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Introduction

Financial time series are an integral part of our everyday lives. Newspapers,

television channels, and news websites regularly publish current foreign exchange

rates, prices of stocks quoted at various markets, information on returns of mutual

funds, current interest and mortgage rates, etc. Financial time series analysis has

rightfully attracted attention in recent years. This process has been further in-

tensified by the unforeseen expansion of computer and information technologies.

Academics, financial analysts, and other participants in financial markets motiv-

ated by various reasons try to understand and describe systematically behaviour

of financial series from different perspectives. Refer e.g. to Morgan (1996) and

Tsay (2005). Although this highly empirical research field has many specific sub-

disciplines, one may identify that statistical methods and econometric models

characterizing volatility (or the conditional variance) of financial time series are

probably the most common. Volatility is, in fact, an elementary indicator of risk,

which plays a fundamental role in financial and risk management. Topicality and

relevance of this particular issue have motivated this work.

The present thesis focuses on various aspects of univariate and multivariate

conditional covariance modelling. It summarizes research results that have been

performed during the author’s doctoral study. Some of them have been already

accepted for publication (Hendrych, 2013, 2014b; Hendrych & Cipra, 2014, 2015);

other will be summed up and submitted shortly. See also below. The text of this

thesis is organized as follows. After reviewing some basic features of financial

time series and fundamental characteristics of volatility in Chapter 1, the work

is divided into two separate parts corresponding to two relevant problems of

financial time series modelling.

Part I discusses recursive estimation algorithms suitable for selected typical

models of conditional heteroscedasticity such as the ARCH or GARCH processes.

These models are frequently used to investigate and describe volatility of finan-

cial returns systematically. They are routinely estimated by computationally

complex estimation methods. The most common is probably the conditional

maximum likelihood procedure. However, they are rarely calibrated recursively

(i.e. sequentially or on-line). On the other hand, it might be advantageous to

adopt numerically effective techniques that could be able to estimate, monitor,

and control parameters of the models (or the models themselves) in real time.

For instance, one could employ this approach in the case of high-frequency data.

Consequently, the main goals of Part I are: (i) to review previously introduced

recursive estimation algorithms, (ii) to derive self-weighted one-stage alternatives
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applying general recursive identification instruments, and (iii) to examine these

methods by means of Monte Carlo simulations and empirical applications.

In particular, Chapter 2 briefly introduces general recursive estimation prin-

ciples and instruments. Chapter 3 shortly recapitulates the selected classic con-

ditional heteroscedasticity models, namely the ARCH, GARCH, IGARCH, and

GJR-GARCH processes. Chapter 4 comments the previously introduced recursive

identification schemes suggested for the GARCH processes (Hendrych, 2014b).

Chapter 5 concentrates on derivation and justification of various recursive estim-

ators. In detail, Section 5.1 presents two different self-weighted one-stage sequen-

tial estimation algorithms for parameters of the GARCH models, which have

been considered by Hendrych and Cipra (2015). Section 5.2 discusses various

practical aspects of their implementation, for instance, the questions of initializ-

ation, factorization, regularization, model identification, or robustification. Sec-

tion 5.3 reviews theoretical features of the delivered estimation methods. Finally,

Section 5.4 introduces several modifications of the considered estimators, which

can be used for other conditional heteroscedasticity processes, concretely for the

ARCH, RiskMetrics EWMA, and GJR-GARCH models. Chapter 6 investigates

behaviour of the suggested recursive methods using Monte Carlo experiments and

two empirical applications.

Part II presents a novel approach to conditional covariance modelling (i.e. the

subdiscipline of multivariate financial time series analysis), which has been origin-

ally proposed by Hendrych (2013) or Hendrych and Cipra (2014). The suggested

modelling technique is inspired by the key idea of the multivariate orthogonal

GARCH method. This approach models certain linear time-invariant orthogonal

combinations of multivariate financial time series components by the constant

conditional correlation (CCC) scheme. Here, a suitable linear dynamic orthog-

onal transformation is recommended instead. It is simply based on the LDL

factorization of the conditional covariance matrix. The corresponding model im-

plementation is realized by using nonlinear discrete-time state space models. The

introduced procedure has been investigated by extensive Monte Carlo experiments

and empirical financial applications. It has been compared with other methods

commonly used in this framework. Consequently, the outlined methodology has

demonstrated its capabilities and seems to be competitive.

In particular, Chapter 7 briefly recapitulates principles of conditional covari-

ance and correlation modelling. It outlines motivation examples and establishes

the modelling framework. Further, it reviews some standard models, which are

employed in this particular context. Chapter 8 presents the suggested modelling

method and its calibration in more detail. Chapter 9 examines the proposed

technique by Monte Carlo experiments and two real data examples.
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1. Financial time series modelling

Financial time series modelling is a specific highly empirical subdiscipline of gen-

eral time series analysis. It is typically concerned with the theory and practice

of asset valuation over time. The financial theory (either explicitly, or impli-

citly) calculates with an element of uncertainty and some special characteristics

(see below), which are accordingly accumulated in observed time series. It par-

ticularly means that although financial time series analysis is primarily based

on the classic concepts described e.g. by Brockwell and Davis (1991), Brockwell

and Davis (2002), or Lütkepohl (2005), distinctive theoretical and methodolo-

gical approaches have been developed in this research field in order to reflect its

peculiarities (Franke, Härdle & Hafner, 2011; Tsay, 2005). Standard examples

of financial time series are the prices of shares quoted on stock exchanges, vari-

ous interest rates, or foreign exchange rates amongst different currencies. They

may also differ in their frequencies, for instance, one can encounter daily, weekly,

monthly, yearly, or high-frequency datasets. The latter one is collected during

very short instants, e.g. one second or after each single trade.

Typical financial time series is not (weakly) stationary. The associated auto-

correlation coefficient is usually close to one at the first lag. For example, one can

hardly consider that the daily foreign exchange rate between the US dollar and

Euro currency significantly changes from today to tomorrow. Therefore, most

empirical studies treat asset returns instead of asset prices since they operate

with more attractive statistical properties. Thus, they are more relevant from

the methodological perspective. Additionally, returns of assets introduce a com-

plete and scale-free summary of the investment opportunity from the viewpoint of

an average investor. There exist several definitions of asset returns (Tsay, 2005,

Chapter 1). However, in practice, one uses mainly:

rt := log(Pt)− log(Pt−1) or Rt :=
Pt − Pt−1

Pt−1

, (1.1)

where Pt is the price of an asset at time t. Both introduced returns clearly

measure the relative change in price. The logarithmic return (log-return) rt and

simple net return Rt are closely related because:

rt = log(1 +Rt) ≈ Rt. (1.2)

Fan and Yao (2005, Section 4.2.7) underlined some important stylized fea-

tures of (daily) financial (logarithmic) return series, which have been repeatedly

identified across all kinds of assets:
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Stylized fact 1. (Leptokurtic distribution) The financial returns have a lepto-

kurtic distribution, i.e. the distribution with heavier tails than a normal

distribution. The empirically estimated kurtosis is mostly greater than

three (or zero with respect to the accepted definition of the kurtosis).

Stylized fact 2. (Volatility clustering) Volatility (i.e. the conditional standard

deviation of asset returns) tends to create clusters. In particular, after

a large (small) price change probably occurs a large (small) price change.

It means that large volatility changes are likely followed by large volatil-

ity changes and that periods of tranquillity alternate with periods of high

volatility.

Stylized fact 3. (Asymmetry) The distribution of returns is usually slightly

negatively skewed. It is commonly explained by asymmetric reactions of

traders, who react possibly more strongly to negative than to positive in-

formation.

Stylized fact 4. (Aggregational Gaussianity) The returns over a long time hori-

zon tend toward a normal distribution according to the central limit law. It

can be viewed from the relation for the logarithmic return computed over

k ∈ N periods, i.e.:

log(Pk)− log(P0) =
k∑
t=1

[log(Pt)− log(Pt−1)] =
k∑
t=1

rt. (1.3)

Stylized fact 5. (Long range dependence) The returns commonly do not exhibit

any serial correlation; however, this does not imply that they are inde-

pendent. On the contrary, both squared and absolute returns often show

persistent autocorrelations, which may indicate a possible long-memory de-

pendence in those transformed time series.

Financial time series models usually aim to incorporate at least some of these

stylized features to deliver a suitable scheme that respects the empirical findings.

See e.g. Chapter 3 of this work, Franke et al. (2011, Chapter 13), or Tsay (2005)

for further insights and more relevant references.

Many statistical methods and econometric models of financial time series

primarily focus on volatility of an asset return, i.e. on its conditional standard

deviation. These models are referred to as conditional heteroscedasticity models.

Volatility is a major factor with many financial applications in option pricing,

risk management, asset allocation under the mean-variance framework (see Ex-

ample 7.0.1), etc. It can be looked upon as an indicator of risk. Nevertheless,
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volatility is not directly observable so that it is hard to represent it systematic-

ally. However, it has some conventional characteristics that have been observed

across various return series (Tsay, 2005, Section 3.1). Firstly, there usually occur

volatility clusters (see Stylized fact 1 above). Secondly, volatility evolves over

time almost continuously, i.e. jumps are rare. Thirdly, volatility does not diverge

to infinity. Instead, it varies within a fixed range (it is often (weakly) stationary).

Fourthly, volatility tends to react differently to a big price increase or decrease

(see Stylized fact 3 above). These properties evidently play a substantial role in

the volatility modelling framework. See the models discussed in Chapter 3.

From the general perspective, the conditional heteroscedasticity models may

be classified into two main groups. The first category tracks the volatility evolu-

tion by using an exact function of past information, e.g. the ARCH or GARCH

processes. On the contrary, the second category describes volatility by a stochastic

equation, i.e. the so-called stochastic volatility models. Refer to Tsay (2005, Sec-

tion 3.2 and others).

Alternatively, one can also emphasize another approach, which originates from

different grounds. It accepts the idea that the prices of an underlying asset

are governed by an econometric scheme such as the Black-Scholes formula for

pricing European options (Tsay, 2005, Chapter 3), which can be further used to

deduce the implied volatility. However, this approach is possible only under some

assumptions, namely that the price follows a geometric Brownian motion, which

may be far from reality. Thus, the implied volatility estimates can be imprecise.

The content of the present thesis is closely connected to the already discussed

conditional heteroscedasticity models, and thus to volatility analysis. Part I stud-

ies recursive estimation techniques for selected classic univariate conditional het-

eroscedasticity models. They may be applied in many different situations. Part II

examines the multivariate extension of the univariate framework and introduces

a novel methodology for conditional covariance (correlation) modelling.
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Part I

Recursive estimation of selected

conditional heteroscedasticity

models
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2. Recursive estimation methods

for financial time series models

The parameters of conditional heteroscedasticity models, the key instruments

of systematic financial volatility modelling, are routinely calibrated maximizing

associated (conditional) log-likelihood criteria (although other variants exist). See

e.g. Fan and Yao (2005, Section 4.2) and the references given therein. On the

contrary, they are indeed rarely estimated recursively. Nevertheless, this approach

might be advantageous in many (practical) situations, especially in the context of

high-frequency data. Particularly, it might be effective to dispose of numerically

efficient techniques that could estimate or control models sequentially.

Estimation (identification) methods that comply with this requirement are

called recursive estimation techniques since the measured input-output data are

processed recursively as they become available. Alternatively, one may also use

the terms as on-line, real-time, adaptive, or sequential (parameter) estimation. To

evaluate parameter estimates at a time step, on-line procedures operate only with

the current measurement and the parameter estimates delivered in the previous

step. It means that an estimate based on data up to time t − 1 is “slightly”

modified to compute the current estimate using the actual observation delivered

at time t. It is in sharp contrast to the so-called off-line (batch) methods, in

which all recorded data are employed simultaneously to construct the parameter

estimates. From this perspective, it might be evident that the recursive estimation

algorithms represent a central part of any adaptive system designed primarily for

monitoring, controlling, forecasting, or filtering stochastic processes. Here, an

action is taken getting the most recent estimates. They are also effective in terms

of memory storage and computational complexity since only a modest amount

of data is stored, and this amount will not increase with time. These methods

can easily handle tracking time-varying parameters since the algorithms might

be adapted to respond to data changes and to disregard (gradually) information

contained in old data points. Moreover, the recursive estimation techniques can

be further applied in fault detection algorithms, which verify whether systems

remain stable in some sense (e.g. for detecting structural breaks).

This efficiency can be readily employed in the framework of financial time

series analysis. To be more precise, the parameters of selected conditional het-

eroscedasticity models (see Chapter 3) may be estimated on-line to treat high-

frequency data in real time. Otherwise, it is possible to accept such methods to

monitor or forecast volatility on-line, to evaluate risk measures (e.g. the Value
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at Risk) in real time, to detect eventual faults or structural changes sequentially,

to control positivity and to check conditions of stationarity adaptively, etc. The

research compiled in Part I of this thesis has been readily motivated by these

efforts. Namely, after reviewing selected common conditional heteroscedasticity

processes in Chapter 3 and surveying literature in Chapter 4, we shall propose

and examine the recursive estimation schemes suitable for these models. They

can be undoubtedly applied in many different ways.

Remark 2.0.1 A general estimation method is usually defined as a mapping

specified by an (implicitly) given function F from the set of available measure-

ments at time t (denoted as Y t) to a parametric space . In particular, it can be

formally written as:

θ̂t := F (t,Y t). (2.1)

Such an expression cannot be used in any recursive technique due to its generality

since the evaluation of F may involve an unforeseen amount of operations (that

may not be terminated at the next sampling moment). Instead of that, a recursive

algorithm obviously complies with the following format:

θ̂t = θ̂t−1 + αtQθ(X t,yt), (2.2a)

X t = X t−1 + βtQX(X t−1,yt), t ∈ N, (2.2b)

where X t is a vector of fixed dimension that represents some “information state”,

the functions Qθ and QX are explicit expressions that can be evaluated by means

of a fixed and a priori known number of operations, and {αt}t∈N and {βt}t∈N are

deterministic sequences of small positive numbers that reflect the relative inform-

ation value in the latest measurement. Notice that this additive formulation is

usually justified by claiming that the information content in the most recent ob-

servation yt is generally small compared to the information already accumulated

from the previous measurements. See Ljung (1999, Section 11.1).

Remark 2.0.2 Recursive estimation techniques are usually derived as approxi-

mations of off-line methods. Therefore, it may happen that such an approxima-

tion reduces accuracy (at least for small finite samples). On the other hand, it is

possible to use the on-line algorithms iteratively to remove these inaccuracies and

to achieve results that are comparable with those determined by optimizing the

corresponding off-line criterion. However, it should be pointed out that a user

(commonly) chooses between different off-line or different on-line techniques ac-

cording to the character of the solved problem.
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3. Selected conditional

heteroscedasticity models

The conditional heteroscedasticity models provide a systematic framework for

volatility modelling. They are capable of respecting (some of) the stylized facts

about financial returns and volatility (see Chapter 1). Therefore, they are re-

garded as fundamental instruments in this field of research. This chapter reviews

some of these models jointly with their key features. In particular, the ARCH,

GARCH, IGARCH, and GJR-GARCH processes are surveyed in the following

sections since they are further studied in Part I of the thesis. Undoubtedly, many

other modelling variants might be discussed. An extensive body of academically

and practically oriented literature exists in this field of research. For instance,

refer to Franke et al. (2011), Fan and Yao (2005), or Tsay (2005) for the references

and further insights.

3.1 GARCH model

The pioneering autoregressive conditional heteroscedasticity (ARCH) model that

conceptually incorporates financial volatility modelling was proposed by Engle

(1982). The basic ideas characterizing the ARCH model are that (i) financial

returns are serially uncorrelated but dependent, and (ii) this dependence can be

described by a simple quadratic function of historical (i.e. lagged) measurements.

Although the ARCH model is relatively simple and clearly interpretable (see

below), it often requires many parameters to explain adequately the volatility

process of asset returns (Tsay, 2005, Section 3.5). Therefore, Bollerslev (1986)

suggested a useful extension of this modelling approach known as the generalized

autoregressive conditional heteroscedasticity (GARCH) model.

The GARCH(p, q) process {yt}t∈Z, p ∈ N and q ∈ N0, is commonly defined as

(Tsay, 2005, Section 3.5):

yt = σtεt, σ2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j, (3.1)

where {εt}t∈Z is a sequence of i. i. d. random variables with zero mean and unit

variance (often assumed to be normally distributed), and ω, α1, . . . , αp, β1, . . . , βq

are the parameters of the process. The first two conditional moments can be

readily calculated as: E(yt|Ft−1) = 0 and var(yt|Ft−1) = σ2
t , where Ft denotes

the smallest σ-algebra with respect to which ys is measurable for all s ≤ t.
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The model specifies a simple parametric function that describes the evolution

of volatility. Apparently, sufficient conditions for σ2
t being positive are ω > 0,

α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0. If β1 = · · · = βq = 0, the model is reduced to

the ARCH(p) case (Tsay, 2005, Section 3.4). Additionally, sufficient conditions

for yt being (weakly) stationary are ω > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0, and∑p
i=1 αi +

∑q
j=1 βj < 1. The stationary GARCH(p, q) process has the finite

variance given by:

var(yt) =
ω

1−
∑p

i=1 αi −
∑q

j=1 βj
. (3.2)

One can see from (3.1) that large y2
t−1, . . . , y

2
t−p or σ2

t−1, . . . , σ
2
t−q tend to a large

σ2
t ; it generates the well-known behaviour of volatility clustering in financial time

series (see Chapter 1). Moreover, if one adopts kurtosis as a measure for heavy

tails of distribution, the GARCH model has heavier tails than those of the i. i. d.

sequence {εt}t∈Z on which is defined. To this end, let κε := E(ε4
t )/(E(ε2

t ))
2 denote

the kurtosis of the probability distribution of {εt}t∈Z. Then, we may compute

(assuming that all corresponding moments exist and are finite):

E(y4
t |Ft−1) = σ4

tE(ε4
t ) = κε[E(y2

t |Ft−1)]2. (3.3)

Moreover, it follows from the Jensen inequality:

E(y4
t ) = κεE[E(y2

t |Ft−1)]2 ≥ κε(E(y2
t ))

2. (3.4)

Consequently, it holds for the kurtosis of {yt}t∈Z that κy := E(y4
t )/(E(y2

t ))
2 ≥ κε,

i.e. the tail distribution of the GARCH(p, q) process {yt}t∈Z is heavier than that

of the process {εt}t∈Z.

The one-step-ahead forecast of σ2
t is calculated as:

σ̂2
t+1|t := E(σ2

t+1|Ft) = ω +

p∑
i=1

αiy
2
t+1−i +

q∑
j=1

βjσ
2
t+1−j = σ2

t+1. (3.5)

The k-step-ahead prediction of σ2
t can be evaluated recursively (for k > 1). For

instance, it holds for the GARCH(1,1) model:

σ̂2
t+k|t := E(σ2

t+k|Ft) = ω + (α1 + β1)σ̂2
t+k−1|t, (3.6)

or more precisely:

σ̂2
t+k|t =

ω[1− (α1 + β1)k−1]

1− α1 − β1

+ (α1 + β1)k−1σ̂2
t+1|t. (3.7)

13



Therefore, it is clear that σ̂2
t+k|t → ω/(1−α1− β1) as k goes to infinity, provided

that 0 ≤ α1 + β1 < 1. It means that the multi-step-ahead predictions of the

GARCH(1,1) process converge to the unconditional variance of {yt}t∈Z as the

forecast horizon increases (supposing that var(yt) exists). On the contrary, the

ARCH and GARCH models respond equally to positive and negative shocks,

which may cause problems for some financial time series (see Chapter 1).

Remark 3.1.1 The ARCH and GARCH models are obviously estimated by

maximizing the conditional logarithmic likelihood function (Fan & Yao, 2005,

Section 4.2.3). Usually, the normally distributed innovations {εt}t∈Z are con-

sidered since the quasi-maximum likelihood estimation is still consistent under

fairly mild regularity conditions (even if the true distribution is different). How-

ever, other calibration alternatives exist. For instance, the Whittle estimator

combines the associated ARMA representation (see Section 4.1), its theoretical

spectral density, and properties of its periodogram.

3.2 Integrated GARCH model

The integrated GARCH (IGARCH) model is an extension of the classic GARCH

model. Similarly to ARIMA models, a key feature of this modelling concept is

that the impact of past squared shocks y2
t−i − σ2

t−i for i > 0 on y2
t is persistent.

The IGARCH(p, q) process {yt}t∈Z, p ∈ N and q ∈ N0, is commonly defined

as (Tsay, 2005, Section 3.6):

yt = σtεt, σ2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j,

p∑
i=1

αi +

q∑
j=1

βj = 1, (3.8)

where {εt}t∈Z is a sequence of i. i. d. random variables with zero mean and unit

variance (often assumed to be normally distributed), and ω, α1, . . . , αp, β1, . . . , βq

are the parameters of the process. Apparently, sufficient conditions for σ2
t being

positive are ω > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0. The unconditional variance

of the process {yt}t∈Z is not defined under this model. This seems hard to jus-

tify for financial return series. From the theoretical point of view, this IGARCH

phenomenon may be caused by occasional level shifts in volatility. Under certain

conditions, the volatility process is strictly stationary, but not weakly station-

ary because the first two unconditional moments do not exist. See Tsay (2005,

Section 3.6) for further insights and references.

Similarly as in Section 3.1, the k-step-ahead forecast of σ2
t can be evaluated

recursively by using σ̂2
t+1|t = σ2

t+1 (for k > 1). For the most common case, namely

14



for the IGARCH(1,1) process, one may deduce:

σ̂2
t+k|t := E(σ2

t+k|Ft) = (k − 1)ω + σ̂2
t+1|t. (3.9)

The IGARCH(1,1) process with ω = 0, α1 = 1− λ, and β1 = λ, λ ∈ (0, 1) is

indeed worth of interest. Particularly, it is defined as:

yt = σtεt, σ2
t = (1− λ)y2

t−1 + λσ2
t−1, (3.10)

where {εt}t∈Z is a sequence of i. i. d. random variables with zero mean and unit

variance (often assumed to be normally distributed), and λ ∈ (0, 1) is the only

modelling parameter. In particular, this special IGARCH process is the volatility

model used by RiskMetrics (Morgan, 1996), e.g. for calculating the Value at Risk.

The model presents, in fact, an exponential smoothing approach to {y2
t }t∈Z since

σ2
t = (1− λ)

∑∞
i=1 λ

i−1y2
t−i by using (3.10) repeatedly. This modelling scheme is

usually referred to as the (RiskMetrics) EWMA model.

Remark 3.2.1 To calibrate the EWMA model using observations {y1, . . . , yT},
we usually employ one of the following methods. First, λ is prescribed by ex-

perts or users (e.g. the choice 0.94 is obviously recommended for daily data

by RiskMetrics). Second, λ is estimated by minimizing the root mean squared

error of the forecast inaccuracies (y2
t − σ2

t (λ)) assuming that y0 and σ2
0(λ) are

either defined or observed. Third, supposing certain probability distribution of εt

(the Gaussian innovations are preferred in terms of the consistency of estimates),

one may calibrate the parameter λ by maximizing the conditional log-likelihood

function (similarly as before, y0 and σ2
0(λ) are supposed to be known).

3.3 GJR-GARCH model

To overcome some weak points of the GARCH and closely related models in

handling financial time series, Glosten, Jagannathan and Runkle (1993) proposed

another volatility model to reflect leverage effects (see Chapter 1).

Their GJR-GARCH(p, q) process, p ∈ N and q ∈ N0, is usually formulated as:

yt = σtεt, σ2
t = ω +

p∑
i=1

(αi + γiI
−
t−i)y

2
t−i +

q∑
j=1

βjσ
2
t−j, (3.11)

where {εt}t∈Z is a sequence of i. i. d. random variables with zero mean and unit

variance (they are symmetrically distributed), and ω, α1, . . . , αp, γ1, . . . , γp, and

β1, . . . , βq are the parameters of the process. Further, I−t−i denotes an indicator

of negative yt−i, i.e. I−t−i = 1 if yt−i < 0 and 0 otherwise for i = 1, . . . , p.
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Apparently, sufficient conditions for σ2
t being positive are ω > 0, αi ≥ 0,

αi + γi ≥ 0 for all i, and βj ≥ 0 for all j. Additionally, sufficient conditions for yt

being (weakly) stationary are ω > 0, αi ≥ 0, αi + γi ≥ 0 for all i, βj ≥ 0 for all j,

and
∑p

i=1(αi + γi/2) +
∑q

j=1 βj < 1. The stationary GJR-GARCH(p, q) process

has the finite variance given by:

var(yt) =
ω

1−
∑p

i=1(αi + γi/2)−
∑q

j=1 βj
. (3.12)

From the outlined representation, it is evident that a positive yt−i contributes

αiy
2
t−i to σ2

t , whereas a negative yt−i has a different impact, namely (αi + γi)y
2
t−i.

The zero is used as the threshold to separate the impacts of past observations.

One may conclude that this modelling scheme can handle leverage effects. Com-

pare with the list of the stylized features delivered in Chapter 1.

The principle of forecasting remains analogous as before (see Section 3.1).

For instance, the k-step-ahead prediction of the GJR-GARCH(1,1) conditional

variance σ2
t is expressed as (for k > 1):

σ̂2
t+k|t := E(σ2

t+k|Ft) = ω + (α1 + γ1/2 + β1)σ̂2
t+k−1|t, (3.13)

where σ̂2
t+1|t equals σ2

t+1. Notice that the forecast converges to ω/(1−α1−γ1/2−
β1) for large k, i.e. to var(yt), provided that it exists.

Remark 3.3.1 The GJR-GARCH models are routinely estimated by maximiz-

ing the associated conditional log-likelihood criterion assuming suitable distribu-

tion of {εt}t∈Z. The quasi-maximum likelihood estimator is preferred in practice.

See also Remark 3.1.1.
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4. Recursive estimation of

GARCH models: An overview

This chapter reviews and discusses two closely related sets of previously intro-

duced recursive estimation algorithms developed for the GARCH (or ARCH)

modelling parameters. These methods are based on classic recursive estima-

tion (identification) instruments outlined by Ljung (1999), Ljung and Söderström

(1983), or Söderström and Stoica (1989). Firstly, Section 4.1 presents the pioneer-

ing work by Kierkegaard, Nielsen, Jensen and Madsen (2000), where two comple-

mentary on-line estimation procedures have been suggested. Secondly, Section 4.2

addresses attention to a pair of two-stage recursive calibration schemes originally

considered by Aknouche and Guerbyenne (2006). The pros and cons of these

algorithms are commented. In particular, they have motivated the development

of the estimation methods introduced in Chapter 5.

4.1 Methods by Kierkegaard et al.

Kierkegaard et al. (2000) originally suggested two different recursive techniques

for estimating the parameters of the GARCH models as eventual alternatives to

the common off-line maximum likelihood procedure. To derive these algorithms,

the authors employed two associated recursive identification schemes (Ljung,

1999, Chapter 11): (i) the recursive pseudo-linear regression and (ii) the recursive

prediction error method.

In particular, the whole computational implementation is based on the fol-

lowing representation of the GARCH(p, q) process {yt}t∈Z:

y2
t = σ2

t (θ0) + vt, (4.1)

where vt = σ2
t (θ0)(ε2

t − 1) and θ0 denotes the vector of the true values of par-

ameters. Here, {vt}t∈Z is a sequence of uncorrelated random variables with zero

mean. If one additionally assumes that E(y4
t ) = const. < ∞, {vt}t∈Z is white

noise according to Franke et al. (2011, Theorem 13.9).

Equation (4.1) can be rewritten more conveniently as:

y2
t = ϕ>t (θ0)θ0 + vt, (4.2)
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where

θ0 = (ω0, α1,0, . . . , αp,0, β1,0, . . . , βq,0)> , (4.3a)

ϕt(θ0) =
(
1, y2

t−1, . . . , y
2
t−p,ϕ

>
t−1(θ0)θ0, . . . ,ϕ

>
t−q(θ0)θ0

)>
, (4.3b)

ϕ>t (θ0)θ0 = ω0 +

p∑
i=1

αi,0y
2
t−i +

q∑
j=1

βj,0ϕ
>
t−j(θ0)θ0. (4.3c)

Both recursive pseudo-linear regression and prediction error method can be

directly derived from the associated off-line (non-recursive or batch) counterparts

(Ljung, 1999, Chapter 11). Assume that observations {y1, . . . , yT} are given and

that {y2
1−p, . . . , y

2
0} and {ϕ>1−q(θ)θ, . . . ,ϕ>0 (θ)θ} are either given or defined, the

pseudo-linear regression technique estimates the unknown parameters of (4.2) by

solving the following equation for θ ∈ Θ ⊆ Rp+q+1 (a parametric space):

1

T

T∑
t=1

ϕt(θ)
[
y2
t −ϕ>t (θ)θ

]
= 0. (4.4)

It corresponds to the situation, in which the prediction errors [y2
t − ϕ>t (θ)θ] are

supposed to be uncorrelated in the given time with the regressorsϕt(θ). Similarly,

the prediction error method calibrates the model (4.2) by minimizing the sum of

the squared prediction errors for θ ∈ Θ ⊆ Rp+q+1 (a parametric space). It can

be formulated as:

arg min
θ∈Θ

1

T

T∑
t=1

(
y2
t −ϕ>t (θ)θ

)2
. (4.5)

The recursive pseudo-linear regression algorithm for estimating the param-

eters of the GARCH(p, q) process is thus defined as (Kierkegaard et al., 2000):

θ̃t = θ̃t−1 + R̃
−1

t ϕ̃t(y
2
t − ϕ̃

>
t θ̃t−1), (4.6a)

R̃t = R̃t−1 + ϕ̃tϕ̃
>
t , t ∈ N, (4.6b)

where

θ̃t = (ω̃t, α̃1,t, . . . , α̃p,t, β̃1,t, . . . , β̃q,t)
>, (4.7a)

ϕ̃t = (1, y2
t−1, . . . , y

2
t−p, ϕ̃

>
t−1θ̃t−2, . . . , ϕ̃

>
t−qθ̃t−q−1)>, (4.7b)

ϕ̃>t θ̃t−1 = ω̃t−1 +

p∑
i=1

α̃i,t−1y
2
t−i +

q∑
j=1

β̃j,t−1ϕ̃
>
t−jθ̃t−j−1. (4.7c)
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The recursive prediction error updating scheme for estimating the parameters

of the GARCH(p, q) model is given likewise (Kierkegaard et al., 2000):

θ̃t = θ̃t−1 + R̃
−1

t ψ̃t(y
2
t − ϕ̃

>
t θ̃t−1), (4.8a)

R̃t = R̃t−1 + ψ̃tψ̃
>
t , (4.8b)

ψ̃t+1 = ϕ̃t+1 +

q∑
j=1

β̃j,tψ̃t+1−j, t ∈ N, (4.8c)

where θ̃t and ϕ̃t remain as in (4.7). Note that the original algorithm has not in-

cluded the explicit recurrent formula for computing ψ̃t (Kierkegaard et al., 2000,

Equation (25)); therefore, it has been added in accordance with Ljung (1999,

Chapter 11). Moreover, it is evident that both described recursive estimation

methods are closely related. Namely, they differ only in terms of ϕ̃t and ψ̃t. The

vector ψ̃t is a recursively evaluated counterpart of ψt(θ), where ψ>t (θ) denotes

the gradient of the function ϕ>t (θ)θ with respect to θ. See also Section 5.1.

