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1. Introduction

Building time-series models with reasonable predictive strength plays essential
role in Econometrics and Statistics. When developing such models, an analyst
usually needs longer data to capture seasonal effects, to gain stationarity or to
get valid statistical inference about the parameters. On the other hand, longer
time series data are often exposed to sudden shocks such as financial crises, new
regulations or changes in policy due to new political environment. These shocks
may partly mask the key pieces of information behind data. One possibility is
to build models with more parameters that can capture some of the effects how-
ever in this case they become too much complex and it is sometimes difficult to
interpret such models to the practitioners. Another way to treat instability in
the data is to find simpler models easier for interpretation and check whether
there are time points (called change-points) where the parameters of the models
become invalid and need to be changed. Some of the real data examples where
the change points occur involve the quality control data, signal processing and
segmentation, see for instance Basseville and Nikiforov (1993), temperature mon-
itoring in e.g. Horváth et al. (2004), financial data in Bai (1997), or economic
data in Horváth et al. (1997), among many others.

The popularity of the change point analysis has increased due to the vast
amount of literature that covers various detectors of change points for many
models of interest. For simple change in the location of normal random vari-
ables, see e.g. Yao and Davis (1986) or Horváth (1993b). For change points in
regression models, see Horváth et al. (2004), Horváth et al. (2007) among oth-
ers. Detecting changes in time series models are treated in Gombay (2008),
Davis et al. (1995), Gombay and Horváth (2009), Hušková et al. (2007) and the
references therein, or Prášková (2015) for change detection in random coefficient
autoregression models. Multivariate time series models have been discussed for
instance in Aue et al. (2009), Bai et al. (1998), or Bai (2000). Change point de-
tection in panel data is treated in Chan et al. (2013), procedures for ARCH and
GARCH sequences are discussed in Kokoszka and Leipus (2000), or Berkes et al.
(2004). Testing procedures for finding breaks in functional observations are treat-
ed in Hörmann and Kokoszka (2010), among others.

The detection of a change usually involves two things that are closely related:
First, a test has to be designed for the model of interest, where typically a null
hypothesis means no change in the parameters of the model. Second, if a test
rejects the null hypothesis, one should find the appropriate estimate of the change
point. We will mainly discuss the tests since these are the primary interest of this
thesis, and shortly mention also some references that deal with the properties of
change point estimators.

1.1 Testing procedures

As regards the testing procedures, they can generally be split as in Figure 1.1.
The test statistics can be derived from residuals, by (quasi)-maximum likeli-

hood approach such as test statistics based on score vector or likelihood ratio, or
from Bayesian concept such as cumulative or moving sums (=CUSUM, MOSUM),

4



1. INTRODUCTION

change point testing

retrospective sequential

one change multiple changes

Figure 1.1: General split of change detectors.

etc. Test statistics are usually constructed in a way that large values indicate the
rejection of the null hypothesis on a certain level and low values are in favour
of the null. Since their exact distribution is sometimes impossible to find due to
their complexity, the biggest effort is concentrated to find at least the asymptotic
distribution under the null hypothesis and alternative. Such asymptotic distri-
bution usually covers the distributions of several functions of Wiener processes,
where the critical values have to be often simulated, or the exact distributions
where we can use calculator to determine the critical value. Some Monte Carlo
comparisons of various test statistics (Wald-type, likelihood-ratio, CUSUM, etc.)
can be found in the paper by Andrews (1993) and the references therein.

1.1.1 Sequential monitoring

So called sequential, or online procedures are based on the real-time monitoring of
the model. The procedure learns on some training sample where the estimation
of the parameters is performed. Then the test statistic is updated every time
the new observation comes, using the training sample estimates, and its value
is compared to the critical value. If the statistic exceeds it we reject the null
hypothesis and stop the monitoring.

The most popular in this context are CUSUM test statistics which were
developed by Page (1955) in cases of shifts in the mean. One of the earliest
well known application on ARMA models is the paper by Bagshaw and Johnson
(1977) who found the asymptotic distribution of the test statistic under the null
hypothesis based on the sums of squared residuals. As regards further papers on
monitoring in time series models, we have to mention for instance the monitor-
ing in autoregressions that is treated in Gombay and Serban (2009), or detect-
ing changes in the variance structure for weakly stationary linear processes, see
Gombay and Horváth (2009). Monitoring changes in linear models and asymp-
totic behaviour under alternative is treated for instance in Csörgő and Horváth
(1997), Horváth et al. (2004), Hušková and Koubková (2005), Aue et al. (2006)
where the latter paper also relaxes the independence condition in the error term.
Weak dependence structure can also be found in Hušková and Chochola (2010),
and Lp-m approximability conditions in Chochola et al. (2013). Darling-Erdös
result in sequential setup is described for instance in Horváth et al. (2007).
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1. INTRODUCTION

1.1.2 Retrospective tests

In this setup analysts usually test some sample of a given length against changes
that might occur. The conclusion of such analysis is a decision if there is (not)
any substantial change point in such sample on a certain level of probability. The
retrospective tests will be discussed in the thesis and the attention will be paid
to the change point detection in autoregressions. We will consider tests based on
the Gaussian quasi-likelihood approach.

As regards the historical development, one of the first articles that dealt with
changes in the mean of Gaussian independent variables with unit variance was
paper by Gardner (1969), where the time of change was assigned an apriori distri-
bution. Likelihood approach for change point detection in the mean of continuous
independent random variables is treated in Hinkley (1970) or Worsley (1986). Pa-
per by Horváth (1993b) discusses the likelihood-ratio test for detecting changes
in the mean and variance of independent normal observations and used the gen-
eralized the Darling-Erdös theorem, see Darling and Erdös (1956), to show that
the standardized maximum of likelihood ratio follows Gumbel distribution under
the null hypothesis of no change. Generalization for the latter case of changes in
the mean where the errors in the location model follow stationary linear process
is discussed in Horváth (1997). For the change detection in the regression models,
see Horváth et al. (1997), or the more comprehensive book Csörgő and Horváth
(1997). As regards the robust procedures for changes in regression, see for in-
stance Hušková and Picek (2002) or Prášková and Chochola (2014).

One of the first papers considering structural changes in autoregressive mod-
els is the paper Salazar (1982) who investigates the change point in AR models
by maximum likelihood method where the change point is assumed to follow cer-
tain distribution. Paper by Picard (1985) suggests tests in time series based on
Kolmogorov-Smirnov idea for detecting failure in spectrum and for changes in pa-
rameters. Davis et al. (1995) develop Gaussian-type likelihood tests for detecting
changes in stationary autoregressions. Hušková et al. (2007) suggests tests based
on partial sums of weighted residuals and there is treated the behaviour of the test
statistic also under alternative hypothesis as well. Changes in ARIMA models
are covered in Lee et al. (2006).

1.2 State of Art

In this section we mention especially papers concerning testing changes in mul-
tivariate autoregression models and describe their contents in a bit more detail
since these provides the baseline for us to propose some generalizations. Even
if the articles often provide more results we will mention only the contributions
that are directly linked with the topics covered in this thesis: Bai et al. (1998)
considers the weak stationary vector autoregression model {yt}t∈Z with some
additional stationary component and discusses the asymptotic behaviour of the
F -type statistic. As regards the purely autoregression case, it is assumed that the
error sequence is a martingale difference sequence with finite conditional variance;
further, they assume finite (4+ δ)-moment, δ > 0, of the error term. This implies
that the error term must be uncorrelated with constant unconditional variance.
In this case all the conditions apply on the error term. Article by Bai and Perron
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1. INTRODUCTION

(1998) discusses more general framework of multiple break points in linear mod-
els where lagged values of the process are (and are not) allowed as regressors.
The assumptions are similar to those previously mentioned. Instead of higher
moment conditions, it is assumed a certain FCLT to hold for the product of the
error term and lagged value of the process. Controlling the empirical variance

follows from the requirement that 1/T ·∑T τ
t=1 wtw

⊤
t

P−→T →∞ τQ, uniformly in τ ,
where Q is positive-definite and wt = (y⊤

t−1, . . . ,y
⊤
t−p)⊤ is a vector of lagged val-

ues of the process. This condition appears often in case of stochastic regressors,
see Horváth (1995), Horváth et al. (2004), or Qu and Perron (2007) among many
others where we usually do not have any specific information about their distri-
bution. Qu and Perron (2007) consider quasi-likelihood ratio tests covering both
multiple changes in the parameters of a general class of multivariate regression
models and the case where prior information about the parameters is present.
The versatility and universal usage on a variety of models is balanced off with
some strict assumptions, some of which are difficult to verify.

We will further develop some of the testing procedures which were mentioned
above. Chapter 2 contains basic notation and some sets of assumptions which
will serve as a basis for the next chapters. The sets of assumptions are stan-
dard in the change point literature and contain weak dependence structures,
see for instance Bai et al. (1998) for assumptions covering martingale-differences,
Davis et al. (1995) for strongly mixing sequences, or Hörmann and Kokoszka
(2010) for the Lp-m approximable sequences. All these weak dependent struc-
tures, as well as independent sequences, have in common that they imply FCLTs
under further conditions on moments.

The main topic of Chapter 3 is a change detection in stationary VAR(p)
models where the variance of the error term remains unchanged in time. The ap-
proximations of the quasi-likelihood test statistic by function of Wiener processes
under the null has been studied in Qu and Perron (2007), however, we will not
directly assume FCLTs. Instead, we will formulate the assumptions which will
imply FCLT. In addition, a new VAR(p)-specific test, which can detect changes
in the lag of the model, will be presented. We will also come up with Darling-
Erdös test being inspired by Davis et al. (1995) where such tests are elaborated
only for the univariate AR models. The part of this chapter has been published
in Dvořák and Prášková (2013).

Chapter 4 is heavily based on the publication Dvořák (2015) which has re-
cently been accepted to Communication in Statistics – Theory and Methods, and
its content is devoted to the Darling-Erdös type test for situation when variance
of the error term is also allowed to change. We will show that there is no direct
generalization of the univariate case and explain why the test based on the clas-
sical quasi-log-likelihood ratio cannot converge to the Gumbel distribution under
the null hypothesis, which is a quite surprising result since in the univariate case
such approximation exists, see for instance Davis et al. (1995). We will propose
the modification of the log-likelihood ratio in order to achieve the desired result
under the null hypothesis. Some of the proofs are similar to Davis et al. (1995),
however, lots of additional steps not treated in the latter article need to be proven
to assure the convergence.

Chapter 5 presents the score test coming from the partial derivatives of quasi-
likelihood ratio. The main idea comes from Gombay (2008) where the test is
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1. INTRODUCTION

introduced for change detection in univariate stationary autoregression. Unlike
in previous two chapters, where we completely avoided independence, we will as-
sume independent error process for deriving the asymptotic results. However, our
assumptions will still be weaker than those in Gombay (2008) where a normality
is assumed. We will show that the natural generalization to the multivariate set-
up does not function in case of change detection in variance structure of the error
term. Hence the new standardization matrix will be proposed specially for this
test to be useful in the multivariate setting. Its advantage over the matrix used
by Gombay (2008) stands in the fact that the test can be applied component-wise
not only by blocks but also element by element.

So far, the estimates of the break points (break dates) have not been men-
tioned, since this is not a goal of the following text. Hence, we will give at least
some relevant remarks and citations here. The estimate of the break point is usu-
ally an argument which maximizes the test statistic, see for instance Bai et al.
(1998), p. 399, for the case of quasi-likelihood approach in vector autoregressions.
The inference about the break points is extensively studied in Bai (2000). In
particular it is shown under certain assumptions not stated here that in terms of
real time index the break point estimate deviates from the true change point only
by a finite number of observations. Asymptotic distribution for the break points
estimators is also stated in that article. One of the most important result which
links the estimates of the break dates and the estimators of the parameters in
the quasi-likelihood approach is established in Qu and Perron (2007) in case of
multiple breaks: They have found out that under certain set of conditions stated
there, the maximization problem in the quasi-log-likelihood ratio over all possible
change-points and all parameters can be divided into two asymptotically inde-
pendent maximizations. First maximization problem finds the best estimators
of the parameters with the change points being the true values, and, conversely,
the second maximization problem finds the best estimators of the change points
and does involve only true values of parameters. Hence, the estimation of the
break points is not sensitive to the precision of the parameter estimators, and
conclusively, the increasing length of the time series T does not help in the preci-
sion of the break dates estimators. According to this article, the precision of the
break dates estimates can influence only changes in its true values across different
regimes and the extent of the correlations in the error term.
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2. VAR model, notation and
assumptions

This chapter introduces the reader into the problem of change point detection in
vector autoregressions. The first section contains the model definition and the
considered scenarios of behaviour of the model in time. Section 2.2 discusses
various sets of assumptions which have been studied in the literature and which
will later be used to prove the desired properties of the test statistics. As it is
difficult to compare the strength of these assumptions, we at least mention some
important properties or implications for each of them. Section 2.3 contains proofs
of the propositions stated in this chapter.

2.1 Model and hypothesis definition

Following usual definitions, see e.g. Hamilton (1994), we will denote by VAR(p)
a vector autoregressive model of the form

yt = c + Φ1yt−1 + . . .+ Φpyt−p + εt, t ∈ Z, (2.1)

where p is a fixed lag, c is an n × 1 nonrandom vector, Φj, j = 1, . . . , p, are
n× n nonrandom autoregressive matrices, and {εt}t∈Z is an n-dimensional error
sequence that will be specified later.

In order to easier manipulate with the parameters we introduce the follow-
ing notation: Let Vt = (1,y⊤

t−1, . . . ,y
⊤
t−p)⊤ ∈ R

np+1, β = vec(c,Φ1 . . . ,Φp) ∈
R

n(np+1). Then we can write (2.1) in the form

yt = (V⊤
t ⊗ In)β + εt = Mtβ + εt, t ∈ Z, (2.2)

where Mt := V⊤
t ⊗ In ∈ R

n×n(np+1) and In := In×n stands for an n-dimensional
identity matrix. Rewriting the model into the regression form (2.2) enables to
express the test statistics in the more compact way.

Let us assume that we have T consecutive observations y1, . . . ,yT of pro-
cess (2.2). Our aim is to test the null hypothesis

H0 : yt = Mtβ + εt, t = p+ 1, . . . , T,

against the following scenarios:

Scenario 1:

H1 : ∃k ∈ {p+ 1, . . . , T − 1} : yt = Mtβ + εt, t = p+ 1, . . . , k,

yt = Mtβ̃ + εt, t = k + 1, . . . , T,

where β̃ := vec(c̃, Φ̃1 . . . , Φ̃p) ∈ R
n(np+1), β̃ 6= β.

In this scenario we assume that the variance of the error term is not subject
to change however the variance of underlying process {yt}t∈Z can be subject of
change since it depends on β, see Hamilton (1994), p. 264, for the details in
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2. VAR MODEL, NOTATION AND ASSUMPTIONS

stationary case.

Scenario 2:

H1 : ∃k ∈ {p+ 1, . . . , T − 1} : yt = Mtβ + εt, t = p+ 1, . . . , k,

yt = M̃tβ̃ + εt, t = k + 1, . . . , T,
(2.3)

where M̃t = (1,y⊤
t−1, . . . ,y

⊤
t−q)

⊤ ⊗ In ∈ R
n×n(nq+1), β̃ = vec(c̃, Φ̃1 . . . , Φ̃q) ∈

R
n(nq+1), p < q.

The preceding Scenario 2 covers the case where autoregressive parameters
can change at certain time k together with the increase of the lag of the model.
Variance of the error term is supposed to be constant across the time.

Scenario 3:

H1 : ∃k ∈ {p+ 1, . . . , T − 1} : yt = Mtβ + εt, t = p+ 1, . . . , k,

= Mtβ̃ + εt, t = k + 1, . . . , T,

and either β̃ 6= β or

var[εt] =

{
Ω, t = p+ 1, . . . , k

Ω̃, t = k + 1, . . . , T
where Ω 6= Ω̃.

The preceding scenario covers the case where both autoregression parameters and
variance of the error term can be a subject of a change.

It will be assumed throughout the thesis in all scenarios that the initial p
observations y1, . . . ,yp of the process {yt}t∈Z will follow VAR(p) process with
parameter β and with variance of the error term Ω, to ensure that at least the
first measurement of interest yp+1 will obey the null hypothesis.

The time of change k is usually unknown, but can be estimated consistently
by many test statistics, see for instance Bai et al. (1998), Bai (2000) for the case
of change point in vector autoregression, or Qu and Perron (2007) in more general
multivariate regression framework based on the quasi-likelihood approach. This
thesis will deal only with testing structural changes.

2.2 Assumptions on the model

We will formulate various sets of assumptions which will further be used in the
text. All assumptions have in common that they imply the functional central
limit theorem which is the essential tool in the change point analysis for finding
the asymptotic distribution of the test statistics.

Assumptions A:

(A.1) ∀|z| ≤ 1 : det
{
In − Φ1z − . . .− Φpz

p
}

6= 0,

(A.2) Let {εt}t∈Z be an n-dimensional strictly stationary ergodic martingale dif-
ference sequence adapted to the filtration Ft = σ{εt, εt−1, εt−2, . . .} with

E[εtε
⊤
t |Ft−1] = Ω, where Ω ∈ R

n×n is a known positive-definite variance ma-
trix (which will be denoted as Ω > 0); further, let E[εi,t εj,t εk,t|Ft−1] = µi,j,k
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2. VAR MODEL, NOTATION AND ASSUMPTIONS

be finite, ∀t, ∀(i, j, k), and E[εi,t εj,t εk,t εℓ,t|Ft−1] = µi,j,k,ℓ be finite, ∀t, and
∀(i, j, k, ℓ).

Assumption (A.1) means that roots of the polynomial φ(z) := det
{
In − Φ1z −

. . .−Φpz
p
}

lie outside the complex unit circle. Assumption (A.2) yields FCLT for

{εt}t∈Z. Martingale difference property ensures that such sequence is uncorrelated
with any measurable function of its lagged values, see for instance Davidson
(1994), Theorem 15.3. Both assumptions imply that, under H0, the process as
given in (2.2) can be represented as a vector infinite-order moving average process

yt = µ +
∞∑

k=0

Ψk εt−k, (2.4)

where µ := E[yt] = (In − ∑p
j=1 Φj)

−1c; and the sequence of matrices Ψk ={
ψ

(k)
ij

}n

i,j=1
is absolutely summable, i.e.

∞∑

k=0

∣∣∣ψ(k)
ij

∣∣∣ < ∞, ∀i, j = 1, . . . , n

(see, e.g. Hamilton (1994), Chapter 10.1., or Lütkepohl (2005), p. 657). It follows
from Assumptions A and Theorem B.6, that under H0, the sequence {yt}t∈Z is
strictly stationary and ergodic.

As we pointed out, it is well established in the literature that the elements
ψ

(k)
ij of the matrices Ψk in representation (2.4) are absolutely summable under

Assumptions A. Other sets of assumptions presented later will also imply the
infinite-order moving average representation. From the theory of univariate weak-
ly stationary AR processes we know the speed of decay of the coefficients in such
representation. Natural question therefore is, if something similar exists also in
case of weakly stationary multivariate vector autoregressions. This question will
be answered in Theorem 2.1. Now, we are going to prepare the setup for the
proof of this theorem by transforming VAR(p) model into VAR(1) model:

Let us denote the following vectors

Yt := vec(yt,yt−1, . . . ,yt−p+1), C := vec(c,0, . . . ,0), Ut := vec(εt,0, . . . ,0)

and matrices

A :=




Φ1 Φ2 · · · Φp−1 Φp

In 0 · · · 0 0
...

... · · · ...
...

0 0 · · · In 0




∈ R
np×np, J := (In 0 · · · 0) ∈ R

n×np. (2.5)

Process (2.1) can then be expressed as an (np)-dimensional VAR(1) process in
the form

Yt = C + AYt−1 + Ut,

which can be further written as

Yt = ν +
∞∑

k=0

A
kUt−k, (2.6)

11



2. VAR MODEL, NOTATION AND ASSUMPTIONS

where ν = vec(µ,µ, . . . ,µ) ∈ R
np. Multiplying (2.6) by J from the left and

noticing that Ut = J
⊤εt leads us to

yt = µ +
∞∑

k=0

JA
k
J

⊤εt−k. (2.7)

We are about to show the rate of decay of the absolute value of elements

ψ
(k)
ij . Throughout the text, let ‖A‖ :=

√
tr{AA

⊤}, be the Euclidean norm of
matrix A ∈ R

n×n. It is proven that the summability of A in the Euclidean norm
is equivalent to the the absolute summability of its elements, see for instance
comment below Proposition C.8 in Lütkepohl (2005), p. 687-688.

Theorem 2.1 Let {yt}t∈Z be a VAR(p) process defined in (2.1) fulfilling (A.1)
with the error sequence {εt}t∈Z such that E[εt] = 0 and E[εsε

⊤
t ] = I[s=t]Ω < ∞

for all s, t ∈ Z. Let A be a matrix defined in (2.5). Then the process on the right-
hand side of (2.4) is correctly specified and matrices Ψk in representation (2.4)
fulfill inequality

‖Ψk‖ ≤ K · kr∗−1 · λk
∗ , (2.8)

where 1 ≤ K < ∞ is a constant, λ∗ := maxl{|λl|} is the largest eigenvalue of
matrix A in modulus, 0 < λ∗ < 1, and r∗ := maxl{rl}, where rl is a multiplicity
of eigenvalue λl.

Conditions stated in Theorem 2.1 guarantee the existence of the infinite moving
average representation of VAR(p) model in the mean square. The theorem tells

us that the speed of decay of elements ψ
(k)
ij of matrices Ψk, k = 0, 1, . . ., depends

on the solutions (eigenvalues) λ of the polynomial equation

det{λInp − A} = det{Inλ
p − Φ1λ

p−1 − . . .− Φp−1λ− Φp} = 0. (2.9)

Under stability conditions, if all eigenvalues of A are mutually distinct then the
elements ψ

(k)
ij , i, j = 1, . . . , n decay geometrically when k → ∞. Otherwise the

rate of decay is somewhat slower proportional to k to the power of the biggest
multiplicity of the root of equation (2.9).

Let us move to the other sets of conditions that will be used further:

Assumptions B:

(B.1) ∀|z| ≤ 1 : det
{
In − Φ1z − . . .− Φpz

p
}

6= 0.

(B.2) Error term process {εt}t∈Z is a sequence of centered random vectors such
that for all t1 ≤ t2 ≤ t3 ≤ t4

a) E[εt1ε⊤
t2

] = I[t1=t2] · Ω is finite, and Ω > 0,

b) ∀(i, j, k): E[εi,t1 εj,t2 εk,t3 ] = I[t1=t2=t3] · µi,j,k is finite,

12
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c) ∀(i, j, k, ℓ):

E

[
εi,t1 εj,t2 εk,t3 εℓ,t4

]
=





µi,j,k,ℓ if t1 = t2 = t3 = t4,
σijσkℓ if t1 = t2 < t3 = t4,

0 otherwise,

and µi,j,k,ℓ is finite, for all i, j, k, ℓ, and σij is (i, j)-element of Ω,
i, j = 1, . . . , n.

d) supt E ‖εt‖4+δ = const. < ∞, for some δ > 0, i.e. process {εt}t∈Z has
uniformly bounded (4 + δ)-moment.

(B.3) Process {yt}t∈Z is a strong mixing process with rate ρT = O(T−(1+ǫ)(1+4/δ))
for some ǫ > 0, where O(·) denotes Landau symbol.

Assumption (B.1) is the same as (A.1) and guarantees stability of the VAR(p)
model. Assumption (B.2) specifies the properties of the error term {εt}t∈Z. Final-
ly, (B.3) specifies the probabilistic structure of the observed process. According
to Pham and Tran (1985) the mixing condition is satisfied for n-dimensional cen-
tered linear processes of the form yt =

∑∞
j=0 Ψjεt−j, Ψ0 = In, if

(Ph.1) εt are independent random vectors that admit density gt such that ∀t and
∀u ∈ R

n ∫

Rn
|gt(v − u) − gt(v)|dv < K‖u‖ < ∞,

(Ph.2) it holds E ‖εt‖δ < K, ∀t, for some δ > 0, K > 0,

(Ph.3)
∑∞

j=0 ‖Ψj‖ < ∞,
∑∞

j=1

∑∞
k=j ‖Ψk‖ δ

1+δ < ∞,

(Ph.4)
∑∞

j=0 Ψjz
j 6= 0, ∀z such that |z| ≤ 1.

Assuming that E[yt] = 0, Condition (Ph.2) follows from Assumption (B.2). Con-
dition (Ph.3) follows from Theorem 2.1 and from Lemma 2.4. Assumption (Ph.4)
is satisfied under Assumption (B.1). Assumption (Ph.1) can be therefore seen as
an additional assumption on the error term in order Assumption (B.3) is fulfilled.

Next we formulate another set of conditions being inspired by the recent
papers Wu and Min (2005) and Aue et al. (2009):

Assumptions C:

(C.1) ∀|z| ≤ 1 : det
{
In − Φ1z − . . .− Φpz

p
}

6= 0.

(C.2) Let {εt}t∈Z be n-dimensional process such that

εt = f(νt,νt−1, . . .), t ∈ Z, (2.10)

where f : Rn′×∞ → R
n is a measurable function and {νt}t∈Z a sequence of

independent, identically distributed random vectors with values in R
n′

.

(C.3) It is further required that there is a sequence of m-dependent random vec-

tors {ε
(m)
t }t∈Z such that ε

(m)
t = f(m)(νt,νt−1, . . . ,νt−m), t ∈ Z, with mea-

surable functions f(m) : Rn′×(m+1) → R
n, and

∞∑

m=1

(
E

∥∥∥ε0 − ε
(m)
0

∥∥∥
4
) 1

4

< ∞. (2.11)

13
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(C.4) {εt}t∈Z is a centered process, E[εsε
⊤
t ] = I[s=t]Ω, Ω > 0, with E ‖εt‖4 < ∞.

A disadvantage of Assumptions C is the need of certain structure on the error
term sequence which is expressed in (2.10), whereas mixing assumptions can
work with more general class of models. However, there is a lot of important
models fulfilling (2.10), see Aue et al. (2009) for examples. In addition, mixing
conditions are usually accompanied by additional smoothness restrictions which
are often difficult to verify. Advantage is that Assumptions C can be applied even
on possibly nonlinear error sequence.

The main difference of our approach and the paper by Aue et al. (2009) lies in
the fact that we apply these assumptions on the error sequence while the authors
of the latter paper use them for the time series itself. It has to be noted that the
assumptions in Aue et al. (2009) do not contain (C.1) and (C.4). However, when
the authors apply their theory on the case of VAR(p) process in Section 4.1,
they assume the infinite-order moving average representation of VAR(p) process
with iid error term sequence with bounded fourth absolute moment. Hence they
implicitly assume (C.1) and (C.4) to be fulfilled as well. Unlike in Aue et al.
(2009), we do not need the iid error term in our case. Their paper enables to
widen the theory on ARCH and GARCH sequences. On the other side, they
tackle only changes in variance of the series itself and they do not obtain which
parameter causes these changes.

It follows from (C.2) and Theorem B.6 that error process {εt}t∈Z is strictly
stationary and ergodic which is in line with Assumptions A. In (A.2) it is fur-
ther required that the error sequence {εt}t∈Z possesses a martingale-difference
property whereas here we assume uncorrelatedness in time and (C.3).

The concrete description of dependence, that is needed to establish the FCLTs,
appears in (2.11). The weak dependence is enabled through the introduction of

m-dependent random errors {ε
(m)
t }t∈Z in condition (C.3). It does not mean that

the original error sequence {εt}t∈Z is m-dependent, it must only be “close” to

ε
(m)
t in the sense of (2.11). Paper by Aue et al. (2009) shows that (C.2) and

(2.11), where εt is replaced by yt, induce, under H0, FCLT for standardized yt

and vech(yty
⊤
t ), see Theorem B.11 and Theorem B.12.

There has been developed the theory of Lp-m approximable sequences where
the main effort stands in avoiding the mixing conditions, see Wu and Min (2005)
for the case of linear processes, or Hörmann and Kokoszka (2010) for the case
of weakly dependent functional data. As pointed out in Hörmann and Kokoszka
(2010), the Lp-m approximable sequences do not imply the strong mixing condi-
tions and that the concept of Lp-m approximability is not directly comparable to
the mixing processes.

Now we will show that if {εt}t∈Z follows Assumptions C then the stationary
VAR(p) model {yt}t∈Z follows Assumption 2.1 in Aue et al. (2009) and hence
FCLT can be applied to yt and vech(yty

⊤
t ) under H0, see Theorems B.11 and

B.12.

