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Abstract

This thesis proposes computational framework for empirical estimation of Finan-

cial Agent-Based Models (FABMs) that does not rely upon restrictive theoretical

assumptions.

First, we develop a two-step estimation methodology for one of the his-

torically first FABMs—the stochastic cusp catastrophe model. Our method al-

lows us to apply catastrophe theory to stock market returns with time-varying

volatility and to model stock market crashes. The methodology is empirically

tested on nearly 27 years of U.S. stock market returns. We find that the U.S.

stock market’s downturns were more likely to be driven by the endogenous

market forces during the first half of the studied period, while during the sec-

ond half of the period, the exogenous forces seem to be driving the market’s

instability. The results suggest that the proposed methodology provides an

important shift in the application of catastrophe theory to stock markets.

Second, we customise a recent methodology of the Non-Parametric Simu-

lated Maximum Likelihood Estimator (NPSMLE) based on kernel methods by

Kristensen & Shin (2012) and elaborate its capability for FABMs estimation

purposes. To start with, we apply the methodology to the most famous and

widely analysed model of Brock & Hommes (1998). We extensively test finite

sample properties of the estimator via Monte Carlo simulations and show that

important theoretical features of the estimator, the consistency and asymptotic

efficiency, also hold in small samples for the model. We also verify smoothness

of the simulated log-likelihood function and identification of parameters. Main

empirical results of our analysis are the statistical insignificance of the switching

coefficient β but markedly significant belief parameters defining heterogeneous

trading regimes with an absolute superiority of trend-following over contrarian

strategies and a slight proportional dominance of fundamentalists over trend

following chartists.

Finally, we apply the NPSMLE to a stylised herding FABM developed by

Alfarano et al. (2008). Empirical estimates of parameters governing opin-

ion switching indicate unimodal distribution of the market sentiment variable.

Model behaviour is thus characterised by a general tendency to gradually re-

vert back to a balanced sentiment and theoretically expected performance of

the estimator. Rolling window estimation reveals interesting model dynamics

and clearly captures jumps in the ‘herding-based’ opinion switching parameter

and elevated fundamental volatility in turbulent times.
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Chapter 1

Introduction

Financial markets are one of the fundamental motivative forces of the economic

development but the Global Financial Crisis pointed again at the deficiency of

knowledge of how this important segment of the global economy works. After

the failure of traditional financial models in the Global Financial Crisis of

2007–2008, the Agent-Based (AB) approaches in Finance denoted as Financial

Agent-Based Models (FABMs)1 have attracted attention both of academicians

as well as practitioners and hence gradually replace traditional financial models

in the recent financial literature. This advancement emphasises that although

the serious macroeconomic consequences of market fluctuations are worldwide,

the essence of problems remains at the level of individual market agents with

their heterogeneous expectations. The FABMs reflect this well documented and

systematic human departure from the representative agent’s full rationality

towards reasonably realistic bounded, limited rationality (Simon 1957). An

essential achievement of the FABM methodology is the ability to replicate so

called stylised facts of financial data2 and account for emergence of asset market

bubbles followed by sudden crashes. Neither observed empirical regularities,

nor explosive bubbles (Evans 1991) can be reasonably explained by traditional

1The notation ‘Financial Agent-Based Model’ (FABM) is a more general version of a term
‘Heterogeneous Agent Model’ (HAM). In fact, both terms are essentially equivalent, but
FABM seems better understandable within the markedly diverse community of economists.
In this thesis, both terms are used interchangeably according to the context. The notation
HAM has been anchored after publication of a seminal paper by Brock & Hommes (1998)
when the agent-based approaches in Economics were focused mainly on the field of Finance.
Therefore, it seems reasonable to terminologically distinguish between financial and e.g.
macroeconomics Agent-Based Models (ABMs). For a general overview of the financial agent-
based modelling and its development, Chen et al. (2012), Hommes (2006), or LeBaron (2006)
provide excellent surveys.

2A term coined by Kaldor (1961, pg. 178) as view of the facts concentrated “on broad
tendencies, ignoring individual detail”, for comprehensive surveys consult Cont (2001; 2007).
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financial models. Recently, number of projects propose a courageous attempt

to complement or even alternate current mainstream policy making approaches

through the use of ABMs, typically at the level of central banks. For this to

happen, it is, however, essential to estimate these models on the empirical data

in order to use them for forecasting.

Traditional models in Economics and Finance are based on the hypothesis

of Rational Expectations (RE) (Muth 1961; Lucas 1972) and approximation

of market population by a representative agent. Under RE, agents form ex-

pectation using all available information, however, they may be individually

incorrect. Nonetheless, agents must not be systematically biased, i.e. the fore-

casting errors agents make must be random. The representative agent, which

notion dates back to Edgeworth (1881), thus behaves in a perfectly rational (i.e.

model consistent) manner according to solution of a maximisation problem un-

der full information (involving also information about behaviour of all other

agents) and no computational constraints. Especially in Finance, mostly sim-

ple linear, stable equilibrium models driven by exogenous random news about

fundamentals have been developed under this paradigm. A ‘textbook exam-

ple’ is the Capital Asset Pricing Model (CAPM, e.g. Sharpe 1964). RE is a

necessary condition for the striking Efficient Market Hypothesis (EMH) (Fama

1970), dominating the filed in the past, according to which asset prices reflect

all relevant information about economic fundamentals available to economic

agents. As a consequence, securities prices follow Random Walk (RW). Irra-

tional traders thus in average receive lower profits that rational agents and in

the process of the ‘evolutionary market pressure’ are driven out of the market,

a statement called the ‘Friedman Hypothesis’.

Despite many criticisms, RE constitute an important milestone in the his-

tory of economic modelling as it opened a mathematically elegant way to a con-

troversial problem how to model expectations in models studying large number

of agents (individuals, firms) facing uncertainty. Put simply, RE guarantee

internal mathematical consistency of aggregate dynamic stochastic models in

Economics, with a high level of theoretical coherence, that can be utilised as

a ‘lab’ for policy experiments. Macroeconomic models are largely founded on

assumption of perfect competition, prioritising analytical tractability at the

expense of empirical evidence (LeBaron & Tesfatsion 2008). “Potentially im-

portant real-world factors such as incomplete markets, . . . strategic behavioural

interactions, and open-ended learning that tremendously complicate analytical

formulations are typically not incorporated” [pg. 246]. But hence, on the other
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hand, these simplifications allow for unambiguous theoretical conclusions and

strong policy implication. RE provide a conceptual solution to a variety of

theoretical economic problems in which the future expectations determine cur-

rent behaviour. RE Hypothesis has largely influenced dynamic macroeconomic

research as it constitutes a crucial building block of many macroeconomic con-

cepts: e.g. the ‘Permanent Income Hypothesis’ (Friedman 1957), alternative

‘life-long’ theories of consumption, or short-term monetary, fiscal, and regula-

tory macroeconomic stabilization policies. Especially for such kind of a robust

large-scale policy modelling, RE is often considered to be a sufficiently good

approximation tool. Actually, as claimed by Levine et al. (2007, pg. 2), “fore-

casting of rational agents’ behaviour has been seen as a step in resolving the

‘Lucas Critique’ issues (Lucas 1976).

This thesis focuses on the field of Agent-Based Computational Finance

(ACF) that has experienced an extensive development during the last three

decades. The departure of FABMs from the RE paradigm has proceeded from

the 1980s ensued by first macroeconomic ABMs from the 1990s. Recently,

many Macro ABMs have been developed sharing similar modelling concepts with

FABMs but also following the Dynamic Stochastic General Equilibrium (DSGE)

literature as many challenges within these two fields overlap. A rapid develop-

ment of Macro ABMs was substantially accelerated by events in 2008, known

as the Global Financial Crisis of 2007–2008, followed by the period of so called

‘Great Recession’. Fagiolo & Roventini (2012, pg. 67, 69) comment that “the

Great Recession seems to be a natural experiment for macroeconomics showing

the inadequacy of the predominant theoretical framework—the New Neoclassi-

cal Synthesis—grounded on the DSGE model” and draw attention to the fact

that “an increasing number of leading economists claim that the current eco-

nomic crisis is a crisis for economic theory”. Canova et al. (2014, pg. 1029)

argue that “linear Gaussian specifications [of DSGE models]3 are inadequate to

describe the 2008–2009 Great Recession, the subsequent episode of zero nomi-

nal interest rates and the events during the subsequent sovereign debt crisis in

Europe”.

However, turning almost three decades back, yet in late 1980s and early

1990s, empirical micro studies reported heterogeneity as an empirically signif-

icant phenomena, suggested various methods how market agents might form

beliefs about the future, and revealed quantitatively compelling evidence for

heterogeneity in preferences, skills, discount rates, risk aversion parameters,

3A note added by the authors.
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and many other aspects—e.g. Branch (2004, pg. 592) summarises studies

documenting “failure of the RE Hypothesis to account for survey data on in-

flationary expectations” and Hansen & Heckman (1996, pg. 101) indicate a

“considerable interest in heterogeneous agent models in the real business cycle

literature research. . . to narrow the range of specification errors in calibrat-

ing with microeconomic data”. Brock & Hommes (1997; 1998) theoretically

prove that it may be individually ‘rational’ for agents not to follow RE—and

instead to behave according to simple predictors—in situations when acquiring

information implicates additional costs or in periods when markets are popu-

lated by a majority of ‘non-RE’ traders. Heterogeneity thus arises when agents

evaluate benefits of costly RE compared to simple costless rules resulting in

time-varying distribution of market participants across the set of all possible

trading strategies. Browning et al. (1999) claim that heterogeneous preferences

can be considered as a “major finding of modern microeconomic data analysis”,

draw attention to the fact that macroeconomics models are often incompatible

with the empirical microeconomic evidence, and suggest exploring DSGE mod-

els with explicit heterogeneity. Evans & Honkapohja (2001) explain that agents

lack the required sophistication to form expectations rationally and Sims (2003,

pg. 687), the author of the ‘Rational Inattention Theory’, supports his work

by saying that RE “that postulate a common information set for all agents at

all times imply quick, error-free reactions of all prices and all kinds of agent

behaviour to every kind of new information” and thus contrast strongly with

the empirical data. Branch (2004, pg. 592, 594, 620) summarises another fre-

quently criticised drawback of RE, namely that the RE Hypothesis “requires

agents to possess too much knowledge”, i.e. it assumes agents to have full in-

formation about the true structure of the economy and all related probability

distributions. The author aptly argues that “even econometricians must ap-

proximate the true structure of the economy” and are not able to estimate mod-

els perfectly. It is therefore not realistic to expect all market agents to possess

this kind of ability, however, the empirical rejection of RE in survey data does

not mean that agents act ‘blindly irrationally’ using completely random rules.

It is rather optimal for them not to invest too much resources and base their

behaviour on simple ‘rules of thumb’ trading strategies. The author concludes

the discussion about the RE Hypothesis stating that expectations of agents

“are boundedly rational and consistent with optimising behaviour”—i.e. that

each temporary trading strategy choice is optimal for themselves—and suggests

a concept of ‘Rationally Heterogeneous Expectations’ motivated by Adaptive
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Rational Equilibrium Dynamics (ARED) by Brock & Hommes (1997). Empiri-

cal data support his model, “but not completely so”. Branch & Evans (2006,

pg. 265) point out that in practice “econometricians often misspecify their

models. . . If agents are expected to behave like econometricians then they can

also be expected to misspecify their models”. Authors confront agents with

a set of misspecified underparameterised models and let them to determine

boundedly correct, however, optimally computed, parametrisation. Under this

specific setting, they propose a new concept of the ‘Misspecification Equilib-

rium’ that exhibits so called ‘Intrinsic Heterogeneity’. Crucially importantly

for economic policy making, a study of Branch & McGough (2004) finds that

“if policy makers unwittingly assume agents have rational expectations they

may destabilize an already stable system” and Branch & McGough (2009, pg.

1048) reveal that “whether heterogeneity stabilizes or destabilizes depends on

the distribution of agents across rational and adaptive expectations, and how

strongly agents project past data in the adaptive predictor”. Carroll (2003) and

Mankiw et al. (2004) draw attention to statistically significant disagreement in

survey data on inflation expectation even among professional economists and to

the evolution of the level of heterogeneity reflecting market volatility. Branch

(2007, pg. 246) stresses limitations of RE and asserts that “recent approaches

impose bounded rationality at the primitive level”. Branch & McGough (2010,

pg. 1497) argue that incorporating full rationality and perfect foresight of

agents into decision-making “motivates the literature’s assumption that agents

treat the forecasting. . . issue as a statistical problem distinct from their opti-

mization” and remark that the choice between rational and adaptive behaviour

is the ideal modelling “scenario discussed extensively in the monetary policy

literature”. Finally, Levine et al. (2012), partially quoting Evans & Honkapo-

hja (2009), simply state that “economic agents should be assumed to be about

as smart as, but no smarter than good economists”.

AB approaches in Economics thus departure from models with perfectly ra-

tional representative agent4 and model-consistent homogeneous expectations

in reaction to unrealistic assumptions of the RE paradigm, equilibrium condi-

tions, lack of microeconomics foundation when applying the RE Hypothesis in

macroeconomic research,5 and the inability of asset pricing models derived from

4An important early criticism of the representative agent paradigm is provided by Kirman
(1991).

5So called ‘Aggregation Problem’ refers to a theoretical fact that the assumption of ratio-
nality at the individual level does not imply aggregate rationality (e.g. Janssen 1993). Fagiolo
& Roventini (2012) correctly point out that “RE is a property of the economic system as a
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the EMH to replicate empirically observed stylised facts and explain specula-

tive bubbles. This modern approach builds on direct interactions of boundedly

rational economic agents (Simon 1955; 1957; Sargent 1993) with limited cogni-

tive and information processing capacities, disposing insufficient computational

power, and incomplete information. Nonetheless, agents do not act irrationally,

but follow simple behavioural heuristics, that may be the most ‘rational’ choice

given objective constrains they face and costs of gathering information. Agents’

actions are not solutions of a maximisation problems, but are selected according

to adaptive updating rules and their relative profitability. According to Branch

(2004, pg. 592), they in fact “behave as if they were econometricians”. Agents

are assumed to behave according to psychological and sociological evidence to

better reflect the real world phenomena, i.e. ABMs often embrace findings from

market psychology (e.g. Kahneman & Tversky 1974; 1979) and herding be-

haviour (Keynes 1936). Dynamics of these economic systems is not generated

via exogenous shock mechanisms but prices are driven endogenously based on

boundedly rational expectations of agents resulting in direct interactions. Any

equilibrium condition is not required, that means, markets may be found even

continually out of equilibrium without violating model assumptions. Another

important theoretical viewpoints in favour of ABMs is revealed e.g. by Browning

et al. (1999) who remark that representative preferences mostly cannot govern

model behaviour asymptotically, or by Fagiolo et al. (2008) who rightly point

out that RE prevent models to address distributional issues in situations when

many macroeconomic time series distributions can be well-approximated by fat

tail densities.

Although the notion of market heterogeneity is intellectually satisfying, re-

searchers should consider so called ‘endogeneity problem of heterogeneity’ ad-

dressing the question how much heterogeneity truly exists and how much might

be—possibly artificially—imposed by scientists. Or, conversely, is the level of

heterogeneity within a model sufficient enough to describe essential features of

the reality reasonably well? To what extent do we benefit from finely differ-

entiated agents and what level of detail is technically optimal for extracting

highly aggregate information from empirical data?

Real market investors differ in a large number of aspects. W.r.t. practical

issues of the AB modelling, the crucial are following: expectation concepts

forming specific trading strategies, attitudes to risk, sources, completeness,

whole, individual rationality is not a sufficient condition for letting the system converge to
the RE fixed-point equilibrium (Howitt 2012)”.
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and costs of information, and in more detailed models for instance also the

investment scale, possibly different types of interactions, memory and various

learning capabilities, etc. Another essential modelling concept defining the

overall complexity of models and directly influencing interactions of agents

is the organisation of the artificial market and resulting rules for the price

formation, ranging from a simple weighted average of beliefs (Brock & Hommes

1998), through the microeconomic concept of the ‘Walrasian Auctioneer’ (e.g.

in De Grauwe & Grimaldi 2006b), ended up with limit order book systems

aiming at replicating the real market trading dynamics architecture.

Design of FABMs is to a large extent motivated by empirical evidence on

behaviour of real financial agents accumulated at the turn of 1980s and 1990s

(Allen & Taylor 1990; Frankel & Froot 1990). These studies conclude that

interactions of the two main types of expectations govern the dynamics of

financial markets. So called fundamental traders, who believe that possible

mispricing is likely to be corrected over short periods by arbitrageurs and the

market price thus tends to revert to its fundamental value, characterise a sta-

bilising market force. Technical analysts, often called chartists, who believe

that a currently observable trend will continue also in the short-run, constitute

a destabilising market force responsible for emergence of speculative bubbles.

These trader-types might be rather understood as possible trading strategy-

types as an intelligent market agent is likely to adapt his or her strategy over

time based on its relative historical performance. The time-varying evolution of

market fraction between these two investor-types is thus an essence of many ar-

tificial markets. In the seminal Brock & Hommes (1998) discrete-choice model

this is embodied via a switching parameter of the intensity of choice defining

the overall willingness of market agents to switch between potential trading

strategies. ‘N-type models’, in which the autonomy of agents is constrained by

a predetermined class of strategies, i.e. models consisting of fundamentalists

and few types of chartistic strategies, have been found successful in mimicking

many financial stylised facts (Chen et al. 2012). By virtue of a relatively simple

design, especially the 2-type and 3-type versions have been subject of empirical

estimation so far and therefore occur in the spotlight of this thesis. Compared

to so called Autonomous Agents (AA) models6 with rich system complexity,

advanced individual learning, and idiosyncratic distributions of uncertainty,

the heterogeneity in these simple models is restrained: first, the agents are

6A typical representative is the ‘Santa Fe Artificial Stock Market Model’ (Holland & Miller
1991; Palmer et al. 1994).
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in fact homogeneous ex ante, but randomness of their stochastic choices gives

rise to evolving heterogeneity in time; second, the evolutionary selection of

strategies is based only on social, not individual learning. In case of the 2-type,

3-type, or generally ‘N-type’ models, we therefore believe that the phenomenon

of supra-imposed artificial heterogeneity does not play an important role, actu-

ally, researcher rather balance on the other side of the problem when designing

relatively trivial models that account only for the most robust heterogeneous

features of real markets.

Although the empirical estimation is an important part of the modelling

cycle and seems crucial for model validation, one cannot find many attempts

on empirical estimation of FABMs. Moreover, looking ten years back in the

financial literature, we neither observe any general consensus on the estimation

methodology, nor conclusive results. Fagiolo et al. (2007, pg. 202) even empha-

sise “no consensus at all about how (and if) AB models should be empirically

validated”. Generally, there are two essential difficulties, or rather challenges,

in estimating the FABMs. First, a highly nonlinear and complex nature of

these systems prohibits researchers of using classical estimation methods as

the objective function often has no analytical expression. Second, a possible

overparametrisation, high number of degrees of freedom, and optional model

settings together with the stochastic dynamics further escalate the complexity

of the problem. The emerging properties of these models cannot be analytically

deduced, a Method of Moments (MM), “while fine in theory, might be too com-

putationally costly to undertake” (LeBaron & Tesfatsion 2008, pg. 249), and

thus a considerable simulation capacity for the numerical analysis is required.

This thesis makes a step forward and proposes more general methodologi-

cal framework for empirical validation of FABMs. First, we develop an original

two-step estimation methodology for one of the very first FABMs—the stochas-

tic cusp catastrophe model. Although theoretical research regarding the cusp

catastrophe model is broad, there is a minimum of empirical applications, es-

pecially for stock markets. Our method allows us to apply catastrophe theory

to stock market returns with time-varying volatility and to model stock mar-

ket crashes. In the first step, we utilise high-frequency data to estimate daily

realised volatility from returns. Then, we apply stochastic cusp catastrophe to

data normalised by the estimated volatility in the second step to study possible

discontinuities in the markets. We support our methodology through simula-

tions in which we discuss the importance of stochastic noise and volatility in a

deterministic cusp catastrophe model. The methodology is empirically tested
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on nearly 27 years of U.S. stock market returns covering several important

recessions and crisis periods.

Second, we propose a general computational framework for empirical val-

idation of full-fledged FABMs. We base the estimation methodology on a re-

cently developed Non-Parametric Simulated Maximum Likelihood Estimator

(NPSMLE) by Kristensen & Shin (2012). The main advantage of this frame-

work is that for many FABMs one cannot analytically derive the likelihood

function to estimate the model parameters via Maximum Likelihood Estima-

tor (MLE). However, the observations from the model can be numerically sim-

ulated and utilised for the kernel estimation of the conditional density of the

data-generating process. Thus, the likelihood function can be replaced by the

simulated likelihood. NPSMLE is an estimation framework that functions under

very general conditions met by many FABMs. Hence its theoretical properties

hold and it can be transferred to the FABM literature. Indeed, recently Grazz-

ini & Richiardi (2015, pg. 151) suggest to employ the NPSMLE methodology on

ABMs in general. We extensively test capability of the method for the FABMs

estimation purposes on particular models via a complex Monte Carlo analy-

sis. To start with, we apply the methodology to the most famous and widely

analysed model of Brock & Hommes (1998) for which we customise the gen-

eral framework of Kristensen & Shin (2012). The key feature of the model is

an evolutionary switching of agents between simple trading strategies based on

past realised profits—so called Adaptive Belief System (ABS)—governed by the

switching parameter of the intensity of choice β. This parameter is responsi-

ble for high nonlinearity of the system and possibly chaotic price motion. We

presuppose that if the NPSMLE method succeeds to estimate this generally chal-

lenging FABM framework and the switching parameter β, it is likely to appear

more general and useful for other ABMs in the future.

Finally, we further apply the NPSMLE to another simple financial ABM de-

veloped by Alfarano et al. (2008). The model is based on asymmetric herding

towards investment strategies and can function under two different modes of

the market sentiment. The bimodal version of the model is characterised by

abrupt changes in majority opinion and by extreme sentiment dynamics. The

unimodal setting reveals general tendency to gradually revert back to the bal-

anced sentiment and fluctuate around the mean value. The possible bimodality

of the model generally introduces a serious challenge for the estimation proce-

dure. The model is estimated using three stock market indices, price of gold in

USD, and three exchange rates, and both the full sample static estimation as
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well as the rolling window approach is utilised.

The thesis is organised as follows. After the Introduction, in Chapter 2

we provide a literature survey on FABMs and DSGE estimation methods, an

innovative categorisation of findings, and a conceptual comparison between

calibration and estimation. Next, Chapter 3 develops a two-step estimation

methodology for one of the first FABMs—the cusp catastrophe model. Chapter 4

introduces theoretical background of the NPSMLE method by Kristensen & Shin

(2012) and describes the Brock & Hommes (1998) Heterogeneous Agent Model

(HAM) framework. Findings of the Monte Carlo simulation study of NPSMLE

application to the HAM are reported in Chapter 5 and Chapter 6 presents

empirical estimation results. The penultimate Chapter 7 is devoted to another

application of the NPSMLE method to a stylised herding FABM by Alfarano

et al. (2008). Finally, Chapter 8 draws overall conclusions and presents our

thoughts about the future of a broader field of AB modelling in Economics and

empirical estimation of FABMs.



Chapter 2

Literature review: methods and

results

Over last decades, a large number of various Heterogeneous Agent Models

(HAMs) have been developed and analysed. However, although the empirical

estimation is an important validation part of the modelling cycle, one cannot

find many examples on empirical estimation of HAMs using empirical data—

typical HAM studies mostly employ simulation techniques to confirm ability

to replicate stylised facts of financial data. Additionally, only several of those

attempts provide a rigorous comparison of forecasting performance or in terms

of fitting empirical market data with ‘mainstream’ approaches such as ARIMA,

GARCH ‘family’ or other ‘competing’ econometrics models. In existing empir-

ical papers, estimation methods are often chosen ad hoc or the models are ex

ante designed or substantially simplified in a way that a particular estimation

method can be used. For the reason, as de Jong et al. (2010, pg. 1653) point

out: “although the heterogeneity of agents approach is intellectually satisfying,

the heterogeneity model has hardly been estimated with empirical financial

data because of the non-linear nature of the model that mainly arises from

the existence of the mechanism that governs the switching between beliefs”.

