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1. Recommendation for usage 

Anyone who uses any output of this work is strongly suggested to provide feedback 

how it was useful. You can use the email fyzmat@gmail.com for this purpose. 

The rationale behind this is that the author will get more feedback of how correct 

and meaningful this work is, and it prevents you to spend your time by studying 

something that may not be very serious for you. Although following this suggestion 

could become uncomfortable, I believe that it will help you to use your energy efficiently 

on things that matter to you. 

 

Sometimes life is not really easy. Thank gods for that.  
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2. Introduction 

Programmers spend significant amount of their time by locating and fixing bugs in 

their programs. Many professionals believe that finding the root cause of an issue is in 

most cases much more difficult and time-consuming than the actual fix of the problem1. 

Therefore, a large amount of work has been dedicated to design tools that would help 

programmers to identify the root cause of a faulty behavior. In order to provide an idea 

of what has been researched so far, we enlist some references to proposed or researched 

debugging tools in the section 5. 

Often, the usefulness of the proposed tools is evaluated only by a discussion or by a 

few case studies. In our opinion, having just this not a very strong evaluation makes one 

uncertain whether the proposal can bring significant amount of benefit and whether it is 

worth the implementation efforts. Furthermore, without the feedback of usefulness for 

these tools, the research effort invested into them can address issues that are not very 

relevant or practical in real-world situations. 

From the industrial point of view, there already exist commercial debugging tools 

with very advanced debugging possibilities. For example, the company Lauterbach offers 

a solution of hardware assisted debugging that provides highly advanced features such 

as: reverse execution, symbol-based tracing and debugging on both operating system and 

user space application levels, support for multiple operating system and virtualization, 

features for timing and performance analysis and integrated tools for processing and 

visualizing the measured data. The management of a company that develops low-level 

software may be confronted with the question whether buying such an advanced 

debugging product will be worth the purchase, or how many licences should be bought. 

 This thesis is aimed to address the questions about usefulness of debugging tools by 

its first goal of designing a methodology that evaluates usefulness of debugging tools. We 

tried that methodology out on debugging tools that are available to programmers of 

operating systems. 

As we had an easy opportunity to collect much more data about debugging than just 

for purposes of tool usefulness evaluation, we decided that the second goal of this thesis 

will be an exploration of the process how people debug computer programs. For 

example, we focused on mapping the relationship between debugging time, the 

complexity of the debugging scenario, what was the root cause of bug, or whether a 

debugging tool had been used. The detailed description of what data were monitored 

and explored is in the section 3.3.3. 

2.1. Contribution 

In this work, we provide the following list of contributions: 

 In 3.1 we discuss some thoughts on usefulness evaluation for generic tools. Anybody 

who needs to interpret results of a similar evaluation (or even who needs to design 

one) may find value in those thoughts. 

 In section 3 we describe our methodology for evaluating usefulness of debugging 

tools in low-level programming environment. Its uniqueness lies in the fact that the 

data collection was done in a group of skilled programmers for hundred hours of 

programming work per each programmer. We are not aware of any published study 

that would monitor how people debug for so long while maintaining the details of 

collected data so large. Further pros and cons of our methods are mentioned in 

                                           
1 Interestingly, we were not able to locate any published evidence that would support the 

claim. 
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section 5. We believe that our methodology can server other researchers at least as 

an inspiration. 

 We performed a usefulness evaluation of tools that were available to students of an 

operating system course at MFF UK 2 . The tools consisted of all the commonly 

available debugging tools and of some unusual debugging tools. Furthermore, we 

focused on comparing the usefulness of a command-line debugger (GDB) with 

usefulness of a GUI debugger (based on the Eclipse CDT plugin). After reviewing 

the collected data we reached to a rather surprising conclusion that both kinds of 

debuggers gave no advantage of faster debugging than the other alternative. See 

4.1.2 for more details. 

 During this exploratory study we collected multiple kinds of data. Therefore, in 

section 4.2 we provide an analysis that covers a spectrum of debugging aspects. 

 We focused some of our analysis to uncover areas that would be worth of further 

research. The results are in the section 4.3. 

 All the collected data are stored in the attached CD in the form of exported SQL 

database, and the attachment 3 describes the structure of the data. We did so, 

because some researchers could be interested in those data.  

2.2. How to use this work 

If you are a programmer and you intend to just have a quick overview of this thesis, 

we would suggest you to go right into the result section 4 or check the table of contents 

for aspects of debugging that interests you. If you are in a position of software company 

management you may find value in the thoughts on how to evaluate usefulness of tools 

in general (section 3.1), and in the results sections 4.1 and 4.2. Then, when any result 

catches your attention and you would like to make serious decisions based on that 

result, we strongly recommend you to read the methods section 3, understand the 

specifics of the environment where the data were collected from, and become aware of 

weak points of our methods. That should help you to interpret our results most 

realistically and adapt our conclusions to your specifics. 

If you are a researcher you may find value in the whole work. Specifically, section 4.3 

of the results is likely to get your interest, the methods 3 section can serve as an 

inspiration for your research, and the 5 section provides a basic set of references to the 

related research. 

  

                                           
2 Charles University in Prague, Faculty of Mathematics and Physics 
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3. Methods 

We start describing ideas behind our methodology from a rather generic discussion 

about usefulness evaluation, and then we describe how we applied the general 

approaches for the specific environment of our study. 

3.1. How much useful is a screw-driver or a hammer for people? 

...thoughts on evaluating usefulness of generic tools 

Although it may sound simple, we would like to pinpoint how the usefulness of tools 

can be perceived by people. This can help us to be able to interpret better how the 

results of any usefulness evaluation reflect the reality. The first distinction is whether we 

perceive the usefulness as absolute or relative: 

 

We define absolute utility of a tool as the benefit of using the tool minus costs of 

inventing, obtaining and maintenance of the tool. 

 

We define relative utility of a tool against some other tool (or set of tools) by 

comparision whether the tool is better or worse than some other alternative, or by 

expression how much is the tool better or worse. 

 

The strong point of the absolute measure of utility is that it fits very well for the 

purposes of cost/benefit analysis, which is a popular method for making rational 

decisions. Sometimes, it may be difficult to estimate the benefits of using the tool. For 

example, the method that was used in (1) can be to some help here too. The method 

aims to evaluate what are the consequences of living in low-trust environment in terms 

of money. Basically, the evaluator keeps asking evidence questions (e.g. How often does 

it happen? or Who does that job?) and impact questions (e.g. What are the 

consequences of not having that possibility?) until he reaches the costs or benefits in 

terms of money.  

 When the estimation of absolute measure of utility is not possible or not reasonable 

to be done, we may become satisfied with the relative measure. The main benefit of this 

measure is that it can be often estimated just by simple observations and intuition or, 

more scientifically, by using statistical tests. When interpreting such relative 

comparision of usefulness we should be aware how well does the alternative match with 

our situation, or whether the comparision includes both the costs and benefits of the 

tools.  

Regardless of whether the utility is measured absolutely or relatively we have 

identified the following factors that, in our belief, have influence on the usefulness of 

tools: 

 The tool is actually being used. The justification behind this factor lies in the 

common-sense assumption that the less often a tool is used the less benefit it 

generates. 

 The tool helps when it is being used. 

 The tool is comfortable, improves the work satisfaction, or it makes people less tired. 

Clearly, these factors are to a large degree independent. We can have a tool for very 

generic purposes (such as a kitchen knife) and a tool for rather special purposes (such as 

a bread slicing machine), which may be used much less often than the generic tool, but 

in some specialized scenarios it helps much more. Therefore, we may consider both of 

these tools to be useful regardless of what factor they fulfil better.  
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One could be tempted to construct a mathematically formal utility function out of 

these largely independent variables that would be used to compare the tools according to 

their usefulness. We abandoned that approach as in our area of interest we found no 

strong benefit of having the tools sorted by their usefulness. For other areas such as 

management-like or political decisions (e.g. Which tool to buy?) we suggest to use the 

absolute measure of utility if possible, and if not, use the multi-criteria analysis (2) to 

the identified factors of usefulness.  

In the following text, we will transfer the ideas of generic tools evaluation into the 

specific area of debugging tools. For each generic factor of usefulness, we determine a set 

of values that tools can have and criteria for assigning these values. The values and 

criteria are described in the table 1, table 2 and table 3. We believe that this way of 

presenting results is better suited for informative purposes of this thesis rather than 

presenting raw numbers. 

 

Tool usage frequency Criteria 

Often The tool was used for 10% or more of investigated issues 
Sometimes The tool was used for 2% or more up to 10% of investigated issues 
Rarely The tool was used for less than 2% of investigated issues  

Table 1: Informative values of how often is a debugging tool used 

 

Tool helpfulness Criteria 

Very helpful More than 60% of tool usages were perceived as very helpful 

Questionably helpful 
More than 60% of tool usages were perceived that the tool did not help 
at all 

Somewhat helpful The remaining case 

Table 2: Informative values of how was the usefulness of a debugging tool perceived by 

participants 

The helpfulness of the tool usage was perceived and recorded directly by 

participants. They were choosing between the values Helped a lot, Helped a little and 

Did not help. The more exact meaning of these values is located in the section 3.3.3.7. 

 

Tool specialization Criteria 

Specialized 
There is a debugging intent that is being performed in at least 80% of 
cases by the tool 

Generic The remaining case 

Table 3: Informative values of how specialized was a debugging tool 

We introduced the factor of specialization in the table 3 to avoid evaluating a tool 

with specialized usages as less useful than it is in reality. Note that the result of the 

proposed criteria is highly dependent on the way of grouping the debugging tools. For 

example, one could group all the kinds of debuggers together, or one could decide that 

there will be two groups of debuggers (GUI debuggers and command-line debuggers). In 

the first case there will be much higher chance that debuggers will be evaluated as a 

specialized tool for, let's say, finding out the value of variable than in the latter case. 

Therefore, our way of grouping should be reviewed to check if it still fits the purpose the 

evaluation will be used for. In this exploratory study we cannot know what specific 

purpose this usefulness evaluation is aimed for, so we chose one decent alternative. 

The last identified factor that is related to the impact on work-satisfaction, tool 

comfort and (mental) energy required to use the tool is not examined in this work. We 
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believe that these aspects cannot be sufficiently studied just by self-observations of 

participants and that some assistance of researchers would be needed during 

experiments. Thus, we think that monitoring these aspects would require us to commit 

more resources to this work than is reasonable in our situation. 

3.2. Environment of data collection 

The participants of this study are students of a course of operating systems at MFF 

UK. During the course the students are supposed to get more familiar with concepts of 

operating systems and improve their low-level programming skills. Therefore, this study 

is closely related to the area of low-level programming. Many students perceive the 

course as one of the most difficult programming courses of the faculty. That is because 

of demanding amount of work and environment where debugging is unusually hard. The 

typical amount of time that each student performs programming tasks moves between 

120 and 350 hours3. The students work usually in teams of three (or much less often in 

two or four) members. In order to illustrate to the size of the project we provide the 

picture 1, which summarizes the lines of code that the resulting software has had so far 

with 14686 lines of code as the median value. 

 

Picture 1: Size of the whole project for various teams in LOC 

The students must do four assignments in order to pass the course successfully. After 

implementing all the assignments, the students end up with a minimalistic operating 

                                           
3 We cannot explain why the variance is so high and we noticed that even a technically 

highly skilled student reported 351 hours of implementation efforts, one possible explanation 
is that they aimed for higher quality. 
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system that satisfies a simplified version of POSIX API in the areas of threading, 

processes, memory allocation, and synchronization. The implemented code is executed on 

a virtual machine called MSIM. MSIM emulates a simple computer that is based on a 

MIPS R4000 processor. For a detailed description of the programming assignment and 

the course see the attachment 1. 

The high difficulty and benefit in understanding operating systems of this course is 

well-known among students and they have the option to avoid this course. Therefore, 

most attending students are highly motivated to master the topic. Additionally, weak 

students in programming attend this course only rarely and some attending students 

have even a few years of professional programming experience. Thus, we believe that the 

students/programmers attending to this course represent real-world low-level 

programmers as much as is possible in academic environment. We consider this 

important, because cooperation with these students makes our results much more 

applicable to the realistic situations where skilled programmers are employed. 

