
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Tomáš Martinec

Evaluation of Usefulness of Debugging Tools

Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký

Study programme: Software Systems

Specialization: Dependable Systems

Prague 2015

Replace this page by assignment copy

Acknowledgement
I would like to thank people that supported me during work on this thesis. These

are:

 Twenty university students of the local operating system course who spent non-

trivial amount of their efforts to report information about their debugging activities.

This study would not have been possible without their voluntary assistance and I am

convinced that our efforts yielded results that are worth it.

 People from Department of Distributed and Dependable Systems, because they

enabled me to interfere with their course and supported me with their ideas and

feedback. My special thanks belong to my advisor Mgr. Martin Děcký who helped to

decide whether I finish this work or not one year ago.

 An excellent life coach Martin Pošta who assisted me with finding meaning in

continuing with this work and helped me to become able to move forward without

absolutely any external push or motivation.

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............

Název práce: Vyhodnocování užitečnosti ladících nástrojů

Autor: Tomáš Martinec

Katedra: Katedra Distribuovaných a spolehlivých systémů

Vedoucí diplomové práce: Mgr. Martin Děcký

Abstrakt:
Ladění je časově velmi náročná aktivita programátorů. Přestože počet návrhů

ladících nástrojů je velký, tak počet nástrojů, které jsou přijaty lidmi z praxe a

používány při vývoji software je menší než by se dalo očekávat. Spousta lidí věří, že

jedna z příčin nastalé situace spočívá v tom, že je obtížné odhadnout, jestli se úsilí nutné

pro implementaci nově navržených nástrojů nebo přístupů vyplatí.

Prvním cílem této práce je navrhnout metodologii pro vyhodnocování užitečnosti

ladících nástrojů. Abychom ukázali příklad použití navržené metodologie, tak jsme

uskutečnili studii užitečnosti běžných ladících nástrojů pro vývoj operačního systému.

Druhým cílem této práce je prozkoumat a popsat další aspekty procesu, jak

programátoři ladí software.

Klíčová slova: Ladění, Empirická studie, Vyhodnocení užitečnosti

Title: Evaluation of Usefulness of Debugging Tools

Author: Tomáš Martinec

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký

Abstract:
Debugging is a very time-consuming activity for programmers. Although the number

of proposed debugging tools is large, the number of tools that are actually adopted by

practitioners and used during development of software is less than one may expect.

Many believe that one reason for the situation is that it is hard to estimate whether the

implementation efforts of proposed debugging tools or approaches are worth the gain.

The first goal of this thesis is to propose a methodology for the evaluation of

usefulness of debugging tools. To provide an exemplary usage of the methodology, a

study of usefulness of typical debugging tools for development of operating systems is

conducted. Secondly, the thesis also explores and documents further aspects of how

programmers debug software.

Keywords: Debugging, Empirical study, Usefulness evaluation

Contents

1. Recommendation for usage ... 1

2. Introduction .. 2

2.1. Contribution ... 2

2.2. How to use this work .. 3

3. Methods... 4

3.1. How much useful is a screw-driver or a hammer for people? ...thoughts on

evaluating usefulness of generic tools .. 4

3.2. Environment of data collection .. 6

3.3. Data collection .. 8

3.3.1. Periods of data collection ... 8

3.3.2. How the data were collected .. 8

3.3.3. Description of collected data .. 9

3.3.4. The last year of the study .. 13

3.4. Training of the participants ... 13

3.5. Web interface for data collection ... 14

3.6. Further thoughts on our methodology ... 19

3.6.1. Realistic environment .. 19

3.6.2. Exploratory study versus aimed study .. 19

3.6.3. Uncontrolled experiment .. 20

3.6.4. Amount of collected data ... 20

3.6.5. Interviews ... 20

3.6.6. Hypothesis for testing .. 20

3.6.7. Time resources needed for doing this study .. 20

4. Results and interpretation .. 22

4.1. Usefulness evaluation of debugging tools ... 22

4.1.1. Evaluation of all the available tools .. 22

4.1.2. Comparision of a GUI debugger, GDB and printing messages 25

4.2. Further aspects on debugging .. 27

4.2.1. What portion of development is spent by debugging 27

4.2.2. Worst-case estimation of debugging time for a single issue 28

4.2.3. Most probable estimation of debugging time for a single issue 28

4.2.4. Debugging time for design and implementation errors 29

4.2.5. Debugging time of different programmers ... 30

4.2.6. Debugging and work satisfaction ... 31

4.2.7. Debugging time and perceived complexity .. 32

4.2.8. Debugging time in different life cycles of a bug .. 34

4.2.9. Debugging time of bugs related to assembler .. 35

4.2.10. Debugging time and other aspects ... 36

4.2.11. Debugging time and copy-and paste bugs ... 37

4.3. More theoretical aspects of debugging ... 37

4.3.1. Debugging intents and their frequency .. 37

4.3.2. Root causes and bug frequency .. 38

4.3.3. Root causes and debugging time.. 39

4.3.4. Root causes and the project phase of their detection 40

4.3.5. Debugging with and without debugging tools ... 41

4.3.6. Participants preference on using debugging tools 43

4.3.7. Usage of debugging tools and bug complexity ... 45

4.3.8. Selection from available debugging tools ... 45

5. Related work ... 47

5.1. Studies evaluating usefulness of debugging techniques and tools 47

5.2. Design of new debugging tools and their evaluation .. 47

5.3. Studies of debugging or software empirical research in general 49

6. Conclusion ... 50

Bibliography .. 51

List of Figures ... 53

List of Abbreviations .. 54

Attachments .. 55

1 Assignments of the operating system course ... 55

2 Content of the attached CD .. 56

3 Structure of SQL database... 57

4 Data evaluation and the processing script ... 59

5 Ways of detection .. 60

6 Root causes .. 61

7 Methods and debugging tools .. 65

1

1. Recommendation for usage

Anyone who uses any output of this work is strongly suggested to provide feedback

how it was useful. You can use the email fyzmat@gmail.com for this purpose.

The rationale behind this is that the author will get more feedback of how correct

and meaningful this work is, and it prevents you to spend your time by studying

something that may not be very serious for you. Although following this suggestion

could become uncomfortable, I believe that it will help you to use your energy efficiently

on things that matter to you.

Sometimes life is not really easy. Thank gods for that.

2

2. Introduction

Programmers spend significant amount of their time by locating and fixing bugs in

their programs. Many professionals believe that finding the root cause of an issue is in

most cases much more difficult and time-consuming than the actual fix of the problem1.

Therefore, a large amount of work has been dedicated to design tools that would help

programmers to identify the root cause of a faulty behavior. In order to provide an idea

of what has been researched so far, we enlist some references to proposed or researched

debugging tools in the section 5.

Often, the usefulness of the proposed tools is evaluated only by a discussion or by a

few case studies. In our opinion, having just this not a very strong evaluation makes one

uncertain whether the proposal can bring significant amount of benefit and whether it is

worth the implementation efforts. Furthermore, without the feedback of usefulness for

these tools, the research effort invested into them can address issues that are not very

relevant or practical in real-world situations.

From the industrial point of view, there already exist commercial debugging tools

with very advanced debugging possibilities. For example, the company Lauterbach offers

a solution of hardware assisted debugging that provides highly advanced features such

as: reverse execution, symbol-based tracing and debugging on both operating system and

user space application levels, support for multiple operating system and virtualization,

features for timing and performance analysis and integrated tools for processing and

visualizing the measured data. The management of a company that develops low-level

software may be confronted with the question whether buying such an advanced

debugging product will be worth the purchase, or how many licences should be bought.

 This thesis is aimed to address the questions about usefulness of debugging tools by

its first goal of designing a methodology that evaluates usefulness of debugging tools. We

tried that methodology out on debugging tools that are available to programmers of

operating systems.

As we had an easy opportunity to collect much more data about debugging than just

for purposes of tool usefulness evaluation, we decided that the second goal of this thesis

will be an exploration of the process how people debug computer programs. For

example, we focused on mapping the relationship between debugging time, the

complexity of the debugging scenario, what was the root cause of bug, or whether a

debugging tool had been used. The detailed description of what data were monitored

and explored is in the section 3.3.3.

2.1. Contribution

In this work, we provide the following list of contributions:

 In 3.1 we discuss some thoughts on usefulness evaluation for generic tools. Anybody

who needs to interpret results of a similar evaluation (or even who needs to design

one) may find value in those thoughts.

 In section 3 we describe our methodology for evaluating usefulness of debugging

tools in low-level programming environment. Its uniqueness lies in the fact that the

data collection was done in a group of skilled programmers for hundred hours of

programming work per each programmer. We are not aware of any published study

that would monitor how people debug for so long while maintaining the details of

collected data so large. Further pros and cons of our methods are mentioned in

1 Interestingly, we were not able to locate any published evidence that would support the

claim.

3

section 5. We believe that our methodology can server other researchers at least as

an inspiration.

 We performed a usefulness evaluation of tools that were available to students of an

operating system course at MFF UK 2 . The tools consisted of all the commonly

available debugging tools and of some unusual debugging tools. Furthermore, we

focused on comparing the usefulness of a command-line debugger (GDB) with

usefulness of a GUI debugger (based on the Eclipse CDT plugin). After reviewing

the collected data we reached to a rather surprising conclusion that both kinds of

debuggers gave no advantage of faster debugging than the other alternative. See

4.1.2 for more details.

 During this exploratory study we collected multiple kinds of data. Therefore, in

section 4.2 we provide an analysis that covers a spectrum of debugging aspects.

 We focused some of our analysis to uncover areas that would be worth of further

research. The results are in the section 4.3.

 All the collected data are stored in the attached CD in the form of exported SQL

database, and the attachment 3 describes the structure of the data. We did so,

because some researchers could be interested in those data.

2.2. How to use this work

If you are a programmer and you intend to just have a quick overview of this thesis,

we would suggest you to go right into the result section 4 or check the table of contents

for aspects of debugging that interests you. If you are in a position of software company

management you may find value in the thoughts on how to evaluate usefulness of tools

in general (section 3.1), and in the results sections 4.1 and 4.2. Then, when any result

catches your attention and you would like to make serious decisions based on that

result, we strongly recommend you to read the methods section 3, understand the

specifics of the environment where the data were collected from, and become aware of

weak points of our methods. That should help you to interpret our results most

realistically and adapt our conclusions to your specifics.

If you are a researcher you may find value in the whole work. Specifically, section 4.3

of the results is likely to get your interest, the methods 3 section can serve as an

inspiration for your research, and the 5 section provides a basic set of references to the

related research.

2 Charles University in Prague, Faculty of Mathematics and Physics

4

3. Methods

We start describing ideas behind our methodology from a rather generic discussion

about usefulness evaluation, and then we describe how we applied the general

approaches for the specific environment of our study.

3.1. How much useful is a screw-driver or a hammer for people?

...thoughts on evaluating usefulness of generic tools

Although it may sound simple, we would like to pinpoint how the usefulness of tools

can be perceived by people. This can help us to be able to interpret better how the

results of any usefulness evaluation reflect the reality. The first distinction is whether we

perceive the usefulness as absolute or relative:

We define absolute utility of a tool as the benefit of using the tool minus costs of

inventing, obtaining and maintenance of the tool.

We define relative utility of a tool against some other tool (or set of tools) by

comparision whether the tool is better or worse than some other alternative, or by

expression how much is the tool better or worse.

The strong point of the absolute measure of utility is that it fits very well for the

purposes of cost/benefit analysis, which is a popular method for making rational

decisions. Sometimes, it may be difficult to estimate the benefits of using the tool. For

example, the method that was used in (1) can be to some help here too. The method

aims to evaluate what are the consequences of living in low-trust environment in terms

of money. Basically, the evaluator keeps asking evidence questions (e.g. How often does

it happen? or Who does that job?) and impact questions (e.g. What are the

consequences of not having that possibility?) until he reaches the costs or benefits in

terms of money.

 When the estimation of absolute measure of utility is not possible or not reasonable

to be done, we may become satisfied with the relative measure. The main benefit of this

measure is that it can be often estimated just by simple observations and intuition or,

more scientifically, by using statistical tests. When interpreting such relative

comparision of usefulness we should be aware how well does the alternative match with

our situation, or whether the comparision includes both the costs and benefits of the

tools.

Regardless of whether the utility is measured absolutely or relatively we have

identified the following factors that, in our belief, have influence on the usefulness of

tools:

 The tool is actually being used. The justification behind this factor lies in the

common-sense assumption that the less often a tool is used the less benefit it

generates.

 The tool helps when it is being used.

 The tool is comfortable, improves the work satisfaction, or it makes people less tired.

Clearly, these factors are to a large degree independent. We can have a tool for very

generic purposes (such as a kitchen knife) and a tool for rather special purposes (such as

a bread slicing machine), which may be used much less often than the generic tool, but

in some specialized scenarios it helps much more. Therefore, we may consider both of

these tools to be useful regardless of what factor they fulfil better.

5

One could be tempted to construct a mathematically formal utility function out of

these largely independent variables that would be used to compare the tools according to

their usefulness. We abandoned that approach as in our area of interest we found no

strong benefit of having the tools sorted by their usefulness. For other areas such as

management-like or political decisions (e.g. Which tool to buy?) we suggest to use the

absolute measure of utility if possible, and if not, use the multi-criteria analysis (2) to

the identified factors of usefulness.