Furthermore, Westerhoff & Reitz (2005, pg. 642) highlight the fact that “one

has to sacrifice certain real-life market details. If the setup is too complicated,

econometric analysis is precluded”. In any case, since the complexity of HAMs

often does not allow for analytical solutions, the empirical validation of agent-

based systems together with simulation analyses remain the crucial tools of

HAMs verification.
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2.1 Estimation vs. calibration

In one of the most recent contributions, Grazzini & Richiardi (2015, pg. 148)

pointedly remark that empirical grounding of ABMs “is often limited to some

ad hoc calibration of the relevant parameters; this resembles the state of the

art in DSGE modelling a few years ago, which has now moved forward toward

more formal estimation”. Authors argue that while recent advancements in the

DSGE literature favour proper estimation over calibration dominating the DSGE

field in the past, the ABMs “are still lagging behind” [pg. 149]. Whilst we agree

with the authors that empirical validation of ABMs via estimation is an essential

step in the modelling cycle and an important premise for models’ comparison

and resulting policy recommendations, we have to inherently acknowledge the

role and importance of calibration not only as a starting point of ABM empirical

analysis or a passed ‘evolutionary’ step but as a complementary—rather than

alternative—method composing an optimal toolkit for ABMs validation proce-

dures and sensitivity analyses. Actually, to quote from Hansen & Heckman

(1996, pg. 91) “the distinction drawn between calibrating and estimating the

parameters of a model is artificial at best” and the justification of the two terms

is vague, confusing, and in part arbitrary based on the scientific field and indi-

vidual authors. Truly, for estimation of DSGE models the Bayesian methods1

are currently commonly used and priors are often set very narrow. As reported

e.g. by Fernández-Villaverde (2010, pg. 36), “some researchers prefer to select

loose priors and let the likelihood dominate the posterior as much as feasible.

Other researchers favour tighter priors that sharpen our inference and guide

the posterior to plausible regions”. The estimation then strongly resembles

calibration and there is not much difference between these otherwise different

concepts. It is also evident that the evolution of the DSGE methodology in the

last decade constitutes a crucial source of knowledge for current development

of validation methods for ABMs as many challenges clearly overlap. Issues dis-

cussed below are thus shared also by the ABM field to the similar extent as the

subject matter.

2.1.1 Calibration

Starting from the older practice, the main benefit of calibration is that it al-

lows a researcher to study a model consistently. Via calibration a theoretical

1A pioneering employment of Bayesian techniques in ABMs is Grazzini et al. (2015).
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model is specified and can be repeatedly simulated. The calibration might

be based on an external knowledge, e.g. related literature comprising specific

micro-studies2 regarding individual parameters or previous studies focused on

the same modelling framework. Another option is a calibration founded on a

relevant theory or some empirical criteria. The output of simulations can then

be compared with empirical data, mostly various stylised facts of financial or

macroeconomic data are compared with patterns and regularities in the simula-

tion outputs. Another benefit of calibration is that it avoids difficulties related

to imperfect estimates. This econometric issue may arise from many potential

sources comprising problematic identification of parameters, possible estima-

tion bias, lack of data, unmet theoretical assumptions, misspecification of the

theoretical model, etc. On grounds of the aforementioned benefits, one might

consider simulation studies based on calibration more credible and scientifically

valid.

On the other hand, for many reasons, calibration might be viewed fur-

ther away from trustworthiness than estimation. First, as aptly mentioned by

Hansen & Heckman (1996), the process of calibration in Economics is often

different than in natural or technical sciences where precise data are available

from experiments or measurements. This can simply lead to interdisciplinary

misunderstandings. Originally, “calibration referred to a graduation of mea-

surement instruments” as a Celsius thermometer (Kydland & Prescott 1996,

pg. 74). In natural sciences, the term ‘calibration’ refers to a process “of tuning

the model—that is, the manipulation of the independent variables to obtain

a match between the observed and simulated distribution or distributions of

a dependent variable or variables” [pg. 91]. This can of course also be prac-

tised in Economics, i.e. the model parameters can be manipulated until the

model mimics well a carefully defined number of dimensions (stylised facts or

moments), but mostly ‘calibration denotes a relatively simple process of set-

ting the model parameters before running simulations without the subsequent

iterations.

In natural sciences ‘calibration’, available data are divided into two parts.

The first set is used for ‘calibrating’ the model and using the remaining data

the model is ‘verified’. In Econometrics a comparable approach consists of

(in-sample) estimation and (out-of-sample) ‘testing’. The process of calibra-

tion might be often seen vague and arbitrary as no coherent methodology for

2“Micro data offer one potential avenue for resolving the identification problem” (Hansen
& Heckman 1996, pg. 88).
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determination of individual parameters (from microeconomic data) usually ex-

ists. For instance Fernández-Villaverde & Rubio-Ramı́rez (2010, pg. 23) point

out that following Method of Simulated Moments (MSM), “it is not obvious

which moments to select to calibrate the parameters” and that “the experience

from many years of methods of moments estimations is that choosing different

moments may lead to rather different point estimates”. Kydland & Prescott

(1996, pg. 80) admit that in calibration, the model economy is sometimes made

“inconsistent with the data on one dimension so that it will be consistent on

another” and Hansen & Heckman (1996, pg. 97) allude “weak standards for ver-

ification imposed by the calibrators”. Next, mostly no comparison with other

differently calibrated versions of the same model is discussed.3 Little emphasis

is often devoted to assessing the quality of the resulting calibration: “formal-

izing the criteria for calibration and verification via loss functions makes the

principle by which a particular model is chosen easier to understand” Hansen

& Heckman (1996, pg. 93).

It can also be “very misleading to plug microeconometric parameter esti-

mates into a macroeconomic model when the economic environments for the

two models are fundamentally different” (Hansen & Heckman 1996, pg. 97).

Simply, coefficients used for calibration might have been derived under as-

sumptions incompatible with the modelling framework resulting in a theoret-

ical mismatch of the final model. Also individual micro-studies are different

from every other, they may condition on different assumptions and thus impli-

cate different economic interpretations—micro-evidence synthesis is therefore

a challenging task. “The researcher should be careful, though, translating this

micro evidence into macro priors. Parameter values do not have an existence

of their own, like a Platonic entity waiting to be discovered. They are only

defined within the context of a model, and changes in the theory, even if mi-

nor, may have a considerable impact on the parameter values.”, as emphasised

by Fernández-Villaverde (2010, pg. 10). An extensive discussion of issues

emerging from application of microeconomics evidence and its incompatibil-

ity with macro models is provided by Browning et al. (1999). Authors high-

light the heterogeneity of preferences—an essential finding of modern empirical

Microeconomics—that is, however, often abstracted from in DSGE models to

gain computational tractability. A caution is recommended against weak micro

3One of exceptions is the analysis by Aruoba et al. (2006) who devote a specific atten-
tion to the robustness of the calibration and compare a benchmark version with different
‘unrealistics’ combinations.
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empirical foundations of many DSGE models and possibly improper use of syn-

thesised microeconomic evidence within an internally consistent framework that

“may alter the structure and hence the time series implications of the model”.

Another area of problematic application is the notion of uncertainty, where

aggregating may cause a disconnect between its various individual sources—

“different economic agents may confront fundamentally different risks”—and

alter the predictability of the model. Calibrating the distributions of individ-

ual shocks thus becomes crucially important. In the same vein, ignoring some

real-world inefficiencies can then lead to under/overstate of the true risk faced

by agents.

2.1.2 Estimation

Unlike calibration, estimation is used to assess the approximate size of some

phenomenon and offers a traditional rigorous optimisation approach for which

loss function is unambiguously defined.4 Already Kydland & Prescott (1996,

pg. 74) emphasise that compared do estimation, in calibration “the parame-

ter values selected are not the ones that provide the best fit in some statistical

sense” and that the procedure often involves only one year’s data or “the simple

task of computing a few averages” over years: e.g. in a standard Cobb-Douglass

production function, the parameter determining output elasticities can be sim-

ply computed as the average of labour share of total output. According to

Grazzini & Richiardi (2015, pg. 148), “estimation (as opposed to calibration)

involves the attainment of clearly specified scientific standards in the way mod-

els are confronted with the data” and they emphasise the acute need of such an

approach “to gain confidence and ultimately support from the wider scientific

community and the policy circles in the use of a new tool”. As a differentiat-

ing principle authors mention—to some extent philosophically—distinct goals

of the two methods but at the same moment they add that a clear classifi-

cation is problematic. Whilst calibration primarily aims a optimally tracking

and describing the observed empirical data, the ultimate goal of estimation

is recovering via parameters’ values the true data generating process beyond

them, thus it is more “concerned with the properties of the estimators and the

quantification of the uncertainty around the estimates”.

Moreover, a crucial theoretical distinction between estimation and calibra-

4Various methods such as Ordinary Least Squares (OLS) or MSM and different loss func-
tions weight various features of the data differently and thus selection of a proper loss function
might help to solve various modelling issues.
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tion lies in the the notion of convergence. Selection of appropriate statistics

of a stationary and ergodic series ensures estimates consistent in time. Con-

versely, when using cross-sectional statistics to describe a model as in many

calibration exercises, the consistency in population size cannot be assured due

to possible autocorrelation between cross-sectional moment, that does not dis-

appear with increasing sample size. Another important task is the final choice

of variables used for the empirical estimation. On one hand, an ABM may

be too stylised to accommodate estimation of all the variables in the model.

On the other hand, over-parametrization brings serious difficulties related to

identification and practical aspects of estimation procedures such as high com-

putational burden. Additionally, in recent attempts to use DSGE models to

forecasting, the estimation seems favourable as it often produces smaller mean

squared errors than calibration.5

Compared to DSGE models and Macro ABMs, a distinguishing feature of

FABMs is the structure of the output which almost always is a single time series.

Thus, there are no cross-correlations observed and usual autocorrelations are

employed in a standard set together with other financial stylised facts. The

modellers are thus likely to avoid possibly arbitrary decisions what information

should be used for calibration and what reserved for model testing. On the

other hand, FABMs often share with DSGE models problems related to flat

likelihood function—most frequently likelihood encompasses little information

in a direction of a particular parameter. In such cases, according to Fagiolo

& Roventini (2012, pg. 81), informal calibration might be “a more honest and

internally consistent strategy to set up a model”. When it comes to estimation,

opposed to DSGE models and Macro ABMs with a relative large number of

parameters, where empirical estimation might not be feasible or advisable,

simple FABMs might contain only a few parameters that often do not have any

obvious empirically measurable counterparts. It might even seem that some

researchers ‘deliberately’ design simple stylised or highly aggregated models

to facilitate computations and estimation of a small set of crucial parameters,

but such approach is fully scientifically legitimate and follows so called KISS6

modelling principle.

This thesis focuses on three well-known FABMs. In the Cusp model (Zee-

man 1974, Thom 1975, see Chapter 3), the parameters are to a large extent

5Del Negro & Schorfheide (2012) provide an extensive study on forecasting performance
of DSGE models and related literature review.

6An acronym for “Keep it Short and Simple”, “Keep it Simple and Straightforward”, or
an impolite original meaning by U.S. Navy “Keep It Simple, Stupid”.
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artificial without any apparent economic interpretation. They rather repre-

sent weights of control variables that need to be optimised to fit the data. I

can hardly imagine a reasonable calibration procedure in this case. For the

Brock & Hommes (1998) model (see Chapters 4, 5, 6), the crucial switching

coefficient—the intensity of choice β—needs to be retrieved from data also us-

ing some optimisation technique. Since the literature lacks a general consensus

(see Sections 2.2 and 2.3) either on existence of behavioural switching on var-

ious markets or its intensity, the calibration approach would not be of much

help in this situation. In some ways similar uncertainty hinders calibration

also for the market noise intensity that we estimate in Chapter 6. Conversely,

some of model parameters allow for calibration based on micro-studies or liter-

ature surveys, e.g. the overall market risk aversion or specifications of trading

strategies on specific markets. Finally, in the Alfarano et al. (2008) model

(see Chapter 7), the autonomous and herding switching intensities do also not

have any reasonable empirical proxies. Clearly, the model allows for calibra-

tion using the ‘natural sciences’ approach to replicate a set of financial stylised

facts—that was perhaps done by the original authors as well as by Chen &

Lux (2015) and Ghonghadze & Lux (2015) resulting in the proposed simula-

tion setting—but then an interesting scientific question appears whether one

can estimate comparable values from the market data.

2.2 The use of econometric techniques

Utilisation of econometrics to empirically validate or estimate HAMs dates more

than one decade back in the financial literature history. Within this stage of

development of the Heterogeneous Agent (HA) modelling, the central concern

embraces the determination of appropriate values of model parameters and as-

sessment of their statistical significance. However, as summarised in Table 2.1

and Table 2.2, looking ten years back in literature, we neither observe any

general consensus on the estimation methodology, nor conclusive results. Fa-

giolo et al. (2007, pg. 199, 202) assert that “a strongly heterogeneous set of

approaches to empirical validation is to be found in the AB literature”. Given

different origins as well as various modelling concepts, the estimation method-

ology also varies. As depicted in the third column of Tables 2.1 and 2.2, the

three estimation methods—the Nonlinear Least Squares (NLS), Quasi Maxi-

mum Likelihood (QML), and the MSM—prevail among others. When moving

to the fourth column of Tables 2.1 and 2.2 we can see how the choice of esti-
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mated parameters is affected by various model designs. Nonetheless, we can ob-

serve a general tendency to estimate mainly parameters related to ‘behavioural

rules’ of agents: belief coefficients defining individual trading strategies and the

intensity of choice or its corresponding concepts in different types of models

(mutation, herding tendency, and switching thresholds). All these parameters

are apparently meaningful from the economic interpretation point of view.

Various direct and indirect estimation methods have already been employed.

However, for the use of direct methods, instead of the usual OLS or Maximum

Likelihood (ML) methods, the NLS and QML methods are applied in most of

the cases. In these applications, crucial HAM structural features, e.g. the

evolutionary switching between trading strategies—one of the key concepts of

the HA modelling, are sometimes restrained or even sacrificed to obtain sim-

plified approach which can be estimated using suggested methods. However,

for many HAMs the aggregation equation, which would contain all parameters

of interest, cannot be derived analytically and therefore the application of di-

rect estimation techniques is not feasible. Indirect estimation methods thus

overcome this problematic issue by simulating artificial data from the model

through which the aggregation concepts such as moments for the MSM are de-

rived. These simulation-based econometric methods “are very applicable and

may dramatically open the empirical accessibility of agent-based models in the

future” as suggested by Chen et al. (2012, pg. 204). Simulation-based econo-

metric methods already used for the HAMs estimation include the MSM, the

Efficient Method of Moments (EMM), or generally the Simulated Minimum

Distance (SMD). All these methods are based on minimising the (weighted)

distance between two sets of simulated and observed moments. So far, how-

ever, the use of simulation-based econometric methods for validation of HAMs

is relatively rare.

2.3 Literature on FABMs estimation

This section provides additional brief description of papers summarised in Ta-

bles 2.1, 2.2, and 2.3. A special focus is devoted to attempts on estimating

the switching coefficient—the key concept of the HA modelling. The estimated

switching coefficient, however, cannot be directly compared across various mod-

els, assets, or time periods. It is a unit-free variable and its magnitude is

conditional on the specific model design or the specific dataset. On the other

hand, the intensity of choice is a crucial and a very robust driver of the data
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generating process behind switching HAMs and to a large extent determines the

behaviour of the system in a very consistent manner: zero intensity of choice

fixes market fractions and does not allow for any evolutionary switching, high

values implicate a wild switching for vast majority of model specifications, as-

sets, or periods. Relatively small positive intensity of choice is associated with

a presence of some detectable behavioural switching. Thus we mainly intend

to avail the general knowledge of previous estimation results from literature

for setting meaningful simulation grids in Chapter 5 or to constrain random

generation of initial points in Chapter 6.

Winker & Gilli (2001), Gilli & Winker (2003), and Winker et al. (2007)

extend the exchange rate HAM originally suggested in the seminal work of

Kirman (1991; 1993). Authors develop computational algorithms to deal with

high complexity of empirical validation and estimate their model using daily

DM/USD exchange rates from 1991 to 2000. As the main result they argue that

“the foreign exchange market can be better characterised by switching moods

of the investors than by assuming that the mix of fundamentalists and chartists

remains rather stable over time” (Gilli & Winker 2003, pg. 310). In addition,

Winker et al. (2007) employs the bootstrap method to analyse properties of

the objective function.

Westerhoff & Reitz (2003) develop a STAR-GARCH exchange rate HAM and

estimate the model using daily rates of main world currencies to the USD

from 1980 to 1996. Their results indicate the existence of fundamentalist-

and chartist-driven exchange rate dynamics and provide evidence for a sub-

stantial fluctuations of market fractions with fundamental traders leaving the

market after increase in the deviation from the fundamental value. Switching

parameter is estimated between 0.021 and 0.172 and statistically significant.

Westerhoff & Reitz (2005) suggest a STAR-GARCH HAM to analyse cycles in

commodity prices. Employing the QML estimation to the U.S. monthly corn

price index data between May 1973 an May 2003 by the U.S. Department of

Labour, they reveal that technical and fundamental speculations are to a great

extent able to explain cycles in commodity prices. Switching parameter in their

model is found 0.199 with t-statistics 2.22. Reitz & Westerhoff (2007) introduce

another commodity HAM. Authors again utilise the STAR-GARCH approach and

analyse monthly USD prices of cotton, soybeans, lead, sugar, rice, and zinc over

the period from January 1973 to May 2003. The estimated model can again

account for the cyclicality on commodity markets as the switching parameter

is found between 0.17 and 0.47 and statistically significant.
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Diks & Weide (2005) estimate their MA-(G)ARCH specification of a HAM

via daily log returns of exchange rates of the USD against six local currencies

from November 1987 to November 2002.

Alfarano et al. (2005) estimate a HAM based also on Kirman’s ANT process

(Kirman 1991; 1993) but allow for asymmetry in the attractiveness of trading

strategies. A two-step ML estimation is used. Daily data contains returns of

gold between 1974 and 1998, stock returns of Siemens and the Deutsche Bank

from 1974 to 2001, and DAX returns covering the period form 1959 to 1998. The

model is able to mimic the crucial financial stylised facts and authors there-

fore conclude that asymmetric herding appears useful for explaining patterns

in financial returns. Alfarano et al. (2006) estimate a similar model on the

exchange rate data of the Australian dollar against the USD covering the pe-

riod from December 1983 to December 2004 and on the Australian index data

ranging form January 1980 to December 2004. Alfarano et al. (2007) follow

the previous works in estimating the model parameters for a large daily dataset

of 100 stocks from the Japanese market between January 1975 and December

2001.

Manzan & Westerhoff (2007) estimate a HAM using monthly exchange rates

of five major world currencies against the USD covering the period from the

January 1974 to December 1998. The model demonstrates reasonable explana-

tory power for the in-sample estimation but fits significantly only for two of

analysed currencies for the out-of-sample prediction.

Boswijk et al. (2007) present one of the first attempts to estimate a full-

fledged behavioural HAM which is a reformulation of the Brock & Hommes

(1998) model in terms of price-to-cash flow ratios. Using NLS and annual

S&P500 data between 1871 and 2003, three parameters of the model: coefficients

characterising two trading strategies and the intensity of choice β, are jointly

estimated. While two significantly different expectation regimes are found, β

remains significantly not different from zero, followed by a discussion why this

is not worrying as long as heterogeneity in regimes is confirmed.

Amilon (2008) presents a more general version of the Brock & Hommes

(1998) model amended via nonconstant risk aversion, information costs of fun-

damental traders, and time-varying risk of the portfolio. Finally, he estimates

a simple version of the model by ML and EMM using detrended daily S&P500

returns ranging from January 1980 to December 2000. The most important

point of the work, however, lies in a discussion how the stochastic noise term

influences the ability of the model to fit real data and to generate stylised facts
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of financial returns—the author argues that “it is not a very realistic way to

model noise that is not normalized to the price level. . . if the non-linearities of

the system are turned off and prices are just generated from a random walk

pt = pt−1+εt, the resulting return series, rt = εt/pt−1, will actually show signs of

all the stylised facts mentioned above, such as large autocorrelation in squared

or absolute returns, and fat tails!” [pg. 349]. In the estimation part of the

paper the intensity of choice β is estimated with ambiguous results: 1.91 and

statistically strongly significant by MLE and 1.99 and markedly insignificant

using EMM.

Franke (2009) empirically estimates the model introduced Manzan & West-

erhoff (2007) using the MSM. The dataset contains stock market indices be-

tween January 1980 to March 2007: S&P500, DJIA, DAX, NIKKEI 225, as well

as exchange rates: USD/DM and USD/JY. The author states that the MSM

“estimation results lend the model a remarkable explanatory power” [pg. 814].

Franke & Westerhoff (2011) and Franke & Westerhoff (2012) develop an ele-

mentary HAM based on herding mechanism and estimate it via MSM on the

S&P500 returns from January 1980 to March 2007. In both papers authors take

the advantage of the block bootstrap method in order to better account for the

small-sample properties of the estimators.

Cyclical behaviour of oil price is assessed in Reitz & Slopek (2009) who

propose an empirical oil market STAR-GARCH HAM and estimate it on the

WTI crude oil prices obtained from the IMF International Financial Statistics

database. The data comprise 252 monthly observations covering the period

from January 1986 to December 2006. The model provides significant evidence

for activities of prices speculators represented by chartistic traders who are thus

likely to cause price movements’ amplification in the last part of the dataset.

The transition parameter is found 1.94 and statistically significant.

de Jong et al. (2009a) expand the Brock & Hommes (1998) approach by

adding a new belief type—internationalists—and introducing a two-market

model to explain the shift-contagion within the Asian crisis. They allow for mul-

tiple asset trading and model market fractions using a VECM with time-varying

coefficients employing data ranging form 1980 to 2007. Equation-by-equation

ML estimation is performed because of difficulties caused by non-linear nature

of the system. The switching parameter is found positive and statistically sig-

nificant, namely 1.031 for the Stock Exchange of Thailand, and 2.869 for the

HSI. de Jong et al. (2009b; 2010) further analyse the function of the European

Monetary System from its launch in March 1979 to December 1998, when it
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was superseded by the European Exchange Rate Mechanism II. The model is

estimated with NLS, MLE, respectively, and shows significant evidence of the

behavioural heterogeneity using a weekly and monthly dataset containing ex-

change rates of seven major world currencies against DM. de Jong et al. (2009b)

report the switching parameter positive but statistically insignificant: 1.52. In

the de Jong et al. (2010) framework the interpretation of the intensity of choice

is a partly different as a negative value assures the positive feedback effect,

i.e. agents switch to the more profitable strategy. The switching parameter is

statistically significant for three countries and insignificant for four countries,

in absolute values between 0.0007 and 6.29.

Barunik & Vosvrda (2009) and Barunik & Kukacka (2015) estimate the

cusp catastrophe HAM using MLE and a dataset consisting of S&P500 stock

market returns, S&P500 futures, and OEX put/call ratios. While Barunik &

Vosvrda (2009) take use of only relatively short periods around 1987 and 2001

stock market crashes, Barunik & Kukacka (2015) develop a two-step estima-

tion methodology based on the theory of RV and estimate the model on high-

frequency data covering almost 27 years from February 1984 to November 2010

(for details see Chapter 3).

A housing market application appears in Bolt et al. (2011) whose model is

based on the framework of Boswijk et al. (2007). Authors employ OECD hous-

ing market dataset containing the U.S. and the Netherlands data ranging from

1970 Q1 to 2010 Q4 and report the intensity of choice statistically insignificant

for both countries. Authors follow their previous work in Bolt et al. (2014) and

estimate a modified version of the model for eight different countries employ-

ing the same OECD dataset that covers period from 1970 Q1 to 2014 Q2. The

intensity of choice β in the model is found insignificant for all countries and

authors conclude that “the fact that β is found to be insignificant is merely

an indication that the model’s forecast accuracy is not very sensitive to the

exact value of β, and the other parameters can to a large extent compensate

for changes in β” [pg. 15]. Hommes & Veld (2015) estimate a similar model

on quarterly S&P500 data between 1950 and 2013. Executing a Monte Carlo

simulation they demonstrate a very flat shape of the likelihood function for the

intensity of choice β selection that hampers validity of the test to reject the

null hypothesis of switching, especially for small samples.

ter Ellen & Zwinkels (2010) develop a simple oil market HAM based on Brock

& Hommes (1998) framework and validate it on a similar dataset as Reitz &

Slopek (2009). The data covers Brent and WTI Cushing oil monthly USD prices
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over the period from January 1984 to August 2009 taken from DataStream.

Estimation is carried out using QML and the results indicate a significant price

effect of both fundamental and chartistic traders. Switching between strate-

gies is also statistically significant—the intensity of choice is estimated 1.19

for Brent and 1.36 for WTI. Huisman et al. (2010) introduce a HAM based on

ter Ellen & Zwinkels (2010) design and study the European historical forward

electricity prices over three years for the base-load year 2008 contracts. The

model is estimated using QML and the intensity of choice is found statistically

significant for two of three analysed markets, in absolute values7 1.06 and 1.77.

An innovative usage of HAMs appears in Frijns et al. (2010) who focus on option

market and propose a model for the volatility trading and pricing of options.

