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Abstrakt: Je dobfe zndmo, Ze pro kazdy Steineruv systém trojic (STS) lze defi-
novat binarni operaci - na jeho nosné mnoziné tak, ze predepiSeme x - x = x pro
vSechna x a x-y = z, kde z je treti bod v bloku obsahujicim dvojici {z,y}. Totéz
lze udélat i s Mendelsohnovym systémem trojic (MTS), usmérnénym systémem
trojic (DTS) jakoz i s hybridni systémem trojic (HTS), kde dvojici (x,y) chdpeme
jako usporadanou. V piipadé STS a MTS dostavame kvazigrupovou operaci,
ale v pripadé DTS a HTS tomu tak byt nemusi. DTS nebo HTS, ktery in-
dukuje kvazigrupu nazyvame Latinsky. Kvazigrupy asociované s STS nebo M'TS
spliuji flexibilni zdkon x - (y - ) = (x - y) - x, ale v pripadé Latinskych DTS
a Latinskych HTS tomu tak byt nemusi. Rikdme, ze DTS nebo HTS je ¢isty,
jestlize jakozto dvojity systém trojic neobsahuje opakujici se bloky. Tato préce
je vénovana studiu Latinskych DTS and Latinskych HTS, zejména zkoumani
flexibility, ¢istoty a dalsich souvisejicich vlastnosti v téchto systémech. Dale se
zabyva Latinskymi DTS a Latinskymi HTS, které maji cyklicky nebo rota¢ni au-
tomorfismus. V praci jsou mimo jiné dokazany existencni spektra téchto systému
a prezentovany enumeracni vysledky. Mensi ¢ast prace je pak vénovana studiu
velikosti centra Steinerovy lupy a spojitosti s maxi-Pasch problémem v STS.

Klicova slova: kvazigrupa, Steineruv systém trojic, usmérnény systém trojic,
Mendelsohnuv systém trojic, hybridni systém trojic
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Abstract: It is well known that for any Steiner triple system (STS) one can define
a binary operation - upon its base set by assigning -z = x for all x and z-y = z,
where z is the third point in the block containing the pair {x,y}. The same can
be done for Mendelsohn triple systems (MTS), directed triple systems (DTS) as
well as hybrid triple systems (HTS), where (z,y) is considered to be ordered. In
the case of STSs and MTSs the operation yields a quasigroup, however this is
not necessarily the case for DTSs and HTSs. A DTS or an HTS which induces a
quasigroup is said to be Latin. The quasigroups associated with STSs and MTSs
satisfy the flexible law x - (y - ) = (x - y) -  but those associated with Latin
DTSs and Latin HT'Ss need not. A DTS or an HTS is said to be pure if when
considered as a twofold triple system it contains no repeated blocks. This thesis
focuses on the study of Latin DTSs and Latin HTSs, in particular it aims to
examine flexibility, purity and other related properties in these systems. Latin
DTSs and Latin HTSs which admit a cyclic or a rotational automorphism are
also studied. The existence spectra of these systems are proved and enumeration
results are presented. A smaller part of the thesis is then devoted to examining
the size of the centre of a Steiner loop and the connection to the maxi-Pasch
problem in ST'Ss.
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Introduction

This thesis consists of the following papers, which are reproduced here as sub-
mitted to the individual journals:

(1) DrRAPAL, A.,; A. KozLIK, and T.S. GRIGGS. Latin directed triple systems.
Discrete Math. 2012, 312, 597-607.

(2) DRAPAL, A., T.S. GrIGGS, and A.R. KozLIK. Basics of DTS quasigroups:
Algebra, geometry and enumeration. J. Algebra Appl. 2015, 14, 15500809.

(3) DRAPAL, A., T.S. GrIGGS, and A.R. KozLIK. Triple systems and binary
operations. Discrete Math. 2014, 325, 1-11.

(4) Kozuik, A.R. Cyclic and rotational Latin hybrid triple systems. Submitted
to Math. Slovaca.

(5) DRAPAL, A., T.S. GrIGGS, and A.R. KozLIK. Flexible Latin directed triple
systems. Utilitas Math. (to appear).

(6) DRAPAL, A., T.S. GricGs, and A.R. KozLiK. Pure Latin directed triple
systems. Australas. J. Combin. 2015, 62, 59-75.

(7) Kozuik, A.R. Antiflexible Latin directed triple systems. Comment. Math.
Univ. Carolin. (to appear).

(8) KozLik, A.R. The centre of a Steiner loop and the maxi-Pasch problem.
Submitted to J. Combin. Des.

My contribution to the papers with coauthors is as follows: In (1), the examples.
In (2), Example 2.7, Section 4 and the Appendix. In (3), Sections 1, 4 and 6, parts
of Section 5, most of Section 7 and the Appendix. In (5), the results in Table 1,
half of Section 4 and the Appendix. In (6), Section 2, half of Sections 3 and 4,
and the Appendix. Shortly put, my contributions to (2), (3), (5) and (6) account
for roughly 30-60% of each paper. My contribution to paper (1) is somewhat
smaller. This paper is included mainly because of its fundamental role in the
context.

1. Triple systems and their connections to algebra

A Steiner triple system of order n, STS(n), is a pair (V, B) where V' is a set of n
points and B is a collection of triples of distinct points taken from V' such that
every pair of distinct points from V' appears in precisely one triple.
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The most well known examples of Steiner triple systems come from finite
geometry. Let V =T% \ {0} and let B be the collection of all {x,y,z} such that
X, y, z € V are pairwise distinct and x +y +z = 0. Then (V, B) is a projective
STS(2" —1). The points and blocks of a projective STS(2" — 1) are the projective
points and projective lines of projective geometry PG(n — 1,2). For n = 3 we get
an STS(7) also known as the Fano plane. This is the only Steiner triple system
of order 7 up to isomorphism.

If we let V' = F% and B be the collection of all {x,y,z} such that x, y,
z € V are pairwise distinct and x +y +z = 0, then (V, B) is an affine STS(3").
The points and blocks of an affine ST'S(3") are the points and lines of the affine
geometry AG(n,3). For n = 3 we get an STS(9), which is also unique up to
isomorphism.

It was Pliicker who in 1835 [15] encountered the STS(9) in a study of algebraic
curves and was the first to generalize this type of system and ask the question for
which n does an STS(n) exist. In 1839 [16] he gave the necessary condition n = 1
or 3 (mod 6), which can be derived by a simple counting argument. The question
of the existence of Steiner triple systems was settled in 1847 by Kirkman [12]. An
STS(n) exists if and only if n =1 or 3 (mod 6). The name comes from the fact
that in 1853 Steiner [17], unaware of Kirkman’s result, asked a series of questions,
the first of which was the existence of what came to be known as Steiner triple
systems.

To date, the number of pairwise non-isomorphic ST'S(n)s has been determined
for all n < 19. The uniqueness of the STS(7) and the STS(9) was apparently
well known. In 1897 Zulauf [30] showed that all known STS(13)s fall into two
isomorphism classes and two years later De Pasquale [8] showed that only two
isomorphism classes are possible. In the 1910s White, Cole and Cummings [7, 29|
determined that there are 80 non-isomorphic STS(15)s. Almost a century later,
in 2004, Kaski and Ostergard [19] used digital computers to find that the total
number of pairwise non-isomorphic STS(19)s is 11084 874 829. A complete enu-
meration and classification of ST'S(21)s does not look promising in the foreseeable
future [19].

A quasigroup is an ordered pair (Q,-), where @ is a set and - is a binary
operation on () such that for all a, b € @) there exist unique elements x, y € Q)
satisfying a - x = b and y - a = b. The unique solutions to these equations are
written z = a\b and y = b/a. The operations \ and / are called left division and
right division, respectively. For @ finite, the order of the quasigroup (@, -) is |Q|.
It is easy to see that the multiplication table of a finite quasigroup defines a Latin
square, i.e. a |@Q| x |@Q| array such that every element of () appears exactly once
in each row and exactly once in each column. A loop is a quasigroup with an
identity element, i.e. an element e € () such that x-e=x =e¢-x for all x € Q.
The binary operation will sometimes be replaced with juxtaposition, for example
x - yz meaning x - (y - z).

Given an STS (V,B) one can define a binary operation - on the set V' by
assigning x -z = x for all z € V and x -y = 2z whenever {z,y,2z} € B. The
induced operation satisfies the identities

r-x=z, y-(xr-y =2z T-Y=y-x
for all x and y in V. Any binary operation satisfying these three identities is
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called an idempotent totally symmetric quasigroup. The process described above
is reversible. Given an idempotent totally symmetric quasigroup one can obtain
an STS by assigning {z,y,z -y} € B for all z, y € V, © # y. Thus there is a
one-to-one correspondence between Steiner triple systems and idempotent totally
symmetric quasigroups or Steiner quasigroups, as they are commonly known. All
Steiner quasigroups satisfy the flezible law y-(z-y) = (y-x)-y. It is also possible
to define a loop operation for any Steiner triple system by adjoining an identity
element e to V. Let L=V U{e} and assignz-x =eforallz € Vandz-y =z
whenever {x,y,z} € B. The resulting loop is called a Steiner loop. Again the
process is reversible. This correspondence is well known in both the combinatorial
and the algebraic communities, see for example [6, page 24] and [14, page 124].
If we consider oriented triples, then there are two possibilities. A cyclic triple
(x,y,z) contains the ordered pairs (z,y), (y,2) and (z,z). A transitive triple
(x,y, z) contains the ordered pairs (x,y), (v, 2) and (z, z); we sometimes refer to
these ordered pairs as the initial, the terminal and the long edge, respectively.

Y
S/ \e,
S %/
r ¢«— =2

(z,y,2) (z,9,2)
Figure 1: A cyclic triple (z,y, z) and a transitive triple (z,y, 2).

A hybrid triple system of order n, HT'S(n), is a pair (V, B) where V is a set of n
points and B is a collection of cyclic and transitive triples of distinct points taken
from V' such that every ordered pair of distinct points from V appears in precisely
one triple. An HT'S(n) can also be thought of as a decomposition of the complete
digraph on n vertices into oriented triples which are either transitive triples or
cyclic triples. The term hybrid triple system was first used in [18] but the concept
appeared earlier under the name ordered triple system [21] and later under the
name oriented triple system [24]. An HTS(n) which contains only cyclic triples
is known as a Mendelsohn triple system, MTS(n). Such systems exist if and only
if n =0or 1 (mod3), n # 6 [13]. An HTS(n) which contains only transitive
triples is known as a directed triple system, DTS(n). Such systems exist if and
only if n =0 or 1 (mod 3) [11].

Every HTS induces a binary operation - upon its point set V. For a cyclic
triple (z,y,2) set -y =z, y-z =z and z -z = y. For a transitive triple (x,y, z)
set -y =2 y-2=uxand z-z=y. The induced operation - is assumed to be
idempotent, i.e. x - x = x holds for every z € V.

In the case of MTSs, the induced operation yields a semisymmetric quasi-
group, i.e. it satisfies x - (y - ) = y for all z and y in V. All semisymmetric
quasigroups satisfy the flexible law. It is well known [1, Remark 2.12] that there
is a one-to-one correspondence between MTSs and idempotent semisymmetric
quasigroups or Mendelsohn quasigroups, as they are also known. For DTSs and
HTSs, however, the induced operation may or may not yield a quasigroup. If for
example (u,z,y) and (y,v,x) € B, then u-x = y = v -z, but u # v. Never-
theless there do exist DTSs and HTSs that yield quasigroups. If a DTS or an
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HTS induces a quasigroup, then it is said to be Latin, to signify that the oper-
ation table forms a Latin square. The induced binary operation is then called a
DTS-quasigroup or an HTS-quasigroup, respectively.

Latin directed triple systems (LDTS) were introduced in (1), where it was
shown that an LDTS(n) exists if and only if n = 0 or 1 (mod 3) and n # 4,
6 or 10. The algebraic and geometric aspects of LDTSs were studied in (2).
Together these two papers also give enumeration results for all orders less than
or equal to 13.

Latin hybrid triple systems (LHTS) were introduced in (3), where it was
shown that an LHTS(n) exists if and only if n = 0 or 1 (mod 3) and n # 6.
If in addition n > 9, then there exists a proper LHTS(n). An LHTS is said to
be proper if the induced quasigroup is neither a Mendelsohn quasigroup nor a
DTS-quasigroup. Similarly, a DTS is said to be proper if the induced quasigroup
is not a Steiner quasigroup.

2. Basic properties

The correspondence between HTSs or DTSs and the induced binary operations
is not one-to-one, since if the system contains a pair of triples with the same
point set, say (z,y, z) and (z,y, ), then replacing these with the pair of triples
(y,z,z) and (x, z,y) gives a system which yields the same DTS-quasigroup as the
first and yet the two LDTS(n)s may be non-isomorphic, see Example 2.4 in (1).
Call a triple occurring in an HTS bidirectional if there exists another triple in the
system with the same point set, otherwise call it unidirectional. The point set of a
bidirectional triple is called a Steiner triple. When presenting examples we replace
any pair of bidirectional triples, say (z,y,z) and (z,y,x), with their underlying
Steiner triple {z,y, z}. The block set of an HTS then consists of three types of
triples: Steiner triples, unidirectional cyclic triples and unidirectional transitive
triples. This view of HTSs results in a one-to-one correspondence between HTSs
and the induced binary operations and it allows for a more precise study of these
systems, namely when dealing with isomorphisms and automorphisms of HT'Ss.

A DTS is proper if and only if it contains at least one unidirectional triple.
An HTS is proper if and only if it contains at least one unidirectional cyclic triple
and at least one unidirectional transitive triple.

The following theorem proven in (3) gives a combinatorial characterisation of
LDTSs and LHTSs.

Theorem 1. Let (Q,-) be induced by an HTS (or a DTS) (V,B). Then Q is a
quasigroup if and only if for each (x,y,z) € B there exist elements x', ', 2/ € V
such that (z',y,x), (z,y',x) and (z,y,2') belong to B as well.

Figure 2 shows the triples discussed in the previous theorem. Note that in an
LHTS, if (z,y) is the initial edge of a transitive triple, then (y,z) is a terminal
edge in a transitive triple and vice versa. Thus initial edges match with terminal
edges and similarly long edges match with long edges.

Example 1. Let V = {0,...,6} and B = {{0,1,2}, {0,3,4}, {0,5,6}, (1,5,3),
(3,5,2), (2,5,4), (4,5,1), (1,6,4), (4,6,2), (2,6,3), (3,6,1)}. Then (V,B) is a
proper LDTS(7).
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Figure 2: An illustration of the triples in Theorem 1 and their matching edges.

Let - be determined by an HTS (V, B). Denote by F the set of all {x, y, 2z} such
that {x,y, 2z} is the point set of a unidirectional triple of B. Consider now F as a
set of triangular faces. Each edge {u, v} is incident to two faces, hence the faces
can be sewn together along common edges to form a generalised pseudosurface.
By splitting pinch points we obtain a generalised surface, which can be partitioned
into connected components. Call such a surface component uniform if all its
triples are either cyclic, or transitive. From Theorem 1 we see that all components
are uniform if - yields a quasigroup. Figure 3 shows the components of the surface
formed by the proper LDTS(7) from Example 1.

1//512 3//514 5//516

Figure 3: The components of the surface formed by the proper LDTS(7) from
Example 1.

Given an LHTS (V| B), every transitive triple B = (x,y, z) can be replaced
by a cyclic triple B = (z,y, 2). This yields an MTS since (z/,y, ) is turned into
(' y,x), (2,9, z) into (2,9, x) and (z,y,2’) into (z,y,z"). We shall call this the
underlying MTS of B.

Notice that an LHTS yields the same surface as its underlying MTS. Clear-
ly, the surface obtained from an MTS is orientable, hence any LHTS yields an
orientable surface as well. This is generally not the case for HT'Ss.

3. Pure, flexible and anti-flexible Latin directed
triple systems

An HTS is said to be pure if it does not contain a bidirectional triple. The
quasigroups obtained from pure LHTSs are anti-commutative, i.e. they satisfy
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xy = yxr = x = y for all x and y. The absence of bidirectional triples implies that
there is a one-to-one correspondence between pure LHTSs and anti-commutative
HTS-quasigroups.

The quasigroups associated with Steiner and Mendelsohn triple systems satisfy
the flexible law = - (y - ) = (x - y) - = but those associated with Latin directed
triple systems need not. An LHTS or an LDTS is said to be flexible if the induced
operation satisfies the flexible law. For a flexible LDTS the components of the
corresponding generalized surface are all spheres. The following theorem gives a
more specific description.

Theorem 2 (5). A pure flexzible LDTS(n) exists if and only if the complete graph
K, can be decomposed into triangles and k-gonal bipyramid graphs Oy, k > 3,
i.e. graphs of k+ 2 vertices with a cycle of length k, and two further points joined
to every point of the cycle.

Using a variety of recursive constructions and constructions based on group

divisible designs of block size 3 we obtain the existence spectra for various types
of LDTSs.

Theorem 3 (1). The existence spectrum of non-flexible LDTS(n) isn =0 or 1
(mod 3), n # 3, 4, 6, 7, 10.

Theorem 4 (5). The existence spectrum of flexible LDTS(n)s is n = 0 or 1
(mod 3), n # 4, 6, 10, 12.

Theorem 5 (6). The existence spectrum of pure non-flexible LDTS(n)s isn =0
or1 (mod 3), n > 13.

Theorem 6 (6). A pure flexible LDTS(n) exists for all n = 0 or 1 (mod 3),
n > 16 and n # 18, possibly except n = 24, 30, 42, 78, 114 and 150.

In any LDTS, (V, B), the following condition holds for all z, y € V/

(v,y,7-y)eB = y-(x-y)=Hy ) v

Thus in every LDTS there exist pairs of distinct points (z,y) € V' x V for which
the flexible identity (y-x)-y =y (z-y) holds. In (7) we study the LDTSs whose
binary operation satisfies the reverse of the condition above, i.e. for all x, y € V|

T 7Y,
y-(@y)=@-2)-y = (ryz-y B

An LDTS satisfying this condition is called antiflexible. In other words an an-
tiflexible D'T'S-quasigroup is one where the flexible identity holds for the least
possible number of ordered pairs (z,y) € V x V. Thus, in a sense, antiflexible
LDTSs are the LDTSs which are as distant from STSs as possible. Indeed, every
antiflexible LDTS is pure. The antiflexible property can also be characterised ge-
ometrically in terms of the degrees of the vertices of the corresponding generalised
surface, see Theorem 2.1 in (7).

At first glance, antiflexible LDTSs may appear to be a rather artificial con-
struct. However, there exists a surprisingly simple cyclic construction which
naturally produces antiflexible LDTSs. Let £ > 2 and n = 6k + 1. A cyclic
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antiflexible LDTS(n), (V, B), can be obtained as follows. Set V = Z,, and define
the set of starter triples

S={(rk+2r0), (0,3k —r+1,7r):r=12,...k}.
If k=1 (mod 3), then replace the starter triples
(£ |4 2265 ) (0, 3k — 265 1) 26 and (K, 3k, 0)
in § with the starter triples
@k +1,0, 16k +1)), (L(Gk+1),0, 12k +1)) and (1(2k+1), 0, 3k + 1).

The set of blocks B is then obtained by developing the set of starter blocks &
under the action of the mapping « : ¢ — ¢ 4+ 1. This construction yields cyclic
antiflexible LDTSs of all admissible orders, thus we have:

Theorem 7 (7). A cyclic antiflexible LDTS(n) ezists if and only if n = 1
(mod 6) and n > 13.

Using recursive constructions and constructions based on group divisible de-
signs with blocks of sizes 3 and 4 we obtain the complete existence spectrum of
antiflexible LDT'Ss:

Theorem 8 (7). An antiflexible LDTS(n) exists if and only ifn =0 or1 (mod 3)
and n > 13.

4. Enumeration of Latin directed triple systems

To enumerate DTS-quasigroups we use the model builder Mace4 [23] which is
part of the package Prover9, an automated theorem prover for first-order and
equational logic. The program is provided with an algebraic description of a
DTS-quasigroup given in the theorem below. Isomorphic quasigroups can then
be removed using the GAP [9] package LOOPS [25].

Theorem 9 (2). Let Q) be an idempotent quasigroup. Then Q) is a DTS-quasigroup
if and only if all x,y € Q satisfy

(i) x - xy=y=yx-x orzy-x=y=2x-yx, and
(ii) xy-x =1y implies vy -y = x.

The enumeration of DTS-quasigroups of order up to 12 can be achieved in a
matter of minutes with Mace4. However when we reach order 13, the combina-
torial explosion takes over and, as reported in (2), the enumeration problem has
to be split into more manageable tasks.

When dealing with HTS-quasigroups, the program is provided with the fol-
lowing algebraic description.

Theorem 10 (3). Let Q be an idempotent binary operation. Then Q is an HTS-
quasigroup if and only if all x,y € Q satisfy

y=x-(z-y)=(y-z)-x or y=(r-y -r=x(y 2.



For HT'S-quasigroups the combinatorial explosion takes over at order 12. Ta-
ble 1 shows an overview of the number of non-isomorphic HTS quasigroups in-
duced by different types of triple systems. The results for MTSs come from [20].
The results for LDTSs and LHTSs were obtained in (2) and (3). These two pa-
pers also give details of their automorphism groups and genera of their surface
components including examples of the most interesting systems.

Order

Triple system 3 4 6 7 9 10 12 13
STS 100 1 1 0 0 2
Proper MTS 0 1 0 3 19 241 9801188 13710290114
Proper LDTS 0 0 0 1 3 0 2 1206967

flexible 0 00 1 1 0 0 922

pure 0O 0 0 0 O 0 0 8444
Proper LHTS 0 0 0 0 7 14 ? ?

flexible 0O 000 3 4 ? ?

pure 0O 0 0 0 3 4 ? ?

Table 1: Number of non-isomorphic HT'S quasigroups induced by different types
of triple systems.

5. Cyclic and rotational systems

An HTS(n) is said to be cyclic if it admits an automorphism consisting of a single
cycle of length n and it is said to be rotational if it admits an automorphism
consisting of a cycle of length n — 1 and one fixed point. Table 2 summarises
known results and new results obtained in (4) about the existence spectra of
various cyclic and rotational triple systems. The main goal of (4) is to prove the
existence spectra of pure and proper, cyclic and rotational, LDTSs and LHTSs.
In [10] Gardner et al. went so far as to prove the existence spectrum of cyclic and
rotational HT'S(n)s containing exactly ¢ cyclic triples for all admissible values
of c. In (4) we state the admissible values of ¢ for LHTS(n)s, but we do not prove
existence for each of these values. FExistence is proven only for the minimum
non-zero values of c.

Proposition 11 (4). Let ¢ be the number of cyclic triples in a cyclic LHTS(n).
Then

(i) if n =0 (mod 3), then ¢ = 2n (mod 2n);

(i) if n =1 (mod 3), then ¢ =0 (mod 2n).

Proposition 12 (4). Let ¢ be the number of cyclic triples in a rotational LHTS(n).
Then

(i) if n=1 (mod 6), then ¢ = 3(n — 1) (mod 2(n — 1)) and ¢ # 1(n — 1);
(i) if n =3 (mod 6), then ¢ =0 (mod n — 1);
(iii) if n =4 (mod 6), then ¢ = 3(n —1) (mod 2(n — 1)).



Triple system

Conditions

Cyclic STS n=1or3 (mod 6) and n # 9

Cyclic MTS n=1or3 (mod 6) and n # 9 [5]

Pure cyclic MTS n=1 (mod 6) (4)
Cyclic DTS n=1,4o0r7 (mod 12) [4]

Proper cyclic LDTS n=1or 3 (mod 6) and n > 13 (4)
Pure cyclic LDTS n=1 (mod 6) and n > 13 (4)
Cyclic HTS n=0,1,34,7or9 (mod 12) and n #9 [24]
Proper cyclic LHTS n=1or3 (mod 6) and n > 19 (4)
Proper pure cyclic LHTS n=1 (mod 6) and n > 19 (4)
Rotational ST'S n=3or9 (mod 24) [27]
Rotational MTS n=1,3or4 (mod 6) and n # 10 2]

Pure rotational MTS n=1 (mod 3) and n # 10 (4)
Rotational DTS n =0 (mod 3) 3]

Proper rotational LDTS n =3 (mod 6) and n > 15 (4)
Pure rotational LDTS does not exist (4)
Rotational HTS n=0or1 (mod 3) [24]
Proper rotational LHTS n=1,30r4 (mod6), n>16 and n # 19 (4)
Proper pure rotational LHTS n =1 (mod 3), n > 16 and n # 19 (4)

Table 2: The necessary and sufficient conditions for the existence of various cyclic
and rotational triple systems.

6. The centre of a Steiner loop and the maxi-
Pasch problem

The left nucleus Ny, middle nucleus N, and right nucleus N, of a loop L are
defined as

Nyx(L)={z € L:z(yz) = (xy)z for all y,z € L},
N, (L)={yeL:xz(yz) = (zy)z forall z,z € L},
Ny(L)={z€L:z(yz) = (zy)z forall z,y € L }.

The nucleus N(L) = Nx(L)NN,(L)NN,(L) of L is a subgroup of L. The centre
of a loop L is defined as

Z(L)=N(L)Nn{zxeL:ay=yxforallye L}.

In (8) we derive the necessary and sufficient conditions for the existence of a
Steiner loop of order n with centre of order m.

Theorem 13 (8). Let n be a positive integer and let k be the largest integer such
that 2% divides n. A nontrivial Steiner loop of order n with centre of order m
exists if and only if n =2 or 4 (mod 6), and

1. n#2% and m = 2¢, where i € {0,1,...,k — 1}, or

2. n=2% (n,m)# (8,1) and m = 2¢, where i € {0,1,...,k — 3} U {k}.



In a Steiner triple system, a collection of four triples on six points is called a
Pasch configuration or quadrilateral. It is easily seen that this structure neces-
sarily has the form {a,b,c}, {a,d,e}, {b,e, f}, {c,d, f}. Denote the number of
Pasch configurations in an STS(v), S, by P(S). Define

P(v) = max{ P(S) : S is an STS(v) }.

An STS(v), S, is said to be mazi-Pasch if P(S) = P(v).

An elementary counting argument yields P(v) < v(v — 1)(v — 3)/24. In [2§]
Stinson and Wei show that P(v) = v(v — 1)(v — 3)/24 if and only if v = 2" — 1
for some n. The only known values of P(v) when v # 2" — 1 are P(9) = 0,
P(13) = 13 and P(19) = 84. The Steiner loops of all known maxi-Pasch STSs
have centre of maximum possible order. The results in (8) also show that for
some values of v the maximum known lower bound is attained by a Steiner triple
system whose corresponding Steiner loop has centre of maximum possible order.
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LATIN DIRECTED TRIPLE SYSTEMS

A. DRAPAL, A. KOZLIK, AND T. S. GRIGGS

ABSTRACT. It is well known that given a Steiner triple system then a quasi-
group can be formed by defining an operation - by the identities z - * = x and
x -y = z where z is the third point in the block containing the pair {z,y}. The
same is true for a Mendelsohn triple system where the pair (z,y) is considered
to be ordered. But it is not true in general for directed triple systems. However
directed triple systems which form quasigroups under this operation do exist.
We call these Latin directed triple systems and in this paper begin the study
of their existence and properties.

1. INTRODUCTION

The equivalence between Steiner triple systems, on the one hand, and Steiner
quasigroups and Steiner loops, on the other hand, is well know in both the com-
binatorial and the algebraic communities, see for example [6, page 24] and [16,
page 124]. Recall the definitions. A Steiner triple system of order n, STS(n), is a
pair (V, B) where V is a set of n points and B is a collection of triples of distinct
points, also called blocks, taken from V such that every pair of distinct points
from V appears in precisely one block. Such systems exist if and only if n = 1
or 3 (mod 6) [11]. A Steiner quasigroup or squag is a pair (@, -) where @) is a set
and - is an operation on () satisfying the identities

rrx=z,y (r-y) =z - y=y-x

If (V,B) is an STS(n), then a Steiner quasigroup (@,-) is obtained by letting
@ =V and defining = - y = z where {z,y, z} € B. The process is reversible; if @
is a Steiner quasigroup, then a Steiner triple system is obtained by letting V' = @)
and {z,y,z} € B where x -y = z for all z,y € @, x # y. Thus there is a one-one
correspondence between all Steiner triple systems and all Steiner quasigroups [16,
Theorem V.1.11]. A Steiner quasigroup is also known as an idempotent totally
symmetric quasigroup [1, Remark 2.12]. A Steiner loop or sloop is a pair (L,-)
where L is a set containing an identity element, say e, and - is an operation on L
satisfying the identities

e-r=x, rT-r=e, y(my):x, xy:y:l?

If (V, B) is an STS(n), then a Steiner loop (L, -) is obtained by letting L = V U{e}
and defining z - y = z where {z,y, z} € B. Again the process is reversible.

Less well known is the following correspondence. A Mendelsohn triple sys-
tem of order n, MTS(n), is a pair (V,B) where V is a set of n points and B
is a collection of cyclically ordered triples of distinct points taken from V' such
that every ordered pair of distinct points from V' appears in precisely one triple.

2010 Mathematics Subject Classification. Primary 05B07; Secondary 20N05.
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Such systems exist if and only if n = 0 or 1 (mod 3), n # 6 [14]. Quasigroups
and loops can be obtained from Mendelsohn triple systems by precisely the same
procedures as described above for Steiner triple systems. Note that the law
y - (z -y) = z is usually called semi-symmetric. So the quasigroups are known
as idempotent semisymmetric quasigroups [1, Remark 2.12]. However the alge-
braic structures might also appropriately be called Mendelsohn quasigroups and
Mendelsohn loops; they satisfy the same properties as their Steiner counterparts
with the exception of commutativity. Similarly there is a one-one correspondence
between Mendelsohn triple systems, Mendelsohn quasigroups and Mendelsohn
loops.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set
of n points and B is a collection of transitively ordered triples of distinct points
taken from V such that every ordered pair of distinct points from V' appears
in precisely one triple. Such systems exist if and only if n = 0 or 1 (mod 3)
[10]. Given a DTS(n), an algebraic structure (V,-) can be obtained as above by
defining -z =x and x-y = z for all z,y € V, x # y where z is the third element
in the transitive triple containing the ordered pair (x,y). However the structure
obtained need not necessarily be a quasigroup. If (u,z,y) and (y,v,z) € B then
u-x=v-r=y. Butaswe will see, some DTS(n)s do yield quasigroups. Such
a DTS(n) will be called a Latin directed triple system, and denoted by LDTS(n),
to reflect the fact that in this case the operation table forms a Latin square. We
call the quasigroup so obtained a DTS-quasigroup. In an analogous way to that
described above for Steiner triple systems we may also construct a loop from a
LDTS(n); called a DTS-loop.

2. PROPERTIES

First we derive a necessary and sufficient condition for a directed triple system
to be Latin.

Proposition 2.1. Let D = (V,B) be a DTS(n). Denote by S, the set of ordered
pairs (x,y) in positions a and b respectively of the triples of B. Then D is a
LDTS(TL) Zf and only Zf 5172 = 5372, S273 = 5271, and 3173 = 5371.

Proof. Let D be a LDTS(n) and suppose that (z,y,z) € B. Then y -z = z.
Now there exists w such that precisely one of (y,z, w), (y,w,x), or (w,y,x) € B.
In the first two cases y - w = x and so w = z which is impossible. Therefore
(w,y,z) € Band Sy 5 C S3. Further z-y = z. Similarly one of (w, z,v), (z,w,y),
or (z,y,w) € B. Again in the first two cases w-y = z and so w = x, which is also
impossible. Therefore (z,y,w) € B and so S32 C S12. Therefore S1o = S30. It
further follows that 52’3 = 5271. Flnally since SLQ U 8173 U 8273 = 5372 U 5371 U 5271
and all of the sets S, are disjoint, it follows that S; 3 = Ss ;.

Conversely suppose that (z,y,z) € B. Then z -y = 2. For D to be a LDTS(n)
we require that the equations a -y = z, - f = 2z, and = - y = 7 have unique
solutions, namely z, y, and z respectively for «, 5, and . Clearly z is the unique
solution for v by definition. If z- 8 = z then precisely one of (z, z, 8), (z, §, z), or
(z,x,0) € B. In the first case no such block exists, in the second case = y, and
in the third case no such block exists because S 3 = S3;. If a -y = z then pre-
cisely one of (o, y, 2), (@, z,y), or (z,a,y) € B. In the first case @« = = and in the
other two cases no such block exists because Sy 3 = Sa1. Further if (z,y,2) € B
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then x -z = y and y - 2 = x and we need to show that for each equation, given
any two of the parameters, the third is uniquely determined. The proof is similar
to the case for the equation z -y = z. 0O

The conditions for a LDTS(n) given in the above proposition can be simplified
but we have chosen to present them in this form because they are reminiscent of
those (S12 = S21, S23 = 532, and Sy 3 = S31) for another class of directed triple
systems, so called Mendelsohn directed triple systems, the existence of which was
discussed in [9]. A more succinct necessary and sufficient condition is given in
the next theorem

Theorem 2.2. Let D = (V,B) be a DTS(n). Then D is a LDTS(n) if and only
if (x,y,2) € B= (w,y,x) € B for somew € V.

Proof. 1In the notation of Proposition 2.1, the condition in this theorem is
Si2 C S39 which is trivially implied by the conditions in the proposition. We
need to show that the reverse is also true. Since the cardinalities of the sets S 2
and S35 are equal it follows that S}, = S35 which, as observed in the proof of
the proposition, implies the other two conditions. 0O

Before discussing existence and enumeration results for D'T'S-quasigroups and
DTS-loops, it is important to point out two fundamental differences between these
and their Steiner and Mendelsohn counterparts. The first concerns flexibility. The
flexible law states that = - (y-x) = (x - y) - x. As is easily verified, both Steiner
quasigroups and loops and Mendelsohn quasigroups and loops all satisfy this law.
But this is not the case for DTS-quasigroups and loops. Next we state and prove
a necessary and sufficient condition for a DTS-quasigroup or loop to satisfy the
flexible law.

Theorem 2.3. A DTS-quasigroup or DTS-loop obtained from a LDTS(n), D =
(V,B) satisfies the flexible law if and only if (x,y,z) € B= {(x,z-x,y-x) € B.

Proof. Suppose that (z,y,z) € B. Then there exists a, 3,7 € V such that
(z,y,a), (z,5,x), {(7,y,x) € B. Here we allow any of the equalities a« = x, f =y
v = z to be satisﬁed in which case all three are. Consider the six possibilities.

(@) z-(y-x)=z-7 (r-y) -z =z -x=f; hence we require x -y = .
)

b)y-(z-y)=y-z=x;(y-2)-y=7-y=uz
(©y-(zy)=y-a=zy-2)y=zy=2z
(d)z-(y-z)=z-x=p;(z-y) 2= «- z hence we require « - z = 3.
(e)z-(r-2)=z-y=a; (z-x) 2= -z hence we require - z = .
f)z-(z-x)=x-5; (xr-2)-x=y-x=",; hence we require x - § = 7.

Thus the flexible law is satisfied if and only if (i) (z, 5,v) = (z,z-z,y-x) € B and
(ii) (o, B, 2) = (z-y,z-x, z) € B. To complete the proof we need to show that the
second condition can be derived from the first. We have that (z,y,«) € B and
the first condition implies that (z, -2,y 2) = (2, - z,2) € B so that o+ z = 5,
e (a,8,2) =(z-y,z-x,2) €B. 0

By analogy we will say that a LDTS(n) is flexible if the DTS-quasigroup and
DTS-loop obtained from it satisfies the flexible law. Later, we will also use
partial LDTS(n). We define these as partial DT'S(n) which satisfy the conditions
of Proposition 2.1 (not Theorem 2.2). These are not the same for partial systems;
the set of directed triples (x,a,y), (y,a,z), (z,a,x) which are a partial DTS(4)
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satisfy the condition of Theorem 2.2 but not the conditions of Proposition 2.1
and so are not a partial LDTS(4). If they are augmented by directed triples
(y,b,x), (z,b,y), (x,b, z) then we have a partial LDTS(5). Partial LDTS(n) will
be called flexible or non-flexible depending on whether they satisfy the condition
of Theorem 2.3.

The second difference between Latin directed triple systems and Steiner or
Mendelsohn triple systems is that with the former there is not a one-one corre-
spondence between the triple systems and the associated quasigroups or loops.
Suppose that we are given the operation table of a DT'S-quasigroup or DT'S-loop.
We wish to recover the LDTS(n), (V,B), from which it came. Choose z,y, z,
x#y#z#x withz-y=z Then (z,y,2) or (z,z,y) or (z,z,y) € B. In order
to identify which of these three possibilities is the correct one perform a number
of tests:

o if vz #y, then (z,z,y) € B.

o if -y # x, then (z,y,2) € B.

eify-z#4xand z-x #y, then (x,z,y) € B.
Otherwise, x-z =y, z-y = x, and either y-z = x or z-x = y. The only inference
that can be made is that the set B contains one of the six directed triples formed
by ordering the three points z,y, 2, together with its reverse.

In a DTS(n), (V,B), any directed triple (z,y, z) € B for which also (z,y,z) €
B will be called bidirectional. The set {z,y,z} will be called a Steiner triple.
Other directed triples will be called unidirectional. From the above discussion,
if a LDTS(n) contains a pair of bidirectional directed triples, then these can be
replaced by a different pair of bidirectional triples to form a potentially non-
isomorphic LDTS(n) yet both will generate the same quasigroup and loop. This
is illustrated in the following example. Here and in other places throughout the
rest of this paper, where there is no danger of confusion, for simplicity we omit
set brackets and commas from directed triples.

Example 2.4. Let V ={0,1,2,3,4,5,6}.

Define B = {102, 201, 304, 403, 506, 605, 315, 416, 514, 613, 326, 425, 523,624},
and B = {012,210, 034, 430, 056, 650, 315,416, 514, 613, 326, 425, 523, 624 }.

Both (V,B) and (V,B’) are LDTS(7)s but are clearly non-isomorphic as consid-
eration of the distribution of points in the middle position of the directed triples
shows. However both give the same DTS-quasigroup.

0123456
0/0 21 4 3 6 5
112106 5 3 4
2/1 0 2 5 6 4 3
314 56 301 2
413 6 50 4 21
516 4 3 215 0
6(53 41206

The automorphism group of the DTS-quasigroup is the dihedral group D, of or-
der 8 generated by the permutations (3 5 4 6) and (1 2)(5 6). Note however
that this is not necessarily the automorphism group of the LDTS(7)s. The same
group is the automorphism group of (V, B) but not of (V, B’) which has only the
identity automorphism.
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In view of the above, for purposes of enumeration it makes more sense to count
DTS-quasigroups (or DTS-loops; these are in one-one correspondence) rather
than the Latin directed triple systems from which they come. Where there are
bidirectional triples, the block set B of a LDTS(n) will be expressed as the union
of a set of Steiner triples, 7, and a set of unidirectional directed triples, D. Denote
the cardinality of T by ¢, (so that the number of bidirectional triples is 2t), and
the cardinality of D by d.

A directed triple system, (V, B), is said to be pure if (x,y,2) € B = (z,y,z) ¢
B. Pure LDTS(n) give anti-commutative DTS-quasigroups and, because there
are no Steiner triples, there does exist a one-one correspondence between these.
At the other extreme, commutative DTS-quasigroups correspond to the situation
where every directed triple is bidirectional, i.e. where the LDTS(n) consists of the
blocks of a Steiner triple system, each in some order, together with their reverse.
In short, commutative DTS-quasigroups and Steiner quasigroups are the same.

In the next section we present some enumeration results for DTS-quasigroups
of small order. Then in the rest of the paper we discuss existence results. A
necessary condition for the existence of a LDTS(n) is n = 0, 1 (mod 3) and
the number of directed triples is n(n — 1)/3. For n = 1, 3 (mod 6), there exist
Steiner quasigroups of these orders and, except for n = 3 or 9, by choosing a
Steiner triple system containing a Pasch configuration {a, b, c}, {a,y, 2z}, {x,b, 2},
{z,y,c} and replacing these Steiner triples by directed triples (a,b,c), (a,y, 2),
(x,b,2),(z,y,¢),{z,y,x),(c,b, ), {c,y,a), (z,b,a) a DTS-quasigroup which is non-
commutative is obtained. Replacing a Pasch configuration by the above set of
directed triples is an important technique which will be used extensively in the
next two sections. Note that the set of directed triples is a partial LDTS(6) and
is flexible. We will denote it by P.

But replacing a single Pasch configuration means that most of the triples will
still be bidirectional. It would be of more interest to construct pure LDTS(n) or
at least ones with relatively few bidirectional triples. In Section 4 we construct
flexible LDTS(n) for n = 1, 3 (mod 6) in which the number of unidirectional
triples is asymptotic to n?/3. Then in Section 5 we turn our attention to non-
flexible systems and determine the complete spectrum for the existence of such
LDTS(n). Again in the systems that we construct the number of unidirectional
triples is asymptotic to n?/3. We leave existence results for flexible LDTS(n) of
even order and pure LDTS(n) to a future paper.

3. ENUMERATION

We present the enumeration results for DT'S-quasigroups of small order in the
following theorem.

Theorem 3.1. The numbers of non-isomorphic DTS-quasigroups of order n =
3,4,6,7,9,10,12 are 1,0,0,2,4,0, 2 respectively.

We consider each order in turn.
n = 3. Trivially the only DTS-quasigroup of order 3 is the Steiner quasigroup of
this order.

n =4. Let V = {0,1,2,3}. Without loss of generality there exists a directed
triple (0, 1,2). Therefore there also exists a directed triple (2,1,0) or directed
triples (2,1,-), (2,-,0), (-,1,0) where the dots, both here and in other places
later, represent yet to be assigned points. Neither of these two possibilities can
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be completed to form a LDTS(4).

n=6. Let V =1{0,1,2,3,4,5}. There will be 10 directed triples in any LDTS(6).
So without loss of generality there are directed triples (0,1,2), (0,3,4), (-,0,5).
But now the unassigned first element in the last block must also be 5.

n=7 Let V=1{0,1,2,3,4,5,6}. Given any directed triple system DTS(n), if
the ordering of the points in the blocks is suppressed then a twofold triple system
TTS(n) is obtained. There exist 4 non-isomorphic TTS(7)s which are listed in
6, page 61]. It is a straightforward exercise to take each of these in turn and try
to construct LDTS(7)s by ordering the blocks. Perhaps it is appropriate to note
here that there are 2368 non-isomorphic DTS(7)s, [7], but the extra constraint
on Latin directed triple systems makes the exercise considerably easier. However
the enumeration can be shortened as follows. In a LDTS(n), (V,B), for z € V,
denote by f(z), m(x),l(z), the number of occurrences of the point z in the first,
middle, and last positions respectively in unidirectional triples of B. Obviously
f(z) = (z) for all z. Also X,cy f(x) = Epeym(z) = n(n —1)/3 — 2t, where ¢ is
the number of Steiner triples.

Now consider the 4 non-isomorphic TTS(7)s from [6] in turn. It will be con-
venient to do so in reverse order. System #4 has t = 0. So for each point =z,
(f(x),m(x)) =(3,0),(2,2),(1,4) or (0,6). But neither m(z) =2 nor f(z) =1 as
this would imply that the directed triples come from Steiner triples. So f(z) =3
or 0. But the number of unidirectional triples, 14, is not divisible by 3 and so
there is no LDTS(7) from this possibility.

System #3 has one Steiner triple {0, 1,2}. So for the three points 0, 1, 2 we have
(f(z),m(x)) = (2,0) or (0,4) and for the other four points (f(z), m(z)) = (3,0)
or (0,6). There are two possibilities. The first is that 0, 1, 2 have (f(x), m(z)) =
(2,0), 3, 4 have (f(z),m(z)) = (3,0), and 5, 6 have (f(x),m(z)) = (0,6). But
then the ordered pairs (5,6) and (6,5) cannot occur. The second possibility is
that 0, 1, 2 have (f(z),m(z)) = (0,4) and 3, 4, 5, 6 have (f(z), m(z)) = (3,0).
But this cannot be completed without introducing further Steiner triples. (The
problem is equivalent to decomposing the complete directed graph on 4 vertices
into three directed 4-cycles which is not possible.)

System #2 has three Steiner triples {0, 1,2},{0,3,4},{0,5,6}. The six points
other than 0 have (f(x),m(x)) = (2,0) or (0,4). So there are four points of the
first type and two points, say 1 and 2, of the latter type. Without loss of gen-
erality the unidirectional triples are (3,1,5), (4,1,6), (5,1,4), (6,1,3), (3,2,6),
(4,2,5), (5,2,3), (6,2,4) and the DTS-quasigroup is the one given in the example
in the previous section. It is flexible.

Finally system #1 has seven Steiner triples, i.e. it is two copies of identical
STS(7)s and gives the Steiner quasigroup of order 7.

n = 9. It is possible, but extremely tedious and time-consuming, to enumerate
DTS-quasigroups of order 9 by hand. Perhaps a better approach is to adopt the
same technique as for order 7 and use a computer. There exist 36 non-isomorphic
TTS(9)s, [15], [13]. These are listed in [6, page 63]. It is a straightforward
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procedure to take each of them in turn and attempt to order the blocks in order
to construct a LDTS(9). We find that there are in fact four DT'S-quasigroups of
order 9, including the Steiner quasigroup of this order. Details of the other three
are given below, referenced as examples.

Example 3.2. Let V ={0,1,2,3,4,5,6,7,8}.

Define 7 = {{0,1,8},{2,5,8},{3,6,8},{4,7,8},{2,4,6}, {3,5,7}} and

D = {207,706, 605, 504, 403, 302, 213, 314, 415,516,617, 712}.

Then (V, B) is a flexible LDTS(9) with d = 12 and 2t = 12.

The automorphism group of the DTS-quasigroup is the dihedral group Dg of
order 12 generated by the permutations (23456 7) and (0 1)(2 3)(4 7)(5 6).

Example 3.3. Let V =1{0,1,2,3,4,5,6,7,8}.

Define 7 = {{0,1,8},{2,3,4},{2,7,8},{3,6,8}, {4,5,8}, {5,6,7}} and

D = {026, 035,047, 125,137,146, 520, 531, 621, 640, 730, 741}.

Then (V, B) is a non-flexible LDTS(9) with d = 12 and 2t = 12.

For example (0-2)-0=6-0=4, whilst 0- (2-0)=0-5=3.

The automorphism group of the DTS-quasigroup is the dihedral group D3 of
order 6 generated by the permutations (2 3 4)(5 7 6) and (0 1)(3 4)(5 6).

