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Introduction

Permutations of numbers or other finite sets are a very deeply and frequently
studied combinatorial and algebraic object. There are two main structures on
permutations investigated in modern mathematics: groups, closed under the
composition operator, and hereditary pattern-avoiding classes, closed under the
relation of containment. This thesis is one of several texts exploring the edge
between the two notions by applying the composition operator to permutation
classes. That is, given two classes A and B, we denote by A o B the class of all
permutations which can be written as a composition of a permutation from A
and a permutation from B.

The oldest results combining permutation classes and groups that we know of
are due to Atkinson and Beals [1], who consider the permutation classes whose
permutations of length n form a subgroup of S, for every n and completely
characterise the types of groups which may occur this way. These results were
recently refined and extended by Lehtonen and Pdschel in [2] and [3]. In an
earlier version of their paper, Atkinson and Beals [4] also deal with composing
permutation classes, showing that compositions of many pairs of finitely based
classes are again finitely based.

Some permutation classes characterise permutations which can be sorted by
some sorting machine such as a stack. In this view, a composition of two per-
mutation classes can characterise permutations sortable by two corresponding
sorting machines connected serially. For example, Atkinson and Stitt [, Section
6.4] introduce the pop-stack, a sorting machine which sorts precisely the layered
permutations (see Chapter 4 for a definition), and consider the class of permuta-
tions which can be sorted by two pop-stacks in series, i.e. which can be written
as a composition of two layered permutations. Using their more general results
they calculate its generating function and enumerate its basis.

Albert et al. [6] give more enumerative results on compositions of classes in
terms of sorting machines.

In the present thesis, we study a different question connected to compositions
of classes; namely whether a permutation of a given class C can always be written
as a composition of two or more permutations from its subclasses, i.e. whether
CCCiolCyo---0C for some Cy,...,Cr € C. If this is true, we say that the class
C is composable and we refer to this property of C as composability.

The thesis is organised as follows. In Chapter [1| we supply all the necessary
definitions and facts about permutation classes. In Chapter |2l we introduce com-
posability and give some basic results. In Chapter [3| we explore composability of
the class Av(k---21). In Chapter |4 we explore composability of various classes
of layered patterns. Finally in Chapter [5| we give several additional miscellaneous
results.



1. Preliminaries

For a positive integer n we let [n] denote the set {1,2,...,n}. A permutation
of order n is a bijective function 7: [n] — [n]. We denote the order of a
permutation 7 by |7|. We may also interpret a permutation 7 as a sequence
7(1),m(2),...,m(n) of distinct elements of [n|, or as a scheme in an n x n square
in the plane, namely the set of points {(i,7(7));1 < i < n}. Forn > 0 let S,
denote the set of all permutations of order n. We let |Sy| = 1, i.e. there is exactly
one empty permutation. We denote the set of all permutations by S = J;~, S.

If 7 and o are two permutations of order n we define their composition wo o
as (moo)(i) = w(o(i)) for every i € [n]. Since the composition is used as the
group multiplication operator on groups of permutations, throughout the text we
might refer to composition also as multiplication.

We define two more permutation operators. The sum 7 @ o of permuta-
tions m € Sg and o € S is the permutation 7 (1), 7(2),...,7(k),o(1) + k,0(2) +
k,...,o0(l)+k. The skew sum m©o is the permutation w(1)+{, 7(2)+1, ..., 7(k)+
l,o(1),0(2),...,0(l). For example, 3127645 = 312 @ 4312 and 6547123 = 3214 &

123 (see Figure [1.1]).

(a) 3127645 = 312 & 4312 (b) 6547123 = 3214 & 123

Figure 1.1: An example of sums and skew sums

In addition, we will sometimes write m @ 7o @ - - - & 7w, as D,_; ™.

1.1 Permutation classes

Two sequences of numbers s1, S, ..., S, and r, 79, ...,7, are order-isomorphic if
for any two indices 4, j € [n] it holds that s; < s; if and only if r; < r;.

We define the following partial ordering on the set of all permutations. We
say that m is contained in o and write 7 < ¢ if o has a subsequence of length
|| order-isomorphic to . See the example of containment in Figure On the
other hand, if 7 £ o, we say that o avoids .

A set C of permutations is called a permutation class if for every m € C and
every o < m we have 0 € C. We say that C avoids a permutation o if every m € C



Figure 1.2: The permutation 213 is contained in 143625.

avoids o. Permutation classes are often described by the patterns they avoid. If
B is any set of permutations, we denote by Av(B) the set of all permutations
avoiding every element of B. Observe that C is a permutation class if and only if
C = Av(B) for some set B. Indeed, if C is a permutation class, then C = Av(S\C),
and if 0 < 7 € C, then 7 avoids all permutations of B and clearly ¢ avoids them
too. If C = Av(B) and B is an anti-chain with respect to containment, we call B
the basis of C. Also if B = {m,ma, ..., 7} is finite, we write just Av(my,..., )
instead of Av({m,...,m}). Finally, if C = Av(n) for a single permutation 7, we
say that C is a principal class.

Let sy, s9, ..., s be k finite sequences of numbers. We denote their concatena-
tion by s189 - - - s5. If a sequence s can be constructed by interleaving sy, so, . . ., Sk
in some (not necessarily unique) way, we say that s is a merge of or it is merged
from si,89,. .., Sg.

We define Z; resp. D, to be the class of all permutations merged from at
most k increasing resp. decreasing subsequences. Also let Z = Z; and D = Dy,
i.e. Z = Av(21) is the set of all increasing permutations and D = Av(12) is the
set of all decreasing permutations, and for convenience let Zg = Dy = S.

The classes 7, and D, are well-known examples of principal classes.

Theorem 1.1. Z; 1 = Av(k---21) and Dy_1 = Av(12---k) for any positive
integer k.

Proof. We will show the proof only for Z,_;, the proof of the second equality is
identical.

If m can be partitioned into k — 1 increasing sequences, then out of any &
elements there are at least two belonging to the same increasing sequence, so no
k elements can form a decreasing sequence.

On the other hand if 7 avoids k---21, label elements of 7 left to right by
the length of the longest decreasing subsequence of 7 ending in that element.
Clearly we have used at most k — 1 different labels since otherwise we would
have used a label of size at least k£ and therefore we would have found a copy of
k---21. Notice now that elements marked by the same label form an increasing
sequence: for any two elements forming a decreasing sequence the label of the
smaller element is greater by at least 1 than the label of the larger element since
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we may add the smaller element to the longest decreasing sequence ending in the
larger element. ]

Now we state state and prove a known and important property of infinite
permutation classes which will become useful in the upcoming chapters.

Lemma 1.2 (Atkinson, Beals [1]). Let C be an infinite permutation class. Then
either Z C C or D CC.