 

 

Picture 2: Time schedule of the whole project and events related to this study 

October,
1-4th week

4-7th week

Preparations, 
introduction into 
assignments, 
training

Introduction into the study,
Training for the participants

Work on 
assignment 1

8-11th week
Work on 
assignment 2

Start of data collection

12-16th week
Work on 
assignment 3

17-21th week
Work on 
assignment 4

End of data collection

Partial data summary and
interviews with some
participants
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3.3. Data collection 

3.3.1. Periods of data collection 

In order to collect as much data as our resources allowed, we performed the study 

during the winter school terms of the years 2011, 2012 and 2013. 

Picture 2 shows the schedule of a single term with important events and deadlines 

marked. During the years 2011 and 2012 the participants recorded complex information 

about their debugging activities, because we aimed to explore many kinds of data. The 

detailed description of the recorded data is located in the section 3.3.3. In the year 2013 

the data collection was restricted just to obtain information about mapping of what 

debugging intents programmers have and what debugging tools they use to perform 

those intents. The table 4 contains how many students participated in the study. The 

participation was voluntary and the participated students were given a small bonus 

during evaluation of their assignments. 

 

Year of the study Count of participants Focus of collection 

2011 9 Generic data 
2012 6 Generic data 
2013 5 Debugging intentions 

Table 4: Count of participants and focus of this study during years 

3.3.2. How the data were collected 

 

Picture 3: Specification of what process this study aims to explore4 

This study aims to explore the process of how programmers debug computer 

programs. To define this process more exactly we consider debugging as actions that are 

performed when the programming code does not behave as the programmer expects and 

ends by explaining the unexpected behavior or by abandoning the efforts. Some people 

                                           
4 We reused and adapted the image of programmer by Hadi Davodpour from the Noun 

Project, which is published under the Creative Commons 3.0 license. 
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may not see an exact fit with their perception of debugging and our definition, because 

our definition, for example, allows that there is no actual bug in the software and the 

programmer can still debug it. We choose not to refine the terminology further as we 

found no strong reason in doing so for the context of this work. 

To give some better feeling of what we consider debugging, we give three examples: 

 The programmer executed a piece of code with a belief that it should behave in 

some way and it actually behaves in another way. We consider this activity to be 

debugging. 

 Somebody else reports to the programmer that the program behaves in a faulty 

way and the programmer starts to reason about it. We consider this activity to 

be debugging. 

 The programmer is searching for bugs in the code without any attempt to 

execute the code. We do not consider this activity to be debugging. 

In this study the participants recorded information about every debugging activity 

they encountered as they were working on their regular assignments. The records were 

filled into a prepared web interface every time the participants finished investigation of 

any unexpected behavior of their code. 

3.3.3. Description of collected data 

In the following text we explain what kind of data was collected for each debugging 

activity. 

3.3.3.1. Project development time 

This is a single time value that means how much effort each participant did on 

fulfilling the assignments. It includes all the development activities such as 

implementation, debugging, communication, handling emails or writing documentation. 

We recommended to participants to update this value every day when something was 

done. 

3.3.3.2. Debugging time 

When we use the term debugging time in this work we mean the time of 

investigation of an unexpected behavior. Maintaining this information for the whole 

process of a long investigation in precise manner could be too demanding for 

participants, so they were instructed to maintain high precision for short investigations 

and they were allowed to have 10 minutes error for investigation longer than 2 hours. In 

this uncontrolled experiment we also expected the participants to do rounding of these 

time values and we were not mentioning anything about how they are supposed to 

round. For example, we believed that participants will very likely round 28 minutes to 

30 minutes. The main motivation behind keeping the methodology in this way was that 

in our opinion it was not reasonable to tie up the participants by many strict rules for 

these uncontrolled observations. We think that they would be more likely to stop their 

contribution to this study or the rules hard for maintenance could have a very strong 

effect on the experiment itself. What we did in order to increase the precision was 

encouraging the participants to note the time when they started to investigate some 

unexpected behavior. 

The histogram in the picture 4 suggests that the debugging time values were indeed 

rounded very often. 
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Picture 4: How often was the debugging time rounded 

3.3.3.3. Complexity of the debugging scenario 

We wanted to obtain information of how difficult a particular debugging scenario is. 

Therefore, we instructed the participants to record their opinion of the difficulty of the 

debugged issue. To define the object of such observations less vaguely we expressed the 

complexity as follows: 

We consider a complexity of the debugging scenario as the amount of thinking that 

is needed to understand the situation and for the analysis of the problem. It does not 

necessarily have to reflect the debugging time of the issue. The table 5 lists the values 

and provides examples of debugging scenarios with different complexities. 

 

Complexity Description and an example 

Trivial 
Requires only little or less thinking. Checking code that implements a straight-
forward idea. No large pointer manipulations. No complex conditions. No 
recursion. Fixing a wrong return value in a function that loads configuration. 

Easy Requires some thinking. Insertion to a link list. 

Medium 
Making charts or notes starts to be useful. Insertion to an AVL tree. Searching 
for a bug in the operating system page tables code. 

Hard 
Requires an analysis or the programmer thinks a lot. Searching for a race 
condition that cannot be reproduced easily. 

Table 5: Description of complexity of debugging scenarios 
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This distinction of complexities was introduced and explained to the participants. It 

should have provided them the boundaries that would help them decide which 

complexity to choose. 

During the course of the study we started to have concerns whether the recorded 

data correspond correctly to its supposed meaning. The evaluated data in 4.2.7 suggest 

that the recorded complexity almost linearly depend on the debugging time. One 

explanation for this is that the participants tended to perceive the complexity of the 

scenario according to the time needed for investigation. In such a case we would measure 

something else than we originally wanted. As we do not have evidence to justify this 

concern, we must treat the meaning of these recorded data more generally as a not very 

specifically defined difficulty of a debugging scenario. In order to capture the data with 

the intended meaning we would need to modify the methodology of the data collection. 

Likely, the experiment would have to be more controlled.  

Also note that for the reasons explained by the previous paragraph we use terms 

complexity and difficulty interchangeably in this work. 

3.3.3.4. Feelings from the debugging activity 

During designing of this study we decided to collect data about how the amount of 

job-related hardship corresponds to work satisfaction of low-level programmers. To 

increase objectivity the participants were instructed to reflect their feelings in the 

following situation: 

Suppose that today is some another day in the future. You arrive to your work, do 

some programming for an hour or two, exchange a few interesting news with your 

colleagues and then you encounter the similar problem just like what you have just 

solved. How would you feel? 

The reasoning behind making the participants imagine the described situation is that 

for our observations we wanted to minimize the impact of the psychological peak-end 

rule (3)5 that could be combined with the pleasure gained by discovering the explanation 

of the unexpected behavior. We thought that this effect would be only short-lasting (no 

more than a week in duration), so we aimed to set the time of reflection into distinct 

future in order to minimize the likely positive effect of task achievement. Therefore, we 

promised ourselves that we would achieve a better level of objectivity.  

During final interviews with participants we found that they often did not manage to 

reflect their feelings in the intended way. They explained what they recorded by using 

sentences like I reported the positive feeling, because I have just finished a difficult task 

successfully. Therefore, we believe that the effect of goal achievement was significantly 

influential regardless of our effort to minimize it and we must treat the collected data as 

it would have a more generic and vague meaning of work-satisfaction. Similarly as for 

the complexity of a debugging scenario, we believe that collecting this data with a more 

refined meaning would require changes in methodology. 

3.3.3.5. Way of detection 

As we were preparing this study, we found no published evidence about the ways 

how programmers become aware of bugs and, more importantly, how frequent these bug 

                                           
5 The so called peak-end rule is a psychological pattern of how people tend to memorize 

intensive experience (both pleasant and unpleasant). The rule claims that the most relevant 
for later judgement are the moments of the peak intensity and the end of the experience 
rather than the average of all the moments. For our case that means that the end of the 
experience (i.e. finishing a difficult task) is very likely to have strong influence on work-
satisfaction of the programmers, because the success could eliminate the effect of most 
unpleasant experience. 
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detections happen. Therefore, we included collection of these data into the study as we 

believed that it may become relevant for some management-like decisions in companies 

such as designing software quality-assurance processes. 

The complete list of identified ways of detection is in the attachment 5. The 

participants were supposed to choose one way of detection from this list for every record 

of investigation. Furthermore, the participants recorded additional information for each 

record, which captured further characteristics of the detection (such as The bug was 

detected during debugging of another bug). The web interface contained predefined 

checkboxes that allowed the participant to record the additional information. The list of 

these options is in the attachment 5 too. 

3.3.3.6. Root cause 

We collected the data about root causes of bugs in order to map how the individual 

root causes are related with debugging time and how frequent they are. (4) mentions 

that the selection and categorization of root causes is typically done with regards to the 

purpose of the study rather than by choosing an existing well-established categorization. 

As the purposes of our study are exploratory, we just desired the categorization to be 

comprehensive well enough. We got inspired from (5) and adapted it to fit better the 

environment of low-level programming (e.g. we added Violation of ABI rules root cause). 

The root causes are grouped into three main categories Wrong logic or design, Wrong 

implementation and Other, and we created subcategories for each of these categories in 

order to make orientation in the root causes faster for the participants. 

Participants were instructed to distinguish between the two main categories 

according to the following rules. If the issue was caused by incorrect thinking they 

should select the root cause from the Wrong logic or design category. If the issue was 

correctly designed or thought, but incorrectly implemented they should choose from the 

category Wrong implementation. The main category Other contains root causes that 

hardly fit these rules such as Not a bug root cause. 

The list of identified root causes is identified in the attachment 6. 

3.3.3.7. Used methods and tools 

The participants were supposed to record what methods (i.e. debugging approaches) 

and debugging tools they used to investigate the unexpected behavior. For each such 

usage they selected what amount of usefulness the method or tool brought. The table 6 

lists the criteria for selecting the usefulness. We specified this table in order to maintain 

a reasonable level of objectivity of these data and to provide guidance to participants 

how to choose the amount of usefulness. The participants were asked to use their own 

judgement in blurred cases. 

  

Usefulness Criteria for selecting 

Did not help 
The usage brought no useful information for the investigation or it lead to an 
inconclusive dead end. 

Helped a little 
Anything between the other two values. The usage brought some minor 
information that was to some use. For example, where not to search for the 
error. 

Helped a lot 
The usage helped significantly with the investigation. For example, it led 
directly to explaining the unexpected behavior, or the programmer would 
hardly investigate the problem without the tool. 

Table 6: Values of usefulness for a particular tool usage and criteria for selection 
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The full list of identified methods and debugging tools is located in the 

attachment 7. 

3.3.4. The last year of the study 

In 2013 we changed the methodology significantly to obtain a different kind of data 

for tool usefulness evaluation. We wanted to map how frequent the debugging intents of 

the programmers are (such as I want to know the value of some variable) and how 

useful the available debugging tools are to fulfil those intents. 

What changed was the moment when the data were supposed to be recorded. We 

instructed the participant to record the intent for using a debugging tool after each its 

usage. They participants recorded the debugging intent they were trying to perform, and 

they selected the debugging tools that were used to achieve the intent with usefulness 

for that particular usage. This is illustrated on picture 5, which was shown to the 

participants too. 

 

Picture 5: Specification of what process this study aimed to explore in 2013 

Also note that in this year we stopped collecting the data described by 3.3.3, because 

we wanted to focus on obtaining just the data about the debugging intents. In 3.6.4 we 

explain why collecting just one thing matters. 

3.4. Training of the participants 

The participants received training to help them with the assignments and to instruct 

them how to fill the records for the study. Furthermore, for both purposes they were 

introduced how to use the GNU Debugger (GDB), MSIM Graphical debugger (i.e. 

eclipse-based extension of GDB for MSIM) and some binutils (e.g. objdump). 

We asked the participants to provide us feedback of the methodology of the study 

and to inform us if any way of detection, root cause, method or debugging tool was 

missing in our study. We can recommend this practice, because during the course of 

study we received several suggestions and warnings about the validity of the obtained 

observations. Some suggestions were incorporated in the study early enough (e.g. a 

missing tool or debugging intent) and the warnings about flaws in our methods that we 

were not successful to cope with are mentioned here in the text (e.g. in 3.6.4 how the 
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large amount of debugging reports caused many interruptions of regular programming 

work). 