In the following text, we will transfer the ideas of generic tools evaluation into the

specific area of debugging tools. For each generic factor of usefulness, we determine a set

of values that tools can have and criteria for assigning these values. The values and

criteria are described in the table 1, table 2 and table 3. We believe that this way of

presenting results is better suited for informative purposes of this thesis rather than

presenting raw numbers.

Tool usage frequency Criteria

Often The tool was used for 10% or more of investigated issues
Sometimes The tool was used for 2% or more up to 10% of investigated issues
Rarely The tool was used for less than 2% of investigated issues

Table 1: Informative values of how often is a debugging tool used

Tool helpfulness Criteria

Very helpful More than 60% of tool usages were perceived as very helpful

Questionably helpful
More than 60% of tool usages were perceived that the tool did not help
at all

Somewhat helpful The remaining case

Table 2: Informative values of how was the usefulness of a debugging tool perceived by

participants

The helpfulness of the tool usage was perceived and recorded directly by

participants. They were choosing between the values Helped a lot, Helped a little and

Did not help. The more exact meaning of these values is located in the section 3.3.3.7.

Tool specialization Criteria

Specialized
There is a debugging intent that is being performed in at least 80% of
cases by the tool

Generic The remaining case

Table 3: Informative values of how specialized was a debugging tool

We introduced the factor of specialization in the table 3 to avoid evaluating a tool

with specialized usages as less useful than it is in reality. Note that the result of the

proposed criteria is highly dependent on the way of grouping the debugging tools. For

example, one could group all the kinds of debuggers together, or one could decide that

there will be two groups of debuggers (GUI debuggers and command-line debuggers). In

the first case there will be much higher chance that debuggers will be evaluated as a

specialized tool for, let's say, finding out the value of variable than in the latter case.

Therefore, our way of grouping should be reviewed to check if it still fits the purpose the

evaluation will be used for. In this exploratory study we cannot know what specific

purpose this usefulness evaluation is aimed for, so we chose one decent alternative.

The last identified factor that is related to the impact on work-satisfaction, tool

comfort and (mental) energy required to use the tool is not examined in this work. We

6

believe that these aspects cannot be sufficiently studied just by self-observations of

participants and that some assistance of researchers would be needed during

experiments. Thus, we think that monitoring these aspects would require us to commit

more resources to this work than is reasonable in our situation.

3.2. Environment of data collection

The participants of this study are students of a course of operating systems at MFF

UK. During the course the students are supposed to get more familiar with concepts of

operating systems and improve their low-level programming skills. Therefore, this study

is closely related to the area of low-level programming. Many students perceive the

course as one of the most difficult programming courses of the faculty. That is because

of demanding amount of work and environment where debugging is unusually hard. The

typical amount of time that each student performs programming tasks moves between

120 and 350 hours3. The students work usually in teams of three (or much less often in

two or four) members. In order to illustrate to the size of the project we provide the

picture 1, which summarizes the lines of code that the resulting software has had so far

with 14686 lines of code as the median value.

Picture 1: Size of the whole project for various teams in LOC

The students must do four assignments in order to pass the course successfully. After

implementing all the assignments, the students end up with a minimalistic operating

3 We cannot explain why the variance is so high and we noticed that even a technically

highly skilled student reported 351 hours of implementation efforts, one possible explanation
is that they aimed for higher quality.

7

system that satisfies a simplified version of POSIX API in the areas of threading,

processes, memory allocation, and synchronization. The implemented code is executed on

a virtual machine called MSIM. MSIM emulates a simple computer that is based on a

MIPS R4000 processor. For a detailed description of the programming assignment and

the course see the attachment 1.

The high difficulty and benefit in understanding operating systems of this course is

well-known among students and they have the option to avoid this course. Therefore,

most attending students are highly motivated to master the topic. Additionally, weak

students in programming attend this course only rarely and some attending students

have even a few years of professional programming experience. Thus, we believe that the

students/programmers attending to this course represent real-world low-level

programmers as much as is possible in academic environment. We consider this

important, because cooperation with these students makes our results much more

applicable to the realistic situations where skilled programmers are employed.

Picture 2: Time schedule of the whole project and events related to this study

October,
1-4th week

4-7th week

Preparations,
introduction into
assignments,
training

Introduction into the study,
Training for the participants

Work on
assignment 1

8-11th week
Work on
assignment 2

Start of data collection

12-16th week
Work on
assignment 3

17-21th week
Work on
assignment 4

End of data collection

Partial data summary and
interviews with some
participants

8

3.3. Data collection

3.3.1. Periods of data collection

In order to collect as much data as our resources allowed, we performed the study

during the winter school terms of the years 2011, 2012 and 2013.

Picture 2 shows the schedule of a single term with important events and deadlines

marked. During the years 2011 and 2012 the participants recorded complex information

about their debugging activities, because we aimed to explore many kinds of data. The

detailed description of the recorded data is located in the section 3.3.3. In the year 2013

the data collection was restricted just to obtain information about mapping of what

debugging intents programmers have and what debugging tools they use to perform

those intents. The table 4 contains how many students participated in the study. The

participation was voluntary and the participated students were given a small bonus

during evaluation of their assignments.

Year of the study Count of participants Focus of collection

2011 9 Generic data
2012 6 Generic data
2013 5 Debugging intentions

Table 4: Count of participants and focus of this study during years

3.3.2. How the data were collected

Picture 3: Specification of what process this study aims to explore4

This study aims to explore the process of how programmers debug computer

programs. To define this process more exactly we consider debugging as actions that are

performed when the programming code does not behave as the programmer expects and

ends by explaining the unexpected behavior or by abandoning the efforts. Some people

4 We reused and adapted the image of programmer by Hadi Davodpour from the Noun

Project, which is published under the Creative Commons 3.0 license.

9

may not see an exact fit with their perception of debugging and our definition, because

our definition, for example, allows that there is no actual bug in the software and the

programmer can still debug it. We choose not to refine the terminology further as we

found no strong reason in doing so for the context of this work.

To give some better feeling of what we consider debugging, we give three examples:

 The programmer executed a piece of code with a belief that it should behave in

some way and it actually behaves in another way. We consider this activity to be

debugging.

 Somebody else reports to the programmer that the program behaves in a faulty

way and the programmer starts to reason about it. We consider this activity to

be debugging.

 The programmer is searching for bugs in the code without any attempt to

execute the code. We do not consider this activity to be debugging.

In this study the participants recorded information about every debugging activity

they encountered as they were working on their regular assignments. The records were

filled into a prepared web interface every time the participants finished investigation of

any unexpected behavior of their code.

3.3.3. Description of collected data

In the following text we explain what kind of data was collected for each debugging

activity.

3.3.3.1. Project development time

This is a single time value that means how much effort each participant did on

fulfilling the assignments. It includes all the development activities such as

implementation, debugging, communication, handling emails or writing documentation.

We recommended to participants to update this value every day when something was

done.

3.3.3.2. Debugging time

When we use the term debugging time in this work we mean the time of

investigation of an unexpected behavior. Maintaining this information for the whole

process of a long investigation in precise manner could be too demanding for

participants, so they were instructed to maintain high precision for short investigations

and they were allowed to have 10 minutes error for investigation longer than 2 hours. In

this uncontrolled experiment we also expected the participants to do rounding of these

time values and we were not mentioning anything about how they are supposed to

round. For example, we believed that participants will very likely round 28 minutes to

30 minutes. The main motivation behind keeping the methodology in this way was that

in our opinion it was not reasonable to tie up the participants by many strict rules for

these uncontrolled observations. We think that they would be more likely to stop their

contribution to this study or the rules hard for maintenance could have a very strong

effect on the experiment itself. What we did in order to increase the precision was

encouraging the participants to note the time when they started to investigate some

unexpected behavior.

The histogram in the picture 4 suggests that the debugging time values were indeed

rounded very often.

10

Picture 4: How often was the debugging time rounded

3.3.3.3. Complexity of the debugging scenario

We wanted to obtain information of how difficult a particular debugging scenario is.

Therefore, we instructed the participants to record their opinion of the difficulty of the

debugged issue. To define the object of such observations less vaguely we expressed the

complexity as follows:

We consider a complexity of the debugging scenario as the amount of thinking that

is needed to understand the situation and for the analysis of the problem. It does not

necessarily have to reflect the debugging time of the issue. The table 5 lists the values

and provides examples of debugging scenarios with different complexities.

Complexity Description and an example

Trivial
Requires only little or less thinking. Checking code that implements a straight-
forward idea. No large pointer manipulations. No complex conditions. No
recursion. Fixing a wrong return value in a function that loads configuration.

Easy Requires some thinking. Insertion to a link list.

Medium
Making charts or notes starts to be useful. Insertion to an AVL tree. Searching
for a bug in the operating system page tables code.

Hard
Requires an analysis or the programmer thinks a lot. Searching for a race
condition that cannot be reproduced easily.

Table 5: Description of complexity of debugging scenarios

11

This distinction of complexities was introduced and explained to the participants. It

should have provided them the boundaries that would help them decide which

complexity to choose.

During the course of the study we started to have concerns whether the recorded

data correspond correctly to its supposed meaning. The evaluated data in 4.2.7 suggest

that the recorded complexity almost linearly depend on the debugging time. One

explanation for this is that the participants tended to perceive the complexity of the

scenario according to the time needed for investigation. In such a case we would measure

something else than we originally wanted. As we do not have evidence to justify this

concern, we must treat the meaning of these recorded data more generally as a not very

specifically defined difficulty of a debugging scenario. In order to capture the data with

the intended meaning we would need to modify the methodology of the data collection.

Likely, the experiment would have to be more controlled.

Also note that for the reasons explained by the previous paragraph we use terms

complexity and difficulty interchangeably in this work.

3.3.3.4. Feelings from the debugging activity

During designing of this study we decided to collect data about how the amount of

job-related hardship corresponds to work satisfaction of low-level programmers. To

increase objectivity the participants were instructed to reflect their feelings in the

following situation:

Suppose that today is some another day in the future. You arrive to your work, do

some programming for an hour or two, exchange a few interesting news with your

colleagues and then you encounter the similar problem just like what you have just

solved. How would you feel?

The reasoning behind making the participants imagine the described situation is that

for our observations we wanted to minimize the impact of the psychological peak-end

rule (3)5 that could be combined with the pleasure gained by discovering the explanation

of the unexpected behavior. We thought that this effect would be only short-lasting (no

more than a week in duration), so we aimed to set the time of reflection into distinct

future in order to minimize the likely positive effect of task achievement. Therefore, we

promised ourselves that we would achieve a better level of objectivity.

During final interviews with participants we found that they often did not manage to

reflect their feelings in the intended way. They explained what they recorded by using

sentences like I reported the positive feeling, because I have just finished a difficult task

successfully. Therefore, we believe that the effect of goal achievement was significantly

influential regardless of our effort to minimize it and we must treat the collected data as

it would have a more generic and vague meaning of work-satisfaction. Similarly as for

the complexity of a debugging scenario, we believe that collecting this data with a more

refined meaning would require changes in methodology.

3.3.3.5. Way of detection

As we were preparing this study, we found no published evidence about the ways

how programmers become aware of bugs and, more importantly, how frequent these bug

5 The so called peak-end rule is a psychological pattern of how people tend to memorize

intensive experience (both pleasant and unpleasant). The rule claims that the most relevant
for later judgement are the moments of the peak intensity and the end of the experience
rather than the average of all the moments. For our case that means that the end of the
experience (i.e. finishing a difficult task) is very likely to have strong influence on work-
satisfaction of the programmers, because the success could eliminate the effect of most
unpleasant experience.

12

detections happen. Therefore, we included collection of these data into the study as we

believed that it may become relevant for some management-like decisions in companies

such as designing software quality-assurance processes.

The complete list of identified ways of detection is in the attachment 5. The

participants were supposed to choose one way of detection from this list for every record

of investigation. Furthermore, the participants recorded additional information for each

record, which captured further characteristics of the detection (such as The bug was

detected during debugging of another bug). The web interface contained predefined

checkboxes that allowed the participant to record the additional information. The list of

these options is in the attachment 5 too.

3.3.3.6. Root cause

We collected the data about root causes of bugs in order to map how the individual

root causes are related with debugging time and how frequent they are. (4) mentions

that the selection and categorization of root causes is typically done with regards to the

purpose of the study rather than by choosing an existing well-established categorization.

As the purposes of our study are exploratory, we just desired the categorization to be

comprehensive well enough. We got inspired from (5) and adapted it to fit better the

environment of low-level programming (e.g. we added Violation of ABI rules root cause).

The root causes are grouped into three main categories Wrong logic or design, Wrong

implementation and Other, and we created subcategories for each of these categories in

order to make orientation in the root causes faster for the participants.

Participants were instructed to distinguish between the two main categories

according to the following rules. If the issue was caused by incorrect thinking they

should select the root cause from the Wrong logic or design category. If the issue was

correctly designed or thought, but incorrectly implemented they should choose from the

category Wrong implementation. The main category Other contains root causes that

hardly fit these rules such as Not a bug root cause.

The list of identified root causes is identified in the attachment 6.