Proof. Suppose that Z ¢ C and D ¢ C, then C avoids 12---k and [---21 for
some positive integers k,l. According to the Erdés-Szekeres Theorem (see [7]),
every permutation of length at least (k—1)(l —1)+1 contains 12---k or [ - -- 21,
therefore C contains only permutations of length at most (k — 1)(I — 1) and thus
is finite. O

Given a description of a permutation class, e.g. by a list of avoided patterns,
a natural and fundamental question is how big the class is, i.e. how many per-
mutations of fixed order it contains. For a permutation class C let C, be the
set of permutations of C of order n. In this notation, we are interested in the
enumeration of the sequence {|C,|}°,. This can be attempted using standard
approaches, e.g. finding the exact formula or computing the generating function,
but this may often be difficult and we would then be content with computing at
least the asymptotic behaviour of the sequence. We define the upper growth rate
gr(C) = limsup,,_,., ¥/|Cy| and the lower growth rate gr(C) = liminf, ., /|Cy|.
If these values are identical for a class C we say that C has the growth rate
gr(C) = gr(C) = gr(C). It is not known whether the lower and upper growth rate
are equal for every class C, however if C = Av(r) for any single permutation T,
then gr(C) exists. This fact is due to Arratia [8] and we omit its proof.

Theorem 1.3 (Arratia [§]). For any permutation 7 the limit lim,, o, ¥/ Av(7),
exists. [

Let us demonstrate a simple example of determining the basis and growth rate
of two fairly small permutation classes which we will use in following chapters. We
denote by V the class of permutations which are concatenations of two increasing
sequences, e.g. 1346257 € V), and we denote by H the class of permutations
merged from two sequences of consecutive integers, e.g. 4125637 € H.

Figure 1.3: 1346257 € V (left) and 4125637 € H (right).

We will use the following simple lemma.

Lemma 1.4. Consider k nonempty permutations my, ..., T.
Then Av(mi',...,m. ) = {r 57 € Av(m,...,m)}.
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Proof. Observe that o < 7 if and only if 07! < 771 O]

Proposition 1.5. The basis of V is the set {321,2143,3142}, the basis of H is
the set {321,2143,2413} and gr(V) = gr(H) = 2.

Proof. We can easily see that permutations 321, 2143 and 3142 do not belong
to V, i.e. ¥V C Av(321,2143,3142). We will prove the opposite inclusion by
induction. For permutations of length at most 3 the inclusion is trivial. Next
consider m € Av(321,2143,3142) of length at least 4 and consider the first two
elements a, b of 7 and the last two elements ¢, d of .

Now if a < b, we may ignore the first element, apply the induction hypothesis
on the relabeled remaining permutation, get the concatenation of two increasing
sequences and add a back, finishing the proof. The same can be done if d > c.
Therefore assume a > b and ¢ > d. Now d > b and ¢ > a, otherwise abd or acd
would form a copy of 321. Finally if d > a then abed is a copy of 2143 and if
d < a then abed is a copy of 3142, which is a contradiction, completing the proof.

The enumeration of basis of H follows from the simple observation that H =
{r~%; 7 € V} and Lemmal|l.4

It is easy to see that |V,| = 2" — n since we can choose the left increasing
sequence as any subset of [n], but we count the identical permutation n+ 1 times
this way, hence subtracting n. This implies gr(V) = 2. The growth rate of H
follows from the observation that 7 — 7! is a bijection between ¥V and H. [

1.2 Splittability

In this section we shortly introduce another concept which has been recently used
to derive enumerative results on permutation classes and which we will also utilize
in our work.

A permutation 7 is merged from permutations o and ( if we can color the
elements of m with red and blue such that the red subsequence is order-isomorphic
to « and the blue sequence is order-isomorphic to 3. Given two permutation
classes A and B we define their merge denoted by A ® B as the class of all
permutations which can be merged from a (possibly empty) permutation from A
and a (possibly empty) permutation from B. For example, it is easy to see that

.,=I0I6---OL.
o

We say that a class C is splittable if it has two proper subclasses A and B
such that C € A ® B. For instance, the classes V and H from the previous
section are clearly splittable since YV C Z ©®Z and H € Z ® Z. The class of
layered permutations (permutations which can be written as a sum of decreasing
sequences) serves as an example of an unsplittable class. We refer the reader to
[9] for an exhaustive study of splittability.



2. The notion of composability

In the following sections we provide definitions of the key notions of this work as
well as basic facts and observations.

2.1 Composing permutation classes

We define the composition of two permutation classes A and B as the set AoB =
{ropime A p€B,|r|=|p}.

Lemma 2.1. Let A and B be arbitrary permutation classes.
(a) Ao B is again a permutation class.
(b) Composing permutation classes is associative, i.e. (AoB)oC = Ao (BoC).

Proof. Let aoff =m € AoB3, sothat « € A and 8 € B. Then a permutation con-
tained in 7 at indices i1 < --- < i, is composed of o/ < «a and ' < 8 such that '
is contained at indices i1, . .., 4, in § and o/ is contained at indices 5(iy), .. ., 5(i2)
in a. Associativity follows from associativity of permutation composition. m

Having verified associativity of the composition operator we can now define
the composition of more than two classes in a natural inductive way:

CloCQO---OCk: (CloCQO---oCk_l)oCk.

We will also sometimes use the power notation CoCo---0C = (C).
~

kx
We continue by proving several simple lemmas about composing permutations

merged from few increasing sequences.
Lemma 2.2. 7, o Z; C Iy, for any integers k,1 > 0.

Proof. Choose m € Z), and ¢ € I, partition ¢ into [ increasing sequences and
choose one of them at indices iy < -+ < 4,. Then ¢(i;) < --- < ¢(i,) and so
w(p(i1)), ..., m(¢(i,)) is a subsequence of m and therefore it can be partitioned
into at most k increasing sequences since that is the property of w. This is true
for the image of each of the [ increasing subsequences in ¢ and therefore 7 o ¢
can be partitioned into at most & - [ increasing subsequences. O

Since D oD = Z, the argument of the previous proof can be repeated to show
that Dy o D; C Zy;. We can generalise this even more.

Lemma 2.3. Let k,l,m,n be any non-negative integers. Then
(Zr © Dyy) © (i © D) € Litmn © Dinpmi-
Proof. Use the approach identical to that of Lemma [2.2] O

We finish this section with one more variation of the preceding lemmas. We
call a subsequence s of a permutation 7 a block if s is either an increasing or
a decreasing contiguous subsequence of consecutive integers. We then call 7 a
k-block if it is a concatenation of at most k& blocks.