Theorem 2.2 Let Assumptions C be fulfilled. Then there exists a measurable
function g : Rn′×∞ → R

n such that

yt = g(νt,νt−1, . . .), t ∈ Z, (2.12)

where {νt}t∈Z is a sequence of iid random vectors with values in R
n′

. Further,

there exists m > 0 and a sequence of (2m)-dependent random vectors {y
(2m)
t }t∈Z

14
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such that y
(2m)
t = g(2m)(νt,νt−1, . . . ,νt−2m), t ∈ Z, with measurable functions

g(2m) : Rn′×(2m+1) → R
n, and

∞∑

m=1

(
E

∥∥∥y0 − y
(2m)
0

∥∥∥
4
) 1

4

< ∞. (2.13)

In particular, Assumptions A and B imply FCLTs as well, as will become clear
further. Since the convergence in FCLT leads to functions of the Wiener process,
let us remind its definition:

Definition 2.3 We say, that WΓ is a d-dimensional Wiener process with co-
variance matrix Γ, if it is a centered Gaussian process with covariance function
Cov(WΓ(s),WΓ(t)) = min{s, t}Γ. We say that W is a d-dimensional standard
Wiener process, if Γ = Id. Process B is a d-dimensional standard Brownian
bridge, if B(τ) = W(τ) − τW(1), 0 ≤ τ ≤ 1, where W is a d-dimensional
standard Wiener process.

2.3 Proofs

In this section the statements of Chapter 2 will be proven.

Proof of Theorem 2.1: Comparing the equation (2.7) with (2.4) we see that Ψk =
JA

k
J

⊤. The Jordan decomposition of the matrix A is of the form A = PΛP
−1,

where P is regular and Λ is a block-diagonal Jordan matrix of the form

Λ =




Λ1 0 . . . 0

0 Λ2 . . . 0
...

...
. . .

...
0 0 . . . Λs



, Λl =




λl 1 0 . . . 0
0 λl 1 . . . 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 . . . λl




∈ C
rl×rl ,

where λ1, . . . , λs are mutually distinct eigenvalues of A less than 1 in modulus,
s ≤ np, and rl is a multiplicity of eigenvalue λl, l = 1, . . . , s. Note that if
multiplicity rl of eigenvalue λl is 1, then the Jordan block Λl is a number, i.e.
Λl = λl. By multiplication we get that A

k = PΛk
P

−1, where

Λk =




Λk
1 0 . . . 0

0 Λk
2 . . . 0

...
...

. . .
...

0 0 . . . Λk
s



, Λk

l =




λk
l

(
k
1

)
λk−1

l . . .
(

k
rl−1

)
λk−rl+1

l

0 λk
l . . .

(
k

rl−2

)
λk−rl+2

l

...
...

. . .
...

0 0 . . . λk
l



,

l = 1, . . . , s , k = 0, 1, . . . , and binomial coefficient is defined as
(
a

b

)
:=

{
a!

b!·(a−b)!
for a ≥ b,

0 for a < b,

with 0! := 1. The norm of the moving average terms is of the form

‖Ψk‖ = ‖JPΛk
P

−1
J

⊤‖ ≤ ‖J‖ · ‖P‖ · ‖Λk‖ · ‖P
−1‖ · ‖J

⊤‖ ≤ K‖Λk‖,
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k = 0, 1, . . ., with positive finite constant K.
For the rest of the proof we will focus on the norm of the block-diagonal

matrix Λk. By direct computation

‖Λk‖2 = tr

{
Λk
(
Λk
)⊤}

=

=
s∑

l=1


λ2k

l +

[(
k

1

)
λk−1

l

]2

+ . . .+

[(
k

rl − 1

)
λk−rl+1

l

]2

+

+λ2k
l +

[(
k

1

)
λk−1

l

]2

+ . . .+

[(
k

rl − 2

)
λk−rl+2

l

]2

+ . . .

. . .+ λ2k
l


 =

=
s∑

l=1


λ̃k

l +

[(
k

1

)]2

λ̃k−1
l + . . .+

[(
k

rl − 1

)]2

λ̃k−rl+1
l +

+λ̃k
l +

[(
k

1

)]2

λ̃k−1
l + . . .+

[(
k

rl − 2

)]2

λ̃k−rl+2
l + . . .

. . .+ λ̃k
l


 =:

s∑

l=1

zl ,

where λ̃l := λ2
l , 0 < λ̃l < 1, l = 1, . . . , s.

If rl = 1 then zl = λ̃k
l . Otherwise, if rl > 1 then in this case

zl =
rl−1∑

u=0



(
rl − u

) [(k
u

)]2

λ̃k−u
l


.

Let us split the set S := {1, . . . , s} on two parts S1, S2 where S1 = {l ∈ S : rl = 1}
and S2 = {l ∈ S : rl > 1}. It is clear that S1 ∩ S2 = ∅ and S1 ∪ S2 = S. Then

‖Λk‖2 =
∑

l∈S1

λ̃k
l

︸ ︷︷ ︸
Term (A)

+
∑

l∈S2

rl−1∑

u=0



(
rl − u

) [(k
u

)]2

λ̃k−u
l




︸ ︷︷ ︸
Term (B)

. (2.14)

Further, let K be a positive finite constant which can change throughout the rest
of the proof from line to line. Let us consider two options:
Situation (1):
If rl = 1 for all l = 1, . . . , s, then s = np, S2 = ∅ and A has (np)-distinct
eigenvalues. In that case only Term (A) in the equality (2.14) applies and elements
of Ψk decay geometrically, since ‖Λk‖ ≤ √

np · λk
∗, where λ∗ := maxl=1,...,s{|λl|}.

Situation (2):
Otherwise, there exists l ∈ {1, . . . , s} such that rl > 1. In this case S2 6= ∅ and
Term (B) in (2.14) has to be taken into consideration.

16



2. VAR MODEL, NOTATION AND ASSUMPTIONS

Case (2a):
If k ≥ 2(rl − 1), then there exists K > 0 such that

zl ≤ r2
l

[(
k

rl − 1

)]2

· λ̃k−rl+1
l ≤ K · k2(rl−1) · λ2k

l . (2.15)

Case (2b):
If 1 ≤ k < 2(rl − 1), then the maximal summand in Term (B) lies somewhere
“in-between” (rl)-combinatorial terms, i.e. there exists τl depending on k, rl, λl

such that

zl ≤ rl(rl − τl)

[(
k

τl

)]2

· λ̃k−τl

l ≤ K · k2τl · λ2k
l .

Since, in case (2b), 1 ≤ τl < rl − 1, then

zl ≤ K · k2(rl−1) · λ2k
l . (2.16)

If we denote r∗ := maxl=1,...,s{rl} then, combining (2.14), (2.15) and (2.16), the
upper-bound for ‖Λk‖2 becomes

‖Λk‖2 ≤
∑

l∈S1

λ2k
l +

∑

l∈S2

(
K · k2(rl−1) · λ2k

l

)
≤

≤ K · k2(r∗−1)
∑

l∈S

λ2k
l ≤ K · k2(r∗−1) · λ2k

∗ ,

1 ≤ K < ∞, and from that we obtain by taking the square root

‖Λk‖ ≤ K · kr∗−1 · λk
∗

which is the assertion. �

Lemma 2.4 Let r ∈ N0 and 0 < λ < 1. Then the double-infinite series

∞∑

j=1

∞∑

k=j

kr λk

converges.

Proof : The result is immediate after re-arranging the summations,

∞∑

j=1

∞∑

k=j

krλk =
∞∑

k=0

kr+1λk.

�

Before proving Theorem 2.2, we will need an auxiliary lemma which is a
Minkowski’s inequality for random vectors. Let us denote for p ≥ 1, and random
vector x ∈ R

d with E ‖x‖p < ∞, where ‖x‖ = (
∑d

i=1 x
2
i )

1
2 ,

νp(x) :=
(

E

[
‖x‖p

]) 1
p .

This is a generalization of univariate Lp norm. We will now show that Minkowski’s
inequality holds and therefore that νp(·) is a norm in d-dimensional Lp space:
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Lemma 2.5 For p ≥ 1, and for random vectors x and y such that νp(x) < ∞
and νp(y) < ∞ it holds

νp(x + y) ≤ νp(x) + νp(y). (2.17)

Proof : Let us recall that by properties of Euclidean norm and Hölder’s inequality
(
νp(x + y)

)p
= E

[
‖x + y‖ · ‖x + y‖p−1

]
≤

≤ E

[
‖x‖ · ‖x + y‖p−1

]
+ E

[
‖y‖ · ‖x + y‖p−1

]
≤

≤
((

E ‖x‖p
) 1

p +
(

E ‖y‖p
) 1

p

)
·
(

E

[
‖x + y‖p

])1− 1
p

=

=
(
νp(x) + νp(y)

)
·
(
νp(x + y)

)p

νp(x + y)
.

The conclusion is immediate by multiplying both sides of inequality by positive
term νp(x+y)

(νp(x+y))p . �

Proof of Theorem 2.2: It follows from Assumptions C that

yt = µ +
∞∑

j=0

Ψj εt−j = µ +
∞∑

j=0

Ψj f(νt−j,νt−1−j, . . .) =: g(νt,νt−1, . . .),

where g is measurable and hence (2.12) is fulfilled for yt.

Since ε
(m)
t = f(m)(νt,νt−1, . . . ,νt−m), t ∈ Z, are m-dependent for some m, we

can define (2m)-dependent vectors

y
(2m)
t := µ +

m∑

j=0

Ψj ε
(m)
t−j = µ +

m∑

j=0

Ψj f(m)(νt−j, . . . ,νt−j−m) =:

=: g(2m)(νt, νt−1, . . . ,νt−2m). (2.18)

Let us check (2.13): In the following, K1 and K2 are positive finite constants,
r is the biggest multiplicity of the roots of characteristic polynomial of VAR(p)
model as in Theorem 2.1. By applying Minkowski’s inequality with p = 4 in
Lemma 2.5

∞∑

m=1

(
E

∥∥∥y0 − y
(2m)
0

∥∥∥
4
) 1

4

=
∞∑

m=1

ν4

(
y0 − y

(2m)
0

)
=

=
∞∑

m=1

ν4

( m∑

j=0

Ψj

(
ε−j − ε

(m)
−j

)
+

∞∑

j=m+1

Ψj ε−j

)
≤

≤
∞∑

m=1

ν4

( m∑

j=0

Ψj

(
ε−j − ε

(m)
−j

))
+

∞∑

m=1

ν4

( ∞∑

j=m+1

Ψj ε−j

)
≤

≤
∞∑

m=1

m∑

j=0

(
‖Ψj‖ · ν4

(
ε0 − ε

(m)
0

))
+

∞∑

m=1

∞∑

j=m+1

(
‖Ψj‖ · ν4(ε0)

)
≤

≤ K1

∞∑

j=0

(
jr∗−1λj

∗
)

︸ ︷︷ ︸
Term (a)

·
∞∑

m=1

(
E

∥∥∥ε0 − ε
(m)
0

∥∥∥
4) 1

4

︸ ︷︷ ︸
Term (b)

+K2

∞∑

m=1

∞∑

j=m+1

(
jr∗−1λj

∗
)

︸ ︷︷ ︸
Term (c)

,
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where the last inequality follows from Theorem 2.1 with 0 < λ∗ < 1, r∗ ∈ N

specified in that theorem as well. Then Term (a) is a convergent numeric series,
Term (b) converges according to (2.11). Finally, Term (c) is convergent due to
Lemma 2.4. �
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3. LR test where variance of
errors is unchanged

In the following two chapters, our approach will focus on change detection in
VAR(p) models based on the likelihood ratio principle. We will assume through-
out this chapter that unconditional variance Ω of the error terms remains constant
across the sample, whereas in Chapter 4 we will allow also for changes in Ω.

The chapter is organized as follows: In Section 3.1 the quasi-likelihood ra-
tio of VAR(p) process is derived. Section 3.2 contains the theorem about the
approximation of the test statistic under H0 by a function of Gaussian random
process when a time of change is apriori known. The result is generalized af-
terwards for testing a change in a time interval and for the case we permit also
a change in the lag of the model. The results are shown under various forms
of assumptions which were introduced in the previous chapter. Section 3.3 dis-
cusses the Darling-Erdös type test which shows that the asymptotic distribution
of the likelihood ratio-type test statistic properly normalized is a Gumbel dis-
tribution under H0. The usage of Gumbel distribution is new in the context of
multivariate models and the derivation of the asymptotic distribution of the test
statistic is based on the extension of idea elaborated in Davis et al. (1995) for
univariate AR models. It utilizes a multivariate extension of the Darling-Erdös
extremal theorem established by Horváth (1993b) and is heavily based on the
article Dvořák and Prášková (2013). Auxiliary lemmas and proofs of the the-
orems are presented in Section 3.4. Several simulation examples are shown in
Section 3.5 and they support the results of the theory. The simulation concept
is quite wide and contains examples of stationary VAR(p) models which both
follow and contradict the assumptions presented in the theoretical part. Since
the theoretical parts do not discuss the behaviour of the test statistic under the
alternative hypothesis we want to fill this gap at least in the simulation part.
Section 3.6 contains a real data application example.

3.1 LR test derivation

Under the assumption that Ω is positive-definite, i.e. Ω > 0, and unchanged we
utilize the hypotheses in Scenario 1 to the form:

H0 : Ω− 1
2 yt = Ω− 1

2 Mtβ + Ω− 1
2 εt, t = p+ 1, . . . , T,

H1 : ∃k : Ω− 1
2 yt = Ω− 1

2 Mtβ + Ω− 1
2 εt, t = p+ 1, . . . , k,

Ω− 1
2 yt = Ω− 1

2 Mtβ̃ + Ω− 1
2 εt, t = k + 1, . . . , T.

Let us define y∗
t := Ω− 1

2 yt, M
∗
t := Ω− 1

2 Mt and ε∗
t := Ω− 1

2 εt. Under Assump-
tions A, or B, or C, it holds that E[ε∗

t ] = 0 and E[ε∗
sε

∗⊤
t ] = In · I[s=t].

To derive the LR test we will assume the quasi-likelihood function (i.e. it is
generally based on the Gaussian likelihood of the error term εt). It is a common
practice to use Gaussian inference tools in time series analysis even if the process
is not a Gaussian-type.
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

Let us assume that k ∈ {p + 1, . . . , T − 1} is fixed. Then the Gaussian
likelihood ratio, conditional on the first p observations, is given by

LR =

∏k
t=p+1 ft(β) ·∏T

t=k+1 ft(β̃)
∏T

t=p+1 ft(β)
, (3.1)

where for b = β, β̃, respectively,

ft(b) = (2π)− n
2 exp

{
− 1

2

(
y∗

t − M
∗
t b
)⊤(

y∗
t − M

∗
t b
)}
.

After taking log transformation, we obtain the test statistic based on LR of the
form

ΛT (k) := min
β

{
T∑

t=p+1

(
y∗

t − M
∗
t β
)⊤(

y∗
t − M

∗
t β
)}

− min
β

{
k∑

t=p+1

(
y∗

t − M
∗
t β
)⊤(

y∗
t − M

∗
t β
)}

− min
β̃

{
T∑

t=k+1

(
y∗

t − M
∗
t β̃
)⊤(

y∗
t − M

∗
t β̃
)}
.

If we carry out the minimization and insert the respective arguments (i.e., the

corresponding least squares estimators) β̂T , β̂k and
̂̃
βk back into ΛT (k) we obtain

ΛT (k) =
T∑

t=p+1

(
yt − Mtβ̂T

)⊤
Ω−1

(
yt − Mtβ̂T

)
−

−
k∑

t=p+1

(
yt − Mtβ̂k

)⊤
Ω−1

(
yt − Mtβ̂k

)

−
T∑

t=k+1

(
yt − Mt

̂̃
βk

)⊤
Ω−1

(
yt − Mt

̂̃
βk

)
, (3.2)

which can be further written in a form more suitable for theoretical considerations
as

ΛT (k) = −s⊤
T PT sT + s⊤

k Pksk + s̃⊤
k P̃ks̃k, (3.3)

where for k = p+ 1, . . . , T − 1,

sk =
k∑

t=p+1

M
⊤
t Ω−1εt, s̃k =

T∑

t=k+1

M
⊤
t Ω−1εt, (3.4)

Pk =
( k∑

t=p+1

M
⊤
t Ω−1

Mt

)−1

, P̃k =
( T∑

t=k+1

M
⊤
t Ω−1

Mt

)−1

, (3.5)

where a suitable estimator of Ω will be discussed at the end of Section 3.2. Let
us focus on the situation described in Scenario 2 when the lag of the model can
change as well. Suppose that process {yt}t∈Z follows VAR(p) model up to time k
and then changes to VAR(q), where p < q, with possibly different autoregressive
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

parameters. Situation when p > q can be treated in a similar manner. Assuming
that p < q, and using the analogous setup as above, the likelihood ratio test
statistic is of the form maxq<k≤T Λ†

T (k), where

Λ†
T (k) := min

β

{
T∑

t=p+1

(
y∗

t − M
∗
t β
)⊤(

y∗
t − M

∗
t β
)}

− min
β

{
k∑

t=p+1

(
y∗

t − M
∗
t β
)⊤(

y∗
t − M

∗
t β
)}

− min
β̃

{
T∑

t=k+1

(
y∗

t − M̃
∗
t β̃
)⊤(

y∗
t − M̃

∗
t β̃
)}
,

where the Scenario 2 and notation is described in (2.3).
In what follows we discuss the asymptotic behaviour of ΛT (k) for particu-

lar value of k and also ΛT := maxp<k<T {ΛT (k)} for Scenario 1 and Λ†
T :=

maxp<k<T {Λ†
T (k)} in case of Scenario 2. For the ease of notation it is more

convenient to rescale the time interval on (0, 1) and hence we define QT (τ) :=
ΛT (⌊Tτ⌋) and Q†

T (τ) := Λ†
T (⌊Tτ⌋), τ ∈ (0, 1).

3.2 Tests based on the approximation by func-

tionals of Wiener process

The main theorem is as follows:

Theorem 3.1 Suppose that an n-dimensional stochastic process {yt}t∈Z follows
a VAR(p) model of the form (2.2) and satisfies Assumptions A. Then, for test
statistic (3.3) and under H0

QT (τ)
d−→

T →∞

‖W(τ) − τW(1)‖2

τ(1 − τ)
, τ ∈ (0, 1), (3.6)

where W is an n(np+ 1)-dimensional standard Wiener process with independent
components.

Proof of the preceding theorem as well as other in this chapter is postponed to
Section 3.4. Theorem 3.1 holds true also for Assumptions B and Assumptions C
as will be proven later in more general case for unknown change-point τ . Term
W(τ) − τW(1) =: B(τ) is n(np + 1)-dimensional standard Brownian bridge
process.

It follows from Theorem 3.1 that hypothesis H0 of no change against the
alternative under Scenario 1 that a change occurs at a given time k0 is rejected
on the level α if QT (τ0) > Cα, where τ0 = k0

T
and Cα is a critical value such that

P

[
‖W(τ0) − τ0W(1)‖2

τ0(1 − τ0)
≥ Cα

]
= α.

Next Theorem enables us to test H0 against the alternative H1 in Scenario 1

in case of unknown change point. This situation arises most often because data
analysts usually do not have any information about the location of the break
point.
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

Theorem 3.2 Under Assumptions A and under H0, it holds that

sup
τ1<τ<τ2

{QT (τ)} d−→
T →∞

sup
τ1<τ<τ2

{
‖W(τ) − τW(1)‖2

τ(1 − τ)

}
, (3.7)

for fixed τ1, τ2 ∈ (0, 1).

There exist some approximations of the limiting distribution on the right-hand-
side of (3.7) which can be used for computing the critical values. We will compare
the approximation from James et al. (1987) with the simulation study. The lim-
it distribution in (3.7) is influenced not only by the dimension of the Wiener
process, but also by τ1 and τ2. The choice of τ1 and τ2 is therefore not only a
technical requirement. In particular, Andrews (1993) shows that if no restric-
tions are imposed (i.e. τ1 = 0 and τ2 = 1), the test diverges to infinity under H0.
Simulations also show that the more observations we trim, the better power the
testing procedure achieves. Weight functions can be utilized in case of early or
late changes, see for instance Horváth (1993a), or Hušková et al. (2007) for the
details and assumptions imposed on the weight functions.

The assumptions B or C can also be used instead of A. Any of these assump-
tions imply FCLTs.

Proposition 3.3 Under Assumptions B or C and under H0, it holds that

sup
τ1<τ<τ2

{QT (τ)} d−→
T →∞

sup
τ1<τ<τ2

{
‖W(τ) − τW(1)‖2

τ(1 − τ)

}
,

for fixed τ1, τ2 ∈ (0, 1).

Let us move into the case of Scenario 2. The following result is an extension
of Theorem 3.2:

Theorem 3.4 Under H0, Assumptions A or B or C, if p < q, then for fixed
0 < τ1 < τ2 < 1, it holds that

sup
τ1<τ<τ2

{
Q†

T (τ)
}

d−→
T →∞

max
τ1<τ<τ2

{‖W1(τ)‖2

τ
+

‖W1(1) − W1(τ)‖2

1 − τ
−

−‖W1(1)‖2 +
‖W2(1) − W2(τ)‖2

1 − τ

}
, (3.8)

where W1(τ), W2(τ) are two independent standard Wiener processes of dimen-
sions n(np+ 1) and n2(q − p), respectively.

As we have already pointed out, in practical applications the variance ma-
trix Ω is unknown. In that case we can replace it by a consistent estimate
Ω̂ that satisfies Ω̂ − Ω = op(1). For example, if β̂T is the least squares esti-
mator of β in VAR(p) model (2.2) under H0, then the estimator of the form
Ω̂T = 1

T −p

∑T
t=p+1 ε̂tε̂

⊤
t , where ε̂t = yt − Mtβ̂T can be used due to Lemma 3.8.

In addition, under Assumptions A and B there exists an almost sure rate of
convergence for Ω̂T − Ω, see Lemma 3.8.
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

3.3 Darling-Erdös-type test

In recent articles dealing with change points in multivariate models the authors
considered only the approximation by certain functionals of Wiener processes like
in (3.7). In this section, we will also discuss the convergence of the test statistics
to the Gumbel-distributed random variable which has not been tackled by the
previous authors in the context of multivariate VAR(p) models. Gumbel distri-
bution is a double-exponential continuous distribution with distribution function
F (x;µ, β) = exp{−e−(x−µ)/β}, where β > 0 and µ ∈ R are the parameters. This
distribution is widely used in the extreme value theory. As regards the change
point problem in autoregressions, an approximation of the standardized quasi-
likelihood ratio test statistic by the Gumbel-distributed random variable was de-
rived in Davis et al. (1995) for univariate stationary autoregressive models. This
section makes the extension to the stationary VAR(p) processes.

The advantage of this approach stands in the explicit calculation of asymptotic
critical values hence they do not have to be simulated. The disadvantage lies in a
relatively slow convergence, as it has often been pointed out in the literature, see
for example Horváth (1993b), Davison (2003), or Hušková et al. (2007) among
others.

Only Scenario 1 and Assumptions B will be discussed in this section. The
extensions to other cases will be briefly discussed in the summary of the chapter.

Theorem 3.5 Let us assume that the VAR(p) model satisfies Assumptions B.
Then, under H0, it holds that

P

[ΛT − bT

(
n(np+ 1)

)

aT

(
n(np+ 1)

) ≤ x
]

−→
T →∞

exp
{

−2e− x
2

}
, (3.9)

where

bT (d) =

(
2 ln lnT + d

2
ln ln lnT − ln Γ(d

2
)
)2

2 ln lnT
,

aT (d) =

√
bT (d)

2 ln lnT

and Γ(·) is the gamma function.

The large values of the test statistic ΛT show that the null hypothesis is
violated.

The test statistic ΛT depends on Ω. If matrix Ω is not known, it can be
replaced by its estimate Ω̂T such that Ω̂T −Ω = oP((ln lnT )−1), as T → ∞. This
condition is fulfilled for the least squares estimator due to Lemma 3.8 below.
Note that Landau symbols used for vectors and matrices mean the boundedness
(or convergence) rate of each element.

3.4 Proofs

One of the main tools for proving the statements in Chapter 3 is the invariance
principle for martingale differences, strong mixing and m-dependent sequences,
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

see Theorems B.3, B.10 and B.11 in the Appendix B. The first lemma is a multi-
variate extension of Lemma 4.2. in Hušková et al. (2007) and it is necessary for
proving uniform convergence results contained in Theorems 3.1 and 3.2 for the
case of Assumptions A.

Lemma 3.6 Let Assumptions A be fulfilled. Then, for any 0 < γ < 1
4
, for all

δ > 0, there is a = a(δ) such that

P

[
max

p<k≤T

{
kγ−1 ·

∥∥∥P−1
k − E[P−1

k ]
∥∥∥
}
> a

]
≤ δ (3.10)

and also

P

[
max

p≤k<T

{
(T − k)γ−1 ·

∥∥∥P̃
−1

k − E[P̃
−1

k ]
∥∥∥
}
> a

]
≤ δ, (3.11)

as T → ∞, where Pk and P̃k are defined in (3.5).

Proof : Without loss of generality, let us assume that µ = 0 and let us begin
with the proof of (3.10). Denote σij an (i, j)-element of the matrix Ω and σij

an (i, j)-element of the matrix Ω−1. Matrix P
−1
k (as well as P̃

−1

k ) consists of the
sums of matrices M

⊤
t Ω−1Mt which have (np+ 1) × (np+ 1) blocks and are block-

symmetric. Denote the row number of the block by b1 and the column number
by b2. The first left-upper block (i.e. b1 = 1, b2 = 1) is of the form

B1,1 =




σ11 . . . σ1n

...
. . .

...
σn1 . . . σnn


 = Ω−1.

The blocks Bb1,b2 for b1 = 1, b2 > 1 or b1 > 1, b2 = 1 respectively, are of the type
yi,t−sΩ

−1, i = 1, . . . , n, s = 1, . . . , p. The remaining blocks for b1 > 1, b2 > 1
are of the form Bb1,b2 = yi,t−s yj,t−uΩ−1, i, j = 1, . . . , n, s, u = 1, . . . , p. Since
B1,1 − E[B1,1] = 0, the conclusion for B1,1 is immediate.

For the other blocks we will apply an improvement of Hájek - Rényi inequality
as given in Kokoszka and Leipus (2000): For all random variables η1, . . . , ηT with
finite second moments, for all non-negative c1, . . . , cT and for all a > 0

a2
P

[
max

1≤k≤T

{
ck

∣∣∣∣
k∑

s=1

ηs

∣∣∣∣
}
> a

]
≤

T −1∑

k=1

(
|c2

k+1 − c2
k|

k∑

s=1

k∑

t=1

E[ηsηt]
)

+

+ 2 ·
T −1∑

k=1

(
c2

k+1 E

[
|ηk+1|

∣∣∣∣
k∑

s=1

ηs

∣∣∣∣
])

+
T −1∑

k=0

(
c2

k+1 E[η2
k+1]

)
. (3.12)

Throughout this proof, 0 < K < ∞ will be a generic constant (i.e. constant
which can change from line to line). Let us begin the proof for blocks B1,b2 , b2 > 1
and Bb1,1, b1 > 1. We apply inequality (3.12) with ηs := σαβ yi,s, i, α, β = 1, . . . , n
and ck := kγ−1.
The direct computation yields

∣∣∣c2
k+1 − c2

k

∣∣∣ =
∣∣∣(k + 1)2γ−2 − k2γ−2

∣∣∣ ≤ 2(1 − γ)k2γ−3, (3.13)
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

E

[
yi1,s−t1 yi2,s−t2

]
=

n∑

α1=1

n∑

α2=1

∞∑

u=0

ψ
(u)
i1,α1

ψ
(u+|t1−t2|)
i2,α2 E

[
εα1,s−t1−uεα2,s−t1−u

]
=

=
n∑

α1=1

n∑

α2=1

σα1,α2

∞∑

u=0

ψ
(u)
i1,α1

ψ
(u+|t1−t2|)
i2,α2

.