Daily DAX prices covering year 2000 provided by the European Futures and

Options Exchange are utilised. Results of the EMS estimation give support

to hypothesised heterogeneity and the evidence of the traders’ switching be-

haviour is stronger than in a stock market case by Boswijk et al. (2007). The

intensity of choice is found “positive and of considerable magnitude throughout

the sample” with mean value 107.34 [pg. 2281]. Verschoor & Zwinkels (2013)

originally estimate a HAM on two currency trader indices, namely the Parker FX

Index and the Barclay Currency Manager Index covering monthly data between

October 2000 and August 2009. Using ML method, the intensity of choice is

reported -2.64 and insignificant for the Parker FX Index and -14.51 and signif-

icant at 10% level for the Barclay Currency Manager Index. The negative sign

implies prevailing negative feedback trading strategy, i.e. the contrarian-type

behaviour. ter Ellen et al. (2013) employ the FX Week survey dataset contain-

ing weekly forecasts of a large number of wholesale FOREX investors for four

exchange rates and three forecast horizons. The intensity of choice is found

statistically insignificant for ten of twelve assessed combinations, amounting to

both negative and positive absolute values. This suggests generally ambiguous

traders’ switching both to historically profitable strategies, but also to strate-

gies performing the worst in the previous period, i.e. the contrarian-type of

speculation. Goldbaum & Zwinkels (2014) construct a fundamental-chartist

type of HAM without the switching feature. The model is estimated likewise

the work of ter Ellen et al. (2013) taking the advantage of FOREX survey-based

monthly forecast data provided by the Consensus Economics of London. Two

currencies, EUR and JY, and three forecast horizons are analysed. Kouwenberg

7The interpretation of the expected negative intensity of choice is now inverse as agents
switch to the strategy with the smallest forecasting error.
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& Zwinkels (2014; 2015) are in fact pioneers of HAM estimation using housing

market data by QML. Their dataset covers quarterly U.S. records on prices

and rents from 1960Q1 to 2013Q3, 2014Q1, respectively. For all estimated

sub-periods (1963–2013, 1963–1995, and 1960–2014) a significant presence of

fundamentalists and chartists, and dynamic evolution of market fractions is

reported. The intensity of choice is estimated 2.98, 1.36, 2.18, respectively for

given periods and statistically significant in all cases.

Lof (2012) estimates a STAR version of a HAM following the Boswijk et al.

(2007) framework using quarterly S&P500 price-dividends and price-earnings ra-

tios since 1960. For the model with univariate transition function the intensity

of choice is reported unrealistically high but for the model with multivariate

transition function it is lower (7.45 and 4.74 for two different model specifi-

cations) and statistically significant. Lof (0) innovatively allows for strategy

type-specific intensity of choice and estimates a three-type HAM using annual

S&P500 data from 1872 to 2011. Except one specific case, the intensities of

choice are found statistically insignificant.

Chiarella et al. (2014) follow and enrich the Boswijk et al. (2007) approach

and estimate a modified ABS employing monthly S&P500 prices and earnings

over the period from January 1970 to October 2015. Interesting discussion is

devoted to indirect estimation of the market maker coefficient and the intensity

of choice that are not uniquely identified and must be retrieved in combina-

tion with belief coefficients. The implied intensity of choice derived from the

reduced form model is finally reported 0.44. Chiarella et al. (2015) estimate

a HAM for credit default swap spreads of 13 European countries using QML.

Switching coefficients are found between -6.84 and 5.66 for individual countries

both statistically significant and insignificant.

A calibration procedure for validating ABMs is developed by Recchioni et al.

(2015) and applied to Brock & Hommes (1998) model. Although the authors

do not estimate the model to all intents and purposes but calibrate the param-

eters to optimally describe short-run dynamics of daily closing stock prices or

index values, their work in terms of the model setting is very closely related to

ours. For the empirical experiment, data from four stock market indices repre-

senting four different geographical areas are employed: S&P500, Euro Stoxx 50,

NIKKEI 225, and CSI 300. The data span ranges form February 2011 to February

2012 (245 observations) and five parameters of the model are calibrated (see

Table 2.2). The intensity of choice β varies markedly for individual regions

ordered as above: 2.044, 0.642, 0.001, 0.078 for the deterministic model, and
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2.140, 0.586, 0.032, 0.363 for the model adjusted for stochastic noise. Authors

also assess forecasting performance of calibrated models for one and two days

ahead predictions. They conclude that both versions “show good performance

in predicting the trend” [pg. 23] and almost always outperform the RW bench-

mark.

In two the most recent working papers, Chen & Lux (2015) and Ghong-

hadze & Lux (2015) estimate the Alfarano et al. (2008) financial herding ABM

employing MSM and GMM, respectively, on a cross section of stock markets,

exchange rates, and commodity data starting in 1980.

To mention another than purely financial application, one of the first at-

tempts to estimate a macroeconomic ABM based on a ‘tradition’ of the Brock &

Hommes (1998) framework is presented by Cornea et al. (2013) who develop a

model to capture possible heterogeneity in inflation dynamics. Using quarterly

U.S. data on the inflation rate and other macroeconomic variables for the first

step VAR specification covering period from 1960 Q1 to 2010 Q4, they subse-

quently estimate their model using NLS. The intensity of choice β is reported

around 4.8 for various VAR specifications and strongly statistically significant.

Grazzini et al. (2013) and Grazzini & Richiardi (2015) provide a comprehen-

sive theoretical discussion on macroeconomic ABMs estimation via simulation

based methods, mainly SMD and MSM. In a simple Monte Carlo analysis they

apply suggested approach to an elementary Bass (1969) model of innovation

diffusion.

2.4 Categorisation of findings

2.4.1 Basic taxonomy of FABMs

An extensive survey by Chen et al. (2012) suggests a general basic taxonomy

of FABMs based on their complexity. Overall complexity is assessed simulta-

neously in terms on three fundamental characteristics: heterogeneity, learning,

and interactions. Models are classified primarily according to number of trading

strategies and degree of agents’ autonomy into two main subgroups: relatively

simpler ‘N-type models’ where autonomy of agents is constrained by a pre-

determined class of strategies, and ‘AA models’ with rich system complexity,

where agents are allowed e.g. to develop new strategies or to adapt their pre-

diction rules based on learning and using genetic algorithms (Koza 1992). The

former type is in the spotlight of this thesis as almost solely simple N-type mod-
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els, mainly the 2-type and the 3-type versions have been subject of empirical

estimation to date.

Typical representatives of the ‘N-type’ class are models derived from the

ABS by Brock & Hommes (1998), models developed in the tradition of Kirman’s

(1991; 1993) Ant type of system (ANT), and models based on Interactive Agent

Hypothesis (IAH) by Lux (1995; 1997; 1998). So called ‘Santa Fe Artificial

Stock Market Model’ (Holland & Miller 1991; Palmer et al. 1994) represents

the latter type. Chen et al. (2012) further attempt to provide additional forms

of classification. First, they divide 50 analysed models according their origin

into 9 exclusive subcategories: 19 models are derived from ABS, 12 AA models

(all assessed) follow the Santa Fe Institute tradition, 5 models are based on the

IAH, and 3 on ANT, threshold principle, or minority game principle. Second, a

switching of agents’ beliefs between a predetermined set of trading strategies

is a feature of 25 models. Third, models are also classified in terms of ability

to reproduce stylised features of financial time series. From an exhaustive list

of 30 stylised facts only 12 can be replicated by at least one of 50 models

[pg. 200, 201]: 41 models are reported to reproduce fat tails, 37 models mimic

volatility clustering, and 27 are able to reproduce the absence of autocorrelation

of returns.

In this section we aim at providing a less robust and possibly incomplete,

but deeper and more quantitatively based alternative categorisation based on

findings from this chapter and focused on empirical estimation aspects of the

analysed models. It is now important to emphasize two aspects. First, Tables

2.1, 2.2, and 2.2 contain only very aggregated information because it seems

counterproductive and also technically difficult to comprise full diversity and

complete heterogeneity of all evaluated studies. In many cases, authors present

results of various model settings and different combinations of estimated pa-

rameters. In such situations, we often report only the most successful or most

representative results. If reasonable, we report the lowest and the highest val-

ues or an interval formulation. Second, the two sets of models—the original by

Chen et al. (2012) and ours—only partially overlap: the models presented in

Table 2.1 belong to both sets, works collected in Table 2.2 are newly analysed

in this thesis. We are not aware of any attempt of empirical estimation of the

remaining models from the original 50.
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2.4.2 Model origin, methods, and parameters

First, as depicted in Tables 2.1 and 2.2, we observe a strong dominance of

models derived from ABS: 28 from 43 models to some extent follow the tradition

of the Brock & Hommes (1998) original framework, 7 is based on IAH and

3 (the very same models as in the original sample) on ANT. This seems to

strongly reflect the fact that according to Chen et al. (2012, pg. 207), “the Lux

model was rejected, similar to the rejection of the ANT model” based on its

empirical validation in favour of ABS, that seems feasible (however, challenging)

for empirical estimation. Indeed, there are only 4 new empirical studies in

Table 2.2 based on the IAH and none derived from ANT. The strong dominance

of the ABS in the recent FABM literature is the principal reason why we analyse

the original Brock & Hommes (1998) model in the core part of the thesis

(Chapters 4, 5, 6).

Second, we might observe some regularities in the use of particular estima-

tion methods. ANT models are estimated solely using MSM, nonetheless, all 3

works are considerably related and elaborated by the same group of authors.

The 3 original IAH models from Table 2.1 are intentionally designed so that

authors are able to theoretically derive the likelihood function and use ML, but

the 4 ‘new’ models are again estimated solely via simulations based on the MM.

The empirical rejection of these two sources of models’ origin thus might be

somewhat related to inability to estimate these models via other then purely

computational simulation-based techniques, but this is a kind of a strong hy-

pothesis that is difficult to assess. On the other hand, all ABS models are

estimated via relatively less complicated direct techniques: NLS and Quasi ML

or in some specific simplified cases even by OLS and ML.

Third, in terms of parameters estimated, we do not observe anything sur-

prising. Authors dominantly make efforts to minimise the set of estimated

parameters (see the ‘#’ column in Tables 2.1, 2.3) to a small number of the

most relevant ones governing dynamics of the model and determining hetero-

geneous behaviour of agents: in 22 cases 4 and less coefficients are estimated

and only 9 works consider 7 and more parameters. For ABS models, belief co-

efficients are always estimated and where relevant, authors always pay specific

attention to the sign and statistical significance of the switching coefficient of

the intensity of choice. This is a justified approach and as aptly summarised

by Chen et al. (2012, pg. 202), “supposing that we are given the significance

of the intensity of choice in generating some stylized facts [via simulation stud-
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ies],8 then the next legitimate question will be: can this intensity be empirically

determined, and if so, how big or how small is it?”.

2.4.3 Datasets

Another interesting aspect is hidden in the utilised datasets (columns ‘Data’).

Almost one-half of studies, 20 (out of 43), use daily datasets providing thou-

sands of observations. This is an important aspect both from the statistical

point of view, as datasets are long enough for sound statistical inference, as well

as from the viewpoint of model stability because number of periods is generally

sufficiently long for the model dynamics to stabilise. Especially for simulation-

based methods the stabilisation period deserves adequate consideration, e.g.

we always discard first 100 observations from the HAM where the model dy-

namics is being established (see Section 5.1). Having e.g. only quarterly or

only annual data, we would be forced to fiercely shorten the stabilisation pe-

riod, possibly affecting the relevance of results. Availability of long historical

daily-frequency datasets is one of important distinguishing features of FABMs

compared to Macro ABMs. Conversely, surprisingly many studies employ low-

frequency data ranging from weekly to annual observations. Regarding the

type of the data (columns ‘Type’), stock market (20 studies) and Foreign Ex-

change (FX) data (17 studies) largely prevail, followed by housing market data

(5 studies), various commodities (4 studies), and gold (3 studies). In the past

(see Table 2.1), almost all models were estimated using stock market and FX

data mainly of daily frequency, more recent estimation attempts (see Table 2.3)

offer considerably richer composition of markets and frequencies.

2.4.4 Performance of OLS, NLS, and MSM

One of the most intriguing areas of possible analysis is the relative performance

of particular models and estimation methods. However, we need to admit

that strong mutual heterogeneity of particular models besides variability of

estimation methods make eventual conclusions rather hypothetical and possible

candidates for further research. Starting with the performance, in columns ‘Fit’

we report R2 or its various alternatives for OLS, NLS, and possibly ML, and

the p-value of the general specification J-test of overidentifying restrictions to

accept the structural model as a possible data generating process. Having p-

8A note added by the authors.
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value higher than a chosen significance level, the null hypothesis of the empirical

data being possibly generated by the analysed model of the ‘true’ moment-

generating process cannot be rejected.

Regarding the R2 type of fit, the vast majority of models (8 out of 10)

exhibit almost suspiciously very good fit ranging between 70–97%. Nonetheless,

it is important to add that these results are most often9 based on low-frequency

datasets and therefore relatively straightforward estimation methods might not

be very challenged to find a well fitting model for maximum of a few hundreds

observations.

A different situation is observable for various MMs: roughly one-half of

models are rejected based on the J-test as the data generating processes for

given data/moments at a usual 5% level. Only the most recent contributions

show acceptance of a particular model but sometimes only for selected datasets

from several options (Chen & Lux 2015; Ghonghadze & Lux 2015). As all

these studies are based on daily stock market or FX data, no conjunction with

frequency or type of the data can be made. As a matter of interest, we can,

however, compare the performance of models and selected moments based on

the Standard & Poor’s 500 Index (S&P500) dataset that is shared by all 6 stock

market models using MMs and covering with a small exception of the older work

of Amilon (2008) almost the similar span of data. We can simply follow Franke

& Westerhoff (2012, pg. 1208) arguing by a large number of existent FABMs

and the ‘wilderness of bounded rationality problem’ and calling for a general

guidance and a model contest to “judge which models can mimic the stylized

facts, say, ‘fairly well’ and which are even ‘very good’ in this way”. Authors

suggest the MSM as the “superb tool to serve this purpose”. If we compare

the 6 above mentioned models, the two most successful are those by Franke &

Westerhoff (2012) based on a rich set of 9 moments reaching the J-test p-value

32.6%, and by Ghonghadze & Lux (2015) employing a partly different set of 8

moments, with p-value amounting to 50.2% for S&P500.

In summary, the application of the MMs, mainly the MSM version, offers a

tool for mutual comparison of models and estimation frameworks, however, its

application struggles with practical technical issues that require a further de-

velopment of the method. The most recent contribution of Chen & Lux (2015,

pg. 16) explains the main problem prohibiting proper identification that is

shared by all these studies: “we have to cope with multiple local minima as

9With an exception of Cusp models that are, however, estimated via ML and only so called
pseudo-R2 (see Subsection 3.2.1) is reported.
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well as with relatively flat surfaces in certain regions of the parameter space.

Any standard optimisation algorithm could, thus, not be expected to converge

to a unique solution from different initial conditions”. Another closely related

problem is a very rugged surface of the objective function, further embarrassing

standard methods of optimisation search. To tackle all these issues, authors

suggest a strategy of a preliminary rough grid search followed by a fine-tuning

on a considerably restricted subset of the parameter space. We generally follow

these recommendations also within the empirical application of NPSMLE, but

opt for a strategy of multiple random starting points. Finally, MMs inevitably

challenge researchers to partially arbitrarily select a set of moments that must

be representative enough to hope in capturing well the most crucial features

of the data, but at the same time reasonably bounded to accommodate com-

putational burden and possible clashes in explanatory potential of particular

moments. Such a task does not seem to be satisfactorily resolved for FABMs

yet, however, the progress in time is evident also within the very limited sample

of only several analysed papers.

2.4.5 Performance of ML and Quasi ML

Application of methods based on ML principle shares a relatively similar prob-

lem with MM: the objective function is often very flat in direction of some

parameters—typically the switching parameter of the intensity of choice. Prob-

lematic identification of given parameters is then reflected in large standard

deviations of estimates preventing from contributive interpretation of results.

In the majority, especially older, studies a discussion about the shape of the

log-likelihood function is missing and the reader might only guess from insignif-

icant estimates of the switching coefficient. A few most recent studies report

that the likelihood is not very informative and the model accuracy is not sen-

sitive for given parameter, and “the other parameters can to a large extent

compensate for changes in β”, the switching coefficient (Bolt et al. 2014, pg.

15). However, the shape of the objective function is almost never rigorously

studied. An exception is e.g. Hommes & Veld (2015), who emphasise a very

flat shape of the likelihood function for the intensity of choice selection that

hampers validity of the test to reject the null hypothesis of switching, especially

for small samples. On the other hand, smoothness of the objective function

does not seem to be an issue for ML methods in comparison with MMs—this
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finding is further confirmed through Chapters 5, 6, and partially in 7 also for

Non-Parametric Simulated Maximum Likelihood (NPSML).

2.4.6 Switching

Finally, a high importance is devoted to the existence of behavioural switching,

that is, to the sign, magnitude, and the statistical significance of the intensity

of choice. Following the question of Chen et al. (2012, pg. 202), “how big

or how small is it?”, we, however, need to emphasise that the magnitude of

the switching coefficient cannot be directly compared across various models,

assets, or time periods, as it is a unit free variable and its effect on the model

dynamics is conditional on the particular model design and data. Four studies

find a very large switching coefficients (Bolt et al. 2011; 2014; ter Ellen et al.

2013; Frijns et al. 2010), however, statistically insignificant in all cases. In

other relevant studies (20 out of 23), the estimated values are mostly found

single-digit and often close to zero, that well resembles the economic intuition

of some, but realistically low switching frequency between major types of trad-

ing strategies. Although the sign of the parameter is of a crucial importance, in

Tables 2.1 and 2.3 we present absolute values because the interpretation of the

positive/negative sign also depends on the specific design of the model. Almost

all studies report the theoretically expected sign of the effect, nonetheless, we

do not observe any conclusive results regarding the statistical significance of

the intensity of choice—no connection can be observed w.r.t. the ‘#’ number

of estimated parameters or the frequency and length of the data. Statistically

significant and insignificant findings are reported across these categories with-

out any clear pattern. On the other hand, some but definitely hypothetical

relation might be observed based on the ‘Type’ of the data: statistically signif-

icant estimates strongly dominate for commodities and weakly prevail for stock

markets; insignificant estimates prevail for real estate markets and dominate

for FX. However, as the sample of studies is rather small and often problem-

atically mutually comparable, these findings should be interpreted with a high

caution.

2.5 Best practices from DSGE estimation

Many analogies can be found between ABMs and DSGEs models, both in terms

of methodological approaches as well as validation strategies and econometric



2. Literature review: methods and results 35

consequences. Not only a possibly large dimension of the parameter space,

but most importantly the aspect of system complexity involving a variety of

nonlinear feedback effects between agents is shared. As several econometric

issues evidently overlap, the evolution of the DSGE methodology constitutes an

important source of guidance, experience, hints, but also caution, that may be

potentially utilised or adapted within the field of ABMs estimation. Researchers

are thus likely to largely benefit from studying empirical DSGE literature before

launching their own ABM validation research efforts. Indeed we have inspired

ourselves by several below mentioned suggestions in further chapters of this

work.

Grazzini & Richiardi (2015, pg. 151) report the ML as the most standard

procedure to estimate DSGE models. A common solution concept of lineari-

sation via a Taylor approximation (and possible detrending in the presence of

nonstationarity) around the steady state is, however, not feasible for inherently

nonlinear AB systems potentially exhibiting even chaotic motion. Authors em-

phasise two main problems: the first one is “stochastic singularity, which arises

when a small number of structural shocks is used to generate predictions about

a large number of observable variables” leading to zero likelihood with prob-

ability 1. A possible treatment may be based on decreasing the number of

parameters, adding further shocks, or introducing measurement errors. Sec-

ond, “ML estimation is very sensitive to model misspecification, which often

leads to absurd parameter estimates. The reason is the very flat shape of

the likelihood function, which might display a multitude of local optima”. A

standard solution is to define Bayesian priors for distributions of parameters—

these are likely to increase curvature of the objective function and smooth out

its surface—and obtain the posterior distributions using Markov Chain Monte

Carlo (MCMC) methods. Indeed, Grazzini et al. (2015) are the pioneers of ap-

plication of Bayesian techniques in the field of ABM estimation. However, if the

likelihood function is very flat, the posterior distribution will resemble the prior

and the method is not likely to reveal much of further understanding. In such

situation, as already mentioned in Subsection 2.1.2, statistically reasonable es-

timates are obtained only because artificial restriction increase the likelihood of

the data. Consequently, estimation in fact turns into a sophisticated calibration

exercise. Grazzini & Richiardi (2015) further discuss practical applicability of

this relatively complicated procedure within the ABM field due to absence of

an analytical closed-form solutions of the objective functions, priors based on

the non-AB literature, significant nonlinearities, and likely non-Gaussianity.
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More sophisticated methods might be used to overcome some of these tech-

nical problems, known as Sequential Monte Carlo methods or ‘particle filtering’

(see e.g. Fernández-Villaverde 2010; Fernández-Villaverde & Rubio-Ramı́rez

2010; 2007a;b; 2005; 2004), that allow for estimation of nonlinear economies and

solution of the optimisation problem in the presence of non-Gaussian shocks.

A substantial disadvantage is a large computational burden and thus basic

particle filtering works conveniently only for lower dimensions of the parame-

ter space. Fernández-Villaverde & Rubio-Ramı́rez (2004, pg. 31, 1) conclude

that the Sequential Monte Carlo “procedure works superbly in delivering ac-

curate and consistent estimates” and suggest marginal likelihood ratio test to

nonlinear and linearised models. They also comment on the use of alterna-

tive methods claiming that “MMs may suffer strong biases resulting from using

small samples and may not use efficiently all the existing information”, but

avoid the problem of evaluating the likelihood function “by moving away from

full information approaches to inference”. However, we are not aware of any

application of particle filtering to ABMs to date.

Del Negro & Schorfheide (2012, pg. 31, 63) summarise that “DSGE model

forecasts are comparable to standard autoregressive or vector autoregressive

models but can be dominated by more sophisticated univariate or multivariate

time series” and focus also on “point forecasts generated from DSGE models

and on how to improve their accuracy by using external information”, e.g. how

to optimally design priors.

Levine et al. (2012, pg. 1299) design a model composing of rational and

adaptive agents and show that imperfect information in the New Keynesian

model significantly supports its empirical fit. Authors report that “all be-

havioural models decisively, in fact very decisively, dominate the purely ra-

tional models with very large LL differences of around 20” but at the same

moment they highlight an essential limitation of the marginal likelihood race,

that is, the outperforming model is only better than its rivals and may be still

potentially misspecified.

Fagiolo & Roventini (2012, pg. 80) comment on a common strategy to deal

with identification problems, that is, to follow the limited-information approach

consisting in “calibrating the parameters hard to identify and then estimating

the others”. However, this approach works only when calibrated parameters

are set close enough to their true values, otherwise the subsequent estimation

cannot deliver correct results.

Fernández-Villaverde & Rubio-Ramı́rez (2010, pg. 21) sum up the impor-
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tant advantages of ML, i.e. “that the likelihood is a coherent procedure that

respects the likelihood principle and allows us to back up all the parameters of

interest, and that has good small and large sample properties. Furthermore,

the likelihood function can be easily complemented with presample informa-

tion in the form of priors, which are particularly useful in macroeconomics,

where we have short samples”. Moreover, according to Aruoba et al. (2006,

pg. 2479), linearisation “methods deliver an interesting compromise between

accuracy, speed, and programming burden”. On the other hand, Fernández-

Villaverde (2010, pg. 12) focus also on disadvantages and claim that “many

non-parametric and semiparametric approaches sound more natural when set

up in a classical framework”, e.g. the clear and intuitive Generalized Method of

Moments (GMM) or MMs in general, that offer “a good way to estimate models

with multiple equilibria, since all of those equilibria need to satisfy certain first

order conditions that we can exploit to come up with a set of moments”.

Canova & Sala (2009) thoroughly discuss the identification issue inherent to

DSGE models. Suggestions, that can be to a large extent shared also by ABMs,

comprise the following: to decrease the dimension of estimated parameters,

to calibrate some parameters in the first step before estimating the others, to

reveal by means of a sensitivity analysis what parameters do not make much

difference in the model outcome and fix them to some reasonable values, or

to use real data in the model. In order to abandon these mixed validation

approaches, authors further suggest several relatively obvious hints such as

avoiding inappropriate priors, employing robust estimation methods, or rethink

the model design, but also two considerably important concepts: a) exploring

the curvature, smoothness, and possible local optima of the objective function

in advance before estimation, e.g. depicting its shape via simulations and

check its properties visually, b) performing Monte Carlo simulations to check

the estimation performance robustly.