Figure 2.1: An example of a 4-block

Lemma 2.4. Let m € S,, be a k-block and let o € S,, be an l-block. Then woo is
a (k- 1)-block.

Proof. Choose a block of ¢ at indices a,a + 1,...,a + b. Then the sequence
n(o(a)),m(c(a+1)),...,7(c(a+ b)) is a contiguous subsequence of either

7(1),7(2),...,m(n) or m(n),...,n(2),7(1) and therefore is a concatenation of at
most k blocks since 7 itself is a k-block. This is true for each of the [ blocks of
o, therefore mo o is a (k - [)-block. O

2.2 Composability

The main problem we are addressing in this work is whether permutations in a
given permutation class can be constructed by composing permutations from two
or more smaller classes. We formalise this as follows. A permutation class C is
said to be composable from classes Cq,...,Cp if C C Cy0---0C. A class C is
k-composable, if it is composable from its k proper subclasses Cy,...,Cx. A class
C is composable, if it is k-composable for some k£ > 2. Using this terminology,
our goal is thus answering the question whether a given permutation class is
composable.

Clearly, for every class C we have C C C o Z. For an infinite class we have
either Z C C, which implies C C CoC, or D C C, which implies Z C C o C and
C C CoCoC(C. Restricting ourselves to proper subclasses in the definition of a
composable class is motivated by these trivial inclusions.

We begin the exploration of composability by proving the following result
which implies that unlike splittability, k-composability for £ > 2 does not imply
2-composability.

Theorem 2.5. Let C be an infinite permutation class such that T ¢ C. Then C
18 not 2k-composable for any positive integer k.

Proof. Since C does not contain Z, there is an integer n such that C avoids
12---n(n+ 1) and therefore C C D,, by Theorem [1.1]

Now let Ay, By, Ay, Bs, ..., Ax, Br be proper subclasses of C and suppose that
CC A oBioAyoByo---0A;o B, Since all these classes are subsets of D,



Lemma implies A; o B; C Z,2 for every i € [k]. Using Lemma again we
get that

AioBioAsoByo--oA,oB, CT20---0ZL,2 CT ok,

therefore, according to our assumption, C C 7,2, which means that C does not
contain a decreasing permutation of length n?* + 1 by Theorem . But since C
is infinite and does not contain Z, it has to contain D according to Lemma [1.2]
which is a contradiction. O

2.3 Properties of symmetries

In the final section of this chapter we explore how composability is preserved
under some of the usual symmetrical maps.

For a permutation 7 of length n we define 7" to be the reverse of m, i.e.
7" (k) = m(n—k+1), and 7° to be the complement of m, i.e. 7°(k) =n—m(k)+1.
For a permutation class A we define the inverse class A" = {r~!;7m € A}, the
reverse class A" = {n";m € A}, and the complementary class A° = {n%m € A}.

(a) 14352 (b) (14352)! (c) (14352)" (d) (14352)°

Figure 2.2: Symmetries of the permutation 14352

It is clear that all these class operators are involutory, i.e. (A1)~ = A,
(A7) = A and (A°)¢ = A. The following simple lemma describes how these
operators relate to composition.

Lemma 2.6. Let A, Ay, A, ..., A, be permutation classes. Then
(a) (AjoAgo--oAp) L =ATo oA o AT,

(b) A =AoD and A°=Do A,

(c) (A") = (A°) =DoAoD.

Proof. (a): If m; € A; for every i € [k], then by the property of inverse elements
in a group we have (m;omo---om) t=mto- - omtom.

(b): Let @ € A and 6 € D be permutations of order n. By definition d(k) =
n — k + 1 for every k € [n]. Therefore a(d(k)) = a(n — k + 1) = o'(k) and
d(a(k)) =n—a(k)+1 = a“(k) for every k € [n].

(c): Apparent from (b). O

Using this lemma we derive several composability criteria for symmetries of

a given class, the first of which requires no further proof as it is an immediate
consequence of Lemma [2.6]



Corollary 2.7. Let A be a permutation class. Then the following statements are
equivalent:

(a) A is composable,
(b) A7' is composable,
(c) (A")¢ is composable.

The case of the reverse and complementary operators is more complicated and
requires additional assumptions.

Lemma 2.8. If A is a k-composable class and T C A, then both A" and A° are
(2k — 1)-composable.

Proof. Let A be composable from its proper subclasses A1, As, ..., A;. Then
A"=AoDC A oAyo---0A,0D=(A]oD)o(Ay0D)o---0(A,oD)oD.
It holds that D oD = 7, so we have

A" CAjoDoAjoDo---0Aj.

Clearly A} € A" and since Z C A, we have D C A", so the proper subclass
criterion is met and A" is therefore (2k — 1)-composable. Analogously we show
that

A°C AfoDoA50Do---0 A ]
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3. On permutations avoiding a
decreasing sequence

Recall that Z,, = Av((k + 1)---21) is the class of permutations merged from
k increasing sequences, or equivalently those avoiding a decreasing sequence of
length £ + 1. In this chapter, prove that Z; is 2-composable and show several
examples of how 7, can be composed from two proper subclasses. For that we
utilize a generalised version of the classes V and H from Chapter [I}

3.1 Vertical and horizontal merge

Let Cq,...,Cr be any permutation classes. We define the wvertical merge of
these classes as the class of permutations that can be written as a concatena-
tion sysq - - s of k (possibly empty) sequences such that s; is order-isomorphic
to a permutation of C;. We denote this class by V(Cy,...,Ck). In addition,

if C; =C = -+ = C, = Z, we denote V(Cy,...,C) by Vi. We define the
horizontal merge of these classes as the class of permutations that can be written
as a merge of k (possibly empty) sequences sy, Sa, . . ., s such that each s; is order-

isomorphic to 7m; € C; and s189 -8, = T D W P - - - B 7. In other words, each s;
uses a set of consecutive integers and every element of s; is smaller than every ele-
ment of s;;1. We denote this class by H(Cy,...,Cy) andifC; =Co=---=C, =7
we denote it by Hy.

Alternatively, we can observe that @ € V(Cy,...,Cx) resp. m € H(Cy,...,Ck)
if and only if its plot in R? can be separated by vertical resp. horizontal lines
into at most k parts, i-th of them containing a sequence order-isomorphic to a
permutation in C;, hence the names of the classes.

(a) An element of the vertical merge Vi, (b) An element of the horizontal merge Hy,

Figure 3.1: Examples of vertical and horizontal merges

According to this definition we have H = Hy and V = V,. In Chapter
we noticed that H = V™!, We continue by proving a generalised version of this
observation.

Lemma 3.1. Let Cy,...,Cr be any permutation classes. Then

H(Cy,...,C) = (V(CT. ...

