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Abstract 

 

Nitrilases are enzymes which catalyze the hydrolysis of a nitrile into the 

corresponding carboxylic acid and ammonia. These enzymes are potentially applicable 

in biocatalysis and bioremediation because of their advantages over the conventional 

(chemical) methods of nitrile hydrolysis (lower demand for energy, safety, simplicity, 

high yields, selectivity). 

In this work, genome mining was used to search for the sequences of 

hypothetical nitrilases from filamentous fungi. The amino acid sequences of previously 

characterized fungal nitrilases were used as the templates. Then the new synthetic 

genes together with other genes from our nitrilase library were expressed in E. coli and 

the substrate specificities of the enzymes thus produced were compared. Significant 

attention was focused on the relationships between the sequence of the enzyme and 

its substrate specificity. 

The arylacetonitrilases from Arthroderma benhamiae (NitAb) and Nectria 

haematococca (NitNh) were purified and characterized. Their substrate specificities, 

kinetic parameters, pH and temperature profiles and subunit and holoenzyme size 

were assessed. 

NitAb and NitNh together with other recombinant fungal nitrilases were 

employed in the hydrolysis of high concentrations of (R,S)-mandelonitrile in a batch or 

fed-batch mode. Nitrilase from Aspergillus niger displayed the best results in 

enantioselectivity, enabling to prepare (R)-mandelic acid with 97.6 % e.e., and in 

catalyst productivity of 40 g of the product per g of dry cell weight. NitAb displayed a 

moderate enantioselectivity, which, together with its stability at low pH, make it 

applicable in the production of (S)-mandelic acid from (S)-mandelonitrile.  

A set of recombinant fungal arylacetonitrilases was tested in hydrolysis of        

(±)-trans-2,4-diphenyl-4,5-dihydrooxazole-5-carbonitrile. The corresponding carboxylic 

acid is a precursor of taxol, an anti-cancer drug. All tested enzymes displayed a 

complete conversion of 1 mM substrate within 1-22 hours. Nitrilase from Neurospora 

crassa was the most active and was thus used for the preparative-scale synthesis of   

(±)-trans-2,4-diphenyl-4,5-dihydrooxazole-5-carboxylic acid. 



Abstrakt 

 

Nitrilasy jsou enzymy katalyzující hydrolýzu nitrilů na příslušné karboxylové 

kyseliny a amonné ionty. Tyto enzymy mohou nalézt využití v biokatalýze a 

bioremediaci pro vyšší nenáročnost, bezpečnost a jednoduchost takto katalyzovaných 

reakcí před konvenčními metodami hydrolýzy nitrilů. 

V této práci byly pomocí metody prohledávání databazí vybrány sekvence 

hypotetických fungálních nitrilas. Jako templáty posloužily aminokyselinové sekvence 

fungálních nitrilas již dříve charakterizovaných v naší laboratoři. Následně byly nové 

syntetické geny spolu se zbylými geny z naší nitrilasové knihovny exprimovány v E. coli a 

poté byly porovnány jejich substrátové specifity a podobnost sekvencí. 

Arylacetonitrilasy z hub Arthroderma benhamiae (NitAb) a Nectria 

haematococca (NitNh) byly purifikovány a charakterizovány; byly stanoveny jejich 

substrátové specifity, kinetické parametry, pH a teplotní profily a velikost podjednotek. 

NitAb a NitNh spolu s dalšími rekombinantními fungálními nitrilasami byly 

použity pro hydrolýzu vysokých koncentrací (R,S)-mandelonitrilu v jedné dávce nebo 

s postupným dávkováním substrátu. Ze studovaných enzymů nitrilasa z Aspergillus 

niger vykázala nejlepší enantioselektivitu (e.e. pro (R)-mandlovou kyselinu až 97,6 %) a 

produktivitu enzymu v sušině (až 40 g gsuš 
-1). 

NitAb byla pouze mírně enantioselektivní, čehož se však dá v kombinaci s její 

stabilitou pri nízkém pH využít pro produkci (S)-mandlové kyseliny. 

Soubor našich rekombinantních fungálních arylacetonitrilas byl rovněž testován 

na schopnost hydrolyzovat (±)-trans-2,4-difenyl-4,5-dihydrooxazol-5-karbonitril 

(příslušná karboxyová kyselina je prekurzorem taxolu, jež se používá jako protinádorové 

léčivo). Všechny enzymy dosáhly plné konverze 1 mM substrátu běhm 1 nebo 22 hodin. 

Nitrilasa z houby Neurospora crassa byla nejvíce aktivní a byla použita při preparativní 

přípravě (±)-trans-2,4-difenyl-4,5-dihydrooxazol-5-karboxylové kyseliny. 
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1 Introduction 

 

1.1 Nitriles and cyanides 

 

Inorganic cyanide and nitrile compounds are widespread in the environment, 

mainly as a result of human activity but also through cyanide synthesis by a range of 

organisms including higher plants, fungi and bacteria. The major source of these 

compounds in soil and water is the discharge of cyanide- and nitrile-containing 

wastewaters (Baxter and Cummings, 2006). Various nitrile compounds are extensively 

used as solvents, extractants, pharmaceuticals, feedstock, drug intermediates or 

pesticides. Nitriles are also important intermediates in the organic synthesis of amines, 

amides, amidines, carboxylic acids, esters, aldehydes, ketones, heterocyclic compounds 

and also polymers (Banerjee et al., 2002). 

Some nitrile compounds are toxic and mutagenic (Gong et al., 2012). Cyanide is 

highly toxic to aerobic organisms because it inactivates the respiration system by tightly 

binding to cytochrome c oxidase (Jandhyala et al., 2003). 

 

1.1.1 Occurrence in nature 

 

Cyanide and various nitriles have been detected in about 3, 000 species of 

microorganisms, fungi, plants and animals (Gupta et al., 2010). The compounds include 

cyanogenic glycosides, cyanolipids, β-cyano-L-alanine, ricinine (3-cyano-4-methoxy-N-

methyl-2-pyridone), phenylacetonitrile, indole-3-acetonitrile and many others (see Fig. 

1 for structures). 

The most abundant group of naturally occurring cyanide compounds are 

cyanogenic glycosides (or cyanoglycosides, CGs) (Banerjee et al., 2002). They are 

produced by ca. 2, 500 plant species termed cyanogenic plants, including several 

economically important and edible ones, for instance cassava, sorghum, plants of the 

genus Prunus, lima bean and bamboo. CGs are products of plant secondary 

metabolism, are amino acid-derived and contain an α-hydroxynitrile type aglycon and a 
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sugar moiety. The aglycons can be divided into aliphatic and aromatic compounds; the 

sugar is usually D-glucose. (O’Reilly and Turner, 2003; NZ Food Safety Authority: 

Cyanogenic glycosides – Information sheet; Vetter, 2000). 

The CGs are stored in the vacuoles and their function in the plants is mainly the 

defense against herbivores and phytopathogens, but in some cases they also serve for 

storing sugars and reduced nitrogen (Zagrobelny et al., 2008). When the plant is 

wounded, CGs are metabolized, which leads to hydrogen cyanide (HCN) liberation 

(Zagrobelny et al., 2010; Vetter, 2000). This enzymatic pathway leading to HCN 

production accounts for the potential toxicity of the cyanogenic plants, some of which 

serve as food for humans and animals (Conn, 1979).  

Apart from plants, CGs were also found in arthropods, namely within Diplopoda, 

Chilopoda and Insecta. Also in this case, the CGs serve as a means of defense against 

predators, and are present in the defensive secretions (Duffey, 1981; Zagrobelny et al., 

2010). 

Cyanolipids, which are exclusively found in plants, are esters of α- or γ-

hydroxynitriles and fatty acids. They share a structural similarity with CGs, however, 

they are not nearly as abundant, although it was documented that cyanolipids and CGs 

might be biosynthetically connected (Bjarnholt and Møller, 2008).  

-Cyano-L-alanine (AlaCN) is widespread in higher plants as a metabolite of HCN 

(Piotrowski et al., 2001). Apart from plants, this compound was also observed to be 

produced by various bacterial strains (Escherichia coli, Bacillus megaterium, 

Chromobacterium violaceum and Enterobacter sp. 10-1) grown on a nitrile-containing 

medium (Legras et al., 1990). 

Indole-3-acetonitrile (IAN) and phenylacetonitrile are nitrile derivatives of plant 

hormones (auxins) and in some cases they were demonstrated to have auxin activity of 

their own (Piotrowski 2008). 

Cyanide compounds such as glyoxylic acid cyanohydrin, pyruvic acid 

cyanohydrin and several α-aminonitriles have been also reported in a number of fungi 

(Tapper and McDonald, 1974; Akken and Strobel, 1966; Faull et al., 1994) and bacteria 

(Kikuchi, 1955; Parker et al. 1988). The toxicity of these compounds serves to inhibit 

competitive organisms (Baxter and Cummings, 2006).  
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As for the animals, the ability to synthesize nitriles seems to be restricted to 

sponges and arthropods. In sponges, the nitrile compounds serve as antimicrobial 

agents; in arthropods, they serve as protection against predators (Davis and Nahrstedt, 

1985; Duffey, 1981).  

 

1.1.2 Metabolism of cyanide and nitriles 

 

1.1.2.1 Hydrogen cyanide 

 

Cyanogenesis, the production of HCN, was documented in bacteria, single-cell 

algae and fungi. In bacteria and fungi, use of labeled compounds showed that the 

source of HCN was the amino acid glycine; in the alga Chlorella vulgaris, the HCN 

precursor was histidine (Knowles and Bunch, 1986; Gewitz et al., 1976). HCN is also 

produced in equimolar amount to ethylene by all higher plants during the biosynthesis 

of the plant hormone ethylene (Peiser et al., 1984; Pirrung, 1985), and as stated before, 

in plants and arthropods producing CGs, HCN is released upon wounding or in defense 

against predators. 

Natural cyanide degradation can be achieved by four major pathways: oxidative, 

reductive, substitution/transfer and hydrolysis. Several organisms have been reported 

to use more than one of these pathways. It strongly depends on the external 

conditions, which one of the  pathways is followed (Ebbs, 2004). 

The hydrolytic pathway of cyanide biodegradation involves cyanide hydratases 

(CHTs) and cyanide dihydratases (CDHs). CHTs convert cyanide into formamide, CDHs 

catalyze the hydrolysis of HCN to formic acid ad ammonia. Further information on both 

CHTs and CDHs will be given in Sections 1.2.3 and 1.2.4. 

 

1.1.2.2 Nitriles 

 

Nitriles can be naturally degraded in several pathways. In plants, fungi and 

insects, oxidation of some nitriles is catalyzed by an oxygenase. The resulting 
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cyanhydrin decomposes to an aldehyde and HCN either spontaneously or by action of a 

hydroxynitrile lyase (Legras et al., 1990). 

Enzymatic hydrolysis is the most explored of the nitrile biodegradation routes. It 

can be achieved in one step, catalyzed by nitrilase, or in a two-step reaction, catalyzed 

by nitrile hydratase and amidase (Fig. 1.1). 

 

 

Cyanide hydratase: R = H 

Nitrilase, nitrile hydratase: R = alkyl, aryl 

 

Figure 1.1: Scheme of enzymatic nitrile hydrolysis 

 

According to their sequence and functional similarities, some amidases and 

nitrilases are members of the nitrilase superfamily. Nitrilases form branch 1 together 

with the CHTs and CDHs; amidases form next two branches (O’Reilly and Turner, 2003; 

Brenner, 2002). More details on these enzymes will be given in the next Section. 
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1.2 Enzymes of nitrile and cyanide hydrolysis 

 

1.2.1 Nitrile hydratases 

 

Nitrile hydratase (NHase) catalyzes the hydration of the nitrile moiety into an 

amide. It is not, however, a member of the nitrilase superfamily of enzymes, and the 

type of catalyzed reaction defines NHase as a lyase.  

NHases are enzymes with a metal cofactor, and are divided into Fe-type and Co-

type enzymes.  

These enzymes have been isolated and characterized in a plenty of 

microorganisms, for instance Agrobacterium tumefaciens (Bauer et al., 1994), 

Pseudomonas putida (Payne et al., 1997), Corynebacterium (Tani et al., 1989), and 

various bacteria of the genus Rhodococcus (Endo and Watanabe 1989; Nagasawa et al., 

1991; Duran et al., 1993; Kato et al., 1999; Přepechalová et al., 2001).  

Various NHases prefer different types of substrate – either aliphatic, alicyclic, 

arylaliphatic, or (hetero)aromatic – but generally the activity is restricted to smaller 

molecules that do not exceed the volume of the binding pocket (Mylerová and 

Martínková, 2003). 

As for the practical applications of these enzymes, a number of NHase-

producing strains have been employed in semi-preparative, preparative and even 

industrial-scale biocoversions. Rhodococcus sp. N774, Rhodococcus rhodochrous J1, 

Rhodococcus rhodochrous PA-34, Pseudomonas chlororaphis B23 and Brevibacterium 

sp. CH2 have been used for bench or industrial scale production of acrylamide, 

nicotinamide, isonicotinamide, picolinamide, butyramide, indole-3-acetamide and 

many other compounds (Prasad and Bhalla, 2010). NHase in Rhodococcus rhodochrous 

IFO 15564 coupled with a non-enzymatic reaction enabled “two-step-one-pot” 

synthesis of various amides from aldehydes (Kashiwagi et al., 2004). NHase in 

Rhodococcus erythropolis A4 catalyzed the regioselective production of cyanoamides 

from dinitriles (Vejvoda et al., 2007).  

Furthermore, Rhodococcus sp. N774, P. chlororaphis B23 and R. rhodochrous J1 

have been successfully adopted in kiloton production of acrylamide and were the first 
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examples of biocatalysts applied in the industrial manufacture of commodity chemicals 

(Kobayashi and Shimizu, 1998; Mylerová and Martínková, 2003; Prasad and Bhalla, 

2010). 

After the initial success of NHases in the production of achiral amides, the focus 

shifted also to their potential in the synthesis of enatiopure chemicals. Actually, several 

enatioselective NHases have been described that facilitate the synthesis of (S)-

arylpropionamides or (S)-arylbutyramides (Martínková and Křen, 2002).  

 

1.2.2 Amidases 

 

Amidases are ubiquitous enzymes found in bacteria, fungi, plants and animals. 

They generally catalyze the hydrolysis of an amide into the corresponding carboxylic 

acid and ammonia, however, other types of reactions have also been reported. 

