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1 Introduction

In several areas of science and technology we meet the necessity to simulate two-
phase flows. As an example we can mention chemical technology, where the
motion of gas bubbles in liquids occurs. Another possibility is to consider the
flow of melted metals or glass or flow of fresh concrete. Further, we can mention
two-phase flow in steam turbines, water turbines, flow in nuclear reactors and
groundwater flow.

The importance of flow-phase flows is manifested by a number of works dealing
with this subject. We can mention, for example, [1], [4], [5], [14], [15], [16], [17],
[20], [21], |22], [23], [24] and [25].

This thesis is devoted to the study of mathematical model describing flow of
two immiscible incompressible fluids. We consider the incompressible Navier-
Stokes system formed by the momentum equations and continuity equation,
coupled with a transport equation used for the identification of the interface
between the fluids.

We introduce the formulation of the coupled problem consisting of the in-
compressible Navier-Stokes system with variable piecewise constant density and
viscosity, corresponding to different properties of both phases. The behaviour
of the interface between two phases and its motion is described with the aid of
the level set method (see, e.g., [19]), which is based on a hyperbolic transport
equation.

The main emphasis is put on the numerical solution of the resulting nonlinear
transport problem. The Navier-Stokes system is discretized in space by the finite
element method using the Taylor-Hood P2/P1 elements. The time discretization
is carried out by the backward difference formula. The resulting discrete problem
is solved with the aid of Oseen iterations. The discretization of the level set
transport equation is realized by the discontinuous Galerkin method (DGM) of
lines and also by the space-time discontinuous Galerkin method.

The main part of the thesis is devoted to the error analysis of the discretization
of the transport equation. We estimate the error in space and also in time and
consider the dependence on the partition in time and space.

The use of the worked out method is demonstrated by numerical experiments

showing the development of the interface between two fluid phases.



1.1 Some definitions and notation

Let us define spaces of functions we shall work with in the following text. Let
Q) C R? be a bounded domain. The vector a@ = (o1, ag), where g, ag > 0 are
integers, is called a multindex. We set |a] = a1 + as.

By LP, p € [1,00), we denote the Lebesgue space defined as
LP (Q2) = < f messurable on Q| /\f\p dr < ooy,
Q

with norm s
0= { [lovde ] -
Q
For p = oo we set
L>* (Q) = {f messurable on Q| 3C € R" |f (z)| < C a.e. on Q},
with norm
[fll ooy = mf{C >0 |f (z)| < C for almost every x}.
By W*? k€N, p € [1,00], we denote the Sobolev spaces defined as
WP (Q) = {u € L? (Q) ,Va |a| < k, D*u € LP (Q)},

with norm

1
p
||u||k,p7Q = Z ||Dau”ip(Q) y P € [1a OO) )
|| <k
||u||kooﬂ = Z ”Dau”LP(Q)

lo| <k

and with seminorm

B =

[l = | D ID% )
la|=k

P T
YT e T o o)

For the case p = 2 we set H* () = W2 (Q) and H® (Q) = L*(Q).

where




In the following section we shall also use the Bochner spaces C ([0, T]; W5 (Q2))
defined by

C ([0, T]; W*?(Q)) = {u:[0,T] - W*P(Q), u(t) continuous}

with norm

HUHC([o,T};Wk,p(Q)) = tgﬁ“}T{] [u (t)Hk,p,Q :

Further, if s,q > 1 are integers, we define the following Bochner spaces

L*([0,T); H* () = u:(O,T)—)X;/||u(t)|qu(ﬂ)dt<+oo

with norm
T 1/2
2
Jallqo, v = | [ 1 (1o
0
and seminorm
T 1/2
2
|l 20,17, o)) = /’U(t) o) At ;
0
+1 S 2 s dju 2 s

j=1,...,q+ 1},

where % are distributional derivative. This space is equipped with the seminorm
T 1/2
A9 (t)

|wl a1 o,7y; 1o (02)) = / ‘
ar1([0,T]; He () J deatl ()

dt

If X is a linear space, then we set X2 = X x X.



2 Mathematical Model

Let Q C R? be a domain such that its closure Q, consists of two different time
dependent parts Q; (t) and Q, () ie., Q@ = Q;(t) U Qy(t), where Q; (t) and
Q (t) are disjoint domains. We assume that the domain 2 (t) is occupied by
a liquid and the domain 5 (¢) is occupied by a gas. The boundary of Q is
Lipschitz continuous and consists of several parts: 9Q(t) = I'p UT's U 'y (%),
where the boundary part I'; (¢) denotes the interface boundary between the two
fluids. We assume that ['; () is a closed curve. On I'p and I'g we prescribe
different boundary conditions.

We consider the following model problem consisting of the Navier-Stokes

system of momentum equations
2 0 (vgk)v(-k)>

v j op™) 2, 0d; ; (vW)
(/f)_l_l_ (k) _ 92, %) I )y (k) g = 1.9

j=1 j=1

(2.1)
and the continuity equation
divo™ = 0. (2.2)

Here the index k = 1, 2 denotes the two fluids with pressure p*), viscosity coeffi-

cient u®), density p®, the fluid velocity v*) with components v(k), 1 =1, 2, and

7

fi denote the components of the body forces, : = 1, 2. We denote
1 {o0® a0
dii(v) = = [ =2 ) i j=1,2. 2.3
5(0) Q(axﬁaxi i3 (2.3

Since the velocity of the gas will be small, we shall assume that both fluids are

incompressible and we consider the continuity equation in the form (2.2).
The functions v*) and p® are defined in the domain €, (t) and time ¢ € [0, 7],
where T' > 0. We assume that p®) and u(®) are positive constants. For simplicity

we shall use the notation v and p defined by
v|Qk — v®and p|Qk _ p(k), k=12 (2.4)

2
Further, o|q, = o) ok = (ag?)) , k =1, 2, denotes the total stress
ij=1



tensor with components

k) gy
) _ g o, [ 9V J
O = TPy T (axj o |

where 0;; is the Kronecker symbol.

Using the notation (2.5), we can write system (2.1) in the form

vk
p*) ( gt + (v® . V) v(k)) = f +dive®™ in QW k=12 (2.6

In section 3.2, we shall equip system (2.1) and (2.2) by boundary and initial
conditions.
To model the movement of the free boundary I'; (t) we use the level set

method. We couple equations (2.1) and (2.2) with the transport problem

Oy B
¢ = @p ondQ x(0,7), (2.8)
p(2,0) = ¢"(x), z€Q, (2.9)

where the function ¢ > 0 and ¢ < 0 in € () and € (¢), respectively. The
interface I'; () is characterized by the condition ¢ = 0. In (2.8), 02~ denotes the
part of 02, on which v -n < 0, where n is the unit outer normal to 9. (See
Section 3.)

The following two sections will be devoted to the numerical solution of the

level set problem.



3 Discretization of the level set problem

3.1 Level set method

First formulate the weak solution of the level set equation (2.7).
Let us assume that the transport flow velocity function v : Qr — RY is
prescribed. We consider the boundary 992 = 9Q~ UIQT and for all ¢t € (0,T) we

assume that

v(z,t)-n(x) < 0 on JN,
v(z,t)-n(z) > 0on 90T,

where n () denotes the unit outer normal to the boundary 052, the part 02~
represents the inlet part of the boundary (through which the fluid enters the
domain Q), the part of 9Q", where v - n > 0 represents the outlet part (through
which the fluid leaves the domain and v - n > 0) and the impermeable walls
(where v-n = 0).

In this section we shall be concerned with the linear initial-boundary value
convection problem (2.7)-(2.9): Find ¢ : Q7 — R such that

%—f +v-Vo = 0 inQrp, (3.1)
@ ep ondd” x (0,7, (3.2)
p(2,0) = ¢’ (x); ze (33)

Let us have the following assumptions on the data:

¢p is the trace of some ¢* € C ([0,T]; H' (2)) N L® (Qr) on 092~ x (0,T),

(3.4)
oo € L2(2), (3.5)
v e C([0,T]; W (Q)), |v| < C, in Qr, |Vv| < C, ae. in Qr. (3.6)

Now we derive the week formulation. We multiply the equation by any

v eV ={deH (Q); Y- =0},

apply the Green theorem and use the boundary and initial conditions. We obtain

the following definition:

Definition 3.1. We call the function ¢ a weak solution to problem (3.1)-(3.3),

7



if it satisfies the conditions

p—¢" € L2(0,TV), p € L% (Qr);

4 [ opdr — [ oV - (Vo) dz + [, (v-n)@pdS =0
for all » € V in the sense of distributions on (0,7,
¢ (0) = ¢%in Q.

We assume the existence and sufficient regularity of the weak solution ¢,

namely,

8@ 2 . s
o e L*(0.T: H' (). (3.7)

where s > 2 is an integer. Then ¢ € C ([0,7]; H* (1)) .

3.1.1 Space discretization

For the space discretization we shall use the discontinuous Galerkin method
(DGM).

We consider a system of triangulations {ﬁl}he(oﬁ) with h > 0 of the closure
of the domain €2 into a finite number of closed triangles with disjoint interiors.

Now let us denote by Fj, the system of all faces I' of all elements K € 7Tj,.
Furthermore, we denote the set of all boundary faces by FF, the set of the
"Dirichlet" boundary faces by F2, and the set of all inner faces by F/. Hence,
if ' € FP, then I' C 0Q and if I' € FP, then T' C 9Q~ (where the Dirichlet
condition is prescribed).

We introduce the assumptions on the meshes 7j:

(A1) The triangulations T, h € (0, E) , are conforming. This means that
for two elements K, K’ € Tj,, K # K', either KN K' =0 or K N K’

is a common vertex or K N K’ is a common face of K and K.

