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Introduction

In pattern recognition and 3D-model processing, feature detection starts from an
initial set of measured data and builds derived values - features intended to be
informative, in some cases leading to better human interpretations. After the
feature detection, the features are expected to contain the relevant information
from the input data so that any task can be performed by using this reduced
representation instead of the complete initial data.

Digital scanner technology has become more affordable and increasing its popular-
ity and utility. These scanners collect a dense sampling of points, with mechanical
probes or lasers, to generate a virtual representation of a physical form. Conse-
quently, geometric processing of point clouds is becoming increasingly important.
The preservation of sharp features is a primary concern for many geometric com-
putations and modeling applications.

Probably the most simple method of feature detection is to implement a thresh-
old test that identifies potential feature edges where normals differ above some
tolerance level across adjacent samples. However, the method is notably sensitive
to noisy data and the feature-preserving smoothing the normals is the nontrivial
problem.

This master thesis is about feature curves extraction directly from a surface point
cloud; no topological information or surface reconstruction is needed. In this the-
sis we analyze several existing algorithms that extract features from 3D-models,
classify them into categories according to the approach to curves approximation.

We pick one algorithm claiming the robustness to noise and analyze its behavior
in the edge situations that may occur when common inputs are used. We will
make a various test over synthetic models and “real data” obtained from the laser
scanner, as well.

In next part, we will propose a new algorithm that covers deficiencies found
in the other algorithms and analyze the computational cost of the improvement.
The analysis will focus on preserving the feature points in noisy models and the
post-processing of the feature curves. The post-processing involves the filtering
of the outlier features, connecting the features gaps and connecting the T-shaped
junctions.

We will then describe the implementation of the proposed algorithm as well as
the reference algorithm. We will discuss the motivation of choosing the data
structures used in the program. We then analyze the run-time of the algorithms
implemented and analyze their performance on the various 3D models. The mod-
els used for the testing purposes will test primarily the robustness to noise so we
test the algorithm on each model multiple times with different levels of noise. We
will then compare the outcomes of the algorithms, in terms of correctness and
losing the information because of noisy data.
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1. Feature detection

Feature detection is known to be an indispensable tool in mesh processing. Fea-
tures such as valleys and ridges have to be classified in a stable way to provide
the base for the algorithms such as feature-preserving mesh-denoising algorithms,
face recognition, etc. The feature detection turns out to be an important ingre-
dient to surface processing applications.
Indeed, some applications are:

• mesh decimation: given initial, noisy surface is smoothed, while edges on it
are simultaneously preserved or even enhanced

• surface matching: surfaces are reduced to a skeleton feature lines to enable
a better comparison item reverse engineering:

Feature line extraction consists in finding perceptually salient lines over 3D
meshes that a human eye will notice. Detection of feature lines on polygonal
surfaces has been an area of intensive research

Similar to edge detection in images, feature line extraction on 3D surface meshes
is an ill posed problem due to the lack of information on the sampling process,
the noise process and the signal geometry. According to the situation at hand,
the same geometrical discontinuity might be due to a “true” feature in the object,
to insufficient sampling in a region of high curvature, or to noise in vertex posi-
tions. Additional difficulties in feature line extraction process are its sensitivity
to irregular mesh connectivity when extracted feature lines are composed of mesh
edges, the use of a parametric model (e.g snakes) when feature line segments are
independent of the mesh connectivity ([1] and [2]), and the selection of significant
feature lines at the right scale.

Challenges

3D-models processed by the feature-detection algorithms are not always smooth
with obvious features; especially when we have real data obtained from the 3D
laser scanners.

4



Figure 1.1: On the left, there is an original object photographed. On the right,
we can see the 3D-scan of the object rendered in a 3D viewer. Source of the
image:[3]

In figure 1.1 we can see the 3D model of the object obtained with a 3D laser
scanner. In most of feature-extraction algorithms the noise causes the loss of in-
formation which makes such an algorithms unusable for a considerable amount of
3D-scans. As a matter of the fact, laser scanners output data with the remarkable
noise, in this thesis we will analyze the feature extraction algorithms that focuses
on the preservation of the feature information in noisy 3D-models.

1.1 Related work

The previous work on feature curves extraction can be roughly divided into three
categories:

1. normal deviation based

2. covariance analysis based

3. projection procedure based

The algorithm Extracting Feature Curves on Point Sets falls into the third cat-
egory of feature extraction algorithms since it is based on a projection procedure
for local fitting.

1.1.1 Normal deviation based methods

The normal deviation based methods estimate the normal vectors and then per-
forms the segmentation over the points cloud based on the variation of the nor-
mals. The point cloud is segmented into clusters of points (segments) and the
sharp edges detection is performed.

Detection of closed sharp feature lines in point clouds for reverse en-
gineering applications

The algorithm described in the article by Demarsin et al.[4] first estimates the
normal vectors by PCA analysis of the neighborhood of each point. Once the
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normal vectors are calculated, the segmentation is performed on the input point
cloud based on the variation of the normals. The segmentation clusters the points
to create the graph that is much smaller than the original cloud, thus making it
practical for large point clouds.

(a) (b)

Figure 1.2: Overview of the algorithm[4]. (a) First order segmentation of two
intersecting cylinders (b) The graph Gall connecting neighboring segments; the
area bounded by the rectangle is used to illustrate the following steps of the
algorithm in detail in next figure

Once the graph Gall is built, the algorithm process the graph in 5 steps:

1. Add edges toGall, indicating a piece of a sharp feature line (Gall → Gextended)

2. Build the pruned minimum spanning tree ofGextended (Gextended → Gpruned mst)

3. Prune short branches in Gpruned mst (Gpruned mst → Gpruned branches)

4. Close the sharp feature lines in Gpruned branches (Gpruned branches → Gclosed)

5. Smooth the sharp feature lines in Gclosed (Gclosed → Gsmooth)
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: The result of each step of the algorithm showed on the detail of the
figure (1.2b) bounded by rectangle. (a) Graph connecting neighboring segments
(b) Added edges, indicating a piece of a sharp feature line (c) Pruned minimum
spanning tree (d) Pruned short branches (e) Closed the sharp feature lines (f)
Smoothed the sharp feature lines

1.1.2 Covariance analysis based methods

Covariance analysis based methods classify the points of point cloud according to
probability or expectation that they belong to a feature. Based on the principal
component analysis on local neighborhood of each point, the methods compute
the covariance and classify the point as a potential candidate of the feature. The
methods vary in the heuristic used for the point-neighborhood selection.