Amidases (except the GGSS signature amidases) belong to the nitrilase superfamily of 

enzymes, and are sorted into two branches: branch 2 (aliphatic amidases) and branch 3 

(N-terminal amidases). The latter catalyze the hydrolysis of an asparagine or glutamine 

residue at the N-terminus of a polypeptide chain into aspartic or glutamic acid 

(Fournand and Arnaud, 2001; Brenner, 2002).  

Apart from the amide hydrolysis, the acyl-transfer reaction in the presence of 

hydroxylamine and the resulting formation of a hydroxamic acid is a well-described 

phenomenon for amidases, and a broad range of hydroxamates have been prepared in 

this way (Maestracci et al., 1986; Fournand et al., 1998; Vejvoda et al., 2011; Bhatia et 

al., 2013).   

The aliphatic amidases are highly stereoselective towards substrates with a 

center of chirality at the α-position and have a potential for large-scale production of 

compounds such as amino acids and 2-arylpropionic acids, valuable chemicals for the 

pharmaceutical industry. An example of the industrial-scale amidase-catalyzed reaction 

is the chiral resolution of racemic 2,2-dimethylcyclopropane carboxamide affording the 

optically pure S-isomer (Shaw et al., 2003). 

In many cases, whole-cell preparations of NHase and amidase-producing 

bacteria were employed in the synthesis of various optically pure amides and carboxylic 
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acids, for instance  (R)-α-substituted arylalkanamides and (S)-α-substituted arylalkanoic 

acids (Wu and Li, 2001), (S)-2-aryl-3-methylbutyric acids and (R)-2-aryl-3-methyl-

butyramides (Wang et al., 2001), γ-substituted α-methylene carboxamides and acids 

(Wang and Wu, 2003), or enantiopure trans- and cis-cyclopropanecarboxamides and 

acids (Wang and Feng, 2002; Wang et al., 2004).  

NHase- and amidase-producing bacterial strains can be also applied in the 

bioremediation of nitrile-contaminated sites (Kohyama et al., 2006; Li et al., 2007; 

Baxter et al., 2006). For instance, benzonitrile herbicides dichlobenil and bromoxynil 

were converted to the corresponding amides and acids by the whole-cell suspension of 

Rhodococcus erythropolis A4 (Veselá et al., 2012). 

 

1.2.3 Branch 1 of the nitrilase superfamily  

 

Cyanide hydratases, cyanide dihydratases and nitrilases belong to branch 1 of 

the nitrilase superfamily of enzymes (formerly called CN-hydrolases; O’Reilly and 

Turner, 2003). Nitrilase superfamily comprises thiol enzymes involved in natural 

product biosynthesis and posttranslational modification in prokaryotes, fungi, plants 

and animals. The superfamily is divided into 13 branches, but only branch 1, also called 

nitrilase family, exhibits the nitrile-hydrolyzing activity (Pace and Brenner, 2001). 

The common features of all three types of the branch 1 enzymes are their 

molecular architecture, mode of action, and the catalytically active amino acid residues. 

The enzyme subunits form a homodimeric building block with a αββα- αββα 

sandwich fold. The homodimers further assemble into active oligomers made of 4-26 

subunits or active spirals of variable length (Thuku et al., 2009).  

The catalytic residues in the active center are two glutamic acids, a lysine and a 

cysteine. The sulfhydryl group of the cysteine residue performs the nucleophilic attack 

on the CN bond of the nitrile/cyanide to form enzyme-thioimidate intermediate (Fig. 

1.2). The following water addition leads to the formation of a tetrahedral intermediate. 

At this point, the leaving group may be either the enzyme, or ammonia (Stevenson et 

al., 1992). In general, ammonia is a better leaving group than the enzyme, and thus - in 

the nitrilases and cyanide dihydratases -the reaction continues with the formation of an 
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acylenzyme, the hydrolysis of which produces the carboxylic acid product (Brenner, 

2002). Cyanide hydratases follow this mechanism only to the tetrahedral intermediate 

stage. Here the enzyme is the leaving group, and formamide is the final product, 

possibly because some of the steric requirements of the active site are not met (Pace 

and Brenner, 2001). 
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Cyanide hydratase, cyanide dihydratase: R = H 

Nitrilase: R = alkyl, aryl 

 

Figure 1.2: The reaction mechanism of nitrilase, cyanide hydratase and cyanide 

dehydratase. Route leading to amide formation is preferred by cyanide hydratases, 

whereas the route leading to carboxylic acid and ammonia formation is preferred by 

nitrilases and cyanide dihydratases (adapted from O’Reilly and Turner, 2003) 
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1.2.3.1 Cyanide hydratases 

 

Cyanide hydratase (formamide hydrolyase, EC 4.2.1.66, CHT) catalyzes the 

hydration of cyanide to formamide. Although CHTs are lyases, according to their 

sequence similarities they belong to the nitrile-hydrolyzing branch 1 of the nitrilase 

superfamily. Of all the kingdoms of the living organisms, CHTs seem to be restricted to 

phytopathogenic and saprophytic filamentous fungi, where their role is to detoxify the 

HCN released by the host plant. To date, CHT have been studied in several native 

producers and also expressed in heterologous hosts (Tab 1.1). The sequences of the 

CHTs documented so far share a very high similarity and seem to be closely related to 

each other (O’Reilly and Turner, 2003). 

 

Table 1.1: Cyanide hydratase producers 

Native producer Ref. 

Gloeocercospora sorghi Fry and Munch, 1975;  

Wang et al., 1992; 

Wang and VanEtten, 1992 

Fusarium lateritium Cluness et al., 1993 

Fusarium solani Barclay et al., 1998; 

Nolan et al., 2003 

Fusarium oxysporum Yanase et al., 2000 

Leptosphaeria maculans Sexton and Howlett 2000 

Aspergillus nidulansa Basile et al., 2008 

Neurospora crassaa 

Gibberella zeaea 

Gloeocercospora sorghia 

Aspergillus niger a Rinágelová et al., 2014 

Penicillium chrysogenuma Kaplan et al., 2013 

a Expressed in E. coli  
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The molecular mass of CHT subunits is typically about 40 kDa, and in case of 

CHTs from G. sorghi (Woodward et al., 2008) and N. crassa (Dent et al., 2008), the 

subunits were documented to assemble into long regular helices (Thuku et al., 2009). 

Both the specific activity and Km for HCN in the studied CHTs were high: 102–103 

U mg-1 protein and ca. 100 mM, respectively (Yanase et al., 2000; Jandhyala et al., 

2003; Basile et al., 2008; Rinágelová et al., 2014). 

As for the origin of CHTs, it was speculated that the cht genes are probably the 

result of evolution of nitrilase genes acquired by fungi via horizontal gene transfer from 

bacteria (Podar et al., 2005). This statement is supported by the fact that several of the 

studied CHTs also displayed nitrilase activities (Tab. 1.2). The nitriles were turned either 

to carboxylic acids and ammonia, to amides, or to a mixture of acid, amide and 

ammonia.  

 

Table 1.2: Cyanide hydratases with nitrilase activity 

CHT source Substrates of the nitrilase activity  

(% of the CHT acitivity) 

Ref. 

F. lateritium Benzonitrile, acetonitrile, 

propionitrile 

(ca. 0.009-0.033) 

Nolan et al., 2003 

F. oxysporum Methacrylonitrile, crotononitrile, 

acrylonitrile 

(ca. 0.03-0.04%) 

Yanase et al., 2000 

Aspergillus niger Fumaronitrile (0.95) 

2-Cyanopyridine (0.76) 

Benzonitrile (0.062) 

3-Cyanopyridine (0.055) 

Rinágelová et al., 

2014 

Penicillium 

chrysogenum 

Fumaronitrile (1.8) 

2-Cyanopyridine (0.83) 

Benzonitrile (0.042) 

3-Cyanopyridine (0.15) 

Rinágelová, 2013 
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Several studies were carried out aiming to propose possible application of 

various enzyme preparations of CHTs in cyanide bioremediation (Cluness et al., 1993; 

Basheer et al., 1992; Campos et al., 2006; Ingvorsen et al., 1992; Basile et al., 2008; 

Martínková et al., 2015). 

 

1.2.3.2 Cyanide dihydratases 

 

Cyanide dihydratase (cyanidase, CDH) catalyzes the hydrolysis of cyanide to 

formic acid and ammonia. With one exception (Kunz et al., 1994), no formamide has 

ever been detected in the CDH-catalyzed reactions. So far, CDH were only found in 

bacteria, namely Alcaligenes xylosoxidans ssp. denitrificans (Ingvorsen et al., 1991), 

Bacillus pumilus C1 (Meyers et al., 1993), Pseudomonas fluorescens NCIMB 11764 (Kunz 

et al., 1994) and Pseudomonas stutzeri AK61 (Watanabe et al., 1998). 

CDHs also tend to form oligomeric structures. CDH from P. stutzeri was found to 

be a spiral comprising 14 subunits with 2-fold symmetry (Sewell et al., 2003). At neutral 

pH, the CDH from B. pumilus formed a short, 18-subunit spiral, however, when the pH 

lowered to 5.4, the enzyme reassembled to long helical fibres (Jandhyala et al., 2003). 

The functional significance of oligomerization seems to be an increase in activity 

(Jandhyala et al., 2005, Sewell et al., 2005) and forming of organelle-like structures 

(Thuku et al., 2007). 

Unlike CHTs, the CDHs have a very narrow range of pH optimum and stability 

(Jandhyala et al., 2005). The CDH from B. pumilus displayed a significant loss of activity 

above pH 8 and no activity above pH 8.4 (Meyers et al., 1993). In order to improve the 

operational stability of the enzymes or to elucidate the role of the C-terminal region in 

the enzyme oligomerization and activity, various mutants of CDHs were constructed 

(Sewell et al., 2005). 

B. pumilus CDH and P. stutzeri CDH hybrid had an enhanced thermal and pH 

stability, and it was shown that the C-terminus from P. stutzeri stabilizes the new hybrid 

enzyme by supporting oligomerization between the subunit dimers (Sewell et al., 2005; 

Crum et al., 2015). 
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CDHs have been also investigated as means for the cyanide detection in 

biosensors (Mak et al. 2005; Keusgen et al. 2004; Ketterer and Keusgen 2010). 

 

1.2.3.4 Nitrilases 

 

Nitrilases (EC 3.5.5.1) catalyze the hydrolysis of nitriles into the corresponding 

carboxylic acid and ammonia. They are abundant in nature and occur in both 

prokaryotes and eukaryotes (Thuku et al., 2009). Depending on the preferred substrate 

structure, nitrilases can be divided into aliphatic, aromatic and arylaliphatic. The last 

group is especially promising in biocatalysis and chemo-enzymatic synthesis because of 

the ability to hydrolyze α-substituted arylaliphatic nitriles stereoselectively (Kobayashi 

and Shimizu, 1994; Martínková and Křen, 2010). 

The reaction mechanism is the same as in cyanide dihydratases, only the 

substrate is not HCN, but a nitrile (Fig. 1.2). 

Under specific conditions, amide can be formed as a side-product. This seems to 

be strongly affected by the nature of the substituent on the α-carbon position. In the 

nitrilase from Pseudomonas fluorescens EBC 191, it was shown that the electron-

deficient substituents promoted the amide formation, as well as low temperature and 

increased pH. The portion of amide was also more significant in the reaction products 

of the less-preferred substrate enantiomers (Fernandes et al., 2006). The NIT1 enzyme 

in Arabidopsis thaliana also formed amides preferentially from substrates with 

electron-withdrawing substituents, which are thought to stabilize the tetrahedral 

intermediate in the reaction (Osswald et al., 2002).  

In biocatalytic applications where the acid is the only desired product, the 

amide formation is usually a drawback. However, it can be also turned into an 

advantage. Based on mutagenetic studies, it was found that enhanced amide-formation 

ability of certain nitrilase mutants could be utilized in a biocatalytic production of 

optically pure amides (Kiziak and Stolz, 2009). 

In addition to the occasional amide production, nitrilase from Rhodococcus 

rhodochrous J1 was found to have another activity, that is the ability to catalyze the 
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hydrolysis of amides to carboxylic acids, but the relative rate of this reaction was six 

orders of magnitude lower than that of nitrile hydrolysis (Kobayashi et al., 1998). 

The subunit size of nitrilases is between 30 – 45 kDa. Although some nitrilases 

were reported to be active as monomers (Bandyopadhyay et al., 1986; Bhalla et al., 

1992) or dimers (Mueller et al., 2006) – the majority of nitrilases studied to date form 

oligomers or long, helical rods (Fig. 1.3) like the nitrilases from Fusarium solani and 

Aspergillus niger K10 (Vejvoda et al., 2008).  

 

 

Figure 1.3: Electron micrograph of the rod-like structure of assembled subunits of the 

nitrilase from Fusarium solani (Vejvoda et al., 2008; Author of the micrograph: RNDr. 

Oldřich Benada, Ph.D., Institute of Microbiology, Academy of Sciences of the Czech 

Republic) 

 

The enzyme subunits display an αββα-fold, and associate into dimers. The 

dimers are the building blocks for the oligomerization (Thuku et al., 2009). 

Furthermore, the subunit association was observed to be induced by the presence of a 

substrate in the nitrilase from Nocardia NCIB 11216 (Harper 1977a), Rhodococcus ATCC 

39484 (Stevenson et al., 1992), Alcaligenes faecalis ATCC8750 (Yamamoto et al., 1992) 
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and Rhodococcus rhodochrous J1 (Nagasawa et al., 2000). The association may be even 

induced by the addition of ammonium sulphate, organic solvent or on heat treatment 

(Thuku et al., 2009).  

Nitrilases can be either constitutive or inducible and their pH and temperature 

operational stabilities are within 5.5-11.0 and 10-50°C, respectively. Some nitrilases 

from thermophilic organisms can be even used at up to 60 or 70°C (Banerjee et al., 

2002). The nitrilase-producing microorganisms, fungi and plants, and the characteristics 

of the isolated enzymes were summarized in several reviews (Banerjee et al., 2002; 

O’Reilly and Turner, 2003; Thuku et al., 2009; Martínková et al., 2009). 