(A2) The system {Wl}he(o ) of triangulations is shape-regular: there exists

a positive constant C'r such that

h—KgCR VK €T, VYhe (0,h),
PK

where pg denotes the radius of the largest circle inscribed into K and
hyi denotes the diameter of K .

(A3) Every I' € Fp, h € (O,E), is associated with the quantity hr > 0,

which represents a “one-dimensional" size of the face I', and



satisfies the equivalence condition with hg, i.e., there exist constants
Cr, Cg > 0 independent of h, K and I' such that

CThKShFSCGhIO KE%,FGI}L,FcaK.

As an example we can define hr as the length of I'. Another possibility is to set
hr = “LL;LK’), where K and K’ are such elements that I' ¢ K N K.
For K € 7T, we define the inlet and outlet parts of the boundary of K as

follows:

OK™ (t) = {r€dK;v(x,t)-n(x) <0},
OK* (t) = {z€dK;v(z,t) n(x)>0},

where n denotes the unit outer normal to 0K.

For any k € N, over a triangulation 7, we define the broken Sobolev space
“(Q,Th) = {v e L*(Q); v|lx € H* (K) VK € T}

with norm
1/2
1910, = <Z 1911 rs )
KeTy,
and seminorm
1/2
2
Y@z = (Z lemm) :
KeTy,
Now we discretize the convective term v - V. We follow the treatment from
[9, Chapter 4]. We multiply this term by any ¢ € H* (Q,T;,) , integrate it over an
element K and apply the Green theorem. (For a moment we do not emphasize

the dependence on ¢.) We obtain

[ Vo = - [o9 - @ojar+ [ (- m)puas

K K oK
= —/@V-(@/m)dx—i— / (v-n)pYdS + / (v-n)pYdS.
K oK~ oK+

In what follows, on the inflow part of the boundary 0K we shall write ¢~
instead of ¢. In case when ¢ € H' (Q,T,) the symbol ¢~ denotes the trace of ¢
on 0K from the side of elements adjacent to 0K from outside of K. Of course, if

¢ satisfies (3.7), then ¢ = ¢~. Hence we use only the information from outside



the element K. If z € 007, then we put ¢~ (z) = ¢p (z). Using all these

informations, we obtain

/(U V) thda (3.8)
_ Ii/w-(m)dﬂ / (v-n)¢—¢ds+/(v-n)wds
= —7¢V-(wv)dw+a7(v-n)wd5 - 67 (v-n)pipdS
+K/ (v-n)ap_wd;i / (v-n)gowdi’l.(maK_
e pic

Equation (3.8) holds since [, (v-n)pypdS — [, k- (V- 1) ppdS = 0.
Applying the Green theorem to the first term we find that

(v- V) dx (3.9)

(v- V) dr + / (v-n) (¢~ —¢)¢dS

0K~

(v Vo) ol — / (v 1) [o] $dS — / (v 1) (1o — pp) dS,

OK~\0Q 0K ~NoQ

I
A — A A

where [p] is the jump of a function ¢:
(0] = — ¢ on 0K~ \ 09. (3.10)

Now we are ready to derive the discrete problem. Under assumption (3.7) we
multiply equation (3.1) by any ¢ € H' (2, T;,) , integrate it over each element K
and sum it over all elements K € T;,. We get

> /g—fwdmr > /(U~Vg0)wdx:0.

KeTh g KeTh g

Using identity (3.9) for the convective term we obtain

10



Z/Z—fwdw Z/('v-W)wd:ﬂ— > / (v-n)[g]pdS

Ke?’hK Ke?’hK KeThaK*\aQ
-3 [ @me-vovas - o
KeThy " non

This identity leads us to the definition of the forms (-,-), by, I, defined as

(%—(f,w> = g—fzpdm, (3.11)
o) = Y [@voude- Y [ womldds
KeTn k K€Tror o0
_Z / (v - n) pYdsS, (3.12)
KeThy " non
W) = =Y [ (o men s (3.13)
KeThy " non

We see that the exact solution u satisfies the following identity for each ¢ €
H' (T :

w) b (6), ) = I () (1) (3.14)

We want to define an approximate solution for each ¢ € (0,7). To this end,

we introduce the finite dimensional space
S ={¥ € L*(Q), ¥|x € P(K)VK € Tp}, (3.15)

where p > 1 is an integer and PP (K) is the space of polynomials on K of degree

at most p.

Definition 3.2. The DG approximate solution of the level set problem (3.1)-(3.3)

is defined as a function ¢ such that

op € C* ([0,7); Shp) (3.16)
(Wgt(t)’wh) + bn (on (1) ,0n) = b (Vn) (1) Vibn € Spp VE€ (0,T),

(¢n (0),¥n) = (9007 wh) Vb € Shyp-

11



3.1.2 Space-time discretization

In the previous section we have derived the space discretization of our problem
(3.1)-(3.3) using the DGM. Now we shall apply to our problem a time discretiza-
tion. We use the space-time discontinuous Galerkin method, STDGM for short.
Let M > 1 be an integer. We shall construct a partition of the time interval
[0, 7] as follows:
O=tog<ti <--- <ty =T, tp =kr,

where 7 > 0 is a time step.
We denote

So it holds
0,7 =UM_ T, L.NIL,=0form#n mn=1,..., M.
For a function 1 defined in U%zllm we introduce the notation

Yh=lm ¢(t), (¥}, =0~

t—tm

assuming that the one-sided limits exist.

We still discretize problem (3.1)-(3.3) with the same data assumption and
domain €2. We just use different partitions and function spaces on different time
intervals [,,. For each time instant ¢,,, m = 0,..., M, and interval [,,, m =
1,..., M, we consider a partition 7j,,, of the closure Q of the domain Q into a
finite number of closed triangles with mutually disjoint interiors. We also assume

that the system of triangulations
{77177'}116(0,5) ) E > 07 To > 07 771,7' - {ﬁz,m}%zo

is conforming (cf. condition (Al) from Section 3.1.1) and satisfies the shape
regularity condition ((A2) from Section 3.1.1) a the equivalence condition ((A3)
from Section 3.1.1):

hx
PK
Crhx < hr <Cchr, K € Thm, I € Fopm, L COK, m=0,...,M, h€ (0,h).

IN

CRa Keﬁl,ﬂmmzow'wM?hE(Ovﬁ)v

Instead of the triangulation 7;, for the DGM the triangulations 7y, ,,, may be

12



different for different m.

We shall use the similar notation as for the DGM, only with one more subscript
m. We denote by F}, ,, the system of all faces of all elements K € Tj,,,. Similarly
as in Section (3.1.1) we denote the set of all boundary faces by F , the set of
the “Dirichlet” boundary faces by F, and the set of all inner faces by F/ .

We set

hx = diam (K) for K € T, hpm = max hg, h= max hy,

KeTh.m m=1,...,M

and by px we denote the radius of the largest ball inscribed into K.
For K € Ty and t € I,,, we define the inlet and outlet parts of the boundary

of K as follows:

OK™ (t) = {z€dK;v(x,t)-n(x) <0},
OK*(t) = {x€0K;v(z,t)-n(x) >0},

where n denotes the unit outer normal to 0K.

For any k > 1, over a triangulation 7j,,, we define the broken Sobolev space
H*(Q, Thm) = {0 € L*(Q); v|x € H* (K) VK € Ty}

and seminorm
1/2

Wlrom,y = | 2 [l

KEThm

The jump of a function is defined in the same way as in Section (3.1.1).
Now we need to define the finite-dimensional space analogous to Sp,,.
Let p, ¢ > 1 be integers. For each m = 1,..., M we define the finite-

dimensional space
Sy =A{veL?(Q); ¢|x € PPVK € Thm} -

The approximate solution will be sought in the space of piecewise polynomial

functions in space and also in time. Therefore, we define a space S}'? :

1 = {verrenivito. =Yt

with ¢, € S),., 1=0,...,¢, m :1,...,M}.

13



We consider problem (3.1)-(3.3) with regular exact solution satisfying the

condition

Oy 2 .7l
3 € L*(0,T; H' (). (3.17)

Later, in the error analysis, we shall assume that
¢ € C([0,T]; H* ()N H™ (0,T; H' (Q)) (3.18)

with integers ¢ > 1 and s > 2.

Now we discretize the term with time derivative. Let m € {1,...,M} be
arbitrary but fixed. We multiply equation (3.1) by ¢ € S}’L, integrate it over
K x I, and sum over all elements K &€ Ty, ,,.

We use the notation ¢’ = %—‘f. By the integration of the time derivative term

by parts we get

/ (o) dt = — / (o) dt + (o) — (b y) - (3.19)

]m ]"'L

It follows from (3.17) that the exact solution is continuous with respect to time,

which implies that ¢, ; = ¢, ;. Thus,

(90;1—177»07—:,—1) = (907—:1—17 ;-1) . (3'20)

Putting equations (3.19) and (3.20) together and integrating them by parts, we

obtain the desired approximation

/ (pydt = — / (o t) dt + (o) — (01

Im Iy,
_ /(Qp,,iﬁ) dt — (pm_1, U 1) + (01,0 1)
Im
— / (gp’, ¢) dt + ({Sp}m,1 >¢:£—1) :
Im

The discretization of the convective term and the right-hand side of equation

(3.1) is similar as in Section 3.1.1. We can define the forms

14



(o) = Y [ Vowde- S [ wewlelvds

Ke€Thm i KeThmak=\o0

- > [ s

KeThmpg"non

b (V) (1) = = / (v-n) pp () ¥dS.

