of 

training pixels and their sampling design), it can be said that the worst performing kernel was 

linear kernel (the highest achieved OA 69.44 % and kappa 0.58; table 7.C). The performance 

of the RBF kernel was mediocre (the highest achieved OA 71.11% and kappa 0.60; table 7.B) 

and the best performing kernel was polynomial kernel of polynomial degree 6 (the highest 

achieved OA 74.46% and kappa 0.64; table 7.A).  

As for the influence of changes of gamma parameter on accuracy of classification, the 

result was the same for both tested kernels (RBF and polynomial). The changes did not have 

any effect on the accuracy of classification, even if the whole scale of values available in 

ENVI was tested. 

Penalty parameter and the polynomial degree of polynomial kernel had, on the other 

hand, major effect on the accuracy of classification. The classification was more accurate with 

the higher polynomial degree of polynomial kernel used (for a comparison: OA 69.63% and 

kappa 0.58 when polynomial degree of 2 was used and OA 73.71% and kappa 0.63 when 

polynomial degree of 6 was used). The trend of penalty parameter was up to few exceptions 

similar to the one of polynomial degree – the higher the value of penalty parameter, the higher 

the accuracy of the classification. The penalty parameter of value 100 yielded those results for 

RBF and polynomial kernels mentioned as the best in the beginning of this chapter. The only 

exception was linear kernel, where the accuracy of classification was varying as the value of 

penalty parameter increased. However the variation was insignificant, only on the scale of 

decimal digits. Thus it could be concluded, that the changes in the values of penalty parameter 

did not affect the accuracy of the classification when linear kernel was utilized. 

 The polynomial kernel of the 6
th

 polynomial degree with default value of gamma 

parameter and value of 100 of penalty parameter was used for further experiments and 

classifications. 
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Table 7.A. The results of accuracy assessment for tested combinations of parameters of polynomial kernel. The 

value of 0.143 for gamma parameter is the default value set by ENVI 4.7 (1/7 bands) (source: own ENVI 

analysis). 

# of case 
Polynomial 

degree 

Gamma 

parameter 

Penalty 

parameter 
OA (%) Kappa 

1. 1 0.143   50 68.97 0.57 

2. 2 0.143 50 69.63 0.58 

3. 3 0.143 50 71.17 0.60 

4. 4 0.143 50 72.32 0.61 

5. 5 0.143 50 73.52 0.63 

6. 6 0.143 50 73.71 0.63 

7. 6 0.010 50 73.71 0.63 

8. 6 0.100 50 73.71 0.63 

9. 6 1.000 50 73.71 0.63 

10. 6 10.000 50 73.71 0.63 

11. 6 100.000 50 73.71 0.63 

12. 6 1000.000 50 73.71 0.63 

13. 6 10000.000 50 73.71 0.63 

14. 6 0.143 0 (0.01) 33.04 0.25 

15. 6 0.143 10 71.72 0.61 

16. 6 0.143 20 73.12 0.62 

17. 6 0.143 30 73.51 0.63 

18. 6 0.143 40 73.60 0.63 

19. 6 0.143 60 73.56 0.63 

20. 6 0.143 70 73.78 0.63 

21. 6 0.143 80 74.00 0.63 

22. 6 0.143 90 74.34 0.64 

23. 6 0.143 100 74.46 0.64 

 

 

Table 7.B. The results of accuracy assessment for tested combinations of parameters of RBF kernel. The value 

of 0.143 for gamma parameter is the default value set by ENVI 4.7 (1/7 bands) (source: own ENVI analysis).  

# of case Gamma parameter Penalty parameter OA (%) Kappa 

1. 0.010 50 70.01 0.59 

2. 0.100 50 70.01 0.59 

3. 1.000 50 70.01 0.59 

4. 10.000 50 70.01 0.59 

5. 100.000 50 70.01 0.59 

6. 1000.000 50 70.01 0.59 

7. 10000.000 50 70.01 0.59 

8. 0.143 0 (0.01) 54.51 0.00 

9. 0.143 10 68.97 0.57 

10. 0.143 20 69.43 0.59 

11. 0.143 30 69.73 0.58 

12. 0.143 40 69.97 0.58 

13. 0.143 50 70.00 0.59 

14. 0.143 60 70.23 0.59 

15. 0.143 70 70.37 0.59 

16. 0.143 80 70.61 0.59 

17. 0.143 90 70.82 0.59 

18. 0.143 100 71.11 0.60 
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Table 7.C. The results of accuracy assessment for linear kernel and different values of penalty parameter 

(source: own ENVI analysis). 

# of case Penalty parameter OA (%) Kappa 

1. 0 (0.01) 22.31 0.02 

2. 10 68.96 0.57 

3. 20 69.44 0.58 

4. 30 69.33 0.58 

5. 40 69.35 0.58 

6. 50 69.40 0.58 

7. 60 69.35 0.58 

8. 70 69.42 0.58 

9. 80 69.39 0.58 

10. 90 69.29 0.58 

11. 100 69.24 0.58 

 

6.1.2 Sampling design and the amount of training pixels 

The overall accuracies and kappa coefficients for different combinations tested are 

noted in the table 8. Regarding various sampling designs, the random sampling design gave 

the best results (given a certain amount of pixels) in most of the cases (OA 83.63% and kappa 

0.74 for 10% of pixels). However also the clustered sampling design and “pixels at 

boundaries” sampling design gave satisfactory results (OA 82.11 % and kappa 0.71 and OA 

81.68% and kappa 0.70 respectively for 10% of pixels). The worst accuracies were measured 

for the “real life scenario” sampling design (OA 74.48% and kappa 0.60 for 10% of pixels). 

The only exception for the “real life scenario” occurred when only 50 pixels were used as a 

training sample. In this situation the accuracy achieved by utilizing this sampling design was 

the higher than the ones achieved by other sampling designs. The combination of the “real life 

scenario” sampling design and 50 pixels as a training sample was exceptional also with regard 

to amount of 50 pixels, because this situation was also the case when the highest accuracy 

was measured for this amount of training pixels. Otherwise the greater amount of training 

pixels resulted in higher accuracies.  

The combinations, which yielded the best results were as follows: randomly sampled 

2.5%, 5% and 10% of pixels (OA close to and higher than 82% and kappa 0.70, 0.73 and 0.74 

respectively), clustered 2.5%, 5% and 10% of pixels (OA around 82% and kappa 0.71, 0.72 

and 0.71 respectively) and 2.5%, 5% and 10% of pixels at boundaries (OA over 80% and 

kappa 0.67. 0.67 and 0.70 respectively). Randomly sampled 10% of pixels combination was 

used to classify the remaining enclaves, because of the highest OA reached. 

In general training pixels selected by ESR method gave higher accuracies than training 

pixels selected by ESS method. 
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Table 8. The results of accuracy assessment for tested combinations of sampling designs and the amount of 

pixels noted in table 6 (source: own ENVI analysis). 

Combination OA (%) Kappa Combination OA (%) Kappa 

Random 50 

pixels 
69.32 0.58 RL 50 pixels 75.23 0.62 

Random 100 

pixels 
73.36 0.63 RL 100 pixels 71.25 0.58 

Random 200 

pixels 
74.46 0.64 RL 200 pixels 65.87 0.53 

Random 2.5% 

of pixels 
81.80 0.70 

RL 2.5%  

of pixels 
73.53 0.59 

Random 5%  

of pixels 
83.17 0.73 

RL 5% of 

pixels 
74.17 0.59 

Random 10%  

of pixels 
83.63 0.74 

RL 10%  

of pixels 
74.48 0.60 

Clustered 50 

pixels 
58.19 0.44 

50 pixels  

at boundaries 
68.13 0.56 

Clustered 100 

pixels 
60.93 0.47 

100 pixels 

at boundaries 
71.00 0.59 

Clustered 200 

pixels 
71.11 0.52 

200 pixels 

at boundaries 
73.11 0.62 

Clustered 

2.5%  

of pixels 

81.80 0.71 
2.5% of pixels 

at boundaries 
80.25 0.67 

Clustered 5%  

of pixels 
82.42 0.72 

5% of pixels  

at boundaries 
80.47 0.67 

Clustered 10%  

of pixels 
82.11 0.71 

10% of pixels  

at boundaries 
81.68 0.70 

 

6.1.3 The accuracy assessment of the classification of the enclaves of interest 

The most important characteristics of the accuracy of the classification of the areas of 

interest can be found in tables 9 to 14. The more detailed characteristics are in the appendices 

III to XIV. Meaning of the abbreviations used in the tables is as follows: OA – overall 

accuracy, PA – producer´s accuracy, UA – user´s accuracy, CE – commission error, OE – 

omission error.  

The highest OA and kappa coefficients were measured for the model location (Přední 

Rennerovky) and for the location of Friesovy boudy, which were re-checked and training 

polygons for these locations were fixed in the best possible way given material resources. The 

OA for these locations were 83.63% and 87.63% respectively. Kappa coefficients were 0.74 

and 0.75 respectively. Mediocre results were achieved on locations Husí Boudy (OA 61.19% 

and kappa 0.48), Lahrovy Boudy (OA on both flight lines around 65.40 % and kappa on both 

flight lines around 0.50) and for the part of Zadní Rennerovky on flight line 10_20 (OA 

69.67% and kappa 0.53). The worst accuracies were obtained for location of Klínové Boudy 

(OA 68.51% but kappa only 0.33) and for Zadní Rennerovky on flight line 10_58 (OA 
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59.34% and kappa 0.32). Generally, smaller locations were classified with the higher 

accuracy than bigger locations.   

 

Table 9. The results of accuracy assessment for the location of Přední Rennerovky (SVM classifier). Numbers of 

classes: 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – waterlogged grasslands; 5 – degraded 

meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species. OA = 83.63% and 

kappa = 0.74 (source: own ENVI analysis).  

 
UA  

(%) 

CE 

(%) 

PA 

(%) 

OE 

(%) 

2 81.22 18.78 80.03 19.97 

3 90.22 9.78 85.90 14.10 

4 71.70 28.30 45.05 54.95 

5 78.50 21.50 55.93 44.07 

6 83.39 16.61 93.26 6.74 

 

Table 10. The results of accuracy assessment for the location of Friesovy Boudy (SVM classifier). Numbers of 

classes: 4 – waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows 

dominated by grass species; 7 – stands dominated by Vaccinium species. OA = 87.63% and kappa = 0.75 

(source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

4 0.00 0.00 0.00 100 

5 88.91 11.09 83.50 16.50 

6 86.76 13.24 92.07 7.93 

7 0.00 0.00 0.00 100 

 

Table 11. The results of accuracy assessment for the location of Husí Boudy (SVM classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – deagraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species. OA = 61.19% and kappa = 0.48 (source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

1 69.86 30.14 66.38 33.62 

2 56.78 43.22 73.44 26.56 

3 63.97 36.03 71.53 28.47 

4 51.17 48.83 31.02 69.98 

5 40.76 59.24 12.07 87.93 

6 50.00 50.00 7.82 92.18 

 

Table 12. The results of accuracy assessment for the location of Klínové Boudy (SVM classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 4 – waterlogged grasslands; 5 – degraded 

meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated 

by Vaccinium species; 8 – vegetation of springs; 9 – subalpine tall-fern vegetation. OA = 68.51% and kappa = 

0.33 (source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

1 0.00 0.00 0.00 100.00 

2 59.27 40.73 16.85 83.15 

4 59.67 40.33 20.03 79.97 

5 62.80 37.20 44.95 55.05 

6 70.43 29.57 92.20 7.80 

7 55.22 44.78 13.09 86.91 

8 42.18 57.82 11.77 88.23 

9 100.00 0.00 0.43 99.57 



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

77  

 

 

Table 13. The results of accuracy assessment for the location of Lahrovy Boudy (SVM classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species; 7 – stands dominated by Vaccinium species; 8 – vegetation of springs. OAline 08_43 = 65.33% 

and kappaline 08_43 = 0.44. OAline 10_45 = 65.45% and kappaline 10_45 = 0.50 (source: own ENVI analysis). 

Line 08_43 UA (%) CE (%) PA (%) OE (%) 

1 55.14 44.86 41.62 58.38 

2 69.26 30.74 21.65 78.35 

3 73.77 26.23 79.74 20.26 

4 51.80 48.20 10.55 89.45 

5 53.63 46.37 65.37 34.63 

6 72.68 27.32 34.15 65.85 

7 0.00 0.00 0.00 100.00 

Line 10_45 UA (%) CE (%) PA (%) OE (%) 

1 72.16 27.84 84.25 15.75 

2 50.82 49.18 31.60 68.40 

3 68.50 31.50 86.01 13.99 

4 44.21 55.79 2.96 97.04 

5 61.35 38.65 46.60 53.40 

6 51.19 48.81 38.04 61.96 

7 0.00 0.00 0.00 100.00 

8 0.00 0.00 0.00 100.00 

 

Table 14. The results of accuracy assessment for the location of Zadní Rennerovky (SVM classifier). Numbers 

of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species; 7 – stands dominated by Vaccinium species; 8 – vegetation of springs; 9 – subalpine tall-fern 

vegetation. OAline 10_58 = 59.34% and kappaline 10_58 = 0.32. OAline 10_20 = 69.67% and kappaline 10_20 = 0.53 

(source: own ENVI analysis). 