The bacterial nitrilases are the most explored group of these enzymes. Some of 

these nitrilases, their source organisms, inducers, substrate preferences and activities 

are summarized in Table 1.3. The most abundant nitrilase source among bacteria is the 

genus Rhodococcus, and except the nitrilase from R. rhodochrous K22, which prefers 

aliphatic substrates, the rhodococcal nitrilases show preference for (hetero)aromatic 

nitriles. Aliphatic nitrilases were found in Acidovorax, Comamonas, Pseudomonas and 

Acinetobacter. Arylaliphatic nitrilases have been studied in Pseudomonas, Alcaligenes 

and Halomonas (Martínková and Křen, 2010). 

Many of the bacterial nitrilases were expressed in heterologous hosts and a 

range of mutant variants were prepared (for reviews see Thuku et al., 2009; 

Martínková and Křen, 2010). Various deletion (Kiziak et al., 2007) and site-specific 

mutants and chimeric enzymes (Kiziak and Stolz, 2009) were prepared from the 

arylacetonitrilase of P. fluorescens EBC191 and A. faecalis ATCC 8750 to test the 

function of the C-terminal part of the enzyme and the amino acid residues in the 

proximity of the catalytic cysteine. As a result, amino acid residues responsible for 

amide formation and enantioselectivity of both enzymes were identified (Kiziak and 

Stolz, 2009; Sosedov and Stolz, 2014). 

There are a large number of nitrile substrates which can be chemo-, regio- and 

enantioselectively hydrolyzed by nitrilases to the desired carboxylic acid products. 

Many of the bacterial nitrilases in various preparations have been utilized in such 

biocatalytic processes, either on laboratory or industrial scale. Such applications were 

reviewed in several studies (Banerjee et al., 2002; Mylerová and Martínková, 2003; 
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Singh et al., 2006; Martínková and Křen, 2010; Gong et al., 2012) and some of them will 

be described in Section 1.3. 

 

Table 1.3 Selected bacterial nitrilases 

Source organism Inducer Total activity 

(U L−1) (substrate) 

Ref. 

Rhodococcus 

rhodochrous J1 

Isovaleronitrile 16,100 (benzonitrile) Kobayashi and 

Shimizu, 1994 

R. rhodochrous K22 Isovaleronitrile 1,630 (crotononitrile) 

Rhodococcus sp. 

NDB 1165 

Propionitrile 2,298 (benzonitrile) Prasad et al., 

2007 

Alcaligenes faecalis 

JM3 

Isovaleronitrile 4,220 

(thiopheneacetontirile) 

Nagasawa et al., 

1990a 

A. faecalis ATCC 

8750 

n-butyronitrile 9.96a (mandelonitrile) Yamamoto et al., 

1991 

Pseudomonas 

fluorescens DSM 

7155 

phenylacetonitrile 5a (phenylacetonitrile) Layh et al., 1998 

atotal activity in U 

 

Nitrilase activity in fungi was already discovered in the beginning of the nitrilase 

research. Fungal strains of the genera Fusarium, Gibberella, Aspergillus, and Penicillium 

were found to hydrolyze IAN but were not studied any further (Thiman and Mahadevan 

1964). Then a nitrilase was purified from F. solani IMI196840, a fungus isolated on 

benzonitrile from the soil of a bromoxynil-treated field (Harper 1977b). A soil isolate, 

also F. solani, degraded the herbicide 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) into 

several products, two of them being the corresponding carboxylic acid and amide (Hsu 

and Camper 1978). Whole cells in culture medium and cell-free extract of Aspergillus 

fumigatus were reported to hydrolyze α-aminophenylacetonitrile into S-α-

phenylglycine, and the hydrolytic activity was attributed to a nitrilase enzyme (Choi and 

Goo, 1986). Another purified fungal nitrilase was from F. oxysporum f. sp. melonis. This 
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enzyme was induced by and hydrolyzed aliphatic and aromatic nitriles (Goldlust and 

Bohak, 1989). Later, nitrilases from Aspergillus niger K10 and F. solani O1 were purified 

and characterized (Kaplan et al., 2006a; Kaplan et al., 2006b; Kaplan et al., 2006c; 

Vejvoda et al., 2006a; Vejvoda et al., 2006b; Vejvoda et al., 2006c; Vejvoda et al., 2008; 

Winkler et al., 2009). The fungal nitrilase inducers and enzyme activities are listed in 

Tab. 1.6. 

   

Table 1.4 Induction and activity of fungal nitrilases produced in native hosts (adapted 

from Martínková et al., 2009) 

Source organism Inducer Total 

activity 

(U L−1)a 

Ref. 

Aspergillus niger 

K10 

3-cyanopyridine 0.2 Kaplan et al., 2006b 

2-cyanopyridine+valeronitrile 170 

Fusarium 

oxysporum CCF 

1414 

3-cyanopyridine 1.3 

2-cyanopyridine+valeronitrile 119.7 

Penicillium 

multicolor CCF 

2244 

3-cyanopyridine 0.6 

2-cyanopyridine 9.3 

Fusarium solani O1 3-cyanopyridine 0.9 

2-cyanopyridine+valeronitrile 34.0 

2-cyanopyridineb ≥3000 Vejvoda et al., 2006a, 

Vejvoda et al., 2008 

Fusarium solani 

IMI196840 

Benzonitrile 58.7 Harper, 1977b 

Fusarium solani f. 

sp. melonis 

Acetonitrile 830 Goldlust and Bohak, 

1989 Isobutyronitrile 320 

Butyronitrile 170 

Benzonitrile 160 
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Propionitrile 140 

a activity determined with benzonitrile 

b two-stage cultivation 

 

All fungal nitrilases purified from native hosts to date have shown preference 

for (hetero)aromatic nitriles. Benzonitrile and 3-cyanopyridine act both as preferred 

substrates and inducers. On the other hand, it was discovered that 2-cyanopyridine is a 

much more powerful inducer of the nitrilase activity in fungi, despite the fact that it is a 

very poor substrate for these enzymes (Kaplan et al., 2006b) (See Tab. 1.4). 

Only a few fungal nitrilases have been studied in the native producers, despite 

the fact that protein sequence databases contain a large number of putative fungal 

nitrilases, most of them in the genera Aspergillus and the anamorph-teleomorph pair 

Fusarium-Giberella (Martínková et al., 2009). However, as the number of sequenced 

genomes has grown and gene synthesis services became more accessible, genome 

mining as an approach to obtaining new nitrilases turned to be a convenient alternative 

to the activity-based assays (Seffernick et al., 2009). As a result, sequence-homology 

based database searches were performed, and several putative fungal nitrilases were 

expressed in E. coli as active enzymes and characterized. Among these new enzymes, 

not only aromatic nitrilases, but also nitrilases with a strong preference for arylaliphatic 

substrates were found (Kaplan et al., 2011). 

The specific biological roles of nitrilases are not yet fully understood, however, 

studies have been published on their participation in cyanide detoxification and CG and 

glucosinolate metabolism in plants. The role in the plant hormone idole-3-acetic acid 

(IAA) synthesis was proposed, but is still uncertain (Piotrowski, 2008). 

The first purified nitrilase enzyme was of a plant origin. The enzyme was 

isolated from the leaves of barley and was found to catalyze the conversion of indole-3-

acetonitrile (IAN) into IAA. The IAA-hydrolysing activity was then found in other 10 

plant species from the families Brassicaceae, Poaceae and Musaceae. However, the 

barley nitrilase accepted also many other nitrile substrates, some with much higher 

activity than IAN (Thiman and Mahadevan, 1964). Partially purified nitrilase from 
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chinese cabbage displayed 44 times higher Vmax for 3-cyanopyridine than for IAN 

(Rausch and Hildenberg, 1980). 

Arabidopsis thaliana produces four nitrilase isoforms (NIT1-4). NIT4 showed a 

strict preference for AlaCN, with no or trace activities for IAN and other nitrile 

substrates (Piotrowski et al., 2001). In fact, NIT4 homologs are ubiquitous in higher 

plants where they participate in cyanide biotransformation by converting AlaCN into 

asparagine and aspartic acid (Piotrowski and Volmer, 2006). 

NIT1-3 share a high degree of sequence identity and are similar in biochemical 

properties, but differ in their localization in the plant (Vorwerk et al. 2001). Homologs 

of NIT1 were discoverered only in the plant family of Brassicaceae, where they seem to 

have evolved from a NIT4 homolog by gene duplication.  Here their primary role is most 

likely not the synthesis of IAA but rather the participation in the metabolism of 

glucosinolates (Piotrowski 2008, Janowitz et al., 2009). In Poaceae, NIT4 gene 

duplication probably led to neofuctionalization of the resulting nitrilase isoforms, and 

their role in the plant is most likely the participation in the metabolism of CGs (Jenrich 

et al., 2007). 

 

1.3 Nitrilase application in biocatalysis and bioremediation 

 

Enzymatic hydrolysis of nitriles has attracted profound attention since 1980s as 

it provides a suitable alternative to the conventional methods that use strong acid or 

base catalysts. Based on their versatility, nitrile-converting enzymes are potentially 

widely applicable in organic synthesis and present a convenient method to obtain a 

broad spectrum of useful amides, carboxylic acids, etc. (Brady et al., 2004; Martínková 

and Křen, 2010; Gong et al., 2012). 

Nitrilases have been recognized as valuable biocatalysts for the mild synthesis of 

high added-value carboxylic acids from cheap and readily available nitriles. Because of 

their inherent enantioselectivity, nitrilases are also attractive as selective catalysts for 

setting chiral centers in fine chemical synthesis (Robertson et al. 2004). Nitrilases can 

also discriminate between configurational isomers (E,Z) (Effenberger and Osswald, 

2001). Additionally, they can be used in the synthesis of lactones from 4-hydroxy 
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nitriles (Taylor et al., 1996), and lactams from α,ω-dinitriles (Gavagan et al., 1998; 

Brady et al., 2004). 

A number of academic institutions and companies (DuPont, Lonza, Dow, 

Diversa, BASF, DSM; Brady et al. 2004) showed interest in exploring the synthetic 

potential of nitrilases. However, only a few nitrilase-catalyzed processes have been put 

into practice on industrial or pilot scale so far, like the manufacture of 5-

hydroxypyrazine-2-carboxylic acid and 6-hydroxypicolinic acid by Lonza (Liese et al. 

2000) or (R)-mandelic acid and (R)-3-chloromandelic acid by Mitsubishi Rayon Co. 

(Brady et al. 2004; Malandra et al. 2009). The main reason is probably the relatively low 

thermostability of the enzyme and the fact that the specific activity and operational 

stability of most nitrilases is lower than that required in commercial application. 

Overcoming these drawbacks could further widen nitrilase application in organic 

synthesis, therefore a number of strategies have been adopted in order to obtain 

enzymes with new and/or improved properties, like high throughput screening (Black 

et al., 2015; Coady et al., 2013; Vergne-Vaxelaire et al., 2013; Robertson et al., 2004) , 

research of extremophiles (Mueller et al., 2006), screening of eukaryotic organisms 

(Kaplan et al., 2006a), genome mining (Martínková 2014; Gong et al., 2013; Kaplan et 

al., 2013; Kaplan et al., 2011; Seffernick et al., 2009), rational protein design and 

directed evolution (Kaul and Asano, 2012; Gong et al., 2012). 

Nicotinic acid, (R)- and (S)-mandelic acid, acrylic acid and glycolic acid 

production using nitrilases, and the potential of fungal nitrilases in the field of 

biocatalysis will be discussed in this Section, as well as the role of nitrilases in the 

biodegradation of nitrile pollutants.  

 

1.3.1 Nicotinic acid  

 

Nicotinic acid (niacin, vitamin B3) a pellagra-preventing factor, is often used in 

the production of feedstuff additives and pharmaceutical intermediates. Biological 

route for nicotinic acid production is gaining more attention compared to chemical 

route as the chemical conversion requires high energy input and separation of the 

product is very costly with low yield (Almatawah and Cowan, 1999). To date, several 
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nitrilase-producing organisms have been utilized in the biocatalytic production of 

nicotinic acid through the hydrolysis of the parent nitrile, 3-cyanopyridine. Tab. 1.5 

gives recent examples of these bioconversions. 

 

Table 1.5 Nitrilase-producing organisms in the nicotinic acid production 

Organism Biocatalyst 

Process mode  

Substrate 

conc. (M) 

Productivity Ref. 

Rhodococcus sp. 

NDB 1165 

Resting cells 

Fed batch 

1.6 a 8.95 g h-1 gDCW
-1 Prasad et al., 

2007 

Nocardia 

globerula NHB-2 

Resting cells 

Fed batch 

0.1  24.6 g h-1 gDCW
-1 Sharma et al., 

2011 

Gibberella 

intermedia CA3-1 

Alginate 

immobilized cells 

Fed batch 

0.2  205.7 g gDCW
-1 b Li et al., 2015 

a cumulative concentration 

b after 28 consecutive batches 

 

Cell free extract from A. niger K10 adsorbed onto a 1mL HiTrap Butyl Sepharose 

column converted of 3-cyanopyridine and 4-cyanopyridine. The initial reaction was 

nearly quantitative. The conversion of 3-cyanopyridine decreased to 70% after 15 h, 

the conversion of 4-cyanopyridine decreased to 60% after 39 h. Amide by-product was 

formed in both cases – the molar ratio of nicotinic acid and nicotinamide was ca. 16:1 

and of isonicotinic acid and isonicotinamide ca. 3:1 (Vejvoda et al., 2006a). 

Mycelium of F. solani O1 entrapped in LentiKats® and the cell-free extract 

immobilized onto a Butyl Sepharose column hydrolyzed 100 mmol L-1 and 10 mmol L-1 

3-cyanopyridine, respectively. The entrapped mycelium hydrolyzed 74 % of the 

substrate within 75 h, the column preparation reached nearly quantitative conversion 

(>99 %) within 72 h. The conversion of 10 mmol L-1 concentration afforded more 

nicotinamide (ca. 5 % of the total product) than the 100 mmol L-1 conversion of the 

same substrate by the entrapped mycelium (Vejvoda et al., 2006b).  
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1.3.2 (R)- and (S)-Mandelic acid and (R)-o-chloromandelic acid 

 

Enantiomerically pure 2-hydroxycarboxylic acids are valuable synthetic building 

blocks. (R)-Mandelic acid is frequently used as an optical resolving agent and 

intermediate for the production of various pharmaceutical and agricultural products, 

and is currently produced through the nitrilase reaction on the scale of several tons per 

year by BASF (Germany) and Mitsubishi Rayon Japan (Gong et al., 2012). A dynamic 

kinetic resolution (Fig. 14) of the chemically synthesized cyanohydrin in the presence of 

an enantioselective nitrilase affords the (R)-acids (Rantwijk and Stolz, 2015). 
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(R)-Mandelic acid (S)-Mandelonitrile

+
 

Figure 1.4: Industrial production of (R)-mandelic acid (Adapted from Gong et al., 

2012) 

 

Nitrilase from Alcaligenes sp. was adopted in (R)-mandelic acid production on 

laboratory scale. The biotransformations proceeded in batch and fed batch reactions 

run in buffer or buffer/organic co-solvent setup (Zhang et al., 2010; Zhang et al, 2011). 