11



Proof. If 7 € V(C;'',...,C. "), we have that m = s;s5 - - - 5, such that s; is order-
isomorphic to m; € C; . For every i € [k], 7' contains a set of consecutive

integers on indices (s;)1,(5)2,--.,(5:)}s,) and the sequence at these indices is
order-isomorphic to 7; ' € C;.
The opposite inclusion is equally straightforward. O

When composed with any other class A, the classes Hy, Vi and Z, can be
viewed as a unary operator transforming A in a specific way. We formalise this
approach in the following important lemma.

Lemma 3.2. Let A be an arbitrary permutation class. Then

(a) Ao Hy is precisely the class of permutations which can be obtained from a
permutation of A by dividing it into at most k contiguous subsequences and
interleaving them in any way,

(b) AoV is precisely the class of permutations which can be obtained from a
permutation of A by dividing it into at most k subsequences and concatenating
them,

c) Ao, is precisely the class of permutations which can be obtained from a
Y
permutation of A by dividing it into at most k subsequences and interleaving
them in any way.

Proof. Let a« € A, n € Hy, v € Vi and 1« € I

(a): Consider the permutation « o € Ao Hy. Then 7 is merged from k
(possibly empty) sequences of consecutive integers sy, ..., s;. Now we define k
sequences 71, . ..,y such that |s;| = |r;| and (r;); = a((s;);) for every i € [k] and
J € [|si]] - Every r; is a contiguous subsequence of o and at the same time o on
is merged from 7y, ..., 7.

On the other hand, if a permutation 7 is obtained from o € A by dividing it
into k contiguous subsequences 71, ..., and merging them in some way, we de-
fine k£ sequences of consecutive integers sy, . .., sx such that sysg -+ - s, = 123 -+ - |7|
and |s;| = |r;| for every i. From this definition we get that «((s;);) = (7;);. Now
define n € Hy, as n(v—*((r:);)) = (s;);. By multiplying this equation by « from
the left we get that aon = 7.

(b): Consider the permutation «wo v € Ao V. The permutation v is formed
by concatenating k increasing sequences si, ..., s;. Define k sequences ry,..., 7
such that |r;| = |s;| and (r;); = a((s;);). Each r; is a subsequence of o and at
the same time aov = rirg---ry.

On the other hand, if a permutation 7 is obtained from « € A by dividing it
into k subsequences 71, . .., 7, and then concatenating them, we define k sequences
S1,...,8 such that |s;| = |r;| and (s;); = @~ *((ry);) and let v = s189- - - 5. Since
s; is by definition increasing for every i, we get v € V and since a((s;);) = (r:);,
we get m = ov.

(c): Consider the permutation a ot € A oZ;. The permutation ¢ is merged
from k increasing subsequences si, ..., s,. We define k sequences 71, ..., such
that |s;| = |r;| and (r;); = a((s;);). Clearly a o is merged from the sequences
r1,...,7; and at the same time each r; is a subsequence of «.

On the other hand, if a permutation 7 is obtained from a € A by dividing
it into k subsequences rq,...,r; and the merging them, we define k& sequences

12



$1,...,s; such that |s;] = |ry| and (s;); = a*((r;);). We then define the per-
mutation ¢ as (7 1((r;);)) = (si);. Every s; is by definition increasing and ¢
is merged from sy, ..., sg, therefore ¢« € Z. Also, since a((s;);) = (r;);, we get
m = a o ¢ from the definition of + by multiplying by « from the left. O

3.2 Composability results

Using the machinery introduced in the previous section we now prove a key lemma
which we will use to show several composability results.

Lemma 3.3. Let Cy,Cs,...,Cy be arbitrary permutation classes. Then
CieC®--OC,L CV(C,...,Ck) o Hy.

Proof. Consider a permutation 7 € C; ©® --- ® Ci, and divide it into k sequences

S1,..., 8k such that s; is isomorphic to a permutation from C;. The permutation
v = 8189+ s then lies in V(Cy,...,C;), which together with Lemma [3.2)(a)
implies m € V(Cy,...,Ck) o Hg. O

By reformulating the previous statement we immediately get the following.

Corollary 3.4. Let A, B and C be permutation classes such that C C A ©® B.
Then C CV(A,B)oH.

Using what already has been done in this chapter it is now elementary to show
that Z is 2-composable.

Theorem 3.5. The class I, is 2-composable for every k > 2. In particular,
L, € Vi o Hy.

Proof. Trivially Vi, C Z), and Hy € Zi. Next we recall that

k

and use Lemma [3.3|for C; =Cy = --- =C, =Z. O

We proceed by proving a result in some sense opposite to that of Lemma [2.2]
namely we show that Z, may be constructed from smaller Z,, Z; using composi-
tion.

Theorem 3.6. 7., 1 C Z; o Z; for all integers k,l > 2.

Proof. Consider a permutation m € Zp,; 1, merged from two sequences a and
b such that a is merged from k increasing sequences si,..., S, and b is merged
from [ — 1 increasing sequences Sii1, ..., Sg+i—1. Let ¢ be the increasing sequence
created by sorting the elements of b. Consider a permutation o created by merg-
ing the sequences a and ¢ so that ¢ and s, form a single increasing sequence.
Clearly o € Z; and sequences Sgy1,...,Ski_1 are subsequences of o, since they
are increasing and therefore were not affected by sorting b.

According to Lemma [3.2)(c) the class 7, 0 Z; contains all permutations we can
create from o by dividing it into [ subsequences and merging them in any way.
It is therefore enough to find a way to divide ¢ into [ subsequences which can be
merged into 7. A simple choice of | such subsequences is a, Sgi1,- -, Sgri—1- LI
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This theorem raises the question whether we could construct a bigger class
from given Z, and Z;.

Question. Given positive integers k and l, what is the largest integer m = m(k, 1)
such that Z,, C T o1 ?

So far we have shown that m(a,b) < kl (Lemma and that
m(k,l) > k+1—1 (Theorem [3.6)).

3.3 Upper bound on growth rate

The work of Regev [10] implies that gr(Z,) = k% A simple proof of the upper
bound gr(Z;,) < k? can also be found in [I1} Section 1.4]. We re-derive this bound
using results of the previous section and thus demonstrating how composability
may be used to estimate growth rates.

Before we proceed, we state and prove two lemmas describing upper growth
rate preserving properties of composition and vertical merge of permutation
classes.

Lemma 3.7. Let A and B be two permutation classes satisfying gr(A) = a and
gr(B) = b for non-negative real numbers a, b. Then gr(A o B) < ab.

Proof. Fix a constant K such that for every € > 0 and every n there are at most
K (a+ ¢)" permutations of order n in A and at most K (b + ¢)” permutations of
order n in B.