KeThmag~non

Let us define for each element K from 7,,,, m = 1,..., M, and ¢ € L?(K)

the projection as follows:

(Ihme) |k € PP (K),
(Hh,WSD - ¢,¢)L2(K) = 0 Yyper? (K)>

and hence, if ¢ € L*(Q), then

Hh,mSO S S]Iz’m,
(Mhme = 0, %) oy = 0 Y ESE .

This means that I, ,, is the L?—projection on the space S¥ .

Definition 3.3. We say that the function ® € S}"7 is an approximate solution
of problem (3.1)-(3.3), if it satisfies the identity

/ (@ 46) + b (@, 0)) it + ({8}, ) = / bon()dt (3.21)

I Im
Ve Spd m=1,...,M, &5 =1l

where IIj, g9 is the S} ,—interpolation and @ denotes the time derivative of ®.

We can notice that this scheme is constructed in such a way that the exact

solution ¢ satisfying (3.18) satisfies the identity

/ (&) + b (02 0)) dt + (L}, 1) = / b (1),

Im Im

VeSSt m=1,...,M (3.22)

15



3.2 Navier-Stokes equations

Let us formulate the weak solution of the momentum equations (2.1) together
with the continuity equation (2.2).
As above we set Qr = Q x (0,T). We want to find v : Qr — R? such that

p (aa—:: +(v-V) 'v) = pf +dive in Q (1) UQy (1), (3.23)
dive = 0in Q (t) UQs(2) (3.24)

v(z,0) = vy, z€X, (3.25)

v = wvp onlp, (3.26)

vn =0 t-ocoon=0 onlyg, (3.27)

oM = v® onry, (3.28)
c.n—c®.n = ykn onT. (3.29)

In (3.27), n and t denote the unit normal and unit tangent to I's. In (3.29)
n denotes the unit normal to I'; (¢) pointing form €2 (¢) into €5 (¢). Further,

~ denotes the surface tension coefficient and « is the curvature of the interface
Ly (t).
We define the velocity spaces V', V; and the pressure space () as follows:

V=H'(Q)? Vi={weV;wl,=0,(w-n)lp, =0}, Q=1L*(Q).
Let us have the following assumptions on the data:

vp is the trace of some v* € C([0,T]; H' (2)) on T'p x (0,7,

vy € L2 (Q)?,

fel* @)

We multiply the momentum equation (3.23) by an arbitrary test function

w € V), integrate it over Q*) and apply the Green theorem to the term dive.

We obtain the relation

(k)
/ pe <a’gt (. V) v(k)) w di (3.30)
Qk

+/0'(k) - (Vw) dz — /J(k) nWwdsS = /pr)fw dr, k=1,2.

Qp o, Qp

Using the boundary conditions, interface conditions and properties of w € Vp,
summing the equations (3.30) for & = 1,2, and taking into account that n") =

—n®, we get the identity
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ot

Q Iy

[o(5+@0)wio Gy = [wnwast [ofwds v e
Q

We also multiply the continuity equation (3.24) by an arbitrary test function
q € (@ and get
/(V‘v)qu:().
Q

Now we can define the weak solution of our problem:

Definition 3.4. We call a function v defined by 2.4 the weak solution to the
problem (2.1)-(2.2), if it satisfies the conditions

v—v e L*(0,T;V)*, veL>®0,T;L2(Q);

Jor (B +(v-V)v)wto-(Vw)+(V-v)gde = [, yen - wdS+ [ pfw dx
for all w € V| and ¢ € Qin the sense of distributions on (0,7,

v (0) =2 in Q.

In what follows we shall be concerned with the term sz vkn - wdS. We refer
to the works [4], [7] and [1].
-1
Let x = x (§) denote the parametrization of [';. Then we set g = <(§—’g> and

for a differentiable vector function f : I'; — R? we define the tangential derivative
Vrf by d(fox)
_ °X

and the Laplace-Beltrami operator

1 0 <\/mgvrf>

Arf = .

Vigh %

Moreover, by [1],

kn = Arx,

where n is the unit normal to I';, and the integration by parts yields

/ﬁn -wdS = /(Apm) ~wdS = — /pr - VrwdS.
Iy

F[ 1_‘I

Then we get the following identity:
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/p(%—:;—|—('U-V)v>w+o"(V’w)+(V-v)qu (3.31)

= —/v(Vpa:) (Vrw) dS+/pfwdm, Yw € Vg, Vg € Q.
I, Q

3.2.1 Space discretization

For the space discretization we shall use the finite element method.

We assume that the domain 2 is polygonal and consider a system of triangu-
lations {ﬁl}he(oﬁ) with i > 0 of the closure of the domain 2 into a finite number
of closed triangles with disjoint interiors.

Now we approximate the function spaces V and @ by the finite dimensional

spaces V', and @), defined over the triangulation 7,. We set

Vi = {oneC(@)’; olx e PP(K) VK € To},
Ve = {wn € Vy; wnlr, =0, (wp - n) ’FS =0},

Qn = {0 €C(Q); anlx € PP(K) VK € T},

where p, s > 1 are integers. PP (K)and P* (K) are spaces of polynomials on K
of degree at most p and s, respectively.

We introduce the discrete formulation. We proceed as in the continuous
problem. We multiply the momentum equation (3.23) by an arbitrary function
wy, € V5o and the continuity equation (3.24) by an arbitrary function g, € Qp,
integrate them over an arbitrary element K and apply the Green theorem and
sum over all elements K from {ﬁl}he(oﬁ) . We look for functions v, : [0,7] — Vj
and py, : [0, T] — @y, such that for all w, € Vi, all ¢, € Q and all t € (0,7)
they satisty the equation

> / (p (avaLt(t) + (vn () - V) vy (t)> wy, — ppV - wy,

KeTy %
2 Oowy,;
20 3 diy (w0 (1)) G (Vo (1) qh) o
i,j=1 J

= —/V(er) - (Vrwy,) dS + Z /pfwhdﬂfa

I KE’ThK

and v, attains the values of vp at vertices and midpoints of sides of elements

18



K € T, adjacent to I'p.

3.2.2 Space-time discretization

In this section we introduce the time discretization of the flow problem.
Let M > 1 be an integer. We shall construct a partition of the time interval
[0, T7:
O=tog<ti <--- <ty =T, tx=Fkr,

where 7 > 0 denotes a time step.
By vgk) € V5o and pgk) € @, we denote the approximation of the functions
vy, (tr) and py, (1), respectively. We expect that this notation will not lead to
8vh

some confusion in comparison to notation in Section 2. The time derivative <

at time t; with k > 2 is approximated by the backward difference formula (BDF)

k k—1 k—2
Ovy, (ty) ~ Do® — 3'0,(1) — 4'0,(1 ) 4+ 'v,(l ) (3.32)
ot h 27 '
For k = 1 we use the approximation
ovy, (t1) 1) vg) - ’UELO)
T Dv,’ = - (3.33)

where vY is the V, interpolation of the function v° from condition (3.25).

Now the full space-time approximate solution is defined as the sequences
M M
{vgf)} {pgf)}k:l satisfying the relations

k=0’
S [ (o (0ol (3 9) o) w9 s

KeTy, K
2 Owy;
+2 ) dyy (vé“) a;Z + (V ‘ ’Uék)> Qh> dx
i,j=1 J

= —/’Y(VFIB) (Vrwy,)dS + ) /wahdxa

I, KeTn ¢

Vwy, = (Wp1, wh2) € Vo, Ya, € Qn, k=1,---, M.

Here by ﬁgf) we denote the time approximation of 'vglk). If we set
ot — o, (3.35)

then the discrete problem (3.34) is nonlinear and has to be solved by a suitable
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iterative process. Another possibility is to use time extrapolation
a) E;f) = 'vgﬁl) or b) ﬁgk) = 2'05?71) — vgffz).

Then on each time level we solve a linear problem.
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4 Error estimation of level set method

4.1 Error estimation for space discretization

In this section we shall be concerned with the estimation of the error of the scheme
(3.16).

We shall consider a system {ﬁt}he(o,ﬁ) . h > 0, of triangulations of the domain
2 and assume that satisfies assumption (A1), (A2) and (A3) form Section 3.1.1.

The error of the method is defined as a function e = ¢, — . In the derivation
of the error estimate, we shall need to introduce the Sj,—interpolation IIj, which
will be defined in the following way.

Let us define for each element K € T}, a mapping 7, : L*(K) — PP(K) such
that for each p € L? (K) we have

WKPQO < Pp(K))

/(WKpgo)vdx = /govdx Vv € PP(K). (4.1)

Then we can define the Sj,—interpolation II,, in such a way that:

(Mhpep) e = (Tp () (4.2)

and hence, if ¢ € L*(Q), then

thgD < Shp, (43)
/(thgo) vdr = /gpvdx Yo € Spp, YK € Tp.
K K

That means that IIj, is the L?—projection on the space Sp,.

Now we shall express the error e, = ¢, — ¢ in the form

€p = §+777 (44)
§ = on— iy,
n = Ip—.

The function 7 represents an Sp,—interpolation error.

Let us assume that the exact solution satisfies the regularity condition

890 2 . s
n € L*([0,T]; H* (%)), (4.5)
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where s > 2 is an integer. Then, if the system of triangulations is shape-regular,
for all K € T, and h € (0,h) we have

10l 2y < Cal @]y - (4.6)
Mgy < CaP* el » (4.7)
HU”LZ’(Q) < CAhM‘%O‘Hu(Q)’ (4.8)
H% zow %—fwm (19)

almost everywhere in (0,7"), where ;1 = min (p 4+ 1, s). These estimates are the

consequences of approximation properties of the interpolation operator IIj,. See,
e.g., [9].