Immobilized and permeabilized preparations of the biocatalyst were also employed in 

the reactions (Xue et al., 2013; He et al., 2010; Zhang et al., 2015). Lately, total mass of 

450 g of optically pure (R)-mandelic acid were produced from a fed-batch reaction (16 

feeds of 100 mM substrate) by glutaraldehyde cross-linked recombinant E. coli cells 

expressing the nitrilase gene from Alcaligenes sp. (Zhang et al., 2014). Further 
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improvement of the biocatalyst efficiency was made by isopropanol permeabilization of 

the E. coli cells (Zhang et al., 2015). 

The enzymatic production of (S)-mandelic acid may prove problematic as no 

nitrilase with a satisfactory (S)-selectivity has been identified so far (Rantwijk and Stolz, 

2015). A solution was proposed in the form of a bi-enzymatic process. It starts with the 

synthesis of the enantiopure (S)-mandelonitrile from aldehyde and HCN by 

hydroxynitrile lyase. The following step is the hydrolysis of the (S)-mandelonitrile by 

nitrilase with a low enantioselectivity (Rustler et al., 2008; Sosedov et al., 2009). The 

bienzymatic cascade can be carried out in “one pot“ by co-expressing both enzymes in 

one host. The gene of (S)-hydroxynitrile lyase from cassava (Manihot esculenta) 

together with the gene of arylacetonitrilase from Pseudomonas fluorescens EBC191 

were expressed in E. coli (Sosedov et al., 2009) or in Pichia pastoris (Rustler et al., 

2008). Recently, a combi-CLEA of the two enzymes plus an amidase from Rhodococcus 

erythopolis afforded (S)-mandelic acid as the sole product in 90% yield and >99% 

enantiomeric purity (Fig. 1.5). 

CHO OH
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COOH NH
3
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Nitrilase

+ 2 H2O
+

(S)-Mandelonitrile

(S)-Mandelamide

(S)-Mandelic acid

+

Amidase

+ H2O

 

Figure 1.5: Combi-CLEA tri-enzymatic production of (S)-mandelic acid (Adapted from 

Chmura et al., 2013). (S)-HNL…hydroxynitrile lyase 

 

(R)-o-Chloromandelic acid serves as the precursor of a cardiovascular drug 

Clopidogrel® (Osprian et al., 2003; Ema et al., 2008). This mandelic acid derivative can 
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be also produced by the hydrolysis of the parent nitrile using nitrilases. Bi-phasic 

systems were adopted in these bioconversions. Nitrilase from Labrenzia aggregata 

converted 300 mM (R)-o-chloromandelonitrile in 10 % (v/v) toluene as a co-solvent and 

the product e.e. reached 96.5 % (Zhang et al., 2012). Later, (R)-o-Chloromandelic acid 

was produced in 415 mM concentration and 97.6% e.e. by a nitrilase from Burkholderia 

cenocepacia J2315 (Wang et al., 2014). The experiment was carried out in a fed-batch 

mode using ethanol as a cosolvent (20 % v/v).  

 

1.3.3 Acrylic acid 

 

Acrylic acid (2-propenoic acid) is a commodity chemical with an estimated 

annual production capacity of 4.2 million metric tons. Major uses of acrylic acid, its salt 

and esters, are in the production of polymeric flocculants, dispersants, coatings, paints, 

adhesives, and binders for leather, paper and textile (Straathof et al., 2005). Currently, 

most commercial acrylic acid is produced by partial oxidation of propene, a process 

which generates several unwanted by-products such as acrolein and a large amount of 

inorganic waste (Shen et al., 2009). The enzymatic hydrolysis of acrylonitrile using 

nitrilase is currently considered an attractive alternative for the synthesis of acrylic acid 

(Gong et al., 2012). 

The nitrilase producing R. rhodochrous J1 afforded 390 g L-1 acrylic acid 

(Nagasawa et al., 1990b). A mutant strain of R. rhodochrous tg1-A6 with high nitrilase 

activity afforded 414.5 g L-1 acrylic acid, which was accumulated by transforming 43 

feeds of acrylonitrile during a 10-h reaction (Luo et al., 2006). 

 

1.3.4 Glycolic acid 

 

Glycolic acid, the simplest α-hydroxycarboxylic acid, is used in skin care 

products, industrial cleaners and as a monomer in the synthesis of polyglycolic acid for 

dissolvable sutures, drug-delivery and packaging materials. Majority of the 

commercially available glycolic acid is currently produced through high-pressure and 
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high-temperature reaction of formaldehyde and carbon monoxide under acid catalysis 

(Martínková and Křen, 2010; Gong et al., 2012).  

Several studies appeared recently, proposing enzymatic catalysis for the glycolic 

acid manufacture. Immobilized E. coli cells producing the Acidovorax facilis 72W 

nitrilase mutant were adopted in a chemoenzymatic process (Fig. 1.6), and a biocatalyst 

productivity of >1,000 g glycolic acid g dcw
 -1 was achieved (Panova et al., 2007). A 

productivity of 1,010 g glycolic acid g-1 cells after 55 recycle reactions was achieved 

with a mutant A. facilis nitrilase (Wu et al., 2008). 

 

HCN
OH

CN
HCHO

OH O

O NH
4
+

OH O

OH

+

Glycolonitrile

Nitrilase

Glycolate

IEX

Glycolic acid  

 

Figure 1.6.: Chemoenzymatic process using mutant nitrilase from Acidovorax 

facilis 72W for the synthesis of glycolic acid from formaldehyde and hydrogen cyanide 

(Adapted from Panova et al., 2007). IEX…ion exchange 

 

1.3.5 Biodegradation 

 

Nitrile compounds used in chemical industry and agriculture are relevant 

pollutants with different degrees of toxicity (Saillenfait and Sabaté, 2000; Mylerová and 

Martínková, 2003) and have been detected in samples from diverse environments, 

such as sewage sludge from a water-treatment plant and samples collected from 

marine and coastal areas (Fang et al., 2015). The typical contaminanting compounds 

include acetonitrile, acrylonitrile, succinonitrile, benzonitrile, and the herbicides 

dichlobenil, bromoxynil, and ioxynil. Bioremediation with microorganisms harboring 

nitrile-converting enzymes offers an efficient method for removing these contaminants 

(Gong et al., 2012). 

Bacterial strains of the genus Rhodococcus proved to be a promising option for 

the clean-up of polluted sites, because of their large genomes and their wealth of 
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catabolic pathways which enable them to uptake and metabolize various hydrophobic 

compounds (Martínková et al., 2009). 

Rhodococcus rhodochrous BX2, an isolate from the contaminated soil, was 

reported to use acetonitrile, acrylonitrile and crotononitrile as the sole carbon and 

nitrogen sources, resulting in the complete degradation of these compounds. Both 

NHase/amidase and nitrilase enzyme systems were involved in the nitrile consumption 

(Fang et al., 2015). 

The soil isolates Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 

and Nocardia globerula NHB-2 grown on isobutyronitrile as inducer expressed nitrilases 

with activities towards benzonitrile. In the form of resting cell suspensions, the strains 

were used for degradation of 0.5 mM benzonitrile herbicides chloroxynil, bromoxynil 

and ioxynil. Depending on the strain and compound, 30 to 100 % of the herbicides were 

hydrolyzed after 5-h incubation. An almost full conversion of chloroxynil and 

bromoxynil and ca. 60 % conversion of ioxynil was observed in all strains within 20-h 

icubation. The resulting metabolites in the form of the corresponding carboxylic acids 

were shown to be less toxic than the parent compounds (Veselá et al., 2010). 
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2 Aims of the study 

 

 to select the sequences of new nitrilases in genomes of filamentous 

fungi and bacteria 

 

 to express the genes of hypothetical nitrilases in Escherichia coli and to 

purify them  

 

 to characterize the purified enzymes in terms of substrate specificity, 

kinetics and size of subunit and holoenzyme 

 

 to prepare samples for structural analyses (analytical ultracentrifugation, 

electron microscopy) and cooperate on structural analysis and homologous 

modeling 

 

 to apply the new nitrilases in the hydrolysis of substrates with industrial 

impact such as (R,S)-mandelonitrile and precursors of the taxol sidechain; to 

optimize the process of (R)-mandelic acid production on laboratory scale 
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3 Results and Discussion 

 

3.1 Expression of fungal nitrilase genes in E. coli 

 

Nitrilases from archaea, bacteria and plants have been previously produced in 

heterologous hosts (for reviews see Gong et al., 2013; Gong et al., 2012; Piotrowski 

2008). Recently, expression of a number of fungal nitrilase genes in E. coli was 

performed by our research group (Kaplan et al., 2011; Petříčková et al., 2012a). 

The genes were obtained by mining the databases for sequences of putative 

nitrilases similar to the previously produced, partially purified and characterized fungal 

nitrilases.   

In contrast to the aromatic nitrilases (Kaplan et al., 2006c; Vejvoda et al., 2008), 

expression of fungal arylacetonitrilase genes in the native organisms poses several 

drawbacks such as specific conditions of growth and induction. Rapid activity loss after 

harvest and tissue disruption makes the enzyme purification difficult or impossible 

(Petříčková, 2013). In constrast, the expression of the corresponding genes in E. coli 

eliminates these problems, and in combination with genome mining, it is a suitable way 

to test a number of new enzymes.  

The gene and protein databases have become a rich source of nitrilase 

sequences, and the subsequent gene synthesis – including the option of codon 

frequency optimization – and expression in E. coli has become a convenient method for 

nitrilase production and purification. Furthermore, with the previously obtained results 

in mind, the search for new nitrilases can be focused on expected properties. 

Comparing not only the overall sequence similarities, but also looking for the presence 

of specific regions may prove useful for the selection of enzymes with desired substrate 

specificities (Seffernick et al., 2009). 

In the present work, new putative nitrilase sequences were selected according 

to their similarity to the previously studied enzymes. Together with our previously 

characterized nitrilases (Petříčková et al., 2012a), they were produced in E. coli BL21 

(DE3) Gold, and tested, in the form of whole-cell catalyst, against a set of different 
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substrates, consisting of aromatic, arylaliphatic and aliphatic nitriles (for more details 

see Appendix 1).  

In the group of 12 heterologously produced fungal enzymes, we confirmed 3 

aromatic nitrilases, 6 arylaliphatic nitrilases, 1 nitrilase with a mixed substrate 

preference and 2 cyanide hydratases. The results showed us that there were 

correlations between the amino acid sequences of the enzymes and their substrate 

specificities. A phylogenetic tree of all nitrilases heterologously produced by us to date, 

including bacterial and plant-like enzymes, is divided into five branches (Fig. 3.1; some 

of these enzymes are not discussed in this work). Within these branches, the presence 

of specific motifs in the enzyme sequences can be recognized near the active cysteine 

residue (Fig. 3.2; for complete sequence alignments see Supplementary Fig. S1-S3). 

With two exceptions, enzymes clustered in these branches also share the same 

substrate preference.  

 

 

 

Figure 3.1: Phylogenetic tree of characterized fungal nitrilases and cyanide hydratases 

and plant-like and rhodococcal nitrilases 
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Figure 3.2: Sequence motifs near the active cysteine residue in fungal aromatic and 

arylaliphatic nitrilases and cyanide hydratases 

 

Fig. 3.3 shows the preferred aromatic substrates of the nitrilases from 

Gibberella moniliformis (NitGm), Penicillium marneffei (NitPm), Penicillium 

chrysogenum (NitPc) and Meyerozyma guiliermondii (NitMg).  

 

 

Figure 3.3: Activities of E. coli cells producing codon-optimized fungal aromatic 

nitrilases 
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The aromatic nitrilases from Gibberella moniliformis (NitGm), Penicillium 

marneffei (NitPm) and Penicillium chrysogenum (NitPc2) shared 43-56 % sequence 

identities. They preferred benzonitrile and/or 4-cyanopyridine as their substrates (Fig 

3.3) and generally displayed a lower activity than arylacetonitrilases (Fig. 3.4; see 

below). The nitrilase with a mixed substrate preference, i.e. the enzyme from 

Meyerozyma guiliermondii (NitMg) exhibited a different substrate specificity pattern 

(Fig. 3.3; see below). Aromatic nitrilases were previously studied in bacteria (Bacillus 

pallidus Dac521, Nocardia sp. NCIB 11216, Rhodococcus rhodochrous NCIMB 11216, 

Pseudomonas aeruginosa 10145, Geobacillus pallidus RAPc8), and fungi (Fusarium 

solani O1, Aspergillus niger K10 and Fusarium oxysporum f. sp. melonis; see Gong et al., 

2012 for a review). Nitrilases with activities for (hetero)aromatic nitriles can be 

employed in the production of nicotinic and isonicotinic acid from 3- and 4-

cyanopyridine, and several studies using fed-batch or continuous flow set-ups with 

bacterial nitrilase (Mathew et al., 1988; Almatawah and Cowan, 1999; Sharma et al., 

2006; Prasad et al., 2007) or fungal nitrilase (Vejvoda et al., 2006a; Vejvoda et al., 

2006b; Malandra et al., 2009) have been published. Suitable immobilization methods 

may improve the enzyme’s stability and reusability, as in the case of the nitrilase-

harboring cells of the fungus Gibberella intermedia CA3-1, in which a production of up 

to 205.7 g gDCW
-1 of nicotinic acid was reported (Li et al., 2015). 