3.5. Web interface for data collection 

In the following we will go through the most relevant elements of our web interface 

that was used to record data. We will mention our motivation behind the design of some 

elements and the experience with the design. 

 

 

Picture 6: The main page of the web interface that was used for data collection 

 

Picture 7: The tab for reporting information related to the way of detection of the 

unexpected behavior 
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Picture 8: The tab for reporting information related to the root cause of the unexpected 

behavior 

  

Picture 9: The tab for reporting information related to the used methods for investigation 

of the unexpected behavior 
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Picture 10: The tab for reporting information related to the used tools for investigation of 

the unexpected behavior 

  

Picture 11: The tab for filling optional information about the report 
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Picture 12: The main tab of the study in the last year of the study 

 

Picture 13: One of the graphs in the web interface; this one shows how much debugging 

resulted in abandoning the investigation 

We refer to the numbered red frames in pictures on pages 14-17: 

 Frame 1 - the main menu of the web interface. We made significant effort (60 hours 

of work) to display summarizing statistics during the course of study in an attractive 

way, which was supposed to make the study more attractive in overall. For example, 

see picture 13 for the having an idea of what level of the look-and-feel was achieved. 

After the first year of the study we concluded that the efforts required to maintain 

and develop further nice-looking summaries of data are unreasonable for the study of 

our scale. The only exception was creating a view that enabled each participant to 

see all his reported data, which helped a lot with communication whenever there was 

an unusual debugging report. 

 Frame 2 - tabs of the debugging report form. During the first two years of the study 

we collected several various kinds of data (see 3.3.3). Filling all the data for each 

debugging record could become too demanding for participants, so we were focused 
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to make the user interface as much comfortable as it was reasonable to do. The 

different kinds of data were placed on different tabs and the participants could 

navigate quickly through these tabs via clicking on the tab title or via the previous 

and next buttons. 

 Frame 3 - generic information about debugging report. The participants filled 

information that was described in 3.3.3.1, 3.3.3.2, 3.3.3.3 and 3.3.3.4. For making 

sure that the instruction will not be forgotten we created floating help with the 

instructions about meaning of the fields and how they are supposed to be filled.  

 Frame 4 - space for feedback and suggestions. This was mainly supposed to be used 

to prevent missing items in categorization of root causes, ways of detection and so 

on... During the course of the study we received about 10 improving suggestions and 

we reviewed 29 out of 662 debugging records. The interface allowed to submit an 

incomplete record only if this field had some content. 

 Frame 5 - the submit button. The interface prevented the participants to submit 

invalid data and in such a case it printed verbose and usable information about what 

part of the form are filled wrongly. This was designed in order to save participants 

as much time as possible with troubleshooting what is wrong. In the correct case the 

web interface printed a message that the record has been submitted successfully. 

 Frame 6 - the combobox for selection of the way how the unexpected behavior was 

detected (as described in 3.3.3.5). The combobox itself contains just a category and 

participants should choose the specific way of detection by choosing the appropriate 

radio button below. The radio buttons changed according to the selected category. 

This was designed to allow the participants quickly browse through all the options. 

 Frame 8 - comboboxes for selection of the way what is the root cause of the 

unexpected behavior (as described in 3.3.3.6). As our hierarchy of root causes is 

large we used two comboboxes. The first one for the top-level category (Wrong 

implementation, Wrong logic or design, Other) and the second for subcategories. 

This specific way of user interface had its role. Some root causes are very similar (for 

example Wrong implementation → Wrong program flow → Wrong order of 

commands and Wrong logic or design → Data structures and algorithms → 

Sequence of actions designed in a wrong way) and we wanted participants to decide 

to which top-level category the root cause belongs before selection of the specific root 

cause. Thus, we prevented the participants to select some similar root cause from a 

wrong category. 

 Frames 7 and 9 - flags related to the way how the unexpected behavior was 

detected, or to the root cause. We desired to obtain some boolean-typed information 

for each report. Therefore, we introduced a set of checkboxes to the relevant tabs.  

 Frames 10 and 12 - comboboxes for selection of the category for the used debugging 

methods or tools (as described in 3.3.3.7). Selecting a different category changes the 

list of possibilities. This was designed to fit the list of options into a single tab, so 

the participants would not get slowed down by scrolling. 

 Frames 11 and 13 - arrays of radio buttons that indicate whether a particular 

debugging method or tool was used. The default option has the value Not used, 

because the participants usually will want to select only a few options and leave the 

majority of options in the Not used state.  

 Frame 14 - the optional tab for filling details whenever doing the report required 

further discussion with the researchers. This helped a lot with effective 

troubleshooting of unusual situations. 
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 Frame 15 - the main tab of the last year of the study (2013). The content was 

minimalistic. The main user interface element on this tab was the combobox for 

selecting the debugging intent for using the debugging tool. 

3.6. Further thoughts on our methodology 

In the following subsections we will look on our methods from other viewpoints. 

3.6.1. Realistic environment  

We designed our study to collect the data from as much realistic environment as was 

possible in our conditions. This brings both pros and cons. One strong advantage is that 

programmers record data from real-world situations. Therefore, we consider the validity 

of our data to be resistant to the effect of collecting the data from an unrealistically 

designed controlled experiment, which usually happened, for example, in the area of 

evaluating usefulness of automated debugging tools (6). See the section 5 for further 

comments on this. 

The second advantage is that we aimed to test the usefulness of debugging tools 

when all commonly debugging tools were available and participants had a completely 

free will, which tool to use. Thus, in our study we do not compare just one tool with one 

possible alternative, but rather we evaluate tools in the competition of other available 

tools. We designed this with the assumption that skilled IT professionals will always 

choose the tool that is most useful for the job. Although originally, we did not plan to 

systematically monitor how is this assumption correct, we managed to get some 

observations that suggest that this assumption is not so strongly held in reality. We 

present these observations in the results section 4.3.8. 

3.6.2. Exploratory study versus aimed study 

The exploratory design of this study also brings some pros and cons. The advantage 

is that the study can cover much more aspects of debugging than a more focused study, 

and it can more efficiently pinpoint areas worth of further research. On the other hand, 

we do not have a very specific goal (such as main questions and related hypotheses to 

prove) and therefore, we risked that the study will yield results with only little value. 

Thus, for the worst-case situation we expected that our results would contribute at least 

to some of the following points: 

 We would obtain new data on aspects that have been already researched. 

 We would obtain data that will confirm something that people know intuitively, but 

it has not been scientifically proven so far. 

 We would obtain data that will map something that people cannot know intuitively. 

 We would warn other researchers about unexpected flaws in our methodology, so 

they could be at least aware of them since the beginning of their studies. 

 We would pinpoint research areas that are, in our opinion, mostly worth of further 

research efforts. 

Ideally, we would be glad to provide some results with higher value such as: 

 We would obtain data that will invalidate something that people know intuitively. 

 Based on our data we would propose some way of improvement on existing tools, 

methods or approaches. 
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3.6.3. Uncontrolled experiment 

There are two major reasons why we chosen to have the experiment in an 

uncontrolled way (i.e. the participants collect the data without presence of the 

researching observer). Having this study in a more controlled way would be much more 

demanding on our resources and it could violate privacy of participants unacceptably. 

The main disadvantage of this approach is that we have only little means to check 

whether the participants filled the data in the desired way. For example, some 

debugging reports could be omitted or the data could be filled inconsistently (such as 

that two almost identical bugs are recorded in a different way). 

3.6.4. Amount of collected data 

According to the feedback of participants, doing a single report about data of 3.3.3 

took approximately 3 minutes when the participants got experienced with the reporting 

web interface. One participant explicitly mentioned that besides those 3 minutes the 

effect of interrupting his work brought much bigger inconvenience for him and that it 

reduces his productivity. 

Therefore, the method of making the participants record their experience could 

influence our experiment by reducing their productivity. Thus, when using this approach 

of collecting the data this factor should be taken into consideration. For our study we 

believe that it is acceptable to make the participants collect a larger amount of data, 

because our goals are more exploratory than narrowly focused. 

3.6.5. Interviews 

We interviewed five participants when they finished their project. Because this study 

was long-term and exploratory oriented we did not have a plan or criteria how to do the 

interviews. The main goal of the interviews was asking the relevant participants about 

their experience of results that had been identified up to that time. Therefore, we could 

more easily interpret the results and formulate hypotheses about the data more 

accurately. These interviews also helped us to become more aware about flaws of our 

methods. 

3.6.6. Hypothesis for testing 

Regardless that the study was designed to be mainly exploratory, we actually did 

have three hypotheses that we wanted to statistically test: 

1. Test that using a GUI debugger leads to faster bug investigation than using a 

console debugger or just debugging messages. 

2. Test that design-time bugs (errors in logical reasoning) are more time-consuming for 

investigation that bugs that are caused by wrong implementation of correct ideas. 

3. Test that the bugs that are related to assembler are more time-consuming for 

investigation than bugs that are not related to assembler. 

3.6.7. Time resources needed for doing this study 

Researchers may be interested how much time-demanding is it to perform a similar 

study. Based on our experience, we present the resource estimation in the table 7. 
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Activity Resource estimation and comments 

Studying related work 120 man-hours 
Design of methods 40 man-hours 
Implementation of web interface 
and its maintenance 

160 man-hours 

Participant training and 
communication with them 

1 man-hour for each participant and 30 man-hours for 
researchers. We cooperated with 20 participants.  

Work of participants 

In average 3 man-hours per participant. This does not 
include the effect of interrupting their programming 
activities, which we expect to be much more relevant to 
them. 

Data analysis 
140 man-hours. As this is an exploratory study many 
uninteresting views on the collected data are expected. 

Writing the report 120 man-hours 

Sum 
In total 610 man-hours for researchers and 60 man-hours 
for participants. 

Table 7: Human resources estimation for performing a study like this one 
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4. Results and interpretation 

We organize the results into three parts: the usefulness evaluation as described in 

3.1, further aspects of debugging, and data that could be valuable more-likely just to 

researchers. 

The location of the data and the evaluation script is described in the attachment 2. 

In order to allow a highly detailed view on the way how we processed the data we put R 

snippets into the relevant places of presented data analysis. These snippets point out the 

reader into the evaluation.R script that is located in the attached CD, so they can 

inspect details of our evaluation or do their own evaluation. The snippets look in this 

way: 

this is an R snippet of the evaluation.R script 

4.1. Usefulness evaluation of debugging tools 

4.1.1. Evaluation of all the available tools 

Task 

Evaluate the usefulness of tools that were available to students of the operating 

system course according to the methods from section 3.1. 

Data analysis 

The table 8 summarizes the collected data of monitoring how often were debugging 

tools used and how often were the usages helpful. These data consist of 662 debugging 

records. 
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Tool Frequency [%] Helped a lot [%] No help [%] 

Breakpoints and stepping, GUI  14.1 59.0 17.4 
Call stack usage, GUI  0.0 NA NA 
Disassembly usage, GUI  5.8 64.4 15.3 
TLB window usage, GUI  1.0 10.0 50.0 
Memory breakpoints, GUI  2.7 39.3 32.1 
Memory view usage, GUI  0.7 14.3 71.4 
Registry window usage, GUI  1.5 13.3 73.3 
Variables window usage, GUI  1.5 6.7 66.7 
SVN (log, history)  6.6 36.8 30.9 
Objdump  1.0 70.0 30.0 
Text processing tools 3.1 50.0 15.6 
Excel, R, own script, ...  3.7 47.4 5.3 
Instruction-level stepping and breakpoints, 
MSIM  

0.2 50.0 0.0 

Memory dump, MSIM 2.4 64.0 16.0 
Inspecting registers, MSIM 0.7 28.6 57.1 
Special instructions of MSIM  2.4 44.0 40.0 
Memory breakpoints, MSIM  4.2 48.8 18,6 
Execution trace, MSIM  1.1 54.5 36.4 
Breakpoints and stepping, GDB 4.6 46.8 23.4 
Call stack usage, GDB  8.2 33.3 33.3 
Disassembly usage, GDB  2.7 14.3 46.4 
Memory breakpoints, GDB  2.0 45.0 40.0 
Inspecting memory, GDB  1.4 28.6 42.9 
Inspecting registers, GDB  3.0 35.5 35.5 
Inspecting symbol values, GDB  1.4 28.6 64.3 
Own functions (in code) for debugging  3.4 31.4 28.6 
Own debugging programs  14.2 69.7 9.7 
Reading documentation  1.7 88.2 5.9 
Web search (google, forums, ...)  3.0 61.3 9.7 
Questioning community  1.2 33.3 8.3 
Tools for static analysis  0.7 71.4 14.3 

Table 8: Frequency of debugging tool usages and their perceived usefulness 

In the last run of the study when we focused on studying debugging intents, we 

found 4 tools that had a specialized usage. The table 9 summarizes the relevant data. 