Our main task will be to estimate ¢ in terms of . Then, using the n- estimates
we obtain the result for the error ey,

We proceed in such a way that we subtract (3.14) from identity (3.16), put
Y = &(t) and obtain the following equality:

0 0
It is obvious that o 1 d
(5:¢) = 55 Ml (411

Now we need to estimate the term with the form b;,. First let us recall some

inequalities needed in the error analysis.

Lemma 4.1. Multiplicative trace inequality
Let the system {ﬁ}he(o 7) be shape-reqular. Then there exists a constant Cpy >
0 such that

o020y < ot (ol ol + 1 Iols) (412)
for all K € Ty, h € (0,h) and all v € H'(K).
For proof see for example |9, Chapter 2|.

Lemma 4.2. Inverse inequality
Let the system {ﬁ}he(o 7) be shape-reqular. Then there exists a constant Cy >
0 independent of h such that

’Uh|H1(K) < Olhl_(l ||Uh||L2(K) (4.13)
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for all K € Ty, h € (O,E) and all v, € PP(K).
For proof see for example |9, Chapter 2|.

Lemma 4.3. Gronwall lemma
Let y, q, z, 7 €C([0,T]), r >0 and let

t

y(t) +q(t) < z(t) + /r(s)y(s)ds, te|0,7T].
Then

y(t) +q(t) +/r(?9)q(19) exp /r(s)ds dv (4.14)

For proof we refer to [9, Chapter 1].

We shall also need the modified version of this lemma.

Lemma 4.4. Modified Gronwall lemma
Let for all t € [0,T)

(1) + R(t) < 2/B(U)X(U)dv,

where R, A, B, x € C([0,T]) are nonnegative functions. Then for any t € [0,T]

we obtain the inequalily

T 0<v<t

2(t) + R(t) < max AY?(v) + / B(v)dv. (4.15)

See |9, Chapter 1.

Now we introduce a norm over a subset w of either 02 or 0K:

¢l = | v/T0 -l

(4.16)

L2(w)’

where n denotes the corresponding outer unit normal to 02 or 0K.

Now we can formulate the estimation for the form by,.
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Lemma 4.5. There exist positive constants Cy, and C} independent of ¢ and h
such that

1
on (n,€)] < 1 Z <||€||12;,8K+ﬂ8§2+ H[ﬂ”i,aK—\aQ) (4.17)

KETh

+Cy Z 101l 2200y €1 226y

KeTy,

— 2
5 3 (Il gz Il sy + Wl )
KeTy,

where
C’,') = C,Cy, C, = C,(14CaCy), (4.18)

C, is given by the data assumption of problem (3.1)-(3.3), Ca is the
approzimation constant, and Cyy and Ct are the constants from the multiplicative

trace inequality and the inverse inequalily, respectively.

Proof. Using the definition of the form by, (3.12) and the Green theorem, we find
that

g = 3 | [ vnet (4.19)

€Th \ [k

=
>

- [ wwew-n)as- [ w-nes

OK—\0Q OK—NoQ
= Z (v-n)éndS — | n(v-VE)dr— [ nEV - vdx
KeT, Z ;[ IZ

- [ wmeus— [ @mem-n)as|,

0K ~NoQ OK—\0Q

where the superscript ~ denotes the values on 0K from the outside the element
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K. Hence

b ol < |3 /n(v-Vf)dﬂf s /nfvvdas (4.20)

KETh KETh i

+ / (v-mn)&ndS — / (v-m)&ndS

KeTn \gx OK—NoQ

- / (v-n)&(n—n")dS

OK—\09Q

The second term on the right-hand side of (4.20) is estimated easily with the
aid of the Cauchy inequality and assumption (3.6).

3 / neV - vdz| < Co 3 1l 1€l o - (4.21)
KeTh ¢ KeTy

Since

> [ wwews--Y [ wweias

KeTngr=\o0 KeTngr“\o0

and v-m > 0 on K, with the aid of the Young inequality, the set decomposition
0K = 0K U (aK_ N GQ) U (8}(_ \ 89)

and notation (4.16), the third term on the right-hand side of (4.20) can be re-

written and then estimated in the following way:
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Z /(v-n)fnd5+ / {(v-n)én—(v-m)&(n—n7)}dS
Ke€Tn \gg+ OK—\9Q
= Z / (v-m)&ndS + / (v-m)&n+ / (v-n)n &dS
KeTh \gr+non OKT\0Q OK—\oQ
= ) / (v-n)&ndS + / (v-n)n~ (£—¢7)dS
KeTn \or+non K —\0Q
< L / (v-m) E2dS + / v - [ dS (4.22)
4
KeTn \or+non K —\0Q
+ Z / (v-n)n*dS + / lv-n| (77_)20[5
KeTh \gk+non OK—\00
1 2 2
< 2 7 (2 oo + NIENE oo
KeT,
Z (||77H12;,8K+08§2 + H”Wi,wﬂa@) :
KeTh

Using the multiplicative trace inequality, the boundedness of v and estimates
(4.6) and (4.7), we get

2 112
S~ (W orcern + 19711 00 (423)
KeT;,
2 _12
< C, Z <||77||L2(3K+\89) + ”77 ||L2(6K*ﬁ89))
KeTy
2 - 2
< Gy Z H77||L2(3K) < CCu Z (HUHL?(K) |77’H1(K) + hKl ||77”L2(K)) :
KeT;, KeTy

In virtue of the definition (4.4) of  and (4.1)-(4.3), the first term on the right-
hand side of (4.20) vanishes, if the vector v is constant or piecewise linear, because
v-V¢|k € PP (K) in this case. If this is not the case, we have to proceed in a more
sophisticated way. For every ¢ € [0,7) we introduce a function Il v (¢) which

is a piecewise linear L? — projection of v (t) on the space Sy,. Under assumption
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(3.6) we have
v = 0| oo ) < Caliie [0 yprooiey, K € Thy b€ (0,1). (4.24)
(K) (K)

as follows from [6].
The first term in (4.20) is then estimated with the aid of (4.1), (4.13), (4.24),
the Cauchy inequality and assumption (3.6) in the following way:

Z /n(fv - V&) dx (4.25)

KeTh i
< | [ 0o veds + 3 | [n((0 - o) Ve do
KeTy, K KeTy K
= > /ﬁ((v—v)'vf)df < D 0 = Tl ey 19l 22y 1€
KeTy, K KeTy,
< Z Cahxk |'v|W1’°°(K) ||77HL2(K) Crhy! ||€HL2(K)
KeTy
< C,CaC Z 171l 2y 1€ 2 e -
KeTy,

Using (4.21), (4.22) and (4.25) in (4.20), we obtain (4.17) with constants defined
in (4.18). This finishes the proof of Lemma 4.5. O

From now on we shall use the notation

— 2
D) = 2G4 > (Il ) Ml ey + i 1l ) -
KeTy,

We consider the term by (§,€) from equation (4.10) and rewrite it in the

following way:
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b€ = Y (/(v-vs)sdx

KeTy,

- [ wmwlgeas- | <v~n>£2d5)

K —\0Q K ~NoQ

= 3 (%/(V-v)gzdx-l-%/(v'n)deS

KeTy, i oK
- / (v-m)E(E—¢7)dS — / (v-n)E2dS
K —\oN K —NoQ

Due to the decomposition 0K = 0K~ UJK™T we have

b (€,6) = Z%(/évvdx / (v-n)€2dS

K€&Tn DK~ NoQ

— / (v-n) (52 — 255’) dsS

OK\OQ
+ / (v-m) 2 + / (v-m)e2ds | .
DK +No0 K\00

Using the relation
> / (v-n)g2dS=—>" / (v-mn)(¢)dS,
KeTngrc 00 K€Tngre "\ o0

we get

(6.6 = > % (/gQV-vdx / (v-n)&2dS (4.26)

K€Tn K OK—NoQ

- / (v-n)(§2—2§§_+(§_)2>ds+ / (U.n)g%w)

OK—\0Q OK+NoQ

1 1
Y Z (HéHz,aK*maQ + ||§||12;,8K+m89 + H[&]Hz,aKf\aQ) - /§2V -vdzx.

2
KeTy Q
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Putting relations (4.26) and (4.11) into equation (4.10), we get

1 2 2
a5 D (1612 oo + MR o \00)

KeTy
0
< ](az >‘+|bh n§\+/£V v,

For simplicity we shall write

7€) =5 3 (IR arcomn + NEIE oo - (4.27)

KeTy
Finally we use inequality (4.17) to obtain

ey + 5010 (1.25)

1
> + §D(n) + /§2V -vdx.
12(9) )

We shall integrate this inequality from 0 to ¢ and apply the initial condition
€(0) = 0. We get

2dt

In
sc%mmmnowp@+H@

t

m@@+/dwmw (4.29)

0
dv
L2(Q)

+/tD(n)dq9+2/t /fQ(x,ﬁ)V-v(x,ﬁ)dw m

< mz/wammmnomwmym+ﬂggm

4.1.1 Incompressible flow

First, let us consider the case of incompressible flow, when dive = 0. We shall
use a more general case with dive < 0 in Q.

We shall prove the following result:

Theorem 4.6. Let assumptions (A1), (A2), (A3) from Section 3.1.1,
assumptions (3.4)-(3.6) on data and (4.5) be satisfied. Moreover, let divo <0 in
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Q7. Then there exists a constant C' > 0 independent of h and T such that
le ()72 < CR*#H VL€ [0,T], h € (0,R), (4.30)

where = min(p+1,s) .