This inconspicuous discrepancy is determined by the distinct estimation prob-

lems originally inspired by (4.4) and (4.5). The recursive pseudo-linear regression

algorithm (4.6) can be also regarded as an approximation of the recursive pre-

diction error method (4.8) by putting ψ̃t ≈ ϕ̃t. Asymptotically, the recursive

estimates converge under the associated assumptions to (local) off-line solutions

of the problems (4.4) and (4.5), respectively (Ljung, 1999, Chapter 11).

On the one hand, both on-line estimation techniques are numerically straight-

forward and easy to implement. On the other hand, they (intuitively) suffer from

the loss of efficiency since the original calibration criteria (4.4) and (4.5), from

which they are derived, overlook the heteroscedastic structure of the disturb-

ance term vt in (4.2). In addition, Kierkegaard et al. (2000) omitted to discuss

three important aspects of practical implementation. Firstly, it is necessary to

adopt a projection algorithm that guarantees the numerical stability of both

estimation methods and ensures positivity and stationarity of the GARCH con-

ditional variance. See Sections 4.2 and 5.2. Neglecting this fact, the recursive

estimation schemes could theoretically or numerically degenerate (Ljung, 1999,

Chapter 11). Secondly, the initial values θ̃0 and R̃0 starting both procedures were

not discussed. This could be questioned primarily from the practical viewpoint

(Hendrych, 2014b). Thirdly, the forgetting factors could be introduced into both

procedures to accelerate convergence or to track time-varying parameters.
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4.2 Methods by Aknouche and Guerbyenne

Independently, Aknouche and Guerbyenne (2006) proposed a couple of two-stage

recursive estimation schemes appropriate for the standard GARCH(p, q) models.

The authors extended the ideas introduced by Bose and Mukherjee (2003). How-

ever, they focused mainly on the derivation and partly on convergence analysis

of the algorithms and not on their numerical evaluation. It can be perceived as

a crucial objection (Hendrych, 2014b).

Employing the same representation of the GARCH(p, q) model as in (4.2),

the first stages of the recursive estimation methods have been suggested. Simi-

larly as in Section 4.1, the recursive pseudo-linear regression and prediction error

estimation schemes have been applied. Nevertheless, both first stages still have

ignored the heteroscedasticity of the innovation term vt from (4.2). See below.

Therefore, Aknouche and Guerbyenne (2006) introduced the second stages by

using particular weights delivered by the first stages. They should improve the

efficiency of the first-stage estimates reflecting the heteroscedastic structure of vt

more precisely. Refer to Section 6.1 for various Monte Carlo experiments.

Lemma 4.2.1 (Matrix inversion lemma) Let A, U , C, and V be (n × n),

(n× k), (k × k), and (k × n) real matrices, respectively (k, n ∈ N). It holds:

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.

Proof Here, (A+UCV )
[
A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1

]
= I.

To derive the first stage of the recursive pseudo-linear regression estimation

algorithm as it was introduced by Aknouche and Guerbyenne (2006), it is suffi-

cient to rearrange (4.6) by applying Lemma 4.2.1, where one puts P̃ t = R̃
−1

t , i.e.:

θ̃t = θ̃t−1 +
P̃ t−1ϕ̃t(y

2
t − ϕ̃

>
t θ̃t−1)

1 + ϕ̃>t P̃ t−1ϕ̃t
, θ̃0 = 0, (4.9a)

P̃ t = P̃ t−1 −
P̃ t−1ϕ̃tϕ̃

>
t P̃ t−1

1 + ϕ̃>t P̃ t−1ϕ̃t
, P̃ 0 = κI, (4.9b)

where κ is a large positive number, e.g. κ = 105.

The heteroscedasticity of the innovation term vt defined by (4.2) has not been

explicitly taken into account (as in the previous case of (4.6)). For this reason,

Aknouche and Guerbyenne (2006) added the second stage by inserting suitable
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weights delivered by the first stage as follows:

θ̂t = θ̂t−1 +
P̂ t−1ϕ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

(ϕ̃>t θ̃t−1)2 + ϕ̂>t P̂ t−1ϕ̂t
, θ̂0 = 0, (4.10a)

P̂ t = P̂ t−1 −
P̂ t−1ϕ̂tϕ̂

>
t P̂ t−1

(ϕ̃>t θ̃t−1)2 + ϕ̂>t P̂ t−1ϕ̂t
, P̂ 0 = κI, (4.10b)

where κ is a large positive number, e.g. κ = 105, and where

θ̂t = (ω̂t, α̂1,t, . . . , α̂p,t, β̂1,t, . . . , β̂q,t)
>, (4.11a)

ϕ̂t = (1, y2
t−1, . . . , y

2
t−p, ϕ̂

>
t−1θ̂t−2, . . . , ϕ̂

>
t−qθ̂t−q−1)>, (4.11b)

ϕ̂>t θ̂t−1 = ω̂t−1 +

p∑
i=1

α̂i,t−1y
2
t−i +

q∑
j=1

β̂j,t−1ϕ̂
>
t−jθ̂t−j−1. (4.11c)

As was noted in Section 4.1, the recursive pseudo-linear regression can be

regarded as an approximation of the more complex recursive prediction error

method that reflects the modelling structure more conveniently (Ljung, 1999,

Chapter 11). Therefore, one could generalize the preceding two-stage algorithm

just using this technique. Similarly as before, the first stage of the recursive

prediction error procedure by Aknouche and Guerbyenne (2006) may be directly

developed from (4.8) by employing Lemma 4.2.1 using P̃ t = R̃
−1

t , i.e.:

θ̃t = θ̃t−1 +
P̃ t−1ψ̃t(y

2
t − ϕ̃

>
t θ̃t−1)

1 + ψ̃
>
t P̃ t−1ψ̃t

, θ̃0 = 0, (4.12a)

P̃ t = P̃ t−1 −
P̃ t−1ψ̃tψ̃

>
t P̃ t−1

1 + ψ̃
>
t P̃ t−1ψ̃t

, P̃ 0 = κI, (4.12b)

ψ̃t+1 = ϕ̃t+1 +

q∑
j=1

β̃j,tψ̃t+1−j, (4.12c)

where the notation remains unchanged.

The second stage can be deduced similarly as before. The term (ϕ̃>t θ̃t−1)2

computed by using (4.12a) and (4.12b) is included instead of the units in the

denominators of (4.12) to reflect the heteroscedasticity of vt from (4.2) more

accurately (Aknouche & Guerbyenne, 2006):

θ̂t = θ̂t−1 +
P̂ t−1ψ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

(ϕ̃>t θ̃t−1)2 + ψ̂
>
t P̂ t−1ψ̂t

, θ̂0 = 0, (4.13a)

P̂ t = P̂ t−1 −
P̂ t−1ψ̂tψ̂

>
t P̂ t−1

(ϕ̃>t θ̃t−1)2 + ψ̂
>
t P̂ t−1ψ̂t

, P̂ 0 = κI, (4.13b)
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ψ̂t+1 = ϕ̂t+1 +

q∑
j=1

β̂j,tψ̂t+1−j, (4.13c)

where the notation remains unchanged.

From the practical and theoretical point of view, one should adopt a monitor-

ing procedure that projects the current on-line estimate onto the region of sta-

bility to avoid the algorithm degeneration. See Section 5.2.4 for further details.

For instance, one can apply the technique originally recommended by Ljung and

Söderström (1983, Section 6.6) that completes all presented recursive estimation

methods. For example, in the case of (4.9), it may be formulated as:

Step 1. At each time t ∈ N, set µ ∈ [0, 1) and i = 1.

Step 2. Check if θ̃t lies in the defined region of stability denoted as DM.

• If yes, stop.

• Otherwise, go to Step 3.

Step 3. Evaluate θ̃t = θ̃t−1 +µi
P̃ t−1ϕ̃t(y

2
t−ϕ̃

>
t θ̃t−1)

1+ϕ̃>t P̃ t−1ϕ̃t

. Set i = i+ 1. Skip to Step 2.

Evidently, this projection can be simply used with all presented calibration tech-

niques. The term µi adequately adjusts the effect of the new observation. How-

ever, for µ 6= 0 this approach would decelerate computations. See Section 5.2.4

for the definition of DM. Note that the structure of the stability region was not

discussed in detail by Aknouche and Guerbyenne (2006).

Let us stress the fact that the first stages of both two-stages procedures pro-

posed by Aknouche and Guerbyenne (2006) completely coincide with the methods

outlined in Section 4.1, which were suggested by Kierkegaard et al. (2000). They

have been derived by using the similar model representation and the identical

recursive estimation instruments. They differ only in the rearrangement apply-

ing Lemma 4.2.1. Introducing the second stages with the particular weights has

been motivated by pragmatic econometric approaches (Bose & Mukherjee, 2003).

Two-stage estimation methods are relatively common for improving efficiency.

Additionally, one should pay attention to several other points concerning the

discussed recursive estimation procedures. Firstly, both the recursive pseudo-

linear regression and the recursive prediction error methods in the present form

have been originally derived to solve the problems given by (4.4) and (4.5) sequen-

tially. More specifically, they have been primarily formulated for linear ARMA

models with homoscedastic disturbances. Although the heteroscedasticity of the

term vt from (4.2) is reflected in the second stages of both algorithms by insert-

ing the specific weights, there still might exist doubts whether this adaptation is

sufficient or not. Compare with the general scheme considered in Ljung (1999,
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Chapter 11). Secondly, all algorithms are initialized by zero vectors. They ap-

parently lie outside of the region of positivity and stationarity. It means that

the positivity and stationarity of the recursively evaluated GARCH conditional

variance are not assured in general (according to the accepted projection). It

might eventually decelerate or even degenerate the estimation. Refer to Sec-

tion 6.1 for simulation experiments. Thirdly, the white noise in (4.2) may be

distributed non-trivially (even if the original innovations have a common distri-

bution). Fourthly, two-stage procedures are relatively computationally complex

in comparison with one-stage ones. Analogous algorithms could be suggested as

one-stage by respecting the heteroscedasticity of vt immediately (see Section 5.1).

Nevertheless, the numbers of operations per iteration time corresponding to the

one-stage and two-stage procedures are still proportional. Finally, the proposed

techniques do not take into account pragmatic approaches to recursive estima-

tion surveyed e.g. by Ljung (1999, Chapter 11). Namely, they usually introduce

additional deterministic weights to accelerate the convergence. See Section 5.2.2.

These facts and the results of simulations presented by Hendrych (2014b) have

inspired derivation of alternative one-stage self-weighted estimation techniques.

These are introduced in Section 5.1. In particular, one has been motivated by

the demand for reliable on-line estimation techniques that could be comfortably

applied in practice. Moreover, the quality of such sequential estimation proced-

ures should be (asymptotically) comparable with the off-line methods (Ljung &

Söderström, 1983, Chapter 4).

Remark 4.2.1 The first (non-weighted) stage of the recursive prediction error

estimation algorithm (4.12) may be also viewed from the perspective of the ex-

tended Kalman filter (Chui & Chen, 2013, Chapter 8). In particular, assume the

following nonlinear state space modelling representation:

θt = θt−1, (4.14a)

y2
t = ϕ>t (θt)θt + et, (4.14b)

where the notation is obvious (see Section 4.1) and t ∈ N. The error terms {et}t∈N
are i. i. d. random variables with the normal distribution N (0, σ2

e), σ
2
e ∈ (0,∞).

The initial state vector θ0 is supposed to be N (θ̃0, P̃ 0) independently of e1, e2, . . . ,

where both quantities θ̃0 and P̃ 0 are assumed to be known. The state equa-

tion (4.14a) models the path of estimated parameters. The signal (measurement)

equation (4.14b) partly reflects the GARCH(p, q) framework given by (4.2). Here,

the simpler homoscedastic normally distributed i. i. d. disturbances are con-

sidered. This undoubtedly simplifies the original structure. Remind that the

function ϕ>t (θ) depends only on θ and the past measurements. Refer to (4.3).
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To provide the associated extended Kalman filtering formulas, the nonlinear term

ϕ>t (θ)θ must be linearized using the first-order Taylor expansion around θ̃, i.e.

ϕ>t (θ)θ ≈ ϕ>t (θ̃)θ̃ + ψ>t (θ̃)(θ − θ̃), where ψ>t (θ̃) denotes the gradient of the

function ϕ>t (θ)θ with respect to θ evaluated in θ = θ̃.

Define θ̃t|t−1 := E(θt|Y 2
t−1) and P̃ t|t−1 := cov(θt|Y 2

t−1), where Y 2
t is the

collection of all observations up to and including time t. It is clear that θ̃t|t−1 =

θ̃t−1|t−1 and P̃ t|t−1 = P̃ t−1|t−1 according to (4.14a) using the obvious notation.

Applying the already mentioned linearization around θ̃t|t−1, one computes:

E(y2
t |Y 2

t−1) ≈ ϕ>t (θ̃t|t−1)θ̃t|t−1, (4.15a)

var(y2
t |Y 2

t−1) ≈ σ2
e +ψ>t (θ̃t|t−1)P̃ t|t−1ψt(θ̃t|t−1) =: S̃t|t−1, (4.15b)

cov(θt, y
2
t |Y 2

t−1) ≈ P̃ t|t−1ψt(θ̃t|t−1) =: M̃ t|t−1. (4.15c)

The Kalman filter can be derived under the assumption that θt and y2
t are

jointly conditionally normally distributed given Y 2
t−1. Namely, suppose that

(θ>t , y
2
t )
>|Y 2

t−1 has the normal distribution with this characterization:

N

((
θ̃t|t−1

ϕ>t (θ̃t|t−1)θ̃t|t−1

)
,

(
P̃ t|t−1 M̃ t|t−1

M̃
>
t|t−1 S̃t|t−1

))
. (4.16)

Employing the lemma from optimal estimation theory (Durbin & Koopman,

2001, Section 2.13) and setting θ̃t := θ̃t|t and P̃ t := P̃ t|t/σ
2
e , one obtains:

θ̃t = θ̃t−1 +
P̃ t−1ψt(θ̃t−1)(y2

t −ϕ>t (θ̃t−1)θ̃t−1)

1 +ψ>t (θ̃t−1)P̃ t−1ψt(θ̃t−1)
, (4.17a)

P̃ t = P̃ t−1 −
P̃ t−1ψt(θ̃t−1)ψ>t (θ̃t−1)P̃ t−1

1 +ψ>t (θ̃t−1)P̃ t−1ψt(θ̃t−1)
, t ∈ N. (4.17b)

Obviously, the introduced system almost coincides with the algorithm (4.12).

However, this particular scheme is not appropriate for recursive estimating since

ϕt(θ̃t−1) and ψt(θ̃t−1) are not evaluated sequentially. Their calculation at each

time indeed requires processing all data up to time t. On the other hand, both

compared methods are equivalent accepting several pragmatic approximations for

ϕt(θ̃t−1) and ψt(θ̃t−1). Naturally, one can consider ϕt(θ̃t−1) ≈ ϕ̃t and ψt(θ̃t−1) ≈
ψ̃t similarly as in (4.7).
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5. Self-weighted recursive

estimation of selected conditional

heteroscedasticity models

Chapter 4 has reviewed the distinct variants of recursive procedures available for

estimating the parameters of the GARCH(p, q) models. All introduced methods

have been based on the particular representation of the GARCH process given

by Equation (4.2). They have employed and (partly) modified standard recursive

identification schemes originally designed for calibrating linear ARMA processes.

Nonetheless, one might apply general calibration instruments to deliver one-stage

self-weighted on-line estimation algorithms suitable for various classic conditional

heteroscedasticity models. The suggested estimators should naturally respond to

the remarks discussed in Section 4.2. They should be applicable in practice.

This chapter is organized as follows. Section 5.1 derives a couple of recursive

estimation techniques for calibrating the GARCH parameters. Section 5.2 dis-

cusses several practical aspects of implementation (e.g. initialization, regulariza-

tion, and robustification). Section 5.3 justifies both methods from the theoretical

perspective. Finally, Section 5.4 presents various modifications of the adopted

estimation procedures, which can calibrate other conditional heteroscedasticity

processes, namely the ARCH, RiskMetrics EWMA, and GJR-GARCH models.

5.1 Self-weighted recursive estimation methods

for GARCH models: Derivation

The following paragraphs outline an explicit derivation of alternative one-stage

self-weighted recursive formulas for estimating the GARCH(p, q) process. Namely,

the general recursive identification methods summarized by Ljung (1999), Ljung

and Söderström (1983), and Söderström and Stoica (1989) are applied in this

context to deliver reliable estimation procedures. See Section 4.2.

Initially, let us consider the loss function that is supposed to be minimized:

Vt(θ) = γt

t∑
k=1

[
t−1∏
`=k

λ`

]
Fk(θ), t ∈ N, θ ∈ Θ ⊆ Rp+q+1, (5.1)

where Θ is a parametric space, and we accept the convention that
∏t−1

`=t λ` = 1

with a sequence of positive real numbers {λ`}∞`=1 such that γt = 1/
[∑t

k=1

∏t−1
`=k λ`

]
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fulfils γt > 0,
∑∞

t=1 γt = ∞, and
∑∞

t=1 γ
2
t < ∞. The meaning of these determin-

istic weights is explained in more detail in Section 5.2.2. The remaining function

Fk(θ) represents a core criterion associated with the particular estimation prob-

lem. To calibrate the standard GARCH(p, q) process {yt}t∈Z defined by (3.1)

with the parameters collected in the vector θ = (ω, α1, . . . , αp, β1, . . . , βq)
> using

a given data sample, one may assume the following criterion function:

Fk(θ) =
y2
k

ϕ>k (θ)θ
+ log

(
ϕ>k (θ)θ

)
, k ∈ N, (5.2)

where

ϕk(θ) =
(
1, y2

k−1, . . . , y
2
k−p,ϕ

>
k−1(θ)θ, . . . ,ϕ>k−q(θ)θ

)>
, (5.3a)

ϕ>k (θ)θ = ω +

p∑
i=1

αiy
2
k−i +

q∑
j=1

βjϕ
>
k−j(θ)θ. (5.3b)

This loss function obviously (almost) coincides with the (negative) conditional

log-likelihood function derived assuming the GARCH(p, q) model with normally

distributed innovations (Fan & Yao, 2005, Section 4.2). The missing values

{ϕ>1−q(θ)θ, . . . ,ϕ>0 (θ)θ} starting estimation are usually substituted by appro-

priate quantities. Refer to Section 5.2.1. Similarly, {y2
1−p, . . . , y

2
0} must be either

observed or defined to evaluate initial values of Fk(θ). Nevertheless, the influence

of initialization fades away relatively quickly.

Moreover, suppose that θ̂t−1 minimizes Vt−1(θ) and that the minimum point

of Vt(θ) is close to θ̂t−1. Respecting these conditions, it seems reasonable to

approximate Vt(θ) by the second-order Taylor expansion around θ̂t−1 as usual.

To be more specific, we can obtain:

Vt(θ) ≈ Vt(θ̂t−1)+∇θVt(θ̂t−1)(θ− θ̂t−1)+
1

2
(θ− θ̂t−1)>V ′′t (θ̂t−1)(θ− θ̂t−1), (5.4)

where ∇θVt(θ) and V ′′t (θ) stand for the gradient and the Hessian matrix of

second-order derivatives of Vt(θ) with respect to θ, respectively. The approxi-

mation on the right-hand side of (5.4) is a quadratic function of θ, which can

be simply minimized with respect to θ. In addition, let the minimum point

constitute the new parameter estimate θ̂t. Particularly, we obtain:

θ̂t = θ̂t−1 −
[
V ′′t (θ̂t−1)

]−1 [
∇θVt(θ̂t−1)

]>
. (5.5)

Apparently, this formula coincides with one step in the Newton-Raphson al-

gorithm initialized in the point θ̂t−1.
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To evaluate the estimate θ̂t applying (5.5), the gradient and the Hessian

matrix of the loss function Vt(θ) with respect to θ must be calculated. The

following relations can be simply derived from (5.1):

Vt(θ) = (1− γt)Vt−1(θ) + γtFt(θ), (5.6a)

∇θVt(θ) = (1− γt)∇θVt−1(θ) + γt∇θFt(θ), (5.6b)

V ′′t (θ) = (1− γt)V ′′t−1(θ) + γtF
′′
t (θ), (5.6c)

∇θFt(θ) = −y
2
t −ϕ>t (θ)θ(
ϕ>t (θ)θ

)2 ψ
>
t (θ), (5.6d)

F ′′t (θ) =
2y2

t −ϕ>t (θ)θ(
ϕ>t (θ)θ

)3 ψt(θ)ψ>t (θ) +
ϕ>t (θ)θ − y2

t(
ϕ>t (θ)θ

)2 Ψt(θ), (5.6e)

where ψ>t (θ) and Ψt(θ) are the gradient and the Hessian matrix of second-order

derivatives of the function ϕ>t (θ)θ with respect to θ, respectively.

In order to transform (5.5) into an effective recursive estimation algorithm,

several adjustments must be realized. Firstly, we may put ∇θVt−1(θ̂t−1) = 0

since θ̂t−1 is supposed to be the minimum point of Vt−1(θ). Secondly, we shall

approximate the Hessian matrix V ′′t (θ) by an associated matrix denoted as Rt(θ)

such that E[V ′′t (θ)−Rt(θ)] = 0 holds for all t ∈ N and θ = θ0, i.e. for the vector

of the true parameters. To be more precise, one can set:

Rt(θ) = (1− γt)Rt−1(θ) + γtF̃
′′
t (θ) with F̃

′′
t (θ) =

ψt(θ)ψ>t (θ)

(ϕ>t (θ)θ)2
. (5.7)

Particularly, F̃
′′
t (θ) may replace F ′′t (θ) since E[F ′′t (θ)|Ft−1] = E[F̃

′′
t (θ)|Ft−1]

for all t ∈ N and θ = θ0, i.e. for the vector of the true parameters. Therefore,

the evaluation of the second-order derivatives originally included in F ′′t (θ) is ef-

fectively reduced. It means that the Newton-Raphson algorithm based on the

exact Hessian matrix is no longer used. Finally, we shall assume that the sup-

posed approximative matrix Rt varies slowly with θ, i.e. that Rt−1(θ̂t−1) equals

Rt−1(θ̂t−2). For further insights, refer to Ljung (1999, Chapter 11) or Söderström

and Stoica (1989, Chapter 9).

If we combine the relations in (5.6), (5.7), and the previously suggested modi-

fications together, the consequent recursive formulas can be deduced (using the

apparent simplifications in the denotation):

θ̂t = θ̂t−1 − γtR−1
t

[
∇θFt(θ̂t−1)

]>
, (5.8a)

Rt = Rt−1 + γt

[
F̃
′′
t (θ̂t−1)−Rt−1

]
, t ∈ N. (5.8b)
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However, the equations considered in (5.8) are not, in fact, true recursive

estimation formulas since the calculation of Ft(θ̂t−1) and its derivatives for t

requires processing all data up to time t. See also Remark 4.2.1. Therefore, we

should implement some pragmatic approximations that remove this limitation

(Ljung, 1999, Chapter 11). The following relations may be suitable:

ϕt(θ̂t−1) ≈ ϕ̂t and ψt(θ̂t−1) ≈ ψ̂t, (5.9)

where

ϕ̂t = (1, y2
t−1, . . . , y

2
t−p, ϕ̂

>
t−1θ̂t−1, . . . , ϕ̂

>
t−qθ̂t−q)

>, (5.10a)

ϕ̂>t θ̂t−1 = ω̂t−1 +

p∑
i=1

α̂i,t−1y
2
t−i +

q∑
j=1

β̂j,t−1ϕ̂
>
t−jθ̂t−j, (5.10b)

ϕ̂>t θ̂t = ω̂t +

p∑
i=1

α̂i,ty
2
t−i +

q∑
j=1

β̂j,tϕ̂
>
t−jθ̂t−j, (5.10c)

and

(ψ̂t)k :=


1 +

∑q
j=1 β̂j,t−1(ψ̂t−j)k, k = 1,

y2
t−(k−1) +

∑q
j=1 β̂j,t−1(ψ̂t−j)k, k = 2, . . . , p+ 1,

(ϕ̂t)k +
∑q

j=1 β̂j,t−1(ψ̂t−j)k, k = p+ 2, . . . , p+ q + 1.

(5.11)

Equation (5.11) approximating the gradient can be written more concisely as:

ψ̂t = ϕ̂t +

q∑
j=1

β̂j,t−1ψ̂t−j. (5.12)

Consequently, the preceding discussion results in the recursive algorithm ap-

propriate for estimating the parameters of the standard GARCH(p, q) model.

This algorithm has the following form:

θ̂t = θ̂t−1 + γtR
−1
t ψ̂t

y2
t − ϕ̂

>
t θ̂t−1

(ϕ̂>t θ̂t−1)2
, (5.13a)

Rt = Rt−1 + γt

{
ψ̂tψ̂

>
t

(ϕ̂>t θ̂t−1)2
−Rt−1

}
, (5.13b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q)

>, (5.13c)

ψ̂t+1 = ϕ̂t+1 +

q∑
j=1

β̂j,tψ̂t+1−j, t ∈ N. (5.13d)
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Moreover, if we put P̂ t = γtR
−1
t (for the definition of λt and γt, consult (5.1)

and Section 5.2.2) and employ Lemma 4.2.1, we shall obtain after rearrangements

a computationally more efficient version of the above formulas:

θ̂t = θ̂t−1 +
P̂ t−1ψ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

, (5.14a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ψ̂tψ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

}
, (5.14b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q)

>, (5.14c)

ψ̂t+1 = ϕ̂t+1 +

q∑
j=1

β̂j,tψ̂t+1−j, t ∈ N. (5.14d)

Theoretical analysis of the proposed algorithm can employ the general schemes

considered by Ljung and Söderström (1983, Chapter 4); it is rather technical and

uses instruments known mainly from the ordinary differential equation theory.

Under the corresponding (mostly technical) assumptions, it can be shown that

the recursive and the off-line estimates originated from the identical criterion have

similar convergence features. Additionally, they are also asymptotically normally

distributed (Ljung & Söderström, 1983, Chapter 4). See also Section 5.3.3.

At first sight, the estimation algorithm (5.14) seems to be related to those

outlined in Chapter 4. There undoubtedly exist evident connections between

these methods. If we simplify the formulas in (5.14) just assuming λt ≡ 1 for all t,

we will receive almost similar estimation algorithms. Thus, it may be concluded

that the suggested method is, in fact, a one-stage self-weighted alternative to

the recursive prediction error techniques presented in Chapter 4. Comparing all

these recursive schemes mutually, one can summarize that the discussed methods

are analogous but operate with the different weights in the denominators of the

updating terms and also with the distinct definitions of ϕ̃t and ϕ̂t (compare the

methods (4.7), (4.11), and (5.10)).

In detail, the proposed self-weighted algorithm (5.14) is connected: (i) to

the non-weighted technique (4.8) considered by Kierkegaard et al. (2000), (ii) to

both, i.e. the first (non-weighted) and second (weighted), stages of the algorithm

(4.12)-(4.13) introduced by Aknouche and Guerbyenne (2006). The modifier

“self-weighted” appearing in the name of the suggested method reflects these

differences. Note that the nuance between the two definitions of ϕ̂t (and ϕ̃t) can

be omitted since one can easily adapt the algorithms from Chapter 4 to respect

(5.10). Additionally, it holds for a large t that θ̃t−1 ≈ θ̃t−2 and θ̂t−1 ≈ θ̂t−2.

It should be also pointed out that the suggested simplified estimation formulas

coincide with the stochastic Newton approximation scheme given by Gerencsér,
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Orlovits and Torma (2010). Additionally, Gerencsér and Orlovits (2012) have

earlier analysed the convergence properties applying stochastic approximations.

From the practical and theoretical viewpoint, it might be interesting to study

the self-weighted version of the recursive pseudo-linear regression derived directly

from (5.13) by using the obvious approximation ψ̂t ≈ ϕ̂t, i.e.:

θ̂t = θ̂t−1 + γtR
−1
t ϕ̂t

y2
t − ϕ̂

>
t θ̂t−1

(ϕ̂>t θ̂t−1)2
, (5.15a)

Rt = Rt−1 + γt

{
ϕ̂tϕ̂

>
t

(ϕ̂>t θ̂t−1)2
−Rt−1

}
, (5.15b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q)

>, t ∈ N. (5.15c)

Alternatively, by putting P̂ t = γtR
−1
t and applying Lemma 4.2.1, one obtains:

θ̂t = θ̂t−1 +
P̂ t−1ϕ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

, (5.16a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ϕ̂tϕ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

}
, (5.16b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q)

>, t ∈ N. (5.16c)

It might be an acceptable numerical alternative to the recursive pseudo-linear

regression algorithms introduced in Chapter 4. Similarly as before, all pres-

ented recursive pseudo-linear regression estimation procedures are closely related

assuming λt ≡ 1 for all t but operate with the different weighting terms and

definitions of ϕ̃t and ϕ̂t. Compare (4.6), (4.9)-(4.10), and simplified (5.16).

Remark 5.1.1 It should be emphasized that the only difference between the

recursive pseudo-linear regression method , e.g. (5.16), compared to the recursive

prediction error technique, e.g. (5.14), consists in the fact that the approximated

gradient ψ̂t is substituted by using ϕ̂t. It is clear that this simplification reduces

the algorithm complexity since the gradient ψ̂t need not to be evaluated and

monitored. However, it necessarily results also in changes of: (i) convergence

properties, (ii) asymptotic accuracy, and (iii) transient behaviour.

Firstly, the estimates delivered by the recursive prediction error method con-

verge under more general assumptions and are asymptotically statistically effi-

cient (Ljung & Söderström, 1983, Chapter 4). The key attribute leading to the

consistency of the recursive pseudo-linear regression procedure is that a certain

filter supporting the mentioned substitution is positive real. This condition is

not automatically satisfied. See Ljung and Söderström (1983, Chapter 4) and

Section 5.3.4 for further insights.
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Secondly, the more complex algorithm, e.g. (5.14), is superior to the simplified

one, e.g. (5.16), from the asymptotic accuracy point of view (Ljung & Söderström,

1983, Section 5.9). See experimental results introduced in Section 6.1.

Thirdly, despite the outlined facts, sometimes the pseudo-linear regression

technique gives better results for short samples. It might be explained as follows.

Processing only a limited number of measurements, the gradient ψ̂t is filtered

rather poor due to its complex structure (see e.g. the third formula in (5.14));

therefore, the accepted substitution might be more appropriate for short data.

Consult Section 5.3.4.

Remark 5.1.2 It is evident that all algorithms considered in Chapter 4, namely

(4.6), (4.8), (4.9)-(4.10), and (4.12)-(4.13), can be easily modified to involve the

forgetting factor {λt}t∈N adjusting the convergence speed. Compare with (5.14)

or (5.16). See also Section 5.2.2 for further insights.