Example 3.4. Let V ={0,1,2,3,4,5,6,7,8}.

Define 7 = {{0,1,2},{3,5,7}, {4,6,8}} and

D = {308, 316, 324,403, 415, 427,504, 518, 526, 605, 617, 623, 706, 714, 728,
807,813,825}

Then (V, B) is a non-flexible LDTS(9) with d = 18 and 2t = 6.

For example (3-4)-3=2-3=06, whilst 3-(4-3)=3-0=38.

The automorphism group of the DTS-quasigroup is the group D3 x C3z of order
18 generated by the permutations (1 2)(3456 7 8) and (012)(357).

n = 10. Since n is even, m(x) is odd and at least 3. The number of directed
triples is 30 and so it follows that for each point z, (f(z),m(z)) = (3,3) and
there are no Steiner triples. The directed triples containing each point x have
the format (a,z,b), (b,x,c), (¢, z,a). From these form oriented triangles (a, b, c).
Collectively, these triangles have the property that they contain a directed edge
(cr, B) iff they also contain the directed edge (3, ). Hence they can be sewn
together along common edges to form an orientable surface. It will be a surface
rather than a pseudosurface because f(z) = [(x) = 3, i.e. each vertex has valency
3. Now the Euler characteristic, #vertices + #faces — #edges = 10 + 10 — 15
which is odd; a contradiciton. Hence there is no LDTS(10).

n = 12. We first present a construction of LDTS(12)s based on a tetrahedron.
Let the vertex set be {0,1,2,3} and choose a consistent orientation of the faces,
say (012),(031),(023), (13 2). Each of the four 3-cycles will be regarded as
a permutation ¢; € Sy, with ¢;(i) = .

For every x € {0,1,2} define sets of directed triples:

D ={((z.4), (x + 1.7), (x,65(j) : 5,5 €{0,1,2,3},j # j'}

Dy = {{(z,), (@ + 1,7, (.6, (7)) : 5,5 €{0,1,2,3},j # j'}
For every x € {0,1,2} choose D, € {D;,D;} and regard D = Dy U D; U Dy
as a set of unidirectional triples. These triples cover every pair ((z,j), (z/, 7))
from the set {0,1,2} x {0,1,2,3} for which j # j'. By adjoining Steiner triples
{(0,7),(1,7),(2,7)} we obtain a LDTS(12).
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For each x € {0, 1,2} there are two choices for D, corresponding to the chosen
orientation. However for isomorphism what is important is whether, for given x
and 2/, these are the same or opposite. There must always be two that are the
same so without loss of generality let Dy = DJ and D; = Dy. There are thus
two isomorphism types depending on the choice of Dy. In the example below we
explicitly list the triples of these two systems, constructed as described, where
the ordered pair (z,j) is represented as the integer 4x + j with 10 written as T
and 11 as E.

Example 3.5. Let V =1{0,1,2,3,4,5,6,7,8,9,T, E}.

Define 7 = {{0,4,8},{1,5,9},{2,6,T},{3,7, E}},

Dy = {052,063,071,160, 172,143,270, 241, 253, 342, 350, 361},

D = {496,4T7,4E5,5T4,5E6,587,6F4, 685,697, 786,794, TT5},

Di = {81T,82F,839,928,93T,90F, 738,709, T1E, EOT, E18, E29}, and

Dy = {81F,829,837,92F,938,907, 739, T0F, T18, E09, E1T, £28}.

Let D™ = D U Df UDJ and D~ = Df UD; U D;.

Then (V, T UD*) and (V, T UD™) are both non-flexible LDTS(12)s with d = 36
and 2t = 8.

For example in both systems (0-1)-0=7-0=2, whilst 0-(1-0)=0-6 = 3.
The permutations (1 2 3)(5 6 7)(9 T E) and (0 1)(2 3)(4 5)(6 7)(8 9)(T E),
which together generate the alternating group .44 of order 12, stabilize each of
the sets T, Dg, D, DS and D, and give the full automorphism group of the
DTS-quasigroup of the LDTS(12), (V, 7 UD~). The other DTS-quasigroup has
an additional permutation automorphism (04 8)(16 £)(279)(3 5 T) to give the
full automorphism group of order 36.

In fact the two systems are the only two DT'S-quasigroups of this order. We state
this formally as a proposition.

Proposition 3.6. Fvery DTS-quasigroup of order 12 is isomorphic to one of the
two quasigroups given in Example 3.5.

Proof. The proof was obtained by computer with the help of the model builder
Mace4, which is part of the package Prover9 [12]. The procedure can easily be
repeated by giving an algebraic description of DTS-quasigroups, generating all
models of order 12, and using the isomorphism filter. 0O

n > 13. At n = 13, the combinatorial explosion takes over. The smallest anti-
commutative DT'S-quasigroups are of this order. There are 8444 non-isomorphic
such systems and an example is given below. However none of them are flexible.

Example 3.7. Let V ={0,1,2,3,4,5,6,7,8,9, 7, E, W }.

Define B = D = {103, 142, 201, 247, 2E3, 215, 302, 341, 3E6, 37, 406, 4T5, 459,
AW8, 504, 518, 539, 5T7, 5E2, 5W6, 605, 619, 628, 674, 6ET, 613, 709, 715, 743,
7T6,7ES, TW2, 807,816, 82T, 835, 8E4, 819, 908, 917, 926, 93T, 9E5, W4, TOW,
T1E,T29,T38, EOT, EIW, WO0E, W1T?.

Then (V, B) is a pure non-flexible LDTS(13).

For example (2-3)-2=FE-2 =5, whilst 2- (3-2) =2-0= 1.

In addition there are 1,197,601 non-flexible and 924 flexible (including the 2
Steiner quasigroups) DTS-quasigroups which are not anti-commutative.

It remains to identify the smallest anti-commutative, flexible DT'S-quasigroups.
The next order to consider is n = 15 but first we develop some structural theory
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of anti-commutative, flexible DTS-quasigroups. Let D = (V, B) be a pure flexible
LDTS(n). Suppose that (x,u,y) € B. Then there exists z, v such that (y,u, z),
(y,v,2) € Bwhere z# z,v#u. So (y-z)-y=v-yandy-(z-y) =y -u= =z
Therefore v -y = z, i.e. (z,v,y) € B. It follows that B partitions into subsets
{1, u, 20), (T, u,23), ooy (1, U, T ), (T, wy 1), (X2, 0, 21), (T3,0,22), .. .,

(T, v, Tp—1), (T1,0,T,) },n > 3, which we will call components, with each point
u, vV, 1, T, ..., T, distinct. These components can be thought of as spheres with
u and v at the poles, both joined to x1,xs,...,x, around the equator. In the
notation used above for the case n = 7, for each point x of a LDTS(n), m(z) # 1,
and further, if it is pure m(x) # 2. Also n — 1 — m(z) is divisible by 2 and the
above argument shows that if it is also pure and flexible n — 1 —m(z) is divisible
by 4. We now have the following result.

Proposition 3.8. There is no anti-commutative, flexible DTS-quasigroup of or-
der 15.

Proof. The constraints that 14 —m(x) is divisible by 4 and m(z) # 2 implies that
m(z) = 14,10 or 6. Suppose that there are A, u and v points with each of these
three counts, respectively. Then

14N+ 10p + 6v =70 and A+ p+ v = 15.

Hence 8\ + 4 = —20 which is a contradiction because the coefficients cannot be
negative. 0

However for n = 16, there does exist an anti-commutative flexible DT'S-quasigroup.
It was found by computer using the package Paradox [4].

Example 3.9. Let V =1{0,1,2,3,4,5,6,7,8,9, A, B,C, D, E, F}.

Define B = D = {801,107, 70E, E05,50F, FOB, B08,198, 791, E97,59F, F95, BOF,
898, B36,638,83D, D37, 73F, F3E, E3B, 64B, 846, D48, TAD, FAT, EAF, BAE,
1E6,6EA, AES,8E2.2ED, DEC, CE1,6F1, AF6,8F A, 2F8, DF2,CFD,1FC,
03C, €39, 934, A30, C'40,94C, A49, 044, 312, 214, 413, 253, 452, 354, 026, 629, 920,
6D0,9D6,0D9, 56C, C67, 765, C85, 78C, 587, 2TA, ATB, BT2, AC2, BC A, 2CB,
1AF, FAD, DAL, FB1, DBF,1BD}.

Then (V, B) is a pure, flexible LDTS(16). It has only the identity automorphism.

The next order to consider is n = 18 and again we can use the theory developed
above to prove that there is no pure, flexible LDTS(n) of this order.

Proposition 3.10. There is no anti-commutative, flexible DTS-quasigroup of
order 18.

Proof. Since 4 divides 17—m(x) and m(z) # 1 then m(z) = 17,13,9 or 5. Suppose
that there are A, i, v and p points with each of these four counts, respectively.
Then
1T A+ 1Bpu+9v+5p=102and A+ pu+v+p=18.

Further A =0 or 1.
If A =1 then

Bpu+9v+5p=85and u+v+p=1T7.
Hence 8u + 4v = 0 and the only solution is (A, u, v, p) = (1,0,0,17). With this
distribution, it is not possible to construct a pure, flexible LDTS(18) composed
of components as required.
If A =0 then

183u+9v+5p =102 and p+ v + p = 18.
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Hence 8+ 4v = 12 so (A, i, v,p) = (0,0,3,15) or (0,1,1,16). Again it is not
possible to construct a pure, flexible LDTS(18) composed of components. 0O

For n = 19, the equations lead to a unique distribution. We have that 4 divides
18 —m(x) and since m(z) # 2 it follows that m(z) = 18, 14,10 or 6. Proceeding as
before let there be A, 4, v and p points with each of these four counts, respectively.
Then
I8N+ 14p+10v+6p=114dand A+ p+v+p=19

with again A =0 or 1.
If A =1 then

14p+10v +6p =96 and p+ v + p = 18.
Hence 8u + 4v = —12 and there is no solution.
If A =0 then

14p+10v +6p =114 and p+v + p = 19.

Hence 8u 4 4v = 0 and the only solution is (A, i, v, p) = (0,0,0,19). This leaves
open the possibility of an anti-commutative, flexible DT'S-quasigroup with a cyclic
automorphism and indeed such a system does exist.

Example 3.11. Let V = Z,.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ¢ — i + 1.

The starter blocks for B = D are (0,1,6), (6,1,9), (9,1,0), (6,2,0), (0,2,9),
(9,2,6). Then (V, B) is a pure, flexible LDTS(19).

4. FLEXIBLE LDTS

Our constructions of flexible LDTS(n) are of two types. The first of these uses
the well-known so-called “doubling” construction for Steiner triple systems and
is particularly simple. It deals with the residue classes 3, 7 (mod 12). The details
are given in the proof of the following proposition.

Proposition 4.1. There ezists a flexible LDTS(n) for alln = 3, 7 (mod 12).

Proof. Put m = (n — 1)/2 and choose an STS(m), (V,B). Let V' = {2’ : x € V'}
and W = VUV’ U {oco}. Construct a collection of triples B’ as follows. For
all {z,y,z2} € B, assign {x,y, z},{z,y,2'}, {2, y,2'}, {2, ¢, 2} € B'. Further let
{z,2',00} € B' for all x € V. Then (W,B') is an STS(n). In order to obtain
a LDTS(n) replace each Pasch configuration as above by the set P of directed
triples and retain the sets containing the point oo as Steiner triples. Because
the LDTS(n) is constructed of flexible components, i.e. just the flexible partial
LDTS(6), P, and the trivial squag on 3 points, it is also flexible. The number
of unidirectional triples, d = (n — 1)(n — 3)/3 and the number of bidirectional
triples, 2t = n — 1. 0

The second construction of LDTS(n) uses a standard technique (Wilson’s fun-
damental construction). For this we need the concept of a group divisible design
(GDD). Recall that a 3-GDD of type ¢g* is an ordered triple (V, G, B) where V is a
base set of cardinality v = gu, G is a partition of V into u subsets of cardinality g
called groups and B is a family of triples called blocks which collectively have the
property that every pair of elements from different groups occur in precisely one
block but no pair of elements from the same group occur at all. We will also need
3-GDDs of type g“m!. These are defined analogously, with the base set V' being
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of cardinality v = gu + m and the partition G' being into u subsets of cardinality
g and one set of cardinality m. Necessary and sufficient conditions for 3-GDDs of
type g* were determined in [3] and for 3-GDDs of type g“m! in [5]; a convenient
reference is [8] where the existence of all the GDDs that are used can be verified.

We will also need the following system.

Example 4.2. Let V = {0,1,2,3,4,5,6,7,8,9, 7, E, W }.

Define T={{0,4,5}, {1,7,9}, {1, 7, W},{3,5,8},{3,7, W}, {5,9, T}} and

D = {103, 142,156, 18 F', 201, 243, 257, 28W, 302, 341, 60 F, 629, 63T, 647, 65, 681,
706,747, 75 F, 782,807, 849,908, 92F, 936, 94W, T07, 126, T3E, T48, EOW, E2T,
E39, E46, E51, E87, W09, WAE , W52, W86}.

Then (V, B) is a flexible LDTS(13) with d = 40 and 2t = 12.

We can now prove the following proposition.
Proposition 4.3. There ezists a flexible LDTS(n) for alln = 1, 9 (mod 12).

Proof. The proof is divided into different residue classes.

(a) n = 1 (mod 12). Take a 3-GDD of type 6° s > 3. Inflate each point by a
factor 2 and adjoin an extra point co. On each inflated group, together with
the point oo, place a flexible LDTS(13) given in Example 4.2. On each in-
flated block place the set P of directed triples (a, b, ), (a,y, 2), (z,b, 2), {x,y, ),
(z,y,2),{c,b,x),{c,y,a),(z b, a), with the three sets of points {a, 2}, {b, v}, {c, 2z}
as the inflated points in the three groups. We will use P in this manner through-
out. This simple construction gives a flexible LDTS(12s + 1), s > 3. A count
shows that d = (n — 1)(n — 3)/3 and 2t = n — 1.

(b) n =9 (mod 24). Take a 3-GDD of type 43! s > 1. Inflate each point by a
factor 2 and adjoin an extra point co. On each inflated group, together with the
point oo, place a flexible LDTS(9) given in Example 3.2. On each inflated block
place the set of directed triples P. This gives a flexible LDTS(24s +9), s > 1
with d = (n — 1)(2n — 9)/6 and 2t = 3(n — 1)/2.

(c) n = 21 (mod 24). Take a 3-GDD of type 43716, s > 1. Inflate each point by
a factor 2 and adjoin an extra point co. On each inflated group of cardinality 8,
together with the point oo, place a flexible LDTS(9) given in Example 3.2 and on
the inflated group of cardinality 12, together with the point oo, place a flexible
LDTS(13) given in Example 4.2. On each inflated block place the set of directed
triples P. This gives a flexible LDTS(24s+21), s > 1 with d = (2n®*—11n+45)/6
and 2t = 3(n — 5)/2.

(d) The above constructions complete the proof of the proposition except for the
two values n = 21 in (c) and n = 25 in (a). These too can be constructed by
GDD techniques. For n = 21 take a 3-GDD of type 3. Inflate each point by
a factor 2 and adjoin three extra points ooy, 009, 003. On each inflated group,
together with the three extra points, place a flexible LDTS(9) given in Example
3.2 in such a way that the triple {oo1, 009, 003} is identified with the same Steiner
triple in each LDTS(9). On each inflated block place the set of directed triples
P. This gives a flexible LDTS(21) with d = 108 and 2t = 32. For n = 25 take
a 3-GDD of type 43. Inflate each point by a factor 2 and adjoin an extra point
00. On each inflated group, together with the point oo, place a flexible LDTS(9)
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given in Example 3.2. On each inflated block place the set of directed triples P.
This gives a flexible LDTS(25) with d = 164 and 2¢ = 36. 0O

Combining the results of the above two propositions we have proved the following
result.

Theorem 4.4. There exists a flexible LDTS(n) for alln = 1, 8 (mod 6).

5. NON-FLEXIBLE LDTS

Our constructions of non-flexible LDTS(n) use a variety of techniques and
divide into different residue classes. The first proposition deals with the case
where n is divisible by 3 and is a modification of the well-known Bose construction.
First we recall some basic definitions.

Two Latin squares L and M are said to be mutually orthogonal if L(x,y) =
L(z',y") and M(z,y) = M(2',y’) implies that x = 2’ and y = ¢/. A Latin square
L is said to be self-orthogonal if it is mutually orthogonal to its transpose L’. The
diagonal of a self-orthogonal Latin square is a transversal, i.e. it contains every
element precisely once; thus by relabelling the elements, a self-orthogonal Latin
square can be made idempotent, i.e. L(i,i) = 1.

Proposition 5.1. There exists a non-flexible LDTS(n) for all n = 0 (mod 3),
except n = 3, 6.

Proof. Let m =n/3 and L be a self-orthogonal Latin square of side m, with the
rows, columns, and entries in Z,, and labelled in such a way as to be idempotent.
Such a square exists for all m # 23,6, [2]. Denote the entry in row z, column y
by z % y.

Let V =7Z,, x Z3. Let D, the set of unidirectional triples, be

((@,0), (x*y,i+1),(y,4)), .,y € Zm, xFy, 1€ 24
and T, the set of Steiner triples, be
{(2,0),(z,1),(z,2)}, v € Zpn.

Then (V,B) = (V,DUT) is a LDTS(n). For m = 1 it produces the squag of
order 3. We show that for m # 1 it is not flexible. Choose any z,y € Z,,, * # y.
Now [(z,7) - (y,9)] - (z,1) = (x xy,i + 1) - (,i) = (2,7) where z *xx = x % y.

Also (z,1) - [(y,1) - (x,0)] = (x,1) - (y*x,i + 1) = (w,i) where x xw = y * .

If w =z then (x xy,y*x) = (z*z,x* z) which violates L being self-orthogonal.
Hence w # z and the LDTS(n) is non-flexible. The number of unidirectional
triples, d = 3m(m — 1) = n(n — 3)/3 and the number of bidirectional triples,
2t = 2m = 2n/3.

It remains to consider the three values of m for which there does not exist a self-
orthogonal Latin square. By Theorem 3.1, for m = 2, there is no LDTS(6). For
m = 3, non-flexible LDTS(9)s are given in Examples 3.3 and 3.4. For m = 6, we
remark that the full force of self-orthogonality is not required in the above con-
struction. Using the idempotent anti-symmetric Latin square below will produce
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a LDTS(18) which is non-flexible.

01 2 3 45

0/0 541 3 2

114 1 5 0 2 3

213 0 2 51 4

312 41 3 5 0

415 3 0 2 4 1

511 2 3 4 0 5
(0,0) - (1,0)] - (0,0) = (5,1) - (0,0) = (4,0, whilst (0,0) - [(1,0) - (0,0)]
(70)'(471):(27 ) O

Next we deal with the case where n = 1 (mod 6). The following example is a

non-flexible LDTS(13).

Example 5.2. Let V = {0,1,2,3,4,5,6,7,8,9, 7, E,W}.

Define T={{0,7,8}, {1,8,T}, {3,8,9}, {6,8, W}, {4,7, W}, {4,9,T}} and

D = {012, 046, 053, 0E9, 0W'T, 145, 1W E, 213, 240, 256, 277, 258, 29, 310,
34E, 357, 316, 3W2, 548, 5ET, 5W1, 619, 643, 650, 612, 6E7, 716, 759, 713,
TE2, 842, 8E5, 917, 952, 9E6, 9W0, TE0, TW5, E41, EW3}.

Then (V, B) is a non-flexible LDTS(13) with d = 40 and 2t = 12.

For example (0-1)-0=2-0=4, whilst 0-(1-0)=0-3=5.

Proposition 5.3. There exists a non-flexible LDTS(n) for allm = 1 (mod 6),
exceptn = T.

Proof. We have already noted that there is no non-flexible LDTS(7) and a non-
flexible LDTS(13) is given in the above example. Let m > 3 and put n = 6m+ 1.
Let (V, B) = (V,DUT) be a non-flexible LDTS(3m), constructed as in the proof of
the previous proposition. We form a LDTS(6m+1) as follows. Let V' = {2/ : z €
V}and W =V UV'U{oo}. Construct a collection of triples B’ as follows. For all
(x,y,z) € D, assign (z,y, z), (x,y,2'), (2", y,2),(x',y,z) € D'. In addition for
all {x,y,z} € T assign (z,y, 2), (x,y,2'), {2/, y, 2'), (', ¥/, 2), (', ¢/, 2'), (z,y,2'),
(z,y,z),(z,y,x) € D'. Further let {z,2',00} € T, the set of Steiner triples in
the LDTS(6m+1), for allz € V. Let B' = D'UT’. Then (W, ') is a non-flexible
LDTS(n) withd = (n —1)(n —3)/3 and 2t =n — 1. 0O

Next we deal with the case where n = 4 (mod 12). First we give three examples
for the cases n = 16,28,40. The first of these is used in the proposition below,
the proof of which again uses GDD techniques. The other two examples give the
values which the method misses.

Example 5.4. Let V ={0,1,2,3,4,5,6,7,8,9,A,B,C, D, E, F}.

Define T={{0, 1,2}, {0,3,4}} and

D = {135, 144, 106, 236, 25C, 297, 2D8, 2F4, 468, 478, AD2, 4FC', 506, 537,
541, 5AF, 5B9, 5ED, 60F, 631, 692, 6A7, 6CD, 6E5, 705, T1F, 732, T8 E, 796,
TAD, 80C, 819, 834, 852. 86B, 8D4, 90D, 91E, 938, 945, 9BF, 9C A, A0S, A2B,
A39, AAE, AC1, BOA, B18, B2E, B3D, B64, B7C, COE, C3B, C58, C74, CF2,
D07, D1B, D3F, DA5, DC9, DE6, EOB, E17, E2A, E3C, E49, ESF, F09,
F1D, F3E, FST, FAG, FB5).

Then (V, B) is a non-flexible LDTS(16) with d = 76 and 2t = 4.

For example (1-3)-1=5-1=4, whilst 1-(3-1)=1-6=C.
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Example 5.5. Let V = Zy4 x 2.

The system is defined by the triples obtained from the following starter blocks

under the action of the mapping (¢, 7) — (i + 1, 7).
1

The starter blocks for 7 are {(0,0), (1,0),(3,0)} and {(0,0), (4,0),(0,1)}

and for D are ((0,0),(9,0), (12,1)), ((0,0) (1,1),(7,0)),

((0,0), (6, 1), (11, 1)), ((0,0), (7. 1), (5, 1)), ((0.0). (8.1, (4, 1)),

{(0,0),(9. 1), (8,0)), {(0,0), (13, 1),(6.0)), ((0. 1), (11,0), (13, 1),

(0, 1),(12,0), (3,0)}, {(0, 1), (2, 1), (10,0)), (0, 1), (4.1), (7. 1)}

(0.1, 8,1), 9.0)). (0, 1), (9, 1), (1, 1)), ((0. 1), (11,1).(2,0))’

Then (V,B) is a non- ﬂex1ble LDT 28 ) ith d = 196 and 2t = 56.

For example [(0,0) - (1,1)] - (0,0) = (7,0) - (0,0) = (8,1), whilst (0,0) - [(1,1) -

(0,0)] = (0,0) - (6,0) = (13,1).

Example 5.6. Let V = Z95 x 2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping (7, 7) — (i + 1, 7).
The starter blocks for T are {(0,0), (17
{(0,0), (8,0),(0,1)} and for D are {((0
19
1)), {(0,0), (14,1),
0. (00,071,
0,17, (0.1, 15,0,
(0.1). (5.1). (17
((0,1), (11, 1), (
-flexible LDTS(40
For example [( ,0) - (1, D] - (0,0) = (
(0,0)] = (0,0) - (7,0) = (2,1).
Proposition 5.7. There exists a non-flexible LDTS(n) for alln = 4 (mod 12),
except n = 4.

Proof. We have already noted that there is no LDTS(4) and non-flexible LDTS(n)
for n = 16, 28, 40 are given above. Take a 3-GDD of type 6°8!, s > 3. Inflate each
point by a factor 2. On each inflated group of cardinality 12 place a non-flexible
LDTS(12) constructed as in the proof of Proposition 5.1 and on the inflated
group of cardinality 16 place a non-flexible LDTS(16) given in Example 5.4. On
each inflated block place the set of directed triples P. This gives a non-flexible
LDTS(12s 4 16), s > 3 with d = (n? — 3n + 20)/3 and 2t = 2(n — 10)/3. 0

0
X
1

Now we come to the final case where n = 10 (mod 12). This in turn divides into
three different residue classes, for one of which we will need the following example
of a non-flexible LDTS(22).

Example 5.8. Let V = Z;; x 2.
The system is defined by the triples obtained from the following starter blocks

under the action of the mapping (4, j) — (i + 1, 7).
The starter blocks for 7 are {(0,0), (1,0), (3, O)} and {(0,0), (4,0), (0,1)} and for

1
D are ((0,0). (5.1), (8, 1)), {(5.0). (0,0, (3.1)), {(1,1).(0,0), (10,1},
((2,1),(0,0),(5,0)), ((3,1),(0,0), ( 7%))% ((3.1), (0. 1), (4, 1)), ((4,1). (0,0). (6,1)).

2
((6,1),(0,0), (1,1)), {(9,1), (5, 1), (0,0)), {(10,1), 0,0), (4, 1)).
Then (V,B) is a non- ﬂeX1ble LDT (22) with d = 110 and 2t = 44.
)

For example [(1,1) - (0,0)] - (1,1) = (10,1) - (1,1) = (6,0), whilst (1,1) - [(0,0) -
(1, D] = (1,1) - (6,1) = (2,0).
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Proposition 5.9. There ezists a non-flexible LDTS(n) for alln = 10 (mod 12)
except n = 10 and possibly except n = 58.

Proof. We deal with the different residue classes in turn.

(a) n = 34 (mod 36). Take three copies of a non-flexible LDTS(12s + 12),
s > 0, constructed as in the proof of Proposition 5.1 on point sets {oo, (,0) :
0 < i < 125 + 10}, {oo,(3,1) : 0 < i < 125 + 10}, {o0,(3,2) : 0 < @ <
12s + 10} respectively. Now take an idempotent, antisymmetric Latin square of
side 12s+11, for example a self-orthogonal Latin square. Adjoin the Steiner triples
{(z,0),(x,1),(x,2)},z € Z195411 and unidirectional triples ((x,0), (y, 1), (x*y, 2))
and ((y x 2,2),(y,1),(z,0)), z,y € Zisss11, * # y. This gives a non-flexible
LDTS(36s 4 34), s > 0, with d = (n* — 5n — 2)/3 and 2t = 2(2n + 1) /3.

(b) n» = 10 (mod 36). This case is similar to the previous one but starting
with three copies of a non-flexible LDTS(12s + 4), s > 1, constructed as in the
proof of Proposition 5.7. This gives a non-flexible LDTS(36s + 10), s > 1, with
d = (n? —5n +58)/3 and 2t = 2(2n — 29)/3, n > 154.

(¢) n =22 (mod 36). The method used in the previous two cases is inapplicable
here because of the non-existence of a LDTS(12s+ 8). We revert to a GDD tech-
nique. Take a 3-GDD of type 9%11', s > 2. Inflate each point by a factor 2. On
each inflated group of cardinality 18 place a non-flexible LDTS(18) constructed
as in the proof of Proposition 5.1 and on the inflated group of cardinality 22 place
a non-flexible LDTS(22) given in Example 5.8. On each inflated block place the
set of directed triples P. This gives a non-flexible LDTS(36s + 22), s > 2, with
d= (n+8)(n—11)/3 and 2t = 2(n + 44)/3 and just leaves the value n = 58
undecided. 0O

It remains only to consider n = 58. We first need the following example which is
of a non-flexible LDTS(24) which contains a LDTS(7) as a subsystem. In fact the
LDTS(24) contains three disjoint LDTS(7)s but we will not need this additional

property.

Example 5.10. Let V = {Z; x Z3} U {001, 009, 003}.

The three disjoint LDTS(7)s are defined by the triples obtained from the following
starter blocks under the action of the mapping (i, 7) — (i, j+1) with ooy, 009, 003
as fixed points.

The starter blocks for the Steiner triples 77 are {(0,0), (4,0), (6,0)},
{(1,0),(5,0),(6,0)}, {(2,0),(3,0), (6,0)} and for the unidirectional triples D; are
((1,0), (0,0), (3,0)], ((1,0), (4,0). (2,0)), ((2.0), (0,0), (1,0)), ((2.0), (4,0), (5,0)),
((3,0),(0,0),(5,0)), ((3,0),(4,0),(1,0)), ((5,0), (0,0), (2,0)), ((5,0), (4,0, (3,0)).
The starter blocks for the remaining Steiner triples 75 are {(0,0), (3,1), (3,2)},
{(37 0)7 (47 1>7 (67 2)}7 {(27 0)7 (67 1)7 (47 2)}7 {(07 0)7 (07 1)7 (07 2)% {0017 02, 003}

and for the unidirectional triples Dy are ((1,0), (0,1), (1,2)), ((1,0),(2,1),(5,2)),
<(1’ 0)7 (07 2)7 (67 1>>7 <<17 O)a (27 2)7 (17 1)>’ <(17 0)7 (47 2)7 (57 1)>7 <(27 0)7 (07 1)7 (27 2>>7
<(37 0)7 (17 1)7 (4a 2)>7 <(37 O)a (2’ 2)7 (6: 1))7 <(47 0): (Ov 1>a (4> 2)>7 <(4a O)) (07 2)7 (5a 1)>7
((4,0),(2,2),(3,1)), ((5,0),(0,1),(5,2)), ((5,0), (2,1), (4,2)), {(5,0), (6,1), (1, 2)),
((5,0),(2,2),(5,1)), ((5,0),(3,2), (1,1)), ((6,0), (0, 1), (6,2)), {(6,0), (2,1), (1, 2)),
<(670)>(571)’(3a 2>>7 <(170)>(6’2)’001>7 <(37 )7 2, ),001>, <(5a0>7(072)’001>7

<(17 0)7 (37 1)7 002>’ <(27 0)7 (07 2)a Oo2>> <(57 O>> (47 1)7 002>7 <(37 O)? (57 2)7 OO3>7

<<47 0)7 (17 2)7 003>7 <(67 0>7 (07 2)7 OO3>7 <0017 ( 70)7 (17 2)>7 <0017 ( 70)7 (37 1))7



<Ool7( ) (572)>7 <OO2>( ) (272)>7 <002, (37
<OO37 (0 0) (47 2)>7 <OO37( ) (372)>7 <OO37 (57
<(67 0>’ 002, (67 1)>7 <(27 O>’ 003, (27 1))

Putting 7 = 71 U Ty and D = Dy U Dy, then (V,B) = (V,DUT) is a non-
flexible LDTS(24) containg three disjoint LDTS(7)s subsystems and with d = 144
and 2t = 40. For example [(1,0) - (0,1)] - (1,0) = (1,2) - (1,0) = (2, 1), whilst
(1,0) - [(0,1) - (1,0)] = (1,0) - 501 = (6, 2)

Proposition 5.11. There exists a non-flexible LDTS(58).

Proof. Define sets N' = {(00,7) : 0 < j < 6}, My = {(4,k) : 0 < i < 16},
k = 0,1,2. Take three copies of a non-flexible LDTS(24) containing a LDTS(7)
as a subsystem, constructed as in Example 5.10 on point sets N'U Mgy, N U M,
N U M, respectively with in each case the LDTS(7) on the set N. Now take an
idempotent, antisymmetric Latin square of side 17, for example a self-orthogonal
Latin square. Adjoin the Steiner triples {(z,0), (z, 1), (x,2)}, x € Zy7 and unidi-
rectional triples <($, O)a (y7 1)7 (.Z' *Y, 2)> and <(y * X, 2)7 (y7 1)7 ('1'7 O>>> T,y € Zl?a
x # y. This gives a non-flexible LDTS(58), with d = 960 and 2t = 142. O

Collecting together all the results in this section gives the following theorem.

Theorem 5.12. The existence spectrum of non-flexible LDTS(m) is n = 0, 1
(mod 3), n # 3,4,6,7,10.
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BASICS OF DTS QUASIGROUPS:
ALGEBRA, GEOMETRY AND ENUMERATION

ALES DRAPAL, TERRY S. GRIGGS, AND ANDREW R. KOZLIK

ABSTRACT. A directed triple system can be defined as a decomposition of a
complete digraph to directed triples (x,y, z). By setting zy = z,yz =z, zz =y
and uu = u we get a binary operation that can be a quasigroup. We give an
algebraic description of such quasigroups, explain how they can be associated
with triangulated pseudosurfaces and report enumeration results.

The notion of a DTS quasigroup is defined in Section 1. In Theorem 1.6 we give
an algebraic characterization that is an important tool in classification and enu-
meration of DTS quasigroups. In this respect our main result is the classification
of DTS quasigroups of order 13, where we found 1206969 isomorphism types.
Some examples which may be of particular interest are given in the Appendix.
The method of enumeration is reported in Section 4.

DTS loops are those loops that can be obtained from the (idempotent) DTS
quasigroups by prolongation. Section 2 explains why there is little hope that any
proper DTS loop will turn out to be of an algebraic significance. In Section 3 we
show that DTS quasigroups possess a rich geometrical structure. This structure
offers various invariants, some of which are exploited in the classification result.

The first paper in which DTS quasigroups were defined is [3]. The connection
to this paper is explained below in Section 1.

1. DIRECTED TRIPLE SYSTEMS AND BINARY OPERATIONS

Consider a complete directed graph on a set X. If X is finite of size n, then it
contains n(n — 1) directed edges (arrows). The set of edges can be decomposed
into n(n — 1)/3 triples if and only if n # 2 mod 3. In such a decomposition each
triple has a vertex set of 3, 4, 5 or 6 elements. We shall be considering only the
first alternative. There are four possibilities:

(1) {(z,9), (y, 2), (z,2)} that will be recorded as (x,y, z) and called a cyclic
triple,

(2) {(z,9), (y, 2), (z, 2)} that will be recorded as (z,y, z) and called a directed
triple,

(3) {(x,v), (y,x), (x,2)} that will be denoted by i(x,y, z), and

(4) {(z,v), (y,x), (z,2)} that will be denoted by o(z,y, ).

Triples of types (3) and (4) will be used only in these introductory passages.
Given a decomposition D of the complete directed graph on X to triples of types
(1), (2), (3) and (4) define upon X an operation - by setting a - b = ¢ whenever
{a, b, c} is the vertex set of the triple containing the directed edge (a,b). To define
the binary operation - completely put a - a = a for every a € @) (the operation is
idempotent).

2000 Mathematics Subject Classification. Primary 05B07; Secondary 20N05.
Key words and phrases. Directed triples system, quasigroup.
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Note that (z,y,z) = (y,z,z) = (z,x,y), while (z,y,2), (y,z,z) and (z,z,y)
are pairwise different. Call (z,y,z) the opposite (opposite triple) to (x,y, z),
(z,y, ) the opposite to (x,y, z), i(z,y, ) the opposite to i(z,y, z) and o(z,y, x)
the opposite to o(z, y, z).

Call a triple from D a Steiner triple if the opposite triple is contained in D as
well. The Steiner triples will be denoted by {z,y, 2z} as we shall pay no attention
to the way how {z,y, z} is decomposed into the two opposite triples. The reason
is that we shall be interested in X(-) rather than D. A Steiner triple induces
upon {x,y, z} the structure of the (only) idempotent quasigroup upon this set,
and so the decomposition to the opposites bears no impact upon the definition of
-. It is easy to see that the rest of D (i.e. the non-Steiner triples) can be derived
from the knowledge of the binary operation uniquely.

From here on assume that D contains only cyclic and directed triples.

Lemma 1.1. Suppose that x,y € X and x #y. Then z -y =y - x if and only if
{z,y,x -y} is a Steiner triple of D.

Proof. Let z be the third vertex of the triple that contains (x,y). Then (y,z)
determines a triple with the vertex set {x,y, z} if and only if z =y - z. 0

The binary operation will be sometimes replaced by juxtaposition, with, say,
x - yz meaning z - (y - z). A cyclic triple (z,y,xy) fulfils both y - zy = x and
xy - x = y. The latter laws are called semisymmetric. If they hold universally,
then they yield a structure of a quasigroup in which y\z = zy = y/x (it is well
known and easy to see that each of the semisymmetric laws implies the other
law).

The pair (X, D) is called a Mendelsohn triple system (MTS) if all elements of D
are cyclic. It is clear that D is MTS if and only if the operation - is semisymmetric
(and idempotent, by the definition). Idempotent semisymmetric quasigroups are
thus rightly known as Mendelsohn quasigroups. An MTS is called pure if it
contains no Steiner triple.

Commutative semisymmetric quasigroups are called totally symmetric because
all their parastrophes (i.e. the conjugates) coincide. Idempotent totally symmet-
ric quasigroups are also known as Steiner quasigroups and they are in a 1-to-1
correspondence to Steiner triple systems (STS). An MTS that is not an STS is
called proper.

In this paper we shall investigate the situation when all elements of D are
directed triples. Then (X, D) forms a directed triple system (DTS). It is called
pure if it contains no Steiner triple. If all triples in D are Steiner, then we get
again a Steiner quasigroup, and that happens, by Lemma 1.1, if and only if the
operation - is commutative. Call a DTS proper if it is not an STS.

The purpose of this paper is to study those DTS for which X(-) is an (idem-
potent) quasigroup. Note the difference to MTS, where the semisymmetric law
guarantees that we get a quasigroup structure in all cases.

From here on we shall assume that D is a DTS upon X. Our first goal will be
to investigate the conditions under which X(+) is a quasigroup. Such systems will
be called Latin directed triple systems (LDTS). Here and elsewhere there will be a
nontrivial intersection with paper [3] where we determined the existence spectrum
of (proper) LDTS. In this paper our approach is somewhat different. While [3]
respects the style of exposition typical for design theory, here we concentrate
on algebraic and geometrical connections that are complemented by a report on
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enumerations of LDTS of orders up to 13 (the enumeration strategy depends
heavily upon the algebraic model).

Lemma 1.2. The binary system X (-) is a quasigroup if and only if it is divisible
(i.e. for all x,y € X there exist u,v € X such that xu =y and v =y).

Proof. Assume x # y and consider the triples that carry (z,y) and (y,x). Each
of the two triples induces three different ordered triples (ai,as,a3) € X? such
that az3 = ajas. There are thus at most six such triples for which there exist
i,j € {1,2,3} with a; = = and a; = y. The divisibility condition with respect to
x and y means that such a triple exists for any choice of ¢ and 7, i # j. However,
if that is true, then the triple is determined uniquely since there are exactly six
choices for (7, 7). The divisibility hence implies the uniqueness of divisions.  [J

Put @ = X(+) and denote by Q°P the binary system with operation x *xy = yz.
Of course, Q°P is a quasigroup if and only if ) is a quasigroup, and is induced by
the directed triple system D = {(z,y, x); (z,y,2) € D}.

Theorem 1.3. Let D be a directed triple system upon a set X. Define a binary
operation - on X in such a way that xy = 2z, yz = x and vz = y whenever
(x,y,2) € D, and that xx = z for all x € X. Then X(-) is a quasigroup if and
only if for all (x,y,z) € D there exist ')y, 2" € X such that

(' y,x), (2,9, 2),(z,y,2") € D.

In such a case 2’ = yx, vy = zx and 2’ = zy.

Proof. Consider x,y, z € X such that (x,y, z) € D. Suppose first that (y, 2/, x) €
D for some 2’ € X. Then 2’ # z since (y,z) cannot be covered twice, and
so yz' = x implies that X (-) is not a quasigroup. Similarly, we cannot get a
quasigroup if (y,x, 2’y € D since then xz’ = y. We have thus shown that if X (-)
is a quasigroup, then there exists 2z’ € X with (2/,y,z) € D. In such a case

dy=x, Zr=y and yr=7.

By taking into account that zy = 2, yz2 = = and xz = y, we see that the
divisibility condition is satisfied with respect to x and y.

By turning to D°P we get that if X (-) is a quasigroup, then there exists 2’ € X
such that (z,y, 2’y € D. Then

2y=2a', yr'=2z and 21’ =y,

and z and y satisfy the divisibility condition.

If there exists ¢y € X with (z,z,9y') € D, then X(-) is not a quasigroup by
xy = z. We also do not get a quasigroup if (y/, z,z) € D since then y'z = z.
Hence there exists ' € X with (z,¢',x) € D if X(-) is a quasigroup, and then

2 =x, yYr=2z and zz =1,

which supplies the divisibility for x and z.

We have seen that the existence of 2/,y/, 2 € (Q that satisfy the condition of
the theorem is necessary if X(-) is a quasigroup. We have also observed that
if such 2/, ¥’ and Z’ exist, then the operation - is divisible. That makes X (-) a
quasigroup by Lemma 1.2. O

Theorem 1.3 thus yields a characterization of LDTS. Our next aim is to char-
acterize quasigroups X (-) in terms of the binary operation. Such a quasigroup
clearly satisfies condition (i) of Lemma 1.4. The lemma is included to show how
the characterization of Theorem 1.6 was discovered.
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Lemma 1.4. Let () be an idempotent quasigroup. The following properties are
equivalent:

(i) If v,y € Q, and a,b € {x,y,zy}, then {ab,ba} N {x,y, zy} # 0.
(i) If z,y € Q, theny € {x-xy,zy-x} and x € {zy - y,y - zy}.
(ii) If x,y € Q, then both of the following are true

(a) y=x-zy ory=uxy -z, and
(b)) y=yzr-x ory=x-yx.

Proof. Since @ is idempotent, we can consider only the case x # y. Then z, y
and zy are pairwise distinct. Condition (i) needs a verification only for {a,b} =
{z,zy} and for {a,b} = {y,xy}, and that is exactly the claim of condition (ii).
The first part of (ii) can be expressed by (a), and the second part is (b) with z
and y exchanged. 0

Lemma 1.5. Let QQ be a quasigroup such that for all x,y € Q) there holds at least
one of the equalities v -xy =y =yx -z andx -yr =y =xy-x. Then

All four equalities are true if and only if xy = yx. If Q is idempotent, then
xy = yx if and only if {z,y,zy} is a subquasigroup.

Proof. We shall argue by contradiction. There are four possible violations of our
claim. It will suffice to consider just two of them since the other two follow by a
mirror argument.

First, let x - zy = y and yxr - = # y. Then x -yxr = xy-x = y. Thus
r-xy =y = x-yx, and hence xry = yxr. That yields yr -z = 2y -x = vy, a
contradiction.

Second, let - yr = y and zy -z # y. Then x -2y = yxr-x = y. Thus
r-yr=x-xy, vy =yx, and xy - r = yxr - r =y, a contradiction. 0

Call Q a DTS quasigroup if () can be obtained from an LDTS D.

Theorem 1.6. Let () be an idempotent quasigroup. Then Q) is a DTS quasigroup
if and only if oll x,y € Q satisfy

()xz-zy=y=yx-xorzy-x=y=2x-yzx, and

(i) xy - =y implies xy -y = .
Proof. Let D be an LDTS on X such that X(-) is a quasigroup. Assume that

(a,b,c) € D. By Theorem 1.3 there exist ’,V/,¢ € X with (c,b,a’), (c,V,a),
(c,b,a) € D. We get the following table:

r|y|lx-xy|lyr-x |2y x| x-yx
alb b b b ac
alc c c d ab
blc d a'b c c

We see that (i) is obviously true and that (ii) holds if (z,y) = (b,¢). For the
other cases of (ii) note that {a,b, c} is a Steiner triple if & = b or ¢ = ¢ and that
xy-x =y in every Steiner quasigroup. Hence (i) and (ii) hold in every quasigroup
that is induced by an LDTS.

Suppose now that (i) and (ii) are true. Define D so that {z,y, zy} is a Steiner
triple if © # y are elements of X such that zy = yz. If xy # yz let (z,vy)
determine the following element of D:

(1) (z,y,ay) ifv-aoy=yr-z=yand y-zy =yx -y = x;
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(2) (z,zy,y)ifx-zy=yxr-zr=yand xy-y =y - yr = z; and

(3) (zy,xz,y)ifey-z=x-yr=yand xy -y =y - yxr = .
Every pair (z,y) is covered by a triple from D. That follows from our assumption
and from Lemma 1.5. The question is whether two triples have to agree if they
agree in one of the directed edges. First we shall observe that none of the directed
edges that is carried by a triple determined by (1-3) can appear in a Steiner triple.
For that it is enough to show that any of z-xy = zy -z and y - xy = zy -y implies
xy = yx. That follows from Lemma 1.5.

Now we shall show that each of conditions (1), (2) and (3) determines the same
set of triples. Assume that (z,y) satisfies (1). In the next paragraph we shall
observe that then (a) (2/,y") = (z, xy) satisfies (2), (b) (2”,y") = (y, zy) satisfies
(3), and that in both cases we obtain the triple (x,y, zy) again. It follows that a
triple determined by (1) can be determined by (2) and (3) as well. We shall then
make a similar argument starting from (2), and from (3).

By Lemma 1.5 each of conditions (1-3) contains twice more equalities than
needed. When verifying (a) or (b) we shall prove only one equality for each pair.
For (a) note that 2’y =z -2y =y, x(z - zy) = zy and (z - 2y) -2y =y - 2y = x.
For (b) observe that 2"y" = y-xy =z, (y-2y)y = zy and (y-zy) -2y = -2y = Y.

Assume now (2). We shall show that (a) (2/,vy') = (x,zy) satisfies (1), (b)
(", y") = (xy,y) satisfies (3), and that both (a) and (b) yield (z, zy,y). We have
(a) 2’y =x -2y =y, x(x-zy) = zy and zy - (x - xy) = xy - y = z. Furthermore,
(b) 2"y =ay-y==z, (zy-y) -2y =2 -2y =y and (zy-y)y = zy.

Finally assume (3). We need to show that (a) (z',vy') = (xy, z) satisfies (1), (b)
(2", y") = (zy,y) satisfies (2), and that in both cases we obtain (zy,x,y). Now,
(a) 2y =axy-x =y, zy-(vy-2z) =2y -y =2 and x - (zy - x) = zy, while (b)
"y =xy-y=z,xy- (xy-y) =xy =y, and (zy - y)y = zy.

Suppose now that a directed edge (x, y) is covered in two ways. We have proved
that if in one case a Steiner triple is involved, then it is involved in the other case
as well. Since z and y cannot appear in two different Steiner triples, we can
assume that none of them appears in a Steiner triple. Thus zy # yz.