Ruge-Murcia (2007, pg. 2600) contrasts and compares the performance of

MSM and GMM with ML within the framework of a simple real business cycle

model. His simulation results show that both MMs are less severely affected by

stochastic singularity as well as less deteriorated by potential model misspecifi-

cation. The reason is that “ML estimation is limited by the number of linearly

independent variables while moment-based estimation by. . . linearly indepen-

dent moments. The latter is a weaker restriction because it is possible to find

independent moments that incorporate information about more variables than

those. . . linearly independent”.
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2.6 Concluding remarks

To sum up, although we claim in the Introduction that so far neither general

consensus on the estimation methodology, nor conclusive results are clearly

observable, we might, however, conclude the most important findings, issues,

and tendencies observed within the field. First, surprisingly no considerable

effect of the curse of dimensionality is directly observable across the sample

of assessed studies. Models with only a few parameters estimated show a bal-

anced result in terms of the estimation performance as well as the ability to

reveal the switching parameters of the intensity of choice. Surprisingly, stud-

ies where a relatively large number of parameters is estimated reveal mostly

favourable results in both aspects. ABS constitutes a largely dominant mod-

elling framework and seems to be relatively successfully estimable via NLS and

Quasi ML, but the models need to be specifically designed and often simplified

accordingly to allow for taking advantage of these methods. The flatness of

the log-likelihood function, especially in the direction of the switching coeffi-

cient, seems to be the main, but not sufficiently studied, handicap of the ML

based estimation methods. Simulation-based methods are generally applicable

and not constrained by strict theoretical assumptions, but yet not developed

enough to bring unambiguous conclusions. Most importantly, they suffer from

issues related to flatness and roughness of the surface of the objective function.

However, a future progress of simulation-based methods, especially via solving

related rather technical issues, is likely to be largely encouraged and fostered

by recent rapid development of high-speed computational facilities.



Chapter 3

Estimation of the cusp catastrophe

model under time-varying volatility

Financial inefficiencies such as under- or over-reactions to information as the

causes of extreme events in the stock markets attract researchers across all

fields of economics. In one recent contribution, Levy (2008) highlighted the

endogeneity of large market crashes as a result of the natural conformity of in-

vestors with their peers and the heterogeneity of the investor population. The

stronger the conformity and homogeneity across the market, the more likely

the existence of multiple equilibria in the market, which is a prerequisite for

a market crash to occur. Gennotte & Leland (1990) presented a model that

shares the same notions as Levy (2008) in terms of the effect of small changes

when the market is close to a crash point as well as the volatility amplification

signaling. In another work, Levy et al. (1994) considered the signals produced

by dividend yields and assessed the effect of computer trading, which is blamed

for making the market more homogeneous and thus more conducive to a crash.

Kleidon (1995) summarized and compared several older models from the 1980s

The text of this chapter (except minor changes based on opponents’ reports) has
been published under the full title ‘Realizing stock market crashes: stochastic cusp catas-
trophe model of returns under time-varying volatility’ in Quantitative Finance, 2015,
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Barunik and both authors contributed equally to this work. The paper is available at:
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to these results has received funding from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. FP7-SSH- 612955 (FinMaP). Support
from the Czech Science Foundation under the 402/09/0965, and 13-32263S projects is grate-
fully acknowledged. J. Kukacka gratefully acknowledges financial support from the Grant
Agency of Charles University under the 588912 project.
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and 1990s, and Barlevy & Veronesi (2003) proposed a model based on rational

but uninformed traders who can unreasonably panic. Again with this approach,

abrupt declines in stock prices can occur without any real change in the un-

derlying fundamentals. Lux (1995) linked the phenomena of market crashes to

the process of phase transition from thermodynamics and modeled the emer-

gence of bubbles and crashes as a result of herd behavior among heterogeneous

traders in speculative markets. Finally, a strand of literature documenting pre-

cursory patterns and log-periodic signatures years before the largest crashes in

the modern history suggested that crashes have an endogenous origin in ‘crowd’

behavior and through the interactions of many agents (Sornette & Johansen

1998; Johansen et al. 2000; Sornette 2002; 2003). In contrast to many com-

monly shared beliefs, Didier Sornette and his colleagues argued that exogenous

shocks can only serve as triggers and not as the direct causes of crashes and

that large crashes are ‘outliers’.

Catastrophe theory provides a very different theoretical framework to un-

derstand how even small shifts in the speculative part of the market can trigger

a sudden, discontinuous effect on prices. Catastrophe theory was proposed by

French mathematician Thom (1975) with the aim of shedding some light on

the ‘mystery’ of biological morphogenesis. Despite its mathematical virtues,

the theory was promptly heavily criticized by Zahler & Sussmann (1977) and

Sussmann & Zahler (1978a;b) for its excessive utilization of qualitative ap-

proaches, the improper usage of certain statistical methods and for violations

of necessary mathematical assumptions in many of its applications. Due to

these criticisms, the intellectual bubble and the heyday of the cusp catastrophe

approach declined rapidly after the 1970s, although the theory was defended

by some researchers, e.g., by Boutot (1993) and the extensive, gradually up-

dated work of Arnold (2004). Nonetheless, the ‘fatal’ criticism was ridiculed by

Rosser (2007, p. 3275 & 3257), who stated that “the baby of catastrophe theory

was largely thrown out with the bathwater of its inappropriate applications”,

and the author suggested that “economists should reevaluate the former fad

and move it to a more proper valuation”.

From the field of mathematical biology the area of application flourished

especially towards other natural sciences. Catastrophe theory was utilized e.g.

in mathematics and statistics (Sussmann 1978; Novak 1986), operational re-

search (Bonanno & Zeeman 1988), and informatics (Thornton & Hung 1996;

Sethi & King 1998). The new method was also utilised in other branches of

biology (summaries of older applications were written by Rosen 1979; Deakin
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1990; van Harten 2000; Torres 2001), chemistry (Calo & Chang 1980), and

physics (Puu 1988; Beckmann & Puu 1990; Aerts et al. 2003; Tamaki et al.

2003; Kostomarov et al. 2012). A survey covering older applications across

the field of physics was written by Stewart (1981). In geography, we have to

mention the contradiction about the usefulness of catastrophe theory between

Wagstaff (1978; 1979) and Baker (1979), and as an example of the application in

geology we refer to Henley (1976). From the most recent applications, frequent

contributions occurred especially within the field of building and construction

industry (Kounadis 2002; Yiu & Cheung 2006; Yang et al. 2010; Xiaoping et al.

2010) and ecology (Roopnarine 2008; Wang et al. 2011; Piyaratne et al. 2013).

The application of catastrophe theory in the social sciences has not been as

extensive as in the natural sciences, although it was utilized early in its exis-

tence. Zeeman’s (1974) cooperation with Thom and his own popularization of

the theory through the use of nontechnical examples (Zeeman 1975; 1976) led

to the development of many applications in the fields of economics, psychol-

ogy, sociology, political studies, and others. A catastrophe theory approach

to the theory of economic equilibria is presented by Balasko (1978a;b). Jam-

mernegg & Fischer (1986) and Fischer & Jammernegg (1986) survey utilization

of the cusp model in economics and analyze a catastrophe theory model of the

Phillips Curve, which they further empirically estimate using U.S. data. One of

the most recent contributions to the economic theory is suggested by Accinelli

& Anyul (2005). In the field of finance, Ho & Saunders (1980) apply the theory

of catastrophes to model bank failures as the interaction between bank man-

agement, regulatory bodies, and depositors, Scapens et al. (1981) use the cusp

catastrophe approach within accounting and corporate finance, and to men-

tion one of the most actual theoretical contribution, we refer to Pleten (2012).

In the neighbouring social sciences, perhaps the most frequently catastrophe

models were developed for explaining various psychological phenomena. From

many let us mention the survey of older works by Flay (1978), applications

in clinical psychology such as anorexia nervosa, schizophrenia, aggressiveness,

and others by Scott (1985), catastrophe approach to cognitive development by

van der Maas & Molenaar (1992), empirical application for predicting adoles-

cent alcohol use by Clair (1998) as the interaction between ones disposition

and the situational pressure, or a very recent research on the effect of human

emotions on academic performance by Vitasari et al. (2011). Within the field

of sociology, we refer for instance to Holyst et al. (2000) and their research on

the social impact of opinion formation, or to van der Maas et al. (2003) and
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their work focused on methodological discussion as well as empirical testing

of people attitude formation. In political studies, we mention the applications

to the study of international conflicts (Holt et al. 1978; Dockery & Chiatti

1986), analysis of political changes and development (Adelman & Hihn 1982),

or political opinion formation (Weidlich & Huebner 2008). Catastrophe the-

ory approach was also utilized within the area of education (Stamovlasis &

Tsaparlis 2012), marketing (Oliva et al. 1995; Dou & Ghose 2006), and even

linguistics (Petitot 1989; Bernardez 1995).

Zeeman (1974) also proposed the application of the cusp catastrophe model

to stock markets. Translating seven qualitative hypotheses about stock ex-

changes to the mathematical terminology of catastrophe theory produced one

of the first heterogeneous agent models for two main types of investors: fun-

damentalists and chartists. Heterogeneity and the interactions between these

two distinct types of agents attracted wider attention in the behavioral finance

literature. Fundamentalists base their expectations about future asset prices

on their beliefs about fundamental and economic factors such as dividends,

earnings, and the macroeconomic environment. In contrast, chartists do not

consider fundamentals in their trading strategies at all. Their expectations

about future asset prices are based on finding historical patterns in prices.

While Zeeman’s work was only one qualitative description of observed bull and

bear markets, it contained a number of important behavioral elements that were

later used in the large volume of literature that focused on heterogeneous agent

modeling.2 Today, the statistical theory is well developed, and parameterized

cusp catastrophe models can be evaluated quantitatively based on data.

The biggest difficulty in the application of catastrophe theory arises from

the fact that it stems from deterministic systems. Thus, it is difficult to apply it

directly to systems that are subject to random influences, which are common

in the behavioral sciences. Cobb & Watson (1980); Cobb (1981) and Cobb

& Zacks (1985) provided the necessary bridge and took catastrophe theory

from determinism to stochastic systems. While this was an important shift,

there are further complications in the theory’s application to stock market

data. The main restriction of Cobb’s method of estimation was the requirement

of a constant variance, which forces researchers to assume that the volatility

of the stock markets (as the standard deviation of the returns) is constant.

2For a recent survey of heterogeneous agent models, see Hommes (2006). A special issue
on heterogeneous interacting agents in financial markets edited by Lux & Marchesi (2002)
also provides interesting contributions.
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Quantitative verification of Zeeman’s (1974) hypotheses about the application

of the theory to stock market crashes was pioneered by Barunik & Vosvrda

(2009), where authors fit the cusp model to two separate, large stock market

crashes. However, the successful application Barunik & Vosvrda (2009) brought

only preliminary results in a restricted environment. Application of the cusp

catastrophe theory on stock market data deserves much more attention. In the

current work, we propose an improved method of application that we believe

brings us closer to an answer regarding whether cusp catastrophe theory is

capable of explaining stock market crashes.

Time-varying volatility has become an important stylized fact for stock

market data, and researchers have recognized that it is an important feature of

any modeling strategy. One of the most successful early works of Engle (1982);

Bollerslev (1986) proposed including volatility as a time-varying process in a

(generalized) autoregressive conditional heteroskedasticity framework. From

that beginning, many models have been developed in the literature to improve

the original frameworks. As early as the late 1990s, high frequency data became

available to researchers, and this led to another important shift in volatility

modeling — realized volatility. A very simple, intuitive approach to compute

daily volatility using the sum of squared high-frequency returns was formalized

by Andersen et al. (2003); Barndorff-Nielsen & Shephard (2004). While the

volatility literature is immense,3 several researchers have also studied volatility

and stock market crashes. For example, Shaffer (1991) argued that volatility

might be the cause of a stock market crash. In contrast, Levy (2008) argued

that volatility increases before a crash, even when no dramatic information is

revealed.

In this study, we utilize the availability of high-frequency data and the pop-

ular realized volatility approach to propose a two-step method of estimation

that overcomes the difficulties in the application of cusp catastrophe theory

to stock market data.4 Using realized volatility, we estimate stock market re-

turns’ volatility, and then we apply the stochastic cusp catastrophe model on

volatility-adjusted returns with constant variance. This approach is motivated

by the confirmed bimodal distributions of such standardized data in some peri-

ods, and it allows us to study whether stock markets are driven into catastrophe

3Andersen et al. (2004) provide a very useful and complete review of the methodologies.
4In fact, a two-step estimation method can be applied also using other possible models

for volatility, e.g. the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
family. However, the popular realized volatility approach provides us with a supreme method-
ology.
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endogenously or whether it is simply an effect of volatility. We also run simu-

lations that provide strong support for the methodology. The simulations also

illustrate the importance of stochastic noise and volatility in the deterministic

cusp model.

Using a unique dataset covering almost 27 years of the U.S. stock mar-

ket evolution, we empirically test the stochastic cusp catastrophe model in a

time-varying volatility environment. Moreover, we develop a rolling regression

approach to study the dynamics of the model’s parameters over a long period,

covering several important recessions and crises. This approach allows us to

localize the bifurcation periods.

We need to mention several important works that provided similar results

to ours. Creedy & Martin (1993); Creedy et al. (1996) developed a framework

for the estimation of non-linear exchange rate models, and they showed that

swings in exchange rates can be attributed to bimodality even without the

explicit use of catastrophe theory. More recently, Koh et al. (2007) proposed

using Cardan’s discriminant to detect bimodality and confirm the predictive

ability of currency pairs for emerging countries. In our work, we bring new

insight to the non-linear phenomena by including time-varying volatility in the

modeling strategy.

The chapter is organized as follows. The second and the third sections

examine the theoretical framework of the stochastic catastrophe theory under

time-varying volatility and describe the model’s estimation. The fourth section

presents the simulations that support our two-step method of estimation, and

the fifth section presents the empirical application of the theory on the modeling

of stock market crashes. Finally, the last section concludes.

3.1 Theoretical framework

Catastrophe theory was developed as a deterministic theory for systems that

may respond to continuous changes in control variables by a discontinuous

change from one equilibrium state to another. A key idea is that the system

under study is driven toward an equilibrium state. The behavior of the dy-

namical systems under study is completely determined by a so-called potential

function, which depends on behavioral and control variables. The behavioral,

or state, variable describes the state of the system, while control variables de-

termine the behavior of the system. The dynamics under catastrophe models

can become extremely complex and according to the classification theory of
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Thom (1975), there are seven different families based on the number of control

and dependent variables. We focus on the application of catastrophe theory

to model sudden stock market crashes, as qualitatively proposed by Zeeman

(1974). In his work, Zeeman used the so-called cusp catastrophe model, which

is the simplest specification that gives rise to sudden discontinuities.

3.1.1 Deterministic dynamics

Let us suppose that the process yt evolves over t = 1, . . . , T as

dyt = −dV (yt;α, β)

dyt
dt, (3.1)

where V (yt;α, β) is the potential function describing the dynamics of the state

variable yt controlled by parameters α and β determining the system. When

the right-hand side of Eq. (3.1) equals zero, −dV (yt;α, β)/dyt = 0, the system

is in equilibrium. If the system is at a state of non-equilibrium, it will move

back to equilibrium where the potential function takes the minimum values

with respect to yt. While the concept of potential function is very general, i.e.,

it can be a quadratic function yielding equilibrium of a simple flat response

surface, one of the most applied potential functions in behavioral sciences, a

cusp potential function, is defined as

− V (yt;α, β) = −1/4y4
t + 1/2βy2

t + αyt, (3.2)

with equilibria at

− dV (yt;α, β)

dyt
= −y3

t + βyt + α (3.3)

being equal to zero. The two dimensions of the control space, α and β, further

depend on realizations from i = 1 . . . , n of the independent variables xi,t. Thus,

it is convenient to think about α and β as functions

αx = α0 + α1x1,t + . . .+ αnxn,t (3.4)

βx = β0 + β1x1,t + . . .+ βnxn,t. (3.5)

The control functions αx and βx are called normal and splitting factors, or

asymmetry and bifurcation factors, respectively (Stewart & Peregoy 1983),

and they determine the predicted values of yt given xi,t. Therefore, for each

combination of values of independent variables, there could be up to three
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predicted values of the state variable given by roots of

− dV (yt;αx, βx)

dyt
= −y3

t + βxyt + αx = 0. (3.6)

This equation has one solution if

δx = 1/4α2
x − 1/27β3

x (3.7)

is greater than zero, δx > 0, and three solutions if δx < 0. This construction was

first described by the 16th century mathematician Geronimo Cardan and can

serve as a statistic for bimodality, one of the catastrophe flags. The set of values

for which Cardan’s discriminant is equal to zero, δx = 0, is the bifurcation set

that determines the set of singularity points in the system. In the case of three

roots, the central root is called an “anti-prediction” and is the least probable

state of the system. Inside the bifurcation, when δx < 0, the surface predicts

two possible values of the state variable, which means that in this case, the state

variable is bimodal. For an illustration of the deterministic response surface of

cusp catastrophe, we borrow from Figure 3.2 in the simulations section, where

the deterministic response surface is a smooth pleat.

3.1.2 Stochastic dynamics

Most of the systems in behavioral sciences are subject to noise stemming from

measurement errors or the inherent stochastic nature of the system under study.

Thus, for real-world applications, it is necessary to add non-deterministic be-

havior into the system. Because catastrophe theory was primarily developed to

describe deterministic systems, it may not be obvious how to extend the theory

to stochastic systems. An important bridge was provided by Cobb & Watson

(1980); Cobb (1981) and Cobb & Zacks (1985), who used the Itô stochastic

differential equations to establish a link between the potential function of a

deterministic catastrophe system and the stationary probability density func-

tion of the corresponding stochastic process. This approach in turn led to the

definition of a stochastic equilibrium state and bifurcation that was compatible

with the deterministic counterpart. Cobb and his colleagues simply added a

stochastic Gaussian white noise term to the system

dyt = −dV (yt;αx, βx)

dyt
dt+ σytdWt, (3.8)
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where −dV (yt;αx, βx)/dyt is the deterministic term, or drift function represent-

ing the equilibrium state of the cusp catastrophe, σyt is the diffusion function

and Wt is a Wiener process. When the diffusion function is constant, σyt = σ,

and the current measurement scale is not to be nonlinearly transformed, the

stochastic potential function is proportional to the deterministic potential func-

tion, and the probability distribution function corresponding to the solution

from Eq. (3.8) converges to a probability distribution function of a limiting

stationary stochastic process because the dynamics of yt are assumed to be

much faster than changes in xi,t (Cobb 1981; Cobb & Zacks 1985; Wagenmak-

ers et al. 2005). The probability density that describes the distribution of the

system’s states at any t is then

fs(y|x) = ψ exp

(
(−1/4)y4 + (βx/2)y2 + αxy

σ

)
. (3.9)

The constant ψ normalizes the probability distribution function, so its integral

over the entire range equals one. As the bifurcation factor βx changes from

negative to positive, the fs(y|x) changes its shape from unimodal to bimodal.

Conversely, αx causes asymmetry in fs(y|x).

3.1.3 Cusp catastrophe under time-varying volatility

Stochastic catastrophe theory works only under the assumption that the dif-

fusion function is constant, σyt = σ, and the current measurement scale is

not to be nonlinearly transformed. While this assumption may be reliable in

some applications in the behavioral sciences, it may cause crucial difficulties

in others. One of the problematic applications is in modeling stock market

crashes because the diffusion function σ, called the volatility of stock market

returns, has strong time-varying dynamics, and it clusters over time, which is

documented by strong dependence in the squared returns. To illustrate the

volatility dynamics, let us borrow the dataset used later in this study. Figure

3.4 shows the evolution of the S&P 500 stock index returns over almost 27 years

and documents how volatility strongly varies over time. One of the possible

and very simple solutions in applying cusp catastrophe theory to the stock mar-

kets is to consider only a short time window and to fit the catastrophe model

to data where volatility can be assumed to be constant (Barunik & Vosvrda

2009). Although Barunik & Vosvrda (2009) were the first to quantitatively ap-
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ply stochastic catastrophes to explain stock market crashes on localized periods

of crashes, this assumption is generally very restrictive.

Here, we propose a more rigorous solution to the problem by utilizing the

recently developed concept of realized volatility. This approach allows us to

use the previously introduced concepts after estimating the volatility from the

returns process consistently, and we are able to estimate the catastrophe model

on the process that fulfills the assumptions of the stochastic catastrophe theory.

Thus, we assume that stock markets can be described by the cusp catastrophe

process subject to time-varying volatility. While this approach represents a

great advantage that allows us to apply cusp catastrophe theory to different

time periods conveniently, the disadvantage is that the method cannot be gen-

eralized to other branches of the behavioral sciences where high-frequency data

are not available and therefore realized volatility cannot be computed. Thus,

our generalization is mainly restricted to applications on financial data. Still,

our main aim is to study stock market crashes, and therefore the advocated

approach is very useful in the field of behavioral finance. We now describe the

theoretical concept, and in the next sections, we will present the full model and

the two-step estimation procedure.

Suppose that the sample path of the corresponding (latent) logarithmic

price process pt is continuous over t = 1, . . . , T and determined by the stochastic

differential equation

dpt = µtdt+ σtdWt, (3.10)

where µt is a drift term, σt is the predictable diffusion function, or instantaneous

volatility, and Wt is a standard Brownian motion. A natural measure of the

ex-post return variability over the [t− h, t] time interval, 0 ≤ h ≤ t ≤ T is the

integrated variance

IVt,h =

∫ t

t−h
σ2
τdτ, (3.11)

which is not directly observed, but as shown by Andersen et al. (2003) and

Barndorff-Nielsen & Shephard (2004), the corresponding realized volatilities

provide its consistent estimates. While it is convenient to work in the continu-

ous time environment, empirical investigations are based on discretely sampled

prices, and we are interested in studying h-period continuously compounded

discrete-time returns rt,h = pt − pt−h. Andersen et al. (2003) and Barndorff-

Nielsen & Shephard (2004) showed that daily returns are Gaussian, conditional

on an information set generated by the sample paths of µt and σt, and inte-
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grated volatility normalizes the returns as

rt,h

(∫ t

t−h
σ2
τdτ

)−1/2

∼ N

(∫ t

t−h
µτdτ, 1

)
. (3.12)

This result of quadratic variation theory is important to us because we use it

to study stochastic cusp catastrophe in an environment where volatility is time

varying. In the modern stochastic volatility literature, it is common to assume

that stock market returns follow the very general semi-martingale process (as

in Eq. 3.10), where the drift and volatility functions are predictable and the

rest is unpredictable. In the origins of this stream of literature, one of the very

first contributions published regarding stochastic volatility by Taylor (1982)

assumed that daily returns are the product of a volatility and autoregression

process. In our application, we also assume that daily stock market returns are

described by a process that is the product of volatility and the cusp catastrophe

model.

To formulate the approach, we assume that stock returns normalized by

their volatility

y∗t = rt

(∫ t

t−h
σ2
τdτ

)−1/2

(3.13)

follow a stochastic cusp catastrophe process

dy∗t = −dV (y∗t ;αx, βx)

dy∗t
dt+ dWt. (3.14)

It is important to note the difference between Equation (3.14) and Equation

(3.8) because there is no longer any diffusion term in the process. Because the

diffusion term of y∗t is constant and now equal to one, Cobb’s results can conve-

niently be used, and we can use the stationary probability distribution function

of y∗t for the parameter estimation using the maximum likelihood method.

As noted previously, the integrated volatility is not directly observable.

However, the now-popular concept of realized volatility and the availability of

high-frequency data provide a simple method to accurately measure integrated

volatility, which helps us propose a simple and intuitive method to estimate

the cusp catastrophe model on stock market returns under highly dynamic

volatility.
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3.2 Estimation

A simple, consistent estimator of the integrated variance under the assumption

of no microstructure noise contamination in the price process is provided by

the well-known realized variance (Andersen et al. 2003; Barndorff-Nielsen &

Shephard 2004). The realized variance over [t − h, t], for 0 ≤ h ≤ t ≤ T , is

defined by

R̂V t,h =
N∑
i=1

r2
t−h+( i

N )h, (3.15)

where N is the number of observations in [t − h, t], and rt−h+( i
N )h is i−th

intraday return in the [t − h, t] interval. R̂V t converges in probability to the

true integrated variance of the process as N →∞

R̂V t,h
p→
∫ t

t−h
σ2
τdτ. (3.16)

As observed, the log-prices are contaminated with microstructure noise in

the real world, and the literature has developed several estimators. While it

is important to consider both jumps and microstructure noise in the data,

our main interest is in estimating the catastrophe theory and addressing the

question whether it can be used to explain the deterministic portion of stock

market returns. Thus, we restrict ourselves to the simplest estimator, which

uses sparse sampling to deal with the microstructure noise. The extant litera-

ture showed support for this simple estimator; most recently, Liu et al. (2012)

ran a horse race for the most popular estimators and concluded that when sim-

ple realized volatility is computed using 5-minute sampling, it is very difficult

to outperform.

In the first step, we estimate realized volatility from the stock market re-

turns using 5-min. data as proposed by the theory, and we normalize the

daily returns to obtain returns with constant volatility. While using the daily

returns, h = 1, and we henceforth drop h for ease of notation.

r̃t = rtR̂V
−1/2

t (3.17)

In the second step, we apply the stochastic cusp catastrophe to model the

normalized stock market returns. While the state variable of the cusp is a

canonical variable, it is an unknown smooth transformation of the actual state

variable of the system. As proposed by Grasman et al. (2009), we allow for the
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first order approximation to the true, smooth transition allowing the measured

r̃ to be a

yt = ω0 + ω1r̃t, (3.18)

with ω1 as the first order coefficient of a polynomial approximation. The inde-

pendent variables are

αx = α0 + α1x1,t + . . .+ αnxn,t (3.19)

βx = β0 + β1x1,t + . . .+ βnxn,t, (3.20)

Hence, the statistical estimation problem is to estimate 2n + 2 parameters

{ω0, ω1, α0, . . . , αn, β0, . . . , . . . , βn}. We estimate the parameters using the max-

imum likelihood approach of Cobb & Watson (1980) as augmented by Gras-

man et al. (2009). The negative log-likelihood for a sample of observed values

(x1,t, . . . , xn,t, yt) for t = 1, . . . , T is simply the logarithm of the probability

distribution function in Eq. (3.9).