Line 10_58 UA (%) CE (%) PA (%) OE (%) 

1 69.38 30.62 49.41 50.59 
2 82.95 17.05 66.17 33.83 

3 68.01 31.99 16.54 83.46 

4 59.78 40.22 18.37 81.63 

5 53.68 46.32 12.39 87.61 

6 57.03 42.97 93.17 6.83 

7 73.44 26.56 38.07 61.93 

8 63.36 36.64 19.19 80.81 

9 21.43 78.57 0.53 99.47 

Line 10_20 UA (%) CE (%) PA (%) OE (%) 

1 83.63 16.37 79.01 20.99 

2 70.91 29.09 57.38 42.62 

3 63.03 36.97 32.18 67.82 

4 25.93 74.07 1.51 98.49 

5 63.97 36.03 16.11 83.89 

6 61.67 38.33 86.72 13.28 

7 43.37 56.63 10.07 89.93 
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The best classified category on the majority of locations was class 6 – degraded 

meadows with dominating grass species (e.g. accuracy 93.26% for Přední Rennerovky, 

92.07% for Friesovy Boudy or 92.20% for Klínové Boudy). Only on locations Husí Boudy 

and Lahrovy Boudy (both flight lines), class 2 – oligotrophic grasslands (Husí Boudy, 

accuracy 73.44%) and class 3 – mesophile grasslands (Lahrovy Boudy on flight line 08_43 

with accuracy 79.74% and Lahrovy Boudy on flight line 10_45 with accuracy 86.01%) were 

mapped the most accurately. The less abundant classes were usually classified with the lowest 

accuracy, such as class 7 (stands dominated by Vaccinium species), class 8 (springs) and class 

9 (tall-fern vegetation). These classes were mapped with accuracies from 0% to 13.09%. In 

approximately half of the cases also waterlogged grasslands (class 4) and in some cases also 

degraded meadows dominated by Dicotyledons (class 5) were classified with the accuracy 

lower than 10%, because pixels belonging to these classes were confused the most between 

each other. Also pixels of class 3 were quite often confused with pixels of class 5. Other 

classes, which were occasionally confused amongst themselves, were classes 1, 2 and 6. 

  As for differences of results for enclaves on two flight lines (Lahrovy Boudy and 

Zadní Rennerovky), they vary greatly between enclaves. The both flight lines of Lahrovy 

Boudy were classified with almost the same accuracies (OA = 0.11% and kappa = 0.05), 

while there are discrepancies between flight lines of Zadní Rennerovky (OA = 10.33% and 

kappa = 0.21). All the classes, except class 1, on both lines of Lahrovy Boudy were mapped 

with quite a similar accuracy, whereas on location of Zadní Rennerovky it was only classes 2, 

5 and 6 which were mapped with similar accuracy. 

 

6.2 The ANN classifier 

6.2.1 The parameters of the ANN classifier 

The accuracies of classification for different combinations of NN classifier parameters 

can be seen in table 15.  

As it was mentioned before, it was learnt during the testing that while number of 

iterations greater than 3000 do not significantly increase the accuracy of classification (OA 

= 0.26% and kappa = 0.01), it significantly increases the computational time necessary for 

the classification. Therefore the 3000 iterations were established as the most suitable number 

of iterations. Furthermore increasing of training rate caused a major drop in the accuracy of 
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classification, which supports the findings of Pomahačová (2012) and thus the TR of 0.1 like 

in the case of Pomahačová was utilized. From the tested possibilities of TTC, the value of 0.4 

gave the best results and therefore other classifications were performed using TTC of value 

0.4. The resultant combination of parameters of NN classifier was then as follows: 3000 

iterations, 0.1 for TR and 0.4 for TTC with all the other parameters left as default. 

 
Table 15. The results of accuracy assessment for tested combinations of parameters of the NN classifier (source: 

own ENVI analysis). 

# of case # of iterations TR TTC OA (%) Kappa 

1. 1000 0.1 0.2 78.23 0.64 

2. 3000 0.1 0.2 80.20 0.68 

3. 5000 0.1 0.2 80.46 0.69 

4. 3000 0.2 0.2 77.66 0.63 

5. 3000 0.1 0.4 80.40 0.68 

6. 3000 0.1 0.6 80.00 0.66 

7. 3000 0.1 0.8 80.01 0.67 

 

6.2.2 The accuracy assessment of the classification of the enclaves of interest 
 

Some of the characteristics of the accuracy assessment of the areas of interest can be 

found in tables 16 to 21. The more detailed characteristics can be found in the appendices III 

to XIV. Meaning of the abbreviations used in the tables is as follows: OA – overall accuracy, 

PA – producer´s accuracy, UA – user´s accuracy, CE – commission error, OE – omission 

error. 

The highest accuracies were obtained, like in the case of SVM classifier, for the model 

location of Přední Rennerovky (OA 80.37% and kappa 0.68) and for Friesovy Boudy (OA 

87.35% and kappa 0.75). Average results were achieved for enclaves Husí Boudy (OA 

58.86% and kappa 0.44), Lahrovy Boudy on flight line 10_45 (OA 61.48% and kappa 0.45) 

and Zadní Rennerovky on flight line 10_20 (OA 67.61% and kappa 0.49). The average to 

worse results was gained for Lahrovy Boudy on flight line 08_43 (OA 60.81% and kappa 

0.39). The lowest values of OA and kappa coefficients were measured for the remaining 

enclaves: Zadní Rennerovky on flight line 10_58 (OA 57.86% and kappa 0.28) and Klínové 

Boudy (OA 66.20% but kappa 0.31). Again, it could be stated that in majority smaller 

locations were classified with the higher accuracy than bigger locations. 

The class with the best classification results on most of the enclaves was also class 6 

(e.g. accuracy 92.24% for Přední Rennerovky, or 95.17% for Zadní Rennerovky on flight line 

10_58) and also the locations Husí Boudy and both flight lines of Lahrovy Boudy were 
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exceptions regarding this fact. However different classes were mapped the most accurately on 

these enclaves than in the case of SVM classifier (class 3 – mesophile grasslands on location 

Husí Boudy with accuracy of 82.45%, class 5 – degraded meadows dominated by 

Dicotyledons on flight line 08_43 of Lahrovy Boudy with accuracy of 90.15% and class1 – 

N.stricta grasslands on flight line 10_45 of Lahrovy Boudy with accuracy of 79.24%). 

Besides the already mentioned, less abundant classes, which were classified with lower 

accuracy by SVM classifier (classes 7 – stands dominated by Vaccinium species, 8 – springs 

and 9 – tall-fern vegetation), also class 4 (waterlogged grasslands) was often classified 

incorrectly. The mapping accuracies of these categories were usually between 0 to 11.96%. 

Occasionally also class 5 (Husí Boudy and Zadní Rennerovky on flight line 10_20) or classes 

1 or 2 (Klínové Boudy and Lahrovy Boudy) were classified with the accuracies close to or 

under 10%. The reason for this is the same as in the case of SVM classifier and that is the 

confusion of the pixels belonging to these classes with pixels belonging to classes with similar 

spectral characteristics. 

 

Table 16. The results of accuracy assessment for the location of Přední Rennerovky (NN classifier). Numbers of 

classes: 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – waterlogged grasslands; 5 – degraded 

meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species. OA = 80.37% and 

kappa = 0.68 (source: own ENVI analysis).  

 
UA  

(%) 

CE 

(%) 

PA 

(%) 

OE 

(%) 

2 67.06 32.94 80.74 19.26 

3 95.74 4.26 73.92 26.08 

4 70.56 29.44 37.57 62.43 

5 70.42 29.58 56.21 43.79 

6 81.00 19.00 92.24 7.76 

 

Table 17. The results of accuracy assessment for the location of Friesovy Boudy (NN classifier). Numbers of 

classes: 4 – waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows 

dominated by grass species; 7 – stands dominated by Vaccinium species. OA = 87.35% and kappa = 0.75 

(source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

4 0.00 0.00 0.00 100.00 

5 85.23 14.77 87.58 12.42 

6 89.05 10.95 88.41 11.59 

7 0.00 0.00 0.00 100.00 
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Table 18. The results of accuracy assessment for the location of Husí Boudy (NN classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – deagraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species. OA = 58.90% and kappa = 0.44 (source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

1 73.39 26.61 65.47 34.53 

2 56.22 43.78 66.18 33.82 

3 59.24 40.76 82.45 17.55 

4 26.69 73.31 11.96 88.04 

5 13.68 86.32 0.43 99.57 

6 6.44 93.55 2.23 97.77 

 

Table 19. The results of accuracy assessment for the location of Klínové Boudy (NN classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 4 – waterlogged grasslands; 5 – degraded 

meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated 

by Vaccinium species; 8 – vegetation of springs; 9 – subalpine tall-fern vegetation. OA = 66.20% and kappa = 

0.31 (source: own ENVI analysis). 

 UA (%) CE (%) PA (%) OE (%) 

1 0.00 0.00 0.00 100.00 

2 0.00 0.00 0.00 100.00 

4 47.34 52.66 31.84 68.16 

5 48.78 51.22 48.70 51.30 

6 71.77 28.23 88.30 11.70 

7 41.30 58.70 0.14 99.86 

8 22.19 77.81 0.46 99.54 

9 0.00 0.00 0.00 100.00 

 

Table 20. The results of accuracy assessment for the location of Lahrovy Boudy (NN classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species; 7 – stands dominated by Vaccinium species; 8 – vegetation of springs. OAline 08_43 = 60.81% 

and kappaline 08_43 = 0.39. OAline 10_45 = 61.48% and kappaline 10_45 = 0.45 (source: own ENVI analysis). 

Line 08_43 UA (%) CE (%) PA (%) OE (%) 

1 53.21 46.79 31.17 68.83 

2 72.30 27.70 10.40 89.60 

3 85.11 14.89 59.31 40.69 

4 0.00 0.00 0.00 100.00 

5 46.35 53.65 90.15 9.85 

6 89.57 10.43 21.22 78.78 

7 0.00 0.00 0.00 100.00 

Line 10_45 UA (%) CE (%) PA (%) OE (%) 

1 66.61 33.39 79.24 20.76 

2 44.45 55.55 11.89 88.11 

3 73.73 26.27 75.61 24.39 

4 0.00 0.00 0.00 100.00 

5 48.12 51.88 56.78 43.22 

6 41.68 58.32 38.52 61.48 

7 0.00 0.00 0.00 100.00 

8 0.00 0.00 0.00 100.00 
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Table 21. The results of accuracy assessment for the location of Zadní Rennerovky (NN classifier). Numbers of 

classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated 

by grass species; 7 – stands dominated by Vaccinium species; 8 – vegetation of springs; 9 – subalpine tall-fern 

vegetation. OAline 10_58 = 57.86% and kappaline 10_58 = 0.28. OAline 10_20 = 67.60% and kappaline 10_20 = 0.49 

(source: own ENVI analysis). 

Line 10_58 UA (%) CE (%) PA (%) OE (%) 

1 72.13 27.87 43.14 56.86 
2 77.63 22.37 12.49 87.51 

3 0.00 0.00 0.00 100.00 

4 52.01 47.99 9.05 90.95 

5 79.85 20.15 65.20 34.80 

6 55.51 44.49 95.17 4.83 

7 62.56 37.44 35.10 64.90 

8 0.00 0.00 0.00 100.00 

9 0.00 0.00 0.00 100.00 

Line 10_20 UA (%) CE (%) PA (%) OE (%) 

1 80.67 19.33 79.59 20.41 

2 64.29 35.71 46.83 53.17 

3 63.59 36.41 22.36 77.64 

4 0.00 0.00 0.00 100.00 

5 46.32 53.68 5.61 94.39 

6 59.92 40.08 86.60 13.40 

7 27.79 72.21 2.71 97.29 

 

A rather similar trend in the differences between flight lines of the same locations was 

observed  also in the case of NN classifier with the discrepancies between flight lines of Zadní 

Rennerovky greater than those between flight lines of Lahrovy Boudy (OA = 9.75% and 

kappa = 0.2  for Zadní Rennerovky versus OA = 0.67% and kappa = 0.06 for Lahrovy 

Boudy).  

 

 

 

 

6.3 Classification maps for the selected cases 

Classification maps for the best combination for each SVM kernel type tested and also 

the classification maps for the best result for each sampling design are shown in this chapter. 

Further classification maps for all enclaves are shown in appendices. 
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Fig.33: Classification maps for Přední Rennerovky for best combination of parameters of SVM polynomial 

kernel (upper) and best combination of parameters of SVM radial basis function kernel (lower). 
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Fig. 34: Classification maps for Přední Rennerovky for best combination of parameters of SVM linear kernel 

(upper) and best combination of NN classifier parameters (lower). 
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Fig. 35: Classification maps for Přední Rennerovky for randomly sampled 10% of total amount of pixels (upper) 

and clustered 5% of total amount of pixels (lower). 
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Fig. 36: Classification maps for Přední Rennerovky for “real life scenario” 50 pixels (upper) and 10% pixels at 

boundaries (lower). 
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7. Discussion 

7.1 The utilized datasets and their limitations 

As it was mentioned before, some errors in the aerial dataset were observed during the 

pre-processing of this dataset. The discrepancies in the spectral signatures, majorly in the 

infrared part of spectrum of the same pixel between different flight lines were considered as 

the most serious errors. These errors could have been caused for example by incorrect 

calibration of sensor between sensing of different flight lines, by wrong atmospheric 

corrections of particular flight lines or just by difference of one hour in sensing of the lines. A 

difference of one hour usually does not mean much, when images are sensed around noon. 

However, as some of the images were sensed in the morning and others shortly before noon, 

the change in the strength of sunlight could have been significant enough to cause the 

discrepancies in the spectral signatures. The lower values in the infrared spectrum also 

suggest that wrong scaling factor could have been used when DNs in the infrared part of 

spectrum for one flight line were converted to reflectance values. Normally scaling factor of 

40 should be used for VNIR part of AISA spectrum and scaling factor of 80 should be used 

for SWIR part of AISA spectrum (Imaging spectroscopy, 2013), but it is possible that scaling 

factor of 40 has been used for the whole spectrum of this particular flight line, which caused 

the differences in spectra between lines. Although it is difficult to learn a real cause for the 

discrepancies because only limited information about the pre-processing of the aerial data was 

submitted by the outsourcing company. 

The differences in the spectra were also the reason, why all the utilized flight lines 

were processed separately without mosaicking. While it was probably a correct step (because 

for example both parts of enclave Lahrovy Boudy were classified with quite a similar 

accuracy and this might not have happened if the lines had been connected together), it also 

posed some problems mainly during the assessment of accuracy of the classifications, when 

lines had to be assessed also separately. Furthermore non-mosaicking probably underlined the 

geometric distortions on the edges of lines and in some cases caused several metres up to 20 

metres wide “belts” of wrongly classified pixels along the edges of lines (appendices XI, XIII, 

XV and XVII). These problems are usually diminished during mosaicking because distorted 

pixels are balanced by undistorted pixels from middle parts of the mosaicked lines (Wang et 

al., 2008) and also there are no edges of lines to be misclassified. However, as mosaicking 
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was not performed on the utilized dataset, the distorted and wrongly classified pixels on the 

edges probably added to lower accuracy of the classification of some enclaves.   