Since each of (1-3) determines the same set of directed triples we need to
consider only the case when for the given (z,y) there are true two of conditions
(1-3). However, that easily gives zy = yz, a contradiction. O

Laws z - xy = y and yxr - x = y are known as the left and right key laws,
respectively. Theorem 1.6 can be thus rephrased by saying that DTS quasigroups
are those idempotent quasigroups in which (i) every pair (z,y) is a key pair or a
semisymmetric pair, and (ii) if (z, y) is semisymmetric, then (y, z) is key. One can
ask what happens when condition (ii) is removed. Then we obtain quasigroups
that can be induced by hybrid triple systems [2], i.e. triple systems which may
contain both cyclic and directed triples. This will be described in detail in a
future paper.

Proposition 1.7. Let Q) be an idempotent quasigroup. Then Q) is a DTS quasi-
group if and only if xy = z implies
(a) vz =y and yz = z,
or
(b) xz =y and zy = x,
or
(c) zr =y and zy = x,
forallz,y € Q.
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Proof. Note that (a) can be rewritten as z -2y = y and y - 2y = x. By expressing
(b) and (c) in a similar way we see that the condition of the statement follows
from Theorem 1.6 immediately. Of course, it is also easy to verify it directly from
the assumption that @) is determined by a DTS D.

To prove the converse we shall start by showing that x, y and z = zy form a
(commutative) idempotent subquasigroup if at least two of (a), (b) and (c) can
be used for a given pair (z,y).

Suppose first that (a) and (c) apply. Thus zz = y = zz and yz = zy = z. Put
u = yx and consider conditions (a—c) with respect to the pair (y,z). Then (a,b)
give yu = x and (c) gives uy = x. We see that both cases imply u = z.

Assume now (a) and (b). Then zz = y and yz = © = zy. Put u = zz. It
suffices to show that u = y since then the previous case can be used. Consider
(z,x). Then (a,b) zu = x and (¢) uz = z. Thus y = u.

Finally, let (b) and (c) be true. Then zz = y = zx and zy = z. It suffices to
show that yz = z. Put w = yz and consider (y,z). Then (a) zu = y and (b,c)
uz =vy.

Let us now define D. Assume x # y and put z = zy. If {z,y,z} forms a
subquasigroup, take it as a Steiner triple. If not, include (a) (x,y, 2), (b) (x, z,y),
or (¢) (z,z,y). We have proved that only one of these cases applies. It is now
clear that each directed edge is covered by a triple of D.

Assume (a) zz = y and yz = z. Then (z, z) fulfils (b) since zy = z and yz = z,
and (y, z) fulfils (c) since zy = z and xz = y.

Assume (b) xz = y and zy = x. Then (z, 2) fulfils (a) since zz = y and zy = =,
and (z,y) fulfils (c) since zz = y and zy = z.

Assume (c) zx = y and zy = x. Then (z,z) fulfils (a) since zz = y and zy = z,
and the same equalities imply that (z,y) fulfils (b).

Therefore any of the three directed edges of a triple from D can be used to
induce the triple. Hence a directed edge (x,y) might induce two different triples
of D only if at least two of the alternatives (a—c) apply to (z,y). Above we
have proved that then {z,y, zy} forms a Steiner triple. Each directed edge thus
induces only one triple of D. O

It is true that a shorter proof could be obtained by uniting Theorem 1.6 and
Proposition 1.7 into one statement. We did not do so for the purpose of fu-
ture references since we expect that the characterization of Theorem 1.6 will be
mentioned in the future much more often than the condition of Proposition 1.7.

Proposition 1.8. The class of DTS quasigroups is closed under subquasigroups
and under homomorphic images. If both Q) and Q) x Q) are DTS quasigroups, then
Q@ is a Steiner quasigroup.

Proof. If () fulfils the condition of Proposition 1.7, then the condition is clearly
fulfilled both by subquasigroups and by homomorphic images.
Suppose now that ) is a proper DTS quasigroup derived from D. Consider

{z,y,2) € D. Then (2,y)(y,2) - (y,2) = (2,2)(y, 2) = (2y,y) equals (z,y) only
if {z,y,z} is a Steiner triple. However, that is also true if (y, z) - (z,y)(y,2) =
0J

(y,2)(2,2) = (z, 22) equals (z,y).
Proposition 1.9. Let Q) be a DTS quasigroup. If Q satisfies any of the laws
rToxy=yY,yr-r =y, xy-r =1y orx-yr =1y, then Q is a Steiner quasigroup.

Proof. Let @ be determined by a set of triples D. Consider (x,y,zy) € D. By
Lemma 1.1 we have to show that zy = yxr. We have y -2y =r and so y - yr ==
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yields zy = yx. We also have x - xy = y, and so xy = yx follows from z - yx = y.
For the other cases use a mirror argument (or consider Q°P). O

There are thus no proper semisymmetric or key DTS quasigroups. However,
there exist many proper flexible DTS quasigroups. Here we refer to the flexible
law x - yxr = zy - x.

Lemma 1.10. Let QQ be a DTS quasigroup determined by D. Then @) s flexible
if x - yr = xy - x for every (z,xy,y) € D.

Proof. We need to show that the restricted assumption of flexibility implies that
a-ba = ab-a for any pair (a,b), where a and b are distinct elements of (). For that
it clearly suffices to consider the cases (x,zy) and (zy,y), where (z,zy,y) € D.
The latter case is immediate since (y, zy,y - xy) € D by Theorem 1.3, and hence
(xy)(y-zy) =y = x-xy = (zy-y)(zy). For the former case note that (z-zy)xr = yx
and that z(zy - ) = z(z - yx) is equal to yx since by Theorem 1.3 we have
(y,yx,z) € D and (z,yz,z -yx) € D. O

The above lemma can be seen as a variation of [3, Theorem 2.3]. Note that [3]
assumes that the set X is finite, while here we do not exclude the infinite sets.
The next statement corresponds to [3, Theorem 2.2]. It weakens the condition of
Theorem 1.3, but only for finite sets. Hence we include it without a proof.

Lemma 1.11. Let D be a DTS upon a finite set X. Then X(-) is a quasigroup
if and only if for every (x,y, z) € D there exists 2’ € X such that (',y,x) € D.

Let us finish this section by a remark, that an LDTS D is pure if and only if
the corresponding quasigroup is anticommutative (i.e. xy = yx implies z = y).
This follows, say, from Lemma 1.1.

2. FROM QUASIGROUPS TO LOOPS

A standard way how to prolong an idempotent quasigroup ) into a loop @y
consists of adding a (new) neutral element 1 and setting z? = 1 for all z € Q (the
loop @1 is involutory).

A loop will be called a DTS loop if it can be obtained as a prolongation of a
DTS quasigroup. (Similarly we define Steiner and Mendelsohn loops.)

If x,y € Q are such that z-zy = y (or yz-x = z, or x-yx = y or xy-x = y), then
the respective identity holds in @)1 as well, and vice versa. Hence Mendelsohn
loops coincide with semisymmetric loops, and Theorem 1.6 can be alternatively
expressed as:

Theorem 2.1. A loop Q1 is a DTS loop if and only if for all x,y €

)z-zy=y=yx-xzorazy-x=y=2x-yzx, and
(i) xy -z =y implies xy -y = x.

Proposition 2.2. A loop Q1 is a DTS loop if and only if xy = z implies
(a) vz =y and yz = z,
or
(b) xz =y and zy = x,
or
(c) zr =y and zy = x,
forall z,y € Q.
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Proof. Suppose first that )1 is a prolongation of a DTS quasigroup Q. If xy = 2
in ()1 and if none of x, y and z is equal to 1, then the implication holds in
because it holds in Q. It is easy to see that it holds as well when 1 € {z,y, z}. On
the other hand if (), fulfils the implication for all z,y € @)1, then xy = 1 implies
x = y. That means that () is involutory and can be obtained by a prolongation
of an idempotent quasigroup ). If xy = 2z in @, then either x = y = 2 or
ry = z in ();. Hence the implication holds in ) as well and Proposition 1.7 can
be used. O

Arguments used in the proof of Proposition 1.8 apply to DTS loops as well,
and so we have:

Proposition 2.3. The class of DTS loops is closed under subloops and under
homomorphic images. If both Q1 and Q1 X Q1 are DTS loops, then Q1 is a
Steiner loop.

A loop that satisfies the law x - zy = 2%y is called left alternative. The mirror
law is the right alternative law.

A prolongation )7 of an idempotent quasigroup @ is left alternative if and only
if () satisfies the left key law x - xy = y. The prolongation is semisymmetric if
and only if () is semisymmetric.

Proposition 2.4. Let Q1 be a DTS loop. If Q1 is commutative or left alternative
or right alternative or semisymmetric, then it is a Steiner loop.

Proof. If @1 is commutative, then it is semisymmetric (and hence also alterna-
tive), by Theorem 2.1. The rest follows from Proposition 1.9. 0

Lemma 2.5. Let Q1 be a DTS loop. Suppose that x,y € Q1 generate a subgroup,
that 1 ¢ {x,y} and that © # y. Then the subgroup consists of 1, x, y and zy.
This takes place if and only if {x,y,xy} forms a Steiner triple, and that is true
of and only iof xy = yx.

Proof. Use Lemma 1.1 if 2y = yz. If {x,y,xy} forms a Steiner triple, then we
clearly get a subgroup. For the converse it may be assumed that () is a group,
by Proposition 2.3. The claim follows from Proposition 2.4 since the involutory
groups are commutative. 0

Proposition 2.6. Let Q1 be a proper DTS loop. Then it cannot be a (left or
right) Bol loop, or an LC or RC loop, or a Buchsteiner loop or a left or right
conjugacy closed loop.

Proof. Left Bol loops and LC loops are left alternative. Right Bol loops and RC
loops are right alternative. By Lemma 2.4 we hence need only to prove that )
is commutative if it is a Buchsteiner loop or, say, a left conjugacy closed (LCC)
loop.

LCC loops fulfil the identity ((zy)/z)z = x(y(z\z)). Setting z = 1 we get
xy = (z - yr)x since @y is involutory. Assume that the latter identity holds.
Consider the associated LDTS D and assume that (y, z,z) € D. Then (z-yx)z =
xz-x =yxr = z = xy. That makes {x,y, z} a Steiner triple, by Lemma 1.1, and
we see that ()1 is commutative, as required.

In every involutory loop the Buchsteiner law z\(zy - 2) = (y - zz)/z yields
z\(zy-x) = y/x. Assume (z,z,y) € D. Then z = y/z and xy-x = zx. Therefore
zr = xz and so we get the commutativity again. 0
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Proper DTS loops thus never belong to one of the standardly studied equational
classes of loops.

Let @)1 be a loop. The left nucleus Ny is formed by elements a € (); with
a(xy) = (ax)y for all x,y € Q1. By shifting a to the right we get the middle
nucleus N, and the right nucleus N,. The centre Z(()1) consists of all a €
NxN N,N N, with ax = za for every x € Q.

Set C'(Q1) = {a € Qq; ax = za for all x € Q;}. By Lemma 2.5, if Q) is a
DTS loop, then its element a # 1 belongs to C(Q) if and only if {a,x,az} is
a Steiner triple for any x € @; \ {1,a}. Note that C'(Q;) does not have to be
a subloop—below is a counterexample of the smallest order. For simplicity, we
omit commas from the triples.

Example 2.7. Let X = {2,3,4,5,6,7,8,9,A,B,C,D,E} and let @; be the DTS
loop determined by the triples {234}, {256}, {278}, {29A}, {2BC}, {2DE}, {357},
{36C}, {38A}, {39E}, {3BD}, (458), (469), (74E), (76B), (85D), (864), (954),
(96D), (97C), (98B), (A4C), (ABB), (A6E), (A7D), (B47), (B59), (B6A), (BSE), (C4D),
(CBE), (C7A), (C89), (D4A), (D5C), (D68), (D79), (E4B), (E5A), (E67), (E8C). Then
C(Q1) ={1,2,3}, but 2-3 =4 & C(Q,).

Lemma 2.8. Let Q1 be a DTS loop. Then NyUN,UN, C C(Q1).

Proof. Suppose that a,z,y € @)1 are such that ax = y. Let a be first an element
of Nx. Then ay =aa-z =z and a-zy =a(r-ax) =ar-ax =1 =ay-ay =
a(y - ay) = a - yx. Thus zy = yx and {1,a,x,y} is a commutative subgroup of
(1, by Lemma 2.5. Hence ax = za.

Let a be now an element of N,. Then ay = aa -z =z and yy = 1 = a2z =
x-ay =xa-y. Thus xa =y = ax. 0

While the existence spectrum of DTS loops is known, there seem to be no
results that would specify possible sizes of nuclei.

3. DIRECTED TRIPLES AND SURFACE TRIANGULATIONS

By a combinatorial triangulated 2-pseudomanifold (shortly triangulated pseu-
domanifold) we shall understand a finite family F of faces such that every face is
a three-element set {z,y, z} and there exist unique 2’ # z, v’ # y and 2z’ # z with
{2",y, 2}, {x, v, 2z}, {z,y, 2’} € F. In other words, every edge of F is incident to
exactly two faces. Each face determines three edges and three points. The edges
and points yield the graph of F. The pseudomanifold is said to be connected if
the graph is connected. The pseudomanifold is strongly connected if for any two
points x and y there exists a sequences of faces Fy, ..., F} such that F;_; and F;
share an edge, 1 < i < k, x is incident to Fj and y is incident to Fj. Note that
many authors require (triangulated) pseudomanifolds to be strongly connected.

The main notion we need is that of the triangulated pseudomanifold as de-
fined above. A more general notion of combinatorial 2-pseudomanifolds (shortly,
pseudomanifolds) is defined similarly, but the faces can be k-gons, k > 3. Taken
formally, the face is then a pair {(y1,...,yx), (Yk,---,y1)}, where yi,..., y, are
pairwise distinct points and (yi,...,yx) is regarded as a cyclic sequence. By
choosing one element of the pair we choose an orientation of the face. A combi-
natorial 2-pseudomanifold is orientable if the orientation can be fixed in such a
way that two different faces that share an edge induce upon the edge opposite
orientations. If such a coherent orientation is given, we speak about an oriented
pseudomanifold. An oriented pseudomanifold can be considered as a family of
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oriented faces (yi, ..., yx). Orientable pseudomanifolds will be called here (com-
binatorial) pseudosurfaces.

Let D be a finite DTS. Elements (x,y, z) € D that do not yield a Steiner triple
will be called unidirectional. Denote by F the set of all {x,y, z}, where (x,y, z)
runs through all unidirectional triples of D. Consider now F as a set of faces.
Each edge {z,y} is incident to two faces, and so we get a pseudomanifold. In
general, the pseudomanifold does not have to be orientable.

Suppose now that D is a finite LDTS. Orient {z,y,z} € F as (z,y,2) if
(x,y,z) € D. It follows from Theorem 1.3 that this defines a coherent orien-
tation. Hence F is a pseudosurface. We shall call it the pseudosurface of D (or
of @ if @ is the DTS quasigroup that determines D).

Consider (yo,x,y1) € D. There exist k > 2 and points yo, 1,2, - - ., Y that
are pairwise distinct such that (y1,x,y2), ..., (yr, z,y0) € D. Call (yo,y1,---,Yx)
an (oriented) residual face. The triangular faces {yo,x,v1}, ..., {ys, x,yo} form
its cap. The oriented residual face (yo, ..., yx) is said to be singular if (yg, ..., yo)
is an oriented residual face as well. To see how singular residual faces relate
to flexibility we need the following lemma. It analyzes the situation when two
residual faces share an edge.

Lemma 3.1. Suppose that D contains (yo,1,%1), (Y1, T2,%0), (Y1,%1,Yy2) and
(Y3, w2, 91). Then yy = yo if and only if y1 - Yoy1 = 1Yo - Y1

Proof. By our assumptions z1 = yoy1, T2 = Yi¥o, Y2 = Y1¥1 = Y1 - Yoy1 and
Yh = Tay1 = Y1Yo - Y1. O

Corollary 3.2. A finite DTS quasigroup Q is flexible if and only if all residual
faces of Q) are singular.

Proof. Combine Lemma 3.1 with Lemma 1.10. 0J

Denote by Oy a k-gonal bipyramid, i.e. a graph of k4 2 vertices with a cycle of
length k£ > 3, in which the remaining two vertices are connected to the elements
of the cycle (the graph contains 3k edges). Corollary 3.2 immediately yields:

Theorem 3.3. A flexible DTS quasigroup of order n exists if and only if the
complete graph K, can be decomposed to triangles and graphs Oy, k > 3.

Note that the number of nonisomorphic flexible quasigroups of order n can be
much bigger than the number of nonisomorphic decompositions of K, as each
Oy, can be oriented in two ways (if £ = 4 then there are, in addition, three ways
how to choose the non-oriented residual face).

The existence spectrum of odd order flexible DTS quasigroups was determined
in [3, Theorem 4.4]. The even case is being investigated.

When we put aside the singular residual faces we get a set of oriented faces
that yields an oriented pseudosurface. We call it the residual pseudosurface. 1t is
obtained from the pseudosurface of () by cutting away the caps.

The proof that there are no DTS quasigroups of order 10 [3, Theorem 3.3]
is based upon showing that the parameters of a potential residual pseudosur-
face induce a surface with parameters that would violate the parity of the Euler
characteristic.

The notion of the strong connectivity can be used to partition the pseudosurface
of a DTS quasigroup () into components. Each component possesses a genus, and
the list of genera can be considered as an invariant of (). The components induced
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by a singular residual face are called flexible. Their graph is isomorphic to Oy, for
some k > 3.

Note however that a component may still be a proper pseudosurface, i.e. it
does not have to be a (combinatorial) surface (a formal definition of a surface can
be found below). This fact seems to make the geometrical approach a less potent
tool than might be expected when proving the existence or non-existence of DTS
quasigroups of orders greater than 10.

Nevertheless, the gained geometrical insight naturally leads to a construction
that uses latin bitrades to diminish the number of Steiner triples in a DTS quasi-
group (in particular, to build a proper DTS quasigroup from a Steiner quasi-
group).

By a latin bitrade T we shall understand a pair T' = (L, R) where L and R
are two disjoint sets consisting of ordered triples such that if 1 <i < 57 < 3, and
a = (a1,a2,a3) € L, then {a;,a;} determines the triple a uniquely, a; # a;, and
there exists b = (by, by, b3) € R with (a;, a;) = (b;,b;). The meaning of the mates
L and R is interchangeable, and thus for R there apply symmetric conditions.

Our definition of latin bitrades is tailored to present needs. Instead of requiring
that a; # a; and that {a;, a;} determines the triple a it is usual to require only that
(a;,a;) determines a. Another, a more restrictive definition, includes a condition
that a; # aj for all (a},ay,a3) € L, 1 <i < j < 3. These variations have no
structural impact and can be solved by renaming of elements.

Note that by considering the family of all {ay,as, a3} and {by,bs, b3}, where
(a1, as,a3) € L and (by, b, b3) € R, we get a pseudomanifold. By choosing reverse
orientations for elements of L and R we see that the pseudomanifold is orientable
(it is a pseudosurface).

Proposition 3.4. Let (L, R) be a Latin bitrade and let D be an LDTS such that
{a1,as,a3} is a Steiner triple in D for every (a1, as,a3) € L. Change D into D’
in such a way that these Steiner triples are replaced by directed triples (aq, as, as)
and (bs, by, by), where (ay,as,a3) € L and (by,by,b3) € R. Then D' is an LDTS
as well.

Proof. Suppose that (b1, be,b3) € R is chosen in such a way that b; = a; and
bs = as where (a1,as2,a3) € L. Then (ay,as,as) covers (ay,a3) and (bs, by, by)
covers (ag,ap). By treating cases (by,by) = (ay,a2) and (by, b3) = (az,a3) in a
similar way we see that Theorem 1.3 can be used. O

If ) is the quasigroup determined by D', and @) is determined by D, then we
shall say that Q' is derived from Q by means of a latin bitrade (L, R).

By a surface we understand here a strongly connected pseudosurface in which
all faces incident to a point rotate around the point. To turn a strongly connected
pseudosurface into a surface it suffices to divide a point into several new points
(let us call them wvertices) so that each vertex corresponds to a cycle of faces
around the point. If the pseudosurface is triangulated, then such a cycle around
a point x takes form {yo, z,y1 },{v1, 2,92}, .- -, {Ur, Z, %0 }. A pseudosurface is thus
a surface if and only if for each point x there is only one such cycle.

A DTS quasigroup () yields components that are pseudosurfaces, and each such
pseudosurface yields a surface by the procedure we have just described. We shall
speak about a surface constituent of (). If a vertex corresponds to the cap of a
residual face, it will be referred to as a middle vertex, otherwise it will be referred
to as a residual vertex.
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Proposition 3.5. A DTS quasigroup Q) can be derived by means of a latin bitrade
from a Steiner quasigroup if and only if each surface constituent of Q) is vertex
3-colourable.

Proof. In a vertex 3-colourable triangulated surface with a chosen coherent ori-
entation the faces can be divided into two classes according to the cyclic ordering
of the vertex classes that is induced by the orientation of the face. The surface is
hence face 2-colourable. For each face colour consider the set of ordered triples
(a1, ag, a3) such that {ay, as, as} is a face of the given colour and a; is a vertex of
colour 7. It is clear that the obtained sets are mates of a latin bitrade.

Assume that all surface constituents of () are vertex 3-colourable. Each con-
stituent thus defines a latin bitrade. The identifications of vertices that are needed
to turn the surface constituent into the corresponding (pseudosurface) component
can be carried out in the bitrade structure without violating the definition of the
latin bitrade. Furthermore, the obtained latin bitrades can be aggregated into
one bitrade, and this bitrade determines a Steiner quasigroup from which () can
be derived.

If @) was derived from a Steiner quasigroup, then the used latin bitrade can
be interpreted as a pseudosurface. The obtained pseudosurface coincides with
the pseudosurface of (). Each constituent of () can be thus interpreted as a latin
bitrade in which the projections along the 1st, 2nd and 3rd coordinate yield three
sets that are pairwise disjoint. These sets yield the three colours of vertices. [J

Each nonflexible component of a DTS quasigroup () yields in an obvious way a
residual component and a residual constituent. Note that a surface constituent is
vertex 3-colourable if and only if the graph of its residual constituent is bipartite.

It is well known that triangulated surfaces of genus 0 (the spherical surfaces)
are vertex 3-colourable if and only if they are Eulerian (i.e. if each vertex is of
an even degree). Using Theorem 3.3 we see that a flexible DTS quasigroup can
be derived from a Steiner quasigroup by means of latin bitrades if and only if
each component corresponds to Oy for an even k = 2m. The trades involved
in such derivation of flexible DTS quasigroups possess a transparent structure.
They are sometimes called bicyclic and can be represented by L = {(x1,y, z2),
(2, 2,23), ., (Tom—1,Y, Tom), (Tam, 2, 21)} and by R that is obtained from L
by exchanging all occurrences of y and z. Note that by permuting, say, the
first and second coordinate we get a latin bitrade that can be used to build a
DTS quasigroup as well. However, the resulting quasigroup will not be flexible if
m > 3.

If m = 2, then the STS of the initial Steiner quasigroup contains {z1,y, 2},
{x3,9y,24}, {71, 2,23} and {x9, z, 24}. This is known as a Pasch configuration.
Its transformation via the corresponding latin bitrade is used in [3] several times
(e.g. in Proposition 4.1).

4. ENUMERATION AND CLASSIFICATION

To enumerate DTS quasigroups we use the program Mace4 [6] which is part of
the package Prover9, an automated theorem prover for first-order and equational
logic. While Prover9 searches for a proof, Mace4 is generally used to search for
finite counterexamples, however it can also be used to enumerate all structures
of some finite order that satisfy a given set of equations. For example, in order
to generate all proper DTS quasigroups of order 7 we provide Mace4d with the
following input
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1 assign(max_models, -1).

2 assign(domain_size, 7).

3 formulas(sos).

4 X *¥y=x%z -> y=2z.

5 y * X = *Xx —-> y =2z

6 X * X =

7 (x * (x )=y & (y*x) *xx=y) |

8 ((x ) *x x =y & x*x (y * x) =y).
9 (x *x y) =y > (x *xy)*y=Xx.

10 Ox11!=1=x%0.

11 end_of_list.

The equations on lines 7, 8 and 9 correspond to the characterisation of DTS

quasigroups given in Theorem 1.6. Mace4 tends to generate the results faster us-

ing this characterisation than if the characterisation from Proposition 1.7 is used.

When enumerating proper DTS quasigroups of order 12 it runs approximately

20 times faster. On the right side of the implication on line 9 either one of the

key laws or a conjunction of the key laws can be used. Similarly the left side of

the implication can be replaced with x * (y * x) = y or with a disjunction of

the two expressions. As one might expect, using the disjunction on the left gives

the worst running time of all. The remaining six possible combinations all do

equally well.

Mace4 can instantly enumerate the DTS quasigroups of orders up to 9 and
determine that none exist for orders 4, 6 or 10. The enumeration of DTS quasi-
groups of order 12 can be achieved in a matter of minutes.

The smallest proper DTS quasigroup is of order 7. It is unique up to isomor-
phism and yields a single surface constituent which is isomorphic to Oj.

For proper DTS quasigroups of order 9 there exist three isomorphism types.
The first two types each yield a single surface constituent isomorphic to Og, how-
ever one of these is flexible while the other is not, i.e. their residual constituents
are non-isomorphic. The third type yields a surface constituent of genus 1 con-
sisting of 3 residual faces.

For proper DTS quasigroups of order 12 there exist two isomorphism types.
Their pseudosurfaces differ only in orientation. Each type yields three residual
surface constituents, all isomorphic to a tetrahedron.

All DTS quasigroups of order up to 12 are explicitly described in [3].

At order 13 the combinatorial explosion takes over. If we attempt to generate
the DTS quasigroups of order 13 using the above input, Mace4 soon runs out
of memory. In comparison for Steiner triple systems the combinatorial explosion
takes place at order 19 [5].

We split the task of enumerating DTS quasigroups of order 13 into more man-
ageable tasks by placing restrictions on the degrees of middle vertices (cf. Sec-
tion 3). We first focused on generating the DTS quasigroups with middle vertices
of degree at most 6, then we focused on generating those that contain at least one
middle vertex of degree greater than 6. Thus the task was split into generating
proper DTS quasigroups of order 13 such that

¥ ¥ ¥ X N

1. all middle vertices have degree 3;

2. all middle vertices have degree at most 4 and there exists a middle vertex
of degree 4;

3. all middle vertices have degree at most 6, there exists a middle vertex of
degree 5 and there may or may not exist a vertex of degree 6;
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Task Generated Isomorphism types Time to generate

1 12 1 2 minutes

2 217292 8004 24.5 hours

3 831487 106 446 4.0 hours

4 1337912 87019 14.2 hours

5 1960056 258 251 2.0 hours

6.1 3368344 353637 3.2 hours

6.2 1090528 34079 2.4 hours

6.3 (a) 1327664 91738 1.3 hours
6.3 (b) 686 064 299 641 0.6 hours
7 325644 36 184 0.9 hours

8 4779308 401 683 3.7 hours

9 758 160 63 180 2.2 hours
Total 16682471 1206967 59.2 hours

TABLE 1. The number of proper DTS quasigroups of order 13 gen-
erated by Mace4 in each task of the enumeration.

4. all middle vertices have degree at most 6 and there exists a middle vertex
of degree 6 but no vertex of degree 5;

. there exists a middle vertex of degree 7;

. there exists a middle vertex of degree §;

. there exists a middle vertex of degree 9;

. there exists a middle vertex of degree 10;

9. there exists a middle vertex of degree 12.

oo ~J O Ot

Mace4 generated a total of 16682471 quasigroups in 59.2 hours on a computer
equipped with an Intel Xeon E5620 2.40 GHz CPU with 12 MB of cache. This
does not include the time needed to remove the isomorphic quasigroups. Details
are given in Table 1.

When dealing with the DTS quasigroups that have a middle vertex of degree 8,
Mace4 ran out of memory. The task was split further as follows. Denote the point
corresponding to the middle vertex of degree 8 as 0, the corresponding residual
face as (1,2,...,8) and the remaining points as 9, T, E and W. We split the
task based on how these four remaining points relate to the point 0. There are
three possibilities, one of which had to be split further because Mace4 ran out of
memory.

6.1 The remaining points form two Steiner triangles with the point 0, e.g.
{0,9,T} and {0,E,W};
6.2 there exists another middle vertex corresponding to the point 0 and the
remaining four points correspond to vertices which form a cycle around
this middle vertex, e.g. the LDTS contains the directed triples (9,0, T),
(T,0,E), (E,0,W) and (W,0,9); or
6.3 there exists a residual vertex corresponding to the point 0 and the re-
maining four points correspond to vertices which form a cycle around
this residual vertex, e.g. the LDTS contains the directed triples (0,9, T),
(T,E,0), (0,E,W) and (W,9,0), and further
(a) 9-W=Tor
(b) 9-W is one of the points 1,...,8.
When dealing with the case of the two Steiner triangles {0,9,T} and {0,E, W}
above, T - W must be one of the points 1,...,8. Assigning T-W = 1 reduces the
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number of isomorphic models generated and was necessary to prevent Mace4 from
running out of memory. Similarly in 6.3 (b) we assign 9-W = 1.

After putting all the results together we found 1206 969 isomorphism types of
DTS quasigroups of order 13. Out of these 8444 are pure and 924 are flexible
(including the 2 Steiner quasigroups). There do not exist any pure flexible DTS
quasigroups of order 13.

To remove the isomorphic models, the results were first split into smaller classes
according to an invariant which is derived from how each point of the pseudo-
surface splits into vertices of the surface, taking into account the degree of each
vertex and whether it is a middle vertex or a residual vertex. Isomorphic models
were then removed from each class using a custom program which exploits the
geometric structure of DTS quasigroups to find possible isomorphisms. After-
wards, each of these classes was checked using the GAP [4] package LOOPS [§]
to confirm that its contents are indeed pairwise non-isomorphic.

The isomorphism types were then classified according to the genera of their
surface constituents and according to their automorphism group, see Tables 2
and 3. Table 2 also gives the number of non-isomorphic pseudosurfaces yielded
by the DTS quasigroups in each class. For example the last line in Table 2
indicates that there exist exactly 6 non-isomorphic DTS quasigroups of order 13
that consist of 2 surface constituents of genus 1 (see Example A.2). These 6
quasigroups yield only 2 non-isomorphic pseudosurfaces. The number of non-
isomorphic pseudosurfaces in each class was determined using shortg from the
package nauty [7]. The automorphism groups in Table 3 were determined using
GAP. We refer to the dihedral group of order 2n as Ds,.

Using the sizes of the automorphism groups from Table 3, we can easily com-
pute the total number of DTS quasigroups of order 13 by taking the sum of
13!/]Aut(Q)| over all isomorphism types ), which comes out to 7502 250 290 008 320.

If we attempt to generate the DTS quasigroups of orders 15, 19 or 21, Mace4
instantly produces plenty of models and soon runs out of memory. For the remain-
ing orders, the program tends to produce fewer results. Using the above input,
we were not able to obtain DTS quasigroups of even orders greater than 18 in a
reasonable amount of time, but we did obtain ones of orders 25, 27, 31 and 37.

To determine the existence spectrum of LDTS in [3] we needed to obtain LDTS
of certain orders, which were as high as 40. We did this by prescribing a suitable
automorphism as part of the input to Mace4. Generally Mace4 can then produce
a model within a few seconds, but the time varies greatly. To date, the largest
model that we have been able to obtain this way is a pure DTS quasigroup
of order 58 with an automorphism of type 29%. However this technique is not
always successful. For example, we were not able to generate a pure flexible DTS
quasigroup of order 16, instead it was generated using the program Paradox [1]
which found an automorphism-free model.

APPENDIX. EXAMPLES OF DTS QUASIGROUPS OF ORDER 13

It is clearly impossible to list all DTS quasigroups of order 13 but below are
given some which may be of particular interest. These are the unique proper
system with all middle vertices of degree 3, all six systems with two surface con-
stituents of genus 1, all systems having an automorphism group of order greater
than or equal to 4, and at least one example of a system having just one surface
constituent of genus 0, 1, 2, 3 or 4, respectively.
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Number of Number of

Number of surface constituents of genus g non-isomorphic non-isomorphic
g=0 g¢g=1 g=2 g=3 g=4 quasigroups pseudosurfaces
0 1 0 0 0 392 685 189280
1 0 0 0 0 391 805 166 149
2 0 0 0 0 152818 26 227
0 0 1 0 0 117 368 58 H88
1 1 0 0 0 80875 16 100
3 0 0 0 0 32100 2098
1 0 1 0 0 14019 3162
0 0 0 1 0 10636 2374
4 0 0 0 0 6000 267
2 1 0 0 0 2896 505
5 0 0 0 0 955 28
1 0 0 1 0 769 189
3 1 0 0 0 533 36
0 0 0 0 1 246 131
2 0 1 0 0 178 18
4 1 0 0 0 40 3
6 0 0 0 0 24 3
1 0 0 0 1 14 4
0 2 0 0 0 6 2
Total 1206967 468 164

TABLE 2. Classification of the isomorphism types of proper DTS
quasigroups of order 13 according to the genera of their surface

constituents.

Number

Aut(Q) of types Pure Flexible
4 1202669 8406 864
Cy 4163 36 43
Cs 92 0 8
02 X CQ 17 0 0
Cs 8 0 0
Sy 7 0 1
Cs 5 0 4
Cho 9 0 9
Dy 1 0 1
D5 2 0 0
Cl3 p P 0
013 X 03 1 0 1
Total 1206969 8444 924

TABLE 3. Classification of the isomorphism types of DTS quasi-
groups of order 13 according to their automorphism group.
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In the following examples let X = {0,1,2,3,4,5,6,7,8,9,T,E,W}. For simplic-
ity, we omit commas from the triples.

Example A.1. Define 7 = {{018}, {09E}, {0TW}, {19T}, {1EW}, {259}, {268},
{27w}, {2TE}, {35T}, {36E}, {379}, {38W}, {45W}, {46T}, {47E}, {489}, {58E},
{69w}, {78T}},

Cy = {(203), (304), (402), (214), (413), (312)} and

C, = {(506), (607), (705), (517), (716), (615)}.

Then C; and C, are surface constituents of genus 0, and (X, 7 UC; UCy) is the
unique proper LDTS(13) such that all middle vertices are of degree 3. The system
is automorphism-free and flexible.

Example A.2. The 6 systems with two surface constituents of genus 1 are defined
as follows.

(1) Define 7 = {{09E}, {38W}, {48E}},
C, = {(102), (203), (304), (405), (501), (164), (463), (365), (56W), (W62),
(261), (19W), (W95), (594), (491), (1E5), (5E3), (3E2), (2EW), (WE1)} and
C, = {(607), (7T0W), (WOT), (T08), (806), (317), (718), (81T), (T13), (24T),
(T4W), (WAT), (T42), (258), (857), (75T), (T62), (297), (793), (39T), (T96),
(698), (892), (6ET), (TET), (7E6)}.
Then C; and Cy are surface constituents of genus 1, and (X, 7 UC; UCy),
(X, TUCPUC), (X, TUCLUCS) and (X, T UCPUC5P) are non-flexible,
automorphism-free LDTS(13)s.

(2) Define T = {{09E}, {137}, {679}},
C, = {(102), (203), (304), (405), (501), (16W), (W64), (463), (365), (562),
(261), (295), (594), (49W), (W92), (1E5), (5E3), (3E2), (2EW), (WE1)} and
Cy = {(60T), (TO7), (TOW), (WO8), (806), (418), (819), (91T), (T14), (427),
(72T), (T28), (824), (83W), (W3T), (T39), (938), (758), (85T), (T5W), (W57)
(4ET), (TES6), (6E8), (8E7), (TE4)}.
Then C; and Cy are surface constituents of genus 1, and (X, 7 UC; UCs)
and (X, 7T UC; UCs®) are non-flexible, automorphism-free LDTS(13)s.

’

Example A.3. The DTS quasigroup that has automorphism group of order 39
is the Steiner quasigroup which comes from the cyclic STS(13) obtained from the
starter blocks {014}, {027} under the action of the permutation
(0,1,2,3,4,5,6,7,8,9, T,E, W).

Example A.4. The 2 DTS quasigroups that have automorphism group C'3 are
defined by the triples obtained from the following starter blocks under the action
of the permutation (0,1,2,3,4,5,6,7,8,9,T,E,W). The starter blocks for C are
(105), (507), (703), (301). Then C is a surface constituent of genus 1, and (X, C)
and (X, C°P) are pure, non-flexible LDTS(13)s.

Example A.5. The 2 DTS quasigroups that have automorphism group Dy of
order 12 are defined by the triples obtained from the following starter blocks under

the action of the group generated by the permutations (0, 1,2, 3,4,5)(6,7,8,9,T,E)
and (0,5)(1,4)(2,3)(6,8)(9,E). The starter blocks for 7 are {018}, {024}, {03W},

{69W}, and for C are (60E), (E09). Then C is a surface constituent of genus 1,

and (X,7 UC) and (X, T UC°P) are non-flexible LDTS(13)s.

Example A.6. The unique DTS quasigroup that has automorphism group Dy of
order 10 is defined by the triples obtained from the following starter blocks under
the action of the group generated by the permutations (0,1, 2,3,4)(5,6,7,8,9)
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and (1,4)(2,3)(6,9)(7,8)(T,E). The starter block for C; is (0T4), for Cy is (5T8),
and for 7 are {026}, {05W}, {078}, {TEW}. Then C; and C, are surface con-
stituents of genus 0, and (X, 7 UC; UCy) is a flexible LDTS(13).

Example A.7. The 2 DTS quasigroups that have automorphism group C4g can
both be obtained from the starter blocks {017}, {05W}, {TEW}, (0T2), (2EO0).
The first LDTS is defined by the triples obtained from the starter blocks under
the action of the permutation (0,1,2,3,4,5,6,7,8,9)(T,E). The second LDTS
is defined by the triples obtained from the starter blocks under the action of
the permutation (0,1,2,3,4,5,6,7,8,9). Both LDTS(13)s are flexible and each
consists of 2 surface constituents of genus 0.

Example A.8. The 5 DTS quasigroups that have automorphism group Cg are
defined by the triples obtained from the following starter blocks under the action
of the permutation (0,1,2,3,4,5)(6,7,8,9,T,E).

(1) The starter blocks for D are {06W}, {68T}, (104), (407), (708), (80E),
(EOT), (TO01). Then (X,D) and (X, D) are flexible LDTS(13)s, each
consisting of 3 surface constituents of genus 0.

(2) The starter blocks for D are {06W}, {09T}, {68T}, (104), (40E), (E08),
(801). Then (X, D) and (X, D°P) are flexible LDTS(13)s, each consisting
of 3 surface constituents of genus 0.

(3) The starter blocks for D are {03w}, {68T}, {69W}, (106), (607), (702),
(20T), (T09), (901). Then (X, D) is a non-flexible LDTS(13) consisting
of a single surface constituent of genus 1.

Example A.9. The 7 DTS quasigroups that have automorphism group Sj are
defined by the triples obtained from the following starter blocks under the action
of the group generated by the permutations (0,1,2)(3,4,5)(6,7,8)(9,T,E) and
(0,3)(1,5)(2,4)(7,8)(T,E).

(1) The starter blocks for T are {678}, {69W}, {9TE}, for C; are (061), (163),
(0w2), and for Cy are (094), (491), (198), (893). Then C, is a surface
constituent of genus 0, Cy is a surface constituent of genus 1, and (X, 7T U
C1 UCy) and (X, T UCY UCy) are non-flexible LDTS(13)s.

(2) The starter blocks for 7 are {05W}, {678}, {69W}, {9TE}, and for C are
(061), (164), (46E), (E60), (092), (293). Then C is a surface constituent
of genus 1, and (X, 7 UC) and (X, T UC°P) are non-flexible LDTS(13)s.

(3) The starter blocks for 7 are {016}, {05W}, {678}, {69W}, {9TE}, and for C
are (094), (491), (198), (893). Then C is a surface constituent of genus 1,
and (X, 7 UC) is a non-flexible LDTS(13).

(4) The starter blocks for 7 are {039}, {04E}, {057}, {678}, {69W}, {9TE},
and for C are (061), (16E), (E63), (OW2). Then C is a surface constituent
of genus 0, and (X, 7 UC) is a non-flexible LDTS(13).

(5) The starter blocks for 7 are {017}, {039}, {04E}, {05W}, {08T}, {678},
{69W}, {9TE}. Then (X,7) is the non-cyclic STS(13).

Example A.10. The 8 DTS quasigroups that have automorphism group Cj
are defined by the triples obtained from the following starter blocks under the
action of the permutation (0, 1,2,3,4)(5,6,7,8,9). The starter blocks for Cy are
(0T1), (1E0), for C; are (706), (609), (90W), (WO7), (5T7), (BE6), for Cy are (706),
(608), (803), (307), (OW5), (5W1), (6T6), (5E8), for T, are {025}, {TEW}, and
7> = {{TEW}}. Then Cy is a surface constituent of genus 0, C; and C, are surface
constituents of genus 2, and (X, T;UCoUCy), (X, T1UCoUC®), (X, TTUCP UCy),

48



(X, TTUCPUCT), (X, T2UCyUCy), (X, T2UCyUC5), (X, T2 UCP UCy) and
(X, T2 UCg? UCSP) are non-flexible LDTS(13)s.

Example A.11. The 17 DTS quasigroups that have automorphism group Cs x Cy
are defined by the triples obtained from the following starter blocks under the
action of the group generated by the permutations (0, 1)(2, 3)(4,5)(6,7)(8,9) and
(0,9)(1,8)(2,7)(3,6)(4,5)(T,E).

(1) The starter blocks for T are {048}, {45W}, {TEW}, for D, are (0T5), (5T8),
(8T6), (6T2), (2T0), for C; are (03W), (W38), (839), (930), and for C, are
(243), (346). Then C; and C, are surface constituents of genus 0, Dy
consists of 2 surface constituents of genus 0, and (X,7 U Dy U C; UCy),
(X, TUDGUCPUC), (X, TUDyUC; UC®) and (X, T UDyUCY UC5P)
are non-flexible LDTS(13)s.

(2) The starter blocks for 7 are {01w}, {048}, {26W}, {45W}, {TEW}, for C; are
(305), (507), (706), (603), and for C, are (0T2), (2T5), (5T6), (6T8), (8T1).
Then C; and Cy are surface constituents of genus 0, and (X, 7 UC; UCs)
and (X, T UC{® UCy) are non-flexible LDTS(13)s.

(3) The starter blocks for 7 are {01W}, {048}, {27W}, {45W}, {TEW}, and for
C are (305), (506), (607), (703), (0T2), (2T5), (5T7), (7T9), (9T0). Then
C is a surface constituent of genus 0, and (X, 7 UC) and (X, T UC®P) are
non-flexible LDTS(13)s.

(4) The starter blocks for 7 are {01E}, {048}, {07T}, {09W}, {23W}, {45W},
{TEW}, and for C are (206), (603), (305), (502), (2T5), (5T3). Then C
is a surface constituent of genus 0, and (X, 7 UC) and (X,7T UC°P) are
non-flexible LDTS(13)s.

(5) The starter blocks for 7 are {01T}, {02E}, {048}, {09w}, {25T}, {26W},
{45W}, {TEW}, and for C are (305), (607), (706), (603). Then C is a surface
constituent of genus 0, and (X, 7 UC) and (X,7 UC) are non-flexible
LDTS(13)s.

(6) The starter blocks for 7 are {01w}, {048}, {23w}, {45W}, {TEW}, and for
C are (206), (603), (305), (502), (0T9), (9T2), (2T5), (5T7), (7T0). Then
C is a surface constituent of genus 1, and (X, 7 UC) and (X, T UCP) are
non-flexible LDTS(13)s.

(7) The starter blocks for 7 are {01T}, {048}, {09W}, {25T}, {27w}, {45W},
{TEW}, and for C are (20E), (E03), (305), (507), (706), (602). Then C is a
surface constituent of genus 1, and (X, 7 UC) is a non-flexible LDTS(13).

(8) The starter blocks for 7 are {01E}, {048}, {09w}, {26W}, {45W}, {TEW},
and for C are (203), (305), (506), (60T), (T07), (702), (2T5), (5T3). Then
C is a surface constituent of genus 2, and (X, 7 UC) and (X, T UCP) are
non-flexible LDTS(13)s.

Example A.12. The system is defined by the triples obtained from the following
starter blocks under the action of the permutation (0, 1, 2)(3,4,5)(6,7,8)(9,T,E).
The starter blocks for C are (16E), (E63), (368), (862), (265), (561), (096), (69W),
(W98), (893), (391), (195), (59T), (T90), (3W0), (OW5), and T = {{012}, {345}}.
Then C is a surface constituent of genus 3, and (X,7 U C) is a non-flexible
LDTS(13). The automorphism group of the DTS quasigroup is Cs.

Example A.13. The system is defined by the triples obtained from the following
starter blocks under the action of the permutation (0, 1)(2, 3)(4,5)(6,7)(8,9)(T,E).
The starter blocks for C are (065), (162), (260), (561), (084), (287), (382), (483),
(580), (785), (0T9), (1T0), (2T1), (3T4), (4T5), (5T3), (6T7), (7T2), (8T6), (9T8),
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(0w2), (2w4), (4we), (6w8), (8W1), and 7 = {{TEW}}. Then C is a surface con-
stituent of genus 4, and (X, 7 UC) is a non-flexible LDTS(13). The automorphism
group of the DTS quasigroup is Cs.
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TRIPLE SYSTEMS AND BINARY OPERATIONS
ALES DRAPAL, TERRY S. GRIGGS, AND ANDREW R. KOZLIK

ABSTRACT. It is well known that given a Steiner triple system (STS) one can
define a binary operation * upon its base set by assigning z * z = z for all x
and z*y = z, where z is the third point in the block containing the pair {x,y}.
The same can be done for Mendelsohn triple systems (MTS) as well as hybrid
triple systems (HTS), where (z,y) is considered to be ordered. In the case of
STSs and MTSs, the operation is a quasigroup, however this is not necessarily
the case for HT'Ss. In this paper we study the binary operation induced by
HTSs. It turns out that each such operation * satisfies

yef{ex(z*xy), (x*xy)*xz} and ye{(y*x)*z,z*x(yxxz)}
for all x and y from the base set. We call every binary operation that fulfils
this condition hybridly symmetric.