The results are based on 138 records for 22 intents. 

 

Tool with a specialized usage Intent Reported usages 

SVN (log, history) Investigate what has changed recently 1 
Objdump Search for a symbol name from address 1 
Own functions (in code) for 
debugging 

Investigate what is the program doing right 
now 

1 

Reading documentation Search of error code meaning 2 

Table 9: Tools with a specialized usage 

Interpretation 

According to the proposed methodology, we interpret the data in the table 10. 
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Tool 
Frequency of 

using 
Usefulness of a usage Specialization 

Breakpoints and stepping, GUI  Often Somewhat helpful Generic 
Call stack usage, GUI  Rarely NA NA 
Disassembly usage, GUI  Sometimes Very helpful Generic 
TLB window usage, GUI  Rarely Somewhat helpful Generic 
Memory breakpoints, GUI  Sometimes Somewhat helpful Generic 
Memory view usage, GUI  Rarely Questionably helpful Generic 
Registry window usage, GUI  Rarely Questionably helpful Generic 
Variables window usage, GUI  Rarely Questionably helpful Generic 
SVN (log, history)  Sometimes Somewhat helpful Specialized 
Objdump  Rarely Very helpful Specialized 
Text processing tools Sometimes Somewhat helpful Generic 
Excel, R, own script, ...  Sometimes Somewhat helpful Generic 
Instruction-level stepping and 
breakpoints, MSIM  

Rarely Somewhat helpful Generic 

Memory dump, MSIM Sometimes Very helpful Generic 
Inspecting registers, MSIM Rarely Somewhat helpful Generic 
Special instructions of MSIM  Sometimes Somewhat helpful Generic 
Memory breakpoints, MSIM  Sometimes Somewhat helpful Generic 
Execution trace, MSIM  Rarely Somewhat helpful Generic 
Breakpoints and stepping, GDB Sometimes Somewhat helpful Generic 
Call stack usage, GDB  Sometimes Somewhat helpful Generic 
Disassembly usage, GDB  Sometimes Somewhat helpful Generic 
Memory breakpoints, GDB  Rarely Somewhat helpful Generic 
Inspecting memory, GDB  Rarely Somewhat helpful Generic 
Inspecting registers, GDB  Sometimes Somewhat helpful Generic 
Inspecting symbol values, GDB  Rarely Questionably helpful Generic 
Own functions (in code) for 
debugging  

Sometimes Somewhat helpful Specialized 

Own debugging programs  Often Very helpful Generic 
Reading documentation  Rarely Very helpful Specialized 
Web search (google, forums, ...)  Sometimes Very helpful Generic 
Questioning community  Rarely Somewhat helpful Generic 
Tools for static analysis  Rarely Very helpful Generic 

Table 10: Evaluation of debugging tool usefulness 

One interesting finding is that the GUI debugger was used mainly for its ability to 

put breakpoints and do stepping, view disassembled code and put memory breakpoints. 

More interestingly, even such a common feature as viewing the call stack was never 

reported for the GUI debugger. We see some possible explanations. The first is that the 

participants omitted to record usage of the call stack view. The second explanation is 

that the task of implementing the core of an operating system really generates very few 

situations where the call stack view in the GUI debugger would be useful. Or users of a 

GUI debugger need the call stack much less often than users of GDB, because they are 

much more often aware about the current location of the program execution. 

The second thing worth of mentioning here is that the amount of data for evaluation 

which tools have a specialized usage is low in our opinion. And because some intents are 

performed much more often (see the table 18) than other intents, many intents has only 

from one to a few records. Therefore, tools that were recorded for the intents with low 

amount of records easily satisfy our definition, and thus we consider the validity of the 

specialized column at high risk and provide the summary mostly just for orientation 

purposes. 
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4.1.2. Comparision of a GUI debugger, GDB and printing messages 

Question 

Sometimes low-level programmers have the possibility to use a graphical debugger, a 

command-line debugger or they can debug by printing debug messages. Which way is 

the fastest? This question relates to the hypothesis 1 of the section 3.6.6. 

Data analysis 

We took debugging issues that were investigated only by either a graphical debugger, 

by the GDB command-line debugger or by printing debug messages. During the data 

checks we discovered that some participants had a strong preference of a single 

debugging tool. Therefore, we took into account only a limited number of records from 

those participants in order to normalize the influence of their personal debugging style. 

The comparision is presented in the table 11 and the picture 14. 

 

Debugging time [min] 
GUI debugger 
7 participants 

42 records 

GDB 
8 participants 

24 records 

Debugging messages 
13 participants 

57 records 

Minimum 0 4 1 
1st Quartile 10 15 15 
Median 20 25 30 
Mean 72.3 60.8 68.8 
3rd Quartile 60 45 60 
Maximum 1200 480 600 

Table 11: Debugging time statistics for comparing how fast is debugging with GUI 

debugging, GDB debugger or just debugging prints 
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Picture 14: Distributions of debugging time for comparing how fast is debugging with GUI 

debugging, GDB debugger or just debugging prints 

Testing whether the means differ statistically: 

> t.test(GUIOnlyDebuggedTimes, GDBOnlyDebuggedTimes)  
p-value = 0.66 
 
> t.test(GUIOnlyDebuggedTimes, PrintingMessagesOnlyDebuggedTimes)  
p-value = 0.90  
 
> t.test(GDBOnlyDebuggedTimes, PrintingMessagesOnlyDebuggedTimes)  
p-value = 0.71  
 

The difference in means of investigation time with using the GUI debugger, GDB or 

just debugging messages is not statistically significant. 

Answer 

Based on our data we see no major difference of how the choice between a graphical 

debugger, the GDB command-line debugger or debugging messages affects time of 

debugging. 

The only minor observation is that the graphical debugger is more suitable to 

investigate issues that are fast for resolution (approximately up to 20 minutes). On the 

other hand the data indicates that using a command-line debugger is better for issues 

that take a lot of time for resolution (approximately from 45 minutes).  
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Hypotheses 

Although researching this trend more deeply is outside the scope of this study, we 

can at least formulate a hypothesis that explains this trend: Using a graphical debugger 

is more comfortable (meaning that the users see the whole source code and are able to 

navigate easily and quickly) than the other debugging means, which helps programmers 

to investigate simple debugging scenarios faster than with the other means. On the other 

hand the programmers tend to think less intensively while using a graphical debugger, so 

resolving difficult debugging scenarios takes them more time than with using other 

means. 

4.2. Further aspects on debugging 

In this section we present data about various other aspects of debugging that we 

were able to collect. In order to make these results as much practically oriented as 

possible, we begin with a question that addresses real-world issues and provide more 

context of the question. Furthermore, we maintain objectivity by separation of facts 

from our interpretation, opinions and beliefs. Also note that among many evaluated 

views on the data we present only those that we consider valuable (see 3.6.2 for our 

criteria). 

4.2.1. What portion of development is spent by debugging 

Question 

How much time should project managers expect to be spent on debugging during 

development? 

Context 

Project managers in many industries use the technique of Gantt diagram (7) and the 

method of critical path for planning of the work for their colleagues. In software 

engineering this technique has a very weak point - it is very hard to estimate working 

time for single programming tasks and working packages. For example, throughout our 

professional experience it has been common to provide estimations that were two or 

three times less than the actual amount of performed work. We can remember even 

some tasks that were originally estimated to a week of work and ended up after three 

months of efforts. These errors in estimates lead to bad project planning and the 

consequences are often stressful for everybody involved. 

Data analysis 

We take into consideration the amount of time that each participant was 

investigating the unexpected behavior and the total time that he spent on the project. 

Then, we compute what part in percents did he spend by debugging and we are 

interested in the mean value of these percents.  

95% one-sided confidence interval of the mean value is [0%; 40.0%].  

Answer 

Based on the data we have we can help project managers if they were able to obtain 

an estimate of other development efforts without debugging activities, because our data 

suggest that debugging takes less than 40% of development time in average. 

 

From our results we propose an improvement of the depicted planning approach: 

Extend the estimation of work without debugging activities by the upper bound of the 
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95% confidence interval (i.e. 40% in our case) and you will get an estimation for the 

whole programming activity including the debugging efforts. We believe that this advice 

will, in average, give better estimates than those based on pure intuition. Longer chains 

of activities (more than 4) will in our opinion reduce deviations from the average. If you 

will experiment with this proposal please check the following: 

 Be aware that the activity you are applying this suggestion to should be similar to 

the activities we measured. It should be some kind of coding in low-level 

programming language, ideally development of an operating system. 

 Take better care on the critical path and critical sub paths of the Gantt diagram, 

because an error in estimation on activities on these paths may have worse 

consequences. 

 Collect data from your environment to refine the precision of the estimates. 

 Do provide us feedback how our proposal worked. 

4.2.2. Worst-case estimation of debugging time for a single issue 

Question 

This question and the next question 4.2.3 focus on estimation of investigation time 

for a single debugging activity. How much time can I expect to debug an issue that is 

likely to be very hard to analyze? 

Context 

The customer reported a problem in our operating system and the initial analysis 

and symptoms suggest that the issue will be very hard for debugging. The customer 

needs to understand urgently where the problem is located and your boss is expected to 

give him some realistic worst-case time of getting the problem investigated. In what time 

can I tell my boss (with 95% probability) that the root cause will be found? 

Data analysis 

> complexity = read.csv("complexity-and-feelings.csv", header = TRUE)  
> veryHardDifficultyTimes <- complexity[complexity[,2] == 4,1]  
> quantile(veryHardDifficultyTimes / 60, 0.95)  
 

The 95% quantile is 12.6 hours of investigation. Searching for the root cause was 

abandoned in 2.1% of cases. 

Answer 

You can tell your boss that the root cause will be investigated with reasonable 

certainty after 12.6 work hours. Only one issue of twenty will take longer. Also note that 

some small amount of issues (2.1%) was left unresolved, so the full investigation would 

take longer in those cases. 

We consider this estimation suited best for tasks related to development of an 

operating system where simulation on QEMU is possible. 

4.2.3. Most probable estimation of debugging time for a single issue 

Given my feelings of the bug difficulty, what time can I expect to be debugging the 

issue? 
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Context 

I ask, because many times when it is late in the day my wife calls me asking at what 

time I will be home. She will prepare the dinner to be hot at that time. The only thing I 

can base my estimation on is a more or less vague feeling from bug's symptoms and the 

environment (multi-threaded scenario, assembler code, etc.) where I will search for the 

bug. Very often my estimation is very wrong, the dinner gets cold and my wife is 

somewhat disappointed when I return home. On the other hand, I have a strong need to 

have the task finished when I leave the work. It would be very helpful if I could estimate 

the debugging time much better. 

Data analysis 

Similarly to the previous question, we take some relevant quantiles of investigation 

time just for bugs with easy difficulty. The table 12 presents the distribution. 

> easyDifficultyTimes <- complexity[complexity[,2] == 2,1]  
> quantile(easyDifficultyTimes , c(0.25,0.5,0.75,0.95)) 
 

Quantile Debugging time of easy bugs [min] 

25% 9 
50% 20 
75% 31 
95% 120 

Table 12: Investigation time for bugs that were perceived as easy to investigate 

Data for other difficulties have similarly wide or wider distribution. 

Answer 

Suppose that the issue does not seem trivial, but it still seems simple. From the data 

we can say that there is a 25% probability that the issue will be analyzed in 9 minutes, a 

25% probability that it will take from 9 minutes to 20 minutes, a 25% that it will take 

from 20 minutes to 31 minutes, a 20% probability that it will take from 31 minutes to 

120 minutes, and a 5% probability that you may not be able to finish the task today, so 

you will return very late. Furthermore, this data cover only the investigation of the 

problem and not the fixing efforts. 