What´s more, another shortcoming of the utilized aerial dataset was the early day time 

of acquisition of some images. There are huge shadows present in the images of some 

enclaves (especially Husí Boudy and Lahrovy Boudy), which make many pixels impossible to 

use for the analysis, as there is no information present in these shadowed pixels. In the case of 

Husí Boudy shadows made it even impossible to classify class 7 (stands dominated by 

Vaccinium species) because the vegetation of this class occurs close to a forest, right on the 

spots which were shadowed during the time of acquisition. Thus it was not possible to collect 

any pixels for training or validating. 

The size of the hyperspectral dataset could be perceived as a down-side, nonetheless it 

was manageable with some work planning and using of spatial and spectral subsets (the 

original size of the images 600GB per flight line was in the end reduced to hundreds of MB). 

Even if the quality of images is important, training and validating polygons have quite 

often higher impact on the accuracy of classification (Jones and Vaughan, 2010), as it 

probably happened in the case of the classifications performed in this master thesis. The field 

survey was done with no use of any GPS device and also the characteristics of vegetation (e.g. 

measure of waterlogging or percentual amount of Dicotyledons) were not measured but only 

mapped by “a human eye”. These subjective ways of mapping can cause biases in the data, 

spatial or factual. The spatial biases have been observed during the pre-processing of the field 

mapping data and were corrected within the limits (e.g. misplaced polygons of roads or 

cottages), however different types of the meadows could not be corrected only by using 

orthophoto, as they are not distinguishable in it. The new field survey had to be conducted 

where enclave of Přední Rennerovky and partially also enclave of Friesovy Boudy were re-

checked. Unfortunately no GPS device was utilized also during the new field survey, because 

of the lack of the material and personal resources. Nevertheless the re-mapping yielded the 

new set of more spatially accurate polygons, which could be used for the experiments with 

parameters of SVM classifier and the amount and sampling design of training pixels. 

Furthermore the re-checked enclaves were classified with higher accuracy than the other ones. 

Last but not least is the fact that the field mapping was conducted one year later after 

the sensing of images. Thus the placement of some faster-growing vegetation communities 

(e.g. Rumex alpinus) could have been slightly changed. The classifiers were then fed with 
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wrong information about vegetation and this introduced artificial errors in the accuracy of 

classifications, not caused by the classification algorithms themselves. However such cases 

should not be common as the vegetation of meadows in the Krkonoše mountains is usually 

quite stable and different communities do not change their placements (consultations with 

Stanislav Březina).  

 

7.2 The tested parameters of the SVM classifier 

The testing of the SVM parameters was one of the main purposes of this master thesis. 

It was learnt that the polynomial kernel was the best suited for the classification of the 

meadow vegetation in the Krkonoše mountains. These findings are opposite to what was 

anticipated, as the RBF kernel was stated as the best in the majority of the studied literature. 

However Dixon and Candade (2008) and Camps-Valls et al. (2004) also mention polynomial 

kernels as the best performing kernels regarding the vegetation they classified. Both groups of 

authors classified rural areas, one in Florida (Dixon and Candade, 2008) and the other in 

Barrax, Spain (Camps-Valls et al., 2004). The meadows in The Krkonoše mountains are 

usually held under some management (e.g. grazing, mowing) (Štursa, 2013) like crops in the 

fields and therefore the structure of the vegetation there could remind the one of crops. 

Furthermore categories classified by Dixon and Candade (2008) such as wetlands or pastures 

or mountainous area classified by Camps-Valls et al. (2004) also resemble the landscape in 

the Krkonoše mountains. Moreover Dixon and Candade (2008) utilized Landsat 5 TM data 

with 6 input bands and Camps-Valls et al. (2004) reported polynomial kernel as the best when 

6 bands of HyMap imagery were utilized. In this master thesis 7 best bands of AISA imagery 

were utilized, which is really similar amount to the one which Dixon and Candade (2008) and 

Camps and Valls (2004) utilized in their experiments, so perhaps also from this reason the 

same type of a kernel could give the best results. As for the polynomial degree of the 

polynomial kernel, the highest possible degree (6) gave the best results. This finding is fully 

in agreement with the studied literature (e.g. Camps-Valls et al. 2004; Huang et al. 2002), 

where authors stated, that accuracy of classification increases with the increasing polynomial 

degree of the polynomial kernel.    

Regarding penalty parameter C, the highest accuracies were measured for the 

maximum possible value (100) of this parameter. Such result is the same as the results of 

studies of Petropoulos et al. (2012), Dixon and Candade (2008) or Pal and Mather (2005). 
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Where also maximum values allowed by utilized SW were used. According to Dixon and 

Candade (2008), greater value of penalty parameter yields more accurate classification results 

because the SVM algorithm is enabled to search in a wider space and thus classification errors 

are avoided by allowing more slack variables, further from a separating hyperplane. Moreover 

higher values of the penalty parameter are also recommended when noisy data is utilized 

(ČVUT, wiki course). The aerial dataset used in this master thesis can be considered as noisy, 

because of the high within class variability of the mountainous meadows and also because of 

the inexact field mapping (chapter 4.2.2) and therefore it is logical that the highest accuracies 

were obtained for the highest values of penalty parameter. 

It was also learnt that the changes in values of gamma parameter did not have any 

effect on the accuracy of classification. Quite a similar behaviour was observed only in one of 

all the studied cases, by Huang et al. (2000) where increasing values of gamma parameter 

beyond value 7.5 did not significantly change the results of classification, however Huang et 

al. (2000) did not mention any possible reasons behind such behaviour. In my opinion, the 

changes in values of gamma parameter did not influence the accuracy of classifications 

because the potential of hyperspectral data was not fully utilized (as less detailed legend had 

to be used in the end that what was planned in the beginning because of the coarse field 

mapping) and using penalty parameter together with any non-linear transformation into higher 

dimensional space was enough to classify the given datasets according to a given legend.  

         

7.3 Sampling design and the amount of training pixels 

Another main task of this master thesis was to test an influence of different types of 

training datasets on the accuracy of classification. The initial hypothesis to test was the 

finding of Foody and Mathur (2004, 2006) that the SVM algorithm is able to classify datasets 

with the same or higher accuracy when border training pixels are used instead of the 

conventionally chosen ones (e.g. randomly sampled pixels). Results confirming this 

hypothesis were indeed observed – the accuracy yielded by using pixels at boundaries as 

training dataset was comparable with the accuracy gained when using randomly sampled 

training pixels. Such results were probably obtained because more of the support vectors, 

which are used by the SVM algorithm to construct a separating hyperplane, are actually 

situated at the boundaries of polygons than in their centres (Foody and Mathur 2004, 2006). 

The fact, that randomly sampled training pixels still gave better accuracies by 1 - 2%, is 
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probably caused by high within class variability of mountainous meadows, because, thanks to 

such variability, support vectors are probably contained also deeper in the polygons of these 

meadows, further from their boundaries. Furthermore inexact field mapping caused that small 

polygons of one land cover type are situated within the polygons marked as different land 

cover type, which artificially increases within class variability (regarding support vectors). 

The support vectors can be then really found deep inside of the polygons. This finding could 

make field mapping of hardly accessible biotopes (like peat bogs, marshes or very closed 

forest canopies) easier, because according to the results of the analysis, these biotopes could 

be mapped just on their boundaries and it would not be necessary to wade or getting through 

such biotopes. 

Besides the two already mentioned sampling designs, other ones were tested too (the 

clustered sampling design and “real life scenario” sampling design). The worst accuracies 

were measured for the “real life scenario” sampling design endorsing the statements of Jones 

and Vaughan (2010) and Huang et al. (2002) that training pixels placed too close to each 

other bear the same correlated information and thus cannot yield sufficient accuracies. 

Therefore it is not recommended to use “real life scenario” sampling design, even if it is the 

least demanding sampling design when material and human resources are considered. The 

results gained by using clustered sampling design were more satisfactory than those from 

“real life scenario” sampling design and equivalent with results from randomly sampled and 

boundary training pixels. The reason for this is probably, that there were enough of clusters 

and those were not too large, so the spectral information contained in these clusters was 

various enough and support vectors could have been found properly. This opinion has been 

confirmed by a trend found in the results, where accuracy increases with increasing amount of 

clusters (because of the increasing amount of non-correlated samples) and oppositely it 

decreases with increasing size of clusters. The number of clusters was from practical reasons 

assigned as 1% of all the pixels in a class, however this rule could not be applied when 50, 

100 and 200 training samples were used, because there would be too many centres of clusters. 

Therefore the amount of centres was set manually to 3, 6 and 12 for 50, 100 and 200 training 

pixels respectively. And the amount of pixels was then chosen from 24-N neighbourhood. 

While the same neighbourhood was utilized also for 10% of total amount of pixels in a class, 

the pixels in the case of 2.5% and 5% of total amount of pixels in the class were chosen from 

8-N neighbour. The increase in the size of the clusters instead of increasing of their amount 
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could cause the drop in the accuracy of classification from 82.41% (for 5% of total amount of 

pixels in a class) to 82.11% (for 10% of total amount of pixels in a class) (table 8). The trend 

of increasing accuracy with the increasing amount centres of clusters can be also observed in 

the table 8 (58.19% for 3 centres through 71.11% for 12 centres up to 82.42% for 1% of 

centres, which was more than 12 in the majority of cases).   

Regarding the amount of training samples, the only conclusion which could be done 

was the one that with the growing amount of training pixels also the accuracy of classification 

rises. Probably since a larger training dataset has a greater chance of including support vectors 

that define the actual decision boundaries and hence should give higher accuracies (Huang et 

al. 2002). Although as the SVM classifier uses only a portion of the training dataset (support 

vectors) this does not have to be valid in all the cases (Foody and Mathur, 2004). Moreover 

equal sample rate sampling scenarios gave better overall accuracies than equal sample size 

sampling scenarios. Nevertheless, when confusion matrices were examined in the depth it has 

been shown, that when ESR scenarios underestimated less abundant classes and pixels of 

these classes were usually assigned to the class with the most pixels for both SVM and NN 

algorithms. This effect was even stronger when differences between amounts of training 

pixels were several orders (e.g. tens of thousands versus few tens of pixels). This behaviour 

was observed also by Huang et al. (2002) not only for the SVM algorithm but also for the NN 

algorithm. Andrštová (2014) observed such behaviour only for the NN algorithm. What´s 

more she states that this problem is of minor importance when aerial data with finer spectral 

and spatial resolution like AISA are utilized. Based on the results of this master thesis it could 

be said, that the importance of this problem is more significant with the growing differences 

between quantities of training pixels of particular classes. Consequently it would be 

benefiting to use a hybrid between ESR and ESS sampling scenarios in the future. For 

example, classes could be divided into several groups according to the total area that is 

covered by them. Then certain amount of pixels would be sampled from each class, similar 

for all the classes in one group. In this way, the variability of the classes regarding their size 

would be encompassed while maintaining the right differences (not too small and not too 

huge) between amounts of pixels of different classes. 

The only case when ESS sampling scenario was more successful than the ESR one 

was the combination or “real life scenario sampling design” and ESS sampled pixels. This 

was also the only situation when “real life scenario” yielded better results than the other 



Lucie Hromádková: Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data 
and support vector machines classifier 

_______________________________________________________________________ 
 

93  

 

 

sampling scenarios. Most likely because the less correlated pixels the better and the redundant 

information is multiplied the least in this case.  

Even if an ideal training dataset could not be determined with certainty, the best 

combination of amount and sampling design of pixels was 10% of randomly sampled pixels, 

therefore this combination was thought of as the ideal training dataset and it was used for the 

classification of the remaining enclaves and also for the comparison of SVM and ANN 

algorithms. 

 

7.4 Results of classification 

The best accuracy of classification was measured at re-mapped enclaves, which is 

understandable because many mistakes made during the original inexact field survey were 

corrected. Locality Friesovy Boudy had the highest overall accuracy of all the locations, 

however 2 out of the 4 total classes were not classified at all. These classes (class 4 and class 

7) were less abundant than other ones (by few orders) and that was probably the reason why 

they did not get classified. The classification of enclave Přední Rennerovky (the model 

enclave) reached OA of 83.63% and with majority of the classes classified correctly in at least 

50% of cases this enclave can be considered as the most accurately classified. Nonetheless 

class 4 (waterlogged grasslands) had the lowest accuracy of classification also at this enclave 

(45.05%). Another reason for worse classification accuracy on non-checked enclaves might 

be the wrong categorization. Unfortunately categorization of vegetation was not done during 

the field mapping but few months later and based on only few notes, thus it is highly possible 

that some polygons of less distinguishable meadows vegetation were mixed between each 

other into wrong classes. Such classes could be for example class 1 and class 2 where only the 

ratio of Nardus stricta, which was not usually mentioned in the notes, to other vegetation in 

the polygon makes the difference between these classes (polygons with dominant N.stricta are 

assigned to class 1 and others to class 2).   

Also it could be said that in general the more spacious enclave the worse accuracy of 

classification. The reason for this behaviour is that the each enclave was mapped on one sheet 

of A4 paper, which means that the more spacious enclaves were mapped with a coarser scale. 

However as the field survey was conducted by a hired botanist (chapter 4.2) and we obtained 

only results of the field mapping, it could not be prevented.  The only exception in this is the 

part of Zadní Rennerovky on flight line 10_20, probably because land cover in this upper part 
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of Zadní Rennerovky is less diverse than in the lower part (flight line 10_58) and rather lower 

amount of bigger polygons than high amount of smaller ones occur here. Such bigger 

polygons are then easier to map even with a coarser scale.    