Not all idempotent hybridly symmetric operations can be obtained from
HTSs. We show that these operations correspond to decompositions of a com-
plete digraph into certain digraphs on three vertices. However, an idempotent
hybridly symmetric quasigroup always comes from an HTS. The correspond-
ing HTS is then called a latin HTS (LHTS). The core of this paper is the
characterization of LHTSs and the description of their existence spectrum.

1. INTRODUCTION

Consider an ordered pair (X, B), where X is a set of points and B is a decom-
position of the complete digraph on X into cyclic triples (a,b,c) and transitive
triples (a,b,c). The cyclic triple (a,b, c) consists of arrows (i.e. directed edges)
(a,b), (b,c) and (c,a), while a transitive triple (a,b,c) carries (a,b), (b,c) and
(a,c). 1If all triples in B are cyclic, then (X, B) is called a Mendelsohn triple
system (MTS). If all triples in B are transitive, then it is called a directed triple
system (DTS). If we allow both cyclic and transitive triples to occur in B, then
the term hybrid triple system (HTS) is used, following Colbourn, Pulleyblank and
Rosa [5]. However, the concept of an HT'S seems to have appeared earlier (under a
different name) in an article [19] of Lindner and Street, and later, independently,
in [23].

Each HTS induces a binary operation, say *, upon its base set. For a cyclic
triple (a,b,c) set axb=c, bxc=a and c*a =b. For a transitive triple (a, b, c)
set axb=c, bxc=a and a*c=>b. The induced operation * is assumed to be
idempotent, i.e. a x a = a holds for every a.

It is easy to see that the binary operation * is induced by an MTS if and
only if it is semisymmetric (i.e. z * (y x ) = y for all x and y). If a binary
operation satisfies the semisymmetric law, then it is a quasigroup, and, as is well
known [1, Remark 2.12], there is a one-to-one correspondence between MTS(n)s
and idempotent semisymmetric quasigroups of order n. In [9] and [8] we were
concerned with a combinatorial and an algebraic description of those DT'Ss that
yield a quasigroup. In this paper we give a similar description for HT'Ss that yield

2010 Mathematics Subject Classification. Primary 05B07; Secondary 20N05.
Key words and phrases. Hybrid triple system, quasigroup.
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a quasigroup (Theorems 5.3 and 5.4). We call any such HTS a latin hybrid triple
system (LHTS). The corresponding quasigroups can be described as idempotent
hybridly symmetric quasigroups, i.e. idempotent quasigroups that fulfil

ye{r*(z*xy),(xxy)xx} and ye{(y*xz)*xz,xx(y*xx)}

for all z and y of the base set.

In fact, every binary operation x that is induced by an HTS (regardless of
whether it is a quasigroup or not) is hybridly symmetric. However, not all idem-
potent hybridly symmetric operations can be obtained from HTSs. We shall
see that such an operation corresponds to an HTS if and only if it satisfies an
additional condition (Proposition 3.5). It is then natural to ask if there is a
combinatorial interpretation for idempotent hybridly symmetric operations. The
answer is positive and points to the decompositions of K into digraphs on three
vertices as studied by Hartman and Mendelsohn [15]. There are exactly seven
digraphs on three vertices which have the property that for any two distinct
vertices a and b at least one of the arrows (a,b) and (b,a) is an edge of the di-
graph. It is possible to define x for these digraphs similarly as above and, as we
prove in Section 3, decompositions of K into these seven digraphs correspond to
idempotent hybridly symmetric operations (Theorem 3.3). The correspondence
is not one-to-one, since if the decomposition contains a pair of triples with the
same vertex set, say (a,b,c) and (c,b,a), then these can be replaced by a dif-
ferent pair of triples, say (b,a,c) and (c, a,b), however both systems induce the
same binary operation. To get a one-to-one correspondence the notion of a coarse
decomposition is needed (cf. Section 3).

The algebraic descriptions that are introduced in this paper have, admittedly,
certain disadvantages: they cannot be used for decompositions into A-fold di-
graphs if A > 1, and they cannot be used to study mixed triple systems [11].
But there are also advantages. One of them is the ease with which examples can
be produced by standard tools that generate first-order models. We exploit this
feature in Section 4 where we give the number of isomorphism types for uniform
systems that are based upon each of the seven digraphs on three elements, for
a base set of 10 and less elements (with one exception). Also, in Section 6, we
count the number of isomorphism types for proper LHTSs, again up to a base set
of 10 elements (see also the Appendix). In doing so, we have used the algebraic
description of LHTSs given in Theorem 5.4, which states that LHTSs correspond
to idempotent binary operations * satisfying

y=xx(x*xy)=(yxx)*x or y=(r*xy)*xzr=2x%(y*2)

for all x and y of the base set.

In Section 7 we prove that a proper LHTS of order n exists if and only if
n=0or 1 (mod 3) and n > 9. The proof is constructive and yields LHTSs which
are balanced in the sense that asymptotically half of the triples are transitive and
the other half are cyclic.

2. SYMMETRIC OPERATIONS (TOTALLY, LEFT, RIGHT, MIDDLE, HYBRIDLY)

The fact that Steiner triple systems (STS) are equivalent to totally symmetric
idempotent quasigroups is often mentioned without realizing where the notion of
total symmetricity comes from.

A quasigroup operation * is said to be totally symmetric if x xy = yxx =
x/y=y/x =x\y =y\z for all x and y. Here \ and / stand for the left and right
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division in the quasigroup. It is immediately clear that this class of quasigroups
is determined already by the laws x xy = y* 2z = y/x. Instead of yxx = y/x one
can write (y * x) * x = y, and hence totally symmetric quasigroups can be fully
described by
(yxz)xx =y and x*xy=1yx*z.

A binary operation fulfilling these two laws is necessarily a quasigroup, and so
there is no difference between totally symmetric (binary) operations and totally
symmetric quasigroups. If the operation is idempotent (i.e. = x x = z for every
element z), then the sets {z,y,z * y}, * # y, determine an STS. The converse
holds as well. The correspondence between STSs and totally symmetric loops
(quasigroups with a unit) is also widely known.

The notion of totally symmetric quasigroups is natural. It is not really about
a symmetry, but about the coincidence of all six parastrophic operations. The
equational description of totally symmetric quasigroup seems to have been the
main reason why the law (y * x) x x = y has been called right symmetric and the
law z % (x xy) = y left symmetric. Admittedly, these terms are little illuminating
in themselves. Nevertheless, they are widely accepted and in such circumstances
it seems reasonable to call the law x * (y x ) = y middle symmetric. However,
this law is nearly always called semisymmetric since it represents a half of the
characterization of totally symmetric quasigroups by z*(y*x) = y and x*xy = y*x.

Lemma 2.1. Let * be a binary operation upon a set X. If xx (yxx) =y for all
r,y € X, then (zxy)xxz =1y for all z,y € X as well.

Proof. We have (xxy)xx = (zxy)* (y*x (xxy)) =v. O

The term hybridly symmetric introduced above thus expresses the fact that for
any (z,y) we get an instance of left or middle symmetric law, and an instance of
right or middle symmetric law.

From the lemma above we can also see that any semisymmetric binary opera-
tion is necessarily a quasigroup in which y\x = x *x y = y/x. If the operation is
idempotent, then the sets (z,y,z*y), x # y, determine an MTS. Thus there is a
one-to-one correspondence between MTSs and idempotent semisymmetric binary
operations.

3. IDEMPOTENT HYBRIDLY SYMMETRIC OPERATIONS

We have started this paper by interpreting cyclic and transitive triples as di-
graphs upon three elements. In this way we shall also interpret a 3-element set
{a,b,c} and identify it with the complete digraph (arrows (a,b), (b,a), (a,c),
(c,a), (b,c) and (c,b)). There are four other digraphs on three elements we shall
use:

d(a, b, c) consists of (a,b), (b,a), (b,c), (¢,b) and (a, c);
t(a,b,c) consists of (a,b), (b,¢), (a,c) and (c,a);
i(a, b, c) consists of (a,b), (c,b), (a,c) and (c,a); and
o(a, b, ¢) consists of (b,a), (b,c), (a,c) and (c,a).

The following easy fact will be useful:

Lemma 3.1. Suppose that a, b and c are three different elements. Then
(i) d(a,b,c) contains (a,c,b), (a,c,b), (b,a,c), and (a,b,c);
(i) t(a,b,c) contains (a,b,c) and {(a,b,c);
(iii) i(a, b, c) contains (a,c,b) and (c,a,b); and
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(iv) o(a, b, c) contains (b,a,c) and (b, c,a).

Let X be a set and let B be a decomposition of the complete digraph upon X
into digraphs each of which is of the form (a, b, ¢) or (a, b, c) or {a, b, c} or d(a, b, ¢)
or t(a,b,c) or i(a,b,c) or o(a,b,c), where a, b and ¢ are three different elements
of X. Such a decomposition will be called a 3-decomposition of X.

Given a 3-decomposition B define an operation * so that a x a = a for every
a € X, and
1) if (a,b,¢) € B, then axb=c, b*xc=a and ¢ * a = b;

2) if (a,b,c) € B,then axb=c, bxc=a and a*c =10,
3) if {a,b,c} € B,then axb=0b%a=c,bxc=cxb=aand axc=cxa = b;
4) if d(a,b,c) € B, thenaxb=bxa=c,bxc=c*xb=aand a*c=b;
5) if t(a,b,c) € B, then axb=c,bxc=aand a*xc=cx*xa = b,
6) if i(a,b,c) € B, then axb=c¢, cxb=aand a*c=cxa=>b; and
(7) if o(a,b,c) € B, then bxa=c,bxc=aand a*xc=cx*xa=0b.

The definition of % is done explicitly for the purpose of reference. It obeys a
general principle: if a triple in B contains the directed edge (x,y), then z * y is
equal to the third element of the triple.

We see clearly that * is well defined. We shall call it the binary operation
induced by the 3-decomposition B. Let us recall that an operation is hybridly
symmetric if it satisfies y € {z* (xxy), (rxy)xz} andy € {(y*z)*z, xx (y* 1)}
for all x and y from the base set.

Lemma 3.2. Every binary operation induced by a 3-decomposition is hybridly
symmetric.

Proof. We have to verify that y € {z * u,u* z} and y € {v * x,r * v}, where
u=ux%y and v =y *x x. This is clear if z = y. Assume z # y. Then there exists
an element of B with vertices x, y and u, and an element of B with vertices x, y
and v. If the former element contains (z,u), then y = x % u. If it contains (u, z),
then y = w* z. If the latter element contains (v, ), then y = v*z. If it contains
(x,v), then y = z % v. O

Theorem 3.3. An idempotent binary operation can be induced by a 3-decomposition
if and only if it is hybridly symmetric.

Proof. Let x be an idempotent hybridly symmetric operation upon X. For each
a,b € X, a # b, there exists a triple T'(a,b) such that ¢ = a x b and
T(a,b) = (a,b,c), cxa=>band bxc = a;
T(a,b) = {c,a,b), cxa=">band c* b= q;
T(a,b) = {(a,b,c), axc=">band bxc=a; or

T(a,b) = {(a,c,b), axc="band cxb=a.
The existence of T'(a,b) is a direct consequence of the definition of a hybridly
symmetric operation. However, the choice of T'(a,b) need not be unique. Let us
call a triple compatible with x if it can be obtained as T'(a, b) for some a,b € X.
It is easy to see that if (a, b, c) is a compatible triple, then it can serve not only
as T'(a,b), but also as T'(a,c) and T'(b,c). Similarly, (a,b,c) can be obtained as
T(a,b), T(b,c) and T(c,a).

Let now B’ be the collection of all 3-element sets that carry a compatible
triple. For each C' € B’ consider the digraph obtained by unifying the digraphs
which represent all compatible triples that yield C'. Denote the collection of
such digraphs by B. Then B is a 3-decomposition of X and this decomposition
induces . O
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The 3-decomposition B defined in the proof of Theorem 3.3 has the property,
that no two digraphs have the same vertex set. Such decompositions will be
called coarse.

Corollary 3.4. There is a one-to-one correspondence between idempotent hy-

bridly symmetric binary operations upon a set X and coarse 3-decompositions of
the set X.

Proposition 3.5. Let % be an idempotent hybridly symmetric binary operation
that is induced by a coarse 3-decomposition B of a set X. The following are
equivalent:

(i) ifexy=yxx, thenxx (x*xy) = (x*xy)*xx, forallx,y € X;
(ii) the set B contains no element of the form d(a,b,c), t(a,b,c), i(a,b,c) or
o(a,b,c); and
(iii) the operation * is induced by an HTS.

Proof. First we show that the presence of a triple of type d, t, i or o violates (i).
Suppose that d(a,b,c) € B. Then axb=bxa =c,a*xc=>band cxa # b. For
cases t, i and o start from axc=cxa =0b. Then axb =c # bx*a in t(a,b,c)
and i(a, b, c), while b* a = ¢ # a * b in the case o(a, b, c). Thus (i) implies (ii).

To see (ii) = (iii) is trivial: decompose every {a,b,c} to (a,b,c) and (c,b,a)
(alternatively to (a, b, c) and {c, b, a)).

Assume that * is induced by an HTS. If z x y = y x 2 and x # y, then there
exist a,b,c € X such that {z,y} C {a,b,c} and the HTS contains either both
(a,b,c) and (¢, b,a), or both (a,b,c) and (c,b,a). The restriction of * to {a,b,c}
yields a totally symmetric idempotent quasigroup on three elements, and hence
(ili) implies (i). O

4. UNIFORM SYSTEMS

Consider a 3-decomposition B. Call the decomposition uniform if only one of
the seven graphs is used. If all graphs are of the form {a,b,c}, then B is an
STS. The form (a,b,c) corresponds to MTS and (a, b, ¢) to DTS; coarse systems
of both of these types are known as pure.

Suppose that the base set has n elements. If all graphs are of the form d(a, b, ¢),
then by amalgamating digraphs d(a, b, ¢) and d(¢, d, a) we obtain a decomposition
of K, into graphs K, \ e (one edge removed from K,). Such decompositions exist
for all n = 0 or 1 (mod 5), n # 5. Conversely a K, \ e design may give rise to
many uniform 3-decompositions of K because the choice of orientation brings
an additional degree of freedom.

If all graphs are of the form t(a, b, ¢), then these can be obtained from decom-
positions of K, into wheel graphs W,., r > 3. A wheel graph W, is a graph with
r + 1 vertices formed by connecting a single vertex to all vertices of an r-cycle.

The necessary and sufficient conditions for the existence of a coarse uniform sys-
tem of order n are given in Table 1 together with references. The table also gives
the number of isomorphism types for coarse uniform systems of order up to 10
(with one exception). These results were obtained using the program Mace4 [21]
which is part of the package Prover9, an automated theorem prover for first-order
and equational logic. Given an algebraic description of a system, Mace4 can enu-
merate all structures of some finite order that satisfy the given set of formulas.
Note that the case o(a, b, ) is not listed because it is dual to i(a, b, c).
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Number of isomorphism
types of order

Form Conditions Ref. 3 4 5 6 7 8 9 10
{a,b,c} n=1or3 (mod 6) g 1 00 0 1 0 1 O
{(a,b,c) nm=0orl (mod3),n+#3 6] 0 3 0 32 1016 0 7 7
(a,b,¢) nm=0orl (mod3),n 7é 3 or6 22 010 0 2 0 7 60
d(a,b,c) n=0or1 (mod5), n B 000 2 0 0 0 92
t(a,b,c) mn=0or1l (mod4), n 7& 5 or8 [15] 01 0 0 0O O 16 O
i(a,b,c) n=1 (mod 4) 15 001 0 0 03 0

TABLE 1. Conditions for the existence of a coarse uniform system
of order n and the number of isomorphism types of order up to 10.

5. QUASIGROUPS

Let * be an idempotent hybridly symmetric binary operation that is induced by
a coarse 3-decomposition B of a set X. Each cyclic or transitive triple induces a
partial binary operation and we call such a triple compatible if the partial binary
operation agrees with x. The definition of compatible triples is thus the same as
in the proof of Theorem 3.3.

For a transitive triple (a, b, ¢) call the directed edge (a, b) the initial edge, (b, c)
the terminal edge and (a,c) the long edge.

Consider now two triples that share two vertices, say a and b. These triples
are said to be in a matching position if

(1) both of them are cyclic; or

(2) both of them are transitive, one of the directed edges (a,b) and (b, a) is
initial and the other edge is terminal; or

(3) both of them are transitive and both directed edges (a,b) and (b,a) are
long.

The two triples mismatch if they are not in a matching position.

Lemma 5.1. If there exist two compatible triples which share exactly two vertices
and which mismatch, then % is not a quasigroup operation.

Proof. We shall enumerate all possible mismatching positions and explicitly show
a violation of the quasigroup properties in each of them.

(a) (a,b,c) and (b,a,d): bxd=a="bxc;
(b) (a,b,c) and (d,b,a): d*xa =b = cx*a;
(¢) (a,b,c) and (b,d,a): d*xa=b=cxa;
(d) (a,b,c) and (b,a,d): bxc=a = bx*d;
(e) {(a,b,c) and (b,d,a): bxc=a=>bxd,
(f) (c,a,b) and (d,b,a): cxa=0b=dx*a; and
(g) (c,a,b) and (b,d,a): cxa=b=dx*a.

O

Lemma 5.2. If B contains an element in one of the forms d(a,b,c), t(a,b,c),
i(a,b,c) oro(a,b,c), then the induced operation * is not a quasigroup operation.

Proof. In cases d and t there exists upon {a, b, ¢} both a transitive triple compat-
ible with % and a cyclic triple compatible with *. Any compatible triple that has
exactly two vertices from {a, b, c} has to mismatch one of these two triples. Thus
by Lemma 5.1, * is not a quasigroup operation. To finish the proof it suffices to
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consider the case i since case o occurs in the mirror operation. If i(a,b,c) € B,
then both (a, ¢, b) and (c,a,b) are compatible triples. Suppose that x is a quasi-
group operation. Then Lemma 5.1 implies that (b, a) should occur both as an
initial edge and as a long edge in some transitive triple. That is not possible, of
course. 0

Hence all idempotent hybridly symmetric quasigroup operations % can be ob-
tained from HTSs, and so we will refer to them as HTS quasigroups for short.
Quasigroups that can be obtained from DTSs have been called DTS quasigroups.

Call a triple occurring in an HTS bidirectional if there exists another triple
in the system with the same vertex set, otherwise call it unidirectional. Let x
be determined by an HTS (X, B). Denote by F the set of all {a,b, c} such that
{a,b,c} is the vertex set of a unidirectional triple of B. Consider now F as a set
of faces. Each edge {a, b} is incident to two faces, hence the faces can be sewn
together along common edges to form a pseudosurface. By separating pinch points
we obtain a surface, which can be partitioned into connected components. Call
such a surface component uniform if all its triples are either cyclic, or transitive.
From Lemma 5.1 we see that all components are uniform if * yields a quasigroup.

Theorem 5.3. Let x be determined by an HTS (X, B). Denote by S, the set of
ordered pairs (a,b) in positions p and q respectively of the transitive triples of B.
The following are equivalent:
(i) * is a quasigroup operation,
(ii) whenever two triples in B share two vertices, they are in a matching po-
sition;
(iii) Si,2 = Ss2, Sa3 =521 and Sy 3 = Ss1;
(iv) for each {(a,b,c) € B there exist elements a’, V', ¢ € X such that (¢, b,a),
(c,b,a), (c,b,d) € B.

Proof. Assume that (i) holds. Clearly, whenever two triples in an HTS share the
same vertex set, they are in a matching position. If they share exactly 2 vertices,
then (ii) follows from Lemma 5.1.

Assume that (i) holds. The set S5 is a collection of all initial edges, thus
(a,b) € Sy2 if and only if (b,a) is a terminal edge in some transitive triple,
i.e. (a,b) € S35. Analogously for the remaining equalities. Thus (ii) implies (iii).

Now assume that (iii) holds and let (a,b,c) € B. Since (a,b) € S12 = S32,
there exists ¢’ such that (¢, b,a) € B. Analogously for ¢’ and a'.

Finally assume that (iv) holds. For  to be a quasigroup operation we need to
show that for any a,b € X, a # b, there exist x and y such that b« x = a and
y*b=a. If (a,b) occurs in a cyclic triple, then (b, a) also occurs in a cyclic triple,
thus (a,b,x), (b,a,y) € B, i.e. we can set z = a*b and y = b*a. If (a,b) is an
initial edge, then use (a,b, ), (y,b,a) € B. If (a,b) is a terminal edge, then use
(y,a,by, (b,a,z) € B. If (a,b) is a long edge, then use (a,y,b), (b,z,a) € B. O

Note that the conditions given in the above theorem are reminiscent of those
(S12 = S21, Sa3 = S32, and S13 = S31) for a class of directed triple systems, so
called Mendelsohn directed triple systems, the existence of which was discussed
in [13].

Recall that an HT'S that induces a quasigroup operation is called a latin hybrid
triple system (LHTS). Similarly a DTS which induces a quasigroup operation will
be called a latin directed triple system (LDTS). A partial LHTS is defined as a par-
tial HT'S which satisfies condition (iii) of Theorem 5.3. Partial LDTSs are defined
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analogously. An important example of such a system is the partial LDTS(6) con-
sisting of the transitive triples {(z, v, 2), (z, ¢, 2, {2/, y, ), (&', ¢/, 2), (z, ¢/, 2},
(z,y,2"), (2,9, x), (z/,y,z)}. We will denote this set by P.

Given a partial LHTS B, every transitive triple (a,b,c¢) can be replaced by
a cyclic triple (a,b,c¢). This yields a partial MTS since (c, ¥, a) is turned into
(¢,0,a), (c,b,a) into (c’,b,a) and (c,b,a’) into (c,b,a’). We shall call this the
underlying (partial) MTS of B and denote it by B.

Notice that an LHTS yields the same surface as its underlying MTS. Clearly,
the surface obtained from an MTS is orientable, hence any LHTS yields an ori-
entable surface as well. This is generally not the case for HTSs.

Given a set of triples B, if every cyclic triple (a,b,c) is replaced by (¢, b, a)
and every transitive triple (a, b, ¢) is replaced by (c, b, a), then the resulting set is
called the converse of B and is denoted B*. Clearly the converse of a (partial)
LHTS is also a (partial) LHTS.

Theorem 5.4. Let x be an idempotent binary operation upon a non-empty set X.
The following is equivalent:
(1) the operation x is a hybridly symmetric quasigroup operation;
(ii) the operation x is induced by an LHTS;
(ili) y=ax*(zxy) = (y*xx)xx ory = (zxy)*xx =x*(y*x) for all x,y € X.

Proof. The implication (i) = (ii) follows from Lemma 5.2. Let B be an LHTS.
If (a,b,¢) € B, then by Theorem 5.3 (ii) there exists an element ¢ such that
(b,a,d) € B. Then (a*b)*a = b = ax* (bx*a). Now assume (a,b,c) € B
and let @', & and ¢ be as in Theorem 5.3. Then a x (a xb) = b = (b*a) * a,
ax(axc)=c=(cxa)xaand (bxc)xb=c=0bx(cxb). We see that (ii)
implies (iii).

Assume that condition (iii) holds. This condition simply states that for any
(a,b) we get an instance of left and right symmetric law or an instance of middle
symmetric law. Thus the operation is hybridly symmetric. Furthermore, the
condition states that for any x,y € X there exist u,v € X such that zxu =y
and vxxz =y, whereu =xxy and v =y*x,or u =y *x and v = x xy. Thus *
is a quasigroup operation. 0]

This paper is mainly about connections of triple systems and idempotent binary
operations. In Theorem 5.4 we have hence proved the equivalence of points (i)
and (iii) in this context. The equivalence holds for all quasigroups, without the
assumption of idempotency:

Proposition 5.5. Let Q(x) be a quasigroup. The following conditions are equiv-
alent:

(i) y Gd{x*(ft*y)a(w*y)*ﬂf} andy € {(y*x)*x, x*(y*x)} for allz,y € Q,
an

(i) y=x*x(xxy) = (y*xx)*xx ory = (rxy)xx =x*(y*xz) for all z,y € Q.

Proof. The implication (ii) = (i) is clear. Assume that (i) holds and fix z,y € Q.
The situations that need treatment are y = z % (x xy) = z * (y*x) and y =
(x xy) *x = (y*x) * z. Both of them yield z x y = y x x. So let us assume that
rxy = y*xx and let 2 = x*xy. Then y = x*xz or y = z*xx and we need to show that
infact y = xxz = zxx. lfy = xxz, then zx(r%2) = vxy = 2 = yxx = (v*2)*x.
From (i) we also know that z = (z*x)*z or z = xx(zxz). Either one of these cases
implies that z*x = z x z. Similarly, if y = z*xz, then 2% (2 x2) = z = (2% x) * .
Since z =z % (x % 2) or z = (x % 2) x x, we again get z * r = x * 2. O
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As we discussed in Section 2, the quasigroups obtained from STSs and MTSs
are always semisymmetric. It can be seen from Lemma 2.1 that they also satisfy
zx(y+x) = (rxy)*x for all z and y. This is known as the flexible law. Generally,
HTS quasigroups need not be flexible. Flexibility in DTS quasigroups has been
previously studied in [9], where the existence spectrum of non-flexible LDTS(n)s
was determined to be n =0 or 1 (mod 3), n # 3, 4, 6, 7, 10. We now derive the
necessary and sufficient condition for an LHTS to yield a flexible quasigroup.

Lemma 5.6. Let Q(x) be a quasigroup induced by an HTS B. If x x (y x x) =
(x xy) *xx for every (x,xz xy,y) € B, then Q(x) is flexible.

Proof. For the purposes of clarity, we shall write simply zy instead of x x y. We
need to show that the restricted assumption of flexibility implies that a(ba) =
(ab)a for any pair (a,b), where a and b are distinct elements of Q.

If the pair (a, b) lies in a cyclic triple, then by Theorem 5.3 the pair (b, a) also
lies in a cyclic triple. Thus (a, b, ab), (b, a,ba) € B and a(ba) = b = (ab)a.

For transitive triples, it suffices to consider the cases (x,zy) and (zy,y), where
(x,zy,y) € B. The latter case is immediate since by Theorem 5.3 we have
(y, 2y, y(zy)) € B, hence (zy)(y(zy)) = y = z(zy) = ((zy)y)(zy). For the former
case note that (z(xy))r = yx. By Theorem 5.3 we have (y,yz,z) € B and
(z,yz,z(yx)) € B, hence z(x(yz)) = yx. Now (z(zy))r = yr = z(z(yz)) =
z((zy)x). O

If an LHTS yields a flexible quasigroup, we call it a flexible LHTS. Denote
by Oy the set {(z;,u,x;11) : i € Zy} U {{xy1,v,2;) : @ € Zg}, where b > 3
and the points u, v, xg, ..., Tp_1 are pairwise distinct. The set Oy is a partial
LHTS consisting of a single surface component. This component has the form
of a k-gonal bipyramid, i.e. a graph with k + 2 vertices formed by connecting
the vertex u and the vertex v to all vertices of a k-cycle. Note that the set of
transitive triples P mentioned above is a set of the form Oj,.

Theorem 5.7. An LHTS (X, B) is flexible if and only if the unidirectional tran-
sitive triples in B can be partitioned into subsets of the form Oy, where k > 3.

Proof. Consider a unidirectional triple (zq,u,z1) € B. Assuming X is finite, by
Theorem 5.3 there exist pairwise distinct points v, xg, x1, ..., Tx_1, k > 3, such
that (z1,v,20) € B and (x;,u,x;11) € B for all i € Z;. If (X, B) is flexible and
(xir1,v,2;) € Bfor some i € Zj, then by Theorem 5.3 the triple (v*x;, 1,0, Z;41)
belongs to B as well and vz, 1 = (i1 %2;) % @1 = Tipq % (L% Ti1) = Tip1xu =
Z;vro. Thus by induction we get a set of the form Oy.

If the unidirectional transitive triples in B can be partitioned into subsets of
the form Oy, then for any triple of the form (z;,u,x;11) € B, i € Z, we have
xp % (Tip1 % x;) = i1 = (x; % x41) * x;, and similarly for (z;41,v,x;) we have
Tip1x (% xi41) = Tiyo = (x;01%x;)*2;41. Thus the condition given in Lemma 5.6
is satisfied. ([l

6. ENUMERATION OF LHTSS

If an LHTS contains a pair of bidirectional triples, then these can be replaced
by a different pair of bidirectional triples to form a potentially non-isomorphic
LHTS, yet both systems will generate the same quasigroup; see [9, Example
2.4]. For purposes of enumeration, it therefore makes more sense to count HT'S
quasigroups rather than the LHTSs from which they come.
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Call a set {a, b, c} a Steiner triple if it is the vertex set of a bidirectional triple.
Given an LHTS (X, B), replace every pair of bidirectional triples with a Steiner
triple to obtain a coarse 3-decomposition of X. The block set B can then be
expressed as a union of a set of Steiner triples 7, a set of unidirectional transitive
triples D and a set of unidirectional cyclic triples M. This representation gives
a one-to-one correspondence between LHTSs and HTS quasigroups.

For each # € X denote by f(z), m(z) and I(z) the number of unidirectional
transitive triples in B such that x appears in the first, middle and last position,
respectively. Note that f(z) = (z) for any € X. By ¢(x) denote the number
of unidirectional cyclic triples in B containing z. By ¢(z) denote the number of
Steiner triples in B containing x. Clearly Y _t(x) = 3|7|. The outdegree of
any z € X can be expressed

n—1=2f(x)+m(x)+ c(x) + 2t(x). (1)

Lemma 6.1. Let (X,B) be an LHTS, then f(z) # 1, m(x) ¢ {1,2}, c(x) ¢
{1,2}, for any z € X.

Proof. Suppose that m(z) € {1,2} and (y,z,z) € B is unidirectional. By
Theorem 5.3 there exist unidirectional triples (2’ x,y), (z,z,y') € B. Clearly
m(z) # 1, so m(z) = 2. Then (2, z,y) = (z,z,9'), thus z = 2’ and (y,x, 2) is
bidirectional, which is a contradiction. Analogously for ¢(z) € {1, 2}.

Suppose that f(z) = 1 and (z,y,2) € B is unidirectional. By Theorem 5.3
there exist unidirectional triples (2',y, z), (2,9, ) € B. Since l(z) = f(x) = 1,
the two triples coincide, thus z = 2’ and (x,y, z) is bidirectional, which is a
contradiction. O

It is well known [22] that an MTS(n) exists if and only if n =0 or 1 (mod 3)
and n # 6. The non-existence of an underlying MTS(6) implies the non-existence
of an LHTS(6). Since any MTS(n) is also an LHTS(n), it follows that:

Proposition 6.2. An LHTS(n) exists if and only if n = 0 or 1 (mod 3) and
n # 6.

It would, however, be of more interest to study LHTSs containing both unidi-
rectional cyclic triples, as well as unidirectional transitive triples. We call such
systems proper LHTSs. Similarly an MTS or an LDTS containing at least one
unidirectional triple will be called proper. Clearly there exists no proper LHTS(3).
There exists no proper LHTS(4), since the underlying MTS(4), which is unique
up to isomorphism, has only one component. Any proper LHTS must have at
least two components, one consisting of transitive triples and one consisting of
cyclic triples.

Proposition 6.3. There ezists no proper LHTS(7).

Proof. Suppose that (Z7, B) is a proper LHTS(7). By definition, we require that
B contains some unidirectional cyclic triple (x,y,z). Then there exist points
2y, 2 € X\ {x,y,z} such that (2/,y,2), (2,¢,2), (z,y,2") € B. There are
therefore at least four pairwise distinct points in X that appear in a cyclic triple.

From Equation (1) and Lemma 6.1 we see that the possible values for
(f(x),m(x),c(z),t(x)) are (0,0,0,3), (0,0,4,1), (0,0,6,0), (0,3,3,0), (0,4,0,1),
(0,6,0,0), (2,0,0,1) or (3,0,0,0). In a proper LHTS there exists a point = such
that f(x) > 0. Let us examine the two possible cases:

If there exists a point of type (3,0,0,0), say 0, then without loss of generality
(0,1,2), (0,3,4), (0,5,6) € B. Points 2, 4 and 6 have f(z) = I(x) > 0, i.e. they
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are of type (2,0,0,1) or (3,0,0,0). At least four points must have ¢(x) > 0, but
this is not possible.

If there exists a point of type (2,0,0,1), say 0, then without loss of generality
(0,1,2), (0,3,4), {0,5,6} € B. Points 2 and 4 have f(z) = I(z) > 0, i.e. they are
of type (2,0,0,1). At least four points must have ¢(x) > 0, thus points 5 and 6
are of type (0,0,4,1) and points 1 and 3 are of type (0,3,3,0). But then 3 does
not divide ) _ t(z) = 5, which is a contradiction. O

Table 2 shows the number of non-isomorphic HTS quasigroups of each kind for
some small orders. The proper LHTSs are listed only up to order 10, because at
order 12 the combinatorial explosion takes over. These quasigroups were found by
the program Mace4 [21]. Using the algebraic description of an HTS quasigroup
in Theorem 5.4 (iii), Mace4 can enumerate all structures of some finite order
that satisfy the given formulas. Isomorphic quasigroups were removed using the
GAP [10] package LOOPS [24].

Order 3 4 6 7 9 10 12 13
STS 1. 0 01 1 0 0 2
Proper MTS 0 1 0 3 19 241 9801188 13710290114
Proper LDTS 0 0 0 1 3 0 2 1206 967
Proper LHTS 0 0 0 0 7 14 ? ?

TABLE 2. Number of non-isomorphic HT'S quasigroups induced by
the four types of triple systems.

A system that is isomorphic to its converse is called self-converse. Two systems
are said to be equivalent if they are isomorphic or if one is isomorphic to the
converse of the other. The number of inequivalent, rather than non-isomorphic,
MTS(n)s has already been tabulated in literature for all n < 12, see [22, 20,
7]. The number of non-isomorphic MTS(n)s for all n < 12, as well as both
inequivalent and non-isomorphic MTS(13)s are given in [17].

The LDTS(n)s of order n < 12 can be found in [9]. The smallest proper
LDTS is of order 7. This system, which is unique up to isomorphism, is given in
the example below. In [8] the LDTS(13)s are classified according to the genera
of their surface components and according to their automorphism group. Some
examples of LDTS(13)s which may be of particular interest are given in [8] as
well; namely all systems having an automorphism group of order greater than or
equal to 4.

Example 6.4. Proper flexible LDTS(7). For simplicity, we omit commas from
the triples.

X =1{0,1,2,3,4,5,6}.

T = {{012}, {034}, {056} } and

D = {(315), (514), (416), (613), (326), (624), (425), (523)}.

There exist exactly 7 proper LHTS(9)s and 14 proper LHTS(10)s that are
pairwise non-isomorphic. If we count only inequivalent systems then we have 6
proper LHTS(9)s and 10 proper LHTS(10)s. All of these systems are given in
the appendix. Table 3 gives the classification according to their automorphism

group.
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Order Aut(Q) Number of types Flexible Self-converse

9 Cs 2 0 2
9 Dy 3 3 1
9 Ay 2 0 2
10 Ch 3 1 1
10 Cs 5 1 1
10 Cs 2 2 0
10 Cg X 03 4 0 4

TABLE 3. Classification of the isomorphism types of proper HTS
quasigroups of orders 9 and 10 according to their automorphism

group.

7. EXISTENCE OF PROPER LHTSSs

Proper LHTS(n)s of order n = 1 (mod 3), n > 40, can be easily constructed
using pairwise balanced designs. A pairwise balanced design PBD(n, K) of or-
der n with block sizes from K C N is a pair (X, B), where X is a finite set of
cardinality n and B is a family of subsets of X called blocks, such that (1) if
B € B then |B| € K and (2) every pair of distinct elements from X occurs in
exactly one block of B. We will need the following result.

Theorem 7.1 (Rees and Stinson [25]). Let n > 3k + 1 and
(1) n=1 or4 (mod 12), k=1 or4 (mod 12) and k # 4, or
(2) n="7 or 10 (mod 12) and k =7 or 10 (mod 12).
Then there exists a PBD(n,{4,k}) containing exactly one block of size k.

To construct a proper LHTS(n) of order n = 1 (mod 3), proceed as follows.
Forn=1or 4 (mod 12), n > 40, take a PBD(n, {4, 13}) containing one block of
size 13. On each 4-block place the triples of an MTS(4) and on the 13-block place
the proper LHT'S(13) given in Example A.6. Similarly, for n =7 or 10 (mod 12),
n > 22, take a PBD(n, {4, 7}) containing one block of size 7, and this time place
the proper LDTS(7) given in Example 6.4 on the 7-block.

Replacing a single 7-block or a single 13-block means that most of the triples
will be cyclic. It would be of more interest to construct LHTS(n)s having both
many unidirectional cyclic triples as well as many unidirectional transitive triples.
The constructions of proper LDTS(n)s given in [9] yield systems that have asymp-
totically %nz unidirectional triples. It is easy to see that using Theorem 7.1 we
can use these to obtain a proper LHTS(n) with asymptotically as many as 5-n?
unidirectional transitive triples for any n =1 (mod 3), n > 40.

We can obtain LHTSs with even more transitive triples using the following
result.

Theorem 7.2 (Hoffman and Lindner [16]). Let n,m = 0 or 1 (mod 3), n >
2m + 1 and n,m # 6. Then there exists an MTS(n) having an MTS(m) as a
subsystem.

Letn=0or1 (mod 3), n > 25. Then for n odd we can take an MTS(n) having
an MTS(5(n— 1)) as a subsystem and for n even we can take an MTS(n) having
an MTS(3(n — 4)) subsystem and replace the subsystem with a proper LDTS.
This yields an LHTS(n) containing asymptotically %n2 unidirectional transitive
triples. However, the statement of Theorem 7.2 does not tell us anything about
the number of unidirectional cyclic triples in the resulting LHTS. Upon examining
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the proof of Lemma 2.6 in [16] it can be seen that the resulting LHTS will contain
asymptotically }an unidirectional cyclic triples.

In the remainder of this section we construct proper LHTS(n)s in which the
number of triples of each type is asymptotic to %nQ, i.e. the ratio is one to one.
This method also has the advantage that it can be utilized to create other asymp-
totic ratios. The construction techniques are of two types. Both produce LHTSs
which are flexible. The first of these uses the so-called “doubling” construction
for Steiner triple systems. It deals with the residue classes 3 and 7 (mod 12).
The details are given in the proof of the following proposition.

Proposition 7.3. There exists a proper flexible LHTS(n) for alln = 3 or 7
(mod 12), n > 15.

Proof. Let s = 1(n—3),s=0or 1 (mod 3), s > 3. Take an STS(2s+1), (X, B).
Let X' ={2': 2 € X}, Y = X UX'U {co} and construct a collection of triples
B’ as follows. For each of the %5(25 + 1) blocks {z,y,z} € B, assign {z,y, z},
{z,y,2'}, {2, y,2'}, {2,y 2z} € B'. Further let {z,2’,00} € B for all x € X.
Then (Y, B') is an STS(n). In order to obtain a proper LHTS(n) take $s(s—1) of
the Pasch configurations of the form {{x,y, 2}, ), 2}, )y, Y, {2, z}}
given above and replace each one with the set of transitive triples P = {(z, v, 2),
(z,y,2), (y,2), (&, ¢/, 2), (2,9, 2"), (z,9,27), (2,¢/,2), (z',y,7)}, then take
the remaining %S(S + 2) Pasch configurations and replace each one with the set
of cyclic triples P = {(x,v, 2), (z,v, ), (a',y,2"), (2',y, 2), (Z',9/,2"), (z,y,2),
(2,9, 7), (2, y,2)}.

This yields a LHTS(4s + 3) with 1(n — 3)(n + 5) unidirectional cyclic triples,
£(n — 3)(n — 7) unidirectional transitive triples and 3(n — 1) Steiner triples. All

6
unidirectional transitive triples are obtained from the set P, which is a set of the

form Oy. Therefore, by Theorem 5.7, the LHTS is flexible. U

The second construction of LHTS(n)s uses a standard technique (Wilson’s
fundamental construction). For this we need the concept of a group divisible
design (GDD). Recall that a 3-GDD of type g“ is an ordered triple (V, G, B)
where V' is a base set of cardinality v = gu, G is a partition of V' into u subsets
of cardinality g called groups and B is a family of triples called blocks which
collectively have the property that every pair of elements from different groups
occur in precisely one block but no pair of elements from the same group occur at
all. We will also need 3-GDDs of type g“m?!. These are defined analogously, with
the base set V' being of cardinality v = gu + m and the partition G' being into
u subsets of cardinality ¢ and one set of cardinality m. Necessary and sufficient
conditions for 3-GDDs of type ¢g* were determined in [14] and for 3-GDDs of type
g"m! in [4]; a convenient reference is [12] where the existence of all the GDDs
that are used can be verified.

Proposition 7.4. There exists a proper flexible LHTS(n) for all n = 0 or 4
(mod 12), n > 12.

Proof. Let w = in, w = 0 or 1 (mod 3), u > 3. Take a 3-GDD of type 2 and
inflate each point by a factor of 2. On each inflated group place an MTS(4). Take
half of the %u(u — 1) inflated blocks and on each one place the set of transitive
triples P with the three sets of points {x, '}, {y,y'}, {2, 2’} as the inflated points
in the three groups. On each of the remaining inflated blocks place the set of cyclic
triples P. This yields an LHTS(4u) with in(n + 2) unidirectional cyclic triples
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and in(n — 4) unidirectional transitive triples. Once again, all unidirectional
transitive triples are obtained from the set P, thus the LHTS is flexible. 0

The technique described in the proof of the previous proposition is used to
construct all of the remaining infinite classes of LHTSs. In each case we start
with a 3-GDD of type g* or g“m!, where the group sizes g and m are fixed
and the number of groups u is (n — ¢)/(2g) for some fixed ¢ € Z. Sets of eight
transitive triples P are placed on one half of the inflated blocks and sets of eight
cyclic triples P are placed on the remaining half of the inflated blocks. The total
number of inflated blocks is at least %gQu(u — 1). Thus the constructions given
below yield systems where the number of unidirectional triples of each type is
asymptotically $n?.

The transitive triples in all of the remaining constructions come from the set P
or from some flexible LHTS. Thus, by Theorem 5.7, the resulting LHTSs are
always flexible.

Proposition 7.5. There exists a proper flexible LHTS(n) for alln =1 (mod 12),
n#1.
Proof. A proper flexible LHT'S(13) is given in Example A.6.

For n = 25, take a 3-GDD of type 42, inflate each point by a factor of 2 and
adjoin an extra point co. On each inflated group together with the point oo place
an MTS(9). On each inflated block place the set of transitive triples P or the set
of cyclic triples P.

For n > 37, take a 3-GDD of type 6%, u > 3, inflate each point by a factor of 2
and adjoin an extra point co. On each inflated group together with the point co
place an MTS(13). On each inflated block place the set of transitive triples P or
the set of cyclic triples P. OJ

Proposition 7.6. There exists a proper flexible LHTS(n) for alln =9 (mod 12).

Proof. A proper flexible LHT'S(9) is given in Example A.2.

For n > 9 take a 3-GDD of type 3?71, s > 1, inflate each point by a factor of 2
and adjoin three extra points 0oy, 00, 003. On each inflated group together with
the three extra points place an STS(9) in such a way that the points ooy, 0oy, 003
are identified with a Steiner triple in each STS(9). On each inflated block place
the set of transitive triples P or the set of cyclic triples P. O

Proposition 7.7. There ezists a proper flexible LHTS(n) for alln = 10 (mod 12).

Proof. A proper flexible LHT'S(10) is given in Example A.4.

For n > 10 take a 3-GDD of type 32**1, s > 1, inflate each point by a factor of 2
and adjoin four extra points 0oy, 009, 003, 004. Take one of the flexible LHT'S(10)s
given in Example A.4 containing an MTS(4) as a subsystem. On each inflated
group together with the four extra points place a copy of the LHTS(10) in such a
way that the points 0oy, 002, 003, 004 are identified with the MTS(4) subsystem
in each LHTS(10). On each inflated block place the set of transitive triples P or
the set of cyclic triples P. O

Proposition 7.8. There exists a proper flexible LHTS(n) for alln = 6 (mod 12),
n # 6.
Proof. A proper flexible LHT'S(18) is given in Example A.7.

For n = 30, take a 3-GDD of type 53, inflate each point by a factor of 2. On
eaCE inflated group place an MTS(10). On each inflated block place the set P
or P.
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For n > 30 take a 3-GDD of type 3%°7%, s > 2, inflate each point by a factor of 2
and adjoin four extra points 0oy, 00y, 003, 004. Take one of the flexible LHTS(10)s
given in Example A.4 and the flexible LHTS(18) given in Example A.7. Both
of these systems contain an MTS(4) as a subsystem. On each inflated group of
cardinality 6 together with the four extra points place a copy of the LHTS(10) and
on the inflated group of cardinality 14 together with the four extra points place
the LHT'S(18) in such a way that the points 0oy, 00g, 003, 004 are identified with
the MTS(4) subsystem in each LHTS(10) as well as in the LHT'S(18). On each
inflated block place the set of transitive triples P or the set of cyclic triples P. O

Collecting together the existence results in this section gives the following:

Theorem 7.9. A proper LHTS(n) exists if and only if n =0 or 1 (mod 3) and
n > 9.

APPENDIX. EXAMPLES OF HTS QUASIGROUPS

The following examples give all proper LHTSs of orders 9 and 10 up to iso-
morphism, as well as the proper LHTSs of orders 13 and 18 that are needed
to complete the existence spectrum. For simplicity we omit commas from the
triples.

In the following three examples let X = {0, 1,...,8}.

Example A.1. The 2 proper HTS quasigroups of order 9 that have automor-
phism group Cj are defined by the triples obtained from the following starter
blocks under the action of the permutation (0,1,2)(3,4,5). The starter blocks
for M are (012), (026), and for D are (405), (508), (803), (307), (704), (365),
and 7 = {{678}}. Then M is a surface component of genus 0, D is a surface
component of genus 1, and (X, TUMUD) and (X, T UMRUD) are non-flexible
LHTS(9)s. Both of these systems are self-converse.

Example A.2. The 3 proper HTS quasigroups of order 9 that have automor-
phism group Dy, of order 10 are defined by the triples obtained from the follow-
ing starter blocks under the action of the group generated by the permutations
(0,1,2,3,4,5) and (0,1)(2,4)(5,6)(7,8). The starter block for D, is (051), for Dy
is (072), and for M are (567), (578). Then Dy, Dy and M are surface components
of genus 0, and (X, D; UDy, U M), (X, Dy UDy,UM) and (X, D; UDy UM) are
flexible LHT'S(9)s. The first of these systems is self-converse, while the other two
are not.