3.3.3.7. Used methods and tools

The participants were supposed to record what methods (i.e. debugging approaches)

and debugging tools they used to investigate the unexpected behavior. For each such

usage they selected what amount of usefulness the method or tool brought. The table 6

lists the criteria for selecting the usefulness. We specified this table in order to maintain

a reasonable level of objectivity of these data and to provide guidance to participants

how to choose the amount of usefulness. The participants were asked to use their own

judgement in blurred cases.

Usefulness Criteria for selecting

Did not help
The usage brought no useful information for the investigation or it lead to an
inconclusive dead end.

Helped a little
Anything between the other two values. The usage brought some minor
information that was to some use. For example, where not to search for the
error.

Helped a lot
The usage helped significantly with the investigation. For example, it led
directly to explaining the unexpected behavior, or the programmer would
hardly investigate the problem without the tool.

Table 6: Values of usefulness for a particular tool usage and criteria for selection

13

The full list of identified methods and debugging tools is located in the

attachment 7.

3.3.4. The last year of the study

In 2013 we changed the methodology significantly to obtain a different kind of data

for tool usefulness evaluation. We wanted to map how frequent the debugging intents of

the programmers are (such as I want to know the value of some variable) and how

useful the available debugging tools are to fulfil those intents.

What changed was the moment when the data were supposed to be recorded. We

instructed the participant to record the intent for using a debugging tool after each its

usage. They participants recorded the debugging intent they were trying to perform, and

they selected the debugging tools that were used to achieve the intent with usefulness

for that particular usage. This is illustrated on picture 5, which was shown to the

participants too.

Picture 5: Specification of what process this study aimed to explore in 2013

Also note that in this year we stopped collecting the data described by 3.3.3, because

we wanted to focus on obtaining just the data about the debugging intents. In 3.6.4 we

explain why collecting just one thing matters.

3.4. Training of the participants

The participants received training to help them with the assignments and to instruct

them how to fill the records for the study. Furthermore, for both purposes they were

introduced how to use the GNU Debugger (GDB), MSIM Graphical debugger (i.e.

eclipse-based extension of GDB for MSIM) and some binutils (e.g. objdump).

We asked the participants to provide us feedback of the methodology of the study

and to inform us if any way of detection, root cause, method or debugging tool was

missing in our study. We can recommend this practice, because during the course of

study we received several suggestions and warnings about the validity of the obtained

observations. Some suggestions were incorporated in the study early enough (e.g. a

missing tool or debugging intent) and the warnings about flaws in our methods that we

were not successful to cope with are mentioned here in the text (e.g. in 3.6.4 how the

14

large amount of debugging reports caused many interruptions of regular programming

work).

3.5. Web interface for data collection

In the following we will go through the most relevant elements of our web interface

that was used to record data. We will mention our motivation behind the design of some

elements and the experience with the design.

Picture 6: The main page of the web interface that was used for data collection

Picture 7: The tab for reporting information related to the way of detection of the

unexpected behavior

15

Picture 8: The tab for reporting information related to the root cause of the unexpected

behavior

Picture 9: The tab for reporting information related to the used methods for investigation

of the unexpected behavior

16

Picture 10: The tab for reporting information related to the used tools for investigation of

the unexpected behavior

Picture 11: The tab for filling optional information about the report

17

Picture 12: The main tab of the study in the last year of the study

Picture 13: One of the graphs in the web interface; this one shows how much debugging

resulted in abandoning the investigation

We refer to the numbered red frames in pictures on pages 14-17:

 Frame 1 - the main menu of the web interface. We made significant effort (60 hours

of work) to display summarizing statistics during the course of study in an attractive

way, which was supposed to make the study more attractive in overall. For example,

see picture 13 for the having an idea of what level of the look-and-feel was achieved.

After the first year of the study we concluded that the efforts required to maintain

and develop further nice-looking summaries of data are unreasonable for the study of

our scale. The only exception was creating a view that enabled each participant to

see all his reported data, which helped a lot with communication whenever there was

an unusual debugging report.

 Frame 2 - tabs of the debugging report form. During the first two years of the study

we collected several various kinds of data (see 3.3.3). Filling all the data for each

debugging record could become too demanding for participants, so we were focused

18

to make the user interface as much comfortable as it was reasonable to do. The

different kinds of data were placed on different tabs and the participants could

navigate quickly through these tabs via clicking on the tab title or via the previous

and next buttons.

 Frame 3 - generic information about debugging report. The participants filled

information that was described in 3.3.3.1, 3.3.3.2, 3.3.3.3 and 3.3.3.4. For making

sure that the instruction will not be forgotten we created floating help with the

instructions about meaning of the fields and how they are supposed to be filled.

 Frame 4 - space for feedback and suggestions. This was mainly supposed to be used

to prevent missing items in categorization of root causes, ways of detection and so

on... During the course of the study we received about 10 improving suggestions and

we reviewed 29 out of 662 debugging records. The interface allowed to submit an

incomplete record only if this field had some content.

 Frame 5 - the submit button. The interface prevented the participants to submit

invalid data and in such a case it printed verbose and usable information about what

part of the form are filled wrongly. This was designed in order to save participants

as much time as possible with troubleshooting what is wrong. In the correct case the

web interface printed a message that the record has been submitted successfully.

 Frame 6 - the combobox for selection of the way how the unexpected behavior was

detected (as described in 3.3.3.5). The combobox itself contains just a category and

participants should choose the specific way of detection by choosing the appropriate

radio button below. The radio buttons changed according to the selected category.

This was designed to allow the participants quickly browse through all the options.

 Frame 8 - comboboxes for selection of the way what is the root cause of the

unexpected behavior (as described in 3.3.3.6). As our hierarchy of root causes is

large we used two comboboxes. The first one for the top-level category (Wrong

implementation, Wrong logic or design, Other) and the second for subcategories.

This specific way of user interface had its role. Some root causes are very similar (for

example Wrong implementation → Wrong program flow → Wrong order of

commands and Wrong logic or design → Data structures and algorithms →

Sequence of actions designed in a wrong way) and we wanted participants to decide

to which top-level category the root cause belongs before selection of the specific root

cause. Thus, we prevented the participants to select some similar root cause from a

wrong category.

 Frames 7 and 9 - flags related to the way how the unexpected behavior was

detected, or to the root cause. We desired to obtain some boolean-typed information

for each report. Therefore, we introduced a set of checkboxes to the relevant tabs.

 Frames 10 and 12 - comboboxes for selection of the category for the used debugging

methods or tools (as described in 3.3.3.7). Selecting a different category changes the

list of possibilities. This was designed to fit the list of options into a single tab, so

the participants would not get slowed down by scrolling.

 Frames 11 and 13 - arrays of radio buttons that indicate whether a particular

debugging method or tool was used. The default option has the value Not used,

because the participants usually will want to select only a few options and leave the

majority of options in the Not used state.

 Frame 14 - the optional tab for filling details whenever doing the report required

further discussion with the researchers. This helped a lot with effective

troubleshooting of unusual situations.

19

 Frame 15 - the main tab of the last year of the study (2013). The content was

minimalistic. The main user interface element on this tab was the combobox for

selecting the debugging intent for using the debugging tool.

3.6. Further thoughts on our methodology

In the following subsections we will look on our methods from other viewpoints.

3.6.1. Realistic environment

We designed our study to collect the data from as much realistic environment as was

possible in our conditions. This brings both pros and cons. One strong advantage is that

programmers record data from real-world situations. Therefore, we consider the validity

of our data to be resistant to the effect of collecting the data from an unrealistically

designed controlled experiment, which usually happened, for example, in the area of

evaluating usefulness of automated debugging tools (6). See the section 5 for further

comments on this.

The second advantage is that we aimed to test the usefulness of debugging tools

when all commonly debugging tools were available and participants had a completely

free will, which tool to use. Thus, in our study we do not compare just one tool with one

possible alternative, but rather we evaluate tools in the competition of other available

tools. We designed this with the assumption that skilled IT professionals will always

choose the tool that is most useful for the job. Although originally, we did not plan to

systematically monitor how is this assumption correct, we managed to get some

observations that suggest that this assumption is not so strongly held in reality. We

present these observations in the results section 4.3.8.

3.6.2. Exploratory study versus aimed study

The exploratory design of this study also brings some pros and cons. The advantage

is that the study can cover much more aspects of debugging than a more focused study,

and it can more efficiently pinpoint areas worth of further research. On the other hand,

we do not have a very specific goal (such as main questions and related hypotheses to

prove) and therefore, we risked that the study will yield results with only little value.

Thus, for the worst-case situation we expected that our results would contribute at least

to some of the following points:

 We would obtain new data on aspects that have been already researched.

 We would obtain data that will confirm something that people know intuitively, but

it has not been scientifically proven so far.

 We would obtain data that will map something that people cannot know intuitively.

 We would warn other researchers about unexpected flaws in our methodology, so

they could be at least aware of them since the beginning of their studies.

 We would pinpoint research areas that are, in our opinion, mostly worth of further

research efforts.

Ideally, we would be glad to provide some results with higher value such as:

 We would obtain data that will invalidate something that people know intuitively.

 Based on our data we would propose some way of improvement on existing tools,

methods or approaches.

20

3.6.3. Uncontrolled experiment

There are two major reasons why we chosen to have the experiment in an

uncontrolled way (i.e. the participants collect the data without presence of the

researching observer). Having this study in a more controlled way would be much more

demanding on our resources and it could violate privacy of participants unacceptably.

The main disadvantage of this approach is that we have only little means to check

whether the participants filled the data in the desired way. For example, some

debugging reports could be omitted or the data could be filled inconsistently (such as

that two almost identical bugs are recorded in a different way).

3.6.4. Amount of collected data

According to the feedback of participants, doing a single report about data of 3.3.3

took approximately 3 minutes when the participants got experienced with the reporting

web interface. One participant explicitly mentioned that besides those 3 minutes the

effect of interrupting his work brought much bigger inconvenience for him and that it

reduces his productivity.

Therefore, the method of making the participants record their experience could

influence our experiment by reducing their productivity. Thus, when using this approach

of collecting the data this factor should be taken into consideration. For our study we

believe that it is acceptable to make the participants collect a larger amount of data,

because our goals are more exploratory than narrowly focused.

3.6.5. Interviews

We interviewed five participants when they finished their project. Because this study

was long-term and exploratory oriented we did not have a plan or criteria how to do the

interviews. The main goal of the interviews was asking the relevant participants about

their experience of results that had been identified up to that time. Therefore, we could

more easily interpret the results and formulate hypotheses about the data more

accurately. These interviews also helped us to become more aware about flaws of our

methods.

3.6.6. Hypothesis for testing

Regardless that the study was designed to be mainly exploratory, we actually did

have three hypotheses that we wanted to statistically test:

1. Test that using a GUI debugger leads to faster bug investigation than using a

console debugger or just debugging messages.

2. Test that design-time bugs (errors in logical reasoning) are more time-consuming for

investigation that bugs that are caused by wrong implementation of correct ideas.

3. Test that the bugs that are related to assembler are more time-consuming for

investigation than bugs that are not related to assembler.

3.6.7. Time resources needed for doing this study

Researchers may be interested how much time-demanding is it to perform a similar

study. Based on our experience, we present the resource estimation in the table 7.

21

Activity Resource estimation and comments

Studying related work 120 man-hours
Design of methods 40 man-hours
Implementation of web interface
and its maintenance

160 man-hours

Participant training and
communication with them

1 man-hour for each participant and 30 man-hours for
researchers. We cooperated with 20 participants.

Work of participants

In average 3 man-hours per participant. This does not
include the effect of interrupting their programming
activities, which we expect to be much more relevant to
them.

Data analysis
140 man-hours. As this is an exploratory study many
uninteresting views on the collected data are expected.

Writing the report 120 man-hours

Sum
In total 610 man-hours for researchers and 60 man-hours
for participants.

Table 7: Human resources estimation for performing a study like this one

22

4. Results and interpretation

We organize the results into three parts: the usefulness evaluation as described in

3.1, further aspects of debugging, and data that could be valuable more-likely just to

researchers.

The location of the data and the evaluation script is described in the attachment 2.

In order to allow a highly detailed view on the way how we processed the data we put R

snippets into the relevant places of presented data analysis. These snippets point out the

reader into the evaluation.R script that is located in the attached CD, so they can

inspect details of our evaluation or do their own evaluation. The snippets look in this

way:

this is an R snippet of the evaluation.R script

4.1. Usefulness evaluation of debugging tools

4.1.1. Evaluation of all the available tools

Task

Evaluate the usefulness of tools that were available to students of the operating

system course according to the methods from section 3.1.

Data analysis

The table 8 summarizes the collected data of monitoring how often were debugging

tools used and how often were the usages helpful. These data consist of 662 debugging

records.

