Oponentský posudek na magisterskou práci

Bc. Veronika Blahnová (2016) Růstové faktory a jiné bioaktivní látky pro indukci osteogenní diferenciace mezenchymálních kmenových buněk

Magisterská práce Veroniky Blahnové je zaměřena na studium vlivu růstových faktorů a jejich kombinací na růst a diferenciaci mezenchymálních kmenových buněk. Tato práce je rozdělena do požadovaných částí.

V části "Seznam zkratek" chybí zkratka pro HGF, která je však v této práci hojně používána (má i samostatnou kapitolu v úvodu, dále s ní autorka pracuje v samotných experimentech). Nicméně, tato zkratka je vysvětlena v textu, takže jde zřejmě o nedopatření. V této části oceňuji, že autorka hledala i nacházela české ekvivalenty. Některé faktory, ligandy atd. je těžké převést do českého jazyka. Avšak pro buňky "natural killers" máme pěkné označení "přirození zabíječi".

Úvod je rozdělen do 3 kapitol. V první části se zabývá charakterizací kmenových buněk, jejich zdroji, interakcí s imunitním systémem, diferenciací aj. V druhé části autorka podrobně popisuje vznik kostní tkáně včetně detailního popisu signálních drah účastnících se tohoto procesu. Dále zde vysvětluje působení transkripčních faktorů a růstových faktorů. Tato kapitola je důležitá především pro pochopení experimentů, které jsou v práci uvedeny. Poslední kapitola s názvem "Tkáňové inženýrství" shrnuje výhody a nevýhody některých terapeutických přístupů.

Materiál a metody obsahují seznam použitých chemikálií a přístrojů, dále způsob izolace, kultivace a pasážování mesenchymálních kmenových buněk. Tato kapitola obsahuje i přehledné tabulky kombinací a koncentrací růstových faktorů a/nebo taurinu navržených pro experimenty. V této kapitole jsou uvedeny i veškeré testy a postupy, které autorka v souvislosti s vypracování práce prováděla.

Výsledky jsou rozděleny na část zabývající se především růstovými faktory (3 experimenty) a část detailněji zaměřenou na různé koncentrace taurinu. Autorka zde prezentuje 25 grafů, 2 tabulky a 4 obrázky. Prezentace dat je pečlivá, avšak grafická stránka (především grafů) je trochu slabší.

Experiment číslo 1 je velmi náročný. Obsahuje 15 typů kultivačních médií, kterým byly buňky vystaveny. Vzhledem k rozsahu experimentu se autorka snažila výsledky co nejvíce zpřehlednit. Tato její snaha se však ne vždy povedla. Například při porovnání výsledků v grafu 1b a tabulce 7. Podle tabulky je signifikantní snížení metabolické aktivity skupin 11, 12 a 14 oproti skupině 7. Avšak toto neodpovídá signifikancím uvedeným právě v grafu 1b. V tabulce č. 8 porovnávající statistické hodnocení ALP aktivity je na konci popisku napsáno, že se jedná o porovnání hodnot naměřených 15. den, zatímco v textu nad tabulkou je uvedena informace, že jde o 21. den.

Experimenty číslo 2 a 3 již obsahují nižší množství porovnávaných médií a celkově jsou přehlednější. Zde se pozastavím nad výsledky PCR. V popisku grafu č. 11 je uvedeno "množství mRNA". Vzhledem k uvedeným skutečnostem v kapitole **Materiál a metody** by bylo vhodnější uvádět na ose y spíše 2^{-ΔCp}, nebo "relativní exprese RunX2 vůči EEF-1". Navíc, hodnoty 2^{-ΔCp} mají exponenciální charakter, a proto by měly být směrodatné odchylky asymetrické. Stejnou výtku mám i ke grafům č. 12, 18 a 19.

Experiment číslo 4 se zaměřuje na různé koncentrace taurinu v kombinaci s bFGF. V kapitole 5.2.2 došlo k zaměnění obsahu DNA za aktivitu ALP: "Ve skupině 2 byly hodnot naměřené 1. a 21. den srovnatelné, 10. a 15. den byla aktivita ALP na nižší úrovní... ...výjimkou je 15. den, kdy došlo k nárůstu absorbance." (kvantifikace DNA metodou PicoGreen je založena na fluorescenci). V posledním řádku na straně 80 zase chybí číslo skupiny. Na straně 81 jedna věta nedává smysl: "Mezi 15. a 21. dnem metabolická aktivita rostla ve všech skupinách kromě skupiny 5, kde klesala skupiny 2, kde zůstávala na stejné úrovni."