3.2.1 Statistical evaluation of the fit

To assess the fit of the cusp catastrophe model to the data, a number of di-

agnostic tools have been suggested. Stewart & Peregoy (1983) proposed a

pseudo-R2 as a measure of the explained variance. However, a difficulty arises

here because for a given set of values of the independent variables, the model

may predict multiple values for the dependent variable. Because of bimodal

density, the expected value is unlikely to be observed because it is an unstable

solution at equilibrium. For this reason, two alternatives for the expected value

as the predictive value can be used. The first method chooses the mode of the

density closest to the state values, which is known as the delay convention; the

second method uses the mode at which the density is highest, which is known

as the Maxwell convention. Cobb & Watson (1980) and Stewart & Peregoy

(1983) suggested using the delay convention where the variance of the error is

defined as the variance of the difference between the estimated states and then

using the mode of the distribution that is closest to this value. The pseudo-R2

is defined as 1− V ar(ε)/V ar(y), where ε is error.

While pseudo-R2 is problematic due to the nature of the cusp catastrophe

model, it should be used in a complementary fashion to other alternatives.

To rigorously test the statistical fit of the cusp catastrophe model, we use

following steps. First, the cusp fit should be substantially better than multiple
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linear regression. The cusp fit could be tested by means of a likelihood ratio

test, which is asymptotically chi-squared distributed with degrees of freedom

equal to the difference in degrees of freedom for two compared models. Second,

the ω1 coefficient should deviate significantly from zero. Otherwise, the yt in

Eq. (3.18) would be constant, and the cusp model would not describe the data.

Third, the cusp model should show a better fit than the following logistic curve:

yt =
1

1 + e−αt/β
2
t

+ εt, (3.21)

for t = 1, . . . , T , where εt are zero mean random disturbances. The rationale for

choosing to compare the cusp model to this logistic curve is that this function

does not possess degenerate points, while it possibly models steep changes

in the state variable as a function of changes in the independent variables

mimicking the sudden transitions of the cusp. Thus, a comparison of the cusp

catastrophe model to the logistic function serves as a good indicator of the

presence of bifurcations in the data. While these two models are not nested,

Wagenmakers et al. (2005) suggested comparing them via information criteria,

where a stronger Bayesian Information Criterion (BIC) should be required for

the decision.

3.3 Monte Carlo study

To validate our assumptions about the process of generating stock market re-

turns and our two-step estimation procedure, we conduct a Monte Carlo study

where we simulate the data from the stochastic cusp catastrophe model, allow

for time-varying volatility in the process and estimate the parameters to see

whether we can recover the true values.

We simulate the data from the stochastic cusp catastrophe model subject

to time-varying volatility as

rt = σtyt (3.22)

dσ2
t = κ(ω − σ2

t )dt+ γdWt,1, (3.23)

dyt = (αt + βtyt − y3
t )dt+ dWt,2 (3.24)

where dWt,1 and dWt,2 are standard Brownian motions with zero correlation,

κ = 5, ω = 0.04 and γ = 0.5. The volatility parameters satisfy Feller’s condition

2κω ≥ γ2, which keeps the volatility process away from the zero boundary. We
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Figure 3.1: An example of a simulated time series

Note: An example of a simulated time series where the cusp surface is subject to noise only, yt, and noise
together with volatility, rt. (b) simulated returns yt (a) kernel density estimate of yt (c) simulated returns
rt contaminated with volatility (d) kernel density estimate of rt.

Source: Authors’ own computations in R and Wolfram Mathematica.

set the parameters to values that are reasonable for a stock price, as in Zhang

et al. (2005).

In the cusp equation, we use two independent variables

αt = α0 + α1xt,1 + α2xt,2 (3.25)

βt = β0 + β1xt,1 + β2xt,2 (3.26)

with coefficients α2 = β1 = 0. Hence xt,1 drawn from the U(0, 1) distribution

drives the asymmetry side, and xt,2 drawn from the U(0, 1) distribution drives

the bifurcation side of the model. The parameters are set as α0 = −2, α1 = 3,

β0 = −1 and β2 = 4.

In the simulations, we are interested in determining how the cusp catas-

trophe model performs under time-varying volatility. Thus, we estimate the

coefficients on the processes yt = rt/σt and rt. Figure 3.1 shows one realization

of the simulated returns yt and rt. While yt is the cusp catastrophe subject to

noise, rt is subject to time-varying volatility as well. It is noticeable how time-

varying volatility causes the shift from bimodal density to unimodal. More

illustrative is Figure 3.2, which shows the cusp catastrophe surface of both

processes. While the solution from the deterministic cusp catastrophe is con-

taminated with noise in the first case, the volatility process in the second case

makes it much more difficult to recognize the two states of the system in the

bifurcation area. This result causes difficulty in recovering the true parameters.

Table 3.1 shows the results of the simulation. We simulate the processes
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Figure 3.2: An example of simulated data

Note: An example of simulated data where the cusp surface is subject to noise only, yt, and noise with volatil-
ity, rt. Parts (a-b) show the cusp deterministic pleat simulated {x1, x2, yt} from two different perspectives,
and parts (c-d) show the cusp deterministic pleat simulated {x1, x2, rt} from two different perspectives.

Source: Authors’ own computations in R and Wolfram Mathematica.

100 times and report the mean and standard deviations from the mean.5 We

5The distribution of the parameters of our main interest using yt = rt/σt is Gaussian,
which makes it possible to compare the results within the means and standard deviations.
Figures A.1 and A.2 in Appendix A depict smooth histogram kernel approximations of the
probability densities of respective estimates contrasted to normal distribution. Based on the
Jarque-Bera ALM test at the 5% level, the null hypothesis of normality is only rejected for
ω0 and α2 of the unrestricted model. Moreover, ω0 is a constant term and α2 is left out in
the restricted model which further testifies the Gaussianity of the key parameters. For the
restricted model normality of parameters is not rejected in any case.
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estimate all parameters of the cusp equation, i.e. ω0 and ω1, defining the first

order approximation of a smooth transformation of the actual state variable, to-

gether with six parameters (α0, α1, α2, β0, β1, β2) determining two independent

variables. The true parameters are easily recovered in the simulations from yt

when the cusp catastrophe is subject to noise only because the mean values are

statistically indistinguishable from the true simulated values α0 = −2, α1 = 3,

β0 = −1 and β2 = 4. The fits are reasonable because they explain approxi-

mately 60% of the data variation in the noisy environment. Moreover, in the

cusp model, we first estimate the full set of parameters (α0, α1, α2, β0, β1, β2),

and then we restrict the parameters α2 = β1 = 0. The estimation easily re-

covers the true parameters in both cases, while in the unrestricted case, the

estimates α2 = β1 = 0 and fits are statistically the same. In comparison, both

cusp models perform much better than logistic regression and linear models,

which was expected. It is also interesting to note that ω0 = 0 and ω1 = 1,

which means that the observed data are the true data, and no transformation

is needed. These results are important because they confirm that the estima-

tion of the stochastic cusp catastrophe model is valid, and it can be used to

quantitatively apply the theory to the data.

The results of the estimation on the rt process, which is subject to time-

varying volatility, reveal that the addition of the volatility process makes it

difficult for the maximum likelihood estimation to recover the true parameters.

The variances of the estimated parameters are very large, and the means are

far away from the true simulated values. Moreover, the fits are statistically

weaker, as they explain no more than 38% of the variance in the data. It is

also interesting to note that the logistic fit and the linear fit are much closer to

the cusp fit.

In conclusion, the simulation results reveal that time-varying volatility in

the cusp catastrophe model destroys the ability of the maximum likelihood

estimator to recover the cusp potential.

3.4 Empirical modeling of stock market crashes

Armed with the results from the simulations, we move to the estimation of the

cusp catastrophe model on the real-world data from stock markets. We use

long time span for the S&P 500, a broad U.S. stock market index, that covers

almost 27 years, from February 24, 1984 to November 17, 2010. Figure 3.3 plots

the prices and depicts the several recessions and crisis periods. According to
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Figure 3.3: S&P 500 price data

Note: The figure highlights several important recession periods as grey periods and crash events as black
lines. The periods are more closely described in the text.

Source: Authors’ own computations in R and Wolfram Mathematica.

the National Bureau of Economic Research (NBER), there were three U.S. re-

cessions during the periods of July 1990 – March 1991, March 2001 – November

2001 and December 2007 – June 2009. These recessions are depicted as grey

periods. Black lines depict one-day crashes associated with large price drops.

Namely, these include Black Monday 1987 (October 19, 1987), the Asian Crisis

Crash (October 27, 1997), the Ruble Devaluation of 1998 (August 17, 1998),

the Dot-com Bubble Burst (March 10, 2000), the World Trade Center Attacks

(September 11, 2001), the Lehman Brothers Holdings Bankruptcy (September

15, 2008), and finally the Flash Crash (March 6, 2010). Technically, the largest

one day drops in the studied period occurred on October 19, 1987, October 26,

1987, September 29, 2008, October 9, 2008, October 15, 2008, and December

1, 2008, recording declines of 20.47%, 8.28%, 8.79%, 7.62%, 9.03%, and 8.93%,

respectively.

Let us now look closer at the crashes depicted by Figure 3.3 and discuss

their nature. The term Black Monday refers to Monday, October 19, 1987

when stock markets around the world from Hong Kong to Europe and the U.S.

crashed in a very short time and recorded the largest one-day drop in history.

After this unexpected, severe event, many analysts predicted the most trou-

bled years since the 1930s. However, stock markets gained the losses back and

closed the year positively. There has been no consensus opinion on the cause of

the crash. Potential causes include program trading, overvaluation, illiquidity,

and market psychology. Thus, this crash seems to have had an endogenous
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cause. Stock markets did not record any large shocks for the next several years

until 1996, when the Asian Financial Crisis driven by investors deserting over-

heated, emerging Asian markets resulted in the October 27, 1997 mini crash

of the U.S. markets. The next year, the Russian government devalued the ru-

ble, defaulted on its domestic debt and declared a moratorium on payments to

foreign creditors. These actions caused another international crash on August

17, 1998. These last two shocks are believed to be exogenous to the U.S. stock

markets. During the period from 1997 – 2000, the so-called dot-com bubble

emerged, when a group of internet-based companies entered the markets and

attracted many investors who were confident in the companies’ profits, over-

looking their fundamental values. The result was a collapse, or burst bubble,

during the period from 2000 – 2001. Another exogenous shock was brought to

stock markets in the 2001 when the World Trade Center (WTC) was attacked

and destroyed. While the markets recorded a sudden drop, it should not be

attributed to internal forces of the markets. The recent financial crisis of 2007

– 2008, also known as the Global Financial Crisis, emerged from the bursting of

the U.S. housing bubble, which peaked in 2006. In a series of days in September

and October 2008, stock markets saw successive large declines. Many analysts

believe that this crash was mainly driven by the housing markets, but there

is no consensus about the real causes. Finally, our studied period also covers

the May 6, 2010 Flash Crash, also known as The Crash of 2:45, in which the

Dow Jones Industrial Average plunged approximately 1,000 points (9%), only

to recover its losses within a few minutes. It was the biggest intraday drop

in history, and one of its main possible causes may have been the impact of

high-frequency traders or large directional bets.

In terms of Zeeman’s (1974) hypotheses, cusp catastrophe theory proposes

to model the crashes as endogenous events driven by speculative money. Em-

ploying our two-step estimation method, we estimate the cusp model to quan-

titatively test the theory on the period that covers all of these crashes to deter-

mine whether the theory can explain the crashes using our data. An interesting

discussion may stem from studying the causality between volatility and crashes.

While Levy (2008) provided a modeling approach for increasing volatility be-

fore crash events, the crashes are driven endogenously by speculative money in

our approach; thus, the sudden discontinuities are not connected to volatility.
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Figure 3.4: S&P 500 returns and realized volatility

Note: S&P 500 (a) returns rt, (b) realized volatility RVt, and (c) standardized returns rtRV
−1/2
t . The figure

highlights several important recession periods as grey periods and crash events as black lines. The periods
are more closely described in the text.

Source: Authors’ own computations in R and Wolfram Mathematica.

3.4.1 Data description

For our two-step estimation procedure, we need two sets of data. The first

set consists of high-frequency trading data related to S&P 500, which are used

to estimate the volatility of returns according to Eq. (3.15). The second set

consists of data on sentiment and contains control variables that drive the

fundamental (asymmetry) and chartists (bifurcation) side of the model. Let

us describe both datasets used. For the realized volatility estimation, we use
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the S&P 500 futures traded on the Chicago Mercantile Exchange (CME)6. The

sample period extends from February 24, 1984 to November 17, 2010. Although

after the introduction of the CME Globex(R) electronic trading platform on

Monday, December 18, 2006, CME started to offer nearly continuous trading,

we restrict the analysis to the intraday returns with 5-minute frequencies within

the business hours of the New York Stock Exchange (NYSE) because the most

liquidity of the S&P 500 futures came from the period when the U.S. markets

were open. We eliminate transactions executed on Saturdays and Sundays, U.S.

federal holidays, December 24 to 26, and December 31 to January 2 because of

the low activity on those days, which could lead to estimation bias.

Using the realized volatility estimator, we then measure the volatility of

the stock market returns as the sum of the squared 5-minute intraday returns.

In this way, we obtain 6,739 daily volatility estimates. Figure 3.4 shows the

estimated volatility 3.4(b) together with the daily returns 3.4(a). It can be

immediately observed that the volatility of the S&P 500 is strongly time varying

over the very long period.

For the state (behavioral) variable of the cusp model, we use the S&P 500

daily returns standardized by the estimated daily realized volatility according

to Eq. (3.17). By standardization, we obtain stationary data depicted in Figure

3.4(c).

In choosing the control variables, we follow the successful method from the

previous application in Barunik & Vosvrda (2009), where authors compared

several measures of control variables and showed that fundamentalists, or the

asymmetry side of the market, are best described by the ratio of advancing and

declining stock volume, and chartists, or the bifurcation side of the model, are

best described by the OEX put/call ratio7. The variables related to the trading

volume generally correlate with the volatility and therefore are considered good

measures of the trading activity of large funds and other institutional investors.

Trading volume also relates to market liquidity and a major part of trading

volume are fundamental money. Trading volume indicators thus represent the

fundamental side of the market and can be used as a good proxy for funda-

mental investors. Therefore, the ratio of advancing and declining stock volume

should mainly contribute to the asymmetry side of the model. Conversely, the

activity of market speculators and technical traders should be well captured by

the measures of sentiment, precisely the OEX put/call ratio, which is the ratio

6The data were provided by Tick Data, Inc.
7The data were provided by Pinnacle Data Corp.
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of daily put and daily call option volume with the underlying S&P 500 index.

Financial options are widely used and are the most popular instruments for

speculative purposes. Therefore, they serve as a good measure of speculative

money in capital markets (see e.g. Bates (1991), Finucane (1991), or Wang

et al. (2006)) because they represent the data about extraordinary premiums

and excessive greed or fear on the market. Thus, they should represent the

internal forces that lead the market to bifurcation within the cusp catastrophe

model. Overall, we assume the OEX put/call option ratio mainly contributes

to the bifurcation side of the model. Moreover, we use a third control variable,

the daily change in total trading volume, as a driver for both the fundamental

and speculative money in the market. The daily change in the total volume

indicator is generally related to continuous fundamental trading activity, but it

may also reflect elevated speculative activity on the market as well. Therefore,

we expect this variable to help the regression not only on the asymmetry side

but also on the bifurcation side. The time span for all of these data matches

the time span of the S&P 500 returns, i.e., February 24, 1984 to November 17,

2010. The descriptive statistics for all of the data are summarized in the upper

part of Table 3.2.

3.4.2 Full sample static estimates

In the estimation, we primarily aim to test whether the cusp catastrophe model

is able to describe the stock market data in the time-varying volatility environ-

ment and therefore that stock markets show signs of bifurcations. In doing so,

we follow the statistical testing described earlier in the text. At first, we esti-

mate all parameters of the cusp equation and contrast these result to estimation

results of the restricted model with α2 = β1 = 0 according to our hypothesis

about primary driving forces of the asymmetry and bifurcation sides of the

model.

Table 3.3 shows the estimates of the cusp fits. Let us concentrate of the

left side of Table 3.3(a), where we fit the cusp catastrophe model to the stan-

dardized returns rtR̂V
−1/2

t . First, we do not make any restrictions, and we

use all three control variables; thus, αx = α0 + α1x1,t + α2x2,t + α3x3,t and

βx = β0 + β1x1,t + β2x2,t + β3x3,t, where x1 is the ratio of advancing and de-

clining stock volume, x2 is the OEX put/call option ratio and x3 is the rate of

change of the total volume. The state variable is r̃t, and the returns are nor-

malized with estimated realized volatility. In terms of log likelihood, the cusp
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model describes the data much better than the linear regression model. The ω1

coefficient is far away from zero, although some degree of transformation of the

data is needed. All of the other coefficients are strongly significant at the 99%

level. Most importantly, when the cusp fit is compared with the logistic fit in

terms of AIC and BIC, we can see that the cusp model strongly outperforms

the logistic model.

Our hypothesis is that the ratio of advancing and declining stock volume

only contributes to the asymmetry side, and the OEX put/call ratio, repre-

senting the measure of speculative money in the market, contributes to the

bifurcation side of the model. To test this hypothesis, we set the parameters

α2 = β1 = 0 and refer to it as a restricted model. From Table 3.3(a), we can see

that the log likelihood of the restricted model naturally decreases in comparison

with the unrestricted model because the log likelihood of the restricted model

is always lower (or equal) than of the unrestricted model. All of the parameters

are again strongly significant, and we can see that they change considerably.

This result can be attributed to the fact that x1,t seems to contribute strongly

to both sides of the market in the unrestricted model. Although the β2 co-

efficient representing the speculative money is quite small in comparison with

the other coefficients, it is still strongly significant. Because this coefficient is

the key for the model in driving the stock market to bifurcation, we further

investigate its impact in the following sections. It is interesting to note that

the ω1 parameter increases to very close to one in the restricted model. This

result means that the observed data are close to the state variable.

When moving to the right (b) side of Table 3.3, we repeat the same analysis,

but this time, we use the original rt returns as the state variable. We wish to

compare the cusp catastrophe fit to the data with strongly varying volatility.

In using the data’s very long time span where the volatility varies considerably,

we expect the model to deteriorate. Although the application of the cusp

catastrophe model to the non-stationary data can be questioned, we provide

these estimates to compare them with our modeling approach. We see an

important result. While the linear and logistic models provide very similar fits

in terms of the log likelihoods, the information criteria and R2 deteriorate in

both the unrestricted and restricted cusp models. The ω1 coefficient, together

with all of the other coefficients, is still strongly different from zero, but the

important result is that the logistic model not only describes the data better,

but also the presence of bifurcations in the raw return data cannot be claimed.

To conclude this section, the results suggest strong evidence that over the
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long period of almost 27 years, the stock markets are better described by the

cusp catastrophe model. Using our two-step modeling approach, we have shown

that the cusp model fits the data well and the fundamental and bifurcation sides

are controlled by the indicators for the fundamental and speculative money,

respectively. In contrast, when the cusp is fit to the original data with a strong

variation in volatility, the model deteriorates. We should note that these results

resemble the results from the simulation; thus, the simulation also strongly

supports our modeling approach.

3.4.3 Examples of the 1987 and 2008 crashes

While the results from the previous section are supportive of the cusp catastro-

phe model, the sample period of almost 27 years may contain many structural

changes. Thus, we wish to further investigate how the model performs over

time. Therefore, we use the two very distinct crashes of 1987 and 2008 and

compare them to the localized cusp fits. There are several reasons to study

these particular periods. These crashes were distinct in time, as there were 21

years between them, so they offer us an opportunity to determine how the data

describe the periods. On the one hand, the stock market crash of 1987 has

not yet been explained, and many analysts believe it was an endogenous crash.

Therefore, it constitutes a perfect candidate for the cusp model. On the other

hand, the 2008 period covered a much deeper recession, so it was very different

from 1987. Finally, the two periods contain all of the largest one-day drops,

which occurred on October 19, 1987, October 26, 1987, September 29, 2008,

October 9, 2008, October 15, 2008, and December 1, 2008, recording declines of

20.47%, 8.28%, 8.79%, 7.62%, 9.03%, and 8.93%, respectively. In the following

estimations, we restrict ourselves to our newly proposed two-step approach for

the cusp catastrophe fitting procedure, and we utilize samples covering one-half

year. The descriptive statistics for both periods are summarized in Table 3.2.

When focusing on the estimation results for the 1987 crash, we can see that

both the restricted and the unrestricted models fit the data much better than

the linear regression. The ω1 coefficients are significantly different from zero,

and when the cusp models are compared with the logistic model, they seem to

provide much better fits. Thus, the cusp catastrophe model explains the data

very well, and we can conclude that the stock market crash of 1987 was led by

internal forces. This result confirms previous findings in Barunik & Vosvrda

(2009), although a comparison cannot be made directly because authors used
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a different sample length. When comparing the fits of the unrestricted and

restricted models, we can see that they do not differ significantly within the log

likelihoods, AIC and BIC. In addition, the coefficient estimates are close to each

other. The reason for this result is that the unrestricted model estimates the

α2 coefficient, which cannot be distinguished from zero, and the β1 coefficient

is significant only at a 90% level of significance. Thus, x1 is proven to drive

the fundamentals, and x2 drives the speculators. Note that the β2 coefficient

is much larger in magnitude than on the fit for the full sample in the previous

section. Interestingly, x3 seems to drive the speculative money in the 1987

crash, but it does not help to explain the 2008 behavior.

The data from the 2008 period present different results. While the cusp

fits are much better in comparison with the linear regression, they cannot be

statistically distinguished from the logistic model. Therefore, there is very weak

evidence of discontinuities in this period. This result is interesting because it

may suggest that the large drops in 2008 were not driven endogenously by

stock market participants but exogenously by the burst of the housing market

bubble.

3.4.4 Rolling regression estimates

While the 1987 data are explained by the cusp catastrophe model very well

and the 2008 data are not, we would like to further investigate how the cusp

catastrophe fit changes over time. With almost 27 years of data needed for

our two-step method of estimation, we estimate the cusp catastrophe model

on one-half year rolling samples with a step of one month. The one-half year

period is reasonable because it represents enough data for a sound statistical fit,

but it is not a very long period, so we can uncover any structural breaks in the

data.8 In the estimation, we again restrict ourselves to our two-step estimation

procedure. To keep the results under control, we use the final restricted model,

where we assume that x1 controls the asymmetry side of the model, and x2

controls the bifurcation side solely, while x3 contributes to both sides. Thus,

α2 = β1 = 0.

Before we proceed to interpreting the rolling regression results, let us discuss

the bimodality of the rolling samples. Stochastic catastrophe corresponds to a

8Various combinations of rolling sample lengths and steps had been used in the preliminary
analysis without affecting the overall aggregated results, e.g. comparing one day, and one
month steps. The outcomes of the preliminary analysis are available from authors upon
request.
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Figure 3.5: Rolling values of BIC

Note: Rolling values of BIC information criteria for the cusp catastrophe (in bold black) and the logistic (in
black) models.

Source: Authors’ own computations in R and Wolfram Mathematica.

transition from a unimodal to a bimodal distribution. Thus, we first need to

test for bimodality to be able to draw any conclusions from our analysis. To do

this, we use the dip test of unimodality developed by Hartigan (1985); Hartigan

& Hartigan (1985). The dip statistic is the maximum difference between the

empirical distribution function and the unimodal distribution function, and it

measures the departure of the sample from unimodality. Asymptotically, the

dip statistics for samples from a unimodal distribution approach zero, and for

samples from any multimodal distribution, the dip statistics approach a positive

constant. We use bootstrapped critical values for the small rolling sample

sizes to assess the unimodality. Figure A.3 shows the histogram of all of the

dip statistics, together with its bootstrapped critical value 0.0406 at the 90%

significance level. The results suggest that unimodality is rejected at the 90%

significance level for several periods, but for most of the periods, unimodality

cannot be rejected. Thus, we observe a transition from unimodal to bimodal

(or possibly multimodal) distributions several times during the studied period.

