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Souhrn 

Většina hypercholesterolémií je polygenního původu, dosud však neznáme 

všechny geny, které cholesterolémii určují. K objevu těchto genů by mohlo napomoci 

studium experimentálních modelů se spontánním defektem v metabolismu cholesterolu. 

Cholesterolémie u lidí může být též ovlivněna řadou genových variací a polymorfismů. 

Některé z nich mohou ovlivnit i odpověď cholesterolémie na příjem tuků.  

Pražský hereditárně hypercholesterolemický (PHHC) potkan je jedinečný model 

hypercholesterolémie, která je indukovaná pouze dietním cholesterolem (bez přídavku 

kyseliny cholové nebo léků ovlivňujících činnost štítné žlázy). Již na standardní dietě 

má lehce zvýšenou cholesterolémii a na podání cholesterolové diety reaguje 

několikanásobným vzestupem koncentrace cholesterolu v krvi (odpovídající pacientům 

s hypercholesterolémií). Akumulují se u něj lipoproteiny s vysokým obsahem 

cholesterolu, zejména lipoproteiny  o střední (IDL) a velmi nízké (VLDL) hustotě. 

V pokusu s tyloxapolem (inhibitorem lipoproteinové lipasy (LPL)) jsme zjistili, 

že PHHC potkan na cholesterolové dietě inkorporuje do VLDL dvakrát více 

cholesterolu než potkan Wistar, a to při stejném obsahu cholesterolu v játrech u obou 

kmenů. Tyto VLDL bohaté na cholesterol jsou in vivo katabolizovány pomaleji  

a hromadí se v cirkulaci. Zvýšenou  inkorporaci cholesterolu do VLDL u PHHC 

potkana nemůžeme vysvětlit  rozdíly v aktivitě enzymů acyl-CoA:cholesterol-

acyltransferasy (ACAT) a mikrosomálního proteinu přenášejícího triacylglyceroly 

(MTP) ani v expresi genů, které  tyto enzymy kódují. Mezi potkany PHHC a Wistar 

nebyly také nalezeny žádné rozdíly v odpovědi jaterního transkriptomu (Affymetrix 

GeneChip®) na cholesterolovou dietu. Identifikovali jsme ale několik genů, jejichž 

exprese se mezi oběma kmeny významně lišila nezávisle na dietě. Podrobněji jsme 

analyzovali úlohy dvou z nich, Apof a Aldh1a7, včetně jimi kódovaných proteinů. Jejich 

funkce v patogenezi hypercholesterolémie zůstávají však i nadále nejasné. V rámci 

disertační práci jsme objasnili fyziologickou podstatu hypercholesterolémie u PHHC 

potkana, geny odpovědné za rozvoj hypercholesterolémie se nám však určit nepodařilo.  

Cholesterol-7α-hydroxylasa (CYP7A1) klíčový řídicí enzym syntézy žlučových 

kyselin, hraje důležitou roli v regulaci cholesterolémie. Polymorfismus -203A>C 

(rs3808607) v promotoru genu pro CYP7A1 se podílí na determinaci cholesterolémie  

a její odpovědi na dietu. Tento polymorfismus je v pevné vazbě s dalším promotorovým 

polymorfismem -469C>T (rs3824260).  



 

Pomocí duálního luciferasového stanovení jsme zjistili, že exprese alely -203C  

(-203C, -469T) je několikrát zvýšena v porovnání s alelou -203A (-203A, -469C). Za 

pozorované změny je odpovědný nukleotid v pozici -203. Obě alely se nelišily 

v odpovědi na stimulaci inzulínem a PPARα agonisty (WY-14643 nebo fenofibrát). 

Dále jsme studovali diurnální variaci aktivity CYP7A1 po podání cholestyraminu 

(zvýšení aktivity) a kyseliny chenodeoxycholové (CDCA, snížení aktivity) u zdravých 

mužů homozygotních pro variantu -203A nebo -203C. Aktivita CYP7A1 byla po 

podání cholestyraminu zvýšena a po podání CDCA snížena. Mezi homozygotními 

nositeli -203A a -203C jsme však po podání obou léků nenalezli rozdíly. Aktivita 

CYP7A1 vykazuje v kontrolním experimentu bez lékové intervence u nositelů alely  

-203A diurnální variaci, zatímco u nositelů alely -203C nikoli. Rozdíly v diurnální 

variaci enzymové aktivity mohou přispět k vysvělení role polymorfismu CYP7A1 

v regulaci cholesterolémie a její odpovědi na dietu. 



 

Abstract 

Most types of hypercholesterolemia are of polygenic origin. Some genes related 

to hypercholesterolemia are known, although all genes responsible for cholesterolemia 

regulation have not been characterised yet. To identify these new genes, animal models 

with spontaneous defects in cholesterol metabolism could be very useful. Moreover,  

a number of variations and polymorphisms have been found to influence blood 

cholesterol levels in humans. Some may also affect cholesterolemia responsiveness to 

dietary fat. 

The Prague hereditary hypercholesterolemic (PHHC) rat is a unique model of 

hypercholesterolemia induced by dietary cholesterol alone (without administration of 

cholic acid or thyrotoxic drugs). It exhibits modestly increased cholesterolemia when 

fed chow and responds to a diet containing cholesterol with a several-fold increase of 

cholesterolemia to concentrations comparable to those observed in 

hypercholesterolemic patients. Hypercholesterolemia in this model is characterised by 

accumulation of very low density lipoproteins (VLDL) and intermediate density 

lipoproteins (IDL) enriched by cholesterol. 

In an experiment with tyloxapol (an inhibitor of lipoprotein lipase) we found that 

PHHC rats on a cholesterol diet incorporated twice as much cholesterol into VLDL as 

Wistar rats, although liver cholesterol remained the same. When labelled with 125I, these 

cholesterol-rich VLDL of PHHC rats were catabolised in vivo more slowly than  

125I-labelled VLDL of Wistar rats and accumulated in circulation. The increased 

incorporation of cholesteryl esters (CE) into VLDL in PHHC rats could not be 

explained by differences in acyl-CoA:cholesterolacyltransferase (ACAT) or microsomal 

triglyceride transfer protein (MTP) activities and gene expression. Furthermore, we 

found no differences between PHHC and Wistar rats in the response of the hepatic 

transcriptome (as determined using AffymetrixGeneChip® arrays) to dietary cholesterol. 

However, several genes were differently expressed between both strains, independent of 

diet. Of those, we studied Apof, Aldh1a7 and corresponding proteins in detail. We could 

not ascribe any role to these genes in hypercholesterolemia pathogenesis. We were able 

to explain the aetiology of hypercholesterolemia in the PHHC rat, although the related 

genetic defects need to be clarified.  

Cholesterol 7α-hydroxylase (CYP7A1), a key regulatory enzyme in bile acid 

biosynthesis, plays an important role in cholesterolemia regulation. The -203A>C 



 

polymorphism (rs3808607) in the CYP7A1 gene (CYP7A1) promoter is involved in 

cholesterolemia determination and its responsiveness to diet. This polymorphism is in 

close linkage disequilibrium with the -469C>T polymorphism (rs3824260).  

Firstly, using dual luciferase assay, we demonstrated that expression of the  

-203C (-203C, -469T) allele was markedly increased compared to the -203A (-203A,  

-469C) allele, caused by the nucleotide in position -203. The alleles neither responded 

to stimulation with insulin nor PPARα agonists (WY-14643 or fenofibrate). Secondly, 

we analysed diurnal variation of CYP7A1 after enzyme activity upregulation 

(cholestyramine) and suppression (chenodeoxycholic bile acid, CDCA) in healthy men 

homozygous for the -203A or -203C allele. As expected, CYP7A1 activity was 

upregulated after treatment with cholestyramine and suppressed after treatment with 

CDCA. There were no differences between -203A and -203C homozygous subjects in 

the response of enzyme activity to both drugs. Importantly, in the control experiment, 

CYP7A1 in -203A allele carriers displayed diurnal variation, but not in -203C carriers. 

The differences in diurnal variations of enzyme activity may partly explain the role of 

the CYP7A1 polymorphism in the regulation of cholesterolemia and its responsiveness 

to diet. 
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1. Introduction 

Cholesterol, its metabolites and immediate biosynthetic precursors play essential 

roles in cellular membrane physiology, dietary nutrient absorption, reproductive 

biology, stress responses, salt and water balance and calcium metabolism. Admittedly, 

this structurally fascinating lipid is utterly essential to the proper functioning of cells 

and organisms. However, there is little doubt that the disease process responsible for the 

leading cause of death in the industrialised world – atherosclerosis – is a disorder in 

which an excess of cholesterol is a major culprit. Has evolution created a critical, life-

sustaining molecule whose oversized amount is causally related by a perverse series of 

events involving the lifestyle of modern humans to this human disease? 

In summary, nature has produced an amphipathic planar molecule that affects 

(directly or through modifications) an incredible array of critical biological processes. 

Thus, there has been strong evolutionary pressure to ensure that individuals have an 

adequate supply of cholesterol to reach reproductive age. Indeed, the regulatory 

response of cells to sterol starvation as well as to moderate elevation of cholesterol is 

exquisitely designed for this purpose. What nature did not plan for, nevertheless, was 

how to handle levels of cholesterol that exceed these limits. 

Nowadays, nobody denies that hypercholesterolemia is a causative factor of 

coronary heart disease. However, the clear cause-and-effect relation between hyper-

cholesterolemia and atherosclerosis was generally accepted only 30 years ago [1]. The 

first evidence came 100 years ago when Anitschkow and Ignatowski produced 

experimental atherosclerosis in rabbits by feeding them cholesterol [2, 3]. Thereafter, in 

1938 Carl Müller described familial hypercholesterolemia as an “inborn error of 

metabolism” that produces high blood cholesterol and heart attacks in young people [4]. 

The breakthrough came in 1984 when the Lipid Research Clinics Coronary Primary 

Prevention Trial showed that decreasing blood cholesterol significantly reduces 

coronary heart disease events [5]. At that point, for the first time, decreasing blood 

cholesterol levels became an official national public health goal. These days, in the era 

of statins, there is no longer any doubt about the value of decreasing blood cholesterol 

levels. 

Perhaps the most discussed topic over recent decades has been the genetic basis 

of hypercholesterolemia, which has raised the seemingly everlasting question about 
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monogenic and polygenic origin. Whilst few monogenic disorders exist, the majority of 

hypercholesterolemic patients suffer from a disease of polygenic source. However, not 

all of the genes responsible for development of hypercholesterolemia have been 

identified yet. Apparently, studies on experimental models offer the most suitable 

approach.  

Moreover, interindividual differences in cholesterolemia reflect both 

environmental variation and genetic polymorphism. Even today, a plethora of variations 

and polymorphisms (not only in coding sequences but also in upstream and downstream 

regions) have been found to influence blood cholesterol levels. Some of them also affect 

the responsiveness of plasma cholesterol to dietary fat. 
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2. State of the art 

2.1 Transport of cholesterol in circulation 

Cholesterol is a natural sterol that belongs to lipids. The hydrophobic backbone 

of the molecule contrasts with the hydrophilic hydroxyl group to give cholesterol its 

amphipathic character. In the body, cholesterol exists as a free (unesterified) molecule 

(FC) or as cholesteryl esters (CE). Cholesterol could be either taken in fat food or 

synthesised de novo. Animal fats are complex mixtures of triacylglycerols (TG) with 

lesser amounts of cholesterol and phospholipids (PL). As a consequence, all foods 

containing animal fat contain cholesterol. Virtually, every mammalian nuclear cell 

synthesises cholesterol, in most animals the main part is being produced in extrahepatic 

organs [6, 7]. 

Cholesterol is transported through blood in lipoproteins. The lipoprotein core 

contains CE and TG and is enveloped by a layer of PL, FC and proteins. The proteins 

(apolipoproteins) are crucial for the lipoprotein assembly, lipid transport and 

metabolism. The lipoproteins are classified into several groups on the basis of their 

density and electrophoretic mobility (Table 1).  

Table 1: Classificaton and properties of plasma lipoproteins [8]. 

Lipopro-
tein class 

Density 
(g/ml) 

Diameter 
(Å) 

Major lipid 
component 

Lipid 
(%) 

Protein 
(%) 

Apolipo-
protein(s) 

Electropho-
retic mobility 

CM < 0,95 800 - 5000 TG 98-99 1-2 
B-48, E, 

Cs 
origin 

VLDL 
0,95 -
1,006 

300 - 800 TG 90-93 7-10 B-100, Cs pre-β 

IDL 
1,006 -
1,019 

250 - 350 
cholesterol, 

TG 
89 11 B-100 broad β 

LDL 
1,019 -
1,063 

180 - 280 cholesterol 79 21 B-100 β 

HDL 
1,063 -
1,210 

50 - 90 cholesterol 43-67 33-57 A α 

Chylomicrons (CM) transport dietary TG from small intestine through lymph 

into the blood. CM interact with lipoprotein lipase (LPL) and TG undergoes hydrolysis. 

Chylomicron remnants (CMr) are taken up by hepatocytes. Very low density lipopro-

teins (VLDL) deliver endogenous lipids from the liver to peripheral tissues. In the 

plasma, VLDL are hydrolysed in the same manner as chylomicrons and in this way, 

smaller denser particles originate. These intermediate density lipoproteins (IDL) are 
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mostly taken up by the liver and the minority can undergo further catabolism by 

enzymes to become low density lipoproteins (LDL). In contrast to VLDL, LDL contain 

mostly CE. High density lipoproteins (HDL) transport cholesterol from peripheral 

tissues to the liver in a process termed reverse cholesterol transport (RCT). 

2.2 Pathways of cholesterol transport 

There are three main sources that supply the blood circulation with cholesterol. 

It can enter circulation through exogenous pathway from the intestine, through 

endogenous pathway from the liver and through the RCT from cellular membranes. 

2.2.1 Exogenous pathway 

After ingestion of a meal, dietary fats are absorbed into the cells of small 

intestine. Pancreatic lipase hydrolyses TG in the intestinal lumen and generates 

monoacylglycerols and fatty acids that are absorbed into the enterocyte where TG are 

resynthesised. 

Intestinal cholesterol comes from two main sources, from the bile and the diet. 

Biliary cholesterol is unesterified, whereas dietary cholesterol is partly esterified and 

thus must be hydrolysed before the transport into enterocytes. Bile salt micelles 

facilitate the cholesterol transfer across the brush border membrane via Niemann-Pick 

C1-like 1 protein (a cholesterol uptake transporter). In the enterocyte cholesterol is 

esterified by acyl-CoA:cholesterol acyltransferase (ACAT). Once esterified, cholesterol 

is incorporated into the nascent CM [9]. Absorbed cholesterol in lymph on low or 

moderate cholesterol diet comes almost equally from bile and diet [10]. In addition, 

enterocytic cholesterol can be transferred to HDL [11]. 

Apolipoprotein B48 (apoB48) is found on CM and is necessary for assembly and 

secretion of CM from the intestine. In the presence of cholesterol, PL and TG, apoB48 

is chaperoned and lipidated by microsomal TG transfer protein (MTP) to form 

prechylomicrons. Otherwise apoB48 is targeted for degradation. The prechylomicrons 

are transported from the endoplasmatic reticulum (ER) to the Golgi complex. Within it 

the mature CM are formed. The fully assembled CM exit the Golgi complex in large 

transport vesicles to be released from the enterocytes into lymph by exocytosis at 

basolateral membrane [12]. 

The released CM contain apoB48, apoAI and apoAIV and have to acquire apoC 

and apoE for catabolism from HDL. After gaining apoCII (the activator of LPL), TG 



 

 

are hydrolysed by LPL at the endothelial surface. The released fatty acids are entrapp

into muscle for energy production and adipocytes for storage. The core of CM is 

reduced and PL, FC, apoCs transferred back to HDL. CMr which are enriched in CE 

and apoE can interact with the liver receptors and be removed from the circulation. All 

CM usually disappear from the circulation within 12 

2.2.2 Endogenous pathway

In the endogenous pathway, the lipids are transported from liver to peripheral 

tissues in the form of VLDL, IDL or LDL.

Figure 1: Biosynthesis of VLDL.

After translocation of apoB into the lumen of ER, MTP catalyses the lipidation of apoB with TG, PL and 

cholesterol to generate pre

proteosomal degradation. Pre

with lipid droplets. The mature VLDL are secreted from the cell. 

Similarly to CM, the current model of VLDL assembly occurs in two steps. In 

the first one, the apoB100

ER. The MTP catalyses this step. In the absence of lipids and MTP, apoB100 is 

degraded. The second step involves transfer of pre

fusion with lipid droplets to form

are hydrolysed by LPL at the endothelial surface. The released fatty acids are entrapp

into muscle for energy production and adipocytes for storage. The core of CM is 

reduced and PL, FC, apoCs transferred back to HDL. CMr which are enriched in CE 

and apoE can interact with the liver receptors and be removed from the circulation. All 

ually disappear from the circulation within 12 – 14 h after a meal 

Endogenous pathway 

In the endogenous pathway, the lipids are transported from liver to peripheral 

tissues in the form of VLDL, IDL or LDL. 

: Biosynthesis of VLDL. 

After translocation of apoB into the lumen of ER, MTP catalyses the lipidation of apoB with TG, PL and 

cholesterol to generate pre-VLDL. If MTP and/or lipids are missing, apoB will be targeted for 

al degradation. Pre-VLDL are transported to Golgi complex to form mature VLDL by fusing 

with lipid droplets. The mature VLDL are secreted from the cell.  

Similarly to CM, the current model of VLDL assembly occurs in two steps. In 

the first one, the apoB100 is (post)translationally lipidated, forming pre

ER. The MTP catalyses this step. In the absence of lipids and MTP, apoB100 is 

degraded. The second step involves transfer of pre-VLDL to Golgi complex and their 

fusion with lipid droplets to form mature VLDL (Figure 1). 

State of the art 

5 

are hydrolysed by LPL at the endothelial surface. The released fatty acids are entrapped 

into muscle for energy production and adipocytes for storage. The core of CM is 

reduced and PL, FC, apoCs transferred back to HDL. CMr which are enriched in CE 

and apoE can interact with the liver receptors and be removed from the circulation. All 

14 h after a meal [13]. 

In the endogenous pathway, the lipids are transported from liver to peripheral 

 

After translocation of apoB into the lumen of ER, MTP catalyses the lipidation of apoB with TG, PL and 

VLDL. If MTP and/or lipids are missing, apoB will be targeted for 

transported to Golgi complex to form mature VLDL by fusing 

Similarly to CM, the current model of VLDL assembly occurs in two steps. In 

is (post)translationally lipidated, forming pre-VLDL in the 

ER. The MTP catalyses this step. In the absence of lipids and MTP, apoB100 is 

VLDL to Golgi complex and their 
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In the blood, TG of VLDL are hydrolysed by LPL to generate denser IDL. 