Suppose that the lunch will get cold (and your wife annoyed) in twenty minutes. 

Then, it is clear that you cannot give a precise estimation with reasonable certainty, 

because there will be still at least 50% chance that your estimation will be wrong 

regardless of what it will be. The recommended practice for these situations is an 

uncompromising search for an alternative that fulfils both needs. A special course or 

training of creative thinking and communicating people's needs can be very helpful in 

such times. 

4.2.4. Debugging time for design and implementation errors 

Question 

Is there any statistically significant difference between time that is required for 

investigating flaws in design and the time that is required to investigate errors in 

implementation? This question relates to the hypothesis 2 from the section 3.6.6. 

Data analysis 

We compare the mean values of debugging time for bugs caused by wrong design 

and by wrong implementation. 
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> designErrorsTime <- records[records["CategoryId"] == 1, "Debugging_Time"]  
> implementErrorsTime <- records[records["CategoryId"] == 2, "Debugging_Time"]  
> t.test(designErrorsTime, implementErrorsTime) 
 
p-value = 0.02239 
95 percent confidence interval:  
<3.574012; 46.632950> 
mean of designErrorsTime 85.04206 
mean of implementErrorsTime 59.93857 

Answer 

The difference is statistically significant. Flaws or bugs in design of program logic are 

more time-consuming for investigation than bugs in correctly thought, but wrongly 

implemented ideas. On the other hand, our data do not suggest that the difference is 

larger than twice the lesser value. 

4.2.5. Debugging time of different programmers 

Question 

What are the differences between how long individual programmers perform 

debugging activities across the whole project? 

Data analysis 

The table 13 summarizes the debugging efforts of each participant and how many 

issues did he encounter. 

Participant Development time [h] Debugging time [h] 
Development time / 
debugging time [ %] 

Investigation 
count 

12
6
 66 47 71.3 95 

15 110 9 8.3 18 
16 144 59 41.0 18 
17 96 35 36.7 18 
19 42 18 41.7 9 
20 72 8 11.5 6 
21 61 25 41.3 23 
22 125 45 35.9 50 
23 180 87 48.5 64 
48 351 167 47.4 49 
53 323 102 31.6 109 
54 136 40 29.3 14 
58 155 27 17.7 78 
59 209 55 26.1 48 
60 205 84 40.9 63 

Table 13: Debugging efforts of individual participants 

The average ratio of debugging time is 35.2% with standard deviation 15.8%. 

Participants 15, 19 and 20 had a surprisingly low debugging time or the count of 

reported issues. Based on their feedback we assume two reasons for that: 

 They focused much more on documentation than the other team members. 

                                           
6 From the feedback of participant 12, we are concerned that the high amount of his 

debugging reports had significant negative impact on his programming performance, because 
he filled a somewhat large amount of data in shorter period of time than the others. This is a 
weak point of our methodology as discussed in 3.6.4. 
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 Because of some limitations, they were forced to develop larger parts of software 

without executing them at all. Therefore, the majority of their debugging efforts 

were done in the integration phase, which was in their case only one or two days 

long. 

Answer 

Developers spend from about 10% and up to 45% of their time by debugging 

activities. One participant spent more than 70% of his work time by debugging and he 

abandoned the project for that year.  

Note that we do not consider this percentage to be a good indicator of individual 

programmer's performance, because it does not tell anything about the development 

conditions and the kinds of task of the individual programmer. 

4.2.6. Debugging and work satisfaction 

Question 

How is the debugging activity related to the mood and work satisfaction of the 

professionals? From our professional experience we know a method 7  how a human-

resources person can relatively quickly evaluate the work satisfaction of employees. It 

works by the following way: 

Write down how many hours per week you spend in your job by activities that are 

exciting or very pleasant, pleasant, neutral or OK, unpleasant, and very unpleasant. The 

methodology suggests that a highly satisfying job is the one that has more than 60% of 

exciting, very pleasant or pleasant activities. 

Context 

This problem interests us because of the fact that many people are discouraged by 

pursuing technical carrier is, in our opinion, at least partially caused by characteristics 

of those professions. Technically demanding professions often require intensive problem-

solving activity that is related to machines, dysfunctional software or other problems 

that does not in its core incorporate human relationships and communication. Typically, 

even highly skilled technicians are confronted with situations that something technical 

does not work as expected and they try to fix it for many hours. From our life 

experience, this situations cause large amount of frustration regardless whether the 

profession is a builder, a car mechanic, a wireman, an IT support, an electrotechnician, 

or a programmer. One typical reaction what people do in these situations is that they 

throw various curses around themselves, because probably, it helps them to make their 

frustration easier. Anyway, we believe that the ability to handle this kind of frustration 

is one of determining factor whether a person will be a skilful technician. 

Therefore, we think that investigating topics related to this question could provide 

very valuable insights for educators of computer science or technical professions in 

general. 

                                           
7 There is large amount of research and approaches related to the job satisfaction of 

people, see (20) for a summary. We were not able to find the exact origin of the described 
method, but in our opinion it seems to be a derivative of the Minessota Satisfaction 
Questonaire. In our history we heard feedback of several people whose job satisfaction was 
evaluated by this method. They appreciated that it helped them to reflect what activities are 
unpleasant or stressful for them and it provided them some guidance on how they ideal 
workload should look like. 
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Data analysis 

The table 14 contains the summary of our data. The numbers in the feelings columns 

are computed as sum of debugging time of issues with the particular feelings divided by 

the whole debugging time of the participant. Because the debugging is assumed to be 

the most flustrating activity of this project, we focused on the periods of unpleasant or 

very unpleasant debugging. Therefore, the last column contains what part of the whole 

project the particular user had been debugging unpleasant or very unpleasant issues. 

 

Participant 

Feelings [% of debugging time] Contribution to negative 
work satisfaction on the 
project [%] 

Positive 
Nothing 
remarkable 

Unpleasant 
Very 
unpleasant 

12 1.2 17.6 33.5 47.6 57.8 

15 36.2 50.1 13.7 0.0 1.1 

16 9.3 17.8 18.6 54.2 29.9 

17 21.3 40.5 29.8 8.5 14.1 

19 74.3 22.9 2.9 0.0 1.2 

20 0.0 69.7 30.3 0.0 3.5 

21 1.0 21.6 33.8 43.7 32.0 

22 5.8 66.4 27.9 0.0 10.0 

23 8.4 53.2 11.7 26.7 18.6 

48 24.8 6.5 24.4 44.2 32.6 

53 1.9 25.6 17.2 55.3 22.9 

54 24.2 17.9 22.7 35.3 17.0 

58 1.3 60.1 37.2 1.5 6.8 

59 0.1 35.1 18.2 46.7 16.9 

60 5.2 21.1 41.6 32.2 30.2 

All 12.1 28.0 24.1 35.7 21.1 

Table 14: Percentage of debugging time grouped by feelings 

Answer 

Our methodology was not aimed to collect data about feelings of participants or 

mood across the whole project, so we can at least interpret the data partially from the 

debugging part. In our opinion, participants 128, 16, 21, 48 and 60 could welcome some 

changes in their work activities, because the amount of negative issues they experienced 

was getting over 30% of their work time. 

4.2.7. Debugging time and perceived complexity 

Question 

How does the perceived difficulty of bugs correspond to the debugging time? 

Context 

This could give evidence on how is the perception of debugging issue difficulty 

connected with debugging time, which could possibly improve time estimations. 

                                           
8 The participant 12 did not finish the tasks that year. 
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Data analysis 

The picture 15 shows how is the debugging time related to the perceived difficulty 

and the table 15 summarizes the median values. 

 

Picture 15: Debugging time grouped by perceived difficulty 

Difficulty Median of debugging time [min] 

Trivial 10 
Easy 20 

Medium 40 
Hard 152 

Table 15: Medians of debugging time for issues with different perceived difficulty 

Answer 

Our data suggest that programmers perceive in such a way that with each increase 

of difficulty level the debugging time tends to increase two or three times.  

Note that our observations do not tell anything about causality because of our 

methods of data collection. More specifically, we cannot claim that a more complex 

debugging scenario implies more debugging time, or that more debugging time implies 

that the programmers perceive the debugging scenario as more difficult. We just 

provided evidence about the relationship of these two variables. 
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4.2.8. Debugging time in different life cycles of a bug 

Question 

Many people believe that it is much more costly to fix a bug at the end of the 

project than fixing the same bug during the early stage of the project. How does our 

data support that claim? 

Context 

Many professionals believe that this claim is correct in reality and even our 

professional experience supports it. On the other hand we are aware of only one 

publication (8) about its validity: 

 

“A significant related insight is that the cost of fixing or reworking software is much 

smaller (by factor of 50 to 200) in the earlier phases of the software life cycle than in the 

later phases.” 

 

This evidence is over two decades old, so one may not see as very strong, because it 

may be outdated. Therefore, we perceive publishing further newer data as a valuable 

contribution. 

Data analysis 

We compared reports of bugs that were investigated during the first checks of the 

just implemented code and reports of issues that were detected later. In the picture 16 

and table 16 the first kind of issues is referred as issues that were detected early and the 

latter kind is referred as issues that were detected later. The data are composed from 

218 reports of the early detected issues and 444 issues that were detected later. 

 

Debugging time [min] Early detection Detected later 

Minimum 0 0 
1st Quartile 5 10 

Median 10 30 
Mean 47.2 78.3 

3rd Quartile 45 77.5 
Maximum 1200 1800 

Table 16: Debugging time of issues from different bug life cycles 



35 

 

 

Picture 16: Debugging time of issues from different bug life cycles 

>t.test(early[,2], later[,2]) 
p-value = 0.0059 
 

The difference of mean debugging time is statistically significant. 

Answer 

We confirm that bugs that are detected very soon during the development are 

resolved approximately twice faster that bugs that are detected later in the project 

development. 

Hypotheses 

The scope of our study allowed us only to compare only issues that were raised 

before any actual usage of the developed software. Therefore, we expect the difference to 

be even larger for bugs that would be detected after the release of the developed 

software.   

4.2.9. Debugging time of bugs related to assembler 

Question 

It quite intuitive that bugs that are related to code that is written in assembler takes 

much more time for debugging than other bugs. Does the collected data provide 

statistically significant evidence about this claim? This question is related to the 

hypothesis 3 of the section 3.6.6. 
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Data analysis 

We compare the mean values of debugging time for bugs that were related to 

assembler with other bugs.  

> t.test(assemblerDebuggingTimes, nonassemblerDebuggingTimes)  
p-value = 0.059 
mean of assemblerDebuggingTimes = 177 minutes 
mean of nonassemblerDebuggingTimes = 67 minutes 

Answer 

The difference in mean of debugging time between bugs that are related to assembler 

and the bugs that are not related to assembler is not statistically significant.  

Hypotheses 

We interpret this result as that there exist other kinds of bugs that are not related 

to the assembler language and they still increase debugging time similarly as the 

assembler related ones. 

4.2.10. Debugging time and other aspects 

Question 

During the study the participants indicated for each investigated issue whether the 

issue was related to assembler, cause by a copy-and-paste activity, located in foreign 

code, caused by incomplete modification (better explained in the attachment 6), related 

to the C preprocessor, debugged by more people, and related to a memory corruption. 

How frequent are these cases and what is their impact on debugging time?  

Data analysis 

We constructed a linear model of how the named aspects affected debugging time.  

> model <- lm(Debugging_Time ~ Flag_Assembler_Related + 
Flag_Caused_By_Copy_And_Paste + Flag_In_Foreign_Code + 
Flag_Incomplete_Modification + Flag_Preprocessor_Related + 
Flag_Debugged_By_More_People + Flag_Memory_Corruption_Related, data=dat)  

 

The table 17 summarizes the model coefficients, their relevance, and contains the 

frequency of the issues with the aspect. 