Encouraged by the knowledge that the bifurcations could be present in our

dataset, we move to the rolling cusp results. Figure A.4 shows the rolling

coefficient estimates together with their significances. The ω1 is significantly

different from zero in all periods, and the α1 coefficient is strongly significant

over the whole period, although it becomes lower in magnitude during the latest

years. Thus, the ratio of advancing and declining volume is a good measure

for fundamentalists driving the asymmetry portion of the model. Much more
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important, however, is the β2 parameter, which drives the bifurcations in the

model. We can observe that until 1996, β2 was significant, and its value changed

considerably over time, but after 1996, it cannot be distinguished statistically

from zero (except for some periods). This result is very interesting because it

shows that the OEX put/call ratio was a good measure of speculative money

in the market, and it controlled the bifurcation side of the model. During the

first period, the OEX put/call ratio drove the stock market into bifurcations,

but in the second period, the market was rather stable under the model. The

parameter only started to play a role in the model again in the last few years and

during the recent 2008 recession. However, its contribution was still relatively

small.

This result is also confirmed when we compare the cusp model to the logistic

model. Figure 3.5 compares the Bayesian Information Criteria (BIC) of the

two models. Because the BIC cannot be directly compared across various time

periods, we do not intend to track their dynamic evolution in time but to

contrast the criteria of the cusp model and the logistic model in every single

rolling one-half year period. We can see that the cusp catastrophe model was

a much better fit for the data up to 2003, while for roughly 2003-2009, the

cusp catastrophe model cannot be distinguished from the logistic model or

logistic model strongly outperforms the cusp model. In the last period after

2009 and before the Flash Crash, the cusp again explains the data better, but

the difference is not as strong as in the pre-2003 period. This result shows that

before 2003, the stock markets showed signs of bifurcation behavior according to

the cusp model, but after 2003, in the period of stable growth when participants

believed that stock markets were stable, the markets no longer showed signs of

bifurcation behavior.

To conclude this section, we find that despite the fact that we modeled

volatility in the first step, the stock markets showed signs of bistability over

several crisis periods.

3.5 Concluding remarks

In this chapter, we contribute to the literature on the modeling of stock mar-

ket crashes and the quantitative application of the stochastic cusp catastrophe

theory. We develop a two-step estimation procedure and estimate the cusp

catastrophe model under time-varying stock market volatility. This approach

allows us to test Zeeman’s (1974) qualitative hypotheses on cusp catastro-
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phe and bring new empirical results to previous work in this area (Barunik &

Vosvrda 2009).

In the empirical testing, we use high frequency and sentiment data on the

U.S. stock market covering almost 27 years. The results suggest that over a

long period, stock markets are well described by the stochastic cusp catastrophe

model. Using our two-step modeling approach, we show that the cusp model

fits the data well and that the fundamental and bifurcation sides are controlled

by the indicators for fundamental and speculative money, respectively. In con-

trast, when the cusp model is fit to the original data with strong variations in

volatility, the model deteriorates. We should note that these results are simi-

lar to the results from a Monte Carlo study that we ran; thus, our simulation

strongly supports our analysis. Furthermore, we develop a rolling estimation,

and we find that until 2003, the cusp catastrophe model explains the data well,

but this result changes during the period of stable growth from 2003–2008.

In conclusion, we find that despite the fact that we modeled volatility in

the first step, the stock markets showed signs of bistability during several crisis

periods. An interesting venue of future research will be to translate these results

to a probability of the crash occurrence and its possible prediction.



Chapter 4

Simulation-based estimation of

FABMs: the case of Brock &

Hommes HAM

This chapter describes an innovative general computational framework for em-

pirical estimation of full-fledged FABMs. While for the cusp catastrophe model

the likelihood function is theoretically known, for many FABMs we lack this

convenient feature. Some few authors thus apply simulation-based estimation

methods of moments (for details see Chapter 2). We follow the Kristensen &

Shin (2012) concept of simulated MLE based on nonparametric kernel methods.

The methodology has been developed for dynamic models where no closed-form

representation of the likelihood function exists and thus we cannot derive the

usual MLE. Therefore it constitutes an opportune estimation method for gen-

eral class of FABMs.

In Chapters 5 and 6 we adopt the NPSMLE method to the FABM litera-

ture and test its capability on the most famous and widely analysed model

developed by Brock & Hommes (1998) for which we customise the general

framework of Kristensen & Shin (2012). Chapter 2 summarises other attempts

to estimate models derived from Brock & Hommes (1998) approach that builds

on evolutionary switching between trading strategies.

In Chapter 7 we further apply the NPSMLE to a simple herding FABM devel-

oped by Alfarano et al. (2008). Although we focus on two specific implemen-

tations in this work, we presuppose that if it succeeds in estimation of these

two rather challenging FABM frameworks, the NPSMLE methodology is likely to

appear useful for other ABMs in the future.
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4.1 The Brock & Hommes (1998) model

Our modelling framework is within the Brock & Hommes (1998) HAM. The

model is a financial market application of the ABS—the endogenous, evolu-

tionary selection of heterogeneous expectation rules following the framework of

Lucas (1978) and proposed in Brock & Hommes (1997; 1998). We consider an

asset pricing model with one risk free and one risky asset. The dynamics of the

wealth is as follows:

Wt+1 = RWt + (pt+1 + yt+1 −Rpt)zt, (4.1)

where Wt+1 stands for the total wealth at time t+1, pt denotes the ex-dividend

price per share of the risky asset at time t, and {yt} denotes its stochastic div-

idend process. The risk-free asset is perfectly elastically supplied at constant

gross interest rate R = 1+r, where r is the interest rate. Finally, zt denotes the

number of shares of the risky asset purchased at time t. The type of utility func-

tion considered is essential for each economic model and determines its nature

and dynamics. The utility for each1 investor (trader or agent alternatively) h

is given by U(W ) = −exp(−aW ), where a > 0 denotes the risk aversion, which

is assumed to be equal for all investors.2 For determining the market prices in

this model, the Walrasian auction scenario is assumed. I.e. the market clearing

price pt is defined as the price that makes demand for the risky asset equal to

supply at each trading period t and investors are ‘price takers’. The detailed

description of the price formation mechanism is offered further in this section

and finally summarised by Equation 4.13 and Equation 4.14.

Let Et, Vt denote the conditional expectation and conditional variance op-

1This is a crucial assumption without which the original model of Brock & Hommes (1998)
loses one of its greatest advantages of analytical tractability.

2The generalised version of the model with the aim to study the model behaviour after re-
laxing a number of assumptions—especially homogeneous risk aversion—has been proposed
by Chiarella & He (2002). The authors allow agents to have different risk attitudes by gen-
eralising Equation 4.2 and letting the risk aversion coefficient ah differ among particular
traders. The paper is focused mainly on a study of two-belief systems. Typically, funda-
mentalists are expected to be more risk averse than chartists and thus the relative risk ratio
acf = achart.

afund.
< 1. The authors offer an exuberant analysis of many specific setting combina-

tions and conclude that relaxing some assumptions of the original Brock & Hommes (1998)
model leads to a markedly enriched system with some significant differences (e.g. stability
of the model equilibrium might depend directly on acf ; decreasing acf may trigger chaotic
fluctuations around the fundamental price, i.e. when fundamentalists are more risk averse,
the market becomes more chaotic; or that adding noise has a small effect when acf is large,
but the opposite is true when acf is small). On the other hand, many of the original results
are robust enough with regard to suggested generalisations.
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erators, respectively, based on a publicly available information consisting of past

prices and dividends, i.e. on the information set Ft = {pt, pt−1, . . . ; yt, yt−1, . . . }.
Let Eh,t, Vh,t denote the beliefs of investor type h (trader type h alternatively)

about the conditional expectation and conditional variance. For analytical

tractability, beliefs about the conditional variance of excess returns are assumed

to be constant and the same for all investor types, i.e. Vh,t(pt+1 +yt+1−Rpt) =

σ2. Thus the conditional variance of total wealth Vh,t(Wt+1) = z2
t σ

2.

Each investor is assumed to be a myopic3 mean variance maximiser, so for

each investor h the demand for the risky asset zh,t is the solution of:

max
zt

{
Eh,t[Wt+1]− a

2
Vh,t[Wt+1]

}
. (4.2)

Thus

Eh,t[pt+1 + yt+1 −Rpt]− aσ2zh,t = 0, (4.3)

zh,t =
Eh,t[pt+1 + yt+1 −Rpt]

aσ2
. (4.4)

Let nh,t be the fraction of investors of type h at time t and its sum is one,

i.e.
∑H

h=1 nh,t = 1. Let zs,t be the overall supply of outside risky shares. The

Walrasian temporary market equilibrium for demand and supply of the risky

asset then yields:

H∑
h=1

nh,tzh,t =
H∑
h=1

nh,t

{
Eh,t[pt+1 + yt+1 −Rpt]

aσ2

}
= zs,t, (4.5)

where H is the number of different investor types. In the simple case H = 1

we obtain the equilibrium pricing equation and for the specific case of zero

supply of outside risky shares, i.e. zs,t = 0 for all t, the market equilibrium

then satisfies:

Rpt =
H∑
h=1

nh,t{Eh,t[pt+1 + yt+1]}. (4.6)

In a completely rational market Equation 4.6 reduces to Rpt = Et[pt+1 + yt+1]

and the price of the risky asset is completely determined by economic funda-

mentals and given by the discounted sum of its future dividend cash flow:

p∗t =
∞∑
k=1

Et[yt+k]

(1 + r)k
, (4.7)

3To be ‘myopic’ means to have a lack of long run perspective in planning. Roughly
speaking, it is the opposite expression to ‘intertemporal’ in economic modelling.
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where p∗t depends upon the stochastic dividend process {yt} and denotes the

fundamental price which serves as a benchmark for asset valuation based on

economic fundamentals under rational expectations. In the specific case where

the process {yt} is independent and identically distributed, Et{yt+1} = ȳ is a

constant. The fundamental price, which all investors are able to derive, is then

given by the simple formula:

p∗ =
∞∑
k=1

ȳ

(1 + r)k
=
ȳ

r
. (4.8)

For the further analysis it is convenient to work not with the price levels, but

with the deviation xt from the fundamental price p∗t :

xt = pt − p∗t . (4.9)

4.1.1 Heterogeneous beliefs

Now we introduce the heterogeneous beliefs about future prices. We follow the

Brock & Hommes (1998) approach and assume the beliefs of individual trader

types in the form:

Eh,t(pt+1 + yt+1) = Et(p
∗
t+1 + yt+1) + fh(xt−1, . . . , xt−L), for all h, t, (4.10)

where p∗t+1 denotes the fundamental price (Equation 4.7), Et(p
∗
t+1 + yt+1) de-

notes the conditional expectation of the fundamental price based on the infor-

mation set Ft = {pt, pt−1, . . . ; yt, yt−1, . . . }, xt = pt − p∗t is the deviation from

the fundamental price (Equation 4.9), fh is some deterministic function which

can differ across trader types h and represents a ‘h-type’ model of the market,

and L denotes the number of lags.

It is now important to be very precise about the class of beliefs. From the

expression in Equation 4.10 it follows that beliefs about future dividends flow:

Eh,t(yt+1) = Et(yt+1), h = 1, . . . H, (4.11)

are the same for all trader types and equal to the true conditional expectation.

In the case where the dividend process {yt} is i.i.d., from Equation 4.8 we know

that all trader types are able to derive the same fundamental price p∗t .

On the other hand, traders’ beliefs about future price abandon the idea of

perfect rationality and move the model closer to the real world. The form of
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this class of beliefs:

Eh,t(pt+1) = Et(p
∗
t+1) + fh(xt−1, . . . , xt−L), for all h, t, (4.12)

allows prices to deviate from their fundamental value p∗t , which is a crucial step

in heterogeneous agent modelling. fh allows individual trader types to believe

that the market price will differ from its fundamental value p∗t .

An important consequence of the assumptions above is that heterogeneous

market equilibrium from Equation 4.6 can be reformulated in the deviations

form, which can be conveniently used in empirical and experimental testing.

We thus use Equation 4.9, 4.10 and the fact that
∑H

h=1 nh,t = 1 to obtain:

Rxt =
H∑
h=1

nh,tEh,t[xt+1] =
H∑
h=1

nh,tfh(xt−1, . . . , xt−L) ≡
H∑
h=1

nh,tfh,t, (4.13)

where nh,t is the value related to the beginning of period t, before the equilib-

rium price deviation xt has been observed. The actual market clearing price pt

might then be calculated simply using Equation 4.9 as pt = xt + p∗t , expressed

more precisely, combining Equation 4.8, Equation 4.9, and Equation 4.13 as:

pt = xt + p∗t =

∑H
h=1 nh,tfh,t

R
+
ȳ

r
. (4.14)

4.1.2 Selection of strategies

Beliefs of individual trader types are updated evolutionary and thus create

the ABS, where the selection is controlled by endogenous market forces (Brock

& Hommes 1997). It is actually an expectation feedback system as variables

depend partly on the present values and partly on the future expectations.

The profitability (performance) measures for strategies h, h = 1, . . . H are

derived from past realised profits as:4

Uh,t = (xt −Rxt−1)
fh,t−1 −Rxt−1

aσ2
. (4.15)

4Additional memory can be introduced into the profitability measure (Equation 4.15)
e.g. as a weighted average of past realised values Um,h,t = Uh,t + ηUm,h,t−1, where 0 ≤
η ≤ 1 denotes the ‘dilution parameter’ of the past memory in the profitability measure.
Nonetheless, for the majority of examples, Brock & Hommes (1998) use η = 0 to keep
derivations analytically tractable and work with models without memory, i.e. Equation 4.15
specification is used directly.
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Market fractions of trader types nh,t are then given by the discrete choice

probability—the multinomial logit model:5

nh,t =
exp(βUh,t−1)

Zt
, (4.16)

Zt ≡
H∑
h=1

exp(βUh,t−1), (4.17)

where the one-period-lagged timing of Uh,t−1 ensures that all information

for the market fraction nh,t updating is available at the beginning of period

t, β is the intensity of choice parameter measuring how fast traders are will-

ing to switch between different strategies. Zt is then normalisation ensuring∑H
h=1 nh,t = 1.

4.1.3 Basic belief types

In the original paper by Brock & Hommes (1998), the authors analyse the

behaviour of the artificial market consisting of a few simple belief types (trader

types or strategies). The aim of investigating the model with only two, three, or

four belief types is to describe the role of each particular belief type in deviation

from fundamental price and to investigate the complexity of the simple model

dynamics with the help of the bifurcation theory.

All beliefs have the simple linear form:

fh,t = ghxt−1 + bh, (4.18)

where gh denotes the trend parameter and bh is the bias of trader type h.

This form comes from the argument that only very simple forecasting rules can

have a real impact on equilibrium prices as complicated rules are unlikely to

be learned and followed by sufficient number of traders. Hommes (2006) also

notices another important feature of Equation 4.18, which is that xt−1 is used

to forecast xt+1, because Equation 4.5 has not revealed equilibrium pt yet when

pt+1 forecast is estimated.

The first belief type are fundamentalists or rational ‘smart money’ traders.

They believe that the asset price is determined solely by economic fundamen-

5With regard to Macro ABMs, Branch & Evans (2006, pg. 266) point out that “the
multinomial logit has proven to be an important approach to modelling economic choices,
and has been increasingly employed in recent work in dynamic macroeconomics”.
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tals according to the EMH introduced in Fama (1970) and computed as the

present value of the discounted future dividends flow. Fundamentalists believe

that prices always converge to their fundamental values. In the model, funda-

mentalists comprise the special case of Equation 4.18 where gh = bh = fh,t = 0.

It is important to note that fundamentalists’ demand also reflects market ac-

tions of other trader types. Fundamentalists have all past market prices and

dividends in their information set Fh,t, but they are not aware of the fractions

nh,t of other trader types. Fundamentalists might pay costs C ≥ 0 to learn

how fundamentals work and to obtain market information. However, Brock &

Hommes (1998) themselves mostly set C = 0 to keep simplicity of the analysis.

Chartists or technical analysts, sometimes called ‘noise traders’ represent

another belief type. They believe that asset price is not determined by economic

fundamentals only, but it can be partially predicted using simple technical

trading rules, extrapolation techniques or taking various patterns observed in

the past prices into account. If bh = 0, trader h is called a pure trend chaser if

0 < gh ≤ R and a strong trend chaser if gh > R. Additionally, if −R ≤ gh < 0,

the trader h is called contrarian or strong contrarian if gh < −R.

Next, if gh = 0 trader h is considered to be purely upward biased if bh > 0

or purely downward biased if bh < 0.

4.2 Construction of the NPSMLE

This section introduces the estimation framework for the Brock & Hommes

(1998) model. Let us assume processes (x, v), x : t 7→ Rk, v : t 7→ Vt,
t = 1, . . . ,∞. The space Vt can be time-varying. Suppose that we have T

realisations {(xt, vt)}Tt=1. Let us further assume the time series {xt}Tt=1 has

been generated by a fully parametric model:

xt = qt(vt, εt, θ), t = 1, . . . , T, (4.19)

where a function q : {vt, εt, θ} 7→ Rk, θ ∈ Θ ⊆ Rl is an unknown parameter

vector, and εt is an independent identically distributed (i.i.d.) sequence with

known distribution Fε, which is (without loss of generality) assumed not to

depend on t or θ. In general, the processes (x, v) can be non-stationary and vt

is allowed to contain other exogenous variables than lagged xt. We also assume

the model to have an associated conditional density ct(x|v; θ), i.e.
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C(x ∈ A|vt = v) =

∫
A

ct(x|v; θ)dx, t = 1, . . . , T, (4.20)

for any Borel set A ⊆ Rk.

Let us now suppose that ct(x|v; θ) from Equation 4.20 does not have a

closed-form representation. In such situation, we are not able to derive the

exact likelihood function of the model in Equation 4.19 and thus a natural

estimator of θ—the maximiser of the conditional log-likelihood:

θ̃ = arg max︸︷︷︸
θ∈Θ

LT (θ), LT (θ) =
T∑
t=1

log ct(xt|vt; θ) (4.21)

is not feasible.

In such situation, however, we are still able to simulate observations from

the model in Equation 4.19 numerically.6 The method presented allows us

to compute a simulated conditional density, which we further use to gain a

simulated version of the MLE.

To obtain a simulated version of ct(xt|vt; θ) ∀ t ∈ 〈1, . . . , T 〉, x ∈ Rk, v ∈ Vt,
and θ ∈ Θ, we firstly generate N ∈ N i.i.d. draws from Fε, {εi}Ni=1, which are

used to compute:

Xθ
t,i = qt(vt, εi, θ), i = 1, . . . , N. (4.22)

These N simulated i.i.d. random variables, {Xθ
t,i}Ni=1, follow the target distri-

bution by construction: Xθ
t,i ∼ ct(·|vt; θ), and therefore can be used to estimate

the conditional density ct(x|v; θ) with kernel methods—we define:

ĉt(xt|vt; θ) =
1

N

N∑
i=1

Kη(X
θ
t,i − xt), (4.23)

where Kη(ψ) = K(ψ/η)/ηk, K : Rk 7→ R is a generic kernel and η > 0 is a

bandwidth. Under regularity conditions on ct and K, we get:

ĉt(xt|vt; θ) = ct(xt|vt; θ) +OP (1/
√
Nηk) +OP (η2), N −→∞, (4.24)

6For cases in which the model in Equation 4.19 is itself intractable and thus we cannot
generate observations from the exact model, Kristensen & Shin (2012) suggest a methodology
for approximate simulations and define regularity conditions for the associated approximate
NPSMLE θ̂M to have the same asymptotic properties as the simulated MLE θ̂ defined in
Equation 4.25.
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where the last two terms are oP (1) if η −→ 0 and Nηk −→∞.

Having obtained the simulated conditional density ĉt(xt|vt; θ) from Equa-

tion 4.23, we can now derive the simulated MLE of θ:

θ̂ = arg max︸︷︷︸
θ∈Θ

L̂T (θ), L̂T (θ) =
T∑
t=1

log ĉt(xt|vt; θ). (4.25)

The same draws are used for all values of θ and we may also use the same set

of draws from Fε(·), {εi}Ni , across t. Numerical optimization is facilitated if

L̂T (θ) is continuous and differentiable in θ. Considering Equation 4.23, if K

and θ 7→ qt(v, ε, θ) are s ≥ 0 continuously differentiable, the same holds for

L̂T (θ).

Under the regularity condition, the fact that ĉt(xt|vt; θ)
P−→ ct(xt|vt; θ) im-

plies that also L̂T (θ)
P−→ LT (θ) as N −→ ∞ for a given T ≥ 1. Thus, the

simulated MLE, θ̂, retains the same properties as the infeasible MLE, θ̃, as

T,N −→∞ under suitable conditions.

4.3 Advantages and disadvantages

To quote from Kristensen & Shin (2012, pg. 85), “one of the merits of NPSML

is its general applicability”. Authors also provide three examples of application

of the methodology in their article. The first comprises an estimation of the

short-term interest rate model of Cox et al. (1985). The second applies the

methodology to a jump-diffusion model of daily S&P500 returns by Andersen

et al. (2002). In the third example the general capabilities of the NPSMLE to

estimate a generic Markov decision processes are examined.

Kristensen & Shin (2012) also report several advantages and disadvantages

of the proposed estimator. Starting with the former, the estimator works

whether the observations xt are i.i.d. or non-stationary because the density

estimator based on i.i.d. draws is not affected by the dependence structures in

the observed data. Second, the estimator does not suffer from the curse of

dimensionality, which is usually associated with kernel estimators. In general,

high dimensional models, i.e. with larger k ≡ dim(xt) as we smooth only over

xt here, require larger number of simulations to control the variance component

of the resulting estimator. However, the summation in Equation 4.25 reveals

an additional smoothing effect and the additional variance of L̂T (θ) caused by

simulations retains the standard parametric rate 1/N .
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Conversely, the simulated log-likelihood function is a biased estimate of the

actual log-likelihood function for fixed N and η > 0. To obtain consistency, we

need N −→∞ and η −→ 0. Thus, the parameter η needs to be properly chosen

for given sample and simulation size. In the stationary case, the standard

identification assumption is:

E[log c(xt|vt, θ)] < E[log c(xt|vt, θ0)] ∀ θ 6= θ0. (4.26)

Under stronger identification assumptions, the choice of the parameter η

might be less important and one can prove the consistency of the estimator for

any fixed 0 < η < η̄ for some η̄ > 0 as N −→ ∞ (Altissimo & Mele 2009).

In practice this still requires us to know the threshold level η̄ > 0 but from

the theoretical viewpoint this ensures that parameters can be well identified

in large finite samples after a given η̄ > 0 is set. Moreover, it suggests that

proposed methodology is fairly robust to the choice of η. In their simulation

study, Kristensen & Shin (2012) show indeed that the NPSMLE performs well

using broad range of bandwidth choices.

4.4 Asymptotic properties

As the theoretical convergence of the simulated conditional density towards

the true density is met, we would expect the NPSMLE θ̂ to have the same

asymptotic properties as the infeasible MLE θ̃ for a properly chosen sequence

N = N(T ) and η = η(N). Kristensen & Shin (2012) show that θ̂ is first-order

asymptotic equivalent to θ̃ under set a general conditions, allowing even for

non-stationary and mixed discrete and continuous distribution of the response

variable. Further, using additional assumptions, including stationarity, they

provide results regarding the higher-order asymptotic properties of θ̂ and derive

expressions of the bias and variance components of the NPSMLE θ̂ compared to

the actual MLE due to kernel approximation and simulations.

Therefore, a set of general conditions, satisfied by most models, need to

be verified so that ĉ −→ c sufficiently fast to ensure asymptotic equivalence

of θ̂ and θ̃. Kristensen & Shin (2012) define a set of regularity conditions

on the model and its associated conditional density that satisfy these general

conditions for uniform rates of kernel estimators defined in Kristensen (2009).

The kernel K from Equation 4.23 has to belong to a broad class of so-called

bias high-order or bias reducing kernels. E.g. the Gaussian kernel, which we
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use in Chapter 5, satisfy this condition if r ≥ 2, where r is the number of

derivatives of c. Higher r causes faster rate of convergence and determines the

degree of ĉ bias reduction. Moreover, general versions of conditions usually

required for consistency and well-defined asymptotic distribution (asymptotic

normality) of MLEs in stationary and ergodic models are imposed on actual

log-likelihood function and the associated MLE to ensure the actual MLE θ̃ in

Equation 4.21 is asymptotically well-behaved.



Chapter 5

Monte Carlo study: NPSMLE of

the HAM

This chapter analyses the capability of the NPSMLE methodology for the HAMs

estimation purposes and evaluates small sample properties of the estimator via

an extensive Monte Carlo study. We simulate data from the HAM and employ

the NPSMLE of selected model parameters to analyse how well and under what

conditions is the estimation method able to recover true values of parameters

in the controlled environment. For its conceptual importance, a detailed focus

is devoted to the switching parameter—intensity of choice β.