Subsequently, IDL can be taken up into the liver similarly as CMr or their TG 

hydrolysed by hepatic lipase to produce cholesterol rich LDL particles. The LDL are 

removed mainly by specific receptors from the circulation [12]. 

2.2.3 Reverse cholesterol transport (RCT) 

HDL transport cholesterol from the peripheral tissues mostly to the liver or 

steroidogennic tissues. The cholesterol in the liver is excreted into the bile, whereas 

cholesterol supplied to adrenals, ovaries, and testes is used for the synthesis of steroid 

hormones. Several steps in the HDL metabolism (the RCT) are considered to have the 

protective function towards atherosclerosis. 

The liver and the intestine synthesise and secrete apoAI as a lipid free or poorly 

lipidated protein into the circulation where it is further lipidated with FC and PL to form 

a disc-shaped nascent HDL. The lipids come either from the cells or from the 

lipoproteins. A plasma enzyme lecithin cholesterol acyl transferase associates with HDL 

and converts FC to CE which are subsequently sequestered into the particle core to form 

mature spherical HDL. Cholesterol is transfered to nascent and mature HDL via ATP-

binding cassette (ABC) transporter A1 (ABCA1) and via ABC transporter G1 

(ABCG1). Alternatively, it can be transported to HDL through scavenger receptor class 

B type 1 (SR-BI). In the liver, HDL cholesterol can be taken up through SR-BI which 

can mediate bidirectional cholesterol exchange. In humans, part of cholesterol from 

HDL can be transfered by cholesteryl ester transfer protein (CETP) to TG rich 

lipoproteins (CM, CMr, VLDL) and in this way transported also to the liver [12]. 

2.3 Cholesterol uptake 

Receptor-mediated lipoprotein uptake is the almost exclusive way of cholesterol 

clearance from the blood. Plasma lipoproteins bind to specific receptors in the tissues. 

Besides the supply with lipids, lipoprotein receptors are transducers of extracellular 

signals, mediators of the endocytic uptake of steroids or scavenger receptors with  

a broad ligand-binding specificity [14]. 

The LDL receptor (LDLR) is the first discovered member of lipoprotein receptor 

family which also includes the VLDL receptor (VLDLR), apoE receptor 2, LDLR-

related protein (LRP), as well as megalin and others (Figure 2). Whereas the LDL 

receptor acts in lipoprotein metabolism exclusively, the LRP and other members of this 
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family appear to have other distinct functions [14]. LRP and several of its ligands affect 

the onset of Alzheimer’s disease [15]. Megalin is expressed on the apical surface of 

several epithelial cells (central nervous system, kidney) and plays a role in the recapture 

of filtered molecules at the level of the proximal tubule [16].  

 

Figure 2: The LDL receptor family. 

Members of the LDL receptor family share common structural motifs, including a single membrane 

anchor, complement-type repeats (which make up the ligand-binding domains) and epidermal growth 

factor (EGF) precursor homology domains (required for acid-dependent release of ligands in endosomes). 

NPxY designates the four-amino-acid motif — Asn-Pro-X-Tyr — that mediates clustering of the 

receptors into coated pits. O-linked sugar domains are found in some, but not all, of the receptors [14]. 

2.3.1 LDL receptor (LDLR) 

The Nobel Prize in Physiology or Medicine 1985 was awarded jointly to 

Michael S. Brown and Joseph L. Goldstein "for their discoveries concerning the 

regulation of cholesterol metabolism". It was twelve years after they had brought the 

LDLR to light [17]. 

The LDLR is a cell surface glycoprotein with N- and O-linked oligosaccharide 

chains. The gene coding LDLR is split into 18 exons coding 839 amino acids (and 21 

amino acids of signal peptide). The N-terminal domain – a crucial domain for receptor 

binding – is composed of seven repeats of approximately 40 amino acid and contains  
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a cluster of negatively charged amino acids. On the contrary, the receptor binding 

domains of two LDLR ligands (apoB100 and apoE) are positively charged [18-20]. 

About 45 minutes after synthesis, LDL receptors appear on the cell surface 

where they gather in coated pits. After aggregation they wait for a lipoprotein particle to 

arrive. Subsequently binding their ligand, endocytic vesicles are formed and 

internalised, followed by hydrolysis of the endocytosed lipoproteins in lysosomes and 

release of the lipid into the cytoplasm. The receptors are recycled back to the plasma 

membrane. The LDLR make one round trip into and out of the cell every 10 minutes for 

a total of several hundred circles in its 20 hour life-span [18]. 

The LDLR plays a key role in cholesterol homeostasis by mediating the cellular 

internalization of apoB and/or apoE containing lipoproteins, namely LDL, VLDL, and 

CMr [18]. The LDLR is critical for LDL removal from circulation [18, 21]. The most 

LDLR activity that can be identified in the live animal or human is found in the liver 

[6]. 

2.3.2 LDLR-related proteins (LRP) 

LRP was discovered in 1988 as the second member of the LDL receptor family 

[22]. It is a multifunctional cell surface receptor that binds at least 40 different ligands. 

Outside of the lipoprotein uptake, its functions are also in the homeostasis of 

proteinases and proteinase inhibitors, cellular entry of viruses and toxins, activation of 

lysosomal enzymes, cellular signal transduction, and neurotransmission [23]. The 

absence of known functional coding mutations of the LRP gene in humans, and the 

lethality of the conventional knockout in mice reveal that LRP is indispensable for 

cellular physiology [24]. 

In lipid metabolism, LRP indeed works in concert with the LDLR, binds apoE-

containing lipoproteins and mediates primarily the uptake of apoE-enriched CMr into 

hepatocytes [25]. 

2.3.3 VLDL receptor (VLDLR) 

The VLDLR is highly expressed in the heart, muscle, adipose tissue, and brain, 

and is barely detectable in the liver, in which the LDLR mRNA is abundant [26]. The 

VLDLR is highly induced in atherosclerotic lesions [27, 28].  

It was found that the VLDLR recognises apoE [26, 29]. A more detailed 

examination indicated that the VLDLR never binds LDL. The VLDL uptake could be 
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facilitated by LPL that converts particles to smaller (apoE-rich) remnants before they 

can become endocytosed by VLDLR [28]. Niemeier et al. showed the same mechanism 

for CM and their uptake by the VLDLR [30]. Nevertheless plasma lipoprotein levels 

strongly depends on LDLR activity in the liver, and LDLR disguised the effect of 

VLDLR on lipoprotein metabolism [28, 31]. Exact role of VLDLR in lipoprotein 

metabolism has not been clarified yet. 

2.3.4 Scavenger receptor class B type 1 (SR-BI) 

The SR-BI (unlike the previous receptors) is an important member of the 

scavenger receptor family. It is an integral glycoprotein that consists of a heavily  

N-linked glycosylated and fatty acylated protein backbone, which contains a large 

extracellular loop, two transmembrane domains, and short intracellular N- and  

C-terminal domains [32].  

This receptor is highly expressed in the liver, adrenal glands, and macrophages 

[33]. The studies in SR-BI knockout mice showed that the molecule is responsible for 

the majority of the uptake of CE from HDL in hepatocytes and also contributes to the 

cellular internalization of native apoB-containing lipoproteins [34, 35]. Similarly, the 

SR-BI mediates the uptake of CE from HDLin adrenocortical cells [36]. 

Whereas mice predominantly transport the majority of plasma lipids in HDL, 

humans carry most of their cholesterol in the LDL fraction. Importantly, humans 

express CETP that is able to exchange CE and TG among HDL, LDL and VLDL. This 

is an alternative route of RCT for CE from HDL and could be the reason why the 

relative contribution of the SR-BI to the lipoprotein metabolism in humans is still 

unclear [32]. 

2.3.5 Non-receptor mediated uptake 

Cholesterol can also move between a variety of lipid membranes via a passive, 

surface transfer process that does not require metabolic energy. The minor uptake 

processes may include fluid-phase endocytosis (without binding of lipoproteins to 

specific receptors) and phagocytosis (lipoproteins are probably attached to the cell 

surface and then engulfed by the plasma membrane). The contribution of the non-

receptor mediated movements of cholesterol to the overall flux between lipoproteins 

and cells remains unclear. 
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Furthermore, cholesterol could be excreted directly from blood to feces via the 

intestinal mucosa in a process called trans-intestinal cholesterol excretion (TICE) [37]. 

Currently it is still unclear which lipoproteins are involved in this pathway and how is 

cholesterol targeted to the enterocyte. Using gene expression analyses, so far no 

membrane transporters have been identified that regulate TICE [9, 38, 39].  

2.4 Cholesterol cell metabolism 

In the whole animal, biosynthetic and transport mechanisms act in concert to 

bring about an orderly and regulated flow of cholesterol across the plasma membrane of 

every cell while, at the same time, preventing the abnormal accumulation of sterol 

within any tissue.  

The cells acquire cholesterol from different sources: lipoproteins, hydrolysis of 

cell CE, and biosynthesis. The cholesterol elimination is more complicated. Cholesterol 

is virtually impossible to cleave into small molecules. Extrahepatic cells must then 

transfer the excess cholesterol to HDL.  

2.4.1 Cholesterol from lipoproteins 

Lipoproteins taken up by one of the receptors from the LDLR family are 

endocytosed in coated vesicles and internalised into lysosomes. The receptors recycle 

back to the plasma membrane to be used again. In the lysosomes, the CE are hydrolysed 

to FC and apolipoproteins are degraded to amino acids. The FC can be incorporated into 

cell membranes, reesterified to CE for storage, or leave the cell. The amount of cell 

cholesterol regulates the activity of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) 

reductase and the rate of LDLR synthesis [18]. 

The cholesterol transport via SR-BI is selective, the CE of HDL are in fact taken 

up without whole particle internalization. The studies in SR-BI knockout mice suggest 

that SR-BI is the sole molecule that is involved in the selective uptake of HDL-

associated CE in the liver and adrenals [34]. 

2.4.2 Cholesterol biosynthesis 

Cholesterol is synthesised from its precursor acetyl-CoA via a complex 

metabolic pathway. 18 acetyl-CoA are utilised through the action of at least 30 enzymes 

to synthetise one molecule of cholesterol. K. Bloch and F. Lynen were awarded the 
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been shown to vary as low as from 15 – 20 % in rabbits and guinea pigs to as high as 50 

% in rats of the whole body synthesis, whilst in humans, the liver is thought to 

contribute only around 10 % to whole body synthesis [6]. 

2.4.3 Hydrolysis of cholesteryl esters (CE) 

If necessary, cholesterol can be esterified and CE hydrolysed continuously. If 

cell needs the FC, cholesteryl ester hydrolase converts CE from lipid droplets [44].  

2.4.4 Bile acid synthesis 

Synthesis of BA is the predominant metabolic pathway for catabolism of 

cholesterol in human. Approximately 500 mg of cholesterol is converted to BA each 

day in the adult human liver [45, 46]. BA are increasingly being appreciated as complex 

metabolic integrators and signalling factors and not just as lipid solubilisers and simple 

regulators of BA homeostasis. 

Cholesterol conversion into BA occurs via two different pathways: the classical 

(or neutral) and the alternative (or acidic) pathway. Cholic acid (CA) and cheno-

deoxycholic acid (CDCA) represent the two main end products of these pathways. The 

steps leading to synthesis of primary BA include initiation (hydroxylation in position 

7α), modification of the sterol ring, oxidation and shortening of the side chain, and 

conjugation [46, 47]. 

Although both pathways lead to the production of CA and CDCA, the key step, 

7α-hydroxylation, is governed by two different enzymes. In the classical pathway, 

cholesterol is modified by cholesterol 7α-hydroxylase (CYP7A1) directly whilst in the 

alternative pathway cholesterol is 27-hydroxylated and after that 7α-hydroxylated. The 

classical pathway accounts for at least 75 % of the total BA pool in humans [46]. 

Three enzymes have major regulatory roles in these two pathways. CYP7A1 is 

the rate-limiting enzyme in the classical pathway and is partly controlled by a negative 

BA feedback loop whereas sterol-27 hydroxylase is the first enzyme in the alternative 

pathway and is not regulated by BA. Sterol 12α-hydroxylase (CYP8B1) introduces  

a hydroxyl group at position 12 of the steroid nucleus leading to the generation of CA. It 

is regulated almost CYP7A1 alike.  

Majority of newly synthesised free BA (98 %) are conjugated to glycine or 

taurine to decrease toxicity and increase solubility for secretion into the bile. This two-

step process starts with the generation of BA–CoA by BA–CoA synthase and follows 
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with amidation by BA-CoA:amino acid N-acyltransferase [46, 47]. In the intestinal 

lumen, gut flora deconjugates, oxidates and dehydroxylates the primary BA to generate 

secondary BA deoxycholic acid (DCA) and lithocholic acid (LCA). All BA can be 

taken back up through enterocytes into the blood and return to the liver for reuse in  

a process known as enterohepatic circulation. Only a small amount of BA escapes from 

this cycle and is further metabolised by microorganisms and excreted.  

2.4.5 Synthesis of oxysterols, hormones, and others 

Progestogens serve as precursors to all other human steroids. Firstly, cholesterol 

is converted by cholesterol side-chain cleavage enzyme to pregnenolone in the 

mitochondrion. This conversion is the rate-limiting step of steroid synthesis. According 

to the body/organ need, the production of specific steroid hormones ensues in the 

destined tissue (corticosteroids – adrenal cortex; estrogen and progesterone – ovary, 

placenta; testosterone – testes). 

Cholesterol could be oxidised by a number of mitochondrial hydroxylases, 

(hydr)oxysterols are produced by almost all cells. In contrast to cholesterol, oxysterols 

can cross the blood-brain barrier. Importantly, oxysterols are regulators of cholesterol 

metabolism and play a significant role in the brain. 

Cholesterol is also a precursor of vitamin D. Cholecalciferol is synthesised in the 

skin from 7-dehydrocholesterol under the action of ultraviolet B light. 

2.5 Daily cholesterol intake and turnover 

On a Western diet, humans synthesise an estimated 1 g of cholesterol and ingest 

~400 mg a day [48]. Most nutritionists concur that excessive cholesterol intake, often 

construed as more than 300 mg per day, should be avoided.  

The paleolithic nutritional model suggests that cholesterol consumption of 

preagricultural humans was probably ~480 mg/d. Nevertheless, their serum cholesterol 

levels were averaging ~3.2 mmol/l [49], a value subsumed within the range observed 

for free-living nonhuman primates (2.3 - 3.5 mmol/l) [50]. This cholesterolemia can be 

explain by a low total fat intake and a high ratio of polyunsaturated to saturated fat in 

spite of the high dietary cholesterol of gatherer-hunters [51]. 

Hepatic daily cholesterol turnover is 1.8 g roughly. The majority (~85 %) of 

cholesterol and its derivates in the bile comes originally from lipoproteins. The most 

cholesterol originates from CMr (0.6 g) and LDL (0.6 g). The HDL are providing 0.3 g 
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and 0.3 g comes from de novo cholesterol synthesis. Approximately 1.3 – 1.5 g of 

cholesterol is secreted into bile (cholesterol itself: 1.0 g and BA: 0.3 – 0.5 g), and 0.5 g 

of cholesterol is incorporated into VLDL [45]. 

2.6 Regulation of cholesterol homeostasis 

Maintenance of cholesterol homeostasis requires a balance between cholesterol 

secretion into the blood and its uptake and copes with fluctuations in dietary cholesterol 

intake. The pathways involved are regulated via a complex interplay of enzymes, 

transport proteins, transcription factors, and non-coding RNAs. 

The liver has been considered the major site of control of cholesterol homeo-

stasis [6]. First of all, the liver clears VLDL, LDL, and CMr from circulation, synthe-

sises cholesterol and BA, is involved in production of nascent HDL, secretes cholesterol 

and BA to bile. Nowadays, the importance of the intestine in cholesterol physiology has 

been recognised. The intestine influences cholesterol homeostasis at the level of 

cholesterol and BA (re)absorption, fecal excretion and de novo synthesis [9, 52]. At 

least in mice, TICE plays a major role in disposal of cholesterol via the feces [38]. 

A plethora of proteins and factors plays a role in the control of cholesterol level. 

In the next subchapters, I will characterise the major mechanisms that maintain and 

regulate cholesterol homeostasis. The dominant transcription factors and proteins will 

be shortly described. Thereafter I will summarise the regulation in the cell and blood. 

2.6.1 Transcription factors 

2.6.1.1 Sterol response element binding protein (SREBP) 

Sterol response element binding proteins (SREBP) were identified as nuclear 

factors that bind the sterol response element (SRE) [53, 54]. They coordinate the 

synthesis of two major building blocks of membranes (fatty acids and cholesterol) 

through their effects on multiple genes involved in cholesterol biosynthesis and uptake 

via LDLR. 

The SREBP family members belong to a large class of transcription factors 

containing a basic helix-loop-helix-leucine zipper. The SREBP family comprises three 

subtypes, SREBP-1a and SREBP-1c, which are generated by alternative splicing, and 

SREBP-2 [55, 56].  

All subtypes are synthesised as inactive precursors bound to the ER. Each 

SREBP precursor of about 1150 amino acids is organised into three domains:  
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N-terminal domain with the zipper region for binding DNA, two hydrophobic 

transmembrane-spanning segments, and C-terminal domain that performs the essential 

regulatory function. 

While the SREBP-1 proteolytic activation is largerly under the control of 

hormones or signal transduction systems, the SREBP-2 processing is tightly regulated 

by the ER cholesterol content, reflecting its deep involvement in cholesterol 

homeostasis [57]. The studies in the liver of rats or mice after fasting showed that the 

amount of the nuclear active form SREBP-1 and SREBP-2 are not the same. The 

amount of SREBP-1, predominantly SREBP-1c in the liver, increases enormously upon 

consumption of low fat/high carbohydrate compared with nonfasted rats, whereas 

SREBP-2 protein levels remain unaltered [58, 59]. 

To act as a transcription factor in cholesterol metabolism, the N-terminal 

segment of SREBP must be released from the membrane and reach the nucleus. The 

release is accomplished by a two-step proteolytic cascade. This process is initiated when 

the C-terminal domain of SREBP binds to SREBP cleavage-active protein (SCAP) [60, 

61]. The complex formation is essential for the exit of SREBP from the ER and 

subsequent proteolytic activation. SCAP is both an escort for SREBP and a sensor of 

sterols [62]. SCAP, in turn, can bind reversibly with another ER-resident membrane 

protein, Insig (insulin induced gene). Addition of sterols to intact cells or to isolated 

membranes triggers the binding of SCAP to Insig, an event that is required for sterol-

mediated inhibition of SCAP/SREBP transport [63].  