Then there are at most

K*((a+e)(b+e)" =K*(ab+ (a+b+¢e)e)"
permutations of order n in A o B for every € > 0 and every n, hence gr(Ao B) <

ab. O

Lemma 3.8. Let A and B be two permutation classes satisfying gt(A) = a and
gr(B) = b for non-negative real numbers a, b. Then gr(V(A,B)) < a+b.

Proof. We fix a constant K such that for every € > 0 and every n there are at
most K (a+¢)™ permutations of order n in A4 and at most K (b+¢)" permutations
of order n in B.

For every integer k between 0 and n there are at most

(Z) K(a+e)lK(b+e)n*

permutations of order n such that their first k£ elements are order-isomorphic to a
permutation of A and last n — k elements are order-isomorphic to a permutation
of B. Summing over all values of k we get that there are at most

K? kzn; (Z) (a+e)(b+e)" % =K*a+b+2e)"

permutations of order n in V(A, B), therefore gr(V(A, B)) < a + b. O
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Since V(Cy,...,Cx) = V(V(Cy,...,Ck_1),Ck), the previous lemma is easily
extended by an induction argument to the following.

Corollary 3.9. Let gt(C;) = g; for i € [k]. Then
gV, Ca, .. Ch)) Sgr+ g2+ -+ Gne
Specifically, since Hy = V', g1(Hy) = gt(Ve) < k.
The proof of the desired upper bound of gr(Z;) now becomes simple.
Theorem 3.10. The growth rate of I, is at most k2.

Proof. Recall that Z, C VyoHy, by Theorem [3.5/and use Corollary [3.9/and Lemma
B.7 O
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4. On layered and related classes

In this chapter we cover classes of permutations which can be written as a sum or
as a skew sum of increasing or decreasing permutations. Among these classes we
provide infinitely many examples of composable classes as well as several examples
of classes which are not composable.

Let ¢, denote the increasing permutation of order k£ and J, denote the decreas-
ing permutation of order k. A permutation is layered if it is a sum of decreasing
permutations which are then called layers. We shall denote the class of all layered
permutations by £. We shall denote by £, the class of permutations which are
sums of at most k layers. The complement of a layered permutation is clearly
a skew sum of increasing permutations and we shall call such a permutation
co-layered. The class L consists of precisely the co-layered permutations.

(a) Layered permutation (b) Co-layered permutation

Figure 4.1: Examples of layered and co-layered patterns

4.1 Layered permutations

We start by proving that L, is not composable using a counting argument. As
it turns out, proper subclasses of L, are asymptotically too small to build the
entire £y class using composition.

Theorem 4.1. The class Ly is not composable.

Proof. Suppose that L5 C C; 0 Cy0---0C such that C; C Ly for every i € [k].
Each of these subclasses avoids at least one permutation of £5. In other words for
every C; there is a m; € Ly such that C; C L5 N Av(m;). Considering a sufficiently
large n so that m; < 6, @, for every i € [k] we get that C; C Lo N Av(d, & d,)
for every i, in other words every permutation in these subclasses has one of its
two layers shorter than n. It follows that for a fixed integer N there are at most
2(n — 1) permutations of order N in any C;, therefore there are at most (2n — 2)*
permutations in C; o---0C;. But £y contains N permutations of order N for any

N, therefore we obtain a contradiction by choosing N > (2n — 2)*. O
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The number of permutations of order n in L, is linear in n while any proper
subclass contains only constantly many permutations of fixed order. We can use
the same approach using the asymptotic jump from polynomial to exponential
functions to show that a different class of permutations cannot be composable.
Namely, let F3 be the class of layered permutations with layers of size 1 or 2.

Theorem 4.2. The class F» is not composable.

Proof. Suppose F5 is composable from k of its proper subclasses Cy,Cs, ..., C,. We
choose a permutation from F, \ C; for every i and we select n large enough so that
every chosen permutation is contained in 7 = Y | do. Then if C = F» N Av(m),
we get that 7, C (C)*. Every permutation in C contains fewer than n layers of
size 2, otherwise it would contain 7. Clearly there are at most N® permutations
of F, that have order N and exactly a layers of size 2. Therefore C contains at
most N' + N2 +...4 N1 < nN" permutations of order N and the composition
(C)* then contains at most n* N"* permutations of order N, which is a number
polynomial in N. As mentioned in [I1I, Chapter 4], the number of permutations
of order N of F; is counted by the Fibonacci numbers which grow exponentially,
therefore there is N large enough so that F, has more permutations of order N
than (C)*.

Note that this result also follows immediately from the theorem of Kaiser and
Klazar ([12] 3.4]), which states that if the number of permutations of order n in
a permutation class is less than the n-th Fibonacci number for at least one value
of n, then it is eventually polynomial in n. This implies that every class counted
by the Fibonacci numbers is uncomposable. ]

The argument used in the proofs above cannot be used for L3, so we need a
different approach to show that this class too is not composable. We will make
use of the following property of Lo U L5.

Lemma 4.3. (£, U L) NS, is a subgroup of S, for every n, i.e. it is closed
under composition.

Proof. In this proof, we consider an additive group structure on the set [n] with
the neutral element n and an operator +,, defined as

a+,b=1+(a+b—1) mod n.

First we prove that £5 N S,, by itself is a subgroup of S,,. Observe that £; N .S,
contains exactly permutations 7 such that there is a shifting number k with
7(i) =i+, k for every i € [n]. Indeed, if 7 = 1, © ¢, then for any i € [n] we have
7(i) = ¢ +, b and conversely if (i) =i +, k for every i € [n] then m = ¢, © 1.
Now for two permutations 7,0 € L with shifting numbers £, [ respectively we
have m(o(i)) = i 4+, | +, k for any i € [n], therefore m o o € L] since it has a
shifting number k +,, [.

It trivially holds that Lo 0 D = L} = L5 = D o Ly. Considering 7,0 €
(L2 U L) NS, it remains to distinguish the following four cases:

(i) m € L5 and o € L}, then m o o € L} by discussion above,

(ii) m € L} and 0 € Ly, then Too = (roc”) 00, € Ly,
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(iii) m€ Ly and 0 € L}, then roo = (J,07) 00 =0d,0 (7" 00) € Ly,
(iv) m € Ly and 0 € Lo, then Too = 7" 0 (0, 00,) 00 =n" 00" € L. O
Theorem 4.4. The class L3 is not composable.

Proof. Suppose that L3 C C;0Cy0---0Cy such that C; C L3 for any i. Using the
same initial argumentation as in the proof of Theorem we get that there is an
n such that L3 C (L3N Av(5, @ J, ® 6,))*, meaning that every permutation of
L3 can be composed from k permutations having at least one of the three layers
shorter than n.