23

Tool Frequency [%] Helped a lot [%] No help [%]

Breakpoints and stepping, GUI 14.1 59.0 17.4
Call stack usage, GUI 0.0 NA NA
Disassembly usage, GUI 5.8 64.4 15.3
TLB window usage, GUI 1.0 10.0 50.0
Memory breakpoints, GUI 2.7 39.3 32.1
Memory view usage, GUI 0.7 14.3 71.4
Registry window usage, GUI 1.5 13.3 73.3
Variables window usage, GUI 1.5 6.7 66.7
SVN (log, history) 6.6 36.8 30.9
Objdump 1.0 70.0 30.0
Text processing tools 3.1 50.0 15.6
Excel, R, own script, ... 3.7 47.4 5.3
Instruction-level stepping and breakpoints,
MSIM

0.2 50.0 0.0

Memory dump, MSIM 2.4 64.0 16.0
Inspecting registers, MSIM 0.7 28.6 57.1
Special instructions of MSIM 2.4 44.0 40.0
Memory breakpoints, MSIM 4.2 48.8 18,6
Execution trace, MSIM 1.1 54.5 36.4
Breakpoints and stepping, GDB 4.6 46.8 23.4
Call stack usage, GDB 8.2 33.3 33.3
Disassembly usage, GDB 2.7 14.3 46.4
Memory breakpoints, GDB 2.0 45.0 40.0
Inspecting memory, GDB 1.4 28.6 42.9
Inspecting registers, GDB 3.0 35.5 35.5
Inspecting symbol values, GDB 1.4 28.6 64.3
Own functions (in code) for debugging 3.4 31.4 28.6
Own debugging programs 14.2 69.7 9.7
Reading documentation 1.7 88.2 5.9
Web search (google, forums, ...) 3.0 61.3 9.7
Questioning community 1.2 33.3 8.3
Tools for static analysis 0.7 71.4 14.3

Table 8: Frequency of debugging tool usages and their perceived usefulness

In the last run of the study when we focused on studying debugging intents, we

found 4 tools that had a specialized usage. The table 9 summarizes the relevant data.

The results are based on 138 records for 22 intents.

Tool with a specialized usage Intent Reported usages

SVN (log, history) Investigate what has changed recently 1
Objdump Search for a symbol name from address 1
Own functions (in code) for
debugging

Investigate what is the program doing right
now

1

Reading documentation Search of error code meaning 2

Table 9: Tools with a specialized usage

Interpretation

According to the proposed methodology, we interpret the data in the table 10.

24

Tool
Frequency of

using
Usefulness of a usage Specialization

Breakpoints and stepping, GUI Often Somewhat helpful Generic
Call stack usage, GUI Rarely NA NA
Disassembly usage, GUI Sometimes Very helpful Generic
TLB window usage, GUI Rarely Somewhat helpful Generic
Memory breakpoints, GUI Sometimes Somewhat helpful Generic
Memory view usage, GUI Rarely Questionably helpful Generic
Registry window usage, GUI Rarely Questionably helpful Generic
Variables window usage, GUI Rarely Questionably helpful Generic
SVN (log, history) Sometimes Somewhat helpful Specialized
Objdump Rarely Very helpful Specialized
Text processing tools Sometimes Somewhat helpful Generic
Excel, R, own script, ... Sometimes Somewhat helpful Generic
Instruction-level stepping and
breakpoints, MSIM

Rarely Somewhat helpful Generic

Memory dump, MSIM Sometimes Very helpful Generic
Inspecting registers, MSIM Rarely Somewhat helpful Generic
Special instructions of MSIM Sometimes Somewhat helpful Generic
Memory breakpoints, MSIM Sometimes Somewhat helpful Generic
Execution trace, MSIM Rarely Somewhat helpful Generic
Breakpoints and stepping, GDB Sometimes Somewhat helpful Generic
Call stack usage, GDB Sometimes Somewhat helpful Generic
Disassembly usage, GDB Sometimes Somewhat helpful Generic
Memory breakpoints, GDB Rarely Somewhat helpful Generic
Inspecting memory, GDB Rarely Somewhat helpful Generic
Inspecting registers, GDB Sometimes Somewhat helpful Generic
Inspecting symbol values, GDB Rarely Questionably helpful Generic
Own functions (in code) for
debugging

Sometimes Somewhat helpful Specialized

Own debugging programs Often Very helpful Generic
Reading documentation Rarely Very helpful Specialized
Web search (google, forums, ...) Sometimes Very helpful Generic
Questioning community Rarely Somewhat helpful Generic
Tools for static analysis Rarely Very helpful Generic

Table 10: Evaluation of debugging tool usefulness

One interesting finding is that the GUI debugger was used mainly for its ability to

put breakpoints and do stepping, view disassembled code and put memory breakpoints.

More interestingly, even such a common feature as viewing the call stack was never

reported for the GUI debugger. We see some possible explanations. The first is that the

participants omitted to record usage of the call stack view. The second explanation is

that the task of implementing the core of an operating system really generates very few

situations where the call stack view in the GUI debugger would be useful. Or users of a

GUI debugger need the call stack much less often than users of GDB, because they are

much more often aware about the current location of the program execution.

The second thing worth of mentioning here is that the amount of data for evaluation

which tools have a specialized usage is low in our opinion. And because some intents are

performed much more often (see the table 18) than other intents, many intents has only

from one to a few records. Therefore, tools that were recorded for the intents with low

amount of records easily satisfy our definition, and thus we consider the validity of the

specialized column at high risk and provide the summary mostly just for orientation

purposes.

25

4.1.2. Comparision of a GUI debugger, GDB and printing messages

Question

Sometimes low-level programmers have the possibility to use a graphical debugger, a

command-line debugger or they can debug by printing debug messages. Which way is

the fastest? This question relates to the hypothesis 1 of the section 3.6.6.

Data analysis

We took debugging issues that were investigated only by either a graphical debugger,

by the GDB command-line debugger or by printing debug messages. During the data

checks we discovered that some participants had a strong preference of a single

debugging tool. Therefore, we took into account only a limited number of records from

those participants in order to normalize the influence of their personal debugging style.

The comparision is presented in the table 11 and the picture 14.

Debugging time [min]
GUI debugger
7 participants

42 records

GDB
8 participants

24 records

Debugging messages
13 participants

57 records

Minimum 0 4 1
1st Quartile 10 15 15
Median 20 25 30
Mean 72.3 60.8 68.8
3rd Quartile 60 45 60
Maximum 1200 480 600

Table 11: Debugging time statistics for comparing how fast is debugging with GUI

debugging, GDB debugger or just debugging prints

26

Picture 14: Distributions of debugging time for comparing how fast is debugging with GUI

debugging, GDB debugger or just debugging prints

Testing whether the means differ statistically:

> t.test(GUIOnlyDebuggedTimes, GDBOnlyDebuggedTimes)
p-value = 0.66

> t.test(GUIOnlyDebuggedTimes, PrintingMessagesOnlyDebuggedTimes)
p-value = 0.90

> t.test(GDBOnlyDebuggedTimes, PrintingMessagesOnlyDebuggedTimes)
p-value = 0.71

The difference in means of investigation time with using the GUI debugger, GDB or

just debugging messages is not statistically significant.

Answer

Based on our data we see no major difference of how the choice between a graphical

debugger, the GDB command-line debugger or debugging messages affects time of

debugging.

The only minor observation is that the graphical debugger is more suitable to

investigate issues that are fast for resolution (approximately up to 20 minutes). On the

other hand the data indicates that using a command-line debugger is better for issues

that take a lot of time for resolution (approximately from 45 minutes).

27

Hypotheses

Although researching this trend more deeply is outside the scope of this study, we

can at least formulate a hypothesis that explains this trend: Using a graphical debugger

is more comfortable (meaning that the users see the whole source code and are able to

navigate easily and quickly) than the other debugging means, which helps programmers

to investigate simple debugging scenarios faster than with the other means. On the other

hand the programmers tend to think less intensively while using a graphical debugger, so

resolving difficult debugging scenarios takes them more time than with using other

means.

4.2. Further aspects on debugging

In this section we present data about various other aspects of debugging that we

were able to collect. In order to make these results as much practically oriented as

possible, we begin with a question that addresses real-world issues and provide more

context of the question. Furthermore, we maintain objectivity by separation of facts

from our interpretation, opinions and beliefs. Also note that among many evaluated

views on the data we present only those that we consider valuable (see 3.6.2 for our

criteria).

4.2.1. What portion of development is spent by debugging

Question

How much time should project managers expect to be spent on debugging during

development?

Context

Project managers in many industries use the technique of Gantt diagram (7) and the

method of critical path for planning of the work for their colleagues. In software

engineering this technique has a very weak point - it is very hard to estimate working

time for single programming tasks and working packages. For example, throughout our

professional experience it has been common to provide estimations that were two or

three times less than the actual amount of performed work. We can remember even

some tasks that were originally estimated to a week of work and ended up after three

months of efforts. These errors in estimates lead to bad project planning and the

consequences are often stressful for everybody involved.

Data analysis

We take into consideration the amount of time that each participant was

investigating the unexpected behavior and the total time that he spent on the project.

Then, we compute what part in percents did he spend by debugging and we are

interested in the mean value of these percents.

95% one-sided confidence interval of the mean value is [0%; 40.0%].

Answer

Based on the data we have we can help project managers if they were able to obtain

an estimate of other development efforts without debugging activities, because our data

suggest that debugging takes less than 40% of development time in average.

From our results we propose an improvement of the depicted planning approach:

Extend the estimation of work without debugging activities by the upper bound of the

28

95% confidence interval (i.e. 40% in our case) and you will get an estimation for the

whole programming activity including the debugging efforts. We believe that this advice

will, in average, give better estimates than those based on pure intuition. Longer chains

of activities (more than 4) will in our opinion reduce deviations from the average. If you

will experiment with this proposal please check the following:

 Be aware that the activity you are applying this suggestion to should be similar to

the activities we measured. It should be some kind of coding in low-level

programming language, ideally development of an operating system.

 Take better care on the critical path and critical sub paths of the Gantt diagram,

because an error in estimation on activities on these paths may have worse

consequences.

 Collect data from your environment to refine the precision of the estimates.

 Do provide us feedback how our proposal worked.

4.2.2. Worst-case estimation of debugging time for a single issue

Question

This question and the next question 4.2.3 focus on estimation of investigation time

for a single debugging activity. How much time can I expect to debug an issue that is

likely to be very hard to analyze?

Context

The customer reported a problem in our operating system and the initial analysis

and symptoms suggest that the issue will be very hard for debugging. The customer

needs to understand urgently where the problem is located and your boss is expected to

give him some realistic worst-case time of getting the problem investigated. In what time

can I tell my boss (with 95% probability) that the root cause will be found?

Data analysis

> complexity = read.csv("complexity-and-feelings.csv", header = TRUE)
> veryHardDifficultyTimes <- complexity[complexity[,2] == 4,1]
> quantile(veryHardDifficultyTimes / 60, 0.95)

The 95% quantile is 12.6 hours of investigation. Searching for the root cause was

abandoned in 2.1% of cases.

Answer

You can tell your boss that the root cause will be investigated with reasonable

certainty after 12.6 work hours. Only one issue of twenty will take longer. Also note that

some small amount of issues (2.1%) was left unresolved, so the full investigation would

take longer in those cases.

We consider this estimation suited best for tasks related to development of an

operating system where simulation on QEMU is possible.

4.2.3. Most probable estimation of debugging time for a single issue

Given my feelings of the bug difficulty, what time can I expect to be debugging the

issue?

29

Context

I ask, because many times when it is late in the day my wife calls me asking at what

time I will be home. She will prepare the dinner to be hot at that time. The only thing I

can base my estimation on is a more or less vague feeling from bug's symptoms and the

environment (multi-threaded scenario, assembler code, etc.) where I will search for the

bug. Very often my estimation is very wrong, the dinner gets cold and my wife is

somewhat disappointed when I return home. On the other hand, I have a strong need to

have the task finished when I leave the work. It would be very helpful if I could estimate

the debugging time much better.

Data analysis

Similarly to the previous question, we take some relevant quantiles of investigation

time just for bugs with easy difficulty. The table 12 presents the distribution.

> easyDifficultyTimes <- complexity[complexity[,2] == 2,1]
> quantile(easyDifficultyTimes , c(0.25,0.5,0.75,0.95))

Quantile Debugging time of easy bugs [min]

25% 9
50% 20
75% 31
95% 120

Table 12: Investigation time for bugs that were perceived as easy to investigate

Data for other difficulties have similarly wide or wider distribution.

Answer

Suppose that the issue does not seem trivial, but it still seems simple. From the data

we can say that there is a 25% probability that the issue will be analyzed in 9 minutes, a

25% probability that it will take from 9 minutes to 20 minutes, a 25% that it will take

from 20 minutes to 31 minutes, a 20% probability that it will take from 31 minutes to

120 minutes, and a 5% probability that you may not be able to finish the task today, so

you will return very late. Furthermore, this data cover only the investigation of the

problem and not the fixing efforts.

Suppose that the lunch will get cold (and your wife annoyed) in twenty minutes.

Then, it is clear that you cannot give a precise estimation with reasonable certainty,

because there will be still at least 50% chance that your estimation will be wrong

regardless of what it will be. The recommended practice for these situations is an

uncompromising search for an alternative that fulfils both needs. A special course or

training of creative thinking and communicating people's needs can be very helpful in

such times.

4.2.4. Debugging time for design and implementation errors

Question

Is there any statistically significant difference between time that is required for

investigating flaws in design and the time that is required to investigate errors in

implementation? This question relates to the hypothesis 2 from the section 3.6.6.

Data analysis

We compare the mean values of debugging time for bugs caused by wrong design

and by wrong implementation.