When cells become depleted in cholesterol, SCAP leaves the SREBP from the 

ER to the Golgi complex, where two proteases reside. A membrane-bound serine 

protease (S1P) cleaves the SREBP molecule in the loop between their two membrane-

spanning segments. Simultaneously with this change, the N-terminal domain of SREBP 

is disengaged from the membrane via a second cleavage by a zinc metalloprotease 

(S2P). The N-terminal domain translocates to the nucleus, where it activates 

transcription by binding to SRE in the promoter or enhancer of target genes (Figure 4) 

[61, 65]. 

When cholesterol content of the ER membrane rises, a conformational change in 

SCAP facilitates its binding to Insig. This interaction is required for the retention of the 

SCAP/SREBP complex in the ER. Altogether, SREBP are no longer processed 

proteolytically in the Golgi, their zipper domain cannot be released form the ER 

membrane, and the transcription of target genes declines. 
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Figure 4: SREBP regulation of cholesterol metabolism. 

The membrane-associated SREBP are transcriptionally inactive. In the ER, the C-terminal domain of the 

SREBP interacts with SCAP. In sterol-depleted cells, SCAP escorts the SREBP from the ER to the Golgi 

complex where they are processed by two membrane-associated proteases, the site 1 (S1P) and site 2 

(S2P) proteases, that release the mature forms of the proteins. These transcriptionally active fragments of 

the SREBP are translocated to the nucleus where they bind to the promoters of SREBP target genes, 

including genes involved in the cholesterol synthesis and metabolism of lipids. When cholesterol builds 

up in the membranes of the ER, the Scap/SREBP complex is retained in the ER, the proteolytic activation 

of SREBPs is stopped, and the expression of SREBP target genes declines [64]. 

When expressed at higher than physiological levels, all three subtypes can 

activate genes encoding multiple enzymes in the biosynthesis of cholesterol and fatty 

acidas well as LDLR [66]. However, the relative activity of the three isoforms differs. 

SREBP-1a is a potent activator of all SREBP-responsive genes, owing to its long 

transactivation domain encoded by first exon. SREBP-1c differs from SREBP-1a in the 

alternative splicing of first exon to a shorter transactivation domain and therefore is less 

potent than SREBP-1a [67]. Both SREBP-1a and SREBP-1c activate genes involved in 

the synthesis of fatty acids. SREBP-2 encoded by a different gene, preferentially 
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activates cholesterologenesis and the LDLR. Genes involved in cholesterol synthesis 

contain SRE which are identical or relatively similar to the original SRE sequence 

found in the LDLR gene. Meanwhile, binding sequences of SREBP in lipogenic genes 

vary considerably and are tentatively designated SRE-like sequences [68]. 

2.6.1.2 Liver X receptor (LXR) 

Liver X receptors (LXR) are nuclear receptors that regulate the metabolism of 

several important lipids, including cholesterol and BA. They work in complementary 

fashion with SREBP to maintain cholesterol homeostasis. 

In 1995, the LXR were identified as members of the nuclear receptor 

superfamily [69] and a year after, found to be activated by oxygenated cholesterol 

derivatives [70]. Like other receptors in the family, LXR heterodimerise with retinoid X 

receptor (RXR) and bind to specific LXR response elements (LXRE) [69, 71, 72]. Two 

genes are known to encode LXR proteins that are activated by the same ligands. LXRα 

(NR1H3) is expressed predominantly in the liver and to a lesser extent in the kidney, 

small intestine, spleen, and adrenal gland [69, 71]. LXRβ (NR1H2) is ubiquitously 

expressed [69, 73, 74]. 

The physiological LXR ligands are oxysterols – 22(R)-hydroxycholesterol and 

20(S)-hydroxycholesterol (intermediates in steroid hormone synthesis), 24(S)-hydroxy-

cholesterol (the most abundant circulating oxysterol), and 24(S),25-epoxycholesterol 

(mainly in the liver) [76]. LXR-mediated gene regulation requires their hetero-

dimerization with another nuclear receptor – RXR which is activated by 9-cis retinoic 

acid (Figure 5). The consensus LXRE is characterised by direct repeats separated by 

four nucleotides. In addition, LXR activity is determined by their phosphorylation, 

acetylation and/or SUMOylation status [75, 77-80]. 

The function of LXR is to maintain whole animal sterol homeostasis. To achieve 

this task, LXR coordinate gene expression programmes in tissue-specific fashion. LXR 

are activated in response to elevated cholesterol levels in cells (that results in production 

of oxysterols in mitochondria). By inducing the expression of genes encoding ABCA1 

and ABCG1, LXR promote cholesterol efflux to apoAI and HDL [81, 82]. Further they 

elicit HDL metabolism via induction of genes encoding phospholipid transfer protein, 

LPL and CETP [83-85]. Besides promoting RCT, LXR activation may reduce cellular 

cholesterol uptake by enhancing the ubiquitination of the LDLR [86]. Hepatic LXR 

activate biosynthesis of BA, via induction of CYP7A1 in mice [76]. LXR also enhance 
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biliary cholesterol secretion by inducing ABCG5/ABCG8 which mediates cholesterol 

secretion from the liver into the bile [87, 88]. The expression of these transporters is 

influenced by LXR in the intestine as well to regulate cholesterol reabsorption and 

modulate enterohepatic recirculation of cholesterol [89]. To summarise, the LXR 

preserves whole cholesterol homeostasis. 

 

 
Figure 5: Regulatory steps that determine LXR transcriptional activity. 

1. LXR are ligand activated by oxysterols. 2. LXR transcriptional regulation requires their translocation 

to the nucleus and (3.) heterodimerization with activated RXR. Both LXR and RXR bind to specific 

response elements in the DNA. 4. Ligand binding and posttranslational modifications alter the structural 

conformation of the LXR/RXR complex as (5.) a co-repressor (CR) or co-activator (CA) [75]. 

When phenotypes of LXRα, LXRβ andLXRαβ (double) knockout mice are 

compared, the expression of genes involved in hepatic cholesterol metabolism is 

profoundly reduced in LXRα-deficient mice. On the other hand, LXRβ knockout mice 

failed to show these alterations, consistent with a more prominent role of LXRα 

compared to LXRβ in the regulation of lipoprotein metabolism [90]. 
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2.6.1.3 Peroxisome proliferator-activated receptor (PPAR) 

Likewise the LXR, peroxisome proliferator-activated receptors (PPARs) belong 

to the group of ligand-activated transcription factors and form heterodimers with RXR.  

The PPAR subfamily comprises of three related proteins: PPARα, PPARβ/δ, and 

PPARγ (known as NR1C1, NR1C2, and NR1C3, respectively). PPARα was the first 

member identified with PPARβ/δ and PPARγ was subsequently discovered based on 

sequence homology [91-93]. The PPAR response element is a direct repeat AGGTCA 

separated by one base pair only. The mechanism of transcription regulation by the 

PPAR is the same as that by the LXR.  

The PPARs influence primarily fatty acid metabolism and their natural 

endogenous ligands are unsaturated fatty acids and eicosanoids [94, 95]. PPARα is the 

predominant form in the liver and plays a role in the lipoprotein clearance via the 

regulation of expression of genes involved in lipid metabolism. PPARβ/δ is involved in 

fatty acid transport and oxidation. The genes activated by PPARγ stimulate lipid uptake 

and adipogenesis by fat cells. 

The PPARs influence cholesterolemia chiefly through the regulation of synthesis 

of apolipoproteins (AI, AII, AV, C), CYP7A1, LPL and LXRα. The hypolipidemic 

effect of fibrates is mainly a result of activation of PPARα [94, 96].  

2.6.1.4 Farnesoid X receptor (FXR) 

The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily. 

Originally, FXR was described as a farnesol-activated receptor interacting with RXR, 

and accordingly named [97]. Later, it was identified as a receptor that is activated by 

BA [98-100]. 

The FXR is highly expressed in the liver and the intestine [97]. It can bind to and 

activate or repress through a large variety of response elements (FXRE) on target genes 

either as a monomer or as a heterodimer with RXR [97, 101, 102]. To date, more than 

80 compounds have been identified as potential FXR ligands, nevertheless, BA are the 

most important. The potency of BA to activate FXR is CDCA > DCA > LCA > CA 

[100]. FXR is the chief sensor for intracellular concentration of BA, controlling their 

synthesis (CYP7A1, CYP8B1), conjugation, transport (membrane carriers of BA), and 

homeostasis.  

When cellular levels of BA are already high, one of the primary functions of 

FXR is the suppression of CYP7A1. FXR does not directly bind to the CYP7A1 
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promoter but induces expression of small heterodimer partner (SHP). Positive 

regulation of SHP activation inhibits the activity of two other nuclear factors which then 

functions to inhibit transcription of the CYP7A1 [103, 104]. Furthermore, FXR induces 

the expression of BA-conjugation enzymes and of the BA export transporters and 

simultaneously represses BA import [105]. 

FXR regulates gene expression of proteins involved in lipid metabolism, such as 

phospholipid transfer protein and apoCII (induction), and apoAI, apoCII, apoE 

(repression) [106-109]. In the FXR-deficient mice, serum HDL cholesterol and TG are 

elevated whereas SR-BI is decreased [110]. FXR also induces the expression of SREBP-

1c in mice and PPARα in humans which both will modulate TG production [111].  

2.6.2 Enzymes and transport proteins 

2.6.2.1 HMG-CoA reductase 

HMG-CoA reductase is a highly conserved, mebrane-bound enzyme. In euka-

ryotes, it is an ER-membrane resident consisting of two distinct domains: a hydrophobic 

N-terminal membrane anchor with sterol sensing domain (SSD) and C-terminal 

catalytic domain that extends into the cytoplasm [112]. The SSD may bind lipids and 

plays an important role in HMG-CoA reductase regulation [42, 112, 113].  

HMG-CoA reductase catalyses the conversion of HMG-CoA to mevalonate, an 

important intermediate in the biosynthesis not only of cholesterol but also of essential 

nonsterol isoprenoids. As the primary irreversible point of the cholesterologenesis, it is 

advantageous to control the pathway at the beginning because a decrease in HMG-CoA 

activity can regulate the output of the overall pathway without accumulation of 

intermediates. 

The complexity of the reductase regulatory system was first revealed in the late 

1970s in a study with compactin (a competitive inhibitor of HMG-CoA reductase). The 

compactin treated cells respond to the blocking of mevalonate production by a drastic 

increase in reductase protein (~200fold) [114].  

HMG-CoA reductase is subject of tight feedback regulation by multiple 

mechanisms at different levels of transcription, translation, posttranslational 

modification and degradation. Cholesterol has been long recognised as an important 

signaling molecule, however, some other intermediates and mevalonate-derived 

products control the reductase as well [115]. Studies with both yeast and mammalian 



State of the art 
 

 
21 

cells have implicated farnesyl diphosphate and farnesol as an important signaling 

molecule that inhibits the level of HMG-CoA reductase expression [116-118]. 

Sterol deficiency causes the activation of SREBPs in the liver (particularly 

SREBP2) that enhance the expression of genes involved in cholesterol synthesis and 

uptake (including HMG-CoA reductase) [66, 119]. In addition to its role in regulating 

HMG-CoA reductase through SREBP, Insig also regulates the reductase degradation. In 

sterol-replete conditions, Insig binds to the N-terminal region of HMG-CoA reductase 

and thereby recruits ubiquitin ligase and initiates ubiquitination of reductase. This 

ubiquitin-proteasome pathway is an obligatory process for recognition and rapid 

degradation of many proteins [115]. An unknown nonsterol isoprenoid controls the 

translational effects of HMG-CoA reductase through a poorly understood mechanism 

that may involve the complex 5’untranslated region (5’UTR) of the reductase mRNA 

[120]. A short-term regulation of HMG-CoA reductase is achieved with 

phosphorylation of serine in position 872 (activity decrease) by AMP-activated protein 

kinase and its dephosphorylation (reactivation) by protein phosphatase 2A [121, 122].  

2.6.2.2 Squalene monooxygenase (SM) 

Squalene monooxygenase (SM) catalyses the first oxygenation step in 

cholesterol biosynthesis, acting on squalene before cyclization into the basic steroid 

structure. The inhibition of SM activity can have possible advantage compared to 

inhibiton HMG-CoA reductase because it can preserve synthesis of important 

isoprenoids while shutting down cholesterol synthesis when the cell cholesterol levels 

are high [123]. 

Firstly, SM is controlled at the transcription level being an SREBP2 target: the 

SM expression is modulated by sterols, it increases under lipid-depleted conditions 

[124, 125]. Secondly, SM is also posttranslationally regulated by proteosomal 

degradation. In contrast to HMG-CoA reductase degradation, the SM degradation does 

not require Insig and SCAP and is mediated rather by cholesterol itself [43]. Cholesterol 

can bind directly to SM but the precise molecular mechanism by which cholesterol 

accelerates proteasomal degradation of SM still needs to be defined [126]. 

2.6.2.3 Cholesterol 7α-hydroxylase (CYP7A1) 

CYP7A1 is a microsomal cytochrome P450 enzyme expressed only in the liver 

[127]. It catalyses 7α-hydroxylation of cholesterol, the first and rate-limiting step in the 
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classical pathway of BA synthesis. The human CYP7A1 is localised to chromosome 

8q11 where it spans about 10 kbp. The translated protein consists of 504 amino acids. 

The enzyme activity is regulated principally at the transcriptional level by BA 

returning to the liver through enterohepatic circulation, cholesterol, steroid and/or 

thyroid hormones, insulin, and exhibits diurnal rhythm. 

The CYP7A1 promoter contains two highly conserved BA response elements 

(BARE). BARE-I binds the LXRα/RXR heterodimer and was found in rodent (rat and 

mouse) not in human hydroxylase promoter [128, 129]. The BARE-II contains direct 

repeats that bind hepatocyte nuclear factor 4 (HNF4) and liver receptor homologue 1 

(LRH1). Binding of these two transcription factors is essential for basal expression of 

CYP7A1 (Figure 6) [128, 130, 131].  

 

 

Figure 6: Transcription of CYP7A1 via BARE. 

CYP7A1 promoter contains two highly conserved BARE. The rodent (rat and mouse) CYP7A1 contains  

a BARE-I, a direct repeat4 (DR4) element (not found in the human promoter), which has been shown to 

be the binding site for the LXRα/RXR heterodimer. Oxysterols increase CYP7A1 transcription through 

the activation of LXRα. The inhibitory action of BA through FXR on CYP7A1 transcription is mediated 

via BARE-II. However, CYP7A1 promoter does not contain any FXR binding sites. BARE-II contains a 

conserved direct repeat 1 (DR1) element for HNF4 binding and a response element for LRH1 binding. 

Binding of these two factors is essential for liver-specific basal expression of CYP7A1. FXR binds to the 

inverted response 1 (IR1) element in the SHP promoter. In response to BA, SHP transcription is 

increased. SHP, in turns, interacts with the competence factor LRH1. This interaction represses the 

transcription activation by LRH1. As a result, CYP7A1 expression is decreased [132]. 
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When cholesterol accumulates in cell, oxysterols are generated and can drive 

LXRα-dependent transactivationat BARE-I and BA synthesis increases [76, 133]. Con-

clusive evidence has come from the characterization of LXRα knockout mice. The loss 

of LXRα results in the rapid accumulation of CE in the liver, because of no stimulation 

of the metabolic clearance of cholesterol through the synthesis of BA. As expected, a 

major defect in these mice is the inability to upregulate CYP7A1 expression [133]. 

Conversely, excess of hydrophobic BA leads to the decline of their synthesis via 

FXR [104, 134] . This repression is indirect because CYP7A1 promoter does not contain 

any FXR binding sites. FXR increases transcription of SHP which promotes the 

dissociation of coactivators linked to HNF4 and LRH1, as well as by histone 

deacetylation of the promoter [135]. FXR also induces fibroblast growth factor-19 

(human) or -15 (mouse) in the intestine that interacts with its cognate receptor in the 

liver to downregulate BA production by repressing CYP7A1 and CYP8B1 expression 

through a c-Jun N-terminal kinase-dependent signalling cascade [136].  

BA can also activate protein kinase C or induce the synthesis of inflammatory 

cytokines and their release from Kupffer cells. Both proteins can suppress CYP7A1 

expression [136]. Direct repeat 1 (DR1) also confers the repression of the Cyp7a1 by 

fibrates mediated by PPARα. Nevertheless, PPARα does not bind to this DR1 but 

interferes with the binding of HNF4 [137]. 

The activity of CYP7A1 in rats varies diurnally, reaching the maximum during 

the night and falling to a minimum during the day [138, 139]. These diurnal changes 

seem to be regulated at the transcriptional level, and albumin site D-binding protein 

elements in the Cyp7a1 promoter have been reported to be important for this regulation 

[140, 141]. In humans, CYP7A1 activity, as reflected by serum BA synthesis marker 

7α-hydroxy-4-cholesten-3-one (C4) levels [142], shows two peaks that coincide with 

meal intake, reduces at night, and returns to basal levels in the morning [143]. 

The expression of Cyp7a1 increases 2 – 3 times in rats administered thyroid 

hormone, nevertheless, the response elements have not been defined yet [144, 145]. 

Analyses in thyroid hormone receptor β knockout mice suggest that this receptor can be 

responsible for activation of CYP7A1 [146]. The administration of corticosteroids to 

rats leads to an increase in the CYP7A1 activity [144, 147]. In humans, CYP7A1 

promoter is strongly repressed by steroid/thyroid hormones [148, 149].  

Insulin has been shown strongly inhibit the BA synthesis by downregulation of 

CYP7A1 and CYP8B1 [148, 149]. However, recent studies found out that short-term 
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treatment of physiological concentration of insulin rapidly stimulated CYP7A1 

expression in primary human hepatocytes whereas extended treatment represses human 

CYP7A1 [150]. In human hepatocytes, high glucose stimulated BA synthesis and 

induced mRNA expression of CYP7A1. It has been sugested that glucose increases ATP 

levels and in this way inhibits AMP-activated protein kinase which results in CYP7A1 

transcription stimulation [151, 152]. 

2.6.2.4 Sterol 12α-hydroxylase (CYP8B1) 

CYP8B1 catalyses the synthesis of CA and controls the ratio of CA over CDCA 

in the bile that determines the hydrophobicity of the BA pool and affects the solubility 

of cholesterol [153]. The gene encoding CYP8B1 is unique among the cytochrome 

P450 genes in that it is intronless. 

In BA-replete conditions, the FXR pathway is activated and CYP8B1 

transcription decreases. The mechanism is identical to that in CYP7A1, FXR modulates 

expression through both SHP and fibroblast growth factor-19 [154, 155].  