Proof. If divv < 0, then we can omit the term with divergence operator and

simplify inequality (4.29) as follows:

t

€l + [ o(eto)as (431)

0
t
w+/wa
12(9) )

In the next step we use the modified Gronwall lemma 4.4, where we have

< a0, / €O e (Hn( s + | 50)

X)) = €@ 20

R(t) = / o(£(9))do,
All) = / D) ()
on

BO) = G, <Hn< [ I

Lz(m) .

1€ (D172 + dﬁ) (4.32)

< mas /D 9)dv +/cb<un e H » >d19.
0

We have
D) = 265 > (Inllgzqe Ml ey + h Il ) = 0
k=KeT,

Thus, we obtain

and hence, the function “y — [ D (n(J)) d” is non-decreasing. This implies
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that
1/2

. 1/2 .
wax | [Daoya ] < [Duw)a

Putting all these estimates together with inequality (4.32), we obtain

t

€0y + [ e (439
t t 877 2
< 2!D((19))d19+20b O/<n( )||L2(Q)+’ =) Lm)) 4
< 2 [panar+ac | [l | +{ [ |5 @
< 2/D(77(19))d19+4CbT/ <|yn< )12 + HZZ (9) m)) .

0

According to the approximation properties (4.6)-(4.9) we get the estimates

||77||L2(Q) < CAh,u|S0|H,u(Q)7 (4.34)
0
Calt |5 ; (4.35)
Ot | gu (o)

— 2
263 >~ (Il ey 1l ngaey + it Il (4.36)

KeTy,
2u—11 |2 2u—1 |2
2G;, Z (Cflhlg ’(p‘HH(K) —|—Cih,? |80|Hu(K))
KeTy
- 2
= 401203}12” ' |(:0|HM(Q)7

IN

Ot || 120

D(n)

IN

where = min (p+1,s).
Using the multiplicative trace inequality (4.12), we estimate the terms of o () .
We have

(4.37)

IA
—
=
=
<N
95)

2
7 Hv,azmasz

2 — 2
< GO (Il B+ Il 1))
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2
2 L R
H[n]HvﬁK*\ag < / |'U|‘77§)_77§ )‘ ds
OK—\09
2
< ¢ [ ]+ o] as
oK
OIE (R)|?
< 20, P ds [ [nf ds
oK oK
Hence,
2 2
S Nl onon < 46 Y [ 1o as (438)
KETy, KeThgy
< 40.Cu Y (InliEeqe b + Il e Il ) -
KeTy

The above estimates together with (4.36) imply that

t t
2 [atanas = [ 3 (I oo+ 1O i) 40 (4.39
0 0 KeTy,
t
< 5 [ 30 (10O i+ 19O 11 ) 49
0 KeTy
<

t
5CUCM/ Z <C,%xh2“_l [ (19)|12qu(1<) + ORI (Wﬁ{u([()) dv
0 KeTy,

t
< 10C,Ch CoR2H! / |0 (9)[ 770 () 0.
0

Now we return to the original equation (4.4) for the error e;, and start to estimate
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the term ||6h(t)||ig(ﬂ) + fot o(en(9))dV. From (4.27), (4.33)-(4.39) we get

t

len)lZage + / o(en(9))d)

0

IN

2 (sunim + [ o€)do + In®le + [ a<n<v9>>cw)

t t , a/’,’ 9
A / D)o +sGiT [ <||77(19)||L2(Q) + 5@ m)) i

0
2[00 / N (I A U [ K

KeTy,

IN

t

16 / 212 (i (0) 2y g 19

0

IN

t

war [ (Oifﬂ“ [ (9) 3pu(ey + O3

0

dp
5 )

2
dv
Hi(9)
t

2
42 <0Ah“|g0(t)|HM(Q)> +10C,Cy / CEPH 10 () 1.

0

Since the term fg o(en(¥))dd is non-negative, we can write

t

len(®ll3@ < Ce (h [ (1 @liay) a0 (1.40)

0
t

Op 2
+ hQ“/ (ygp(ﬁ)\;w(m + ‘E (9) ) 49 + B | () 0y
/ HH(Q)
< Ce (W“_l + 1) 191 72(0,1 )
2
,t€ 0,77,
L2(0,T; H-(£2))

Ce = max {C3 (16C} + 10C,Cy) ; 8CRC,T; 2C3 } (4.41)

dyp
+h <|<P (19)|i°°(O,T; Q) T ‘E (9)

where

Obviously the error of our discretization is of the order O (h?*~!). This means
that we have proved estimate (4.30). O
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4.1.2 General case of divv

Let us consider the general case, when we have to estimate also the term with

the divergence operator. We now have

t

6l + [ e (442

0
dv
L2(Q)

+O/D(77)dz9+20/ 9/52 (x,9)V -vdz | d9.

dv
L2(Q)
on

t t
1 2
< 5 [ 16O + | (nn(muimw %) )dﬁ.
0 5 L2(Q)

The term with the divergence operator can be estimated as follows:

< 26, [ 16020 <Hn(19>||m(m + 5w

If we use the Young inequality, we get

JACCIE (Hnwwm + 5o

t

t
/ / € (2,0) divods | d9 < / IO oy 40 [0y (443)
Q

0

0
t
< Co [ 16Oz
0

Thus, now we prepare the inequality for the Gronwall lemma 4.3. We shall use
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the following substitutions:

y(t) = (€@

t

ot) = / o(£(9))dv,

0

t
anl?
0 = f <||?7(19)Hiz(m+Ha
L2(Q2
0

02 = maX(QCb, 1),
r(s) = 2C,.

+ D(n(@)) dd,
)

In this case we know that

exp (/T(s)ds) = exp (2C, (t = V),

)

and applying the Gronwall lemma 4.3 we obtain

t

I€ Ol )+ [ ole)as (444

0

t
on||*
<of (Hn( [
/ L2()

+C3/texp(20v(t_19)) (j <”’7 lzzo H

0 0

+ D(nw») @

D(??(S))) dS) di,

for all ¢t € [0, T, where
03 = QCUCQ.

We can simplify this estimate using the inequalities

[ (Hn M + |52

0

. /T(m<s>;@+g—z<s>

D(n(S))> ds

D(n(s ds,
e / (n >>)
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t

h/amcxz@—ﬂ»dﬁ = rwmp@cmt—ﬁ»mz=:;%<—r+apQOJ»

0

< — .
< 5 (exp (2C,T) — 1)

Using all these estimates we are in the same situation as in Section (4.1.1). We

have the same inequality as (4.33) except for the constants:

§ULz+jdme<i@j<nn 2 mwﬂw
+@ZOWH e Lm)Dwm»m
SOZ(np 2 mwﬂw
€= T (exp 20,7~ 1).

2C,
C =max {Cy; Cy}.

Now the same process as in Section (4.1.1) leads to estimate (4.40). However,
the constant replacing C, is of order O (exp (2C,T)), which attains very large

values for large T'. The result can be formulated in the following way:

Theorem 4.7. Let assumptions (A1), (A2), (A3) from Section 3.1.1,
assumptions (3.4)-(3.6) on data and (4.5) be satisfied. Moreover, let divo < 0 in
Q1. Then there ezists a constant C' > 0 of order O (exp (2C,T)) such that

le ()72 < CR*#*H VL€ [0,T], h € (0,R), (4.45)
where p=min(p+1,s).

4.2 Error estimation for space-time discretization

We already have the error estimate for the space discretization (3.16). Now we
shall estimate the error for the space-time discretization (3.21).

In this section we shall consider a system of triangulations

— M
{77177}}16(0,%)77'6(0,70) ) h > O? To > O’ 77177 - {E,m}m:()v
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satisfying the conditions (A1) - (A3) from Section 3.1.1.

We define the error as a function e = ® — ¢. The error depends, of course, on
h and 7, but we do not emphasize it by notation. Analogously as in Section 4.1
we shall need to use the L?—interpolation IIj, ,,.

Now we introduce the S;"I—interpolation defined as the space-time projection
operator m : C'([0,T]; L*(Q)) — Sy as follows: if ¢ € C'([0,T]; L*(Q)), then

T € Si'1,
(r) (x,t—) = Upme (2, t,—) for almost all z € Qand allm =1,..., M,
/(mp — @, ) dt = 0for all ¢ € Sﬁﬁfl and allm=1,..., M,

() (2, 0—) = Ty 05 (2, 0) .

The properties of this interpolation were proved in [12] and are also contained
in [9].

Now we shall express the error e = ® — ¢ in the form

e = £+, (4.46)
g = & — T,
n o= TY—-¢

where nis the Sp"I—interpolation error.
Using the fact that wo|;, = 7 (Ime) |1, m = 1,..., M, proved in [6], we

can express the term 7 in the following way:

M, =@ =), =0 +9%,  m=1...M
with 7 = (I = ) [1,, 1 = (7 Mm) = W mp) |1,
We assume that the weak solution ¢ of problem (3.1)-(3.3) satisfies the regularity

condition

¢ € C([0,T]; H* ()N H™ (0,T; H" (Q)), (4.47)

where s > 2 is and integer. Then ¢ satisfies relation (3.21).

Now we can formulate estimates of 7. Let us assume that p, s > 1 be integers
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and ¢ € H® () .Then by (4.6)-(4.7) for all K € Ty, m =1,..., M we have

112
75 2@y < CAR* 10 (0) ey (4.48)
_ 112
H’7m||Lz(Q) < R 1o () ey » (4.49)
2
/Hn(l ||L2 < Czlh%lﬂ[,?([m;[{u([())a (4.50)
2(p—1

where p = min (p + 1, s).
Further, if moreover ¢ > 1, then by [12] we have

/ I dt < O ol (4.52)

/ ‘n 2 {HI(K S 07—72n(q+1) |¢|§{q+1(]m;Hl(K)) ; (453)

where ' and Cs are positive constants.