Remark 5.1.3 The recursive estimation algorithm (5.13) also has an associ-

ated off-line counterpart, which can be figured out by applying analogous ar-

guments as before. For simplicity, assume that the sum
∑t

k=1 Fk(θ) with the

previously defined criterion Fk(θ) is supposed to be minimized. It obviously (al-

most) corresponds to the common negative conditional log-likelihood criterion for

the GARCH(p, q) process. The iteration method used in the case of the off-line

prediction error estimation is a variant of the gradient-type nonlinear program-

ming scheme. It can be formulated as follows:

θ̂(i+1) = θ̂(i) − ρiM−1
t (θ̂(i))

t∑
k=1

∇θFk(θ̂(i)), i ∈ N, (5.17)

where θ̂(i) is the parameter vector estimate at the ith iteration, θ̂(0) is a fixed

initial value, ρi is a step size parameter accelerating the convergence (initially

ρi > 1, after that ρi → 1 as i→∞), andM t(θ̂(i)) is the matrix with the following

attractive properties: (i) M t(θ̂(i)) is positive definite for all i, (ii) E(M t(θ̂(i))) =

E(
∑t

k=1 F
′′
k(θ̂(i))) for all i, (iii) 1/t[M t(θ̂(i))−

∑t
k=1 F

′′
k(θ̂(i))]→ 0 for all i almost

surely as t→∞.

Moore and Weiss (1979) recommended and clarified the choice M t(θ̂(i)) =∑t
k=1 F̃

′′
k(θ̂(i)) (compare with (5.7)). See Moore and Weiss (1979) for more details

and the references given therein. Apparently, the iteration scheme (5.17) with

this particular matrix M t is closely related to Equations (5.8).

Remark 5.1.4 The self-weighted sequential estimation algorithm (5.14) can be

regarded as a reduced (i.e. approximated) version of the extended Kalman filter.

See also Remark 4.2.1 for further insights and the references. In this instance,
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a more general nonlinear state space modelling representation must be naturally

supposed (Roth & Gustafsson, 2011), i.e.:

θt = θt−1, (5.18a)

y2
t = ϕ>t (θt)θt[1 + et], (5.18b)

where the notation is obvious and t ∈ N. The disturbance terms {et}t∈N are

assumed to be i. i. d. random variables with the normal distribution N (0, σ2
e),

σ2
e ∈ (0,∞). The initial state vector θ0 is supposed to be N (θ̂0, P̂ 0) independ-

ently of e1, e2, . . . , where both hatted quantities are assumed to be known. Simi-

larly as in Remark 4.2.1, the state equation (5.18a) depicts the path of the state

vectors, i.e. of the estimated parameters. The signal (measurement) equation

(5.18b) represents only a straightforward reorganization of Equation (4.2), where

the disturbances et = ε2
t − 1 are assumed to be normally distributed. Here, the

model respects the heteroscedastic structure of the error terms from (4.2). The

function ϕ>t (θ) readily depends on θ and the past measurements.

To derive the extended Kalman filtering formulas associated with the state

space system (5.18), the nonlinear function ht(δ) = ϕ>t (θ)θ[1 + e] with δ =

(θ>, e)> must be linearized applying the first-order Taylor expansion around

δ̂ = (θ̂
>
, ê)>. Namely, one may use ht(δ) ≈ ht(δ̂) + ∇δht(δ̂)(δ − δ̂), where

∇δht(δ̂) = (∇θht(δ̂),∇eht(δ̂)), ∇θh>t (δ̂) = ψt(θ̂)[1+ ê], and ∇eh
>
t (δ̂) = ϕ>t (θ̂)θ̂,

respectively. The notation has been explained earlier. Consult also Roth and

Gustafsson (2011) for further insights.

Define θ̂t|t−1 := E(θt|Y 2
t−1) and P̂ t|t−1 := cov(θt|Y 2

t−1), where Y 2
t is the

collection of all observations up to and including time t. According to (5.18a),

it clearly holds that θ̂t|t−1 = θ̂t−1|t−1 and P̂ t|t−1 = P̂ t−1|t−1 using the obvious

notation. Employing the linearization of the function ht(δ) around δ̂t|t−1 :=

E((θ>t , et)
>|Y 2

t−1) = (θ̂
>
t|t−1, 0)>, one obtains:

E(y2
t |Y 2

t−1) ≈ ϕ>t (θ̂t|t−1)θ̂t|t−1, (5.19a)

cov(y2
t |Y 2

t−1) ≈ σ2
e(ϕ

>
t (θ̂t|t−1)θ̂t|t−1)2

+ψ>t (θ̂t|t−1)P̂ t|t−1ψt(θ̂t|t−1) =: Ŝt|t−1, (5.19b)

cov(θt, y
2
t |Y 2

t−1) ≈ P̂ t|t−1ψt(θ̂t|t−1) =: M̂ t|t−1. (5.19c)

The Kalman filtering scheme can be derived under the condition that θt and

y2
t are jointly conditionally normally distributed given Y 2

t−1. Particularly, assume

that (θ>t , y
2
t )
>|Y 2

t−1 has the normal distribution with the following specification
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respecting the approximations from Equations (5.19):

N

((
θ̂t|t−1

ϕ>t (θ̂t|t−1)θ̂t|t−1

)
,

(
P̂ t|t−1 M̂ t|t−1

M̂
>
t|t−1 Ŝt|t−1

))
. (5.20)

Using the lemma known from optimal estimation theory (Durbin & Koopman,

2001, Section 2.13) and putting θ̂t := θ̂t|t and P̂ t := P̂ t|t/σ
2
e , t ∈ N, one obtains:

θ̂t = θ̂t−1 +
P̂ t−1ψt(θ̂t−1)(y2

t −ϕ>t (θ̂t−1)θ̂t−1)

(ϕ>t (θ̂t−1)θ̂t−1)2 +ψ>t (θ̂t−1)P̂ t−1ψt(θ̂t−1)
, (5.21a)

P̂ t = P̂ t−1 −
P̂ t−1ψt(θ̂t−1)ψ>t (θ̂t−1)P̂ t−1

(ϕ>t (θ̂t−1)θ̂t−1)2 +ψ>t (θ̂t−1)P̂ t−1ψt(θ̂t−1)
. (5.21b)

Apparently, the algorithm (5.21) is linked to the method (5.14). Nevertheless,

to provide a fully recursive method, further approximations must be performed

since ϕ>t (θ̂t−1) and ψ>t (θ̂t−1) are not evaluated recurrently. Their calculation at

each time requires processing all data up to time t. Therefore, it seems reason-

able to introduce repeatedly the pragmatic simplifications discussed before, i.e.

ϕ>t (θ̂t−1) ≈ ϕ̂t and ψ>t (θ̂t−1) ≈ ψ̂t as in (5.9). They transform (5.21) into the

estimation procedure that is identical to (5.14) (by putting λt ≡ 1 for all t).

5.2 Self-weighted recursive estimation methods

for GARCH models: Practical aspects

Before studying theoretical properties of the estimation algorithms suggested in

Section 5.1, we shall clarify several practical aspects necessary for the successful

routine implementation of the considered on-line calibration techniques. From

the practical point of view, one should primarily address attention to: (i) ini-

tialization of both methods, (ii) the accelerating factors γt and λt controlling

convergence speed, (iii) regularization and factorization of the algorithms, and

finally (iv) projections ensuring stability (especially, the positivity and station-

arity of the conditional variance). Additionally, we shall reflect two other issues

that are undoubtedly relevant from this perspective. In particular, the questions

of model identification (i.e. determining the model order (p, q)) and algorithm ro-

bustification (i.e. reducing the deleterious influence of exceptional measurements)

are discussed in greater detail.
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5.2.1 Initial conditions

To employ the recursive estimation algorithms (5.14) and (5.16), initial conditions

are required for their start-up. The initial value of θ̂0 should lie in a stability

region. This set can be determined by the corresponding sufficient conditions

for the positivity and stationarity of the conditional variance. See its definition

in Section 5.2.4. Otherwise, the algorithms could be either decelerated or even

degenerated (according to the accepted projection (5.36)). Compare various re-

sults of Monte Carlo experiments presented in Section 6.1. To start the proposed

recursive estimation formulas (5.14) and (5.16), we recommend the initialization

inspired by the R package tseries (Trapletti & Hornik, 2013). In particular, the

first n observations of the GARCH process are used as a burn-in. Namely, one

can put θ̂0 = ( 1
n

∑n
i=1 y

2
i [1− (p+ q)ε], ε, . . . , ε)>, where ε is a small positive real

number such that (p+ q)ε < 1, e.g. 0.05 or 0.1 for p = q = 1, and the choice of n

should obviously reflect the frequency of observations. The estimation evidently

begins after collecting n measurements, i.e. at time n+ 1.

Alternative starting configurations might be considered. They can be de-

livered using autocorrelation functions, given by experts, etc. Clearly, any ac-

cepted choice should respect specifics of on-line estimation. On the other hand,

the initialization introduced by Aknouche and Guerbyenne (2006), i.e. θ̃0 = 0

and θ̂0 = 0, does not seem suitable in this framework. See Hendrych (2014b) or

the results presented in Section 6.1.

P̂ 0 is usually set as κI with a positive κ. If κ is small, then the parameter

estimates θ̂t will not change too much from θ̂0. If it is large enough, e.g. κ = 105,

the parameter estimates θ̂t will remote from θ̂0 relatively quickly. This particular

choice (i.e. κ = 105) associated with no prior information has been also suggested

by Aknouche and Guerbyenne (2006). If there exists some prior knowledge about

the estimated parameters, the positive elements of diagonal matrix P̂ 0 should

respect it according to Söderström and Stoica (1989, Chapter 9).

The first q recurrent approximations of the transposed gradient from (5.13d),

i.e. ψ̂1, . . . , ψ̂2−q, are chosen as ψ̂1 = ϕ̂1 and ψ̂j = 0, j < 1, since no prior

information is available. Finally, the missing elements composing ϕ̂1, . . . , ϕ̂max(p,q)

must be concretized. Namely, {y2
1−p, . . . , y

2
0} can be either observed or defined,

e.g. as a sequence of zeroes. Moreover, the values {ϕ̂>1−qθ̂1−q, . . . , ϕ̂
>
0 θ̂0} are

required. These can be quantified in many various ways, e.g. by freezing (i.e. by

assuming that all are zeros or small positive numbers), by backcasting as it is usual

in some software products (EViews, 2013), or by substituting by suitable sample

characteristics. From the sequential estimation viewpoint, it seems the most

convenient to use the first option, i.e. the freezing method that puts ϕ̂>j θ̂j = c2
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for all j = 1− q, . . . , 0 and some small c ≥ 0. However, it is noteworthy that the

choice of these initial conditions is not crucial (Bollerslev, 1986).

5.2.2 Accelerating factors

Furthermore, we should precise the role of the weighting sequences {γt}t∈N and

{λt}t∈N from the loss function (5.1). The following relations hold:

γ1 = 1 and γt =
γt−1

γt−1 + λt
, t ≥ 2. (5.22)

Estimating time-invariant parameters, the gain sequence {γt}t∈N should be se-

lected asymptotically as 1/t in regarding to minimal achievable variance of esti-

mates (Ljung & Söderström, 1983, Section 5.6). Nevertheless, in the transient

phase (i.e. for small or medium values of t), the gain sequence {γt}t∈N or equiva-

lently the forgetting factors {λt}t∈N can be chosen in a suitable way to improve

significantly the convergence rate. The motivation for applying the gain sequence

or forgetting factors is readily apparent from (5.1). Early information could be

somewhat misused during the transient phase of estimation and should therefore

carry a lower weight in the loss criterion (5.1) compared to later measurements,

which are processed in a better way (Ljung, 1999, Chapter 11).

On the one hand, discounting old data requires λt < 1, which obviously

corresponds to γt > 1/t. On the other hand, it is preferable to let λt → 1 as

t → ∞, i.e. tγt → 1 as t → ∞. In order to fulfil these objectives, let {λt}t∈N
grow to 1 exponentially with t as (Ljung & Söderström, 1983, Section 5.6):

λt = λ̃λt−1 + (1− λ̃), t ∈ N, (5.23)

where the rate λ̃ and the initial value λ0 are the tuning variables. In practice,

the choice λ̃ = 0.99 and λ0 = 0.95 has shown to be useful. In the case of a higher

order model, it is recommended to let {λt}t∈N increase more slowly to 1.

Remark 5.2.1 An important aspect of on-line estimation algorithms is their

ability to track time-varying parameters. A one way of achieving this is to adapt

the forgetting factors or the gain sequence appropriately. It is obviously related

to a trade-off between noise sensitivity and tracking ability. Slowly varying par-

ameters can be often followed reasonably well. On the contrary, it is almost

impossible to estimate fast changing parameters (Ljung, 1999, Section 11.6).

To reflect time-varying parameters by the recursive method (5.14) and others,

the most common choice is to take a constant forgetting factor, i.e.:

λt ≡ λ̄ ∈ (0, 1), t ∈ N, (5.24)
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or, alternatively, the gain sequence in the form (see (5.22)):

γt =
1− λ̄
1− λ̄t

, t ∈ N. (5.25)

Thus, the loss function (5.1) is transformed into:

Vt(θ) =
1− λ̄
1− λ̄t

t∑
k=1

λ̄t−kFk(θ), t ∈ N, θ ∈ Θ ⊆ Rp+q+1. (5.26)

Old criterion values thus contribute only marginally to the loss function. Con-

cretely, we have:

λ̄t−k = e(t−k) log(λ̄) ≈ e−(t−k)(1−λ̄). (5.27)

It means that the measurements older than T0 = 1/(1 − λ̄) time units have

weights that are less than e−1 ≈ 36% of those for the most recent observation.

Note that γt → 1/T0 as t→∞. If the system stays approximately constant over

T0 samples, a suitable choice of λ̄ can be deduced from it. Typically, it is between

0.980 and 0.995 (Ljung, 1999, Section 11.6). See also Section 6.4.2 for results of

Monte Carlo experiments.

5.2.3 Regularization and factorization

Although the sequential algorithm (5.14) looks straightforward, some numerical

problems may occur during practical computations. However, they can be suc-

cessfully resolved applying two distinct numerical instruments: (i) regularization

and (ii) factorization.

In particular, Equation (5.13b) has introduced the formula for the recursive

evaluation of Rt. Nevertheless, it may happen that the matrix Rt is (nearly)

singular, i.e. det(R−1
t ) is either large or goes to infinity as t grows (such matrices

are sometimes called ill-conditioned). In that case, computing of P̂ t = γtR
−1
t

faces serious numerical difficulties. Consequently, it is necessary to assure that the

elements of R−1
t remain bounded, i.e. det(R−1

t ) < C for some C > 0. If Rt ≥ δI

for some δ > 0 (i.e. if Rt − δI is positive semidefinite), this requirement will be

fulfilled. A technique that guarantees the latter condition is called regularization

(Ljung & Söderström, 1983, Section 6.5).

The matrix Rt presented in (5.13b) is by construction symmetric positive

semidefinite. If we add the term γtδI for some δ > 0 to the right-hand side of

the equation, i.e.:

Rt = Rt−1 + γt

{
ψ̂tψ̂

>
t

(ϕ̂>t θ̂t−1)2
+ δI −Rt−1

}
, t ∈ N, (5.28)
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Rt will be positive definite, and Rt ≥ δI for all t ∈ N0 when R0 ≥ δI. This evi-

dent analogy of the Levenberg-Marquardt regularization is conceptually simple.

The positive δ should be selected small compared to the magnitude of the elem-

ents ψ̂t, say δ = 10−4 (Ljung & Söderström, 1983, Section 6.5). Therefore, the

search directions formulated by two distinct definitions ofRt in (5.13b) and (5.28)

differ only slightly. Nonetheless, there is a disadvantage of this concept, which is

obvious from applying Lemma 4.2.1. The adjusted estimation procedure involves

inversion of (P × P ) matrix in each time step, P = p + q + 1. This drawback,

however, can be partly subdued (Ljung & Söderström, 1983, Section 6.5).

Alternatively, the regularization can be effectively incorporated into factoriza-

tion of P̂ t. Particularly, the evaluation of P̂ t as in (5.14b) is sensitive to round-off

errors, which may gradually accumulate and make P̂ t indefinite. Therefore, it

seems useful to represent P̂ t in a factorized form to treat with better conditioned

matrices (Ljung, 1999, Section 11.7). For instance, we shall assume the Cholesky

decomposition of P̂ t, i.e. P̂ t = Q̂tQ̂
>
t with a lower triangular matrix Q̂t. The

general factorization algorithm (Ljung, 1999, Section 11.7) can be modified for

the case of (5.14) as follows:

Step 1. At t = 0, initialize the Cholesky decomposition of P̂ 0: P̂ 0 = Q̂0Q̂
>
0 .

Step 2. At each time t ∈ N:

a. Form the (1 + P )× (1 + P ) matrix V t−1 as:

V t−1 :=

 √
λt(ϕ̂

>
t θ̂t−1)2 0>

Q̂
>
t−1ψ̂t Q̂

>
t−1

 . (5.29)

b. Compute the (unique) QR decomposition of V t−1: V t−1 = St−1T t−1

with an orthogonal matrix St−1 and an upper triangular matrix T t−1.

c. Let Π̄t, L̄t, and Q̄t be the (1 × 1), (P × 1), and (P × P ) matrices

defined by:

T t−1 :=

(
Π̄
>
t L̄

>
t

0 Q̄
>
t

)
. (5.30)

Clearly, both Π̄t and Q̄t are lower triangular from the definition.

d. Finally, it follows:

Π̄tΠ̄
>
t = λt(ϕ̂

>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t, (5.31a)

P̂ t = Q̂tQ̂
>
t =

Q̄tQ̄
>
t

λt
. (5.31b)

37



Verification of this factorization scheme extending (5.14) is simple since:

T>t−1T t−1 = V >t−1V t−1. (5.32)

Several numerically effective procedures exist to perform the triangularization

step by the QR decomposition (Söderström & Stoica, 1989, Appendix A.3); they

can be processed sequentially.

Applying the latter factorization algorithm, the key updating step of the es-

timation method (5.14) can be reformulated in the associated terms as:

θ̂t = θ̂t−1 + L̄tΠ̄
−1
t (y2

t − ϕ̂
>
t θ̂t−1), t ∈ N. (5.33)

The factorization algorithm can be further modified similarly as in Ljung and

Söderström (1983, Section 6.5) to involve a regularization step. Namely, we may

introduce the matrix Q∗t instead of Q̄t. Both are identical except for the diagonal

elements of Q∗t , which are defined by using the diagonal of Q̄t as:

q∗ii,t := min(D, q̄ii,t), D > 0. (5.34)

The positive number D bounds the diagonal elements of Q̄t. It can be chosen

properly to satisfy det(R−1
t ) < C for some C > 0. Particularly, if we substitute

Q̄t for Q∗t in the preceding factorization algorithm, we will obtain:

det(R−1
t ) =

1

γt
det(P̂ t) =

1

λtγt

(
P∏
i=1

q∗ii,t

)2

, t ∈ N. (5.35)

As long as the estimation is well-behaved, the limit in (5.34) is never reached,

and Rt remains unchanged. This regularization technique is activated only if

it is necessary. This is the main difference from the Levenberg-Marquardt type

regularization, where Rt is adjusted at each time step. Note that both discussed

procedures of regularization and factorization can be employed also in the context

of the recursive pseudo-linear regression algorithm (5.16).

5.2.4 Projection into stability region

As we have mentioned before, the estimated parameters θ̂t should stay inside

a compact region of stability denoted as DM ⊆ Rp+q+1 to guarantee non-degen-

erative estimation (see Section 5.3.2) and to satisfy other modelling constraints.

Particularly, one supposes that the GARCH(p, q) parameters should lie in a com-

pact subset of {θ ∈ Rp+q+1|ω > 0, αi ≥ 0, βj ≥ 0,
∑p

i=1 αi +
∑q

j=1 βj < 1},
which assures positivity and stationarity of the conditional variance σ2

t (θ). Note
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that we have accepted the obvious simplification of the formal notation here;

the second and third inequality hold for all i and j. For instance, one may put

DM := {θ ∈ Rp+q+1|δω ≤ ω ≤ ∆ω, αi ≥ 0, βj ≥ 0,
∑p

i=1 αi +
∑q

j=1 βj ≤ 1− δαβ}
with some suitable 0 < δω ≤ ∆ω < ∞ and 0 < δαβ < 1 given by a user. See

also Section 6.1. In fact, it coincides with the off-line estimation case, where

the parameters are calibrated by employing corresponding constraints or a pen-

alized objective function. Consult e.g. Trapletti and Hornik (2013). Therefore,

one might adopt a projection into DM to handle this problem (Ljung, 1999,

Chapter 11). For instance, the following rule can be implemented:

[
θ̂t

]
DM

=

{
θ̂t if θ̂t ∈DM,
θ̂t−1 if θ̂t /∈DM.

(5.36)

This simple projection rule is obviously a special case of the one outlined in

Section 4.2 (with the particular choice µ = 0), and it can be eventually replaced

by any suitable alternative (Ljung, 1999, Chapter 11). Introducing the projection

(5.36) involves the extra computational burden, i.e. verifying whether θ̂t ∈DM.

However, it is necessary for the successful operation of (5.14), (5.16), and others.

Additionally, experience has shown that the projection is activated at only a few

samples at the beginning of the data sample. The information loss by ignoring

certain observations in the sample according to (5.36) is thus moderate.

5.2.5 Model order identification

Before applying any estimation procedure on available data, we are usually sup-

posed to specify a particular modelling framework that is about to be calibrated.

In the GARCH case, we should evidently determine the model order (p, q) at

first. In many instances, one operates with a priori information about the model

specification. In that case, the estimation can start immediately (e.g. applying

the GARCH(1,1) model as the benchmark directly). Otherwise, one must employ

various instruments to recognize the adequate order (p, q).

Off-line techniques commonly distinguish between two key approaches. The

first one uses the ARMA representation of the GARCH process and the standard

tools of its identification (i.e. analysis of autocorrelation and partial autocor-

relation functions). The second one based on information criteria is preferred

by software products since it is routine (the order is selected minimizing an in-

formation criterion). For example, the Akaike information criterion is given by

AICT (p, q) = −2LT + 2(p+ q+ 1). The Schwarz (Bayesian) information criterion

is given by SICT (p, q) = −2LT + (p + q + 1) log(T ). Here, LT is the value of

the maximized conditional log-likelihood function with the (p+q+1) parameters
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using T observations. It is clear that both criteria are almost similar. They differ

only in the penalty terms.

To determine the GARCH model order (p, q) on-line, we shall implement

a non-standard procedure since no general recommendation exists. Nevertheless,

one might be inspired by the idea of using information criteria because (i) they

are routine and (ii) they can be simply adapted to involve the principles of on-line

estimation. Namely, it holds that LT (θ) = −T
2

log(2π) − 1
2

∑T
t=1 Ft(θ) and thus

LT (θ) = LT−1(θ)− 1
2
(log(2π) + FT (θ)), where Ft(θ) is defined by (5.2) for some

θ ∈ Θ ⊆ Rp+q+1. Note that we implicitly suppose that the GARCH process has

the normally distributed innovations.

The criterion Ft is evaluated (in its approximative form) recursively during the

on-line estimation. Hence, one may compute L̂t, a recurrent counterpart of Lt, by

applying the recursive estimates of Ft and the previous relations as L̂t = L̂t−1 −
1
2

(
log(2π) + y2

t /(ϕ̂
>
t θ̂t−1) + log(ϕ̂>t θ̂t−1)

)
, t ∈ N and L̂0 = 0. Consequently, we

recommend the following algorithm to identify the order (p, q) of the GARCH

process in real time (sequentially):

Step 1. Select a proper two-dimensional grid of p and q, e.g. p, q ∈ {1, 2}.

Step 2. Run parallel estimation using (5.14) or (5.16) for all available grid points

(under the same starting conditions). At each time t, compute L̂p,qt .

Step 3. After T measurements (T is sufficiently large), compare all available

ÂICT (p, q) or ŜICT (p, q) evaluated with L̂p,qT and the formulas given above.

Choose the order (p∗, q∗) with the minimal value of the preferred criterion.

Stop the rest estimation processes.

Alternatively, one can implement another version of this algorithm with the

function VT from (5.1) instead of
∑T

t=1 Ft. It reduces the influence of measure-

ments observed during transient phase due to the accelerating factors.

5.2.6 Robustification of estimation algorithms

In practice, it is necessary to be concerned with abnormal observations that may

occur in data. They can be caused by many reasons, e.g. by additive innovations,

measurement failures, etc. It is evident (e.g. from (5.1)) that abnormal data

points (the so-called outliers) will influence the model estimation considerably if

no specific action is taken. Therefore, if such defects are expected in the data set,

one should modify the estimation algorithms to make them more robust. The

outliers tend to appear as spikes in the sequence of {yt/
√
σ2
t }, which obviously

result in large contributions to the loss function.
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There exist various ways how to robustify recursive estimation algorithms.

For instance, the criterion function can be modified to become less sensitive to

large errors (e.g. by using the Huber functions) as in Ljung and Söderström

(1983, Section 5.5). Another way of handling single outliers is based on testing

a measurement at each time t. If it is large compared with a given limit, it

will be indicated as erroneous and will be substituted by another value. See e.g.

Hanzák and Cipra (2011), Ljung and Söderström (1983, Section 5.5), or Romera

and Cipra (1995) for more details.

For example, assume the following criterion applicable in the context of the

on-line estimation algorithms considered in Sections 4.1, 4.2, 5.1, and others:∣∣∣∣∣∣ yt√
ϕ̂>t θ̂t−1

∣∣∣∣∣∣ ≤ at, (5.37)

where {at}t∈N is a deterministic sequence of positive real numbers that reflects

the character (distribution) of the data set (usually at ≡ a > 0 for all t ∈ N). If

this condition is satisfied, then the estimation algorithms will remain unchanged.

Otherwise, the measurement yt will be replaced by sign(yt)at

√
ϕ̂>t θ̂t−1. Refer to

Section 6.4.3, where this concept is investigated by simulations.

5.3 Self-weighted recursive estimation methods

for GARCH models: Theoretical properties

In this section, we shall discuss the convergence and asymptotic properties of the

recursive estimation algorithms considered in Section 5.1. This analysis may be

undoubtedly useful. Theoretical qualities of the proposed estimation techniques

(5.14) and (5.16) can be deduced from the asymptotic analysis of the general

recursive prediction error estimation algorithm introduced by Ljung and Söder-

ström (1983, Chapter 3 and Section 4.3).

The general recursive prediction error method minimizes this criterion:

Ē`(t,θ,υt(θ)) := lim
T→∞

1

T

T∑
t=1

E`(t,θ,υt(θ)), (5.38)

where υt(θ) = yt − ŷt(θ) is the prediction error associated with the current

vector measurement yt and its prediction ŷt(θ) based on the parameter vector

θ ∈ Θ ⊆ Rd (a parametric space), d ∈ N. Furthermore, `(·, ·, ·) is a real-valued

criterion function on N × Rd × Rn associated with a concrete estimation task

(d, n ∈ N). This particular problem evidently conforms to the general off-line
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prediction error method, which aims at minimizing the following criterion:

1

T

T∑
t=1

`(t,θ,υt(θ)). (5.39)

The structure of recursive estimation methods suitable for minimizing (5.38)

is outlined in Ljung and Söderström (1983, Section 4.3). In particular, the general

recursive estimation algorithm respects the following sequential scheme:

υt = yt − ŷt, (5.40a)

Rt = Rt−1 + γtH(t,Rt−1, θ̂t−1,υt,ηt), (5.40b)

θ̂t = θ̂t−1 + γtR
−1
t h(t, θ̂t−1,υt,ηt), (5.40c)

ξt+1 = A(θ̂t)ξt +B(θ̂t)zt, (5.40d)(
ŷt+1

vec(ηt+1)

)
= C(θ̂t)ξt+1, (5.40e)

where the notation has been apparently simplified. The (d× 1) vector θ̂t denotes

the sequential estimate of parameters at time t. The functions H and h (in

the (d × d) square matrix and (d × 1) vector form) are related to the criterion

function ` (Ljung & Söderström, 1983, Chapter 3). Moreover, A, B, and C

denote the matrix functions of θ (with particular dimensions). The vector zt

contains measurements and/or other exogenous variables. The vector ξt and

matrix ηt jointly form the recurrently evaluated inputs of h and H according

to (5.40d) and (5.40e). The matrix operator vec converts a matrix into a vector

by stacking all its columns on top of one another. Finally, {γt}t∈N is the scalar

deterministic gain sequence described in Section 5.2.2.

Apparently, the quantities ηt and υt are determined by all previous estimates

θ̂k, k = 1, . . . , t− 1. Thus, the mapping from {z1, . . . ,zt} onto θ̂t is fairly com-

plex and difficult to study. See Chapter 2. In the literature, two key approaches

are distinguished to treat the asymptotic analysis of (5.40). See Ljung (1999,

Chapter 11), Ljung and Söderström (1983, Chapter 4), Moore and Weiss (1979),

and others. Firstly, deterministic ordinary differential equations are associated

with the scheme (5.40). Their stability properties are examined to investigate

theoretical features of (5.40). Secondly, a stochastic Lyapunov function is intro-

duced for the procedure (5.40). After that, martingale theory is applied to survey

the convergence qualities of this function (and thus of (5.40)). The first approach

is applicable in general; therefore, it will be outlined here. The next section in-

troduces heuristic explanations of the key moments of such analysis (Ljung &

Söderström, 1983, Section 4.3).
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5.3.1 Heuristic analysis of the general recursive algorithm

The estimation scheme given by (5.40) is a system of recursive stochastic time-

varying difference equations. One might heuristically investigate their behaviour

when t becomes large enough. Assume γt → 0 as t→∞ (see Section 5.2.2), the

step size γt will be arbitrary small for sufficiently large t. Hence, the estimates

θ̂t will vary more and more slowly in accordance to (5.40c).

From Equation (5.40d), we obtain:

ξt =
t−1∑
j=0

(
t−1∏

k=j+1

A(θ̂k)

)
B(θ̂j)zj. (5.41)

Suppose that θ̂k belongs to a small neighbourhood of a value θ̄ for t−K ≤ k ≤
t − 1, K ∈ N, such that θ̄ ∈ DS . Let DS be a set of all θ ∈ Rd such that all

eigenvalues of A(θ) are strictly inside the unit circle. If the neighbourhood is

small enough, we can simplify:

t−1∏
k=t−K

A(θ̂k) ≈ A(θ̄)K , (5.42)

which has apparently a norm smaller than CλK for some λ ∈ (0, 1) and C > 0.