Example A.3. The 2 proper HTS quasigroups of order 9 that have automor-
phism group A, are defined by the triples obtained from the following starter
blocks under the action of the group generated by the permutations (0, 1,2)(3, 4, 5)
and (0,1)(2,6)(3,4)(5,7). The starter block for 7 is {678}, for M is (012),
and for D is (405). Then M and D are surface components of genus 0, and
(X, TUMUD) and (X, T UMRUD) are non-flexible LHTS(9)s. Both of these

systems are self-converse.
In the following two examples let X ={0,1,...,9}.
Example A.4. Let 77 = {{038}, {148}, {258}}, T2 = {{038}},

D, = {(061), (162), (263), (364), (465), (560), (075), (574), (473), (372), (271),

170) },
é)g :>}{<106>, (605), (507), (701), (127), (723), (326), (621), (347), (745), (546),

(643)},
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Mg = {(678), (689), (697), (798)},

My = {(024), (092), (294), (490)}, M, = {(135), (193), (395), (591)},

Ms = {(029), (042), (094), (248), (259), (285), (135), (149), (158), (184),
(193), (395)}. Then Di, Dy, My, My, My and M3 are surface components
of genus 0, and (X, 7, UD; UMoUM;UMs,) and (X, T, UD; UMEF UM UM,)
are the LHTS(10)s with automorphism group Cy generated by the permutation
(0,1,2,3,4,5). Furthermore (X, 7, UD; UMoUMEFUM,), (X, TTUDy UMy U
Ml UMQ), (X,,Tl UDQUM?UMl UMQ), (X,7-1 UDzUMOUM?UMQ) and
(X, 71 UDy U MyUM; UMPE) are the LHTS(10)s with automorphism group
C3 generated by the permutation (0,2,4)(1,3,5); and (X, 72 U D; U My U Ms),
(X, T2UDyUMoUM3) and (X, To UDy UME UMs3) are the automorphism-free
LHTS(10)s. All systems containing D; are flexible, while those containing D, are
non-flexible. The two flexible systems with automorphism group C5 and C} are
self-converse, while the other eight are not.

Example A.5. The 4 proper HTS quasigroups of order 10 that have auto-
morphism group C3 x C3 are defined by the triples obtained from the follow-
ing starter blocks under the action of the group generated by the permutations
(0,1,2)(3,4,5)(6,7,8) and (0,1,2)(3,5,4). The starter blocks for M; are (012),
(091), for My are (345), (394), for M3 are (678), (697), and for D are (307),
(705). Then My, My and M3 are surface components of genus 0, D is a surface
component of genus 1, and (X, M; UMy UM3UD), (X, MFU MU M3UD),
(X, MiUMEFUM;3UD) and (X, M;UMUMEFUD) are non-flexible LHTS(10)s.
All four systems are self-converse.

Example A.6. Let X = Z;o U {001, 002, 003}

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ¢ — 7 + 1, with ooy, 00y, 003 as fixed points.
The starter blocks for T are {05003}, {001 003 003}, for M are (013), (032),
and for D are (0001 4), (0005 6).

Then (X, 7 UM UD) is a proper flexible LHTS(13), with |[M| = 20, |D| = 20
and |7] = 6.

Example A.7. Let X = Z14 U {OOl, 02, 3, 004}.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i — i+ 1, with 0oy, 00y, 003, 004 as fixed points.
The starter blocks for M are (001 00y 003), (001 003 004), (001 004 003), (009 004 03),
for My are (013), (03004), (04002), (051), (075), and for D are (000 6),
Then (X, MU M; UD) is a proper flexible LHTS(18), with |[My U M;| = 74
and |D| = 28.
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CYCLIC AND ROTATIONAL
LATIN HYBRID TRIPLE SYSTEMS

ANDREW R. KOZLIK

ABSTRACT. It is well known that given a Steiner triple system (STS) one can
define a binary operation * upon its base set by assigning z * x = x for all x
and z %y = z, where z is the third point in the block containing the pair
{z,y}. The same can be done for Mendelsohn triple systems (MTS), directed
triple systems (DTS) as well as hybrid triple systems (HTS), where (z,y) is
considered to be ordered. In the case of STSs and MTSs the operation yields
a quasigroup, however this is not necessarily the case for DTSs and HTSs. A
DTS or an HT'S which induces a quasigroup is said to be Latin. In this paper
we study Latin DTSs and Latin HTSs which admit a cyclic or a rotational
automorphism. We prove the existence spectra for these systems as well as the
existence spectra for their pure variants. As a side result we also obtain the
existence spectra of pure cyclic and pure rotational MTSs.

1. INTRODUCTION

A Steiner triple system of order n, STS(n), is a pair (V, B) where V is a set of
n points and B is a collection of triples of distinct points taken from V' such that
every pair of distinct points from V' appears in precisely one triple. Given an STS
(V, B) one can define a binary operation * on the set V' by assigning =z = x for
all x € V and z *x y = z whenever {x,y, z} € B. The induced operation satisfies
the identities

rxr=x, y*x(xxy) =2z, TRY=yx*x

for all x and y in V. Any binary operation satisfying these three identities is
called an idempotent totally symmetric quasigroup. The process described above
is reversible. Given an idempotent totally symmetric quasigroup one can obtain
an STS by assigning {z,y,z xy} € B for all x, y € V,  # y. Thus there is a
one-to-one correspondence between Steiner triple systems and idempotent totally
symmetric quasigroups or Steiner quasigroups, as they are commonly known [1,
Remark 2.12].

If we consider oriented triples then there are two possibilities. A cyclic triple
(x,y,z) contains the directed edges (z,y), (y,2) and (z,z). A transitive triple
(x,y, z) contains the directed edges (z,y), (v, z) and (x, 2); we assign these edges
the colours red, green and blue, respectively.

A hybrid triple system of order n, HTS(n), is a pair (V,B) where V is a set
of n points and B is a collection of cyclic and transitive triples of distinct points
taken from V' such that every ordered pair of distinct points from V' appears in
precisely one triple. If every ordered pair of points from V' appears in at most one
triple, then (V, B) is called a partial HTS. An HTS(n) can also be thought of as
a decomposition of the complete digraph on n vertices into oriented triples which
are either transitive triples or cyclic triples. The term hybrid triple system was

2010 Mathematics Subject Classification. Primary 05B07; Secondary 20N05.
Key words and phrases. Directed triple system, hybrid triple system, quasigroup.
This work was supported by grant SVV-2013-267317.
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first used in [6] but the concept appeared earlier under the name ordered triple
system [11] and later under the name oriented triple system [12]. The notation c-
HTS(n) is often used to denote an HT'S(n) containing ¢ cyclic triples. An HTS(n)
which contains only cyclic triples, i.e. ”(”T_I)—HTS(TL), is known as a Mendelsohn
triple system, MTS(n). An HTS(n) which contains only transitive triples, i.e.
0-HTS(n), is known as a directed triple system, DTS(n).

Every HTS induces a binary operation % upon its point set V. For a cyclic
triple (z,y, z) set x*xy = z, y*xz = x and z*x = y. For a transitive triple (x,y, z)
set txy =2, y*xz=uxand x * 2z =y. The induced operation * is assumed to be
idempotent, i.e. x * x = x holds for every x € V.

In the case of MTSs, the induced operation yields a semisymmetric quasi-
group, i.e. it satisfies z x (y x ) = y for all x and y in V. It is well known [1,
Remark 2.12] that there is a one-to-one correspondence between MTSs and idem-
potent semisymmetric quasigroups or Mendelsohn quasigroups, as they are also
known. For DTSs and HTSs, however, the induced operation may or may not
yield a quasigroup. If a DTS or an HTS induces a quasigroup, then it is said to
be Latin, to signify that the operation table forms a Latin square, and (V%) is
then called a DTS-quasigroup or an HTS-quasigroup, respectively.

Latin directed triple systems (LDTS) were introduced in [9], where it was shown
that an LDTS(n) exists if and only if n =0 or 1 (mod 3) and n # 4, 6 or 10. The
algebraic and geometric aspects of LDTSs were studied in [7]. Together these two
papers also give enumeration results for all orders less than or equal to 13.

Latin hybrid triple systems (LHTS) were introduced in [8]. An LHTS(n) exists
if and only if n = 0 or 1 (mod 3) and n # 6. If in addition n > 9, then there
exists a proper LHTS(n). An LHTS is said to be proper if the induced quasigroup
is neither a Mendelsohn quasigroup nor a DTS-quasigroup. Similarly, a DTS is
said to be proper if the induced quasigroup is not a Steiner quasigroup.

If we ignore the ordering of the triples in an HT'S then we obtain a twofold triple
system. An HTS is said to be pure if its underlying twofold triple system contains
no repeated blocks. An HTS(n) is said to be cyclic if it admits an automorphism
consisting of a single cycle of length n and it is said to be rotational if it admits
an automorphism consisting of a cycle of length n—1 and one fixed point. Table 1
gives an overview of the existence spectra for various cyclic and rotational triple
systems. The main goal of this paper is to prove the existence spectra of pure
and proper, cyclic and rotational, LDTSs and LHTSs. In [10] Gardner et al.
determined the existence spectrum of cyclic and rotational ¢-HTS(n)s for all
admissible values of ¢. In Propositions 3.9 and 4.14 we state the admissible
values of ¢ for LHTS(n)s, but we do not go so far as to prove existence for each
of these values. Existence is proven only for the minimum non-zero values of c.

It is easy to see that any STS can be turned into an LHTS by replacing every
unordered triple {z,y, 2z} with a pair of cyclic triples (z,v,z) and (z,y,z) or a
pair of transitive triples (z,y, z) and (z,y,x). The resulting LHTS then induces
a Steiner quasigroup, and so this construction is of little interest. Instead, the
existence proofs in this paper aim at constructing pure systems. If a pure system
does not exist for a particular order, then the construction aims for the next
best thing, which is minimising the number of repeated blocks in the underlying
twofold triple system.

The following section introduces some additional properties and terminology
surrounding LHTSs. Sections 3 and 4 deal with the structure of cyclic and rota-
tional LHTSs and LDTSs, and with the necessary conditions for their existence.
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Triple system Conditions References

Cyclic STS n=1or3 (mod 6) and n #9 [13]
Cyclic MTS n=1or3 (mod 6) and n #9 5]
Cyclic DTS n=1,4o0r7 (mod 12) 4]
Cyclic HTS n=0,1,3,4,7or9 (mod 12) and n #9 [12]
Rotational STS n=3or9 (mod 24) [15]
Rotational MTS n =1, 3 or 4 (mod 6) and n # 10 2]
Rotational DTS n =0 (mod 3) 3]

Rotational HTS n=0or 1 (mod 3) [12]
TABLE 1. The necessary and sufficient conditions for the existence
of various triple systems.

Finally, Section 5 gives a number of constructions proving the existence of these
systems.

2. PRELIMINARIES

The correspondence between HT'Ss or DTSs and the induced binary operations
is not one-to-one, since if the system contains a pair of triples with the same point
set, say (z,y,z) and (z,y,z), then these can be replaced by a different pair of
triples, say (y,x,z) and (z,x,y), however both systems induce the same binary
operation. Call a triple occurring in an HTS bidirectional if there exists another
triple in the system with the same point set, otherwise call it unidirectional. The
point set of a bidirectional triple will be called a Steiner triple. In the following,
we will always replace any pair of bidirectional triples, say (x,y, z) and (z,y, x),
with their underlying Steiner triple {x,y,z}. The block set of an HTS then
consists of three types of triples: Steiner triples, unidirectional cyclic triples and
unidirectional transitive triples. This view of HTSs allows for a more precise
study of these systems and results in a one-to-one correspondence between HT'Ss
and the induced binary operations.

An HTS is said to be pure if it contains no Steiner triples. A DTS is proper
if and only if it contains at least one unidirectional triple. An HTS is proper if
and only if it contains at least one unidirectional cyclic triple and at least one
unidirectional transitive triple.

The following theorem proven in [8] gives a combinatorial characterisation of
LDTSs and LHTSs.

Theorem 2.1. Let x be induced by an HTS (or a DTS) (V,B). The following
are equivalent:
(i) * is a quasigroup operation,
(i) for each (x,y,z) € B there exist elements z', y', 2/ € V such that (', y, x),
(z,y,x) and (z,y,x') belong to B as well.

Let * be determined by an HTS (V,B). Denote by F the set of all {x,y, 2}
such that {x,y, z} is the point set of a unidirectional triple of B. Consider now
F as a set of triangular faces. Each edge {u,v} is incident to two faces, hence
the faces can be sewn together along common edges to form a pseudosurface.
By splitting pinch points we obtain a surface, which can be partitioned into
connected components. For a more detailed description of this process see [7].
Call a surface component uniform if all its triples are either cyclic, or transitive.
From Theorem 2.1 we see that all components are uniform if * yields a quasigroup.
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When referring to an element of V' the terms point or element will be used
interchangeably, whilst the term vertex will be used when referring to vertices of
the induced surface. Thus as a result of splitting pinch points, one point of an
HTS may correspond to multiple vertices of the induced surface.

A partial LHTS is defined as a partial HT'S which satisfies condition (ii) in
Theorem 2.1. Given a partial LHTS B, every transitive triple B = (z,y, z) can
be replaced by a cyclic triple B = (x,y,z). This yields a partial MTS since
(2,9, x) is turned into (z,y’, x), (2, y, z) into (2, y, x) and (z,y,2’) into (z,y, z’).
We shall call this the underlying (partial) MTS of B.

Notice that an LHTS yields the same surface as its underlying MTS. Clearly,
the surface obtained from an MTS is orientable, hence any LHTS yields an ori-
entable surface as well. This is generally not the case for HTSs.

The automorphism group of an LHTS will appear as a subgroup of the auto-
morphism group of its underlying MTS. The automorphism groups of the two
systems need not be the same. For example the unique proper LDTS(7) has an
automorphism group of order 8, whilst its underlying MTS has an automorphism
group of order 24.

Let (V,B) be an LHTS(n). For each z € V' denote by f(z) and m(z) the num-
ber of transitive triples in B such that x appears in the first and middle position,
respectively. By c¢(z) denote the number of cyclic triples in B containing x. By
s(z) denote the number of Steiner triples in B containing . The number of unidi-
rectional transitive triples can then be expressed as ., f(z) oras ) ., m(z).
The number of unidirectional cyclic triples can be expressed as % Y sev c(x). The
outdegree of any x € V' can be expressed

n—1=2f(x)+m(x)+ c(r) + 2s(x). (1)

3. Cycric LHTSs

Recall that an LHTS, (V, B), is said to be cyclic if it admits an automorphism
consisting of a single cycle of length n. Let V = Z, and o« = (0,1,...,n — 1)
be an automorphism of B. Since a acts transitively on V', we have nf(0) =
Y osev f(@) =2 oy m(z) = nm(0). Thus f(x) = m(z) for every x € V and from
(1) we get

n—1=3f(x)+ c(x) + 2s(x). (2)

A cyclic MTS(n) exists if and only if n = 1 or 3 (mod 6) and n # 9 [5].
The non-existence of an underlying cyclic MTS(n) for some n implies the non-
existence of a cyclic LHTS(n). Since any cyclic MTS(n) is also a cyclic LHTS(n),
it follows that:

Lemma 3.1. A cyclic LHTS(n) exists if and only if n = 1 or 3 (mod 6) and
n#9.

We can associate any cyclic triple (z,y, z) or transitive triple (x,y, z) with a
difference triple [y — x, z —y, x — z], and any Steiner triple {x,y, 2} with a pair of
distinct difference triples [y — z,z —y,z — z] and [x — y, 2 — x,y — z]|. Note that
any transitive triple is associated with the same difference triple as its underlying
cyclic triple. We shall consider the difference triples [a, b, ], [b, ¢,a] and [c, a, b]
to be equivalent. Any difference triple [a, b, ¢] satisfies a +b+c =0 (mod n), we
say that the triple is balanced.

For a cyclic LHTS, an orbit of a triple B € B can be defined as the set
{a'(B) |i=0,1,...,n — 1}, or equivalently as the set of all blocks that have
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the same difference triple as B or the same pair of difference triples as B if B
is a Steiner triple. Thus difference triples correspond to orbits of blocks and the
differences correspond to orbits of edges. Notice that the orbit of an edge is
single coloured, thus we can assign a colour to each difference. By Theorem 2.1
the difference a is red if and only if —a is green, a is blue if and only if —a is blue
and a is colourless if and only if —a is colourless. The colours of the differences
in the difference triple [a, b, ¢| are either red, green and blue, respectively, or an
even permutation of these colours, or all three differences are colourless.

The length of an orbit is its cardinality. An orbit of length n is said to be
full, otherwise short. The orbit of any transitive triple is full. It is easy to check
that if a block B of a cyclic LHTS is associated with the difference triple [a, a, ],
a,b € Z,, then b = a and the orbit of B is short. A cyclic triple lies in a short

orbit if and only if its difference triple is [, %, %] or [, 2, 2],

Proposition 3.2. Let (V,B) be an LHTS(n) and let D be the set of its difference
triples.

(1) If[a,b,c], [—a,—c,—b] € D, then these two difference triples are associated
with the orbit of a Steiner triple.

(2) If [a,b,c], [—a,—b,—c|] € D, b # ¢, then these two difference triples are
associated with orbits consisting of cyclic triples, which together form a set
of surface components such that each component has genus 1 and every
vertex has degree 6.

Proof. (1) The two difference triples are associated with the orbits of the
triples B; and B, respectively, such that B; = (0,b,—a) and By =
(0, —a,b). These are bidirectional, therefore B; and B, are bidirectional
as well.

(2) The two difference triples are associated with the orbits of the triples By
and B, respectively, such that B, = (0,b, —a) and By = (0, —a, ), which
are unidirectional as long as b # c.

Assume that [a,b, ] is associated with the orbit of a transitive triple
and without loss of generality assume that ¢ is blue. Then —c is blue and
both b and —b are green, which is a contradiction. Both difference triples
are therefore associated with orbits of cyclic triples.

The cyclic triples form a closed surface S. For each z € V there are
exactly six triples in S that contain the point z, namely (z — a,z,z + b),
(x+bx,x—c), (r—c,x,x+a), (r+a,z,2—0>), (x—bx,x+c)and
(r+4c,x,z—a). These six triples form a hexagon with z at its center. The
oriented surface formed by the two orbits therefore has no pinch points.
Thus there are n vertices, 2n faces and 3n edges. The sum of the genera
of the surface components is equal to the number of surface components.
Since the surface contains exactly one vertex for each point in V' and « acts
transitively on V', all components of S have the same genus. Therefore

each component has genus 1.
OJ

If the set of difference triples of an LHTS(n) contains both [%, %, %] and [, 3, &
then these are associated with a short orbit of a Steiner triple, namely the Steiner
triple {0, 7, %" .

We now see, that a cyclic LHT'S(n) induces a partitioning of {1,...,n—1} into
balanced triples and at most two singletons ({#} and {2*}). If n = 0 (mod 3),
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then both singletons must be present in the partition, and so {0, %, 2?”} e B If
n = 1 (mod 3), then no singleton may be present in the partition, and so all
orbits are full.

Since the order n of an LHTS must satisfy n =1 or 3 (mod 6), we have
Lemma 3.3. If a pure cyclic LHTS(n) ezists, then n =1 (mod 6).

Proposition 3.2 serves as a guide on how to “purify” cyclic LHTSs and in
particular cyclic MTSs. Given a cyclic LHTS, one can replace any long orbit of
Steiner triples with two orbits of unidirectional cyclic triples. For example the
orbit of the Steiner triple {z,y, 2z} may be replaced with the orbits of (x,y, 2)
and (y,x,x+y— z). This means that any cyclic LHTS(n) or any cyclic MTS(n),
where n =1 (mod 6), can be made pure. Since the existence spectrum of cyclic
MTSs is n =1 or 3 (mod 6), n # 9, we have the following result

Theorem 3.4. A pure cyclic MTS(n) ezists if and only if n =1 (mod 6).

Lemma 3.5. Let (V,B) be a cyclic LHTS(n). Then f(x) =0 (mod 2), f(x) # 2,
¢(x) =0 (mod 6) and s(z) =2n+ 1 (mod 3) for any x € V.

Proof. The number of unidirectional transitive triples is even, because every tran-
sitive triple (x, ¥, z) can be paired up with another transitive triple (z,v’, x), for
some 3y € V. This implies that f(0) must be even as well, because the num-
ber of unidirectional transitive triples can be expressed as nf(0) and n is odd.
Furthermore f(0) = m(0) # 2. From Equation (2) we then see that ¢(0) is also
even.

Each point x € V appears in exactly three triples of any full orbit and in
exactly one triple of any short orbit. If n = 0 (mod 3), then there is one short
orbit consisting of Steiner triples, thus s(z) = 1 (mod 3). If n =1 (mod 3), then
there are no short orbits, thus s(z) =0 (mod 3). In both cases every cyclic triple
has a full orbit. OJ

For any proper cyclic LDTS(n) we have f(z) > 4 for all x € V' \ {oc0}. For
any proper cyclic LHTS(n) we have f(z) > 4 and ¢(x) > 6 for all x € V' \ {o0}.
Substituting into Equation (2) yields the following two results.

Proposition 3.6. If a proper cyclic LDTS(n) exists, then n > 13. Every proper
cyclic LDTS(13) is pure.

Proposition 3.7. If a proper cyclic LHTS(n) exists, then n > 19. Every proper
cyclic LHTS(19) is pure.

The next proposition follows from Lemma 3.5.

Proposition 3.8. Let s, ¢ and t be the numbers of Steiner triples, unidirectional
cyclic triples and unidirectional transitive triples in a cyclic LHTS(n). Then

¢=0 (mod 2n), t =0 (mod 2n) and t # 2n. Furthermore
(i) if n =0 (mod 3), then s = gn (mod n);
(ii) if n =1 (mod 3), then s =0 (mod n).

If we wish to work with the conventional definition of an HTS, which does not
involve Steiner triples, then the following applies.

Proposition 3.9. Let ¢ be the number of cyclic triples in a cyclic LHTS(n),

where all Steiner triples are replaced with bidirectional triples. Then
(i) if n =0 (mod 3), then ¢ = 3n (mod 2n);
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(ii) if n =1 (mod 3), then ¢ =0 (mod 2n).

Proof. If n =1 (mod 3) then every orbit of Steiner triples is long and may thus
be replaced with 2n cyclic triples or 2n transitive triples.

If n =0 (mod 3) then one orbit of Steiner triples is short. This orbit cannot
be replaced with two orbits of transitive triples, since an orbit of transitive triples
must be long. Thus it must be replaced with two orbits of cyclic triples, each of
length %n 0

4. RoTATIONAL LHTSS

Recall that an LHTS, (V| B), is said to be rotational if it admits an automor-
phism consisting of a cycle of length n—1 and one fixed point. Let V' = Z,,_1U{o0}
and a = (0,1,...,n — 2)(c0) be an automorphism of B.

A rotational MTS(n) exists if and only if n = 1, 3 or 4 (mod 6) and n # 10 [2].
As noted above, the same condition will apply to LHTS.

Lemma 4.1. A rotational LHTS(n) exists if and only if n =1, 3 or 4 (mod 6)
and n # 10.

Lemma 4.2. All triples that contain the point oo lie in a single orbit. If oo lies
in a Steiner triple, then the orbit has length ”T’l; if it lies in a transitive triple or
in a cyclic triple, then the orbit is full.

Proof. Its easy to see, that the point oo cannot lie in the first or last position of
any transitive triple: If B = (00, x,y) € B, then o *(B) = (00,0,y — z) € B and
a ¥(B) = (co,xz — y,0) € B, which is a contradiction. Similarly for (x,y, 00).

If the point oo lies in the middle position of some transitive triple B =
(x,00,y) € B, then the orbit of B under the action of the automorphism «
is { (z +i,00,y+1) | i € Z,1}. This orbit contains all directed edges of the
form (i, 00) and (00, ), where i € Z,,—;. Similarly if oo lies in a cyclic triple or in
a Steiner triple. Thus all triples that contain the point oo lie in a single orbit.

When oo lies in a transitive triple or in a cyclic triple, the orbit is clearly full.
When it lies in a Steiner triple, the orbit of this triple can be thought of as a
partitioning of the set Z,,_; into pairs, so its length is "T_l ([l

We shall associate any cyclic triple (x, 00, y) and any transitive triple (x, co, y)
with the difference d,, = = — y, and any Steiner triple {z, 0o, y} with a pair of
differences 0o, = r—y and —d,, = y—=z. Note that the transitive triple containing
the point oo is associated with the same difference as its underlying cyclic triple.
n—1
T2
Proof. If B = {z,y,00} € B, then o *(B) = {0,y — z,00} € B and o ¥(B) =
{z —y,0,00} € B, therefore 0,, =2 —y ==

If B = (0,00, %51) € Bthen a7 (B) = (©

Lemma 4.3. The point co lies in a Steiner triple if and only if doo = —000 =

‘H

I ol ]
—

n5=,00,0) € B, i.e. Bisabidirectional
triple, which is a contradiction. Similarly (0, oo, ”T_l) € B leads to the same
contradiction. ([l

For any z,y, z € Z,_1 we associate the cyclic triple (z,y, z) and the transitive
triple (z,y, z) with the difference triple [y — z, 2z — y, z — 2| and the Steiner triple
{z,y, z} with the pair of difference triples [y—z, z—y,z—z| and [z — y, 2z — z,y — 2].
The results that we obtained for difference triples of cyclic LHTS apply analo-
gously:

75



Any difference triple [a, b, ¢] satisfies a+b+c¢ =0 (mod n— 1), we say that the

triple is balanced. A cyclic triple lies in a short orbit if and only if its difference
Q(n—l) 2(n—1) 2(n-1)

triple is [25%, 5%, %51 or | , =5, =5—]. If the set of difference triples of
an LHTS(n) contains both [ 221 221 and [2(" D) ("3 D 2(" Y], then these
must be associated with a short orbit of a Steiner trlple namely the Steiner triple
{0 1 2(n— 1)}

We now see that a rotational LHTS(n) induces a partitioning of the set
{1,...,n — 2} \ {6~} into balanced triples and up to two singletons ({25*} and

{5,

Lemma 4.4. Let (V,B) be a rotational LHTS(m). If n = 3 (mod 6), then
{0,252 00} € B and the length of its orbit is ”T_l, while all other orbits are
full

Proof. If n =3 (mod 6) then 3 divides n — 3 and so no singleton may be present
in the partition. Since the sum over each difference triple is divisible by n — 1,
the sum over all differences {1,...,n — 2} \ {0} must also be divisible by n — 1,

thus w — 0o = 0 (mod n — 1). This gives o = %5+ and by Lemma 4.3

this implies that {0, 25%, 00} € B. O

Lemma 4.5. If n = 1 (mod 3), then the element oo lies in a cyclic triple and
there exists an orbit of length "=
full. Furthermore if n = 1 (mod 6), then vertices corresponding to the point co
have degree 6 and the differences i”gl, j:”T_l and "T_l are associated with edges
of cyclic triples; and if n = 4 (mod 6), then {(0,00,k), (k,o00,2k), (2k,00,0),
(0,k,2k)} C B, where k € {+251}.

Proof. If n = 1 (mod 3), then exactly one of the singletons {k}, k € {£"51},
must be present in the partition. We now have

(n 1)2(n 2)—k:—50050 (mod n —1). (3)

If n =4 (mod 6) then Equation (3) gives do, = —k = F2+ (mod n — 1).
We see that the underlying MTS contains the triples (0,00, k), (k,o0,2k) and
(2k,00,0). Each of these three triples is adjacent to the triple (0, k,2k) which
necessarily underlies a cyclic triple. This implies that the three triples containing
the point oo also underlie cyclic triples.

If n =1 (mod 6) then Equation (3) gives 6o = %5+ — k = £2=% (mod n — 1).
We see that vertices corresponding to the pomt %) have degree 6 Pick a surface
component containing the element co. Take the set of all differences associated
with the triples of this component and remove d,, and k (if present). Denote
this set by A. The sum of the elements of A is divisible by n — 1. Furthermore,
for cach x € A\ {—0x,—k} we have —z € A, so the sum of the elements of
A\ {—0s, —k, 251} is also divisible by n — 1. This implies that the sum of the
elements of AN {—d, —k, %51} is divisible by n — 1. The only way that this can
happen is if —k and "T’l both lie in A. The fact that —k € A means that one of
the triples in the component is associated with the difference triple [k, k, k] and
must therefore be a cyclic triple. Since the component is uniform (cf. Section 2),
the element oo lies in a cyclic triple as Well Finally, the component also contains
an edge associated Wlth the difference 2=1, which implies that any edge associated
with the difference %=L lies in a cyclic trlple. O

76



The two lemmas above account for all admissible values of n, yielding the
following two results.

Corollary 4.6. If there exists a rotational LDTS(n), then it is non-pure and
n =3 (mod 6).

Corollary 4.7. If there exists a pure rotational LHTS(n), then n =1 (mod 3).

Since for n = 1 (mod 3) any orbit of a Steiner triple is full, it is possible to
replace each one with two orbits of unidirectional cyclic triples in exactly the
same manner as described in Section 3. Thus any rotational LHTS(n), n = 1
(mod 3), can be made pure. Since the existence spectrum of rotational MTS is
n=1,3or4 (mod 6), n # 10, we have the following result

Theorem 4.8. A pure rotational MTS(n) exists if and only if n = 1 (mod 3)
and n # 10.

Lemmas 4.4 and 4.5 imply that the point oo does not lie in a transitive triple,
i.e. f(oo) = 0 and m(o0) = 0. Since « acts transitively on V' \ {oo}, we have
(1= 1f(0) + £(50) = Doy £(@) = Yyeyml@) = (n — 1m(0) + m(oc), and
again f(x) = m(z) for every x € V. Equation (2) therefore applies to rotational
LHTSs as well.

Lemma 4.9. Let (V,B) be a rotational LHTS(n). Then f(x) = 0 (mod 2),
f(z) # 2, e¢(x) = 3n+3 (mod 6) and s(z) = 2n+1 (mod 3) for any x € V\{oo}.

Proof. By Theorem 2.1 each transitive triple B = (x,y,z) € B can be paired
up with a transitive triple B’ = (z,y/,x) € B for some 3 € V. Notice that the
images of B and B’ under « pair up in this manner as well. This means that we
can also pair up the orbits of the two triples. However if B and B’ lie in the same
orbit, then this orbit pairs with itself. This happens if and only if v — 2 =2 —=
(mod n — 1), ie. if and only if z — z = 2. By Lemma 4.4 and 4.5 if n = 3
(mod 6) then the difference "T_l is associated with the edge of a Steiner triple, if
n =1 (mod 6) then it is associated with the edge of a cyclic triple, otherwise it
does not exist. The difference ”T_l is never associated with the edge of a transitive
triple, so B and B’ never lie in the same orbit. The number of orbits consisting
of transitive triples is therefore even.

Let x € V' \ {oo}. In any orbit consisting of transitive triples there is exactly
one transitive triple such that = appears in the first position. The value of f(z)
is therefore equal to the number of these orbits which is even. From Equation (2)
we then see that ¢(x) =n —1 (mod 2).

If n = 0 (mod 3), then there is one short orbit consisting of Steiner triples
and all other orbits are full, thus s(z) = 1 (mod 3) and ¢(x) = 0 (mod 3). If
n =1 (mod 3), then there is one short orbit consisting of cyclic triples and one
full orbit consisting of cyclic triples, which contain the point co. All other orbits
are full, thus s(x) = 0 (mod 3). The short orbit contributes to the value ¢(z)
by 1, the orbit where oo appears contributes by 2 and every other orbit of cyclic
triples contributes by 3, thus ¢(z) = 0 (mod 3). The result now follows from
c(x)=n—1 (mod 2). O

For any proper rotational LDTS(n) we have f(z) > 4 for all x € V' \ {0}
and n = 3 (mod 6). For any proper rotational LHTS(n) we have f(z) > 4 and
c(x) > 3 for all z € V'\ {oo}. Substituting into Equation (2) yields the following
two results.
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Proposition 4.10. If a proper rotational LDTS(n) ezists, then n > 15.

Proposition 4.11. If a proper rotational LHTS(n) exists, then n > 16. Every
proper rotational LHTS(16) is pure.

Proposition 4.12. There exists no proper rotational LHTS of order 19.

Proof. Assume that there exists a proper rotational LHT'S(19), (V, B). Lemma 4.9
and Equation (2) imply that f(z) =4, ¢(z) = 6 and s(z) = 0forany x € V' \ {oo}.
As noted in the proof of Lemma 4.9, for any z € V' \ {oo} the value of f(x) is
equal to the number of orbits consisting of transitive triples. Therefore exactly
twelve of the differences in the set {1,2,...,17} are associated with the edges
of transitive triples. By Lemma 4.5, the differences 3, 6, 9, 12 and 15 are asso-
ciated with edges of cyclic triples. Thus if a proper rotational LHTS(19) exists
then the set {1,2,4,5,7,8,10,11,13,14,16,17} can be partitioned into balanced
triples. It is easy to check that the difference 2 can only appear in the triple
{2,5,11} and the difference 8 can only appear in the triple {8,11,17}. But these
two triples cannot both be present in the partition. Such a partition therefore
does not exist. 0

The next proposition follows from the lemmas above.

Proposition 4.13. Let s, ¢ and t be the numbers of Steiner triples, unidirectional
cyclic triples and unidirectional transitive triples in a rotational LHTS(n). Then
t=0 (mod 2(n —1)) and t # 2(n — 1). Furthermore
(i) if n =1 (mod 6), then c # 5(n —1),
s=0 (modn—1) and c=3z(n—1) (mod2(n—1));
(ii) if n =3 (mod 6), then
s=i(n—1) (modn—1) and c¢=0 (mod 2(n—1));
(iii) if n =4 (mod 6), then

s=0 (modn—1) and c=3(n—1) (mod2(n—1)).

If we wish to work with the conventional definition of an HTS, which does not
involve Steiner triples, then the following applies.

Proposition 4.14. Let ¢ be the number of cyclic triples in a rotational LHTS(n),
where all Steiner triples are replaced with bidirectional triples. Then

(i) if n=1 (mod 6), then ¢ = (n—1) (mod 2(n — 1)) and ¢ # 5(n —1);
(ii) if n =3 (mod 6), then ¢ =0 (mod n — 1);
(iii) if n =4 (mod 6), then ¢ = 3(n — 1) (mod 2(n — 1)).
5. EXISTENCE OF CYCLIC AND ROTATIONAL LHTS

Let us start by showing that any partition of the set Z, \ {0} into balanced
triples gives rise to some cyclic LDTS(n). To prove this, we first need to define a
structure, which bears a certain similarity to the notion of a current graph.

Let A C Z, \ {0} and let P be a partition of the set A into balanced triples.
Define the quiver I'p = (P, A), where the triples of P are viewed as points and
the differences in A are viewed as arrows. The arrow § € A starts at the triple
containing ¢ and terminates at the triple containing —d mod n. Figure 1 shows
an example of such a quiver for P = {{1,6,12}, {2,3,14}, {4,7,8}, {5,16,17},
{9,11,18}, {10,13,15}} over Zi,.
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FIGURE 1. Quiver I'p, for P = {{1,6,12}, {2,3,14}, {4,7,8},
(5,16,17}, {9, 11,18}, {10,13,15}} over Zus.

Lemma 5.1. Let A C Z, \ {0} such that A = —A and let P be a partition
of the set A into balanced triples. Then there exists a partial cyclic LDTS(n)
corresponding to the partition P.

Proof. We need to show that there exists an arrow colouring of I'p such that

(1) for every a € A, the opposite arrows a and —a are either both blue or one
of them is red while the other is green; and
(2) every vertex has a red, a green and a blue outgoing arrow.

First let us show that there are no loops in I'p and that every vertex has one or
three neighbours. A vertex having a loop would be of the form {0, a, —a}, which
is a contradiction with 0 ¢ A. Assume that a vertex {a,b,c} has exactly two
neighbours, then without loss of generality one of the neighbours is of the form
{—a,—b,d}. Since the triples are balanced, we get d = a +b = —¢, which implies
that its only neighbour is {—a, —b, —c}.

When a vertex {a, b, c} has only one neighbour the two vertices form a compo-
nent of connectivity that we shall call degenerate. A degenerate component can
be assigned colours as follows: a and —b red, b and —a green, ¢ and —c blue.
This colouring corresponds to the orbit of a Steiner triple.

Denote by G'p the underlying undirected graph obtained by replacing all arrows
of I'p with undirected edges. Every non-degenerate connected component C' of G p
is 3-regular. Furthermore, non-degenerate components of Gp can be shown to be
2-edge connected. Assume to the contrary, that there exists an edge (p, q) whose
removal splits C' into two components. In the quiver locate the corresponding
pair of arrows a and —a between the vertices p and ¢ and remove the two arrows.
Denote this new quiver I',. Since the sum of every pair of opposite arrows is
zero, so is the sum of all arrows in any component of the new quiver I',. The
sum of the outgoing arrows from the vertices p and ¢ in I'}; is a and —a, for any
other vertex the sum of the outgoing arrows is zero. If the vertices p and ¢ lie
in separate components of [, then the sum of the arrows in each of these two
components is non-zero, which is a contradiction.

By a well known theorem of Petersen [14] every 3-regular 2-edge connected
graph has a 1-factor. Thus the edge set of any non-degenerate component C' of
Gp can be partitioned into a 1-factor M and a 2-factor N, i.e. into a perfect
matching and a collection of cycles that spans all vertices of the component. For
each edge in M locate the corresponding pair of arrows in the quiver and colour
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them blue. For each cycle in N locate the corresponding set of arrows in the
quiver. These arrows can be viewed as a pair oriented cycles having a common
vertex set but opposite orientation. Colour one of the oriented cycles red and the
other green. This colouring satisfies the required conditions. O

Lemma 5.2. If n = 1 (mod 6) and n > 13, then there ezists a pure cyclic
LDTS(n).

Proof. Let n =6k + 1 and k > 2, then
P={{rr+k—2r—k}{-r,—r—3k2r+3k}:r=1,....k}

is a partition of the set Z,, \ {0} into balanced triples. By Lemma 5.1 there exists
a cyclic LDTS(n) corresponding to the partition P. The system is non-pure if
and only if {r,r + k,—2r — k} = {r,r + 3k, —2r — 3k} for some r € {1,...,k}.
If k=1 (mod 3) then this equality is satisfied only for » = 251 otherwise it is
not satisfied for any r € {1,...,k}. Thus for k =0 or 2 (mod 3) the partition P
corresponds to some pure cyclic LDTS(n).

For k = 1 (mod 3) replace the triples {2, ~25EL 4 f 22K _ p}
{—2H 2Rl 3k 228 4 3k} and {k, 2k, —3l<:} in P with the balanced
triples T} = {21"’“, 22’“rl + 3k, k}, Ty = {Qk“ + k, —%H — 3k 2k} and
T35 = {—2% — k, 2k+1 —3k} and apply Lemma 5.1. As long as k > 1 this
replacement produces a part1t10n of the set Z, \ {0} into balanced triples. It
remains to be shown that by replacing these triples no other pairs of opposite
triples are created. Any new pair of opposite triples would have to involve 17, T,
or T3. However the intersections Ty N =15, T, N —T3 and T3 N =T} are all non-
empty. Thus for £ = 1 (mod 3) this partition corresponds to some pure cyclic
LDTS(n). O

Lemma 5.3. Ifn =1 (mod 6) and n > 19, then there exists a proper pure cyclic
LHTS(n) with 2n cyclic triples.

Proof. A cyclic LHTS(19) can be obtained from the following starter blocks:
(0,2,5), (0,5,3), (1,0,7), (7,0,15), (15,0,9) and (9,0, 1).

Let n = 6k + 1, k > 4, and consider the partition P used in the proof of
Lemma 5.2.

If k is even, then remove the triples {1,k + 1,—k — 2}, {& & 4+ k —2k},
{k,2k, -3k}, {-5 —& — 3k, 4k}, {-EL2 22 3k 4k; + 2} and {—Fk, —4k, 5k}
and replace them Wlth {1, B (B gk, 2k — 3k}, {—E2 — 3k, —2k, —
and {—3k,4k + 2, —k — 2}.

If k is odd, then remove the triples {1, k+1, —k —2}, {52, =2 + g, —2k + 1},

BELREL 4 —2k—1}, {k, 2k, =3k}, {5, —w—sk 4k+1}and{ k, —4k, 5k}
and replace them with {% 1, B 1Y, (B k21 + k, 4k + 1}, {5+ &, — k“ —
3k, 2k} and {—3k, —2k + 1, —k— 2}

This yields a partition of the set Z, \{0,k,k+1,2k+ 1,4k, 5k, 5k + 1} into bal-
anced triples. By Lemma 5.1 there exists a partial cyclic LDTS(n). Augmenting
this system with the orbits of the cyclic triples (0, k,2k + 1) and (0, 5k, k) gives
a proper cyclic LHTS(n). If £k =1 (mod 3) and k # 4, then the system contains
n Steiner triples, otherwise it contains no Steiner triples.

In order to obtain a pure LHTS for £ = 1 (mod 3) consider the partition P
used in the proof of Lemma 5.2 and remove the triples 2"’5’1, L= ) 2% —
k} and {—%, —%TH - Sk,Q%TH + 3k}. Apply Lemma 5.1 and augment the
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resulting partial system with the orbits of the cyclic triples (0, %TH, %T“) and

(0,752 B5i1) 0

Lemma 5.4. If n = 3 (mod 12) and n # 3, then there exists a proper cyclic
LDTS(n) with %n Steiner triples, and if in addition n > 27, then there exists one

with %n Steiner triples.
Proof. Let n =12k + 3, k > 1 and

Po={{rr+2k—1,-2r—2k+1}:r=k+2,k+3,...,2k+1},
Py={{-r,—r+6k+2,2r—6k—2}:r=12,...,2k},

Py={{k,k+1,-2k—1}},
then P = P, U P, U P3 U Py is a partition of the set Z, \ {0, LR %" into balanced
triples. By Lemma 5.1 there exists a partial cyclic LDTS(n) corresponding to the
partition P. Augmenting this system with the orbit of the Steiner triple {0, 7, %”
gives a cyclic LDTS(n). The augmented orbit has length .

Clearly the triple in Py does not correspond to an orbit of Steiner triples, since
the opposite triple {—k, —k — 1,2k 4+ 1} does not lie in P. Generally any pair of
opposite triples will necessarily involve a triple from P;. Thus the system contains
additional Steiner triples if and only if

{r,r+2k+1,-2r —2k — 1} = {r,r — 6k — 2, —2r 4+ 6k + 2}
for somer=1,2, ..., k—1, or
{r,r+2k—1,-2r —2k+1} = {r,r — 6k — 2, —2r + 6k + 2}

for somer = k+2, k+3,...,2k. If k =0 (mod 3) then this condition is satisfied
only for r = £ otherwise it is not satisfied for any r € {1,...,2k}. Thus if
k =0 (mod 3), then P yields one full orbit of Steiner triples, otherwise none.

In order to minimize the number of Steiner triples for £ = 0 (mod 3), use the

following partition instead:

P ={{r,r+2k—1,-2r—2k+1}:r=1,...,k}
U{{r,r+2k3—|—1,—2r—2k‘—1}:r:k‘+1,k—|—2,...,2k3—1}
U{{-r—r+6k+22r—6k—2}:r=1,...,2k}

U {{3k,3k +1,—6k —1}}.

If & = 2 (mod 3), then this partition yields one full orbit of Steiner triples,
otherwise none.

Finally we need a partition which yields one full orbit of Steiner triples if £k = 1
(mod 3), k > 4. Such a partition can be obtained from P by removing the triples
{k—1,3k,8k+4}, {2k+1, 4k, 6k+2}, {—k+1,5k+3,8k—1}, {—k,5k+2,8k+1}
and {—k — 1,5k + 1,8k + 3} and replacing them with {k — 1,5k + 2,6k + 2},
{-k—1,—k,2k+ 1}, {3k, 4k, 5k + 3}, {bk+1,8k+1,—k+ 1} and {8k — 1,8k +
3,8k +4}. O

Lemma 5.5. If n = 9 (mod 12) and n # 9, then there exist proper cyclic
LDTS(n)s with n Steiner triples and 3n Steiner triples.
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Proof. Let n =12k +9, k > 1 and
P1={{r,r+2k+1,—2r—2k—1}:Tzl,...,?k—l—landr#k;—i—l},
Py={{-r—r+6k+4,2r—6k—4}:r=1,.... 2k and r £k },

Py = {{k+1,5k + 4,6k + 4}, {3k + 2,10k + 7,11k + 9},
{6k + 5,8k + 5,10k + 8} },

then P = P, U P, U P is a partition of the set Z, \ {0, 3, ?” into balanced
triples. By Lemma 5.1 there exists a partial cyclic LDTS(n) corresponding to the
partition P. Augmenting this system with the orbit of the Steiner triple {0, 2
gives a cyclic LDTS(n). The augmented orbit has length %.

If £ =1, then the triples {1,4,—5} € P, and {5, 17, 20} € Pj correspond to a
full orbit of Steiner triples, otherwise the triples in P3 do not correspond to orbits
of Steiner triples. Thus for £ > 1 the system contains additional Steiner triples

if and only if
{rir+2k+1,-2r — 2k — 1} = {r,r — 6k — 4, —2r + 6k + 4}

for some r =1, 2, ..., 2k + 1. If Kk =0 (mod 3) then this condition is satisfied
only for r = 4’“;3, otherw1se it is not satisfied for any r € {1,...,2k + 1}.
To maximize the number of unidirectional triples for & = 1 use the partition

P U {{2, 8,11}, {5, 18,19}, {9,13,20}, {10, 15, 17}}.

To maximize the number of unidirectional triples for £ = 0 (mod 3), we can
proceed as in the proof of Lemma 5.2, replacing the triples %, ‘”“TJFP’ + 2k +
1,—2%E ok — 1}, {2 43 4 G + 4 29883 — 6k — 4} and {6k + 5,8k +
5,10k —I— 8} in P with the balanced triples 4k+3 — 443 4 6k 44,6k +5}, {42+
2k + 1, — 28 10k + 8} and {—24E — 2k — 1 24k3+3 — 6k — 4,8k + 5}.