Feature Extraction from Point Clouds

The algorithm in the article Feature Extraction from Point Clouds [5] propos-
es a method to extract feature curves in two stages. The first stage consists of
assigning a penalty weight to each point that indicates the unlikelihood that the
point is part of a feature and assigning these penalty weights to the edges of a
neighbor graph. Extracting a sub-graph of the neighbor graph that minimizes
the edge penalty weights then produces a set of feature patterns.

The second stage is especially useful for noisy data. It recovers feature lines
and junctions by fitting wedges to the crease lines and corners to the junctions.
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(a) (b) (c) (d) (e)

Figure 1.4: Overview of the algorithm[5] pipeline. (a) original point cloud (b) the
neighborhood graph (c) point classification (d) crease pattern forming (e) purified
crease pattern

1.1.3 Projection procedure based methods

Projection procedure based algorithm first approximates the point set surface.
Based upon the framework of Robust Moving Least Squares (RMLS) surfaces [6],
it first selects a set of potential feature points that are identified by the RMLS
operator to be near to possible features.

Robust Smooth Feature Extraction from Point Clouds

The paper [7] presents an algorithm to define a set of curves that are aligned
along the feature edges of a point cloud. It first detects candidate points to be
near to possible features. The projection method produces jagged edges that are
unable to use without further processing therefore they need to be smoothed.
Based on the principal component analysis, followed by a feature growing strat-
egy that constructs a features (represented as polylines).

In order to take into account possible poor sampling quality, the algorithm [7]
proposes a technique to connect the multiple extracted polylines across the gaps
to create a complete set of feature curves.

(a) (b) (c) (d) (e)

Figure 1.5: Overview of the algorithm[7] pipeline. (a) original point cloud (b)
candidate points (c) projected candidate points (d) smoothed projected candidate
points (e) reconstructed polylines
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1.2 Extracting Feature Curves on Point Sets

Multiple techniques have investigated the identification of feature curves on point
set models and polygonal models. In paper [8], there is presented an algorithm
for detecting feature curves from raw point cloud. The algorithm produces viable
results on irregular point clouds and point data with different level of noise.

The algorithm can be divided in four steps:

1. Approximating the neighborhoods of each point

2. Based on Fundamental forms of fitting surface, the principal directions for
each potential point are computed

3. Using cross-correlation coefficient analysis, the projected points are smoothed

4. Create initial sets of the valleys and ridges by growing curves along the
along the principal directions of smoothed points

The algorithm works with 4 parameters:

• ω - MLS radius fitting
This parameter refers to the size of a radius neighborhood of each point
(step 1). In this algorithm there is used ω = 2.0 ∗ κ where κ is the average
edges distance.

• τ - Curvature threshold
In second step of the algorithm, we calculate the first and the second fun-
damental form of the fitting surface g(u, v). Once the first and second
principal curvature for point pi is calculated, ki is the parameter defined
as the principal curvature with higher absolute value. This parameter is
user-defined.

If ki > τ then the point pi will be added to the ridges point-set.
If ki < −τ then the point pi will be added to the valleys point-set.

• σmin, δmax - Correlation threshold
After the ridges and valleys sets are created, the algorithm removes the
points that might be outliers or noise. From each point pi in the valley or
ridge, the algorithm calculates a correlation of the 2D-projections into the
plane given by the point pi and the axes xpi and ypi. Where xpi and ypi are
the principal axis of δ-neighborhood NBHD(pi, δ).

If the cross-correlation coefficient σ is lower than σmin then the radius δ
is increased until the σ is not higher than σmin. If the value δ reaches a
user-defined value δmax, the point is abandoned.

1.2.1 MLS fitting

The algorithm employs moving least squares (MLS) method to fit a smooth patch
for ω radius neighborhood for each point.

9



For each point pi and its neighborhood NBHD(pi), there is approximated a
bivariate polynomial gi which satisfies:

min
∑

pj∈NBHD(pi)

〈pj − pg, n〉2 (1.1)

Where pg is projected point of pj onto gi along ni; ni is the unit vector along
z-axis of the local-coordinate system of polynomial gi.

The polynomial gi is a function in local coordinate frame (oi, u, v, ni), where
oi is a midpoint of neighborhood NBHD(pi).

g(u, v) = a+ bu+ cv + duv + eu2 + fv2 (1.2)

Figure 1.6: Example of polynomial g(u, v) approximated from the point set. Red
- desired point pi. Gray - point included in NBHD(pi). Blue - points projected
onto g.

1.2.2 Curvatures computation

Once the local fitting gi has been achieved, curvatures of each point pi on point
set surface can be calculated based on computing the first and second fundamen-
tal quality of the surface.

Before we describe how the principal curvatures is calculated, we briefly introduce
the theoretical background of the surface analysis.

We want to measure how a regular surface M bends in R3. A good way to
do this is to estimate how the surface normal U changes from point to point. We
use a linear operator called the shape operator to calculate the bending of M.

Definition: Let M ⊂ R3 be a regular surface, and let U be a surface nor-
mal to M defined in a neighborhood of a point p ∈ M. For a tangent vector vp
to M at p we define the shape operator S as:

S(vp) = −Dv(U) (1.3)
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Where Dv(U) is the derivative of U in the direction v.

Definition: Let M be a regular surface in R3. The first fundamental form
is the bilinear form denoted by I defined as:

I(vp, wp) = vp.wp (1.4)

The second fundamental form is also the symmetric bilinear form II on a tangent
space Mp given by:

II(vp, wp) = S(vp).wp (1.5)

Where vp and wp are tangent vectors of M.