For K large enough, we may approximate (5.41) as:

ξt ≈
t−1∑

j=t−K

A(θ̄)t−j−1B(θ̄)zj. (5.43)

We can add terms A(θ̄)t−jB(θ̄)zj for j < t−K to this sum since A(θ̄) is stable

(as discussed above); they represent only a small change. Hence, we have:

ξt ≈ ξt(θ̄) :=
t−1∑
j=0

A(θ̄)t−j−1B(θ̄)zj, (5.44)

which can be expressed in the recursive manner as:

ξt+1(θ̄) = A(θ̄)ξt(θ̄) +B(θ̄)zt, ξ0(θ̄) = 0. (5.45)

As a consequence, we accept the following approximations:

ŷt ≈ ŷt(θ̄), ηt ≈ ηt(θ̄), υt ≈ υt(θ̄),

(
ŷt(θ̄)

vec(ηt(θ̄))

)
= C(θ̄)ξt(θ̄). (5.46)
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If θ̂t is close to θ̄, Rt is close to R̄, and t is large enough, the previous ap-

proximations indicate that Equations (5.40b)-(5.40c) approximately behave like:

Rt ≈ Rt−1 + γtH(t, R̄, θ̄,υt(θ̄),ηt(θ̄)), (5.47a)

θ̂t ≈ θ̂t−1 + γtR̄
−1
h(t, θ̄,υt(θ̄),ηt(θ̄)). (5.47b)

Introduce the following expected values:

f(θ̄) := E
[
h(t, θ̄,υt(θ̄),ηt(θ̄))

]
, (5.48a)

F (θ̄, R̄) := E
[
H(t, R̄, θ̄,υt(θ̄),ηt(θ̄))

]
, (5.48b)

where the expected values are taken over {z1, . . . ,zt}. Since t is large enough,

one has neglected the transients in (5.45) and assumed the right-hand sides of

Equations (5.48) to be time-invariant. Thus, we can get:

Rt ≈ Rt−1 + γtF (θ̄, R̄) + γtε
R
t , (5.49a)

θ̂t ≈ θ̂t−1 + γtR̄
−1
f(θ̄) + γtε

θ
t , (5.49b)

where {εRt } and {εθt } are zero-mean random variables. Next, let ∆τ be a small

number and let t′, t be defined as
∑t′

k=t γk = ∆τ . If θ̂t = θ̄ and Rt = R̄, we shall

obtain from the previous formulas:

Rt′ ≈ R̄+ ∆τF (θ̄, R̄) +
t′∑
k=t

γkε
R
k , (5.50a)

θ̂t′ ≈ θ̄ + ∆τR̄
−1
f(θ̄) +

t′∑
k=t

γkε
θ
k , (5.50b)

where the last terms in both equalities are sums of random variables with zero

mean; therefore, their contribution will be small (compared to the second terms).

Hence, we can accept this simplification and adapt these formulas as follows:

Rt′ ≈ R̄+ ∆τF (θ̄, R̄), (5.51a)

θ̂t′ ≈ θ̄ + ∆τR̄
−1
f(θ̄). (5.51b)

Changing time scale according to the definition of ∆τ (i.e. t→ τ , t′ → τ+∆τ

for some τ), Equations (5.51a) and (5.51b) can be regarded as a scheme to solve

the following system of differential equations (for small ∆τ):

d

dτ
θD(τ) = R−1

D (τ)f(θD(τ)), (5.52a)
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d

dτ
RD(τ) = F (θD(τ),RD(τ)), (5.52b)

where the subscript D distinguishes the solution of these equations from the

variables in the general recursive prediction error method algorithm (5.40). The

discussed arguments advise that if it holds for some large t0:

θ̂t0 = θD(τ0), Rt0 = RD(τ0), and

t0∑
k=1

γk = τ0, (5.53)

then it is satisfied for t > t0:

θ̂t ≈ θD(τ), Rt ≈ RD(τ), and
t∑

k=1

γk = τ. (5.54)

The heuristic analysis has shown that the general recursive algorithm outlined

by (5.40) can be asymptotically linked to the system of the differential equations

(5.52) and that the estimates θ̂t should follow the trajectories of these equations

(Ljung & Söderström, 1983, Section 4.3). It means that one might employ the

theory of ordinary differential equations as a background of convergence analysis

of recursive estimation methods given by (5.40).

5.3.2 Formal analysis of the general recursive algorithm

Before formulating a convergence theorem for the recursive estimation algorithm

(5.40), we should introduce some assumptions. See Ljung and Söderström (1983,

Section 4.3) or Moore and Weiss (1979) for further insights.

(M1) DM ⊆ Rd is a compact set such that: θ ∈ DM ⊆ Rd ⇒ A(θ) has all

eigenvalues strictly inside the unit circle.

(M2) The matrices A(θ), B(θ), and C(θ) are continuously differentiable with

respect to θ, for all θ ∈DM.

(Cr1) The function h(t,θ,υ,η) is differentiable with respect to θ, υ, and η.

For some C ∈ (0,∞) and all θ ∈DM, the following conditions hold:

‖h(t,θ,υ,η)‖+ ‖h′θ(t,θ,υ,η)‖ ≤ C(1 + ‖υ‖2 + ‖η‖2),

‖h′υ(t,θ,υ,η)‖+ ‖h′η(t,θ,υ,η)‖ ≤ C(1 + ‖υ‖+ ‖η‖),

where ‖ · ‖ denotes vector and matrix norms. Furthermore, h′θ, h
′
υ, and h′η

are the first derivatives of h with respect to θ, υ, and η, respectively.
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(Cr2) The function H(t,R,θ,υ,η) is differentiable with respect to R, θ, υ,

and η. For some C ∈ (0,∞) and all θ ∈DM, these inequalities hold:

‖H(t,R,θ,υ,η)‖ ≤ C(1 + ‖υ‖2 + ‖η‖2 + ‖R‖),

‖H ′R(t,R,θ,υ,η)‖+ ‖H ′θ(t,R,θ,υ,η)‖ ≤ C(1 + ‖υ‖2 + ‖η‖2),

‖H ′υ(t,R,θ,υ,η)‖+ ‖H ′η(t,R,θ,υ,η)‖ ≤ C(1 + ‖υ‖+ ‖η‖),

where H ′R, H ′θ, H
′
υ, and H ′η are the first derivatives of H with respect to

R, θ, υ, and η, respectively.

(R1) The matrix Rt is symmetric and Rt ≥ δI for all t and some δ > 0.

(G1) It holds lim
t→∞

tγt = 1.

(A1) The data sequence {zt}t∈N is such that the following limits exist (almost

surely) for all θ ∈DM:

(A1a) lim
T→∞

1
T

T∑
t=1

h(t,θ,υt(θ),ηt(θ)) =: f(θ),

(A1b) lim
T→∞

1
T

T∑
t=1

H(t,R,θ,υt(θ),ηt(θ)) =: F (θ,R),

(A1c) lim
T→∞

sup 1
T

T∑
t=1

[1 + ‖zt‖]3 <∞.

The variables υt(θ), ŷt(θ), and ηt(θ) are obtained from {z1, . . . ,zt} by the

following linear filter:

ξt+1(θ) = A(θ)ξt(θ) +B(θ)zt, ξ0(θ) = 0,(
ŷt(θ)

vec(ηt(θ))

)
= C(θ)ξt(θ), υt(θ) = yt − ŷt(θ).

Remark 5.3.1 The condition (M1) defines DM as a compact subset of the

region DS defined in Section 5.3.1. It should be pointed out that (M1) assures

only that Equation (5.40d) is stable (in an evident sense). It does not impose any

serious restriction on the model. Particularly, it does not consider the structure

of the parametric space Θ. Nevertheless, this does not result in any limitation

since the additive constraints may be of course incorporated into DM.

The assumptions (Cr1) and (Cr2) are smoothness conditions. The assump-

tions (R1) and (G1) are not restrictive since (R1) can be guaranteed by using

any regularization technique (see Section 5.2.3), and (G1) depends on the user’s

choice only (see Section 5.2.2).
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The conditions in (A1) are certainly implicit (Ljung & Söderström, 1983, Sec-

tion 4.3). The type of the intended convergence depends on the character of the

sequence {zt}t∈N; one can distinguish between deterministic or stochastic vari-

ants. Moreover, the limits in (A1a) and (A1b) represent “average” adjustments

that would be made in the algorithm if θ was fixed as a constant. The heuristic

analysis has applied exactly this concept (see Section 5.3.1).

Note that the condition (A1a) will be satisfied almost surely as t goes to infin-

ity, for instance, if the following assumptions hold (let ht := h(t,θ,υt(θ),ηt(θ))):

(i) limT→∞
1
T

∑T
t=1[ht − E(ht)] = 0 almost surely, (ii) limT→∞

1
T

∑T
t=1 E(ht) =

f(θ). The first assumption will be fulfilled, for example, if ht and hs are asymp-

totically independent for a fixed θ ∈ DM when |t − s| is large (Ljung & Söder-

ström, 1983, Section 4.3). The condition (A1b) can be handled similarly.

Theorem 5.3.1 Consider the estimation algorithm (5.40). Assume that it in-

cludes a projection to keep θ̂t inside DM and to assure a bounded subsequence

of {ξt}t∈N (that may depend on the realization of {zt}t∈N). Assume that (M1),

(M2), (Cr1), (Cr2), (R1), and (G1) hold and that (A1) holds (almost surely).

Suppose that there exists a positive function V (θ,R) such that:

d

dτ
V (θD(τ),RD(τ)) ≤ 0 for all θD ∈DM (5.58)

when it is evaluated along solutions of these ordinary differential equations:

d

dτ
θD(τ) = R−1

D (τ)f(θD(τ)), (5.59a)

d

dτ
RD(τ) = F (θD(τ),RD(τ)), (5.59b)

where f and F are defined by (A1). Let DC = {(θ,R)| d
dτ
V (θD(τ),RD(τ)) = 0}.

Then as t → ∞ either {(θ̂t,Rt)} tend to DC or {θ̂t} tends to the boundary

of DM (almost surely).

Proof See Ljung and Söderström (1983, Section 4.3) for the references.

5.3.3 Remarks on convergence analysis: The self-weighted

recursive prediction error method algorithm

The self-weighted recursive estimation algorithm (5.13) designed for estimating

the GARCH models can be clearly incorporated into the general recursive calibra-

tion scheme (5.40). Particularly, one identifies that: (i) `(t,θ,υt(θ)) equals Ft(θ)

given by (5.2), (ii) h(t,θ,υt(θ),ηt(θ)) corresponds to −[∇θ`(t,θ,υt(θ))]>, and

(iii) H(t,R,θ,υt(θ),ηt(θ)) is clearly defined by (5.13b). See also Section 5.2.
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Therefore, Theorem 5.3.1 may be employed to verify the convergence features

of the recursive estimates delivered by (5.13). For instance, in the case of the

GARCH(1, 1) process {yt}t∈Z, we can write in (5.40):

υt = y2
t − ŷ2

t , ŷ2
t = ϕ̂>t θ̂t−1 =

(
C(θ̂t−1)ξt

)
1
,

ξt =
(
ϕ̂>t , ψ̂

>
t

)>
,

zt = (1, y2
t )
>,

ηt =
(
ϕ̂>t θ̂t−1, ψ̂

>
t

)>
,

and thus:

h(t, θ̂t−1,υt,ηt) =
υt

[(1, 0, 0, 0)ηt]
2
Tηt,

H(t,Rt−1, θ̂t−1,υt,ηt) =
(Tηt)(Tηt)

>

[(1, 0, 0, 0)ηt]
2
−Rt−1,

where

A(θ̂t) =



0 0 0 0 0 0

0 0 0 0 0 0

ω̂t α̂1,t β̂1,t 0 0 0

0 0 0 β̂1,t 0 0

0 0 0 0 β̂1,t 0

ω̂t α̂1,t β̂1,t 0 0 β̂1,t


, B(θ̂t) =



1 0

0 1

0 0

1 0

0 1

0 0


,

and

C(θ̂t) =


ω̂t α̂1,t β̂1,t 0 0 0

ω̂t α̂1,t β̂1,t 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , T =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

The previous expressions can be easily generalized into the GARCH(p, q) form.

If the conditions of Theorem 5.3.1 are satisfied for these particular settings

and the following limits:

Ṽ (θ) = lim
T→∞

1

T

T∑
t=1

E`(t,θ,υt(θ)), (5.62a)

−f(θ) = lim
T→∞

1

T

T∑
t=1

E [∇θ`(t,θ,υt(θ))]> , (5.62b)
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F (θ,R) = lim
T→∞

1

T

T∑
t=1

EH(t,R,θ,υt(θ),ηt(θ)) (5.62c)

exist for all θ ∈ DM, one can consider Ṽ (θ) as a candidate for the function

V appearing in Theorem 5.3.1. See Section 5.2.2 for the definition of the gain

sequence, Section 5.2.3 for the regularization techniques, and Section 5.2.4 for

the adopted projection and the structure of DM. With appropriate assumptions

(i.e. that [∇θ`(t,θ,υt(θ))]> is dominated by a θ-independent integrable function

and that the second derivative of E`(t,θ,υt(θ)) is bounded), we can establish:

f>(θ) = −∇θṼ (θ). (5.63)

To verify that Ṽ (θ) is the function satisfying the assumptions of Theorem 5.3.1,

we should study the associated ordinary differential equations:

d

dτ
θD(τ) = R−1

D (τ)f(θD(τ)) = −R−1
D (τ)

[
∇θṼ (θD(τ))

]>
,

d

dτ
RD(τ) = F (θD(τ),RD(τ)).

Thus, along trajectories of these equations, we shall obtain:

d

dτ
Ṽ (θD(τ)) = ∇θṼ (θD(τ))

d

dτ
θD(τ)

= −∇θṼ (θD(τ))R−1
D (τ)

[
∇θṼ (θD(τ))

]>
≤ 0,

which follows from the condition (R1). The equality is fulfilled for θD(τ) ∈ DC.
In that case, we may write DC in this form:

DC =

{
θ

∣∣∣∣[∇θṼ (θ)
]>

= 0

}
, (5.66)

or in more detail as:

DC =

{
θ

∣∣∣∣∣ lim
T→∞

1

T

T∑
t=1

E

[
y2
t −ϕ>t (θ)θ(
ϕ>t (θ)θ

)2 ψt(θ)

]
= 0

}
. (5.67)

In respect to Theorem 5.3.1, the estimates θ̂t converge either to a stationary point

of the criterion function Ṽ or to the boundary of DM almost surely as t goes to

infinity. This result can be strengthened to convergence to a local minimum of

the function Ṽ (θ), see e.g. Moore and Weiss (1979) or Remark 5.3.2.

Recall that Ṽ (θ) is also the limit of the off-line criterion (5.39) under weak

conditions according to Ljung and Söderström (1983, Section 4.4.2) when the
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limits in (5.62) exist. Compare also with Equation (5.1) applying the assumption

(G1). The off-line estimates are usually found by local numerical minimization of

the criterion (5.1) (or (5.39)). See Remark 5.1.3. Consequently, the convergence

properties of the recursive prediction error method estimates and their off-line

counterparts will coincide. Refer to Ljung and Söderström (1983, Section 4.4)

or Moore and Weiss (1979). It should be pointed out that the off-line criterion

(5.1) (or (5.39)) is readily associated with the negative conditional logarithmic

likelihood function for estimating the GARCH(p, q) processes.

The drawback of this result is, however, that it cannot guarantee convergence

to the global minimum of the loss function (similarly as the off-line estimators).

Namely, if other local minima exist, the estimate may converge to one of them.

Remark 5.3.2 Moreover, we can examine the stationary points of the associ-

ated ordinary differential equations (under the given assumptions). In particular,

these equations are given in the following form (see above):

d

dτ
θD(τ) = −R−1

D (τ)
[
∇θṼ (θD(τ))

]>
, (5.68a)

d

dτ
RD(τ) = G(θD(τ))−RD(τ), (5.68b)

where one clearly puts G(θ) := limT→∞
1
T

∑T
t=1 E

[
ψt(θ)ψ>t (θ)/(ϕ>t (θ)θ)2

]
and

F (θ,R) := G(θ)−R. The stationary points of these equations are defined as:{
(θ,R)

∣∣∣∣f(θ) = −
[
∇θṼ (θ)

]>
= 0, R = G(θ)

}
. (5.69)

After linearizing (5.68) around a stationary point (θ∗,R∗), we shall get:

d

dτ
(θ(τ)− θ∗) = [G(θ∗)]−1 H̃(θ∗) (θ(τ)− θ∗) ,

d

dτ
(R(τ)−R∗) = − (R(τ)−R∗) +G′(θ∗) (θ(τ)− θ∗) ,

where H̃(θ∗) = d
dθ
f(θ)|θ=θ∗ and the term G′(θ∗) (θ(τ)− θ∗) stands for the

second term in the Taylor expansion of G(θ∗ + (θ(τ)− θ∗)).
The stationary point (θ∗,R∗) is stable if and only if the matrix L(θ∗) :=

[G(θ∗)]−1 H̃(θ∗) has all eigenvalues in the left half-plane (Söderström & Stoica,

1989, Section 9.6). According to Ljung and Söderström (1983, Results 4.1 and

4.3), it might be concluded that θ̂t can only converge to a value θ∗ such that[
∇θṼ (θ∗)

]>
= 0 and such that the matrix L(θ∗) has all eigenvalues in the left

half-plane. This result evidently provides a tool for investigating the necessary

conditions for (local) convergence. A desired convergence point of the studied esti-
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mation algorithm must be a stable stationary point of the corresponding ordinary

differential equations. This can be used to improve the convergence analysis by

excluding unstable stationary points from DC. In other words, the points that

are not local minima of Ṽ can be excluded from DC.

Remark 5.3.3 The convergence properties of the investigated recursive esti-

mates have been established; therefore, the next question is to describe the asymp-

totic behaviour of the discussed estimation scheme. Assume that the vector of

the true parameters θ0 ∈ DM satisfies that y2
t /(ϕ

>
t (θ0)θ0) − 1 = e0

t is (strict)

white noise (compare with (4.2)). Let θ̃t = θ̂t − θ0 and R̄t = 1
γt
Rt. After some

computation using all formulas in (5.13), we shall obtain:

R̄tθ̃t = λtR̄t−1θ̃t−1 +
y2
t − ϕ̂

>
t θ̂t−1

(ϕ̂>t θ̂t−1)2
ψ̂t +

ψ̂tψ̂
>
t

(ϕ̂>t θ̂t−1)2
θ̃t−1.

This expression can be summed from time k = 0 to t with β(t, k) =
∏t

j=k+1 λj

and the convention β(t, t) = 1, i.e.:

R̄tθ̃t = β(t, 0)R̄0θ̃0 +
t∑

k=1

β(t, k)

[
y2
k − ϕ̂

>
k θ̂k−1

(ϕ̂>k θ̂k−1)2
ψ̂k +

ψ̂kψ̂
>
k

(ϕ̂>k θ̂k−1)2
θ̃k−1

]

= β(t, 0)R̄0θ̃0 +
t∑

k=1

β(t, k)
ψk(θ0)

ϕ>k (θ0)θ0

(
y2
k

ϕ>k (θ0)θ0

− 1

)
+ St,

where

St =
t∑

k=1

β(t, k)

[
y2
k − ϕ̂

>
k θ̂k−1

(ϕ̂>k θ̂k−1)2
ψ̂k −

y2
k −ϕ>k (θ0)θ0

(ϕ>k (θ0)θ0)2
ψk(θ0) +

ψ̂kψ̂
>
k

(ϕ̂>k θ̂k−1)2
θ̃k−1

]
.

Employing the initial suppositions, one can simplify:

y2
k − ϕ̂

>
k θ̂k−1

(ϕ̂>k θ̂k−1)2
ψ̂k −

y2
k −ϕ>k (θ0)θ0

(ϕ>k (θ0)θ0)2
ψk(θ0) ≈ [∇θFk(θ0)]> −

[
∇θFk(θ̂k−1)

]>
≈ − ψ̂kψ̂

>
k

(ϕ̂>k θ̂k−1)2
θ̃k−1.

The first approximation follows the fact that ϕ̂k and ψ̂k estimate ϕk(θ̂k−1) and

ψk(θ̂k−1) according to the adopted estimation framework. The second one is the

consequence of the Taylor expansion using the approximation F ′′k(θ) ≈ F̃
′′
k(θ),

which has been accepted for θ that are close to θ0. See Section 5.1. Apparently,

the sum St is likely negligible compared to other terms. Similarly, β(t, 0)R̄0θ̃0
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should also be negligible. Therefore, we may write:

R̄tθ̃t ≈
t∑

k=1

β(t, k)
ψk(θ0)

ϕ>k (θ0)θ0

e0
k.

Assuming that θ̂k−1 is close to θ0 “asymptotically most of time”, we can replace

ψ̂k by ψk(θ0) and ϕ̂>k θ̂k−1 by ϕ>k (θ0)θ0 without too much error and constitute

R̄
0
k by these quantities as in (5.13) (Ljung, 1999, Chapter 11). Consequently, one

instantly obtains:

(
θ̂t − θ0

)
≈
[
R̄

0
t

]−1
t∑

k=1

β(t, k)
ψk(θ0)

ϕ>k (θ0)θ0

e0
k. (5.73)

This approximation is exactly the same asymptotic expression as for the off-

line estimation case as was found by Ljung (1999, Chapter 11) or Ljung and

Söderström (1983, Section 4.4). Refer also to Remark 5.1.3. Thus, the asymptotic

properties of the on-line and off-line techniques will coincide. This discussion has

been undoubtedly heuristic. On the contrary, it has presented the key steps of the

asymptotic analysis of the suggested recursive estimator. The formal justification

of the outlined approximations has been formed in the cited literature.

Recall that the off-line estimate minimizing (5.1) has the following asymptotic

distribution (Ljung & Söderström, 1983, Section 4.4 and Theorem 4.5):

√
T (θ̂[T ] − θ0) ∼ AsN (0,ΓP ), (5.74)

where θ̂[T ] denotes the off-line prediction error method estimate evaluated using

T corresponding observations (see e.g. Remark 5.1.3), θ̂[T ] → θ0 (the true value)

almost surely as T → ∞, Γ is defined as Γ := limT→∞ T
∑T

t=1 β
2(T, t), and

P := [G(θ0)]−1Q(θ0) [G(θ0)]−1. Here, one (repeatedly) defines:

G(θ0) := lim
T→∞

1

T

T∑
t=1

E [F ′′t (θ0)] = lim
T→∞

1

T

T∑
t=1

E
[
ψt(θ0)ψ>t (θ0)

(ϕ>t (θ0)θ0)2

]
, (5.75a)

Q(θ0) := lim
T→∞

1

T

T∑
s,t=1

E [∇θFt(θ0)]> [∇θFs(θ0)]

= lim
T→∞

1

T

T∑
t=1

E
[

(ϕ>t (θ0)θ0 − y2
t )

2

(ϕ>t (θ0)θ0)4
ψt(θ0)ψ>t (θ0)

]
, (5.75b)

which respect the discussion in Section 5.1 and Ljung and Söderström (1983,

Section 4.4). One should clearly assume that G(θ0) is invertible and that the

limits defining G(θ0) and Q(θ0) exist.
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5.3.4 Remarks on convergence analysis: The self-weighted

recursive pseudo-linear regression algorithm

The self-weighted recursive pseudo-linear regression method (5.15) apparently

coincides with the general recursive calibration scheme (5.40) in the analogous

manner as before. However, the convergence analysis of this estimation proced-

ure partially differs from the previous one presented in Section 5.3.3 due to the

adopted approximation of the gradient ψ̂t. Compare Equations (5.13) and (5.15).

Assume that the conditions given by Theorem 5.3.1 are satisfied and postulate

a certain error model (Ljung, 1999, Chapter 11):

y2
t

ϕ>t (θ)θ
− 1 = H0(B)ϕ>t (θ)(θ0 − θ)/[ϕ>t (θ)θ] + et (5.76)

for some casual and strictly stable filter H0(B), where B denotes the lag op-

erator, and some value θ0, where {et}t∈Z is a sequence of zero-mean random

variables such that et is independent of ϕs(θ)/(ϕ>t (θ)θ) for all s ≤ t and all

θ ∈ DM. Furthermore, suppose that Re[H0(eiω)] > 1
2

for all ω ∈ (−π, π] and

that Ē[ϕt(θ)ϕ>t (θ)/(ϕ>t (θ)θ)2] =: G(θ) exists for all θ ∈ DM. The operator

Ē(x) is defined as limT→∞
1
T

∑T
t=1 E(x) for some random variable x. Thus, the

functions appearing in the ordinary differential equations associated with the

algorithm become by using (5.15) and (5.76):

f(θ) = Ē
[(

y2
t

ϕ>t (θ)θ
− 1

)
ϕt(θ)

ϕ>t (θ)θ

]
= Ē

[
ϕt(θ)ϕ̃>t (θ)

(ϕ>t (θ)θ)2
(θ0 − θ)

]
= G̃(θ)(θ0 − θ), (5.77a)

F (θ,R) = G(θ)−R, (5.77b)

where ϕ̃t(θ) = H0(B)ϕt(θ) and G̃(θ) = Ē[ϕt(θ)ϕ̃>t (θ)/(ϕ>t (θ)θ)2] (provided

that all limits exist for all θ ∈ DM). The corresponding ordinary differential

equations are thus formulated as follows:

d

dτ
θD(τ) = R−1

D (τ)G̃(θD(τ)) [θ0 − θD(τ)] , (5.78a)

d

dτ
RD(τ) = G(θD(τ))−RD(τ). (5.78b)

Assume Ṽ (θ,R) = (θ−θ0)>R(θ−θ0) as a candidate for the function V from

Theorem 5.3.1. Clearly, d
dτ
Ṽ (θD(τ),RD(τ)) is equal to:

− (θD(τ)− θ0)>
[
G̃(θD(τ)) + G̃

>
(θD(τ))−G(θD(τ)) +RD(τ)

]
(θD(τ)− θ0).
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It means that Ṽ will be a suitable function fulfilling Theorem 5.3.1 if the matrix

Z = Z(θ,R) := G̃(θ) + G̃
>

(θ) − G(θ) + R is positive semidefinite. Remind

that R fulfils the condition (R1). Moreover, let x be an arbitrary real vector of

the corresponding dimension. Put x(θ) := x>ϕt(θ)/(ϕ>t (θ)θ) and analogously

x̃(θ) := x>ϕ̃t(θ)/(ϕ>t (θ)θ). Hence, we may compute:

x>Zx = 2Ē
[
x(θ)

(
x̃>(θ)− 0.5x>(θ)

)]
+ x>Rx

= 2

∫ π

−π
Φx(ω)Re

[
H0(eiω)− 1

2

]
dω + x>Rx ≥ 0,

where Φx(ω) denotes the spectral density of x(θ). See also Ljung and Söderström

(1983, Section 4.5.2). Equality holds only for Φx(ω) ≡ 0, i.e. for Ē[x(θ)]2 = 0.

Following Theorem 5.3.1, we can set:

DC =
{
θ
∣∣∣Ē [(θ − θ0)>ϕt(θ)/(ϕ>t (θ)θ)

]2
= 0

}
, (5.80)

i.e. x(θ) is given by the particular choice of x, namely x := θ − θ0. Employing

(5.76), DC can be reformulated as {θ|Ē[y2
t /(ϕ

>
t (θ)θ)− 1− et]2 = 0}. According

to Theorem 5.3.1, one may conclude that the estimates θ̂t converge either to DC

or to the boundary of DM (almost surely as t grows to infinity).

Remark 5.3.4 From (5.13), it holds that ψ̂t+1 = ϕ̂t+1 +
∑q

j=1 β̂j,tψ̂t+1−j, i.e.

(B0−
∑q

j=1 β̂j,tB
j)ψ̂t+1 = ϕ̂t+1. Thus, one can set H0(z) = 1

C0(z)
in (5.76), where

C0(z) = 1−
∑q

j=1 βj,0z
j using the true parameters (Ljung, 1999, Chapter 11).

Remark 5.3.5 The ordinary differential equations (5.78a) and (5.78b) associ-

ated with the estimation algorithm (5.15) may be linearized around a stationary

point (θ∗,R∗) as in Remark 5.3.2. It has been found that the stability properties

of the linearized equations are determined by the matrix − [G(θ∗)]−1 G̃(θ∗). If

this matrix has eigenvalues in the right half-plane, then θ̂t cannot converge to

a stationary point θ∗ (Söderström & Stoica, 1989, Section 9.6). In some special

cases, the eigenvalues of the matrix can be expressed explicitly; therefore, one

can establish conditions when the estimate θ̂t cannot converge to its true value.

Remark 5.3.6 Analysis of asymptotic properties of the recursive algorithm

(5.15) is not as straightforward as for the recursive scheme (5.13). From Re-

mark 5.3.3, it has been obvious the crucial property that −ψ̂tψ̂
>
t /(ϕ̂

>
t θ̂t−1)2 is

approximately the Jacobian matrix of [(y2
t − ϕ̂

>
t θ̂t−1)ψ̂t]

>/(ϕ̂>t θ̂t−1)2. When ψ̂t

is replaced by ϕ̂t, the heuristic analysis loses the key argument. The asymp-

totic features of the recursive pseudo-linear regression algorithms have not been

established in general (Ljung & Söderström, 1983, Section 4.5.5).
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5.4 Modifications of self-weighted recursive

estimation algorithms

In Section 5.1, two distinct one-stage self-weighted recursive estimation methods

have been suggested for estimating the parameters of the GARCH models. The

algorithms have been derived by using the general identification instruments and

the loss function introduced by (5.1). Section 5.2 has discussed several practical

aspects of the implementation of such techniques (e.g. the initialization in Sec-

tion 5.2.1 or the robustification in Section 5.2.6). Section 5.3 has remarked on

theoretical features of the presented procedures, namely on the convergence and

asymptotic properties.

With regards to the generality of the core criterion Ft(θ) defined by Equa-

tion (5.2), one can simply replicate all foregoing steps to derive and justify the

following one-stage self-weighted recursive estimation procedures for the selected

classic (linear) conditional heteroscedasticity models. Here, the linearity means

that σ2
t (θ) is defined as a linear function of previous observations and conditional

variances. See Chapter 3 for further details. Particularly, the (negative) condi-

tional log-likelihood criteria for those models (assuming the normally distributed

disturbances) almost coincide since one may express σ2
t (θ) as ϕ>t (θ)θ. Only the

components of the vectors θ and ϕt(θ) differ accordingly. See below. Therefore,

the on-line estimation techniques originally proposed for the GARCH parameters

can be updated for calibrating the selected conditional heteroscedasticity models.

The following sections introduce such modifications for: (i) the ARCH models,

(ii) the RiskMetrics EWMA models, and finally (iii) the GJR-GARCH models.

5.4.1 Recursive estimation of ARCH models

Updating the recursive schemes (5.14) and (5.16) for the case of the ARCH(p)

process {yt}t∈Z given by (3.1) is relatively straightforward since one clearly puts

θ = (ω, α1, . . . , αp)
> and ϕt(θ) = (1, y2

t−1, . . . , y
2
t−p)

>. Here, it is evident that

ϕt(θ) depends only on the previous measurements (and not on the value of θ).