30

> designErrorsTime <- records[records["CategoryId"] == 1, "Debugging_Time"]
> implementErrorsTime <- records[records["CategoryId"] == 2, "Debugging_Time"]
> t.test(designErrorsTime, implementErrorsTime)

p-value = 0.02239
95 percent confidence interval:
<3.574012; 46.632950>
mean of designErrorsTime 85.04206
mean of implementErrorsTime 59.93857

Answer

The difference is statistically significant. Flaws or bugs in design of program logic are

more time-consuming for investigation than bugs in correctly thought, but wrongly

implemented ideas. On the other hand, our data do not suggest that the difference is

larger than twice the lesser value.

4.2.5. Debugging time of different programmers

Question

What are the differences between how long individual programmers perform

debugging activities across the whole project?

Data analysis

The table 13 summarizes the debugging efforts of each participant and how many

issues did he encounter.

Participant Development time [h] Debugging time [h]
Development time /
debugging time [%]

Investigation
count

12
6
 66 47 71.3 95

15 110 9 8.3 18
16 144 59 41.0 18
17 96 35 36.7 18
19 42 18 41.7 9
20 72 8 11.5 6
21 61 25 41.3 23
22 125 45 35.9 50
23 180 87 48.5 64
48 351 167 47.4 49
53 323 102 31.6 109
54 136 40 29.3 14
58 155 27 17.7 78
59 209 55 26.1 48
60 205 84 40.9 63

Table 13: Debugging efforts of individual participants

The average ratio of debugging time is 35.2% with standard deviation 15.8%.

Participants 15, 19 and 20 had a surprisingly low debugging time or the count of

reported issues. Based on their feedback we assume two reasons for that:

 They focused much more on documentation than the other team members.

6 From the feedback of participant 12, we are concerned that the high amount of his

debugging reports had significant negative impact on his programming performance, because
he filled a somewhat large amount of data in shorter period of time than the others. This is a
weak point of our methodology as discussed in 3.6.4.

31

 Because of some limitations, they were forced to develop larger parts of software

without executing them at all. Therefore, the majority of their debugging efforts

were done in the integration phase, which was in their case only one or two days

long.

Answer

Developers spend from about 10% and up to 45% of their time by debugging

activities. One participant spent more than 70% of his work time by debugging and he

abandoned the project for that year.

Note that we do not consider this percentage to be a good indicator of individual

programmer's performance, because it does not tell anything about the development

conditions and the kinds of task of the individual programmer.

4.2.6. Debugging and work satisfaction

Question

How is the debugging activity related to the mood and work satisfaction of the

professionals? From our professional experience we know a method 7 how a human-

resources person can relatively quickly evaluate the work satisfaction of employees. It

works by the following way:

Write down how many hours per week you spend in your job by activities that are

exciting or very pleasant, pleasant, neutral or OK, unpleasant, and very unpleasant. The

methodology suggests that a highly satisfying job is the one that has more than 60% of

exciting, very pleasant or pleasant activities.

Context

This problem interests us because of the fact that many people are discouraged by

pursuing technical carrier is, in our opinion, at least partially caused by characteristics

of those professions. Technically demanding professions often require intensive problem-

solving activity that is related to machines, dysfunctional software or other problems

that does not in its core incorporate human relationships and communication. Typically,

even highly skilled technicians are confronted with situations that something technical

does not work as expected and they try to fix it for many hours. From our life

experience, this situations cause large amount of frustration regardless whether the

profession is a builder, a car mechanic, a wireman, an IT support, an electrotechnician,

or a programmer. One typical reaction what people do in these situations is that they

throw various curses around themselves, because probably, it helps them to make their

frustration easier. Anyway, we believe that the ability to handle this kind of frustration

is one of determining factor whether a person will be a skilful technician.

Therefore, we think that investigating topics related to this question could provide

very valuable insights for educators of computer science or technical professions in

general.

7 There is large amount of research and approaches related to the job satisfaction of

people, see (20) for a summary. We were not able to find the exact origin of the described
method, but in our opinion it seems to be a derivative of the Minessota Satisfaction
Questonaire. In our history we heard feedback of several people whose job satisfaction was
evaluated by this method. They appreciated that it helped them to reflect what activities are
unpleasant or stressful for them and it provided them some guidance on how they ideal
workload should look like.

32

Data analysis

The table 14 contains the summary of our data. The numbers in the feelings columns

are computed as sum of debugging time of issues with the particular feelings divided by

the whole debugging time of the participant. Because the debugging is assumed to be

the most flustrating activity of this project, we focused on the periods of unpleasant or

very unpleasant debugging. Therefore, the last column contains what part of the whole

project the particular user had been debugging unpleasant or very unpleasant issues.

Participant

Feelings [% of debugging time] Contribution to negative
work satisfaction on the
project [%]

Positive
Nothing
remarkable

Unpleasant
Very
unpleasant

12 1.2 17.6 33.5 47.6 57.8

15 36.2 50.1 13.7 0.0 1.1

16 9.3 17.8 18.6 54.2 29.9

17 21.3 40.5 29.8 8.5 14.1

19 74.3 22.9 2.9 0.0 1.2

20 0.0 69.7 30.3 0.0 3.5

21 1.0 21.6 33.8 43.7 32.0

22 5.8 66.4 27.9 0.0 10.0

23 8.4 53.2 11.7 26.7 18.6

48 24.8 6.5 24.4 44.2 32.6

53 1.9 25.6 17.2 55.3 22.9

54 24.2 17.9 22.7 35.3 17.0

58 1.3 60.1 37.2 1.5 6.8

59 0.1 35.1 18.2 46.7 16.9

60 5.2 21.1 41.6 32.2 30.2

All 12.1 28.0 24.1 35.7 21.1

Table 14: Percentage of debugging time grouped by feelings

Answer

Our methodology was not aimed to collect data about feelings of participants or

mood across the whole project, so we can at least interpret the data partially from the

debugging part. In our opinion, participants 128, 16, 21, 48 and 60 could welcome some

changes in their work activities, because the amount of negative issues they experienced

was getting over 30% of their work time.

4.2.7. Debugging time and perceived complexity

Question

How does the perceived difficulty of bugs correspond to the debugging time?

Context

This could give evidence on how is the perception of debugging issue difficulty

connected with debugging time, which could possibly improve time estimations.

8 The participant 12 did not finish the tasks that year.

33

Data analysis

The picture 15 shows how is the debugging time related to the perceived difficulty

and the table 15 summarizes the median values.

Picture 15: Debugging time grouped by perceived difficulty

Difficulty Median of debugging time [min]

Trivial 10
Easy 20

Medium 40
Hard 152

Table 15: Medians of debugging time for issues with different perceived difficulty

Answer

Our data suggest that programmers perceive in such a way that with each increase

of difficulty level the debugging time tends to increase two or three times.

Note that our observations do not tell anything about causality because of our

methods of data collection. More specifically, we cannot claim that a more complex

debugging scenario implies more debugging time, or that more debugging time implies

that the programmers perceive the debugging scenario as more difficult. We just

provided evidence about the relationship of these two variables.

34

4.2.8. Debugging time in different life cycles of a bug

Question

Many people believe that it is much more costly to fix a bug at the end of the

project than fixing the same bug during the early stage of the project. How does our

data support that claim?

Context

Many professionals believe that this claim is correct in reality and even our

professional experience supports it. On the other hand we are aware of only one

publication (8) about its validity:

“A significant related insight is that the cost of fixing or reworking software is much

smaller (by factor of 50 to 200) in the earlier phases of the software life cycle than in the

later phases.”

This evidence is over two decades old, so one may not see as very strong, because it

may be outdated. Therefore, we perceive publishing further newer data as a valuable

contribution.

Data analysis

We compared reports of bugs that were investigated during the first checks of the

just implemented code and reports of issues that were detected later. In the picture 16

and table 16 the first kind of issues is referred as issues that were detected early and the

latter kind is referred as issues that were detected later. The data are composed from

218 reports of the early detected issues and 444 issues that were detected later.

Debugging time [min] Early detection Detected later

Minimum 0 0
1st Quartile 5 10

Median 10 30
Mean 47.2 78.3

3rd Quartile 45 77.5
Maximum 1200 1800

Table 16: Debugging time of issues from different bug life cycles

35

Picture 16: Debugging time of issues from different bug life cycles

>t.test(early[,2], later[,2])
p-value = 0.0059

The difference of mean debugging time is statistically significant.

Answer

We confirm that bugs that are detected very soon during the development are

resolved approximately twice faster that bugs that are detected later in the project

development.

Hypotheses

The scope of our study allowed us only to compare only issues that were raised

before any actual usage of the developed software. Therefore, we expect the difference to

be even larger for bugs that would be detected after the release of the developed

software.

4.2.9. Debugging time of bugs related to assembler

Question

It quite intuitive that bugs that are related to code that is written in assembler takes

much more time for debugging than other bugs. Does the collected data provide

statistically significant evidence about this claim? This question is related to the

hypothesis 3 of the section 3.6.6.

36

Data analysis

We compare the mean values of debugging time for bugs that were related to

assembler with other bugs.

> t.test(assemblerDebuggingTimes, nonassemblerDebuggingTimes)
p-value = 0.059
mean of assemblerDebuggingTimes = 177 minutes
mean of nonassemblerDebuggingTimes = 67 minutes

Answer

The difference in mean of debugging time between bugs that are related to assembler

and the bugs that are not related to assembler is not statistically significant.

Hypotheses

We interpret this result as that there exist other kinds of bugs that are not related

to the assembler language and they still increase debugging time similarly as the

assembler related ones.

4.2.10. Debugging time and other aspects

Question

During the study the participants indicated for each investigated issue whether the

issue was related to assembler, cause by a copy-and-paste activity, located in foreign

code, caused by incomplete modification (better explained in the attachment 6), related

to the C preprocessor, debugged by more people, and related to a memory corruption.

How frequent are these cases and what is their impact on debugging time?

Data analysis

We constructed a linear model of how the named aspects affected debugging time.

> model <- lm(Debugging_Time ~ Flag_Assembler_Related +
Flag_Caused_By_Copy_And_Paste + Flag_In_Foreign_Code +
Flag_Incomplete_Modification + Flag_Preprocessor_Related +
Flag_Debugged_By_More_People + Flag_Memory_Corruption_Related, data=dat)

The table 17 summarizes the model coefficients, their relevance, and contains the

frequency of the issues with the aspect.

Aspect
Coefficient

[min]
p value Frequency [%]

Assembler related 108.6 9.5E-006 5.1
Caused by copy and paste 55.6 0.017 5.7
In foreign code 90.3 6.4E-007 10.3
Incomplete modification

0.434 13.0

Preprocessor related

0.475 1.1
Debugged by more people 66.7 3.1E-005 14.5
Memory corruption related 63.4 4.8E-005 14.4

Table 17: Linear model for different aspects of bugs

Answer

The only observed aspects of investigated issues that do not affect investigation time

are bugs caused by an incomplete modification or by the C preprocessor. The other

observed aspects increase the investigation time significantly. The specific effect of

increase can be seen in the table 17 in the coefficient column.

37

Hypotheses

As for the frequencies, we believe that assembler and memory corruption related

issues will be less common during development of higher-level software than an

operating system. The frequencies of debugged by more people and bug located in the

foreign code can change with different structure of programming teams. Note that our

data was taken from teams of two or three programmers.

4.2.11. Debugging time and copy-and paste bugs

Question

Some people claim that copying chunks of code without proper modifications of the

copied code is one of the most common sources of programming errors, and that

programmers do copy-and-pasting in order to save their time, but they lose more time

by creating more bugs. How correct is this in reality?

Data analysis

5.7% of reported bugs were caused by the copy-and-paste activity. The linear model

from table 17 suggests that a copy-and-paste bug adds 55 minutes to the debugging

time.

Answer

The data shows much less frequency of this kind of bugs than we expected. We can

say that the effect of each copy-and-paste bug can be thought as a 55 minutes increase

in debugging time in average. Also note that for the full cost and benefit analysis of

copy-and-pasting we believe that other factors should be taken into account: copy-and-

paste operations may save time, improve the work-satisfaction and reduce mental

exhaustion of the developers. Monitoring these other factors is out of the scope of this

work.

Hypotheses

We believe that the low frequency of copy-and-paste errors is caused by two factors:

 Participants were very often experienced and skilled programmers. They are aware

of this kind of bugs and pay special attention to prevent errors when they copy code,

or they use programming practices that avoid copy and paste activity.

 The fact that participants explicitly filled the information that the bug was caused

by code copying trained them to avoid these errors.

4.3. More theoretical aspects of debugging

In this section we provide data about aspects of debugging that are not aimed to

address real-world issues so much as those in the section 4.2. We present these data in

order to support further research efforts.

4.3.1. Debugging intents and their frequency

Question

Naturally, when the programmers use a debugging tool they do that with some

intent. What are the intents for using debugging tools and what is their frequency? This

information could be beneficial for designers of debugging tools, because it maps

common debugging intents and tells how often they are.

38

Data analysis

In the table 18 we summarize all the identified debugging intents and their

frequencies. This summary is backed by 62 collected records.