Cholesterol feeding or thyroid hormone repress Cyp8b1 expression in rats, in 

contrast to their stimulatory effect on Cyp7a1. The mechanism by which thyroid 

hormone represses Cyp8b1 expression is not known [156-158]. 

2.6.2.5 LDL receptor (LDLR) 

The LDLR take up apoB and/or apoE containing lipoproteins and is a major 

determinant of plasma cholesterol level. Its discovery introduced three general concepts 

to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback 

regulation of receptors. (Detailed characterisation of LDLR in 2.3.1.) 

In the same way as HMG-CoA reductase, the transcription of LDLR is under the 

control of SREBP2. Its transcription increases when cholesterol level in the cell is low 

[42]. Besides the transcription regulation through SREBP, the LDLR is also regulated 

by a posttranslational mechanism. Proprotein convertase subtilisin/kexin type 9 

(PCSK9) binds directly to the extracellular domain of the LDLR and interferes LDLR 

recycling after endocytosis thereby promotion its lysosomal degradation [159]. The 

LXR pathway also influences the LDLR amount on the cell surface. In response to the 

rising cellular cholesterol concentration, LXR mediates the ubiquitination and ensuing 

degradation of LDLR [86]. 
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LDL-derived cholesterol supresses cholesterol biosynthesis and uptake. Further 

it activates cholesterol esterification so that excess cholesterol can be stored as CE 

droplets in the cytoplasm. 

2.6.3 Non-coding RNAs 

Additionally to the classical transcriptional regulators (SREBP, LXR), a class of 

noncoding RNAs, termed micro RNAs (miRNA) has emerged as critical regulators of 

gene expression acting predominantly at the posttranscriptional level. This large family 

of short (22 nucleotides) RNA binds to the 3’UTR of mRNA at the seed sequence (2 – 8 

nucleotides) and thereby represses gene expression. Recent studies have shown that 

miRNAs can also repress mRNA through binding to other regions (5’UTR, exons) [160, 

161] or may even activate translation [161, 162]. 

The canonical pathway for the biogenesis of miRNA begins in the nucleus. After 

the transcription of primary long (~hundreds of nucleotides) miRNA, its hairpin 

structures is processed sequentially in the nucleus and cytoplasma into precursor 

miRNA (~70 nucleotides). In the cytoplasm, the precursor miRNA is transformed into a 

mature miRNA duplex by the endonuclease. One of this duplex strands associates with 

RNA-induced silencing complex to produce an aggregate that binds to its RNA target 

[163]. Experimental approaches using bioinformatics indicated that a single miRNA 

may simultaneously target more than 100 mRNAs [164]. 

Recent studies have shown key roles for miR-122 and miR-33 in regulation of 

lipid metabolism, and further evidence implicates miR-370 in regulation of miR-122. 

miR-122 is the predominant liver miRNA (70 %) [165] and plays a critical role in fat 

and cholesterol metabolism. Studies with antisense nucleotides in mice showed that 

miR-122 inhibition caused a significant decrease of expression of genes encoding 

enzymes involved in cholesterol biosynthesis [166, 167]. The evidence of miR-122 

function using genetic deletion in mice reveals a 30 % reduction in total cholesterol 

(due to reduction of both LDL and HDL) and TG [168, 169]. 

miR-33a and miR-33b are intronic miRNAs located within SREBP gene [170, 

171]. Their overexpression strongly represses ABCA1 expression and decreases cellular 

cholesterol efflux to apoAI in RCT [171, 172]. Besides ABCA1, ABCG1 (in RCT), 

Niemann Pick C1 (transport of intracellular cholesterol), and genes involved in β-

oxidation of fatty acids were described as targets of miR-33 [173, 174]. 
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2.6.4 Regulation of cholesterolemia 

Based on the results of epidemiological studies it has been established that 

cholesterolemia should not exceed 5.0 mmol/l. Higher level is associated with an 

increased risk of atherosclerosis and coronary heart disease. Therefore the adequate 

regulation of cholesterol blood level is essential for cardiovascular prevention. 

Hypercholesterolemia is not a manifestation of cell cholesterol accumulation. It 

results from imbalance between secretion and uptake of cholesterol carrying 

lipoproteins (mainly LDL) [175]. The major factors that determine cholesterolemia are 

mechanisms involved in the regulation of lipid secretion from hepatocytes and those 

involved in the lipoprotein uptake from circulation. 

2.6.4.1 Cell cholesterol homeostasis 

The most significant regulatory element of cholesterol concentration in the cell 

is cholesterol itself. Its level in the plasma membrane and other membranes of cellular 

compartmens is precisely regulated in every cell. Some of regulatory mechanisms – 

cholesterol esterification or enzyme ubiquitination – provide fast response to cholesterol 

level in the cell whereas regulation through transcription factors influences cholesterol 

homeostasis after several hours. 

The explanation of feedback regulation of cell cholesterol homeostasis 

represented an intricate task because cholesterol is insoluble in water and resides 

exclusively in cell membranes. The regulatory mechanisms involve cholesterol itself 

(both FC and CE) as well as cholesterol metabolites (mainly BA and oxysterols). 

When the concentration of cholesterol in plasma membrane exceeds certain 

concentration (saturation point), the abundant cholesterol (called also „active 

cholesterol“) tend to escape or move to other cellular membrane compartments. It can 

be esterified and, in this way, the amphipathic molecule of FC is transformed into 

hydrophobic CE that can be stored in intracellular lipid droplets. Excess of FC in the 

cell triggers binding of HMG-CoA reductase to Insig which, in turn, initiates 

ubiquitination and subsequent degradation of this reductase. Interaction of FC with Scap 

in ER membranes results in suppression of SREBP signalling pathway. This leads to the 

very rapid downregulation of the sterol synthesis rate within the cell [115, 176]. In 

mitochondria, abundant FC can be oxidized to oxysterols that can be removed relatively 

easily from the cell. Oxysterols are also ligands for LXR which promote transcription of 

ABC transporters. ABCA1 and ABCG5/G8 stimulate transfer of plasma membrane 
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cholesterol to HDL in RCT. In rodents (but not in humans) LXR also upregulates 

CYP7A1 transcription and, thus, transformation of FC to BA [177, 178]. 

Oppositely, when cholesterol level in the cell decreases, CE from lipid droplets 

can be hydrolysed to provide FC instantly. The decrease in the cholesterol metabolically 

active pool in ER initiates the processing of SREBPs into their active forms. These 

transcription factors then enhance the gene expression of many of the enzymes required 

for cholesterologenesis (already from acetyl-CoA C-acetyltransferase) as well as for 

uptake of cholesterol from circulation (LDLR) [66, 176].  

2.6.4.2 Cholesterolemia regulation 

High intracellular cholesterol is detrimental to the cells, and high serum 

cholesterol will promote the deposition of cholesterol in the arterial wall, one of the 

initial steps in atherogenesis. Increased cholesterol concentration in the circulation is a 

consequence of cell inability to remove cholesterol from the blood, or, very rarely, from 

increased production of cholesterol-enriched lipoproteins.  

Both enviromental and genetic factors play a role in cholesterolemia regulation. 

Intake of saturated fat and cholesterol, physical activity are the most important 

enviromental factors. Data from family and twin studies indicated that genetic factors 

account for ~ 50 % of the interindividual variation of plasma LDL-cholesterol (LDL-C) 

[179, 180]. Cholesterolemia is regulated both at the level of lipoprotein cholesterol 

entry into circulation and at the level of cholesterol uptake by cells. Receptor-mediated 

lipoprotein uptake is the crucial pathway responsible for maintaning cholesterolemia. 

The key receptor of this process seems to be LDLR. Its deficiency leads to pronounced 

hypercholesterolemia in patients with familial hypercholesterolemia. 

A number of small nucleotide polymorphisms (SNP) in several genes involved 

in cholesterol metabolism that are associated with higher cholesterol level has been 

described. They include genes with pivotal roles in LDL metabolism (APOE, APOB, 

LDLR, CYP7A1). Three common alleles of APOE encoding apoE (differring in amino 

acids in position 112 and 158) explain 5 – 10 % of variation of LDL-C. The carriers of 

isoform E2 have lower whereas the carriers of E4 higher cholesterol concentration 

compared to E3 variant carriers [181, 182]. Surprisingly, common polymorphism of 

LDLR and APOB contribute only little to the heritable variation in plasma LDL-C in 

general population. Interestingly, the allelic variations in CYP7A1 account for 15 % of 

the overall variation in plasma LDL-C [183]. Two polymorphisms in the upstream 
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region of CYP7A1 (-203A>C, rs3808607, and -469C>T, rs3824260) have been 

associated with variation of plasma LDL-C [184]. Furthermore, it was repeatedly 

demonstrated that -203A>C polymorphism affects responsiveness of plasma cholesterol 

and LDL-C to dietary fat and cholesterol [185, 186].  

Since 2007, genome wide association studies have identified several 

chromosome loci related to atherosclerosis. Unfortunatelly, the majority of these new 

findings overlaps with the classical risk factors and the influence of the locus 9p21.3, 

the strongest genetic factor of atherosclerosis known today, is not as sufficient as has 

been expected [187, 188]. 

2.7 Animal models 

The first experimental hypercholesterolemic model was a rabbit. In 1908 

Ignatowski, and five years later Anitschkow showed that feeding cholesterol to rabbits 

resulted in hypercholesterolemia and development of atherosclerosis [2, 3]. In some 

species hypercholesterolemia can be induced very easily (rabbit, pigeon) whereas some 

animals are resistant (pig, monkey, rodents). In mice and rats, BA or drugs influencing 

thyroid gland must be added to cholesterol containg diet to induce 

hypercholesterolemia.  

Furthermore, there are marked differences in lipoprotein metabolism between 

humans and rodents. Mice and rats do not possess CETP and have an up to 40-fold 

higher LDL clearance by the liver compared to humans [6, 189]. Hence they carry most 

of their plasma cholesterol in HDL particles [6, 189-192]. Additionally, editing of the 

hepatic apoB mRNA in the rodents limits apoB100 synthesis in favour of apoB48 

synthesis.  

For that reason many studies on cholesterol metabolism have been performed in 

mice with genetic deficiency of major determinants of plasma cholesterol metabolism 

such as the LDLR [193] or apoE [194]. More recently, “humanised” mice have become 

available in which human CETP is expressed [192]. 

Nevertheless, these currently used animal models can test only the function of 

genes already known as a candidate for a defined monogenic defect. However, most 

hypercholesterolemias is of polygenous origin. To discover genes that determine 

cholesterolemia, animals with spontaneous defects in cholesterol metabolism should aid 

to reveal new pathophysiological mechanisms. These experimental models can be 



State of the art 
 

 
29 

obtained by inbreeding of individuals with high cholesterol concentration that are more 

sensitive to dietary cholesterol and fat [195].  

2.7.1 Watanabe-heritable hyperlipidemic (WHHL) rabbit 

The WHHL rabbit has an inherited hyperlipidemic trait. It was obtained by 

inbreeding from a mutant discovered in 1973. It was demonstrated later that this strain 

represents a model of LDLR deficiency. The rabbit has LDL cholesterol abnormally 

increased 8 – 14fold in comparison with control rabbits [196-199]. The model was very 

useful for study of familial hypercholesterolemia and atherosclerosis pathogenesis 

[200]. 

2.7.2 Prague hereditary hypercholesterolemic (PHHC) rat 

In general, rat is not a good model for atherosclerosis and hypercholesterolemia 

research. Its plasma cholesterol concentrations are commonly lower than 2 mmol/l and 

the majority of cholesterol is transported in HDL [192]. To induce hypercholesterolemia 

it is necessary to add BA or thyreotoxic substances to the diet because cholesterol and 

fat are not sufficient [201-203]. Hovewer, several groups were able to produce hyper-

cholesterolemic rats by inbreeding animals sensitive to dietary cholesterol [204, 205]. 

The PHHC rat was obtained through the selective inbreeding of parental Wistar 

rats [206]. It has modestly increased cholesterolemia when fed chow and responds to a 

diet containing 2% cholesterol by a severalfold increase of cholesterolemia to 

concentrations comparable to those observed in hypercholesterolemic patients. 

Importantly, such a change in cholesterolemia is reached without the addition of CA 

and/or thyreotoxic drugs. Besides that, cholesterol accumulates in lipoproteins other 

than HDL, mostly in VLDL fraction [206].  

Despite considerable effort, the mechanisms responsible for hyper-

cholesterolemia development have not been determined yet. Because no difference was 

found in LDL clearance from the circulation between PHHC and Wistar rats (Figure 7), 

defect in LDLR quantity and/or function of PHHC rat was excluded [206]. 

Additionally, the absorption of dietary cholesterol does not prominently differ in both 

lines [206] as well as the activity of lecithin:cholesterol acyltransferase [207], LPL, and 

hepatic lipase [208]. It has been suggested only recently that PHHC rats, when fed 

cholesterol, may not be able to upregulate the transcription of Cyp7a1 [209]. 
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Figure 7: Clearance of 125I-LDL from circulation. 

LDL were isolated from Wistar rats, then radiolabelled, and intravenously injected into PHHC and Wistar 

rats. The radioactivity decrease of plasma 125I did not differ between both lines [206]. 

Backcrossing of PHHC and Wistar rats revealed that hypercholesterolemia in 

PHHC rat is of polygenic origin. Nevertheless, genes that may be involved in the 

determination of hyperresponsiveness of PHHC rat to dietary cholesterol have not been 

idenfied up to now. 
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3. Aims 

3.1 Pathogenesis of hypercholesterolemia in the PHHC rat (Aim I) 

The PHHC rat is an established model of dietary cholesterol-induced 

hypercholesterolemia, although its pathogenesis is not yet fully understood. Our aims 

were as follows: 

a) to study the production and clearance of lipoproteins in the PHHC and control 

Wistar rat in vivo, 

b) to compare the response of the hepatic transcriptome to cholesterol feeding in 

PHHC and control Wistar rats and identify the genes involved in the 

determination of hyperresponsiveness of PHHC to dietary cholesterol,  

c) to confirm the role of selected candidate genes in hypercholesterolemia 

pathogenesis. 

 

3.2 The role of the -203A>C polymorphism of CYP7A1 in cholesterolemia 

regulation (Aim II) 

The -203A>C polymorphism of CYP7A1 is involved in the determination of 

cholesterolemia and its responsiveness to diet, although the mechanisms behind it have 

not yet been explained. Our aims were as follows:  

a) to study the regulation of the expression of the CYP7A1 promoter variants in 

vitro using dual luciferase assay, 

b) to examine the diurnal variation of CYP7A1 activity in homozygous carriers  

of the -203A and -203C allele. 
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4. Pathogenesis of hypercholesterolemia in the PHHC rat (Aim I) 

4.1 Materials and methods 

4.1.1 Rats 

Male PHHC rats (bred at the Department of Experimental Medicine of the 

Institute for Clinical and Experimental Medicine) and control Wistar rats (AnLab, 

Prague, Czech Republic) weighing 260 – 460 g were used in the experiments. The 

studies on rats were conducted in conformity with the Institute for Laboratory Animal 

Research Guide for Care and Use of Laboratory Animals as incorporated in the 

guidelines and practices established by the Council for Animal Rights of the Institute 

for Clinical and Experimental Medicine. 

4.1.2 Diets 

The rats were fed one of the three diets: standard laboratory diet M2 (SEMED, 

Prague, Czech Republic) (C diet), M2 diet + 5% palm kernel oil (control fat, CF diet), 

and M2 diet + 5% palm kernel oil + 1% cholesterol (CHOL diet). Both PHHC and 

Wistar rats were kept on the above mentioned diets for three weeks. 

4.1.3 Determination of VLDL production in vivo 

Both PHHC and Wistar rats were fed C, CF or CHOL diet (n = 6 per group, six 

groups in total) for 3 weeks. At the end of experiment, VLDL production was measured 

as described previously [210] with slight modifications. The rats were anesthetised i. p. 

with Thiopental® (150 mg/kg of weight), an intravenous catheter was inserted into 

jugular vein and a baseline sample of blood was taken. One ml of 20% tyloxapol (Triton 

WR-1339, Sigma-Aldrich) was then injected through the catheter. Two hours later, the 

rats were sacrificed and the serum was used for TG and cholesterol determination and 

VLDL isolation by ultracentrifugation (3 pools per each group) [211]. 

4.1.4 Determination of VLDL clearance in vivo 

Firstly, VLDL were isolated by ultracentrifugation [211] from the serum of 

PHHC rats fed CHOL diet and from Wistar rats fed the C diet. Cholesterol/TG ratio of 

these VLDL were 2.22 (PHHC) and 0.83 (Wistar). Total protein in VLDL was 

determined [212]. VLDL were labeled by the iodine monochloride method [213] using 
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125I-sodium iodide (Institute of Isotopes, Budapest, Hungary). Secondly, male Wistar 

rats (300 – 400 g of weight) were then anesthetised i. p. with Thiopental® (150 mg/kg of 

weight), an intravenous catheter was inserted into jugular vein and the radiolabelled 

VLDL was injected. Four Wistar rats were administered autologous 125I-VLDL while 

the other four Wistar rats were administered 125I-VLDL from PHHC rats. The 0.2 ml 

aliquots of blood for determination of radioactivity were then taken from tail vein 5, 15, 

30, 60, 120, 240 and 360 min after application. The radioactivity was measured in the 

serum. Human LDL (0.13 mg of lipoprotein) in saline was then added to 50 µl of each 

of the serum samples and the samples were precipitated with isopropanol as described 

previously [214]. Radioactivity was subsequently measured in supernatant and the 

amount of radiolabelled apoB was calculated. The half-time of apoB in VLDL was 

estimated from monoexponential plot of the data (least square fit) acquired from 30 to 

360 min. The biexponential fit was not used because of limited amount of data. Two-

sample t-test (two-tail) was used to examine whether the observed halftimes were 

statistically different. Normality of the data was examined via Lilliefors test (two sides) 

at the significance level  = 0.01. 

4.1.5 Determination of MTP and ACAT activities 

The MTP activity was determined in the liver homogenate using commercial 

fluorimetric kit (Roar Biomedical) as recommended by the manufacturer. The ACAT 

activity in hepatic microsomal fraction was measured as described by others [215, 216]. 

4.1.6 Gene expression analysis in the liver 

After the 3 week feeding period, the rats (n = 6 - 8 per group, six groups in total) 

were sacrificed and the samples of liver tissue were taken for RNA isolation for gene 

expression study. Four individual RNA samples per each group were used for 

microarray analysis; all samples from the study were used if the expression was 

validated by qPCR. The aliquots of liver and serum were used for quantification of 

cholesterol and TG, and lipoproteins were isolated from serum by ultracentrifugation as 

described [211]. 