 

Aspect 
Coefficient 

[min] 
p value Frequency [%] 

Assembler related 108.6 9.5E-006 5.1 
Caused by copy and paste 55.6 0.017 5.7 
In foreign code 90.3 6.4E-007 10.3 
Incomplete modification 

 
0.434 13.0 

Preprocessor related 
 

0.475 1.1 
Debugged by more people 66.7 3.1E-005 14.5 
Memory corruption related 63.4 4.8E-005 14.4 

Table 17: Linear model for different aspects of bugs 

Answer 

The only observed aspects of investigated issues that do not affect investigation time 

are bugs caused by an incomplete modification or by the C preprocessor. The other 

observed aspects increase the investigation time significantly. The specific effect of 

increase can be seen in the table 17 in the coefficient column. 
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Hypotheses 

As for the frequencies, we believe that assembler and memory corruption related 

issues will be less common during development of higher-level software than an 

operating system. The frequencies of debugged by more people and bug located in the 

foreign code can change with different structure of programming teams. Note that our 

data was taken from teams of two or three programmers. 

4.2.11. Debugging time and copy-and paste bugs 

Question 

Some people claim that copying chunks of code without proper modifications of the 

copied code is one of the most common sources of programming errors, and that 

programmers do copy-and-pasting in order to save their time, but they lose more time 

by creating more bugs. How correct is this in reality? 

Data analysis 

5.7% of reported bugs were caused by the copy-and-paste activity. The linear model 

from table 17 suggests that a copy-and-paste bug adds 55 minutes to the debugging 

time. 

Answer 

The data shows much less frequency of this kind of bugs than we expected. We can 

say that the effect of each copy-and-paste bug can be thought as a 55 minutes increase 

in debugging time in average. Also note that for the full cost and benefit analysis of 

copy-and-pasting we believe that other factors should be taken into account: copy-and-

paste operations may save time, improve the work-satisfaction and reduce mental 

exhaustion of the developers. Monitoring these other factors is out of the scope of this 

work. 

Hypotheses 

We believe that the low frequency of copy-and-paste errors is caused by two factors: 

 Participants were very often experienced and skilled programmers. They are aware 

of this kind of bugs and pay special attention to prevent errors when they copy code, 

or they use programming practices that avoid copy and paste activity. 

 The fact that participants explicitly filled the information that the bug was caused 

by code copying trained them to avoid these errors. 

4.3. More theoretical aspects of debugging 

In this section we provide data about aspects of debugging that are not aimed to 

address real-world issues so much as those in the section 4.2. We present these data in 

order to support further research efforts. 

4.3.1. Debugging intents and their frequency 

Question 

Naturally, when the programmers use a debugging tool they do that with some 

intent. What are the intents for using debugging tools and what is their frequency? This 

information could be beneficial for designers of debugging tools, because it maps 

common debugging intents and tells how often they are. 
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Data analysis 

In the table 18 we summarize all the identified debugging intents and their 

frequencies. This summary is backed by 62 collected records. 

 

Debugging intent Relative frequency [%] 

Investigate value of variable 11.3 
Investigate whether some code was executed 0.0 
Investigate function return value 4.8 
Check that some code is reached 6.5 
Investigate what has changed recently 1.6 
Attempt to reproduce the problem 3.2 
Investigate what is the program doing right now 1.6 
Investigate CPU registers 6.5 
Execute just a subset of the code 0.0 
Search of error code meaning 3.2 
Investigate execution flow in the code 25.8 
Search for a symbol address 0.0 
Check whether the code matches to the compiled instructions 4.8 
Investigate the consistency of the memory 6.5 
Search for the place where a variable is changed 0.0 
Check statistical parameters of a (pseudo) random events 0.0 
Search for an error in the stdout 0.0 
Use the tools of formal verifications 0.0 
Investigate TLB mapping 9.7 
Search for a symbol name from address 1.6 
Search for a place where the program crashed (NULL pointer 
dereference, ...) 

11.3 

Execute tests to check whether they still pass 1.6 

Table 18: Identified debugging intents and their frequencies 

Answer 

Unfortunately, the period of collecting data about debugging intents was not long 

enough to collect many reports. Therefore, we consider the presented summary to be 

most suitable just for orientation purposes. Furthermore, the Investigate TLB mapping 

debugging intent is highly specific just for our programming task, so for more typical 

programming tasks we are confident that this debugging intent would be very rare or 

even less common. 

4.3.2. Root causes and bug frequency 

Question 

What kinds of root causes occur the most often? In summary, what kinds of root 

causes are investigated for the longest period of time? 

Data analysis 

The table 19 contains frequencies and sum of debugging time of each root cause 

identified by our methods in 3.3.3.6. 
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Root cause category 
Count of 

bugs 
Relative count 

of bugs [%] 

Sum of 
debugging time 

of the bugs [min] 

Relative portion 
of debugging 

time against the 
whole [%] 

Wrong design assumption 131 19.8 11240 23.2 
Forgotten code 116 17.5 5571 11.5 
Used wrong entity 76 11.5 4021 8.3 
Wrong expression 44 6.6 1876 3.9 
Memory 43 6.5 3186 6.6 
Synchronization 43 6.5 3955 8.2 
All other 41 6.2 5862 12.1 
Data structures and 
algorithms 

40 6.0 3004 6.2 

Wrong program flow 27 4.1 942 1.9 
Wrong (coding related) 
assumption 

23 3.5 1320 2.7 

Initialization 22 3.3 1678 3.5 
Extra code 15 2.3 430 0.9 
Subprogram binding 11 1.7 567 1.2 
Assembler specific 10 1.5 3005 6.2 
C specific 7 1.1 469 1.0 
Dynamic data structures 5 0.8 270 0.6 
Other 3 0.5 260 0.5 
Value corruption 3 0.5 290 0.6 
Finalization 2 0.3 510 1.1 

Table 19: Frequencies of different root causes and associated debugging time 

Correlation coefficient between root cause frequency and the summed debugging time 

for those root causes is 0.88.  

Answer 

The most common root causes are from flaws in design or thinking (19.8%), pieces of 

code that were forgotten to be written (17.5%) and usage of wrong entity (11.5%). 

Regarding the amount of time spent on debugging each kind of bug we see that more 

frequent root causes tend to contribute more to the debugging time. The largest 

exception to this trend are All other root causes with the dominating root cause Not a 

bug, which is not so common, but it takes unproportionally long debugging time. 

4.3.3. Root causes and debugging time 

Question 

Where is a very meaningful place for researchers to concentrate their efforts if they 

want to make debugging faster? 

Context 

The difference between this question and the question 4.3.2 is that it is concerned on 

the direct cost of debugging (developer's time), which may be a more relevant aspect in 

fault-tolerant environment where other consequences of software bugs are not very 

unpleasant. 

Data analysis 

We refer to the table 19. The Wrong design assumption root cause was behind 23.2% 

of debugging activities, the All other root cause was behind 12.1% and the Forgotten 

code was behind 11.5% of debugging activities. 
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Answer 

The data suggest that one very meaningful place for improvement is helping 

programmers with these kinds of situations: 

 Assisting them with realizing all the corner cases, which should help with the Wrong 

design assumption root causes. 

 Making sure that they understand correctly how the external entities of the software 

(such as hardware or a third party library) are supposed to be used, which should 

again help with the Wrong design assumption root causes. 

 Assisting them to avoid overlooking or forgetting parts of implementation, which 

should help them with the Forgotten code root causes. Unfortunately, during this 

study we did not obtain data that show how the parts of implementation got 

missing. These data could provide a more specific guidance and obtaining them can 

be a further direction of this research. 

Hypotheses 

This study was not designed to observe the participants so closely to map the 

reasons why debugging activities caused by these three root causes were so time-

consuming, so we at least provide our hypothesis: 

The reason why the Wrong design assumptions and All other kinds of bugs took 

35.3% of all the debugging activities seems to lay in the fact that the bugs both happen 

often and each one is often very time-consuming by itself. We guess that the most 

consuming part of debugging these bugs is realizing how things are supposed to work 

correctly. The reason why the Forgotten code bugs took 11.5% of all the debugging 

activities seems to be just because they had been occurring very often. 

4.3.4. Root causes and the project phase of their detection 

Which kinds of bugs have tendencies to remain in the code longer? 

Context 

Many bugs in commercial software are unpleasantly costly, so the programmers may 

strongly desire to have as few bugs as possible in the released software. Answering this 

question could provide evidence if some bug root causes tend more to remain 

undetected. 

Data analysis 

The problem with measuring the count of undetected bugs is that they cannot be 

detected and so they cannot be measured directly. Therefore, we work under assumption 

that bugs that are detected but present in the code for a long time have similar 

properties as undetected bugs. Thus, for the context of 4.3.4 we specify what we 

consider a bug that is present in the code for a long period of time for the context of this 

study. 

Most typically, programmers at least check their software right after they implement 

a runnable and checkable part of it. We call bugs that are detected in this phase as bugs 

detected early in the development. What happens next with the quality assurance efforts 

varies on the kind of organization and project management. In the case of this study, the 

students used a testsuite and their work was accepted when their code passed the 

testsuite. We call bugs caught by the testsuite as detected by tests. As the students are 

supposed to build on their previous code for longer time (mostly more than 100 work 

hours, see the table 13 for exact numbers), they could detect further bugs. We call these 

bugs as bugs detected in the later stage of development. 
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Note that in enterprise environment one could expect additional possible stages when 

a bug can be detected – for example during quality assurance processes or the actual 

usage of the software. Therefore, for obtaining more realistic data from other 

environment our methods would have to be adjusted or reworked. 

The table 20 shows the occurrences of various kinds of bugs during early, testing and 

later development stages. 

Root cause category 
Detected 

early 
Detected by 

tests 
Detected later 

Detected 
later 

relatively [%] 

Initialization 12 1 9 41 
Subprogram binding 3 3 5 45 
Data structures and algorithms 12 9 19 48 
Wrong design assumption 36 23 72 55 
Finalization 2 0 0 0 
Used wrong entity 37 10 29 38 
Other 2 0 1 33 
Forgotten code 37 15 64 55 
Dynamic data structures 2 2 1 20 
Memory 14 5 24 56 
Wrong expression 15 5 24 55 
Synchronization 10 6 27 63 
C specific 3 0 4 57 
Assembler specific 4 1 5 50 
Value corruption 0 2 1 33 
Wrong program flow 10 5 12 44 
Extra code 6 1 8 53 
Wrong (coding related) 
assumption 

6 3 14 61 

Sum 212(34%) 91(14.6%) 319(51.4%)  

Table 20: Count of bugs grouped by the stage of their detection 

Answer 

The relative occurrence of bugs that survive in the code the early development phase 

ranges between 40% and 65% (with few exceptions below 40%). Therefore, we see no 

very strong connection on how the kind of root cause affects the bug’s ability to remain 

undetected. The most undetectable bugs seem to be those caused by errors in 

synchronization or by assumptions that some code constructs work in a different 

manner. 

The other interesting finding is that the correctness checks that were done soon after 

the implementation together with tests were able to detect less than 50% of the bugs. To 

be more confident about validity of this claim, we would need a more controlled 

experiment, because we cannot guarantee that no bugs from the early detection phase 

were omitted.  

4.3.5. Debugging with and without debugging tools 

Question 

What are the specifics of bugs that programmers investigate without debugging 

tools? How often does that happen? 
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Context 

Debugging without any debugging tools may indicate a lack of coverage of available 

debugging tools. This information can provide some guidance where to focus research 

effort to address inconvenient issues. 

Data analysis 

In picture 17 and table 21 we compare 253 bug reports that were investigated 

without any debugging tools to 409 bug reports that were investigated with one or more 

debugging tools. 

 

Picture 17: How is a usage of a debugging tool connected with debugging time 

Debugging time [min] Debugging with tools Debugging without tools 

Minimum 0 0 
1st Quartile 15 4 
Median 40 10 
Mean 100 29.8 
3rd Quartile 120 21 
Maximum 1800 720 

Table 21: How is a usage of a debugging tool connected with debugging time 

Here we compare the mean values: 

> t.test(debugging_time_with_tools, debugging_time_without_tools) 
p-value = 8.0e-13 
 

The difference in mean values is statistically significant. 
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Answer 

The collected data shows a rather surprising result that bugs that were debugged 

without any debugging tools were investigated much faster than those investigated with 

debugging tools support. When the programmers used a debugging tool they had been 

debugging in average about 4 times longer than in the cases when they did not use any 

debugging tool. 