4.2.1 Abstract error estimate

Our first task will be to estimate & with respect to the interpolation error n. Then
using the 7- estimates we obtain the result for the error e in terms of A and 7.
Assuming our discretization from Section 3.1.2; subtracting (3.22) from

discretization (3.21) and putting ¢ := (), we obtain following equality:

[ €0+ (& gi) + [ om0 (150

Im Im

= [ Wi+ (&) — [ 09,

m Im

Its easy to show that the following inequality holds:

/ (€. &) di+ (16}, ) + / b (6,) (4.55)

Im Im

< /(n & dt + ({n}p_y> 60 1) /\bhm (n,6)]-

m lrL
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For the form by, we can use relation (4.26), i.e.,

1 1
b €6) = 5 3 (10 oon + €I oxoron) = 5 [ €27 - vl
Q

KeThm

(4.56)

but not estimate (4.17) from Section 4.1. Here we have to proceed in the following
way. We have the estimate (4.20):

bhm (1,€)] < Z /n(U-Vﬁ)da:—l— Z /nfv-vdaz

Ke’l}“m K KE’Th,m K
+ Y /(v - n) EndsS — / (v - m) EndS
KeThm \gk K —NoQ

- / (v-n)€(n—n)dS

OK—\0Q

For the second and third term we can use estimates (4.21), (4.22) and (4.23) as
in Section 4.1. We have

> /nfv-vdx

KETh,mK
< G, Z ||77||L2(K) H€||L2(K)
Keﬁ,nz
2 1 2
< G Z H77HL2(K)+ZCU Z 16022 ) -
KeTym KeThm
S| [ wemends [ {wemen—@n(r-n)}ds
K€Thm \gr+ OK—\0Q
1 2 2
< 7 D2 (€12 oucrron + IENE ox-rom)
KeTy m
— 2
+ CCu D (Il 19l + A Il ) -
KeThm
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The first term Y. [i.n (v - V&) dz must be estimate in another way.

Z /n(v-Vf)daZ < G, Z <H77HL2(K)|5|H1(K)>
KeThm g KeTh,m
< Y (B Il e NE e
KeTh,m

_ 1
< GG Y Il + 00 2 NElae-

KeThm KeThm
Putting all these inequalities together we obtain an estimate

1
bhm (0, )] < 1 Z (Hin,aK+maQ+”[f]“i,az(—\aﬂ) (4.57)

KeThm

1
+5C0 ST el + 0 ).

K€Thm
where

win) = Co Y nllaue (4.58)

KEThm

_ 2
+C,CF Z hi 171172 )

KEThm

- 2
+C,Cyr Z (||77”L2(K) ‘7]|H1(K) +hi' H77HL2(K)) :
KeTh,m

We shall simplify the term f]m (&,&)dt + ({f}m_1 , ;,2_1) :

1 [d
[ €06, 6i) =5 [ G160 (s = i) - (059
Im I'm
Using the following identities
d 2 2
[ et = el - I
Im
2( ;;—1 - 77_1—175:1—1) = ( :r_L—l - 771—17 'r—’r—L—l) + ( :1—1 - T:L—l’g;;—l)

- Hgi—l—lHi?(Q) - ( 771—1’5;2—1)
+ H{f}m—lnizm) + ( ;2—1’ ;z—l) - Hg;z—IH;(Q)
- HQL%H;(Q) - H{g}m—lui%m - ”5;%1“?2(9) ’
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we get

/ s -
/(5 &) dt+ ({€h,, 1 &) = B (Hme;(Q) T H{f}mleim) B ||£m—1HiQ(Q)> :
I,

(4.60)
Now we shall estimate the term [, (1/,€)dt + ({n},,_;,&5_1) from relation
(4.54). We integrate it by parts and obtain

/(77/75) dt + <{77}m717 ;171) = /(77/75) dt + (7727175;71) - (77;%17 ;271)

Im Im

_ _/(n,g’) dt+ (M 6) = (M1 Emn)

I
+ ("7';17—1—1757—;—1> - (77;1—1757—7’—1—1) :

Since [; (n,&)dt =0, (n,,,&,) = 0 and (Mm—1:&m_1) = 0 as follows from the

definition of n and 7, we have the identity

[0 ats (t)mr 6h) = = (&) (4.61)

1 m

= (1 &nt) = (1 &)
= = (M1 A1) -

Applying the Young inequality to (4.61)we obtain two relations

1 )
/ (1,) dt 4 (s 60| < 5 ey + 7 il (462)

Um

IA

| (M1 651) | (4.63)

/ (o €y dt+ ({n} s €5 )

I'm

IA

1, _ )
5 e lzey + 7 16512y

where 9, 0; > 0.
Putting relations (4.60), (4.62), (4.57) and (4.26) into inequality (4.55), we
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get

1 — —
—GEH; e~ l6n1a)

+— Z / ||§||vaKmaQ+||H||vaK \a@)

KEThmI

//fQV vdzrdt + = C/ Z Hf”L?(K

KeTy,y

IN

+/@@»ﬁ+gwm4mmn+gmemmmy

Im

If we use estimate (4.43) for the term with dive, we obtain

1
L (Hg—HiQ o 18l ~ l6mla)
43 3 [ (160 o + TEIIZ )

KGTh my.

)
S Cv/HfHLQ(Q) dt+/ ( )dt+ 5 Hnm 1HL2(Q ZH{g}mflniﬂ(Q)
Im

Im

Now we set § := 2, multiply the above inequality by 2 and get

Hfﬁ”iz(g) - ||£;z—1Hi2( Z / HSHvé)Kﬂaﬂ + [I[€ ]HvaK \69) dt
KGT;
< 20, [ et +2 [0t + ]y (4.64)
Im

As next step we need to estimate the term [} Hinz(Q) dt. We modify the identity
(4.59):

1 [d
[€0d+ (€htin) = 5 [ Fleld+ (€ - 6anghn)

Im Im

1 _
- ()

+ ngfl”iz(m — (572717 :;271) :
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Using this identity, (4.56), (4.57) and (4.63), we have

1
3 (HSELH;(Q) + Hf:ﬁquz(Q ET: / ||§||vazmaﬂ + [I[€ ]||U0K \89)
hmp.,
Im Im

We multiply this inequality by 2 and apply the Young inequality to the terms
|(£;Lf17 5:171)‘ and |(77m 1 &m— 1)‘ We obtain

1
H&Z”ig +||§; 1HL2 T35 Z /(Hf”i,aKmaQJF||[§]||3,8K\ag) dt

KEThmj,

< 20, / €l e+ 2 [ @t + 5 s (4.65

Im

+5—1 il + 200 1651l e

For [ =0,...,q let us set
l
tm—l-‘,—l/q - tm—l + 5 (tm - tm—l) y

gm—l—&-l/q - f (tm—l—i-l/q) )

and denote by P?(0,1) and P?([,,) the spaces of polynomials of degree < g on
(0,1) and I, respectively.

We shall prove two lemmas:

Lemma 4.8. There ewist constants Ly, M, > 0 dependent on q only such that

Z I€m- 1+l/q||L2 @ = /”fHLz (4.66)

M
[N / €l (467

Proof. Let © € P9(0,1) be an arbitrary polynomial depending on ¢ € (0,1) of
degree < ¢ and let us defined the norms ||-||,, |||l by

q 1

oIz =3"(©u/a)?, [e]:= / 04y,

=0 0
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Since P?(0,1) is a finite dimensional space, these norms are equivalent, and,

hence, there exist constants L,, M, > 0 dependent on g only such that

/@2d19<2 (1/q))* < M, /1

Using the substitution theorem for ¥ = tii#, t € I,,, we obtain

m

m

L,
Zp m— 1+l/q Z _/pzdt7
I,

M
P (toy) < —2 / 2dt,

Tm
I m

for all p € P7(1,,). The substitution p(t) = & (x,t) for each = € Q yields the

inequalities

q

252 (17» tm—1+l/q) > 5—7: /52 (x,t)dt
Im

=0

M
5@;%1)§—ﬁ/f%%wdu z e Q.
Tm

Now the integration over ) with respect to x and the Fubini theorem immediately
lead to the desired inequalities (4.66) and (4.67). O

Lemma 4.9. There exist constants C,C* > 0 such that

I7n m

where w (n) is defined in (4.58), provided
0 <7 < C. (4.69)

Proof. For simplicity we consider only the case ¢ = 1. From the previous lemma
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and inequality (4.65)

= / et +5 3 | (10 omoon + NEIE o)

KeThmI
<2 ( )/Ilélle(Q a+2 [omar
1 _ _
5 [y 5—1 [y e

m

We can omit the non-negative term % ZKeTh,m flm (ngz,almaﬂ + ||[¢] H12;,8K—\BQ) dt
and if we set

_ L
1 — 8Mq7
then, under the condition
L
0< 1, <C* 1
Tm = 4C,

we get

L 9 5
ﬁ/”f”iz(g) dt < 2/ (n )dt+ Hnm 1HL2 +6_1H€m—1HiQ(K)’
Im

Im

which implies the desired statement (4.68). O

In what follows we shall derive the abstract error estimate in the L? (Q7) —norm.
We put estimate (4.68) into inequality (4.64) to obtain

l6allzamy = il +5 3 | (10 ooon + NEE o)

KeTh sm o

m

+2/w(ﬁ) b+ [0

Im

If we omit the expression 3 Y yccr, f; (€11 oicron + NEN o0 ) dt = 0 and
write ¢ instead of m, we get
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165711320y — (14 2CuCri) &5 (4.70)

i— 1HL2(Q)
< 2(CUC’Ti+1)/w(77) dt + (1 +2C,Cr;) an_lHiQ(m

I;

Summing inequality (4.70) over i = 1,..., m < M and taking into account that

7, <Tforallt=1,...,m and & =0, we have

- HLQ(Q)<OZT@H§ N +CZ / Mt + [Py [471)

m=0,...,M

where C' is a positive constant independent of h, 7, M.