According to Theorem 2.1 and (2.8), ∀i1, i2 = 1, . . . , n, ∀t1, t2 = 1, . . . , p, ∀s =
p+ 1, . . . , T ,

∣∣∣∣E
[
yi1,s−t1yi2,s−t2

]∣∣∣∣ ≤ K|t1 − t2|r−1 · λ|t1−t2|,

where 0 < λ < 1 is the largest solution in modulus of characteristic polynomial of
VAR(p) and r is the biggest multiplicity of these solutions. Since for any r ∈ N

and 0 < λ < 1

k∑

s=p+1

k∑

t=p+1

(
|s− t|r−1 · λ|s−t|

)
= 2 ·

k−p−1∑

j=1

(
(k − p− j) · jr−1 · λj

)
,

then
∣∣∣∣∣

k∑

s=p+1

k∑

t=p+1

E[ηsηt]

∣∣∣∣∣ ≤ K
k∑

s=p+1

k∑

t=p+1

∣∣∣∣E
[
yi1,s yi2,t

]∣∣∣∣ =

= K
k−p−1∑

j=1

(
2(k − p− j) · jr−1λj

)
≤ K k, (3.14)

because series of the form
∑∞

j=1 j
ζλj is convergent for all ζ > 0 and all 0 < λ < 1.

Since E[η2
k+1] < K < ∞, for some K > 0, then

E

[
|ηk+1|

∣∣∣∣
k∑

s=p+1

ηs

∣∣∣∣

]
≤
(
E η

2
k+1

) 1
2 ·
( k∑

s=p+1

k∑

t=p+1

E[ηsηt]
) 1

2 ≤ K
√
k. (3.15)

Combining inequalities (3.13)−(3.15) with (3.12), one gets

a2
P

[
max

1≤k≤T

{
kγ−1

∣∣∣∣
k∑

s=1

(
yi1,s−t1yi2,s−t2 − E[yi1,s−t1yi2,s−t2 ]

)∣∣∣∣
}
> a

]
≤

≤
T −1∑

k=1

(
2(1 − γ)k2γ−3Kk

)
+ 2 ·

T −1∑

k=1

(
(k + 1)2γ−2K

√
k
)

+
T∑

k=1

k2γ−2K ≤

≤ K

(
T∑

k=1

1

k2−2γ
+

T∑

k=2

1

k
3
2

−2γ
+

T∑

k=1

1

k2−2γ

)
≤

≤ K
(
T 2γ−1 + T 2γ− 1

2 + T 2γ−1
)

−→
T →∞

0,

for 0 < γ < 1
4
.

The proof of the desired inequality (3.10) for Bb1,b2 , b1 > 1, b2 > 1 is similar:
Choose i1, i2, α, β arbitrarily between 1 and n, and t1, t2 between 1 and p and
define ηs := σαβ(yi1,s−t1yi2,s−t2 − E[yi1,s−t1yi2,s−t2 ]) and ck := kγ−1.
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Analogously, the direct computation yields

∣∣∣∣∣
k∑

s=p+1

k∑

t=p+1

E[ηsηt]

∣∣∣∣∣ ≤ K
k∑

s=p+1

k∑

t=p+1

∣∣∣∣E [yi1,s−t1yi2,s−t2yi3,t−t1yi4,t−t2 ] −

− E [yi1,s−t1yi2,s−t2 ] E [yi3,t−t1yi4,t−t2 ]
∣∣∣∣ ≤ K k, (3.16)

E

[
|ηk+1|

∣∣∣∣
k∑

s=p+1

ηs

∣∣∣∣

]
≤

(
E η

2
k+1

) 1
2 ·
( k∑

s=p+1

k∑

t=p+1

E[ηsηt]
) 1

2 ≤ K
√
k. (3.17)

Combining inequalities (3.13), (3.16) and (3.17) with (3.12), one gets

a2
P

[
max

1≤k≤T

{
kγ−1

∣∣∣∣
k∑

s=1

(
yi1,s−t1yi2,s−t2 − E[yi1,s−t1yi2,s−t2 ]

)∣∣∣∣
}
> a

]

−→
T →∞

0,

for 0 < γ < 1
4
. The proof of (3.11) can be obtained in a similar way, if we use

the fact that

P

[
max

p≤k<T

{
(T − k)γ−1 ·

∣∣∣∣
T∑

t=k+1

ηt

∣∣∣∣
}
> a

]
= P

[
max

1≤k<T −p

{
kγ−1 ·

∣∣∣∣
k∑

t=1

ηT −t+1

∣∣∣∣
}
> a

]
.

�

The next lemma is useful in the context of Assumptions C. It shows that
under this set of conditions, products of the form εi,tyj,t−s, s > 0, i, j = 1, . . . , n
fulfil similar conditions as those in (C.2) and (C.3) and hence FCLT B.11 holds.
It is not important that the particular matrix Ω is used, the statement of the
lemma is valid for any non-random positive definite matrix.

Lemma 3.7 Under Assumptions C and under H0, there exists h : Rn′×∞ → R
n,

a measurable function, such that for vector mt := M
⊤
t Ω−1εt, it holds

mt = h(νt,νt−1, . . .), t ∈ Z, (3.18)

where {νt}t∈Z is a sequence of iid random vectors with values in R
n′

. Fur-
ther, there exists m > 0 and a sequence of (2m + p)-dependent random vectors

{m
(2m+p)
t }t∈Z such that m

(2m+p)
t = h(2m+p)(νt,νt−1, . . . ,νt−2m−p), t ∈ Z, with

measurable functions h(2m+p) : Rn′×(2m+p+1) → R
n, and

∞∑

m=1

(
E

∥∥∥m0 − m
(2m+p)
0

∥∥∥
2
) 1

2

< ∞. (3.19)

Proof : According to Assumptions C and Theorem 2.2

mt = (Vt ⊗ In)Ω−1εt =
((

1,y⊤
t−1, . . . ,y

⊤
t−p

)⊤ ⊗ In

)
Ω−1εt

=
((

1,g⊤(νt−1, . . .), . . . ,g
⊤(νt−p, . . .)

)⊤ ⊗ In

)
Ω−1f(νt, . . .) =:

=: h(νt, νt−1 . . .), t ∈ Z,
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where h is measurable and hence (3.18) holds. Let us denote

V
(2m)⊤
t := (1,y

(2m)⊤
t−1 , . . . ,y

(2m)⊤
t−p ), t ∈ Z,

where y
(2m)
t ’s are defined in (2.18), and let

m
(2m+p)
t :=

(
V

(2m)
t ⊗ In

)
Ω−1ε

(m)
t .

Then due to (2.18)

m
(2m+p)
t =

((
1,g(2m)⊤(νt−1, . . . ,νt−1−2m), . . . ,

. . . ,g(2m)⊤(νt−p, . . . ,νt−p−2m)
)⊤ ⊗ In

)
· Ω−1f(m)(νt, . . . ,νt−m) =:

=: h(2m+p)(νt, νt−1, . . . ,νt−2m−p),

where h(2m+p) are measurable functions and hence we established (2m + p)-
dependence.

Let us check the validity of (3.19):

∞∑

m=1

(
E

[
m0 − m

(2m+p)
0

]
2
) 1

2

=
∞∑

m=1

ν2

(
m0 − m

(2m+p)
0

)
=

≤
∞∑

m=1

ν2

(
(V0 ⊗ In)Ω−1(ε0 − ε

(m)
0 )

)
+

+
∞∑

m=1

ν2

((
(V0 − V

(2m)
0 ) ⊗ In

)
Ω−1

(
ε

(m)
0 − ε0

))
+

+
∞∑

m=1

ν2

((
(V0 − V

(2m)
0 ) ⊗ In

)
Ω−1ε0

)
≤

≤ K1

∞∑

m=1

ν2

(
ε0 − ε

(m)
0

)
+K2

( ∞∑

m=1

ν2
2

(
ε0 − ε

(m)
0

)) 1
2

+

+K3

( ∞∑

m=1

ν2
2

(
y0 − y

(2m)
0

)) 1
2

+K4

∞∑

m=1

ν2

(
y0 − y

(2m)
0

)
< ∞,

due to (2.11) and (2.13), with K1, K2, K3, K4 being finite positive constants. �

The upcoming Lemma 3.8 treats the speed of convergence of the least squares
estimators to the true values. Stronger consistency results can be stated in case
of Assumptions A or B since in these situations there is a guaranteed speed in
FCLT. Hence, in the context of this lemma, Assumptions C can be viewed as
somewhat weaker compared to A or B. As regards the proof of consistency under
Assumptions B or C, it might seem non-standard for the reader to prove it using
FCLT, however in this way, we can build up on the previously proven statements
in Chapter 2 and on Lemma 3.7. The proof can hence be shorter.

Lemma 3.8 Under Assumptions A or B it holds that

β̂T − β = O
(√

ln lnT

T

)
a.s., (3.20)

Ω̂T − Ω = O
(√

ln lnT

T

)
a.s. (3.21)
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as T → ∞.
Under Assumptions C, β̂T − β = oP(1), Ω̂T − Ω = oP(1), as T → ∞.

Proof : (a) Proof under Assumptions A:
In case of (3.20), it is sufficient to check Assumptions 2.1 and 2.2 presented in
Nielsen (2005). First, supt E[‖εt‖2+δ|Ft−1] < ∞ a.s., δ > 0, is fulfilled due to con-

dition (A.2). Assumption lim inft→∞ λmin

(
E[εtε

⊤
t |Ft−1]

)
> 0 a.s. on the smallest

eigenvalue is fulfilled as well due to the assumption of positive-definiteness of the
conditional variance matrix Ω. Hence according to Nielsen (2005), Theorem 2.5,
(3.20) is fulfilled.

Since Assumption 2.7 in Nielsen (2005) of constant positive definite condition-
al variance of εt is fulfilled too, then according to Nielsen (2005), Corollary 2.9

Ω̂T − Ω = o(T−η) a.s., T → ∞, ∀η < 1

2
,

hence (3.21) holds true as well.

(b) Proof under Assumptions B:
The left-hand-side of (3.20) is

β̂T − β =
(

1

T

T∑

t=p+1

M
⊤
t Mt

)−1

·
(

1

T

T∑

t=p+1

M
⊤
t εt

)
. (3.22)

It holds that E[M⊤
t εt] = 0, and for s > 0

vec E

[
M

⊤
t εtε

⊤
t−sMt−s

]
= E

[
M

⊤
t−sεt−s ⊗ M

⊤
t

]
vec E[εt] = 0,

where we used rule (1) in Lemma A.1. Using the latter rule again, we have

vec var(M⊤
t εt) = E

[
vec(M⊤

t εtε
⊤
t Mt)

]
= E

[
M

⊤
t ⊗ M

⊤
t

]
· vec

(
E[εtε

⊤
t ]
)

=

= E

[
M

⊤
t ⊗ M

⊤
t

]
· vec(Ω) = vec

(
E[M⊤

t ΩMt]
)

=: vec(∆).

Hence process {M
⊤
t εt}t∈Z is centered and weakly stationary with finite variance.

In addition, supt E ‖M
⊤
t εt‖2+δ = K < ∞, δ > 0, for some positive K. Since

εt = yt−c−Φ1yt−1−. . .−Φpyt−p, then εt is a measurable function of finitely many
strong mixing vectors yt, . . . ,yt−p. According to Theorem B.9 we obtain that

{M
⊤
t εt}t∈Z is a strong mixing process with the same size as {yt}t∈Z. According

to Theorem B.10, there exists n(np + 1)-dimensional Wiener process W∆ with
variance matrix ∆, such that

T∑

t=p+1

M
⊤
t εt − W∆(T ) = O(T

1
2

−λ) a.s., T → ∞,

for some λ > 0. Dividing by T we get

1

T

T∑

t=p+1

M
⊤
t εt = O

(√
ln lnT

T

)
a.s., T → ∞, (3.23)
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where we used the law of the iterated logarithm for the Wiener process W∆(T ) =
O(

√
T ln lnT ) a.s., as T → ∞.

Similarly, vector
{

vec(M⊤
t Mt − E[M⊤

t Mt])
}

t∈Z
satisfies conditions in Theo-

rem B.10, and hence

1

T

T∑

t=p+1

M
⊤
t Mt = E[M⊤

1 M1] + O
(√

ln lnT

T

)
a.s., T → ∞. (3.24)

Plugging in results (3.23) and (3.24) into (3.22), we obtain (3.20).
For the estimator of variance matrix we can write

vec(Ω̂T − Ω) =
1

T − p
· vec

( T∑

t=p+1

[
yt − Mtβ̂T

][
yt − Mtβ̂T

]⊤)−

− vec(Ω) =

=
1

T − p
vec

( T∑

t=p+1

[
εt − Mt(β̂T − β)

][
εt − Mt(β̂T − β)

]⊤)− vec(Ω) =

=
1

T − p

T∑

t=p+1

vec

[
εtε

⊤
t − Ω

]
− (3.25)

− 1

T − p

T∑

t=p+1

vec

[
Mt(β̂T − β)ε⊤

t

]
+ (3.26)

+
1

T − p

T∑

t=p+1

vec

[
εt(β̂T − β)⊤

M
⊤
t

]
− (3.27)

− 1

T − p

T∑

t=p+1

vec

[
Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t

]
. (3.28)

Let us start with (3.25) and define ξt := vec(εtε
⊤
t −Ω) = f̃(yt, . . . ,yt−p) which

is the measurable function of finitely many strong mixing vectors and due to
Theorem B.9 is a strong mixing vector with the same rate as the strong mixing
process {yt}t∈Z. It can be easily checked that process {ξt}t∈Z is centered and
weakly stationary and satisfies other conditions of Theorem B.10 as well. Due
to this theorem and the Law of the iterated logarithm for the Wiener process we

obtain that term (3.25) is O
(√

ln ln T
T

)
a.s., as T → ∞.

Term (3.26) can be rewritten using rule (1) in Lemma A.1 as

1

T − p

T∑

t=p+1

vec

[
Mt(β̂T − β)ε⊤

t

]
=
(

1

T − p

T∑

t=p+1

(εt ⊗ Mt)
)

(β̂T − β). (3.29)

vec(εt ⊗Mt) is centered weakly stationary strong mixing sequence satisfying con-
ditions of Theorem B.10 and hence

1

T − p

T∑

t=p+1

(εt ⊗ Mt) = O
(√

ln lnT

T

)
a.s., T → ∞.

Due to (3.20), (3.26) is O
(

ln ln T
T

)
a.s., as T → ∞. Term (3.27) can be treated in

the same way.
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Due to (3.20) and (3.24), we get for term (3.28)

1

T − p

T∑

t=p+1

vec

[
Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t

]
=

=
1

T − p
·

T∑

t=p+1

(Mt ⊗ Mt) vec

(
(β̂T − β)(β̂T − β)⊤

)
= O

(
ln lnT

T

)
a.s.,

as T → ∞. By combining the approximations for terms (3.25)–(3.28) together,
we get the assertion.

(c) Proof under Assumptions C
Let us begin with sequence {M

⊤
t εt}t∈Z. Due to (C.1) and (C.4), we get that

E[M⊤
t εt] = 0 and E ‖M

⊤
t εt‖2 < ∞, for all t ∈ Z. Due to Lemma 3.7 with Ω = In,

we can apply Theorem B.11 and hence

1√
T

·
⌊T τ⌋∑

t=1

M
⊤
t εt

d−→
T →∞

W∆(τ), τ ∈ (0, 1),

where ∆ = var[M⊤
t εt] due to strict stationarity of {yt}t∈Z and due to (C.4). From

that we obtain

1

T

T∑

t=p+1

M
⊤
t εt = oP(1), T → ∞. (3.30)

Theorem B.12 implies

1√
T

·
⌊T τ⌋∑

t=p+1

(
vech(M⊤

t Mt) − E[vech(M⊤
t Mt)]

)
d−→

T →∞
WT(τ),

where T := var[vech(M⊤
1 M1)]. Since E[vech(M⊤

t Mt)] is independent of t we get
that

1

T

T∑

t=p+1

M
⊤
t Mt = E[M⊤

1 M1] + oP(1), T → ∞. (3.31)

Substituting (3.30) and (3.31) into (3.22) we get β̂T − β = oP(1), as T → ∞.
As regards consistency of Ω̂T we will use expressions (3.25)–(3.28). Consis-

tency of (3.25) follows directly from Theorem B.12. As regards terms (3.26) and
(3.27), we can use (3.29), (3.30) and consistency of β̂T . As regards the consis-
tency of (3.28) it suffices to use (3.31) and consistency of β̂T . �

Proof of Theorem 3.1: Let us start with ΛT (k) as given in (3.3). Since sT −sk = s̃k,
we have

ΛT (k) = −s⊤
T PT sT + s⊤

k Pksk + (sT − sk)⊤
P̃k (sT − sk) , (3.32)

where the notation is defined in (3.4) and (3.5).
We will treat each summand in (3.32) separately. Let us focus on the vector sT

appearing in the first addend. Vectors M
⊤
t Ω−1εt are elements of an r = n(np+1)
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dimensional sequence of martingale differences with respect to Ft. Let us denote
Υ := E

[
M

⊤
t Ω−1Mt

]
∈ R

n(np+1)×n(np+1) which is correctly defined because under

H0, matrix E

[
M

⊤
t Ω−1Mt

]
does not depend on t. Then,

uT,t :=
1√
T − p

Υ− 1
2 M

⊤
t Ω−1εt

is a martingale difference array. It holds E[uT,t] = 0 and

E

[
uT,tu

⊤
T,t

]
=

1

T − p
Υ− 1

2 E

[
M

⊤
t Ω−1εtε

⊤
t Ω−1

Mt

]
Υ− 1

2 =
1

T − p
Ir, (3.33)

because the expectation inside (3.33) is

E

[
E

[
M

⊤
t Ω−1εtε

⊤
t Ω−1

Mt

∣∣∣Ft−1

]]
= E

[
M

⊤
t Ω−1

E

[
εtε

⊤
t |Ft−1

]
Ω−1

Mt

]
= Υ.

Similarly as in Hušková et al. (2007), it will be shown that the conditions in
Theorem B.3, are fulfilled:

T∑

t=p+1

uT,tu
⊤
T,t

P−→
T →∞

Ir, (3.34)

max
p+1≤t≤T

{
u⊤

T,tuT,t

}
P−→

T →∞
0, (3.35)

lim
T →∞

⌊T τ⌋∑

t=p+1

varuT,t = τ Ir, ∀τ ∈ [0, 1]. (3.36)

First, (3.34) will be shown. Due to (3.33), statement (3.34) is equivalent to

T∑

t=p+1

uT,tu
⊤
T,t − E

[ T∑

t=p+1

uT,tu
⊤
T,t

]
P−→

T →∞
0. (3.37)

The left-hand side of (3.37) is of the form

Υ− 1
2 ·




1

T − p

T∑

t=p+1

[
M

⊤
t Ω−1εtε

⊤
t Ω−1

Mt − E

[
M

⊤
t Ω−1

Mt

] ]


Υ− 1

2 .

The formula inside the curly brackets can be divided into two terms:

1

T − p

T∑

t=p+1

(
M

⊤
t Ω−1

[
εtε

⊤
t − Ω

]
Ω−1

Mt

)
+ (3.38)

1

T − p

T∑

t=p+1

(
M

⊤
t Ω−1

Mt − E

[
M

⊤
t Ω−1

Mt

])
. (3.39)

The summands in (3.38) are elements of a strictly stationary and ergodic sequence
which can be written as

vec

[
M

⊤
t Ω−1(εtε

⊤
t − Ω)Ω−1

Mt

]
=
(
(M⊤

t Ω−1) ⊗ (M⊤
t Ω−1)

)
· vec(εtε

⊤
t − Ω).
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The sequence has zero expectation since

E

[(
(M⊤

t Ω−1) ⊗ (M⊤
t Ω−1)

)
· vec(εtε

⊤
t − Ω)

]
=

= E

[
E

[(
(M⊤

t Ω−1) ⊗ (Ω−1
Mt)

)
· vec(εtε

⊤
t − Ω)

∣∣∣Ft−1

]]
=

= E

[
(M⊤

t Ω−1) ⊗ (M⊤
t Ω−1)

]
· vec

(
E

[
εtε

⊤
t − Ω|Ft−1

])
= 0.

Applying the Ergodic Theorem B.7, we get

1

T − p
·

T∑

t=p+1

(
M

⊤
t Ω−1

[
εtε

⊤
t − Ω

]
Ω−1

Mt

)
P−→

T →∞
0.

The expression (3.39) goes to zero in probability, due to Theorem B.7 as well.
Now, we will show that (3.35) is satisfied. By using Chebyshev’s inequality

we have

P

[
max

p+1≤t≤T
{u⊤

T,tuT,t} > η
]

≤
T∑

t=p+1

P

[
1

T − p
· ε⊤

t Ω−1
MtΥ

−1
M

⊤
t Ω−1εt > η

]
≤

≤ 1

η2(T − p)2
·

T∑

t=p+1

E

[
ε⊤

t Ω−1
MtΥ

−1
M

⊤
t Ω−1εt

]2

−→
T →∞

0,

since due to Lemma A.2

E

[
ε⊤

t Ω−1
MtΥ

−1
M

⊤
t Ω−1εt

]2
= tr

{
E

[
vec(Ω−1

MtΥ
−1

M
⊤
t Ω−1) ·

vec(Ω−1
MtΥ

−1
M

⊤
t Ω−1)⊤

]
· E

[
(εtε

⊤
t ⊗ εtε

⊤
t )|Ft−1

]}
< K < ∞,

where K is a positive constant independent of t.
The proof of (3.36) is simple, because from (3.33)

lim
T →∞

⌊T τ⌋∑

t=p+1

varuT,t = lim
T →∞

⌊T τ⌋∑

t=p+1

1

T − p
Ir = lim

T →∞

⌊Tτ⌋
T

Ir = τ Ir.

It follows from Theorem B.3 that

1√
T − p

· Υ− 1
2 ·

⌊T τ⌋∑

t=p+1

M
⊤
t Ω−1εt

d−→
T →∞

W(τ),

and, alternatively, ∀τ ∈ [0, 1]

1√
T

· Υ− 1
2 · s⌊T τ⌋

d−→
T →∞

W(τ). (3.40)

Term s̃k can be treated in the same way.
Let us focus on the matrix PT . From Lemma 3.6, we obtain

1

T − p
P

−1
T =

1

T − p

T∑

t=p+1

(
M

⊤
t Ω−1

Mt

)
P−→

T →∞ E[M⊤
t Ω−1

Mt] = Υ
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from which we immediately get that
√
T P

1
2
T

P−→T →∞ Υ− 1
2 . Combining this with

(3.40) and using Hamilton (1994), p. 184, Proposition 7.3(b) we obtain P
1
2
T ·

sT
d−→T →∞ W(1). Hence

− s⊤
T PT sT = −

(
P

1
2
T sT

)⊤ ·
(
P

1
2
T sT

)
d−→

T →∞
−‖W(1)‖2. (3.41)

The asymptotic behaviour of the first addend in the test statistic QT (τ) has been
developed. It remains to investigate asymptotic behaviour of matrices Pk and
P̃k. In view of Lemma 3.6 it holds

k−1
(
P

−1
k − E[P−1

k ]
)

= OP(T−γ),

(T − k)−1
(
P̃

−1

k − E[P̃
−1

k ]
)

= OP(T−γ),

uniformly for p < k < T and for 0 < γ < 1
4
. Hence, T P⌊T τ⌋

P−→T →∞(τΥ)−1.
Combining the latest result with (3.40) we get

s⊤
⌊T τ⌋P⌊T τ⌋s⌊T τ⌋

d−→
T →∞

‖W(τ)‖2

τ
. (3.42)

Analogously,

(
sT − s⌊T τ⌋

)⊤
P̃⌊T τ⌋

(
sT − s⌊T τ⌋

)
d−→

T →∞

‖W(1) − W(τ)‖2

1 − τ
. (3.43)

Combining (3.41)–(3.43) and using continuous mapping theorem we obtain

QT (τ)
d−→

T →∞

‖W(τ) − τW(1)‖2

τ(1 − τ)

which concludes the proof. �

Proof of Theorem 3.2: The proof follows from Theorem 3.1, continuity of the
supremum in the Skorohod space D(0, 1) and in the continuous mapping theorem,
see for example Billingsley (1999), page 29. �

Proof of Proposition 3.3:
Proof under Assumptions B:
The proof is analogous to the proof presented in Davis et al. (1995), the key steps
can be seen in the proof of Lemma 3.9.

Proof under Assumptions C:
It follows from part (c) of the proof of Lemma 3.8 that for {mt := (M⊤

t Ω−1εt)}t∈Z

and for {wt := vech(M⊤
t Ω−1Mt)}t∈Z, we get

1√
T

·
⌊T τ⌋∑

t=p+1

mt
d−→

T →∞
WΥ(τ),

1√
T

·
⌊T τ⌋∑

t=p+1

(
wt − E[wt]

)
d−→

T →∞
WΣ(τ), (3.44)
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where Σ = var[wt] for all t, E[wt] = E[vech(M⊤
1 Ω−1M1)] for all t, and WΥ

is n(np + 1)-dimensional Wiener process with variance matrix Υ and WΣ is

(n(np+1)[n(np+1)+1]
2

)-dimensional Wiener process with variance matrix Σ. Using
(3.44) it can be established that

(⌊Tτ⌋P⌊T τ⌋)
P−→

T →∞
Υ−1,

(
(T − ⌊Tτ⌋)P̃⌊T τ⌋

)
P−→

T →∞
Υ−1,

uniformly for τ ∈ (0, 1). From that we easily obtain the results (3.41)–(3.43) and
hence the conclusion is immediate. �

Proof of Theorem 3.4: As in case of Scenario 1, the key is to obtain asymptotic
distribution of all three terms of the test statistic. For Assumptions A, this can
be done by using similar arguments as in the proof of Theorem 3.2. In case of
Assumptions B or C, the proof of Proposition 3.3 can be used analogically. Hence,
under Assumptions A or B or C it can easily be established that

Q†
T (⌊Tτ⌋)

d−→
T →∞

L(τ),

where

L(τ) = −W∗
p(1)⊤Υ−1

p W∗
p(1) +

W∗
p(τ)⊤Υ−1

p W∗
p(τ)

τ
+

+

(
W∗

q(1) − W∗
q(τ)

)⊤
Υ−1

q

(
W∗

q(1) − W∗
q(τ)

)

1 − τ
(3.45)

and W∗
q(τ) is an n(nq + 1)-dimensional Wiener process with variance matrix

Υq = E[M̃
⊤
t Ω−1M̃t] ∈ R

n(nq+1)×n(nq+1) and W∗
p(τ) is an n(np + 1)-dimensional

subvector of W∗
q(τ) with variance matrix Υp ∈ R

n(np+1)×n(np+1) which is an upper-
left submatrix of Υq.

The rest of the proof goes along the proof of Proposition 3.1 in Davis et al.
(1995): The limiting distribution in (3.45) can be expressed as

W(τ)⊤ΓW(τ)

τ
+

‖W(1) − W(τ)‖2

1 − τ
− W(1)⊤ΓW(1), (3.46)

where W(τ) = Υ
− 1

2
q W∗

q(τ) and

Γ = Υ
1
2
q ·
(

Υ
− 1

2
p 0

0 0

)
· Υ

1
2
q = U

⊤ ·
(

In(np+1) 0

0 0

)
· U

by rotation using orthogonal matrix U, since Γ is symmetric and idempotent. If
we denote W(τ) = UW(τ) then

L(τ) =
‖W1(τ)‖2

τ
+

‖W1(1) − W1(τ)‖2 + ‖W2(1) − W2(τ)‖2

1 − τ
− ‖W1(1)‖2,

where W(τ) = vec(W1(τ),W2(τ)) and W1, W2 are two independent standard
Wiener processes of dimensions n(np+ 1) and n2(q − p), respectively. �
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Now we present two auxiliary lemmas which will be used in the proof of
Theorem 3.5 and also in Chapter 4. The proofs until the end of this section
follow the similar steps as those in Davis et al. (1995).

Lemma 3.9 (a) Under H0 and Assumptions B there exists an iid sequence
{zt}t∈Z on a possibly richer probability space with variance matrix Υ =

E[M⊤
t Ω−1Mt] such that

s⊤
k Pksk − u⊤

k

Υ−1

k
uk = o(1) a.s., as k → ∞,

where uk :=
∑k

t=p+1 zt.

(b) Analogously, under H0 and Assumptions B there exists an iid sequence
{z̃t}t∈Z on a possibly richer probability space with variance matrix Υ such
that

s̃⊤
k P̃ks̃k − ũ⊤

k

Υ−1

T − k
ũk = o(1) a.s., as (T − k) → ∞,

where ũk :=
∑T

t=k+1 z̃t.

Proof : We will begin with (a). First note that matrix Υ is correctly defined since
the expected value E[M⊤

t Ω−1Mt] does not depend on t due to the stationarity of
the VAR(p) model and the moment conditions of εt.