See Section 3.1 for more details. Additionally, it is possible to verify that:

ψt(θ) =
[
∇θϕ>t (θ)θ

]>
= ϕt(θ). (5.81)

Therefore, the recursive prediction error method and the recursive pseudo-

linear regression algorithm coincide for the ARCH(p) model. Consequently, the
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ARCH parameters may be recurrently estimated using the following procedure:

θ̂t = θ̂t−1 +
P̂ t−1ϕ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

, (5.82a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ϕ̂tϕ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

}
, (5.82b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p)

>, t ∈ N. (5.82c)

We recommend initializing this algorithm with: (i) P̂ 0 = κI for a large posi-

tive κ (e.g. κ = 105), (ii) θ̂0 is given by a burn-in, e.g. θ̂0 = ( 1
n

∑n
i=1 y

2
i (1 −

pε), ε, . . . , ε)> for some 0 < ε < 1/p and an adequate n ∈ N, finally (iii) the

values {y2
1−p, . . . , y

2
0} are either defined or observed. The set defining the pro-

jection (5.36) is a compact subset of {θ ∈ Rp+1|ω > 0, αi ≥ 0,
∑p

i=1 αi < 1},
which ensures stationarity and positivity of σ2

t (θ). For instance, one may put

DM := {θ ∈ Rp+1|δω ≤ ω ≤ ∆ω, αi ≥ 0,
∑p

i=1 αi ≤ 1 − δα} with some given

0 < δω ≤ ∆ω <∞ and 0 < δα < 1. Other practical aspects and theoretical prop-

erties can be simply deduced from Sections 5.2 and 5.3, respectively. Section 6.2

demonstrates capabilities of this method by means of numerical simulations.

5.4.2 Recursive estimation of EWMA models

To adjust the recursive calibration algorithms (5.14) and (5.16) to follow the

RiskMetrics EWMA process {yt}t∈Z defined by (3.10), one can recognize that

formally θ = (1− λ, λ)> and ϕt(θ) = (y2
t−1,ϕ

>
t−1(θ)θ)>. See Section 3.2.

According to the structure of θ, we may formulate the simplified version of

the self-weighted recursive prediction error method algorithm as follows:

λ̂t = λ̂t−1 +
p̂t−1(y2

t − σ̂2
t )σ̂

2′
t

λt(σ̂2
t )

2 + (σ̂2′
t )2p̂t−1

, (5.83a)

p̂t =
1

λt

{
p̂t−1 −

p̂2
t−1(σ̂2′

t )2

λt(σ̂2
t )

2 + (σ̂2′
t )2p̂t−1

}
, (5.83b)

σ̂2
t+1 = (1− λ̂t)y2

t + λ̂tσ̂
2
t , (5.83c)

σ̂2′

t+1 = −y2
t + σ̂2

t + λ̂tσ̂
2′

t , t ∈ N, (5.83d)

where for the sake of clarity λ̂t denotes the recursive estimate of the EWMA

modelling parameter λ, and λt stands for the forgetting factor as usual. Similarly

as in (5.16), we could consider the recursive pseudo-linear regression form of the

previous algorithm. However, it seems as a needless simplification in the case of

this elementary recursive scheme.
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We recommend starting the algorithm (5.83) with the following settings: (i) p̂0

is a large positive number, e.g. p̂0 = 105, (ii) λ̂0 can be taken from (0,1), e.g.

as 0.94 as is usually preferred by RiskMetrics (for daily data), finally (iii) σ̂2
1 is

a positive number, and σ̂2′
1 is equal to zero. The set defining the necessary projec-

tion (5.36) is a compact subset of {λ ∈ R|λ ∈ (0, 1)}, which guarantees positivity

of σ2
t (λ). For instance, one may put DM := {λ ∈ R|λ ∈ [δλ, 1 − δλ]} with some

prescribed δλ ∈ (0, 1/2]. Other practical aspects and theoretical properties can be

simply deduced from Sections 5.2 and 5.3, respectively. Section 6.4.1 numerically

investigates this estimation technique.

5.4.3 Recursive estimation of GJR-GARCH models

Section 3.3 has introduced the GJR-GARCH process {yt}t∈Z as a GARCH variant

that includes leverage terms for modelling asymmetric volatility clustering. In the

GJR-GARCH representation (3.11), large negative changes are more likely to be

clustered than positive ones. See also Chapter 1. Similarly as before, it is possible

to adjust the recursive formulas (5.14) and (5.16) to estimate the parameters of

the GJR-GARCH(p, q) model. Particularly, we put:

θ = (ω, α1, . . . , αp, β1, . . . , βq, γ1, . . . , γp)
>, (5.84a)

ϕt(θ) =
(
1, y2

t−1, . . . , y
2
t−p,ϕ

>
t−1(θ)θ, . . . ,ϕ>t−q(θ)θ, (5.84b)

y2
t−1I

−
t−1, . . . , y

2
t−pI

−
t−p
)>
, (5.84c)

where I−t−i = 1 if yt−i < 0 and 0 otherwise for i = 1, . . . , p. See Section 3.3 for

further insights. The transposed gradient ψt(θ) can be readily evaluated as:

ψt(θ) =
[
∇θϕ>t (θ)θ

]>
= ϕt(θ) +

q∑
j=1

βjψt−j(θ). (5.85)

Therefore, the self-weighted recursive prediction error method adequate for the

GJR-GARCH(p, q) model is given in the following form:

θ̂t = θ̂t−1 +
P̂ t−1ψ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

, (5.86a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ψ̂tψ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

}
, (5.86b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q,

y2
t I
−
t , . . . , y

2
t+1−pI

−
t+1−p)

>, (5.86c)
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ψ̂t+1 = ϕ̂t+1 +

q∑
j=1

β̂j,tψ̂t+1−j, t ∈ N. (5.86d)

The numerically more effective alternative, i.e. the recursive pseudo-linear re-

gression, is thus formulated as follows by accepting ψ̂t ≈ ϕ̂t:

θ̂t = θ̂t−1 +
P̂ t−1ϕ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

, (5.87a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ϕ̂tϕ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ϕ̂>t P̂ t−1ϕ̂t

}
, (5.87b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q,

y2
t I
−
t , . . . , y

2
t+1−pI

−
t+1−p)

>, t ∈ N. (5.87c)

Initial conditions for both algorithms may be: (i) P̂ 0 equals κI for a large

positive κ (e.g. κ = 105) and (ii) θ̂0 is given by a burn-in, e.g. θ̂0 = ( 1
n

∑n
i=1 y

2
i [1−

(p+ q)ε], ε, . . . , ε, 0, . . . , 0)> for some 0 < ε < 1/(p+ q), an adequate n ∈ N, and

γ̂i,0 = 0 for all i = 1, . . . , p. The remaining initial quantities are selected similarly

as in Section 5.2.1. The set defining the projection (5.36) is a compact subset of

{θ ∈ R2p+q+1|ω > 0, αi ≥ 0, βj ≥ 0, αi + γi ≥ 0,
∑p

i=1(αi + γi/2) +
∑q

j=1 βj < 1},
which ensures stationarity and positivity of σ2

t (θ). For instance, one may use

DM := {θ ∈ R2p+q+1|δω ≤ ω ≤ ∆ω, αi ≥ 0, βj ≥ 0, αi + γi ≥ 0,
∑p

i=1(αi + γi/2) +∑q
j=1 βj ≤ 1 − δαβγ} with some suitable 0 < δω ≤ ∆ω < ∞ and 0 < δαβγ < 1.

Other practical aspects and theoretical properties can be simply transferred from

Sections 5.2 and 5.3, respectively. Section 6.3 demonstrates numerical capabilities

of these estimation methods.

Remark 5.4.1 The derivation scheme presented in Section 5.1 may be gener-

alized in order to deliver reliable recursive estimation techniques also for other

(either linear or nonlinear) conditional heteroscedasticity models (i.e. σ2
t (θ) is

either or not a linear function of previous measurements and conditional vari-

ances), e.g. the asymmetric power ARCH (APARCH), the exponential GARCH

(EGARCH), and other analogous processes (Tsay, 2005, Chapter 3).
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6. Numerical studies

Chapters 4 and 5 have surveyed the different recursive methods designed for es-

timating parameters of the selected classic conditional heteroscedasticity models.

Especially, we have focused on the GARCH model and its variants. Although

many theoretical and practical aspects concerning these approaches have been

discussed thoroughly (see Sections 4.1, 4.2, 5.1, 5.2, and 5.3), they usually do

not provide any detail how large t has to be for ensuring the results to be (rea-

sonably) applicable in practice. To get some insight into the convergence rate,

the transient behaviour, and the finite-sample properties, the analysis should be

complemented by numerical studies (Ljung & Söderström, 1983, Section 4.1).

Therefore, this section verifies the introduced recurrent estimation formulas

by means of various numerical experiments. Sections 6.1, 6.2, 6.3, and 6.4.1 ex-

amine the convergence performance of the algorithms developed for calibrating

the GARCH, ARCH, GJR-GARCH, and RiskMetrics EWMA processes, respec-

tively, using Monte Carlo simulations. Section 6.4.2 investigates the ability of

the estimation technique considered for the EWMA model to track parameters

that vary over time. Moreover, Section 6.4.3 demonstrates the adequacy of the

robustification suggested in Section 5.2.6 in the context of the EWMA modelling

framework. Finally, Sections 6.5 and 6.6 employ some of the introduced tech-

niques to analyse two different empirical datasets in detail. Firstly, the PX index

(daily) returns are studied by applying the instruments discussed in Section 6.5.

The outputs show that the outlined concepts can be helpful also in the context of

low-frequency data. Secondly, volatility of high-frequency data (tick EUR/USD

exchange rates) is monitored and predicted in real time. This example illustrates

one of the possible practical applications of the recursive estimation methodology.

6.1 On-line estimation of GARCH models:

Monte Carlo study

This section examines various recursive estimation algorithms developed for cali-

brating the parameters of the GARCH processes using Monte Carlo experiments.

See Section 3.1. Namely, we shall compare: (i) both two-stage on-line calibration

methods suggested by Aknouche and Guerbyenne (2006) summarized by Equa-

tions (4.9)-(4.10) and (4.12)-(4.13), (ii) both proposed one-stage self-weighted

recursive variants (5.14) and (5.16) suggested in Section 5.1. Note that the recur-

rent procedures developed by Kierkegaard et al. (2000) delivered in Section 4.1
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are not involved since they do not sufficiently reflect the heteroscedastic structure

of the innovation term in (4.2) as we remarked before.

All estimation procedures have been compared by performing various simu-

lation experiments in the framework of the most common GARCH(1,1) process

with normally distributed innovations. The calibration schemes introduced in

Section 4.2 were adjusted to produce fair comparison by adding the identical

forgetting factor λt, using the same initial conditions, applying the similar regu-

larization and factorization techniques, and employing the coincident projection.

See below. As we indicated before, the considered recursive estimation methods

have demonstrated different convergence behaviour. This conclusion should be

taken into consideration in empirical applications.

In the presented Monte Carlo study, various simulations were realized. In

detail, time series with various configurations of the GARCH(1,1) parameters

θ = (ω, α1, β1)> were repeatedly generated to test the described algorithms. Dif-

ferent values of κ appearing in P̃ 0 or P̂ 0 and various combinations of λ̃ and

λ0 generating the deterministic forgetting factor sequence (that grows to one as

t goes to infinity) were examined. However, the obtained conclusions remained

almost identical. Therefore, only three representative settings are reviewed below.

Additionally, we have inspected the numerical behaviour of the methods using

two different groups of the initial conditions for θ̃0 and θ̂0. Firstly, the starting

values recommended in Section 4.2 were slightly modified since the initialization

vectors (0, 0, 0)> do not lie in the region of positivity and stationarity. See the

discussion in Section 4.2. Accordingly, the original settings could influence the

quality of convergence or its speed since the accepted projection algorithm does

not ensure shifting the current estimate into the region of stability DM. See be-

low. Therefore, all estimation algorithms were initialized by (10−3, 10−3, 10−3)>,

i.e. θ̃0 = θ̂0 ≈ 0. Secondly, the initialization proposed in Section 5.2.1 was em-

ployed in the described way with the burn-in n = 60 and ε = 0.1. Namely, the

first n = 60 observations produced θ̃0 or θ̂0, and after that the proper estima-

tion procedures were started. For example, n = 60 corresponds to a one-minute

dataset supposing one-second observations.

In particular, three GARCH(1,1) processes (3.1) with Gaussian innovations

were replicated 1000 times with the following specification of the true parameters:

(i) (ω, α1, β1) = (0.30, 0.05, 0.80),

(ii) (ω, α1, β1) = (0.50, 0.20, 0.50),

(iii) (ω, α1, β1) = (0.05, 0.05, 0.94).

Obviously, these parameters determine the GARCH(1,1) models with different

levels of persistence and unconditional variances. We investigated the simulated
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time series of the length 10000, i.e. approximately three-hours datasets working

with one-second data. All computations were conducted in the statistical soft-

ware R by introducing original algorithms. The estimation procedures defined

by (4.9)-(4.10), (4.12)-(4.13), (5.14), and finally (5.16) were implemented using

these conditions: (i) P̃ 0 = P̂ 0 = 105I, (ii) the two variants of θ̃0 and θ̂0 discussed

in the previous paragraph, (iii) ϕ̃1 = ϕ̂1 = (1, 0, 0)>, ψ̃1 = ϕ̃1, and ψ̂1 = ϕ̂1.

The examined algorithms were adjusted to adopt the similar principles of prac-

tical implementation (see above and Section 5.2). Except for the already men-

tioned initial values, all tested estimation schemes included the forgetting factor

sequence given as λt = 0.99λt−1 + (1 − 0.99), λ0 = 0.95 and t ∈ N. They were

adapted to respect the factorization and regularization described in Section 5.2.3.

The projection necessary for controlling each estimate was defined by (5.36) with

DM = {θ ∈ R3|10−9 ≤ ω ≤ 103, α1 ≥ 0, β1 ≥ 0, α1 + β1 ≤ 1 − 10−9}, which

ensures positivity and stationarity of the conditional variance. Correspondingly,

we should produce fair comparisons since all estimation techniques satisfied the

equal conditions.

Consequently, we have compared the following four methods under the condi-

tions described in the foregoing paragraphs: (i) the two-stage recursive pseudo-

linear regression method (2S-RPLR) given by (4.9) and (4.10), (ii) the two-stage

recursive prediction error method (2S-RPEM) delivered by (4.12) and (4.13),

(iii) the self-weighted recursive pseudo-linear regression algorithm (SW-RPLR)

as in (5.16), and finally (iv) the self-weighted recursive prediction error method

algorithm (SW-RPEM) introduced by (5.14).

Tables 6.1, 6.2, and 6.3 summarize the results of the described Monte Carlo

experiments. In particular, the medians of absolute errors of the final estimates

are presented here (the different initializations are clearly distinguished). Note

that this specific measure of performance is used because there were observed

a few (degenerated) estimates that achieved the boundary of DM. They could

negatively influence any performance characteristic based on the arithmetic mean.

Firstly, it is clear that the self-weighted recursive algorithms suggested in Sec-

tion 5.1 are truly competitive. Secondly, comparing all delivered results, one

may conclude that the initialization originally recommended for the methods dis-

cussed in Section 4.2 should be reconsidered (Hendrych, 2014b). On the other

hand, the initialization introduced in Section 5.2.1 has improved the convergence

behaviour. Consequently, the self-weighted recursive prediction error method al-

gorithm initialized by the burn-in could be regarded as the best technique in the

tested Monte Carlo framework.

Figures 6.1, 6.2, and 6.3 illustrate the convergence of the self-weighted recur-

sive prediction error estimates derived in Section 5.1 to the true values jointly with
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their decreasing variances. Namely, we simulated 1000 time series of the length

20000 and stopped the recursive estimation process at the times 1000, 5000,

10000, and 20000 (the other experimental conditions remained as before). The

results displayed by the associated boxplots respect the remarks in Section 5.3.

On the contrary, it is apparent that the convergence speed differs amongst these

cases (Ljung, 1999).

Method
θ̃0 = θ̂0 ≈ 0 θ̃0 = θ̂0 given by burn-in

ω α1 β1 ω α1 β1

2S-RPLR 0.61798 0.04999 0.79999 0.27927 0.00928 0.14722
2S-RPEM 0.61798 0.04999 0.79999 0.10057 0.00828 0.05575
SW-RPLR 0.61798 0.01616 0.31128 0.21856 0.00800 0.11236
SW-RPEM 0.61798 0.02468 0.32527 0.06902 0.00660 0.03871

Table 6.1: Simulation results for the GARCH(1,1) process of the length 10000 with
(ω, α1, β1) = (0.30, 0.05, 0.80). Medians of absolute errors of the final estimates.

Method
θ̃0 = θ̂0 ≈ 0 θ̃0 = θ̂0 given by burn-in

ω α1 β1 ω α1 β1

2S-RPLR 0.48686 0.19999 0.49999 0.05050 0.01126 0.03641
2S-RPEM 0.48686 0.19999 0.49999 0.03982 0.01148 0.02953
SW-RPLR 0.48686 0.03102 0.34632 0.04620 0.01034 0.03500
SW-RPEM 0.48685 0.08615 0.41641 0.03649 0.01062 0.02812

Table 6.2: Simulation results for the GARCH(1,1) process of the length 10000 with
(ω, α1, β1) = (0.50, 0.20, 0.50). Medians of absolute errors of the final estimates.

Method
θ̃0 = θ̂0 ≈ 0 θ̃0 = θ̂0 given by burn-in

ω α1 β1 ω α1 β1

2S-RPLR 1.99601 0.04999 0.93999 0.14409 0.02083 0.05376
2S-RPEM 1.99601 0.04999 0.93999 0.01813 0.00601 0.01027
SW-RPLR 1.99601 0.04280 0.45648 0.07882 0.01252 0.02897
SW-RPEM 1.99601 0.04995 0.49192 0.00955 0.00397 0.00529

Table 6.3: Simulation results for the GARCH(1,1) process of the length 10000 with
(ω, α1, β1) = (0.05, 0.05, 0.94). Medians of absolute errors of the final estimates.
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Figure 6.1: Boxplots of the SW-RPEM estimates of the GARCH(1,1) process with
(ω, α1, β1) = (0.30, 0.05, 0.80). The recursive estimation process was stopped at the
times Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.2: Boxplots of the SW-RPEM estimates of the GARCH(1,1) process with
(ω, α1, β1) = (0.50, 0.20, 0.50). The recursive estimation process was stopped at the
times Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.3: Boxplots of the SW-RPEM estimates of the GARCH(1,1) process with
(ω, α1, β1) = (0.05, 0.05, 0.94). The recursive estimation process was stopped at the
times Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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6.2 On-line estimation of ARCH models:

Monte Carlo study

This section deals with analogous Monte Carlo experiments as Section 6.1. We

shall demonstrate that the suggested recursive algorithm (5.82) is capable of

estimating the ARCH parameters suitably. See also Section 3.1. Only the self-

weighted recursive prediction error method (SW-RPEM) is investigated since it

is completely identical to the recursive pseudo-linear regression algorithm due to

the structure of the data generating process. Various simulations were performed

using many different configurations of the true parameters. Results remained

almost similar. Therefore, only three representative cases are presented below.

In particular, three ARCH(1) processes (3.1) with Gaussian disturbances of

the length 20000 were replicated 1000 times with the following true parameters:

(i) (ω, α1) = (0.10, 0.05), (ii) (ω, α1) = (0.10, 0.50), and (iii) (ω, α1) = (0.10, 0.95).

These sets of parameters determine the ARCH(1) processes with various proper-

ties, e.g. with different unconditional variances. All computations were conducted

in the statistical software R by introducing original computational procedures.

The on-line estimation algorithm (5.82) was employed under these conditions:

(i) P̂ 0 = 105I, (ii) θ̂0 was given by the burn-in with n = 60 and ε = 0.1 (see

Section 5.4.1), (iii) ϕ̂1 = (1, 0)>, (iv) the method was factorized and regularized

as in Section 5.2.3, (v) the forgetting factors were defined as λt = 0.99λt−1 +0.01,

λ0 = 0.95 and t ∈ N, and finally (vi) the projection was defined by (5.36) with

DM = {θ ∈ R2|10−9 ≤ ω ≤ 103, 0 ≤ α1 ≤ 1 − 10−9}, which assures positivity

and stationarity of the ARCH conditional variance.

Figures 6.4, 6.5, and 6.6 summarize the results of the Monte Carlo analysis.

The estimation was stopped at times Ta = 1000, Tb = 5000, Tc = 10000, and

Td = 20000. The corresponding estimates have been studied by means of the

standard boxplots. It is evident that they converge to their true counterparts with

decreasing variances as T grows. Apparently, the speed of convergence differs

amongst these cases. However, this is in accordance with theoretical findings

(Ljung, 1999, Chapter 11). From the displayed figures, one may conclude that the

proposed recursive estimator (5.82) can calibrate the ARCH processes adaptively.
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Figure 6.4: Boxplots of the SW-RPEM estimates of the ARCH(1) process with
(ω, α1) = (0.10, 0.05). The recursive estimation process was stopped at the times
Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.5: Boxplots of the SW-RPEM estimates of the ARCH(1) process with
(ω, α1) = (0.10, 0.50). The recursive estimation process was stopped at the times
Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.6: Boxplots of the SW-RPEM estimates of the ARCH(1) process with
(ω, α1) = (0.10, 0.95). The recursive estimation process was stopped at the times
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6.3 On-line estimation of GJR-GARCH models:

Monte Carlo study

Similarly as in Sections 6.1 and 6.2, we shall examine the numerical behaviour

of the on-line estimates designed for the GJR-GARCH parameters. See also Sec-

tion 3.3. Namely, we shall compare two versions of the recurrent estimators,

i.e. the self-weighted recursive prediction error method (SW-RPEM) and the

self-weighted recursive pseudo-linear regression algorithm (SW-RPLR) given by

(5.86) and (5.87), using simulations. Monte Carlo experiments were realized and

verified under various experimental settings. The suggested techniques have be-

haved in line with the expectations. Therefore, it may be interesting to study

differences between the results introduced in Section 6.1 and those delivered by

applying the estimation procedures for the GJR-GARCH models under the com-

pletely same arrangements.

Particularly, three GJR-GARCH(1,1) processes (3.11) with Gaussian innov-

ations of the length 10000 were replicated 1000 times with the following true

parameters:

(i) (ω, α1, β1, γ1) = (0.30, 0.05, 0.80, 0),

(ii) (ω, α1, β1, γ1) = (0.50, 0.20, 0.50, 0),

(iii) (ω, α1, β1, γ1) = (0.05, 0.05, 0.94, 0).

Obviously, these parameters undoubtedly generate the GARCH(1,1) processes,

which have been studied in Section 6.1. Thus, we shall investigate whether

the on-line methods available for estimating the GJR-GARCH models deliver

results comparable with those introduced in Section 6.1 (i.e. how the add-

itional parameter does influence their numerical performance). The estima-

tion schemes (5.86) and (5.87) were implemented in the statistical software R

under these conditions: (i) P̂ 0 = 105I, (ii) θ̂0 was given by the burn-in as(
1
60

∑60
i=1 y

2
i (1− 2 · 0.1, 0.1, 0.1, 0)

)>
, (iii) ϕ̂1 = ψ̂1 = (1, 0, 0, 0)>, (iv) the meth-

ods were factorized and regularized as in Section 5.2.3, (v) the forgetting factors

were defined as λt = 0.99λt−1 + 0.01, λ0 = 0.95 and t ∈ N, and finally (vi) the

projection was given by (5.36) with DM = {θ ∈ R4|10−9 ≤ ω ≤ 103, α1 ≥
0, β1 ≥ 0, α1 + γ1 ≥ 0, α1 + β1 + 0.5γ1 ≤ 1 − 10−9}, which guarantees positivity

and stationarity of the GJR-GARCH conditional variance.

Table 6.4 displays the results of the simulation study. Similarly as in Sec-

tion 6.1, the medians of absolute errors of the final estimates are presented

therein. One can see that the numbers in this table and Tables 6.1, 6.2, and
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6.3 are comparable. Therefore, it may be summed up that the algorithms esti-

mating the GJR-GARCH models are reliable (from this viewpoint). According

to expectations, the procedure (5.86) outperforms the technique given by (5.87).

Additionally, Figure 6.7, 6.8, and 6.9 illustrate the convergence of the self-

weighted recursive prediction error method algorithm. In particular, one thou-

sand GJR-GARCH(1,1) processes of the length 20000 were simulated, and the

estimation was stopped at the times Ta = 1000, Tb = 5000, Tc = 10000, and

Td = 20000. Other experimental conditions remained unchanged. The algorithm

has repeatedly demonstrated desirable properties.

True values Method ω α1 β1 γ1

(i)
SW-RPLR 0.36647 0.01079 0.19137 0.01361
SW-RPEM 0.10403 0.00887 0.05886 0.00849

(ii)
SW-RPLR 0.04898 0.01453 0.03609 0.01814
SW-RPEM 0.03775 0.01323 0.02896 0.01481

(iii)
SW-RPLR 0.10636 0.01950 0.04262 0.01410
SW-RPEM 0.01033 0.00511 0.00622 0.00500

Table 6.4: Simulation results for the GJR-GARCH(1,1) process of the length 10000
with the various true parameters. Medians of absolute errors of the final estimates.
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Figure 6.7: Boxplots of the SW-RPEM estimates of the GJR-GARCH(1,1) process
with (ω, α1, β1, γ1) = (0.30, 0.05, 0.80, 0). The recursive estimation process was stopped
at Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.8: Boxplots of the SW-RPEM estimates of the GJR-GARCH(1,1) process
with (ω, α1, β1, γ1) = (0.50, 0.20, 0.50, 0). The recursive estimation process was stopped
at Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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Figure 6.9: Boxplots of the SW-RPEM estimates of the GJR-GARCH(1,1) process
with (ω, α1, β1, γ1) = (0.05, 0.05, 0.94, 0). The recursive estimation process was stopped
at Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.
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6.4 On-line estimation of EWMA models:

Monte Carlo study

This section examines the numerical effectiveness of the proposed recursive es-

timation method (5.83) designed for calibrating the RiskMetrics EWMA model

from Section 3.2. Firstly, simulations study the convergence properties of the sug-

gested technique in the same manner as in Sections 6.1, 6.2, and 6.3. Secondly,

we shall test the adaptability of the algorithm to a time-varying EWMA model-

ling parameter. Thirdly, we shall analyse the performance of the robustification

proposed in Section 5.2.6.

6.4.1 Convergence behaviour

The following paragraphs summarize investigating of the suggested estimation

procedure given by (5.83) by means of Monte Carlo experiments. Various numer-

ical experiments were analysed with almost analogous results. Therefore, three

representative cases are reviewed here. Particularly, we replicated three EWMA

processes (3.10) with Gaussian disturbances of the length 20000 with three dis-

tinct parameters λ (namely, 0.90, 0.94, and 0.99) in order to study the convergence

properties of the tested technique. One thousand repetitions were generated. The

chosen length corresponds to approximately six-hour dataset working with one-

second data. All computations were conducted in the statistical software R by

introducing original methods.

Figure 6.10 exemplifies the effectiveness of the one-stage self-weighted recur-

sive prediction error procedure (SW-RPEM) defined by (5.83) specified by the

consequent recommendations. Namely, we put: (i) p̂0 = 105, (ii) λ̂0 = 0.94,

(iii) σ̂2
1 was the sample variance of several first observations and σ̂2′

1 equalled

zero, (iv) the forgetting factors were given as λt = 0.99λt−1 + 0.01, λ0 = 0.95

and t ∈ N (i.e. it gradually grows to 1). The projection (5.36) used DM =

{λ ∈ R|λ ∈ [10−9, 1 − 10−9]}. The estimation process was stopped at the times

Ta = 1000, Tb = 3000, Tc = 5000, and Td = 10000; the current estimates were

always stored. Figure 6.10 plots sample characteristics of these estimates using

the standard boxplots for each stopping time. It is apparent that the estimates

converge to the true values jointly with decreasing variances. Thus, one might

conclude that the tested self-weighted recursive method (5.83) is capable of esti-

mating the EWMA parameter in accordance with Ljung (1999, Chapter 11).

69



0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T_a T_b T_c T_d

LAMBDA = 0.90

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T_a T_b T_c T_d

LAMBDA = 0.94

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T_a T_b T_c T_d

LAMBDA = 0.99

Figure 6.10: Boxplots of the SW-RPEM estimates of the EWMA parameter (λ =
0.90, 0.94, and 0.99, respectively). The recursive estimation process was stopped at
Ta = 1000, Tb = 5000, Tc = 10000, and Td = 20000.

6.4.2 Tracking time-varying parameters

Furthermore, one may examine how the different procedures can handle estimat-

ing the RiskMetrics EWMA model with the parameter λ that varies over time.

The performance of the on-line and off-line methods may be compared. Namely,

we replicated two EWMA processes (3.10) with Gaussian innovations of the length

10000 with the time-varying parameters. One thousand repetitions were gener-

ated. More specifically, we tested these two parameter settings: (i) λ = 0.94

for t = 1, . . . , 5000 and λ = 0.99 otherwise, (ii) λ = 0.94 for t = 1, . . . , 5000,

λ = 0.99 for t = 5001, . . . , 7500, and λ = 0.97 otherwise. The following estima-

tion procedures were conducted: (i) the recursive estimation scheme (5.83) with

the forgetting factor growing to 1 (the same as above), (ii) the recursive estima-

tion scheme (5.83) with the constant forgetting factor λt ≡ 0.995 for all t, (iii) the

recursive estimation scheme (5.83) with the constant forgetting factor λt ≡ 0.997

for all t, (iv) the recursive estimation scheme (5.83) with the constant forget-

ting factor λt ≡ 0.999 for all t, and finally (v) the off-line conditional maximum

likelihood method suitable for the normally distributed EWMA model. Other

experimental conditions remained as before.

Figures 6.11 and 6.12 survey these experiments and the corresponding esti-

mates in detail. To be more precise, medians of available estimates were computed

at each time t, and they are presented in both figures. Clearly, the off-line con-

ditional maximum likelihood estimates demonstrate the least accuracy from this

point of view. The self-weighted recursive algorithm (5.83) with the forgetting

factor growing to one slowly accepts the underlying change in the parameter. Fi-

nally, the on-line calibration procedures with the constant forgetting factors are

able to track the change more conveniently. The closer the forgetting factor is to
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one, the more conservative estimates are, i.e. less volatile but also less precise.

See Remark 5.2.1. To conclude, the recursive estimation scheme (5.83) with the

particular forgetting factors has outperformed the off-line estimator since this is

not adapted to reflect any time change in the RiskMetrics EWMA parameter. In

this analysis, the on-line algorithms have always behaved more favourably.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

2500 5000 7500 10000

True value
Forg. factor growing to 1
Off-line MLE
Constant forg. factor (0.995)
Constant forg. factor (0.997)
Constant forg. factor (0.999)

Figure 6.11: Medians of various estimates of the time-varying EWMA parameter.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

2500 5000 7500 10000

True value
Forg. factor growing to 1
Off-line MLE
Constant forgetting factor (0.995)
Constant forgetting factor (0.997)
Constant forgetting factor (0.999)

Figure 6.12: Medians of various estimates of the time-varying EWMA parameter.