Hypotheses 

This observation can have a number of possible explanations. One of them is that 

programmers tend to think much more intensively when they do not have any 

programming means available (which happens sometimes during development of an 

operating system), and therefore they debug much faster. In our study we do not have 

data to explore this explanation. 

Another explanation would be that we have a flaw in our methods, because the 

amount of recorded data could be so large that sometimes the participants could skip 

parts of the bug report. We think that a specialized more controlled experiment is 

needed to check this possibility. 

The next questions investigate some other possible explanations of our observation. 

4.3.6. Participants preference on using debugging tools 

Question 

The finding of the previous question 4.3.5 could be explained by the fact that 

participants strongly preferred and used only one way of debugging and the fact that 

debugging time differs significantly for different programmers (as presented in table 13). 

Did the best performers (i.e. in this context participants who debugged the issues in a 

very fast way) debug without any debugging tools? 

Data analysis 

The picture 18 shows how fast each participant debugged his bugs. 
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Picture 18: Debugging times of each participant 

In table 22 we summarize how often each participant used debugging tools. 

Participant Reports with a tool [%] Reports without any tool [%] Reports count 

12 24 76 95 
15 44 56 18 
16 17 83 18 
17 78 22 18 
19 89 11 9 
20 50 50 6 
21 91 9 23 
22 96 4 50 
23 83 17 64 
48 86 14 49 
53 37 63 109 
54 100 0 14 
58 78 22 78 
59 65 35 48 
60 63 37 63 

Table 22: How often each participant used debugging tools 

The fastest participants were 12, 15, 21, 53 and 58. The sum of their records where 

no debugging tools were used is 170. That is 67% of all these records. 
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Answer 

One third of the fastest participants reported two thirds of the investigations that 

belong to the group of in average 4 times faster investigations than the other reports. 

Therefore, our data suggest that the fast debugging programmers tend not to use 

debugging tools.  

On the other hand, we are not strongly convinced about this conclusion, because our 

observation could be caused by the fact that some participants omitted reports of very 

quickly investigated issues. We would need a controlled experiment to become more 

confident on how to interpret the finding of this question. 

4.3.7. Usage of debugging tools and bug complexity 

Question 

Another explanation of finding in the question 4.3.5 is that more difficult errors are 

more often investigated with debugging support. Thus, this could explain the difference 

of the debugging times distributions in picture 17, because harder bugs take much more 

time to investigate. Does the data confirm that? 

Data analysis 

The table 23 shows how many errors were investigated with and without debugging 

tools for each complexity. 

 

Complexity With debugging tools Without any debugging tool 

Trivial 82 99 
Easy 132 92 

Medium 131 51 
Hard 64 11 

Table 23: How perceived difficulty of bugs is related to whether a debugging tool was used 

Answer 

We see that in difficult debugging scenarios people tend to use some debugging 

support much more often. From data of 4.2.7, we know that debugging an issue with 

easy perceived complexity tends to be two times faster than debugging an issue with 

medium difficulty and that tends to be three times faster than debugging an issue with 

hard difficulty. Therefore, we conclude that the questioned explanation is at least one of 

the factors why issues debugged without debugging tools are investigated faster. 

4.3.8. Selection from available debugging tools  

Question 

The common sense tells that programmers use the debugging tool that is the most 

useful for the particular debugging scenario. How much is the common sense the 

common practice? 

Context 

Answering this question could provide valuable input for researchers that would like 

to make a similar study as ours, or for innovators that would like to introduce new tools 

and practices into their teams or companies.  
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Data analysis 

We made five interviews with the participants and asked the participants how their 

debugging preferences evolved over time. All of them used debugging tools that had 

been most usual for them before the project. One participant openly admitted that he 

did not even try out other debugging means despite the fact that he was encouraged to 

do so. 

Answer 

From the feedback of participants and our professional experience we doubt the 

expectation that people will automatically use the best available tool. Often people tend 

to use what worked best for them in the history and are reluctant to new things. We 

consider this observation interesting, because the participants were, in our opinion, very 

adaptable professionals in the information technology world, which is generally 

considered highly innovative and very open to changes. 
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5. Related work 

We have structured the related work for our thesis into three types, which we will 

describe in the following three subsections. 

5.1. Studies evaluating usefulness of debugging techniques and tools 

This is the most relevant kind of related work as it provides experience of how to do 

evaluations of debugging tools, and it stresses out the importance of these studies. (6) is 

an evaluation of techniques of automated debugging, which is being researched for 

decades. It reviewed the usefulness evaluation activities that had been published and 

concludes that: 

“... and most programs studied are trivial, often involving less than 100 lines of code.” 

Therefore, (6) evaluated the usefulness of automated debugging techniques with 

programmers and on two programs of 2403 and 4408 LOC, and it came with a finding 

that the evaluated techniques helped only to expert programmers. Furthermore, it 

identified the reasons for the unexpectedly low usefulness in neglecting human-related 

aspects during design of the techniques. For example, it was observed that programmers 

value more explanations than recommendations and the techniques are based on 

recommendations. Interestingly, we believe that the same threat to validity can be 

applied for (6) as well, because the evaluated techniques may be much more helpful for 

very large programs with 1 million or more LOC than they are for programs of several 

thousand LOC. Anyway, (6) supports our opinion that performing more usefulness 

evaluations of researched debugging tools or approaches is likely to make current 

research efforts more impactful. 

(9) proposes an alternative way of how to evaluate and research aspects of 

debugging. This framework and methodology has already been successfully used for 

obtaining the inspiration to design the tool (10), which we will mention later. 

We see the main differences between (9) and our work in two points. The first is that 

we use a different categorization of root causes of software errors. Our main aim was to 

compare which of thinking-based or implementation-based bugs are more time-

consuming for investigation. (9) tries to capture the process how bugs are created by 

defining four layers where defects can appear. These layers are named Specification, 

Programmer, Programming System and Program. The bug is created if the defects on 

each layer are connected. For these layers (9) adapts categorization of human errors 

from (11). 

The second difference is in the way of data collection. (9) records the debugging 

activities of participants while they are thinking aloud. The work also contains the best 

practices of how to facilitate a think-aloud experiment without being intrusive or 

inconvenient to participants. In our opinion, the main advantage of our approach is that 

we can collect more data with much less resources. On the other hand, we can collect 

much less thoughts of participants, so our root cause analysis may not go very deep into 

human psychology as (9) goes. 

5.2. Design of new debugging tools and their evaluation 

During decades computer scientists have developed many debugging approaches and 

tools, and here we would consider beneficial to review and map how much has this 
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research been based on HCI findings and in what degree has the usefulness been 

evaluated. Doing such a review is outside of the scope of this work and therefore, we just 

present a few papers with various level of evaluation and HCI-evidence based support. 

In recent years (10) introduced the Whyline tool that enables developers to get 

answers on why and why not questions. The tool was based on the preceding 

HCI research (9). The evaluation was done on two groups of ten programmers who were 

mostly experienced. The first group used breakpoints and usual tools for debugging and 

the second group used Whyline. The debugged software had 150 000 LOC and it was 

unknown to the participants. The designers of the evaluation study introduced two 

realistic bugs into the software that both occurred in the past. In our opinion, the first 

bug was not very difficult for investigation and the second one was more demanding. 

The participants received training how to use debugging tools that they were going to 

use. From the methodology perspective we see an interesting point of instructing the 

participants to focus on speed rather than on correctness. This is likely to make the 

results of different participant more comparable as, in our opinion, some programmers 

may refuse to hand over their work until they are very sure of correctness, which would 

slow them down a lot. We see this approach reasonable for situations where the 

programmers are not familiar with the code and their time for investigation is limited. 

The evaluation results were based on the comparision of how often were the bugs 

investigated successfully and how fast that was done. Furthermore, Whyline users 

provided their (very positive) feedback. 

Many programmers would welcome the possibility to control the execution of their 

code in the reversed order, which is usually technically demanding to implement, and 

therefore such a debugging facility is not typically available. (12) describes an 

experimental debugger that makes the backward debugging possible. The motivation 

behind the work is supported just by a discussion that pinpoints several reasons why the 

reverse execution would be useful. The work presents no evaluation of the usefulness and 

thus, we perceive it as a representative of papers that are focused primarily on technical 

aspects. 

(13) presents an interesting tool called DARWIN that is related to automated 

debugging. The tool takes two versions of the debugged software, the newest one faulty 

and some older one correct, and the input on which the faulty version fails. The output 

of the tools is a list of places where the bug is likely introduced in the newest version. 

The reasoning behind this design is that many software projects are covered by a 

testsuite, which is executed regularly. Adding DARWIN to the testsuite would allow the 

developers to immediately see suggestions what could be the root cause of each failed 

testcase. In the presented evaluation the authors try out the tool by themselves on 

localizing a few realistic bugs in libPNG, miniweb-apache and savant-apache projects.  

The DebugAdvisor (14) is a tool for search of similar bug reports. Programmers can 

use it when they encounter a bug to check whether there was a similar reported and 

solved issue in the past. The motivation for having such a tool is based on a study (15) 

that was done in Microsoft's Windows Serviceability group. The evaluation efforts were, 

in our opinion, extensive and they were performed directly in the field. The search 

service indexed 2.36 million records (bug reports, attachments, logs, etc), had 129 users 

and 628 queries in one month. The feedback was received 208 times with 78% searched 

results viewed as helpful. Furthermore, the authors tried to resolve 20 active bugs by 

using the DebugAdvisor. Three bugs were solved immediately, and in other 12 cases the 

DebugAdvisor's output was perceived as useful. 



49 

 

5.3. Studies of debugging or software empirical research in general 

As this work is not supposed to provide a comprehensive review of what has been 

researched so far, we mention only papers that we found most interesting or relevant. 

For obtaining a broader perspective on empirical research of software engineering check 

these papers, because they sometimes contain a more detailed review and further links. 

A summary of debugging-related research is provided by (4). It is mainly concerned 

about educational perspective of software development, but regardless it can be used for 

orientation of what had been done in research of debugging up to 2008. Designers of 

experimental studies like this one may find valuable suggestions from (16) about how to 

do studies in software engineering. 

(9) summarizes categorizations of software bugs that has been used in the history 

and the work argues that: 

“To fully understand how the interaction between a programmer and a programming 

system can lead to software errors, we need a more general discussion of the underlying 

cognitive mechanisms of human error.” 

Then it proposes its own typology of software errors that is based on research of how 

people make errors in general. What we find especially strong about the proposed 

typology is that it interconnects topics of the cognitive psychology and debugging. In 

that way, it allows researchers to reason about the aspects of debugging in a deeper way 

than we have seen in most related work. In (17) a study on the differences of how 

efficient and less efficient programmers navigate in the source code was done. From our 

point of view, the work is interesting for its methodology and way of data analysis. Five 

programmers were recorded when they were focused on their programming task. 

Researchers created transcripts of their work that contained relevant events for the 

study and made conclusions from that. The work is inspired by (18), which is a useful 

review of methods for doing qualitative empirical research in software engineering. 

The rise of large open source projects in the last two decades provided researchers 

with databases of bug tracking systems, which added one more possibility how to do 

empirical research. One example of such an empirical study of the databases is (19). We 

see a very strong side of investigating these databases that the amount of reported bugs 

is many times more than 100 000, which is very suitable for quantitative analysis. The 

weak point of this approach is, in our opinion, that the databases are not made for 

research primarily, so the detail of recorded data does not have to be sufficient to study 

many research questions.  
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6. Conclusion 

In this work we designed a methodology of how to evaluate usefulness of debugging 

tools. The tools were evaluated in the environment of operating systems development 

and the results were presented in the section 4.1. Furthermore, we used the chance to 

perform an exploratory study on other aspects of how programmers debug an operating 

system. 

We see the most significant contributions of our work in the following points: 

 We presented that it does not matter whether the programmers use a graphical 

debugger, a command-line debugging, or just debugging messages, because the 

difference of mean debugging time is not statistically significant for all these three 

choices. 

 We proposed a methodology of how to evaluate usefulness of debugging tools and 

applied it in an environment of operating system development. 