As anticipated, the classes which were more abundant on a certain location were 

mapped with higher accuracy in comparison with other classes on this location. The degraded 

meadows with grass species (class 6) are the most common land cover type on the majority of 

mapped locations and most likely because of this they were mapped with the highest accuracy 

(usually over or around 90%) on these locations (because of the behaviour of SVM and NN 

classifiers mentioned in the previous chapter). The high accuracy of the classification of such 

abundant class (usually over 100 thousands classified pixels and almost never under 50 

thousands classified pixels) understandably adds significant percentage also to the overall 

accuracy of classification, therefore it could be anticipated that the overall accuracy of 

classification was increased by the presence of this abundant class. There were 3 enclaves  

(Husí Boudy, Lahrovy Boudy on both lines) with classes other than class 6 classified with the 

highest accuracy. These enclaves are smaller and therefore easier to manage (e.g. cut or graze) 

therefore degraded grasslands are not the most abundant class and other classes take their 

spot. Oligotrophic and mezophile grasslands are the most common on the enclave of Husí 

Boudy and therefore also the best classified category (oligotrophic grasslands in the case of 

SVM classifier with accuracy 73% and mesophile grasslands in the case of NN classifier with 

accuracy 82%). The most abundant class for Lahrovy Boudy on both flight lines are 

mesophile grasslands which were also the best classified category by SVM classifier also on 

both flight lines (accuracy 79% and 86%). The NN classifier mapped the best class 1 (Nardus 

stricta grasslands) on flight line 10_45 (accuracy 79%) and class 5 (degraded grasslands by 

Dicotyledons) on flight line 08_45 (accuracy 80%), these classes are also quite abundant on 

this enclave. The difference between mapped classes by NN classifier between the flight lines 

could be caused by the difference in spectral curves of these lines mentioned in chapter 4.1.3 

and shown in fig. 24. SVM classifier seems to be more robust in this case and not to be much 

influenced by different ratios of shadowed parts of vegetation to non-shadowed ones.   

The worst classified classes were classes 4 (waterlogged grasslands; accuracy 0 to 

37%), 7 (stands with Vaccinium species; accuracy 0 to 38%), 8 (springs; accuracy 0 to 19%) 

and 9 (tall-fern vegetation; accuracy 0 to 0.53%). The class 9 was properly classified at 

neither of two enclaves (Klínové Boudy and Zadní Rennerovky) where it occurs. It could be 
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either because of its low abundance or because of the coarse scale under which these enclaves 

were mapped. Other wrongly classified classes are also of low abundance in general. 

Furthermore they also get mixed with other classes. Class 4 was often mixed with classes 5 

and 6, because these vegetation communities can also grow on locally waterlogged areas 

(consultations with Stanislav Březina). Class 8 got often mixed with class 6 from the same 

reason mentioned in the previous sentence. In my opinion it would be possible to prevent 

some misclassifications of waterlogged vegetation or springs if measure of waterlogging was 

quantified by exact methods instead of by “a human eye” as this could also introduce some 

bias into classification. As Vaccinium species also belong to Dicotyledons, class 7 got often 

mixed with other classes where Dicotyledons occur abundantly (e.g. class 5) or with classes 

creating mosaic with this class (e.g. class 6 or class 1). Also class 3 and class 5 got often 

confused between each other, because there is high ratio of Dicotyledons in both of these 

classes. Moreover Dicotyledons of mesophile grasslands can sometimes create clusters, where 

less grass species is contained and these pixels might then be assigned to class 5 instead of 

class 3. The same situation can happen also in the vegetation communities of class 5, where 

clustering of Dicotyledons can oppositely cause creation of spots with local higher abundance 

of grass and these pixels are then assigned to class 3 instead of class 5. Classes 6, 1 and 2 

were occasionally confused amongst themselves too. These confusions happened most likely 

because of the dominance of grass species in all three classes. What´s more these classes often 

verge between each other and there are no clear boundaries between them (consultations with 

Stanislav Březina), which also makes it difficult for a classifier to assign pixels properly into 

these classes. 

In general, SVM slightly outperformed NN classifier regarding classification accuracy 

(average accuracy 70% achieved by SVM classifier versus average accuracy 68% achieved by 

NN classifier) however with up to three times shorter computational times. The overall 

accuracies yielded by NN classifier were normally 2 to 4.5% lower than the ones yielded by 

SVM classifier. Kappa coefficients were lower by 0.02 to 0.06. Usually, there were also more 

classes left unclassified by NN classifier than by SVM (especially on enclaves Zadní 

Rennerovky and Klínové Boudy). The only exception was enclave of Friesovy Boudy where 

both classifiers performed comparably. These results are in agreement with the studied 

literature (table 4) and show that SVM classifier might be more suitable for the classification 

of such diverse land cover type as mountainous meadows. Moreover accuracies of 
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classification achieved by NN classifier are comparable to those achieved by SVM classifier 

when same sampling design but less pixels are utilized (accuracy 80.37% for NN classifier 

and randomly sampled 10% of total amount of pixels is quite similar to accuracy 81.80% for 

SVM classifier when randomly sampled 2.5% of total amount of pixel was used). It could be 

then stated that SVM needs less training pixels than NN classifier to achieve comparable 

accuracy of classification, probably because of the way in which SVM finds a separating 

hyperplane with use of the support vectors and the possibility of transforming feature space 

into higher dimensional space where classes can be efficiently separated. 

 

7.5 A comparison of the results of classification with results from other 

studies 

The meadows of the Krkonoše mountains have been previously classified in several 

master theses mentioned in chapter 2.4.The master thesis of Dorič (2013) was considered as 

the main reference to this master thesis, because of quite similar legend and SVM classifier 

utilized. However it was anticipated that the accuracy of classification achieved by Dorič 

would be lower because of the use of multispectral data. This hypothesis was confirmed (the 

highest overall accuracy around 85% versus 59% achieved by Dorič) and thus it was 

confirmed that the hyperspectral data enable us to better distinguish complex mountain 

meadow vegetation communities, like those in the Krkonoše mountains. The highest overall 

accuracies gained by the methods utilized in this master thesis was also higher than the 

accuracies achieved by Jelének (2013) and higher than some of the accuracies achieved by 

Pomahačová (2012). This result shows that a combination of SVM classifier and 

hyperspectral data might be more suitable than combinations of methods and datasets utilized 

in theses of Jelének (2013) and Pomahačová (2012). However it is necessary to keep in mind 

that the items classified in their theses were a bit different than those classified in this master 

thesis and thus results are not fully comparable. Biotop quite similar to mountain meadows 

(subalpine tundra) was classified also by Andrštová (2014) and it was classified with the 

higher accuracies than those achieved in this master thesis (highest overall accuracies 

achieved by Andrštová were more than 99% by classifiers SAM and LSU). Nonetheless the 

boundaries between vegetation types of tundra are usually defined much sharply than those 

between different vegetation of mountain meadows (Andrštová 2014), and land cover types 

are thus easier to classify. This fact can be also seen when we compare master theses of 
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Jelének and Andrštová both of who utilized hyperspectral data from sensor APEX and SAM 

classification method, however on slightly different land cover type and with huge differences 

in results. While SAM was denoted by Andrštová (2014) as appropriate for classification of 

subalpine tundra, it was considered as unsuitable by Jelének (2013) for classification of 

mountain meadows. Andrštová (2014) also mentioned that classification accuracies carried 

out by NN classifier were higher than those carried out by SVM classifier, which is the 

opposite statement to the one posed in this master thesis. Such diverse conclusions only 

endorse the fact that even slight changes in a structure or other characteristics of otherwise 

similar biotopes can have significant impact on classification results of these biotopes. 

As for the comparison of SVM classification accuracies with those achieved by SVM 

worldwide (table 4), they were generally better than those gained by utilizing of multispectral 

data and average with regard to those achieved by use of hyperspectral data. Alike trend can 

be observed also when we compare the results yielded by NN classifier (table 4). Even though 

the results achieved in this master thesis were mediocre in comparison with those achieved 

worldwide, the classifications can still be considered as successful, especially with respect to 

many shortcomings of aerial and field mapping datasets utilized. Especially the quality of the 

field mapping dataset is considered as the major drawback which reduced the accuracy of 

classifications, because as it was proved in the study of Marcinkowska et al. (2014), it was 

possible to classify even individual species alliances of meadows in the Krkonoše mountains 

with higher producer and user accuracies (in majority over 80% and in many cases even over 

90%) when hyperspectral data and SVM algorithm were used and training and validating 

samples were properly measured by a GPS device.     
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8. Conclusion 

Mountainous grasslands in the Krkonoše mountains have been classified in this master 

thesis with use of aerial hyperspectral data from AISA DUAL sensor and SVM classification 

algorithm. One of the two main goals of this master thesis was to experimentally test which 

setting of parameters of SVM classifier is the best for the given task. Therefore series of trials 

were performed on the model location of Přední Rennerovky. In these trials several kernels 

(polynomial, RBF and linear) were tested with various combinations of gamma and penalty 

parameters and in the case of polynomial kernel also with different values of polynomial 

degree. Polynomial kernel of 6
th

 polynomial degree and the maximum value of penalty 

parameter (value of 100) gave the best results of classifications. Consequently this 

combination of parameters of the SVM classifier was utilized to achieve 2
nd

 main goal of this 

master thesis – to determine ideal sampling design and amount of training pixels for the 

classification of mountain meadows and also to test the initial hypothesis. The initial 

hypothesis to test was the finding of Foody and Mathur (2004, 2006) that the SVM algorithm 

is able to classify datasets with the same or higher accuracy when border training pixels are 

used instead of the conventionally chosen ones (e.g. randomly sampled pixels). Again, series 

of classification trials were conducted with in total 24 combinations of sampling design and 

amount of pixels, of which random sampling design yielded the highest overall accuracies. 

Nevertheless also pixels sampled from boundaries of polygons gave satisfactory results (only 

up to 2% lower than randomly sampled pixels), therefore it could be stated that the hypothesis 

of Foody and Mathur was confirmed and thus this sampling design could be utilized in the 

cases when random sampling is difficult to perform (e.g. on peat bogs, springs or other 

heavily waterlogged areas) to ease the collecting of training samples. Unfortunately the exact 

minimum amount of training pixels could not be determined. However, even if the best results 

were gained for the highest amount of pixels utilized (10% of total amount of pixels), 

accuracies over 80% were measured also when only 2.5% of total amount of pixels per class 

was used. Furthermore it was learnt that equal sample rate sampling strategy, where 

proportions of particular classes occurring on enclaves are represented better, yielded more 

generally satisfactory results than equal sample size strategy, where same amount of pixels is 

collected for each class regardless its abundance on a location. Nonetheless equal simple rate 

strategy is not the best possible sampling strategy, because huge differences in amount of 

pixels between certain classes are sometimes created by this strategy, especially when there 
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are both over-abundant and not numerous classes on a location. Therefore a hybrid between 

equal simple rate and equal simple size was proposed as the best sampling strategy regarding 

amount of training pixels.     

An additional goal of this master thesis was to compare results of classification 

achieved by SVM classifier and the ideal training dataset with results of classification gained 

by NN classifier and the same training dataset. SVM classifier generally outperformed NN 

classifier regarding accuracy of classification and also computational time. Moreover 

accuracies achieved by NN classifier were comparable to those achieved by SVM classifier 

when same sampling design (random sampling design) but less training pixels were utilized 

(2.5% of total amount of pixels). Therefore it could be said that SVM needs less training 

pixels than NN classifier for the classification of given biotope and under given conditions. 

In the course of this master thesis, during the pre-processing of aerial and field 

mapping datasets, it was also necessary to cope with several inconveniences. At first, some 

enclaves were divided between two flight lines, which could not be mosaicked due to some 

discrepancies in spectral features of particular lines. Secondly coarse field mapping caused 

spatial misplacements of mapped polygons and those had to be corrected. However as the 

field mapping was not conducted with the use of a GPS device, buffer of -2 metres was 

applied to all polygons enclaves to deal with possible mapping inaccuracies. What´s more, 

while the factual information of polygons was contained in MS Excel tables, the spatial 

information about these polygons was contained in shapefiles. Both of them had to be joined 

and also the mask of non-classified areas had to be applied on the shapefiles. All the 

mentioned inconveniences were dealt with by a single Python script, which eased otherwise 

difficult and time-consuming work. 

The best accuracies were achieved on locations of Přední Rennerovky and Friesovy 

Boudy, 83.63% and 87.63% for SVM classifier respectively, and 80.37% and 87.35% for NN 

classifier respectively. These results are considered as satisfactory because the meadows of 

the Krkonoše moutains were mapped with higher accuracies than in the most of previous 

cases. An improvement has been made especially in comparison with Dorič´s master thesis, 

where the highest achieved accuracies were under the 60%, the increase in accuracy was then 

more than 20%. The use of hyperspectral data was accounted for this increase in accuracy of 

classifications and thus it was confirmed that the data with higher spectral (and spatial) can 

significantly improve the results of classification of mountainous meadows. 
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All of the goals of this master thesis were fulfilled and the results of the analyses 

together with Python scripts will be handed over to the administration of the Krkonoše 

Mountains National Park for further use in mapping and managing the sensitive biotope of 

mountainous meadows.  