5.1 Simulation setup for the HAM

In the simulation setup, we follow the previous works of Barunik et al. (2009);

Vacha et al. (2012); Kukacka & Barunik (2013). The joint setup for the basic

HAM model (see Section 4.1) is used for all (if not explicitly stated otherwise)

conducted simulations in this chapter and is defined as follows. The model

we use to generate observations is a very stylised simple version compactly de-

scribed in Hommes (2006, pg. 1169) and consisting of three mutually dependent

equations:
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Rxt =
H∑
h=1

nh,tfh,t + εt ≡
H∑
h=1

nh,t(ghxt−1 + bh) + εt, (5.1)

nh,t =
exp(βUh,t−1)∑H
h=1 exp(βUh,t−1)

, (5.2)

Uh,t−1 = (xt−1 −Rxt−2)
fh,t−2 −Rxt−2

aσ2

≡ (xt−1 −Rxt−2)
ghxt−3 + bh −Rxt−2

aσ2
, (5.3)

where εt (which coincides with εt in Equation 4.19) is an i.i.d. noise term

sequence with given distribution1 representing the market uncertainty and un-

predictable market events.

In order to run the model in various different settings, we inevitably need

to fix several variables less important for the dynamics of the model to enable

estimation of the key parameters. First, we set the constant gross interest rate

R = 1+r = 1.0001 to resemble real market risk free rate. Assuming 250 trading

days per year and daily compounding, this daily value represents circa 2.5%

annual risk free interest rate which is a reasonable approximation. Although

this figure is not based on any rigorous calibration or taken from a specific

study, similar values are largely used in various financial and macroeconomic

works. Moreover, as we show in further analysis, the model exhibits consid-

erable robustness w.r.t. various reasonable risk free values and thus there is

no need for more precise derivation of this parameter. We further fix the lin-

ear term 1/aσ2 (comprising the risk aversion coefficient a > 0 and the beliefs

about the conditional variance of excess returns σ2) to 1. The similar setting

has already been succesfully used in previous works of Barunik et al. (2009);

Vacha et al. (2012); Kukacka & Barunik (2013). It is important to note that

a and σ2 are only scale factors for the profitability measure U . Their magni-

tudes do not affect relative proportions of Uh,t and thus do not influence the

dynamics of the model output, that is on the contrary usually characterised

by time-varying variance. In other words, although we assume constant σ2,

the output time series generated by the model does not have constant vari-

ance. Strategy-specific ah or time-varying σ2
h,t are appealing concepts mainly

for simulation analyses of HAMs (see e.g. Gaunersdorfer 2000; Chiarella & He

1Various specifications of normal and uniform distributions are utilised in Chapter 5,
standard deviation of a normal distribution is estimated in Chapter 6.
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2002; Amilon 2008). Moreover, we intentionally use relatively small number

of possible trading strategies following (Kukacka & Barunik 2013), H = 5, for

the general model setting or H ∈ {2, 3} for so called 2-type and 3-type model,

respectively (Chen et al. 2012). Following Hommes (2006) via Equation 5.3,

neither ‘dilution parameter’ of the past memory η nor information costs C for

fundamentalists are implemented into the basic model setup to keep the dy-

namics of the model and impacts of assessed modification as clear as possible.

Indeed, also Brock & Hommes (1998) mostly set C = 0 to keep simplicity of

the analysis and work with models without memory, i.e. they set the η = 0

(see Subsection 4.1.2) to keep derivations analytically tractable.

Within the Monte Carlo method, several parameters are repeatedly ran-

domly generated to obtain statistically valid inference. Following the previous

works by Barunik et al. (2009); Vacha et al. (2012); Kukacka & Barunik (2013),

trend parameters gh are drawn from the normal distribution N(0, 0.42) and bias

parameters bh are drawn from the normal distribution N(0, 0.32). ‘Strict’ fun-

damental strategy in the sense of the original Brock & Hommes (1998, pg.

1245) article appears in the market by default, i.e. the first strategy is always

defined as g1 = b1 = 0 and therefore fundamentalists are always present on the

market.

In the Monte Carlo simulations, we first study the capabilities of the NPSMLE

under various levels of the switching parameter—intensity of choice β. As dis-

cussed in Section 2.3, literature estimating β using real marked data is relatively

scarce because of difficulties arising from the nonlinear nature of the HAM.

Thus, β still remains a rather theoretical concept. Larger β implies higher

willingness of agents to switch between available trading strategies based on

their relative profitability—the best strategy attracts the most agents at each

period. On the one hand, comprising the large variety of possible β values

might seem as a dominant simulation strategy, on the other hand one has to

consider computational burden of the simulation process in real time. What

is perhaps even more important is to consider intensity of choice β from the

economic viewpoint. First, high values give rise to unrealistically high switch-

ing frequency, which is hardly to be observed among market agents in reality.

Next, negative β does not make any economic sense in the presented model

framework as it causes inverse illogical switching towards less profitable strate-

gies. Although the intensity of choice β cannot be directly rigorously compared

across various models, assets, or time periods (see discussion in Section 2.3), we

utilise the general knowledge of previous estimation efforts for models sharing
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similar framework to set meaningful simulation grids in this chapter. When

referring to literature review (see Section 2.3 and Subsection 2.4.6), in vast

majority of research articles sharing the ABS framework derived from Brock &

Hommes (1998), β is found single-digit and often close to zero, that well resem-

bles the economic intuition of some, but realistically low switching frequency

between major types of trading strategies. Thus, we employ relatively rich,

but reasonable discrete range of βs in our simulations: {0, 0.1, 0.5, 1, 3, 5, 10}.
It is far beyond the scope of this work to provide a deep analysis of the model

behaviour, e.g. how the intensity of choice β influences the dynamics of the

model that can under some setting even generate purely chaotic behaviour.

Many studies have been devoted to this generally difficult issue in past two

decades. In this context we refer the interested reader to the original paper of

Brock & Hommes (1998) containing comprehensive model dynamics analysis,

extensive studies by Hommes (2006), Hommes & Wagener (2009), Chiarella

et al. (2009), or the recent book summarising 20 years of research on the Het-

erogeneous Expectations Hypothesis by Hommes (2013).

Next, as discussed by Amilon (2008), the magnitude of noise term has to

be considered carefully. Noise is an inevitable part of the model as it repre-

sents the market uncertainty and unpredictable market events, but it must not

overshadow the effect of variables under scrutiny. As mentioned in Kukacka &

Barunik (2013), although varying noise variance can cause some minor changes

in model outcomes, the analysed HAM embodies major similarities across var-

ious noise. Although theoretically the Fε from which the {εi}Ni=1 are drawn

to simulate {Xθ
t,i}Ni=1 (Equation 4.22) is a generic known distribution, the as-

sumptions about market noise can play crucial role in the NPSMLE application

to real world data. Therefore we test the model sensitivity and robustness of

proposed methodology using 30 stochastic noise specifications from an exten-

sive range drawn a) from various normal distributions and b) from the uniform

distributions

1. that cover the same intervals as are covered by their respective normal

counterparts by the 99.74% of the probability mass;

2. with the same variances as their respective normal counterparts.

Detailed description of all 30 stochastic noise specifications can be found in

Table 5.1 (specification for normal distributions), Table 5.4 (specification for

uniform distributions of the 1. type), and Table 5.5 (specification for uniform
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distributions of the 2. type). Basically, for the normally distributed noise the

range extends from a ‘miniscule’ standard deviations SD = 10−8, 10−7, 10−6 [a

value used by Hommes (2013, pg. 170, 174, 177) in a similar model setting], or

10−5, followed by ‘small’ standard deviations SD = 10−4, 10−3, 0.01 [another

value used by Hommes (2013, e.g. pg. 171) in a similar setting], standard

normal SD = 1, and finally a relatively large ‘experimental’ standard devia-

tion SD = 2. The sensitivity analysis of the NPSMLE method to the stochastic

noise specification is based on the normality assumption. The normal distri-

bution of market noise seems reasonably realistic and similar assumption has

already been used in related studies, where “the non-linear models are fed with

an exogenous stochastic process, but the noise process is ‘nice’, which in this

case means that it is normally distributed”, as pointed out by Amilon (2008,

pg. 344). We also utilise the favourable theoretical properties of the Gaussian

kernel (Kristensen & Shin 2012, pg. 81) in Equation 4.23. To check the robust-

ness of the method, we concur the previous research in Barunik et al. (2009);

Vacha et al. (2012); Kukacka & Barunik (2013)—where uniform stochastic noise

specification is utilised—and compare and contrast the results based on nor-

mally distributed noise to the two rather extreme and economically unrealistic

uniform variants defined above. We intentionally do not consider any at first

sight soliciting heavy-tailed noise distribution. The fact that financial data are

heavy-tailed does not suggest any specific distribution of the market noise. In

fact, the situation is opposite. The attractiveness of the HAM is based on its

ability to produce heavy-tailed distribution of model output although we input

normally distributed stochastic noise. Thus the HAM explains one of the most

important stylised facts of financial time series via endogenous interactions of

fundamentalists and boundedly rational chartists, not as an effect of a specific

distribution of noise input. Finally, five lengths of the resulting series entering

the NPSMLE algorithm are used: 100, 500, 1000, 5000, and 10000, and first 100

observations from the HAM are always discarded2 as initial period, where the

model dynamic is being established.

5.2 Simulation setup for the NPSMLE

We follow the Kristensen & Shin (2012) methodology used for the estimation of

the Cox et al. (1985) short-term interest rate model. However, we examine and

2We always simulate 100 extra observations to be discarded so that we finally get the
intended length of the series with stable dynamics without the initialisation period.
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Figure 5.1: Pre-estimation performance for selected βs
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Note: Results based on 100 random runs, number of observations t = 1000, and the kernel estimation
precision N = 100, initial point drawn from uniform distribution U(0, 30). Stochastic noise εt and {εi}Ni=1
drawn from standard normal distribution N(0, 1). Black dotted vertical lines depict the true βs. Produced
using automatic SmoothHistogram kernel approximation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.

adapt the setup for the purposes of the HAM. As discussed in Section 4.3, there

are two main trade-offs: between the precision of the kernel estimation and the

computational burden, and between the smoothness of the kernel estimation

and the bias.

As we are the first to apply a very recent NPSMLE methodology on a well-

known HA modelling framework, we can only partially base our simulation setup

on some results from literature. For this reason, we elaborate an extensive

Monte Carlo simulation testing of the robustness of our findings. First, to

analyse statistically valid results, we start from the benchmark in Kristensen &

Shin (2012) and compare the simulations of 100, 500, and 1000 runs. Moreover,

three levels of the kernel estimation precision are considered, namely N = 100,

N = 500, and N = 1000. It is important to note that the same draws {εi}Ni=1

are used to generate the simulations {Xθ
t,i}Ni=1 over time.

Second, the numerical algorithm is designed to find an optimum of either un-

constrained or constrained multivariable function. As discussed in Section 5.1,

we expect β to be non-negative but rather small, i.e. single-digit. Using pre-

estimation step with unconstrained parameter space we can obtain reasonably

sufficient preliminary knowledge about the approximate true value of estimated

parameters even for computationally feasible setting. This general principle of

a preliminary rough search followed by a fine-tuning on a considerably re-
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stricted subset of the parameter space is successfully applied e.g. in Chen

& Lux (2015) for MSM estimation. In Figure 5.1 we demonstrate the pre-

estimation performance via smooth histograms of β̂ based on a setting which

can be easily computed using a personal computer within several minutes:

β ∈ {0.5, 3, 10}, 100 runs, number of observations t = 1000, kernel estimation

precision N = 100, εt and {εi}Ni=1 drawn from standard normal distribution,

and the initial point drawn from uniform distribution covering a broad interval

〈0, 30〉. We can observe how the peak of the distribution approximately detects

the true value of β which helps us to constrain the parameter space in the next

step. In subsequent—this time computationally very extensive—optimisation

of the constrained function to fine-tune the precision of estimates we can there-

fore opt for relatively narrow bounds of the parameter space set as 〈−β, 3β〉 for

β ≥ 0 and 〈−0.5, 0.5〉 for β = 0.3 For the 2-type model simulation estimation

study (see Subsection 5.3.2), we use even wider and off-centered interval for the

bounds of the parameter space set as 〈−3|g2|, 3|g2|〉 and 〈−3|b2|, 3|b2|〉, respec-

tively, to allow for possible negative values, and 〈−0.5, 0.5〉 for β = 0. For the

3-type model simulation estimation study (see Subsection 5.3.3), it is, however,

important to limit bounds by zero from one side, i.e. 〈0, 3|g2|〉, 〈−3|g3|, 0〉 to

avoid problems with insufficient specification of the model leading to ambiguous

bimodal distributions of estimated parameters. The same intervals are used for

a random draw of a single4 starting point of the optimisation search procedure

which is drawn from the uniform distributions.

Third, to estimate the conditional density ct(x|v; θ) with the kernel method

(Equation 4.23), the Gaussian kernel and the Silverman’s (1986) rule of thumb

for finding the optimal size of the bandwidth:

η =

(
4

3N

)1/5

σ̂, (5.4)

where σ̂ denotes the standard deviation of {Xθ
t,i}Ni=1, are employed.

Additionally, Kristensen & Shin (2012, pg. 82) suggest undersmoothing

option for the bandwidth size selection concluding that “simulation results

3This extended range of the parameter space bounds covering also economically irrelevant
negative values is used to ensure the robustness of the method and not imposing excessive
demands on the precision of the unconstrained pre-estimation. Moreover, not allowing for
negative values might naturally lead to an upward bias of the simulated estimator especially
for βs close to 0.

4Kristensen & Shin (2012) use multiple starting points for the numerical optimisation
but for the HAM estimation purposes in a simulated environment the single starting point is
sufficient bringing the merits of markedly reduced computational time and burden.
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indicate that standard bandwidth selection rules together with a bit of under-

smoothing in general deliver satisfactory results”. Moreover, as found by Jones

et al. (1996), smaller bandwidths are better for larger kernel approximation

precision, “because the estimator should be ‘more local’ when more informa-

tion is present, and when the density is rougher, because the bias effect is

stronger”. However, we do not use the undersmoothing option in our numeri-

cal algorithm as for HAM the methodology is robust in this aspect and various

levels of undersmoothing do not change the outcomes.5

5.3 Monte Carlo results

In all simulations we are concerned in questions how accurately is the method

able to recover the true values and how robust is the method with respect to

various settings. For this reason, all tables (but not figures) in this chapter

always report results based on 1000 random runs, number of observations t =

5000, and the kernel estimation precision N = 1000 i.i.d. draws from given

distribution. Sample medians and means of the estimated values together with

standard deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported.

‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to

integer numbers.6

5.3.1 β estimation in the general model

First and foremost, we assess the simplest but also the most crucial case of β

estimation in the general model with H = 5 possible trading strategies. The

intensity of choice β is the most important parameter influencing the dynamics

of the system through the multinomial logit model of a continuous adaptive

evolution of market fractions in Equation 4.16. Not only its magnitude between

two extreme cases β = 0 and β = ∞ is important, but β also determines the

type of the model equilibrium that can generally take the form of a (multiple)

steady state(s), cycles, or even chaotic behaviour. The intensity of choice β is

also crucial for its conceptual importance—it represents the dominant approach

how the boundedly rational choices of agents are mathematically modelled in

the current literature (see discussion in Subsection 2.4.2 and the ABS origin of

models in Tables 2.1 and 2.2).

5Results of this testing are available upon request from authors.
6We comment more on the issue of possible occurrence of ‘NaN’ outcome from the NPSMLE

procedure in the following Subsection 5.3.1.
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Figure 5.2: Simulation results for various number of runs and βs I.

(a) 100 runs, β = 0, N(0, 22)
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(c) 500 runs, β = 0, N(0, 22)
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(d) 500 runs, β = 0.5, N(0, 1)
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(e) 1000 runs, β = 0, N(0, 22)
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(f) 1000 runs, β = 0.5, N(0, 1)
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Note: Stochastic noise εt and {εi}Ni=1 drawn from given normal distributions. Black dotted lines with ×
depict the true β. Grey full lines depict sample means of estimated β. Grey dashed lines depict 2.5% and
97.5% quantiles. Light grey colour represents results for N = 100, normal grey for N = 500, and dark grey
for N = 1000. ‘t’ (horizontal axis) stands for the length of generated time series.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 5.3: Simulation results for various number of runs and βs II.

(a) 100 runs, β = 3, N(0, 0.12)
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(b) 100 runs, β = 10, N(0, 0.12)
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(c) 500 runs, β = 3, N(0, 0.12)
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(d) 500 runs, β = 10, N(0, 0.12)
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(e) 1000 runs, β = 3, N(0, 0.12)
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(f) 1000 runs, β = 10, N(0, 0.12)
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Note: Stochastic noise εt and {εi}Ni=1 drawn from given normal distributions. Black dotted lines with ×
depict the true β. Grey full lines depict sample means of estimated β. Grey dashed lines depict 2.5% and
97.5% quantiles. Light grey colour represents results for N = 100, normal grey for N = 500, and dark grey
for N = 1000. ‘t’ (horizontal axis) stands for the length of generated time series.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Despite of its relative simplicity, the setting is otherwise very challenging

as capturing the effect of the switching coefficient β is generally difficult (see

Section 2.3). Moreover, algorithm with a single starting point for the numerical

optimisation and new random draws of the parameters gh and bh, h ∈ {2, 3, 4, 5}
for each independent run require very robust performance of the search proce-

dure.

Qualitative results

We primarily aim to verify whether important theoretical properties of the

estimator, the consistency and asymptotic efficiency, also hold in small samples

for the model. In Figures 5.2 and 5.3 we depict and describe a ‘snapshot’ of

simulation results for four interesting values of the intensity of choice β ∈
{0, 0.5, 3, 10} combined with three specifications of the stochastic noise: εt ∼
N(0, 22), εt ∼ N(0, 1) and εt ∼ N(0, 0.12). First, we can clearly observe how the

method is able to reveal the true value of β demonstrated by black dotted lines

with ×. Grey full lines depict the sample means of estimated βs and closely

follow the true line. The small departures are naturally mainly observable for

the smallest considered number of runs 100 [subfigures (a) and (b)] and for the

smallest considered length of generated time series (number of observations) t =

{100, 500}. Equally importantly, we can clearly observe the consistency of the

estimator and how the efficiency of the mean estimate increases simultaneously

with increasing length of generated time series t as well as the precision of the

kernel estimation N . The precision is demonstrated by different shades of grey

dashed lines depicting 2.5% and 97.5% quantiles of estimated parameters β.

The shift from a relatively orderless pattern observed for 100 runs [subfigures

(a) and (b)] to very exemplary theoretically expected pattern with grey dashed

lines nearly aligned according to increasing kernel estimation precision (from

light grey farther and dark grey closer to the true/mean value) in (e) and (f)

is obvious. The difference is much evident between N = 100 (light grey) and

two higher values, for N = {500, 1000} dashed lines are often very close to

one another. The line representing N = 500 actually appears closer to the

mean value in some cases, indicating the sufficiency of the N = 500 kernel

approximation precision. Increasing statistical validity of results is apparent

via rising number of runs starting at 100. Number of runs 500 seems sufficient

in terms of only small differences compared to 1000 runs. In the right column

of Figure 5.3 for β = 10 the shift from the case of 100 runs (b) to the case
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of 1000 runs (f) is not so substantive as in the previous cases and we assign

this to a more stable behaviour of the NPSMLE method under various settings

caused by value of β farther from 0. But on the other hand, consistency of

the estimator and the growth of efficiency of the mean estimate with increasing

lengths of generated time series t and the precision of the kernel estimation N

is well observable also in this setting.

Focusing further on the right column of Figure 5.2 and the left column

of Figure 5.3, we moreover observe an important result from the economic

interpretation point of view of the β parameter value. Although only the non-

negative values of β have an economic interpretation,7 in simulations we also

allow for negative estimated values (for details of the simulation setup please

refer to Section 5.1 and Section 5.2) to test the capability of the method even for

such extreme values and to avoid the upward bias of the estimator. However,

the most important result is that using a reasonably robust setting [e.g. number

of runs 500 and precision of the kernel estimation N = 500] we obtain more

than 97.5% non-negative observation (represented by the bound of the 2.5%

quantile to be found in the positive half-plane) for β = 10 even when length

of generated time series t = 100, for β = 3 when t
.
= 500, and for β = 0.5

when t
.
= 1000. At the same moment 95% of observation appear reasonably

close to the true value, far from the numerical bounds of the parameter space

imposed to make the constrained optimisation computationally feasible. These

features have important favourable consequences for application of the method

to datasets of various lengths—we should be able to detect even very weak signs

of behavioural switching in long-span daily financial data, but also stronger

signs of switching in macroeconomic data where typically lower-frequency time

series of shorter lengths are available. W.r.t. the complexity of the estimation

issue in the nonlinear HAM setting with five repeatedly randomly generated

strategies (as well as to many other estimation attempts from Chapter 2 that

have found the switching coefficient insignificant), we consider our results very

promising. The most important property of the estimation method in the

current setting is the ability to distinguish between statistically significant and

insignificant β and this objective is well achieved.

Figures 5.2 and 5.3 also allow for comparison between estimation of models

with and without switching. The left column of Figure 5.2 represents the model

7β < 0 for which we technically allow implies switching of agent towards less profitable
strategies, unambiguously economically irrational behaviour.
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without switching (β = 0), the right column and Figure 5.3 illustrate estimation

performance for models with switching (β > 0).

Quantitative results

Now we move from the graphical to the quantitative description of simulation

results. We now consider only the second most robust setting combination

which proved optimal, i.e. results based on 1000 random runs, length of gener-

ated time series (number of observations) t = 5000, and the kernel estimation

precision N = 1000 i.i.d. draws from given distribution. First we comment on

the robustness of the method w.r.t. various noise specifications used both for

generating the stochastic term εt in Equation 5.3 as well as for N i.i.d. draws,

{εi}Ni=1, to simulate N i.i.d. random variables, {Xθ
t,i}Ni=1, used for the kernel

estimation of the conditional density. Again, following results offer a direct

comparison between estimation of models with and without switching as first

rows of all panels in all tables in Subsection 5.3.1 always represent the model

setting without switching (β = 0).

Interpreting results in Table 5.1, the big picture seems promising for the

NPSMLE method. We can observe relatively stable results over a reasonable grid

of noise specifications and therefore the important issue of the robustness of the

method is verified. Focusing on first columns containing the sample medians

and means of the estimated values (denoted ‘Med.’ and ‘Mean’), we reveal the

ability of the method to recover the true values of the intensity of choice β

coefficient with very high precision over all noise specification. Median value is

generally more precisely estimating the true value but the difference is negligible

in majority of cases. Only for two most intensive noises in combination with

higher values of the β coefficient, the mean estimate gives considerably better

results. Comparing the third columns displaying related standard deviations

we observe statistical significance of estimates for majority of combinations

of the true β and the magnitude of noise. Generally the specifications with

the smallest noises [subparts (a) and especially (b)] appear markedly more

precise in estimating the lowest βs = {0, 0.1, 0.5} with only noise specification

(b) having real ability estimate zero β with reasonable precision as we can

observe using 2.5 (LQ) and 97.5 (HQ) quantile figures. On the other hand, the

specifications with almost largest noises [subparts (i) and especially (h)] appear

the most precise in estimating higher βs = {1, 3, 5, 10}. Values of the intensity

of choice β very close to zero, β = {0.1, 0.5}, are the most difficult to estimate.
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Table 5.1: Results for β estimation with normal noise

β (a) β̂, N(0, 10−16) (b) β̂, N(0, 10−14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 .00 .03 -.02 .04 41% -.00 -.00 .07 -.15 .11 2%
.1 .10 .10 .02 .08 .12 17% .10 .10 .05 -.03 .21 0%
.5 .50 .50 .05 .47 .54 54% .50 .50 .11 .40 .67 7%
1 1.00 .99 .08 .91 1.05 70% 1.00 1.00 .18 .84 1.15 22%
3 3.00 3.02 .17 2.88 3.38 86% 3.00 3.01 .35 2.77 3.35 43%
5 5.00 5.08 .90 4.88 5.20 89% 5.00 4.99 .29 4.74 5.16 59%

10 10.00 9.98 .07 9.78 10.10 95% 10.00 9.99 .29 9.57 10.54 72%

(c) β̂, N(0, 10−12) (d) β̂, N(0, 10−10)

0 .00 -.01 .17 -.46 .41 0% .00 .01 .24 -.49 .49 0%
.1 .10 .10 .11 -.10 .30 0% .09 .09 .13 -.10 .30 0%
.5 .50 .49 .26 -.19 1.15 0% .50 .49 .36 -.37 1.29 0%
1 1.00 .99 .33 .28 1.78 0% 1.00 1.00 .50 -.22 2.25 0%
3 3.00 3.01 .60 2.21 3.78 3% 3.01 3.02 1.07 .39 5.31 0%
5 5.00 4.97 .62 4.12 5.59 10% 5.01 4.97 1.39 2.51 6.83 2%

10 10.00 9.96 1.04 8.91 11.00 33% 10.01 9.80 2.10 5.93 11.29 20%

(e) β̂, N(0, 10−8) (f) β̂, N(0, 10−6)

0 -.00 -.00 .23 -.48 .48 0% -.00 -.01 .23 -.46 .46 0%
.1 .11 .11 .12 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .49 .33 -.30 1.21 0% .49 .47 .35 -.37 1.26 0%
1 1.01 1.04 .50 -.09 2.36 0% 1.01 1.04 .51 -.10 2.43 0%
3 3.01 3.03 .91 1.33 5.07 0% 2.99 3.00 .95 .93 5.03 0%
5 4.99 5.01 1.27 3.13 6.90 2% 5.00 4.98 1.19 2.52 6.52 2%

10 10.00 10.02 2.28 7.85 12.48 19% 9.99 9.94 2.00 6.83 11.61 19%

(g) β̂, N(0, 0.012) (h) β̂, N(0, 0.12)

0 .01 -.00 .23 -.49 .45 0% .01 .01 .22 -.45 .46 0%
.1 .09 .10 .12 -.10 .30 0% .11 .11 .12 -.10 .30 0%
.5 .50 .49 .34 -.32 1.26 0% .50 .50 .35 -.35 1.30 0%
1 .99 .99 .52 -.35 2.31 0% .99 1.00 .50 -.19 2.46 0%
3 3.01 3.00 .89 1.04 4.74 0% 2.99 3.05 1.00 1.48 5.86 0%
5 5.01 5.01 1.26 2.39 7.11 2% 4.99 5.05 1.21 3.75 6.81 1%

10 10.00 9.85 2.42 5.97 11.90 13% 9.99 9.99 2.22 7.57 11.64 3%

(i) β̂, N(0, 1) (j) β̂, N(0, 22)

0 .00 .00 .11 -.24 .23 0% -.00 -.00 .05 -.08 .08 0%
.1 .11 .11 .08 -.09 .30 0% .10 .10 .04 .01 .20 0%
.5 .50 .51 .14 .23 .81 0% .50 .51 .11 .33 .72 2%
1 1.00 1.01 .23 .66 1.45 1% 1.01 1.05 .27 .71 1.76 4%
3 3.07 3.59 1.41 2.35 7.93 3% 3.34 4.01 1.69 2.14 8.49 35%
5 5.61 7.23 3.30 3.82 14.41 8% 4.96 5.01 1.64 2.57 8.44 64%

10 11.20 13.43 6.31 5.16 28.13 23% 7.77 5.63 5.87 -9.53 10.64 96%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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This is, however, almost the extreme case of no switching of agents among

possible strategies in which the dynamics of the model is restrained as there is

only a small difference of the model behaviour compared to the agents’ absolute

inertia case with β = 0. These are crucial findings highlighting the necessity

of a proper noise specification within the estimation procedure. Larger noises

seem to stabilise the system but overshadow the effect of switching under low βs

and therefore favour estimation of higher βs. Lower βs require small noises for

the effect of switching to be detectable. A puzzling result is then the subpart

(h) with the largest noise intensity N(0, 22) estimating the lowest βs with high

precision.