 The motivation behind design of our evaluation and other exploratory methods was 

discussed. That may be valuable to anybody who wishes to evaluate usefulness of 

tools in general or who wishes to make another similar study. 

 During the first two runs of the operating system course, we collected 662 somewhat 

large debugging reports (each report took about 3 minutes to fill in) and in the third 

run we obtained 62 reports about debugging intents. We provide these data in the 

form of csv and SQL database on the attached CD. 
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Attachments 

1 Assignments of the operating system course 

The exact and full assignment is located on the attached CD in Czech. The 

participants were supposed to implement three basic assignments and choose one 

extended assignment from three possibilities. In the following we summarize the 

assignments briefly: 

 Basic assignment 1 – implementation of operating system core. The students were 

allowed to use some initial implementation (the operating system Kalisto) that 

shielded them from implementing most assembler-related code and had some 

requirements of the first assignment partially implemented. The core was supposed 

to have support for: 

o basic IO operations (formatted prints, ...) 

o basic debugging means (kernel panic, ...) 

o service of interrupts and exceptions 

o a simple memory allocator 

o threads 

o a simple scheduler 

o synchronization primitives (mutex) 

o timers 

 Basic assignment 2 – Support virtual memory via the mechanism of page tables and 

TLB handling. 

 Basic assignment 3 – Implement user space and the system call mechanism. 

Implement the init process and the runtime library. The runtime library is supposed 

to provide API for IO operations, debugging, dynamic memory allocation, threads 

and synchronization primitives. 

 Extended assignment 1 – So far all the assignments were supposed to be executed on 

a single CPU machine. This extended assignment instructs the students to support 

multiple CPUs. The synchronization primitives should include spinlocks, 

semaphores, read-write locks and condition variables. Furthermore, non-blocking 

lists are supposed to be implemented and their performance compared against their 

blocking variant. 

 Extended assignment 2 – Improve the performance of the basic assignment 2 by 

choosing proper data structures. Extend API for work with the virtual memory 

address space. Implement more heap allocators that use the allocation strategies first 

fit, next fit, best fit and worst fit. Furthermore, implement a multi-threaded 

performance test for the heap allocators and compare their performance. 

 Extended assignment 3 – Implement a simple read-only driver for disk operations. 

Add API for work with processes. The init process should allow running other 

processes from the attached virtual disk device. 
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2 Content of the attached CD 

This is the directories in the CD: 

 data – exported mysql data in the form of SQL commands; these SQL tables and 

data can be imported to your SQL database 

 database-structure - ER diagram pro Mysql Workbench 

 assignment – full and exact assignment for the students in Czech language 

 processing – R scripts and some processed data 

 web – the source code of the created web interface 
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3 Structure of SQL database 

In the following pictures we present the ER diagram of the mysql database that was 

used for storage of collected data. It is not easy to show the detailed relationship about 

individual tables, therefore we suggest you to open the data model in the mysql MySQL 

Workbench application to see more details. 

The core tables are debugging_reports for the first years of the study and 

intent_reports for the last year of the study. Each record of these tables corresponds to 

one debugging report. The linkage with other kinds of data about the debugging report 

can be seen in the MySQL Workbench. 

The participants are defined in a special table called users. Note that we defined 

some supervisor users and some users for debugging and testing purposes of the web 

interface. Therefore, the database contains some reports that should be filtered out if the 

data would be used for further analysis. The group of users that contain relevant data is 

named Standard users.  
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4 Data evaluation and the processing script 

The file evaluation.R contains R snippets that were used to evaluate the data. Our 

best practice was running the R in the sql-data directory and copy-pasting the pieces of 

R code into the R console. The script is not in the best shape, so you can take it as an 

inspiration of what data was processed and a detailed documentation how it was 

processed. 

The CD also contains other scripts and files like usefulness-evaluator.R, which are 

there as a blind branch of our analysis. We keep them there mainly as backup if we 

would like to come back later to the ideas examined by those files.  
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5 Ways of detection 

The following tables list the ways of bug detection that we identified and recorded in 

our study. 

 

Way of detection 
Category Bad output 

Comment 

Wrong text in the output  
Kernel panic  
Wrong informative text (present in the code for a 
long time) 

Typically debugging or diagnostic prints that 
get committed into the project repository 

Wrong detailed text (present in the code for a 
short time) 

 

Program does not generate any output  
Random crashes or behavior  

 

Way of detection 
Category Formal methods 

Comment 

Report of static analysis  

 

Way of detection 
Category Other 

omment 

Program is weirdly slow  
Program is weirdly fast  

 

Way of detection 
Category Other 

Comment 

Report from another person  
During reading of the code  
Compiler warning  
Program never stops  
Test failed  
Assertion fired  
Just by thinking  
By using the debugger  
Environment crash (simulator, ...)  
Random crashes or behavior  

 

Each bug report had the following list of flags that enabled us to monitor other 

further aspects of way how the bug was detected. 

 

Flags for the way of detection Comment 

During debugging of another bug  

During checking just implemented code 
The bug was detected when the programmer 
checked a piece of code that had been just 
implemented 
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6 Root causes 

The following tables list the root causes that we identified and recorded in our study. 

 

Root cause 
Category Wrong logic or design, 
Data structures and algorithms 

Comment 

Misunderstanding properties of the structure or algorithm  
Misunderstanding how the structure or algorithm should be 
implemented 

 

Sequence of actions (algorithm) designed in a wrong way  
 

Root cause 
Category Wrong logic or design, Wrong design assumption 

Comment 

Wrong assumption about the user (or usage)  

Wrong assumption about the assignment  

Wrong assumption how software (function, library, ...) works  

Wrong assumption how hardware works  

Unconsidered corner case  

Unconsidered consequences of design decision  

 

Root cause 
Category Wrong logic or design, Synchronization 

Comment 

Violation of a critical section Logic allows multiple threads to enter the 
critical section 

Deadlock  

Livelock  

Missing synchronization  

Synchronization designed in another wrong way  

 

Root cause 
Category Wrong implementation, Initialization 

Comment 

Initialization is never done  

Initialization is sometimes not done  

Initialization is done in a wrong way  

Memory for a variable is not allocated  

Resource (handle, id, ...) is not allocated  
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Root cause 
Category Wrong implementation, 

Subprogram binding 
Comment 

Bad scope of a variable  

Missing parameters (in case of variable count of parameters)  

Wrong order of parameters  

Wrong return value returned  

 

Root cause 
Category Wrong implementation, 

Finalization 
Comment 

Variable is not freed  

Resource (handle, id, ...) is not released  

 

Root cause 
Category Wrong implementation, 

Used wrong entity 
Comment 

Wrong subprogram called  

Wrong variable read  

Wrong constant used  

Wrong variable written  

Used another wrong entity  

Wrong multiple variables  

 

Root cause 
Category Wrong implementation, Other 

Comment 

Wrong options of compiler  

Correct implementation is unknown  

Misunderstanding of programming language  

 

Root cause 
Category Wrong implementation, 

Forgotten code 
Comment 

Missing assignment  

Missing commands  

Missing call of a subprogram  

Missing sub expression  

Missing check of error value (returned NULL, -1, ...)  
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Root cause 
Category Wrong implementation, 

Dynamic data structures 
Comment 

Index out of bounds  

Index in bounds, but wrong  

Forbidden modification  

Wrong type conversion  

 

Root cause 
Category Wrong implementation, 

Dynamic data structures 
Comment 

Usage of freed memory  
Write to read-only memory  
Heap corruption  
Stack corruption  
Stack overflow  
Other memory corrupted  
Wrong address space used  
Unaligned address accessed  

 

Root cause 
Category Wrong implementation, 

Memory 
Comment 

Usage of freed memory  

Write to read-only memory  

Heap corruption  

Stack corruption  

Stack overflow  

Other memory corrupted  

Wrong address space used  

Unaligned address accessed  

 

Root cause 
Category Wrong implementation, 

Wrong expression 
Comment 

Wrong logic operator  

Wrong arithmetic’s operator  

Sub expressions evaluated in a wrong order  

Wrong relation or comparison operator  

 

Root cause 
Category Wrong implementation, 

C specific 
Comment 

Missing volatile keyword  

Wrong written macro  
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Root cause 
Category Wrong implementation, 

Assembler specific 
Comment 

Ignored behavior of the branch delay slot  

Unexpected compiler optimilization  

Violation of ABI rules  

Wrong directives for compiler (set .noreorder, ...)  

 

Root cause 
Category Wrong implementation, 

Value corruption 
Comment 

Integer overflowed or underflowed  

Mixed signed and unsigned integer  

 

Root cause 
Category Wrong implementation, 

Wrong program flow 
Comment 

Wrong condition in an if command  

Wrong condition for the end of a loop  

Unhandled case in a switch command  

Wrong propagation in a switch command  

Wrong cases in a switch command  

Wrong count of loop iterations +1  

Wrong count of loop iterations by more than 1  

Wrong order of commands  

 

Root cause 
Category Wrong implementation, 

Extra code 
Comment 

Extra assignment  

Extra commands  

Extra call of a subprogram  

Extra sub expression  

 

Root cause 
Category Wrong implementation, 

Wrong (coding related) assumption 
Comment 

Wrong assumption how library (or module) works  

Wrong assumption how function works  

Wrong assumption how language construct works  

Wrong assumption how environment works  

 

Root cause 
Category All other 

Comment 

Root cause not known  

Error from outside (simulator, compiler, ...)  

Not a bug  
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Each bug report had the following list of flags that enabled us to monitor other 

further aspects of the root cause. 

 

Flags for root causes Comment 

Assembler related 
Does not have to be a bug in the assembler code. For 
example, the investigation included obtaining 
detailed information about stack operations. 

Caused by copy and paste  

In foreign code  

Incomplete modification The performed modification in the code was not 
done in every needed place. 

Preprocessor related  

Debugged by more people  

Memory corruption related  

7 Methods and debugging tools 

The following tables list the debugging tools and methods that we identified and 

recorded in our study. 

 

Debugging tool 
Category Other 

Comment 

SVN (log, history)  
Objdump  
Own functions (in code) for 
debugging 

Including debugging prints 

Own debugging programs Own scripts, stack analyzer, ... 

 

Debugging tool 
Category GUI Debugger 

Comment 

Breakpoints and stepping  
Call stack window  
Disassembly window  

TLB window 
This was implemented specifically into the GUI debugger, 
it is not a commonly available (and purposeful) feature  

Memory breakpoints  
Memory view  
Registry window  
Variables window usage  

 

Debugging tool 
Category Evaluation of debugging data 

Comment 

Text processing (grep, sed, search in a text 
editor, ...) 

 

Excel, R, own script, ...  
Disassembly window  
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Debugging tool 
Category MSIM debugging support 

Comment 

Instruction-level stepping and breakpoints  
Memory dump  
Inspecting registers  
Special instructions of MSIM  
Memory breakpoints  
Execution trace  

 

Debugging tool 
Category GDB 

Comment 

Instruction-level stepping and breakpoints  
Memory dump  
Inspecting registers  
Special instructions of MSIM  
Memory breakpoints  
Execution trace  

 

Debugging tool 
Category Obtaining information 

Comment 

Reading documentation  
Web search (google, forums, ...)  
Questioning community  

 

Debugging tool 
Category Formal methods and verification 

Comment 

Tools for static analysis Any tool that does code analysis before run-time 

 

Debugging method 
Category Looking for suspicious behavior 

Comment 

Looking for suspicious content of variables  
Looking for suspicious content of the memory  
Looking for suspicious flow of the program  
Creating a log or a trace  

 

Debugging method 
Category Summarizing the problem 

Comment 

Discussing the problem (written or spoken)  
Documenting the problem  
Drawing charts or diagrams  

 

Debugging method 
Category Making the localization easier 

Comment 

Making the bad behavior reproducible  
Reducing the input of the program  
Refactoring code  
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Debugging method 
Category Other 

Comment 

Minimizing the input of the program  
Going through a chain of bad variables  
Re-reading the source code  
Searching for the problematic part of the code  
Disabling parts of code  
Generating hypotheses and checking them  
Changing the program (what-if approach)  
Writing a test  
Investigating probable location of the bug  
Changing build process (rebuilding, O2 -> O0, ...)  
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