Further continuation of this work could focus on classifying the same dataset with the 

use of a hybrid sampling rate as was proposed in the chapter 7.3 or with the “boundary 

training samples” defined on boundaries that are not given geographically (as the division line 

of different class polygons) but based for example on the change of factors which influence 

spatial distribution of single meadow communities (e.g. type of the soil, slope or orientation 

of the slope).   
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Appendix I – key part of “Inputs to classes” Python script 

(source: own Python IDLE output) 

##assign class description to each polygon 

#cycle for each raster dataset (mask): 

for i in MaskList: 

    #dissolve polygons in each feature class (in order to avoid possible errors in case there 

are several polygons with same ID - similar type of vegetation) 

    #name of output dissolved feature class 

    i_split = string.split(i,".")[0] 

    features_id = i_split[:5]+"_id_diss.shp" 

     

    if not arcpy.Exists(features_id): 

        #name check 

        try: 

           value = int(i_split[-1]) 

           i = i_split[:-1] 

        except ValueError: 

           i = i_split 

            

        arcpy.Dissolve_management(i+".shp", features_id, "Id") 

     

        #add field "CLASS" to feature class 

        arcpy.AddField_management(features_id,"CLASS","text") 

 

        #create search and update cursors and a list for classes occuring in the area 

        dbf = string.strip(i_split[:8])+"_dbf.dbf" 

        cursor = arcpy.SearchCursor(dbf, sort_fields = "CISLO A") 

        cursor2 = arcpy.UpdateCursor(features_id, '"Id" > 0', sort_fields = "Id A") 

        classes = [] 

     

        #copy information about class from dbf.table to field "CLASS" 

        for row in cursor: 

            row2 = cursor2.next() 

         

            #get information about class and in case the class is not in masked class and in 

the list of classes, append it to the list 

            f_class = row.getValue("TRIDA") 

            if f_class not in unclassified: 

                if f_class not in classes:  

                    classes.append(f_class) 

            #copy information     

            row2.setValue("CLASS",row.getValue("TRIDA")) 

            cursor2.updateRow(row2) 

         

        del cursor, cursor2 

 

 

    ##convert masks from raster to polygon and select polygons where value of the mask is 

equal to 1 

    in_raster = i_split+".tif" 

 

    ##snapping (for raster to polygon conversion and create fishnet) 

    arcpy.env.snapRaster = in_raster 

     

    out_poly = i_split+"_poly.shp" 

    arcpy.RasterToPolygon_conversion(in_raster, out_poly, "NO_SIMPLIFY","VALUE") 

     

    poly_layer = i_split+"_poly.lyr" 

    arcpy.MakeFeatureLayer_management(out_poly, poly_layer) 

    arcpy.SelectLayerByAttribute_management(poly_layer,"NEW_SELECTION", ' "GRIDCODE" = 1 ') 

 

 

    ##create fishnet for each location 

    #name of output fishnet 

    fishnet = i_split+"_fish.shp" 

 

    #extent of raster 

    top = arcpy.GetRasterProperties_management(in_raster, "TOP") 

    left = arcpy.GetRasterProperties_management(in_raster, "LEFT") 

    bottom = arcpy.GetRasterProperties_management(in_raster, "BOTTOM") 

    x = float(left.getOutput(0).replace(",", ".")) 

    y = float(bottom.getOutput(0).replace(",", ".")) 

    origin_coord =  str(x)+' '+str(y) 

    x = float(left.getOutput(0).replace(",", ".")) 

    y = float(top.getOutput(0).replace(",", ".")) 



 

 

    y_axis_coord = str(x)+' '+str(y) 

 

    arcpy.CreateFishnet_management(fishnet, origin_coord, y_axis_coord, '1', 

'1','0','0',"#","NO_LABELS",in_raster,"POLYGON") 

 

     

    ##dissolve polygons according to field "CLASS" -> there will be as many rows as there is 

classes 

    #name of output featureclass 

    features_class = i_split[:5]+"_cl_diss.shp" 

     

    if not arcpy.Exists(features_class): 

        arcpy.Dissolve_management(features_id, features_class, "CLASS") 

 

     

    ##create buffered shapefiles, each of which will correspond to one class on the location, 

then select pixels from fishnet which are within these layers and 

    ##finally intersect this selection with areas where value of the mask is equal to 1 

         

    #create search cursor 

    cursor = arcpy.SearchCursor(features_class) 

    for row in cursor: 

        f_class = row.getValue("CLASS") 

        if f_class in classes: 

             

            #create buffer 

            #name of output buffer 

            out_buffer = "buff_"+i_split[:5]+"_"+f_class+".shp" 

             

            if not arcpy.Exists(out_buffer): 

                arcpy.Buffer_analysis(row.Shape, out_buffer, -2) 

             

            #select such pixels from fishnet which are within buffer zone 

            fish_layer = i_split+"_fish.lyr" 

            arcpy.MakeFeatureLayer_management(fishnet, fish_layer) 

            arcpy.SelectLayerByLocation_management(fish_layer, "within", out_buffer,"#", 

"NEW_SELECTION") 

             

            #intersect the 2 previous selections, this is final output of this script 

            in_features = [poly_layer,fish_layer] 

            out_intersect = i_split+"_"+f_class+".shp" 

            arcpy.Intersect_analysis(in_features, os.path.join(out_shp,out_intersect), 

"NO_FID", "", "INPUT") 

 

    del cursor 

 

  



 

 

Appendix II – key parts of “Classes to trai-vali” Python script  

Appendix II.A. Random sampling design, an example for 10% of total amount of all pixels in a class 

(source:own Python IDLE output). 

##RANDOM POINTS, % AMOUNT 

#randomly choose 10% of rows 

number = count*0.10 

rand_IDs_10 = sorted(random.sample(IDs,int(round(number)))) 

rand_IDs_10 = str(tuple(rand_IDs_10)) 

 

##select randomly chosen rows from feature class and create new featureclass from selection 

containing training points 

##then switch selection and create new featureclass containing validating points 

#10% of pixels are training points         

arcpy.SelectLayerByAttribute_management(class_lyr,"NEW_SELECTION",'"point_ID" IN'+rand_IDs_10) 

out_feature_class = os.path.join(output_tr_location,class_split+"_10_tr.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

arcpy.SelectLayerByAttribute_management(class_lyr,"SWITCH_SELECTION") 

out_feature_class = os.path.join(output_va_location,class_split+"_10_va.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

 

 

Appendix II.B Random pixels at boundaries sampling design, an example for 10% of total amount of all pixels 

in a class (source: own Python IDLE output). 

##RANDOM POINTS BOUNDARY, % AMOUNT 

##create boundary featureclass 

arcpy.SelectLayerByLocation_management(class_lyr, "WITHIN_A_DISTANCE", boundary, 1, 

"NEW_SELECTION") 

boundary_pixels = location[:5]+class_split+"_boundary.shp" 

arcpy.CopyFeatures_management(class_lyr,boundary_pixels) 

 

#get IDs of pixels contained in featureclass and append them to a list 

boundary_l = [] 

cursor = arcpy.SearchCursor(boundary_pixels) 

for row in cursor: 

    ID = row.getValue("point_ID") 

    boundary_l.append(ID) 

del cursor 

 

#randomly choose 10% of rows from IDs in the list 

number = count*0.1 

try: 

    randbound_IDs_10 = sorted(random.sample(boundary_l,int(round(number)))) 

    randbound_IDs_10 = str(tuple(randbound_IDs_10)) 

except: 

    randbound_IDs_10 = sorted(boundary_l) 

    randbound_IDs_10 = str(tuple(randbound_IDs_10)) 

    print "Except, 10% boundary!" 

     

##select randomly chosen rows from feature class and create new featureclass from selection 

containing training points 

##then switch selection and create new featureclass containing validating points 

#10% of pixels are training points         

arcpy.SelectLayerByAttribute_management(class_lyr,"NEW_SELECTION",'"point_ID" 

IN'+randbound_IDs_10) 

out_feature_class = os.path.join(output_tr_location,class_split+"_10_bound_tr.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

arcpy.SelectLayerByAttribute_management(class_lyr,"SWITCH_SELECTION") 

out_feature_class = os.path.join(output_va_location,class_split+"_10_bound_va.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

 

Appendix II.C. Clustered sampling design, an example for 5% of total amount of all pixels in a class (source: 

own Python IDLE output) 

##RANDOM CLUSTERS, % AMOUNT 

##create selection of pixels all of which are at minimum distance or further from given 

boundary 

#create boundary line 

dissolve_cl = location[:5]+class_split+"_diss.shp" 

arcpy.Dissolve_management(classl, dissolve_cl, "GRIDCODE") 



 

 

boundary = location[:5]+class_split+"_bound.shp" 

arcpy.PolygonToLine_management(dissolve_cl, boundary, "IDENTIFY_NEIGHBORS") 

             

#selection for 8-pixel neighbourhood 

eight_bour_IDs = [] 

arcpy.SelectLayerByLocation_management(class_lyr, "WITHIN_A_DISTANCE", boundary, 0, 

"NEW_SELECTION") 

arcpy.SelectLayerByLocation_management(class_lyr, "WITHIN_A_DISTANCE", boundary, 0, 

"SWITCH_SELECTION") 

eight_bour_area = location[:5]+class_split+"_8_bour_a.shp" 

arcpy.CopyFeatures_management(class_lyr,eight_bour_area) 

cursor = arcpy.SearchCursor(eight_bour_area) 

for row in cursor: 

    ID = row.getValue("point_ID") 

    eight_bour_IDs.append(ID) 

del cursor             

             

##select central pixels for clusters, amount of points equals 1% of total count of 

rows(pixels) of featureclass; 

##select n-pixel neighbourhood around these central pixels, round up for classes with count 

less than 100 

if count > 0 and count < 100: 

    number_central = math.ceil(count * 0.01) 

else:  

    number_central = count * 0.01 

             

#selection of central pixels for 8-pixel neighbourhood 

#try and except statement in order to avoid "Sample larger than population" error, in case of 

classes containing few pixels 

eight_bour_lyr = location[:5]+class_split+"_8_bour_a.lyr" 

arcpy.MakeFeatureLayer_management(eight_bour_area, eight_bour_lyr) 

try: 

    rand_IDs_8_01 = sorted(random.sample(eight_bour_IDs,int(round(number_central)))) 

    if len(rand_IDs_8_01)> 1: 

        rand_IDs_8_01 = str(tuple(rand_IDs_8_01)) 

        arcpy.SelectLayerByAttribute_management(eight_bour_lyr,"NEW_SELECTION",'"point_ID"   

IN'+rand_IDs_8_01) 

    else: 

        rand_IDs_8_01 = rand_IDs_8_01[0] 

        arcpy.SelectLayerByAttribute_management(eight_bour_lyr,"NEW_SELECTION",'"point_ID" 

='+str(rand_IDs_8_01)) 

except: 

    print "Except central pixels 8 neighbourhood!" 

    rand_IDs_8_01 = sorted(eight_bour_IDs) 

    if len(rand_IDs_8_01)> 1: 

        rand_IDs_8_01 = str(tuple(rand_IDs_8_01)) 

        arcpy.SelectLayerByAttribute_management(eight_bour_lyr,"NEW_SELECTION",'"point_ID" 

IN'+rand_IDs_8_01) 

    else: 

        rand_IDs_8_01 = rand_IDs_8_01[0] 

        arcpy.SelectLayerByAttribute_management(eight_bour_lyr,"NEW_SELECTION",'"point_ID" 

='+str(rand_IDs_8_01)) 

 

#selection of 8-pixel neighbourhood around central pixels 

arcpy.SelectLayerByLocation_management(class_lyr,"WITHIN_A_DISTANCE", eight_bour_lyr, 

0,"NEW_SELECTION") 

eight_bour = location[:5]+class_split+"_8_bour.shp" 

arcpy.CopyFeatures_management(class_lyr,eight_bour) 

 

#get IDs of pixels of 8-pixel neighbourhood and append them to a list 

rand_IDs_8_clusters = [] 

cursor = arcpy.SearchCursor(eight_bour) 

for row in cursor: 

    ID = row.getValue("point_ID") 

    rand_IDs_8_clusters.append(ID) 

del cursor 

 

##select randomly 5% of IDs from rand_IDs_8_clusters 

number = count * 0.05 

try: 

    rand_IDs_8_05 = sorted(random.sample(rand_IDs_8_clusters,int(round(number)))) 

    rand_IDs_8_05 = str(tuple(rand_IDs_8_05)) 

except: 

    print "Except, 5% IDs clusters!" 

    rand_IDs_8_05 = sorted(rand_IDs_8_clusters) 

    rand_IDs_8_05 = str(tuple(rand_IDs_8_05)) 

 



 

 

 

 

 

 

##select randomly chosen IDs and create new featureclass from selection containing training 

points 

##then switch selection and create new featureclass containing validating points                 

#5% of pixels are training points 

arcpy.SelectLayerByAttribute_management(class_lyr,"NEW_SELECTION",'"point_ID" 

IN'+rand_IDs_8_05) 

out_feature_class = os.path.join(output_tr_location,class_split+"_05_cl_tr.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

arcpy.SelectLayerByAttribute_management(class_lyr,"SWITCH_SELECTION") 

out_feature_class = os.path.join(output_va_location,class_split+"_05_cl_va.shp") 

arcpy.Dissolve_management(class_lyr, out_feature_class,"GRIDCODE") 

 

 

Appendix II.D. “Real life scenario” sampling design, an example for 10% of total amount of pixels in a class 

(source: own Python IDLE output). 

## REAL LIFE SCENARIO, % AMOUNT 

#create lyr for seed point 

seed_point = os.path.join(folder_seedpoint, location+"_"+class_split+"_seed.shp" ) 

seed_point_lyr = class_split+"_"+feature_split[:5]+"_seedpoint.lyr" 

arcpy.MakeFeatureLayer_management (seed_point, seed_point_lyr) 

 

#assign final count 10% 

final_count = int(round(count * 0.10)) 

arcpy.SelectLayerByLocation_management(class_lyr,"CONTAINS",seed_point_lyr,"","NEW_SELECTION") 

pix_count = 1 

 

#grow region 

while pix_count < final_count: 

    

arcpy.SelectLayerByLocation_management(class_lyr,"WITHIN_A_DISTANCE",class_lyr,"0","ADD_TO_SEL

ECTION") 

    curr_count = arcpy.GetCount_management(class_lyr) 

    pix_count = int(curr_count.getOutput(0)) 

 

number = pix_count - final_count 

 

#create sub shapefiles, or in case there are no pixels exceeding, save as final 

training/validating pixels shapefile 

if number == 0: 

    out_feature_class_tr = os.path.join(output_tr_location,class_split+"_10_area_tr.shp") 

    arcpy.Dissolve_management (class_lyr, out_feature_class_tr,"GRIDCODE") 

    arcpy.SelectLayerByAttribute_management(class_lyr,"SWITCH_SELECTION") 

    out_feature_class_va = os.path.join(output_va_location,class_split+"_10_area_va.shp") 

    arcpy.Dissolve_management (class_lyr, out_feature_class_va,"GRIDCODE") 

else: 

    #temp training pixels 

    out_feature_class_tr = feature_split+"_"+class_split+"_10_area_temp_tr.shp" 

    arcpy.CopyFeatures_management (class_lyr, out_feature_class_tr) 

 

    #dissolve and create boundary from sub shapefiles 

    out_feature_diss = feature_split+"_"+class_split+"_10_area_diss.shp" 

    arcpy.Dissolve_management (class_lyr, out_feature_diss) 

    out_feature_class = feature_split+"_"+class_split+"_10_area_boundary.shp" 

    arcpy.PolygonToLine_management(out_feature_diss,out_feature_class) 

 