Weingarten equations[9] express the derivatives of the normal vector to a surface
using derivatives of the position vector. The shape operator is given in terms
of the components of the first and second fundamental forms by the Weingarten
equations:

S = (EG− F 2)−1 ∗
(
L ∗G−M ∗ F M ∗G−N ∗ F
L ∗G−M ∗ F M ∗G−N ∗ F

)
(1.6)

Where E,F,G and L,M,N are the coefficients of the and second fundamental
forms of the surface respectively. They play important roles in many intristic
properties of a surface. The parameters can be calculated using various methods.
For our purposes we show the calculation from the parametric surface r = r(x, y).

r(x, y) = a ∗ x+ b ∗ y + z(x, y) ∗ c (1.7)

The coefficients of the first fundamental form II are sometimes referred to as the
metric coefficients. From the parametric equation for the surface they can be
calculated from scalar products of the first partial derivatives of the equation:

E =
∂r

∂x
∗ ∂r

∂x
, F =

∂r

∂x
∗ ∂r

∂y
, G =

∂r

∂y
∗ ∂r

∂y
(1.8)

The second fundamental form II and its coefficients quantify how the unit normal
vector N changes orientation on a curved surface. The coefficients are calculated
as follows:

L =
∂2r

∂2x
∗N, M =

∂2r

∂x∂y
∗N, N =

∂2r

∂2y
∗N (1.9)

Where N is the unit normal vector to the surface.

Let v1, v2 be unit eigenvectors of S associated to the eigenvalues λ1, λ2. Then the
principal curvatures k1 and k2 of S are precisely the λ1 and λ2 [9] which are also
denoted as kmax and kmin (Assuming kmax > kmin). Since the shape operator S
is represented as 2×2 matrix, the eigenvalues can be calculated using [10].
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Based on the analysis of experiments and results, the algorithm works with the
value ki which is for point pi defined as

ki =

{
kmin |kmin| > |kmax|
kmax |kmin| < |kmax|

Candidate points

Once we have a ki calculated for each point pi, the algorithm selects such points
those satisfies the condition |ki| > τ where τ is an user-defined threshold.

1.2.3 Potential feature points detection

The feature points are smoothed by projecting them onto their principal axis of
neighborhoods and smoothed by methods based on statistical analysis of point
distributions on approximate plane. The algorithm has adopted the method from
the related algorithm [2].

In point of fact this is probably the most important part of the algorithm, more-
over the improvements in terms of robustness of noise are made in this stage, we
introduce the theoretical background of the principal component analysis.

Principal component analysis

Principal component analysis (PCA) is a multivariate technique that analyzes a
data in which observations are described by several inter-correlated quantitative
dependent variables. Its goal is to extract the important information from the
data, to represent it as a set of new orthogonal variables called principal compo-
nents, and to display the pattern of similarity [11].

Given a set of points in Euclidean space, the first principal component corre-
sponds to a line that passes through the multidimensional mean and minimizes
the sum of squares of the distances of the points from the line. The second prin-
cipal component corresponds to the same concept after all correlation with the
first principal component has been subtracted from the points. [12].

In computational terms, the principal components are found by calculating the
eigenvectors and eigenvalues of the data covariance matrix. This process is equiv-
alent to finding the axis system in which the co-variance matrix is diagonal. The
eigenvector with the largest eigenvalue is the direction of greatest variation, the
one with the second largest eigenvalue is the (orthogonal) direction with the next
highest variation. Each eigenvalue is proportional to the portion of the “variance”
that is correlated with each eigenvector.
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(a) (b)

Figure 1.7: PCA identifies the two-dimensional plane that optimally describes
the highest variance of the data. (a) Found plane is given by two principal
components PC1 and PC2 ordered by variance. (b) points projected onto the
plane. Source of the image: [13]

In this algorithm, for each point in feature candidates selected in the pre-
vious stage, the covariance matrix is calculated of the δ-neighborhood. The δ-
neighborhood of a point p is defined as a set of points pi which satisfies ‖ p−pi ‖<
δ.

We compute the principal components from the covariance matrix [14] of the
point set defined as:

C = (p1 − p, ..., pk − p).(p1 − p, ..., pk − p) (1.10)

Where the point p is a midpoint of the neighborhood defined as:

p =
1

k

k∑
j=1

pj (1.11)

Once the covariance matrix is calculated, we calculate the eigenvalues λ0, λ1, λ2
(with loss of generality, assuming λ0 ≥ λ1 ≥ λ2) and the referring eigenvectors
v0, v1, v2 of the covariance matrix C.

As shown in figure 1.7, we can construct a two-dimensional plane α from vec-
tors v0, v1 and midpoint p. After the neighborhood points are projected to the
plane α we translate the points into the local coordinate system.

In order to evaluate the “likehood” that the point p is a part of the feature
curve, we analyze the correlation of the neighborhood points in 2D space. The
correlation coefficient denoted as σX,Y is measuring the degree of correlation[15].
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Figure 1.8: Several sets of (x, y) points, with the correlation coefficient of x and
y for each set. Source of the image:[16]

The correlation σX,Y is calculated as:

σX,Y =
Cov(X, Y )√
D(X).

√
D(Y )

(1.12)

As seen from the figure 1.8, the higher absolute value of the σX,Y is calculat-
ed, the higher linear dependence of a point set can be observed. In order to
select only those points that are part of a feature, the algorithm calculates the
σX,Y for each point and checks whether is higher than user-defined constant σmin.

If the σX,Y is lower than σmin, the δ- neighborhood is selected again for increased
δ. The procedure is repeated until the σX,Y is not sufficiently large enough or δ
reaches δmax. If δ reaches δmax the point is eliminated from the potential feature
points and it is marked as outlier.

1.2.4 Smoothing the feature points

Let R(S) and V (S) be ridges and valleys obtained from the previous stage respec-
tively. The sets R(L) and V (L) are point sets that describe the feature polylines.
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All points obtained from the previous step R(S) and V (S) are added into two
separate priority queues with priority function as the principal curvature ratio.
Points with higher curvature ratio have a higher priority in a queue.