Diskuse je pro lepší orientaci opět rozdělena na diskusi týkající se růstových faktorů a taurinu. Tato část je velmi podrobná a naznačuje, že autorka umí pracovat s literaturou a vyhledávat relevantní informace. Velmi oceňuji, že se autorka nezalekla vlastních naměřených hodnot, které byly v rozporu s informacemi nalezenými v literatuře. Výsledky svého měření následně vysvětluje.

Závěr shrnuje zjištěná pozorování. Vzhledem k rozsahu jednotlivých experimentů je i tato část velmi zdařilá.

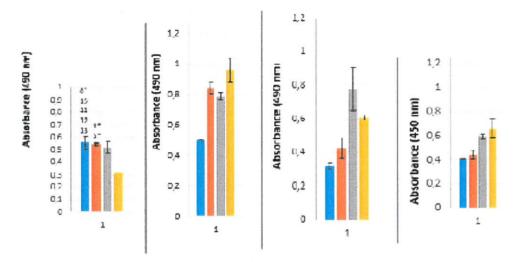
Zdroje. Tato část zahrnuje seznam použité literatury. Opět jde o rozsáhlý soubor (184 publikací) a díky tomuto rozsahu je i pravděpodobné, že se může vloudit chybička. Nekontrolovala jsem všechny zdroje jednotlivě, spíše namátkou. Nalezené chyby jsou nezávažné (např. v citaci č. 3 chybí *et al.*, citace č. 23 má špatně uvedeny autory **Ikehara, S., Li, M.**). Věřím, že při sepisování vědecké publikace, kde se pracuje s 30 citacemi, autorka uvede seznam bez chyb.

Formální kvalita předložené práce

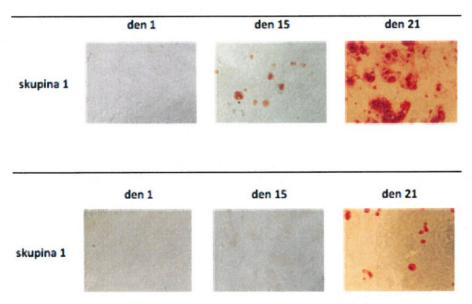
Formálně velmi dobře provedená práce. Mám však jedinou výhradu, která se týká popisků tabulek. Popisky tabulek by měly být umístěny nad tabulkou a nikoli pod ní.

Jazyk

Bez prohřešků proti gramatice. Jen příležitostné překlepy:


str 7.	nádoru. <mark>.</mark>
str. 14.	trijodthy <mark>r</mark> onin
str. 20.	kalcia, kalcium (nahradila bych výrazy českým vápníkem)
str. 39.	bi <mark>o</mark> kompatibilitu
str. 41.	mimikovat, potencovány (nahradila bych českými výrazy)
str. 84.	osteo <mark>g</mark> progenitorových

Podle názoru oponentky je práce přes drobné výtky vynikající. Autorka prokázala, že zvládá práci v laboratoři na vysoké úrovni. Popisované experimenty byly velice rozsáhlé. I prací s literaturou autorka prokázala systematičnost, kritičnost a logiku.


Otázky do diskuse

1. Ve všech experimentech bylo použito osteogenní médium jako negativní kontrola. Jak si vysvětlujete rozdíl např. v metabolické aktivitě hodnocené pomocí testu MTS? (V prvním experimentu došlo k poklesu metabolické aktivity v průběhu 21 dní trvajícího pokusu. Ve druhém pokusu došlo ke skokovému nárůstu aktivity 10. den. Ve třetím pokusu byla nejvyšší aktivita

naměřena 15. den. A v posledním pokusu docházelo k postupnému růstu metabolické aktivity.) - viz přiložené výseky z grafů.

2. Stejná otázka se týká i odlišného trendu v množství naměřené DNA či depozice vápenatých iontů. Jak si vysvětlujete odlišné chování buněk ve stejných podmínkách?

- 3. Dále mne zajímá, proč autorka zvolila pro hodnocení exprese genů v experimentu č. 2 10. a 21. den, zatímco v experimentu č. 3 hodnotila 1. a 21. den.
- 4. Na konci diskuse autorka zmiňuje, že stabilita růstových faktorů v médiu se liší (jsou stabilní v průměru 1 den). Avšak v závěru autorka píše, že optimální kombinací růstových faktorů a dalších molekul by bylo možné funkcionalizovat nanovlákenné nosiče, z nichž by se inkorporované látky postupně uvolňovaly. Má autorka představu, jakým způsobem by tedy šlo růstové faktory stabilizovat, aby v nosiči vydržely ve fyziologickém množství?

Marta Vaudrovios