Debugging intent Relative frequency [%]

Investigate value of variable 11.3
Investigate whether some code was executed 0.0
Investigate function return value 4.8
Check that some code is reached 6.5
Investigate what has changed recently 1.6
Attempt to reproduce the problem 3.2
Investigate what is the program doing right now 1.6
Investigate CPU registers 6.5
Execute just a subset of the code 0.0
Search of error code meaning 3.2
Investigate execution flow in the code 25.8
Search for a symbol address 0.0
Check whether the code matches to the compiled instructions 4.8
Investigate the consistency of the memory 6.5
Search for the place where a variable is changed 0.0
Check statistical parameters of a (pseudo) random events 0.0
Search for an error in the stdout 0.0
Use the tools of formal verifications 0.0
Investigate TLB mapping 9.7
Search for a symbol name from address 1.6
Search for a place where the program crashed (NULL pointer
dereference, ...)

11.3

Execute tests to check whether they still pass 1.6

Table 18: Identified debugging intents and their frequencies

Answer

Unfortunately, the period of collecting data about debugging intents was not long

enough to collect many reports. Therefore, we consider the presented summary to be

most suitable just for orientation purposes. Furthermore, the Investigate TLB mapping

debugging intent is highly specific just for our programming task, so for more typical

programming tasks we are confident that this debugging intent would be very rare or

even less common.

4.3.2. Root causes and bug frequency

Question

What kinds of root causes occur the most often? In summary, what kinds of root

causes are investigated for the longest period of time?

Data analysis

The table 19 contains frequencies and sum of debugging time of each root cause

identified by our methods in 3.3.3.6.

39

Root cause category
Count of

bugs
Relative count

of bugs [%]

Sum of
debugging time

of the bugs [min]

Relative portion
of debugging

time against the
whole [%]

Wrong design assumption 131 19.8 11240 23.2
Forgotten code 116 17.5 5571 11.5
Used wrong entity 76 11.5 4021 8.3
Wrong expression 44 6.6 1876 3.9
Memory 43 6.5 3186 6.6
Synchronization 43 6.5 3955 8.2
All other 41 6.2 5862 12.1
Data structures and
algorithms

40 6.0 3004 6.2

Wrong program flow 27 4.1 942 1.9
Wrong (coding related)
assumption

23 3.5 1320 2.7

Initialization 22 3.3 1678 3.5
Extra code 15 2.3 430 0.9
Subprogram binding 11 1.7 567 1.2
Assembler specific 10 1.5 3005 6.2
C specific 7 1.1 469 1.0
Dynamic data structures 5 0.8 270 0.6
Other 3 0.5 260 0.5
Value corruption 3 0.5 290 0.6
Finalization 2 0.3 510 1.1

Table 19: Frequencies of different root causes and associated debugging time

Correlation coefficient between root cause frequency and the summed debugging time

for those root causes is 0.88.

Answer

The most common root causes are from flaws in design or thinking (19.8%), pieces of

code that were forgotten to be written (17.5%) and usage of wrong entity (11.5%).

Regarding the amount of time spent on debugging each kind of bug we see that more

frequent root causes tend to contribute more to the debugging time. The largest

exception to this trend are All other root causes with the dominating root cause Not a

bug, which is not so common, but it takes unproportionally long debugging time.

4.3.3. Root causes and debugging time

Question

Where is a very meaningful place for researchers to concentrate their efforts if they

want to make debugging faster?

Context

The difference between this question and the question 4.3.2 is that it is concerned on

the direct cost of debugging (developer's time), which may be a more relevant aspect in

fault-tolerant environment where other consequences of software bugs are not very

unpleasant.

Data analysis

We refer to the table 19. The Wrong design assumption root cause was behind 23.2%

of debugging activities, the All other root cause was behind 12.1% and the Forgotten

code was behind 11.5% of debugging activities.

40

Answer

The data suggest that one very meaningful place for improvement is helping

programmers with these kinds of situations:

 Assisting them with realizing all the corner cases, which should help with the Wrong

design assumption root causes.

 Making sure that they understand correctly how the external entities of the software

(such as hardware or a third party library) are supposed to be used, which should

again help with the Wrong design assumption root causes.

 Assisting them to avoid overlooking or forgetting parts of implementation, which

should help them with the Forgotten code root causes. Unfortunately, during this

study we did not obtain data that show how the parts of implementation got

missing. These data could provide a more specific guidance and obtaining them can

be a further direction of this research.

Hypotheses

This study was not designed to observe the participants so closely to map the

reasons why debugging activities caused by these three root causes were so time-

consuming, so we at least provide our hypothesis:

The reason why the Wrong design assumptions and All other kinds of bugs took

35.3% of all the debugging activities seems to lay in the fact that the bugs both happen

often and each one is often very time-consuming by itself. We guess that the most

consuming part of debugging these bugs is realizing how things are supposed to work

correctly. The reason why the Forgotten code bugs took 11.5% of all the debugging

activities seems to be just because they had been occurring very often.

4.3.4. Root causes and the project phase of their detection

Which kinds of bugs have tendencies to remain in the code longer?

Context

Many bugs in commercial software are unpleasantly costly, so the programmers may

strongly desire to have as few bugs as possible in the released software. Answering this

question could provide evidence if some bug root causes tend more to remain

undetected.

Data analysis

The problem with measuring the count of undetected bugs is that they cannot be

detected and so they cannot be measured directly. Therefore, we work under assumption

that bugs that are detected but present in the code for a long time have similar

properties as undetected bugs. Thus, for the context of 4.3.4 we specify what we

consider a bug that is present in the code for a long period of time for the context of this

study.

Most typically, programmers at least check their software right after they implement

a runnable and checkable part of it. We call bugs that are detected in this phase as bugs

detected early in the development. What happens next with the quality assurance efforts

varies on the kind of organization and project management. In the case of this study, the

students used a testsuite and their work was accepted when their code passed the

testsuite. We call bugs caught by the testsuite as detected by tests. As the students are

supposed to build on their previous code for longer time (mostly more than 100 work

hours, see the table 13 for exact numbers), they could detect further bugs. We call these

bugs as bugs detected in the later stage of development.

41

Note that in enterprise environment one could expect additional possible stages when

a bug can be detected – for example during quality assurance processes or the actual

usage of the software. Therefore, for obtaining more realistic data from other

environment our methods would have to be adjusted or reworked.

The table 20 shows the occurrences of various kinds of bugs during early, testing and

later development stages.

Root cause category
Detected

early
Detected by

tests
Detected later

Detected
later

relatively [%]

Initialization 12 1 9 41
Subprogram binding 3 3 5 45
Data structures and algorithms 12 9 19 48
Wrong design assumption 36 23 72 55
Finalization 2 0 0 0
Used wrong entity 37 10 29 38
Other 2 0 1 33
Forgotten code 37 15 64 55
Dynamic data structures 2 2 1 20
Memory 14 5 24 56
Wrong expression 15 5 24 55
Synchronization 10 6 27 63
C specific 3 0 4 57
Assembler specific 4 1 5 50
Value corruption 0 2 1 33
Wrong program flow 10 5 12 44
Extra code 6 1 8 53
Wrong (coding related)
assumption

6 3 14 61

Sum 212(34%) 91(14.6%) 319(51.4%)

Table 20: Count of bugs grouped by the stage of their detection

Answer

The relative occurrence of bugs that survive in the code the early development phase

ranges between 40% and 65% (with few exceptions below 40%). Therefore, we see no

very strong connection on how the kind of root cause affects the bug’s ability to remain

undetected. The most undetectable bugs seem to be those caused by errors in

synchronization or by assumptions that some code constructs work in a different

manner.

The other interesting finding is that the correctness checks that were done soon after

the implementation together with tests were able to detect less than 50% of the bugs. To

be more confident about validity of this claim, we would need a more controlled

experiment, because we cannot guarantee that no bugs from the early detection phase

were omitted.

4.3.5. Debugging with and without debugging tools

Question

What are the specifics of bugs that programmers investigate without debugging

tools? How often does that happen?

42

Context

Debugging without any debugging tools may indicate a lack of coverage of available

debugging tools. This information can provide some guidance where to focus research

effort to address inconvenient issues.

Data analysis

In picture 17 and table 21 we compare 253 bug reports that were investigated

without any debugging tools to 409 bug reports that were investigated with one or more

debugging tools.

Picture 17: How is a usage of a debugging tool connected with debugging time

Debugging time [min] Debugging with tools Debugging without tools

Minimum 0 0
1st Quartile 15 4
Median 40 10
Mean 100 29.8
3rd Quartile 120 21
Maximum 1800 720

Table 21: How is a usage of a debugging tool connected with debugging time

Here we compare the mean values:

> t.test(debugging_time_with_tools, debugging_time_without_tools)
p-value = 8.0e-13

The difference in mean values is statistically significant.

43

Answer

The collected data shows a rather surprising result that bugs that were debugged

without any debugging tools were investigated much faster than those investigated with

debugging tools support. When the programmers used a debugging tool they had been

debugging in average about 4 times longer than in the cases when they did not use any

debugging tool.

Hypotheses

This observation can have a number of possible explanations. One of them is that

programmers tend to think much more intensively when they do not have any

programming means available (which happens sometimes during development of an

operating system), and therefore they debug much faster. In our study we do not have

data to explore this explanation.

Another explanation would be that we have a flaw in our methods, because the

amount of recorded data could be so large that sometimes the participants could skip

parts of the bug report. We think that a specialized more controlled experiment is

needed to check this possibility.

The next questions investigate some other possible explanations of our observation.

4.3.6. Participants preference on using debugging tools

Question

The finding of the previous question 4.3.5 could be explained by the fact that

participants strongly preferred and used only one way of debugging and the fact that

debugging time differs significantly for different programmers (as presented in table 13).

Did the best performers (i.e. in this context participants who debugged the issues in a

very fast way) debug without any debugging tools?

Data analysis

The picture 18 shows how fast each participant debugged his bugs.

44

Picture 18: Debugging times of each participant

In table 22 we summarize how often each participant used debugging tools.

Participant Reports with a tool [%] Reports without any tool [%] Reports count

12 24 76 95
15 44 56 18
16 17 83 18
17 78 22 18
19 89 11 9
20 50 50 6
21 91 9 23
22 96 4 50
23 83 17 64
48 86 14 49
53 37 63 109
54 100 0 14
58 78 22 78
59 65 35 48
60 63 37 63

Table 22: How often each participant used debugging tools

The fastest participants were 12, 15, 21, 53 and 58. The sum of their records where

no debugging tools were used is 170. That is 67% of all these records.

45

Answer

One third of the fastest participants reported two thirds of the investigations that

belong to the group of in average 4 times faster investigations than the other reports.

Therefore, our data suggest that the fast debugging programmers tend not to use

debugging tools.

On the other hand, we are not strongly convinced about this conclusion, because our

observation could be caused by the fact that some participants omitted reports of very

quickly investigated issues. We would need a controlled experiment to become more

confident on how to interpret the finding of this question.

4.3.7. Usage of debugging tools and bug complexity

Question

Another explanation of finding in the question 4.3.5 is that more difficult errors are

more often investigated with debugging support. Thus, this could explain the difference

of the debugging times distributions in picture 17, because harder bugs take much more

time to investigate. Does the data confirm that?

Data analysis

The table 23 shows how many errors were investigated with and without debugging

tools for each complexity.

Complexity With debugging tools Without any debugging tool

Trivial 82 99
Easy 132 92

Medium 131 51
Hard 64 11

Table 23: How perceived difficulty of bugs is related to whether a debugging tool was used

Answer

We see that in difficult debugging scenarios people tend to use some debugging

support much more often. From data of 4.2.7, we know that debugging an issue with

easy perceived complexity tends to be two times faster than debugging an issue with

medium difficulty and that tends to be three times faster than debugging an issue with

hard difficulty. Therefore, we conclude that the questioned explanation is at least one of

the factors why issues debugged without debugging tools are investigated faster.

4.3.8. Selection from available debugging tools

Question

The common sense tells that programmers use the debugging tool that is the most

useful for the particular debugging scenario. How much is the common sense the

common practice?

Context

Answering this question could provide valuable input for researchers that would like

to make a similar study as ours, or for innovators that would like to introduce new tools

and practices into their teams or companies.

46

Data analysis

We made five interviews with the participants and asked the participants how their

debugging preferences evolved over time. All of them used debugging tools that had

been most usual for them before the project. One participant openly admitted that he

did not even try out other debugging means despite the fact that he was encouraged to

do so.

Answer

From the feedback of participants and our professional experience we doubt the

expectation that people will automatically use the best available tool. Often people tend

to use what worked best for them in the history and are reluctant to new things. We

consider this observation interesting, because the participants were, in our opinion, very

adaptable professionals in the information technology world, which is generally

considered highly innovative and very open to changes.

47

5. Related work

We have structured the related work for our thesis into three types, which we will

describe in the following three subsections.

5.1. Studies evaluating usefulness of debugging techniques and tools

This is the most relevant kind of related work as it provides experience of how to do

evaluations of debugging tools, and it stresses out the importance of these studies. (6) is

an evaluation of techniques of automated debugging, which is being researched for

decades. It reviewed the usefulness evaluation activities that had been published and

concludes that:

“... and most programs studied are trivial, often involving less than 100 lines of code.”