    #temp validating pixels 

    arcpy.SelectLayerByAttribute_management(class_lyr,"SWITCH_SELECTION") 

    out_feature_class_va = feature_split+"_"+class_split+"_10_area_temp_va.shp" 

    arcpy.Dissolve_management (class_lyr, out_feature_class_va,"GRIDCODE") 

 

    #define pixels on the boundary, and append their ID to a list 

    boundary_lyr = feature_split+"_"+class_split+"_10_area_boundary.lyr" 

    arcpy.MakeFeatureLayer_management (out_feature_class,boundary_lyr) 

    out_feature_class_tr_lyr = feature_split+"_"+class_split+"_10_area_temp_tr.lyr" 

    arcpy.MakeFeatureLayer_management (out_feature_class_tr,out_feature_class_tr_lyr) 

    

arcpy.SelectLayerByLocation_management(out_feature_class_tr_lyr,"WITHIN_A_DISTANCE",boundary_l

yr,"0","NEW_SELECTION") 

    pixels_to_remove = feature_split+"_"+class_split+"_10_pixels.shp" 

    arcpy.CopyFeatures_management (out_feature_class_tr_lyr, pixels_to_remove) 



 

 

    cursor = arcpy.SearchCursor(pixels_to_remove) 

    pixels = [] 

    for row in cursor: 

        ID = row.getValue("point_ID") 

        pixels.append(ID) 

    del cursor 

     

    #randomly choose from IDs the amount which exceeds the final_count 

    pix_to_remove = sorted(random.sample(pixels,int(round(number)))) 

    pix_to_remove = str(tuple(pix_to_remove)) 

 

    #select pixels which are extra and add them to validating pixels 

    

arcpy.SelectLayerByAttribute_management(out_feature_class_tr_lyr,"NEW_SELECTION",'"point_ID" 

IN'+pix_to_remove) 

    out_feature_class_va2 = feature_split+"_"+class_split+"_10_area_temp2_va.shp" 

    arcpy.Dissolve_management(out_feature_class_tr_lyr, out_feature_class_va2,"GRIDCODE") 

    out_feature_class_va_final =os.path.join(output_va_location,class_split+"_10_area_va.shp")      

    arcpy.Merge_management ([out_feature_class_va,out_feature_class_va2], 

out_feature_class_va_final) 

    

    #select training pixels 

    arcpy.SelectLayerByAttribute_management(out_feature_class_tr_lyr,"SWITCH_SELECTION") 

    out_feature_class_tr = os.path.join(output_tr_location,class_split+"_10_area_tr.shp") 

    arcpy.Dissolve_management(out_feature_class_tr_lyr, out_feature_class_tr,"GRIDCODE") 

 

  



 

 

Appendix III – Classification maps of Přední Rennerovky  
Appendix III.A. Classification map of Přední Rennerovky for the SVM classifier (upper). 

Appendix III.B. Classification map of Přední Rennerovky for the NN classifier (lower). 

(source: own ArcGIS output; background of the maps: orthophoto (ČÚZK, orthophoto)). 

 

  



 

 

Appendix IV – Error matrices for the classification of Přední Rennerovky 

Appendix IV.A. The error matrix for the SVM classifier. Numbers of classes: 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – waterlogged grasslands; 5 – 

degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – 

producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI analysis).  

Pixels / % 2 3 4 5 6 Total (pixels) UA CE 

2 4866 / 80.03% 498 / 4.08% 39 / 1.00% 38 / 0.59% 550 / 1.63% 5991 4866 / 5991 81.22% 1125 / 5991 18.78% 

3 316 / 5.20% 10474 / 85.90% 223 / 5.73% 99 / 1.53% 498 / 1.48% 11610 10474 / 11610 90.22% 1136 / 11610 9.78% 

4 37 / 0.61% 261 / 2.14% 1753 / 45.05% 74 / 1.14% 320 / 0.95% 2445 1753 / 2445 71.70% 692 / 2445 28.30% 

5 0 / 0.00% 7 / 0.06% 87 / 2.24% 3629 / 55.93% 900 / 2.67% 4623 3629 / 4623 78.50% 994 / 4623 21.50% 

6 861 / 14.16% 953 / 7.82% 1789 / 45.98% 2648 / 40.81% 31389 / 93.26% 37640 31389 / 37640 83.39% 6251 / 37640 16.61% 

Total (pixels) 6080 12193 3891 6488 33657 62309  

PA 
4866 / 6080 

80.03% 

10474 / 12193 

85.90% 

1753 / 3891 

45.05% 

3629 / 6488 

55.93% 

31389 / 33657 

93.26% 
 

OA = 83.63% 

OE 
1214 / 6080 

19.97% 
1719 / 12193 

14.10% 
2138 / 3891 

54.95% 
2859 / 6488 

44.07% 
2268 / 33659 

6.74% 
kappa = 0.74 

 

Appendix IV.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pixels / % 2 3 4 5 6 Total (pixels) UA CE 

2 4902 / 80.74% 1129 / 9.26% 155 / 3.98% 196 / 3.02% 928 / 2.76% 7310 4902 / 7310 7.06% 2408 / 7310 32.94% 

3 231 / 3.80% 9014 / 73.92% 28 / 0.72% 32 / 0.49% 110 / 0.33% 9415 9014 / 9415 95.74% 401 / 9415 4.26% 

4 107 / 1.76% 230 / 1.89% 1462 / 37.57% 4 / 0.06% 269 / 0.80% 2072 1462 / 2072 70.56% 610 / 2072 29.44% 

5 0 / 0.00% 3 / 0.02% 226 / 5.81% 3647 / 56.21% 1303 / 3.87% 5179 3647 / 5179 70.42% 1532 / 5179 29.58% 

6 831 / 13.69% 1818 / 14.91% 2020 / 51.91% 2609 / 40.21% 31031 / 92.24% 38309 31031 / 38309 81.00% 7278 / 38309 19.00% 

Total (pixels) 6071 12194 3891 6488 33641 62285  

PA 
4902 / 6071 

80.74% 

9014 / 12194 

73.92% 

1462 / 3891 

37.57% 

3647 / 6488 

56.21% 

31031 / 33641 

92.24% 
 

OA = 80.37% 

OE 
1169 / 6071 

19.26% 
3180 / 12194 

26.08% 
2429 / 3891 

62.43% 
2841 / 6488 

43.79% 
2610 / 33641 

7.76% 
kappa = 0.68 

  



 

 

Appendix V – Classification maps of Friesovy Boudy  

Appendix V.A. Classification map of Friesovy Boudy for the SVM classifier (upper). 

Appendix V.B. Classification map of Friesovy Boudy for the NN classifier (lower). 

(source: own ArcGIS output; background of the maps: orthophoto (ČÚZK, orthophoto)). 

 

  



 

 

Appendix VI– Error matrices for the classification of Friesovy Boudy 

Appendix VI.A. The error matrix for the SVM classifier. Numbers of classes: 4 – waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded 

meadows dominated by grass species; 7 – stands dominated by Vaccinium species. Abbreviations: OA – overall accuracy UA – user´s accuracy, PA – producer´s accuracy; 

CE – commission error; OE – omission error (source: own ENVI analysis).  

Pixels / % 4 5 6 7 Total (pixels) UA CE 

4 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

5 56 / 14.00% 27367 / 83.50% 3359 / 7.93% 0 / 0.00% 30782 27367 / 30782 88.91% 3415 / 30782 11.09% 

6 344 / 86.00% 5409 / 16.50% 39015 / 92.07% 202 / 100.00% 44970 39015 / 44970 86.76% 5955 / 44970 13.24% 

7 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

Total (pixels) 400 32776 42374 202 75752  

PA 
0 / 400 
0.00% 

27367 / 32776 
83.50% 

39015 / 42374 
92.07% 

0 / 202 
0.00% 

 

OA = 87.63% 

OE 
400 / 400 

100% 

5409 / 32776 

16.50% 

3359 / 42374 

7.93% 

202 / 202 

100% 
kappa = 0.75 

 

Appendix VI.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pixels / % 4 5 6 7 
Total 

(pixels) 
UA CE 

4 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

5 62 / 15.50% 28712 / 87.58% 4914 / 11.59% 0 / 0.00% 33688 28712 / 33688 85.23% 4976 / 33688 14.77% 

6 338 / 84.50% 4071 / 12.42% 37496 / 88.41% 202 / 100.00% 42107 37496 / 42107 89.05% 4611 / 42107 10.95% 

7 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

Total (pixels) 400 32783 42410 202 75795  

PA 
0 / 400 

0.00% 

28712 / 32783 

87.58% 

37496 / 42410 

88.41% 

0 / 202 

0.00% 
 

OA = 87.35% 

OE 
400 / 400 

100% 

4071 / 32783 

12.42% 

4914 / 42410 

11.59% 

202 / 202 

100% 
kappa = 0.75 

  



 

 

Appendix VII – Classification maps of Husí Boudy 

Appendix VII.A. Classification map of Friesovy Boudy for the SVM classifier (upper). 

Appendix VII.B. Classification map of Friesovy Boudy for the NN classifier (lower). 

(source: own ArcGIS output; background of the maps: orthophoto (ČÚZK, orthophoto)). 

 

 



 

 

Appendix VIII - Error matrices for the classification of Husí Boudy 

Appendix VIII.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species. Abbreviations: OA – overall accuracy, UA – 

user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 Tot(pix) UA CE 

1 7351 / 66.38% 880 / 6.65% 1112 / 7.46% 1026 / 14.38% 133 / 4.39% 20 / 11.17% 10522 7351 / 10522 69.86% 3171 / 10522 30.14% 

2 1638 / 14.79% 9724 / 73.44% 2410 / 16.16% 2238 / 31.37% 1000 / 32.98% 115 / 64.25% 17125 9724 / 17125 56.78% 7401 / 17125 43.22% 

3 1580 / 14.27% 1932 / 14.59% 10666 / 71.53% 1483 / 20.79% 993 / 32.75% 19 / 10.61% 16673 10666 / 16673 63.97% 6007 / 16673 36.03% 

4 476 / 4.30% 579 / 4.37% 507 / 3.40% 2213 / 31.02% 540 / 17.81% 10 / 5.59% 4325 2213 / 4325 51.17% 2112 / 4325 48.83% 

5 28 / 0.25% 119 / 0.90% 214 / 1.44% 170 / 2.38% 366 / 12.07% 1 / 0.56% 898 366 / 898 40.76% 532 / 898 59.24% 

6 1 / 0.01% 7 / 0.05% 2 / 0.01 % 4 / 0.06% 0 / 0.00% 14 / 7.82% 28 14 / 28 50.00% 14 / 28 50.00% 

Tot (pix) 11074 13241 14911 7134 3032 179 49571  

PA 
7351 / 11074 

66.38% 

9724 / 13241 

73.44% 

10666 / 14911 

71.53% 

2213 / 7134 

31.02% 

366 / 3032 

12.07% 

14 / 179 

7.82% 
 

OA = 61.20% 

OE 
3723 / 11074 

33.62% 
3517 / 13241 

26.56% 
4245 / 14911 

28.47% 
4921 / 7134 

68.98% 
2666 / 3032 

87.93% 
165 / 179 

92.18% 
kappa = 0.48 

 

Appendix VIII.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 Tot(pix) UA CE 

1 7251 / 65.47% 934 / 7.04 % 508 / 3.41% 1042 / 14.61% 128 / 4.21% 17 / 9.50% 9880 7251 / 9880 73.39% 2629 / 9880 26.61% 

2 1616 / 14.59% 8774 / 66.18% 1432 / 9.60% 2808 / 39.36% 961 / 31.64% 15 / 8.38% 15606 8774 / 15606 56.22% 6832 / 15606 43.78% 

3 1939 / 17.51% 2720 / 20.52% 12298 / 82.45% 2411 / 33.80% 1292 / 42.54% 100 / 55.87% 20760 12298 / 20760 59.24% 8462 / 20760 40.76% 

4 233 / 2.10% 788 / 5.94% 657 / 4.40% 853 / 11.96% 637 / 20.97% 28 / 15.64% 3196 853 / 3196 26.69% 2343 / 3196 73.31% 

5 10 / 0.09% 25 / 0.19% 18 / 0.12% 14 / 0.20% 13 / 0.43% 15 / 8.38% 95 13 / 95 13.68% 82 / 95 86.32% 

6 27 / 0.24% 17 / 0.13% 2 / 0.01% 6 / 0.08% 6 / 0.20% 4 / 2.23% 62 4 / 62 6.45% 58 / 62 93.55% 

Tot (pix) 11076 13258  14915 7134 3037 179 49599  

PA 
7251 / 11076 

65.47% 

8774 / 13258 

66.18% 

12298 / 14915 

82.45% 

853 / 7134 

11.96% 

13 / 3037 

0.43% 

4 / 179 

2.23% 
 

OA = 58.86% 

OE 
3825 / 11076 

34.53% 
4484 / 13258 

33.82% 
2617 / 14915 

17.55% 
6281 / 7134 

88.04% 
3024 / 3037 

99.57% 
175 / 179 

97.77% 
kappa = 0.44 

 

 

  



 

 

Appendix IX – Classification maps for Klínové Boudy 

Appendix IX.A. Classification map of Klínové Boudy for the SVM classifier (source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

 



 

 

Appendix IX.B. Classification map of Klínové Boudy for the NN classifier (source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

  



 

 

Appendix X - Error matrices for the classification of Klínové Boudy 

Appendix X.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 4 – waterlogged grasslands; 5 – 

degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium species, 8 – vegetation of springs; 9 – 

tall-fern vegetation. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI 

analysis).  