4.1.7 Lipid and lipoprotein analysis 

Lipoproteins were isolated by sequential ultracentrifugation as described by 

others [211]. Cholesterol and TG in serum and in ultracentrifugally isolated lipoproteins 
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were measured using enzymatic kits (Roche Diagnostics). Cholesterol and TG in the 

liver were determined using the same method after lipid extraction from the liver 

homogenate [217]. The presence of apoE in ultracentrifugally separated VLDL was 

confirmed as earlier described [218]. In experiment in which MTP and ACAT activities 

were studied, the concentration of free and total cholesterol in the liver was determined 

using enzymatic kit (BioVision) and CE concentration calculated as a difference.  

4.1.8 RNA extraction 

RNAs were produced from two liver samples of each animal. The liver samples 

(50 – 100 mg) were stored in RNAlater (Qiagen) immediately following dissection. 

Total RNA was isolated using TRIzol® (Invitrogen) according to the manufacturer's 

instructions. RNA concentration was determined spectrophotometrically and RNA 

integrity was confirmed on a 1% agarose gel electrophoresis after 2 min at 70 °C. The 

resulting RNA samples were stored at -80°C.  

4.1.9 Microarray analysis 

RNA samples passing quality control and microarray analysis of gene 

expression were processed by the Functional Genomics and Bioinformatics Core 

(Institute of Molecular Genetics, ASCR v.v.i., Prague, Czech Republic). The intactness 

of the 18S and 28S ribosomal subunits of RNA was analysed on Bioanalyser 2100 

(Agilent Technologies). Sample quality was assessed by RNA Integrity Number (RIN 

score) and samples with an RIN of 7.5 or greater were passed; quantity was determined 

by NanoDrop ND-1000 Spectrophotometer (Nanodrop Technologies). Samples were 

then prepared for hybridization, hybridised, washed, strained and scanned according to 

the manufacturer's instructions on GeneChip®Rat Exon 1.0 ST Array (Affymetrix). 

Affymetrix control metrics were used to qualify the resulting data. Raw data were 

processed at the gene level within Affymetrix Expression Console (version 1.1) using 

the RMA algorithm. 

4.1.10 Reverse transcription 

RNA (15 µg) was treated with 2 U DNase I (Fermentas) at 37 °C for 30 min 

followed by the addition of 2.5mM EDTA and incubation at 65 °C for 30 min to remove 

trace amounts of DNA. For reverse transcription, a modified manufacturer's protocol of 

RevertAidTM H Minus First Strand cDNA Synthesis Kit (Fermentas) was used. Three 
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µg of purified RNA, 5 µM oligo(dT) primer and 5 µM random hexamer primer in 12 µl 

reaction mixture were heated to 70 °C for 5 min, then cooled on ice for 1 min and a 

reverse transcriptase reaction mix containing buffer (50mM Tris-HCl (pH 8.3), 50 mM 

KCl, 4 mM MgCl2, 10mM DTT), 20 U RNase Inhibitor and 1mM dNTP mix was 

added. The reaction mixture was then incubated for 5 min at 25 °C, 200 U MuLV 

Reverse Transcriptase was added and incubation continued at 25 °C for 10 min. The 

reaction mix was heated to 42 °C for 60 min, then to 70 °C for 15 min and placed on ice 

for 2 min. Afterwards, RNase H (2 U) was added, followed by incubation at 37 °C for 

20 min and then by heating to 65 °C for 10 min. cDNA was purified via Qiaquick PCR 

Purification Kit (Qiagen) and dissolved in 30 µl of DEPC water. The resulting cDNA 

samples were quantified spectrophotometrically at 260 nm and then stored at -80 °C. 

4.1.11 Quantitative real-time PCR (qPCR) 

Reaction was performed for selected genes using a 7300 Real Time PCR System 

(Applied Biosystems) and TaqMan® Gene Expression Assays (Appendix 12.2) in 

combination with TaqMan® Gene Expression Master Mix, according to the 

manufacturer's instructions (Applied Biosystems). Twenty ng of cDNA in a 20 µl 

reaction volume per well were used. Reactions were performed in duplicates for each 

sample. All results were normalised to Vars2l (the lowest standard deviation of 

microarray analysis of gene expression among all samples) to compensate for 

differences in the amount of cDNA. The PCR efficiency of each gene-specific real-time 

PCR session was validated with a standard curve constructed from a simultaneously run 

serially diluted cDNA [219, 220]. The relative expression levels were quantified by 

using the delta-delta threshold cycle method with efficiency correction [221].  

4.1.12 DNA sequencing 

gDNA was extracted from peripheral leukocytes using QIAamp columns 

(Qiagen). The coding exons of Apoe and Apof, together with the adjacent parts of the 

intronic sequences, were amplified by PCR with intronic oligonucleotide primers 

(Appendix 12.2). The amplicons were gel-purified, extracted with QIAquick spin 

columns (Qiagen), and used as templates for the sequencing reaction with Big 

DyeTerminator Kit v3.1 (Applied Biosystems) according to the manufacturer's protocol. 

The products were analysed on a 3130 Genetic Analyser (Applied Biosystems). Data 

were evaluated using SeqScape® Software (Applied Biosystems). 
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4.1.13 Determination of Aldh1a7 activity 

The activity of aldehyde dehydrogenase family 1, subfamily A7 (Aldh1a7) was 

measured in cytosol fraction of liver homogenate as described by Kathmann with slight 

modifications [222]. Reactions were performed at 24 °C in 60mM sodium 

pyrophosphate buffer (pH 8.5) with 1mM NAD+. Enzyme activity was expressed as 

increase of NADH concentration in nmol.l-1min-1mg-1. The initial velocities were 

estimated by extrapolation of differences to zero time. 

4.1.14 Statistics 

The data (with exception of results of VLDL clearance and the microarray 

experiment) were analysed by ANOVA and, if ANOVA revealed any differences, then 

corresponding post-hoc tests were performed (GraphPad InStat). 

Differential gene expression analysis was performed in the R statistical 

environment [223] using the Limma package [224] which is a part of the Bioconductor 

project [225]. Multiple testing correction was performed using the Benjamini and 

Hochberg method. We considered genes to be differentially expressed if the adjusted P 

value was < 0.05.  
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4.2 Results 

4.2.1 Lipids and lipoproteins 

Feeding both Wistar and PHHC rats CHOL diet resulted in a marked 

accumulation of TG and cholesterol in the liver and a cholesterol increase in serum lipid 

and lipoproteins (Table 2, Figure 8). 

While the response in the liver of both strains did not differ, the cholesterol 

change in serum was severalfold higher in PHHC than in Wistar rats. The increase of 

cholesterolemia in Wistar rats was caused by a fivefold increase of VLDL-cholesterol 

(VLDL-C), the cholesterolemia increase in PHHC rats was due to an approximately  

tenfold increase of VLDL-C and IDL-C. VLDL of PHHC rats were substantially 

enriched by cholesterol. Feeding both strains the CF diet had no effect (in comparison 

with C diet) either on concentrations of cholesterol and TG in the liver or on lipid and 

lipoprotein concentrations in serum.  

Table 2: Lipids in the liver and serum in PHHC and Wistar rats. 

 Wistar PHHC 
  C CF CHOL C CF CHOL 

n 8 8 8 6 6 7 
Liver              
cholesterol 6.1 a 

5.8 a 
24.3 b 

6.0 a 
5.6 a 

27.6 b 

[μmol/g] (1.3)  (0.4)  (4.5)  (0.7)  (1.6)  (13.1)  

TG 5.0 a 6.6 a 22.2 b 4.8 a 5.3 a 16 b 

[μmol/g] (0.9)  (1.6)  (3.7)  (1.1)  (1.1)  (8.8)  
Serum                        
cholesterol 1.68 a 1.98 a,b 2.34 b 2.48 a** 2.71 a** 4.24 b** 

[mmol/l] (0.19)  (0.26)  (0.37)  (0.21)  (0.26)  (0.24)  
TG 1.22 a 

1.24 a,b 1.79 b 0.92 * 0.95  1.42  
[mmol/l] (0.18)  (0.42)  (0.39)  (0.21)  (0.38)  (0.47)  

a,b  the same letters are assigned to the groups that do not differ within a given strain (P < 0.05), 

*,**  P < 0.05, P < 0.01 … differences between Wistar and PHHC rats on the same diet.  

Data are presented as mean (SD).  
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Figure 8: Cholesterol and TG in ultracentrifugally isolated lipoproteins in PHHC (P) and Wistar 

(W) rats. 

PHHC and Wistar rats were fed C, CF or CHOL diet for three weeks. The lipoproteins were isolated from 

serum by ultracentrifugation (one pool per group was used) [212].  
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4.2.2 VLDL production in vivo 

To estimate the rate of VLDL production in vivo and analyse their composition, 

tyloxapol (Triton WR 1339), an inhibitor of LPL, was injected to rats fed C, CF, and 

CHOL diet in another experiment. Two hours later, the serum TG raised several fold in 

all groups of animals (Figure 9). On the CHOL diet, serum cholesterol rose from 1.5 to 

3.6 and from 3.2 to 7.9 mmol/l in Wistar and PHHC rats, respectively (P < 0.001). The 

increase in cholesterolemia was only modest on both control diets. 

 

Figure 9: Cholesterol and TG in serum before (0) and 2 hours after (2) tyloxapol application. 

PHHC and Wistar rats were fed C, CF or CHOL diet for three weeks. At the end of the experiment, the 

rats were injected 1 ml of 20% tyloxapol and sacrified two hours later. Data are presented as mean ± SD. 

W (Wistar), P (PHHC) rat. 
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Importantly, the cholesterolemia increase was exclusively caused by the 

increment in VLDL-C. VLDL-C/VLDL-TG ratio which was ~ 0.2 in both PHHC and 

Wistar rats on both control diets, rose to 0.45 in Wistar rats and to 0.9 in PHHC rats on 

CHOL diet (Figure 10). 

 

Figure 10: Concentration of cholesterol and TG in VLDL isolated from rat serum 2 hours after 
tyloxapol administration. 
PHHC and Wistar rats were fed C, CF or CHOL diet for three weeks. At the end of the experiment, the 

rats were injected 1 ml of 20 % tyloxapol and sacrified two hours later. Three pools per each group of 6 

rats were used for VLDL isolation. Data are presented as mean ± SD. W (Wistar), P (PHHC) rat. 
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4.2.3 VLDL clearance in vivo 

To determine whether the cholesterol-rich VLDL of PHHC rats are removed 

from circulation at a different rate than those of Wistar rats, the rate of disappearance of 

radiolabelled VLDL from both Wistar and PHHC rats was compared in Wistar rats in 

vivo in another experiment. When intravenously injected into Wistar rats, the 125I-VLDL 

from Wistar rats were cleared from serum more rapidly than the 125I-VLDL from PHHC 

rats (Figure 11). The half time of apoB of Wistar VLDL was estimated to be more than 

three times shorter than that of apoB of VLDL isolated from PHHC rats (107 ± 42 min 

vs. 376 ± 109 min, respectively; P < 0.01). 

 

Figure 11: Clearence of 125I-VLDL from serum of PHHC and Wistar rats injected into Wistar rats. 

VLDL were isolated by ultracentrifugation from sera of PHHC rats fed CHOL diet and Wistar rats fed C 

diet, radiolabelled [214] and injected into Wistar rats. The blood samples for determination of 

radioactivity were taken from tail vein. Data are presented as mean ± SD. 
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4.2.4 ACAT and MTP activities and gene expression in the liver 

To determine whether the rate of VLDL assembly in the liver is affected by 

dietary cholesterol, the activities of two crucial proteins ACAT and MTP were 

measured in another experiment. The CHOL diet did not influence ACAT and MTP 

activities in both strains (Table 3). 

Table 3: ACAT and MTP activities in the liver and FC, CE and TG concentration in the liver, 

plasma, and VLDL in PHHC and Wistar rats. 

 Wistar PHHC 
  CF CHOL CF CHOL 

n 6 6 6 6 
Liver         

ACAT 1.18  1.23  1.46  1.34  

[nmol/mg/min] (0.27)  (0.21)  (0.10)  (0.14)  

MTP 607  604  421  554  

[pmol/mg/h] (130)  (225)  (91)  (105)  

FC 7.4  7.0  6.9  6.3  
[μmol/g] (1.0)  (0.6)  (1.1)  (1.0)  

CE 0.7  2.2 # 0.6  2.6 ## 
[μmol/g] (0.9)  (0.9)  (0.9)  (1.0)  

Serum                 
FC 0.19  0.24  0.32  0.66 ##,** 

[mmol/l] (0.09)  (0.03)  (0.05)  (0.08)  
CE 1.89  2.23  2.67 * 4.28 ##,** 

[mmol/l] (0.24)  (0.36)  (0.19)  (0.73)  
TG 1.96  2.59  2.32  2.30  

[mmol/l] (0.67)  (0.81)  (0.21)  (0.27)  
VLDL         

FC 0.15  0.23  0.22  0.51 ##,** 
[mmol/l] (0.05)  (0.03)  (0.02)  (0.06)  

CE 0.08  0.44 ## 0.13  1.53 ##,** 
[mmol/l] (0.01)  (0.08)  (0.03)  (0.17)  

TG 1.55  2.08  1.75  1.90  
[mmol/l] (0.78)  (0.62)  (0.21)  (0.08)  

#,##   P < 0.05, P < 0.01 differences between CF and CHOL diet within the strain; 

*,**   P < 0.05, P < 0.01 differences between Wistar and PHHC rats on the same diet. 

Data are presented as mean (SD). 

CHOL diet did not influence gene expression of ACAT (Soat1 and Soat2) and 

MTP (Mttp) in both strains in the same animals (Figure 12). When the expression 

between PHHC and Wistar rats was compared, just Soat1 expression on CHOL diet was 

found to be modestly downregulated (P < 0.05). 
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Figure 12: ACAT (Soat1 and Soat2) and MTP (Mttp) gene expression. 

Comparison of gene expression between PHHC and Wistar rats on CF (Panel A) and CHOL (Panel B) 

diet; influence of CHOL diet on gene expression in Wistar (Panel C) and PHHC (Panel D) rats. Gene 

expression of Wistar rats or control diet is set to 1.0 (dash line). *  P < 0.05 differences between Wistar 

and PHHC rats on the same diet. Data are presented as mean ± SD. 

4.2.5 Gene expression in the liver 

Feeding both strains of the CHOL diet induced at least a twofold downregulation 

(P < 0.05) of eight genes involved in the cholesterol biosynthesis pathway and three 

other genes involved in the lipid metabolism (Insig, Pcsk9, and Fads) (Figure 13). The 

expression of Ldlr, Hmgcr and Cyp7a1 was also changed but did not fulfill the strict 

criteria used in the study. In either strain, no gene was upregulated on the CHOL diet, 

and, importantly, there were no significant differences between the response of both 

strains to the CHOL diet. Feeding both PHHC and Wistar rats a CF diet had no effect 

on the expression of any of the approximately 6500 genes expressed in the liver in 

comparison to the C diet. 

When the hepatic transcriptome of both strains was compared on the same diet 

using the same criteria (twofold change, P < 0.05), several genes were found to be 

expressed differently (Figure 14). Five genes were downregulated and four genes 

upregulated in the PHHC rats. The vast majority of those genes, except for Apof, has no 

known connection to the lipoprotein metabolism. 
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Figure 13: Hepatic gene expression response in PHHC and Wistar rats to dietary cholesterol. 

The genes that were at least twofold downregulated on CHOL diet compared to both control (C, CF) diets 

(P < 0.05) are shown. Data are presented as mean of gene expression on CHOL diet compared to mean of 

gene expression of both control diets; expression of genes on control diets is set to 1.0.  

Acat2, acetyl-CoA acetyltransferase 2, NM_001006995, Hmgcs1, 3-hydroxy-3-methylglutaryl-CoA 

synthase 1 (soluble), NM_017268, Idi1, Isopentenyl-diphosphate delta isomerase, NM_053539, Fdft1, 

Farnesyl diphosphate farnesyl transferase 1, NM_019238, Sqle, Squalene monooxygenase, NM_017136, 

Cyp51, Cytochrome P450, subfamily 51, NM_012941, Tm7sf2, Transmembrane 7 superfamily member 2, 

NM_001013071, Sc4mol sterol-C4-methyl oxidase-like NM_080886.1, Insig1, Insulin induced gene 1, 

NM_022392, Fads1, Fatty acid desaturase 1, NM_053445, Pcsk9, Proprotein convertase subtilisin/kexin 

type 9, NM_199253. All IDs are from NCBI nucleotide database. 

 

Figure 14: Comparison of hepatic gene expression between PHHC and Wistar rats. 

The genes that were at least twofold down- or upregulated (P< 0.05) in PHHC rats compared to Wistar 

rats irrespective of the diet are shown. Data are presented as mean of gene expression on all three diets. 

Gene expression of Wistar rats is set to 1.0. 

Ugt2b, UDP glycosyltransferase 2 family, polypeptide B, NM_031533, Cdh17, Cadherin 17, 

NM_053977, Ltc4s, Leukotriene C4 synthase, NM_053639, Slc6a6, Solute carrier family 6 

(neurotransmitter transporter, taurine), member 6, NM_017206, Rtcb,RNA 2',3'-cyclic phosphate and 5'-

OH ligase, NM_207614, Cyp2d5, Cytochrome P450, family 2, subfamily d, polypeptide 5, NM_173304, 

Apof, Apolipoprotein F, NM_001024351, Gsta3,Glutathione S-transferase alpha 3, NM_001009920, 

Aldh1a7, Aldehyde dehydrogenase family 1, subfamily A7, NM_017272. All IDs are from NCBI 

nucleotide database. 
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The results of microarray gene expression were validated for 14 genes (Table 4, 

Table 5), the validation was carried out on RNA samples from all the animals in the 

study. The results of qPCR did not differ from that of microarray gene expression 

profiling except for three of the most prominently up- or downregulated genes (Ugt2b, 

Aldh1a7, Ltc4s). The differences between both strains in the expression of these genes 

were found to be even more pronounced when qPCR was used for quantification.  

Table 4: Validation of microarray gene expression data using qPCR.  
Part I – Effect of the diet. 