Let m; € Ciforl < i< kandm™=m omo---0om,. We now claim that it
is possible to remove at most (n — 1)k elements from 7 to obtain a two-layered
or a two-co-layered permutation. We will prove this by induction on k. The case
k =1 is easy since m = m; avoids 6,, b 6,, D ,, so it has a layer of length shorter
than n whose removal creates a two-layered pattern.

Fork > 1let 0 = mo---om,_1 and m = oom,. Let all these permutations have
the order N. By the induction hypothesis, there are a indices iy, ..., such that
a>N—(n—1)(k—1) and o restricted to these indices has the two-layer or the
two-co-layer pattern. Also there are b indices ji, ..., J, such that b > N — (n—1)
and 7y, restricted to these indices forms the two-layer or the two-co-layer pattern.

Let us now restrict the function o oy, to the set S = {m, ' (i1),..., 7, '(ia)} N
{j1,---,Jp} whose size is at least N — (n — 1)k. Then both m(S) and o(m(S))
are still two-layer or two-co-layer patterns, which implies the same for their com-
position according to Lemma [£.3] Therefore 7 restricted to S forms a two-layer
or two-co-layer pattern and N — |S| < (n — 1)k which completes the induction
step.

Consequently, any permutation of order N in C; o Cy o --- 0 C;, has a two-
layered or a two-co-layered pattern except for k(n — 1) elements. But choosing
N = 3(k(n — 1) 4+ 1) and considering the permutation @;_, Ok(n—1)+1 € L3 we
obtain a contradiction. O

If we allow more than three but still constantly many layers, we always get a
composable class.

Theorem 4.5. The class Ly is 3-composable for every k > 4.

Proof. We will show that £, C Ly_10 Ly 90 L_1.

If m € L, of order n has fewer than k layers, then 7 = 704,00, € L,_10L,_50
L._1. Otherwise 7 has at least 4 layers and has the form © = 6, ® 6, ® . D oy D 7’
for some positive a, b, ¢, d. Since for every layered ¢ we have c o0 o0 = ¢ it is
not hard to check that

T = 00yt D0 DIgDT )0 (0qip®0era®T )0 (00 DOy DOerag®n') € Li_10Ls_20Ly 1.
The situation is represented in the figure below. O]

This theorem raises the question whether £ could be 2-composable for k > 4.
Our work from Chapter [2| quickly determines that this is not the case.

Proposition 4.6. L, for k > 4 is not 2-composable. In particular, it is not
n-composable for any even number n.
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Figure 4.2: 8, ® 6, ® 0 ® 04 = (Sarp B 0c B 84) © (Sury B Gera) © (60 D 0y B Gera)

Proof. Since Ly, is an infinite class which does not contain Z the statement directly
follows from Theorem 2.5 O

We have now covered the classes £ for all k& > 2. It remains to consider
permutations with an unbounded number of layers.

Theorem 4.7. The class L is not composable.

Proof. Every subclass of L is determined by one or more forbidden layered per-
mutations. If £ is composable from £ subclasses, we may choose one forbidden
layered permutation from each of them and then choose n large enough so that
T = @?:11 dn4+1 contains all of the chosen patterns. That way, £ C C*¥ where
C=Av(m)NL.

Clearly every permutation in C has at most n layers longer than n, otherwise
it would contain 7. Our goal is to show that permutations in C* are somehow
very close to patterns composed from permutations that have a constant number
of non-trivial layers and all other layers are just of size 1. We say that two
permutations are (c,!)-close if you can transform one into another by changing
at most [ values arbitrarily and all other by at most c¢. For ¢ € C we denote by
N(o) the permutation created from o by replacing all layers of length at most n
by the corresponding number of layers of size 1.

We can now formally state our goal: we shall prove that for any o1, 09,...,0% €
C the permutations gj,0- - 00900y and N(o})o---0N(09)o N(0oy) are (nk, 4n’k?)-
close. We will prove this by induction on k.

If k = 1, we have to show that o; and N(oy) are (n,4n?)-close. Since N(o) is
created by manipulating layers of o of length at most n in place, every value is
shifted by at most n, so they are even (n,0)-close.

If £ > 2, suppose that 0 = g, 0---009007 and v = N(oy)o---0N(09)o N(oy)
are (nk,4n?k)-close and we shall prove the statement for k + 1.

Given a layered permutation and one of its layers of size [ + 1 at indices
1,74+ 1,...,1+ [, we say that a number u is in the area of influence of this layer
ifi <u<i+l

Consider those numbers u of [|o|] such that o(u) and v(u) differ by at most
kn. Then for a given big layer of N(ox41) there are at most 2nk such numbers u
such that v(u) is in the area of influence of this layer and o(u) is not: at most nk
from each side of the layer. The same goes the other way around: for each big
layer of 04,1 there are at most nk numbers u such that v(u) is not in the area
of influence of this layer but o(u) is. Since there are at most n big layers, we
get that there are at most 4n?k such numbers u which leave or enter the area of
influence of a big layer. For all these numbers we allow the values oy1(0(u)) and
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N(op41)(v(u)) to differ arbitrarily. Together with at most 4n?k? numbers from
the previous step of induction we get 4n2k? + 4n?k = 4nk(k + 1) < 4n*(k + 1)?
values which satisfies the condition of the statement. It remains to show that all
other values change by at most n(k + 1).

For other values u € [|o|] not considered so far it holds that |v(u) —o(u)| < nk
and that either v(u) and o(u) are both in the area of influence of the same big
layer of 041 or they are in areas of influence of short or trivial layers. The latter
case immediately implies |N(op41)(v(u)) — ogs1(o(w))| <nk+n <n(k+1). In
the former case it is enough to realise that d,(z%y) = d,(x)Fy so if o(u) differs by
y from v(u) and they are in the same big layer, after applying oy1 (or N(op41),
which is the same for the big layers) the values still differ by y < nk < n(k+ 1),
which finishes the induction step.

Notice that for o € C the permutation N(o) can be written is a (2n)-block
according to the notation used in Chapter 2l Thus by Lemma [2.4] we get that
by composing k such permutations we get a permutation which is a (2n)*-block.
As a result we get that each permutation from (C)* is (c,[)-close to a C-block
for suitable fixed constants c,[,C'. Notice now that every C-block avoids the
(C +1)-block v = 214365 - - - (2C +2)(2C + 1), so every permutation from (C) is
(¢,1)-close to a permutation avoiding . We can construct a layered permutation
which is not (¢, [)-close to any 7y-avoider as follows. Choose a layered permutation
with C'+ 1 layers of length [+ 2¢+ 1 and consider a permutation (¢, )-close to it.
Then in every layer there are at least 2c + 1 elements whose value changed by at
most ¢; therefore there exist at least two elements which remained in decreasing
order. Choosing these two elements from every layer forms an occurrence of +.
Since £ contains a permutation which is not (c,[)-close to v and (C)* does not
contain such permutations, we get that £ ¢ (C)*, achieving contradiction. ]

Preceding results and Lemma imply the following corollary.