Pix / % 1 2 4 5 6 7 8 9 
Tot 

(pix) 
UA CE 

1 
0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 
0 

0 / 0 

0,00% 

0 / 0 

0,00% 

2 
4 

0,09% 
585 

16,85% 
84 

0,45% 
30 

0,05% 
219 

0,11% 
0 

0,00% 
65 

0,37% 
0 

0,00% 
987 

585 / 987 
59,27% 

402 / 987 
40,73% 

4 
2 

0,05% 

167 

4,81% 

3708 

20,03% 

399 

44,95% 

1268 

0,66% 

49 

0,37% 

621 

3,54% 

0 

0,00% 
6214 

3708 / 6214 

59,67% 

2506 / 6214 

40,33% 

5 
437 

10,01% 
323 

9,31% 
2030 

10,97% 
27656 

44,95% 
11594 
6,01% 

1036 
7,82% 

896 
5,10% 

66 
28,33% 

44038 
27656 / 44038 

62,80% 
16382 / 44038 

37,20% 

6 
3788 

87,80% 

2360 

67,99% 

11773 

63,60% 

33448 

52,74% 

177938 

92,20% 

10316 

77,85% 

13840 

78,83% 

165 

70,82% 
252628 

177938 / 252628 

70,43% 

74690 / 252628 

29,57% 

7 
73 

1,67% 
2 

0,06% 
65 

0,35% 
462 

075% 
734 

0,38% 
1734 

13,09% 
69 

0,39% 
1 

0,43% 
3140 

1734 / 3140 
55,22% 

1406 / 3140 
44,78% 

8 
60 

1,37% 

34 

0,98% 

850 

4,59% 

525 

0,85% 

1247 

0,65% 

116 

0,88% 

2066 

11,77% 

0 

0,00% 
4898 

2066 / 4898 

42,18% 

2832 / 4898 

57,82% 

9 
0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

1 

0,43% 
1 

1 / 1 

100,00% 

0 / 1 

0,00% 

Tot  

(pix) 
4364 3471 18510 61520 193000 13251 17557 

 

233 311906  

PA 
0 / 4364 

0,00% 
585 / 3471 

16,85% 
3708 / 18510 

20,03% 
27656 / 61520 

44,95% 
177938 / 193000 

92,20% 
1734 / 13251 

13,09% 
2066 / 17557 

11,77% 
1 / 233 
0,43% 

 

OA = 68,51% 

OE 
4364 / 4364 

100,00% 

2886 / 3471 

83,15% 

14802 / 18510 

79,97% 

33864 / 61520 

55,05% 

15062 / 193000 

7,80% 

11517 / 13251 

86,91% 

15491 / 17557 

88,23% 

232 / 233 

99,57% 
kappa = 0.33 

 

  



 

 

Appendix X.B. The error matrix for the NN classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 4 – waterlogged grasslands; 5 – 

degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium species, 8 – vegetation of springs; 9 – 

tall-fern vegetation. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI 

analysis).  

Pix / % 1 2 4 5 6 7 8 9 
Tot 

(pix) 
UA CE 

1 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0,00% 
0 

0 / 0 
0,00% 

0 / 0 
0,00% 

2 
0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 
0 

0 / 0 

0,00% 

0 / 0 

0,00% 

4 
70 

1,60% 
775 

22,33% 
5881 

31,84% 
1987 

3,23% 
2782 

1,44% 
61 

0,46% 
866 

4,97% 
0 

0,00% 
12422 

5881 / 12422 
47,34% 

6541 / 12422 
52,66% 

5 
1410 

32,29% 

636 

18,32% 

3493 

18,91% 

29960 

48,70% 

19689 

10,21% 

4243 

32,28% 

1887 

10,82% 

97 

41,63% 
61415 

29960 / 61415 

48,78% 

31455 / 61415 

51,22% 

6 
2882 

65,99% 
2060 

59,35% 
8974 

48,59% 
29545 

48,02% 
170191 
88,30% 

8749 
66,56% 

14607 
83,75% 

136 
58,37% 

237145 
170191 / 237145 

71,77% 
66154 / 237145 

28,23% 

7 
0 

0,00% 

0 

0,00% 

1 

0,01% 

12 

0,02% 

14 

0,01% 

19 

0,14% 

0 

0,00% 

0 

0,00% 
46 

19 / 46 

41,30% 

27 / 46 

58,70% 

8 
5 

0,11% 
0 

0,00% 
121 

0,66% 
15 

0,02% 
71 

0,04% 
72 

0,55% 
81 

0,46% 
0 

0,00% 
365 

81 / 365 
22,19% 

284 / 365 
77,81% 

9 
0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 

0 

0,00% 
0 

0 / 0 

0,00% 

0 / 0 

0,00% 

Tot  

(pix) 
4367 3471 18470 61519 192747 13144 17442 

233 
311393  

PA 
0 / 4367 

0,00% 

0 / 3471 

0,00% 

5881 / 18470 

31,84% 

29960 / 61519 

48,70% 

170191 / 192747 

88,30% 

19 / 13144 

0,14% 

81 / 17442 

0,46% 

0 / 233 

0,00% 

 

OA = 66,20% 

OE 
4367 / 4367 

100,0% 

3471 / 3471 

100,00% 

12589 / 18470 

68,16% 

31559 / 61519 

51,30% 

22556 / 192747 

11,70% 

13125 / 
13144 

99,86% 

17361 / 17442 

99,54% 

233 / 233 
100,00% kappa = 0.31 

  



 

 

Appendix XI – Classification maps for Lahrovy Boudy on the flight line 08_43 

Appendix XI.A. Classification map of Lahrovy Boudy on the flight line 08_43 for the SVM classifier (left). Appendix XI.B. Classification map of Lahrovy Boudy on the 

flight line 08_43 for the NN classifier (right) (source: own ArcGIS output; background of the maps: orthophoto (ČÚZK, orthophoto)). 

  



 

 

Appendix XII – Error matrices for the classification of Lahrovy Boudy on the flight line 08_43 

Appendix XII.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium species. 

Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 Tot(pix) UA CE 

1 2061 / 41.62% 62 / 1.40% 714 / 1.13% 4 / 0.13% 340 / 0.83% 550 / 3.96% 7 / 8.75% 3738 2061 / 3738 55.14% 1677 / 3738 44.86% 

2 3 / 0.06% 962 / 21.65% 61 / 0.10% 15 / 0.50% 329 / 0.80% 19 / 0.14% 0 / 0.00% 1389 962 / 1389 69.26% 427 / 1389 30.74% 

3 1407 / 28.41% 1455 / 32.74% 50498 / 79.74% 588 / 19.63% 12519 / 30.55% 1968 / 14.16% 17 / 21.25% 68452 50498 / 68452 73.77% 17954 / 68452 26.23% 

4 8 / 0.16% 60 / 1.35% 79 / 0.12% 316 / 10.55% 121 / 0.30% 26 / 0.19% 0 / 0.00% 610 316 / 610 51.80% 294 / 610 48.20% 

5 1202 / 24.27% 1890 / 42.53% 11363 / 17.94% 2069 / 69.08% 26790 / 65.37% 6587 / 47.41% 55 / 68.75% 49956 26790 / 49956 53.63% 23166 / 49956 46.37% 

6 271 / 5.47% 15 / 0.34% 614 / 0.97% 3 / 0.10% 880 / 2.15% 4745 / 34.15% 1 / 1.25% 6529 4745 / 6529 72.68% 1784 / 6529 27.32% 

7 0 / 0.00% 0 / 0.00%  0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

Tot (pix) 4952 4444 63329 2995 40979 13895 80 130674  

PA 
2061 / 4952 

41.62% 

962 / 4444 

21.65% 

50498 / 63329 

79.74% 

316 / 2995 

10.55% 

26790 / 40979 

65.37% 

4745 / 13895 

34.15% 

0 / 80 

0.00% 
 

OA = 65.33% 

OE 
2891 / 4952 

58.38% 

3482 / 4444 

78.35% 

12831 / 63329 

20.26% 

2679 / 2995 

89.45% 

14189 / 40979 

34.63% 

9150 / 13895 

65.85% 

80 / 80 

100.00% 
kappa = 0.44 

 

Appendix XII.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 Tot(pix) UA CE 

1 1543 / 31.17% 142 / 3.20% 571 / 0.90% 0 / 0.00% 163 / 0.40% 480 / 3.46% 1 / 1.25% 2900 1543 / 2900 53.21% 1357 / 2900 46.79% 

2 33 / 0.67% 462 / 10.40% 60 / 0.09% 0 / 0.00% 65 / 0.16% 19 / 0.14% 0 / 0.00% 639 462 / 639 72.30% 177 / 639 27.70% 

3 681 / 13.76% 491 / 11.05% 37560 / 59.31% 694 / 23.17% 3734 / 9.18% 966 / 6.96% 5 / 6.25% 44131 37560 / 44131 85.11% 6571 / 44131 14.89% 

4 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

5 2554 / 51.60% 3336 / 75.07% 25023 / 39.51% 2300 / 76.79% 36942 / 90.15% 9470 / 68.23% 74 / 92.50% 79699 36942 / 79699 46.35% 42757 / 79699 53.65% 

6 139 / 2.81% 13 / 0.29% 115 / 0.18% 1 / 0.03% 75 / 0.18% 2945 / 21.22% 0 / 0.00% 3288 2945 / 3288 89.57% 343 / 3288 10.43% 

7 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 / 0.00% 0 0 / 0 0.00% 0 / 0 0.00% 

Tot (pix) 4950 4444 63329 2995 40979 13880 80 130657  

PA 
1543 / 4950 

31.17% 

462 / 4444 

10.40% 

37560 / 63329 

59.31% 

0 / 2995 

0.00% 

36942 / 40979 

90.15% 

2945 / 13880 

21.22% 

0 / 80 

0.00% 
 

OA = 60.81% 

OE 
3407 / 4950 

68.83% 
3982 / 4444 

89.60% 
25769 / 63329 

40.69% 
2995 / 2995 

100.00% 
4037 / 40979 

9.85% 
10935 / 13880 

78.78% 
80 / 80 

100.00% 
kappa = 0.39 

  



 

 

Appendix XIII – The classification maps for Lahrovy Boudy on the flight line 10_45 

Appendix XIII.A. Classification map of Lahrovy Boudy on the flight line 10_45 for the SVM classifier (left). Appendix XIII.B. Classification map of Lahrovy Boudy on the 

flight line 10_45 for the NN classifier (right) (source: own Arc

GIS output; background of the maps: orthophoto (ČÚZK, orthophoto)).   



 

 

Appendix XIV - Error matrices for the classification of Lahrovy Boudy on the flight line 10_45 

Appendix XIV.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium species, 

8 – vegetation of springs. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own 

ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 8 Tot(pix) UA CE 

1 14039 / 84,25% 1143 / 13,00% 974 / 1,58% 3 / 0,11% 539 / 1,61% 2680 / 15,85% 77 /63,64% 0 / 0,00% 19455 14039 / 19455 72,16% 5416 / 19455 27,48% 

2 609 / 3,65% 2779 / 31,60% 125 / 0,20% 443 /15,59% 834 / 2,49% 677 / 4,00% 0 / 0,00% 1 / 1,20% 5468 2779 / 5468 50,82% 2689 / 5468 49,18% 

3 814 / 4,88% 1322 / 15,03% 53171 /86,01% 166 / 5,84% 15518 /46,24% 6588 / 38,96% 7 / 5,79% 32 /38,55% 77618 53171 / 77618 68,50% 24447 / 77618 31,50% 

4 3 / 0,02% 20 / 0,23% 9 / 0,01% 84 / 2,96% 72 / 0,21% 2 / 0,01% 0 / 0,00% 0 / 0,00% 190 84 / 190 44,21% 106 / 190 55,79% 

5 88 / 0,53% 3429 / 38,99% 3623 / 5,86% 2133 /75,05% 15639 /46,60% 531 / 3,14% 0 / 0,00% 50 /60,24% 25493 15639 / 25493 61,35% 9854 / 25493 38,65% 

6 1111 / 6,67% 101 / 1,15% 3916 / 6,33% 13 / 0,46% 955 / 2,85% 6432 / 38,04% 37 /30,58% 0 / 0,00% 12565 6432 / 12565 51,19% 6133 / 12565 48,81% 

7 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 0 / 0 0,00% 0 / 0 0,00% 

8 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 0 / 0 0,00% 0 / 0 0,00% 

Tot (pix) 16664 8794 61818 2842 33557 16910 121 83 140789  

PA 
14039  / 16664 

84,25% 

2779 / 8794 

31,60% 

53171 / 61818 

86,01% 

84 / 2842 

2,96% 

15639 / 33557 

46,60% 

6432 / 16910 

38,04% 

0 / 121 

0,00% 

0 / 83 

0,00% 
 

OA = 65.45% 

OE 
2625 / 16664 

15,75% 
6015 / 8794 

68,40% 
8647 / 61818 

13,99% 
2758 / 2842 

97,04% 
17918 / 33557 

53,40% 
10478 / 16910 

61,96% 
121 / 121  
100,00% 

83 / 83  
100,00% 

kappa = 0.50 

 

Appendix XIV.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 8 Tot(pix) UA CE 

1 13205 / 79,24% 1368 / 15,56% 1482 / 2,40% 19 / 0,67% 634 / 1,89% 3052 / 18,05% 65 /53,71% 0 / 0,00% 19825 13205 / 19825 66,61% 6620 / 19825 33,39% 

2 642 / 3,85% 1046 / 11,89% 11 / 0,02% 61 / 2,15% 170 / 0,51% 422 / 2,50% 1 / 0,83% 0 / 0,00% 2353 1046 / 2353 44,45% 1307 / 2353 55,55% 

3 317 / 1,90% 1521 / 17,30% 46738 /75,61% 342 /12,03% 11651 /34,72% 2786 / 16,48% 1 / 0,83% 33 /39,76% 63389 46738 / 63389 73,73% 16651 / 63389 26,27% 

4 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 0 / 0 0,00% 0 / 0 0,00% 

5 1094 / 6,57% 4777 / 54,32% 8052 / 13,03% 2420 /85,15% 19054 /56,78% 4136 / 24,46% 12 / 9,92% 50 /60,24% 39595 19054 / 39595 48,12% 20541 / 39595 51,88% 

6 1406 / 80,44% 82 / 0,93% 5535 / 8,95% 0 / 0,00% 2048 / 6,10% 6514 / 38,55% 42 /34,71% 0 / 0,00% 15627 6514 / 15627 41,68% 9113 / 15627 58,32% 

7 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 0 / 0 0,00% 0 / 0 0,00% 

8 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 0 / 0 0,00% 0 / 0 0,00% 

Tot (pix) 16664 8794 61818 2842 33557 16910 121 83 140789  

PA 
13205 / 16664 

79,24% 

1046 / 8794 

11,89% 

46738 / 61818 

75,61% 

0 / 2842 

0,00% 

19054 / 33557 

56,78% 

6514 / 16910 

38,52% 

0 / 121 

0,00% 

0 / 83 

0,00% 
 

OA = 61,48% 

OE 
3459 / 16664 

20,76% 

7748 / 8794 

88,11% 

15080 / 61818 

24,39% 

2842 / 2842 

100,00% 

14503 / 33557 

43,22% 

10396 / 16910 

61,48% 

121 / 121 

100,00% 

83 / 83 

100,00% 
kappa = 0.45 

  



 

 

Appendix XV – Classification maps for Zadní Rennerovky on the flight line 10_58 

Appendix XV.A. Classification map of Zadní Rennerovky on the flight line 10_58 for the SVM classifier  

(source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

 
  



 

 

Appendix XV.B. Classification map of Zadní Rennerovky on the flight line 10_58 for the NN classifier  

(source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

 

 



 

 

Appendix XVI – Error matrices for the classification of Zadní Rennerovky on the flight line 10_58 

Appendix XVI.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 – 

waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium species, 

8 – vegetation of springs; 9 – tall-fern vegetation. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – 

omission error (source: own ENVI analysis).  