6.4.3 Robustification

Section 5.2.6 has suggested a clear truncation concept, which should solve even-

tual problems with additive outliers in data. This section studies the approach

using two demonstrative numerical examples, which can justify its adequacy.

Before analysing the results, we shall introduce the experimental framework.

We replicated one thousand EWMA processes (3.10) of the length 10000 with nor-

mally distributed innovations and λ = 0.94. After each simulation, we produced
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two different time series incorporating additive outliers; we inserted y2500 = 10 in

the first case, and y7500 = 10 in the second instance. Other experimental condi-

tions remained as before. In both instances, we have studied two versions of the

estimation scheme (5.83), i.e. the first one with the forgetting factor increasing

to one (defined as before) and the second one with the constant forgetting factor

0.997. Additionally, we have distinguished between three estimation variants of

both approaches: without any robustification and with the robustification as was

outlined in Section 5.2.6 using at ≡ u0.99 and at ≡ u0.9999. Recall that uα denotes

the corresponding α-quantile of the standard normal distribution.

Figures 6.13 and 6.14 display medians of the distinct on-line estimates (calcu-

lated at each time step). Apparently, the additive outliers have had disturbingly

destructive influence on the estimation from this viewpoint when no robusti-

fication has been applied. By employing the recommended robustification, the

results look more favourably. However, one should use a less conservative at (e.g.

as u0.9999) in (5.37) not to restrict on-line estimation excessively, especially during

the transient phase.
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Figure 6.13: Medians of the EWMA parameter estimates (the outlier at t = 2500).
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Figure 6.14: Medians of the EWMA parameter estimates (the outlier at t = 7500).

72



6.5 Empirical analysis of the PX index

In this section, the central stock index of Prague Stock Exchange (the PX index)

is studied by the RiskMetrics EWMA modelling framework using all instruments

investigated in Section 6.4. In particular, we consider the pragmatic argument

that it may be advantageous to analyse daily financial returns by conditional

heteroscedasticity models with parameters varying over time (Trešl, 2011). This

modelling framework is usually implemented ad hoc. For instance, one may

utilize the rolling window estimates, where usual (off-line) calibration methods

are applied within a data window of some (limited) width; this window is moved

systematically over time, and thus generates time-varying paths of estimates.

However, tracking time-changing parameters can be methodically provided by

recursive estimation techniques by employing constant forgetting factors as was

discussed earlier (see Remark 5.2.1). Therefore, we have decided to examine the

suggested estimation scheme (5.83) under distinct conditions in this context.

The PX index (ISIN XC0009698371) is an official market-cap weighted stock

index composed of the most liquid shares traded on the Prague Stock Exchange.

In particular, it is a price index of blue chips issues, which is calculated in real-

time and weighted by market capitalization. Dividends are not considered. A new

value of the PX index is delivered by a particular formula; it reflects each single

price change of index constituents. The maximum weight for a share issue is 20%

on a decisive day. A portfolio of core issues is variable, and it can be restructured

quarterly (Wiener Borse, 2015).

The PX index was launched on 5th April 1994 (originally known as PX-50).

Its base was composed of the fifty most significant share issues operating on

the Prague Stock Exchange. The opening base value was fixed on 1000. The

number of basic issues has been variable since December 2001. In March 2006,

the PX index was officially introduced. It took over the whole history of the

replaced index PX-50 continuing in its development. In March 2015, the PX

base contained fourteen issues. The top five stocks had approximately 85% share

of market capitalization in the portfolio. The majority of capitalization was

allocated in banking, energy, and insurance sectors. Further details (including

historical data) can be found on the website of Prague Stock Exchange (2015).

Figure 6.15 graphs all historical daily closing quotes and associated logarith-

mic returns of the PX index until 31st March 2015 (i.e. 5248 observations). The

minimal value 316 occurred on 8th October 1998 after the Russian financial crisis.

The maximal observation 1936 was achieved on 29th October 2007. It is visible

that the crisis year 2008 was truly exceptional (Hendrych, 2014a).
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Figure 6.15: The PX index historical closing quotes and associated log-returns.

Figure 6.16 shows different off-line and on-line estimates of the EWMA mod-

elling parameter for the PX index log-returns. Namely, the given financial returns

are studied by means of the following methods: (i) the recursive algorithm (5.83)

with the forgetting factor growing to one (defined as in Section 6.4) with the ro-

bustification (5.37) using at ≡ u0.9999 and without it, (ii) the recursive algorithm

(5.83) with the constant forgetting factor 0.997 with the robustification (5.37) us-

ing at ≡ u0.9999 and without it, (iii) the off-line conditional maximum likelihood

method. The on-line estimation was initialized as in Section 6.4.
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Figure 6.16: Different estimates of the EWMA parameter (the PX log-returns).

At first glance, the accepted robustification eliminates the influence of additive

outliers (especially the one occurring in the first part of the dataset). Therefore,

the robustified methods are more reliable from this perspective. Moreover, the

recursive estimates calculated by using the constant forgetting factor apparently

fluctuate around the off-line one. One can discover several trends, which obvi-

ously correspond to the overall development of the PX index closing quotes (see

Figure 6.15). The on-line estimates evaluated by the growing forgetting factors

are more rigid than the ones with the constant forgetting factors; compare with
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Section 6.4.2. Note that all mentioned recursive estimates are less reliable at the

beginning of the observed time series since these methods are initialized therein.
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Figure 6.17: Different estimates of volatility (the PX log-returns).

Figure 6.17 presents the estimated volatilities of the logarithmic returns of the

PX index. According to the preceding discussion, we have primarily examined

the off-line method and the two robustified recursive procedures for calibrating

the RiskMetrics EWMA parameter. At first sight, one could conclude that all

considered outputs follow analogous trends. The estimates based on the off-line

conditional likelihood procedure and the suggested recursive algorithm seem to be

closely related. To distinguish which of the studied calibration techniques do offer

better predictions of volatility of financial returns, it would be necessary to employ

additional criteria that study this issue from the financial management point of

view (Patton, 2011). Alternatively, one may compare the achieved values of the

(conditional) log-likelihood function associated with this particular estimation

problem (or equivalently contrast some information criteria). The calculated log-

likelihoods are recapitulated in Table 6.5. The complete and truncated samples

are considered computing the introduced numbers. Namely, first 10%, 20%, 30%,

40%, and 50% observations were cut off in order to verify the adequacy since

the recursive methods are less stable during the initial phase of estimation (see

above). Consequently, the calibration algorithm (5.83) introduced in Section 5.4.2

is visibly competitive. It can be employed in the PX index daily data context.

Sample/Method Off-line MLE On-line (λt ↗ 1) On-line (λt ≡ 0.997)

Complete 15819.37 15751.06 15755.63
Truncated (10%) 14191.75 14178.27 14191.80
Truncated (20%) 12470.94 12460.19 12473.38
Truncated (30%) 11001.93 10994.66 11007.17
Truncated (40%) 9525.31 9521.00 9530.27
Truncated (50%) 7858.61 7856.11 7862.97

Table 6.5: Values of log-likelihood functions corresponding to estimates in Figure 6.17.
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6.6 On-line volatility monitoring

Monte Carlo experiments reviewed in the preceding sections have demonstrated

that the suggested one-stage self-weighted recursive prediction error methods (in

the severe proposed variants introduced in Chapter 5) are generally capable of

estimating the particular modelling parameters recursively. This approach has

been empirically examined in the context of the PX index (daily) data, where it

has successfully tracked the time-varying EWMA modelling parameter. However,

the primary goal of the proposed recursive estimation algorithms is to treat high-

frequency data that cannot be managed in real time by mutual off-line methods

just due to their frequencies. Therefore, we shall demonstrate the possible utility

of this methodological instrument examining this context.

In practice, it might be desirable to monitor or forecast volatility of finan-

cial returns in real time since volatility represents a crucial measure of risk with

a broad portfolio of empirical applications. For instance, it can determine a solu-

tion of asset allocation or hedging problems; it can help to construct an optimal

portfolio or to evaluate risk measures (e.g. the Value at Risk).

For illustrative purposes, let us assume the high-frequency tick data concern-

ing the exchange rate EUR/USD on 17th July 2014 (i.e. 27896 observations).

Refer also to Figure 6.18. Such (historical) datasets are usually provided by

standard trading software. In particular, we have analysed the log-returns in the

form yt = 100 log(Pt/Pt−1), where Pt denotes the exchange rate at time t, by

applying the GJR-GARCH(1,1) with the normally distributed innovations. This

simplification is strongly motivated by practice since this model may be regarded

as the benchmark (similarly to the GARCH(1,1) model, which does not reflect an

eventual leverage effect). Moreover, there exist pieces of evidence that the given

dataset should be modelled by using the conditional heteroscedasticity framework

(e.g. the high kurtosis or the results of the Ljung-Box tests indicating autocor-

related squared financial returns). Particularly, we applied the recursive scheme

(5.86) on the data (in accordance with the accepted modelling scheme). We used

the robustification recommended in Section 5.2.6, namely defined by the trunca-

tion (5.37) with at ≡ u0.9999. The method was initialized as in Section 6.3. One

may contrast two distinct versions, i.e. the first one with the constant forgetting

factor (λt ≡ 0.997 for all t) and the second one with the forgetting factor growing

to 1 (λt = 0.99λt−1 + 0.01, λ0 = 0.95 and t ∈ N). See Remark 5.2.1 for explaining

the motivation for doing this.

Finally, Figure 6.19 compares on-line estimated volatilities computed recur-

sively. As before, one might conclude that there exist severe analogous trends

in both cases. Nonetheless, the volatility estimated by the constant forgetting
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Figure 6.18: EUR/USD exchange rates and associated log-returns.

factor seems to change more progressively. Since the proposed method is compu-

tationally efficient in terms of its complexity and required memory, it is possible

to track both variants (with the distinct forgetting factors) simultaneously and

compare their performance on-line by applying some suitable criteria (e.g. the

corresponding analogies of information criteria introduced in Section 5.2.5).

The calibrated volatilities may be employed in specific financial problems,

which go beyond the scope of this thesis. The primary goal of this subsection

has been to demonstrate that the proposed recursive estimation procedures can

monitor time-varying volatility, to check its positivity and stationarity sequen-

tially (by using a simple projection as in (5.36)). It is in sharp contrast to the

off-line estimation methods.
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Figure 6.19: Different estimates of volatility (the EUR/USD log-returns).
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Part II

Conditional covariance and

correlation modelling
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7. Conditional covariance

modelling: An overview

The conditional heteroscedasticity models considered in Chapter 3 (and many

others cited and elaborated in the literature) calibrate volatility of financial re-

turns independently of other financial time series. However, this univariate ap-

proach may be inefficient in many situations of common econometric and financial

practice. To be more precise, it cannot reflect the spillover of volatility amongst

various financial assets, and it cannot describe their mutual correlations.

Conditional correlations are crucial inputs for many problems of financial and

risk management. Hedges rely on estimates of volatilities and conditional cor-

relations between the returns of the (risky) assets in the hedging portfolio. If

they are supposed to vary over time, the hedge ratio should be adjusted to in-

corporate the most recent information. Similarly, structured financial products

based on a portfolio of underlying assets are usually priced with respect to condi-

tional correlations amongst the underlying returns. Moreover, asset allocation or

risk assessment also require knowledge of such (inter)connections. For instance,

construction of an optimal portfolio with a set of constraints requests the condi-

tional covariance matrix of all assets involved in this portfolio. The correlation

structure of assets is a fundamental feature of this investment decision since it is

instrumental in determining the risk (Engle, 2009, Chapter 1). One might con-

clude that investigating conditional covariances and correlations is indeed worth

of interest from the perspective of banks, financial analysts, investors, and other

participants in financial markets.

Analysis of these significant quantities is undoubtedly an important part of

multivariate financial time series modelling also from the theoretical point of view.

One should primarily highlight at least two reasons amongst others. Firstly, fi-

nancial time series (univariate or multivariate) require applying specific model

concepts that respect their characteristic features. Consult the stylized facts

about financial returns and volatility discussed in Chapter 1. Secondly, several

constraints are naturally linked to estimation of the considered quantities of in-

terest. Namely, each conditional covariance matrix must be symmetric and posi-

tive (semi)definite. Additionally, each conditional correlation matrix must have

unit diagonal elements, and other components must lie within the interval [−1, 1].

These conditions might indisputably incorporate tough limitations into calibra-

tion, especially in the case of higher dimensions. Therefore, these restrictions

must be seriously taken into account by the modelling framework. Consequently,
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various model representations have been implemented to simplify, transform, or

(completely/partly) eliminate these constraints. See Section 7.2.

Remind that conditional correlation modelling is inherently related to condi-

tional covariance modelling. One can essentially distinguish between the explicit

and implicit modelling schemes. The first category involves representations that

explicitly evaluate conditional correlations. The second one estimates conditional

correlations implicitly as normalizations of conditional covariances (see below).

The relevance of the discussed issue is evident from the substantial body

of literature in this research field. Many academically or practically oriented

publications treat this topic from different viewpoints. See the works by Aielli

(2013), Alp and Demetrescu (2010), Bauwens, Laurent and Rombouts (2006),

Bollerslev (1990), Engle (2002), Engle (2009), Engle and Colacito (2006), Hafner

and Reznikova (2012), Rossi and Spazzini (2010), and the references given therein.

To illustrate an essential importance of (conditional) covariances and correl-

ations in common financial practice, we shall introduce demonstrative examples.

Example 7.0.1 Let rt = (r1,t, . . . , rN,t)
> be the vector of N risky financial

returns, rf be the risk-free rate, and w = (w1, . . . , wN)> be the portfolio weights.

The portfolio return at time t is defined by these terms as follows:

rport,t :=
N∑
i=1

wiri,t +

(
1−

N∑
i=1

wi

)
rf = w>(rt − rf1) + rf , (7.1)

where 1 denotes the vector of units of the corresponding length.

Assuming E(rt − rf1) = µ and cov(rt) = Σ = (σij)
N
i,j=1 (Σ is regular), the

portfolio mean and variance are concisely expressed as:

E(rport,t) = w>µ+ rf and var(rport,t) = w>Σw. (7.2)

In the classic Markovitz portfolio theory, the risk of a portfolio is given as the

expected variance of the portfolio over a given time period. This is compared

with the expected return on the portfolio over the same period (Engle, 2009,

Section 2.4). Supposing that the portfolio can be either long or short in all

assets, the optimal portfolio problem can be solved evaluating:

min
w∈RN

var(rport,t), subject to E(rport,t) ≥ µ0, (7.3)

where a priori known µ0 ∈ R denotes the required return of the portfolio.
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This minimization task has the analytical solution (provided that it exists):

wopt =
Σ−1µ

µ>Σ−1µ
(µ0 − rf ). (7.4)

It is apparent that the individual variances and mutual correlations between the

risky assets influence the structure of the optimal portfolio. If all risky assets

have the identical expected return (i.e. µ = µ̃1 for some µ̃ ∈ R) and there is no

riskless rate (i.e. w>1 = 1, rf ≡ 0, and µ̃ = µ0), then the portfolio weights will

be chosen to minimize variance. Namely, the weights of this minimum-variance

portfolio are determined by:

wMV
opt =

Σ−11

1>Σ−11
. (7.5)

Engle and Colacito (2006) employed the conditional moments instead of their

unconditional counterparts in this particular framework (conditioning by the in-

formation accumulated up to and including time t− 1 denoted as Ft−1, see Sec-

tion 7.1). Accepting this concept, one may simply deduce the minimum-variance

bivariate portfolio of two risky assets with an equal expected return (if there is

no risk-free rate):

rport,t = wtr1,t + (1− wt)r2,t, (7.6a)

wt =
h22,t − h12,t

h11,t + h22,t − 2h12,t

, (7.6b)

H t = (hij,t)
2
i,j=1 = cov(rt|Ft−1). (7.6c)

It means that the optimal composition of the portfolio is varying over time based

on the elements of the conditional covariance matrix H t. The advantage of this

approach is that it uses the time-varying portfolio weights. It might lead to

portfolios with smaller variances compared with the portfolio driven by constant

weights (Engle, 2009, Chapter 9).

Example 7.0.2 The problem of hedging is closely related to the context out-

lined in Example 7.0.1. Namely, it can be incorporated into this framework.

Consider that the first risky asset in the portfolio (without loss of generality)

must be held and remaining risky assets are held primarily to reduce the risk. In

particular, it means that an investor wants to create the portfolio with the min-

imal risk (which is measured by the portfolio variance). It leads to the following

optimization problem (Engle, 2009, Section 2.4):

min
w∈RN

w>Σw, subject to w1 = 1, 1>w = 1. (7.7)
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For instance, the optimal hedged bivariate portfolio is given as:

rport,t = r1,t − w2r2,t, w2 =
σ12

σ22

= ρ12

√
σ11√
σ22

, (7.8)

where ρ12 denotes the bivariate correlation between r1,t and r2,t.

Similarly as in Example 7.0.1, this approach can be generalized assuming the

conditional mean and covariances. Accordingly, one can reformulate the previous

bivariate portfolio described by (7.8) as:

rport,t = r1,t − wtr2,t, wt =
h12,t

h22,t

= ρ12,t

√
h11,t√
h22,t

, (7.9)

where the notation remains as in Example 7.0.1 and ρ12,t is the bivariate condi-

tional correlation between the returns r1,t and r2,t.

Both examples discussed above should have demonstrated that the (either

unconditional or conditional) covariance and correlation matrices are indeed sig-

nificant inputs for essential financial tasks. This fact has motivated the research

presented in Part II of the thesis. Notice that more sophisticated variants of the

problems solved above might be evidently considered.

Remark 7.0.1 Engle (2009, Section 1.4) briefly introduced an interesting eco-

nomic model of correlations with the aim to show how correlations in financial

returns are interrelated with correlations in the news taken as any information

that changes forecasts of future payments.

Let Pt be the price per share, Dt be the dividend per share. Continuously

compounded returns are commonly defined as:

rt+1 := log(Pt+1 +Dt+1)− log(Pt). (7.10)

Employing the log-linearization used by Engle (2009, Section 1.4), they can be

approximated as:

rt+1 ≈ k + ρpt+1 + (1− ρ)dt+1 − pt, (7.11)

where pt = log(Pt) and dt = log(Dt), k is a constant of the linearization, and

ρ ∈ (0, 1) is the discount rate. Note that this approximation behaves conveniently

if the ratio of the two components is small and (relatively) constant.

The unexpected return at time t defined by rt−E(rt|Ft−1), where Ft−1 denotes

the information set available at time t− 1, can be rewritten using (7.11) as:

rt − E(rt|Ft−1) ≈ ρ[pt − E(pt|Ft−1)] + (1− ρ)[dt − E(dt|Ft−1)]. (7.12)
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It means that the unexpected return consists of two components: the unexpected

movement of price and surprise in the dividend. Moreover, Equation (7.11) can

be solved for pt (under the corresponding conditions), i.e. pt may be written

as a function of future returns and dividends; this solution can be substituted

into (7.12). The unexpected return can be thus schematically summarized by the

following relation:

rt − E(rt|Ft−1) = ηdt − ηrt , (7.13)

where the innovations ηdt and ηrt comprise the news about the (future) dividends

and returns. Therefore, the conditional variance of an asset return rt is simply

driven by (Engle, 2009, Section 1.4):

var(rt|Ft−1) = var(ηdt |Ft−1) + var(ηrt |Ft−1)− 2cov(ηdt , η
r
t |Ft−1). (7.14)

In the case of multivariate returns, the situation is mostly analogous. Thus, the

correlations in returns result either from correlations amongst dividend news or

correlations amongst returns or mutual correlations between both of them.

7.1 Model framework

This section introduces a general multivariate model framework, which is com-

monly employed in the described context. It can be simply regarded as a straight-

forward extension of the univariate case referred in Chapter 3. Particularly, con-

sider a multivariate stochastic vector process {X t}t∈Z of dimension (n× 1). De-

note Ft the σ-algebra generated by observed time series up to and including time

t, i.e. Ft = σ(Xs, s ≤ t) is the smallest σ-algebra with respect to which Xs is

measurable for all s ≤ t, s, t ∈ Z.

In this framework, assume the following model:

X t = H
1/2
t Zt, (7.15)

where H t = (hij,t)
n
i,j=1 is the (n × n) symmetric positive definite conditional

covariance matrix of X t given Ft−1. Furthermore, one supposes that {Zt}t∈Z is

an (n×1) i. i. d. stochastic vector process with the following moments: E(Zt) = 0

and cov(Zt) = I, where I denotes the corresponding identity matrix.

In the model (7.15), the moments of X t can be readily evaluated as:

E(X t|Ft−1) = 0, cov(X t|Ft−1) = H
1/2
t (H

1/2
t )> = H t, (7.16a)

E(X t) = 0, cov(X t) = E(H t), cov(X t,X t+h) = 0, h ∈ Z\{0}. (7.16b)
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Here, H
1/2
t is any (n × n) positive definite matrix such that the last equality

in (7.16a) holds. The considered decomposition of H t may be delivered, for

instance, by the Cholesky factorization as it is common (Bauwens et al., 2006).

Moreover, the conditional correlation matrix ofX t given Ft−1 denoted asRt =

(ρij,t)
n
i,j=1 can be evaluated by computing the normalization of the conditional

covariance matrix H t, i.e. Rt = diag(H t)
−1/2H tdiag(H t)

−1/2. Note that the

matrix operator diag creates a diagonal matrix extracting associated elements of

an original matrix (and all non-diagonal components are substituted by zeroes).

All correlations defined in this way must clearly lie within the interval [−1, 1],

and they are based on information accumulated up to the previous period.

7.2 Common models of conditional covariances

The demand for reliable estimates of conditional covariances and correlations

amongst financial assets has motivated and determined development of countless

different modelling approaches. This section briefly recapitulates several frequent

techniques that are commonly applied in the discussed context. The literature

has been recently surveyed by Bauwens et al. (2006) or Engle (2009, Chapter 3).

Particularly, Engle (2009, Section 3.7) concisely introduced many other represen-

tations that have been proposed and employed in this framework. They include

semi-parametric, factor, stochastic volatility methods, etc.

7.2.1 Basic approaches

The most widely used covariance (correlation) matrix estimators are the simplest

ones. They apply elementary modelling schemes.

One should start with the multivariate moving average covariance matrix

(often called the historical covariance matrix) given by:

HMA
t =

1

M

M∑
s=1

X t−sX
>
t−s, M ≥ 2. (7.17)

This particular modelling scheme prescribes the equal weight 1/M to all observa-

tions less than M periods in the past and the zero weight to older measurements.

Apparently, the conditional covariances may be expressed as:

hMA
ij,t =

1

M

M∑
s=1

Xi,t−sXj,t−s, M ≥ 2, i, j = 1, . . . , n, (7.18)
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hence, the conditional correlations are described as:

ρMA
ij,t =

∑M
s=1Xi,t−sXj,t−s√∑M

s=1 X
2
i,t−s

√∑M
s=1X

2
j,t−s

, M ≥ 2, i, j = 1, . . . , n. (7.19)

The multivariate exponentially weighted moving average smoother designed

by RiskMetrics is defined as (Morgan, 1996):

HEWMA
t = (1− λ)X t−1X

>
t−1 + λHEWMA

t−1 , λ ∈ (0, 1). (7.20)

This scheme uses the geometrically decreasing weights based on the parameter λ

since the following relations hold (for all i, j = 1, . . . , n):

hEWMA
ij,t = (1− λ)Xi,t−1Xj,t−1 + λhEWMA

ij,t−1 = (1− λ)
∞∑
s=1

λs−1Xi,t−sXj,t−s. (7.21)

Both formulas (7.17) and (7.20) ensure the symmetric positive semidefinite

covariance matrices (that are positive definite under additional, relatively weak

conditions). Each representation contains only the single (tuning) parameter.

However, these unknown parameters are often not estimated but are simply pre-

scribed by experts or users. For instance, one usually puts the length of the

moving average as M = 100 and the smoothing constant as λ = 0.94 for daily

data (Engle, 2009, Section 3.1). Alternatively, common statistical inference pro-

cedures may be applied in this context. Both methods must be properly initialized

at first. For example, the moving average estimator can be started after collecting

at least M measurements. The exponential smoother can be initiated using the

sample covariance matrix of an initial data segment. Both models are apparently

very simple; therefore, they are frequently applied in practice.

7.2.2 Multivariate GARCH models

Multivariate GARCH models are natural generalizations that have been sug-

gested and used in the considered context. Many different specifications have

been proposed according to the key principles of this framework (Engle, 2009,

Section 3.2). Therefore, it suffices to outline how these models are typically for-

mulated. Their key features are analogous to the univariate case introduced and

discussed in Chapter 3. See Bauwens et al. (2006) or Engle (2009, Section 3.3)

for further insights and more references.

85



The most general expression of this modelling class is the VEC(P,Q) repre-

sentation of H t given by:

vec(H t) = vec(Ω) +
P∑
p=1

Apvec(X t−pX
>
t−p) +

Q∑
q=1

Bqvec(H t−q), (7.22)

where Ω is the (n × n) matrix of parameters, Ap and Bq are the (n2 × n2)

matrices of parameters (all of them must respect the symmetry of H t), P ∈ N
and Q ∈ N0. The matrix operator vec converts a matrix to a vector by stacking

all its columns on top of one another. If the matrix is symmetric, then there will

be many duplications. For this reason, the VEC scheme is sometimes replaced

by the corresponding VECH(P,Q) model, where the operator vec is substituted

by its inherent counterpart vech. The matrix operator vech reorganizes a sym-

metric matrix into one vector by stacking columns of the lower triangular part

of this matrix on top of one another. In the context of Equation (7.22), it par-

ticularly means that the (n × n) matrix H t is modified to the (n(n + 1)/2 × 1)

vector vech(H t) instead of the (n2 × 1) vector vec(H t), etc. Nevertheless, both

considered representations have identical features.

The VEC model describes the dependence between each element of H t and

squares and cross products of past returns and lagged covariances. However, the

conditional covariance matrixH t is not positive definite without imposing further

restrictions. Additionally, this model potentially includes an enormous number

of free parameters. Therefore, it is convenient to tighten the structure of (7.22)

to reduce the number of parameters and to guarantee the positive definite H t.

Notice that the sufficient conditions for (weak) stationarity may be deduced from

the matrices Ap and Bq (Engle, 2009, Theorem 3.1).

The extremely modest parameterizations of the VEC model (7.22) are the

moving average given by (7.17) and the exponential smoother delivered by (7.20).

It is evident by using: P = M , Q = 0, Ω ≡ 0, Ap = (1/M)I for all p (in the first

case); P = Q = 1, Ω ≡ 0, A1 = (1− λ)I, B1 = λI (in the second case). A less

restrictive modelling subclass involves the diagonal VEC(P,Q) representation

(i.e. the matrices Ap and Bq are restricted to be diagonal). In this model,

Equation (7.22) can be concisely reformulated as:

H t = Ω +
P∑
p=1

Āp � (X t−pX
>
t−p) +

Q∑
q=1

B̄q �H t−q, (7.23)

where Āp and B̄q are the (n× n) matrices of parameters that correspond to the

diagonals of Ap and Bq from (7.22), respectively. Namely, these matrices are

implied by the relations Ap = diagv[vec(Āp)] and Bq = diagv[vec(B̄q)], where
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the operator diagv transforms a vector into a diagonal matrix (i.e. the vector

creates the diagonal of this matrix). The Hadamard product � of two general

(m×n) matrices is defined as the (m×n) matrix of element-by-element products.

Notice that if all matrices Āp and B̄q are positive semidefinite and if Ω is positive

definite, then H t will be positive definite for all t (Engle, 2009, Lemma 3.4). The

diagonal VEC model is usually applied under the following (more restrictive)

parameterizations: (i) the scalar-diagonal model (Āp = ᾱp11>, ᾱp ≥ 0, and

B̄q = β̄q11>, β̄q ≥ 0), (ii) the vector-diagonal model (Āp = āpā
>
p and B̄q = b̄qb̄

>
q ,

where āp and b̄q are the (n× 1) vectors), (iii) the matrix-diagonal (Āp = ῩpῩ
>
p

and B̄q = Ψ̄qΨ̄
>
q , where Ῡp and Ψ̄q are the (n × n) matrices). In these three

cases, the positive semidefiniteness of H t is guaranteed (if Ω is positive definite).

Another general multivariate GARCH representation that can ensure the posi-

tive definiteness may be established (Engle, 2009, Section 3.3). Namely, the

BEKK(P,Q,R) representation of H t is formulated as:

H t = Ω +
P∑
p=1

R∑
r=1

Ã
>
p,rX t−pX

>
t−pÃp,r +

Q∑
q=1

R∑
r=1

B̃
>
q,rH t−qB̃q,r, (7.24)

where Ω, Ãp,r, and B̃q,r are the (n× n) matrices of parameters, P ∈ N, Q ∈ N0,

and R ∈ N. The matrix Ω must be symmetric. The conditional covariance matrix

is clearly positive definite if Ω is positive definite (since the remaining terms

are positive semidefinite). The summation limit R determines the generality of

conditional covariances.

Various special versions of this scheme have been discussed in the literature.

The matrices of coefficients can be full rank, symmetric, reduced rank, diagonal,

etc. None of these eventualities affects the positive definiteness and symmetry.

For instance, one may assume the scalar BEKK(1,1,1) model with Ã1,1 = α̃1,1I,

α̃1,1 ≥ 0, and B̃1,1 = β̃1,1I, β̃1,1 ≥ 0, or the diagonal BEKK(1,1,1), where

Ã1,1 and B̃1,1 are diagonal with non-negative elements (to avoid observationally

equivalent structures).

Note also that the BEKK model is a special VEC model in accordance with

Engle (2009, Lemma 3.5). Remind that estimation of all these models is usually

provided by the conditional maximum likelihood procedure assuming a certain

distribution of Zt (the multivariate standard normal distribution is commonly

supposed). See Bauwens et al. (2006) for further insights.

7.2.3 Constant conditional correlations

Another alternative to conventional multivariate GARCH models was proposed

by Bollerslev (1990). The constant conditional correlation (CCC) model decom-
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poses the matrix H t as follows:

H t = diag(H t)
1/2R diag(H t)

1/2, (7.25)

whereR = (ρij)
n
i,j=1 is the (n×n) conditional correlation matrix, i.e. a symmetric

positive definite matrix with ρii = 1 for all i and ρij ∈ [−1, 1] for all i 6= j.

In this model, the conditional correlations between each pair of assets are

restricted to be time invariant. The conditional variances of the individual com-

ponents of X t described by diag(H t) can follow any process, but the conditional

covariances must keep the conditional correlations constant. In particular, hii,t

usually follows a univariate GARCH process (for all i).

Estimation is commonly provided by the conditional maximum likelihood pro-

cedure (assuming a certain distribution function of Zt). It is possible to accept

the two-stage approach. The first stage calibrates univariate models of the condi-

tional variances. The second stage simply evaluates the sample correlation matrix

of the standardized residuals, which are given as diag(H t)
−1/2X t.