The preferred substrates of all arylacetonitrilases, i.e. the enzymes from 

Neurospora crassa (NitNc), Aspergillus niger CBS (NitAn2 and NitAn3), Aspergillus 

oryzae (NitAo), Nectria haematococca (NitNh) and Arthroderma benhamiae (NitAb) 

were phenylacetonitrile, (R,S)-mandelonitrile and indole-3-acetonitrile (Fig. 3.4). 
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Figure 3.4: Activities of E. coli cells producing codon-optimized fungal 

arylacetonitrilases 

 

The fungal arylacetonitrilases exhibited sequence identities between 49-74 % 

but shared only about 40 % identities to the known bacterial arylacetonitrilases, such as 

those from Alcaligenes faecalis (Nagasawa et al., 1990a; Yamamoto et al., 1992), 

Alcaligenes sp. (Zhang et al., 2011) and Pseudomonas putida (Banerjee et al., 2009). 

Like the bacterial arylacetonitrilases, their fungal counterparts differed between each 

other in their enantioselectivity for (R)-mandelonitrile (NitNc and NitAn2 >99 % e.e., 

NitAn3, NitAo, NItNh and NitAb 63-89 % e.e.) and the percentage of mandelamide in 

the reaction product. These specific features are yet impossible to predict from the 

nitrilase sequences, however, some studies on various nitrilase mutants revealed the 

effect of certain amino acid residues on enantioselectivity and amide production (Kiziak 

et al., 2007; Kiziak and Stolz, 2009; Sosedov et al., 2010;  Petříčková et al., 2012b).  

The specific activities of NitMg are displayed together with aromatic nitrilases in 

Fig. 3.3 because of its high activities for (hetero)aromatic nitriles; however, it seems 

that its substrate specificity is of a mixed type. NitMg had a significantly higher activity 

for 4-cyanopyridine and 3- and 2-cyanopyridine than the other tested aromatic 

nitrilases and, moreover, its activity for phenylacetonitrile (0.44 U mg dcw-1), the typical 

substrate of arylacetonitrilases, was nearly the same as for benzonitrile. On the other 
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hand, its activity for mandelonitrile was negligible. In the phylogenetic tree (Fig. 3.1), 

NitMg is clustered within the arylacetonitrilase branch, and furthermore, its sequence 

contains a hexapeptide motif which is a characteristic feature of many fungal 

arylacetonitrilases (although not all of these enzymes contain it), and is positioned 

close to the catalytic cysteine residue (e.g. in NitAb, NitNc, NitNh; Fig. 3.2). Thus, NitMg 

seems to be an exception from the sequence/substrate specificity correlation of the 

fungal nitrilases. Its sequence also shared only moderate identities to the sequences of 

the other studied fungal nitrilases (37-44 %). 

 

 

Figure 3.5: Activities of E. coli cells producing codon-optimized fungal cyanide 

hydratases 

 

The enzymes from Aspergillus niger K10 (NitAn1) and Penicillium chrysogenum 

(NitPc1) were identified as cyanide hydratases (CHTs). Sequences of these enzymes 

shared 90 % identity, and on average, they were 28 amino acids longer than the rest of 

the fungal nitrilases. Both CHTs displayed an almost exclusive preference for HCN as a 

substrate; however, minor activities for 2-cyanopyridine were observed as well (Fig. 

3.5). Activities for saturated and unsaturated aliphatic nitriles or benzonitrile had been 

previously reported in CHTs from Fusarium lateritium (Nolan et al., 2003) and Fusarium 

oxysporum (Yanase et al., 2000), but were only about 0.01-0.04 % of the activity for 
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HCN. In contrast, the activity for 2-cyanopyridine in NitAn1 was an order of magnitude 

higher, and represented 3.6 % of that for HCN.  

As for general features common for all the tested nitrilases, the catalytic triade 

Glu-Lys-Cys was found in all studied enzymes. Tryptophan and glutamic acid residues 

were conserved among all our nitrilases at the positions 1 and 2 downstream of the 

catalytic cysteine (for examples see Fig. 3.2). An amino acid residue other than 

tryptophan is very rare at this position. So far, only in bacterial nitrilases from Klebsiella 

ozaenae (O’Reilly and Turner, 2003) and Pseudomonas fluorescens (Kiziak et al., 2005), 

alanine was found instead of tryptophan. The residue at position 3 downstream of the 

active cysteine is typically a histidine for nitrilases and asparagine for CHTs, although 

nitrilases with asparagine at this position were reported as well (K. ozaenae and 

Arabidopsis thaliana; O’Reilly and Turner, 2003). 

 

 

3.2 Purification and characterization of recombinant nitrilases 

from Arthroderma benhamiae and Nectria haematococca 

 

The synthetic genes coding for arylacetonitrilases from Arthroderma benhamiae 

(NitAb) and Nectria haematococca (NitNh) were prepared by GeneArt (Regensburg, 

Germany; commercial service), ligated into pET30a(+) vector and expressed in E. coli 

Bl21 DE3 Gold (Appendix 2). The cell cultures were inoculated from the cryoconserve 

and grown in 100 mL of LB-medium in shaken 500-mL Erlenmeyer flasks at 37°C. After 

the culture OD610 reached a value of approx. 0.6, 0.5 mM IPTG was added for protein 

expression induction, and the incubation temperature was lowered to 25°C. The 

cultures were harvested by centrifugation after the next 17 hours. 

For the nitrilase purification, the cells were resuspended in Tris/HCl buffer with 

150 mM NaCl, pH 8.0 and sonicated. After centrifugation, the cell-free extract was 

applied on ion exchange column, the active fractions were collected and applied on gel 

filtration column. The active fractions were pooled and concentrated.  

Tables 3.1 and 3.2 summarize the enzyme activity and yield after each 

purification step. In both cases, the nitrilase formed the major part of the soluble 



43 
 

proteins in the cell (Fig. 3.6), therefore NitAb and NitNh were only purified 1.7 and 1.8 

fold, respectively. The yields of both enzymes were similar, however, NitNh had nearly 

4 times higher specific activity than NitAb.  

 

Table 3.1: Purification of the nitrilase from Arthroderma benhamiae (NitAb) 

 
Specific activity 

(U mg-1) 
Total activity (U) Yield (%) 

Cell-free extract 9.4 416 100.0 

Ion exchange 

chromatography 
14.7 347 83.3 

Gel filtration 16.3 117 28.2 

 

Table 3.2: Purification of the nitrilase from Nectria haematococca (NitNh) 

 
Specific activity 

(U mg-1) 
Total activity (U) Yield (%) 

Cell-free extract 36.2 5192 100.0 

Ion exchange 

chromatography 
43.5 3835 73.9 

Gel filtration 64.4 992 19.1 

 

Fig. 3.6 shows the SDS-PAGE analysis of NitAb and NitNh after each purification 

step. Appearance of an intense band at ca. 37 and 36 kDa could be observed after 

induction with IPTG. These apparent molecular weights of the subunits are similar to 

the theoretical ones (36.1 and 36.8 kDa, respectively), although with slight differences. 

It is evident from Fig. 3.6 that NitAb appears to have a higher molecular weight than 

NitNh, despite the fact that the theoretical value is lower. This might be caused by an 

incomplete denaturation of the protein. 
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Figure 3.6: SDS-PAGE analysis of nitrilases NitAb (lanes 2-5) and NitNh (lanes 6-9) 

after each purification step. Lane 1 – marker, lanes 2 and 6 – non-induced cells, lanes 

3 and 7 – cell-free extracts, lanes 4 and 8 – ion exchange chromatography, lanes 5 and 

9 – gel filtration. 

 

Fig. 3.7 demonstrates the results of SDS-PAGE performed without dithiotreitol 

in the sample preparation. Without this reducing agent, the disulfide bridges in the 

proteins should remain intact. The non-reducing SDS-PAGE analysis of the purified 

NitAb and NitNh revealed a number of other bands of higher molecular mass compared 

to the monomer. The next most prominent band can be found at approx. 70 kDa, which 

roughly corresponds to a dimer. It is possible that disulfide bonds may exist between 

the subunits 
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Figure 3.7: Non-reducing SDS-PAGE of the purified nitrilases. Lane 1 – marker, lane 2 – 

nitrilase NitAb, lane 3 – nitrilase NitNh 

 

Both enzymes exhibited the substrate specificity typical for arylacetonitrilases: 

their preferred substrates were phenylacetonitrile and (R,S)-mandelonitrile. However, 

their relative activities for these substrates differed. NitAb hydrolyzed the two nitriles 

with nearly the same activities, whereas NitNh converted mandelonitrile with only 27 % 

of the activity for phenylacetonitrile (see Tab. 3.3).  

As for the kinetic parameters, Vmax was similar for both substrates in NitAb, but 

the Km value for mandelonitrile was nearly 4 times higher. NitNh exhibited almost the 

same Km values for both substrates, however, Vmax for phenylacetonitrile was 3.6 times 

higher than that for mandelonitrile (see Tab. 3.4). In this aspect, the previously 

characterized fungal arylacetonitrilase, NitAn2, is similar to NitAb, and another enzyme, 

NitNc, shows the same trends in its kinetic parameters as NitNh (Petříčková et al., 

2012a). 

The relative activities of NitAb for other tested substrates were generally higher 

than those of NitNh (Table 3.3). 

The amide production was also different for each enzyme. NitNh generally 

produced more amide than NitAb. From phenylacetonitrile and mandelonitrile, NitNh 
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produced more than  6 % amide of the total product. From 3-cyanopyridine it was even 

9.9 %. In contrast, NitAb produced only 1.6 % and 0.4 % of amide from mandelonitrile 

and 3-indolylacetonitrile, respectively; other substrates were exclusively converted to 

acids. Both enzymes also displayed minor activity for HCN, whose only reaction product 

was formamide. 

 

Table 3.3: Substrate specificity of nitrilases NitAb and NitNh 

Substrate 
Relative activity (%) / amide (molar % in total product) 

NitAb NitNh 

Phenylacetonitrile 100a / 0 100a / 6.5 

(R,S)-Mandelonitrile 94 / 1.6 27 / 6.2 

(R,S)-2-Phenylpropionitrile 1.3 / 0 0.14 / 0 

3-Indolylacetonitrile 44 / 0.4 15 / 1.6 

3-Phenylpropionitrile 5 / 0 0.03 / 0 

KCN 2.5 / 100 0.12 / 100 

Benzonitrile 0.5 / 0 0.1b / 0 

3-Chlorobenzonitrile 0.3 / 0 0.1b / 0 

4-Chlorobenzonitrile 2.3 / 0 0.3b / 0 

2-Cyanopyridine 8 / 0 1.9b / 9.9 
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3-Cyanopyridine 1 / 0 2.7b / 0 

4-Cyanopyridine 9 / 0 7.5b / 0.6 

Activities assayed with 25 mM substrate, except KCN (1 mM) 

a 16.3 and 64.4 U mg-1 protein taken as 100% for the purified nitrilases NitAb and 

NitNh, respectively 

b adopted from Veselá, 2011 

 

Table 3.4: Kinetic parameters of nitrilases NitAb and NitNh 

 NitAb NitNh 

 Km (mM) Vmax (U mg-1) Km (mM) Vmax (U mg-1) 

Phenylacetonitrile 1.4 25.7 8.3 111.1 

(R,S)-Mandelonitrile 4.0 20.5 9.9 31.3 

 

Both enzymes hydrolyzed 25 mM (R,S)-mandelonitrile with selectivity for its (R)-

enantiomer. NitAb was only moderately selective, whether the reaction pH was 5.0 or 

8.0. NitNh displayed a higher e.e. value at pH 5.0 than NitAb, although still in the 

moderate region. At pH 8.0, however, the e.e. value rose to 89 % (Tab. 3.5). 

In contrast, NitAn2 and NitNc were highly (R)-selective even at pH 5.0 (e.e. > 90 

%), although NitNc produced 40 % of (S)-mandelamide under these conditions. At pH 

7.0-7.5, NitAn2 and NitNc formed (R)-mandelic acid with e.e. over 99 %. NitNc also 

produced only 15 % of (S)-mandelamide and with a lower e.e (51 %). NitAn2 produced 

no mandelamide both at pH 5.0 or higher (Petříčková et al., 2012b).  

The explanation of the higher e.e. values might be the effect of lower substrate 

concentration (10 mM) in case of NitAn2 and NitNc. Mandelonitrile in a solution 

undergoes decomposition into benzaldehyde and HCN and there is an equilibrium 

between these compounds. At lower pH (5.0) the substrate racemization is slow, and 

therefore the availability of the preferred (R)-enantiomer is limited. Higher pH allows a 

rapid racemization of mandelonitrile, and the (R)-enantiomer is available in sufficient 
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amount during the entire course of the reaction. However, the moderate 

enantioselectivity of NitAb seems to be a given characteristic of the enzyme that can be 

only slightly affected by the reaction conditions. 

 

Table 3.5: Hydrolysis of 25 mM (R,S)-mandelonitrile to (R)-mandelic acid by the 

nitrilases NitAb and NitNh – effect of pH on enantioselectivity 

pH 
E.e. (%) (R)-mandelic acid 

NitAb NitNh 

5.0 64 67 

8.0 63 89 

 

The (R)-selective hydrolysis of (R,S)-mandelonitrile seems to be a common 

property of arylacetonitrilase. To date, bacterial arylacetonitrilases have been quite 

extensively studied in terms of their enantioselectivity for (R,S)-mandelonitrile, and 

enzymes with excellent, moderate or no (R)-selectivity were discovered.  

The highly (R)-selective arylacetonitrilases were found in the Alcaligenes genus 

(Nagasawa et al., 1990; Yamamoto et al., 1992; Zhang et al., 2010; Liu et al. 2011) and 

were used for the production of high concentrations of (R)-mandelic acid (He et al., 

2010; Xue et al., 2013; Zhang et al., 2014a; Zhang et al., 2015).  

An example of moderately enantioselective bacterial arylacetonitrilase is the 

enzyme from Pseudomonas fluorescens (Kiziak et al., 2005) which was employed in an 

enantioretentive biotransformation of (S)-mandelonitrile into (S)-mandelic acid or (S)-

mandelamide (Rustler et al., 2008; Sosedov et al., 2009; Chmura et al., 2013). 

The nonenantioselective arylacetonitrilases were identified in Bradyrhizobium 

japonicum (Seffernick et al. 2009; Zhu et al. 2007) and Burkholderia xenovorans 

(Seffernick et al. 2009). 

NitNc, NitAb and NitNh share only 36–41 % identities with the 

arylacetonitrilases from the Alcaligenes, Pseudomonas, Bradyrhizobium and 

Burkholderia genera; all three enzymes also possess a hexapeptide insert, a sequence 

near the active cysteine typical for most fungal arylacetonitrilases. NitAn2, on the 
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contrary, shares more identities with the bacterial enzymes (41-45 %) and lacks the 

hexapeptide sequence. 