The point pi is popped from a priority queue and added to R(L) (V (L)) as
l0. Then the tracing procedure starts in two different directions Tmaxabs and
−Tmaxabs. The tracing procedure samples point neighborhood for each lk, deletes
(or mark as flagged) the points of the neighborhood and samples a new point lk+1

until stopping conditions are satisfied. We continue creating the features using
seed points until the queues are not empty. We describe the sampling process
further in our proposed algorithm.

Optimization of feature curves

Once the polylines are created, there may occur some gaps between the poly-
lines. The algorithm check all end points of the features and completes the
polyline connecting. It connects all end points that lie in within the aperture
cone given by angle µ.

(a) (b)

Figure 1.9: Smoothing the feature lines. Source of the image: [8]

Smoothing the feature lines

The polylines are smoothed by applying the uniformity scheme on interior points
for 1 or 2 passes. This step will be in our algorithm intentionally omitted since it
leads to loss of the information that are later used for the algorithm comparison.
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2. Proposed algorithm

In this chapter, we propose a new algorithm that is mostly based on the paper
[8]. We first describe the implementation of the base algorithm that will be out
reference algorithm.

Once we will have a reference results on our data, we can then clearly see the
assets made by our improvements.

Similarly as the previous algorithm, our algoritm works with these parameters:

• ω - MLS radius fitting

• τ - Curvature threshold

• σmin, δ, c - Correlation threshold
Unlike the previous algorithm, the δ-neighborhood is not expanded in the
stage 3. We have rather chosen the anisotropic approach for the selection
of the δc-neighborhood.

• ξ - Feature post-processing
Compared to the previous algorithm, the proposed algorithm has one addi-
tional stage that process the feature lines. The stage fills gaps between the
end points of detected lines and connects the T-shaped junctions.

2.1 Limits of the previous algorithms

Despite to the fact that algorithm provides a robustness to complexity of a 3D-
model, there are certain edge cases that the algorithm does not handle correctly.

In the step where the correlation is calculated (subsection 1.2.4) the correlation
coefficient is calculated for each neighborhood-pick with increasing parameter δ.
Since the neighborhood-search and calculation of a correlation coefficient from
point set is rather complex operation, the question then arises, “Is there a sim-
pler, more efficient and still robust-to-noise method how to pick the proprietary
points of the potential feature curve?”
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Figure 2.1: The radii of the neighborhood and referring correlation coefficient

One can observe that the searching procedure within the neighborhood does
not take into account the valuable information obtained from the previous step
- principal directions and principal curvatures; it does pick all points within the
radius δ regardless of the shape of the curvature that can be roughly predicted
from the principal curvatures and vectors.

In next subsections we will introduce ourselves the edge cases that the previ-
ous method could not handle.

2.1.1 T-shaped connections

In some cases, feature curves are connected in T-shaped junction. As seen in the
figure 2.2, arbitrary point close to any junction can never be classified as part of
a feature curve; the correlation coefficient is too low.
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Figure 2.2: Example where arbitrary point is classified as outlier

In complex and sometimes noisy 3D-objects, it may lead to loss of feature
curves information.

2.1.2 Curves interference

Two parallel feature curves with relatively low distance from each other makes an
interference so the neighborhood of a point from one curve can exceed to another
curve.

Figure 2.3: Two interfering feature curves
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In figure 2.3 there is shown an example situation where the interference lead
to the loss of the information. The correlation coefficient is too low to classify
the point as a part of the feature.

2.2 Improvements

In the article described in 1.2, in the step where the potential feature points are
separated, the algorithm does not take into account the information about the
point from the previous step. It can cause certain deficiency(2.1) of the algorithm.

For each point, the neighborhood space that can be searched around the desired
point is always sphere with limited radius.

2.2.1 Neighborhood optimization

Instead of the sphere-neighborhood that the algorithm can construct multiple
times for one point (until the correlation coefficient is not sufficient) we can
construct an ellipsoid-neighborhood only once per point. The orientation of the
ellipsoid is given by the principal directions of the shape operator at a point.

(a) (b)

Figure 2.4: The comparison between (a)the circle-neighborhood approach (pre-
vious algorithm) and (b)our method. δ, c are user-defined parameters. We used
δ as δ = ω ∗ 1.5. Vectors v1 and v2 are principal vectors, where the principal
curvature regarding to v1 must be greater than v2

2.3 The optimized algorithm

In this section, we design a new, improved feature extraction method primarily
based on the algorithm as described in (1.2) that particularly solves the problems
in edge cases as we mentioned in (2.1). We will focus on the limits of the algo-
rithms listed in (2.1). Furthermore, we add to the algorithm one extra step that
runs a post-processing over the detected features. That will provide more precise
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and human-eye-friendly results for visualization of detected features.

Algorithm 1: The improved method

Input: ω, δ, c, σ, τ
Data: pointCloud
Output: labeled points, potentional feature points, feature lines

1 foreach point p ∈ pointCloud do
neighborhood := PickNeighborhood(p, ω);
CalculatePrincipalCurvatures(p, neighborhood);
CalculatePrincipalDirections(p, neighborhood);
if MaxPrincipalCurvature(p).absoluteValue >τ then

MarkPointAsCandidate(p);

2 foreach point p ∈ candidatePoints do
neighborhood := PickNeighborhood(p, δ, c);
if CrossCorrelation(p) >σmin then

MarkPointAsPotentialFeature(p);

3 foreach point p ∈ potentialFeaturePoints do
if p /∈ any feature then

featureSeed := p;
feture := CreateFeature(seed);
ExpandFeature(feature);

4 ChainFeatures();
5 SmoothFeatures();
Render();

The details of the implementation and the data structures used are provided
in next chapter.

2.3.1 Principal curvatures calculation

As in the reference algorithm in the subsection 1.2.1, we run the MLS-fitting on
the input point cloud. For each point p, we find a approximation of the bivariate
polynomial function for the ω- neighborhood of point p.