Finally We need a partition Wthh yields one full orbit of Steiner triples if
k=1 or 2 (mod 3) and & > 2. This can be achieved by replacing the triples
{k+3,3k+4, -4k -7}, {2k, 4k +1, —6k — 1}, {—2k, 4k +4, -2k —4}, {k+ 1,5k +
4,6k + 4} and {6k + 5,8k + 5,10k + 8} in P with the triples {2k, 4k + 4,6k + 5},
{6k + 4,8k + 5,—2k}, {k + 1,k + 3,—2k — 4}, {3k + 4,4k + 1,5k + 4} and
{—6k —1,—4k — 7,10k + 8}. OJ

’3’3

Lemma 5.6. If n = 3 (mod 6) and n > 21, then there exists a proper cyclic
LHTS(n) with $n Steiner triples and 2n cyclic triples.

Proof. We shall utilise the principle derived from Proposition 3.2. By Lemmas 5.4
and 5.5 if n =3 (mod 6) and n > 21, then there exists a proper cyclic LDTS(n)
with %n Steiner triples. The Steiner triples form two orbits, one long and one
short. Let {z,y, z} be one of the Steiner triples in the long orbit. Replace this
orbit with two orbits of the unidirectional cyclic triples (x,y, z) and (y, z, x+y—2z).
This yields a cyclic LHTS(n) with %n Steiner triples and 2n cyclic triples. OJ

Lemma 5.7. Ifn =3 (mod 6) and n > 15, then there exists a proper rotational
LDTS(n) with 5(n — 1) Steiner triples.

Proof. Let n = 6k + 3 and 6o, = 3k + 1, then
P={{rr+k—2r—k},{-r,—r+3k+1,2r =3k—1}:r=1,...k}

is a partition of the set Z,,—1 \ {0, 0o} into balanced triples. By Lemma 5.1 there
exists a partial cyclic LDTS(n—1) corresponding to the partition P. Augmenting
this system with the orbit of the Steiner triple {0, %%, oo} gives a rotational
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LDTS(n). By Lemma 4.4 the augmented orbit has length (n — 1). The system
contains more than %(n — 1) Steiner triples if and only if {r,r + k, —2r — k} =
{r,r =3k — 1,3k + 1 — 2r} for some r € {1,...,k}. If £ = 1 (mod 3) then
this equality is satisfied only for r = %, otherwise it is not satisfied for any
r€{l,...,k}. Thus for k =0 or 2 (mod 3) the system contains exactly 1(n—1)
Steiner triples, whilst for n = 1 (mod 3) it contains an additional orbit consisting
of n — 1 Steiner triples.

To minimize the number of Steiner triples for £ = 1 (mod 3), & > 4, replace
the triples {k,2k, =3k}, {—%5%,3k + 1 — 51,2521 — 3k — 1} and {—25- 3k +
1 — 2 9288l 3k — 1} in P with the triples {k,3k +1 — 28H 3k +1 — &1}
{2k, 222 — 3k — 1, - %1} and {-3k, 251 — 3k — 1, —2EH}. O

Lemma 5.8. Ifn =3 (mod 6) and n > 21, then there exists a proper rotational
LHTS(n) with 3(n — 1) Steiner triples and 2(n — 1) cyclic triples.

Proof. A rotational LHT'S(21) can be obtained from the following starter blocks:
{0,10, 0}, (0,3,11), (0,11,8), (13,0, 15), (15,0,16), (16,0, 14) and (14,0, 13).

Let n = 6k + 3, k > 4, and consider the partition P used in the proof of
Lemma 5.7.

If k is even, then remove the triples {k, 2k, —3k}, g, g + k, -2k}, k—;z, % +
k,—2k—2}, {—1,3k,1-3k}, {—%,3k+1-%, —2k—1} and {—k,2k+1, —k—1} and
replace them with %, % +k, —2k—1}, {-1, —%, %}, {% +k,2k+1,3k+1— g}
and {—k —1,—2k — 2, -3k + 1}.

If k£ is odd, then remove the triples {k,2k, —3k}, %, k—;l + k,—2k — 1},
{—1,3k,1 =3k}, {-52, 3k +1 - 551 2k — 2}, {—5H 3k + 1 — £ —2k} and
{—k,2k +1,—k — 1} and replace them with %, —%, -1}, {k—;l +k,3k+1—
B2k + 1), {-52,3k+1 - %1, -2k — 1} and {—k — 1, -2k — 2,1 — 3k}.

This yields a partition of the set Z, \ {0, k, 2k, 3k, 3k + 1,3k + 2,4k + 2,5k + 2}
into balanced triples. By Lemma 5.1 there exists a partial cyclic LDTS(n — 1).
Augmenting this system with the orbits of the Steiner triple {0, ”T’l, oo} and the
cyclic triples (0, k, 3k) and (0, 3k, 2k) gives a proper rotational LHTS(n). If k =1
(mod 3) and k # 4, then the system contains 3(n — 1) Steiner triples, otherwise
it contains (n — 1) Steiner triples.

To obtain an LHTS with the minimum possible number of Steiner triples for
k =1 (mod 3) consider the partition P used in the proof of Lemma 5.7 and
remove the triples %T“, 2’“:,)—“ +k, —2% —k} and {—@, 3k+1— 2’“:,)—“, 2%T+1 —
3k — 1}. Apply Lemma 5.1 and augment the resulting partial system with the
orbits of the Steiner triple {0, "T_l, oo} and of the cyclic triples (0, %TH’ 7";’—“) and

(0’ 7k;—27 5k:;|—1). ]

Lemma 5.9. If n = 4 (mod 6) and n > 16, then there exists a proper pure
rotational LHTS(n) with 4(n — 1) cyclic triples.

Proof. Let n = 4 (mod 6) and n > 16. By Lemmas 5.4 and 5.5 there exists a
cyclic LDTS(n — 1), (V, By U By), such that By is the orbit of the Steiner triple
{0, ”T_l, @} whilst B; contains no Steiner triples. Let B be the union of the
orbits of the cyclic triples (0, 0o, %5+) and (0, 25+ @) Then (VU{oo}, BiUBY)

Y 3 Y
is a pure rotational LHTS(n). O

Lemma 5.10. If n = 1 (mod 12) and n > 25, then there exists a proper pure
rotational LHTS(n) with $(n — 1) cyclic triples.
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Proof. Let n =12k + 1, k > 2 and consider the partition
P:{{r,r+2k,—2r—2k}:rzl,...,Qk—landr%korqul}
U{{-r—r+6k—1,2r—6k+1}:r=1,...,2k—2}
U{{k,k+1,—2k —1},{3k,3k + 1,6k — 1}, {6k + 1,8k — 2,10k + 1} }

of the set Z,_1 \ {0, £25%, £2=%, %=1} into balanced triples. By Lemma 5.1 there
exists a partial cyclic LDTS(n — 1) corresponding to the partition P. Augment-
ing this system with the orbits of the cyclic triples (0,00, 2k), (0,8k,4k) and
(0, 2k, 8k) gives a proper rotational LHTS(n). If K =1 (mod 3) and k > 7, then
the system contains n — 1 Steiner triples, otherwise it contains no Steiner triples.

To obtain a pure LHTS for £ = 1 (mod 3) where k > 7, replace the triples

2k3272k 2+2k _22k 2 Qk} 4k 1 4k 1 +2]€ _24k 1 Qk} and {6k+1 Sk —
2,10k+1} in P with the triples {22 2 =L 10k +1}, {% 242k, =1 42k, 6k 41}
and {—222 — 2k, —24=1 — ok, 8/<: — 2} O

Lemma 5.11. If n = 7 (mod 12) and n > 31, then there exists a proper pure
rotational LHTS(n) with £(n — 1) cyclic triples.

Proof. Let n =12k + 7, k > 2, and consider the partition

P:{{r,r+2k,—2r—2k‘}:r:2,3,...,2k andr;«ék+1}
U{{-r—r+6k+3,2r—6k—3}:r=1,....2kandr #k+2or 2k — 1}
U {{4k + 1,10k + 4, -2k + 1} }
U{{l,k+1,—k—2}, {3k + 1,4k + 4,5k + 1}, {—4k + 1, -2k — 5,6k + 4} }

U {{1,10,31},{4,16,22} } (if k = 3) (if k # 3)

of the set Z,_1 \ {0, £25+, £2=1, %=1} into balanced triples. By Lemma 5.1 there
exists a partial cyclic LDTS(n—1) corresponding to the partition P. Augmenting
this system with the orbits of the cyclic triples (0, 00, 2k + 1), (0, 8%k + 4,4k + 2)
and (0,2k + 1,8k + 4) gives a proper rotational LHTS(n). If £ =0 (mod 3) and
k > 6, then the system contains n — 1 Steiner triples, otherwise the system is
pure.

To obtain a pure LHTS for £ = 0 (mod 3) where k > 6, replace the triples
(b8 _2kES 4 Gf 43,2408 6 — 3}, {28 k=8 4 Gf 43,228 6 — 3}
and {2k, 4k, —6kr} in P with the triples {2k: 4’“5“3 + 6k + 3, —M + 6k + 3},
{4k, 24553 — 6 — 3, — 253} and {—6k, 2252 — 6k — 3, — 42}, O

Putting together the results in this paper yields the following theorems:

Theorem 5.12. A pure cyclic LDTS(n) exists if and only if n =1 (mod 6) and
n > 13.

Theorem 5.13. A proper cyclic LDTS(n) exists if and only ifn = 1 or3 (mod 6)
and n > 13.

Theorem 5.14. A proper pure cyclic LHTS(n) exists if and only if n = 1
(mod 6) and n > 19.

Theorem 5.15. A proper cyclic LHTS(n) exists if and only ifn = 1 or3 (mod 6)
and n > 19.

Theorem 5.16. A proper rotational LDTS(n) ezists if and only if n = 3 (mod 6)
and n > 15. There exists no pure rotational LDTS.
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Theorem 5.17. A proper pure rotational LHTS(n) exists if and only if n = 1
(mod 3), n > 16 and n # 19.

Theorem 5.18. A proper rotational LHTS(n) exists if and only if n =1, 3 or 4
(mod 6), n > 16 and n # 19.
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FLEXIBLE LATIN DIRECTED TRIPLE SYSTEMS
ALES DRAPAL, ANDREW R. KOZLIK, AND TERRY S. GRIGGS

ABSTRACT. It is well known that, given a Steiner triple system, a quasigroup
can be formed by defining an operation - by the identities z-x =z and -y = 2
where z is the third point in the block containing the pair {z,y}. The same
is true for a Mendelsohn triple system where the pair (z,y) is considered to
be ordered. But it is not true in general for directed triple systems. However
directed triple systems which form quasigroups under this operation do exist
and we call these Latin directed triple systems. The quasigroups associated
with Steiner and Mendelsohn triple systems satisfy the flexible law = - (y - ) =
(z - y) - « but those associated with Latin directed triple systems need not.
In a previous paper, [Discrete Mathematics 312 (2012), 597-607], we studied
non-flexible Latin directed triple systems. In this paper we turn our attention
to flexible Latin directed triple systems.

1. INTRODUCTION

This paper is a sequel to [4]. There, we introduced the concepts of a Latin
directed triple system and a DTS-quasigroup, developed some of the basic theory
and determined the existence spectrum of Latin directed triple systems whose
associated quasigroups do not satisfy the flexible law. Here we turn our attention
to flexible Latin directed triple systems.

First we recall the basic definitions and results which are appropriate for our
purposes. A Steiner triple system of order n, STS(n), is a pair (V,B) where V
is a set of n points and B is a collection of triples of distinct points, also called
blocks, taken from V' such that every pair of distinct points from V appears in
precisely one block. Such systems exist if and only if n =1 or 3 (mod 6) [§8]. A
Steiner quasigroup or squag or idempotent totally symmetric quasigroup is a pair
(@, -) where @ is a set and - is an operation on @) satisfying the identities

rr=x, y-(v-y=x x-y=y-z.

If (V,B) is an STS(n), then a Steiner quasigroup (@,-) is obtained by letting
@ =V and defining = - y = z where {z,y, 2z} € B. The process is reversible; if @
is a Steiner quasigroup, then a Steiner triple system is obtained by letting V' = @)
and {z,y,z} € B where x -y = z for all z,y € @, x # y. Thus there is a one-one
correspondence between all Steiner triple systems and all Steiner quasigroups [12,
Theorem V.1.11]. This is all well-known.

Next consider ordered triples. There are two possibilities. A cyclically ordered
triple, denoted by (x,y, z), contains the ordered pairs (z,v), (v, 2), (z,x) and a
transitively ordered triple, denoted by (x,y, z) contains the ordered pairs (z,y),
(, 2), (x,2).

A Mendelsohn triple system of order n, MTS(n), is a pair (V,B) where V is a
set of n points and B is a collection of cyclically ordered triples of distinct points

2000 Mathematics Subject Classification. Primary 05B07; Secondary 20N05.
Key words and phrases. Directed triple system, quasigroup.
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taken from V such that every ordered pair of distinct points from V' appears
in precisely one triple. Such systems exist if and only if n = 0 or 1 (mod 3),
n # 6 [11]. Quasigroups can be obtained from Mendelsohn triple systems by
precisely the same procedures as described above for Steiner triple systems. Note
that the law y-(z-y) = x is usually called semi-symmetric. So the quasigroups are
known as idempotent semisymmetric quasigroups [1, Remark 2.12] or Mendelsohn
quasigroups; they satisfy the same properties as their Steiner counterparts with
the exception of commutativity. Similarly there is a one-one correspondence
between Mendelsohn triple systems and Mendelsohn quasigroups.

A directed triple system of order n, DTS(n), is a pair (V, B) where V' is a set of n
points and B is a collection of transitively ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V' appears in precisely
one triple. Such systems exist if and only if n = 0 or 1 (mod 3) [7]. Given a
DTS(n), an algebraic structure (V, -) can be obtained as above by defining z-x = =
and x -y = z for all z,y € V, x # y where z is the third element in the transitive
triple containing the ordered pair (z,y). However the structure obtained is not
necessarily a quasigroup. If (u,z,y) and (y,v,z) € B then u-x = v -z = y.
But some DTS(n)s do yield quasigroups. Such a DTS(n) will be called a Latin
directed triple system, and denoted by LDTS(n), to reflect the fact that in this
case the operation table forms a Latin square. We call the quasigroup so obtained
a DTS-quasigroup. In [4] an easy necessary and sufficient condition for a directed
triple system to be Latin was proved.

Theorem 1.1. Let D = (V,B) be a DTS(n). Then D is an LDTS(n) if and only
if (x,y,2) € B= (w,y,x) € B for some w € V.

Before proceeding further, it is important to point out two fundamental differ-
ences between DTS-quasigroups and Steiner or Mendelsohn quasigroups which
motivates the study of these structures. First, DTS-quasigroups are not in one-
one correspondence with Latin directed triple systems. Non-isomorphic LDTS(n)s
can yield identical DTS-quasigroups. In view of this, for purposes of enumeration,
it makes more sense to count non-isomorphic DT'S-quasigroups rather than non-
isomorphic LDTS(n)s. Secondly all Steiner and Mendelsohn quasigroups satisfy
the flexible law 2 - (y - ) = (2 - y) - . DTS-quasigroups need not. In [4], the two
following results were proved.

Theorem 1.2. The number of non-isomorphic DTS-quasigroups of order n = 3,
4,6,7,9,10, 12 are 1, 0, 0, 2, 4, 0, 2 respectively.

Theorem 1.3. The ezistence spectrum of non-flexible LDTS(n)s is n = 0,1
(mod 3), n # 3, 4, 6, 7, 10.

For flexible DTS-quasigroups, again there is an easy necessary and sufficient
condition.

Theorem 1.4. A DTS-quasigroup obtained from an LDTS(n), D = (V,B), sat-
isfies the flexible law if and only if (x,y,z) € B= (x,z-x,y-x) € B.

Note that trivially a Steiner quasigroup is a DTS-quasigroup. Such a DTS-
quasigroup will be called improper; all others are proper. From [4], there exist
only two non-isomorphic proper flexible DTS-quasigroups of order less than 13;
one of order 7 and one of order 9. They are given in the two examples below,
and in the same format as in [4], as Latin directed triple systems. For simplicity
commas are omitted from the triples. The set T is the set of unordered triples
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or Steiner triples. Each triple {x,y, z} represents a pair of transitively ordered
triples in one of three ways, (i) (z,vy, z) and (z,y,x); or (ii) (y, z, ) and (z, z,y);
or (iii) (z,z,y) and (y,z,z). Thus these triples are bidirectional. The set D is
a set of transitively ordered triples or unidirectional triples. Replacing a pair of
bidirectional triples in an LDTS(n), say (z,y,2) and (z,y,z), with a different
pair of bidirectional triples, say (y, z, ) and (z, z, y), gives a system which yields
the same DTS-quasigroup as the first and yet the two LDTS(n)s may be non-
isomorphic, [4, Example 2.4].

Example 1.5. Flexible LDTS(7).

V ={0,1,2,3,4,5,6}.

T = {{012}, {034}, {056} } and

D = {(315), (514), (416), (613), (326), (624), (425), (523)}.

Example 1.6. Flexible LDTS(9).

V =10,1,2,3,4,5,6,7,8}

T = {{018}, {258}, {368}, {478}, {246}, {357}} and

D = {(207), (T06), (605), (504), (403), (302), (213), (314), (415), (516), (617),

(712)}.

2. STRUCTURE OF FLEXIBLE DTS-QUASIGROUPS

In a further paper [3], flexible DT'S-quasigroups were shown to have a certain
structure in terms of their topology. Let D = (V,B) be an LDTS(n). Denote
by F, the set of all unordered triples {x,y, 2}, where (z,y, z) runs through all
unidirectional triples of D. Now consider F' as a set of faces. Each edge {z,y} is
incident to two faces and hence we get a generalized pseudosurface. By separating
pinch points we obtain a set of one or more components which are an invariant of
the LDTS(n) and are very useful in determining whether two DTS-quasigroups
are isomorphic.

Consider a unidirectional triple (21, x, zo) € B. Then, using Theorem 1.1, there
exists k£ > 3 and points 2y, 21, 22, ..., 21 such that

<Z1ax720>; <2‘/27:B7Zl>7 ceey <Zk;_1,l'72k;_2>, <20axazk—1> S B

If D is also flexible, using Theorem 1.4,
<Zl7 Y, 22>7 <Z27 Y, Z3>7 cey <Zk—17 Y, ZO>7 <ZO7 Y, Zl> € B

where y = z9- 21 = 21 - 20 = +++ = Zp_o* Zk_1 = 2Zp_1 - 20 These 2k transitive
triples define a k-gonal bipyramid; denoted by Oy, i.e. a graph of k + 2 vertices
with a cycle of length k, the points of which can be thought of as situated around
the equator of a sphere, and two middle vertex points which are connected to all
points of the cycle and which can be thought of as situated at the poles of the
sphere. Thus we have the following important result.

Theorem 2.1. A flexible DTS-quasigroup of order n ezists if and only if the
complete graph K, can be decomposed into triangles and graphs Oy, k > 3. The
components of the generalized pseudosurface of the quasigroup are all spheres.

It is worth remarking that when at least one of the graphs Oy has k£ > 6 and
even, the decomposition of K, as described in the theorem may also be used to
obtain a non-flexible system. Replace triples

<22i+17 z, 22¢>; <22¢+2, z, 221;+1>; <Z2i7 Y, 222'+1>; <Z2z’+17 Y, Z2i+2>
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in the flexible system by triples

<2’2i+1, 224 IL“), <$, 2242, Zzi+1>, <y, 224 Z2i+1>a <221‘+17 22§42, y>,

i=0,1,...,(k —2)/2, subscript arithmetic modulo k. As illustration from Ex-
ample 1.6, the following is a non-flexible LDTS(9).

Example 2.2. Non-flexible LDTS(9).

vV ={0,1,2,3,4,5,6,7,8}.

T = {{018}, {258}, {368}, {478}, {246}, {357}} and

D = {(270), (076), (650), (054), (430), (032), (231), (134), (451), (156), (671),

(172)}.

The number of equator cycles of each length is clearly an invariant of a flexible
DTS-quasigroup. Another invariant can be calculated as follows. The type of a
vertex is the list of valencies which it has as a middle vertex or pole of a bipyramid.
The number of vertices of each type is then also an invariant.

Thus, for the DTS-quasigroup given in Example 1.5, there is an equator cycle
of length 4 (3, 5,4, 6) and two points (1 and 2) of type 4. For the DTS-quasigroup
given in Example 1.6 there is an equator cycle of length 6 (2,7,6,5,4,3) and two
points (0 and 1) of type 6. A more instructive example however of order 13 is
given below.

Example 2.3. Flexible LDTS(13).

Vv =1{0,1,2,3,4,5,6,7,8,9, T, B, W}.

T={{045}, {179}, {1TW}, {358}, {37TW}, {59T'}} and

D = {(103), (302), (201), (142), (243), (341), (629), (92E), (E2T), (126), (63T,
(T3E), (E39), (936), (156), (65W), (W52), (257), (7T5E), (E51), (18E), (E87),
(782), (28W), (W'86), (681), (60E), (EOW), (W09), (908), (80T, (T0T7), (706),
(647), (74T, (T'48), (849), (94W), (WAE), (E46)}.

For this system there are equator cycles of length 3, 4, 6 and 7, two points (2
and 3) of type 4, two points (5 and 8) of type 6 and two points (0 and 4) of type
3,7.

At n = 13, the combinatorial explosion takes over and, as reported in [3],
there are 1206 969 non-isomorphic DT'S-quasigroups of order 13. Details of their
automorphism groups and genera of their separated surface components are also
given in that paper. However, only 924 of these quasigroups are flexible including
the two Steiner quasigroups of this order. Table 1 shows the classification in terms
of numbers of Steiner triples (), lengths of equator cycles, and types of middle
valency points.

3. RECURSIVE CONSTRUCTIONS

In this section we present, in the form of theorems, some recursive constructions
for flexible Latin directed triple systems. Using Theorem 2.1, we express these
in terms of decompositions of the complete graph K, into triangles and k-gonal
bipyramids Oy. We represent the latter by the notation [N : Ey, Es, ..., Ey : 5]
where N and S are the poles and (E}, Es, ..., E)) is the equator cycle. The first
two constructions are “doubling” and “trebling” constructions respectively which
often apply for combinatorial designs.

Theorem 3.1. If there exists a flexible LDTS(n) based on a decomposition of
the complete graph K, into triangles and graphs Oy, k > 4 and even, then there
exists a flexible LDTS(2n+1).
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Equator Cycles Middle Valency Points
#!3|4|5]6|7|8|10| ¢t |4]|6]|3,3|8]5,3(4,4]/10|7,3(6,4|5,5(4,3,3]4,4,4
76 2 1 12142
69 1 11(12|2 2
56 2 118 |4 2
46 1 1 1622
41 1 10|24
36 3 1416
36 3 1414 1
36 2 1 1212 2
32|12 1 8 |4 2
32 2 1 12122 1
28 3 1 8162
28 3 1 8 1412 1
28 3 1 8 |4 2
28 2 184
28 1 1 (10 2 2
24 6(2|2 2
2411 1 122 2
22 1 2 10 2 2
18 2 14 4
16 2 11812 1 2
13 116 2
12121 1 812 2 |2
12711 11 6122 2
12 3 1 8122 2
1211 1|1 10 2 2
12 1 1 1161(2|2 2
10]1 1|1 8 2 2
9 3 8 6
8 3 1 812 1 2
8 2 6|24 1
812 1110 2 2
8 2 1812 1
6|3 1 10 2 2
6(12]|1 1 8 2 2
6 1 3 4 4 2
6|2 1 12 2 |2
6 112 1212 2
6|1 1 16 2
6 1 1 16 2
5 1 222
5 1 20 2
412 1 8 2 2
4112 8 2 2
4 3 1 813|2 1
4 2 2 644
4 3 1412 2
4 2 16 2
212]|1 2 4 2| 2 2
2121 1 10122 2
2121 1 10 2 2
2121 1 10 2 2
212|1 16 | 2 2
2|2 1 14 2| 2
2 3 1413 1
2 26
1121 2 4 4 2
112 2 8 4| 2
1121 16 2
112 20 2

TABLE 1. Classification of flexible LDTS(13)s.
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Proof. Let (V,B) be a decomposition of the complete graph K, into triangles
and graphs Oy, k > 4 and even, as stated in the statement of the theorem where
V={0,1,....,n—1}. Let V' ={2':2 € V}and W =V UV'U{oo}. Construct
a decomposition of the complete graph K, on the set W as follows. For all
[N . El, EQ, Eg, ey Egl : S] S B, assign

[NZEl,EQ,Eg,...7EQl : S], [NE&,E;,E&,E;Z : S],
[N': E\,E\ Es,... Ely: S, [N :E, EyE,. Ey:S] € B.

For all {z,y,z} € B, assign [z : y,2,y,2 : 2’| € B'. Further let {z,2',00} € B’
for all x € V. Then (W, B’) is a decomposition of the complete graph Ky, into
triangles and k-gonal bipyramids. 0

Theorem 3.2. If there exists a flexible LDTS(n) based on a decomposition of
the complete graph K, into triangles and graphs Oy, k > 4 and even, then there
exists a flexible LDTS(3n).

Proof. Let (V,B) be a decomposition of the complete graph K, into triangles
and graphs Oy, k > 4 and even, as stated in the statement of the theorem where
V ={0,1,....n—1}. Let V! ={a’ : 2 e V}, V! ={2" : 2 € V} and
W =V uV'uV”. Construct a decomposition of the complete graph K3, on the
set W as follows. For all [N : Ey, Ey, Es, ..., Ey : S| € B, assign

[N:E,Ey,E3,...,Ey: S|, [N:E|,E) E; ....Ey:5],
IN:E'E, E!.... .Ey:S), [N':E,E,E, ... Ey:5]
IN': By, Bl By,... Bl .S, [N':E!' EyEl ... Ey:S,
IN" . E' B! E!,... El:S"], [N":Ey E\Es... Ey:5",
IN" . El By E,,... . Eq:S"] € B.

For all {z,y, 2z} € B, assign {x,y, '}, {z, v, 2"}, {z,¥", 2}, [2' 1y, 2,9/, 2/, ", 2" :
2] € B'. Further let {z, 2, 2"} € B’ for all x € V. Note that for all {z,y, z} € B,
the construction yields a flexible LDTS(9) on the point set {x, 2, 2", y, v/, y", z, 2', 2" }.
Then (W, B’) is a decomposition of the complete graph K3, into triangles and k-
gonal bipyramids. 0

The next construction is also a “doubling” construction and employs a Hamil-
tonian decomposition.

Theorem 3.3. If there exists a flexible LDTS(n), then there exists a flexible
LDTS(2n +1).

Proof. Let (V, B) be a flexible LDTS(n) where V' = {x1, xo, ..., z,} disjoint from
the set Z,,1 and K, 1 be the complete graph on Z,, ;.

Suppose that n is even. Take a decomposition of K, into n/2 disjoint Hamil-
tonian cycles H;, 1 < i < n/2. For each i, construct a (n + 1)-gonal bipyramid
[x9; 1 : H; : o] and let B’ be the set of unidirectional triples obtained from these
bipyramids. Then (V U 2,1, BU B’) is a flexible LDTS(2n + 1).

Now suppose that n is odd. Remove a one-factor F' from K,,; and proceed
as in the even case using a decomposition of the graph K, \ F into (n —1)/2
disjoint Hamiltonian cycles H;, 1 < i < (n — 1)/2. Further let 7 be the set of
Steiner triples {a, b, x,,} where the edge {a,b} € F. Then (VU2Z,.;,BUB UT)
is a flexible LDTS(2n + 1). O
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We remark that in the proof of the theorem we may replace the Hamiltonian
decomposition by any 2-factorization of the relevant graph. In this respect, a
particularly elegant and easy way of implementing the construction is for each
de 2,11\ {0} and i € 2,1, assign (i,x4,1 +d) € B'.

A directed triple system, (V, B), is said to be pure if (z,y, z) € B = (z,y,xz) ¢ B.
In the construction described in the above theorem, if n is even and the LDTS(n)
is pure then so is the LDTS(2n + 1). The DTS-quasigroups obtained from pure
Latin directed triple systems are anti-commutative.

The final construction is in a similar vein to the previous construction. We
need some further definitions. In a Steiner triple system, STS(n), a parallel class
is a set of blocks which collectively contain every point of the STS(n) precisely
once. A Kirkman triple system of order n, KTS(n), is a triple (V, B, R) where
(V,B) is an STS(n) and R is a partition or resolution of the set of blocks B into
parallel classes. Such systems exist if and only if n = 3 (mod 6), [9], [13].

Theorem 3.4. If there exists a flexible LDTS(2n), then there exists a flexible
LDTS(6s+ 3+ 2n) for all s > (n—1)/3.

Proof. Let (V,B) be a flexible LDTS(2n) where V' = {1,2,...,2n} and (W,S,R)
be a KTS(6s + 3) where the set W is disjoint from the set V. The partition R
consists of 3s + 1 parallel classes II;, 1 < ¢ < 3s + 1. For the first n parallel
classes II;, 1 < i < n, construct trigonal bipyramids [2i — 1 : z,y, z : 2i] where
{z,y,z} € II;, and then decompose these into unidirectional triples

(x,2i — 1,y),(y,2i — 1, 2),(z,2i — 1,2), (y, 21, x), (2, 21, y), (x, 2, 2).

Denote this set of unidirectional triples by B’. The remaining parallel classes
together form the set of unordered or Steiner triples 7 = Uf’zil II;.  Then

(VUW,BUB' UT) is a flexible LDTS(6s + 3 4 2n). O

4. EXISTENCE OF FLEXIBLE LATIN DIRECTED TRIPLE SYSTEMS

In this section we determine the existence spectrum of flexible LDTS(n). For n
odd, this has previously been done in [4] but the proof is short, so we include it for
completeness. We will need a definition. In a Steiner triple system, a collection
of four triples on six points is called a Pasch configuration. It is easily seen that
this structure necessarily has the form {a, b, c}, {a,y, 2}, {z,b, 2}, {x,y, c}. Given
such a Pasch configuration, we will replace it by transitive triples (a, b, ¢}, (a,y, z),
(x,b,2), (x,y,¢), (z,y,2), {¢,b,x), {c,y,a), (z,b,a). These can be thought of as
a partial LDTS(6) but a crucial point is that they satisfy the flexible law. We
will denote this collection of eight transitive triples by P. Part of the proof
also uses a standard technique, known as Wilson’s fundamental construction, for
which we need the concept of a group divisible design (GDD). A 3-GDD of type
g is an ordered triple (V,G,B) where V is a base set of cardinality v = gu,
G is a partition of V into u subsets of cardinality ¢ called groups and B is a
family of triples called blocks which collectively have the property that every
pair of elements from different groups occur in precisely one block but no pair
of elements from the same group occur at all. In the proof for n even, we will
also need 3-GDDs of type g“m!. These are defined analogously, with the base set
V' being of cardinality v = gu + m and the partition G being into u subsets of
cardinality ¢ and one set of cardinality m. Necessary and sufficient conditions for
3-GDDs of type g* were determined in [6] and for 3-GDDs of type g“m! in [2]; a
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convenient reference is [5] where the existence of all the GDDs that are used can
be verified.

Proposition 4.1. There exists a proper flexible LDTS(n) for alln = 1,3 (mod 6).

Proof.
(a)

The

n=3,7 (mod 12). Put m = (n—1)/2 and choose an STS(m), (V, B). Let
Vi={z':xe€V}and W = VUV'U{c0}. Construct a collection of triples
B’ as follows. For all {z,y,z} € B, assign {z,y,z2},{z, v, 2'},{2,y, 2},
{z',y/, 2} € B'. Further let {z,2',00} € B’ for all z € V. Then (W, B’) is
an STS(n). In order to obtain a LDTS(n) replace each Pasch configuration
as above by the set P of transitive triples, and retain the sets containing
the point oo as Steiner triples. Because the LDTS(n) is constructed of
flexible components, i.e. just the flexible partial LDTS(6), P, and the
trivial Steiner quasigroup on 3 points, it is also flexible.

n=9 (mod 12). Put m = (n—3)/2 and choose an STS(m), (V, B) which
contains a parallel class. Denote this parallel class by II. Let V' = {2’ :
reV}and W =VUV'U{ooy, 009, 003}. Construct a collection of triples
B’ as follows. For all {z,y, z} € 11, assign {z,y, 2z}, {«', v/, 2}, {z, 2, 001},
{y, y/7 001}, {Zv Zlv OOI}, {LE, y/7 002}7 {y7 Zlu 002}7 {27 xlu 002}7 {Q?, Zl? 003}7
{y, o', 003}, {2,y/,003} € B" and for all {x,y, 2} € B\, assign {x,y, 2},
{z,y, 7'}, {o',y,2'}, {«/,y,2} € B. Finally let {001, 009,003} € B
Then (W, B’) is an STS(n). In order to obtain an LDTS(n), replace each
Pasch configuration by the set P of transitive triples in the same way as
in (a). Further replace each collection of eleven triples corresponding to
each block of the parallel class, together with the set {ooq, 009, 003}, by the
flexible LDTS(9) from Example 1.6, ensuring that the triple {oo;, 00s, 003}
corresponds to a Steiner triple for each collection.

n =1 (mod 12). Take a 3-GDD of type 6°,s > 3. Inflate each point by
a factor 2 and adjoin an extra point co. On each inflated group, together
with the point oo, place the flexible LDTS(13) given in Example 2.3. On
each inflated block place the set P of transitive triples (a, b, c), {(a,y, z),
(x,b,2), (x,y,¢), (z,y,x), {c,b,x), {c,y,a), (z,b,a), with the three sets of
points {a,z},{b,y},{c, 2z} as the inflated points in the three groups. We
will use P in this manner throughout. This misses the value n = 25 but
this can also be constructed in a similar manner by taking a 3-GDD of type
43 inflating each point by a factor 2 and adjoining an extra point co. On
each inflated group, together with the point oo, place the flexible LDTS(9)
from Example 1.6 and on each inflated block, place the set of transitive
triples P.

O

determination of the spectrum of flexible LDTS(n) for n even is more

intricate, mainly because there exist no LDTS(n) for n = 4, 6, and 10, and the
only two LDTS(12)s are not flexible, [4]. The smallest even order flexible system
is LDTS(16). Again we will use Wilson’s fundamental construction, but we will
need a variety of 3-GDDs and initial systems. Flexible LDTS(n) for n = 16, 18,

22, 24,

28, 30, 34, 36, and 40 are given as Examples A.1 to A.9 in the Appendix

and were all found by computer search.
We can now prove a series of propositions

Proposition 4.2. There ezists a flexible LDTS(n) for all n = 0,16 (mod 24).
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Proof.

(a) n =0 (mod 48). Take a 3-GDD of type 8%, s > 1. Inflate each point by
a factor 2. On each inflated group place a flexible LDTS(16) and on each
inflated block, place the set of transitive triples P.

(b) n =16 (mod 48). Proceed as in (a) starting with a 3-GDD of type 81
s> 1.

(¢) n =24 (mod 48). Again proceed as in (a) starting with a 3-GDD of type
83512, s > 1, and in addition on the inflated group of cardinality 12 place
a flexible LDTS(24).

(d) n = 40 (mod 48). Proceed as in (c) starting with a 3-GDD of type
83571121 s > 1. This misses the value n = 40, but a flexible LDTS(40) is
Example A.9 in the Appendix.

O

Proposition 4.3. There exists a flexible LDTS(n) for all n = 4,12 (mod 24),
n > 28 except n = 52, 60, 76, 84.

Proof.

(a) n = 4 (mod 24). Take a 3-GDD of type 12°14', s > 3. Inflate each
point by a factor 2. On each inflated group place a flexible LDTS(24)
or LDTS(28) as appropriate and on each inflated block, place the set of
transitive triples P. This misses the values n = 52 and 76.

(b) n =12 (mod 24). Proceed as in (a) starting with a 3-GDD of type 12°18!,
s > 3 and using a flexible LDTS(36) instead of an LDTS(28). This misses
the values n = 60 and 84.

O

Before dealing with the next two residue classes we will need two further flexible
systems of orders 42 and 46. These can be obtained using the following elementary
construction techniques.

Proposition 4.4.
(i) If there exists a flexible LDTS(n), then there exists a flexible LDTS(3n —
2).
(i) If there exists a flexible LDTS(n) containing a Steiner triple, then there
exists a flexible LDTS(3n — 6), also containing a Steiner triple.

Proof.

(i) Take three copies of the LDTS(n) on point sets {oc0,0;, 1;, ..., (n — 2);},
i € {0,1,2} respectively. Then take a Latin square L(7, j) of order n — 1
on the set {0,1,...,n — 2} and adjoin all Steiner triples {io, j1, L(i, )2},
0<i<n—20<j<n—2.

(ii) Take three copies of the LDTS(n) on point sets {001, 009, 003, 0;, 1;, ..., (n—
4);}, i € {0, 1,2} respectively, where {001, 009,003} is a Steiner triple in
all three systems. Then take a Latin square L(7,j) of order n — 3 on
the set {0,1,...,n — 4} and adjoin all Steiner triples {ig, j1, L(7, )2},
0<1<n—4,0<7<n—4.

[

We now have the required LDTS(42) and LDTS(46) using the flexible LDTS(16)
from Example A.1.
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Proposition 4.5. There exists a flexible LDTS(n) for all n = 6,10 (mod 12),
n > 18 except n = 58, 66, 70, 78, 82.

Proof.
(a) n =18 (mod 36). Take a 3-GDD of type 9%, s > 1. Inflate each point
by a factor 2. On each inflated group place a flexible LDTS(18) and on
each inflated block, place the set of transitive triples P.
(b) n = 22,30,34,42,46 (mod 36). Proceed as in (a) starting with a 3-GDD
of type 9%*m!, s > 2 where m € {11,15,17,21,23} and in addition on the
single larger inflated group, place a flexible LDTS(2m).

O
It remains to deal with the nine exceptional values.

Proposition 4.6. There exist flexible LDTS(n) for n € {52, 58, 60, 66, 70, 76,
78, 82, 841,

Proof.

(a) The values n = 52, 70, 82 can be obtained from the construction of
Proposition 4.4 (i) using examples on 18, 24, 28 points respectively given
in the Appendix.

(b) The values n = 60, 66, 78, 84 can be obtained from the construction of
Proposition 4.4 (ii) using examples on 22, 24, 28, 30 points respectively
again given in the Appendix.

(c) For n = 76, take a 3-GDD of type 15° and on each group together with a
further point oo, place the flexible LDTS(16) in Example A.1. Each block
is a Steiner triple.

(d) The value n = 58 is the most difficult. We shall use the same approach
as for the non-flexible case. Define sets N = {o0; :0<j <6}, My =
{1, :0<i<16}, k=0, 1, 2. Take three copies of the flexible LDTS(24)
containing an LDTS(7) as a subsystem, constructed as in Example A .4
on point sets N'U Mgy, N U My, N U M, respectively, in each case with
the LDTS(7) on the set A/. Then take a Latin square L(i, j) of side 17 on
the set {0,1,...,16} and adjoin all Steiner triples {ig, j1, L(7, 7)2}.

O

Collecting together all the results in this section gives the following theorem.

Theorem 4.7. The existence spectrum of flexible LDTS(n)s isn = 0,1 (mod 3),
n#4, 6,10, 12.

APPENDIX. EXAMPLES OF FLEXIBLE LDTSs

The following examples were obtained by computer with the help of the model
builder Mace4 [10] using an algebraic description of a DTS-quasigroup, see [3].
We denote the elements (i,7) € Z,, X Z, as i;. For simplicity, we omit commas
from the triples.

Example A.1. Flexible LDTS(16).

V= (Zg X Z5) U {OO}

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);, with oo as a fixed point.

The starter blocks for 7 are {09 1920}, {00 13 14}, {01 22 04}, {07 0323}, {0223 00},
and for D are <12 00 04>, <04 00 23), <23 00 12>, <12 14 23>, <23 14 04>, <04 14 12>,
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(0001 11), (1101 24), (2401 00), (0p 0024), (2400 14), (13 000p), (1902 01), (01 02 12),
(1502 1p), (1915 12), (121504), (01 15 1p).

Example A.2. Flexible LDTS(18).

V = Zg X ZG'

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

The starter blocks for T are {00 10 20} {01 04 15}, {02 12 22}, {04 ].4 24}, and for
D are <]_3 00 O5>, <05 00 04> <04 00 ].3) <13 23 04>, <04 23 05>7 <05 23 13>, <20 01 21>,
(2107 13), (1301 2¢), (20 1413), (151421), (21 1420), (1902 01), (01 0225), (2502 1),
(1905 25), (2505 01), (01 051p), (0g 03 02), (0203 05), (0503 25), (250301), (01 03 15),
(1203 00), (00 14 12), (1214 01), (01 1422), (22 14 05), (05 14 02), (02 14 0p).

Example A.3. Flexible LDTS(22).

V= Zn X Zg.

The triples are obtained from the following starter blocks under the action of the

mapping i; — (i + 1);.

The starter blocks for T are {0g1o30}, {0951 10,1}, and for D are (4900 1;),
211 0o 6057 (600091), (9100 01), (01 0040), (4081 01), (0181 91), (9181 6), (6081 11),
1, 8, 40).

Example A.4. Flexible LDTS(24) containing an LDTS(7) as a subsystem.

V= ZS X Zg.

This system in fact contains three disjoint LDTS(7)s on point sets {0;, 1;, 2;, 3;, 44, 5;, 6, },
i € {0,1,2}, respectively. The triples are obtained from the following starter
blocks under the action of the mapping 7; — ;4.

The starter blocks for the Steiner triples 77 are {09 1920}, {00 3040}, {00 5060},

and for the unidirectional triples Dy are (3g 19 5¢), (50 1o 4o), (4o 10 60), (60 1o 30)

<30 20 60), <60 20 40>7 <40 20 50), <50 20 30>

The starter blocks for the remaining Steiner triples 73 are {0961 22}, {1011 12},
{1051 52}, {106162}, {203142}, {205132}, {25271}, {305142}, {404142},
{4051 62}, {5062 71}, and for the unidirectional triples Dy are (11 0y 7o), (7o 0o 42),
(4900 11), (11 T2 4a), (4o 72 To), (To T2 11), (31 1o 7o), (7o Lo 32), (32 10.31), (3160 39),
(3260 70), (7060 31), (0130 70), (7030 02), (0230 01), (01 50 02), (0250 7o), (7050 01),
(1120 02), (0229 61), (6120 72), (7220 22), (2220 11), (114022), (2240 72), (724061),
<614002> <0240 > PutT:ﬂU%andD:DluDg.

Example A.5. Flexible LDTS(28).

V= 214 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (1 + 1);.

The starter block for T is {0 1930}, and for D are

(460031), (31009), (90011, (110001), (010040), (4o11,0.), (0411, 1,),
(1111, 99), (99111 31), (31111 40), (2001 100), (100;51), (5101 12,), (12, 0; 30),
(3001 90), (90 01 2).

Example A.6. Flexible LDTS(30).

V= 215 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

The starter blocks for T are {01030}, {0050 100}, {009; 13:}, {015, 10;}, and
for D are
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(006051), (516081), (816000), (096181), (8:6151), (516100), (9020H1),
(5120121), (121 2¢61), (612090), (9050 61), (6150121), (121 50 51), (51 50 90)-

Example A.7. Flexible LDTS(34).

V= 217 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

The starter blocks for T are {0y 1930}, {00409}, {0060 0;}, and for D are
(700061), (610021), (210070), (705121), (215161), (615170), (01961),
(6:90161), (1619 141), (14,951), (519001), (0113051), (5113 14y),
(147 139 161), (167 139 61), (61 130 01).

Example A.8. Flexible LDTS(36).

V= Zlg X Z2.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

The starter blocks for T are {0y 1930}, {0060 120}, {01 61 12,}, and for D are
(15940 161), (16149171), (17149150), (15065 171), (17161 161), (16165 15¢),
(500051), (5100141), (141009 14g), (14000 50), (2081 61), (6181 160), (16987 131),
(131 81 100), (10081 20), (2091 100), (10091 131), (13197 16¢), (16991 61), (6191 2).

Example A.9. Flexible LDTS(40).

V= ZQO X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

The starter blocks for T are {0y 1930}, {00409}, {0080 0:}, and for D are
(0051 91), (915160), (605100), (00141 6¢), (60141971), (91141 00), (13000 151),
(15100 171), (1710013¢), (13031 171), (17:31151), (1513113¢), (107181),
(8 71 181), (181 71 11¢), (11971 41), (41 71 60), (60 71 160), (160 71 141), (141 71 1o).
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PURE LATIN DIRECTED TRIPLE SYSTEMS
ALES DRAPAL, TERRY S. GRIGGS, AND ANDREW R. KOZLIK

ABSTRACT. It is well known that, given a Steiner triple system, a quasigroup can
be formed by defining an operation - by the identities x -z = x and = -y = z where
z is the third point in the block containing the pair {x,y}. The same is true for a
Mendelsohn triple system where the pair (x,y) is considered to be ordered. But it
is not true in general for directed triple systems. However directed triple systems
which form quasigroups under this operation do exist and we call these Latin
directed triple systems. The quasigroups associated with Steiner and Mendelsohn
triple systems satisfy the flexible law = - (y - ) = (2 - y) - = but those associated
with Latin directed triple systems need not. A directed triple system is said to be
pure if when considered as a twofold triple system it contains no repeated blocks.
In a previous paper, [Discrete Mathematics 312 (2012), 597-607], we studied non-
pure Latin directed triple systems. In this paper we turn our attention to pure
non-flexible and pure flexible Latin directed triple systems.

1. INTRODUCTION

In [7], the present authors introduced the concepts of a Latin directed triple system
and a DTS-quasigroup and determined their existence spectrum. The latter, an
algebraic structure, may be obtained from the former, a combinatorial structure, by a
standard procedure explained below. A DTS-quasigroup does not necessarily satisfy
the flexible law, i.e. x- (y-x) = (x-y) -z, and a necessary and sufficient condition for
it to do so was also given in [7]. The existence spectrum of flexible DTS-quasigroups
was determined in [8]. These systems also possess a certain structure in terms of their
topology and this is discussed in [5] and [6]. However in both [7] and [8] the Latin
directed triple systems constructed are not pure, i.e. when considered as a twofold
triple system they contain repeated blocks. Equivalently the DTS-quasigroups are
not anti-commutative, i.e. they do not satisfy -y = y-x = x = y. The construction
of pure Latin directed triple systems is more challenging than for non-pure systems
and the purpose of this paper is to present such constructions both non-flexible and
flexible. We are able to adapt some of the methods used for non-pure systems,
though greater care must be taken. However most of the approach in this paper uses
different techniques. For pure, non-flexible Latin directed triple systems, we are able
to determine the existence spectrum completely. For pure, flexible Latin directed
triple systems we leave six orders unresolved. These seem to be difficult even with
the aid of a computer.