7.2.4 Dynamic conditional correlations

The assumption of constant conditional correlations adopted in the previous sec-

tion may seem too restrictive. Engle and Sheppard (2001) and Engle (2002) ex-

tended the CCC modelling framework into a more general scheme. The dynamic

conditional correlation (DCC) model defines H t as follows:

H t = diag(H t)
1/2Rt diag(H t)

1/2, (7.26a)

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2, (7.26b)

Qt = Ω + α
[
diag(H t)

−1/2X t

] [
diag(H t)

−1/2X t

]>
+ βQt−1, (7.26c)

where α and β are the scalar parameters, Ω is the (n × n) matrix of param-

eters, and Qt is the (n × n) matrix defined using the standardized residuals as

above. Similarly as before, the individual conditional variances accumulated in

diag(H t) can follow any suitable process; usually, the GARCH(p, q) specification

is supposed. If Qt is positive definite, then so is Rt, and consequently also H t.

To ensure the positive definite Qt, it is sufficient to assume that α ≥ 0, β ≥ 0,

α + β < 1 and that Ω is positive definite (Engle, 2002).

The DCC decomposition delivered by (7.26) and specified by the latter con-

ditions is called mean-reverting. The structure of Qt is an evident analogy of the

scalar-diagonal multivariate GARCH model; compare with Equation (7.23). Un-

doubtedly, there naturally exist various alternatives to this particular modelling

representation. Refer to Section 7.2.2. For instance, Engle (2002) also suggested
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the integrated DCC model as follows (λ ∈ (0, 1)):

H t = diag(H t)
1/2Rt diag(H t)

1/2, (7.27a)

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2, (7.27b)

Qt = (1− λ)
[
diag(H t)

−1/2X t

] [
diag(H t)

−1/2X t

]>
+ λQt−1. (7.27c)

This particular relation for Qt is a direct analogy of the exponential smoother

discussed in Section 7.2.1. The process describing Qt has the unit root. Thus,

the covariances have no tendency to revert to a constant level. It contrasts with

the mean-reverting scheme (7.26).

These models are commonly estimated by the conditional maximum likelihood

technique (the multivariate Gaussian innovationsZt are commonly supposed). As

can be seen (Engle, 2002), the two-stage method can be adopted (by decomposing

the conditional log-likelihood criterion based on the Gaussian innovations). The

first stage calibrates the individual conditional variance terms. The second one

investigates the behaviour of the standardized residuals. See Engle (2002) or

Engle (2009, Section 4.4) for more details.

Note that there exists a modification of the DCC model that evaluates Rt

directly without the normalization of Qt (Tse & Tsui, 2002). In that case, it is

necessary to ensure that Rt has the properties of correlation matrices by different

instruments. On the other hand, both modelling concepts are almost similar. See

Bauwens et al. (2006) or Engle (2009, Section 4.3).

7.2.5 Orthogonal GARCH models

Another possible generalization of the CCC model supposes that a non-singular

linear combination of components of X t respects a CCC structure. Particularly,

assume that there exists an (n× n) constant regular matrix P such that:

cov(PX t|Ft−1) = D
1/2
t RD

1/2
t , (7.28)

whereDt is the (n×n) diagonal matrix involving individual conditional variances

of the components of PX t on its diagonal, i.e. Dt = diag[cov(PX t|Ft−1)], andR

is the (n×n) constant correlation matrix associated with the transformation PX t.

See also Section 7.2.3. Moreover, one may express the conditional covariance

matrix of X t as:

H t = P−1D
1/2
t RD

1/2
t (P>)−1. (7.29)

It is evident that the covariances of X t are not driven by the CCC model in this

modelling framework, even though PX t are (unless P is diagonal). The trans-
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formation matrix P can readily involve unknown parameters to be estimated.

Most often, the assumption that R = I is established in this context. Remark

that the distinct choices of P apparently lead to different conditional covariance

(correlation) models. Refer to Bauwens et al. (2006) for more examples.

The most widely used version of this approach advocated by Alexander (2002)

is called the orthogonal GARCH (OGARCH) or principal component GARCH

model. This technique creates unconditionally uncorrelated linear combinations

of the elements of X t. The univariate GARCH models are calibrated for all of

these transformations. Consequently, the full conditional covariance matrix is

reconstructed by assuming that all conditional correlations are zero.

To be more precise, let cov(X t) = Σ be a symmetric positive definite matrix

with the associated spectral decomposition Σ = P−1Λ(P>)−1, where P−1 is the

matrix of eigenvectors of Σ and Λ is the diagonal matrix with the corresponding

eigenvalues. Assume that the conditional covariance matrix of the transformation

PX t satisfies the following relation:

cov(PX t|Ft−1) = Dt, i.e. H t = P−1Dt (P>)−1, (7.30)

where each component of the diagonal matrix Dt follows a univariate GARCH

process. Moreover, it holds E(Dt) = Λ.

A closely related alternative considers that X t is transformed to have unit un-

conditional variance at first so that the eigenvectors and eigenvalues are computed

from the unconditional correlation matrix of X t. This particularly means that

diag(Σ)−1/2Σdiag(Σ)−1/2 is spectrally decomposed as P̃
−1

Λ̃(P̃
>

)−1, where the

notation remains as before (except for the tildes). The OGARCH model supposes

that the conditional covariance matrix of the transformation P̃ diag(Σ)−1/2X t is

given by:

cov(P̃ diag(Σ)−1/2X t|Ft−1) = Dt, (7.31)

where each component of the diagonal matrix Dt follows a univariate GARCH

model. The conditional covariance matrix of X t can be calculated as:

H t = diag(Σ)1/2 P̃
−1
Dt (P̃

>
)−1 diag(Σ)1/2. (7.32)

Both previous OGARCH representations are usually calibrated in two steps.

The first one computes the sample covariance (correlation) matrix and its spectral

decomposition from the given data sample. The second step estimates univari-

ate GARCH models of the delivered linear combinations, then constructs the

conditional covariance matrix.
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8. Conditional covariance

modelling: An approach based on

state space representations

The modelling techniques introduced in Section 7.2.5 have motivated development

of another methodological approach to conditional covariances and correlations.

To be more precise, the essential idea that a non-singular linear combination of

elements of X t follows the CCC representation has been replicated and further

extended in a specific way. In particular, the recommended orthogonal transform-

ation is non-constant. It varies over time. Thus, it should reflect the structure of

multivariate time series more accurately. Compare with Equation (7.28).

This chapter proposes a novel approach to conditional covariance modelling.

In particular, a class of multivariate generalized autoregressive conditional het-

eroscedasticity models is suggested. It is based on a dynamic orthogonal trans-

formation of X t, which is derived by the LDL factorization of the conditional co-

variance matrix. As was indicated before, one supposes that the transformed time

series respects the constant conditional correlation (CCC) scheme, where all asso-

ciated conditional correlations are assumed to be zero. Refer to Equation (7.29)

and the remarks below it. Moreover, the time-varying transformation can be spe-

cified by nonlinear discrete-time state space representations under corresponding

assumptions (amongst other alternatives). The three following sections outline

the suggested modelling framework in greater detail.

Section 8.1 recapitulates properties of the LDL matrix decomposition and

derives the transformation scheme by employing it. Section 8.2 introduces the

concrete model implementation. Section 8.3 discusses different calibration meth-

ods for this particular modelling technique.

8.1 LDL factorization

Following the algebraic theory, each real symmetric positive definite matrix has

a unique LDL decomposition (Harville, 1997, Chapter 14). Let the conditional

covariance matrix H t defined by (7.15) have the LDL reparameterization in the

standard form, i.e. given by:

H t = LtDtL
>
t , (8.1)
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where Lt = (`ij,t)
n
i,j=1 is the (n×n) lower triangular matrix with the unit diagonal

and Dt = (dij,t)
n
i,j=1 is the (n×n) diagonal matrix with positive elements dii,t on

its diagonal. Particularly, det(Lt) = 1, Lt is invertible, and the inverted matrix

L−1
t = (`ijt )ni,j=1 is also the (n×n) lower triangular matrix with the unit diagonal

elements. It is noteworthy that the decomposition (8.1) evidently requires no

additional (parameter) constraints for H t being symmetric and positive definite

since this is guaranteed by the LDL structure. Furthermore, one can readily see

that the LDL and Cholesky factorization of H t are closely related:

H t = LtDtL
>
t = (LtD

1/2
t )(LtD

1/2
t )> = H

1/2
t (H

1/2
t )>, (8.2)

where H
1/2
t is the (n× n) lower triangular matrix with positive diagonal terms.

The LDL factorization (8.1) delivers uniquely determined recurrent relations

for the elements of H t evaluated by the components of Lt and Dt (Harville,

1997, Chapter 14). More precisely, one can easily derive the following formulas

for conditional covariances and correlations:

hii,t = var(Xi,t|Ft−1) =
i∑

v=1

`2
iv,tdvv,t, i = 1, . . . , n, (8.3a)

hij,t = cov(Xi,t, Xj,t|Ft−1) =

j∑
v=1

`iv,t`jv,tdvv,t, j < i, i = 2, . . . , n, (8.3b)

ρij,t = corr(Xi,t, Xj,t|Ft−1) =
hij,t√

hii,t
√
hjj,t

, i, j = 1, . . . , n, (8.3c)

where one puts `vv,t = 1, v = 1, . . . , n.

The matrix Lt naturally provides the required orthogonal transformation of

X t. It may be specified as (according to Equations (7.15) and (8.2)):

L−1
t X t = D

1/2
t Zt. (8.4)

The conditional and unconditional moments of the transformed stochastic process

L−1
t X t can be calculated under the given assumptions as follows:

E(L−1
t X t|Ft−1) = 0, cov(L−1

t X t|Ft−1) = Dt, (8.5a)

E(L−1
t X t) = 0, cov(L−1

t X t) = E(Dt), (8.5b)

cov(L−1
t X t,L

−1
t+hX t+h) = 0, h ∈ Z\{0}. (8.5c)

Note that the relations given by Equation (8.5a) are in accordance with the motiv-

ation outlined in the introduction of this chapter. Namely, the suggested dynamic

transformation of X t follows the framework considered in Section 7.2.5; it cor-
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responds to the interpretation of Equation (7.28) assuming R = I. Moreover,

Equation (8.4) can be concisely rewritten as:

X t = −
(
L−1
t − I

)
X t +D

1/2
t Zt, (8.6)

or more explicitly as:

X1,t =
√
d11,tZ1,t,

X2,t = −`21
t X1,t +

√
d22,tZ2,t,

... (8.7)

Xn,t = −
n−1∑
i=1

`nit Xi,t +
√
dnn,tZn,t.

All terms containing Xj,t, j = 1, . . . , i− 1, on the right hand side of the ith equa-

tion in (8.7) are uncorrelated with the error term
√
dii,tZi,t, i = 2, . . . , n, and

the components of D
1/2
t Zt are simultaneously uncorrelated. Therefore, the sys-

tem (8.7) is a direct analogy of the fully recursive simultaneous-equations model

with no exogenous variables. It is consistently and asymptotically efficiently es-

timated by the equation-by-equation maximum likelihood procedures (supposing

the standard normal distribution). See e.g. Greene (2003, Section 15.6).

Note that the proposed transformation is apparently ordering dependent, i.e.

X1,t influences X2,t, . . . , Xn,t, X2,t influences X3,t, . . . , Xn,t, etc. It follows from

the character of the considered decomposition, which is commonly employed in

statistics. Remind that the analogous question also occurs in other modelling

methods when the usually accepted Cholesky factorization (and implicitly also

the LDL decomposition) is adopted to produce H
1/2
t in the model (7.15). See e.g.

Engle (2002, 2009) or Bauwens et al. (2006). Despite this fact, these methods

and modelling schemes have been successfully applied in practice.

8.2 Model implementation

The LDL factorization of the conditional covariance matrix H t translates the ori-

ginal model (7.15) into the system (8.7) with the properties studied in Section 8.1.

Namely, the ith equation of this system (i ≥ 2) can be simply viewed as the linear

regression of Xi on X1, . . . , Xi−1 with the particular coefficients and conditional

heteroscedasticity variance. Moreover, the structure of (8.7) is analogous to the

fully recursive systems of linear regression equations with uncorrelated errors

(Greene, 2003, Section 15.6).
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This arrangement evokes miscellaneous methodological instruments, which

might be applicable in this specific context. For instance, one can implement

a nonlinear discrete-time state space modelling representation, where the time-

varying transformation coefficients follow an unobservable process and Equa-

tions (8.7) determine the signal (measurement) equations of this state space

scheme. This particular approach has been successfully employed in many differ-

ent situations. See Durbin and Koopman (2001) or Brockwell and Davis (2002).

According to (8.7) and the previous discussion, the particular model imple-

mentation may be formulated as follows:

X1,t =
√
d11,tZ1,t, (8.8a)

d11,t = c1 + a1X
2
1,t−1 + b1d11,t−1, (8.8b)

βit+1 = µi + Φiβ
i
t + εit+1, (8.8c)

Xi,t = −(X1,t, . . . , Xi−1,t)β
i
t +
√
dii,tZi,t, (8.8d)

dii,t = ci + ai
(
Xi,t−1 + (X1,t−1, . . . , Xi−1,t−1)βit−1

)2
+ bidii,t−1, (8.8e)

where βit = (`i1t , . . . , `
i,i−1
t )>, i = 2, . . . , n. Further, ai, bi, and ci are scalar

parameters, i = 1, . . . , n. In (8.8c), µi is the vector of (i− 1) parameters and Φi

denotes the ((i − 1) × (i − 1)) matrix of parameters, i = 2, . . . , n. A sequence

of i. i. d. random vectors {εit}t∈Z with finite second moments fulfils E(εit) = 0

and cov(εit) = M i, where M i is the ((i − 1) × (i − 1)) matrix of parameters,

i = 2, . . . , n. Moreover, one supposes that {εit}t∈Z and {εjt}t∈Z are mutually and

serially independent at all times for i, j = 2, . . . , n, i 6= j, and that the same

holds for {Zi,t}t∈Z and {εjt+1}t∈Z, i = 1, . . . , n, j = 2 . . . , n. Finally, {Zi,t}t∈Z
and {εjt+1}t∈Z are assumed to be uncorrelated with βkt ,β

k
t−1, . . . , i = 1, . . . , n,

j, k = 2 . . . , n.

The structure of the introduced model and the role of the included parameters

should be further clarified. The formulas (8.8a) and (8.8d) entirely respect the

transformation equations introduced in (8.7). The terms dii,t in (8.8b) or (8.8e),

i.e. the diagonal components of Dt, are modelled by the GARCH(1,1) process

with the associated parameters ai, bi, and ci. It is motivated by the joint modelling

practice. Implicitly, this brings several restrictions on the parameters ci, ai, and

bi, e.g. ci > 0, ai ≥ 0, bi ≥ 0, and ai + bi < 1 are sufficient conditions for dii,t

being positive and (weakly) stationary (Tsay, 2005, Section 3.5). The vector βit

appearing in (8.8d) includes the unknown elements of the ith row of the matrix

L−1
t . As was previously remarked, Equation (8.8d) can be interpreted as the

regression problem with the randomly varying coefficients. The states βit are
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represented by (8.8c) as unobservable vector autoregressive processes driven by

the parameters in µi, Φi, and M i. Recall that the condition det (I − zΦi) 6= 0,

|z| ≤ 1, ensures the stationary states (Lütkepohl, 2005, Chapter 2).

The model clearly includes a relatively high number of parameters in its gen-

eral form. On the other hand, it is possible to adopt various reasonable restric-

tions that effectively reduce the number of parameters as in the case of the VEC

model, the BEKK model, etc. Refer also to Sections 7.2.2 and 9.2.

The motivation for formulating this model has been purely pragmatic, e.g. the

off-diagonal elements of Φi have no straightforward interpretation. The suggested

modelling framework undoubtedly reduces the general principles involved in the

initially considered model described in Section 7.1. It introduces the particular

modelling regime similarly to other common representations; see Section 7.2.

Note that there are several resemblances to the stochastic volatility approach

(Tsay, 2005, Sections 3.12 and 12.7).

Furthermore, there surely exists a variety of possible model generalizations:

(i) dii,t can be modelled by another (more complex) GARCH type process, (ii) the

model formula for βit can be extended, e.g. by assuming a higher lag, by taking

a (stochastically) time-varying counterpart of the matrix M i, or (iii) βit may be

expressed by an entirely different state process, etc. On the other hand, the sug-

gested model in the proposed form has empirically demonstrated its capabilities

and competitiveness. See Chapter 9 for numerical demonstrations.

8.3 Model calibration

To construct an estimator of H t by applying the transformation determined

by the suggested model (8.8), the state space representation must be calibrated

under some distributional assumptions using the given sample {X1, . . . ,XT}.
Suppose that the processes {Zt}t∈Z and {εit}t∈Z are Gaussian (for all i). Each

of the n modelling subsystems is calibrated separately according to the accepted

covariance structure and given assumptions.

The conditional maximum likelihood procedure available for the standard

GARCH(1,1) model estimates the parameters involved in Equations (8.8a) and

(8.8b), respectively. See e.g. Tsay (2005, Section 3.5).

Calibration of the remaining (n − 1) state space models described by Equa-

tions (8.8c)-(8.8e) is less straightforward due to the presence of the stochastically

time-varying parameter dii,t, which is not linear in the observations and states.

Additionally, the signal equation (8.8d) cannot be simply linearized as, e.g., in the

case of the stochastic volatility model (Durbin & Koopman, 2001, Section 10.6).
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One could consider calibration procedures suitable for nonlinear state space

methods. A relatively extensive body of literature concerns the analysis of non-

linear state space models involving contributions on the extended Kalman filter,

the unscented filter, the particle filter, the importance sampling, or Markov Chain

Monte Carlo techniques. Consult Anderson and Moore (1979), Durbin and Koop-

man (2001), Chui and Chen (2013), and the references given therein. However,

many calibration procedures related to nonlinear state space modelling techniques

are either based on computationally intensive simulation methods (e.g. the Monte

Carlo integration) or model approximations. The latter approach seems to be fa-

vourable in our context; the dimension ofX t is usually relatively high. Therefore,

numerically more effective methodological instruments are preferred accepting the

obvious trade-off.

If the proposed GARCH(1,1) updating scheme of the stochastically time-

varying variance dii,t is supposed, the linear Gaussian state space methodology

may be implemented into the calibration process as recommended in the literature

(Creal, Koopman & Lucas, 2008; Harvey, Ruiz & Santana, 1992). To be more spe-

cific, if dii,t is replaced by an appropriately defined recursive approximation d̃ii,t

driven only by past observations, the Kalman recursive formulas for predicting,

filtering, and smoothing associated with the linear Gaussian state space model

can be used to calibrate the proposed model. Refer to Durbin and Koopman

(2001, Chapter 4) for the Kalman recursions. In particular, the approximative

term d̃ii,t has the identical structure to dii,t, but it depends on β̃
i

t−1|t−2 and d̃ii,t−1

instead of βit−1 and dii,t−1, respectively, where β̃
i

t−1|t−2 denotes the correspond-

ing predicted state calculated recursively by the classic Kalman recursions. See

below. It means that d̃ii,t can be effectively calculated jointly with the other up-

dating formulas with respect to the outlined approximative feature. In order to

calibrate the ith state space submodel, the sequentially updated predicted states

β̃
i

t|t−1 and filtered states β̃
i

t|t are obtained by the following recursive relations

(Durbin & Koopman, 2001, Section 4.2):

υ̃it = Xi,t + (X1,t, . . . , Xi−1,t) β̃
i

t|t−1, (8.9a)

β̃
i

t|t = β̃
i

t|t−1 + Sitυ̃
i
t/T

i
t , (8.9b)

β̃
i

t+1|t = µi + Φiβ̃
i

t|t, (8.9c)

d̃ii,t+1 = ci + ai

[
Xi,t + (X1,t, . . . , Xi−1,t) β̃

i

t|t−1

]2

+ bid̃ii,t, (8.9d)

T it = (X1,t, . . . , Xi−1,t)P
i
t|t−1 (X1,t, . . . , Xi−1,t)

> + d̃ii,t, (8.9e)

Sit = P i
t|t−1 (X1,t, . . . , Xi−1,t)

> , (8.9f)

P i
t|t = P i

t|t−1 − Sit(Sit)>/T it , (8.9g)
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P i
t+1|t = ΦiP

i
t|tΦ

>
i +M i, t = 1, . . . , T, (8.9h)

β̃
i

1|0 = 0, P i
1|0 = κI, κ > 0, d̃ii,1 = C ≥ 0. (8.9i)

The fixed-interval smoothed states β̃
i

t|T that complete the previous formulas are

computed as follows (Durbin & Koopman, 2001, Section 4.3):

β̃
i

t|T = β̃
i

t|t + P i
t|tΦ

>
i (P i

t+1|t)
−1
[
β̃
i

t+1|T − β̃
i

t+1|t

]
, t = T, . . . , 1. (8.10)

Notice that the fixed-interval smoother requires inverting the matrix P i
t+1|t. This

numerical drawback can be eliminated by adjusting the algorithm as in Durbin

and Koopman (2001, Section 4.3.1). Consequently, the estimator of the con-

ditional covariance matrix H t is constructed using d̃ii,t and the corresponding

(filtered or smoothed) estimated states with respect to the considered LDL de-

composition. Compare with Equation (7.29).

Accepting pragmatic reasons as many other authors, the normality has been

assumed in the model. Consequently, the unknown parameters of the ith mod-

elling formula (i ≥ 2) can be estimated applying the corresponding maximum

likelihood method associated with the linear Gaussian state space model using

the previously described approximation of dii,t and the diffuse prior settings, i.e.

βi1 ∼ N (0, κI), where κ → ∞. See Durbin and Koopman (2001, Chapter 5).

In practice, the κ is an arbitrarily chosen large positive number, e.g. κ = 105.

Alternatively, these computational algorithms may be initialized as in Koopman

(1997). The resulting method consists in maximizing the following likelihood

criterion to estimate the unknown parameters of the ith state space submodel:

− T

2
log(2π)− 1

2

T∑
t=1

log |T it | −
1

2

T∑
t=1

(
υ̃it
)2
/T it . (8.11)

For further insights, see Durbin and Koopman (2001, Chapter 7).

In the more general case of non-Gaussian distributions, the process of esti-

mation is no longer comfortable. It can be partly viewed as a limitation of the

suggested methodological approach. On the other hand, the normality is com-

monly assumed in the most state space methods.
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9. Numerical studies

This chapter numerically examines the suggested modelling approach introduced

in Chapter 8 and compares it with other methods, which are commonly applied

in the considered context. Firstly, the behaviour and accuracy of the different

modelling schemes are investigated using extensive Monte Carlo experiments.

Secondly, two empirical examples are studied in more detail, namely (i) bivariate

correlations between stock and bond indices and (ii) conditional correlation links

amongst the portfolio of six selected non-Euro EU27 currencies.

9.1 Monte Carlo experiments

Models of conditional covariances may be investigated primarily from the con-

ditional correlation modelling perspective. As was mentioned in Chapter 7, the

conditional correlations are important measures in financial practice with many

successful empirical applications. See Examples 7.0.1 and 7.0.2. Therefore, one

might investigate the performance of various modelling techniques by focusing

primarily on the correlations as crucial financial inputs. This approach was ad-

vocated by Engle (2002).

In the following Monte Carlo experiments, true correlation structures are sup-

posed to be known. Thus, they can be compared with their estimators by several

criteria, namely in terms of simple goodness-of-fit statistics, different diagnostic

tests, and tests on portfolio returns. All presented computations have been con-

ducted in EViews 8.0 by implementing original computational procedures for the

method proposed in Chapter 8.

9.1.1 Simulation framework

Following Engle (2002), the simple bivariate version of the model (7.15) has been

considered for the purposes of this simulation study. In particular, the entire

analysis has been reduced to the situation of the (2 × 2) matrix H t using the

notation introduced in Sections 7.1 and 8.1. The i. i. d. innovations Zt were

sampled from the multivariate standard normal distribution N (0, I) generating

T = 1000 and T = 5000 observations. One thousand repetitions were produced

in both cases. The chosen lengths correspond approximately to four and twenty

years of daily data, respectively.

The following schemes for the correlation function ρt := h21,t/
√
h11,th22,t,

t = 1, . . . , T , are considered:

(i) ρ1
t = 0.5;
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(ii) ρ2
t = 0.25 + 0.7 cos

(
πt
125

)
;

(iii) ρ3
t = 0.25 + 0.7 cos

(
πt
20

)
;

(iv) ρ4
t = 0.5 + 0.4 · 1[t>T/2], 1[t>T/2] equals 1 for t > T/2 and 0 otherwise;

(v) ρ5
t = mod(t, 200)/200, mod(·, 200) denotes the modulo operator (namely,

the remainder after division of · by 200);

(vi) ρ6
t is a scale-adjusted realization of an ARMA(1,1) process with N (0, 1)

innovations;

(vii) ρ7
t is a scale-adjusted realization of an ARIMA(1,1,1) process with N (0, 1)

innovations.

Such correlations were chosen because they exhibit jump changes, gradual

changes, periodical behaviour without changes, and random evolution. The con-

ditional volatilities have been evaluated according to the following scheme:

h11,t = 0.01 + 0.05X2
1,t−1 + 0.94h11,t−1, (9.1a)

h22,t = 0.50 + 0.20X2
2,t−1 + 0.50h22,t−1, (9.1b)

X1,t =
√
h11,tZ1,t, (9.1c)

X2,t =
h21,t√
h11,t

Z1,t +

√√√√h22,t −

(
h21,t√
h11,t

)2

Z2,t, t = 1, . . . , T, (9.1d)

where the last two equations originate from (7.15) and the Cholesky factorization

of the conditional covariance matrix H t. The first conditional variance series

is highly persistent while the second one not. Remark that other experiments

were also conducted. For instance, various error distributions or data-generating

parameters were tested. Nonetheless, the results have remained mostly similar.

The following modelling techniques have been compared: (i) the multivariate

moving average (7.17) with M = 100 (MA100 ); (ii) the multivariate exponen-

tially weighted moving average (7.20) with λ = 0.94 (EWMA0.94 ); (iii) the

scalar BEKK(1,1,1) model given by (7.24) and the discussion below (sBEKK );

(iv) the diagonal BEKK(1,1,1) model given by (7.24) and the discussion be-

low (dBEKK ); (v) the constant conditional correlations (7.25) with the uni-

variate GARCH(1,1) processes (CCC ); (vi) the mean-reverting dynamic condi-

tional correlations (7.26) with the univariate GARCH(1,1) processes (DCCmr);

(vii) the integrated dynamic conditional correlations (7.27) with the univariate

GARCH(1,1) processes (DCCint); (viii) the model (8.8) with µ2 = 0 and Φ2 = 1,

i.e. β2
t has followed the random walk, using filtered states (SSpaceRWf ); (ix) the
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model (8.8) with µ2 = 0 and Φ2 = 1, i.e. β2
t has followed the random walk,

using smoothed states (SSpaceRWs); (x) the fully parameterized model (8.8)

using filtered states (SSpaceFf ); (xi) the fully parameterized model (8.8) using

smoothed states (SSpaceFs). It should be also pointed out that the ordering prob-

lem discussed thoroughly in Section 8.1 has been tested in various experiments.

In fact, the results have not been substantially affected by these changes.

The alternative correlation estimators have been examined by means of several

performance measures. Firstly, the estimated correlations ρ̂t have been compared

with their true counterparts ρt using the mean absolute error, which is simply

defined as:

MAE =
1

T

T∑
t=1

|ρt − ρ̂t|. (9.2)

More specifically, one can contrast (i) the total sums of all obtained mean absolute

errors and (ii) the means of all obtained mean absolute errors.

Secondly, the multivariate Ljung-Box test has been considered as another

performance measure. It tests the standardized residual series defined by the

estimate of H t as Ẑt = Ĥ
−1/2

t X t for the presence of serial correlations (Tsay,

2005, Section 8.1.4). Seven lags are used. Thus, the number of rejections (using

the corresponding 5% critical value) may be the performance measure of the dis-

tinct estimators. The more rejections mean the more evidence that the calculated

standardized residuals involve remaining time-varying structures.

Thirdly, the test for autocorrelations of the squared standardized residuals

(a variant of the ARCH LM test) has been delivered (Engle, 1982). The test

has been computed as the Lagrange multiplier (LM) test from the regression of

Ẑ2
1,t and Ẑ2

2,t on five lags of the squared and cross products of the standardized

residuals and an intercept. In particular, the number of rejections (using the

corresponding 5% critical value) can be the performance measure. The more

rejections mean the more evidence that the squared standardized residuals contain

remaining time-varying structures.

Finally, another performance measure has been supposed. It has been based

on testing on portfolio returns, w>t X t, where wt is an Ft−1-measurable (n × 1)

vector of portfolio weights. Two distinct types of weights have been considered:

the equally weighted portfolio (EWP), i.e. ŵt = 1/n, 1 is the (n × 1) vector of

units, and the minimum variance portfolio (MVP), i.e. ŵt = (Ĥ
−1

t 1)/(1>Ĥ
−1

t 1).

Compare with Example 7.0.1. Particularly, one can employ the LM test of the

ARCH effects in this context. This test is based on the property that the series

{(w>t X t)
2/(w>t H twt)} should not exhibit serial correlations (Engle, 1982). Re-

call that the conditional variance of w>t X t given Ft−1 is evidently w>t H twt.

The null hypothesis that {(ŵ>t X t)
2/(ŵ>t Ĥ tŵt)} is serially uncorrelated is tested.
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Five lags are used here. Similarly as before, the number of rejections (using the

corresponding 5% critical value) may serve as the performance measure evaluating

the accuracy of the estimators.

Apparently, the mentioned performance measures based on the mean absolute

errors have investigated the estimators of conditional correlations. The remaining

suggested criteria have revised the adequacy of the estimated conditional covari-

ance structures. The entire Monte Carlo study was repeated five times with

various sets of random numbers; one additional experiment was conducted with

innovations following the multivariate t-distribution with four degrees of freedom.

The results were mostly similar. Therefore, one can accept the drawn conclusions

of this study with relative confidence. See Section 9.1.2.

9.1.2 Simulation results

The following paragraphs review the results of the described Monte Carlo experi-

ments. The performance measures introduced in the previous section have been

applied. Namely, Figures 9.1 and 9.2 present the total sums of all mean abso-

lute errors for both assumed sample lengths T = 1000 and T = 5000. In both

cases, the estimators based on the proposed state space representation (employing

smoothed states) outperform the others. The estimators based on filtered states

are beaten only by the mean-reverting dynamic conditional correlation model.

Moreover, Tables 9.1 and 9.2 present the results for the means of all mean

absolute errors for both supposed lengths T = 1000 and T = 5000 according

to the different data-generating correlation functions. If the means of all errors

are compared across all cases, the previous remarks on the proposed state space

modelling technique will remain valid without any substantial changes. In four

instances, ρ2
t , ρ

3
t , ρ

5
t , and ρ7

t , it delivers the best fit. In the case of ρ4
t and ρ6

t , it is

overcome by the other models but the differences are relatively small. In contrast,

the suggested technique is not entirely adequate for the constant correlation ρ1
t .