Step 1:
We will prove that s⊤

k Υ−1sk −u⊤
k Υ−1uk = O(k1−λ) a.s. for some λ > 0. Sequence

{ξk := sk − sk−1 = M
⊤
k Ω−1εk}k∈Z is an n(np+ 1)-dimensional centered sequence.

It is weakly stationary, since for all j > 0

vec E[ξkξ⊤
k−j] = E

[
(M⊤

k−jΩ
−1εk−j ⊗ M

⊤
k Ω−1)

]
· vec E[εk] = 0.

Vectors ξk have finite variance matrix since

vec E

[
ξkξ⊤

k

]
= E

[
vec(M⊤

k Ω−1εkε⊤
k Ω−1

Mk)
]

=

= E

[
(M⊤

k Ω−1) ⊗ (M⊤
k Ω−1)

]
· vec

(
E[εkε⊤

k ]
)

=

= E

[
(M⊤

k Ω−1) ⊗ (M⊤
k Ω−1) · vec(Ω)

]
=

= vec E[M⊤
k Ω−1

Mk] = vec(Υ).

{ξk}k∈Z can be written as a measurable function f(yk, . . . ,yk−p) of finitely many
strong mixing random vectors and hence it is itself a strong mixing sequence with
the same rate as {yt}t∈Z due to Theorem B.9. Since supk E ‖ξk‖2+δ = K < ∞,
for some δ > 0 and some positive K then Theorem B.10 implies that there exist a
sequence of iid Gaussian random vectors {zt}t∈Z on a possibly wider probability
space with the variance matrix Υ such that

sk − uk = O
(
k

1
2

−λ′
)

a.s., k → ∞, (3.47)

for some λ′ > 0, where uk :=
∑k

t=p+1 zt. From that and the Law of the iterated

logarithm for independent random vectors, it holds for the row vector u⊤
k Υ−1 =

O(
√
k ln ln k) a.s., and hence s⊤

k Υ−1 = O(
√
k ln ln k) a.s., k → ∞. Now

s⊤
k Υ−1sk − u⊤

k Υ−1uk = s⊤
k Υ−1(sk − uk) + (sk − uk)⊤Υ−1uk =

= O(
√
k ln ln k) · O(k

1
2

−λ′

) a.s. = O(k1−λ) a.s.,
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k → ∞, for some λ > 0.

Step 2:
To conclude, due to Step 1, it remains to show that s⊤

k Pksk − s⊤
k

Υ−1

k
sk = o(1)

a.s., k → ∞:
If we show that

Υ − (kPk)−1 = O
(√

ln ln k

k

)
a.s., k → ∞, (3.48)

then

s⊤
k Pksk − s⊤

k

Υ−1

k
sk =

1√
k

s⊤
k (kPk)

(
Υ − P

−1
k

k

)
Υ−1sk

1√
k

→ 0, as k → ∞.

To show (3.48), we start with the vector vec(M⊤
t Ω−1Mt−Υ) which is centered and

weakly stationary vector and its variance matrix S := var vec(M⊤
t Ω−1Mt − Υ) is

not dependent on t due to Assumptions (B.1) and (B.2). Vector vec(M⊤
t Ω−1Mt −

Υ) has uniformly bounded (2 + η)-moment, η > 0. Process {vec(M⊤
t Ω−1Mt −

Υ)}t∈Z is a strong mixing sequence with the same rate as {yt}t∈Z due to Assump-
tion (B.3) and Theorem B.9. Thanks to Theorem B.10, there exists a Wiener
process WS with variance matrix S on a possibly wider probability space such
that

k∑

t=p+1

vec(Υ − M
⊤
t Ω−1

Mt) − WS(k) = O
(
k

1
2

−λ
)

a.s., k → ∞

k vec(Υ) − vec(P−1
k ) − WS(k) = O

(
k

1
2

−λ
)

a.s., k → ∞,

for some λ > 0. Law of the iterated logarithm for the Wiener process, WS(k) =
O(

√
k ln ln k) a.s., as k → ∞, yields (3.48).

Proof of (b) can be done using the analogous steps as in (a) but applied on
the reverse time processes

s̃k =
T −k∑

t=1

M
⊤
T −t+1Ω

−1εT −t+1 , P̃k =
T −k∑

t=1

M
⊤
T −t+1Ω

−1
MT −t+1,

which also satisfy the strong mixing property. �

Lemma 3.10 Under H0 and Assumptions B it holds that

(a)

lim
ǫ→0

lim sup
T →∞

P

[
1

aT

(
n(np+ 1)

)
∣∣∣∣ max

p<k≤T ǫ
ΛT (k) − max

p<k≤T ǫ

{
s⊤

k Pksk

}∣∣∣∣ > δ

]
= 0,

(b)

lim
ǫ→0

lim sup
T →∞

P

[
1

aT

(
n(np+ 1)

)
∣∣∣∣ max

(1−ǫ)T ≤k<T
ΛT (k) −

− max
(1−ǫ)T ≤k<T

{
s̃⊤

k P̃ks̃k

}∣∣∣∣ > δ

]
= 0.
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Proof : From the proof of the preceding lemma we have that for 0 < τ < 1,
k = ⌊Tτ⌋,

s⊤
⌊T τ⌋P⌊T τ⌋s⌊T τ⌋

d−→
T →∞

‖W(τ)‖2

τ

s̃⊤
⌊T τ⌋P̃⌊T τ⌋s̃⌊T τ⌋

d−→
T →∞

‖W(1) − W(τ)‖2

1 − τ
.

We will use the above results to establish the proof of this lemma. In partic-
ular, to establish (a), observe that

∣∣∣maxp<k≤T ǫ ΛT (k) − maxp<k≤T ǫ s⊤
k Pksk

∣∣∣

aT

(
n(np+ 1)

) ≤

≤ max
p<k≤T ǫ

∣∣∣(sT − sk)⊤P̃k(sT − sk) − s⊤
T PT sT

∣∣∣

aT

(
n(np+ 1)

) →

→ max
t≤ǫ

∣∣∣∣∣
‖W(1) − W(t)‖2

1 − t
− ‖W(1)‖2

∣∣∣∣∣, as T → ∞

→ 0, as ǫ → 0

since aT

(
n(np+ 1)

)
→ 1, as T → ∞. The proof of (b) is similar:

∣∣∣max(1−ǫ)T ≤k<T ΛT (k) − max(1−ǫ)T ≤k<T s̃⊤
k P̃ks̃k

∣∣∣

aT

(
n(np+ 1)

) ≤

≤ max
(1−ǫ)T ≤k<T

∣∣∣s⊤
k Pksk − s⊤

T PT sT

∣∣∣

aT

(
n(np+ 1)

) →

→ max
(1−ǫ)≤t<1

∣∣∣∣∣
‖W(t)‖2

t
− ‖W(1)‖2

∣∣∣∣∣, as T → ∞

→ 0, as ǫ → 0.

�

Proof of Theorem 3.5: We can proceed in the same way as in the proof of The-
orem 2.2 in Davis et al. (1995). From previous Lemma 3.10 we have that as
ǫ → 0,

lim sup
T →∞

P

[
∣∣∣∣maxp<k≤ǫT ΛT (k) − maxp<k≤ǫT s⊤

k Pksk

∣∣∣∣

aT

(
n(np+ 1)

) > δ

]
→ 0,

lim sup
T →∞

P

[
∣∣∣∣max(1−ǫ)T <k≤T ΛT (k) − max(1−ǫ)T <k≤T s̃⊤

k P̃ks̃k

∣∣∣∣

aT

(
n(np+ 1)

) > δ

]
→ 0.

If we prove that ∀ǫ > 0

P

[
maxp<k≤ǫT s⊤

k Pksk − bT

(
n(np+ 1)

)

aT

(
n(np+ 1)

) ≤ x

]
→ exp

{
− e− x

2

}
, (3.49)

P

[
max(1−ǫ)T <k≤T s̃⊤

k P̃ks̃k − bT

(
n(np+ 1)

)

aT

(
n(np+ 1)

) ≤ x

]
→ exp

{
− e− x

2

}
,(3.50)
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as T → ∞, then the rest of proof follows from the fact that for 0 < ǫ < 1
2
,

maxp<k≤ǫT s⊤
k Pksk and max(1−ǫ)T <k≤T s̃⊤

k P̃ks̃k are asymptotically independent due
to assumption (B.3), and thanks to the fact that

maxǫT ≤k≤(1−ǫ)T ΛT (k) − bT

(
n(np+ 1)

)

aT

(
n(np+ 1)

) P−→
T →∞

−∞.

To show (3.49) we use the result from Lemma 3.9 and

∣∣∣ max
m≤k≤T

{s⊤
k Pksk} − max

m≤k≤T
{u⊤

k

Υ−1

k
uk}

∣∣∣ ≤

sup
m≤k

∣∣∣s⊤
k Pksk − u⊤

k

Υ−1

k
uk

∣∣∣ −→
m→∞ 0 a.s., (3.51)

where uk =
∑k

t=p+1 zt and zt is iid centered sequence with variance matrix Υ.
According to Lemma 2.2 of Horváth (1993b)

P

[
maxp<k≤T u⊤

k
Υ−1

k
uk − bT

(
n(np+ 1)

)

aT

(
n(np+ 1)

) ≤ x

]
−→
T →∞

exp
{

− e− x
2

}
. (3.52)

Due to the fact that ∀ǫ > 0

P

[
max

p<k≤T
{s⊤

k Pksk} = max
p<k≤T ǫ

{s⊤
k Pksk}

]
−→
T →∞

1,

(3.51) and (3.52) statement (3.49) is proven. Analogous setup can be used to
prove (3.50). �

3.5 Simulation study

The simulations have been performed in R Programming Language, see the details
in R Core Team (2015). The majority of the computations has been transferred
to Sněhurka server located at Faculty of Mathematics and Physics in Karĺın
which is designed for the big data and time consuming simulations. Speeding up
the simulations was the key driver for using Sněhurka. It is worth noted here
that even the current version 2.13 of R has difficulties to perform the simple least
squares estimation for stationary VAR(1) process of length greater than 5 000.
Hence the ability to investigate the asymptotic performance of the test statistic
for larger sample size was another reason for using this server.

Throughout this section we will work with the simulations of 2-dimensional
VAR(1) processes P1 : yt = Φ(1)yt−1 + εt and P2 : yt = Φ(2)yt−1 + εt, with

Φ(1) =

(
0.5 0.2
0.2 0.1

)
, Φ(2) =

(
0.8 0.3
0.1 0.7

)
.

The error process will be either

[E1] iid N2(0,Ω), where

Ω =

(
1 0.2

0.2 1

)
,
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[E2] iid tν with ν = 5 degrees of freedom and variance matrix ν
ν−2

Ω.

[E3] independent N2(0,Ωt), where

Ωt =

(
3 · | cos(Rt)| 0

0 3 · | cos(Rt)|

)
,

where Rt has uniform distribution over (0,1).

[E4] VAR(1) model

εt = A(ρ)εt−1 + ηt with A(ρ) =

(
ρ 0
0 ρ

)

with ρ = 0.5 and ηt iid N2(0, I2).

The first two conditions on errors [E1] and [E2] satisfy Assumptions A, B and
C. Error sequence [E3] violates the condition of constant unconditional variance
matrix reported in all assumptions. [E4] violates the martingale difference as-
sumption in Assumptions A however it has constant conditional and uncondi-
tional variance. As regards Assumptions B and C, [E4] violates conditions (B.2)
and (C.4) since ε is serially correlated. In case of [E4], the least squares estimator
of β is not consistent.

Characteristic polynomials of both processes P1 and P2 have roots outside the
unit circle, but the roots of the polynomial det{I2 −Φ(2)z} of process P2 are close
to the unit circle. Processes P1 and P2 were generated 1 000 times.

3.5.1 Known time point

First, we consider the situation when a time point is known apriori and let us
consider the length of the time series T = 200. For each process Pi, i = 1, 2,
the empirical distribution function (=EDF) of QT (τ) is plotted for 3 different
values of τ together with the asymptotic distribution functions (=ADF) of the
corresponding limiting processes

‖W(τ) − τW(1)‖2

τ(1 − τ)
. (3.53)

The result is reported in Figure 3.1. We can see good convergence results in case
of process P1 for all types of errors and locations of the break point τ . Further
experiments not depicted here show that if τ is even closer to the beginning or
end of the data sample the simulations get worse. As regards P2, Figure 3.1
illustrates fast convergence under [E1], [E2] and [E3] even for moderate length of
the time series. Hence, unconditional heteroscedasticity in [E3] gives reasonable
results for both P1 and P2, which are comparable to situations under [E1] and
[E2]. The serial correlation in the error term employed in [E4] gives promising
results with somewhat worse convergence in case of P2. Further, under P2, [E4],
time point τ starts to influence the results.

However, if the length of the time series starts to increase as plotted in Fig-
ure 3.2 we can see that the approximation gets better even for [E3] and [E4].
Situation is plotted for τ = 1

4
.
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Figure 3.1: Known change point. EDF of QT (τ) and ADF of (3.53) for various
τ . Error terms are [E1], [E2], [E3] and [E4].
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Figure 3.2: Known change point. EDF of QT (τ), τ = 1
4
, and ADF for process P2

for different lengths T and different white noise sequences. The legend for all the
graphs is the same as in the top left figure.

3.5.2 Unknown time point

We study the asymptotic behaviour of the statistics for the same processes and
errors as in the previous subsection. In particular, the simulation of

sup
t1<k<t2

ΛT (k), t1 = ηT, t2 = (1 − η)T, η = 0.05 (3.54)

ran 1 000 times and the critical values were computed from the empirical dis-
tribution of the simulated statistic (3.54). The results were compared with the
simulated critical values of the limiting process

sup
η<τ<1−η

{‖W(τ) − τW(1)‖2

τ(1 − τ)

}
(3.55)

which is denoted as “Approximation 1” in Table 3.1. These values were also
compared with the approximate critical values derived in James et al. (1987)
(denoted as “Approximation 2”):

P

[
max

η<τ<1−η

{‖W(τ) − τW(1)‖2

τ(1 − τ)

}
> c

]

is approximately equal to

c
d
2 · e− c

2

2
d−2

2

· Γ
(
d

2

)
·
((

1 − d

c

)
· ln

(
1

η
− 1

)
+

2

c

)
, (3.56)

for large values of c, where d = n(np + 1) is the dimension of the Brownian
bridge process, i.e., d = 6 in our case. Simulations of (3.55) were also done
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in Bai and Perron (1998), p. 58, for case η = 0.05 and several dimensions and
multiple changes. Their results are reported as “Approximation 3” in Table 3.1
According to Table 3.1, both approximations appear to yield similar results even
if Approximation 2 was derived for large values of c.

Table 3.1: Critical values of (3.54) for different T and approximations based on
(3.55) and (3.56). Errors [E1] considered.

T α = 0.10 α = 0.05 α = 0.01
P1 P2 P1 P2 P1 P2

100 18.04 21.77 20.04 23.80 23.29 27.85
1 000 20.10 21.13 21.72 23.47 26.27 27.54
10 000 19.31 19.68 21.59 22.06 26.06 25.99

Approximation 1 19.51 21.62 26.52
Approximation 2 19.94 21.98 26.40
Approximation 3 19.38 21.59 25.95

The empirical distribution function of statistic (3.54) for different values of T
was compared with the ADF of the limiting process in (3.55). The results are
depicted in Figure 3.3. Generally, the quality of approximation increases with
increasing length T . In case of P1 there is a very fast convergence under all type
of error term processes. This is also true in case P2, for [E1]–[E3]. In case of P2,
for [E4], the convergence is somewhat slower.

3.5.3 Change in the lag

The next simulation study considers the possibility of a lag change after the break
point. We compare the approximations for processes P1 and P2 with errors [E1] –
[E3] under H0. Under [E4] serial correlation in the error term violates the results
substantially. The trimming has been done in the same way as in (3.54), hence
5 % of observations from both sides of the time series were cut. The results are
reported in Figure 3.4.

Figure 3.4 illustrates that only in case of process P2 with errors [E2], the
convergence is somewhat slower compared to other scenarios. The empirical
quantiles of the test statistic on the left-hand side of (3.8) for different levels
α for both processes P1 and P2 with errors [E1] can be seen in Table 3.2 together
with the simulated quantiles of the asymptotic distribution on the right-hand side
of (3.8).

3.5.4 Approximation by Gumbel distribution

The simulation setting is the same as in the previous subsections. The empirical
results based on Theorem 3.5 are illustrated in Figure 3.5. The limiting distri-
bution tends to be smaller than the empirical one for all cases. The speed of
convergence is much slower even for the error term [E1]. Generally slower con-
vergence to the Gumbel distribution was independently confirmed also by Hall
(1979), Horváth (1993b), or Aue and Horváth (2012) among others. More rea-
sonable results are achieved for errors [E3] than for errors [E2].
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Figure 3.3: Unknown change point. EDF of (3.54) for different T compared with
ADF of (3.55). The legend for all the graphs is the same as in the top left figure.

3.5.5 Empirical power

Let us briefly discuss the empirical power of the proposed tests. As regards prov-
ing asymptotic consistency, it is rather complicated to prove it in case of LR
test since many terms of the likelihood ratio should be taken into consideration.
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Figure 3.4: Empirical and asymptotic distribution functions of approxima-
tion (3.8) for processes P1 and P2 with different T and various error terms.

Table 3.2: Critical values of Q†
T for different T . Errors [E1] were considered.

T α = 0.10 α = 0.05 α = 0.01
P1 P2 P1 P2 P1 P2

100 25.04 27.24 26.85 29.76 30.47 33.95
1 000 25.28 26.75 27.55 28.73 32.96 34.72
10 000 26.02 26.58 28.01 28.86 32.38 33.61

Asympt. distr. 25.98 28.15 33.79

Hence at least simulation results which signalize promising results under alter-
native hypothesis will be reported next. All simulations in this subsection have
been done for Scenario 1 and process P1 of length T = 1000 with errors being
iid [E1] and heteroscedastic [E3]. The empirical sizes for process P2 lie somewhat
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Figure 3.5: Empirical and asymptotic distribution functions of approxima-
tion (3.9) for processes [P1] and [P2] with different T . The legend in the top
left plot applies to other cases as well.

lower compared to P1 for both cases [E1] and [E3]. The change point occurs ex-
actly in the middle of the simulated series at k = T

2
= 500. The test level will be

0.05 in all cases and the critical value is set with respect to the situation when all
autoregressive parameters and intercept are subject of a change. This situation
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

occurs most often in practical applications since usually an analyst does not know
which parameters are subject of a change. Of course, having apriori information
and assuming only intercept change will lead to the increase of power of the test.

First, we will discuss change in c from (0, 0)⊤ to c̃ = (c̃1, c̃2)
⊤ with other pa-

rameters being unchanged. Table 3.3 shows the difference in terms of empirical
power of the test statistic under [E1] and [E3]. We can see that the heteroscedas-
ticity in the error term causes a substantial decrease in terms of power of the test
for small changes of intercept. Approximately, test reaches empirical power one
for more than twice as big change under heteroscedasticity than under iid errors.
The biggest decrease of power as well as the lowest distance for which the test
firstly have empirical power one are highlighted in blue in Table 3.3.

Table 3.3: Empirical sizes of the test.
power power %

c̃1 c̃2
√

c̃2
1+c̃2

2 [E1] [E3] decr.

0.04 −0.08 0.09 0.09 0.05 −51

0.08 −0.05 0.10 0.11 0.05 −53
0.00 0.13 0.13 0.17 0.06 −65
0.05 −0.16 0.17 0.32 0.07 −80

0.17 0.10 0.20 0.30 0.10 −67
0.23 0.01 0.23 0.56 0.09 −84
0.13 −0.23 0.27 0.85 0.13 −85

−0.33 0.08 0.34 0.96 0.17 −82
−0.06 −0.35 0.36 0.95 0.18 −81
−0.09 0.38 0.39 0.99 0.23 −76

−0.41 −0.11 0.43 0.99 0.29 −71
−0.35 −0.35 0.49 1.00 0.39 −61

−0.45 −0.23 0.50 1.00 0.42 −58
0.42 0.35 0.55 1.00 0.49 −51

−0.45 −0.41 0.60 1.00 0.60 −40
0.69 0.01 0.69 1.00 0.72 −28

0.47 −0.59 0.75 1.00 0.81 −19
−0.60 −0.48 0.77 1.00 0.82 −18

−0.06 0.82 0.82 1.00 0.89 −11
0.81 0.33 0.88 1.00 0.92 −8

0.72 −0.65 0.97 1.00 0.96 −4
0.39 0.91 0.99 1.00 0.97 −3

0.65 −0.93 1.14 1.00 0.99 −1
−0.92 0.84 1.24 1.00 1.00 0

The plot in Figure 3.6 represents the power function under the alternative
hypothesis when the parameter c changes from the origin to the different vector.
On x axis there is the Euclidean distance of new vector c̃ from origin.

Empirical sizes of the test when autoregression parameters change are depicted
in Table 3.4. Simulation of the alternative has been performed such that the
VAR(1) process was again stationary after the change. The difference between
the value of element of the autoregression matrix after and before the change is
marked in blue. The darker the color the bigger the change.

Simulation results show that the heteroscedasticity influences the result much

47



3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Euclidean distance from origin

E
m

pi
ric

al
 p

ow
er

 o
f t

he
 te

st

[E1] errors
[E3] errors

Figure 3.6: Empirical power simulated for process [P1] of length T = 1000 with
[E1] and [E3] error term sequence.

Table 3.4: Empirical sizes of the test.
power power

ϕ̃11 ϕ̃12 ϕ̃21 ϕ̃22 [E1] [E3]
0.5 0.2 0.2 0.1 0.05 0.04
0.5 0.2 0.2 0.0 0.09 0.12
0.5 0.2 0.2 0.2 0.11 0.09
0.5 0.0 0.2 0.1 0.48 0.42
0.5 0.2 0.2 0.3 0.48 0.45
0.3 0.2 0.2 0.1 0.57 0.52
0.5 0.2 0.0 0.1 0.62 0.57
0.5 0.2 0.2 0.4 0.94 0.93
0.2 0.2 0.2 0.1 0.95 0.92
0.5 0.2 0.2 0.5 1.00 1.00
0.4 0.2 0.2 0.0 0.22 0.21
0.5 0.1 0.0 0.1 0.69 0.67
0.3 0.2 0.2 0.3 0.92 0.90
0.5 0.4 0.4 0.1 0.93 0.94
0.2 0.2 0.2 0.0 0.95 0.96
0.5 0.3 0.5 0.1 0.99 0.99

less in case of changes in the autoregression than in case of intercept change.

3.6 Application

We applied the results to a time series of 888 monthly US stock log-returns of IBM
and S&P collected between January 1926 and December 1999. Even if ARCH
or GARCH models are more frequent for financial data than autoregressions, a
VAR is shown to be one of the possible models, see Tsay (2010).

Justification for using a multivariate model in this example instead of analyz-
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3. LR TEST WHERE VARIANCE OF ERRORS IS UNCHANGED

ing each data set separately may be seen in the scatterplot in Figure 3.7. This
figure indicates potential dependence between these two series where the sample
correlation is 0.64.
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Figure 3.7: Visualization of logarithm of IBM and S&P stock returns.

On the basis of the AIC criterion (see Hamilton (1994), Chapter 4.5), we
considered a VAR(5) model. The performance of the test statistic ΛT (k) with
changing k is plotted in Figure 3.8 for the time period from September 1929 to
March 1996.
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Figure 3.8: ΛT (k) for logarithm of IBM and S&P returns.

It is clear that the maximum of the likelihood ratio is achieved in Decem-
ber 1932. At that time, the Great Depression affected the whole US as a result of
the fear following the market crash in the autumn of 1929. The critical value for
α = 0.05 (horizontal dashed line) is obtained from repeated simulation of (3.55),
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where W(·) in that formula is a standard n(np + 1) = 22-dimensional Wiener
process.

According to Tsay (2010), a bivariate GARCH(1,1) model is also considered
as one of the possible models for our data. The existence of a change point
for such models can be tested using the CUSUM testing procedure published in
Kokoszka and Leipus (2000).

3.7 Chapter Summary

Testing procedures for changes in autoregressive parameters in a VAR(p) model
have been studied under various sets of assumptions on the error term. Under the
null hypothesis, we have found the asymptotic properties of the derived likelihood
ratio test statistics in cases of known and unknown change and for the case that
the lag of the model can increase. We have shown that under Assumptions B and
Scenario 1 one can find the approximation of quasi-likelihood test statistic by
Gumbel distribution which was previously done only in case of univariate models.
The extension to Scenario 2 can be part of the future study however we think
based on what we have done that the extension can be done with a relatively
little effort based on what has already been proven in Davis et al. (1995). As
regards other conditions A or C the extension could be done provided that we
would have a certain speed in the FCLTs.

The quality of the convergence has been illustrated on many simulation ex-
amples. Even situations which do not fulfil some of the conditions have been
considered. Surprisingly, heteroscedasticity in variance of the error term does not
influence much the quality of approximation of the test statistics by asymptot-
ic distribution and this result can be a motivation for further relaxation of the
moment assumptions in the theoretical part. However we have found out in our
simulation examples that heteroscedasticity has in overall a negative impact on
the power of the test under the alternative hypothesis. The test loses the power
especially under the intercept change; change in the autoregression structure has
a relatively small impact. Simulation studies have revealed that much more im-
portant assumption is the uncorrelatedness of the error term. Serial correlation
of errors in VAR(p) model can severely violate the simulation results due to the
inconsistency of the least squares estimators. One possible solution could be the
derivation of likelihood-ratio test specially for the serial correlation of the error
term. Simulation results for the Darling-Erdös-type test have revealed that the
convergence is substantially slower compared to the approximations by function-
als of the Wiener process.

In this chapter we have focused on cases where the variance matrix of the
error term has not undergone a change. However, in a variety of applications it
is useful to detect a change, both in the autoregressive matrix and the variance
of the error term. The Darling-Erdös-type test for such situation will be treated
in Chapter 4.
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4. Darling-Erdös test for changes
in variance

In this chapter we will consider Scenario 3 and assume that both variance of
the error term and autoregression parameters might change. We will discuss the
possibility to approximate the quasi-likelihood ratio test statistic by the Gumbel
distribution under the null hypothesis similarly as in the univariate case, see
for instance Davis et al. (1995). Unlike in the latter article, however, we will
need a more moment-restrictive modification of Assumptions B in order to prove
the asymptotic results of the test statistic. The reason is that the test statistic
becomes more complicated in higher dimensions.

We will show that unlike in univariate AR models, classical quasi-likelihood
ratio test statistic under the null hypothesis and Scenario 3 does not converge
to the Gumbel distribution. This seems to be a quite unexpected result since in
case of Scenario 1 there exists a Gumbel approximation of the quasi-likelihood
ratio test statistic under H0 for both univariate and multivariate VAR(p) process
under similar sets of conditions.

Section 4.1 describes the test statistic for Scenario 3. Section 4.2 contains
the Taylor expansion of log-likelihood ratio which is the key tool to reveal its
asymptotic properties. Comparison of the univariate and multivariate setups
clarifies the reasons why there exists the Gumbel distribution as a proxy for the
univariate quasi-likelihood approach and does not exists in the multivariate case.
The modification of the test statistic will be proposed for which we are able to
find the asymptotic Gumbel distribution under H0. Section 4.4 provides auxil-
iary lemmas with proofs and the proof of the main theorem as well. Simulation
study in Section 4.5 documents our findings. The reasons of somewhat slower
convergence will also be discussed. Most of the theoretical part of this chapter
has been published in Dvořák (2015).

4.1 Test derivation

We will again consider VAR(p) process (2.1) and the notation introduced in
Chapter 2. The quasi-likelihood ratio in Scenario 3 based on the multivariate
Gaussian distribution is defined as

LR′ :=
sup

β, β̃, Ω, Ω̃

{∏k
t=p+1 ft(β,Ω) · ∏T

t=k+1 ft(β̃, Ω̃)
}

supβ, Ω

{∏T
t=p+1 ft(β,Ω)

} ,

where

ft(β,Ω) = (2π)− n
2 |Ω|− 1

2 exp
{

− 1

2

(
yt − Mtβ

)⊤
Ω−1

(
yt − Mtβ

)}

is again a multivariate Gaussian density.
If we carry out 2 · ln(LR′) transformation and plug in the least squares estima-

tors β̂T , β̂k,
̂̃
βk, Ω̂T , Ω̂k and

̂̃
Ωk as in Chapter 3, we can define the test statistic
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of the form Λ′
T := maxp<k≤T

{
Λ′

T (k)
}
, where

Λ′
T (k) = (T−p) ln

∣∣∣Ω̂T

∣∣∣− (k−p) ln
∣∣∣Ω̂k

∣∣∣− (T−k) ln
∣∣∣ ̂̃Ωk

∣∣∣, (4.1)

with

Ω̂T :=
QT

T − p
, Ω̂k :=

Qk

k − p
,

̂̃
Ωk :=

Q̃k

T − k

and

QT :=
T∑

t=p+1

(
yt − Mtβ̂T

)(
yt − Mtβ̂T

)⊤
,

Qk :=
k∑

t=p+1

(
yt − Mtβ̂k

)(
yt − Mtβ̂k

)⊤
,

Q̃k :=
T∑

t=k+1

(
yt − Mt

̂̃
βk

)(
yt − Mt

̂̃
βk

)⊤
.