First we recall some definitions. A Steiner triple system of order n, STS(n), is a
pair (V, B) where V is a set of n points and B is a collection of triples of distinct points,
also called blocks, taken from V' such that every pair of distinct points from V' appears
in precisely one block. Such systems exist if and only if n = 1 or 3 (mod 6) [14].
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A Steiner quasigroup or squag or idempotent totally symmetric quasigroup is a pair
(@, ) where @ is a set and - is an operation on @) satisfying the identities

rox=z, y-(r-y =z zy=y-

If (V,B) is an STS(n), then a Steiner quasigroup (@, -) is obtained by letting @ = V'
and defining x - y = z where {x,y,2z} € B. The process is reversible; if @ is a
Steiner quasigroup, then a Steiner triple system is obtained by letting V' = @) and
{z,y,2} € B where -y = z for all z,y € Q, © # y. Thus there is a one-one
correspondence between all Steiner triple systems and all Steiner quasigroups [19,
Theorem V.1.11]. All Steiner quasigroups satisfy the flexible law.

Next consider ordered triples. There are two possibilities. A cyclically ordered
triple, denoted by (z,vy,z), contains the ordered pairs (z,v), (v,2), (z,z) and a
transitively ordered triple, denoted by (z,y, z) contains the ordered pairs (z,v), (v, 2),
(x,2).

A Mendelsohn triple system of order n, MTS(n), is a pair (V, B) where V is a set
of n points and B is a collection of cyclically ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V' appears in precisely one
triple. Such systems exist if and only if n = 0 or 1 (mod 3), n # 6 [18]. Quasigroups
can be obtained from Mendelsohn triple systems by precisely the same procedures as
described above for Steiner triple systems. Note that the law y - (z - y) = x is usually
called semi-symmetric. So the quasigroups are known as idempotent semisymmetric
quasigroups 2, Remark 2.12] or Mendelsohn quasigroups; they satisfy the same prop-
erties as their Steiner counterparts with the exception of commutativity. Similarly
there is a one-one correspondence between Mendelsohn triple systems and Mendel-
sohn quasigroups. Again, all Mendelsohn quasigroups satisfy the flexible law.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set of
n points and B is a collection of transitively ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V' appears in precisely
one triple. Such systems exist if and only if n = 0 or 1 (mod 3) [13]. Given a
DTS(n), an algebraic structure (V,-) can be obtained as above by defining -z =z
and x -y = z for all z,y € V, x # y where z is the third element in the transitive
triple containing the ordered pair (x,y). However the structure obtained need not
necessarily be a quasigroup. If (u,z,y) and (y,v,z) € B then v-x =v-x =y. But
some DTS(n)s do yield quasigroups. Such a DTS(n) will be called a Latin directed
triple system, denoted by LDTS(n), to reflect the fact that in this case the operation
table forms a Latin square. We call the quasigroup so obtained a DTS-quasigroup.

In [7] the following two theorems were proved.

Theorem 1.1. Let D = (V,B) be a DTS(n). Then D is an LDTS(n) if and only if
(x,y,2) € B= (w,y,x) € B for some w € V.

Theorem 1.2. A DTS-quasigroup obtained from an LDTS(n), D = (V,B), satisfies
the flexible law if and only if (x,y,z) € B= (x,z-x,y-x) € B.

Let (V,B) be a pure LDTS(n). Denote by F, the set of all unordered triples
{z,y, 2z}, where (z,y,z) runs through all triples of B. Now consider F' as a set
of faces. Each edge {x,y} is incident to two faces and hence we get a generalized
pseudosurface. By separating pinch points we obtain a set of one or more components
which are an invariant of the LDTS(n) and are very useful in determining whether
two DT'S-quasigroups are isomorphic.
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Consider a transitive triple (21, x, z9) € B. Then, using Theorem 1.1, there exists
k > 3 and points zg, 21, 22, ..., 2k_1 such that

(z1,2,20), (20,2, 21), - - -, (Zk_1, T, 2k—2), (20, %, 2k_1) € B.

If (V,B) is also flexible, using Theorem 1.2,
<Z17 Y, 22>7 <227 Y, Z3>7 R <Zk717 Y, ZO>7 <Z07 Y, Zl> € B

where y = 2921 = 2129 = --+ = Zk_9 - Zp_1 = Zk_1 - 20- LThese 2k transitive triples
define a k-gonal bipyramid; denoted by Oy, i.e. a graph of k + 2 vertices with a cycle
of length k, the points of which can be thought of as situated around the equator of
a sphere, and two middle vertex points which are connected to all points of the cycle
and which can be thought of as situated at the poles of the sphere. Thus we have
the following important result.

Theorem 1.3. A pure flexible LDTS(n) exists if and only if the complete graph K,
can be decomposed into k-gonal bipyramid graphs Oy, k > 3.

Unlike Steiner and Mendelsohn triple systems and their algebraic counterparts,
there is not a one-one correspondence between Latin directed triple systems and
DTS-quasigroups. This is because if the LDTS(n) is not pure, then it will contain a
pair of triples (x,y, z) and (z,y, x). Replacing these with the pair of triples (y, z, z)
and (z, z, y) gives a system which yields the same DTS-quasigroup as the first and yet
the two LDTS(n)s may be non-isomorphic [7, Example 2.4]. However if the LDTS(n)
is pure then this situation does not arise and there is a one-one correspondence
between pure Latin directed triple systems and anti-commutative DT'S-quasigroups.

2. RECURSIVE CONSTRUCTIONS

In this section we present some recursive constructions for pure Latin directed
triple systems. We start with two elementary recursive constructions adapted from
standard design-theoretic techniques and appropriate for our purposes.

Proposition 2.1.

(i) If there exists a pure LDTS(n), then there exists a pure LDTS(3n).
(i) If there exists a pure LDTS(n), then there exists a pure LDTS(3n —2).

Proof.

(i) Take three copies of the LDTS(n) on point sets {0;, 1;, ..., (n — 1);}, where
i € {0, 1, 2} respectively. Then take two disjoint Latin squares L(i,j) and
M((i, j) of order n on the set {0, 1, ..., n— 1} and adjoin all transitive triples
(io, j1, L(i, j)2) and (M(i, )2, j1,i0), 0 <i<n—1,0<j<n—1.

(ii) Take three copies of the LDTS(n) on point sets {oo, 0;, 1;, ..., (n — 2);},
where i € {0, 1, 2} respectively. Then take two disjoint Latin squares L(i, j)
and M (i, j) of order n—1 on the set {0, 1, ..., n—2} and adjoin all transitive
triples (ig, j1, L(4,7)2) and (M (i, )2, j1,70), 0 <i<n—2,0< 5 <n —2.

U

We now present some recursive constructions for pure flexible LDTSs. The follow-
ing is a doubling construction which employs a Hamiltonian decomposition of the
complete graph Ko,.1. In the proof we represent the k-gonal bipyramids Oy by the
notation [N : Ey, Fs, ..., Ey : S] where N and S are the poles and (Ey, Es, ..., E)
is the equator cycle.
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Proposition 2.2. [f there exists a pure LDTS(2n), then there exists a pure
LDTS(4n +1). The LDTS(4n+1) is flexible if and only if the LDTS(2n) is flexible.

Proof. Let D = (V,B) be a pure LDTS(2n) where V- ={1, 2, ..., 2n} and Ky,1 be
the complete graph on the set W, disjoint from V. Take a decomposition of Ko,
into n disjoint Hamiltonian cycles H;, 1 < i < n. For each i, construct a (2n + 1)-
gonal bipyramid [2i — 1 : H; : 2] and let B’ be the set of transitive triples obtained
from these bipyramids. Then D" = (VUW, BUB') is a pure LDTS(4n+1). Since D’
contains D as a subsystem, D' is flexible only if D is flexible. Conversely, whenever
D is flexible, D’ will be flexible as well, because B’ consists of bipyramid components
which satisfy the flexible law. 0

Proposition 2.3. If there exists a pure LDTS(2n), then there exists a pure
LDTS(4n +19). The LDTS(4n + 19) is flexible if and only if the LDTS(2n) is
flexible.

Proof. Let (V,B) be a pure LDTS(2n) where V' = {o01, 009, ..., 009,}. Construct a
set of triples B’ on the point set Zg, 19 UV from the following set of starter blocks
under the action of the mapping ¢ — ¢ + 1 with the elements of V' as fixed points.

{(2,0,6), (6,0,9),(9,0,2),(2,1,9), (9, 1,6), (6,1,2)}U{ (0, 00,,9+7) :r = 1,...,2n}

Then (Zopi19 UV, B U B’) is a pure LDTS(4n + 19). To see that the constructed
system is flexible whenever (V, B) is flexible, it suffices to check that the triples in B’
define a set of bipyramids satisfying the flexible law. O

Proposition 2.4. If there exists a pure LDTS(6n + 1), then there exists a pure
LDTS(12n +22). The LDTS(12n + 22) is flexible if and only if the LDTS(6n + 1)
1s flexible.

Proof. Let (V,B) be a pure LDTS(6n + 1) where V' = {00y, 0oy, ..., 0oe,} and let
W ={i;: i € Zops7, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping i; — (i +1); with the elements
of V' as fixed points.

(09,092, 11), (11,09,29), (22,09,00), (00,32,22), (22,32,11), (11,32,00), (00,30, 1o),
(10, 30,02), (02,30,21), (21,30,01), (01,30,00), (00,31,01), (01,31,21), (21,31,02),
(02,31, 10); (1o,31,00), (01,32,02), (02,32,20), (20,32,01), (01,000,20), (02,000, 01),
<207 000702>7

(09, 00, (3 +7)0), (01, 00, (3+7)1), (02,00, (3+71)2),

(0o, 002n4r, (34 7)1), (01, 002541, (34 7)2), (02, 0020415 (3 4 1)o),

((3 + 7)1, %4n4r, 00), ((3 +1)2, 00u4ntr, 01), ((3+ 7)o, untr, 02),
where r = 1,...,2n. Then (V UW,BUB') is a pure LDTS(12n 4 22). The triples
in B’ define a set of bipyramids satisfying the flexible law. 0

Proposition 2.5. If there exists a pure LDTS(6n + 1), then there exists a pure
LDTS(12n + 28). The LDTS(12n + 28) is flexible if and only if the LDTS(6n + 1)
1s flexible.

Proof. Let (V,B) be a pure LDTS(6n + 1) where V' = {00y, 00y, ..., 0og,} and let
W ={i;: i € Zop+o, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping i; — (i +1); with the elements
of V' as fixed points.
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(11,00,31), (31,00,41), (41,00,42), (42,00,11), (02,32,12), (12,32,30), (30,32,02),
(12,00,40), (40,00,22), (29,00,12), (01,31,42), (42,31,10), (10,31,01), (11,09,45),
<42,02,41>, <41,02,31>, <31,02,11>, <01,40,30>, <00,10,30>, <30,10,11>, <41,40,01>,
<30,22,01>, <01,22,41>, <21,02,40>, <40702710>, <01,OO()710>, <10,OO()742>, <42,OO()701>,

(09, 00, (4 +7)0), (01,00, (4+1)1), (02, 00, (4 +1)2),

(0o, 002041, (4 4 1)1), (01, 002741, (44 7)2), (02, 00241, (4 4 1)),

((4 + 7)1, 4n+r, 00), (44 1)2, 00441, 01), ((4 + 7)o, untr, O2),
where r = 1,...,2n. Then (V UW,BUB') is a pure LDTS(12n + 28). The triples
in B’ define a set of bipyramids satisfying the flexible law. O

Proposition 2.6. If there exists a pure LDTS(6n + 3), then there exists a pure
LDTS(12n +24). The LDTS(12n + 24) is flezible if and only if the LDTS(6n + 3)
1s flexible.

Proof. Let (V,B) be a pure LDTS(6n + 3) where V' = {o0g, 00y, ..., 00gnt2} and let
W ={i;: i € Zops7, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping i; — (i +1); with the elements
of V' as fixed points.

<01700731>; <31700711>7 <21710700>a <00710730>7 <20700722>a <22a00a32>7 <32700701>a
<01502732>7 <32702722>7 <22702720>7 <30712700>7 <00712721>7 <11702731>7 <31702701>a
<11701722>7 <22701)30>7 <307017 11>7 <017000720>7 <2U70007 12>7 <127OOO>01>7 <027001721>7
<217ool730>7 <307ool702>7 <027OO2730>7 <307OO2721>7 <217OO2702>7

<007 OOT+27 (3 + T)0>7 <017 OOT‘-{-Q; (3 + T)1>7 <02) OOT-{-Q; (3 + T)2>7

(0o, 002ntrt2, B +7)1), (01,002 4r42, (3 +7)2), (02, 00204r42, (34 17)0),

((B+7)1,004n4r42,00),  ((B+7)2,004n4r42,01),  ((34 7)o, Cuntrs2,02),

where r = 1,...,2n. Then (VUW,BUB') is a pure LDTS(12n + 24). The triples
in B’ define a set of bipyramids satisfying the flexible law. 0J

The last recursive construction we present can only be used to produce non-flexible

LDTSs.

Proposition 2.7. If there exists a pure LDTS(6n + 3), then there exists a pure
non-flexible LDTS(12n + 18).

Proof. Let (V,B) be a pure LDTS(6n + 3) where V' = {o0g, 001, ..., 00gns2} and let
W ={i;: i € Zayys, j =0,1,2}. Construct a set of triples B’ from the following
set of starter blocks under the action of the mapping i; +— (¢ + 1); with the elements
of V' as fixed points.

<OO27 007 02>7 <007 017 22>7 <227 017 10>7 <117 027 22>7 <217 027 11)7 <227 027 21>7 <127 107 02>7
<207 ]-17 00>7 <017 207 02>7 <027 207 OO2>7 <127 207 01>7 <007 217 20>7 <107 217 00>7 <007 X, 10>7
<017 X0, 11>7 <027 X0, 12>7 <007 1, 12>7 <017 1, 21>7 <227 1, 00>7 <217 2, 01>7

<007OOT+27 (2+7‘)0>, <017OOT+2a (2+T)1>7 <027oo7”+2a (2 +T)2>7

(00, 002n 1712, (2 +7)1), (01, 0021712, (2 +7)2), (02, 0094742, (2 +7)o),

<(2 + T)l, ROdn+r+2, OO>> <(2 + 7“)27 Rdn+r+2, Ol>7 <(2 + T)Oa Rdn+r+2, 02>7

where r = 1,...,2n. Then (V UW,BUB’) is a pure LDTS(12n + 18). The triples
in B’ do not satisfy the flexible law. For example (0p - 2;) - 09 = 20 - 09 = 11, whilst
00'(21’00):00'102000. O
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3. PURE NON-FLEXIBLE LATIN DIRECTED TRIPLE SYSTEMS

In this section we determine the existence spectrum of pure non-flexible LDTS(n).
It was shown in [7] that there is no pure LDTS(n) for 3 < n < 12. Part of the exis-
tence proof in this section uses a standard technique known as Wilson’s fundamental
construction for which we need the concept of a group divisible design (GDD). A
3-GDD of type g" is an ordered triple (V, G, B) where V' is a base set of cardinality
v = gu, G is a partition of V into u subsets of cardinality ¢ called groups and B is a
family of triples called blocks which collectively have the property that every pair of
elements from different groups occur in precisely one block but no pair of elements
from the same group occur at all. We will also need 3-GDDs of type g“m!. These
are defined analogously, with the base set V' being of cardinality v = gu + m and
the partition GG being into u subsets of cardinality g and one subset of cardinality m.
Necessary and sufficient conditions for 3-GDDs of type ¢g* were determined in [12]
and for 3-GDDs of type g“m! in [4]; a convenient reference is [9] where the existence
of all the GDDs that are used can be verified.

We will assume that the reader is familiar with this construction but briefly the
basic idea is as follows. Begin with a 3-GDD of cardinality v = gu or gu + m,
usually called the master GDD. Each point is then assigned a weight, usually the
same weight, say w. In effect, each point is replaced by w points. Each block of
the master GDD is then replaced by a 3-GDD of type w?, called a slave GDD.
We will only need to use the two values w = 2 and w = 3, and instead of slave
GDDs we will use partial Latin directed triple systems. When w = 2 we will employ
the partial LDTS(6), say P, whose blocks are (a,b,c), (a,y,z), (x,b,2), (x,y,c),
(z,y,2), {¢,b,x), {c,y,a), (z,b,a) and the sets {a,x}, {b,y}, {c, z} play the role of
the groups. As a component of an LDTS(n), it satisfies the flexible law. When w = 3
we will use the partial LDTS(9), say Q, whose blocks are (a,p, ), (b,q,v), {(c,r, z),
(a,q,2), (b;r,x), (e, p,y), (a, 1, y), (b, p, 2), (¢, ¢, @), (T, ¢, a), (y,7, D), (2,p,0), (2, 7,a),
(x,p,b), (y,4,0), (Y, p,a), (2,4,b), (x,7r,¢) and {a,b,c}, {p,q,7}, {x,y,z} play the
role of the groups. It does not satisfy the flexible law, e.g. (a-p)-a =x-a = g but
a-(p-a)=a-y=r. Tocomplete the construction we then “fill in” the groups of
the expanded master GDD, sometimes adjoining an extra point, say oo, to all of the
groups. Thus we may need pure non-flexible Latin directed triple systems of orders
gw, mw, gw~+ 1 or mw + 1 as appropriate. For a more elaborate explanation of this
construction see, for example, the proof of Proposition 4.3 in [7].

Type of Orders of Residue classes ~ Missing
master GDD LDTS(n) needed covered modulo 36  values
6°, s5>3 13 1,13, 25 25
925t s >1 19 19
925151, s > 2 19, 31 31 67
92521 s > 2 19, 43 7 79

TABLE 1. Schema for pure non-flexible LDTS(n), n =1 (mod 6).

Schema of the master GDDs and Latin directed triple systems needed to construct
pure non-flexible LDTS(n) for n =1 (mod 6) is given in Table 1. We always weight
with 2 and adjoin an extra point co. Pure non-flexible LDTS(n) for n = 13, 19,
25 and 31 are given as Examples NO.1, NO.3, NO.5 and NO.7 respectively in the
Appendix. The LDTSs of orders n = 43 and 79 can be constructed using part (ii)
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of Proposition 2.1 from the LDTS(15) and LDTS(27) which are given as Exam-
ples NO.2 and NO.6 in the Appendix. This just leaves the value n = 67 which
can be constructed using a master GDD of type 4*6! or 634!, assigning weight 3,
adjoining the point oo and using the pure non-flexible LDTS(13) and LDTS(19).

We can now use these systems to construct pure non-flexible LDTS(n) of order
n =4 (mod 6). By Proposition 2.5 there exists a pure non-flexible LDTS(n) for all
n =4 (mod 12), n > 52. Pure non-flexible systems of orders 16, 28 and 40 are given
as Examples NE.1, NE.5 and NE.9 in the Appendix. By Proposition 2.4 there exists
a pure non-flexible LDTS(n) for all n = 10 (mod 12), n > 46. Pure non-flexible
systems of orders 22 and 34 are given as Examples NE.3 and NE.7 in the Appendix.

These systems may in turn be used to construct pure non-flexible LDTS(n) of order
n =3 (mod 6). By Proposition 2.2 there exists a pure non-flexible LDTS(n) for all
n =9 (mod 12), n > 33. A pure non-flexible LDTS(21) is given as Example NO.4
in the Appendix. By Proposition 2.3 there exists a pure non-flexible LDTS(n) for
all n =3 (mod 12), n > 51. Pure non-flexible systems of orders 15 and 27 are given
as Examples NO.2 and NO.6 in the Appendix and a pure non-flexible LDTS(39) can
be constructed from the LDTS(13) using part (i) of Proposition 2.1.

Finally we construct pure non-flexible LDTS(n) of order n = 0 (mod 6). By
Proposition 2.6 there exists a pure non-flexible LDTS(n) for all n = 0 (mod 12),
n > 48. Pure non-flexible systems of orders 24 and 36 are given as Examples NE.4
and NE.8 in the Appendix. By Proposition 2.7 there exists a pure non-flexible
LDTS(n) for alln =6 (mod 12), n > 42. Pure non-flexible systems of orders 18 and
30 are given as Examples NE.2 and NE.6 in the Appendix.

Collecting all the results together gives the following theorem.

Theorem 3.1. The existence spectrum of pure non-flexible LDTS(n)s isn =0 or 1
(mod 3), n > 13.

4. PURE FLEXIBLE LATIN DIRECTED TRIPLE SYSTEMS

In this section we discuss the existence of pure flexible Latin directed triple systems.
The further requirement of flexibility adds another constraint to the constructions.
We are still able, and indeed do, use Wilson’s fundamental construction but we
cannot use weight w = 3 and the partial Latin directed triple system O because as
shown in the previous section it does not satisfy the flexible law. Another difficulty
is that, as was shown in [7], there is no pure flexible LDTS(n) for 3 < n < 15 or
n = 18. In particular there is no pure flexible LDTS(13) which was very useful in
the non-flexible case. However if the above factors are against us, then we do have
a feature of pure flexible LDTS(n) to help us. This is their geometric structure as
described in Theorem 1.3.

In the case where all the bipyramids have k£ = 3, this is a decomposition of K,
into graphs K5 but missing one edge, so-called (K5 \ e)-designs. The spectrum of n
for which these designs exist has been fully determined [10, 15, 16, 20], see also [3].
Itisn=0or1l (mod9), n>19. When all the bipyramids have k = 4, this is a
decomposition of K, into Pasch configurations. The spectrum of n for which this is
true has also been determined [11, 1]. Tt isn =1 or 9 (mod 24), n > 25.

We first complete the existence spectrum for the residue class n = 1 (mod 6).
Table 2 gives the schema for n = 7 or 13 (mod 18). We use weight w = 2 and
adjoin an extra point. The pure flexible LDTS(n)s of orders n = 1 (mod 18) can
be constructed from (K3 \ e)-designs, this includes, in particular, the LDTS(19)
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Type of Orders of Residue classes ~ Missing
master GDD LDTS(n) needed covered modulo 36  values

9% 15, 5 > 2 19, 31 31 67
925211, 5 > 2 19, 43 7 79
18512, s >3 25, 37 25 61, 97
185241, s > 3 37, 49 13 85, 121

TABLE 2. Schema for pure flexible LDTS(n), n =7 or 13 (mod 18).

and LDTS(37). Pure flexible LDTS(n)s for n = 31, 43 and 67 are given as Exam-
ples FO.2, FO.4 and FO.5 respectively in the Appendix. For n = 25, 49, 97 and 121
we can use the decompositions of K, into Pasch configurations. The remaining miss-
ing systems can be obtained using 3-GDD constructions. For n = 61 use type 103,
for n = 79 use type 132 and for n = 85 use type 10% 12!, To do this we need systems
of orders 21, 25 and 27. A pure flexible LDTS(21) is given as Example FO.1 and the
pure flexible LDTS(27) can be constructed from a (K5 \ e)-design.

We next consider the residue class n = 4 (mod 6). By Proposition 2.4 there ex-
ists a pure flexible LDTS(n) for n = 22 and for all n = 10 (mod 12), n > 58.
An LDTS(34) is given as Example FE.1 in the Appendix and an LDTS(46) can be
constructed from a (Kj \ e)-design. By Proposition 2.5 there exists a pure flexible
LDTS(n) for n = 28 and for all n =4 (mod 12), n > 64. A pure flexible LDTS(16)
is given in [7, Example 3.9]. Systems of orders n = 40 and 52 are given as Exam-
ples FE.2 and FE.3 respectively in the Appendix.

The results for n =4 (mod 6) now enable us to deal with the residue class n = 3
(mod 6). By Proposition 2.2 there exists a pure flexible LDTS(n) for all n = 9
(mod 12), n > 33. A pure flexible LDTS(21) is given as Example FO.1 in the
Appendix. By Proposition 2.3 there exists a pure flexible LDTS(n) for all n = 3
(mod 12), n > 51. A pure flexible LDTS(27) can be constructed from a (K \ e)-
design and a pure flexible LDTS(39) is given as Example FO.3 in the Appendix.

This just leaves the residue class n = 0 (mod 6) to consider. By Proposition 2.6
there exists a pure flexible LDTS(n) for all n =0 (mod 12), n > 60. A pure flexible
LDTS(36) can be constructed from a (K3 \e)-design and a pure flexible LDTS(48) can
be obtained using a 3-GDD of type 83. This leaves n = 24 unresolved. Table 3 gives

Type of Orders of Residue classes Missing

master GDD  LDTS(n) needed covered modulo 108 values
2775331, s> 2 54, 66 66 174
27% 511, 5> 2 54, 102 102 210
27269, s> 2 54, 138 30 30, 246
27293, s> 3 54, 186 78 78, 294, 402
27251111, 5 > 3 54, 222 6 114, 330, 438
2725129 s > 3 54, 258 42 42, 150, 366, 474

TABLE 3. Schema for pure flexible LDTS(n), n = 6 or 30 (mod 36).

the schema for n = 6 or 30 (mod 36). Again we use weight w = 2. The pure flexible
LDTS(n)s of orders n = 18 (mod 36) can be constructed from (K \ e)-designs, this
includes, in particular, the LDTS(54). Pure flexible LDTSs of the following orders
can be constructed using 3-GDDs: 66 (use 11%), 102 (use 17%), 138 (use 23%), 174
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(use 293), 186 (use 115271), 210 (use 118171), 222 (use 11545'), 246 (use 413), 258
(use 176271), 294 (use 17545'), 330 (use 11'9), 366 (use 23°45'), 402 (use 23°631),
438 (use 23°81') and 474 (use 17'233'). This leaves n = 30, 42, 78, 114 and 150
unresolved.

Collecting all the results together gives the following theorem.

Theorem 4.1. A pure flexible LDTS(n) exists for alln =0 or 1 (mod 3), n > 16
and n # 18, possibly except n = 24, 30, 42, 78, 114 and 150.

APPENDIX. EXAMPLES OF PURE LDTSs

The following examples were obtained by computer with the help of the model
builder Mace4 [17] using an algebraic description of a DTS-quasigroup, see [5]. We
denote the elements (i, j) € Z,, X Z,, as i;. For simplicity, we omit commas from the
triples.

Example NO.1. Pure non-flexible LDTS(13).

V - Zl3.

The triples are obtained from the following starter blocks under the action of the
mapping ¢ — 7 + 1.

(105), (507), (703), (301).

The system is non-flexible, for example (0-2)-0 = 8-0 = 9, whilst 0-(2-0) = 0-12 = 4.

Example NO.2. Pure non-flexible LDTS(15).

V = (Z7 X Zs) U {o0}.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(200021), (210011), (110051), (510031), (310041), (410061), (610060), (6000 20),
<00 (0. ¢] 40>, <01 o0 31>

The system is non-flexible, for example (0g-1¢) -0y = 390y = 00, whilst 0 (1-0p) =
Og - 01 = 5p.

Example NO.3. Pure non-flexible LDTS(19).

V - Zlg.

The triples are obtained from the following starter blocks under the action of the
mapping ¢ — ¢ + 1.

(1,0,5), (5,0,11), (11,0,7), (7,0,9), (9,0, 3), (3,0,1).

The system is non-flexible, for example (0-6) -0 = 14 -0 = 15, whilst 0- (6 - 0) =
0-16 = 17.

Example NO.4. Pure non-flexible LDTS(21).

V= Z7 X Zg.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(200021), (210061), (610060), (600020), (200160), (690162), (620151), (5101 20),
(200251), (510241), (410201), (010230), (300262), (620260), (600252), (5202 2),
<60 12 31>, <31 ].2 41>, <41 12 52>, <52 ].2 60>

The system is non-flexible, for example (65-6¢)-62 = 0z 62 = 3, whilst 65 (6¢-62) =
62 - 01 = 5.

Example NO.5. Pure non-flexible LDTS(25).
V - Z25.
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The triples are obtained from the following starter blocks under the action of the
mapping ¢ — ¢ + 1.
(1,0,5), (5,0,16), (16,0,12), (12,0, 19), (19,0,8), (8,0, 10), (10,0, 3),

(3,
The system is non-flexible, for example (0-2)-0 = 17-0 = 11, whilst 0-(2-0)

1)
=024 =4.
Example NO.6. Pure non-flexible LDTS(27).

V= (Zl?) X Zg) U {OO}

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(1000 50), (500001), (0100121), (1210031), (310011y), (1170011), (110071),
<71 00 91>, <91 00 61>, <61 00 21>, <21 00 70), <70 00 30>7 <30 00 10>, <51 10 61>, <61 10 111>,
<]_11 10 51>, <00 0,9) 20>7 <01 ©. 9] 1]_1>

The system is non-flexible, for example (0y-2¢)-0y = 00-0y = 11g, whilst 0y (20-0p) =
0p - 129 = 4.

Example NO.7. Pure non-flexible LDTS(31).

V = Z31-

The triples are obtained from the following starter blocks under the action of the
mapping ¢ — ¢ + 1.

(1,0,5), (5,0,19), (19,0,10), (10,0,18), (18,0,20), (20,0,6), (6,0,15), (15,0,7),
(7,0,3), (3,0, 1).

The system is non-flexible, for example (0-2)-0 = 13-0 = 23, whilst 0-(2:0) = 0-30 = 4.

Example NE.1. Pure non-flexible LDTS(16).

V= Zg X ZQ.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i + 1); and i; — ij41.

<20, 0o, 61>, <61, 0o, 31> <31, 0o, 71) <71, 0o, 70>, <70, Og, 20>

The system is non-flexible, for example (7;-7¢)-7; = 0g-71 = 31, whilst 7, - (7-71) =
71 . 01 = 21.

Example NE.2. Pure non-flexible LDTS(18).

V = Zg X ZG-

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(1600 02), (020001}, (0100 10), (1921 01), (0121 05), (0521 1), (152, 05), ( )
(01 0325), (250305), (050301), (010402), (020425), (250401), (020523), (230522),
(2505 05), (1500 15), (150004}, (040005, (05 0024), (240023), (25000s), { )
(042015), (152005), (0520 04), (130124), (2401 14), (1401 23), (2350, 13), ( )
(140224), (2402 13).

The system is non-flexible, for example (25-01)-25 = 0425 = 0, whilst 25-(01-25) =
25 . 03 - 05.

Example NE.3. Pure non-flexible LDTS(22).

V= ZH X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(10,00, 50), (50, 00,101), (101, 00,61), (61,00, 71), (71,00,01), (01, 00,30), (30,00, o),
(20,01,9), (90,01, 61), (61,01,20), (80,01, 100), (100,01, 31), (31,01,21), (21,01, 8).
The system is non-flexible, for example (0y-20)-09 = 3109 = 51, whilst 0g-(29-0p) =
Og - 10g = 4.
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Example NE.4. Pure non-flexible LDTS(24).

V= Z4 X Zﬁ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);

J:
(02 0022), (220023), (230033), (330004), (040034), (340005), (050035), (350015),
(150025), (250014), (140024), (240013), (130003), (0300 12), (150002), (3107 14),
(1401 34), (3401 33), (33013s5), (3501 23), (2501 03), (030131), (0o 1130), (301110),
(1011 20), (2011 13), (1211 14), (141129), (221132), (321100), (130214), (140215),
(1509 13), (321335), (351334), (341332), (321423), <23 1435), (3514 32), (31052),
(2205 14), (140531), (1115 23), (231522), (22 1531), (3115 14).

The system is non-flexible, for example (35-14)-35 = 32 35 = 13, whilst 35-(14-35) =
35 - 23 = 05.

Example NE.5. Pure non-flexible LDTS(28).

V= Zl4 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i + 1); and i; — ij41.

(10,00, 50), (50, 00,121}, (121, 00,41), (41,00, 61), (61,00, 131), (131,00, 91), (91, 00, 31),
(31,00, 30), (30,00, 10).

The system is non-flexible, for example (3;-3¢)-3; = 0g-31 = 91, whilst 3;-(3¢-31) =
31-0; =1;.

Example NE.6. Pure non-flexible LDTS(30).

V= Z5 X ZG-

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);

J:
<O50035>, <350045>, <4500 15>7 <15 0005>, <0001 10>, <1001 40), <4001 30>, <3001 00>,
<31 0042>, <4200 12), <120002>, <02 0032>, <320031>, <31 0432), <320442>, <42 0431>,
(220033), (330043), (430044), (44001s), (140004), (040034), (340025), (250024),
(240013), (130003), (030023), (230022), (3101 14), (14012), (220125), (2501 31),
(410135), (3501 04), (05401 03), (030142), (420143), (430123), (2350141), (210225),
(250234), (3409 15), (150204), (040221), (41 0334), (340344), (440305), (0505 15),
<120345>, <450341>, <2203 15>, <15 0332>, <3203 24>, <240325>, <250322>, <41 0523>,

(2505 34), (340541).
The system is non-flexible, for example (25-34)-25 = 0925 = 2y, whilst 25-(34-25) =
% - 0p = 2.

Example NE.7. Pure non-flexible LDTS(34).

V= Z17 X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(10,00, 50), (50,00, 70), (70,00,30), (30,00,10), (60,00,11), (11,00,80), (80,00,21),
(21,00, 71), {T1,00,51), (51,00,01), (01,00,60), (30,11, 71)s (71, 11,40), (do, 11, 141,
(141,1,,100), (100, 15,9),  (90,11,30), (5o, 11,810, (81,11,90), (99,11, 15,),
(151,14, 01), (01, 11, 59).

The system is non-flexible, for example (0y-2¢)-0g = 120-0y = 130, whilst 0y-(2¢-09) =
00 . 160 - 40.

Example NE.8. Pure non-flexible LDTS(36).

V= (Z7 X Z5) U {OO}

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.
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(200021), (210061), (610060), (600020), (2001 60), (6001 12), (1507 52), (5201 51),
<51 01 20>, <30 03 44), <44 03 52>, <52 03 30>, <02 04 13>, <13 04 42), <42 04 02>, <41 00 42>,
(450003), (030054), (540024), (240002), (020041), (231134), (3411 1y), (14114y),
<44 11 54>, <54 ]_1 04>, <04 11 64), <64 ]_1 OO>7 <OO 11 24>, <24 ]_1 23>7 <20 02 51), <51 02 11>,
(11 02 03>, <03 02 12>, <12 02 54), <54 02 40>, <4() 02 OO), <OO 02 20>, <42 22 34), <34 22 03>,
<03 22 42>, <03 0 13), <12 00 34>, <34 0() 62), <62 00 33>, <33 OQ 53>, <53 Oo 04), <O4 00 63>,
(630064), (640013), (130044), (440023), (230012), (110142), (4201 33), (3301 03),

(0301 11), (2301 53), (5301 43), (4301 23).
The system is non-flexible, for example (03-45)-03 = 25-03 = 34, whilst 03-(43-03) =
03 - 0p = 54.

Example NE.9. Pure non-flexible LDTS(40).

V= ZQO X ZQ.

The triples are obtained from the following starter blocks under the action of the
mappings i; — (i + 1); and 7 — i;41.

(10,00,50), (50,00,11), (11,00,11p), (11p,00,18;1), (181,00,81), (81,00,120),
<120700731>7 <31700751>7 <517007140>a <140700a141>7 <141700770>7 <70>00730>7
(30, 00, 1o)-

The system is non-flexible, for example (14; - 14¢) - 141 = 0y - 14; = 5¢, whilst
147 - (140 - 141) = 141 - 09 = 7p.

Example FO.1. Pure flexible LDTS(21).

V= (Z5 X Z4) U {OO}

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);, with oo as a fixed point.

(100021), (210001), (010010), {103201), (013221), (213210), (200003), (0300 00),
(00 0031), (310002), (020020), (203202), (023231), (313200), (00 3203), (03322),
<11 33 01>, <01 33 42), <42 33 02>, <02 33 10>

Example FO.2. Pure flexible LDTS(31).

V — Zgl.

The triples are obtained from the following starter blocks under the action of the
mapping i — 7 + 1.

(8,7,13), (13,7,30), (30,7,19), (19,7,10), (10,7,8), (8,23,10), (10,23,19),
(19, 23,30), (30,23,13), (13,23,8).

Example FO.3. Pure flexible LDTS(39).

V= Zlg X Zg.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

<10() 40 42), <42 40 51>, <51 40 100), <100 31 51), <51 31 42>, <42 31 ]_00>, <21 80 11 >,
(11180 52), (528021), (218152), (5281 111), (111812;5), (00109 11g), (11¢10920),
(20100 121), (127109 00), (09 11712y), (1271112¢), (2011511p), (119114 0p),
(31119125), (12511065), (6211032), (3211931), (318132), (3281 62), (628, 125),
(12281 31), (309271), (719202), (0292100), (1009212), (129230), (30122 15)
(13125 100), (109 125 02), (05125 71), (71 122 30).

Example FO.4. Pure flexible LDTS(43).

V — Z43.

The triples are obtained from the following starter blocks under the action of the
mapping ¢ — 7 + 1.

Y
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(6,26,37), (37,26,12), (12,26,6), (6,28,12), (12,28,37), (37,28,6), (4,3,8),
(8,3,16), (16,3,6), (6,3,4), (4,23,6), (6,23,16), (16,23,8), (8,23,4).

Example FO.5. Pure flexible LDTS(67).

V= ZG?-

The triples are obtained from the following starter blocks under the action of the
mapping ¢ — ¢ + 1.

(16,0,25), (25,0,18), (18,0,26), (26,0,30), (30,0,32), (32,0,33), (33,0,22),
(22,0,28), (28,0,31), (31,0,21), (21,0,16), (16,45,21), (21,45,31), (31,45,28),
(28,45,22), (22,45,33), (33,45,32), (32,45, 30), (30,45, 26), (26,45, 18), (18,45, 25),
(25,45, 16).

Example FE.1. Pure flexible LDTS(34).

V= Z17 X Zg.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(5081 120), (1281 161), (16181 50), (5o107161), (161101 120), (124104 59),
(12921 144), (14121 11), (1121120), (12044 11), (1144 144), (14144 12¢), (098 11p),
(11980 90), (9080130), (1308081), (818000), (001018;), (81101 13¢), (1371071 9),
(90 101 11¢), (110 104 Op).

Example FE.2. Pure flexible LDTS(40).

V= Zgo X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(6091 16¢), (16091 71), (7191 171), (17191 60), (20 11031), (3111 14g), (149114 12p),
(129119 160), (1691192¢), (20121 160), (169121 12¢), (129121 140), (14¢12;3y),
(31121 20), (14920191), (19120 150), (15020 171), (17120 11), (112081), (8120 14y),
(14921 81), (8121 11), (1121 171), (17121 150), (15021 191), (191 21 14y).

Example FE.3. Pure flexible LDTS(52).
V= ZZG X ZQ.

The triples are obtained from the following starter blocks under the action of the
mapping i; — (i + 1);.

(15980 121), (121 8¢250), (25080 150), (15918125¢), (250181 121), (1218, 15¢),
(50200 230), (23020021p), (219200250), (25020050), (50211 250), (25¢21;210),
(219211 230), (2302115¢), (4012131), (3112118q), (18,12191), (9112;23y),
(230121 110y, (119129 24¢), (240121 100), (109121221), (221121 5q), (5o 12;164),
(169121 170), (179121 01), (01121200), (20912141), (4112;231), (23;12;10;)
(109 129 174), (171121 7o), (70 121 131), (131 121 4p).

Y
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ANTIFLEXIBLE LATIN DIRECTED TRIPLE SYSTEMS

ANDREW R. KOZLIK

ABSTRACT. It is well known that given a Steiner triple system one can define
a quasigroup operation - upon its base set by assigning x - x = x for all x
and z -y = z, where z is the third point in the block containing the pair
{z,y}. The same can be done for Mendelsohn triple systems, where (z,y) is
considered to be ordered. But this is not necessarily the case for directed triple
systems. However there do exist directed triple systems, which induce a quasi-
group under this operation and these are called Latin directed triple systems.
The quasigroups associated with Steiner and Mendelsohn triple systems satisfy
the flexible law y - (z - y) = (y - z) - y but those associated with Latin directed
triple systems need not. In this paper we study the Latin directed triple sys-
tems where the flexible identity holds for the least possible number of ordered
pairs (z,y). We describe their geometry, present a surprisingly simple cyclic
construction and prove that they exist if and only if the order n isn =0 or 1
(mod 3) and n > 13.

1. INTRODUCTION

A Steiner triple system of order n, STS(n), is a pair (V, B) where V is a set of
n points and B is a collection of triples of distinct points taken from V' such that
every pair of distinct points from V' appears in precisely one triple. Given an STS
(V,B) one can define a binary operation - on the set V' by assigning z - x = z for
all x € V and x -y = z whenever {x,y, 2z} € B. The induced operation satisfies
the identities

vorx=wx, y-(r-y =z z-y=y-

for all x and y in V. Any binary operation satisfying these three identities is
called an idempotent totally symmetric quasigroup. The process described above
is reversible. Given an idempotent totally symmetric quasigroup one can obtain
an STS by assigning {z,y,z -y} € B for all z, y € V, © # y. Thus there is a
one-to-one correspondence between Steiner triple systems and idempotent totally
symmetric quasigroups or Steiner quasigroups, as they are commonly known. All
Steiner quasigroups satisfy the flexible law y - (x-y) = (y - x) - y.

If we consider oriented triples then there are two possibilities. A cyclic triple
(x,y,z) contains the ordered pair (x,y), (y,z) and (z,x). A transitive triple
(x,y, z) contains the ordered pair (z,y), (y,2) and (z, 2).

A Mendelsohn triple system of order n, MTS(n), is a pair (V, B) where V is a
set of n points and B is a collection of cyclic triples of distinct points taken from
V' such that every ordered pair of distinct points from V' appears in precisely
one triple. Quasigroups can be obtained from Mendelsohn triple systems by
defining x - x = x and x -y = z for all x,y € V, x # y, where z is the third
element in the transitive triple containing the ordered pair (z,y). These so called
Mendelsohn quasigroups satisfy the same algebraic properties as their Steiner
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counterparts with the exception of commutativity. Similarly there is a one-to-one
correspondence between Mendelsohn triple systems and Mendelsohn quasigroups.
Again, all Mendelsohn quasigroups satisfy the flexible law.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set
of n points and B is a collection of transitive triples of distinct points taken from
V' such that every ordered pair of distinct points from V' appears in precisely one
triple. Given a DTS(n), an algebraic structure (V,-) can be obtained as above
by defining x - o =z and x -y = z for all z,y € V, x # y, where z is the third
element in the transitive triple containing the ordered pair (z,y). However the
structure obtained need not necessarily be a quasigroup. If for example (u, z, y)
and (y,v,z) € B, then u-x = v-x =y, but u # v. There do however exist DTSs
that yield quasigroups. Such a DTS(n) is called a Latin directed triple system,
denoted by LDTS(n), to reflect the fact that in this case the operation table
forms a Latin square. We call the quasigroup so obtained a DT'S-quasigroup.
The binary operation will sometimes be replaced with juxtaposition, for example
x - yz meaning x - (y - z).

Latin directed triple systems were introduced in [3], where it was shown that
an LDTS(n) exists if and only if n = 0 or 1 (mod 3) and n # 4, 6 or 10. The
algebraic and geometrical aspects of LDTSs were studied in [4]. Together these
two papers also give enumeration results for all orders less than or equal to 13.

The following theorem was proved in [4].

Theorem 1.1. Let (V,B) be a directed triple system. Define a binary operation
- on'V in such a way that x-y =z, y-z = x and x - z = y whenever (x,y,z) € B,
and that - x = x for allx € V.. Then V(-) is a quasigroup if and only if for all
(x,y,2) € B there exist x',y', 2 € V' such that

(7 y.x), (z,v,x), (z,y,2") € B.

In such a case 2/ =y-x,y =z-x and 2’ = z - y.
It is now easy to see that in an LDTS, (V| B),

(ryz-yyeB = y-(z-y) =2y (1)
since if (x,y,z) € B then (Z/,y,x) € B for some z’ and the ordered pair (z,y)
satisfies the flexible identity y - (z-y) =y-z2=2x =2y = (y-z) - y. However,
the flexible identity need not be satisfied for all ordered pairs of points from V.

The following theorem proved in [3] gives the necessary and sufficient condition
for an LDTS to be flexible.

Theorem 1.2. A DTS-quasigroup obtained from an LDTS(n), (V,B), satisfies
the flexible law if and only if (x,y,z) € B= (x,z-x,y-x) € B.

In [5] it was shown that a flexible LDTS(n) exists for all n = 0 or 1 (mod 3),
n # 4,6,10,12.

In this paper we study the LDTSs whose binary operation satisfies the reverse
of (1), ie. forall x,y € V, z # vy,

y(z-y)=W-2)y = (xyzyecb
An LDTS satisfying this condition is called antiflexible. In other words an anti-
flexible DTS-quasigroup is one where the flexible identity (y-z) -y =y - (z - y)
holds for the least possible number of ordered pairs (z,y) € V x V. Thus, in
a sense, antiflexible LDTSs are the LDTSs which are as distant from STSs as
possible.
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At first glance antiflexible LDT'Ss may appear to be a very artificial construct.
However, there exists a surprisingly simple cyclic construction of LDTSs which
naturally produces antiflexible LDTSs, see Theorem 3.1.

2. PROPERTIES

Let (V, B) be a DTS and denote by F the set of all {z,y, 2z} such that (z,y, 2) €
B. This set is known as the underlying twofold triple system of (V,B). Consider
now F as a set of faces. Each edge {a, b} is incident to two faces, hence the faces
can be sewn together along common edges to form a pseudosurface. Note that
we can orient a face {z,y,z} € F as a cycle (z,y, z) whenever (x,y,2) € B. It
follows from Theorem 1.1 that this defines a coherent orientation. Hence F is an
orientable pseudosurface.

A DTS is said to be pure if its underlying twofold triple system contains no
repeated blocks. It is easy to see that every antiflexible LDTS is pure. If for
some antiflexible LDTS, (V, B), the triples (z,y, z) and (z,y,z) both belonged
toB,thenz-(y-z) =x-2=y =2 -2 = (x-y) -2, which would imply that
(y,z,y - x) € B. But this is a contradiction since (z,y,z) and (y,z,y - x) cannot
both belong to B.