Corollary 4.8. The classes of co-layered permutations L5, L5 and L° are not
composable.

4.2 More subclasses of layered permutations

In this section, we explore slightly generalized versions of the class £ created
by grouping layers of size 1 into one increasing layer. In the rest of this chapter,
we refer to both increasing and decreasing layers as blocks as defined in Chapter
2l Let £; denote the class of permutations which can be written as a sum of at
most & blocks. Note that a permutation m € £}, has [ blocks if it is not a sum
of less than [ blocks. We introduce one more piece of notation: for classes A, B
let A B={a®f;ac A e B}. We will utilize an additional subclass of L,
denoted by X3 and defined as A5 =Z D b I.

Theorem 4.9. L is composable for k > 2.

Proof. Itk =2let A=7Z@&D and B=D & Z. Then a permutation 7 € Lj is
either in A or in B or there are positive a, b such that m = d, & d;, in which case
T = (La ® %) 0 (00 ® tp). Therefore L5 C Ao B and it is 2-composable.
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If £ > 3, then X3 C L£;. Let m € L; have k (possibly empty) blocks

. . k
T1, T2, ..., T Of sizes 1,1y, ..., Iy, ie. ™ = @, m. Define vy = 1115441,
and (s = Ly 1,4+, Lhen

k
@m:(ﬂl@L>1)O---o(L<a@7ra69L>a)O---O(L<kEB7rk),
=1

therefore 7 € (X3)F. Since 7 was chosen arbitrarily it follows that £} C (X3)*. O

The class £, contains only sums of decreasing blocks, the class £; contains
all combinations of increasing and decreasing blocks. In the rest of this section
we shall explore subclasses of £ with bounded number of blocks for which we
prescribe which blocks should be increasing or decreasing.

Let k be a positive integer and ¢ : [k] — {Z,D} a mapping satisfying the
condition that two consecutive elements of [k] cannot be both mapped to Z. We
then define the class £ as

Li=p()®e2) & & pk).

In other words, the class £; contains layered permutations made of up to k

increasing or decreasing blocks in the order prescribed by the mapping ¢. If two

consecutive blocks were increasing, we could join them into one block, hence the

condition for ¢. Notice that if ¢ maps all elements of [k] to D, then L} = L.
We begin our exploration of these classes with the case k = 2.

Theorem 4.10. The class LY is not composable for any .

Proof. This can be easily proved by repeating the proof of Theorem [4.1], but we
will show another possible approach here.

We will present this proof for the case (1) = D,p(2) = Z, ie. A= L5 =
DoZ. As in the proof of Theorem we suppose that A is k-composable and
we deduce that there is a sufficiently large n and a permutation m = 9, @ ¢,, such
that A C (C)* where C = AN Av(r).

Let N > 2kn + 2n be an even number and 7,9, ..., 7 € C arbitrary per-
mutations of order N. We will show by induction on k that

N/2 —nk < (mpo---omom)(N/2) < N/2+n(k—1),

in other words, permutations of C can only map /N/2 constantly far from its value.
Ifk=1,let m =8, B tp. If N/2 > a, then m(N/2) = N/2 and the statement
holds. If N/2 < a, then m(N/2) =a— N/2 = N/2—b < N/2. Also one of a,b
has to be smaller than n and since a > N/2 > kn + n, it must be b, therefore
m(h)=N/2—-b> N/2 —n.
Now let the statement hold for 1,2,...,k and let x = (7m0 --omyom)(N/2).
By induction hypothesis we have that

N/2—nk <x < N/2+n(k—1).

Let g1 = 6a®tp. If > a, then w41 (x) = x and we are done. If a > z, we have
to have a > n, for otherwise n > a > x > N/2 — nk which implies N/2 < nk +n,
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contradicting the choice of N. Therefore b < n and 7p41(x) =a—x =N —b—u.
Finally we have

and

Tpa1(t) =N—-b—x<N—-—x<N-—(N/2—nk)=N/2+nk

Tep1(t) =N—-b—2>N—-n—N/2—nlk—1)=N/2—nk > N/2 —n(k+1),

which finishes the second step of the induction.

We have shown that for sufficiently large N the composition (C)* contains only
permutations which move the middle element by a constant depending only on n
and k, but the class A contains permutations 7 of order N satisfying 7(N/2) = 1,
which is a contradiction. ]

Theorem 4.11. The class L} is composable for every k > 4 and for every
mapping .

Proof. We distinguish three cases.

(i)

(i)

(i)

¢ does not prescribe any increasing blocks. Then £f = £ and the theorem
follows from Theorem 4.5

¢ prescribes at least two increasing blocks, i.e. (i) = ¢(j) = Z for i < j.
Then by definition there is a k such that ¢ < k < j and ¢(k) = D, therefore
X3 C L{. In this case, we can show that £f C (X3)" using the approach of
Theorem .91

@ prescribes exactly one increasing block. As in the second case we easily
get that L} C (X3)k, so it is enough to construct X3 from proper subclasses
of L7.

Let A=D@®D&®Z and B=Z&D D D. Since k > 4, the one increasing
block is either preceded by at least two blocks, in which case A C L, or it
is followed by at least two blocks, in which case B C L7. Nevertheless we
clearly have X3 C Ao A and X3 C Bo B, therefore either £ C (A)?* or
LE C (B)*. O

We omitted the case k = 3, which remains open for most choices of ¢ except
the obvious case DS Z S D C (D@ Z)o (Z @ D). We believe that other choices
of ¢ create classes which cannot be composed from their proper subclasses.

Question. Is the class L§ composable for various choices of ¢ ¢
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5. Other results

The final chapter of this work collects several miscellaneous results concerning
composability. The first section provides more examples of composable classes,
the second section offers an alternative proof of a known upper bound on the
growth rate of Av(1324) and the third section presents several additional examples
of uncomposable classes.

5.1 Composable principal classes

In this section, we use results of Chapter [3[and of [9] to prove that many classes
avoiding a single decomposable pattern (a permutation which can be written as
a non-trivial sum of smaller permutations) are composable.

We will base our proof on the following splittability result of Jelinek and Valtr

[].

Lemma 5.1 (Jelinek, Valtr [9]). Let «v, 8,7 be three nonempty permutations and
let m € Av(a @ @& ). Then m can be merged from two sequences (a)?_, and
(¢)™, such that a avoids o @ B, ¢ avoids B @~y and for any i € [n| and j € [m]

either m(a;) < 7 (¢;) or a; < ¢;.