Gene 

Symbol 
CHOL x CF CHOL x C CF x C 

Microarray qPCR Microarray qPCR Microarray qPCR 

PHHC              

cholesterol biosynthesis                  

Acat2 0.251 *** 0.265 *** 0.269 *** 0.261 *** 1.072  0.985  

Hmgcr 0.482 ** 0.364 *** 0.517 ** 0.383 *** 1.073  1.054  

Sqle 0.069 *** 0.038 *** 0.079 *** 0.049 *** 1.140  1.274  

Ebp 0.696 ** 0.530 ** 0.664 *** 0.517 ** 0.953  0.976  

lipoprotein metabolism          

Cyp7a1 3.700  3.083  4.237 * 2.901  1.145  0.941  

Insig1 0.341 ** 0.293 *** 0.323 ** 0.364 ** 0.946  1.242  

Ldlr 0.689 * 0.614  0.686 * 0.422 *** 0.997  0.687  

Wistar                         

cholesterol biosynthesis          

Acat2 0.353 *** 0.298 *** 0.339 *** 0.291 *** 0.961  0.976  

Hmgcr 0.654  0.409 *** 0.639  0.444 *** 0.978  1.086  

Sqle 0.113 *** 0.059 *** 0.113 *** 0.074 *** 1.003  1.239  

Ebp 0.721 ** 0.632 * 0.652 *** 0.618 * 1.000  0.978  

lipoprotein metabolism          

Cyp7a1 2.163  2.124  2.275  2.505  1.052  1.180  

Insig1 0.238 ** 0.171 *** 0.200 ** 0.179 *** 0.842  1.047  

Ldlr 0.640 * 0.500 ** 0.652 * 0.516 ** 1.019  1.033  

 

Data are presented as mean fold of gene expression of group of interest in comparison to control group; 

expression of genes on control diets is set to 1.0. 

* P < 0.05, ** P < 0.01, *** P < 0.001.  

Acat2, acetyl-CoA acetyltransferase 2, NM_001006995, Hmgcr, 3-hydroxy-3-methylglutaryl-CoA 

reductase, NM_013134, Sqle, Squalene monooxygenase, NM_017136, Ebp, Emopamil binding protein 

(sterol isomerase), NM_057137, Cyp7a1, Cytochrome P450, family 7, subfamily a, polypeptide 1, 

NM_012942, Insig1, Insulin induced gene 1, NM_022392, Ldlr, Low density lipoprotein receptor, 

NM_175762. All IDs are from NCBI Nucleotide database. 
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Table 5: Validation of microarray gene expression data using qPCR. 

Part II – Effect of the strain. 

PHHC x Wistar   
Gene 

Symbol 
CHOL CF C 

Microarray qPCR Microarray qPCR Microarray qPCR 
Ugt2b 1.49x10-2 *** 4.79x10-4 *** 1.78x10-2 *** 9.27x10-4 *** 1.36x10-2 *** 5.19x10-4 *** 
Cdh17 9.69x10-2 ** 6.48x10-2 *** 1.09x10-1 ** 8.59x10-2 *** 5.62x10-2 *** 5.81x10-2 *** 
Ltc4s 1.68x10-1 *** 1.79x10-2 * 2.53x10-1 *** 2.18x10-2 ** 2.30x10-1 *** 9.81x10-2 *** 
Slc6a6 3.90x10-1 ** 1.85x10-1 * 3.28x10-1 *** 1.67x10-1 * 2.73x10-1 *** 3.23x10-1 * 
Apof 3.40 *** 5.92 * 3.20 *** 5.85 ** 3.81 *** 7.62 * 
Gsta3 11.2 *** 10.2 *** 6.94 *** 9.80 *** 8.22 *** 9.76 *** 
Aldh1a7 19.1 *** 129 ** 30.6 *** 208 * 24.8 *** 280 *** 
 

Data are presented as mean fold of gene expression of group of interest in comparison to control group; gene expression of Wistar rats is set to 1.0. 

* P < 0.05, **P < 0.01, ***P < 0.001.  

Ugt2b, UDP glycosyltransferase 2 family, polypeptide B, NM_031533, Cdh17, Cadherin 17, NM_053977, Ltc4s, Leukotriene C4 synthase, NM_053639, Slc6a6, Solute 

carrier family 6 (neurotransmitter transporter, taurine), member 6, NM_017206, Apof, Apolipoprotein F, NM_001024351, , Gsta3,Glutathione S-transferase alpha 3, 

NM_001009920, Aldh1a7, Aldehyde dehydrogenase family 1, subfamily A7, NM_017272. All IDs are from NCBI Nucleotide database.



 

4.2.6 The Apoe and Apof

To exclude the possibility that 

is similar to the pathogenesis of human dysbetalipoproteinemia, the 

sequenced in both strains and the homozygous substitution of C, instead of G, was 

found in position -42 (from the start of translation) in the first exon

the PHHC rats, not in the Wistar rats (

Figure 15: Sequence of first exon of 

rats. 

Untranslated region (gray), coding region (black).

Furthermore, no substantial differences in apoE content in VLDL (evaluated as a 

ratio of apoE and apoB) were observed between PHHC and Wistar rats

Figure 16: VLDL apolipoproteins in PHHC and Wistar rats.

VLDL were separated by ultracentrifugation 

Apof sequencing 

To exclude the possibility that hypercholesterolemia pathogenesis of PHHC rats 

is similar to the pathogenesis of human dysbetalipoproteinemia, the 

sequenced in both strains and the homozygous substitution of C, instead of G, was 

42 (from the start of translation) in the first exon 

the PHHC rats, not in the Wistar rats (Figure 15). 

: Sequence of first exon of Apoe with homozygous substitution of C instead G in PHHC 

Untranslated region (gray), coding region (black). 

Furthermore, no substantial differences in apoE content in VLDL (evaluated as a 

ratio of apoE and apoB) were observed between PHHC and Wistar rats

: VLDL apolipoproteins in PHHC and Wistar rats. 
VLDL were separated by ultracentrifugation [212] and apolipoproteins separated on SDS
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pathogenesis of PHHC rats 

is similar to the pathogenesis of human dysbetalipoproteinemia, the Apoe was 

sequenced in both strains and the homozygous substitution of C, instead of G, was 

 of the gene only in 

 

with homozygous substitution of C instead G in PHHC 

Furthermore, no substantial differences in apoE content in VLDL (evaluated as a 

ratio of apoE and apoB) were observed between PHHC and Wistar rats (Figure 16). 

 

and apolipoproteins separated on SDS-PAGE [219]. 



 

Apof, the only gene differentially expressed in PHHC rats with a presumed role 

in lipoprotein metabolism, was sequenced and 17nt insertion in coding exon was found 

(Figure 17). The same variation of 

frequency (n = 24). 

Figure 17: Sequence of a part of second exon of 
The sequence starts at nucleotide 83 (from translation start site). Untranslated region (gray), coding 

region (black). 

4.2.7 Aldh1a7 activity and gene sequencing

Aldh1a7 specific activity was measured in both strains on C and CHOL diet to 

compare if the expression of 

independently of the diet) correlates with its activity. Whereas the Aldh1a7 activity on 

the C diet did not differ between both strains, the enzyme activity of PHHC rats was 

increased 56 % (P < 0.001) then that of Wistar rats on the CHOL diet (

Figure 18: Specific activity of Aldh1a7 in PHHC
Data are presented as mean ± SD.

, the only gene differentially expressed in PHHC rats with a presumed role 

in lipoprotein metabolism, was sequenced and 17nt insertion in coding exon was found 

). The same variation of Apof was found in Wistar rats with 0.125 allele 

: Sequence of a part of second exon of Apof with 17nt insertion in PHHC rats.
The sequence starts at nucleotide 83 (from translation start site). Untranslated region (gray), coding 

Aldh1a7 activity and gene sequencing 

Aldh1a7 specific activity was measured in both strains on C and CHOL diet to 

if the expression of Aldh1a7 (the most upregulated gene in PHHC rats 

independently of the diet) correlates with its activity. Whereas the Aldh1a7 activity on 

the C diet did not differ between both strains, the enzyme activity of PHHC rats was 

0.001) then that of Wistar rats on the CHOL diet (

: Specific activity of Aldh1a7 in PHHC (P) and Wistar (W) rats on C and CHOL diet. 
Data are presented as mean ± SD. 
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, the only gene differentially expressed in PHHC rats with a presumed role 

in lipoprotein metabolism, was sequenced and 17nt insertion in coding exon was found 

was found in Wistar rats with 0.125 allele 

 

in PHHC rats. 
The sequence starts at nucleotide 83 (from translation start site). Untranslated region (gray), coding 

Aldh1a7 specific activity was measured in both strains on C and CHOL diet to 

(the most upregulated gene in PHHC rats 

independently of the diet) correlates with its activity. Whereas the Aldh1a7 activity on 

the C diet did not differ between both strains, the enzyme activity of PHHC rats was 

0.001) then that of Wistar rats on the CHOL diet (Figure 18).  

 

rats on C and CHOL diet. 



 PHHC 

 

49 

To verify whether Aldh1a7 does not contain any mutations in PHHC rat, 

Aldh1a7 was also sequenced in both strains. Only already known polymorphisms were 

found in both strains. Because of the mRNA different splicing possibility, cDNA were 

also sequenced, however, the cDNA sequences of PHHC and Wistar rats did not differ. 

4.3 Discussion 

PHHC rat was obtained through selective inbreeding of Wistar rats 

hyperresponsive to cholesterol diet in the late 1970’s. Even today the pathogenesis of its 

hypercholesterolemia has remained elusive. Our results brought the first evidence that 

this dietary cholesterol-induced hypercholesterolemia in PHHC rat is due to the 

production of VLDL abnormally enriched with cholesterol. These VLDL are apparently 

catabolised more slowly than normal VLDL and mount up in circulation. However, 

cholesterol feeding does not influence the activities of two key proteins (ACAT and 

MTP) which can affect the cholesterol incorporation into VLDL. Moreover, no 

difference between PHHC rats and control Wistar rats was observed in response of the 

hepatic transcriptome to dietary cholesterol. However, several genes were significantly 

up- or downregulated in PHHC rats irrespective of diet which is suggestive of the fact 

that the response to dietary cholesterol takes place in a different genetic background. 

4.3.1 Response of lipid metabolism to dietary cholesterol 

The PHHC rat represents a unique rat model because the hypercholesterolemia is 

induced only by dietary cholesterol without the need for addition of CA or thyreotoxic 

drugs that are usually used in the other strains to induce hypercholesterolemia [201-203, 

226]. While there is no difference in the lipoprotein profile between PHHC and control 

Wistar rats on C diet or on CF diet, on the CHOL diet there is a much more pronounced 

increase in cholesterolemia in PHHC rats than in Wistar rats (Table 2). In PHHC rats, 

cholesterol accumulates predominantly in the VLDL fraction and these VLDL carry 

more cholesterol than TG. Moreover, there is also an increase in IDL-C and LDL-C 

whereas HDL-cholesterol concentration is not affected (Figure 8).  

Such cholesterol-enriched VLDL originate in the liver as documented in our 

experiment using intravenously injected tyloxapol. Tyloxapol inhibits LPL which is 

responsible for hydrolysis of VLDL in circulation and its application results in an 

accumulation of VLDL in circulation. Two hours after tyloxapol application there was a 

comparable increase in triglyceridemia in both PHHC and Wistar rats on all the diets 
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(Figure 9) and it can be estimated from these data that more than 80 % of TG in VLDL 

are associated with particles that can be regarded as nascent VLDL. Importantly, 

tyloxapol injection also affects cholesterolemia. A small increment in cholesterolemia 

can be observed in all groups of rats fed C or CF diet and such an increment can again 

be ascribed to a rise in VLDL cholesterol. On a CHOL diet, cholesterolemia goes up ~2 

mmol/l in Wistar rats and ~4.5 mmol/l in PHHC rats due to an increase in VLDL-C  

(Figure 9). Therefore, when fed cholesterol, both rat strains tend to increase the 

secretion of cholesterol from the liver without affecting the rate of TG secretion. Using 

a model of perfused liver, Fungwe et al. [227] have shown that VLDL in rats fed 

cholesterol are relatively enriched with cholesterol due to an increased secretion of CE. 

However, it is not entirely clear from our data why the cholesterol incorporation into 

VLDL is more than doubled in PHHC rats than in Wistar rats when fed the same 

amount of cholesterol and at the same cholesterol concentration in the liver.  

It can be hypothesised that these cholesterol-rich VLDLproduced by PHHC rats 

cannot be transformed by LPL to smaller VLDL remnants as normal VLDL and, 

therefore, they are catabolised more slowly, accumulate in circulation and cause 

hypercholesterolemia. To test such a hypothesis, we isolated VLDL from PHHC rats 

fed cholesterol and Wistar rats, labelled them with 125I and injected these VLDL into 

Wistar rats to estimate the rate of their elimination from circulation (Figure 11). When 

injected into Wistar rats, cholesterol-rich VLDL from PHHC rats were cleared more 

slowly than autologous VLDL. It is likely that lipoproteins originated from nascent 

cholesterol-rich VLDL of PHHC rats after the TG hydrolysis by LPL remain too large 

due to high cholesterol content and do not escape from the VLDL size range, they just 

become cholesterol transporting lipoproteins and cannot be removed from circulation 

similarly to the remnants of normal VLDL.  

It can be assumed that the increased incorporation of CE into VLDL can be due 

to increased activity of ACAT but the enzyme activity was not affected by dietary 

cholesterol and also did not differ between strains (Table 3). In addition, the expression 

of both genes encoding ACAT (Soat1 and Soat2) was also not increased after 

cholesterol feeding (Figure 12). These findings thus do not explain the increased 

incorporation of CE into VLDL in PHHC rats. 

Therefore, PHHC rats respond to dietary cholesterol by the production of VLDL 

extremely enriched with cholesterol. Such VLDL cannot be catabolised normally and 

accumulate in circulation. Interestingly, the lipoprotein profile characteristic for PHHC 
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rats on a CHOL diet can also be observed in other rat models that use dietary CA and/or 

propylthiouracil to induce hypercholesterolemia [201-203]. A similar model of hyper-

cholesterolemic rat was described recently [228]. The exact pathogenesis of hyperchole-

sterolemia in these models have not yet been explained and it remains to be clarified 

whether the same mechanism as in PHHC rats – production of cholesterol-rich VLDL 

that cannot be normally catabolised and accumulate – is in operation in these models. 

Since the lipoprotein profile of PHHC rats, especially the accumulation of 

cholesterol-rich VLDL and IDL, approximates that of patients with dysbetalipo-

proteinemia, we sequenced gene encoding apoE of PHHC rat. Nevertheless, we did not 

find mutation in the Apoe which would affect the primary structure of the protein and no 

substantial differences in apoE content in VLDL (evaluated as a ratio of apoE and 

apoB) were observed between PHHC and Wistar rats (Figure 15, Figure 16). Moreover, 

hepatic lipase activity, deficiency of which also results in dysbetalipoproteinemic 

phenotype in humans, is normal in PHHC rats [208]. 

4.3.2 The response of hepatic transcriptome to dietary cholesterol 

To understand the genetic background of hypercholesterolemia in PHHC rats, 

the response of hepatic transcriptome of PHHC rats and control Wistar rats to dietary 

cholesterol was studied using microaarrays. We chose the liver transcriptome because 

the liver is the main organ regulating cholesterol concentration and also the excessive 

export of cholesterol in VLDL from the liver seems to play a critical role in 

development of hypercholesterolemia in the PHHC rat. Moreover, since cholesterol is 

not absorbed from the diet if not dissolved in fat during diet preparation, and because 

such a fat could affect gene expression, we also included a diet with fat alone (CF diet). 

Further, to minimise the effect of such a fat on gene expression, we used palm kernel oil 

which is highly saturated and does not contain cholesterol. 

Feeding animals a CF diet had no effect on either the lipids in serum or the liver 

and, more importantly, no effect on hepatic gene expression at all. This allows us to 

assume that all the observed changes in hepatic transcriptome were due to the effect of 

dietary cholesterol because the confounding role of dietary fat was minimised. 

Surprisingly, when the responses of hepatic transcriptome of PHHC and Wistar 

rats to dietary cholesterol were compared, no differences were found (Figure 13). In 

both strains, most of the genes of the cholesterol biosynthetic pathway were 

downregulated even starting with acetyl-CoA acetyltransferase 2 (Acat2). The most 
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noticeable downregulation was observed for gene encoding SM (Sqle) in both strains, 

whereas HMG-CoA reductase gene (Hmgcr) cannot be included in the list of affected 

genes because it did not fulfil the strict criteria we used. Such an observation is in 

agreement with findings that HMG-CoA reductase is regulated rather 

posttranscriptionally in rat [229, 230]. Similarly to Hmgcr, the LDLR gene (Ldlr) was 

downregulated only 1.5 fold, also in agreement with other findings [229]. However, the 

gene for LDLR chaperon, Pcsk9, that modulates the number of LDLR on the cell 

surface and is under the same transcriptional control, was found to be markedly 

downregulated as described in mice [231]. Insig1, a gene encoding an essential 

component of cholesterol feedback response, was also found to be downregulated in 

mice fed cholesterol [232, 233]. We did not confirm the previous findings [209] of 

increased Cyp7a1 expression in Wistar rats in response to dietary cholesterol. However, 

we used only 1% cholesterol and palm kernel oil, not 2% cholesterol and lard in the diet 

and it cannot be excluded that the response of Cyp7a1 expression is affected by the 

quantity of dietary cholesterol and the type of fat in the diet. It can be hypothesised that 

rat in the response to increase in cell cholesterol content firstly downregulates synthesis, 

and if this is insufficient, then upregulates cholesterol degradation to BA. 

Contradictorily BA could contribute to more effective cholesterol absorption in the 

intestine and their high concentrations are potentially toxic [234]. With respect to the 

above discussed findings, no differences in the expression of genes which could affect 

the incorporation of CE into VLDL during VLDL assembly (such as Soat1, Soat2, and 

Mttp) were observed. 

Altogether, this data cannot explain why PHHC rats develop hypercholestero-

lemia whereas Wistar rats do not. Such a paradox might be explained by the fact that the 

same response of hepatic transcriptome to dietary cholesterol takes place against a 

different genetic background. Indeed, using the same criteria (2fold change, P < 0.05), 

we identified several genes that do not respond to dietary cholesterol but differ between 

both strains independently of the diet used. Five genes were downregulated and four 

upregulated in PHHC rats (Figure 14). The vast majority of those genes have no known 

connection with lipoprotein metabolism except Apof. A human ortholog of Apof 

encoded protein, apoF, is known as an inhibitor of CETP in serum [235]. However, 

mice and rats do not have CETP [236] and the role of the protein in these animals 

remains elusive. Because the upregulation may be due to the dysfunction of protein 

encoded by a gene, we sequenced Apof in both Wistar and PHHC rats and found that 
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PHHC rats carry a homozygous 17 nucleotide insertion in exon 2 (Figure 17). This 

variant also occurred in Wistar rats with allelic frequency 0.125. The role of rat apoF in 

lipoprotein metabolism remains to be clarified – the human ortholog inhibits the 

exchange of CE and TG between lipoproteins mediated by CETP [237, 238] and it may 

be speculated that it can play such a role even intracellularly and reduce the CE 

incorporation into VLDL in hepatocyte. Nevertheless, such a hypothesis remains to be 

tested. 