For each point pi, we evaluate principal curvatures and vectors as in subsec-
tion 1.2.2 and calculate the value ki which refers to the principal curvature with
higher absolute value.

If the value ki of the point pi satisfies the condition |ki| > τ the point pi is
marked as a candidate point.
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2.3.2 Correlation

In this step, we achieve removing the outlier points from the candidate point set;
For each candidate point p ∈ Fcan we pick the δ−neighborhood Ncan(p) from the
Fcan.

Once we have the set Ncan(p) selected, we project the points from the neighbor-
hood on the plane defined as follows: First, we build covariance matrix defined
as:

C = (p1 − p, ..., pk − p).(p1 − p, ..., pk − p)T (2.1)

Where p is a midpoint of the neighborhood calculated as:

p =
1

q

∑
pj∈N

pj (2.2)

Where N is the neighborhood. Once the covariance matrix C is calculated,
we calculate the eigenvalues and their corresponding eigenvectors of the matrix
C. As we explained in the section (1.2.3), the eigenvectors with the largest eigen-
values correspond to the dimensions that have the strongest correlation in the
point set. We will find two linearly independent vectors that define the plane by
picking two eigenvectors with the highest corresponding eigenvalues.

Thus we calculate the eigenvalues λ0, λ1, λ2 and then their corresponding eigen-
vectors V0, V1, V2. (without the loss of generality, assuming λ0 ≤ λ1 ≤ λ2).

We then create the plane α defined by vectors V0 and V1 with the origin p.
Next, the points within the neighborhood are projected onto plane α to treat the
points as the set of 2D-vectors within the plane α and origin p.

(a) (b) (c)

Figure 2.5: Red:points of the picked neighborhood. Orange: the midpoint p.
Blue: projected points onto plane α. (a) calculated midpoint p (b) calculated
base vectors of plane α using PCA (c) points projected onto plane α

In order to calculate the cross-correlation coefficient that reflects the corre-
lation of the points within the neighborhood, the correlation is calculated along
the x-axis of the plane α.Projected points are then analyzed by correlation σXY
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where the random variables X and Y are given by the local x and y coordinates
of the 2D-vectors. The cross-corelation coefficient σXY is defined as:

σXY =
cov(X, Y )√
D(X)

√
D(Y )

(2.3)

The σXY has always value between -1 and 1. It represents the degree of
linear correlation between X and Y which, in our case, means distribution along
a potential feature line.

(a) (b)

Figure 2.6: As the blue points in Figure 2.5 refer to projected points onto the
plane α, this figure shows the 2D-projection of the plane. (a) the dashed line is in
the direction of the first principal component of the covariance matrix (b) plane
α projection x and y values for an arbitrary point

The resulting σXY refers to linear correlation where 1 or -1 is a perfect linear
function and 0 totally uncorrelated points. As a matter of the fact we do not
consider whether the line is in descend For that reason we have a constant σmin

that is a minimum to absolute value of the correaltion σX,Y

Picking a neighborhood

As in the algorithm outline (Algorithm 1), as well in this section we mention δ-
neighborhood with no further details. In the algorithm (1.2), the δ-neighborhood
refers to a sphere-bounded point set which has initially a radius δmin and expand-
ing continuously until the sphere radius reaches δ.

In section (2.1) we described several limits of this method; there are potential
edge cases where the method might eliminate “good” candidate points. Thus we
changed the sphere-policy to an ellipsoid-policy points selection.

In section (2.2.1) we describe another approach to selecting the neighborhood
points. Instead of constructing a sphere we create an prolate spheroid oriented in
direction of V0; where V0 is an eigenvector obtained from the covariance matrix
C. The parameters for the ellipsoid are δA = δ and δB = δ ∗c (as shown in Figure
2.4).
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2.3.3 Growing feature curves

The very first step we have to make before we start to growing the feature is to
build a priority queue with the curvatures ratio as a weighting function. However,
instead of making a simple queue, we created a heap with the same weighting
function. In case of queue, the asymptotic complexity of an insertion is O(n) and
a removal O(1). In the other hand, the heap provides a better performance; the
complexity of an insertion is O(logN) as well as a removal [17].

Once we have the heap created and filled, we pop out the root element and
set is as the seed. From the seed, we obtain the information about the principal
directions calculated in the beginning of the algorithm (2.3.1). We set a vec-
tor dirseed as a principal direction that refers to principal curvature with higher
absolute value.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7

From the seed (green on the Figure 2.7), we continue in direction dirseed. There
we place another seed and then pick a neighboring points within the radius ω. We
filter the points that was not previously picked and calculate the vector dir as the
average of all principal vectors of neighboring points. We continue in direction
dir, place a new seed and repeat entire operation until the empty neighborhood
is reached (2.7d). Then we start again from the initial seed, but in direction of
the −dirseed. When the iterations are done, we collect the seeds and add a feature.

Note: when calculating the average direction of next step, all vectors must be
“swept” in the consistent direction. Which mean there can not be any two vectors
V1,V2 where dot(V1, V2) < 0. Before we calculate the mean direction, we check
the sign of the vector as shown on figure below.
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(a) (b) (c)

Figure 2.8: Zoomed figures (b) and (c) of 2.7. The green point is the seed.
(a) initial state with seed and sphere (b) new seed (small blue point) in the
direction of principal vector of seed. The hemisphere covers 3 new points, but 2
of them have principal vectors in opposite direction from seed (towards to seed)
(c) normals reverted

2.3.4 Feature lines post-processing

Since we use an anisotropic approach to filtering the potential feature points (as
described in section 2.3.2), we can assume that more feature points close to T-
shaped junctions are preserved.

The question then arises, “Once having the filtering method that better handles
the T-shaped junctions, are we able to join the polylines with the same approach
as we join the end points of two polylines?”

First, we will show how do we process the gap between the two end points of
the feature lines.

(a) (b)

Figure 2.9: (a) The two end points of the feature polyline (b) The ω radius of an
end point and the principal vectors of the end points.