Theorem 5.2. If a and v are any non-empty permutations and B = 6, for a
positive integer n, then

Avia® B8 7) C (V(Av(a® ), Av(B® 7)) NAv(ae & 7)) o H.
In particular, Av(a @ @& ) is 2-composable whenever a & &y ¢ H.

Proof. Let C = Av(a® B @), A= Av(a® ) and B = Av(8®~). Lemma].]]
and Corollary [3.4] immediately imply that C C V(A, B) o H.

Let m € C be merged from sequences a and ¢ as in Lemma [5.1] and let o = ac.
We have to show that o € C. Suppose for a contradiction that o contains a copy
of a ® [ @ ~. Let b the decreasing subsequence of ¢ representing the occurrence
of 5. Then b cannot be contained entirely in a or in b since that would create a
copy of a @ B in a or of @ v in b. Thus if § = 1 the contradiction is reached
immediately.

If |5] > 1, we would like to show that b is also a subsequence of 7. Assume
it is not, therefore there are elements b; and b; with ¢ < j such that they appear
in reverse order in 7. That can only be achieved if b; is in a and b; is in ¢, which
together with b; > b; contradicts the properties of a and ¢ from Lemma .

It follows that the entire occurrence of a® S @~ is also contained in 7, which
is a contradiction, thus C C (V(A,B)NC) o H.

To prove that C is really 2-composable for a @ @ v ¢ H it remains to verify
that V(A, B) N C and H are proper subclasses of C. For the former consider the
permutation (a« ® ) © (8 @ ) which is clearly in C and not in V(A, B), and
for the latter recall that by Proposition the class ‘H has a basis of size 3 and
therefore it cannot be equal to a principal class. O

23



Note that for the case § =1 we get
V(Av(a® 1),Av(1 ® 7)) C Avia® 1 @),

and thus we may omit the intersection with Av(a @ 1 @ ) in the formula of
Theorem [5.2] Indeed, if a permutation is concatenated of two parts, first avoiding
a @ 1 and the second avoiding 1 & «, such a permutation cannot contain an
occurrence of a @ 1 @  since one of the two parts would contain the middle 1
and thus the forbidden pattern.

5.2 Growth rate of Av(1324)

In [13], Claesson, Jelinek and Steingrimsson proved one of the first upper bounds
on the growth rate of Av(1324), namely they showed that gr(Av(1324)) < 16.
We provide an alternative and short proof of this result based on our work in
compositions and vertical and horizontal merges.

Theorem 5.3. The growth rate of Av(1324) is at most 16.

Proof. Plugging a = 1, § =21 and v = 1 into Theorem [5.2| we get that
Av(1324) C V(Av(132),Av(231)) o H.

It is a well-known fact that permutations avoiding a single pattern of length 3 are
counted by the Catalan numbers (see for instance Knuth [I4] 2.2.1]) and therefore
gr(Av(132)) = gr(Av(231)) = 4. Thus, by Lemma [3.§|

gr(V(Av(132), Av(231))) < 8.

Since gr(H) = 2, as shown in Chapter [l we get that gr(Av(1324)) < 16 by
Lemma 3.7 O

5.3 More uncomposable classes

So far we have used classes such as V or ‘H to prove that other classes are com-
posable. In this section, we will show that these classes, and classes similar to
them, are themselves uncomposable.

We call a permutation n € H alternating if n(2i — 1) < n(2i) > n(2i + 1)
for all possible values of . We will use the following simple observation about
alternating permutations in H.

Observation 5.4. Every permutation from H is contained in an alternating per-
mutation from H.

Theorem 5.5. The classes V, V¢, V(D,I), V(Z,D), H, H®, H(Z,D)
and H(D,I) are not composable.

Proof. We will show the proof for the class H, the same approach can be applied
to every mentioned horizontal merge and the result is transferred by inversion to
the vertical merges according to Corollary [2.7]

24



Figure 5.1: The alternating permutation of length 7

Suppose that H is composable from its proper subclasses Cy, . ..,Ck. Each of
Cy,...,Ck does not contain some permutation of H, thus according to Observation
there is an alternating permutation n € #H such that C; C Av(n) and therefore
if C =Av(n)NH C H we have H C (C)*.

Any permutation 7 € C is merged from two sequences a and b of consecutive
integers. We label elements of m by a or b depending on which sequence they
belong to. A sequence of elements with alternating labels forms a copy of an
alternating permutation in 7. The length of the longest sequence of alternating
labels in 7 is thus limited by a constant N determined by the order of 7, thus
7 can be broken into at most N contiguous parts each having one label. Since
elements labeled with a single label form a sequence of consecutive integers, this
implies that 7 is in fact an N-block. Since the choice of m was arbitrary, every
permutation of C is an N-block and by Lemma every permutation of (C)*
is an (N*)-block. But a long enough alternating permutation from H is not an
(N*)-block, therefore H ¢ (C)* and the proof is finished. O
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Conclusion

This thesis studies the previously unexplored concept of composability of permu-
tation classes. Given a permutation class, our main goal is to show, how it can
be constructed using smaller permutation classes and the composition operator,
or to prove that this cannot be done. Throughout the paper, we present both
types of results.

On the positive side, Theorems and show two distinct ways of con-
structing the class Av(k---21), Theorems , and provide examples of
many classes of layered patterns which can be constructed from simpler subclasses
and Theorem shows that many principal classes avoiding a decomposable pat-
tern are composable.

On the negative side, in Theorems[4.1] [4.2] [4.4 and 4.7 we present four different
classes of layered patterns which cannot be constructed from any number of
proper subclasses using composition, and in Theorem we provide 8 more
examples of uncomposable classes.

Composability is similar to splittability in that both these properties describe
how a bigger class is built from smaller ones. We do not know whether these
two properties are somehow connected; however, our research suggests that this
may be the case, since every composable class we have found so far is also split-
table. We have found examples of splittable yet uncomposable classes, namely
the classes £y and L3 introduced in Chapter [} The class of all layered permuta-
tions is an example of a both uncomposable and unsplittable class. The last case
remains open and we pose it as a question for future work.

Question. Is there a permutation class which is composable and unsplittable?

Our work may find applications in enumerating permutation classes. We have
shown how to use composability to estimate growth rates by re-deriving known
upper bounds on growth rates of classes Av(k---21) and Av(1324) in Theorems
and [5.3| respectively. We believe that by refining our ideas, more and tighter
bounds could be found. The current lowest upper bound of 13.74 on gr(Av(1324))
is due to Béna [15] and the highest lower bound of 9.81 is due to Bevan [16].

Question. Is the class Av(1324) composable from two or more classes small
enough to give a tight upper bound on its growth rate?
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