To verify if the upregulation of Aldh1a7 in PHHC correlates with a higher 

enzyme activity in this strain, the enzyme activity was measured. Enzyme activity 

increased about 50 % in PHHC rats than that in Wistar rats although the difference was 

statistically significant only on CHOL diet (Figure 18). These results are in contrast 

with the transcriptome analysis when only 25fold upregulation of Aldh1a7 was found in 

PHHC rats in comparison to Wistar rats. But at the same time, when the transcriptome 

data were validated by qPCR, the Aldh1a7 expression was found to be even higher 

(200x) in PHHC rats. Currently we do not have explanation for this contrast between 

activity and expression data. Gene sequencing did reveal no differences (except known 

polymorphisms) but the mutation may also occur in the regulation region of the gene. 

The physiological function of Aldh1a7 has been not known to date, and, in addition, a 

human ortholog does not exist. Thus it is disputable whether the clarification of role of 

this enzyme could explain the hypercholesterolemia pathogenesis in humans. 

The other proteins encoded by some of the other affected genes may play a role 

in metabolic response to xenobiotics or oxidative stress (UDP glycosyltransferase 2, 

polypeptide B (Ugt2b), cytochrome P450 CYP2D5 (Cyp2d5), and glutathion transferase 

(Gsta3). However, their exact role in cholesterol metabolism remains enigmatic.  

Importantly, these newly identified genes and their human orthologs or 

metabolic pathways they are involved in may become new candidate genes for human 

polygenic hypercholesterolemia which is the most common type of hyper-

cholesterolemia among patients and its genetic background is not yet fully understood 

[8]. It should be stressed that models like the PHHC rat can be very useful to identify 

new candidate genes that could be involved in pathogenesis of hypercholesterolemia. 

Most animal models (knock-out or transgene animals) currently in use allow us to test 

only the role of genes that were already identified as the candidate genes.  

Nowadays, this animal model could be useful also for study of nonalcoholic 

hepatic steatosis pathogenesis that is very often present in patients with insulin 
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resistance and type 2 diabetes [239]. This steatosis is relatively easy inducible in rats by 

dietary cholesterol. PHHC rat represents a perspective model for this type of studies 

because contrary to other rat models  cholesterol can be given to rats without addition of 

nonphysiologic amount of BA in the diet [206, 240, 241]. 

In conclusion, our data suggest that dietary cholesterol induced hypercholestero-

lemia in the PHHC rat is due to the production of VLDL very rich in cholesterol. These 

VLDL are not catabolised normally and accumulate in circulation. The increased 

production of cholesterol-rich VLDL can be explained neither by changes in ACAT and 

MTP activities nor by changes in the hepatic transcriptome response to dietary 

cholesterol. However, several genes are significantly up- or downregulated in PHHC 

rats irrespective of the diet are suggestive of the fact that the response to dietary 

cholesterol takes place in a different genetic background.  
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5. The role of the -203A>C polymorphism of CYP7A1  

in cholesterolemia regulation (Aim II) 

5.1 Material and methods 

5.1.1 Activity of promoter variants in vitro 

5.1.1.1 Plasmid preparation 

Both common variants of CYP7A1 promoter [-469C, -203A] and [-469T, -203C] 

were amplified by PCR from gDNA samples obtained in clinical part of the study. 

Amplified fragments with promoter sequence from -772 to +95 (from transcription 

start) were cloned into vector pDCV (Qiagen). Plasmids pDCV_AC and pDCV_CT 

served as templates for the following PCR amplification when primers with XhoI 

adapters were used for production of promoter fragments from -764 to +14. After XhoI 

cleavage the new fragments were orientedly cloned into restriction site of pGL3_basic 

vector (Promega) in front of gene coding luciferase (Photinus pyralis) and these 

constructs were then cloned in Escherichia coli. Clones with sense (pGL3_AC+ and 

pGL3_CT+) and antisense (pGL3_AC- and pGL3_CT-) orientation were isolated. 

Additionally, plasmids [-469T, -203A] and [-469C, -203C] (pGL3_AT+ and 

pGL3_CC+) were prepared by directed mutagenesis (Stratagene kit). 

5.1.1.2 Promoter activity testing 

Promoter activity was determined using luciferase reporter assay (Dual-

Luciferase® Reporter Assay System, Promega). 400 µl of hepatic cell cultures (HepG2 

and HuH7) grown in 12-well plate were transfected at ~70 % confluency with 500 ng of 

tested plasmid DNA using Tfx™-20 (ratio Tfx™-20 : DNA = 2 : 1), according to the 

manufacturer's instruction (Promega). Fifty ng of normalisation vector pRL-TK 

(Promega) was used. As a negative control served vector pGL3_basic. Two days after 

transfection, the cells were processed according manufacturer's protocol. Luciferase 

activity was assayed in Sirius Luminometer (Berthold). Transfection assays were 

performed in triplicate. 



 CYP7A1 

 

56 

5.1.1.3 Stimulation 

In addition to determination of basal promoter activity, its stimulation by insulin, 

and PPARα antagonists was studied (both Sigma-Aldrich). Tested substances were 

added to cultivation medium.  

Insulin (1µmol/l or 10 nmol/l) was added to cells for 16 or 6 h. PPARα agonists 

(WY-14643 or fenofibrate) were first disolved in dimethylsulfoxide and then diluted to 

final concentration 100 - 300 µmol/l. They were incubated with cells for 24 h.  

5.1.1.4 Statistics 

Data were analysed by ANOVA and, if ANOVA revealed any differences, then 

corresponding post-hoc tests were performed (GraphPad InStat). 

5.1.2 In silico analysis 

Putative binding sites for transcription factors were searched using Transcription 

Element Search System [242]. The neighbourhood (± 20 bp) of both SNP variants 

(rs1023652, rs1023649, rs1125226, rs3903445, rs7833904, rs3824260, rs3808607) was 

analysed.  

5.1.3 Diurnal variation of CYP7A1 activity in healthy subjects 

5.1.3.1 Subject and study design 

Sixteen male volunteers were included into the study: 8 homozygotes for -203A 

allele (age: 25.7 ± 3.4 years, BMI: 23.4 ± 3.5 kg/m2) and 8 homozygotes for -203C 

allele (age: 25.3 ± 3.8 years, BMI: 27.2 ± 3.3 kg/m2). Three day-long examinations were 

carried out in all the subjects. One of these examinations served as a control with no 

drug) while the other two examinations studied the effect of short-term administration 

of cholestyramine (Questran®, Bristol-Myers Squibb, 16 g/day) and CDCA 

(Chenofalk®, Dr. Falk Pharma, 1-1.5 g/day dependent on the subject weight).  

One day before each of these examinations, the first blood sample was drawn at 

7:00 (-24 h) and subjects received food for the whole day to standardise their intake 

before the study. On the day of examination, the first blood sample was drawn again at 

7:00 (0 h) and the blood samples were then collected in 90-min intervals for 15 h till 

22:00. Again, subjects received food for the whole day and they had to eat at exactly 

defined time points (breakfast 7:15, snack 9:45, lunch 12:30, snack 15:30 and dinner 
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17:30). The amount of food was calculated to cover their energy requirements; the diet 

was relatively low in fat (25 % of energy intake).  

If the examination included the drug administration, the drugs were given to 

subjects on the day before the examination and also on the day of the examination. 

Questran® was given to subjects in two doses on both days: one with breakfast, the 

other one with dinner. Due to differences in pharmacokinetics, Chenofalk® treatment 

was started with dinner on the day preceeding examination, and on the day of 

examination, it was given to subjects in two doses at the same time as cholestyramine. 

The order of the examinations was randomised and they were carried out in three-week 

intervals at a minimum.  

The study protocol was approved by the Ethical Committee of the Institute for 

Clinical and Experimental Medicine and all the participants gave their informed 

consents.  

5.1.3.2 Biochemistry 

Concentration of C4 was determined by HPLC as described earlier [243] with a 

modification of C4 extraction procedure [244]. Cholesterol, HDL-cholesterol (after 

precipitation of the other lipoproteins), and TG were measured using enzymatic kits 

(Roche Diagnostics), glucose using kits from PLIVA-Lachema Diagnostika, free fatty 

acids using kits from Wako Chemicals, and BA using enzymatic kits from Trinity 

Biotech. Insulin was determined using IRMA kits (Immunotech).  

5.1.3.3 Statistics 

The effect of the CYP7A1 genotype on changes to all parameters was evaluated 

using ANOVA for repeated measures with one grouping factor (genotype). Data for 

analysis were logarithmically transformed where necessary. ANOVA for repeated 

measures or its non-parametric variant (the Friedman test) were then used for analysis 

of the pooled data from all subjects. Corresponding post-hoc tests were carried out if 

significant differences were detected using ANOVA or the Friedman test (GraphPad 

InStat). The dynamics of C4 concentration changes was then modelled using the 

polynomial regression of 5th order using JMP 10 statistical software. 
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5.2 Results 

5.2.1 Comparison of promoter variant expression 

To determine whether two polymorphisms of CYP7A1 that are in tight linkage 

disequilibrium (-203A>C and -469C>T) play a role in the regulation of CYP7A1 

transcription, fragments of these promoter variants spanning positions -772 to +95 were 

cloned into plasmids encoding luciferase gene and their promoter activity was then 

studied under different conditions. 

 

Figure 19: Comparison of CYP7A1 promoter activity in HepG2 (Panel A) and HuH7 (Panel B) cells. 

Activity of promoter variants AC+ is set to one (dash line). Data are presented as mean ± SEM (n = 17 – 

33). * P < 0.05, ***  P < 0.001 using ANOVA with the Bonferroni post-hoc test (the antisense variants 

were not analysed with post-hoc test).  

Haplotypes -203C were expressed approximately 5fold and 3fold more in 

HepG2 and HuH7 cells, respectively, than haplotypes -203A (P < 0.001; Figure 19). 

The luciferase activity of antisense variants (pGL3_AC- and pGL3_CT-) was similar to 

the activity of pGL3_basic vector.  
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Insulin stimulation was studied because insulin influences CYP7A1 promoter 

activity [150] and because the different response of both common variants to insulin 

stimulation could explain the differences in enzyme activity during a day. Sixteen hour 

incubation with insulin did not affect the activity of both common variants (Figure 20). 

The similar results were obtained when the cells were incubated with insulin only 6 

hours (data not shown). 

 

Figure 20: Effect of insulin on CYP7A1 promoter activity. 

Insulin stimulation in HepG2 (Panel A) and HuH7 (Panel B) cells after 16 hour incubation. Activity of 

promoter variants AC+ (without insulin stimulation) is set to one (dash line). Data are presented as mean 

± SEM (n = 6 – 9). No statistically significant differences were found between control and stimulated 

cells. 
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The more pronounced decrease of cholesterolemia in C allele carriers could be 

due to a rise in vegetable fat intake (containing higher amount of polyunsaturated fatty 

acids, natural PPARα agonists) [185], therefore the PPARα agonists influence on 

promoter variants activity was studied. PPARα agonists affected the luciferase activity 

of both natural variant by the same way. Incubation with WY-14643 or fenofibrate did 

not differ from control (Figure 21). 

 

Figure 21: Effect of PPARα agonists on CYP7A1 promoter activity. 
PPARα agonist stimulation in HepG2 (panel A) and HuH7 (panel B) cells after 24 hour incubation. 

Activity of promoter variants AC+ (without stimulation) is set to one (dash line). Data are presented as 

mean ± SEM (n = 8 – 9). No statistically significant differences were found between control and 

stimulated experiments. 

5.2.2 In silico analysis 

To determine whether there are differences in binding of transcription factors to 

both variants of -203A>C polymorphism and variants of other polymorphisms that are 

in the tight linkage disequilibrium complex of SNP in promoter region of CYP7A1 we 

carried out in silico analysis. The transcription binding prediction software 

(Transcription Element Search System) suggested a putative binding site for a 

glucocorticoid receptor at -203A variant (AGAA-203CT) but not to -203C sequence. No 

other differences in putative transcription factor binding sites between variants of -203 

and other SNP were detected.  
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5.2.3 -203A>C polymorphism effect on diurnal changes of serum 

concentrations 

To address the question whether CYP7A1 polymorphism affects diurnal changes 

in CYP7A1 activity, the changes in concentration of C4 – a serum marker of an enzyme 

activity – were measured during 15 hour period in healthy volunteers homozygous 

either for A or C allele. The study was carried out under standard conditions and also 

after stimulation or inhibition of CYP7A1 activity by cholestyramine or CDCA 

administration, respectively. 

Figure 22: Diurnal variation of concentration of C4, BA, and TG in -203A and -203C homozygotes. 

ctrl – control experiment, Q – cholestyramine treatment, CDCA – chenodeoxycholic acid treatment.  
Data are presented as mean  SD. 
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Table 6: Concentration of cholesterol, TG, HDL- and LDL-cholesterol, glucose, free fatty acids, insulin, BA, and C4. 
Data at 7:00 on the day before the study (-24 h), at 7:00 on the day of the study (0 h) and 15-hour area under the curve of these variables (AUC [0-15 h]) in -203A or -203C.  
 

  -203A -203C 
  -24 h 0 h AUC [0-15 h] -24 h 0 h AUC [0-15 h] 

Cholesterol 
[mmol/l] 

ctrl 
Q 
CDCA 

4.69  1.08 
4.84  0.95 
4.88  0.95 

4.56  1.10 

4.89  1.10 
4.98  1.09 

65.7  15.6 
67.9  15.0 
70.2  14.6 

4.70  0.65 
4.81  0.44 
4.44  0.75 

4.71  0.62 
4.44  0.42*** 
4.63  0.61 

68.0   9.2 
63.2    7.0 
67.7  19.4 

TG 
[mmol/l] 

ctrl 
Q 
CDCA 

1.48  0.84 
1.71  1.26 
1.58  0.82 

1.39  0.82 
1.65  0.85 
1.66  0.96 

24.9  13.3 
24.0  12.9 
28.9  15.0 

1.54  0.65 
1.33  0.41 
1.40  0.73 

1.70  1.03 
1.85  0.68* 
1.70  0.72 

29.0  16.9 
28.1  14.3 
27.4    9.2 

HDL-cholesterol 
[mmol/l] 

ctrl 
Q 
CDCA 

1.23  0.31 
1.28  0.44 
1.26  0.29 

1.19  0.39 
1.29  0.32 
1.23  0.33 

--- 
1.32  0.29 
1.42  0.20 
1.38  0.24 

1.32  0.25 
1.28  0.21** 
1.32  0.26 

--- 

LDL-cholesterol 
(equation) 
[mmol/l] 

ctrl 
Q 
CDCA 

2.78  0.95 
2.78  0.73 
2.90  0.87 

2.73  0.96 
2.85  1.03 
2.99  0.92 

--- 
2.68  0.58 
2.79  0.39 
2.43  0.51 

2.62  0.52 
2.32  0.48** 
2.54  0.35 

--- 

Glucose 
[mmol/l] 

ctrl 
Q 
CDCA 

5.06  0.51 
5.40  0.69 
5.43  0.89 

4.85  0.61 
4.87  0.47* 
4.77  0.48* 

76.2  6.6 
68.8  6.0 
72.5  9.4 

5.14  0.52 
4.94  0.26 
5.43  1.11 

5.08  0.32 
4.98  0.49 
4.81  0.90 

80.8  8.5 
73.4  5.7 
77.8  6.6 

Free fatty acids 
[mmol/l] 

ctrl 
Q 
CDCA 

0.25  0.18 
0.30  0.29 
0.24  0.11 

0.36  0.20 
0.56  0.61 
0.46  0.37 

2.63  0.74 
3.92  2.52 
2.30  1.68 

0.32  0.32 
0.36  0.21 
0.21  0.13 

0.38  0.19 
0.35  0.21 
0.37  0.25* 

3.15  1.91 
2.18  0.79 
2.51  1.23 

Insulin 
[IU/l] 

ctrl 
Q 
CDCA 

7.2  6.5 
8.0  3.8 
6.4  3.1 

4.8  3.2 
7.5  4.7 
8.8  7.0 

223  127 
193  120 
231  140 

7.8    4.4 
6.7    1.9 

11.2  11.5 

7.0  3.1 
9.2  7.2 
5.2  1.8 

296  119 
200  116 
268  114 

BA 
[μmol/l] 

ctrl 
Q 
CDCA 

14.6  7.1 
12.4  4.5 
15.3  5.2 

12.2  3.0a,b 
  9.0  4.7b 
15.8  3.0a 

197  41a 
135  61b 
290  60a 

12.7  4.0 
10.7  3.2 
11.6  5.1 

10.1  3.8 
10.4  2.2 
11.8  3.4 

170  51a,b 
154  23b 
219  80a 

C4 
[μg/l] 

ctrl 
Q 
CDCA 

16.0    9.1 
13.9    8.7 
19.9  13.2 

20.3  15.9a 
70.2  27.3***, b 
  9.6    9.6**,a 

326  94a 
1317  312b 

131  65a 

22.9  26.6 
28.2  21.1 
36.1  32.8 

  24.7  23.1a 
 111.3  70.1***,b 
  15.6  18.8*,a 

 270  168a 
  1835  800b 

 112    71a 
Data are mean  SD. ctrl – control experiment, Q – cholestyramine treatment, CDCA – chenodeoxycholic acid treatment. * P < 0.05, ** P < 0.01, *** P < 0.001 -24 h vs. 0 h 
using paired t-test. a,b the same letters are assigned to the experiments that do not differ in -203A or -203C individuals (ANOVA detected differences between experiments).  
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As expected, CYP7A1 activity – estimated on the basis of C4 concentration 

measurement in the morning at 7:00 – rose several-fold after one-day treatment with 

cholestyramine (P < 0.001), dropped to a half after one-day treatment with CDCA  

(P < 0.01) and did not change in the control experiment in all the subjects (Table 6).  

During the treatment with CDCA, there were no changes in plasma C4 

concentrations on the day of the study in both -203A and -203C allele carriers (Figure 

22). Importantly, no effect of the genotype on the course of C4 concentrations was 

detected. During the treatment with cholestyramine, C4 concentrations increased during 

the day in -203A allele carriers (P = 0.004). A similar but not significant trend was 

observed in -203C homozygotes (Figure 22). However, the genotype had no effect on 

the course of C4 concentrations throughout the day. AUC of C4 was 40 % higher in  

-203C than those in -203A individuals but the difference was not statistically 

significant. Similarly, AUC of C4 after Q treatment is much bigger than that on control 

and after CDCA treatment. 