4.2 Darling-Erdös type approximation

In order to study the asymptotic properties of Λ′
T it is better to consider the

second-order Taylor expansion of the logarithmic functions appearing in (4.1).
This decomposition reveals the core reason why the multivariate quasi-likelihood
test statistic does not converge to the Gumbel distribution.

Considering Assumptions B, term ln |Ω̂T | can be expanded around the true
value ln |Ω| such that

ln |Ω̂T | = ln |Ω| + tr

{
Ω−1(Ω̂T − Ω)

}
− 1

2
tr

{(
Ω−1(Ω̂T − Ω)

)2}
+ oP

( 1

T

)
,

as T → ∞, since due to the central limit theorem for strong mixing sequences,
Ω̂T − Ω = OP(T− 1

2 ), as T → ∞.
Let us consider conditions

1

T

⌊T τ⌋∑

t=p+1

M
⊤
t Mt

P−→
T →∞

τQ uniformly for all τ ∈ [(p+ 1)/T, 1], (4.2)

1√
T

⌊T τ⌋∑

t=p+1

M
⊤
t Ω−1εt

d−→
T →∞

Υ
1
2 W(τ), τ ∈ [(p+ 1)/T, 1], (4.3)

where Q is some positive-definite matrix, Υ := E[M⊤
t Ω−1Mt] and W is a standard

Wiener process with independent components. As shown in Chapter 3, under
Assumptions B, statements (4.2) and (4.3) hold due to FCLT B.10 for strong
mixing sequences. In light of these uniform conditions (4.2) and (4.3), we can
apply Taylor expansion on all terms in (4.1) to show that

Λ′
T (k) = (T − p)tr

{
Ω−1Ω̂T

}
− (k − p)tr

{
Ω−1Ω̂k

}
− (T − k)tr

{
Ω−1 ̂̃Ωk

}
−

− T − p

2
tr

{
(Ω−1Ω̂T − In)2

}
+
k − p

2
tr

{
(Ω−1Ω̂k − In)2

}
+

+
T − k

2
tr

{
(Ω−1 ̂̃Ωk − In)2

}
+ oP(1), p < k ≤ T. (4.4)
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Summing up the first three addends in expression (4.4) gives

tr

{
Ω−1

QT

}
− tr

{
Ω−1

Qk

}
− tr

{
Ω−1

Q̃k

}
=

=
T∑

t=p+1

(
yt − Mtβ̂T

)⊤
Ω−1

(
yt − Mtβ̂T

)
−

−
k∑

t=p+1

(
yt − Mtβ̂k

)⊤
Ω−1

(
yt − Mtβ̂k

)
−

−
T∑

t=k+1

(
yt − Mt

̂̃
βk

)⊤
Ω−1

(
yt − Mt

̂̃
βk

)
=: QT −Qk − Q̃k.

If we denote as before

sk :=
k∑

t=p+1

M
⊤
t Ω−1εt, s̃k :=

T∑

t=k+1

M
⊤
t Ω−1εt,

Pk :=
( k∑

t=p+1

M
⊤
t Ω−1

Mt

)−1

, P̃k :=
( T∑

t=k+1

M
⊤
t Ω−1

Mt

)−1

,

ek := vec(εp+1, . . . , εk), ẽk := vec(εk+1, . . . , εT ),

then it holds that

QT = e⊤
T

(
IT −p ⊗ Ω−1

)
eT − s⊤

T PT sT , Qk = e⊤
k

(
Ik−p ⊗ Ω−1

)
ek − s⊤

k Pksk,

Q̃k = ẽ⊤
k

(
IT −k ⊗ Ω−1

)
ẽk − s̃⊤

k P̃ks̃k. (4.5)

Hence, omitting asymptotically negligible terms in (4.4) the Taylor expansion
of the quasi-likelihood ratio can be approximated under H0 by

ΛT (k) +
k − p

2
tr

{
(Ω−1Ω̂k − In)2

}

︸ ︷︷ ︸
Term (*)

, (4.6)

where ΛT (k) is the quasi-likelihood test statistic for Scenario 1 defined in (3.2).
It is proved in Theorem 3.5 that properly standardized statistic supp<k≤T ΛT (k)
has asymptotically Gumbel distribution under Assumptions B and H0. In order
we find the asymptotic distribution of the standardized maximum of (4.6) under
H0, we will proceed as in Davis et al. (1995): Following their idea applied on
univariate AR series, we should find process {Tk}k∈Z such that it approximates
Term (*) in (4.6) and the first differences (Tk − Tk−1)

• are uncorrelated with the process {sk − sk−1}k∈Z,

• form a strong mixing sequence with the rate as stated in (B.3),

• have variance 2 - in order to be in line with the term k−p
2

appearing in the
Taylor expansion.

Hence such process {Tk}k∈Z should be relatively “simple” to satisfy the strong-
mixing property but on the other hand it must not be too rigid to capture as much
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information as it is contained in Term (*) in (4.6). For univariate AR(p) pro-
cesses, as shown in Davis et al. (1995), the second-order Taylor expansion of the
quasi-likelihood test statistic is of the form (after discarding the asymptotically
negligible terms)

T − p

σ2
· (σ̂2

T − σ2) − k − p

σ2
· (σ̂2

k − σ2) − T − k

σ2
· (̂̃σ2

k − σ2) +

+
k − p

2σ4
· (σ̂2

k − σ2)2

︸ ︷︷ ︸
Term (**)

. (4.7)

Further, under conditions stated in Theorem 3.3 in Davis et al. (1995), these
authors proposed the approximation of Term (**) in the Taylor expansion (4.7)
by Tk = 1

σ2

∑k
t=p+1 ε

2
t − (k − p). They show that {Tk − Tk−1}k∈Z forms a strong

mixing sequence and

k − p

2σ4
· (σ̂2

k − σ2)2 − T 2
k

2(k − p)
= O

(
(ln ln k)

3
2

k
1
2

)
a.s., k → ∞.

It can therefore be seen that constant “2” that appears in the denominator of
Term (**) in Taylor expression (4.7) is simultaneously the variance of the approx-
imating term (Tk −Tk−1) provided that conditions in Theorem 3.3 of Davis et al.
(1995) are met, especially that the first 4 moments of εt match to those of the
standard normal random variable. Hence

T 2
k

varTk

− U2
k

2(k − p)
−→
k→∞

0 a.s.

where {Uk}k∈Z is an iid sequence coming from the FCLT. Now the Horváth’s
extension of Darling-Erdös result can be used to obtain the desired Gumbel dis-
tribution, see Horváth (1993b).

This setup is difficult to perform in the multivariate case since term

k − p

2
tr

{
(Ω−1Ω̂k − In)2

}

has too complicated structure to be approximated by a sum of a stationary strong
mixing sequence. Even if we found such process {Tk}k∈Z, then (Tk −Tk−1) would
not generally have variance equal to 2 even under normality conditions because
of more complex structure of the variance in higher dimensions.

However we can consider modification of the form

Λ∗
T := max

p+1≤k≤T

{
Λ∗

T (k)
}
, (4.8)

where

Λ∗
T (k) := ΛT (k) +

k − p

κ− n2

(
tr

{
Ω−1Ω̂k − In

})2

, (4.9)

κ := E

[
ε⊤

t Ω−1εt

]2
. (4.10)

In order to use this modification in practical application the estimation of Ω and
κ has to be sorted out. The properties of a suitable candidate Ω̂T for estimation
of Ω is stated in Theorem 4.1.
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As regards κ, according to (B.2), κ does not depend on t hence we can write

E

[
ε⊤

1 Ω−1ε1

]2
instead of E

[
ε⊤

t Ω−1εt

]2
. For instance, if error term {εt}t∈Z ∼

N2(0,Ω) then κ = 8. Term κ is not known in practical applications but an

estimate κ̂T such that κ̂T −κ = o
(
(ln lnT )−1

)
a.s., T → ∞, can be used. We will

show in Lemma 4.4, that estimate

κ̂T =
1

T

T∑

t=p+1

[
ε̂⊤

t Ω̂
−1

T ε̂t

]2
(4.11)

fulfils this rate. To prove this, the appropriate speed of convergence in the strong
law of large numbers is needed. Hence we will utilize FCLT B.10, even if it might
seem too “brutal” for the reader to use FCLT for proving consistency. Another
possibility is to use the law of the iterated logarithm. This option is briefly
discussed below Assumptions B*. It can be seen from (4.11) that we will need
to control higher moments of the error term up to order 8 + δ, δ > 0, in order to
utilize Theorem B.10. Hence the following modification of Assumptions B comes
up:

Assumptions B*:

Let condition (B.1) be valid and let error term process {εt}t∈Z be a sequence of
centered random vectors. Assume further that

a*) assumption (B.2) a) holds,

b*) ∀t1 ≤ t2 ≤ t3, ∀(i1, i2, i3): E[εi1,t1 · εi2,t2 · εi3,t3 ] = 0,

c*) assumption (B.2) c) holds and in addition, ∀t1 ≤ . . . ≤ t6, ∀(i1, . . . , i6)

E

[
εi1,t1 · . . . · εi6,t6

]
=





µi1,...,i6 if t1 = . . . = t6,
µi1,...,i4σi5i6 if t1 = . . . = t4 < t5 = t6,
σi1i2σi3i4σi5i6 if t1 = t2 < t3 = t4 < t5 = t6,

0 otherwise,

where µi1,...,i6 is finite for all i1, . . . , i6 ;
further assume that ∀t1 ≤ . . . ≤ t8, ∀(i1, . . . , i8)

E

[
εi1,t1 · . . . · εi8,t8

]
=





µi1,...,i8 if t1 = . . . = t8,
µi1,...,i6σi7i8 if t1 = . . . = t6 < t7 = t8,
µi1,...,i4µi5,...,i8 if t1 = . . . = t4 <

< t5 = . . . = t8,
µi1,...,i4σi5i6σi7i8 if t1 = . . . = t4 <

< t5 = t6 < t7 = t8,
σi1i2σi3i4σi5i6σi7i8 if t1 = t2 < t3 = t4 <

< t5 = t6 < t7 = t8,
0 otherwise,

and µi1,...,i8 is finite for all i1, . . . , i8,

d*) supt E ‖εt‖8+δ = const. < ∞, for some δ > 0.
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Further suppose that process {yt}t∈Z is a strong mixing process with mixing rate
ρT = O(T−(1+ǫ)(1+8/δ)) for some ǫ > 0.

Instead of such complicated sets of conditions, it is sufficient to consider As-
sumptions B, strict stationarity of εt, and b*) and d*). Law of the iterated loga-
rithm for strictly stationary strong mixings, see OOdaira and Yoshihara (1971),

Theorem 5, yields κ̂T − κ = o
(
(ln lnT )−1

)
a.s., T → ∞. Condition b*) stated

above is necessary in order to get block-diagonal matrix in (4.44).
Test statistic Λ∗

T (k) is simpler than Λ′
T (k) since the square is taken outside of

the trace operator. However, Λ∗
T still takes into account both diagonal and off-

diagonal elements of the variance matrix and hence it can be used for the testing
purposes. If H0 is violated, the difference between the full-sample estimate Ω̂T of
the variance matrix Ω and the estimate Ω̂k based on the first (k−p) observations
is big which results in a large value of the test statistic. Therefore the large value
of Λ∗

T in (4.8) signalizes violation of H0.
Let us rewrite the test statistic (4.9) for the univariate case (n = 1). Under

assumption that εt ∼ N (0, σ2), then κ = σ−4 · E[ε4
t ] = 3 is a kurtosis of standard

normal random variable and hence κ−n2 = 2. Hence rewriting (4.9) yields (4.7),
i.e. the statistic considered by Davis et al. (1995). Hence it can be seen that our
proposal Λ∗

T is a meaningful generalization into the more dimensions.
Next we will state the main convergence result for test statistic Λ∗

T under H0.
The asymptotic distribution can be used for computation of the critical values
and for the construction of the test. Under alternative, the simulation studies
that have been conducted so far signalize the promising and desired result that
the proposed test is consistent.

4.3 Main result

Theorem 4.1 Let us assume that the VAR(p) model satisfies Assumptions B*.
Let Ω̂T be an estimate of Ω such that

Ω̂T − Ω = O
(
T− 1

2
−λ
)

a.s., for some λ > 0 , as T → ∞. (4.12)

Then, under H0, it holds that

P

[
Λ∗

T − bT (d)

aT

(
d)

≤ x
]

−→
T →∞

exp
{

− 2e− x
2

}
,

where d = n(np+ 1) + 1 and

bT (d) =

(
2 ln lnT + d

2
ln ln lnT − ln Γ(d

2
)
)2

2 ln lnT
,

aT (d) =

√
bT (d)

2 ln lnT
.

The proof will be split into several parts later on. Notice that the size of
constant d appearing in Theorem 4.1 is greater than the same constant in The-
orem 3.5 by one. This reflects the fact that besides ΛT (k), we have additional
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addend k−p
κ−n2 (tr{Ω−1Ω̂k − In})2 in (4.9). To prove Theorem 4.1 a similar concept

as in Davis et al. (1995) will be used. Some preliminary propositions needs to
be proven first. Auxiliary propositions as well as Theorem 4.1 will be proven in
forthcoming Section 4.4.

4.4 Proofs

Lemma 4.2 If (elementwise)

CT − C = O
(
T−τ ) a.s., T → ∞,

holds for positive definite matrices C, CT and constant τ > 0, then also (elemen-
twise)

C
−1
T − C

−1 = O
(
T−τ ) a.s., T → ∞.

Proof : Proof is easy, however since it is often skipped in the literature we remind
it here: Let τ > 0. Then

O(T−τ ) = O(T−τ ) + O(T−2τ ) a.s.

In − In + O(T−τ ) =
(
C + O(T−τ )

)
· O(T−τ ) a.s.

In −
(
C + O(T−τ )

)
C

−1 = CT · O(T−τ ) a.s.

CT C
−1
T − CT C

−1 = CT · O(T−τ ) a.s.

C
−1
T − C

−1 = O(T−τ ) a.s.,

where each line holds as T → ∞. �

Lemma 4.3 Under H0 and Assumptions B it holds that

tr

{
Ω−1Ω̂k

}
=

1

k − p
e⊤

k

(
Ik−p ⊗ Ω−1

)
ek + O

(
ln ln k

k

)
a.s., k → ∞.

Proof : Due to (3.47) and the Law of the iterated logarithm applied to the se-
quence {uk}k∈Z, which was defined in the proof of Lemma 3.9, it holds that

‖sk‖2 ≤ ‖sk − uk‖2 + ‖uk‖2 = O(k1−λ) + O(k ln ln k) a.s., k → ∞,

for some λ > 0. From that we obtain ‖sk‖2 = O(k ln ln k) a.s., k → ∞.

Recall that, by (4.5), Qk = e⊤
k

(
Ik−p ⊗Ω−1

)
ek −s⊤

k Pksk. Applying Lemma 3.9,
we get

Qk = e⊤
k

(
Ik−p ⊗ Ω−1

)
ek − u⊤

k

Υ−1

k
uk + o(1) a.s., k → ∞.

The Law of the iterated logarithm for iid centered random vectors uk yields
u⊤

k (kΥ)−1uk = O(ln ln k) a.s., k → ∞. From that we obtain

Qk = e⊤
k

(
Ik−p ⊗ Ω−1

)
ek + O(ln ln k) a.s., k → ∞. (4.13)
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Since ε̂t = yt − Mtβ̂k, then it holds

tr

{
Ω−1Ω̂k

}
= tr

{
Ω−1 1

k − p

k∑

t=p+1

ε̂tε̂
⊤
t

}
=

1

k − p

k∑

t=p+1

ε̂⊤
t Ω−1ε̂t =

=
Qk

k − p

(4.13)
=

1

k − p

(
e⊤

k

(
Ik−p ⊗ Ω−1

)
ek + O(ln ln k)

)
a.s., k → ∞

=
1

k − p
e⊤

k

(
Ik−p ⊗ Ω−1

)
ek + O

(
ln ln k

k

)
a.s., k → ∞.

�

Lemma 4.4 Let H0 and Assumptions B* be fulfilled. Then as T → ∞,

κ̂T − κ = o
(
(ln lnT )−1

)
a.s. (4.14)

where κ̂T and κ is defined in (4.11) and in (4.10), respectively.

Proof : We will prove that κ̂T − κ = O
(√

ln ln T
T

)
a.s. from which assertion (4.14)

follows.
Due to Lemma A.2

1

T

T∑

t=p+1

(
ε̂⊤

t Ω̂
−1

T ε̂t

)2

=
1

T

T∑

t=p+1

((
ε̂⊤

t ⊗ ε̂⊤
t

)
vec

(
Ω̂

−1

T

))2

=

=
1

T

T∑

t=p+1

tr

{[
vec

(
Ω̂

−1

T

)
· vec

(
Ω̂

−1

T

)⊤] ·
[
ε̂tε̂

⊤
t ⊗ ε̂tε̂

⊤
t

]}
=

= tr

{[
vec

(
Ω̂

−1

T

)
· vec

(
Ω̂

−1

T

)⊤] · 1

T

T∑

t=p+1

[
ε̂tε̂

⊤
t ⊗ ε̂tε̂

⊤
t

]}
. (4.15)

Using ε̂t = yt − Mtβ̂T = εt − Mt(β̂T − β), rule (5) in Lemma A.1, it holds
that

1

T

T∑

t=p+1

[
ε̂tε̂

⊤
t ⊗ ε̂tε̂

⊤
t

]
=

=
1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ εtε

⊤
t

)
− (4.16)

− 1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
− (4.17)

− 1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ Mt(β̂T − β)ε⊤

t

)
+ (4.18)

+
1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t

)
− (4.19)

− 1

T

T∑

t=p+1

(
εt(β̂T − β)⊤

M
⊤
t ⊗ εtε

⊤
t

)
+ (4.20)

+
1

T

T∑

t=p+1

(
εt(β̂T − β)⊤

M
⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
+ (4.21)
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+
1

T

T∑

t=p+1

(
εt(β̂T − β)⊤

M
⊤
t ⊗ Mt(β̂T − β)ε⊤

t

)
− (4.22)

− 1

T

T∑

t=p+1

(
εt(β̂T − β)⊤

M
⊤
t ⊗ Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t

)
− (4.23)

− 1

T

T∑

t=p+1

(
Mt(β̂T − β)ε⊤

t ⊗ εtε
⊤
t

)
+ (4.24)

+
1

T

T∑

t=p+1

(
Mt(β̂T − β)ε⊤

t ⊗ εt(β̂T − β)⊤
M

⊤
t

)
+ (4.25)

+
1

T

T∑

t=p+1

(
Mt(β̂T − β)ε⊤

t ⊗ Mt(β̂T − β)ε⊤
t

)
− (4.26)

− 1

T

T∑

t=p+1

(
Mt(β̂T − β)ε⊤

t ⊗ Mt(β̂T − β)(β̂T − β)⊤
M

⊤
t

)
+ (4.27)

+
1

T

T∑

t=p+1

(
Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t ⊗ εtε

⊤
t

)
− (4.28)

− 1

T

T∑

t=p+1

(
Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
− (4.29)

− 1

T

T∑

t=p+1

(
Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t ⊗ Mt(β̂T − β)ε⊤

t

)
+ (4.30)

+
1

T

T∑

t=p+1

(
Mt(β̂T −β)(β̂T −β)⊤

M
⊤
t ⊗ Mt(β̂T −β)(β̂T −β)⊤

M
⊤
t

)
.(4.31)

We will investigate the asymptotics of each matrices element-by-element and
hence it does not matter whether we investigate its elements stacked in the vector
form or in the matrix composition. It is due to the fact that all matrices have
fixed dimensions even when T → ∞. Therefore, without loss of generality, we
can plug in vec operator inside all sums and in cases where it is convenient. This
transformation does not influence the results.

Let us focus on particular summands: We can apply FCLT B.10 on the vec

of expression (4.16) to get

1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ εtε

⊤
t

)
= E

[
ε1ε

⊤
1 ⊗ ε1ε

⊤
1

]
+ O

(√
ln lnT

T

)
a.s., T → ∞.

Applying vec on expression (4.17), we get

1

T

T∑

t=p+1

vec

(
εtε

⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
=

=
1

T

T∑

t=p+1

vec

((
εt ⊗ εt

)(
1ε⊤

t ⊗ (β̂T − β)⊤
M

⊤
t

))
=

=
1

T

T∑

t=p+1

vec

((
εt ⊗ εt

)(
1 ⊗ (β̂T − β)⊤

)(
ε⊤

t ⊗ M
⊤
t

))
=

=
1

T

T∑

t=p+1

(
(εt ⊗ Mt) ⊗ (εt ⊗ εt)

)
· vec

(
(β̂T − β)⊤

)
.
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It is not difficult to show that E

[
vec

(
(εt ⊗ Mt) ⊗ (εt ⊗ εt)

)]
= 0 ∈ R

n5(np+1), for

all t. Using Theorem B.10 on vec

(
(εt ⊗ Mt) ⊗ (εt ⊗ εt)

)
and (3.20) we obtain

that

1

T

T∑

t=p+1

(
εtε

⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
= O

(
ln lnT

T

)
a.s., T → ∞.

Terms (4.18), (4.20), (4.24) can be treated in the same way to get rate O( ln ln T
T

)
a.s., as T → ∞.

Analogously, applying vec operator on term (4.19) we get after some algebra

1

T

T∑

t=p+1

(
(εt ⊗ Mt) ⊗ (εt ⊗ Mt)

)
· vec

(
(β̂T − β)(β̂T − β)⊤

)
.

Since E

[
vec

(
(εt ⊗ Mt) ⊗ (εt ⊗ Mt)

)]
= E

[
vec

(
(ε1 ⊗ M1) ⊗ (ε1 ⊗ M1)

)]
< ∞,

for all t and using (3.20) we get by Theorem B.10 that as T → ∞,

1

T

T∑

t=p+1

vec

(
εtε

⊤
t ⊗ Mt(β̂T − β)(β̂T − β)⊤

M
⊤
t

)
=

=
[

E

[
(ε1 ⊗ M1) ⊗ (ε1 ⊗ M1)

]
+ O

(√
ln lnT

T

)]
· O

(
ln lnT

T

)
a.s.

= O
(

ln lnT

T

)
a.s.

Term (4.28) can be treated in the same way and achieve rate O( ln ln T
T

) a.s., as
T → ∞.

Applying vec operator on term (4.21), the algebraic computations lead to

1

T

T∑

t=p+1

vec

(
εt(β̂T − β)⊤

M
⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
=

=
1

T

T∑

t=p+1

(
Mt ⊗ Mt ⊗ εt ⊗ εt

)
· vec

(
(β̂T − β)⊤ ⊗ (β̂T − β)⊤

)
.

Using FCLT B.10 on vec(Mt ⊗ Mt ⊗ εt ⊗ εt) and (3.20) we get that

1

T

T∑

t=p+1

(
εt(β̂T − β)⊤

M
⊤
t ⊗ εt(β̂T − β)⊤

M
⊤
t

)
=

= O
( ln lnT

T

)
a.s., T → ∞

and the same rate is achieved also for terms (4.22), (4.25) and (4.26).
Applying similar setup on the rest of the terms we can conclude that terms

(4.23), (4.27), (4.29) and (4.30) are O
(
( ln ln T

T
)

3
2

)
a.s., T → ∞ and term (4.31) is

O
(
( ln ln T

T
)2
)

a.s., T → ∞.
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Using (4.15), (3.21) and above results

κ̂T − κ = tr

{[
vec

(
Ω̂

−1

T

)
· vec

(
Ω̂

−1

T

)⊤] ·
[

1

T

T∑

t=p+1

(
ε̂tε̂

⊤
t ⊗ ε̂tε̂

⊤
t

)]}
=

= tr

{[
vec(Ω−1) · vec(Ω−1)⊤ + O

( ln lnT

T

)]
·

·
[

E

[
ε1ε

⊤
1 ⊗ ε1ε

⊤
1

]
+ O

(√
ln lnT

T

)]}
a.s., T → ∞

= E tr

{[
vec(Ω−1) · vec(Ω−1)⊤ ·

[
ε1ε

⊤
1 ⊗ ε1ε

⊤
1

]]}
+

+O
(√

ln lnT

T

)
a.s., T → ∞

= E

[
ε⊤

1 Ω−1ε1

]2
+ O

(√
ln lnT

T

)
a.s., T → ∞,

which completes the proof. �

Lemma 4.5 Let H0 and Assumptions B* be fulfilled and let

Tk := tr

{
Ω−1

k∑

t=p+1

εtε
⊤
t − (k − p)In

}
. (4.32)

Let us suppose that Ω̂T fulfils (4.12). Then, as T → ∞

k − p

κ̂T − n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2 − T 2

k

(κ− n2)(k − p)
= o(1) a.s. (4.33)

Proof : The difference in statement (4.33) can be decomposed as follows:

k − p

κ̂− n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2 − k − p

κ− n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2

+ (4.34)

+
k − p

κ− n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2 − k − p

κ− n2

(
tr{Ω−1Ω̂k − In}

)2
+ (4.35)

+
k − p

κ− n2

(
tr{Ω−1Ω̂k − In}

)2 − T 2
k

(κ− n2)(k − p)
. (4.36)

Term Tk can be expressed as

Tk =
k∑

t=p+1

(
ε⊤

t Ω−1εt − n
)

= (k − p) ·
(

1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek − n
)
. (4.37)

Step 1:
First, we will prove that terms (4.36) satisfy

k − p

κ− n2

(
tr{Ω−1Ω̂k − In}

)2 − T 2
k

(κ− n2)(k − p)
= O

(
(ln ln k)

3
2

k
1
2

)
a.s., (4.38)
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k → ∞. Proof of the latter statement is based on the following set of computa-
tions:

k − p

κ− n2

(
tr{Ω−1Ω̂k − In}

)2 − T 2
k

(κ− n2)(k − p)
=

=
k − p

κ− n2

([
tr{Ω−1Ω̂k − In}

]2 −
[ 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek − n
]2)

=

=
k − p

κ− n2

([
tr{Ω−1Ω̂k} − n+

1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek − n
]

·

·
[
tr{Ω−1Ω̂k} − n− 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek + n
])

=

=
k − p

κ− n2

([
tr{Ω−1Ω̂k} +

1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek − 2n
]

·

·
[
tr{Ω−1Ω̂k} − 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek

])
=: D.

Applying the approximation to tr

{
Ω−1Ω̂k

}
from Lemma 4.3 we obtain that

D =
k − p

κ− n2

([ 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek + O
(

ln ln k

k

)
+

+
1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek − 2n
]

·
[ 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek +

+O
( ln ln k

k

)
− 1

k − p
e⊤

k (Ik−p ⊗ Ω−1)ek

])
a.s. k → ∞

= 2 · k − p

κ− n2

(
1

k − p

[
e⊤

k (Ik−p ⊗ Ω−1)ek − n(k − p)
]

+ O
( ln ln k

k

))
·

·O
( ln ln k

k

)
a.s. k → ∞

= 2 · k − p

κ− n2

(
1

k − p
O(

√
k ln ln k) + O

( ln ln k

k

))
· O

( ln ln k

k

)
a.s. k → ∞

= O
((ln ln k)

3
2

k
1
2

)
a.s. k → ∞.

The last-but-one equality follows from the Law of the iterated logarithm:

e⊤
k (Ik−p ⊗ Ω−1)ek − n(k − p) =

k∑

t=p+1

(
ε⊤

t Ω−1εt − n
)

=

= O(
√
k ln ln k) a.s., k → ∞.

Step 2:
As regards terms in (4.35), the difference is equal to

k − p

κ− n2
· tr

{(
Ω̂

−1

T + Ω−1
)
Ω̂k − 2In

}
· tr

{(
Ω̂

−1

T − Ω−1
)
Ω̂k

}
.