In order to to classify two endpoints as considerable for connection, they must
fulfill these conditions:

1. The distance between the endpoints must be lower than ω.

2. Let the vA and vB be the principal vectors (obtained) from the stage no. 2.
The dot product dot(vA, vB) must be lower than 0.
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(a) (b) (c)

Figure 2.10: (a) The end points of two feature polylines (b) The ω radius of an
end point and the principal vectors of the end points.

If the two basic conditions are fulfilled, the algorithm checks whether the
principal vectors vA, vB satisfy the condition:

dot(vA, B − A) > ξ (2.4)

Where ξ is a user-defined constant that can be loosely understood as the arcsine
of the maximum angle between the endpoints of two merged polylines.

T-shaped junctions

As a matter of the fact we have already mentioned the T-shaped junctions in
terms of feature points, the algorithm so far is not capable to grow a feature lines
that splits in two ones. The feature polyline is represented as a sequence of points.

In subsection 2.1.1 we demonstrated how can the reference algorithm lose the po-
tential feature points near to the T-shaped junctions. As we use the anisotropic
method of neighborhood selection, our proposed algorithm preserves some points
near junctions so there is a higher probability that the endpoint of feature curves
near a junction are closer to the junction.

(a) (b)

Figure 2.11: (a) The end point of a feature polyline (b) The ω radius of an end
point and the principal vectors of the end points.

Similarly to the previous case, the end points of the features will be tested.
Unlike the end point connections, there is one end point of a feature picked and
finds the closest point from a feature polyline within the ω-radius.
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If the point X of a feature is found, the process of connecting is similar as in
chaining two feature lines.

(a) (b) (c)

Figure 2.12: (a) (b) The ω radius of an end point and the principal vectors of the
end points.

As well as in the previous case, the algorithm calculates the dot product of
the vectors vA and (X − A); where vA is the principal vector of the end point A
and the X − A is the normalized direction vector given by endpoint A and the
selected point X. Thus before the T-connection is generated it must satisfy the
condition:

dot(vA, A−X) > ξ (2.5)
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3. Implementation

The application is written in C# on the platform .NET 4.5 and using the academic
framework MorphoMe3cs[18].

3.1 Application structure

On the very top of the application there is program that parses a name of the
test and proprietary arguments from command line. In our case, the Meshload
test is started.

The subprogram MeshloadTest requires a parameter representing a full or ab-
solute path to the configuration file for the test. The configuration file is in
general simple text file with parameters in form 〈parameter〉 = 〈value〉. separat-
ed with newlines. Those parameters represents the file with an input 3D-object
and parameters for the algorithm used. So the example configuration file looks
like follows:

#Bunny with Gaussian noise added (value 0.0005)

file= C:\Documents\bunny0005.ply

ground_truth= C:\Documents\sphere_ground_truth.obj

kappa=2.2

lower_bound=-190

upper_bound=190

heuristic=pca

join_tees=true

# end of Bunny

Figure 3.1: example configuration file. The lines leading with # are comments
so they are not parsed.

The program recognizes following parameters:

• file - the absolute path to the file with the object

• ground truth (optional) - the absolute path to the ground truth results.

• lower bound, upper bound - the parameters that threshold the principal
curvatures in first phase of the algorithm. In the algorithm description it
is referred by τ .

• kappa - the coefficient used for evaluation of ω (size of the neighborhood)

• heuristic - the user specifies the approach used in the second stage of the
algorithm. There can be used our algorithm described in section 2.3 or the
reference algorithm described in section 1.2.

– incremental - the approach presented in 1.2. The δ-neighborhood
points are picked from the sphere with increasing parameter δ. Thus
this method we named incremental
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– PCA - the approach presented in our algorithm. Instead of “inflating
sphere” there is used an ellipsoid based on the PCA analysis.

• join tees (optional) - (default = true). This parameter enables or disables
the part of feature polylines post-processing that connects the T-shaped
junctions.

The algorithm is placed in a separate package MeshProcessing.FeatureDetection
within the project MorphoMe3cs. There are also various helper classes placed out-
side the package e.g. data structures or geometric meta-data. Those classes will
be introduced in a separate subsection.

The Meshload test works as a certain initializer and starter of an entire algo-
rithm. It validates the parameters, load model, analyzes it and finally, prepares
the algorithm.

The package MeshProcessing.FeatureDetection contains:

• class FeatureDetection
The class that implements the algorithm. It contains two most important
methods: Initialize() and ProcessCloud().

The Inialize() method sets all parameters needed for the algorithm e.g. ω,
δ, τ and prepares for the selected heuristic.

The ProcessCloud() method works in 4 main steps:

1. extracts the feature candidates using the method featureCandidates()

2. process the candidates using the method potentialFeaturePoints() which
is called from the IHeuristic

3. generates the feature lines using the method raisePolyLines

4. post-process the features using the method processFeatures

• class Feature
Our own representation of the feature polyline. Besides the linked list of
the points, it contains the end points of the feature that are used in feature
post-processing.

• interface IHeuristic
The interface that has a declaration of the method potentialFeaturePoints()
that selects a potential feature points from the feature candidates. In the
algorithm 1, the method refers to stage 2.

• class IncrementalHeuristic
The implementation of interface IHeuristic according the description in sec-
tion 1.2

• class PCAHeuristic
The implementation of interface IHeuristic according the description in sec-
tion 2.3
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4. Results

In this chapter we will examine the results given by our algorithm (2) and com-
pare it with the results of the algorithm (1.2). We will test the performance and
precision of the extracted curves on two 3D-models with varying amount of added
noise.

The noise added is a Gaussian noise using the open-source 3D-editing tool Blender
[19]. The Blender environment provides an options to add the noise using the
randomize function under the package mesh tools. User can define size of the
amplitudes and the random seed.

Run-time tests

Similarly as in the algorithm description in pseudocode 1, we divide the run-time
of the algorithm into 4 phases.

• phase1 - In this phase, the MLS-fitting method evaluates a local function
for each point and calculates the principal curvatures. Candidate points
from the point cloud are then extracted according maximal absolute value
of the principal curvatures.