With each point © € V' we can associate a partition of V'\ {z} into a set of
cycles (Y11, -y g ) (Y215 - Y2k) = (Umits - - o Yok, )» SUCh that (2,95, vi41)
and (2, Y, ¥i1) are oriented faces of F forall 1 < j <k, —1land 1 <i <m.
If m > 1 then z is said to be a pinch point. A pseudosurface can be turned
into a surface by separating each pinch point into several new points, called
vertices, such that every vertex is associated with a single cycle. The length of the
associated cycle is called the degree of the vertex. Thus we obtain an orientable
surface. It follows from Theorem 1.1 that there are two types of vertices in this
surface. A vertex may be associated with a point z and a cycle (yi, ..., yx) such
that

(Y2, x,91), (Y3, @, 92), -, (Y1, 2, yk) € B.
This type of vertex is called a middle vertex to reflect the fact that x appears
in the middle position of each of the k transitive triples. Alternatively, a vertex
may be associated with a point x and a cycle (y1, 21, Y2, 22, - - - , Yk, 2) such that

<xay1a Zl>7 <21,y2717>7 <I7927 z2>7 <Z2a937$>7 RS <Iaykaz/€>7 <Zkay17x> € B.

This type of vertex is called a residual verter in accordance with [4]. The degree
of a residual vertex is always even.

Example 2.1. Let V = Z;3 and define the set of starter triples S = {(1,4,0),
(0,6,1), (2,6,0), (0,5,2)}. Let B={(x+i,y+i,z+1i):{(x,y,2) €S, i € Zy,}.
Then (V, B) is an antiflexible LDTS(13). As one can see from the triples listed be-
low, the set of cycles associated with the point 01is (7,9, 10,8)(5,2,6, 1,4, 11, 3, 12).
Thus the point 0 separates into two vertices. The vertex associated with the cycle
(7,9,10,8) is a middle vertex and it is formed by the triples (9,0, 7), (10,0, 9),
(8,0,10), (7,0,8) in B. The vertex associated with the cycle (5,2,6,1,4,11,3,12)
is a residual vertex and it is formed by the triples (0,5,2), (2,6,0), (0,6,1),
(1,4,0), (0,4,11), (11,3,0), (0,3,12), (12,5,0) in B.

Theorem 2.2. Let (V,B) be an LDTS. Then the following conditions are equiv-
alent:

(i) (V,B) is antiflexible;
(i) (z,y,2) € B= (x, 2z, yx) ¢ B;
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(ili) every residual vertex has degree at least 6.

Proof. First assume that (V, B) is antiflexible and let (z,y,2) € B. Then using
Theorem 1.1 the triple (yx,y,z) belongs to B as well. If it were the case that
(x,zz,yx) € B, then we would have z - yr = zx = xy - x. Then by assumption
(y,x,yz) € B. But this is a contradiction since (y,x,yz) and (yx,y,x) cannot
both belong to B. Thus (z, zz,yz) ¢ B. We see that (i) implies (ii).

Assume that condition (ii) holds. If the cycle about a residual vertex corre-
sponding to a point x were of length 2, say (y1, 1), then we would have (z,y1, 1),
(21,11, %) € B. But then B would contain (x, z; - z,y; - ), since this is the triple
(x,y1,21). Similarly if the cycle were of length 4, say (y1, 21, y2, 22), then we would
have (x,y1, z1), (21, Y2, T), (T, Y2, 22), (22,y1, ) € B. But then B would again con-
tain (z, 21 - x,y; - x), since this is the triple (z,ys, z0). Thus (ii) implies (iii).

Finally assume that condition (iii) holds. Let z,y € V such that x # y and
y-xy = yx -y. Now either (zy,x,y), (x,zy,y) or (z,y,zy) lies in B. However,
the first two of these possibilities violate the assumption. If (zy, z,y) € B, then
(y, x,yz), (yx,yx - y,y), (y,y - xy,zry) € B, i.e. there exists a residual vertex
associated with the point y and the cycle (x,yz,y - xy,zy). If (x,zy,y) € B,
then (y,yx, x), (y,zy,y - xy), (yx-y,yx,y) € B, i.e. there exists a residual vertex
associated with the point y and the cycle (yz, x, 2y, y - xy). Thus (iii) implies (i).

0]

3. EXISTENCE

In this section we investigate the existence spectrum of antiflexible LDTS(n).
It was shown in [3] that there is no pure LDTS(n) for 3 < n < 12. We start with a
cyclic construction. An LDTS(n) is said to be cyclic if it admits an automorphism
which permutes its points in a single cycle of length n. In [11] it was shown that
a pure cyclic LDTS(n) exists if and only if n = 1 (mod 6) and n > 13. The
following theorem shows that the construction used in [11] can always be used to
produce antiflexible LDTSs. It is interesting to note, however, that for certain
orders the construction can also be used to produce flexible LDT'Ss.

Theorem 3.1. A cyclic antifiexible LDTS(n) ezists if and only if n =1 (mod 6)
and n > 13.

Proof. Let n =6k +1 and k > 2. Set V = Z,, and define the set of starter triples
S={(rk+2r0), 0,3k —r+1,r):r=1,2,...k}.
If k=1 (mod 3), then replace the starter triples
(B b+ 285,00, (0, 3k — 255 + 1, 255 (K, 3k, 0)
in & with the starter triples
By = (4k+1, 0, 5(5k+1)), By = (3(5k+1), 0, 5(2k+1)), By = (3(2k+1), 0, 3k+1).

Let B={{(x+i,y+i,z+1i):(x,y,2) €S, i € Z, }. Then (V,B) is an LDTS(n).

We check that condition (ii) of Theorem 2.2 is satisfied for each starter triple.
To begin with let us assume that k£ Z 1 (mod 3). Let 1 < s < k and consider the
starter triple (x,y,z) = (s,k + 25,0). We have zx =0-s =3k —s+ 1. If sis
even, then (%s, k+2s,s) € B (user = %3 and i = s) i.e. yr = %s, and if s is odd,
then (1(3s—2k—1),k+2s,s) € B (user = 1(2k+1—5) and i = $(3s— 2k — 1)),
ie.yr =3(3s—2k—1). If s < 3k then (s,3k — s+ 1,3s) € B (use r = 2s and

i=s),and if s > Tk then (s,3k — s +1,3s — 2k — 1) € B (use r = 2k + 1 — 2s
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and ¢ = 3s — 2k — 1). The first two points in these two triples are = and zz
respectively, but one can check that the third point is not equal to yx for any s.
Thus (z, zx,yz) & B.

Now consider the starter triple (x,y, z) = (0,3k—s+1, s). We have zz = 5-0 =
k+2s. If sis odd, then (k — (s —1),3k — s+ 1,0) € B (use r = k — (s — 1)
and i = 0), i.e. yr = k — 3(s — 1), and if s is even, then (—1s,3k —s+1,0) € B
(use r = 3s and i = —1is), ie. yo = —1s. If s < £k, then (0,k + 25, —2s) € B
(use r = 2s and ¢ = —2s), and if s > 1k, then (0,k + 25,2k — 25+ 1) € B (use
r=2k—2s+1and i =0). We come to the same conclusion as above.

When £ =1 (mod 3) the statements above remain valid for all starter triples
except for those that took part in the replacement, the case s = %(k‘—l— 1) discussed
in the second paragraph and the cases s € {1, %k, k} discussed in the third
paragraph. We prove that condition (ii) of Theorem 2.2 is satisfied for these
triples as well:

For (x,y, z) = (4k+1,0, 5(5k+1)) we have (3 (5k+1), k,4k+1) € B (use B3 and
i=k),ie zz ="k Ifkis odd then (3(3k+1),0,4k+1) € B (use r = 5(7Tk+1)
and i = 4k + 1), if k is even, then (3k,0,4k + 1) € B (use r = 3(7k + 2) and
i = 1k). Thus yz € {3(3k +1),1k} but (4k + 1,k, 4k +2) € B (use r = 1 and
i=4k+1).

For (z,y,z) = (5(5k+1),0, 5(2k+1)) we have (3(2k+1), 5(2k+1), 5(5k+1)) €
B (use r = k and i = $(2k + 1)), ie. 2z = ‘—‘(2]{ + 1), and from B; we have
yr = 4k+1. But (3(5k+1), 5(2k+1), 5(5k—2)) € B (use r = 1 and i = £(5k—2)).

For (z,y,z) = (3(2k 4+ 1),0, 3k + > we have (3k +1,—k, 5(2k + 1)) € B (use

By and i = —Fk), ie. zx = —k, and from B, we have yz = (5k + 1). But
(3(2k +1), =k, 5(1 — k)) € B (use By and i = —k).

If k is odd, then for (z,y, 2) = (3(k+1),2k+1,0) we have (0,3 (5k+1), 3(k+
1)) € B (user =3(k+1)and i =0), i.e. zz = 3(5k+1). If k =1 (mod 4), then
(3(1 — k), 2k + 1,%(1{:—# 1)) € B(user =31Bk+1)andi=1(1—k)),if k=3
(mod 4), then (3(k+1),2k+1,2(k+1)) € B (user =1(k+1) andi=1(k+1)).
Thus yz € {3(1 —k),2(k+1)} but (3(k+1),5(5k + 1), 2(5k + 1)) € B (use By
and i = (5k +1)).

For <a:, y,z) = (0,3k, 1) we have zz = k+2 as before and (%(11]{—1—1), 3k,0) € B
(use Bs and i = 3k), i.e. yz = $(11k +1). But (0,k 42,6k — 1) € B (use r = 2
and ¢ = —2).

For (x y,z) = (0,2k + 1, 3k) we have zz = 2k as before. If k& = 0 (mod 4),
then (—31k, (5k+2) 0) € B (use r = 3k and i = —1k), and if k£ = 2 (mod 4),
then (1 (3k + 2), 3(5k + 2), > € B (use r = 1(3k+2) and ¢ = 0). Thus yz €
{—1k, 1(3k +2)} but (0,2k,3(11k 4+ 1)) € B (use By and i = 2k).

For (x y,z) = (0,2k + 1 k:> we have (k, —5(2k 4+ 1),0) € B (use By and i =
—%(21{:+ 1)), ie zax = —%(2k+ 1). If k is odd, then (3(k+1),2k+1,0) € B (use

$(k+1) and i = 0), if k is even, then (—3k,2k +1,0) € B (use r = 1k and
i = ——k:) Thus yz € {3(k+1), —3k} but (0, —3(2k+1), 5(Tk +2)) € B (use Bs
and i = —3(2k + 1)). O

In [4] all LDTSs of order 13 were enumerated and classified by their automor-
phism group. Out of the total of 1206 969 non-isomorphic LDTS(13)s 8444 are
pure, but only two of them are antiflexible. They are the two pure cyclic systems.
The starter triples for these two systems are (1,4,0), (0,6,1), (2,6,0), (0,5,2)
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for one and (1,10,0), (0,8,1), (2,9,0), (0,10,2) for the other. In comparison,
there are 924 flexible LDTS(13)s up to isomorphism.

Next is an elementary recursive construction adapted from standard design-
theoretic techniques.

Proposition 3.2. If there exists an antiflexible LDTS(n), n > 3, then there
er1sts

(i) an antiflexible LDTS(3n), and
(ii) an antiflexible LDTS(3n — 2).

Proof.

(i) Take three copies of the LDTS(n) on point sets {i; : i € Z, }, where
j €40, 1, 2} respectively, then adjoin all transitive triples (ig, j1, (¢ + j)2)
and ((i + 7 — 1)2,71,%0), 1,J € Z,. The adjoined transitive triples create
one new residual vertex of degree 2n for each of the points in the first and
third copies of the LDTS(n). For any point iy, where i € Z,, the newly
created residual vertex corresponds to the cycle

(Ol,ig, 11, (Z + ].)2, N (n — 1)1, (l — ].)2)

For any point 79, where v € Z,,, the newly created residual vertex corre-
sponds to the cycle

(01, (Z + 1)0, (’I’L - 1)1, (l + 2)0, ceey ]_1, Zg)
Thus the resulting system is antiflexible as long as n > 2.

(ii) Take three copies of the LDTS(n) on point sets {i; : i € Z,_; } U {o0},
7 € {0, 1, 2} respectively, then adjoin all transitive triples (ig, j1, (i + 7)2)
and ((i + 7 — 1)2,j1,%0), ¢,J € Zpn_1. Similarly this system is antiflexible
as long as n > 3.

]

Lemma 3.3. If n = 3 (mod 18) and n # 3, then there exists an antiflexible
LDTS(n).

Proof. 1t follows from Theorem 3.1 and part (i) of Proposition 3.2 that there
exists an antiflexible LDTS(n) for all n = 3 (mod 18), n > 39. An antiflexible

LDTS(21) is given as Example A.4 in the Appendix. O
Proposition 3.4. If there exists an antiflexible LDTS(n), (V,B), and a quasi-
group

(VU {00}, %) satisfying

(1) zxx =00, and

(2) (xxy=y*xz AN zxy=yxz) = =y =2,
then there exists an antiflexible LDTS(2n +1).

Proof. Let W = VU{z' : x € V}U{od'}. Form a set of transitive triples
D by starting with the set B and adjoining all triples (z/,x * y,v’), where z,
y € VU{oo}, x # y. Then (W, D) is an LDTS. We verify that (W, D) satisfies
condition (ii) of Theorem 2.2. Let (z,y, z) € D. If (x,y, z) € B, then (z, z-z,y-x)
does not lie in D, since if it did, then it would have had to come from B, which
would be a contradiction. It remains to deal with the case when (x,y, 2) is of the
form (u',u * v,v'), for some u, v € VU {oo}. Clearly z -z = v * u. There exists
w € VU{oo} such that (w',u*xv,u’y € D,i.e. y-x=w'" Now since w*u = u*wv,
by assumption v % u # u * w, and thus (z, z - z,y - ) = (¢, v * u,w’) does not lie
in D. O
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A quasigroup of order n satisfying conditions (1) and (2) of Proposition 3.4
will be referred to as a unipotent locally self-orthogonal quasigroup, ULSOQ(n).

The remainder of the existence proof in this section uses a standard technique
known as Wilson’s fundamental construction for which we need the concept of a
group divisible design (GDD). Let K be a set of positive integers. A K-GDD of
type ¢g* is an ordered triple (V, G, B) where V is a base set of cardinality v = gu,
g is a partition of V' into u subsets of cardinality g called groups and B is a family
of subsets called blocks such that (1) |B| € K for all B € B, and (2) every pair
of distinct elements of V' occurs in exacly one block or one group, but not both.
We will also need K-GDDs of type g“m!. These are defined analogously, with
the base set V' being of cardinality v = gu + m and the partition G' being into
u subsets of cardinality g and one set of cardinality m. If K is a singleton, then
instead of {k}-GDD we write simply k-GDD. Necessary and sufficient conditions
for the existence of 3-GDDs of type g* were determined in [10] and for 3-GDDs
of type g“m' in [2]. The existence of the 4-GDDs that we will be using was
determined in [1, 7, 8, 9]. A convenient reference is [6] where the existence of all
the GDDs that are used can be verified.

We will assume that the reader is familiar with this construction but briefly
the basic idea is as follows. Begin with a k-GDD of cardinality v = gu or gu+m,
usually called the master GDD. Each point is then assigned a weight, usually the
same weight, say w. In effect, each point is replaced by w points. Each inflated
block of the master GDD is then replaced by a k-GDD of type w*, called a slave
GDD. We will only need to use the value w = 3, and instead of slave GDDs we will
use partial Latin directed triple systems. When £ = 3 we will employ the partial
LDTS(9) whose blocks are (a,p,2), (b,,y), (¢,7,2), (a,2), (b7}, (c,p, ),
(a,m,y), (b,p,2), {¢,q,7), (x,q,a), (y,1,b), (z,p,¢), (2,7,a), (x,p,b), (y,q,0),
(y,p,a), (z,q,b), (x,r,c)y and the sets {a,b,c}, {p,q,7}, {z,y, z} play the role of
the groups. When & = 4 we will use the partial LDTS(12) whose blocks are
<p7 a, J]>, <87 a,p}, <Z)3, a, S>7 <Q7 b, y>a <u7 b, Q>7 <y7 b, u>7 <T7 G Z>v <t’ G, T>7 <Zu G, t>7
(¢,psu), {w,p,y), (y,p;¢), (a,q,t), (t,q,2), (2,q,a), (b,7,8), (s,7,2), (x,7,b),
(¢, 8,9), (¢,8,0), (y,s,9), (bt,x), (p,t,b), (x,t,p), (a,u,z), (r,u,a), (2,u,7),
<Ca Z, q>7 <q7 Z, U), <U’> Z, C>7 <aa Y, 7’>, <7’, Y, t)? <ta Y, a>> <b> Zap>7 <p7 25 S>7 <87 2 b) and
the sets {a,b,c}, {p,q,7}, {s,t,u}, {x,y, 2z} play the role of the groups. Note
that both of these partial systems induce a closed surface with all residual ver-
tices of degree 6. To complete the construction we then “fill in” the groups of the
expanded master GDD, sometimes adjoining an extra point, to all of the groups.
Thus we may need antiflexible Latin directed triple systems of orders gw, mw,
gw + 1 or mw + 1 as appropriate.

In several cases we use a {3,4}-GDD as the master GDD which requires that
when we replace the inflated blocks, we employ both of the partial systems given
above. Before continuing the existence proof of the antiflexible LDTSs, let us
establish the existence of the {3,4}-GDDs we will be using.

Proposition 3.5. If g & {2,6} and 0 < m < g, then there exists a {3,4}-GDD
of type g>m?.

Proof. Take a 4-GDD of type g* with groups G; = {1;,...,¢g;}, where i €
{0,1,2,3}. To get a {3,4}-GDD of type g>m! simply remove each of the points

(m+1)3, (m+ 2)3, ..., g3 from the design. In other words replace every block
{0, y1, 22, w3} such that m < w < g with the block {zg,y1,22} to obtain a
{3,4}-GDD with groups Gi, Ga, G5 and G, = {13,...,ms}. O
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Example 3.6. {3,4}-GDD of type 63 5.
The groups are G; = {i; : i € Zg }, where j € {0,1,2}, and

ng{igliGZQ}U{OOQ,Ool,OOQ}.

To obtain the blocks develop the following starter blocks under the action of the
mapping i; — (i + 1);, with ocop, 0oy and ooy as fixed points: {0o, 01, 02,000},
{00, 11, 22, 001}, {00, 21, 42, OOQ}, {00, 31, 12}, {00, 41, 32}, {00, 51, 03}, {00, 52, 13},
{01, 32,03}.

Lemma 3.7. If n = 0 (mod 6) and n > 18, then there exists an antiflexible
LDTS(n).

Proof. Table 1 gives the schema for antiflexible LDTS(n), n =0 (mod 6). No ex-
tra points are adjoined in this case. The missing antiflexible LDTSs of orders 36
and 42 as well as the systems of orders 18, 24 and 30 which are needed to con-
struct the infinite classes are all given in the Appendix. The missing antiflexible
LDTS(48) and LDTS(66) can be obtained using part (i) of Proposition 3.2 from
the LDTS(16) and LDTS(22) given in the Appendix. The antiflexible LDTS(60)
can be constructed by taking a master 4-GDD of type 5%, inflating each point by

a factor of 3 and using the antiflexible LDTS(15) given in the Appendix. O
Type of Orders of Residue classes ~ Missing
master 3-GDD  LDTS(n) needed covered modulo 18  values
6°, s>3 18 0 36
6°8', s>3 18, 24 6 42, 60
6°10', s > 3 18, 30 12 48, 66

TABLE 1. Schema for antiflexible LDTS(n), n =0 (mod 6).

Lemma 3.8. If n =16 (mod 18), then there exists an antiflexible LDTS(n ).

Proof. 1t follows from the previous lemma and part (ii) of Proposition 3.2 that
there exists an antiflexible LDTS(n) for alln = 16 (mod 18), n > 52. Antiflexible
LDTSs of orders 16 and 34 are given in the Appendix. O

Lemma 3.9. Ifn =15 (mod 18), then there exists an antiflexible LDTS(n).

Proof. Table 2 gives the schema for antiflexible LDTS(n), n = 15 (mod 18).
Once again, no extra points are adjoined in this case. The required antiflexible
LDTS(n)s of orders n = 15 and 27 are given in the Appendix. The antiflexi-
ble LDTS(33) can be obtained by taking an antiflexible LDTS(16) given in the
Appendix together with the quasigroup given in Example A.14 and applying
Proposition 3.4. Similarly the antiflexible LDTS(51) can be obtained by taking
a (cyclic) antiflexible LDTS(25) together with the quasigroup given in Exam-
ple A.15. The missing antiflexible LDTS(69) can be constructed using a master
{3,4}-GDD of type 6*5' given in Example 3.6 and the antiflexible LDTS(15) and
LDTS(18) given in the Appendix. The antiflexible LDTS(87) can be constructed
using a master 3-GDD of type 5% 9 together with the antiflexible LDTS(15) and
LDTS(27) and the antiflexible LDTS(105) can be constructed using a master
3-GDD of type 57 and the LDTS(15). O

Lemma 3.10. If n = 4, 9 or 10 (mod 18) and n > 22, then there exists an
antiflexible LDTS(n).
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Type of Orders of Residue classes ~ Missing
master 3-GDD LDTS(n) needed covered modulo 54  values

9% 5l 5> 2 15, 27 15 69
9% 111, 5 > 2 27, 33 33 87
9% 171, 5 > 2 27, 51 51 105

TABLE 2. Schema for antiflexible LDTS(n), n = 15 (mod 18).

Proof. Table 3 gives the schema for antiflexible LDTS(n), n = 4,9 or 10 (mod 18).
The required antiflexible LDTS(n)s of orders n = 18, 22, 27, 28 and 40 are given
in the Appendix and the ones of orders 13 and 19 exist by Theorem 3.1. For
the missing n = 45, 63 and 81 use part (i) of Proposition 3.2 and for n = 46, 64
and 82 use part (ii) of Proposition 3.2. To do this we need systems of orders 15,
21, 27, 16, 22 and 28, respectively, all of which are given in the Appendix. The
missing antiflexible LDTS(58) and LDTS(76) can be constructed using master
{3,4}-GDDs of types 54! and 734!, respectively, adjoining an extra point and
taking the antiflexible LDTSs of orders 13, 16 and 22. The missing antiflexible
LDTS(112) can be constructed using a master 3-GDD of type 5° 7!, adjoining an

extra point and taking the antiflexible LDTSs of orders 16 and 22. U
Type of Points Orders of Residue classes Missing
master 4-GDD adjoined LDTS(n) needed covered modulo 36  values
7T 5> 2 1 13, 22 22 58
435131 s> 3 1 13, 40 4 76, 112
69!, s>4 0 18, 27 9,27 45, 63, 81
69, s>4 1 19, 28 10, 28 46, 64, 82

TABLE 3. Schema for antiflexible LDTS(n), n =4, 9 or 10 (mod 18).

Theorem 3.11. An antiflexible LDTS(n) exists if and only ifn =0 or1 (mod 3)
and n > 13.

APPENDIX. EXAMPLES OF ANTIFLEXIBLE LDTSs

The following examples were obtained by computer with the help of the model
builder Mace4 [12] using an algebraic description of a DTS-quasigroup, see [4].
We denote the elements (7, j) € Z,, X Z, as i;. For simplicity, we omit commas
from the triples.

Example A.1. Antiflexible LDTS(15).

V = (Z7 X Zs) U {o0}.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i 4+ 1);, with oo as a fixed point.

<20 00 21>, <21 00 11>, <11 00 51>, <51 00 31>, <31 00 41>, <41 00 61>, <61 00 60>, <60 00 20>,
<00 o0 40>, <01 o0 31>

Example A.2. Antiflexible LDTS(16).

V= Zg X Zig.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i + 1);.

(2000 71)5 {7100 70), (7000 20), (0021 40), (402141), (4121 1o), (1021 60), (6021 11),
(1121 51), (512, 0p).
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Example A.3. Antiflexible LDTS(18).

V= Zg X Zﬁ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i + 1);.

(10 0o 02>, <02 000 > <01 0o 10> <10 21 15> <15 21 25>, <25 21 02>, <02 21 10>, <01 03 24),
(24 03 15> <15 050 > <01 04 23>, <23 04 12>, <12 04 24>, <24 040 >, <10 14 01>7 <01 141 ),
(1514 1o), (1200 13), (1500 14), (1400 25), (2500 15), (1500 24), (24 09 23), (2309 03),
(0300 12), (2101 22), (2201 13), (1301 21), (2509 15), (1502 04), (04 0225), (0205 13),
(1505 03), (0505 02).

Example A.4. Antiflexible LDTS(21).

V= (Zlo X Zg) U {OO}

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i 4+ 1);, with oo as a fixed point.

(2000 01), (01 0991), (910061), (610041), (410051), (51 0011), (11 0931), (3100 71),
<71 00 21>, <21 00 40>, <40 00 90> <90 00 20), <00 0.9) 70> <01 ] 31>

Example A.5. Antiflexible LDTS(22).

V= ZH X ZQ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i + 1);.

{1000 50), {50 0021), (2100 01), (010030), (3000 Lo), (0o 11 20), (20 11 %), (90 11 51),
<51 11 70>, <70 11 21>, <21 11 41>, <41 11 80), <80 11 >, <61 11 00>

Example A.6. Antiflexible LDTS(24).

V= Z4 X Z(;.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i + 1);.

<10 00 21> <21 00 33> <33 00 03>, <03 00 01> <01 00 >, <23 10 24>, <24 10 05>, <05 10 25>,
<25 1, 15>, <15 1 04>, <04 1 14>, <14 1 33>, <33 1 23>, <23 01 04>, <04 01 15>, <15 01 23),
(3301 24), (2401 14), (1401 34), (3401 33), (00022¢), (2002 11), (11 0231), (310221),
(21 0225), (250204), (0402 32), (3202 00), (3002 15), (1502 24), (2402 33), (3302 13),
(1302 05), (0502 01), (01 0230), (020314), (140505), (0503 15), (1503525), (2203 02),
(2004 13), (1204 05), (0504 20), (11 0521), (21 0523), (2305 11).

Example A.7. Antiflexible LDTS(27).

V= (Zl3 X ZQ) U {OO}

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i 4+ 1);, with oo as a fixed point.

(1000 50), (50 0001), (010030), (300010), (2005 11g), (1190181), (81 0;12),
(001120), (20119), (91,0¢), (011150), (5ol111y), (1151,70), (711 10y),
<101 11 31), <31 11 00>, <00 o0 60>, <01 o 71)

Example A.8. Antiflexible LDTS(28).

V= Z14 X ZQ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mappings i; — (i +1); and i; — i;41.

(100 50), (5000121), (121 0041), (410061), (6100131), (1310091), (910031),
(31 0030), (3000 10).

Example A.9. Antiflexible LDTS(30).

V= Z5 X Zﬁ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i + 1);.
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0509 35), (3500 45), 00 15), {1500 05), (Op 01 10 ; 100140 ; (4001 30), (3001 0o),

( S ), (4500 15), ) ) ) ) )
<02 05 31), <31 05 12>, <12 05 01>, <22 00 33>, <33 00 43>, <43 00 44>, <44 00 14>, <14 00 04>,
(040034), (340025), (2500 24), (2409 13), (1300 03), (0309 23), (2300 22), (3101 15),
(1501 33), (3301 24), (2401 31), (4101 42), (4207 43), (4301 04), (0407 03), (0304 41),
(250235), (3502 33), (3302 15), (150224), (2402 34), (340243), (4502 23), (31 032y4),
(240325), (250334).

Example A.10. Antiflexible LDTS(34).

V= Z17 X ZQ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ¢; — (i + 1);.

(1900 50), (5000 70), (7000 30), (3000 10), (6000 11), (11 00 80), (8 0021}, (21 09 91),
(9,0051), (510001), (010060, (112051}, (5120100, (10120161), (16129,),
(9120 11), (3150 111), (111 5091), (9150 31), (4o 01 14;), (14 01 16,), (16, 0 4).

Example A.11. Antiflexible LDTS(36).

V = (Z7; x Zs) U {c0}.

The system is defined by the triples obtained from the following starter blocks
under the action of the mapping i; — (i 4+ 1);, with oo as a fixed point.

<20 00 21), <21 00 61>, <61 00 60> <60 00 20> <20 01 60> <60 01 1 > <12 01 52> <52 01 51>,
<51 04 20), <41 00 42>, <42 00 03>, <O3 00 04>, <O4 00 63>, <63 00 54>, <54 00 32>, <32 00 64>,
<64 0() 34), <34 00 OQ), <02 00 41>, <02 10 43>, <43 10 63>, <63 10 02>, <13 04 24>, <24 04 04>,
<O4 01 34), <34 01 44), <44 01 64>, <64 01 54), <54 01 OO), <OO 01 14), <14 01 13> <23 01 53>,
(5301 43), (4301 23), (21 11 59), (52 11 43), (4311 13), (1311 21), (20 0251), (51 02 11),
(110203), (0302 60), (6002 04), (04 0222), (2209 14), (1402 23), (2502 62), (62 02 44),
(4409 2¢), 230 03 54), (5403 62), (6203 22), (250344), (4403530), (300443), (4304 53),

<53 04 30>, 00 o0 23), <23 o0 52> <52 o 30>
).

Example A.12. Antiflexible LDTS(40

V= ZQO X ZQ.

The system is defined by the triples obtained from the following starter blocks
under the action of the mappings i; — (i + 1); and i; — i;41.

(1000 50), (5o0011), (1100110), (11500 181), (181 0081), (81 0012¢), (12900 31),
(310051), (5100 14¢), (14000 141), (141 00 7o), (7000 30), (30 00 1o)-

Example A.13. Antiflexible LDTS(42).
V= Z7 X Z6~

The system is defined by the triples obtained from the following starter blocks
under the action of the mappings i; — (i + 1);.

(0105 15), (1505 51), (51 0525), (2505 11), (11 0545), (45 0504), { 1), ( )
(6100 60), (600020), (2001 60), (6001 12), (1501 52), (52 01 51), ( ), ( )
<15 04 43), <43 04 53), <53 04 42>, <42 04 50>, <30 05 24>, <24 05 43>, <43 05 52>, <52 05 3()>,
(4100 42), (4200 53), (5300 34), (3400 04), (04 09 63), (6300 0s), (0500 03), {0300 23),
(2300 65), (6500 44), (4400 02), (0200 41), (1259 63), (6350 65), (655034), (3450 05),
(05 50 1a), (1101 42), (4201 33), (3301 03), (0301 11), (1301 24), (24 01 04), (0401 34),
(3401 44), (44071 64), (6401 54), (54071 55), (5501 14), (1409 13), (0324 63), (6321 43),
( ) 1) 1) K K K K )
( ) ) K K K K K )
g ; 2 i ( ) ) K K K )

; (20002
, (9101 20), (9004 15),

) 210061 ’

4321 03), (200251), (5102 11), (11 0203), (0302 04), (0402 6p), (69 0245), (4502 33),
330224), (240255), (5502 54), (5402 05), (0502 62), (620222), (2202 14), (1402 2p),
300344), (440352), (520365), (6503 30), (400332), (320325), (2503 40), (4205 14),
1405 23), (230542
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Example A.14. ULSOQ(17).
C?ii Z@ X ZQ:LJ{OO}.
The quasigroup is obtained by defining oo * z = x and developing the following
partial Cayley table under the action of the automorphism i; — (i + 1); with oo
as a fixed point:

*‘ o 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 10 o0 30 01 00 33 31 20 03 21 22 11 12 02 23 32 13

01 11 30 01 02 31 o0 33 23 12 13 10 03 22 21 32 20 00

02 12 11 02 03 32 10 01 00 20 (0. ¢] 13 31 23 33 30 21 22

03 13 03 22 33 23 12 02 31 32 01 30 10 00 0,@) 21 11 20

Example A.15. ULSOQ(26).

CQIZ Z% X Z%;LJ{OO}.

The quasigroup is obtained by defining co * = x and developing the following
partial Cayley table under the action of the automorphism i; — (i + 1); with oo
as a fixed point:

* | 00 00 10 20 30 40 07 11 21 34 41 02 19 29 39 42 03 13 23 33 43 04 14 24 34 44
Og|1lg 0o 01 49 31 09 11 44 34 30 20 22 21 32 19 41 13 03 43 02 49 23 24 14 04 33
01111 30 09 41 20 01 00 43 14 04 44 24 19 40 34 03 31 21 Og 42 22 13 19 39 33 23
O2(12 31 29 02 03 49 19 01 49 11 39 00 13 43 44 23 33 34 24 14 04 Op 32 21 41 29
03|13 29 03 23 43 04 21 02 32 19 42 34 01 1g 24 33 00 20 14 30 11 4o 44 41 Op 34
0414 33 04 44 34 24 29 03 23 43 13 21 41 30 1o 32 42 11 40 29 31 00 02 01 12 Op
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THE CENTRE OF A STEINER LOOP
AND THE MAXI-PASCH PROBLEM

ANDREW R. KOZLIK

ABSTRACT. A binary operation - which satisfies the identities z-e = z, z-x = e,
(x-y)-x =yand x-y = y-x is called a Steiner loop. In this paper the
necessary and sufficient conditions for the existence of a Steiner loop of order n
with centre of order m are derived. The paper also discusses the connection of
this problem to the question of the maximum number of Pasch configurations
which can occur in a Steiner triple system of order v. We find that the Steiner
loops of all known maxi-Pasch Steiner triple systems have centre of maximum
possible order.

1. INTRODUCTION

A Steiner triple system of order v, STS(v), is a pair (V, B) where V is a set of
v points and B is a collection of triples of distinct points taken from V' such that
every pair of distinct points from V' appears in precisely one triple. Such systems
exist if and only if v = 1 or 3 (mod 6) [6]. Given an STS (V, B) one can define a
binary operation - on the set L = V U {e} by assigning x-e=e-z =z, z-x =c¢
for all x € L and x-y = z whenever {z,y, z} € B. The induced operation satisfies
the identities

xe=x, w-x=e (r-y) r=Yy T-Y=y-x (1)

for all z and y in L. Any binary operation satisfying these four identities is called
a Steiner loop. The process described above is reversible. Given a non-trivial
Steiner loop one can obtain an STS by assigning {z,y,z-y} € Bforall z, y € V,
x # y. There is therefore a one-to-one correspondence between Steiner triple
systems and non-trivial Steiner loops. Thus a Steiner loop of order n exists if
and only if n = 1 or n = 2 or 4 (mod 6). In the remainder of this paper we
replace the loop operation - with juxtaposition.

The most well known examples of Steiner triple systems come from finite ge-
ometry. Let V = F5\ {0} and let B be the collection of all {x,y,z} such that
X, y, z € V are pairwise distinct and x +y +z = 0. Then (V,B) is a projec-
tive STS(2F — 1). Tts corresponding Steiner loop is (F5,+). A Steiner loop is
associative if and only if it is isomorphic to (F%, +) [2].

In a Steiner triple system, a collection of four triples on six points is called a
Pasch configuration or quadrilateral. It is easily seen that this structure neces-
sarily has the form {a,b,c}, {a,d, e}, {b,e, f}, {c,d, f}. For example an STS(7)
contains seven distinct Pasch configurations. A Steiner triple system is said to
be anti-Pasch if it does not contain a Pasch configuration.

Theorem 1.1 ([3, 7]). An anti-Pasch STS(v) exists if and only if v =1 or 3
(mod 6) and v # 7, 13.

2010 Mathematics Subject Classification. 05B07, 20N05.

Key words and phrases. Steiner quasigroup, centre, Steiner triple system, Pasch configura-
tion, quadrilateral.
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The left nucleus Ny, middle nucleus N, and right nucleus N, of a loop L are
defined as

Nyx(L)={z € L:z(yz) = (xy)z for all y,z € L},
N, (L)={yeL:z(yz) = (zy)z forall z,z € L},
Ny(L)={z€L:alys) = (
The nucleus of L, defined as N (L) = Nx(L)NN,(L)NN,(L), is a subgroup of L.
The centre of a loop L is defined as
Z(L)=N(L)Nn{ze L:ay=yzrforallye L}.

If L is a Steiner loop, then the three nuclei coincide [9] and N(L) = Z(L).
Because the centre of a Steiner loop is an associative Steiner loop, its cardinality
is a power of 2.

xy)z for all z,y € L},

2. THE CENTRE OF A STEINER LOOP

A subloop K of L is said to be normal in L if K = Kz, 2(yK) = (xy) K and
(xK)y = x(Ky) for all x, y € L. The factor loop L/K is then defined in the
usual way. Clearly, for any loop L the centre Z(L) is normal in L.

Lemma 2.1. Let L be a Steiner loop of order n with centre of order m and let k
be the largest integer such that 2% divides n. Then m = 2°, wherei € {0,1,... k}.
If n # 2%, then m # 2F.

Proof. As noted in the introduction, m is a power of 2. Since the factor loop
L/Z (L) satisfies the identities (1), it is also a Steiner loop, and we either have
n/m = 1 or we have n/m = 2 or 4 (mod 6). In the former case the loop is
associative, thus n = 2% and m = 2*. In the latter case, in order for n/m to be
even, m must be at most 271 O

Lemma 2.2. If there exists a Steiner loop of order n with centre of order m,
then there exists a Steiner loop of order 2n with centre of order 2m.

Proof. Let L be a Steiner loop of order n. Then L x Iy is also a Steiner loop,
since it satisfies the identities (1), and its centre is Z(L) x Fs. O

Proposition 2.3. A Steiner loop of order n with a non-trivial centre exists if
and only if n =4 or 8 (mod 12) orn = 2.

Proof. If n = 4 or 8 (mod 12) or n = 2, then there exists a Steiner loop of
order n/2. By Lemma 2.2 there then exists a Steiner loop of order n with centre
of order at least 2. If n =2 or 10 (mod 12) and n # 2, then by Lemma 2.1 the
centre of every Steiner loop of order n is trivial. O

With the help of a computer running the model builder Mace4 [8], we can
obtain a census of the centres of Steiner loops of order up to 20. The three unique
Steiner triple systems of orders 1, 3 and 7 are projective, thus their corresponding
loops all satisfy Z(L) = L. The Steiner loops of the unique STS(9) and of both
STS(13)s all have trivial centre. There are only two STS(15)s up to isomorphism
that induce a loop with a non-trivial centre. One is the projective STS(15) and
the other is the system with automorphism group of order 192, i.e. System # 2
in [1]. The latter has centre of order 2. There are only three STS(19)s up to
isomorphism that induce a loop with a non-trivial centre. They are the unique
systems with automorphism groups of orders 108, 144 and 432. Each has centre
of order 2. In light of the following theorem, it does not come as a big surprise
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that these are precisely the three systems with 84 Pasch configurations, which is
the maximum possible for any STS(19) [5].

Theorem 2.4. Let (V,B) be an STS and let L be its corresponding Steiner loop.
For any x € L the following conditions are equivalent:

(1) The element x lies in the centre of L.

(2) If z, y and z are pairwise distinct elements of V', then the set {x,y,z}
generates a sub-STS(3) or a sub-STS(7) in (V,B).

(3) For each vy, z € L, the subloop (x,y, z) is of order at most 8.

Proof. Let x € Z(L) \ {e} and y, z € V be pairwise distinct elements such that
{z,y, 2z} does not lie in B. By definition {z,y, zy}, {z, 2,2z}, {y, z,yz} € B, and
since (zy)(zz) = ((xy)x)z = yz, we also have {zy,zz,yz} € B. Furthermore
{z,yz,zyz}, {y,xz,zyz}, {z,2y,zyz} € B. These seven triples form a sub-
STS(7). Thus (1) implies (2).

Assume that (2) holds and let x, y, z € L. If these three points are not pairwise
distinct elements of V' or if {z,y,z} € B, then (z,y, z) is a subloop of order 1,
2 or 4 in L. Otherwise, by assumption, (x,y,2) is a subloop of order 8 in L.
Thus (2) implies (3).

In a Steiner loop every subloop of order at most 8 is necessarily a group.
Thus (3) implies (1). O

It immediately follows from the previous theorem that every anti-Pasch ST'S(n),
n > 3, gives rise to a Steiner loop with trivial centre. Taking into account the
census above, we have the following:

Corollary 2.5. A Steiner loop of order n with trivial centre exists if and only if
n=1orn=2or4 (mod6) andn & {2, 4, 8}.

Lemma 2.6. Let L be a non-associative Steiner loop of order n with centre of
order m. Then m < in.

Proof. Since L is non-associative, it follows from Theorem 2.4 that there ex-
ist points x, y, z € L such that the order of the subloop (x,y,z) is strictly
greater than 8. None of these three points lie in the centre and neither does the
point xy, because (zy,x,z) = (x,y,z). For any u € Z(L) we have (u,z,y) =
{e,z,y, xy, u, zu, yu, (xy)u}, where only e and w lie in the centre. Thus if w,
veZ(L),u# v, then (u,z,y) # (v, z,y) and therefore (u, z, y)N (v, z,y) = (x,y).
If we Z(L)\ {e}, then (u,z,y) is of order 8 and (z,y) is of order 4, thus the
set U,ez(z) (4, 7, y) has cardinality 4(m — 1) 4+ 4. Finally, note that the point z
does not lie in (u, z,y) for any u € Z(L). Thus there are at least 4m + 1 pairwise
distinct points in L. O

Theorem 2.7. Let n be a positive integer and let k be the largest integer such
that 2% divides n. A non-trivial Steiner loop of order n with centre of order m
exists if and only if n =2 or 4 (mod 6), and

(1) n# 2% and m = 2, where i € {0,1,...,k— 1}, or

(2) n=2% (n,m) # (8,1) and m = 2¢, where i € {0,1,... .k —3} U{k}.
Proof. The necessity of the conditions follows from Lemmas 2.1 and 2.6 and from
the fact that the unique STS(7) is projective.

If the integers n and m = 2¢ satisfy the conditions given above, then n/m =1

or n/m =2 or 4 (mod 6) but n/m ¢ {2,4}. If n/m # 8, then by Corollary 2.5
there exists a Steiner loop of order n/m with trivial centre, thus by iterating
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7 times Lemma 2.2 we obtain a Steiner loop of order n with centre of order m. If
n/m = 8, then start instead with the Steiner loop of order 16 that has centre of
order 2 and iterate ¢ — 1 times Lemma 2.2. 0

3. MAXI-PASCH STEINER TRIPLE SYSTEMS
Denote the number of Pasch configurations in an STS(v), S, by P(S). Define
P(v) = max{ P(5) : S is an STS(v) }.
An STS(v), S, is said to be mawi-Pasch if P(S) = P(v). In [10] Stinson and Wei

undertook a preliminary investigation of the bounds on P(v). An elementary
counting argument yields P(v) < v(v — 1)(v — 3)/24. The authors show that
an STS(v) achieves this bound if and only if it is projective. They then present
several recursive lower bounds on P(v). In [4] Gray and Ramsay present another
recursive lower bound on P(v):

Theorem 3.1 ([4]). Ifv=2u+1=3 or7 (mod 12), u > 7, then

7(v—1)(v—3)
P(v) > o
In [11] Grannell and Lovegrove give lower bounds on P(v) for v of the form
22 1+ 3 or 22) +5. The only known values when v # 2¥ — 1 appear to be P(9) = 0,
P(13) = 13 and P(19) = 84.
Theorem 2.4 indicates that a Steiner loop with large centre corresponds to a
Steiner triple system with a large number of ST'S(7) subsystems and thus a large

number of Pasch configurations. We start by obtaining a lower bound on the
number of sub-STS(7)s.

+ 8P(u).

Proposition 3.2. Let L be a Steiner loop of order n with centre of order m.
Then the number of sub-STS(7)s in the Steiner triple system corresponding to L
15 at least

m—1

W((m —2)(m —4) 4+ 7(n—m)(n —m —2)).
Proof. Let (V,B) be the Steiner triple system which corresponds to L. By F;
denote the set of all sub-STS(7)s in (V,B) such that exactly ¢ points of the
subsystem lie in the centre of L. The only admissible values of 7 are 0, 1, 3 and 7.
Consider three pairwise distinct points z, y, z € V, which do not lie in a common
block. These three points generate a system in F7 if and only if they all lie in
the centre. The number of ways of choosing three points from Z(L)\ {e}, so that
they do not lie in a common block, is (m — 1)(m — 2)(m — 4). This way each of
the systems in JF7 is counted 168 times, thus

|F7| = (m —1)(m — 2)(m — 4)/168.

It follows from Theorem 2.4 that if one of the points =, y or z lies in the centre
and the other two do not, then they generate a system in F; or F3. In fact
every system in F; U F3 can be generated in this manner. The number of ways of
choosing three points such that the first is from Z(L)\ {e} and the remaining two
are from V\Z(L), but do not all lie in a common block, is (m—1)(n—m)(n—m—2).
This way each of the systems in F; and F3 is counted 24 times, thus

| Fi| + | Fs| = (m —1)(n —m)(n —m — 2)/24.
The sum |Fi| + |F3| + |F7| gives a lower bound on the number of sub-STS(7)s in
(V,B). O
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To obtain a lower bound on the maximum number of sub-STS(7)s in a Steiner
triple system of order v, we can set the order m of the centre in the previous
proposition to the maximum value as given by Theorem 2.7. Multiplying the
resulting bound by 7 gives a lower bound on the number of Pasch configurations,
because there are seven Pasch configurations in each sub-STS(7) and no two sub-
STS(7)s share a common Pasch configuration. This yields the following result:

Corollary 3.3. Letv =1 or 3 (mod 6) and let k be the largest integer such that
2k divides v+ 1. Then
k=1 1
P(v) > 7(2"6—1(2’“—1 —6)+7(v—2"1)2 +1).

Call a Steiner triple system maxi-central if its corresponding Steiner loop has
centre of maximum possible order (see Theorem 2.7).

The doubling construction of Steiner loops used in Lemma 2.2, which is the
source of the results above, is equivalent to the standard v — 2v + 1 construction
for Steiner triple systems. In most cases it is possible to refine the bound on P(v)
by using the v — 2v 4 1 construction and focusing directly on the Pasch config-
urations rather than on the sub-STS(7)s as we did above. That is the method
which was used to obtain most of the results in [4]. The present paper therefore
does not improve the known lower bounds on P(v), but shows that all known
maxi-Pasch STSs are maxi-central and that for some values of v the maximum
known lower bound is attained by a maxi-central Steiner triple system. These
would most notably be the cases v = 27, 39, 43, 51 and 55 in [4] and trivially all v
of the form 2¥ — 1. For example the STS(27) in [4] with 286 Pasch configurations
is obtained by using the standard v — 2v + 1 construction on the STS(13) with
13 Pasch configurations. Thus the corresponding Steiner loop of order 28 has
centre of order 2, which is the maximum possible.
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List of abbreviations

DTS
GDD
HTS
KTS
LDTS
LHTS
MTS
PBD
STS

Directed Triple System
Group Divisible Design
Hybrid Triple System
Kirkman Triple System
Latin Directed Triple System
Latin Hybrid Triple System
Mendelsohn Triple System
Pairwise Balanced Design

Steiner Triple System
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