 

Figure 3.8: Temperature optimum (squares) and stability (triangles) of nitrilase NitAb 

 

 

Stability of an enzyme is one of the most important criteria for its application in 

biotechnology. As for the temperature profiles, the optima were 40°C for NitNh 

(Veselá, 2011) and 45°C for NitAb (Fig. 3.8), however, both enzymes were unstable at 

temperatures above 30°C (Fig. 3.8).  

In contrast, both enzymes were highly active in a broad range of pH: NitNh at pH 

5.5-8.5 (Veselá, 2011) and NitAb at 5.0-9.0 (Fig. 3.9). NitNh was stable at pH 5.0-9.0 

(Veselá, 2011), NitAb at pH 5.0-10.0 (Fig.3.9), which qualifies them as more pH resistant 

than a number of bacterial arylacetonitrilases that were stable at pH 6.5-8.0 (see Gong 

et al., 2012 for a review). Even among the fungal nitrilases the pH stability was usually 

narrower, the exception being the aromatic nitrilase NitGm, which was stable at pH 

6.0-11.0 (Petříčková et al., 2012a).  
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Figure 3.9: pH optimum (squares) and stability (triangles) of nitrilase from NitAb   

 

 

The purified nitrilases NitAb and NitNh were analyzed by gel filtration (see Table 

3.6). The molecular weights of the holoenzymes were 336 and 360 kDa, respectively. 

This means that the number of subunits in these structures corresponds approximately 

to ten.  

 

Table 3.6: Molecular weight of the holoenzymes of nitrilases NitAb and NitNh 

according to gel filtration analysis 

Enzyme source Subunit Mw (kDa) 
Holoenzyme Mw 

(kDa) 

Number of 

subunits 

NitAb 36.1 336 9.3 

NitNh 36.8 360 9.8 

 

In contrast, the sedimentation velocity analysis revealed the presence of 

relatively sharp peaks representing dimers, tetramers, hexamers and dodecamers in 
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the sample of purified NitAb (see Fig. 3.10). These discreet values are rather rare, as the 

formation of oligomeric rods or helices has been documented for the enzymes of the 

nitrilase branch of the nitrilase superfamily of enzymes (Thuku et al., 2009; Jandhyala et 

al., 2003; Vejvoda et al., 2008).  

The electron micrographs of NitAb in Fig. 3.12 roughly correspond with these 

findings, as dimers, tetramers and hexamers can be found in them. 

 

 

Figure 3.10: Sedimentation velocity analysis of nitrilase NitAb. From the left to the 

right, the peaks represent a dimer, a tetramer, a hexamer and a trace of dodekamer. 

(Author: RNDr. Ondřej Vaněk, Ph.D., Department of Biochemistry, Faculty of Science, 

Charles University in Prague) 

 

In NitNh, the peaks are more difficult to distinguish. Nevertheless, a dimer, a 

tetramer and a hexamer could be recognized, and further a protein species 

corresponding to an assembly of 12-24 subunits (Fig. 3.11). The electron micrograph of 

NitNh (Fig. 3.13) reveals the presence of both short and long oligomers of this enzyme.  
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Figure 3.11: Sedimentation velocity analysis of nitrilase NitNh. From the left to the 

right, the peaks represent a dimer, a tetramer and a hexamer. The following tail 

represents oligomeric structures of 12-24 subunits. (Author: RNDr. Ondřej Vaněk, 

Ph.D., Department of Biochemistry, Faculty of Science, Charles University in Prague) 
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Figure 3.12: Electron micrographs of the nitrilase NitAb with highlighted tetramers (A) 

and hexamer (B). (Author: RNDr. Oldřich Benada, Ph.D., Institute of Microbiology, 

Academy of Sciences of the Czech Republic) 
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Figure 3.13: Electron micrograph of the nitrilase NitNh (Author: RNDr. Oldřich 

Benada, Ph.D., Institute of Microbiology, Academy of Sciences of the Czech Republic) 

 

The homology models of NitAb and NitNh were created at the Department of 

Structure and Function of Proteins, Institute of Nanobiology and Structural Biology of 

GCRC ASCR by Dr. Natallia Kulik, PhD.  

Three proteins of the nitrilase superfamily were used as templates for 

generating homology models of NitAb and NitNh: a nitrilase from the cyanobacterium 

Syechocystis sp. (Zhang et al., 2014b; Pdb code: 3wuy), a nitrilase from the 

archaebacterium Pyrococcus horikoshii (Sakai et al., 2004; Pdb code: 1j31) and mouse 

nitrilase (Barglow et al., 2008; Pdb code: 2w1v). The best template was the 

Synechocystis sp. nitrilase, as the identities were between 30-33 % and the coverage 

92-93 %. The template search was done by BLAST program (Altschul et al., 1997) and 

the multiple sequence alignment (see Supplementary Fig. S4) constructed by T-Coffee 

server (Notredame et al., 2000). 

In the homology models of NitAb (Fig. 3.14) and NitNh (Fig 3.15,) the typical 

nitrilase α-β-β-α sandwich fold of the enzyme subunit can be recognized. 
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A 

 

B 

 

Figure 3.14: Homology models of the nitrilase NitAb - (A) top view, (B) side view. 

(Author: Dr. Natallia Kulik, PhD., Department of Structure and Function of Proteins, 

Institute of Nanobiology and Structural Biology of GCRC ASCR) 
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A 

 

B 

 

Figure 3.15: Homology models of the nitrilase from NitNh - (A) top view, (B) side 

view. (Author: Dr. Natallia Kulik, PhD., Department of Structure and Function of 

Proteins, Institute of Nanobiology and Structural Biology of GCRC ASCR) 
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Two loops are longer in the fungal nitrilases than in the templates –loop 2 and 

loop 4. In addition, a hexapeptide, which is a typical feature of fungal 

arylacetonitrilases, is missing in the templates. Loop 2 is close to the active site and 

covers the entrance, whereas the hexapeptide is positioned relatively far from the 

active site. This short sequence is present in both NitAb and NitNh and also in NitNc, 

that shares 66 and 67 % amino acid identities with NitAb and NitNh. 

NitNc has the hexapeptide at positions 155-160, that is in the vicinity of the 

catalytic cysteine residue. Similar inserts of the same length were found in almost all 

hypothetical fungal nitrilases homologous with NitNc. However, the homology model of 

NitNc also revealed that its hexapeptide loop is relatively distant from the active site 

(Petříčková, 2013) and therefore the probability of its interference with the catalytically 

active residues is low. It may be possible though, that within the oligomers, the 

hexapeptide of one subunit interacts with regions near the active site of another 

subunit.  
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3.3 Recombinant fungal nitrilases in hydrolysis of high 

concentrations of (R,S)-mandelonitrile 

 

Nitrilases NitAb, NitNh, NitAn2 and NitNc were employed in the production of 

high concentrations of (R)-mandelic acid from (R,S)-mandelonitrile (Appendix 3). The 

experiments were performed in various volumes, from 10 ml in falcon tubes, to 100 ml 

in Erlemeyer flasks. Concentrations of the reaction substrate, (R,S)-mandelonitrile, 

ranged from 100 – 500 mM, and the reactions were performed at different pH values 

and with various portions of toluene in the reaction mixture (see below). All the 

experiments were carried out at 30°C except where stated otherwise. 

The initial experiments were performed in 10 ml of the reaction mixture, 

comparing the reaction rates at 100, 250 or 500 mM (R,S)-mandelonitrile concentration 

at pH 5.0 or 8.0.  

At pH 5.0, NitAb (Fig. 3.16) hydrolyzed only 100 mM mandelonitrile at a 

significant rate, 0.25 and 0.5 M substrate concentrations seemed to be detrimental for 

the enzyme. At pH 8.0, however, the conditions were more suitable for the enzyme to 

hydrolyze even 0.5 M mandelonitrile, and almost 90% conversion was achieved within 

24 hours.  

For NitNh, both low pH and concentrations of mandelonitrile above 250 mM 

were unsuitable (Fig. 3.17). 
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Figure 3.16: Biotransformation of 100 mM (diamond), 250 mM (square) or 500 mM 

(triangle) (R,S)-mandelonitrile at pH 5.0 (A) or 8.0 (B) in buffer:toluene (9:1) biphasic 

system by E. coli cells expressing nitrilase NitAb. The OD610 of the cell suspensions 

was ca. 9. The substrate was first dissolved in toluene and then added to the cell 

suspension; thus the resulting toluene portions were 9, 7 and 4 % in the 100, 250 and 

500 mM reactions, respectively. 
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Figure 3.17: Biotransformation of 100 mM (diamond), 250 mM (square) or 500 mM 

(triangle) (R,S)-mandelonitrile at pH 5.0 (A) and 8.0 (B) in buffer:toluene (9:1) biphasic 

system by E. coli cells expressing nitrilase NitNh. The OD610 of the cell suspensions 

was ca. 9. The substrate was first dissolved in toluene and then added to the cell 

suspension; thus the resulting toluene portions were 9, 7 and 4 % in the 100, 250 and 

500 mM reactions, respectively. 
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As a result of the first experiments, further biotransformations were carried out 

in 0.5 and 0.25 M (R,S)-mandelonitrile with nitrilase NitAb and NitNh, respectively. 

The following reactions were performed at pH 5.0, 8.0, 9.0 and 10.0. Toluene 

formed 0, 10 or 20% of the reaction mixture and mandelonitrile was added separately. 

Milder shaking was applied to minimize the contact of the cells with the toluene layer. 

Tables 3.7 and 3.8 summarize the effect of toluene and pH on the 

enantioselectivity of NitAb and NitNh and on mandelamide production by NitNh. The 

portion of mandelamide in the reactions of NitAb did not exceeed 2 % (molar percent 

of the total product). It is evident that the higher the pH, the better the 

enantioselectivity of both enzymes. The presence of 10 % toluene further increased the 

e.e. values, but at 20 % of toluene the enantioselectivity dropped again. In sum, by 

adding 10 % toluene and increasing pH to 10.0, the (R)-mandelic acid e.e. rose from 43 

to 73 % in NitAb (conversion of 500 mM substrate) and from 73 to 97 % in NItNh 

(conversion of 250 mM substrate). 

The increase in pH and addition of toluene also lowered the mandelamide 

production in NitNh (Table 3.8).  

 

Table 3.7: The effect of pH and toluene content in the reaction mixture on 

enantioselectivity of NitAb and NitNh 

pH 

(R)-mandelic acid e.e. (%) 

NitAba / NitNhb 

No toluene 10 % toluene 20 % toluene 

8.0 43 / 73 71 / 94 64 / 96 

9.0 n. a. 69 / 97 65 / 96 

10.0 n. a. 73 / 97 69 / 96 

a conversion of 500 mM substrate 

b conversion of 250 mM substrate 
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Table 3.8: The effect of pH and toluene content in the reaction mixture on the 

mandelamide production of NitNh 

pH 
NitNha - mandelamide production (%) 

No toluene 10 % toluene 20 % toluene 

8.0 14.4 6.2 6.2 

9.0 n. a. 4.1 4.4 

10.0 n. a. 3.5 3.6 

a conversion of 250 mM substrate 

 

NitNh was from the pH 9.0 and higher highly selective for the (R)-

mandelonitrile, and if it were not for the enzyme’s instability at the substrate 

concentrations above 250 mM, it would be promising for the (R)-mandelic acid 

manufacture, as even this enzyme’s tendency to produce amide could be lowered by 

the reaction conditions (presence of toluene, pH 9.0).  

On the other hand, the moderate enantioselectivity of NitAb, almost no amide 

formation and its broad pH stability are promising for using this enzyme in the 

manufacture of (S)-mandelic acid from (S)-mandelonitrile under conditions of slow 

substrate racemization (pH 5.0).  

 

Table 3.9: Batch transformations of (R,S)-mandelonitrile into (R)-mandelic acid or 

(R,S)-mandelic acid by NitAb and NitNh 

Enzyme Substrate 

conc. (mM) 

Conversion 

(%) 

Product 

concentration 

(g L-1) / e.e. 

(%) 

Volumetric 

productivity 

(g L-1 d-1) 

Catalyst 

productivity 

(g gdcw -1) 

NitAba 100 98.4 14.7 / 0 88.2 7.4 

NitNhb 250 85.7 32.5 / 96.5 195 14.7 

a reaction conditions: pH 9, 10 % (v/v) toluene, 4 h 

b reaction conditions: pH 5, 10 % (v/v) toluene, 4 h 
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The highest yields and productivities achieved in the enantioselective 

transformation of (R,S)-mandelonitrile by NitNh and the its non-selective 

transformation by NitAb are shown in Table 3.9. The transformations were carried out 

under optimized conditions (Table 3.9) in batch mode.  After 4-h reaction at pH 5.0, 

NitAb transformed 100 mM (R,S)-mandelontrile with a 98 % conversion and a 

volumetric productivity of 88 g L-1 d-1. After the same time, NitNh transforming 250 mM 

substrate reached 86% conversion, and a volumetric productivity of 195 g L-1 d-1. 

NitAn2 and NitNc showed better volumetric productivities than NitNh or NitAb 

at similar reaction conditions, being able to convert 500 mM substrate (for details see 

Appendix 3). However, the product e.e. was lower than in the experiments with low 

substrate concentrations (Petříčková et al., 2012b). Therefore, the reaction volume was 

increased to 100 mL and the reaction mode was changed to fed-batch, applying 

multiple feeds of lower substrate amount. 

First, NitAb, NitNh, NitAn2 and NitNc were tested in a reaction setup consisting 

of five feeds of 2.5 mmol (R,S)-mandelonitrile (one feed per hour). To increase the e.e. 

values, pH 10.0 was chosen to enable rapid substrate racemization. No toluene was 

added to exclude its adverse effect on the cells, as the larger reaction vessel (250-mL 

Erlenmeyer flask) would increase the contact between the organic and buffer layers.  