• phase2 - Based on principal component analysis, from the candidate points
are filtered out points those are classified as outliers.

• phase3 - After the potential feature points are extracted, the algorithm
creates a poly-line representation of features, which is a sequence of short
lines.

• phase4 - Feature lines are post-processed. The gaps between two curves are
under certain conditions filled and the T-shaped junctions are connected.

All those 4 phases are tested separately and measured the run-time is written
into table with results

The algorithm was tested on a notebook Dell Inspiron 15Z with Intel©Core
i7-3537U 3.1 GHz processor and 6GB memory.

4.1 Synthetic data

Before we measure the accuracy of the algorithms, we need to have a model where
the results of a perfect accurate algorithm can be predicted. This result is com-
monly known as the ground truth[20].

From here we see, how the noise does affect the results and the robustness to
noise.
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4.1.1 Sphere

For the testing purposes, we created a synthetic data with various levels of Gaus-
sian noise. We generated a simple sphere with a triplet of lines raised out of the
surface. These lines are connected in one point.

(a) (b) (c) (d) (e)

Figure 4.1: Our synthetic sphere model with various level of Gaussian noise
added. (a) No noise added with the expected feature curve highlighted (b) No
noise added (c) Model with Gaussian noise of 0.001 (d) Model with Gaussian
noise of 0.005 (e) Model with Gaussian noise of 0.01

Since the three feature curves on our sphere are connected in one point. The
deficiency of the original algorithm[8] occurs as explained in 2.1. In the other
hand, our algorithm shows a preservation of curves information in the joint of
the triplet.

Incremental heuristic tests

(a) (b) (c) (d)

Figure 4.2

From the figure 4.2d we can see that the added noise has deformed the feature
so the algorithm was unable to recovery the information.

PCA heuristic tests

30



(a) (b) (c) (d)

Figure 4.3

Unlike the previous method, the PCA heuristic has preserved at least one of
two connections.

Table 4.1: The run-time performance of the proposed algorithm over the sphere

model phase 1 phase 2 phase 3 phase 4
sphere (noise 0.01) 8.378s 0.106s 0.021s 0.004s
sphere (noise 0.005) 8.211s 0.014s 0.021s 0.005s
sphere (noise 0.001) 8.282s 0.012s 0.022s 0.005s
sphere (no noise added) 8.170s 0.011s 0.023 0.005s

The table above shows that the added noise cause a higher computational
cost of the algorithm. The phase 2 is the stage of the algorithm that filters
out the outlier points from the feature candidates. Since the added noise causes
the higher principal curvatures in certain points, the step before evaluates more
candidates.

Comparison with the ground truth

The main advantage of this model is the clear and transparent predictability of
the ground truth. Since the model has been done manually using the 3D-editor,
we created a separate file that contains the points that should be placed along
the detected feature.

In order to evaluate the correctness of the algorithm, we need to define the error
that says how close is the extracted features to the ground truth. We define the
function Err(GT,L) which takes a line set L and the ground truth points GT
and then calculates the distances between each point p ∈ GT and the lines l ∈ L.

The Err function can be defined as:

Err(GT,L) = Var(X) (4.1)
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Where X is a set of numbers representing a distance from a point to a feature
line. Thus the equation can be defined as follows:

Err(GT,L) =
∑

p∈GT,l∈L

(w(p, l)− w(p, l))2 (4.2)

Where w(p, l) is our custom weighting function defined as:

w(p, l) = exp(distance(p, l)) (4.3)

We have chosen the exp function in order to penalize abandoned points that are
not close to any feature line.

Figure 4.4: This graph describes the Err value at various level of noise. The
feature lines was post-processed and the T-shaped junctions was connected

From the graph in the figure 4.4, there can be seen that our method using the
PCA-heuristic for feature detection is much closer to the ground truth compared
to the incremental-heuristic.

Moreover, there can be seen a paradox on the graph at noise of value 0.005.
The noise causes that the error is slightly lower than the error for the noise of
value 0.001. This phenomenon is caused by the random seed that generated
such a noise that lowered the distance between the features and the ground truth
points.

Figure 4.5: This graph describes the Err value at various level of noise The
feature lines was post-processed, but the operation that connects the T-shaped
junctions was omitted.
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Another phenomenon can be seen when we compare the figures 4.4 and 4.5.
As seen on the graphs at value of noise 0, at the incremental method curve (red),
the error is relatively high on the graph above (where the T-junctions were con-
nected). It is caused by the edge case described in the section 2.1. The straight
straight lines in the middle of the triplet are interfering thus the points close
to the joint are filtered out in the PCA-filtering. Then the features can not be
connected without a notable bias.

Moreover, there can be also observed that the gap between the errors of the
incremental and PCA heuristic increases with the noise added to the model. The
feature detection method that does not connect the T-junctions in the post pro-
cessing reveals the higher robustness to the noise of the algorithm.
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(a) (b) (c) (d) (e)

Figure 4.6: No noise added (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.7: Added noise of 0.001 (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.8: Added noise of 0.005 (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.9: Added noise of 0.01 (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth
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(a) (b) (c) (d) (e)

Figure 4.10: No noise added (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.11: Added noise of 0.001 (a) clean model (b) candidate points (c) po-
tential feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.12: Added noise of 0.005 (a) clean model (b) candidate points (c) po-
tential feature points (d) detected feature curves (e) ground truth

(a) (b) (c) (d) (e)

Figure 4.13: Added noise of 0.01 (a) clean model (b) candidate points (c) potential
feature points (d) detected feature curves (e) ground truth
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4.2 Scanned data

The algorithm shows a good results on the synthetic data, however now we test
the algorithm on the “real data”.