We shall use the following lemma:

Lemma 4.10. (Discrete Gronwall lemma) Let x,,, ap, by, and c,,, where m =

1,2,..., be non-negative sequences and let the sequence a,, be mondecreasing.
Then, if

To+co < aop,

m—1

T+ Crn < am+Zbixi form > 1,
i=0

we have

m—1
T+ Cm < Gy, H (1+0b;) form>0,
i=0

9]

Applying the Discrete Gronwall lemma to (4.71) with terms

o = Cop=ap—= O,
Tm = Hg;z”;(sz)’
cn = 0,

?71 1||L2 9

ay = CZ / n)dt + |

bz' = CTz—&—l; 7::0,1,...,771—1,
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we obtain

Hé;lHi?( Z: (/ dt+ Hnm 1HL2 ) H (1+C7—m+1)-

Since 1+ C1;41 < exp (C7;41), we have

m—1
H (1+Cripq) <exp (CZE) = exp (Ct,) < exp (CT).

= =1

Hence for m = 1,... M we have the estimate

1€ HLZ(Q) = CZ (/ ) dt + ||n 1HL2 ) : (4.72)

For the final error estimation we use the inequalities

IN

H67’_1”122(9) - (H&?—%Hi?(n) + Hnr_nHi?(Q)) ) (4~73)

lelae < 2 (el + 722 - (4.74)

From (4.72) and (4.73) we obtain

ey < CAEZ</ Dt ol )+2nw (179
m=1,...,r, hE(O,E).

Using estimate (4.68) and putting it into inequality (4.74) we get

oo =3 / lelZae

m= llm

o T
< CZTm (/ )dt + Hﬂm 1HL2 + §m1||i2(g)> +2/||77||i2(9) dt.
0

m=1
m

Now we use (4.72) for the estimate of||¢,,

mflufﬁ(ﬂ) and the relations {; =0, 7, =
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0}, 00" — ¢°, we obtain the following estimate for the error e

M

||€||i2(QT) S CAEZTm /W(U)dt‘FHmZﬂHiz(m (476)
m=1

+ 3 / W+ s | | +20an . e OF).

The above results can be summarized in the following way.

Theorem 4.11. Under assumptions (3.4)-(3.6), (A1)-(A8) from Section 3.1.1
and (4.69) the abstract error estimates (4.75) and (4.76) hold in terms of the

interpolation error 1.

4.2.2 Error estimation in terms of h and 7

Theorem 4.12. Let assumptions of Theorem 4.11 and the reqularity assumption
(4.47) be satisfied. Then there exists a constant Cg > 0 independent of h and T
such that

lell2p) < Cr (B2 4+7%0), he (0,h), 7€ (0,7), (4.77)

where ;1 = min(p+1,s).

Proof. To complete the error analysis we need to estimate the terms [ I, W (n)dt

and Hn; 1=1,..., M. We know that

il 2oy

[t / Co 3 Il (4.7

I’"L Ke,ﬁb

sfact 3 (Il d

Im KE’Th,m

s [ S (s Wl + bt Il ) e

i KEThm

We use estimates (4.48)-(4.53) and take in account that n|;,, = (7@ — ¢) |5, =
M +n® so we have

> Collnlliagdt < €2 (CAE ey (479)

I Ke€Thm KeTh,m
m

+0713L(q+1) |90|§{q+1(1m; L2(K))) .
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Similarly we estimate the second term and get

€0t [ 3 i Il (4:80)
J KeTim
<Gty (Cih%_ﬂ@iz(zm;m(m)
K€Th,m

+CT73’L(q+1)h[_(2 |90|f'{q+1(lm;L2(K))> .

Further, we obtain the estimate for the third term from (4.78):

[ escu 3 (Il o) (1.81)

7 KEThm
< C,Cy Z (Cihw—l ‘90|12(IWL;H“(Q)) + CTfn(‘H'l) |S0|§_Iq+l(lm;Hl(K))> )
KeTh,m
[ 3 il di (4.82)
I KEﬁL,Tn
< CUCM Z <Cih§g_1 |(’D|§12(IW;H“(K)) + CTyi(q-i_l)hI_(l |90|§{‘I+1(Im;L2(K))> :
K€Th,m

Putting all these estimates (4.79)-(4.82) we have

20 2 2
/W(U)dt < G, Z <Cth1é |90|L2(IW;H#(K))+CTr%z(q+1) |90|Hq+1(17,L;L2(K))>

4 KETnm
2u—2 2 — 2
+ CuCj Z (Cﬁh; |90|L2<I7,L;HM(K)>+CT§1(q+l)hK2|90|Hq+1(1m;L2<K)>>
KeThm

_ 2
+ C,Cu Z (Cihmt 1 |@|12(IM;H”(K)) + CTrer(q+1) |(,0|Hq+1(1m;H1(K))>

KeThm
2u—1 2 — 2
+ GO ) (Cihf# |90|L2(1m;Hﬂ(K))+CTr2n(q+1)hK1|‘P|Hq+1(1m;L2<K))>'
KETnm

We have hxg < h for all K € Ty, 7oy < 7 for all m =1,..., M. Let us assume
that 7,,, < éh;{ for all K € Tj,n, with a constant C>0 independent of m, h,

and K. Then hi' < 27" and we have

/w(n)dt < C (hQ“_2 +7’2‘1) ., he (O,E) , 7€ (0,7),

m
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where C' > 0 is a constant depending on norms of the solution . Now we use
this estimate and (4.48), (4.49) in (4.76) and get

M
||6||i2(QT) < Cag Z Tm (C (R*72 +7%) + CRR™ | (tm)ﬁ{u(g)
m=1

n Z (C’ (h22 4 720) + C%R2 | (ti—l)ﬁn(ﬂ)))
i=1

2 2
250 11, @y T 20T el e (11200
< Cp (W *+7%), he(0,h),7€(0,7).

This finishes the proof of Theorem 4.12. O]
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5 Numerical experiments

Now we deal with 2D numerical experiments on the rectangular domain 2 =
(—0.5,0.5) x (—=0.5,1.5) for simulation of two-phase flow.

Like in Section 3.2.1 and 3.2.2 the Navier-Stokes equations are solved by
the finite element method and for the level set problem we use the space-time
discontinuous Galerkin method.

For the approximation of v and p the Taylor-Hood finite elements are used.

We work with spaces V', = H,, x Hyj,, where
Hh:{wheC(ﬁ);wh|KeP2(K) VKEE},

and P?(K) denotes the space of all polynomials on K of degree less or equal 2
and
Qh:{QhGC(ﬁ)SQh€P1<K) VKEE}7

where P! (K) denotes the space of all linear functions.

To treat the discontinuity of the pressure due to the presence of the surface
tension we apply the extended finite element method (XFEM).

The original space () is enlarged using a localization by an enrichment
function. We use the original basis functions of Q. TLet J = {1,--- ,n}
denote the index set, where n = dimQ), z;, j € J denote the mesh nodes,
¢ € Qn, i € J, denote the basis functions that satisfy ¢; (z;) = d;;. Let us de-
note by J' the subset of indices of all neighbours of the interface I'; (¢), J' =
{jeJ: suppg; NT;(t)#0}. We wuse the discontinuous enrichment

function Hr (z) given by the Heaviside function

0 ifzey onl,
1 ifxreQy onl,

HF (CII) =

and define the discontinuous basis functions q;-”f “ given by

¢’ = ¢ () (Hr (x) — Hy (x;)) .

The function q;”f “ is equal to zero for every node x; i € J, and also the support
of qffe is localized only to the elements containing the interface I'; (¢). Hence, we
replace the original space @y, by the extended space Q%/° = Q,@span {qffe RS j/} .

To obtain better results we can modify the XFEM method. We do not use
all basis function {qff 6} , but basis function with very small support are not

jeJ’
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used in the computation. These basis functions cause defects in the numerical
results, as we can see in Figure 5.2. We calculate the ration between the areas of
supports of q;?fe and ¢;. If the ratio is smaller than 2%, the basis function qffe is
omitted.

For the approximation of the level set function ¢ we use the space
St ={vn € L*(Q); Yu|lxk € PP VK € Thm } -

In computing the level set function a reinitialization is needed. Let us set V. s
the referential volume of (5. After each step of computing ¢ we calculate the
actual volume Vo, (¢) of the area (2y. In the case when |V, ; — Vo, (¢)| > €, with

a given constant € > 0, we recalculate the level set function as follows:
L. If |Vier — Vi, ()| > €, then compute V,.p — Vo, (@) = AV.
2. Compute | = fc 1dS, where C denotes the curve where ¢ = 0.
3. Set Ap = AV/I.
4. Seto = ¢ + Ap.

5. Then in the next steps use ¢ := .

5.1 Algorithm

Let us described the algorithm of our computation.