 

Figure 23: Diurnal variation of C4 concentration in -203A and -203C homozygotes in control 
experiment. 
Individual changes of C4 concentration in -203A (Panel A) and -203C (Panel B) homozygotes. The 

dynamics of C4 concentration changes in -203A (Panel C) and -203C (Panel D) homozygotes. 
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In the control experiment, plasma C4 concentration varied during the day in  

-203A allele carriers (P = 0.001) with a marked peak around 13:00. No such a distinct 

peak could be observed in -203C homozygotes (Figure 23). Moreover, ANOVA for 

repeated measures detected a trend for the effect of the genotype on the course of C4 

concentrations (P = 0.092). When the polynomial regression modelling was used to 

describe the course of changes in C4 concentration, statistically significant differences 

in two of the six compared coefficients on control diet between -203A and -203C 

homozygotes were found. The best fit was achieved with equation of fifth degree: [C4] 

= a0+ a1*(time-7) + a2*(time-14,5)2+ a3*(time-14,5)3+ a4*(time-14,5)4+ a5*(time-14,5)5. 

Using the same modelling, no difference between the homozygous groups was observed 

after both CDCA and cholestyramine treatment (Table 7). 

Table 7: Parameter estimates of polynomial regression modelling. 
The estimates in equation of fifth degree [C4] = a0 + a1*(time-7) + a2*(time-14,5)2 + a3*(time-14,5)3 + 
a4*(time-14,5)4 + a5*(time-14,5)5. 
 

  -203A -203C 

ctrl 

a0 60.205  8.963 33.191  4.361 

a1  -4.258  1.158  -1.919  0.563 

a2  -0.656  0.217  -0.156  0.106* 

a3 0.213  0.073 0.102  0.035 

a4 0.009  0.004 0.003  0.001* 

a5  -0.003  0.001  -0.001  0.000 

Q 

a0 76.305  9.652 106.056  17.719 

a1 1.395  1.247 0.669  2.290 

a2 0.191  0.234 1.364  0.430 

a3 0.115  0.079 0.192  0.145 

a4  -0.004  0.004  -0.022  0.007 

a5  -0.002  0.001  -0.004  0.002 

CDCA 

a0 16.097  2.340 4.070  0.752 

a1  -0.755  0.302 0.335  0.097 

a2  -0.182  0.057  -0.013  0.018 

a3 0.054  0.019  -0.016  0.006 

a4 0.003  0.001 0.002  3.12 x10-4 

a5  -0.001  2.63 x10-4  -1.24 x10-5  8.46 x10-5 
Data are presented as mean  SEM.  
ctrl – control experiment, Q – cholestyramine treatment, CDCA – chenodeoxycholic acid treatment.  
* P < 0.05... -203A vs -203C using JMP statistical software 

In -203C allele carriers cholestyramine treatment led to 8 % decrease of 

cholesterolemia as early as 24 h after first dose (P < 0.001). No such an effect was 
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observed in -203A homozygotes (Table 6). The cholesterol concentration dropped in 

both HDL and LDL. Cholesterol AUC after cholestyramine treatment was also 

decreased by 7% in comparison with control examination however the difference was 

not statistically significant. Cholestyramine caused statistically significant increase of 

TG level in -203C (P < 0.05), not in -203A individuals. When AUC of TG after 

cholestyramine treatment were compared, no differences were observed. CDCA 

treatment did not affect observed lipid parameters (Table 6). 

Cholestyramine treatment resulted in a significant (P < 0.05) decrease of glucose 

concentration only in -203A, not in -203C individuals. Nevertheless, glucose AUC did 

not differ between both groups of homozygotes. CDCA treatment did not affect 

glycemia course. Neither cholestyramine nor CDCA treatment did change concentration 

of insulin and BA (Table 6). Fasting free fatty acids rose after CDCA treatment in both 

groups but the difference was significant in -203C individuals only.  Both Q and CDCA 

treatment did not affect fasting BA concentrations. However the AUC of BA was 

increased after CDCA treatment and lowered after Q treatment in carriers of both alleles 

(Table 6, Figure 22). 

5.3 Discussion 

5.3.1 Comparison of promoter variants expression 

Luciferase activity of pGL3_CT+ was approximately 5fold higher than that of 

pGL3_AC+ in HepG2 cells (Figure 19). The promoter activity was not influenced by 

insulin and PPARα agonists (Figure 20, Figure 21). No differences were found when 

these stimulations were compared between both CYP7A1 promoter variants.  

The higher basal activity of pGL3_CT+ vectors is in perfect agreement with 

observations of others [245] who also found 5fold increase of transcriptional activity of 

-203C compared to -203A variant in HepG2 cells. Threefold expression increase of  

-203C variant was also found in another cell line - HuH7. Its strenghtens the evidence 

that cytosin in -203 position is associated with increased basal expression.  

The design of our promoter variants allowed us to distinguish the role of two 

SNP in -203 (rs3808607) and -469 (rs3824260) position in regulation of basal 

expression of CYP7A1. The substitution of A for C in -203 position resulted in five to 

twelvefold increase in CYP7A1 basal expression whereas the substition of T for C in -

469 position led to no change or doubling expression. Therefore -203 position seems to 

play a critical role in modulation of basal promoter activity.  



 CYP7A1 

 
66 

It has been shown that physiological concentration of insulin stimulates CYP7A1 

expression initially and represses it afterwards [246]. On the contrary 2 or 4 hour 

incubation of HepG2 cells with 100nM insulin downregulated CYP7A1 expression 

[247]. In our experiment we have not observed insulin effect (Figure 20). On the other 

hand, we measured CYP7A1 promoter activity via dual luciferase assay not CYP7A1 

expression directly. It can be speculated that insulin influence on promoter activity 

manifestes much earlier. Importantly, we did not observe any differences in response of 

both promoter variants expression to insulin. Such an observation is in agreement with 

findings that three putative insulin response elements in CYP7A1 promoter did not 

overlap with -203 position [247]. 

PPARα agonists downregulated Cyp7a1 expression in rat hepatocyte cultures 

[248] and longer promoter fragments inhibited stronger the reporter activities of human 

CYP7A1 constructs [137]. So the polyunsaturated fatty acids (that are embodied in food 

and are physiological activators of PPARα) might play an important role in the 

regulation of CYP7A1 expression during the day. Therefore we study the effect of two 

PPARα agonists (fenofibrate or WY14643) on both variants via luciferase reporter 

assay. In our system, both fenofibrate and WY14643 did not influence CYP7A1 

promoter activity. Such findings are in contrast to those mentioned above but we used 

much shorter constructs (800 bp vs ~ 2 kbp) and stimulation took 24 h only (vs 42 h) 

[249]. It can be speculated that the similar conditions may lead to the marked changes. 

The higher basal activity of -203C variant does not explain our previous 

observation that -203C variant is responsible for hyperresponsiveness to dietary fat 

and/or cholesterol [249]. Hovewer, the fact that CYP7A1 expression can be regulated in 

much wider range in -203C than in -203A allele carries could be a critical precondition 

for more profound response of enzyme expression and activity to different stimuli and 

so hyperresponsiveness in individuals carrying -203C allele. 

To summarise, using a dual luciferase reporter assay with promoter fragments  

(-716 to +14) of both CYP7A1 variants, we found the -203C variant is expressed 

severalfold more than the -203A variant. However, we did not see any differences in the 

effects of insulin and PPARα agonists (fenofibrate and WY-14643) on the expression of 

both promoter variants. This may suggest that other factors may play a role in the 

regulation of CYP7A1 activity throughout the day. 
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5.3.2 In silico analysis 

In silico analysis revealed a putative binding site for a glucocorticoid receptor in 

-203A allele not in -203C allele. A hypothesis that both -203 variants respond 

differentially to corticoid stimulation was tested using dual luciferase assay. However, 

no differences between -203A and -203C variants expression after incubation with 

cortisol or dexamethasone were observed [T. Blahová, unpublished data]. 

5.3.3 -203A>C polymorphism effect on diurnal changes of serum 

concentrations 

The homozygous carriers of -203A allele display a diurnal variation of CYP7A1 

activity, peaking at midday. No changes in CYP7A1 activity between 7:00 and 22:00 

could be observed in homozygous carriers of -203C allele. Not surprisingly, the 

treatment with cholestyramine upregulates the CYP7A1 activity severalfold and, 

conversely, the treatment with CDCA downregulates this activity. No differences in 

CYP7A1 activity variation were found between -203A and -203C subjects after 

cholestyramine or CDCA treatment (Table 6, Figure 22, Figure 23). 

Our findings that C4 concentration as a marker of CYP7A1 activity displays a 

peak around midday confirms the earlier findings from the study of five healthy 

volunteers [143]. This study has demonstrated that CYP7A1 activity has two peaks in 

humans: first in the early afternoon and the second before midnight. Due to our design, 

we can make conclusions only about the first peak. Interestingly, there is no clear 

mechanistic explanation for the midday peak. CYP7A1 activity increases in subjects 

who eat normally and also in those who are fasting before midday [143]. Such an 

increase is thus unlikely to be associated with food intake. Interestingly, CYP7A1 

activity then falls rapidly only in subjects who eat normally and not in those who are 

fasting. This may suggest that increased intrahepatic flux of BA and especially intestinal 

fibroblast growth factor-19 secretion after meal consumption are involved in dampening 

of CYP7A1 activity peak [250].  

The diurnal variation of CYP7A1 activity and Cyp7a1 expression has been 

extensively studied in rodents. The Cyp7a1 expression in mice falls under the control of 

several clock genes [251-253]. It remains to be determined whether clock genes also 

play a role in the regulation of BA synthesis in humans.  

Given that some subjects do not display diurnal variation, it is surprising that 

this has gone unnoticed so far. This is likely due to the small sample size of study that 
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has investigated circadian variation of CYP7A1 activity [143, 250] and it might be 

possible that subjects homozygous for -203C allele were not included. This can even 

suggest that the effect of -203A allele is dominant and heterozygous subjects display 

diurnal variation of CYP7A1 activity. 

It must be also stressed that the -203A>C polymorphism may not be the one 

responsible for observed differences in circadian changes in CYP7A1 activity. This 

polymorphism is in close linkage disequilibrium with several other polymorphisms in 

the CYP7A1 [183]. In the Caucasian population (the only population in which studies of 

diurnal variation in CYP7A1 have been carried out), the -203A and -203C alleles are 

considered to be markers of haplotype blocks spanning 14 kb from the proximal 

promoter to the 3’-downstream region of the CYP7A1. Therefore, either of the 

polymorphisms included in these haplotype blocks may be responsible for the observed 

differences in diurnal variation of enzyme activity. 

After cholestyramine or CDCA treatment the diurnal variation of CYP7A1 

activity did not differ between -203A and -203C homozygous subjects. The effects of 

both treatments on CYP7A1 activity suppressed diurnal variation. 

Cholestyramine treatment resulted in a immediate decrease in cholesterolemia 

and increase trialcylglycerolemia in -203C homozygotes (Table 6, Figure 22). Levels of 

cholesterol and TG in -203A carriers did not change significantly. This result indicated 

that -203C allele could not only increase cholesterolemia responsiveness to the diet but 

also to affect the responsiveness to BA sequestrants treatment. If this finding validated 

in clinical studies it would have a practical use and -203A>C polymorphism could be of 

great importance for farmogenetics. Nevertheless, these findings were not confirmed in 

our recent study in which no differences between -203A and -203C allele carriers in 

response to 4-week treatment with colesevelam (BA sequestrant) were noted [254]. 

At the same time, glucose concentration decreased after cholestyramine 

treatment only in -203A not in -203C individuals. This finding could be applied by 

treatment of diabetic patiens to lower cholesterolemia and glycemia with BA 

sequestrants [255]. Hovewer, extensive clinical studies are required for confirmation. 

The major limitation of this experiment is, apart from its small size, the lack of 

night blood sampling. In future studies, 24-hour monitoring and inclusion of 

heterozygous individuals would be desirable. It should be kept in mind that C4 is only a 

surrogate marker of CYP7A1 activity – however, such a limitation is hard to overcome 
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in human studies. Additionally, -203C carriers in our cohort tended to have slightly 

higher BMI.  

In conclusion, the -203A allele of the CYP7A1 is associated with pronounced 

diurnal variation of CYP7A1 activity whereas -203C variant is not. It remains to be 

determined whether differences over the course of enzyme activity throughout the day 

between carriers of the -203A and -203C alleles can explain the dissimilar effects of 

these variants on cholesterolemia and its responsiveness to diet.  
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6. Conclusions 

6.1 Pathogenesis of hypercholesterolemia in the PHHC rat (Aim I) 

We demonstrated that the PHHC rat produces cholesterol-rich VLDL that cannot 

be catabolised normally and accumulate in circulation.  

We did not find any differences in the response of the hepatic transcriptome to 

cholesterol feeding in PHHC and control Wistar rats. Hovewer, we detected several 

differently expressed genes between both strains independently of diet.  

We analysed the role of some candidate genes (Aldh1a7, Apof, Mttp, Soat1 and 

Soat2) in hypercholesterolemia pathogenesis. 

 

6.2 The role of the -203A>C polymorphism of CYP7A1 in cholesterolemia 

regulation (Aim II) 

Using dual luciferase assay, we found that expression of the -203C allele is 

markedly increased in comparison with the -203A allele and that there are no 

differences in the response of both alleles to insulin and PPARα stimulation. 

We documented that carriers of the -203A allele display diurnal variation of 

CYP7A1 activity whereas -203C allele carriers do not. 
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8. Abbreviations 

ABC  ATP-binding cassette 

ACAT  acyl-CoA:cholesterol acyltransferase 

Aldh1a7 aldehyde dehydrogenase family 1, subfamily A7 

AMP  adenosine monophosphate 

ANOVA analysis of variance 

apo  apo(lipo)protein 

ATP  adenosine triphosphate 

AUC  area under curve 

BA  bile acids 

BARE  bile acid response element 

BMI  body mass index 

C  control (diet) 

C4  7α-hydroxy-4-cholesten-3-one 

CA  cholic acid 

CDCA  chenodeoxycholic acid 

cDNA  deoxyribonucleic acid 

CE  cholesteryl ester 

CETP  cholesteryl ester transfer protein 

CF  control fat (diet) 

CHOL  cholesterol (diet) 

CM  chylomicron 

CMr  chylomicron remnant 

CoA  coenzyme A 

ctrl  control (experiment) 

CYP7A1 cholesterol 7α-hydroxylase 

CYP8B1  sterol 12α-hydroxylase 

DCA  deoxycholic acid 

DNA  deoxyribonucleic acid 

DR1  direct repeat 1 

ER  endoplasmatic reticulum 

FC  free (unesterified) cholesterol 

FXR  farnesoid X receptor 
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FXRE  FXR response element 

gDNA  genomic DNA 

HDL  high density lipoprotein 

HMG  3-hydroxy-3-methyl-glutaryl 

HNF4  hepatocyte nuclear factor 4 

HPLC  high-performance liquid chromatography 

IDL  intermediate density lipoprotein 

Insig  insulin induced gene 

LCA  lithocholic acid 

LDL  low density lipoprotein 

LDL-C  cholesterol in LDL 

LDLR  LDL receptor 

LPL  lipoprotein lipase 

LRH1  liver receptor homologue 1 

LRP  LDLR-related protein 

LXR  liver X receptor 

LXRE  LXR response element 

mRNA  messenger RNA 

miRNA micro RNA 

MTP  microsomal TG transfer protein 

PPAR  peroxisome proliferator-activated receptor 

PCSK9 proprotein convertase subtilisin/kexin type 9 

PCR  polymerase chain reaction 

PHHC  Prague hereditary hypercholesterolemic 

PL  phospholipid 

Q  Questran® (cholestyramine) 

qPCR  quantitative real-time PCR 

RCT  reverse cholesterol transport 

RNA  ribonucleic acid 

RXR  retinoid X receptor 

S1P  site 1 protease  

S2P  site 2 protease 

SCAP  SREBP cleavage-active protein 

SHP  small heterodimer partner 



Abbreviations 

 
91 

SM  squalene monooxygenase 

SNP  single nucleotide polymorphism 

SR-BI  scavenger receptor class B type 1 

SRE  sterol response element 

SREBP sterol regulatory element binding protein 

SSD  sterol sensing domain 

SUMO  small ubiquitin-like modifier  

TICE  trans-intestinal cholesterol excretion 

TG  triacylglycerol 

UTR  untranslated 

VLDL  very low density lipoprotein 

VLDL-C cholesterol in VLDL 

VLDLR VLDL receptor 

WHHL Watanabe-heritable hyperlipidemic
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12.2 Oligonucleotides 

TaqMan® Gene Expression Assays (Applied Biosystems) used for qPCR. 

Accession number 
(NCBI database) 

Gene 
Symbol 

Assay ID 

NM_001006995.1 Acat2 Rn01526241_g1 
NM_013134.2 Hmgcr Rn00565598_m1 
NM_017136.2 Sqle Rn00567532_m1 
NM_057137.1 Ebp Rn00589201_m1 
NM_175762.2 Ldlr Rn00598438_m1 
NM_012942.1 Cyp7a1 Rn00564065_m1 
NM_022392.1 Insig1 Rn00574380_m1 
NM_031533.3 Ugt2b Rn02349652_m1 
NM_053977.2 Cdh17 Rn00678433_m1 
NM_053639.2 Ltc4s Rn01497055_g1 
NM_017206.1 Slc6a6 Rn00567962_m1 
NM_001024351.1 Apof Rn01756260_g1 
NM_001009920 Gsta3 Rn01511827_m1 
NM_017272.15 Aldh1a7 Rn00755277_m1 
NM_001107727.1 Mttp Rn01522961_m1 
NM_031118.1 Soat1 Rn00579605_m1 
NM_153728.2 Soat2 Rn00596636_m1 
NM_213563.1 Vars2l Rn01531995_m1 
 

Primers used for Apoe and Apof sequencing. 

Gen Exon Forward primer Reverse primer 
Tanneling 

[°C] 
Product 
size [bp] 

Apoe 

1 gcagggggagtcctataattg atctcctccatctgttctgacc 60 288 
2 gggggaggtaaatagacctttg tttaccctctgagcatcaatcc 60 375 
3 tgacttccagacgcactgttg taggtgcccagataggaggaac 60 327 
4a cttcctcagcttctcaacttctgg gcccaggctttgagtgac 64 699 
4b gtatctgctgggtctgctcctc aggcagaaacgataaactgagg 64 461 

Apof 
1 gtcaacattgggcacctcatc ggatatgggaaatgcaacacag 60 299 
2a agggggttccctgaatcttg ccccttcctcgtcatgataata 60 866 
2b cttcaagagctccagaaaggtg ca gctgatttacccgaactgtg 60 945 

 