Now, due to Lemma 4.2, Lemma 3.8 and Assumption (4.12)
(
Ω̂

−1

T − Ω−1
)
Ω̂k =

(
Ω̂

−1

T − Ω−1
)(

Ω̂k − Ω
)

+
(
Ω̂

−1

T − Ω−1
)
Ω =

= O
(√

ln ln k

k1+λ

)
+ O

(
k− 1

2
−λ
)

a.s. =

= O
(
k− 1

2
−λ
)

a.s., for some λ > 0

62
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and
(
Ω̂

−1

T + Ω−1
)
Ω̂k − 2In =

(
Ω̂

−1

T − Ω−1
)(

Ω̂k − Ω
)

+ 2Ω−1
(
Ω̂k − Ω

)
+

+
(
Ω̂

−1

T − Ω−1
)
Ω = O

(√
ln ln k

k

)
a.s.

Hence,

tr

{(
Ω̂

−1

T + Ω−1
)
Ω̂k − 2In

}
· tr

{(
Ω̂

−1

T − Ω−1
)
Ω̂k

}
= O

(√
ln ln k

k1+λ

)
a.s.

for some λ > 0. We have just shown that, for (4.35) it holds

k − p

κ− n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2

− k − p

κ− n2

(
tr{Ω−1Ω̂k − In}

)2

=

= O
(√

ln ln k

kλ

)
, a.s., k → ∞, (4.39)

for some λ > 0.

Step 3:
Let us conclude the proof with the terms in (4.34) which is equal to

[
k − p

κ̂− n2
− k − p

κ− n2

]
·
(

tr{Ω̂
−1

T Ω̂k − In}
)2

.

We investigate each of the brackets separately:

k − p

κ̂− n2
− k − p

κ− n2
=

(k − p)(κ− κ̂)

(κ̂− κ)(κ− n2) + (κ− n2)2
= o

(
k

ln ln k

)
a.s., k → ∞,

due to Lemma 4.4 and the fact that (κ− n2)2 > 0. Lemma 4.2, Lemma 3.8 and
Assumption (4.12) yield

Ω̂
−1

T Ω̂k − In =
(
Ω̂

−1

T − Ω−1
)(

Ω̂k − Ω
)

+
(
Ω̂

−1

T − Ω−1
)
Ω + Ω−1

(
Ω̂k − Ω

)
=

= O
(√

ln ln k

k

)
a.s. k → ∞,

and hence (
tr{Ω̂

−1

T Ω̂k − In}
)2

= O
(

ln ln k

k

)
a.s. k → ∞,

which implies that (4.34) is o(1) a.s. This result together with (4.38) and (4.39)
yields the assertion of the lemma. �

Proof of Theorem 4.1: According to Theorem 3.5, the normalized version of ΛT
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has asymptotically the Gumbel distribution, as T → ∞. We have to show that

lim
ǫ→0

lim sup
T →∞

P

[∣∣∣∣ max
p<k≤T ǫ

Λ∗
T (k) −

− max
p<k≤T ǫ

{
s⊤

k Pksk +
T 2

k

(k − p)(κ− n2)

}∣∣∣∣ > δ

]
= 0, (4.40)

lim
ǫ→0

lim sup
T →∞

P

[∣∣∣∣ max
(1−ǫ)T ≤k<T

Λ∗
T (k) −

− max
(1−ǫ)T ≤k<T

{
s̃⊤

k P̃ks̃k +
T 2

k

(k − p)(κ− n2)

}∣∣∣∣ > δ

]
= 0, (4.41)

lim
ǫ→0

lim sup
T →∞

∣∣∣∣∣P
[maxp<k≤T ǫ

{
s⊤

k Pksk +
T 2

k

(k−p)(κ−n2)

}
− bT (d)

aT (d)
≤ x

]
−

− exp
{

− e− x
2

}∣∣∣∣∣ = 0, (4.42)

lim
ǫ→0

lim sup
T →∞

∣∣∣∣∣P
[max(1−ǫ)T ≤k<T

{
s̃⊤

k P̃ks̃k +
T 2

k

(k−p)(κ−n2)

}
− bT (d)

aT (d)
≤ x

]
−

− exp
{

− e− x
2

}∣∣∣∣∣ = 0, (4.43)

where Tk is defined in (4.32) or (4.37). To establish (4.40) observe that
∣∣∣∣ max

p<k≤T ǫ
Λ∗

T (k) − max
p<k≤T ǫ

{
s⊤

k Pksk +
T 2

k

(k − p)(κ− n2)

}∣∣∣∣ ≤

≤ max
p<k≤T ǫ

∣∣∣∣ΛT (k) − s⊤
k Pksk

∣∣∣∣+

+ max
p<k≤T ǫ

∣∣∣∣
k − p

κ̂T − n2

(
tr{Ω̂

−1

T Ω̂k − In}
)2

− T 2
k

(k − p)(κ− n2)

∣∣∣∣.

Result (4.40) now follows from the proof of Lemma 3.10 and Lemma 4.5. Proof
of (4.41) can be handled similarly. We establish (4.42). Define vector

ξk :=

(
sk − sk−1

Tk − Tk−1

)
=

(
M

⊤
k Ω−1εk

ε⊤
k Ω−1εk − n

)
=

(
f1(yk, . . . ,yk−p)
f2(yk, . . . ,yk−p)

)
=

= f(yk, . . . ,yk−p)

which is a measurable function of finite strong mixing terms yk, . . . ,yk−p and
according to Theorem B.9 it is a strong mixing sequence with the same rate as
yt. The variance matrix of ξ is

Γ :=

(
Υ 0
0⊤ κ− n2

)
, where Υ = E

[
M

⊤
t Ω−1

Mt

]
. (4.44)

First differences sk − sk−1 and Tk − Tk−1 are uncorrelated thanks to assump-

tion E

[
εi,t εj,t εk,t

]
= 0, ∀(i, j, k), ∀t. According to Theorem B.10 there exist a

sequence of iid centered Gaussian random elements (z⊤
k,1, zk,2)

⊤ with covariance
matrix Γ such that as k → ∞

(
sk

Tk

)
−
(

uk,1

uk,2

)
= O

(
k

1
2

−λ
)

a.s. for some λ > 0 (4.45)
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where uk,1 =
∑k

t=1 zk,1 and uk,2 =
∑k

t=1 zk,2. Due to Lemma 3.9

s⊤
k Pksk − u⊤

k,1

Υ−1

k
uk,1 −→

k→∞
0. a.s.

Now, due to the Law of the iterated logarithm uk,2 = O
(√

k ln ln k
)

a.s., k → ∞,

and due to (4.45) we have

T 2
k

(k − p)(κ− n2)
− u2

k,2

(k − p)(κ− n2)
=

(Tk − uk,2)
2 + 2uk,2(Tk − uk,2)

(k − p)(κ− n2)
=

=
O(k1−λ) +

√
k ln ln k · O(k

1
2

−λ)

(k − p)(κ− n2)
a.s. for some λ > 0, k → ∞

= O
(√

ln ln k

kλ

)
a.s. for some λ > 0, k → ∞

= o(1) a.s., k → ∞,

and hence

T 2
k

(k − p)(κ− n2)
− u2

k,2

(k − p)(κ− n2)
= o(1) a.s., k → ∞.

The rest of the proof follows from the strong approximation theorem applied to
the iid random variables uk,2, see Horváth (1993b), Lemma 2.2. The proof of
(4.43) follows from the similar considerations as the just finished proof of (4.42).
�

4.5 Simulation study

A simulation study illustrates the performance of the proposed testing scheme.
It is worth noting here that the convergence to the Gumbel distribution is rather
slow which was confirmed also for instance in Davison (2003) or Horváth (1993b)
in much simpler cases than multivariate autoregressions. Satisfactory results are
achieved for large sample sizes. Hence we will not simulate here the situation
under alternative hypothesis due to the fact that neither results under H0 are
satisfactory. To get more reliable critical values one might use bootstrapping
techniques, see Hušková et al. (2008) for instance.

The same testing scheme will be kept as in the previous chapter: We will
consider processes P1 and P2 defined on Page 39 with errors [E1] as defined in
Section 3.5. As regards [E2] error term, the degrees of freedom ν in t-distribution
will be increased to 10 in order to fulfil the Assumptions B*.

The test statistic is more complicated than in case of no changes in variance
of errors, hence it is more time-consuming to get the results. The calculations
were done in software R as earlier described.

We will investigate the distribution of

Λ∗
T − bT

(
n(np+ 1) + 1

)

aT

(
n(np+ 1) + 1

) , n = 2, p = 1. (4.46)
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4. DARLING-ERDÖS TEST FOR CHANGES IN VARIANCE

Figure 4.2 gives the comparison of the distribution function of (4.46) based on
1 000 simulations for different lengths T = 100, 1 000, 10 000 and asymptotic
Gumbel distribution as given in Theorem 4.1. Good asymptotic results are
achieved only for large sample sizes.

According to Figure 4.2 the asymptotic distribution tends to be smaller than
the replicates of the test statistic (4.46). Let us focus on the properties of the
estimators appearing in Λ∗

T . The convergence of standardized maximum of ΛT (k)
to Gumbel distribution is slow, see Dvořák and Prášková (2013). The other terms

that can negatively influence the speed of convergence of Λ∗
T are κ̂T and Ω̂

−1

T .

Simulations do not give evidence on poorer convergence of Ω̂
−1

T to Ω−1.
Let us concentrate on term κ̂T . In Figure 4.1, results of 100 simulations were

plotted for the estimators of κ for different T = 100, 1 000, 10 000. In the top 2
plots the error term is assumed to have Gaussian distribution and in the bottom
2 figures, more heavy-tailed t10 distribution with the parameter ν−2

ν
Ω is chosen

(i.e. the resulting variance is the same as for the Gaussian case). It can be
seen that in both cases the estimators correctly oscillate around the true value
κ = 8 (top panels), κ = 8 · ν−2

ν−4
= 32

3

.
= 10.67 (bottom panels), respectively, see

calculation in Kotz and Nadarajah (2004) for higher moments of t-distribution.
There is a somewhat higher standard deviation in the bottom figures and also for
smaller sample sizes in both panels. In Table 4.1 there are results based on 1 000
simulations.
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Figure 4.1: Estimator κ̂T for each of 100 repetitions. Gaussian (top panels) and
t10(0,

ν−2
ν

Ω) distribution (bottom panels) considered for the error term process.
Black, green and blue color stands for T = 100, T = 1 000 and for T = 10 000,
respectively.
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Table 4.1: Simulated values of κ̂T for different T . Errors [E1], [E2] considered.

T [E1] [E2]

P1 P2 P1 P2

κ̂T std(κ̂T ) κ̂T std(κ̂T ) κ̂T std(κ̂T ) κ̂T std(κ̂T )

100 7.73 0.728 7.75 0.746 9.65 2.027 9.62 2.054
1 000 7.97 0.253 7.97 0.243 10.50 1.086 10.60 1.692
10 000 8.00 0.114 7.99 0.111 10.63 0.722 10.63 0.507

It can be seen from Table 4.1 that κ is underestimated on average in smaller
samples. This might result in slightly higher values of Λ∗

T since κ̂T appears as a
positive term in the denominator of Λ∗

T . This can give a partial explanation why
the distribution of (4.46) is shifted to the right from the Gumbel distribution in
Figure 4.2.
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Figure 4.2: Empirical and Asymptotic distribution functions.

We checked that the diagonalization of Ω does not help in reaching better
results.

4.6 Chapter Summary

We conclude that this chapter is interesting merely from the theoretical point
of view. We have shown that the natural generalization of standardized quasi-
likelihood ratio test statistic from the univariate case does not follow Gumbel
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distribution under H0 and have given the reason which shows up under Taylor
expansion of the test statistic. A modification has been presented in order to get
some satisfactory results under H0, however, a better estimate Ω̂T is needed in
order the desired convergence could have been proven. Also to get a consistent
estimate of κ one needs higher moment conditions under weak dependence than
it is usual in the change point literature.

As regards the short simulation study, we conclude that the speed of conver-
gence is rather very slow. Besides the dimensionality, the quality of convergence
is sensitive especially on the persistence of VAR(p) model and the quality of the
estimator of κ which converge to the true value slowly as well. The proposed
testing scheme can be applied on stationary data of very large sample sizes.
Unfortunately, author does not have enough time for performing bootstrapping
comparisons which might be useful in this case and this gives a possibility for
future investigations.
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5.1 Introduction

In this section we will discuss a score test which is as well as likelihood-ratio-
type tests derived from the pseudo-likelihood function. The idea of the score
test statistic goes back to Fisher (1925) where the efficient statistic based on the
first derivatives of the likelihood is derived. Also the score test presented here is
based on the first derivatives of the likelihood function. Such type of test can be
used both in the sequential monitoring of possible change-points, see for instance
Gombay and Serban (2009), and also for the retrospective testing, i.e. Gombay
(2008). The contents of Chapter 5 is based on the latter article however the
theory will be extended to multivariate stationary autoregressions. Compared
to Gombay (2008), we will present the proofs in more detail, since it is very
difficult to follow some logical steps in the latter article. Main advantages of our
approach over the latter paper are twofold: First, the ability to test multivariate
autoregression, and, second, to use the test also for non-Gaussian distributions.

We will first formulate a slightly more restrictive set of assumptions which
come from Assumptions B. In Section 5.2 we construct the test statistic and
remind the general idea of the test. Section 5.3 discusses the appropriate stan-
dardization in order to get the desired properties of the test. We demonstrate on
the simulations that the usual standardization based on the Fisher information
matrix is suitable only in Gaussian case and hence we will come up with the
modification which enables to use the test even for distributions which are not
Gaussian. Section 5.4 presents the main theorem. Its proof together with the
auxiliary lemmas can be found in Section 5.5. The proof goes along the similar
steps as in Gombay (2008), but, as told before, we will present it here in a bit
more careful way.

We will still consider model (2.1) and Scenario 3 as described in Chapter 2,
and present slightly more restrictive version of assumptions B:

Assumptions B**:

Let condition (B.1) and (B.2)d) be valid and let error term process {εt}t∈Z be a
sequence of centered iid random vectors such that

• E[εtε
⊤
t ] = Ω > 0,

• E[εi,tεj,tεk,t] = 0, ∀(i, j, k) and ∀t,

• E |εi,tεj,tεk,tεℓ,t| = µijkℓ < ∞, ∀(i, j, k, ℓ) and ∀t.

Assumptions B** imply Assumptions B. We strengthen the Assumptions B by
the independence of error term process {εt}t∈Z. However, Assumptions B** are
still weaker than those in Gombay (2008) since we do not assume the Gaussian
error term.

We will concentrate on the score test based on the likelihood of a VAR(p)
model and derive the asymptotic distribution under H0.
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5.2 Construction of the test statistic

The test statistic will be derived from the quasi-likelihood function under the
assumptions above. Let us denote K :=

∑p
j=1 Φj, uk := vec(ε1, . . . , εk), µ :=

(In − K)−1c, φ := vec (Φ1, . . . ,Φp) ∈ R
n2p, ω := vec(Ω) ∈ R

n2
, σ := vech(Ω) ∈

R
1
2

n(n+1), θ :=
(
µ⊤,φ⊤,σ⊤

)⊤ ∈ R
r, r := n(np + 1) + 1

2
n(n + 1), Yk :=

vec(y1, . . . ,yk) ∈ R
nk, µk := (µ⊤, . . . ,µ⊤)⊤ ∈ R

nk and

Xk =




y0 − µ · · · yk−1 − µ
...

. . .
...

y1−p − µ · · · yk−p − µ


 ∈ R

np×k.

The conditional log-likelihood function ℓk based on k observations y1, . . . ,yk with
given y1−p, y2−p, . . . ,y0 is of the form

ℓk(µ,Φ1, . . . ,Φp,Ω) = −nk

2
ln(2π) − k

2
ln |Ω| − 1

2

k∑

t=1

ε⊤
t Ω−1εt,

where εt = yt − µ −∑p
j=1 Φj(yt−j − µ). Partial derivatives of ℓk with respect to

the unknown parameters can be found in Lütkepohl (2005), p. 89–90, and are of
the form

sk1(θ) :=
∂

∂µ
ℓk(θ) = (In − K)⊤Ω−1

k∑

t=1

(
yt −

p∑

j=1

Φjyt−j

)
−

−k(In − K)⊤Ω−1(In − K)µ =

= (In − K)⊤Ω−1
k∑

t=1

εt,

sk2(θ) :=
∂

∂φ
ℓk(θ) = (Xk ⊗ Ω−1)(Yk − µk) − (XkX

⊤
k ⊗ Ω−1)φ =

= (Xk ⊗ In)(Ik ⊗ Ω−1)uk

∂

∂Ω
ℓk(θ) = −k

2
Ω−1 +

1

2
Ω−1 ·

k∑

t=1

εtε
⊤
t · Ω−1.

Let us denote sk3(θ) := vech

(
∂

∂Ω
ℓk(θ)

)
and let Ln ∈ R

1
2

n(n+1)×n2
be an elimina-

tion matrix such that vech(Ω) = Ln vec(Ω). Its existence is established in the
Appendix A.12 of Lütkepohl (2005). Then

sk3 = Ln · vec

(
∂

∂Ω
ℓk(θ)

)
=

1

2
Ln · vec

(
Ω−1 ·

k∑

t=1

(εtε
⊤
t − Ω) · Ω−1

)
=

=
1

2
Ln(Ω−1 ⊗ Ω−1) ·

k∑

t=1

vec(εtε
⊤
t − Ω).

Let θ̂T := (µ̂⊤
T , φ̂

⊤
T , σ̂

⊤
T )⊤ be the maximum likelihood estimators for the unknown

set of parameters based on the full sample y1, . . . ,yT . For such estimators it
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holds sT 1(θ̂T ) = 0, sT 2(θ̂T ) = 0 and sT 3(θ̂T ) = 0. They are of the form

µ̂T =
1

T

(
In −

p∑

j=1

Φ̂j,T

)−1 ·
T∑

t=1

(
yt −

p∑

j=1

Φ̂j,T yt−j

)
, (5.1)

φ̂T =
(
(X̂T X̂

⊤
T )−1

X̂T ⊗ In

)
(YT − µ̂T ),

vec(Ω̂T ) = ω̂T =
1

T
vec

( T∑

t=1

(
yt − µ̂T −

p∑

j=1

Φ̂j,T yt−j

)
·

·
(
yt − µ̂T −

p∑

j=1

Φ̂j,T yt−j

)⊤)
, (5.2)

where X̂T is obtained from XT by replacing µ with the estimate µ̂T and µ̂T =
vec(µ̂T , . . . , µ̂T ) ∈ R

nT .
The efficient score test statistic is of the following form

B̂(τ) :=
1√
T

· J − 1
2 (θ̂T ) ·




∂
∂µ
ℓ⌊T τ⌋(θ̂T )

∂
∂φ
ℓ⌊T τ⌋(θ̂T )

∂
∂σ
ℓ⌊T τ⌋(θ̂T )



, 0 ≤ τ ≤ 1, (5.3)

where ⌊x⌋ is integer part of x and J is a suitable standardization matrix which
choice will be discussed in the next section.

The idea behind the test is as follows: It holds that under H0, sT (θ̂T ) = 0.
If H0 is true, sk(θ̂T ) should be “close” to zero even for the derivatives of the
likelihood based on first k < T elements of process {yt}t∈Z. Hence large values
of sup0≤τ≤1 ‖B̂(τ)‖ will indicate rejection of the null hypothesis.

5.3 Standardization matrix

In case of change detection in univariate AR models, Gombay (2008) suggests us-
ing the standardization matrix I(θ) which is derived from the Fisher information
matrix about the parameter θ. It is given by

I(θ) :=




I1,1(θ) 0 0

0 I2,2(θ) 0

0 0 I3,3(θ)


 =

=




(In − K)⊤Ω−1(In − K) 0 0

0 Γy(0) ⊗ Ω−1 0

0 0 1
2
D

⊤
n (Ω−1 ⊗ Ω−1)Dn


 ,

see Lütkepohl (2005), p. 91–92, where Dn ∈ R
n2× 1

2
n(n+1) is a duplication matrix

such that vec(Ω) = Dn vech(Ω), Γy(0) = E[Y
(0)
t Y

(0)⊤
t ] and Y

(0)⊤
t := ((yt−1 −

µ)⊤, . . . , (yt−p − µ)⊤). Paper by Gombay (2008) considers I(θ̂T ), where Γy(0) is
estimated using empirical covariances.

In more general multivariate setting, however, matrix I is not very suitable
since the test statistic is then very sensitive to the underlying distribution. For
example, the convergence of the standardized component 1√

T
I− 1

2 (θ̂T )sk3(θ̂T ) fails
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if we consider t-distribution with lower degrees of freedom. The situation is il-
lustrated in Figure 5.1: It depicts the difference between the univariate empirical
distribution functions of the components of the test statistic and asymptotic dis-
tribution where in both cases matrix I(θ̂T ) is chosen. The process is assumed
to be P1, with T = 1 000, see Section 3.5 for the details about the simulation
settings. We can see very good performance in the left panel where the simula-
tions use the Gaussian distribution for the errors. In case of t5-distribution with
variance 5

3
Ω (right panel), the asymptotic result are satisfactory only for stan-

dardized components of sk1, sk2, respectively, however convergence fails in case
of the component sk3.

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

P1 with errors [E1] P1 with errors [E2]

Figure 5.1: Comparison of the asymptotic results. Each grey line represents the
difference between the empirical distribution function of the univariate component
of the efficient score vector and distribution function of the standard Brownian
bridge. Left panel: standard Gaussian errors. Right panel: centered errors with
t5-distribution and variance 5

3
Ω. Blue lines in the right panel represent the com-

ponents of the test statistic belonging to the elements of variance matrix of the
error term.

If we consider the theoretical counterpart of the test statistic (5.3) of the form

Ξ(τ) :=
1√
T

J − 1
2 (θ) s⌊T τ⌋(θ),

where J (θ) = 1
T

·var[sT (θ)], then the components of Ξ(τ) are uncorrelated for all
0 ≤ τ ≤ 1 not only by blocks but also elementwise. Vector Ξ(τ) is a strong mixing
sequence and according to central limit theorem, Ξ(τ) is asymptotically Gaussian
random vector. Hence the components of Ξ(τ) are asymptotically independent
and due to similar arguments and the strong consistency of the estimator θ̂T (see
Lemma 5.5) the same holds for the test statistic B̂(τ). The following Table 5.1
shows the empirical correlations among various components of the test statistic
B̂ for different τ and for different distributions of the error term. The notation
in the simulation study remains the same as in Section 3.5.

The simulation study reveals the differences in the empirical pairwise correla-
tions among the efficient score components under H0. Higher sample correlations
can be seen for the case where matrix I(θ̂T ) based on Fisher information is se-
lected, especially in the case of t5-distribution of the error term. We can also see
that the empirical correlation is not affected by the fraction of time τ , where the
maximum of the test statistic is achieved.
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Table 5.1: Maximal pairwise empirical correlations in absolute value among el-
ements of the test statistic B̂(τ), for different τ and different standardization
matrices, and under H0.

Process P1

T = 100 T = 1 000
τ = 1

10
τ = 1

2
τ = 9

10
τ = 1

10
τ = 1

2
τ = 9

10

[E1] (J ) 0.09 0.10 0.07 0.06 0.09 0.06
[E1] (I) 0.08 0.10 0.10 0.06 0.06 0.08
[E2] (J ) 0.09 0.09 0.07 0.08 0.06 0.07
[E2] (I) 0.18 0.20 0.22 0.28 0.33 0.35

Going back to the standardization matrix J it is not difficult to show that
under Assumptions B**

J (θ) =




J1,1(θ) 0 0

0 J2,2(θ) 0

0 0 J3,3(θ)


 ,

where

J1,1(θ) = (In − K)⊤Ω−1(In − K),

J2,2(θ) = Γy(0) ⊗ Ω−1,

J3,3(θ) =
1

4
Ln(Ω−1 ⊗ Ω−1)V(Ω−1 ⊗ Ω−1)L⊤

n ,

where Ji,i(θ) = 1
T

var[sT i(θ)], i = 1, . . . , 3, V = var[vec(εtε
⊤
t −Ω)]. Comparing the

diagonal elements of the standardization matrices I and J we see that Ii,i = Ji,i,
i = 1, 2, but generally I3,3 6= J3,3. Relation I3,3 = J3,3 holds in Gaussian case.

In order to use the matrix J in the test statistic, it is necessary to find an
estimate V̂T for V such that V̂T − V = oP(1), as T → ∞. A convenient estimator
is the empirical counterpart of V of the form

V̂T =
1

T
·

T∑

t=1

(
vec(ε̂tε̂

⊤
t ) vec(ε̂tε̂

⊤
t )⊤ − ω̂T ω̂⊤

T

)
.

In what follows, let J (θ̂T ) be the standardization matrix, where the true parame-
ter θ is replaced by θ̂T and Γy(0) and V are replaced by their sample counterparts.

Throughout the rest of the chapter, we will omit the subscript T in the ML
estimators for notation simplicity. Let θ be the vector with the true values of the
parameters. Let us denote K̂ =

∑p
j=1 Φ̂j.

5.4 Main result

The aim of this chapter will be the proof of the following theorem:

Theorem 5.1 Let us suppose that the sequence {yt}t∈Z follows VAR(p) model
and Assumptions B** are fulfilled. Then, under H0, there exists an r-dimensional
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sequence of standard Brownian bridges B(τ) with independent components Bj(τ),
0 ≤ τ ≤ 1, j = 1, . . . , r, such that

max
j=1,...,r

sup
0≤τ≤1

∣∣∣B̂j(τ) −Bj(τ)
∣∣∣ = oP(1), T → ∞. (5.4)

Let us construct the test statistic based on the Theorem 5.1. The asymptotic
result (5.4) implies that under H0

sup
0≤τ≤1

|B̂j(τ)| P−→
T →∞

sup
0≤τ≤1

|Bj(τ)| j = 1, . . . , r.

If we want to test a change in one arbitrary parameter of interest, say j, we reject
H0 if

sup
0≤τ≤1

|B̂j(τ)| ≥ C(α),

and the critical value C(α), as pointed out in Gombay (2008), can be obtained
from the relationship

P

[
sup

0≤τ≤1
|B1(τ)| > x

]
= 2

∞∑

k=1

(−1)k+1e−2k2x2

. (5.5)

If we want to test a change in d parameters, 1 ≤ d ≤ r, and keep the signifi-
cance level α, then

α = PH0

[
max

j=1,...,d
sup

0≤τ≤1
|Bj(τ)| > C(α)

]
=

= 1 − PH0

[
sup

0≤τ≤1
|Bj(τ)| ≤ C(α) ,∀j = 1, . . . , d

]
=

= 1 −
d∏

j=1

PH0

[
sup

0≤τ≤1
|Bj(τ)| ≤ C(α)

]
=

= 1 −
d∏

j=1

(
1 − PH0

[
sup

0≤τ≤1
|Bj(τ)| > C(α)

])
=

= 1 −
(

1 − PH0

[
sup

0≤τ≤1
|B1(τ)| > C(α)

])d

= 1 − (1 − α∗)d,

from which we obtain the “individual” level α∗ = 1 − (1 − α)
1
d .

Table 5.2 shows the critical values based on the approximation (5.5) for
different number of parameters subject to a change. This value is compared
to the value obtained in a Monte Carlo simulation study where we simulate
maxj=1,...,d sup0≤τ≤1 |Bj(τ)| for different d = 1, . . . , 9, 10 000-times with a grid
of 10 000 for a Brownian bridge process.

Table 5.2 serves only as a comparison. In the section which contains the
simulation study, the critical values are based on the exact result in (5.5).

5.5 Proofs

A multivariate form of the Theorem 1.2.1 of Csörgő and Révész (1981) will be
proven first:
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Table 5.2: Critical values based on (5.5) and Monte Carlo (MC) simulations for
different levels α and various number of parameters d = 1, . . . , 9 which are subject
to a change.

α = 0.10 α = 0.05 α = 0.01
d (5.5) MC (5.5) MC (5.5) MC
1 1.224 1.213 1.358 1.360 1.628 1.625
2 1.353 1.344 1.478 1.470 1.730 1.735
3 1.425 1.419 1.544 1.522 1.788 1.777
4 1.474 1.470 1.590 1.577 1.828 1.817
5 1.511 1.501 1.624 1.611 1.858 1.845
6 1.540 1.540 1.652 1.655 1.882 1.884
7 1.565 1.566 1.675 1.668 1.903 1.888
8 1.586 1.579 1.695 1.679 1.920 1.897
9 1.604 1.595 1.712 1.708 1.935 1.906

Theorem 5.2 If W is a d-dimensional standard Wiener process, it holds

lim sup
k→∞

sup
0≤s≤p

‖W(k − s) − W(k)‖ = O(
√

ln k) a.s.