4.2.1 Bunny

As the algorithm was tested on the well-known 3D-model Stanford bunny [21],
we test the algorithm on the same model to see the improvements brought by our
algorithm.
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Incremental heuristic tests

(a) (b) (c) (d)

Figure 4.14

(a) (b) (c) (d)

Figure 4.15

(a) (b) (c) (d)

Figure 4.16

(a) (b) (c) (d)

Figure 4.17

37



PCA heuristic tests

(a) (b) (c) (d)

Figure 4.18

(a) (b) (c) (d)

Figure 4.19

(a) (b) (c) (d)

Figure 4.20

(a) (b) (c) (d)

Figure 4.21
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4.2.2 Armadillo

In order to test the performance of the algorithm and the computational costs, we
need to test the algorithm on the 3D model that have at least 100,000 vertices. On
the higher amount of analyzed points, we can better compare the PCA-heuristic
to the incremental-heuristic.

For our case, we choose the well-known model Armadillo[22], also from the Stan-
ford 3D scanning repository. The original model has 172,974 vertices and 345,994
faces, which is enough for our testing purposes.

(a) (b)

Figure 4.22: (a) PCA-heuristic (b) Incremental-heuristic

(a) (b)

Figure 4.23: (a) PCA-heuristic (b) Incremental-heuristic
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(a) (b)

Figure 4.24: (a) PCA-heuristic (b) Incremental-heuristic

Run-time tests

From the figures 4.22b, 4.23b and 4.24b there can be seen that both heuristics
produces a reasonable outputs. However, the choice of the heuristic makes a
significant difference in terms of run time performance.

heuristic phase 1 phase 2 phase 3 phase 4
incremental heuristic 72.244s 17.603s 0.074s 1.741s
PCA heuristic 72.689s 1.044s 0.075s 1.835s

Table 4.2: The run-time performance on Armadillo model. The values in the cells
refers to the duration of the phase at the specified heuristic.

In the table 4.2 there can be observed that the PCA heuristic is incomparably
more effective at the phase 2.
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4.2.3 Palate

The 3D model introduced in this section is a real 3D scan obtained with the
digital laser scanner Roland Picza LPX-1200 3D.

The model is a scan of human palate. Which is a mesh of 46499 vertices and
92090 faces. On the scan there can be observed errors that arise naturally during
3D scanning.

(a) (b) (c)

Figure 4.25: The features extracted from molar using the PCA-heuristic (a) the
top view (b) detailed view of incisor (c) detailed view of molars

(a) (b) (c)

Figure 4.26: The features extracted from molar using the incremental heuristic
(a) the top view (b) detailed view of incisor (c) detailed view of molars

heuristic phase 1 phase 2 phase 3 phase 4
incremental heuristic 13.653s 1.693s 0.029s 0.108s
PCA heuristic 13.109s 0.154s 0.030s 0.127s

Table 4.3: The run-time performance on a palate model. The values in the cells
refers to the duration of the phase at the specified heuristic.

As well as in the previous section, in the table 4.3 there can be observed that
the PCA heuristic is incomparably more effective at the phase 2.
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Conclusion

The thesis provides an overview of the feature detection methods used for the
purposes of reverse engineering, filtering, simplification, non-photo realism, re-
construction and other geometric processing applications. Since there is no uni-
versal or exact definition of what constitutes a feature, it exact definition depends
on the particular problem, for purposes of this thesis, we defined the features as
the valleys and ridges of the 3-dimensional objects.

The goal of this thesis was to propose an algorithm that detects the feature
curves from the point clouds. The algorithm implementation is focused on the
robustness to noise, the correctness of the results and the computational costs.
The algorithm was tested on edge cases that are occurred on the real 3D-models
obtained from digital scanners.

This master thesis presents a new algorithm that is particularly based on the
algorithm Extracting Feature Curves on Point sets [8] and extracts the valley-
curves and ridges-curves from raw point cloud. The thesis propose an algorithm
that changes the approach of the algorithm to isotropic and test it over var-
ious 3D models. Our method leverages the valuable information extracted in
principal component analysis (PCA) of the reconstructed surface and changes
the approach of the feature curves approximation. In addition the new method
opened a door to improved gap-connections between the detected feature poly-
lines and the t-shaped junction connections which could not be handled by the
referring algorithm.

We have properly tested both algorithms as well on synthetic data as on the
“real data” obtained from digital scanner. The testing focused on the robustness
to noise, computational complexity and the correctness of the result. Since the
correct results on the “real data” is hard to measure, the correctness was primar-
ily tested on the synthetic models that have got pre-defined expected results.

The test showed that the robustness to noise has been preserved even though
the computational costs was reduced. The second stage of the algorithm shows
the significant processing speed improvements. The proposed method constructs
ellipse only once and calculates the principal components based on the analy-
sis of the points within the ellipse. The reference algorithm, in the other hand
calculates the principal components repeatedly. When we used our feature lines
post-processing, the results of the reference algorithm was evaluated as biased.

Despite to the fact the results on synthetic models as well as on “real models”
are encouraging, there is still room to improvements in areas of feature curves
post-processing. In future work, we aim at changing the results to parametric
curves (e.g. Bézier curves) instead of the polylines. The curve weights can be cal-
culated from the curvatures or the correlation of the feature points. It could, for
instance, serve as pre-process for the feature curves post-processing; our variation
considers only the direction vector at the end point of a feature.
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A. User guide

User Interface (UI) design focuses on anticipating what users might need to do
and ensuring that the interface has elements that are easy to access, understand,
and use to facilitate those actions.

A.1 Usage

The application work as a standard 3D viewer. Before it starts, the command-line
environment with the algorithm running is shown. There is shown the logs made
by application. The green ones are written by the MeshLoader and the algorithm
itself writes a logs in yellow.

Figure A.1: The command-line environment

On initialization of the algorithm, new logger is started thus it also starts a
new timeline. On the very left we can see the total time in seconds from the
beginning and right after there is a time spent within the algorithm stage.
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Figure A.2: The algorithm outputs can be shown/hidden using the panel marked
with red dot
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Figure A.3: The environment options as x,y,z axes or the background color can
be controlled with the panel on the right top

Figure A.4: The user can control the visibility of the results within the stages of
the algorithm. On the viewer there are shown the result points after the stage 2
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Figure A.5: Ridges and valleys points after the stage 1. There can be seen the
presence of the noise since the outlier points has not been yet filtered
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