Therefore, (6) evaluated the usefulness of automated debugging techniques with

programmers and on two programs of 2403 and 4408 LOC, and it came with a finding

that the evaluated techniques helped only to expert programmers. Furthermore, it

identified the reasons for the unexpectedly low usefulness in neglecting human-related

aspects during design of the techniques. For example, it was observed that programmers

value more explanations than recommendations and the techniques are based on

recommendations. Interestingly, we believe that the same threat to validity can be

applied for (6) as well, because the evaluated techniques may be much more helpful for

very large programs with 1 million or more LOC than they are for programs of several

thousand LOC. Anyway, (6) supports our opinion that performing more usefulness

evaluations of researched debugging tools or approaches is likely to make current

research efforts more impactful.

(9) proposes an alternative way of how to evaluate and research aspects of

debugging. This framework and methodology has already been successfully used for

obtaining the inspiration to design the tool (10), which we will mention later.

We see the main differences between (9) and our work in two points. The first is that

we use a different categorization of root causes of software errors. Our main aim was to

compare which of thinking-based or implementation-based bugs are more time-

consuming for investigation. (9) tries to capture the process how bugs are created by

defining four layers where defects can appear. These layers are named Specification,

Programmer, Programming System and Program. The bug is created if the defects on

each layer are connected. For these layers (9) adapts categorization of human errors

from (11).

The second difference is in the way of data collection. (9) records the debugging

activities of participants while they are thinking aloud. The work also contains the best

practices of how to facilitate a think-aloud experiment without being intrusive or

inconvenient to participants. In our opinion, the main advantage of our approach is that

we can collect more data with much less resources. On the other hand, we can collect

much less thoughts of participants, so our root cause analysis may not go very deep into

human psychology as (9) goes.

5.2. Design of new debugging tools and their evaluation

During decades computer scientists have developed many debugging approaches and

tools, and here we would consider beneficial to review and map how much has this

48

research been based on HCI findings and in what degree has the usefulness been

evaluated. Doing such a review is outside of the scope of this work and therefore, we just

present a few papers with various level of evaluation and HCI-evidence based support.

In recent years (10) introduced the Whyline tool that enables developers to get

answers on why and why not questions. The tool was based on the preceding

HCI research (9). The evaluation was done on two groups of ten programmers who were

mostly experienced. The first group used breakpoints and usual tools for debugging and

the second group used Whyline. The debugged software had 150 000 LOC and it was

unknown to the participants. The designers of the evaluation study introduced two

realistic bugs into the software that both occurred in the past. In our opinion, the first

bug was not very difficult for investigation and the second one was more demanding.

The participants received training how to use debugging tools that they were going to

use. From the methodology perspective we see an interesting point of instructing the

participants to focus on speed rather than on correctness. This is likely to make the

results of different participant more comparable as, in our opinion, some programmers

may refuse to hand over their work until they are very sure of correctness, which would

slow them down a lot. We see this approach reasonable for situations where the

programmers are not familiar with the code and their time for investigation is limited.

The evaluation results were based on the comparision of how often were the bugs

investigated successfully and how fast that was done. Furthermore, Whyline users

provided their (very positive) feedback.

Many programmers would welcome the possibility to control the execution of their

code in the reversed order, which is usually technically demanding to implement, and

therefore such a debugging facility is not typically available. (12) describes an

experimental debugger that makes the backward debugging possible. The motivation

behind the work is supported just by a discussion that pinpoints several reasons why the

reverse execution would be useful. The work presents no evaluation of the usefulness and

thus, we perceive it as a representative of papers that are focused primarily on technical

aspects.

(13) presents an interesting tool called DARWIN that is related to automated

debugging. The tool takes two versions of the debugged software, the newest one faulty

and some older one correct, and the input on which the faulty version fails. The output

of the tools is a list of places where the bug is likely introduced in the newest version.

The reasoning behind this design is that many software projects are covered by a

testsuite, which is executed regularly. Adding DARWIN to the testsuite would allow the

developers to immediately see suggestions what could be the root cause of each failed

testcase. In the presented evaluation the authors try out the tool by themselves on

localizing a few realistic bugs in libPNG, miniweb-apache and savant-apache projects.

The DebugAdvisor (14) is a tool for search of similar bug reports. Programmers can

use it when they encounter a bug to check whether there was a similar reported and

solved issue in the past. The motivation for having such a tool is based on a study (15)

that was done in Microsoft's Windows Serviceability group. The evaluation efforts were,

in our opinion, extensive and they were performed directly in the field. The search

service indexed 2.36 million records (bug reports, attachments, logs, etc), had 129 users

and 628 queries in one month. The feedback was received 208 times with 78% searched

results viewed as helpful. Furthermore, the authors tried to resolve 20 active bugs by

using the DebugAdvisor. Three bugs were solved immediately, and in other 12 cases the

DebugAdvisor's output was perceived as useful.

49

5.3. Studies of debugging or software empirical research in general

As this work is not supposed to provide a comprehensive review of what has been

researched so far, we mention only papers that we found most interesting or relevant.

For obtaining a broader perspective on empirical research of software engineering check

these papers, because they sometimes contain a more detailed review and further links.

A summary of debugging-related research is provided by (4). It is mainly concerned

about educational perspective of software development, but regardless it can be used for

orientation of what had been done in research of debugging up to 2008. Designers of

experimental studies like this one may find valuable suggestions from (16) about how to

do studies in software engineering.

(9) summarizes categorizations of software bugs that has been used in the history

and the work argues that:

“To fully understand how the interaction between a programmer and a programming

system can lead to software errors, we need a more general discussion of the underlying

cognitive mechanisms of human error.”

Then it proposes its own typology of software errors that is based on research of how

people make errors in general. What we find especially strong about the proposed

typology is that it interconnects topics of the cognitive psychology and debugging. In

that way, it allows researchers to reason about the aspects of debugging in a deeper way

than we have seen in most related work. In (17) a study on the differences of how

efficient and less efficient programmers navigate in the source code was done. From our

point of view, the work is interesting for its methodology and way of data analysis. Five

programmers were recorded when they were focused on their programming task.

Researchers created transcripts of their work that contained relevant events for the

study and made conclusions from that. The work is inspired by (18), which is a useful

review of methods for doing qualitative empirical research in software engineering.

The rise of large open source projects in the last two decades provided researchers

with databases of bug tracking systems, which added one more possibility how to do

empirical research. One example of such an empirical study of the databases is (19). We

see a very strong side of investigating these databases that the amount of reported bugs

is many times more than 100 000, which is very suitable for quantitative analysis. The

weak point of this approach is, in our opinion, that the databases are not made for

research primarily, so the detail of recorded data does not have to be sufficient to study

many research questions.

50

6. Conclusion

In this work we designed a methodology of how to evaluate usefulness of debugging

tools. The tools were evaluated in the environment of operating systems development

and the results were presented in the section 4.1. Furthermore, we used the chance to

perform an exploratory study on other aspects of how programmers debug an operating

system.

We see the most significant contributions of our work in the following points:

 We presented that it does not matter whether the programmers use a graphical

debugger, a command-line debugging, or just debugging messages, because the

difference of mean debugging time is not statistically significant for all these three

choices.

 We proposed a methodology of how to evaluate usefulness of debugging tools and

applied it in an environment of operating system development.

 The motivation behind design of our evaluation and other exploratory methods was

discussed. That may be valuable to anybody who wishes to evaluate usefulness of

tools in general or who wishes to make another similar study.

 During the first two runs of the operating system course, we collected 662 somewhat

large debugging reports (each report took about 3 minutes to fill in) and in the third

run we obtained 62 reports about debugging intents. We provide these data in the

form of csv and SQL database on the attached CD.

51

Bibliography

1. Covey, Stephen Richards. The 8th Habit: From Effectiveness to Greatness.

London : Simon & Schuster UK Ltd, 2006, Appendix 4.

2. Figueira, José, Greco, Salvatore and Ehrgott, Matthias. Multiple Criteria Decision

Analysis: State of the Art Surveys. s.l. : Springer Science+Business Media, Inc., 2005.

ISBN 0-387-23067-X.

3. Kahneman, Daniel, et al. When More Pain Is Preferred to Less: Adding a Better

End. Psychological Science. 1993, Vol. 4, 6, pp. 401-405.

4. McCauley, Rene´e, et al. Debugging: a review of the literature from an educational

perspective. Computer Science Education. 2008, Vol. 18, 2, pp. 67-92.

5. Beizer, Boris. Software testing techniques. 2nd ed. s.l. : Intl Thomson Computer

Pr (T), 1990. ISBN 1850328803.

6. Parnin, Chris and Orso, Alessandro. Are Automated Debugging Techniques

Actually Helping Programmers? Proceedings of the 2011 International Symposium on

Software Testing and Analysis. 2011, pp. 199-209.

7. Wallace, Clark and Gantt, Henry L. The Gantt chart, A working tool of

management. New York : Ronald Press, 1923.

8. Boehm, Barry W. and Papaccio, Philip N. Understanding nad Controlling Software

Costs. Transactions on Software Engineering. 1988, Vol. 14, 10.

9. Ko, Andrew J. and Myers, Brad A. A frameworkand methodology for studying the

causes of software errors in programming systems. Journal of Visual Languages and

Computing. 2005, Vol. 16, pp. 41-84.

10. —. Debugging reinvented: asking and answering why and why not questions

about program behavior. International Conference on Software Engineering. 2008, pp.

301-310.

11. Reason, James. Human Error. Cambridge, UK : Cambridge University Press,

1990. ISBN 978-0521314190.

12. Agrawal, Hiralal, DeMillo, Richard A. and Spafford, Eugene H. An execution

backtracking approach to program debugging. IEEE Software. 1991, pp. 21-26.

13. Qi, Dawei, et al. DARWIN: An Approach for Debugging Evolving Programs.

European Software Engineering Conference and Foundations of Software Engineering.

2009.

14. Ashok, B., et al. DebugAdvisor: A Recommender System for Debugging.

European Software Engineering Conference and Foundations of Software Engineering.

2009.

15. Budge, S., et al. Global software servicing: Observational experiences at

Microsoft. IEEE International Conference on Global Software Engineering. 2008.

16. Basili, Victor R., Selby, Richard W. and Hutchens, David H. Experimentation in

Software Engineering. Transactions on Software Engineering. 1986, Vol. 12, 7.

17. Robillard, Martin P., Coelho, Wesley and Murphy, Gail C. How Effective

Developers Investigate Source Code: An Exploratory Study. Transactions on Software

Engineering. 2004, Vol. 30, 12.

18. Seaman, C.B. Qualitative Methods in Empirical Studies of Software Engineering.

IEEE Transactions on Software Engineering. 1999, Vol. 25, 4, pp. 557-572.

19. Zhou, Bo, Neamtiu, Iulian and Gupta, Rajiv. A cross-platform analysis of bugs

and bug-fixing in open source projects: desktop vs. Android vs. iOS. International

Conference on Evaluation and Assessment in Software Engineering. 2015.

20. Aziri, Brikend. Job Satisfaction: A Literature Review. Management Research and

Practice. 2011, Vol. 3, 4, pp. 77-86.

52

List of Tables
Table 1: Informative values of how often is a debugging tool used.............................. 5
Table 2: Informative values of how was the usefulness of a debugging tool perceived

by participants .. 5
Table 3: Informative values of how specialized was a debugging tool 5
Table 4: Count of participants and focus of this study during years 8
Table 5: Description of complexity of debugging scenarios .. 10
Table 6: Values of usefulness for a particular tool usage and criteria for selection ... 12
Table 7: Human resources estimation for performing a study like this one 21
Table 8: Frequency of debugging tool usages and their perceived usefulness 23
Table 9: Tools with a specialized usage .. 23
Table 10: Evaluation of debugging tool usefulness ... 24
Table 11: Debugging time statistics for comparing how fast is debugging with GUI

debugging, GDB debugger or just debugging prints .. 25
Table 12: Investigation time for bugs that were perceived as easy to investigate 29
Table 13: Debugging efforts of individual participants .. 30
Table 14: Percentage of debugging time grouped by feelings 32
Table 15: Medians of debugging time for issues with different perceived difficulty ... 33
Table 16: Debugging time of issues from different bug life cycles 34
Table 17: Linear model for different aspects of bugs .. 36
Table 18: Identified debugging intents and their frequencies 38
Table 19: Frequencies of different root causes and associated debugging time 39
Table 20: Count of bugs grouped by the stage of their detection 41
Table 21: How is a usage of a debugging tool connected with debugging time 42
Table 22: How often each participant used debugging tools 44
Table 23: How perceived difficulty of bugs is related to whether a debugging tool was

used ... 45

53

List of Figures

Picture 1: Size of the whole project for various teams in LOC 6
Picture 2: Time schedule of the whole project and events related to this study 7
Picture 3: Specification of what process this study aims to explore 8
Picture 4: How often was the debugging time rounded .. 10
Picture 5: Specification of what process this study aimed to explore in 2013 13
Picture 6: The main page of the web interface that was used for data collection 14
Picture 7: The tab for reporting information related to the way of detection of the

unexpected behavior ... 14
Picture 8: The tab for reporting information related to the root cause of the

unexpected behavior ... 15
Picture 9: The tab for reporting information related to the used methods for

investigation of the unexpected behavior ... 15
Picture 10: The tab for reporting information related to the used tools for

investigation of the unexpected behavior ... 16
Picture 11: The tab for filling optional information about the report 16
Picture 12: The main tab of the study in the last year of the study 17
Picture 13: One of the graphs in the web interface; this one shows how much

debugging resulted in abandoning the investigation .. 17
Picture 14: Distributions of debugging time for comparing how fast is debugging

with GUI debugging, GDB debugger or just debugging prints .. 26
Picture 15: Debugging time grouped by perceived difficulty 33
Picture 16: Debugging time of issues from different bug life cycles 35
Picture 17: How is a usage of a debugging tool connected with debugging time 42
Picture 18: Debugging times of each participant .. 44

54

List of Abbreviations

Abbreviation Meaning

MFF UK Faculty of Mathematics and Physics, Charles University, Prague
LOC Lines of code

GUI Debugger Graphical user interface debugger
GDB GNU debugger
HCI Human-computer interaction

MSIM
Simulator of a machine based on a MIPS family processor,
http://d3s.mff.cuni.cz/~holub/sw/msim/

55

Attachments

1 Assignments of the operating system course

The exact and full assignment is located on the attached CD in Czech. The

participants were supposed to implement three basic assignments and choose one

extended assignment from three possibilities. In the following we summarize the

assignments briefly:

 Basic assignment 1 – implementation of operating system core. The students were

allowed to use some initial implementation (the operating system Kalisto) that

shielded them from implementing most assembler-related code and had some

requirements of the first assignment partially implemented. The core was supposed

to have support for:

o basic IO operations (formatted prints, ...)

o basic debugging means (kernel panic, ...)

o service of interrupts and exceptions

o a simple memory allocator

o threads

o a simple scheduler

o synchronization primitives (mutex)

o timers

 Basic assignment 2 – Support virtual memory via the mechanism of page tables and

TLB handling.