Proof : According to the Theorem 1.2.1 of Csörgő and Révész: If aT is mono-
tonically non-decreasing function of T , 0 < aT ≤ T and T

aT
is monotonically

non-decreasing, then for univariate standard Wiener process W

lim sup
T →∞

sup
0≤s≤aT

βT |W (T + s) −W (T )| = 1, a.s., (5.6)

where βT =
(
2aT (ln T

aT
+ ln lnT )

)− 1
2 . If we substitute T := k − s, aT := p into

(5.6), we get that

lim sup
k→∞

sup
0≤s≤p

|W (k − s) −W (k)| = O(
√

ln k) a.s., T → ∞.

Now, if W(t) =
(
W1(t), . . . ,Wd(t)

)⊤
then

lim sup
k→∞

sup
0≤s≤p

‖W(k − s) − W(k)‖ =

= lim sup
k→∞

sup
0≤s≤p

√√√√√
d∑

j=1

[
Wj(k − s) −Wj(k)

]2 ≤

≤
d∑

j=1

lim sup
k→∞

sup
0≤s≤p

|Wj(k − s) −Wj(k)| = O
(√

ln k
)

a.s., k → ∞,

which concludes the proof. �

The following theorem is FLCT for the VAR(p) stationary process.

Theorem 5.3 Under Assumptions B** it holds that

∥∥∥∥∥

⌊τ⌋∑

t=1

(yt − µ) − ΣW(τ)

∥∥∥∥∥ = o
(
τ

1
ν

)
a.s., (5.7)
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for some ν > 2 and some Σ > 0, where W(τ) is an n-dimensional standard
Wiener process.

Proof : It follows immediately from FCLT B.10, since under iid errors and other
assumptions in B** , sequence {yt − µ}t∈Z is weakly stationary centered strong
mixing sequence with uniformly bounded (2 + δ)-moment, for some δ > 0. As

regards the rate of convergence, O(τ
1
2

−δ) a.s. implies o(τ
1
2

− δ
2(2+δ) ) a.s., for some

δ > 0, which is o(τ
1
ν ) a.s., for some ν > 2. �

Note: The preceding theorem, as well as the following lemma, is stated for se-
quence {yt − µ}t∈Z, however the statements would be valid for any sequence of
random vectors fulfilling conditions of FCLT B.10.

Lemma 5.4 Under Assumptions B** it holds that

sup
0≤τ≤1

∥∥∥∥∥
1√
T

·
⌊T τ⌋∑

t=1

(yt − µ) − ΣW(τ)

∥∥∥∥∥ = oP(1), T → ∞,

for some Σ > 0, where W(τ) is an n-dimensional standard Wiener process

Proof : From Theorem (5.3)

1√
s

∥∥∥∥
s∑

t=1

(yt − µ) − ΣW(s)
∥∥∥∥ = o(1) a.s., s → ∞.

Let s := ⌊Tτ⌋, 0 ≤ τ ≤ 1. Then

1√
T

∥∥∥∥∥

⌊T τ⌋∑

t=1

(yt − µ) − ΣW(Tτ)

∥∥∥∥∥ = o(1) a.s., T → ∞, (5.8)

and hence

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − µ) − ΣW(τ)

∥∥∥∥∥ =

=

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − µ) − 1√
T

ΣW(Tτ) +
1√
T

ΣW(Tτ) − ΣW(τ)

∥∥∥∥∥ ≤

≤ 1√
T

∥∥∥∥∥

⌊T τ⌋∑

t=1

(yt − µ) − ΣW(Tτ)

∥∥∥∥∥+ ‖Σ‖ ·
∥∥∥∥∥

1√
T

W(Tτ) − W(τ)

∥∥∥∥∥.

The first addend is o(1), as T → ∞, due to (5.8). For the second addend we use

the well known fact that 1√
T

W(Tτ)
d≡ W(τ) from which follows that 1√

T
W(Tτ)−

W(τ) = oP(1), T → ∞. The rest of the proof follows from Continuous Mapping
Theorem. �
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Lemma 5.5 Estimators µ̂, φ̂ and Ω̂ of the VAR(p) model under the Assump-
tions B** fulfill

(a) ‖µ̂ − µ‖ = O
(√

ln lnT

T

)
a.s., (5.9)

(b) ‖φ̂ − φ‖ = O
(√

ln lnT

T

)
a.s., (5.10)

(c) ‖σ̂ − σ‖ = O
(√

ln lnT

T

)
a.s. (5.11)

Proof : It follows immediately from Theorem 3.8. �

Lemma 5.6 Under Assumptions B** it holds

1√
T

· sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

(ε̂t − εt)

∥∥∥∥∥ = O(
√

ln lnT ) a.s., T → ∞,

where ε̂t = yt − µ̂ −∑p
j=1 Φ̂j(yt−j − µ̂).

Proof : Before analyzing the convergence, let us expand the difference between
the residuals and errors as follows:

ε̂t − εt = µ − µ̂ −
p∑

j=1

Φ̂j(yt−j − µ − µ̂ + µ) +
p∑

j=1

Φj(yt−j − µ) =

= µ − µ̂ −
p∑

j=1

(Φ̂j − Φj)(yt−j − µ) −
p∑

j=1

(Φ̂j − Φj)(µ − µ̂) −

−
p∑

j=1

Φj(yt−j − µ) = −(In − K)(µ̂ − µ) −

−
p∑

j=1

(Φ̂j − Φj)(yt−j − µ) +
p∑

j=1

(Φ̂j − Φj)(µ̂ − µ). (5.12)

Let M be a generic constant. Using the above expansion,

1√
T

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

(ε̂t − εt)

∥∥∥∥∥ =
1√
T

sup
0≤τ≤1

∥∥∥∥∥− ⌊Tτ⌋ · (In − K)(µ̂ − µ) −

−
p∑

j=1

[
(Φ̂j − Φj)

( ⌊T τ⌋∑

t=1

(yt−j − µ) − ΣW(Tτ − j)
)]

−

−
p∑

j=1

(Φ̂j − Φj)ΣW(Tτ − j) + ⌊Tτ⌋
p∑

j=1

(Φ̂j − Φj)(µ̂ − µ)

∥∥∥∥∥ ≤

≤ M
√
T‖µ̂ − µ‖ + p · max

1≤j≤p
‖Φ̂j − Φj‖ ·

1√
T

max
1≤j≤p

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

(yt−j − µ) − ΣW(Tτ − j)

∥∥∥∥∥+

+M max
1≤j≤p

‖Φ̂j − Φj‖ · 1√
T

sup
0≤τ≤1

‖W(Tτ − j)‖ +

+
√
T max

1≤j≤p
‖Φ̂j − Φj‖ · ‖µ̂ − µ‖,
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for some Σ > 0.
Since, as T → ∞,

1√
T

max
1≤j≤p

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

(yt−j − µ) − ΣW(Tτ − j)

∥∥∥∥∥ =

=
1√
T

max
1≤j≤p

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋−j∑

t=1

(yt − µ) − ΣW(Tτ−j)
∥∥∥∥∥+ o(1) a.s., (5.13)

the rest of the proof follows from Lemmas 5.4 and 5.5 �

The next lemma says that it is possible to interchange the sample mean and
the ML estimate in VAR(p) model. As stated for instance in Lütkepohl (2005),
p. 92, or Proposition 3.3, the ML estimate is asymptotically equivalent to the
sample mean, but the rate of the asymptotic difference between those two is not
published. However, Gombay (2008) explicitly mention this rate but the reason is
rather short and gives no insight. We bring a more detailed proof of the statement
of Gombay (2008) in case of a VAR(p) model:

Lemma 5.7 If µ̂ is the ML estimate and y := yT = T−1∑T
t=1 yt is the sample

mean, then under conditions B** it holds ‖µ̂−y‖ = o(T
1
ν

−1) a.s., for some ν > 2.

Proof : By plugging in y inside both sums in expression (5.1),

µ̂ =
1

T
(In − K̂)−1

T∑

t=1

(
yt − y −

p∑

j=1

Φ̂j(yt−j − y)
)

+

+
1

T
(In − K̂)−1Ty − 1

T
(In − K̂)−1

T∑

t=1

p∑

j=1

Φ̂jy =

=
1

T
(In − K̂)−1

T∑

t=1

(
yt − y −

p∑

j=1

Φ̂j(yt−j − y)
)

+ y.

Hence

µ̂ − y =
1

T
(In − K̂)−1

T∑

t=1

(
yt − y −

p∑

j=1

Φ̂j(yt−j − y)
)

=

=
1

T
(In − K̂)−1

T∑

t=1

(yt − y) − 1

T
(In − K̂)−1

T∑

t=1

( p∑

j=1

Φ̂j(yt−j − y)
)

=

= − 1

T
(In − K̂)−1

T∑

t=1

( p∑

j=1

Φ̂j(yt−j − y)
)
.

Since

‖µ̂ − y‖ ≤
∥∥∥∥∥

1

T

[
(In − K̂)−1 − (In − K)−1

]
·

T∑

t=1

( p∑

j=1

Φ̂j(yt−j − y)
)∥∥∥∥∥

︸ ︷︷ ︸
(CONV1)

+

+

∥∥∥∥∥
1

T
(In − K)−1

T∑

t=1

( p∑

j=1

Φ̂j(yt−j − y)
)∥∥∥∥∥

︸ ︷︷ ︸
(CONV2)
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and (CONV1) will achieve better convergence rate than (CONV2) due to Theo-
rem 5.5, it suffices to treat (CONV2):

1

T

∥∥∥∥∥(In − K)−1
T∑

t=1

( p∑

j=1

Φ̂j(yt−j − y)
)∥∥∥∥∥ ≤ M ·

· 1

T

∥∥∥∥∥

p∑

j=1

[
(Φ̂j − Φj)

( T∑

t=1

(yt−j − µ) − ΣW(T − j)
)]

+

+
p∑

j=1

(Φ̂j − Φj)ΣW(T − j) −

−
p∑

j=1

[
(Φ̂j − Φj)

( T∑

s=1

(ys − µ) − ΣW(T )
)]

−
p∑

j=1

(Φ̂j − Φj)ΣW(T ) +

+
p∑

j=1

[
Φj

( T∑

t=1

(yt−j − µ) − ΣW(T − j)
)]

+
p∑

j=1

ΦjΣW(T − j) −

−
p∑

j=1

[
Φj

( T∑

s=1

(ys − µ) − ΣW(T )
)]

−
p∑

j=1

ΦjΣW(T )

∥∥∥∥∥ ≤

≤ Mp · max
1≤j≤p

‖Φ̂j − Φj‖ · 1

T
max
1≤j≤p

∥∥∥∥
T∑

t=1

(yt−j − µ) − ΣW(T − j)
∥∥∥∥+

+Mp · max
1≤j≤p

‖Φ̂j − Φj‖ · 1

T
‖Σ‖ max

1≤j≤p
‖W(T − j) − W(T )‖ +

+Mp · max
1≤j≤p

‖Φ̂j − Φj‖ · 1

T

∥∥∥∥
T∑

s=1

(ys − µ) − ΣW(T )
∥∥∥∥+

+Mp · max
1≤j≤p

‖Φj‖ · 1

T
max
1≤j≤p

∥∥∥∥
T∑

t=1

(yt−j − µ) − ΣW(T − j)
∥∥∥∥+

+Mp · max
1≤j≤p

‖Φj‖ · 1

T
‖Σ‖ max

1≤j≤p
‖W(T − j) − W(T )‖ +

+Mp · max
1≤j≤p

‖Φj‖ · 1

T

∥∥∥∥
T∑

s=1

(ys − µ) − ΣW(T )
∥∥∥∥ =:

=: a
(1)
T + a

(2)
T + a

(3)
T + a

(4)
T + a

(5)
T + a

(6)
T ,

where M = ‖(In − K)−1‖, for some Σ > 0. Now, due to (5.13), Lemma 5.5 and

Theorem 5.3, a
(1)
T and a

(3)
T are o(T

1
ν

− 3
2

√
ln lnT ), a.s., a

(4)
T and a

(6)
T are o(T

1
ν

−1),

a.s, as T → ∞, for some ν > 2. Due to Theorem 5.2 and Lemma 5.5, a
(2)
T is

O(T− 3
2

√
lnT ln lnT ), a.s., a

(5)
T is O(T−1

√
lnT ), a.s., as T → ∞. Hence the worst

overall rate is o(T
1
ν

−1), a.s, as T → ∞, for some ν > 2. �

Proof of Theorem 5.1: The proof will be divided into three parts as in Gombay
(2008). Because ML estimators are OP(T− 1

2 ), see Lütkepohl (2005) for details,
it follows that ‖J (θ̂) − J (θ)‖ = oP(1), as T → ∞. We are going to show that

T− 1
2 times all the partial derivatives of the score vector are oP(1) and this will

conclude the proof.
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(i) Let us consider the change in µ. The component of the efficient score
vector that we use is

1√
T

[
∂

∂µ
ℓk(θ)

]

θ=θ̂

=

=
1√
T

(
In −

p∑

j=1

Φ̂j

)⊤
Ω̂

−1
k∑

t=1

(
yt − µ̂ −

p∑

j=1

Φ̂j(yt−j − µ̂)
)

+ (5.14)

+
1√
T

(
In −

p∑

j=1

Φj

)⊤
Ω−1

k∑

t=1

(
yt − y −

p∑

j=1

Φj(yt−j − y)
)

− (5.15)

− 1√
T

(
In −

p∑

j=1

Φj

)⊤
Ω−1

k∑

t=1

(
yt − y −

p∑

j=1

Φj(yt−j − y)
)
. (5.16)

We will show

(1) the convergence of the supremum of the norm of the second addend (5.15)
to the supremum of the norm of Brownian bridge process, and

(2) also that the supremum of the norm of the difference between (5.14) and
(5.16) converges to zero in probability,

which will complete the first part of the proof.

(1) Let k = ⌊Tτ⌋, 0 ≤ τ ≤ 1. In this part of the proof, M is a positive
constant which can be different from term to term. For the second addend (5.15)
we obtain

sup
0≤τ≤1

∥∥∥∥∥
1√
T

(In − K)⊤Ω−1
⌊T τ⌋∑

t=1

(
yt − y −

p∑

j=1

Φj(yt−j − y)
)

− B(τ)

∥∥∥∥∥ ≤

≤ M sup
0≤τ≤1

∥∥∥∥∥
1√
T

( ⌊T τ⌋∑

t=1

(yt − y) −
p∑

j=1

Φj

⌊T τ⌋∑

t=1

(
yt−j − y)

)
− ΣB(τ)

∥∥∥∥∥,

for some Σ > 0. The last term is equal to

sup
0≤τ≤1

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − y) − ΣB(τ) − 1√
T

p∑

j=1

Φj

⌊T τ⌋∑

t=1

(yt−j − y)

∥∥∥∥∥ ≤

≤ sup
0≤τ≤1

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − y) − ΣB(τ)

∥∥∥∥∥+ sup
0≤τ≤1

∥∥∥∥∥
1√
T

p∑

j=1

Φj

⌊T τ⌋∑

t=1

(yt−j − y)

∥∥∥∥∥ =

=: AT +BT .

Let us focus on the term AT . Because B(τ) = W(τ) − τW(1), it holds that

AT = sup
0≤τ≤1

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − y) − ΣW(τ) + τΣW(1)

∥∥∥∥∥ =

= sup
0≤τ≤1

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − µ) − ⌊Tτ⌋
T

√
T

T∑

t=1

(yt − µ) − ΣW(τ) + ΣτW(1)

∥∥∥∥∥ ≤

≤ sup
0≤τ≤1

∥∥∥∥∥
1√
T

⌊T τ⌋∑

t=1

(yt − µ) − ΣW(τ)

∥∥∥∥∥+

+ sup
0≤τ≤1

{
|τ | ·

∥∥∥∥
1√
T

T∑

t=1

(yt − µ) − ΣW(1)
∥∥∥∥

}
.
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Both latter terms are oP(1), as T → ∞, according to Lemma 5.4. Hence AT =
oP(1), as T → ∞. Now let us focus on BT . Convergence remains unaffected when
replacing y with yk = k−1∑k

t=1 yt. Hence

BT ≤ M ·
[

1√
T

sup
0≤τ≤1

sup
1≤j≤p

∥∥∥∥
⌊T τ⌋−j∑

t=1

(yt − µ) − W(Tτ − j)
∥∥∥∥+

+
1√
T

∥∥∥∥
⌊T τ⌋∑

t=1

(yt − µ) − W(Tτ)
∥∥∥∥+

+
1√
T

sup
0≤τ≤1

sup
1≤j≤p

‖W(Tτ − j) − W(Tτ)‖
]

= oP(1), T → ∞

due to argument (5.13), Theorem 5.3 and Theorem 5.2.

(2) Now let us focus on the supremum over 0 ≤ τ ≤ 1 of the norm of the
difference between (5.14) and (5.16):

1√
T

sup
0≤τ≤1

∥∥∥∥∥(In − K̂)⊤Ω̂
−1

⌊T τ⌋∑

t=1

ε̂t − (In − K)⊤Ω−1
⌊T τ⌋∑

t=1

ε̂t +

+ (In − K)⊤Ω−1
⌊T τ⌋∑

t=1

ε̂t − (In − K)⊤Ω−1
⌊T τ⌋∑

t=1

(
yt − y −

p∑

j=1

Φj(yt−j − y)
)∥∥∥∥∥ ≤

≤
∥∥∥∥(In − K̂)⊤Ω̂

−1 − (In − K)⊤Ω−1

∥∥∥∥ · 1√
T

sup
0≤τ≤1

∥∥∥∥
⌊T τ⌋∑

t=1

ε̂t

∥∥∥∥+ (5.17)

+M · 1√
T

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

[
ε̂t − yt + y +

p∑

j=1

Φj(yt−j − y)
]∥∥∥∥∥, (5.18)

where, in this case, M = ‖(In − K)⊤Ω−1‖. Let us focus on the matrices in the
first norm in (5.17):

(In − K̂)⊤Ω̂
−1 − (In − K)⊤Ω−1 = (In − K)⊤(Ω̂

−1 − Ω−1) −
− (K̂ − K)⊤Ω−1 − (K̂ − K)⊤(Ω̂

−1 − Ω−1) =

= O
(
√

ln lnT

T

)
a.s., T → ∞,

due to Theorem 5.5. Now,

1√
T

sup
0≤τ≤1

∥∥∥∥
⌊T τ⌋∑

t=1

ε̂t

∥∥∥∥ ≤ 1√
T

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

(ε̂t − εt)

∥∥∥∥∥
︸ ︷︷ ︸

(ADD1)

+
1√
T

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

εt

∥∥∥∥∥
︸ ︷︷ ︸

(ADD2)

.

Due to Lemma 5.6 the first addend (ADD1) is O(
√

ln lnT ) a.s., as T → ∞, and
for (ADD2) we get the same rate by using the law of the iterated logarithm for

iid vectors. Hence, (5.17) is O(T− 1
2 ln lnT ) a.s., as T → ∞.
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For term (5.18), by using ε̂t = yt − µ̂ −∑p
j=1 Φ̂j(yt−j − µ̂), we get that (5.18)

is less or equal to

M
1√
T

sup
0≤τ≤1

∥∥∥∥∥

⌊T τ⌋∑

t=1

[
(In − K)(y − µ̂) −

p∑

j=1

(Φ̂j − Φj)(yt−j − y) +

+
p∑

j=1

(Φ̂j − Φj)(µ̂ − y)
]∥∥∥∥∥ ≤

≤ M ·
[√

T‖µ̂ − y‖ + max
1≤j≤p

‖Φ̂j − Φj‖ · 1√
T

max
1≤j≤p

sup
0≤τ≤1

∥∥∥∥
⌊T τ⌋∑

t=1

(yt−j − y)
∥∥∥∥+

+
√
T max

1≤j≤p
‖Φ̂j − Φj‖ · ‖µ̂ − y‖

]
=:

=: η
(1)
T + η

(2)
T + η

(3)
T .

According to Lemma 5.7 it holds that η
(1)
T = o(T

1
ν

− 1
2 ) a.s., for some ν > 2.

Term η
(2)
T = OP((T−1 ln lnT )

1
2 ) a.s., T → ∞, due to Lemma 5.5 and due to

the arguments in the proof of convergence for BT from step (1). Term η
(3)
T =

o(T
1
ν

−1
√

ln lnT ) a.s., for some ν > 2, T → ∞. Hence the proof for part (i) is
completed.

(ii) Let us suppose we want to test changes in Φs, s = 1, . . . , p. First, let us
denote vt := vec(yt−1, . . . ,yt−p) ∈ R

np, µp := vec(µ, . . . ,µ) ∈ R
np, Mt := (vt −

µp)⊤ ⊗ In ∈ R
n×n2p and M̂t := (vt − µ̂p)⊤ ⊗ In be the estimate of Mt. Then

[
∂

∂φ
ℓk(θ)

]

θ=θ̂

= (X̂k ⊗ Ω̂
−1

)(Yk − µ̂k) −
(
(X̂kX̂

⊤
k ) ⊗ Ω̂

−1)
φ̂ =

=
k∑

t=1

M̂
⊤
t Ω̂

−1
(yt − µ̂ − M̂tφ̂) =

k∑

t=1

M̂
⊤
t Ω̂

−1
ε̂t.

Replacing Ω̂ with Ω does not change the asymptotic distribution. By Lemma 5.4
applied on sequence {M

⊤
t Ω−1εt}t∈Z which fulfils conditions in FCLT B.10 (see

note above Lemma 5.4) it holds

sup
0≤τ≤1

∥∥∥∥∥
1√
T

( ⌊T τ⌋∑

t=1

M
⊤
t Ω−1εt − ⌊Tτ⌋

T

T∑

t=1

M
⊤
t Ω−1εt

)
− Σ1B(τ)

∥∥∥∥∥ = oP(1),

for some Σ1 > 0, as T → ∞. We now have to show that the error committed
by replacing the parameters in the above formula with their maximum likelihood
estimators is negligible:

( k∑

t=1

M̂
⊤
t Ω−1ε̂t −

k∑

t=1

M
⊤
t Ω−1εt

)

+
(

− k

T

T∑

t=1

M̂
⊤
t Ω−1ε̂t +

k

T

T∑

t=1

M
⊤
t Ω−1εt

)
=: Rk,T + Sk,T .

In Rk,T and Sk,T , the subscript k signalizes the summation boundary and T signal-
izes that all maximum likelihood estimators are based on the full sample 1, . . . , T .
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Let us analyze those terms:

Rk,T =
k∑

t=1

[(
(vt − µp − µ̂p + µp) ⊗ In

)
Ω−1(ε̂t − εt + εt)

]
−

−
k∑

t=1

[(
(vt − µp) ⊗ In

)
Ω−1εt

]
=

=
k∑

t=1

[(
(vt − µp) ⊗ In

)
Ω−1(ε̂t − εt)

]
+

k∑

t=1

[(
(µp − µ̂p) ⊗ In

)
Ω−1εt

]
+

+
k∑

t=1

[(
(µp − µ̂p) ⊗ In

)
Ω−1(ε̂t − εt)

]
= R

(1)
k,T + R

(2)
k,T + R

(3)
k,T .

By Lemma 5.5 and the law of the iterated logarithm applied to iid sequence
{εt}t∈Z

R
(2)
k,T =

(
(µp − µ̂p) ⊗ In

)
Ω−1

k∑

t=1

εt = O(ln lnT ) a.s., T → ∞.

Using Lemma 5.5 and arguments in the proof of Lemma 5.6 we get R
(3)
k,T =

O(ln lnT ) a.s., T → ∞. Utilizing expansion (5.12),

R
(1)
k,T = −

k∑

t=1

(
(vt − µp) ⊗ In

)
Ω−1(In − K)(µ̂ − µ) − (5.19)

−
p∑

j=1

k∑

t=1

(
(vt − µp) ⊗ In

)
Ω−1(Φ̂j − Φj)(yt−j − µ) + (5.20)

+
p∑

j=1

k∑

t=1

(
(vt − µp) ⊗ In

)
Ω−1(Φ̂j − Φj)(µ̂ − µ). (5.21)

It is immediate that term (5.19) is O(ln lnT ) a.s., T → ∞, and term (5.21) is

O
(
T− 1

2 (ln lnT )
3
2

)
a.s., as T → ∞. Term (5.20) is n2p-vector of the form

k∑

t=1

p∑

j=1

[
(y⊤

t−j − µ⊤) ⊗ (vt − µp) ⊗ In

]
· vec

(
Ω−1(Φ̂j − Φj)

)
.

Let

ρ :=
p∑

j=1

{
E

[
(y⊤

t−j − µ⊤) ⊗ (vt − µp) ⊗ In

]
· vec

(
Ω−1(Φ̂j − Φj)

)}
.

Using FCLT B.10, it holds that term (5.20) is k · ρ + O(ln lnT ) a.s., T → ∞.
The Sk,T term can be analyzed in the similar way, because Sk,T = − k

T
RT,T .

By adding Rk,T and Sk,T , term kρ (which is of order worse than O(ln lnT ) a.s.)
vanishes, hence we obtain sup1≤k≤T ‖Rk,T + Sk,T ‖ = O(ln lnT ) a.s., T → ∞,
which concludes the proof of part (ii).
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(iii) For the change detection in the variance structure of the VAR(p) model let
us consider

[
∂

∂Ω
ℓk(Ω)

]

θ=θ̂

= −k

2
Ω̂

−1
+

1

2
Ω̂

−1
( k∑

t=1

ε̂tε̂
⊤
t

)
Ω̂

−1
=

= −k

2
Ω̂

−1
Ω̂Ω̂

−1
+

1

2
Ω̂

−1
( k∑

t=1

ε̂tε̂
⊤
t

)
Ω̂

−1
=

=
1

2
Ω̂

−1
(

− k

T

T∑

t=1

ε̂tε̂
⊤
t +

k∑

t=1

ε̂tε̂
⊤
t

)
Ω̂

−1
=

=
1

2

[
Ω−1

( k∑

t=1

εtε
⊤
t − k

T

T∑

t=1

εtε
⊤
t

)
Ω−1

]
+

+
1

2

[
Ω̂

−1
( k∑

t=1

ε̂tε̂
⊤
t

)
Ω̂

−1 − Ω−1
( k∑

t=1

εtε
⊤
t

)
Ω−1

]
−

− 1

2

k

T

[
Ω̂

−1
( T∑

t=1

ε̂tε̂
⊤
t

)
Ω̂

−1 − Ω−1
( T∑

t=1

εtε
⊤
t

)
Ω−1

]
=:

=: A
(1)
k,T + A

(2)
k,T + A

(3)
k,T .

It holds that A
(3)
k,T = − k

T
A

(2)
T,T . For A

(1)
k,T , the FCLT yields

sup
0≤τ≤1

∥∥∥∥
1√
T

A⌊T τ⌋,T − Σ2B(τ)
∥∥∥∥ = oP(1), T → ∞,

for some Σ2 > 0. Since, as T → ∞,

A
(2)
k,T =

1

2
Ω−1

[ k∑

t=1

ε̂tε̂
⊤
t −

k∑

t=1

εtε
⊤
t

]
Ω−1 + o(1) a.s., (5.22)

due to Lemma 5.5, we can replace Ω̂
−1

with Ω−1 in A
(2)
k,T and also in A

(3)
k,T .

Denoting m := (In −K)(µ̂−µ)−∑p
j=1(Φ̂j −Φj)(µ̂−µ) and rt :=

∑p
j=1(Φ̂j −

Φj)(yt−j − µ), then ε̂t = εt − rt − m. Hence term inside the square brackets of
(5.22) can be expressed as

k∑

t=1

(
ε̂tε̂

⊤
t − εtε

⊤
t

)
=

k∑

t=1

(
− εtr

⊤
t − εtm

⊤ − rtε
⊤
t + rtr

⊤
t + rtm

⊤ − mε⊤
t +

+mr⊤
t + mm⊤

)
.