Fig. 3.18 demonstrates the progress of each reaction. . In case of NitNh, the 

reaction proceeded slowly compared to the other three enzymes and even after being 

left to continue overnight, the final conversion was only 42.5 % (Tab. 3.10). This might 

be caused by the lower stability of NitNh at pH 10.0 (Veselá, 2011). In contrast, the 

reactions of NitAb, NitAn2 and NitNc continued after each feed, and after overnight 

incubation, the conversions were 90 % for NitAn2 and NitNc and 98 % for NitAb. The 

volumetric productivities were significantly lower than in batch mode (see above) 

because of lower substrate concentration. However, the e.e. values increased, namely 

for NitAn2 from 94.5 % in the batch mode to 97.6 % in fed-batch mode and NitNc from 

95.2 % in the batch mode to 96.7 % in fed-batch mode (Tab. 3.10).  
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Figure 3.18: Fed-batch hydrolysis of (R,S)-mandelonitrile by NitAb (diamonds), NitAn2 

(squares), NitNc (triangles) and NitNh (x). The reaction was performed in 250-mL 

Erlenmeyer flasks containing 100 mL of the cell suspension in 100 mM Gly/NaOH 

buffer of pH 10.0 and no toluene. The OD610 of the cell suspensions was 3.0-4.1. Feeds 

of 2.5 mmol of the substrate were added at the reaction start and then each hour. 

 

Table 3.10: Fed-batch hydrolysis of (R,S)-mandelonitrile into (R)-mandelic acid by 

NitAb, NitAn2, NitNc and NitNh 

Enzyme Substrate 

amount 

(mmol) 

Conversion 

(%) 

Product 

concentration 

(g L-1) / e.e. 

(%) 

Volumetric 

productivity 

(g L-1 d-1) 

Catalyst 

productivity 

(g gdcw -1) 

NitAb 12.5 98.3 18.2 / 70.5 18.2 14.8 

NitAn2 12.5 90.0 16.7 / 97.6 16.7 18.6 

NitNc 12.5 90.6 15.5 / 96.7 15.5 13.4 

NitNh 12.5 42.5 7.0 / 94.3 7.0 6.6 

 

Owing to its highest e.e. and almost no mandelamide production, NitAn2 was 

selected for another fed-batch experiment with twelve feeds of 5 mmol (R,S)-

mandelonitrile each hour.  
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After the total incubation time of 30.5 h, the reaction reached 90 % conversion 

of 12 x 0.67 g of (R,S)-mandelonitrile and the product concentration 77 g L-1.  The e.e. 

value, however, decreased to 95.6 %. This was probably caused by the higher amount 

of the substrate in the feeds (2.5 vs. 5 mmol). Compared to the batch mode of reaction, 

the volumetric productivities of the fed-batch experiments with NitAn2 were an order 

of magnitude lower. However, the catalyst productivity of the fed-batch was almost 5 

times higher (see Table 3.11).  

The catalyst productivity of NitAn2 in the 12 x 50 mM fed-batch was even 5-10 

times higher than that of some of the bacterial arylacetonitrilases used in the 

conversions of high concentrations of mandelonitrile (Table 3.11). 

Comparable experiments to those with NitAn2 were done with the 

arylacetonitrilase from Alcaligenes sp. (Zhang et al., 2011). In the batch mode, the 

enzyme converted up to 500 mM mandelonitrile with volumetric productivity of 353 g 

L-1 d-1 and catalyst productivity 3.7 g gdcw -1. NitAn2 reached 571 g L-1 d-1 and 9 g gdcw -1 

at the same substrate concentration and experiment setup. In the fed-batch mode, 

catalyst productivity of Alcaligenes remained the same (Zhang et al., 2010), an 

improvement was only achieved by cell-recycling in batch-mode with 100 mM 

substrate. 
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Table 3.11: Production of high concentrations of (R)-mandelic acid from (R,S)-

mandelonitrile by bacterial nitrilases and the fungal nitrilase NitAn2 

Enzyme 

source 

Substrate 

concentration 

/ reaction 

setup 

Product 

concentration 

(g L-1) / e.e. 

(%) 

Volumetric 

productivity 

(g L-1 d-1) 

Catalyst 

productivity 

(g gdcw -1) 

Ref. 

Alcaligenes 

sp. 

300–500 mM 

/ batch 
44-73 / 98.0 292-353 1.8-3.7 

Zhang et 

al., 2011 
5 x 100 mM / 

batch, cell 

recycling 

70-80 / 98.0 55 55 

6 x 100 mM / 

fed-batch 
79 / n.a. 108 3.2 

Zhang et 

al., 2010 

Alcaligenes 

faecalis 

800 mM / 

fed-batch 
105 / 99.0 337 8.4 

Liu et 

al., 2014 

Burkholderia 

cenocepacia 

6 x 500 mM / 

batch, cell 

recycling 

50-73 / 95 982 156 
Ni et al., 

2013 
1,000 mM / 

batch 
150 / 97 895 60 

NitAn2 

500 mM / 

batch 
72 / 94.5 571 9 Veselá 

et al., 

2015 
12 x 50 mM / 

fed-batch 
77 / 95.6 60 40 
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3.4 Use of recombinant fungal nitrilases in the chemo-enzymatic 

synthesis of the taxol sidechain 

 

 

The anti-cancer drug Paclitaxel (taxol) is a natural compound of a complex 

structure (Fig. 3.19). It was first isolated from the bark of the pacific yew (Taxis 

brevifolia). It is an antimicrotubule agent applied in the treatment of various cancer 

types, such as ovarian, gastric, head and neck, non-small lung, prostate and breast 

cancer (Nicolaou and Guy, 1995; Oettle, 2014; Lorusso et al., 2014). In the cell, taxol 

binds to the polymerized microtubules, which leads to the disruption of the cell cycle 

and eventually to cell death (Magnani et al., 2009; Sharma et al., 2013). Nowadays, 

taxol is no longer isolated from the yew tree, but manufactured in a semi-synthetic way 

by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core 

structure.  

 

Figure 3.19: Structure of Paclitaxel (taxol), consisting of the baccatin III core structure 

and the (2R,3S)-N-benzoyl-3-phenylisoserine C13 sidechain. 

 

Previously, different precursors of the C13 sidechain were prepared either by 

asymmetric chemical syntheses (Liu et al., 2009; Dziedzic et al., 2009; Qian et al., 2010), 

or in a chemoenzymatic way using acylases (Cardillo et al., 1999), lipases (Oshitari and 

Mandai, 2003) or reductases (Rimoldi et al., 2011).  
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Here, nitrilases were employed for the first time in the chemoenzymatic 

synthesis of the sidechain precursor (Appendix 4).  

The first step was the chemical synthesis of the dihydrooxazole (±)-trans-1    

((±)-trans-2,4-diphenyl-4,5-dihydrooxazole-5-carbonitrile (structure depicted in Fig. 

3.20) from benzaldehyde (performed by Dipl.-Ing. Birgit Wilding, PhD. at the Institute of 

Organic Chemistry, Graz University of Technology). In the subsequent enzymatic step, 

the nitrile group of (±)-trans-1 was hydrolyzed to carboxylic acid either in a two-step 

reaction catalyzed by nitrile hydratase and amidase or in one-step nitrilase-catalyzed 

reaction (see Fig. 3.20). Commercial enzymes from Prozomix and Codexis (reactions 

with commercial enzymes performed by Dipl.-Ing. Birgit Wilding, PhD. at the Institute 

of Organic Chemistry, Graz University of Technology), as well as recombinant fungal 

arylacetonitrilases expressed in E. coli were employed in the hydrolytic step (for more 

information see Appendix 4). Here, only the results with fungal nitrilases will be further 

discussed.  

 

Figure 3.20: Enzymatic conversion of the taxol sidechain precursor (±)-trans-1 to the 

corresponding carboxylic acid and/or carboxamide. 

 



69 
 

The (±)-trans-1 compound was accepted as a substrate by all the tested fungal 

arylacetonitrilases, namely NitAb, NitAn2, NitAn3, NitAo, NitNc and NitNh. 

Fig. 3.21 shows the conversions after 1h and 22 h of the reaction. Conversions 

of 30-100% were already observed within the first hour and complete conversions were 

achieved after 22 hours in all cases.  

NitAo, NitNc and NitNh produced both acid and amide product throughout the 

reaction, whereas in NitAb, NitAn2 and NitAn3 the production of amide became 

prominent only in the late stages of the incubation. This was most evident for NitAn2, 

which only produced a minor portion of amide at the reaction beginning, but gave the 

one of the highest portions of amide after the complete conversion (similar as NitNh). 

The e.e. values of the acid product of the nitrilase-catalyzed hydrolysis of        

(±)-trans-1 were in the moderate region (below 80 %). This can be explained by 

racemization and/or epimerization that could take place during the biotransformation 

itself. 

The presence of the organic solvent in the reaction mixture with (±)-trans-1 

should be investigated in more detail, as far as its effect on the e.e. values is concerned, 

as it was shown that organic solvents improved the activity and stereoselectivity of 

nitrilases (Layh and Willets, 1998; Kaul and Banerjee, 2008; Zhang et al, 2011; Vergne-

Vaxelaire et al., 2013). The effect of toluene on the enantioselectivity of nitrilases was 

also discussed in the previous section in context with the transformation of (R,S)-

mandelonitrile. 

NitNc displayed the highest activity for (±)-trans-1 of all the enzymes tested, and 

was used for the preparative scale production of the corresponding carboxylic acid. 
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A 

 

B 

 

 

Figure 3.21: Biotransformation of 1.0 mM (±)-trans-1 (Fig. 3.21) into the 

corresponding carboxylic acid or amide by fungal arylacetonitrilases. A: after 1 h, B : 

after 22 h. The reaction mixtures consisted of the cell suspensions in 50 mM Tris/HCl 

buffer with 150 mM NaCl, pH 8.0, and (±)-trans-1 added from the stock solution in 

methanol to the final concentration of 1.0 mM. 500 mL samples were withdrawn 

from the reactions, mixed with 600 mL of methanol to inactivate the enzyme, 

centrifuged and analyzed by HPLC. 
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4 Conclusions 

 

Nitrilases represent useful tools for the mild nitrile hydrolysis applicable in 

biotechnology. However, there are several hindrances that prevent their extensive use 

in chemical industry, such as their low stability and insufficient activity. Therefore, the 

search for new enzymes with improved properties is continued. 

The effective, but time-consuming conventional screening based on the 

selection on special culture media was overcome by the high-throughput screening. 

These methods make use of spectrophotometric assays or pH indicator reactions. 

Nevertheless, as the gene and protein databases expand, nowadays the most 

convenient method for obtaining new enzymes seems to be, apart from the 

metagenomic approach, the genome mining. 

The amino acid sequences of fungal nitrilases discussed in this work were 

selected from the database using the sequences of previously studied enzymes as 

templates. According to the sequence similarities and presence of specific motifs in the 

vicinity of the catalytic cysteine, predictions could be made as to which substrate(s) the 

new recombinant enzymes prefer. 

With one exception, the hypothesized substrate specificities of the new 

nitrilases were experimentally confirmed, and two new arylacetonitrilases, an aromatic 

nitrilase, a nitrilase of mixed-type substrate preference and two cyanide hydratases 

were identified. 

For this work, recombinant fungal nitrilases NitAb and NitNh were purified and 

characterized. Both enzymes exhibited substrate specificities typical for 

arylacetonitrilases, that is a strong preference for phenylacetonitrile and (R,S)-

mandelonitrile. Their kinetic parameters for these substrates were assessed. (R,S)-

Mandelonitrile was hydrolyzed with (R)-selectivity in both cases; NitNh was highly 

enantioselective, whereas the enantioselectivity of NitAb was moderate. NitNh 

displayed a generally higher tendency to form amide as the reaction side-product than 

NitAb. 

The temperature stabilities of both nitrilases were rather poor, however, both 

enzymes were highly stable at a broad range of pH (5.0-10.0). 
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Homology modeling, analytical centrifugation and electron microscopy revealed 

that both enzymes displayed the typical nitrilase α-β-β-α sandwich fold of the enzyme 

subunit. The subunits tend to form oligomeric structures: NitAb forms preferably 

dimers, tetramers, hexamers and dodecamers; the majority of the NitNh enzyme 

assembles into oligomeric structures of 12-24 subunits. 

NitAb and NitNh were employed in the conversion of high concentrations of 

(R,S)-mandelonitrile. The effects of pH, toluene as a co-solvent and concentration of 

the substrate on the nitrilase activity, stability and enantioselectivity were studied. The 

presence of toluene as a co-solvent and higher pH values had a positive effect on 

enantioselectivity of both enzymes, although that of NitAb still remained in the 

moderate region. 

In the next set of experiments, NitAb and NitNh together with NitAn2 and NitNc 

were tested in the conversion of (R,S)-mandelonitrile in a fed-batch mode. Of the four 

nitrilases tested, NitAn2 exhibited one of the highest conversions (90 %), and the 

highest e.e. values (up to 96.7 %) and catalyst productivity (up to 40 g gdcw -1), whereas 

its amide production was the lowest. In terms of the catalyst productivity, NitAn2 is 

comparable or even better than the bacterial arylacetonitrilases from the bacteria of 

the genus Alcaligenes previously employed in similar (R,S)-mandelonitrile conversions. 

Thus, NitAb and NitAn2 were found potentially suitable for the application in 

enantiopure mandelic acid production as both enzymes form only a negligible portion 

of the amide by-product and are stable at high (500 mM) concentrations of the 

substrate. The low enantioselectivity and good stability at low pH renders NitAb a 

suitable candidate for an enantioretentive conversion of (S)-mandelonitrile to 

enantiopure (S)-mandelic acid. NitAn2, on the other hand, is highly (R)-selective, and 

therefore suitable for the manufacture of enantiopure (R)-mandelic acid from the 

racemic substrate.  