 Basic assignment 3 – Implement user space and the system call mechanism.

Implement the init process and the runtime library. The runtime library is supposed

to provide API for IO operations, debugging, dynamic memory allocation, threads

and synchronization primitives.

 Extended assignment 1 – So far all the assignments were supposed to be executed on

a single CPU machine. This extended assignment instructs the students to support

multiple CPUs. The synchronization primitives should include spinlocks,

semaphores, read-write locks and condition variables. Furthermore, non-blocking

lists are supposed to be implemented and their performance compared against their

blocking variant.

 Extended assignment 2 – Improve the performance of the basic assignment 2 by

choosing proper data structures. Extend API for work with the virtual memory

address space. Implement more heap allocators that use the allocation strategies first

fit, next fit, best fit and worst fit. Furthermore, implement a multi-threaded

performance test for the heap allocators and compare their performance.

 Extended assignment 3 – Implement a simple read-only driver for disk operations.

Add API for work with processes. The init process should allow running other

processes from the attached virtual disk device.

56

2 Content of the attached CD

This is the directories in the CD:

 data – exported mysql data in the form of SQL commands; these SQL tables and

data can be imported to your SQL database

 database-structure - ER diagram pro Mysql Workbench

 assignment – full and exact assignment for the students in Czech language

 processing – R scripts and some processed data

 web – the source code of the created web interface

57

3 Structure of SQL database

In the following pictures we present the ER diagram of the mysql database that was

used for storage of collected data. It is not easy to show the detailed relationship about

individual tables, therefore we suggest you to open the data model in the mysql MySQL

Workbench application to see more details.

The core tables are debugging_reports for the first years of the study and

intent_reports for the last year of the study. Each record of these tables corresponds to

one debugging report. The linkage with other kinds of data about the debugging report

can be seen in the MySQL Workbench.

The participants are defined in a special table called users. Note that we defined

some supervisor users and some users for debugging and testing purposes of the web

interface. Therefore, the database contains some reports that should be filtered out if the

data would be used for further analysis. The group of users that contain relevant data is

named Standard users.

58

59

4 Data evaluation and the processing script

The file evaluation.R contains R snippets that were used to evaluate the data. Our

best practice was running the R in the sql-data directory and copy-pasting the pieces of

R code into the R console. The script is not in the best shape, so you can take it as an

inspiration of what data was processed and a detailed documentation how it was

processed.

The CD also contains other scripts and files like usefulness-evaluator.R, which are

there as a blind branch of our analysis. We keep them there mainly as backup if we

would like to come back later to the ideas examined by those files.

60

5 Ways of detection

The following tables list the ways of bug detection that we identified and recorded in

our study.

Way of detection
Category Bad output

Comment

Wrong text in the output
Kernel panic
Wrong informative text (present in the code for a
long time)

Typically debugging or diagnostic prints that
get committed into the project repository

Wrong detailed text (present in the code for a
short time)

Program does not generate any output
Random crashes or behavior

Way of detection
Category Formal methods

Comment

Report of static analysis

Way of detection
Category Other

omment

Program is weirdly slow
Program is weirdly fast

Way of detection
Category Other

Comment

Report from another person
During reading of the code
Compiler warning
Program never stops
Test failed
Assertion fired
Just by thinking
By using the debugger
Environment crash (simulator, ...)
Random crashes or behavior

Each bug report had the following list of flags that enabled us to monitor other

further aspects of way how the bug was detected.

Flags for the way of detection Comment

During debugging of another bug

During checking just implemented code
The bug was detected when the programmer
checked a piece of code that had been just
implemented

61

6 Root causes

The following tables list the root causes that we identified and recorded in our study.

Root cause
Category Wrong logic or design,
Data structures and algorithms

Comment

Misunderstanding properties of the structure or algorithm
Misunderstanding how the structure or algorithm should be
implemented

Sequence of actions (algorithm) designed in a wrong way

Root cause
Category Wrong logic or design, Wrong design assumption

Comment

Wrong assumption about the user (or usage)

Wrong assumption about the assignment

Wrong assumption how software (function, library, ...) works

Wrong assumption how hardware works

Unconsidered corner case

Unconsidered consequences of design decision

Root cause
Category Wrong logic or design, Synchronization

Comment

Violation of a critical section Logic allows multiple threads to enter the
critical section

Deadlock

Livelock

Missing synchronization

Synchronization designed in another wrong way

Root cause
Category Wrong implementation, Initialization

Comment

Initialization is never done

Initialization is sometimes not done

Initialization is done in a wrong way

Memory for a variable is not allocated

Resource (handle, id, ...) is not allocated

62

Root cause
Category Wrong implementation,

Subprogram binding
Comment

Bad scope of a variable

Missing parameters (in case of variable count of parameters)

Wrong order of parameters

Wrong return value returned

Root cause
Category Wrong implementation,

Finalization
Comment

Variable is not freed

Resource (handle, id, ...) is not released

Root cause
Category Wrong implementation,

Used wrong entity
Comment

Wrong subprogram called

Wrong variable read

Wrong constant used

Wrong variable written

Used another wrong entity

Wrong multiple variables

Root cause
Category Wrong implementation, Other

Comment

Wrong options of compiler

Correct implementation is unknown

Misunderstanding of programming language

Root cause
Category Wrong implementation,

Forgotten code
Comment

Missing assignment

Missing commands

Missing call of a subprogram

Missing sub expression

Missing check of error value (returned NULL, -1, ...)

63

Root cause
Category Wrong implementation,

Dynamic data structures
Comment

Index out of bounds

Index in bounds, but wrong

Forbidden modification

Wrong type conversion

Root cause
Category Wrong implementation,

Dynamic data structures
Comment

Usage of freed memory
Write to read-only memory
Heap corruption
Stack corruption
Stack overflow
Other memory corrupted
Wrong address space used
Unaligned address accessed

Root cause
Category Wrong implementation,

Memory
Comment

Usage of freed memory

Write to read-only memory

Heap corruption

Stack corruption

Stack overflow

Other memory corrupted

Wrong address space used

Unaligned address accessed

Root cause
Category Wrong implementation,

Wrong expression
Comment

Wrong logic operator

Wrong arithmetic’s operator

Sub expressions evaluated in a wrong order

Wrong relation or comparison operator

Root cause
Category Wrong implementation,

C specific
Comment

Missing volatile keyword

Wrong written macro

64

Root cause
Category Wrong implementation,

Assembler specific
Comment

Ignored behavior of the branch delay slot

Unexpected compiler optimilization

Violation of ABI rules

Wrong directives for compiler (set .noreorder, ...)

Root cause
Category Wrong implementation,

Value corruption
Comment

Integer overflowed or underflowed

Mixed signed and unsigned integer

Root cause
Category Wrong implementation,

Wrong program flow
Comment

Wrong condition in an if command

Wrong condition for the end of a loop

Unhandled case in a switch command

Wrong propagation in a switch command

Wrong cases in a switch command

Wrong count of loop iterations +1

Wrong count of loop iterations by more than 1

Wrong order of commands

Root cause
Category Wrong implementation,

Extra code
Comment

Extra assignment

Extra commands

Extra call of a subprogram

Extra sub expression

Root cause
Category Wrong implementation,

Wrong (coding related) assumption
Comment

Wrong assumption how library (or module) works

Wrong assumption how function works

Wrong assumption how language construct works

Wrong assumption how environment works

Root cause
Category All other

Comment

Root cause not known

Error from outside (simulator, compiler, ...)

Not a bug

65

Each bug report had the following list of flags that enabled us to monitor other

further aspects of the root cause.

Flags for root causes Comment

Assembler related
Does not have to be a bug in the assembler code. For
example, the investigation included obtaining
detailed information about stack operations.

Caused by copy and paste

In foreign code

Incomplete modification The performed modification in the code was not
done in every needed place.

Preprocessor related

Debugged by more people

Memory corruption related

7 Methods and debugging tools

The following tables list the debugging tools and methods that we identified and

recorded in our study.

Debugging tool
Category Other

Comment

SVN (log, history)
Objdump
Own functions (in code) for
debugging

Including debugging prints

Own debugging programs Own scripts, stack analyzer, ...

Debugging tool
Category GUI Debugger

Comment

Breakpoints and stepping
Call stack window
Disassembly window

TLB window
This was implemented specifically into the GUI debugger,
it is not a commonly available (and purposeful) feature

Memory breakpoints
Memory view
Registry window
Variables window usage

Debugging tool
Category Evaluation of debugging data

Comment

Text processing (grep, sed, search in a text
editor, ...)

Excel, R, own script, ...
Disassembly window

66

Debugging tool
Category MSIM debugging support

Comment

Instruction-level stepping and breakpoints
Memory dump
Inspecting registers
Special instructions of MSIM
Memory breakpoints
Execution trace

Debugging tool
Category GDB

Comment

Instruction-level stepping and breakpoints
Memory dump
Inspecting registers
Special instructions of MSIM
Memory breakpoints
Execution trace

Debugging tool
Category Obtaining information

Comment

Reading documentation
Web search (google, forums, ...)
Questioning community

Debugging tool
Category Formal methods and verification

Comment

Tools for static analysis Any tool that does code analysis before run-time

Debugging method
Category Looking for suspicious behavior

Comment

Looking for suspicious content of variables
Looking for suspicious content of the memory
Looking for suspicious flow of the program
Creating a log or a trace

Debugging method
Category Summarizing the problem

Comment

Discussing the problem (written or spoken)
Documenting the problem
Drawing charts or diagrams

Debugging method
Category Making the localization easier

Comment

Making the bad behavior reproducible
Reducing the input of the program
Refactoring code

67

Debugging method
Category Other

Comment

Minimizing the input of the program
Going through a chain of bad variables
Re-reading the source code
Searching for the problematic part of the code
Disabling parts of code
Generating hypotheses and checking them
Changing the program (what-if approach)
Writing a test
Investigating probable location of the bug
Changing build process (rebuilding, O2 -> O0, ...)

	Recommendation for usage
	Introduction
	Contribution
	How to use this work

	Methods
	How much useful is a screw-driver or a hammer for people? ...thoughts on evaluating usefulness of generic tools
	Environment of data collection
	Data collection
	Periods of data collection
	How the data were collected
	Description of collected data
	Project development time
	Debugging time
	Complexity of the debugging scenario
	Feelings from the debugging activity
	Way of detection
	Root cause
	Used methods and tools

	The last year of the study

	Training of the participants
	Web interface for data collection
	Further thoughts on our methodology
	Realistic environment
	Exploratory study versus aimed study
	Uncontrolled experiment
	Amount of collected data
	Interviews
	Hypothesis for testing
	Time resources needed for doing this study

	Results and interpretation
	Usefulness evaluation of debugging tools
	Evaluation of all the available tools
	Comparision of a GUI debugger, GDB and printing messages

	Further aspects on debugging
	What portion of development is spent by debugging
	Worst-case estimation of debugging time for a single issue
	Most probable estimation of debugging time for a single issue
	Debugging time for design and implementation errors
	Debugging time of different programmers
	Debugging and work satisfaction
	Debugging time and perceived complexity
	Debugging time in different life cycles of a bug
	Debugging time of bugs related to assembler
	Debugging time and other aspects
	Debugging time and copy-and paste bugs

	More theoretical aspects of debugging
	Debugging intents and their frequency
	Root causes and bug frequency
	Root causes and debugging time
	Root causes and the project phase of their detection
	Debugging with and without debugging tools
	Participants preference on using debugging tools
	Usage of debugging tools and bug complexity
	Selection from available debugging tools

	Related work
	Studies evaluating usefulness of debugging techniques and tools
	Design of new debugging tools and their evaluation
	Studies of debugging or software empirical research in general

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Assignments of the operating system course
	Content of the attached CD
	Structure of SQL database
	Data evaluation and the processing script
	Ways of detection
	Root causes
	Methods and debugging tools