Pix / 

% 
1 2 3 4 5 6 

7 8 9 
Tot(pix) UA CE 

1 
17763 

49.41% 

757 

5.47% 

2123 

10.63% 

83 

2.21% 

1215 

1.87% 

2774 

1.95% 

474 

5.95% 

34 

0.72% 

379 

16.73% 
25602 

17763 / 25602 

69.38% 

7839 / 25602 

30.62% 

2 
86 

0.24% 
9159 

66.17% 
18 

0.09% 
4 

0.18% 
817 

1.26% 
825 

0.58% 
104 

1.31% 
29 

0.62% 
0 

0.00% 
11042 

9159 / 11042 
82.95% 

1883 / 11042 
17.05% 

3 
327 

0.91% 

69 

0.50% 

3302 

16.54% 

66 

1.75% 

219 

0.34% 

865 

0.61% 

5 

0.06% 

2 

0.04% 

0 

0.00% 
4855 

3302 / 4855 

68.01% 

1553 / 4855 

31.99% 

4 
2 

0.01% 
0 

0.00% 
22 

0.11% 
691 

18.37% 
134 

0.21% 
272 

0.19% 
3 

0.04% 
32 

0.68% 
0 

0.00% 
1156 

691 / 1156 
59.78% 

465 / 1156 
40.22% 

5 
440 

1.22% 

942 

6.81% 

179 

0.90% 

23 

0.61% 

8043 

12.39% 

4329 

3.05% 

191 

2.40% 

836 

17.81% 

0 

0.00% 
14983 

8043 / 14983 

53.68% 

6940 / 14983 

46.32% 

6 
16967 

47.19% 
2835 

20.48% 
14248 

71.35% 
2894 

76.93% 
53984 

83.19% 
132425 
93.17% 

4143 
52.04% 

2861 
60.94% 

1863 
82.25% 

232220 
132425 / 232220 

57.03% 
99795 / 232220 

42.97% 

7 
323 

0.90% 

12 

0.09% 

19 

0.10% 

1 

0.03% 

230 

 0.35% 

500 

0.35% 

3031 

38.07% 

0 

0,00% 

11 

0.49% 
4127 

3031 / 4127 

73.44% 

1096 / 4127 

26.56% 

8 
42 

0.12% 

67 

0.48% 

50 

0.25% 

0 

0,00% 

244 

0.38% 

114 

0.08% 

4 

0.05% 

901 

19.19% 

0 

0.00% 
1422 

901 / 1422 

63.36% 

521 / 1422 

36.64% 

9 
1 

0.00% 

0 

0.00% 

7 

0.04% 

0 

0,00% 

7 

0.01% 

23 

0.02% 

6 

0.08% 

0 

0.00% 

12 

0.53% 
56 

12 / 56 

21.43% 

44 / 56 

78.57% 

Tot  

(pix) 
35951 13841 19968  3762 64893 142127 7961 4695 

2265 
295463  

PA 
17763 / 35951 

49.41% 

9159 / 13841 

66.17% 

3302 / 19968 

16.54% 

691 / 3762 

18.37% 

8043 / 64893 

12.39% 

132425 / 142127 

93.17% 

3031 / 7961 

38.07% 

901 / 4695 

19.19% 

12 / 2265 

0.53% 
 

OA = 59.34% 

OE 
18188 / 35951 

50.59% 
4682 / 13841 

33.83% 
16666 / 19968 

83.46% 
3071 / 3762 

81.63% 
56850 / 64893 

87.61% 
9702 / 142127 

6.83% 
4930 / 7961 

61.93% 
3794 / 4695 

80.81% 
2253 / 2265 

99.47% 
kappa = 0.32 

 

  



 

 

Appendix XVI.B. The error matrix for the NN classifier (source: own ENVI analysis). . Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 

– mesophile grasslands; 4 – waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands 

dominated by Vaccinium species, 8 – vegetation of springs; 9 – tall-fern vegetation. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; 

CE – commission error; OE – omission error (source: own ENVI analysis).  

Pix / 

% 
1 2 3 4 5 6 

7 8 9 
Tot(pix) UA CE 

1 
15504 

43,14% 
550 

3,97% 
1906 

9,55% 
66 

1,75% 
879 

1,35% 
1930 

1,36% 
361 

4,53% 
48 

1,02% 
252 

11,13% 
21496 

15504 / 21496 
72,13% 

5992 / 21496 
27,87% 

2 
116 

0,32% 

9025 

65,20% 

2495 

12,49% 

5 

0,13% 

1011 

1,56% 

946 

0,67% 

80 

1,00% 

53 

1,13% 

0 

0.00% 
11303 

9025 / 11303 

79,85% 

2278 / 11303 

20,15% 

3 
210 

0,58% 
31 

0,22% 
0 

0.00% 
86 

2,29% 
124 

0,19% 
263 

1,36% 
5 

0,06% 
0 

0.00% 
0 

0.00% 
3214 

2495 / 3214 
77,63% 

719 / 3214 
22,37% 

4 
0 

0.00% 
0 

0.00% 
54 

0,27% 
0 

0.00% 
0 

0.00% 
0 

0.00% 
0 

0.00% 
0 

0.00% 

0 

0.00% 
0 

0 / 0 
0,00% 

0 / 0 
0,00% 

5 
157 

0,44% 
744 

5,38% 
67 

0,34% 
0 

0.00% 
5874 

9,05% 
3072 

2,16% 
177 

2,22% 
1215 

25,88% 
0 

0.00% 
11293 

5874 / 11293 
52,01% 

5419 / 11293 
47,99% 

6 
19488 

54,23% 

3379 

24,41% 

15420 

77,22% 

3603 

95,77% 

56604 

87,23% 

135256 

95,17% 

4544 

57,08% 

3379 

71,97% 

2006 

88,57% 
243679 

135256 / 243679 

55,51% 

108423 / 243679 

44,49% 

7 
464 

1,29% 
112 

0,81% 
26 

0,13% 
2 

0,05% 
401 

0,62% 
660 

0,46% 
2794 

35,10% 
0 

0.00% 
7 

0,31% 
4466 

2794 / 4466 
62,56% 

1672 / 4466 
37,44% 

8 
0 

0,00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 
0 

0 / 0 

0,00% 

0 / 0 

0,00% 

9 
0 

0,00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 

0 

0.00% 
0 

0 / 0 

0,00% 

0 / 0 

0,00% 

Tot  

(pix) 
35939 13841 19968 3762 64893 142127 7961 4695 

 

2265 295451  

PA 
15504 / 35939 

43,14% 
9025 / 13841 

65,20% 
2495 / 19968 

12,48% 
0 / 3762 

0,00% 
5874 / 64893 

9,05% 
135256 / 142127 

95,17% 
2794 / 7961 

35,10% 
0 / 4695 

0,00% 
0 / 2265 

0,00% 
 

OA = 57,86% 

OE 
20435 / 35939 

56,86% 

4816 / 13841 

34,80% 

17473 / 19968 

87,51% 

3762 / 3762 

100,00% 

59019 / 64893 

90,95% 

6871 / 142127 

4,83% 

5167 / 7961 

64,90% 

4695 / 4695 

100,00% 

2265 / 2265 

100,00% 
kappa = 0.28 

  



 

 

Appendix XVII – The classification maps for Zadní Rennerovky on the flight line 10_20 

Appendix XVII.A. Classification map of Zadní Rennerovky on the flight line 10_20 for the SVM classifier  

(source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

 
  



 

 

Appendix XVII.B. Classification map of Zadní Rennerovky on the flight line 10_20 for the NN classifier  

(source: own ArcGIS output; background of the map: orthophoto (ČÚZK, orthophoto)). 

 

 

  



 

 

Appendix XVIII - Error matrices for the classification of Zadní Rennerovky on the flight line 10_20 

Appendix XVIII.A. The error matrix for the SVM classifier. Numbers of classes: 1 – stands dominated by N.stricta; 2 – oligotrophic grasslands; 3 – mesophile grasslands; 4 

– waterlogged grasslands; 5 – degraded meadows dominated by Dicotyledons; 6 – degraded meadows dominated by grass species; 7 – stands dominated by Vaccinium 

species. Abbreviations: OA – overall accuracy, UA – user´s accuracy, PA – producer´s accuracy; CE – commission error; OE – omission error (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 Tot(pix) UA CE 

1 40933 / 79.01% 431 / 15.63% 1871 / 15.81% 14 / 3.02% 722 / 5.69% 4863 / 9.04% 111 / 3.10% 48945 40933 / 48945 83,63% 8012 / 48945 16,37% 

2 125 / 0.24% 1582 / 57.38% 71 / 0.60% 0 / 0.00% 130 / 1.02% 323 / 0.60% 0 / 0.00% 2231 1582 / 2231 70,91% 649 / 2231 29,09% 

3 412 / 0.80% 105 / 3.81% 3807 / 32.18% 0 / 0.00% 788 / 6.21% 762 / 1.42% 166 / 4.64% 6040 3807 / 6040 63,03% 2233 / 6040 36,97% 

4 10 / 0.02% 0 / 0.00% 0 / 0.00% 7 / 1.51% 2 / 0.02% 6 / 0.01% 2 / 0.06% 27 7 / 27 25,93% 20 / 27 74,07% 

5 32 / 0.06% 51 / 1.85% 7 / 0.06% 0 / 0.00% 2044 / 16.11% 1060 / 1.97% 1 / 0.03% 3195 2044 / 3195 63,97% 1151 / 3195 36,03% 

6 10241 / 19.77% 587 / 21.29% 5975 / 50.50% 441 / 95.25% 8816 / 69.50% 46657 / 86.72% 2935 / 82.10% 75652 46657 / 75652 61,67% 28995 / 75652 38,33% 

7 54 / 0.10% 1 / 0.04% 101 / 0.85% 1 / 0.22% 183 / 1.44% 130 / 0.24% 360 / 10.07% 830 360 / 830 43,37% 470 / 830 56,63% 

Tot (pix) 51807 2757 11832 463 12685 53801 3575 136920  

PA 
40933 / 51807 

79,01% 

1582 / 2757 

57,38% 

3807 / 11832 

32,18% 

7 / 463 

1,51% 

2044 / 12685 

16,11% 

46657 / 53801 

86,72% 

360 / 3575 

10,07% 
 

OA = 69.57% 

OE 
10874 / 51807 

20,99% 

1175 / 2757 

42,62% 

8025 / 11832 

67,82% 

456 / 463 

98,49% 

10641 / 12685 

83,89% 

7144 / 53801 

13,28% 

3215 / 3575 

89,93% 
kappa = 0.53 

 

Appendix XVIII.B. The error matrix for the NN classifier (source: own ENVI analysis).  

Pix / % 1 2 3 4 5 6 7 Tot(pix) UA CE 

1 41231 / 79,59% 621 / 22,52% 2148 / 18,15% 35 / 7,56% 1064 / 8,39% 5736 / 10,66% 278 / 7,78% 51113 41231 / 51113 80,67% 9882 / 51113 19,33% 

2 155 / 0,30% 1291 / 46,83% 11 / 0,09% 0 / 0,0% 169 / 1,33% 382 / 0,71% 0 / 0,0% 2008 1291 / 2008 64,29% 717 / 2008 35,71% 

3 156 / 0,30% 135 / 4,90% 2646 / 22,36% 0 / 0,0% 387 / 3,05% 567 / 1,05% 270 / 7,55% 4161 2646 / 4161 63,59% 1515 / 4161 36,41% 

4 0 / 0,00% 0 / 0,00% 0 / 0,00% 0 / 0,0% 0 / 0,0% 0 / 0,0% 0 / 0,0% 0 0 / 0 0,00% 0 / 0 0,00% 

5 90 / 0,17% 68 / 2,47% 193 / 1,63% 0 / 0,0% 711 / 5,61% 471 / 0,88% 2 / 0,06% 1535 711 / 1535 46,32% 824 / 1535 53,68% 

6 10142 / 19,58% 642 / 23,29% 6746 / 57,01% 428 / 92,44% 10279 / 81,02% 46589 / 86,60% 2928 / 81,90% 77754 46589 / 77754 59,92% 31165 / 77754 40,08% 

7 32 / 0,06% 0 / 0,00% 88 / 0,74% 0 / 0,0% 75 / 0,59% 56 / 0,10% 97 / 2,71% 349 97 / 349 27,79% 259 / 349 72,21% 

Tot (pix) 51807 2757 11832 463 12685 53801 3575 136920  

PA 
41231 / 51807 

79,59% 

1291 / 2757 

46,83% 

2646 / 11832 

22,36% 

0 / 463 

0,00% 

711 / 12685 

5,61% 

46589 / 53801 

86,60% 

97 / 3575 

2,71% 
 

OA = 67.61% 

OE 
10576 / 51807 

20,41% 
1466 / 2757 

55,17% 
9186 / 11832 

77,64% 
463 / 463 
100,00% 

11974 / 12685 
94,39% 

7212 / 53801 
13,40% 

3478 / 3575 
97,29% 

kappa = 0.49 

 
  



 

 

Appendix XIX – The contents of the attached CD 

 

Folder “text” – contains the text and appendices of the master thesis 

Folder “script” – contains the Python scripts utilized in the master thesis  
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