NitAb, NitAn2, NitNc, NitNh, NitAn3 and NitAo were used in the production of a 

precursor of taxol, which is a well-known anti-cancer drug. To our knowledge, this was 

the first time nitrilases were employed in this reaction. All the nitrilases tested were 

able to fully convert 1.0 mM substrate and NitNc was sufficiently active to convert the 

substrate to the corresponding acid on a preparative scale. 
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In conclusion, this work confirmed that the genome mining and expression in E. 

coli is a suitable method for obtaining new fungal nitrilases. The expression of fungal 

nitrilase genes in E. coli is effective, as the nitrilase forms a major part of the cell 

protein and can be easily purified. New substrates were found that can be used for the 

nitrilase and cyanide hydratase activity assays, and the ability of the new nitrilases to 

transform industrially important compounds was verified.  
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Supplementary Data 

 

CLUSTAL 2.1 multiple sequence alignment 

 

 

NitGm           ----MSKSLKVAAIQAEPVWNDLQGGVNKSIGLIQEAAKEGANVIGYPEVFIPGYPWSIW 56 

NitPc2          MTAPVERRVRVAAIQAEPVWNDLQGGVNKVISLLGDVGKEGANVVGFPEVFIPGYPWSIF 60 

NitPm           ----MSKIVRVGAVQSEPVWLDLEGSVDKTISLIEKAAADGVNVLGFPEVWIPGYPWSMW 56 

                    :.: ::*.*:*:**** **:*.*:* *.*: ... :*.**:*:***:*******:: 

 

NitGm           ANSPTENAPWINEYFKNSMEKESPEMDQIRAAVREAGVFVVLGYSERYRGTLYIAQSFID 116 

NitPc2          TATPLDNAPFMEEYFHNSLAVDSDEMRRIQAAVKENGTFCVLGFSERYQGSLYISQVFIN 120 

NitPm           TSAVINNSHIIHDYMNNSMRKDSPQMKRIQAAVKEAGMVVVLGYSERDGASLYMAQSFID 116 

                : :  :*:  :.:*::**:  :* :* :*:***:* * . ***:***  .:**::* **: 

 

NitGm           ETGTIVLHRRKIKPTHVERAIYGDGQGESLTNVADTKFGRVAGLNCWEHTQTLLRYYEYX 176 

NitPc2          TDGQIVHHRRKTKPTHVERAYWGTGEGDSLKCVVDSPFGRIGGLNCWEHTQPLLRYYEYQ 180 

NitPm           PSGEIVHHRRKIKPTHIERTIWGEGQAESLTCVIDSPFGKVGGLNCWEHLQPLLRYYEYS 176 

                  * ** **** ****:**: :* *:.:**. * *: **::.******* *.*******  

 

NitGm           QDVDIHVSSWPSIF--PQNVP-EWPYHITPECCKAFSHVVSMEGACFVLLASQIMTEENH 233 

NitPc2          QDVDIHVASWPVLWDRPESVGSRWPYFITGDMSSRLSQVMAFEGTCFVLVCTQVMSEENF 240 

NitPm           QGVQIHIASWPAEFEMPDPKKIAWLYHETGEASYRASQFFAIEGQAFVLVASQILTEANV 236 

                *.*:**::***  :  *:     * *. * : .   *:..::** .***:.:*:::* *  

 

NitGm           KKANVDGYDYTKKSGGGFSMIFSPFGEELVKPLAPNEEGILYADINLEEKYKAKQNLDIV 293 

NitPc2          DKNKVRDVEHIQGTGGGFSAIFGPGGEPIAT-MPSDKEGILYANVDVNDKLRAKQWLDVV 299 

NitPm           ERNNLTGNPVTKTPGGGFSMIFGPDGKPLCEPVDAGAEAILTADIDLRDIDKPKAFIDVV 296 

                .: :: .    : .***** **.* *: :   : .. *.** *::::.:  :.*  :*:* 

 

NitGm           GHYSRPDQLSLRVNKHAAKPVFFANDL-- 320 

NitPc2          GHYSRPDLLSLRVNTHPSKPVFFAEEPEK 328 

NitPm           GHYARPDLLSLLVNPTVDKHVTTMKK--- 322 

                ***:*** *** **    * *   :.    

 
Supplementary figure S1: Multiple sequence alignment of the aromatic nitrilases from 

Giberella moniliformis (NitGm; GenBank: ABF83489), Penicillium chrysogenum Wisconsin 54-

1255 (NitPc2; NCBI Reference Sequence: XP_002565836) and Penicillium marneffei 

ATCC18224 (NitPm; NCBI Reference Sequence: XP_002144951).  
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CLUSTAL 2.1 multiple sequence alignment 

 

 

NitNc           ----MATTIKVAVTQAEPIWLDLQASIQKAVSLVHEAASNGAKIVAFSETWAPGYPGWCW 56 

NitNh           ----MACPIRVAVTQAEPVYLDLAASVKKACGLIAEAAQNGAKLVAFSECWLPGYPAWIW 56 

NitAb           ---MSGPALKVAITQAQPKWLDLAGSVEKTVNLIAEAAKGDARLVAFPECWIPGYPGWIW 57 

NitAn3          ----MLSQVRVAVTQAEPVWLDLEATVKKTCDLIAEAAANGAQLVTFPECWIPGYPAWIW 56 

NitAo           MTTPQPSQVRVAVTQAEPVWLDLKATVDKTCSLIAEAASKGAQLVSFPECWIPGYPAWIW 60 

NitAn2          --MTASTKVRVAVTQHEPVWLDLHATVDKTCRLIAEAAGNGAQLITFPECWLPGYPAWIW 58 

NitMg           ----MGAKVKVAVVQAEPVWFNLQETVKRVNELIELAYNKGAELIAFPEVFVPGYPTWIW 56 

                        ::**:.* :* :::*  ::.:.  *:  *   .*.:::*.* : **** * * 

 

NitNc           ARPVDPALNTKYAYNSLTANSPEMEQLQQAAKEDSIAVVIGFSERSSSGSLYIGQAIISP 116 

NitNh           ARPVDFELQTRYIYNSLPIESEAMELVKATAKEHSIAVALGFSEQSPSHSIYISQAIISP 116 

NitAb           QRPVDPIINTKYIQNSLSVNSAEMNTIKSAAKENNIAVVLGFVEAIDTHSVYIAQAIISP 117 

NitAn3          ARPVDMRLSSIYIQNSLKIDSPQMASIQQCAAENKIVVVLGFSENL-HNSLYISQAIIAS 115 

NitAo           TRPVDQELHSRYIQNSLTVSSPEMTQICKSANENNVIVVLGFSENI-HNSLYISQAIISN 119 

NitAn2          CRPVDMGLFTTYLKNSLSYDSEHMRRICNAAAQHKITVVLGLSERD-GNSLYIGQCTIDS 117 

NitMg           TNAADLDRNLMYTKNSLTYDSPEFISIIETVKKYPIHVVLGFSEKD-QGSLYISQCIIDN 115 

                 ...*      *  ***  .*  :  :   . :  : *.:*: *     *:**.*. *   

 

NitNc           QGEVALQRRKLKPTHMERTIFGDGSGPDLNCVAELDFGSELGSIKVGTLNCWEHAQPLLK 176 

NitNh           QGEVVMHRRKIKPTHMERTLFGDGSGADLNNVVEVDFGAEHGKIKVGCFACWEHTQPLLK 176 

NitAb           KGELLMHRRKIKPTHMERTVFGDGSGSDLTNVADVDFGGDIGVVKVGTLACWEHALPLLK 177 

NitAn3          DGKILTTRKKIKPTHMERTIFGDSFGDCLQSVVDTSAG------RVGALSCWEHIQPLLK 169 

NitAo           TGSILTTRKKIKATHMERTIFGDAFADCLDSVVETAVG------RVGALSCWEHIQPLLK 173 

NitAn2          TGKIVMRRRKMKPTHMERTVFGESSGRSLLNVVDLPIG------KVGALACWEHIQPLLK 171 

NitMg           TGEIVLKRRKFKPTHVERVIWGDTADSNMKSVVTLNFK-EAGPVEVGCLSCWEHMQPLLY 174 

                 *.:   *:*:*.**:**.::*:     :  *.           .** : ****  ***  

 

NitNc           FHEIQQGVVIHIAMWPPIDPYPGVEFPGLWSMTADGCQNLSQTFAVESGAFVLHCTAVCN 236 

NitNh           YHSISQGEAIHISMWPPIDPSAGVDHPGLWSMTADGCQNLSQTYAIESTAYVLHSTSVCT 236 

NitAb           YHTYSQKEAIHIAMWPPIDPHPGVDAPALWSMSAEGCQNLSQTHAIEGGAYVLHCTAVCN 237 

NitAn3          YHTYAQREQIHVAAWPPLFPHS--EDGSLFSMSTEGTSSIARTYAIESQSFVLHTTTVIG 227 

NitAo           YHTCAQREAIHVAAWPPLFEWGGPEDESLFSMSRDGTIALARTYAIESSSFVLHTTAVIS 233 

NitAn2          YHTMIQGEEIHVSAWPVLHPHMG--GESLWGMSQEGGTGASQVYALESASFVLLTTAVLG 229 

NitMg           YNSAAQHEKIHIGSWPALNDKD----LGVYCFTKAGFHGLARAYANQVQSFYLFT-SILG 229 

                ::   *   **:. ** :         .:: ::  *    ::..* :  :: *   ::   

 

NitNc           ESGIEAMDTRNGMVFREPGGGHSCVIGPDGRRLTQPLAD-KPSAEGIVYADLDLTRVVTN 295 

NitNh           QKGIETLKTQDGLSCRQPGGGHSCVIGPDGRRLTAPLGDGSPDAEGIVYADLDLTKVVAT 296 

NitAb           EEGIEGMKTKGGLLFQEPGGGHSAAIAPDGRRLTKPLADGNPAAEGIVYADLDMARVVMN 297 

NitAn3          QSGIDRMATSTGALMSTPGGGCSAIFGPDGRQLSQPIPS---AEEGIIYADLDFEHIYHS 284 

NitAo           QEGVEKMRTATGAIMNMPGGGSSAIFGPDGRLLSKPLLP---TEEGIIYADLEMHDIYKT 290 

NitAn2          PTCVKKMNLSP--PWDTLGGGASAVIAPDGRRLTEPLPA---NEEGFVYADLDLDMILTC 284 

NitMg           QRIQEALPDVKLSPYFEKGAGCGAVFAPDGSQITEDHPD---DFDGVIISELDMDKILLQ 286 

                    . :           *.* .. :.***  ::          :*.: ::*::  :    

 

NitNc           KSFQDIVGHYSRPDLLWLSYD----KEKK-----DAAVHRN------------ 327 

NitNh           RGFLDIVGHYSRPDLLWLGVD----REQK-----ENIIAKQHKAAEQEAVQG- 339 

NitAb           KGFIDVVGHYSRPDLLWLGVD----KAQK-----GCVVPKREPEQDV------ 335 

NitAn3          KAFVDVCGHYSRPDLLWLGVEGGVKRHVR-----DNATTATP-QVEQQEEZ-- 329 

NitAo           KAFVDVLGHYSRPDLLWLGVGSCDRRHVK-----EDAEERREDRVEVLZ---- 334 

NitAn2          RHFVDACGHYSRPDLLWLGVDTREKTQHRPEGQADNAAYGLDVPSGLVEEEGA 337 

NitMg           KNLVDIVGHYARPDMVSLSHN----RPNT------EFVNRKZ----------- 318 

                : : *  ***:***:: *.                                   

Supplementary figure S2: Multiple sequence alignment of the arylacetonitrilases from 

Arthroderma benhamiae CBS 112371 (NitAb; GenBank: EFE30690), Aspergillus niger CBS 

513.88 (NitAn2; GenBank: CAK46742), A. niger CBS 513.88 (NitAn3; GenBank: CAK47246), A. 

oryzae RIB40 (NitAo; GenBank: BAE63579), Neurospora crassa OR74A (NitNc; GenBank: 

CAD70472), Nectria haematococca mpVI 77-13-4 (NitNh; GenBank: EEU45207) and the mixed-

type nitrilase from Meyerozyma guilliermondi (Pichia guilliermondi) ATCC 6260 (NitMg; NCBI 

Reference Sequence: XP_001482890) 
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CLUSTAL 2.1 multiple sequence alignment 

 

 

NitPc1          MVPVLKKYKAAAVNAEPGWFDLQESVRRTIHWIDEAGKAGCKLIAFPELWIPGYPYWAWK 60 

NitAn1          MAPVLKKYKAAAVNAEPGWFNLEESVRRTIHWIDEAGKAGCKFIAFPELWIPGYPYWMWK 60 

                *.******************:*:*******************:************** ** 

 

NitPc1          VNYQESLPLLKKYRENSLPSDSDEMRRIREAAKANKIWVSLGYSELDLASLYTTQIMISP 120 

NitAn1          VNYQESLPLLKKYRENSLPSDSDEMRRIRNAARANKIYVSLGYSEVDLASLYTTQVMISP 120 

                *****************************:**:****:*******:*********:**** 

 

NitPc1          AGDVINHRRKIKATHVERLVFGDGTGDTTESVMDTEIGRIGHLNCWENMNPFLKAYAASL 180 

NitAn1          SGDILNHRRKIRATHVERLVFGDGTGDTTESVIQTDIGRVGHLNCWENMNPFMKAYAASL 180 

                :**::******:********************::*:***:************:******* 

 

NitPc1          GEQVHIAAWPLYPGKETLKYPDPYTNVAEANADLVTPAYAIETGSFTLAPWQTITAEGIK 240 

NitAn1          GEQVHVAAWPLYPGKETLKYPDPFTNVAEANADLVTPAYAIETGTYTLAPWQTITAEGIK 240 

                *****:*****************:********************::************** 

 

NitPc1          LNTPPGKELEDPNIYNGNGRIFGPDGQNLVPHPDKDFQGLLFVDIDLDEIHLTKSLADFG 300 

NitAn1          LNTPPGKDLEDPHIYNGHGRIFGPDGQNLVPHPDKDFEGLLFVDIDLDECHLSKSLADFG 300 

                *******:****:****:*******************:*********** **:******* 

 

NitPc1          GHYMRPDLIRLLVDTNRKDLVVHEDRVNGGVAYTRTIDRVGLSAPLDASATEAQSESV 358 

NitAn1          GHYMRPDLIRLLVDTNRKDLVVREDRVNGGVEYTRTVDRVGLSTPLDIANTVD-SEN- 356 

                **********************:******** ****:******:*** : *   **.  

 

Supplementary figure S3: Multiple sequence alignment of cyanide hydratases from 

Aspergillus niger K10 (CCF 3411) (NitAn1; GenBank: ABX75546) and Penicillium chrysogenum 

Wisconsin 54-1255 (NitPc1; NCBI Reference Sequence: XP_002562104) 
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Supplementary figure S4: Multiple sequence alignment of nitrilases from Syechocystis sp. 

PCC6803 (3wuy), Pyrococcus horikoshii (1j31), mouse (2w1v), Arthroderma benhamiae CBS 

112371 (EFE) and Nectria haematococca mpVI 77-13-4 (Eeu). Conserved structural elements 

are marked by rectangulars: beta-strands – green; alpha-helices – pink. Catalytic triad is 

marked by black dots. 
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