Applying “vec” operator on the above 8 terms, using Theorem 5.3, Law of the
iterated logarithm for iid random vectors, and Lemma 5.5 we get, as T → ∞,

k∑

t=1

vec(rtε
⊤
t ) = O(ln lnT ) a.s.

k∑

t=1

vec(mε⊤
t ) = O(ln lnT ) a.s.

k∑

t=1

vec(mm⊤) = O(ln lnT ) a.s.

k∑

t=1

vec(rtm
⊤) = O

((ln lnT )
3
2

T
1
2

)
a.s.
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As regards term vec(rtr
⊤
t ), we will proceed a little slower:

k∑

t=1

vec(rtr
⊤
t ) =

k∑

t=1

vec

( p∑

j=1

p∑

l=1

(Φ̂j − Φj)(yt−j − µ)(yt−l − µ)⊤ ·

·(Φ̂l − Φl)
⊤
)

=

=
p∑

j=1

p∑

l=1

{[
(Φ̂l − Φl) ⊗ (Φ̂j − Φj)

]
·

k∑

t=1

(
vec

(
(yt−j − µ)(yt−l − µ)⊤

)
−

− E

[
vec

(
(yt−j − µ)(yt−l − µ)⊤

)])}
+

+k
p∑

j=1

p∑

l=1

[
(Φ̂l − Φl) ⊗ (Φ̂j − Φj)

]
· E

[
vec

(
(yt−j − µ)(yt−l − µ)⊤

)]
=

= k
p∑

j=1

p∑

l=1

[
(Φ̂l − Φl) ⊗ (Φ̂j − Φj)

]
· E

[
vec

(
(yt−j − µ)(yt−l − µ)⊤

)]
(5.23)

+O
((ln lnT )

3
2

T
1
2

)
a.s., T → ∞.

Since term (5.23) will cancel with the same term when expanding A
(3)
k,T and the rest

of terms are O(ln lnT ) a.s., T → ∞, then sup1≤k≤T ‖A
(2)
k,T + A

(3)
k,T ‖ = O(ln lnT )

a.s., T → ∞, and hence the theorem is proven. �

5.6 Simulation study

As in the previous chapters we present some computational details which do-
cument the quality of the convergence of the score test statistic under H0. The
simulation concept remains the same as in the previous chapters. We will concen-
trate on 2-dimensional VAR(1) model with matrices Φ(1) and Φ(2), see Section 3.5
for the details about notation.

5.6.1 Simulations under the null hypothesis

Let us begin with the situation when a change point is known apriori and simulate
(for different τ = 1

8
, 1

2
, 7

8
) test statistic |B̂j(τ)|, j = 1, . . . , r where r = 9, see the

beginning of Section 5.2 for the definition of r; B̂(τ) is defined in (5.3). Let us
consider processes P1 and P2 of length T = 200 and errors [E1]–[E4]. The general
concept is comparable to the situation in Subsection 3.5.1. Figure 5.2 depicts
the empirical distribution function of |B̂1(τ)| (i.e. component of the test statistic
belonging to µ1) and distribution function of |B1(τ)|, where B1 is univariate
standard Brownian bridge. We can see very good performance for both processes
P1 and P2 under errors [E1]–[E3] and worse results in case of [E4]. Under H0,
practically the same can be seen across different values of τ . If we compare the
results with the similar simulation study presented in Figure 3.1 the score test
achieves better convergence for the more persistent autoregressive process P2. The
simulation study shows the empirical results only for the first component |B̂1(τ)|
of the score vector, however the performance of other components is almost the
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Figure 5.2: Situation when a change point is known: EDF of |B̂1(τ)| (black lines)
compared with ADF of |B1(τ)| (red line) for τ = 1

8
, 1

2
, 7

8
.

same. We do not show the figures for other components in order to save space.
For particular break point τ with increasing length T , the convergence to the
Brownian bridge is quite rapid as will become clear in the next simulation study
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where we concentrate on the case of unknown break point.

Let us consider more practical situation of unknown break date. Figures 5.3
and 5.4 show the quality of convergence under H0, where each black line on a par-
ticular figure represents the performance of a single component sup0≤τ≤1 |B̂j(τ)|,
j = 1, . . . , 9 with respect to the distribution of sup0≤τ≤1 |B(τ)|, with B being
standard univariate Brownian bridge.

The convergence results are pretty same in all cases across different errors and
different type of processes. Clearly the longer series the better convergence to
the asymptotic distribution which can be seen by comparing the figures from the
left to the right.

Finally we present here the simulation results when testing all the components
of score vector jointly, hence simulations of

max
j=1,...,9

sup
0≤τ≤1

|B̂j(τ)|

which are shown in Figure 5.5. The results are practically the same as on previous
Figure 5.3 showing a rapid convergence.

5.6.2 Simulations under various alternatives

Since there is again no theoretical result of the behaviour of the proposed testing
scheme under alternative hypothesis we will try to fill this gap at least by showing
some empirical evidence.

We start with the simulations of process P1 of length T = 1 000 with errors
being iid [E1] and heteroscedastic [E3]. Let change point occur in the middle
of the series at k = T

2
= 500. In order we could compare the simulations with

results in Subsection 3.5.5, we will not detect change in variance for now, hence
the reduced test statistic

B̂[red](τ) :=
1√
T

· J − 1
2

[red](θ̂) ·




∂
∂µ
ℓ⌊T τ⌋(θ̂)

∂
∂φ
ℓ⌊T τ⌋(θ̂)


 , 0 ≤ τ ≤ 1, (5.24)

will be used, where

J[red](θ̂) :=


 (In − K̂)⊤Ω̂

−1
(In − K̂) 0

0 Γ̂y(0) ⊗ Ω̂
−1


 .

First, we will discuss change in c from (0, 0)⊤ to c̃ = (c̃1, c̃2)⊤ with other
parameters being unchanged. As in Subsection 3.5.5 the empirical power under
[E1] and [E3] will be compared. An empirical test will detect whether

max
j=1,...,6

sup
0≤τ≤1

|B̂[red],j(τ)| > 1.652,

where 1.652 is the critical value from Table 5.2 for testing jointly µ and Φ(1) on
level α = 0.05.

Graphically in Figure 5.6 we can see the power function under the alternative
hypothesis when the parameter c changes from the origin to the different vector.
On x axis there is the Euclidean distance of new vector c̃ from origin.
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Figure 5.3: EDF for each sup0≤τ≤1 |B̂j(τ)|, j = 1, . . . , 9, (black lines) compared
to sup0≤τ≤1 |B(τ)| (red line), for processes P1 and P2. Different T and errors [E1]
and [E2] considered.

We can see that the heteroscedasticity in the error term causes a substantial
decrease in terms of power of the test for changes in intercept. Approximately, test
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Figure 5.4: EDF for each sup0≤τ≤1 |B̂j(τ)|, j = 1, . . . , 9, (black lines) compared
to sup0≤τ≤1 |B(τ)| (red line), for processes P1 and P2. Different T and errors [E3]
and [E4] considered.

reaches empirical power one for three as big change under heteroscedasticity than
under iid errors. The biggest decrease of power as well as the lowest distance for
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Figure 5.5: EDF for max1,...,9 sup0≤τ≤1 |B̂j(τ)|, for different T , compared to
max1,...,9 sup0≤τ≤1 |B(τ)| (red line), for processes P1 and P2 and errors [E1]-[E4].

which the test firstly have empirical power one are highlighted in blue in Table 5.6.
The score test is therefore more sensitive on the heteroscedasticity compared to
Table 3.3 or Figure 3.6. The comparison with the latter results also reveals that
in case of [E1] the score test reaches power one for somewhat smaller Euclidean
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Table 5.3: Empirical sizes of the test.
power power %

c̃1 c̃2
√

c̃2
1+c̃2

2 [E1] [E3] decr.

0.06 -0.05 0.08 0.10 0.04 -60
-0.05 0.16 0.17 0.43 0.07 -84
-0.16 0.12 0.20 0.55 0.07 -87
0.20 0.18 0.27 0.66 0.15 -77
0.03 0.36 0.37 1.00 0.26 -74

-0.42 0.05 0.42 1.00 0.33 -67
0.38 -0.26 0.46 1.00 0.40 -60

0.45 -0.17 0.48 1.00 0.52 -48
0.46 0.44 0.64 1.00 0.67 -33
0.96 0.76 1.23 1.00 1.00 0
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Figure 5.6: Empirical power simulated for process [P1] of length T = 1000 with
[E1] and [E3] error term sequences.

distance from origin compared to the likelihood ratio test, however approximately
same Euclidean distance is needed for approaching power 1 under [E3] for both
tests.

Empirical sizes of the test when only autoregression parameters change are
depicted in Table 5.4 which can be compared with Table 3.4. The difference
between the value of element of the autoregression matrix after and before the
change is marked in blue scale. The darker the color the bigger the change.

We can again see that heteroscedasticity did not influence the empirical power
too much which is the same conclusion as in Table 3.4. Comparing the power
with results in that Subsection one might see higher power of the test both under
[E1] and under [E3].

Finally we add the simulation results in case where components of variance
matrix are changing. Figure 5.7 shows the empirical power under the changes in
diagonal components of Ω.
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Table 5.4: Empirical sizes of the test.
power power

ϕ̃11 ϕ̃12 ϕ̃21 ϕ̃22 [E1] [E3]
0.5 0.2 0.2 0.1 0.04 0.04
0.5 0.2 0.2 0.0 0.17 0.15
0.5 0.2 0.2 0.2 0.13 0.13
0.5 0.0 0.2 0.1 0.69 0.61
0.5 0.2 0.2 0.3 0.70 0.67
0.3 0.2 0.2 0.1 0.75 0.72
0.5 0.2 0.0 0.1 0.82 0.79
0.5 0.2 0.2 0.4 0.98 0.98
0.2 0.2 0.2 0.1 0.99 0.99
0.5 0.2 0.2 0.5 1.00 1.00
0.4 0.2 0.2 0.0 0.25 0.25
0.5 0.1 0.0 0.1 0.81 0.81
0.3 0.2 0.2 0.3 0.93 0.90
0.5 0.4 0.4 0.1 0.94 0.94
0.2 0.2 0.2 0.0 0.99 0.98
0.5 0.3 0.5 0.1 1.00 1.00
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Figure 5.7: Empirical power simulated for process [P1] of length T = 1000 with
[E1] error term sequence.

5.7 Chapter summary

We presented a new score type test for change detection in stationary vector
autoregressions. The idea of Gombay (2008) was extended to cover multivari-
ate autoregressions with no restrictions imposed on the distribution of the error
term by introducing a better standardization matrix. The test is very versatile
since it enables to test either the parameters separately or in any combination
depending on the needs of analysts. Simulation results show that the testing
procedure achieves better results than the likelihood ratio test both under the
null hypothesis and the alternatives for considered scenarios.
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At the end, we would like to recapitulate a little bit and summarize the main
contributions of this thesis: Chapter 2 brought together various sets of condi-
tions which has appeared rather separately in the recent articles dealing with
change-points. The aim was to point out at least to some implications of these
assumptions in one place before tackling the main issues of this thesis and to pro-
vide some comparisons. Even if all the conditions can be found in the different
sources we brought several new proofs. We should point out at least the proof of
speed of decay of the sum of the norms of matrices of linear process which comes
from the stationary vector autoregression. Another valuable contribution was the
transmission of conditions (C.2) and (C.3) concerning error term onto the time
series itself under conditions C which yields FCLT for such time series.

The last mentioned result was especially useful for Chapter 3 where we dis-
cussed the change point detection based on the likelihood ratio under no change
in variance of the error term. Even if the asymptotic result is widely known for
a given set of assumptions, the main aim and effort of that chapter were the
performance of the proofs under various sets of conditions. When reading the
proofs of the main theorems, one can get the impression about the strength of
the various conditions. Compared to Qu and Perron (2007), some of the condi-
tions can be weakened since we had a more concrete specification for the model
and hence the FCLT as assumptions could be avoided. A new result, presented
in Dvořák and Prášková (2013) as well, is Darling-Erdös type test which had not
been published elsewhere before.

Chapter 4 brought the Darling-Erdös test for the modification of the likeli-
hood ratio statistic under Scenario 3 which was a new contribution. We also
explained the reason why the statistic based on log-likelihood ratio does not fol-
low asymptotically the Gumbel distribution. The result is more of theoretical
importance since the convergence of the standardized test statistic under the null
hypothesis is very slow even for larger datasets. Perhaps more useful results might
be gained by using resampling techniques.

Chapter 5 referred to a score test for multivariate stationary autoregression.
This was a generalization of the univariate case proposed by Gombay (2008). We
omitted the Gaussianity of the error term and extended the usage of the test
to the non-Gaussian errors. The simulations showed the very rapid convergence
even for smaller sample sizes. Comparison to the tests proposed in Chapter 3
revealed that the score test gives better results both under the null hypothesis
and also in terms of the empirical power.

We want to say a few comments about the simulation part as well. The aim of
the simulations stood in the documentation of the asymptotic results under the
null and alternative hypotheses. Even it might seem strange for the reader, a big
contribution of the text was also a study of the performance and vizualization of
the tests for long autoregression with T = 10 000 observations. Computers can
usually handle much larger data files, however this is not the case of free software
R in case of larger dimensional problems. On a standard laptop, it is impossible to
get least squares estimates even for such a simple model as 2 dimensional artificial
VAR(1) model of T = 10 000 observations even when we tried to use packages,
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extend the internal memory of the computer or to use our own programming code
with QR decompositions. Since we could benefit from using the computational
cluster we were able to bring results even for larger time series. However, since
only the basic form of R without any advanced packages is installed there, we
had to program all the codes by ourselves.

We should mention also a few comments about further developments which
can be done. Of the primary interest is mainly the consistency result, i.e. whether
the tests detect a change under the alternative hypothesis with the asymptotic
power approaching one. Similarly as in Hušková et al. (2007), the theoretical re-
sult can be achieved by appropriate splitting the test statistic to different parts
based on the presence/absence of the shift vector δ = β − β̃ and showing that,
under alternative, the components containing δ approaching to infinity in proba-
bility, whereas the other components remain at least asymptotically bounded in
probability. Under Scenario 1 the part of the proof has partly been done and
the statistic has been decomposed under the alternative where remaining and the
most difficult task remained to show the asymptotic result. The consistency of
the test statistics based on the weighted residuals were simpler for proving con-
sistency, see Hušková et al. (2007) for details. Roughly speaking, with omitting
further notation details, their statistic is of the form s⊤

k Hsk, sk are the weighted
residuals, whereas in our case the quasi-likelihood statistic contains 3 addends
s⊤

k Hksk + s̃⊤
k H̃ks̃k − s⊤

T HT sT , and with different signs. In case of former statistic
authors split the product to suitable addends and show that all but one addend
are bounded in probability and the one addend tends to infinity. However, follow-
ing this idea in the quasi-likelihood approach leads to the complicated structure
of the test, since there are more “candidate” addends for approaching infinity. In
addition, they have opposite signs and hence the conclusion about the consisten-
cy is more complicated. The desired “good” behaviour of the tests under various
alternative hypotheses were documented in the simulation studies.

Another direction for further research can be weakening the independence of
the error term in Chapter 5. This might be done via the replacement of indepen-
dence by the weak dependence structures with some other moment restrictions.
The key FCLTs and the rate of convergence of the estimators will remain valid
under Assumptions A, B as well.
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A. Matrix algebra

Here we remind some basic calculations with matrices, especially formulas for the
Kronecker product, traces, vec of the matrices.

Lemma A.1 Let A, B, C, D be the real matrices of appropriate dimensions such
that all operations are correctly specified. Then the following holds:

(1) vec(ABC) = (C⊤ ⊗ A) · vec(B)

(2) (A ⊗ B)⊤ = A
⊤ ⊗ B

⊤

(3) (A ⊗ B)(C ⊗ D) = AC ⊗ BD

(4) If A, B are invertible then (A ⊗ B)−1 = A
−1 ⊗ B

−1

(5) (A + B) ⊗ (C ⊗ D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D

(6) If x is a vector and A a square matrix of appropriate dimensions then
x⊤Ax = tr{Axx⊤} and x⊤Ax = (x⊤ ⊗ x⊤) · vec(A)

Proof : The assertions can be found in Appendix A.11 and A.12 of Lütkepohl
(2005). �

Lemma A.2 Let x ∈ R
d be a vector, and A ∈ R

d×d be a matrix. Then

(
x⊤

Ax
)2

= tr

{[
(vec A)(vec A)⊤

]
· (xx⊤ ⊗ xx⊤)

}
.

Proof : Following rule (6) in previous Lemma A.1 we have

(x⊤
Ax)2 =

[
(x⊤ ⊗ x⊤) · vec A

]
·
[
(x⊤ ⊗ x⊤) · vec A

]⊤
=

= (x⊤ ⊗ x⊤)(vec A)(vec A)⊤(x ⊗ x) =

= tr

{
(x⊤ ⊗ x⊤)(vec A)(vec A)⊤(x ⊗ x)

}
=

= tr

{(
(vec A)(vec A)⊤

)(
(x ⊗ x)(x⊤ ⊗ x⊤)

)}
=

= tr

{(
(vec A)(vec A)⊤

)(
xx⊤ ⊗ xx⊤

)}
.

�
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B. Probability structures and
asymptotic results

We mention the definitions of the probability structures and related limit theo-
rems that were used in the text. We begin with martingale-difference sequences.

B.1 Martingale-differences

Definition B.1 Let {Ft}∞
−∞ be a filtration on the probability space (Ω,F ,P).

d-dimensional random sequence {Xt}t∈Z such that Xt is adapted to Ft is called
martingale-difference sequence with respect to Ft, if for all t ∈ Z

E ‖Xt‖ < ∞,

E[Xt|Ft−1] = 0 a.s.

If Ft = σ{Xs , −∞ < s ≤ t} then it is simply referred to as martingale-difference
sequence. It follows from Definition B.1 that the martingale-difference sequence
is a centered sequence. Important property of martingale-differences is their
uncorrelatedness, see for example Davidson (1994), Corollary 15.4.

Here we present the Central Limit Theorem for martingale-differences:

Theorem B.2 Let {Yt}t∈Z be an d-dimensional vector martingale-difference se-
quence. Suppose that

• E[YtY
⊤
t ] = Ωt is positive-definite, with T−1∑T

t=1 Ωt −→T →∞ Ω, and Ω is
positive-definite as well,

• E

[
YitYjtYktYℓt

]
< ∞, ∀t ∈ Z, and ∀(i, j, k, ℓ), where Yit is the i-th element

of the vector Yt, and

• T−1∑T
t=1 YtY

⊤
t

P−→T →∞ Ω.

Then

1√
T

·
T∑

t=1

Yt
d−→T →∞ N (0,Ω).

Proof : See Hamilton (1994), p. 194, Proposition 7.9. �

In case of Assumptions A we used the the invariance principle for martingale
difference arrays:

Theorem B.3 Let {XT,t,FT,t} be an d-dimensional martingale difference array
with variance matrix array {ΣT,t}, such that

∑T
t=1 ΣT,t = Id. If

(i)
∑T

t=1 XT,tX
⊤
T,t

P−→ Id, as T → ∞,

(ii) maxt=1,...,T X⊤
T,tXT,t

P−→ 0, as T → ∞,
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(iii)
∑⌊T τ⌋

t=1 ΣT,t → τ Id, ∀τ ∈ [0, 1], as T → ∞,

then for

YT (τ) :=
⌊T τ⌋∑

t=1

XT,t + (Tτ − ⌊Tτ⌋)XT,⌊T τ⌋+1, τ ∈ [0, 1],

it holds

YT (·) Dd[0,1]−→
T →∞

W(·),

where W denotes d-dimensional standard Wiener process and
Dd[0,1]−→ T →∞ denotes

the convergence in Skorohod space.

Proof : See Davidson (1994), p. 454, Theorem 27.17. �

B.2 Stationarity and ergodicity

Definition B.4 Random process {Xt}t∈Z is said to be strictly-stationary if and
only if ∀k, ∀t1, . . . , tk ∈ Z and ∀h ∈ Z, the random vectors (Xt1 , . . . ,Xtk

) and
(Xt1+h, . . . ,Xtk+h) have the same joint distribution.

Let us now define the ergodic sequences which together with their strict sta-
tionarity and integrability imply the strong law of large numbers, see Theorem B.7
below.

Definition B.5 Let (Ω,F ,P) be a probability space and T : Ω → Ω a one-to-
one function such that both T and T−1 are measurable. Let for all E ∈ F :
P[T−1E] = P[E], i.e. T is a measure-preserving transformation (m.p.t.). Event
E ∈ F is called invariant under transformation T if and only if E = T−1E.
M.p.t. T is said to be ergodic if and only if for any invariant event E, we have
P[E] = 0 or P[E] = 1.

Let T be now a shift-operator. Strictly-stationary process {Xt(ω)}t∈Z is said
to be ergodic if and only if Xt(ω) = X1(T

t−1(ω)) for any t ∈ Z, where T is m.p.t.
and ergodic.

Advantage is that a time-invariant measurable function of strictly stationary
and ergodic Xt is also strictly stationary and ergodic:

Theorem B.6 If {Xt}t∈Z is strictly stationary and ergodic sequence and φ is
measurable function not depending on t, then Yt := φ(. . . ,Xt−1, Xt, Xt+1, . . .) is
also strictly stationary and ergodic.

Proof : See Billingsley (1995), p. 495, Theorem 36.4. �

Ergodic theorem gives us the strong law of large numbers for strictly stationary
and ergodic sequences.

Theorem B.7 Let {Xt}t∈Z be a strictly stationary, ergodic and integrable se-
quence on probability space (Ω,F ,P). Then

lim
T →∞

1

T

T∑

t=1

Xt = E[X1] a.s.
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Proof : See Davidson (1994), p. 200, Theorem 13.12. �

It can be shown that ergodicity property is the necessary and sufficient condition
under which strictly stationary integrable process obeys the strong law of large
numbers. As shown in Kakutani and Petersen (1981) the speed of convergence
in Theorem B.7 is arbitrarily slow.

B.3 Strong mixings

The concept of the strong mixing sequences was introduced by Rosenblatt (1956)
in order to prove the central limit theorem for dependent sequences. Strong
mixing transformations are useful in the ergodic theory as well, since they imply
ergodicity. We remind the basic definition, see for instance Davidson (1994),
p. 209:

Definition B.8 Let {Xt}t∈Z be a sequence of random vectors on probability space
(Ω,F ,P). Define F b

a := σ{Xt , a ≤ t ≤ b} as a σ-field generated by the random
vectors {Xa, . . . ,Xb}, a , b ∈ Z. Define

α(k) := sup
n∈Z

sup
{E∈Fn

−∞
, F ∈F∞

n+k
}

∣∣∣P[E ∩ F ] − P[E]P[F ]
∣∣∣.

If α(k) → 0, as k → ∞, then {Xt} is called a strong-mixing process.

Note 1 (Special cases): If Xt are independent random vectors then for all
k ∈ N: α(k) = 0. In case that sequence {Xt}t∈Z is m-dependent, then it holds
that α(k) = 0 for all k > m. If {Xt}t∈Z is a strictly stationary process then we
can omit “supn∈Z” in the definition of α(k).
Note 2 (Speed of convergence): The speed of convergence of α(k) to ze-
ro is often important in Definition B.8. As we know from the ergodic theory,
without any further assumptions, the convergence of strictly stationary and er-
godic random sequence is arbitrarily slow in the strong law of large numbers,
see Kakutani and Petersen (1981). Therefore it is often important to assume a
certain rate of convergence of α(k) for having the rate in e.g. FCLT.

In that case a useful proposition for random variables is stated in Theo-
rem 14.1. of Davidson (1994), p. 210, that any measurable function of finite
sequence of strong mixing random variables is again a strong mixing with the
same rate:

Theorem B.9 If Yt = g(Xt, Xt−1, . . . , Xt−τ ), where τ is finite and g is a mea-
surable function, then if Xt is a strong mixing of size α(m) = O(m−φ), then Yt

is a strong mixing with the same size.

Proof : Analogously as in Theorem 14.1. of Davidson (1994). �

We now formulate FCLT for the strong-mixing random vectors.
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Theorem B.10 Let {Xt}t≥1 be a weak stationary sequence of Rd-valued random
vectors centered at expectations and having (2+δ)-moments, 0 < δ ≤ 1, uniform-
ly bounded by 1. Suppose that {Xt}t≥1 satisfies the strong-mixing condition with
α(k) = O(k−(1+ǫ)(1+2/δ)), ǫ > 0. Then the two series in γi,j = E[Xi,1Xj,1] +∑

s≥2 E[Xi,1Xj,s] +
∑

s≥2 E[Xi,sXj,1] converge absolutely. Denote Γ = {γi,j}i,j.
Then we can redefine the sequence {Xt}t≥1 on a possibly wider probability space
together with Wiener process WΓ(t) with variance matrix Γ such that

∑

n≤t

Xn − WΓ(t) = O(t
1
2

−λ) a.s.

with some λ > 0 depending on ǫ, δ and d only.

Proof : The proof can be found in Kuelbs and Philipp (1980), Theorem 4. �

B.4 M-dependent structures

Theorem B.11 Assume that the d-dimensional random process {Yt}t∈Z is spec-
ified as

Yt = f(νt,νt−1, . . .), t ∈ Z,

where f : Rn′×∞ → R
n is a measurable function and {νt}t∈Z a sequence of inde-

pendent, identically distributed random vectors with values in R
n′

.
Let E[Yt] = 0 and E ‖Yt‖2 < ∞. Suppose further that, for any m ≥ 1, the

m-dependent vectors Y
(m)
0 can be defined such that

∞∑

m=1

(
E

∥∥∥Y0 − Y
(m)
0

∥∥∥
2
) 1

2

< ∞.

Then the series Γ :=
∑

t∈Z cov(Y0,Yt) converges (coordinatewise) absolutely
and

1√
T

·
⌊T τ⌋∑

t=1

Yt
Dd[0,1]−→ WΓ(τ), T → ∞,

where WΓ is a d-dimensional Wiener process with variance matrix Γ.

Proof : See proof in Aue et al. (2009), Theorem A.1. �

Theorem B.12 Suppose that the assumptions of Theorem B.11 hold true and
that E ‖Yt‖4 < ∞. If

∞∑

m=1

(
E

∥∥∥Y0 − Y
(m)
0

∥∥∥
4
) 1

4

< ∞

is satisfied, then the series

Σ :=
∑

t∈Z

cov

(
vech(Y0Y

⊤
0 ), vech(YtY

⊤
t )
)
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converges (coordinatewise) absolutely and

1√
T

·
⌊T τ⌋∑

t=1

(
vech

(
YtY

⊤
t − E[YtY

⊤
t ]
)) Dd′ [0,1]−→ WΣ(τ), T → ∞,

where d′ = d(d+1)
2

.

Proof : See proof in Aue et al. (2009), Theorem A.2. �
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List of Abbreviations

We have used the following notation in the thesis:

N Set of positive integers
N0 Set of non-negative integers
Z Set of integers
R Set of real numbers
C Set of complex numbers
⌊·⌋ Integer part of a number
ln Natural logarithm

I[cond] indicator function; I[cond] = 1 when condition ”cond” is met,
0 otherwise

v⊤ transposition of (column) vector v

‖v‖ Euclidean norm of a d-vector, i.e. ‖v‖ =
√∑d

i=1 v
2
i

vec(A) vector (a⊤
1 , . . . , a

⊤
d )⊤, where a1, . . . , ad are the column vectors

of matrix A

vech(A) (for squared symmetric matrices): vector of elements of ma-
trix on and below the main diagonal, i.e. for A ∈ R

d×d,
vech(A) = (a11, . . . , ad1, a22, . . . , ad2, . . . . . . , add)⊤

A ⊗ B Kronecker product of matrices A and B

det{A} determinant of matrix A

tr{A} trace of the matrix A, i.e. sum of its diagonal elements
A > 0 positive-definite matrix
λmin(A) smallest eigenvalue of the matrix A

λmax(A) largest eigenvalue of the matrix A

a.s. almost surely; it means that the statement does not hold only
on a set of probability measure 0

d≡ equals in distribution
d−→T →∞ converge in distribution as T → ∞
P−→T →∞ converge in probability as T → ∞

Dd[0,1]−→ T →∞ convergence in Skorohod space Dd[0, 1], as T → ∞, where d
is dimension of the corresponding vector

Nd(µ,Ω) d-dimensional normal random variable with expected value µ

and variance matrix Ω.
O(·), o(·) Landau symbols for almost sure boundedness and convergence

OP(·), oP(·) Landau symbols for boundedness and convergence in proba-
bility

ADF asymptotic distribution function
ARMA autoregressive moving average
CUSUM cumulative sum

EDF empirical distribution function
FCLT Functional Central Limit Theorem

iid independent identically distributed
std standard deviation
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Horváth, L. (1995). Detecting Changes in Linear Regressions. Statistics: A
Journal of Theoretical and Applied Statistics, 26 (3), 189–208.
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