Let us prescribe the initial condition v° = v (t) |i=0, p° = p(t) |i=0, ¢° =
(t) li=o and p® u®) for k = 1,2, that denotes the pressure and viscosity for the
fluids 1 and 2. We set

(t,2) |imo = p + H (¢° () (p® — p1),

() t,
(t,2) [1=o = pO + H (¢° (2)) (u® — u) .

P
10 (x)

: P
L= U
Then for n =0,1,2,3,... we proceed in the following way:

1. On the interval [t,,, t,11] compute the level set function from (3.21) using the
STDGM wiht v = v™ and then set ¢"™' = ® (¢,,,). For initial condition

use the @™ from the previous time level.

2. Perform the reinitialization of ©"*! defined above by 1.-5.
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+1

3. Using the approximation ¢!, determine p"*1, and p"*! as follows

pn+1 (ac) — p(l) +H (90ﬂ+1 (:17)) (p( ) _ p(l))
(@) = pO 4 H (" (@) (P =),

where H. () denotes the Heaviside function

0 if >0,
H(p) = .
1 ifp<0.
4. Solve (3.34) using the time extrapolation 7" = v™ and obtain v" ™!, p"+i.

5. Set n =n+ 1 and go to step 1.

5.2 Results

Our numerical results are obtained for the case of a rising bubble in the
rectangular domain 2 = [—0.5,0.5] x [—0.5,1.5]. Let us set the following values
for the fluids 1 and 2:

kg
(DR n
pt’ = 1000— el 10Pa s,

k
p? = 100—%, pY = 1Pa s,
m

f o= (0,-0.98) S%

The fluid 2 in located in the circle of the diameter d = 0.5, the centre of the circle
lies 0.5 up from the bottom of the domain. The bottom and top of the domain
are denoted by I'p, the rest of the boundary is denoted by I's.

We perform the computation on a triangular mesh with uniform partition

with spatial step h = see Figure 5.1.

40’
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Figure 5.1: a) Mesh h = .- b) Initial position at ¢ = 0.

_Ievelse‘r
0.8

For our computation we use the surface tension equal to zero. We compare the
results using all XFEM basis functions {q;”f c }jEJ in computation with the results
obtained after the modification of XFEM basis functions and using only system
of functions {qffe}jef. In our computation we set the time step At = 0.002.

Till time ¢t = 2 we see no difference between both cases, see Figure 5.2.

Figure 5.2: a) Result at ¢ = 2 with all XFEM basis functions, b) result at ¢ = 2
after modification.

For t > 2 we can see different behaviour of the results, see Firuge 5.3. The

_Ievelse’r
0.8

0.4
0
0.4

-0.8
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problem by using all XFEM basis functions is with pressure that oscillates and

takes large values, see Figuer 5.4.

Figure 5.3: a) Result at ¢ = 3 with all XFEM basis functions, b) result at ¢t = 3
after modification.
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Figure 5.4: a) Pressure before the modification, b) pressure after the modification.
x-axis denotes the number of time levels, y-axis presents the value of the pressure.
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We can observe the deformation of the bubble that is
increasing with increasing time, see Figure 5.4. The interface between both fluids

is sharp, which demonstrates that the developed method is very accurate.
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Figure 5.5: The modified results at time a) t =4 b) t =5 ¢) t = 6.
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6 Conclusion

We worked out a model and method for the solution of two-phases flow. We
discretized the equations in space and time. The conforming finite element
method combined with backward difference formula is used for the Navier-Stokes
problem and the discontinuous Galerkin method of lines and space-time Galerkin
method are used for discretization of the level set equation.

We studied the error of discretization for the level set equation. The estimates
for space discretization were derived for incompressible flow and also for general
case. Surprisingly the results differ from each other only with a constant. Error of
space discretization is of the order O (h?*~!). However, the constant in the general
case is of order O (exp (2C,T)), which attains very large values for large T For
the space-time DGM we obtained an estimate of order O (h*~2 + 72¢) | under the
assumption that the time step is bounded by the spatial step: 7, < 5hK

In the last section the numerical results are presented. An algorithm of
computing is described. We use the modified XFEM method to obtain accurate
results. We do not take the surface tension into account in our calculation. It

will need a further investigation.

57



References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

BAKER, G. R. and D. W. MOORE. The rise and distortion of a two-
dimensional gas bubble in an inviscid liquid. Phys. Fluids A 1 (9). 1989,
ISBN 10.1063/1.857322.

M. BALAZSOVA, M. FEISTAUER, M. HADRAVA and A. KOSIK, On the
stability of the space-time discontinuous Galerkin method for the numerical
solution of nonstationary nonlinear convection-diffusion problems. Journal

of Numerical Mathematics, to appear.

E. BANSCH, Finite element discretization of the Navier-Stokes equations
with a free capillary surface. Numerische Mathematik. 2001, vol. 88, issue 2,
s. 203-235. DOI: 10.1007/PL00005443.

J. W. BARRETT, H. GARCKE and R. NURNBERG. Eliminating spurious
velocities with a stable approximation of viscous incompressible two-phase
Stokes flow. Computer Methods in Applied Mechanics and Engineering.
2013, 267: 323-359. DOI: 10.1007 /bfb0086916.

R. CAIDEN, R. P. FEDKIW and C. ANDERSON. A Numerical Method for
Two-Phase Flow Consisting of Separate Compressible and Incompressible
Regions. Journal of Computational Physics. 2001, 166(1): 1-27. DOL:
10.1006/jcph.2000.6624.

P. G. CIARLET, The finite Element Method for elliptic Problems. 1st Ed.
Amsterdam: North -Holland Publ. Comp., 1978, 530 s. ISBN 04-448-5028-7.

S. DELLACHERIE, Numerical resolution of a potential diphasic low Mach
number system. Journal of Computational Physics. 2007, vol. 223, issue 1,
s. 151-187. DOT: 10.1016/j.jcp.2006.09.009.

U. DIERKES, Minimal surfaces. New York: Springer-Verlag, ¢1992, 2 v.
ISBN 038753170X2.

V. DOLEJSI and M. FEISTAUER, Discontinuous Galerkin Method
- Analysis and Applications to Compressible Flow. Springer, to be published
in 2015.

M. FEISTAUER, V. KUCERA, K. NAJZAR and J. PROKOPOVA.

Analysis of space—time discontinuous Galerkin method for nonlinear

58



convection—diffusion problems. Numerische Mathematik. 2010, 117(2): 251-
288. DOI: 10.1007/s00211-010-0348-x.

[11] M. FEISTAUER, Mathematicel and computational methods for
compressible low. 2014. vyd. Oxford: Clarendon Press, 2003, 535 s.
ISBN 01-985-0588-4.

[12] M. FEISTAUER, Mathematical methods in fluid dynamics. New York:
Longman, 1993, 657 s. ISBN 05-822-0988-9.

[13] S. GALLOT and D. HULIN, Riemannian geometry. 3rd ed. Berlin: Springer,
2004. ISBN 978-364-2188-558.

[14] H.-P. GITTEL, M. GUNTHER, G. STROHMER and J. VESELY. Remarks
on a nonlinear transport problem. Journal of Differential Equations. 2014,
256(3): 125-132. DOL: 10.1007/978-1-4613-4425-4_10.

[15] J. GLIMM, D. MARCHESIN and O. MCBRYAN. A numerical method for
two phase flow with an unstable interface. Journal of Computational Physics.
1981, 39(1): 179-200. DOI: 10.1016,/0021-9991(81)90144-3.

[16] C. W. HIRT and B.D NICHOLS. Volume of fluid (VOF) method for the
dynamics of free boundaries. Journal of Computational Physics. 1981, 39(1):
201-225. DOL: 10.1016/0021-9991(81)90145-5.

[17] S. HYSING, et al. Quantitative benchmark computations of two-dimensional
bubble dynamics. International Journal for Numerical Methods in Fluids.
2009, 60(11): 1259-1288. DOI: 10.1002/f1d.1934.

[18] D. KUZMIN, On the design of general-purpose flux limiters for finite element
schemes. 1. Scalar convection. Journal of Computational Physics. 2006, vol.
219, issue 2, s. 513-531. DOL: 10.1016/j.jcp.2006.03.034.

[19] S. J. OSTER and R. P. FEDKIW. Level set methods: An overview and some
recent results. J. Comput. Phys. 2001, vol.169, 463-502.

|20] Y. PENEL, Existence of global solutions to the 1D abstract bubble vibration
model, Differential Integral Equations. 2013, vol. 26 (1-2), s. 59-80.

[21] Y. PENEL, S. DELLACHERIE and O. LAFITTE. Theoretical Study of
an Abstract Bubble Vibration Model. Zeitschrift fiir Analysis und ihre
Anwendungen. 2013, vol. 32, issue 1, s. 19-36. DOI: 10.4171 /zaa/1472.

59



[22]

23]

[24]

[25]

H. B. STEWART and B. WENDROFF. Two-phase flow: Models and
methods. Journal of Computational Physics. 1984, 56(3): 363-409. DOI:
10.1016,/0021-9991(84)90103-7.

P. SVACEK, Numerical simulation of free-surface flows with
surface  tension, Programs and  Algorithms  of  Numerical
Matematics 17. Institute of Mathematics AS CR, Prague, 2015. pp.
207-214

P. SVACEK, On approximation of non-Newtonian fluid flow by the finite
element method. Journal of Computational and Applied Mathematics. 2008,
vol. 218, issue 1, s. 167-174. DOI: 10.1016/j.cam.2007.04.040.

S. O. UNVERDI and G. TRYGGVASON. A front-tracking method
for viscous, incompressible, multi-fluid flows. Comp. Phys. 1992, ISBN
10.1016,/0021-9991(92)90294-9.

60