Tables 9.3 and 9.4 show the results of the Ljung-Box test measure for both

sample lengths. Thus, the proposed modelling class based on the state space

representation leads to reasonable results overall. It seems to be competitive.

In Tables 9.5 and 9.6, the first component squared standardized residuals have

been tested for remaining autocorrelations till five lags for both lengths T = 1000

and T = 5000. See Section 9.1.1. Overall, the suggested models (with the

different calibration techniques) offer comparable results to the others. Similarly,

in Tables 9.7 and 9.8, the second component squared standardized residuals have

been tested for remaining autocorrelations for both lengths T = 1000 and T =

5000. See Section 9.1.1. One can reproduce the similar conclusions as before.
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Finally, Tables 9.9, 9.10, 9.11, and 9.12 compare the results of the ARCH LM

tests on defined portfolio returns for both considered portfolio weights and both

sample lengths. See Section 9.1.1. The state space estimators are comparable

with the others in all cases not delivering significantly different results.
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Figure 9.1: Total sums of all mean absolute errors (T = 1000).
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Figure 9.2: Total sums of all mean absolute errors (T = 5000).

The results achieved by the suggested modelling technique can be concisely

summarized as follows. On the one hand, the state space model with β2
t repres-

ented by the random walk is indeed straightforward, and it is favourable due to
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a lower number of parameters. On the other hand, one might expect the mean-

reverting property in the given multivariate financial time series framework. In

the case of the filtering estimation, the state space model with the fully param-

eterized states β2
t has demonstrated better results than the one with the random

walk states. The differences between state space models using the smoothing

estimation are indeed small. Thus, one considers applying both of them.

To conclude this section, the outlined Monte Carlo study has shown that

the proposed conditional covariance modelling class (see Chapter 8) is at least

comparable and competitive with the other commonly used techniques (according

to the given performance measures, which were also used by Engle (2002)). Hence,

one can state that the suggested methodology can be accepted in the supposed

modelling framework.

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.060 0.475 0.463 0.059 0.286 0.143 0.107 0.228
EWMA0.94 0.104 0.206 0.443 0.072 0.158 0.178 0.131 0.185
sBEKK 0.073 0.169 0.309 0.071 0.153 0.146 0.129 0.150
dBEKK 0.093 0.179 0.318 0.091 0.164 0.135 0.169 0.164
CCC 0.019 0.446 0.446 0.200 0.251 0.118 0.266 0.250
DCCint 0.020 0.170 0.446 0.060 0.163 0.119 0.105 0.155
DCCmr 0.024 0.168 0.299 0.060 0.153 0.120 0.104 0.133
SSpaceRf 0.090 0.167 0.313 0.077 0.158 0.124 0.112 0.149
SSpaceRs 0.075 0.109 0.233 0.067 0.123 0.120 0.084 0.116
SSpaceFf 0.076 0.167 0.295 0.073 0.148 0.122 0.112 0.142
SSpaceFs 0.077 0.110 0.234 0.068 0.124 0.123 0.086 0.117

Table 9.1: Means of the mean absolute errors (T = 1000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.060 0.476 0.463 0.043 0.290 0.130 0.082 0.221
EWMA0.94 0.104 0.199 0.444 0.067 0.164 0.170 0.117 0.181
sBEKK 0.075 0.169 0.308 0.063 0.156 0.136 0.107 0.145
dBEKK 0.081 0.174 0.315 0.087 0.164 0.124 0.138 0.155
CCC 0.009 0.446 0.445 0.200 0.250 0.103 0.214 0.238
DCCint 0.009 0.166 0.445 0.038 0.165 0.103 0.077 0.143
DCCmr 0.011 0.164 0.297 0.038 0.155 0.103 0.077 0.122
SSpaceRf 0.078 0.165 0.309 0.063 0.158 0.105 0.086 0.138
SSpaceRs 0.071 0.107 0.228 0.059 0.124 0.103 0.071 0.109
SSpaceFf 0.070 0.163 0.289 0.061 0.146 0.103 0.086 0.131
SSpaceFs 0.072 0.108 0.227 0.059 0.124 0.103 0.071 0.109

Table 9.2: Means of the mean absolute errors (T = 5000).
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Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.096 0.123 0.116 0.118 0.107 0.092 0.091 0.106
EWMA0.94 0.055 0.061 0.059 0.068 0.082 0.055 0.048 0.061
sBEKK 0.059 0.041 0.041 0.061 0.059 0.054 0.043 0.051
dBEKK 0.055 0.039 0.043 0.067 0.056 0.052 0.046 0.051
CCC 0.047 0.058 0.072 0.101 0.068 0.045 0.047 0.063
DCCint 0.047 0.056 0.072 0.059 0.075 0.045 0.046 0.057
DCCmr 0.048 0.056 0.060 0.055 0.060 0.044 0.042 0.052
SSpaceRf 0.046 0.041 0.057 0.056 0.053 0.046 0.046 0.049
SSpaceRs 0.048 0.047 0.059 0.054 0.050 0.044 0.046 0.050
SSpaceFf 0.045 0.038 0.059 0.059 0.052 0.045 0.045 0.049
SSpaceFs 0.048 0.047 0.058 0.055 0.057 0.045 0.046 0.051

Table 9.3: Mean fractions of 5% rejections of the Ljung-Box tests (T = 1000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.105 0.135 0.109 0.112 0.114 0.090 0.095 0.109
EWMA0.94 0.066 0.078 0.061 0.067 0.089 0.073 0.064 0.071
sBEKK 0.070 0.058 0.041 0.068 0.068 0.074 0.065 0.063
dBEKK 0.065 0.055 0.037 0.074 0.065 0.068 0.053 0.060
CCC 0.061 0.065 0.063 0.095 0.091 0.059 0.065 0.071
DCCint 0.062 0.072 0.064 0.055 0.095 0.059 0.052 0.066
DCCmr 0.062 0.062 0.051 0.055 0.077 0.061 0.053 0.060
SSpaceRf 0.066 0.049 0.049 0.059 0.068 0.060 0.057 0.058
SSpaceRs 0.065 0.054 0.057 0.058 0.070 0.061 0.057 0.060
SSpaceFf 0.065 0.050 0.050 0.060 0.071 0.059 0.058 0.059
SSpaceFs 0.065 0.056 0.057 0.057 0.068 0.060 0.055 0.060

Table 9.4: Mean fractions of 5% rejections of the Ljung-Box tests (T = 5000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.689 0.988 0.884 0.904 0.849 0.599 0.577 0.784
EWMA0.94 0.191 0.314 0.315 0.292 0.510 0.065 0.066 0.250
sBEKK 0.199 0.077 0.122 0.256 0.112 0.084 0.060 0.130
dBEKK 0.239 0.080 0.130 0.244 0.107 0.108 0.063 0.139
CCC 0.027 0.023 0.033 0.027 0.030 0.028 0.032 0.028
DCCint 0.027 0.034 0.033 0.019 0.039 0.028 0.031 0.030
DCCmr 0.027 0.027 0.033 0.020 0.031 0.030 0.032 0.029
SSpaceRf 0.031 0.032 0.031 0.023 0.027 0.028 0.030 0.029
SSpaceRs 0.032 0.041 0.042 0.022 0.035 0.030 0.035 0.034
SSpaceFf 0.030 0.031 0.027 0.020 0.030 0.029 0.032 0.028
SSpaceFs 0.032 0.042 0.035 0.025 0.039 0.031 0.034 0.034

Table 9.5: Mean fractions of 5% rejections of the ARCH tests on Ẑ2
1,t (T = 1000).
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Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 1.000 1.000 1.000 1.000 1.000 0.997 0.998 0.999
EWMA0.94 0.634 0.937 0.998 0.944 0.942 0.095 0.327 0.697
sBEKK 0.694 0.235 0.859 0.905 0.240 0.118 0.287 0.477
dBEKK 0.947 0.134 0.884 0.883 0.227 0.273 0.260 0.515
CCC 0.026 0.023 0.022 0.026 0.031 0.019 0.028 0.025
DCCint 0.026 0.023 0.022 0.029 0.042 0.019 0.026 0.027
DCCmr 0.024 0.024 0.023 0.026 0.031 0.018 0.026 0.024
SSpaceRf 0.022 0.025 0.025 0.030 0.029 0.018 0.028 0.025
SSpaceRs 0.020 0.049 0.042 0.042 0.060 0.018 0.032 0.038
SSpaceFf 0.022 0.027 0.021 0.030 0.027 0.017 0.030 0.025
SSpaceFs 0.022 0.052 0.038 0.051 0.073 0.017 0.032 0.041

Table 9.6: Mean fractions of 5% rejections of the ARCH tests on Ẑ2
1,t (T = 5000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.972 0.970 0.964 0.977 0.978 0.975 0.974 0.973
EWMA0.94 0.792 0.759 0.773 0.779 0.780 0.787 0.785 0.779
sBEKK 0.869 0.403 0.078 0.774 0.434 0.853 0.869 0.612
dBEKK 0.065 0.172 0.084 0.458 0.132 0.045 0.246 0.172
CCC 0.074 0.718 0.583 0.999 0.860 0.065 0.070 0.481
DCCint 0.074 0.344 0.575 0.168 0.617 0.063 0.067 0.273
DCCmr 0.067 0.281 0.313 0.153 0.300 0.062 0.069 0.178
SSpaceRf 0.130 0.042 0.647 0.118 0.149 0.047 0.052 0.169
SSpaceRs 0.135 0.048 0.506 0.143 0.177 0.051 0.056 0.159
SSpaceFf 0.148 0.036 0.411 0.126 0.102 0.049 0.050 0.132
SSpaceFs 0.138 0.043 0.341 0.155 0.163 0.049 0.054 0.135

Table 9.7: Mean fractions of 5% rejections of the ARCH tests on Ẑ2
2,t (T = 1000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EWMA0.94 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
sBEKK 1.000 0.994 0.771 1.000 0.998 1.000 1.000 0.966
dBEKK 0.082 0.946 0.890 0.915 0.788 0.069 0.815 0.644
CCC 0.043 1.000 1.000 1.000 1.000 0.048 0.580 0.667
DCCint 0.043 0.914 1.000 0.112 0.998 0.048 0.087 0.457
DCCmr 0.038 0.842 0.952 0.097 0.785 0.048 0.084 0.412
SSpaceRf 0.580 0.086 0.999 0.708 0.558 0.042 0.187 0.452
SSpaceRs 0.572 0.054 0.964 0.783 0.599 0.041 0.193 0.458
SSpaceFf 0.612 0.076 0.971 0.655 0.306 0.050 0.172 0.406
SSpaceFs 0.532 0.066 0.784 0.774 0.600 0.050 0.187 0.428

Table 9.8: Mean fractions of 5% rejections of the ARCH tests on Ẑ2
2,t (T = 5000).
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Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.514 0.641 0.635 0.519 0.570 0.471 0.463 0.545
EWMA0.94 0.156 0.180 0.238 0.175 0.182 0.159 0.155 0.178
sBEKK 0.194 0.068 0.025 0.165 0.066 0.181 0.217 0.131
dBEKK 0.059 0.054 0.047 0.104 0.050 0.060 0.102 0.068
CCC 0.067 0.262 0.216 0.076 0.118 0.077 0.216 0.147
DCCint 0.066 0.051 0.211 0.064 0.055 0.077 0.072 0.085
DCCmr 0.063 0.042 0.064 0.066 0.050 0.065 0.073 0.060
SSpaceRf 0.069 0.050 0.099 0.051 0.054 0.074 0.076 0.068
SSpaceRs 0.054 0.041 0.068 0.049 0.045 0.074 0.059 0.056
SSpaceFf 0.059 0.062 0.095 0.049 0.059 0.068 0.076 0.067
SSpaceFs 0.052 0.041 0.079 0.049 0.045 0.067 0.060 0.056

Table 9.9: Mean fractions of 5% rejections of the ARCH tests (EWP, T = 1000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.954 0.991 0.992 0.976 0.986 0.936 0.954 0.970
EWMA0.94 0.366 0.363 0.512 0.392 0.391 0.254 0.336 0.373
sBEKK 0.369 0.066 0.020 0.474 0.091 0.302 0.477 0.257
dBEKK 0.071 0.050 0.024 0.221 0.054 0.046 0.154 0.089
CCC 0.078 0.543 0.446 0.116 0.203 0.080 0.279 0.249
DCCint 0.078 0.050 0.448 0.062 0.055 0.080 0.078 0.121
DCCmr 0.073 0.032 0.051 0.060 0.037 0.061 0.077 0.056
SSpaceRf 0.066 0.056 0.154 0.053 0.051 0.075 0.081 0.077
SSpaceRs 0.059 0.048 0.074 0.037 0.046 0.081 0.061 0.058
SSpaceFf 0.064 0.064 0.126 0.057 0.058 0.068 0.073 0.073
SSpaceFs 0.050 0.051 0.084 0.041 0.050 0.065 0.054 0.056

Table 9.10: Mean fractions of 5% rejections of the ARCH tests (EWP, T = 5000).

Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.343 0.500 0.523 0.391 0.421 0.292 0.286 0.394
EWMA0.94 0.063 0.092 0.112 0.068 0.069 0.057 0.063 0.075
sBEKK 0.089 0.033 0.027 0.059 0.028 0.077 0.075 0.055
dBEKK 0.092 0.042 0.028 0.059 0.032 0.071 0.069 0.056
CCC 0.085 0.228 0.188 0.090 0.092 0.080 0.255 0.145
DCCint 0.085 0.109 0.186 0.107 0.104 0.081 0.081 0.107
DCCmr 0.080 0.101 0.099 0.104 0.089 0.065 0.082 0.089
SSpaceRf 0.096 0.040 0.101 0.062 0.036 0.080 0.072 0.070
SSpaceRs 0.080 0.030 0.062 0.048 0.081 0.081 0.068 0.064
SSpaceFf 0.101 0.039 0.061 0.065 0.032 0.080 0.075 0.065
SSpaceFs 0.088 0.030 0.055 0.050 0.075 0.076 0.065 0.063

Table 9.11: Mean fractions of 5% rejections of the ARCH tests (MVP, T = 1000).
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Model ρ1
t ρ2

t ρ3
t ρ4

t ρ5
t ρ6

t ρ7
t Mean

MA100 0.721 0.961 0.967 0.815 0.880 0.562 0.651 0.794
EWMA0.94 0.075 0.087 0.168 0.095 0.073 0.052 0.050 0.086
sBEKK 0.098 0.021 0.023 0.106 0.022 0.074 0.097 0.063
dBEKK 0.100 0.032 0.020 0.078 0.025 0.060 0.056 0.053
CCC 0.082 0.474 0.384 0.087 0.136 0.096 0.321 0.226
DCCint 0.081 0.120 0.384 0.111 0.117 0.097 0.095 0.143
DCCmr 0.082 0.126 0.106 0.109 0.100 0.077 0.091 0.099
SSpaceRf 0.123 0.030 0.111 0.143 0.032 0.095 0.077 0.087
SSpaceRs 0.089 0.036 0.055 0.086 0.182 0.095 0.061 0.086
SSpaceFf 0.110 0.033 0.060 0.134 0.037 0.077 0.078 0.076
SSpaceFs 0.065 0.039 0.048 0.084 0.150 0.071 0.061 0.074

Table 9.12: Mean fractions of 5% rejections of the ARCH tests (MVP, T = 5000).

9.2 Empirical analyses

To examine the empirical performance of the suggested state space modelling

approach to conditional covariances and correlations, two empirical applications

are considered. They compare the different modelling techniques through real

data examples. Firstly, the daily correlations between logarithmic returns of the

stock and bond indices are investigated. Secondly, the daily correlations amongst

logarithmic returns in the portfolio of six non-Euro EU27 currencies are evaluated

and interpreted.

9.2.1 Stocks and bonds

In the first example, all techniques mentioned in Section 9.1 are compared by

studying time-varying correlation links between logarithmic returns of the par-

ticular stock and bond indices. From the general perspective, there is no con-

sensus about how stocks and long-term bonds are related. Short-run correlations

are regularly affected, e.g. by new announcements. Long-run correlations between

these two types of assets should be state dependent, e.g. driven by macroeco-

nomic factors. The way how the correlation links respond to such factors may

vary over time (Engle, 2002). Therefore, we shall analyse the daily logarithmic

returns of the S&P 500 index and 30-year bond futures. The corresponding data

sample from 3rd January 1990 to 30th September 2013 was collected from Yahoo!

Finance (2013) as GSPC and TYX quotations. Table 9.13 delivers some basic

sample characteristics.

The dataset has been examined under the identical conditions as in Sec-

tion 9.1. The estimated conditional correlations are displayed in Figure 9.3.

It indicates numerous similarities amongst various correlation models. For in-

stance, one can see the analogies between the state space modelling class and
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Statistics S&P 500 30Y Bonds
Mean 0.00026 -0.00013
Median 0.00055 0.00000
Maximum 0.10957 0.07512
Minimum -0.09470 -0.08582
Std. dev. 0.01164 0.01154
Skewness -0.23378 -0.01909
Kurtosis 11.51722 7.92449

Table 9.13: Sample characteristics of the stock and bond log-returns.

the dynamic conditional correlations. The EWMA and especially the BEKK es-

timators seem to be more volatile. On the contrary, the main trends in these

correlations are comparable with the other estimators. It should be highlighted

that the constant conditional correlation is not truly competitive because it re-

mains constant, namely ρ̂t = 0.03944. The time-varying correlations are mostly

negative during the 90’s, rather positive after the year 2000, and positive at the

end of the observed period with the decreasing tendency in the last analysed year.

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

MA100

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

EWMA0.94

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

sBEKK

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

dBEKK

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

CCC

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

DCCint

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

DCCmr

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

SSpaceRf

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

SSpaceRs

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

SSpaceFf

-1.0

-0.5

0.0

0.5

1.0

90 92 94 96 98 00 02 04 06 08 10 12

SSpaceFs

Figure 9.3: Estimated correlations between the S&P 500 index and 30Y Bonds.
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Table 9.14: Sample correlations of the estimated time-varying correlations between
the S&P 500 index and 30Y bond futures.
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Table 9.14 contains the sample correlation matrix of the estimated time-

varying correlations. One may identify that the correlations based on the state

space modelling approach (8.8) are strongly positively correlated with the other

modelling schemes. This is also obvious from Figure 9.3. The smoothed es-

timators are less variable than the filtered ones according to the character of

estimation. Furthermore, Table 9.15 delivers some of the performance measures

from Section 9.1.1 for all considered models. One can view that the proposed

methods based on the state space representation are comparable with the other

commonly applied procedures. Note that the first component squared standard-

ized residuals Ẑ2
1,t are not sufficiently explained by any of the considered models;

see the achieved p-values of the ARCH LM test in Table 9.15. On the one hand,

it could be resolved by taking a more sophisticated version of the underlying

GARCH model into account (with respect to the fact that Ẑ1,t = X1,t/

√
ĥ11,t

by following the Cholesky factorization of Ĥ t). On the other hand, for the pur-

poses of this comparison, it suffices to demonstrate that the proposed state space

models have analogous empirical features.

Model Q(7) ARCH 1 ARCH 2 ARCH EWP ARCH MVP
MA100 0.004 0.000 0.000 0.000 0.120
EWMA0.94 0.054 0.001 0.244 0.471 1.000
sBEKK 0.210 0.000 0.239 0.114 0.982
dBEKK 0.230 0.000 0.214 0.168 0.993
CCC 0.034 0.000 0.342 0.000 0.604
DCCint 0.270 0.001 0.365 0.050 0.909
DCCmr 0.261 0.000 0.397 0.062 0.950
SSpaceRf 0.260 0.000 0.314 0.005 0.997
SSpaceRs 0.177 0.005 0.208 0.445 0.999
SSpaceFf 0.224 0.000 0.430 0.007 0.995
SSpaceFs 0.157 0.004 0.304 0.446 0.999

Table 9.15: Comparison of the alternative conditional correlation models: the
achieved p-values of the Ljung-Box statistics Q with 7 lags and the ARCH tests on
Ẑ2

1,t (ARCH 1), on Ẑ2
2,t (ARCH 2), on EWP returns (ARCH EWP), and on MVP

returns (ARCH MVP), all with 5 lags.

Finally, an out-of-sample experiment has been conducted to verify the stabil-

ity of the delivered estimators. Two samples are assumed: (i) the full data set and

(ii) the reduced data sample (last 250 observations, i.e. approximately one year,

are omitted). Then, the alternative conditional correlation estimators could be

compared contrasting their behaviour in these samples. The moving averages and

the exponentially weighted moving averages do not change due to their definition

and calibration. See Section 7.2. All remaining estimators (except for constant

conditional correlations) show their capabilities by demonstrating stable paths

110



of time-varying correlation when one compares the estimates based on both sup-

posed samples. Figure 9.4 graphs an example of the estimator obtained by the

proposed fully parameterized state space model with smoothed states. The estim-

ators seem to be stable, i.e. the calibrated correlations (almost) coincide. Sample

correlations and calculated statistics for the reduced data set remain nearly the

same as in the case of the full data sample.
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Figure 9.4: The full and reduced data set correlation estimators.

9.2.2 Non-Euro EU27 currencies

In the second example, the exchange rates of selected non-Euro EU27 currencies

are examined. In the EU27, 17 member countries used the Euro currency. Other

3 states (Denmark, Latvia, and Lithuania) were members of the ERM II regime

(the European Exchange Rate Mechanism II, where the national currencies are

allowed to fluctuate around their assigned value with respect to limiting bounds).

The Bulgarian Lev was pegged with the Euro. For these reasons, the portfolio

of the six remaining non-Euro EU27 currencies has been taken into account, i.e.

the Czech crown (CZK), the British pound sterling (GBP), the Hungarian forint

(HUF), the Polish zloty (PLN), the Romanian leu (RON), and the Swedish krona

(SEK). In this example, the logarithmic returns of the bilateral exchange rates

from 3rd January 2000 to 30th September 2013 with the Euro as the denom-

inator were collected (European Central Bank, 2013). Table 9.16 delivers some

sample characteristics. The conditional correlation links can be investigated by

the techniques assumed and tested in Section 9.1.
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Statistics PLN HUF RON GBP SEK CZK
Mean 0.00000 0.00004 0.00025 0.00009 0.00001 -0.00010
Median -0.00026 -0.00004 0.00000 0.00000 0.00000 -0.00012
Maximum 0.04164 0.05069 0.05001 0.03461 0.02784 0.03165
Minimum -0.03680 -0.03389 -0.03210 -0.02657 -0.02260 -0.03274
Std. dev. 0.00652 0.00599 0.00537 0.00507 0.00424 0.00394
Skewness 0.45502 0.73601 0.85576 0.33814 0.23366 0.08058
Kurtosis 7.64032 11.40755 10.86120 6.85313 6.41883 9.02455

Table 9.16: Sample characteristics of the exchange rate log-returns.

Only selected graphical outputs of the conditional correlation estimators be-

tween the non-Euro EU27 currencies are interpreted here due to the limited space.

For instance, three Visegrad countries may be analysed in greater detail, i.e. the

Czech crown (CZK), the Hungarian forint (HUF), and the Polish zloty (PLN).

Indeed, these currencies have shown interesting correlation links. Figure 9.5

presents the estimated time-varying correlations between the non-Euro Visegrad

countries. Particularly, only the mean-reverting dynamic conditional correlation

model and the proposed state space model (8.8) using states following the random

walk (i.e. µi = 0 and Φi = I for all i) with the diagonal matrices M i for all i

(the calibration is provided by the smoothed states) are displayed according to

the results obtained in Sections 9.1.2 and 9.2.1. The remaining methods were also

tested; they have shown analogous features as before. One should comment the

relatively high positive correlations between the Hungarian forint and the Polish

zloty, and rather positive correlations between the remaining currencies. Notice

that the differences between the two different estimators are clearly caused by the

distinct modelling structures, which describe the behaviour of the conditional co-

variances in the different manners. However, the paths of estimated time-varying

correlations indeed respect the analogous trends; consult Figure 9.5. It is also

interesting that there are visible peaks in 2007 in the correlations between CZK

and PLN, CZK and HUF, respectively. For a short time segment, the logarithmic

returns of these currencies were negatively correlated. It might be likely justified

by the mortgage and consequent financial crisis.

Finally, Figure 9.6 draws all mutual correlations between the six non-Euro

EU27 currencies (as before, only the two models are considered). Apparently, one

can identify similar trends, i.e. both methods have delivered analogous estimates

(roughly speaking). It is curious that there are peaks (or some changes) in (after)

2007 only in some graphs. Some correlations seem to be undisturbed by the crisis.

This might be further studied from the macroeconomic viewpoint.
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Figure 9.5: Estimated conditional correlations (the non-Euro Visegrad currencies).
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Figure 9.6: Estimated conditional correlations (the non-Euro EU27 currencies).
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Conclusion

The present dissertation thesis elaborated on two different issues from the sphere

of conditional covariance modelling, which is a substantial subdiscipline of finan-

cial time series analysis. Both the univariate and multivariate modelling frame-

works have been studied from the different perspectives. This work, in fact,

summarized and recapitulated the previously presented pieces of research, whose

outputs have been accepted for publication (Hendrych, 2013, 2014b; Hendrych &

Cipra, 2014, 2015). Moreover, several other (unpublished) results have been in-

troduced; namely, see Sections 5.2.5, 5.2.6, 5.4.1, 5.4.2, 5.4.3, and the associated

parts of Chapter 6. These particular findings will be submitted shortly.

The text was divided into two separate parts corresponding to two significant

problems of financial time series modelling. Part I discussed recursive estimation

algorithms for selected classic conditional heteroscedasticity models, concretely

for the ARCH, GARCH, RiskMetrics EWMA, and GJR-GARCH processes. In

greater detail, the self-weighted one-stage sequential estimation schemes have

been suggested and theoretically justified; we have addressed special attention to

the practical aspects of implementation. This effort was primarily motivated by

the two following facts. Firstly, the character of the previously considered on-line

calibration techniques recapitulated in Chapter 4 has naturally encouraged their

revising and extending. Secondly, there exists a lingering demand for reliable

sequential estimators of various financial time series models since these are pro-

cessed effectively with low memory usage. The suggested self-weighted one-stage

recursive estimation procedures have been examined by Monte Carlo experiments

and two real data examples. The proposed concepts have shown their numerical

capabilities. They have also demonstrated that they might be applied in various

empirical contexts. Further research may be focused on employing these methods

in the detection of structural (model) changes or breaks; simultaneously, other

financial datasets may be analysed.

Part II introduced a novel approach to conditional covariance and correlation

modelling. It has been inspired by the key principle of the multivariate orthog-

onal GARCH method, i.e. by the idea of a linear time-invariant orthogonal

transformation of observed multivariate time series. The proposed linear time-

varying orthogonal transformation has been based on the LDL decomposition of

the conditional covariance matrix. Subsequently, it has enabled to apply the CCC

structure on the transformed series. This particular approach has been imple-

mented and calibrated by using the nonlinear discrete-time state space modelling

framework. It has demonstrated its capabilities compared with other common
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methods utilized in the considered context. Namely, extensive Monte Carlo ex-

periments and two real data examples have shown that the suggested modelling

scheme is competitive amongst others. Further research may be focused on in-

terconnecting all concepts discussed in this thesis. In particular, sequentially es-

timated multivariate conditional covariance (correlation) models might be truly

useful. Recursive algorithms are usually relatively simple to operate; they are

numerically effective. Therefore, such methods might be favourable in analysing

and systematic processing substantially large portfolios of risky assets, where one

must primarily prefer computationally (highly) efficient approaches.

115



Bibliography

Aielli, G. P. (2013). Dynamic conditional correlation: On properties and esti-

mation. Journal of Business & Economic Statistics , 31 (3), 282–299. doi:

10.1080/07350015.2013.771027

Aknouche, A. & Guerbyenne, H. (2006). Recursive estimation of GARCH models.

Communications in Statistics - Simulation and Computation, 35 (4), 925–

938. doi: 10.1080/03610910600880328

Alexander, C. (2002). Principal component models for generating large GARCH

covariance matrices. Economic Notes , 31 (2), 337–359. doi: 10.1111/1468

-0300.00089

Alp, T. & Demetrescu, M. (2010). Joint forecasts of Dow Jones stocks under gen-

eral multivariate loss function. Computational Statistics & Data Analysis ,

54 (11), 2360–2371. doi: 10.1016/j.csda.2009.09.027

Anderson, B. & Moore, J. (1979). Optimal filtering. Englewood Cliffs, NJ:

Prentice Hall.

Bauwens, L., Laurent, S. & Rombouts, J. (2006). Multivariate GARCH models:

A survey. Journal of Applied Econometrics , 21 (1), 79–109. doi: 10.1002/

jae.842

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.

Journal of Econometrics , 31 (3), 307–327. doi: 10.1016/0304-4076(86)90063

-1

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange

rates: A multivariate generalized ARCH model. Review of Economics and

Statistics , 72 (3), 498–505. doi: 10.2307/2109358

Bose, A. & Mukherjee, K. (2003). Estimating the ARCH parameters by solving

linear equations. Journal of Time Series Analysis , 24 (2), 127–136. doi:

10.1111/1467-9892.00296

Brockwell, P. J. & Davis, R. A. (1991). Time series: Theory and methods. New

York, NY: Springer.

Brockwell, P. J. & Davis, R. A. (2002). Introduction to time series and forecasting.

New York, NY: Springer.

Chui, C. & Chen, G. (2013). Kalman filtering with real-time applications. Berlin,

Germany: Springer.

Creal, D., Koopman, S. & Lucas, A. (2008). A general framework for obser-

vation driven time-varying parameter models (Discussion Paper No. 08-

108/4). Tinbergen Institute. Retrieved February 3, 2014, from http://

ssrn.com/abstract=1297183

116

http://ssrn.com/abstract=1297183
http://ssrn.com/abstract=1297183


Durbin, J. & Koopman, S. J. (2001). Time series analysis by state space methods.

New York, NY: Oxford University Press.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates

of the variance of United Kingdom inflation. Econometrica, 50 (4), 987–

1007. doi: 10.2307/1912773

Engle, R. F. (2002). Dynamic conditional correlation. Journal of Business &

Economic Statistics , 20 (3), 339–350. doi: 10.1198/073500102288618487

Engle, R. F. (2009). Anticipating correlations: A new paradigm for risk manage-

ment. Princeton, NJ: Princeton University Press.

Engle, R. F. & Colacito, R. (2006). Testing and valuing dynamic correlations

for asset allocation. Journal of Business & Economic Statistics , 24 (2),

238–253. doi: 10.1198/073500106000000017

Engle, R. F. & Sheppard, K. (2001). Theoretical and empirical properties of

dynamic conditional correlation multivariate GARCH (Working Paper No.

8554). National Bureau of Economic Research. Retrieved May 17, 2013,

from http://www.nber.org/papers/w8554

European Central Bank. (2013). Exchange rates. Retrieved October 5, 2013,

from http://sdw.ecb.europa.eu/browse.do?node=2018779

EViews. (2013). Eviews 8 user’s guide [Computer software manual]. Irvine, CA.

Fan, J. & Yao, Q. (2005). Nonlinear time series: Nonparametric and parametric

methods. New York, NY: Springer.
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