Another emerging issue is the occurrence of ‘Not a Number’ outcomes from

some runs of the NPSMLE procedure. This is reported via the NN column

as the percentage of the ‘NaN’ outcomes. Technical reason behind the ‘NaN’

emergence is that the HAM algorithm does not converge into a stationary series

in the particular run and the NPSMLE algorithm therefore produces a ‘NaN’

outcome. As we can see in Table 5.1, this situation is typical mainly for small

distribution intervals of the stochastic noise εt that do not always suffice to

stabilise the system [see subparts (a) and (b)] and for highest values of the

intensity of choice β [see subparts (i) and especially (j)] increasing switching

dynamics in the model, particularly when these two effects combine together.

We can interpret this as a specific kind of censorship of results as these runs are

not considered for calculation of reported values. We do not consider results

with high number of ‘NaN’ outcomes relevant within this analysis, however,

we keep displaying them to retain the completeness of provided information

as well as an optimal warning signal of an improper behaviour of the system

under scrutiny. We can also observe signs of upward and downward biases of

the estimates in cases of largest distribution intervals of the stochastic noise

εt when combined with highest βs [see subparts (i) and (j)] but this might

just be an effect of this data censorship as all such cases are accompanied with

occurrence of ‘NaN’ outcomes. Finally, one might notice that our grid of noise

specifications in Table 5.1 to a great extent covers the entire range of reasonable

values w.r.t. the ‘NaN’ emergence issue affecting estimation results crucially

both for the smallest noises [see subparts (a) and (b)] as well as for the noise

specifications with the largest standard deviation [subpart (j)]. Decreasing

or increasing the noise intensity behind these bounds in specified setup leads

to even less relevant results and therefore is not considered. As the ‘NaN’

emergence censoring estimation results might be a serious issue, it definitely
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needs more assessment in the next part of the study (see Section 5.3.1 and

Subsection 5.3.2 for further discussion).

As we need to reduce the large grid of stochastic noise specification for

other applications in Chapter 5, taking all discussed aspects into account, we

select the two most ‘successful’ specifications, namely N(0, 0.12)—especially

for larger β = {3, 5, 10}—and N(0, 1)—especially for smaller βs = {0.5, 1}).8

They produce estimates with low standard errors for majority of βs considered,

they are not accompanied with excessive number of ‘NaN’ outcomes, and they

appear reasonably realistic w.r.t. the empirical application in Chapter 6 where

we analyse time series of price deviations implying higher standard deviations of

the assumed stochastic market noise. Figure 5.4 depicts smooth histograms of

selected estimated βs based on these three noise specifications. One can clearly

observe how the noise specification N(0, 0.12) performs best for β = {3, 10},
N(0, 1) for β = 0.5, and N(0, 22) for β = 0.

Behaviour of the simulated log-likelihood function

Kristensen & Shin (2012, pg. 80–81) define a set of regularity conditions A.1–

A.4 regarding the model and its associated conditional density that ensure

sufficiently fast convergence of ĉ −→ c and thus asymptotic equivalence of θ̂

and θ̃. These conditions basically impose restrictions on the data-generating

functions and the conditional density that is being estimated. With regard

to data-generating functions, authors argue that the “smoothness conditions

are rather weak, and satisfied by most models”. For the conditional density

function, they state that “the assumptions are quite weak and are satisfied

by many models”. However, for the HAM, we are not able to verify these

conditions analytically and we must rely on graphical computational tools.

Another important issue regards the identification of parameters in the model

assuring uniqueness of the set of estimates.

For both purposes, we draw the simulated log-likelihood function and ver-

ify an existence of a unique maximum. We depict simulated log-likelihood

functions for the same four interesting values of the intensity of choice β ∈
{0, 0.5, 3, 10} combined with three specifications of the stochastic noise: εt ∼
N(0, 22), εt ∼ N(0, 1) and εt ∼ N(0, 0.12) as in Section 5.3.1. In Figure 5.5

we clearly observe very smooth shape of the functions over the entire assessed

domain with a unique maximum generally shared for all of 100 random runs.

8Moreover, for extreme cases βs = {0, 0.1} noise N(0, 22) seems optimal.
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Figure 5.4: Smooth histograms for selected β̂s
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(g) β = 3, N(0, 0.12)
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(i) β = 3, N(0, 22)
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(j) β = 10, N(0, 0.12)
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Note: Stochastic noise εt and {εi}Ni=1 drawn from given normal distributions, R = 1.0001. Each sample is
based on 1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the
kernel estimation precision N = 1000. Black dotted lines depict the true βs. Produced using automatic
SmoothHistogram kernel approximation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.



5. Monte Carlo study: NPSMLE of the HAM 99

Figure 5.5: Shape of the simulated log-likelihood function

(a) β = 0, N(0, 22)
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(b) β = 0.5, N(0, 1)
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(c) β = 3, N(0, 0.12)
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Note: Results based on 100 random runs, number of observations t = 5000, and the kernel estimation
precision N = 1000. Stochastic noise εt and {εi}Ni=1 drawn from given normal distribution. Black dotted
vertical lines depict the true βs. Bold black full lines depict sample averages.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.

Bold black full lines then represent sample averages over these 100 runs and

brings the aggregate information,9 which is, however, obvious also directly from

the set of 100 original simulated log-likelihood functions. Based on generally

smooth shapes and unique optima of the simulated log-likelihood functions we

assume that the regularity conditions are met for the HAM and the identification

9The only violation of the smoothness of the averaged function appears in subpart (d)
with relatively high value β = 10 where for several runs the model diverges. Disruptions of
the averaged function are thus only of the technical origin when depicting, not the feature
of the function itself.
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of parameters is also assured.

Robustness check

To assess the robustness of our general model setting, we contrast the results in

Table 5.1 with several setup modifications. First, in Table 5.2 we consider 10

times higher gross interest rate R = 1+ r = 1.001 representing real market risk

free rate. This daily value unrealistically represents circa 28.4% annual risk free

interest rate that can nonetheless serve as a useful robustness check. The only

considerable effect appears in the increased probability of a ‘NaN’ outcome for

the smallest distribution intervals of the stochastic noise εt [see subparts (a),

(b), and (c)]. Conversely, for larger distribution intervals of the stochastic noise

εt the results are comparable and largely similar. This is another important

finding mainly for the empirical application in Chapter 6 where time series

of price deviations are likely to be associated with higher standard deviation

of the assumed stochastic market noise. The robustness of the method w.r.t.

assumption of the real market risk free rate therefore relaxes the need of a very

precise derivation of this parameter for various countries and historical periods

and the reasonable approximation R = 1 + r = 1.0001 representing circa 2.5%

annual risk free interest rate can be generally used in Chapter 6.

Second, we test the ability of the estimation method to provide unbiased es-

timates even if bounds of the parameter space are off-centered, more specifically

shifted up by 50% of actual β to 〈−0.5β, 3.5β〉 for β > 0 and to 〈−0.375, 625〉
for β = 0. When results of this testing summarized in Table 5.3 are compared

to the original results in Table 5.1, we clearly observe expected shift in the 2.5

(LQ) and 97.5 (HQ) quantiles of the estimate distribution but the ability of

the NPSMLE method to reveal true parameter with high precision remains unaf-

fected and the standard deviations are to a great extent similar to the original

settings. We therefore verified that there is no need of an excessive precision of

the unconstrained pre-estimation via which we define bounds of the parameter

space for the constrained optimisation.

We further test how is the NPSMLE method performance affected by assump-

tion of another than normal distribution of the stochastic noise εt. For that

purpose we select uniform distribution both for its simplicity as well as for its

feature of being the maximum entropy probability distribution of its family of

symmetric probability distributions. As the assumption of normal distribution

of stock market noise seems reasonably realistic (see discussion in Section 5.1),
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Table 5.2: Results for β estimation with normal noise, R = 1.001

β (a) β̂, N(0, 10−16) (b) β̂, N(0, 10−14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .04 -.00 .01 83% -.00 -.00 .02 -.03 .02 39%
.1 .10 .10 .01 .10 .11 72% .10 .10 .02 .08 .12 17%
.5 .50 .50 .01 .49 .52 90% .50 .50 .05 .47 .55 56%
1 1.00 1.01 .10 .97 1.03 93% 1.00 1.00 .10 .95 1.11 69%
3 3.00 3.00 .03 2.94 3.15 96% 3.00 3.00 .03 2.94 3.07 86%
5 5.00 5.03 .23 4.49 5.84 98% 5.00 5.05 .44 4.86 5.28 90%

10 10.00 10.01 .01 10.00 10.04 99% 10.00 9.65 2.50 9.07 10.08 94%

(c) β̂, N(0, 10−12) (d) β̂, N(0, 10−10)

0 .00 .00 .08 -.12 .16 2% .00 .00 .18 -.46 .44 0%
.1 .10 .10 .05 -.07 .24 0% .10 .10 .10 -.10 .30 0%
.5 .50 .50 .11 .34 .66 7% .50 .49 .24 -.13 1.01 0%
1 1.00 .99 .15 .85 1.17 19% 1.00 1.00 .28 .49 1.58 0%
3 3.00 2.99 .29 2.77 3.21 43% 3.00 2.98 .41 2.18 3.60 3%
5 5.00 5.01 .21 4.74 5.38 59% 5.00 4.98 .84 4.19 5.76 10%

10 10.00 9.97 .47 9.60 10.24 73% 10.00 9.96 .94 9.08 10.88 30%

(e) β̂, N(0, 10−8) (f) β̂, N(0, 10−6)

0 -.00 -.00 .25 -.50 .50 0% .00 .00 .23 -.46 .48 0%
.1 .09 .09 .13 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .34 -.25 1.32 0% .50 .51 .34 -.29 1.35 0%
1 .98 .97 .52 -.32 2.18 0% 1.02 1.03 .52 -.37 2.41 0%
3 3.00 2.97 .87 .79 4.40 0% 3.00 2.98 1.01 .44 4.86 0%
5 5.00 4.97 1.22 3.10 6.74 3% 4.99 4.96 1.56 1.59 7.41 3%

10 9.99 9.95 1.55 7.98 11.45 19% 9.99 10.04 2.04 8.29 11.97 17%

(g) β̂, N(0, 0.012) (h) β̂, N(0, 0.12)

0 -.00 -.00 .23 -.47 .45 0% -.01 -.01 .22 -.47 .43 0%
.1 .10 .10 .12 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .35 -.30 1.30 0% .50 .50 .36 -.32 1.35 0%
1 1.00 .99 .55 -.43 2.40 0% 1.01 1.02 .52 -.28 2.38 0%
3 3.01 3.04 1.02 .87 5.48 0% 3.00 3.00 .90 1.16 4.85 0%
5 5.00 4.98 1.51 2.77 7.55 3% 4.99 4.98 1.41 2.90 7.09 0%

10 10.01 9.87 2.31 4.97 11.58 16% 10.01 10.07 1.83 8.82 12.20 1%

(i) β̂, N(0, 1) (j) β̂, N(0, 22)

0 .00 .00 .10 -.23 .22 0% .00 .00 .05 -.08 .10 0%
.1 .10 .10 .09 -.10 .30 0% .10 .10 .04 -.00 .18 0%
.5 .50 .50 .14 .24 .80 0% .50 .51 .10 .36 .73 2%
1 1.00 1.02 .20 .66 1.43 1% 1.01 1.06 .31 .71 2.03 4%
3 3.08 3.58 1.38 2.36 7.79 4% 3.40 3.93 1.57 2.11 8.36 34%
5 5.54 7.21 3.25 3.77 14.39 6% 5.03 5.25 1.67 2.80 9.13 63%

10 10.87 12.84 6.09 4.87 27.55 25% 6.14 3.97 6.82 -9.84 11.22 97%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distributions of given parameters, R = 1.001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000. and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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Table 5.3: Results for β estimation with normal noise, off-centered

β (a) β̂, N(0, 10−16) (b) β̂, N(0, 10−14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 -.00 .03 -.02 .02 40% -.00 .00 .07 -.12 .12 2%
.1 .10 .10 .02 .09 .11 18% .10 .10 .05 -.04 .21 0%
.5 .50 .50 .09 .46 .54 57% .50 .51 .12 .36 .69 9%
1 1.00 1.00 .04 .95 1.04 72% 1.00 .99 .13 .80 1.13 22%
3 3.00 3.00 .31 2.89 3.07 85% 3.00 2.99 .31 2.78 3.25 45%
5 5.00 5.00 .06 4.88 5.19 90% 5.00 5.00 .60 4.56 5.30 59%

10 10.00 10.07 .49 9.93 10.17 94% 10.00 10.01 .26 9.44 10.57 74%

(c) β̂, N(0, 10−12) (d) β̂, N(0, 10−10)

0 -.00 .01 .17 -.38 .52 0% .03 .05 .25 -.38 .60 0%
.1 .10 .11 .10 -.05 .35 0% .13 .13 .13 -.05 .35 0%
.5 .50 .52 .26 -.02 1.34 0% .50 .53 .36 -.20 1.49 0%
1 1.00 1.01 .31 .37 1.79 0% 1.00 1.05 .55 -.08 2.69 0%
3 3.00 3.01 .58 2.26 3.85 4% 3.00 3.05 1.00 1.25 5.50 0%
5 5.00 5.02 .87 4.13 5.81 12% 5.00 5.08 1.39 3.08 9.45 2%

10 10.00 10.09 1.53 9.01 11.66 34% 10.00 10.16 2.47 7.95 13.38 20

(e) β̂, N(0, 10−8) (f) β̂, N(0, 10−6)

0 .00 .01 .23 -.38 .54 0% .03 .06 .24 -.37 .59 0%
.1 .11 .12 .12 -.05 .35 0% .12 .13 .12 -.05 .35 0%
.5 .50 .53 .34 -.15 1.47 0% .51 .56 .36 -.14 1.55 0%
1 1.01 1.03 .49 -.02 2.34 0% 1.01 1.07 .51 .03 2.52 0%
3 3.01 3.07 .97 1.21 5.96 0% 3.00 3.08 1.01 1.14 5.88 0%
5 5.00 5.05 1.37 2.68 7.51 3% 4.99 5.08 1.28 3.51 7.24 2%

10 10.01 10.18 2.38 7.95 14.78 20% 10.00 10.24 2.60 8.40 13.99 20%

(g) β̂, N(0, 0.012) (h) β̂, N(0, 0.12)

0 .02 .03 .22 -.38 .52 0% .01 .03 .23 -.36 .56 0%
.1 .11 .13 .12 -.05 .35 0% .12 .13 .12 -.05 .35 0%
.5 .51 .55 .35 -.13 1.50 0% .50 .54 .35 -.15 1.54 0%
1 .99 1.05 .53 -.05 2.60 0% 1.01 1.07 .55 -.06 2.81 0%
3 3.00 3.13 1.08 1.75 6.87 0% 3.00 3.07 1.05 1.20 5.77 0%
5 5.00 5.12 1.55 2.96 8.68 3% 5.01 5.19 1.58 3.89 9.97 0%

10 9.99 9.93 2.46 5.26 12.04 17% 10.00 10.09 1.75 8.70 11.34 1%

(i) β̂, N(0, 1) (j) β̂, N(0, 22)

0 .00 .00 .10 -.21 .20 0% .00 .00 .05 -.08 .10 0%
.1 .10 .11 .08 -.05 .32 0% .10 .10 .04 .02 .20 0%
.5 .50 .51 .15 .23 .89 0% .50 .51 .10 .34 .71 2%
1 1.01 1.03 .25 .73 1.41 0% 1.01 1.09 .40 .71 2.70 5%
3 3.17 4.17 2.08 2.39 9.67 3% 3.54 4.26 1.89 2.07 9.01 40%
5 6.39 8.36 4.08 4.03 16.81 10% 5.01 5.28 1.70 2.87 9.55 67%

10 11.82 14.99 7.33 6.69 32.74 33% 6.30 6.46 3.08 -4.79 11.83 97%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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the uniform distribution provides a less realistic candidate for the robustness

check. We consider two principles for comparison of our original results with

the results assuming the uniform distribution—the first based on almost iden-

tical covered intervals (Table 5.4) and the second based on the same variance

(Table 5.5). We therefore define a grid of 10 uniform noise specifications

1. that cover the same intervals as are covered by their respective normal

counterparts by the 99.74% of the probability mass;10

2. with the same variances as their respective normal counterparts.11

Contrasting original results in Table 5.1 with results based on the uniform

distribution of the stochastic noise, we basically verify the assumption of Kris-

tensen & Shin (2012) that Fε can be any known distribution. The overall

result are largely similar and the observed differences can be attributed mainly

to different shapes of the normal and uniform distribution. In the case of

identical covered intervals (Table 5.4) we observe slightly lower probability of

‘NaN’ outcome occurrence for smallest intervals [subparts (a), (b), and (c)],

but higher for largest intervals [subparts (i) and (j)]. In the case of identical

distribution (Table 5.5), the ‘NaN’ outcome occurrence is comparable with the

normal distribution. In both cases the efficiency of estimates tends to be higher

than using the normal distribution and intervals between the 2.5 (LQ) and 97.5

(HQ) quantiles are narrower in majority of specifications. We can assign this

to differences in shape of compared distribution—the highest probability den-

sity of the normal distribution around the zero mean combined with possibility

of extreme observations, both apparently negatively affecting the efficiency of

estimates.

One of the most challenging concepts in the estimation method setting is the

repeated random generation of parameters gh and bh for each from 1000 runs.

In Table 5.6 we abandon this setup feature, fix parameters gh and bh randomly

before the loop and use the very same figures for all 1000 runs. Although the

repeated random generation of trend and bias parameters for each run is one

of the robustness cornerstones of the analysis in Chapter 5, it is of our interest

to provide the comprehensive picture of the NPSMLE method performance.

10I.e. 〈−3SD, 3SD〉, where SD stands for the standard deviation of the respective normal
noise specification.

11Variance (or the second centralized moment) of the continuous uniform distribution is

defined as (b−a)2

12 , where a, b are the minimum and maximum values of the distribution’s
domain.



5. Monte Carlo study: NPSMLE of the HAM 104

Table 5.4: Results for β estimation with uniform noise I. . .

. . . covering equal intervals as their respective normal counterparts by 99.74% of the probability mass

β (a) β̂, U(−3× 10−8, 3× 10−8) (b) β̂, U(−3× 10−7, 3× 10−7)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 -.00 .04 -.03 .03 26% .00 .00 .07 -.12 .13 0%
.1 .10 .10 .02 .09 .12 10% .10 .10 .05 -.01 .24 0%
.5 .50 .50 .04 .47 .53 42% .50 .50 .11 .30 .73 2%
1 1.00 1.00 .09 .94 1.04 56% 1.00 1.00 .10 .86 1.12 9%
3 3.00 3.01 .11 2.96 3.14 80% 3.00 3.01 .16 2.81 3.15 31%
5 5.00 5.00 .05 4.91 5.12 85% 5.00 5.00 .39 4.85 5.22 44%

10 10.00 10.02 .20 9.88 10.07 92% 10.00 10.02 .35 9.79 10.41 62%

(c) β̂, U(−3× 10−6, 3× 10−6) (d) β̂, U(−3× 10−5, 3× 10−5)

0 -.00 -.01 .15 -.41 .34 0% -.00 -.01 .20 -.45 .45 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .50 .21 .02 .98 0% .49 .48 .27 -.21 1.14 0%
1 1.00 1.01 .28 .49 1.59 0% 1.01 1.00 .38 -.08 1.92 0%
3 3.00 3.02 .50 2.57 3.74 1% 2.99 2.98 .79 1.76 4.19 0%
5 5.00 5.03 .60 4.44 5.69 5% 5.00 4.96 .86 4.02 5.64 2%

10 10.00 10.02 .71 9.50 10.91 28% 10.00 10.05 1.25 9.31 10.79 22%

(e) β̂, U(−3× 10−4, 3× 10−4) (f) β̂, U(−3× 10−3, 3× 10−3)

0 .00 -.00 .17 -.39 .39 0% .00 .00 .17 -.39 .41 0%
.1 .10 .10 .10 -.09 .28 0% .10 .10 .09 -.09 .29 0%
.5 .50 .49 .26 -.20 1.16 0% .50 .49 .29 -.33 1.16 0%
1 1.00 1.00 .40 -.06 2.03 0% 1.01 1.03 .35 .29 1.96 0%
3 2.99 3.00 .73 2.13 3.69 0% 3.00 3.02 .80 2.01 4.38 0%
5 5.00 4.95 1.07 3.23 6.01 2% 4.99 5.00 1.11 4.14 5.84 2%

10 10.00 10.02 1.55 9.38 11.20 19% 10.00 9.91 1.72 8.76 10.67 17%

(g) β̂, U(−0.03, 0.03) (h) β̂, U(−0.3, 0.3)

0 -.00 -.01 .17 -.41 .37 0% .00 -.00 .16 -.40 .35 0%
.1 .10 .10 .10 -.08 .29 0% .10 .10 .09 -.09 .29 0%
.5 .50 .50 .26 -.21 1.11 0% .50 .51 .25 -.15 1.14 0%
1 1.00 .99 .40 -.21 1.88 0% 1.00 .99 .40 -.08 2.17 0%
3 3.00 3.03 .72 1.97 4.56 0% 2.99 3.00 .64 2.28 3.73 0%
5 5.00 5.02 1.13 3.85 6.25 2% 5.00 5.03 .89 4.44 5.81 0%

10 10.00 10.04 1.65 9.34 10.64 12% 10.01 10.10 1.18 9.40 10.89 1%

(i) β̂, U(−3, 3) (j) β̂, U(−6, 6)

0 -.00 .00 .04 -.06 .06 0% -.00 .00 .01 -.02 .02 0%
.1 .10 .10 .03 .03 .16 0% .10 .10 .01 .08 .13 0%
.5 .50 .50 .05 .42 .59 1% .50 .50 .06 .43 .61 7%
1 1.00 1.01 .15 .86 1.20 3% 1.01 1.06 .27 .81 1.99 20%
3 3.09 3.95 1.77 2.56 8.49 11% 3.14 3.40 .99 2.03 5.90 67%
5 5.56 7.28 3.17 3.95 14.41 26% 4.24 4.05 2.02 -3.68 7.20 88%

10 10.26 11.46 4.78 5.44 24.34 56% - - - - - 100%

Note: Stochastic noise εt and {εi}Ni=1 drawn from uniform distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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Table 5.5: Results for β estimation with uniform noise II. . .

. . . with equal variances as their respective normal counterparts

β (a) β̂, U(−
√

12
2
× 10−8,

√
12
2
× 10−8) (b) β̂, U(−

√
12
2
× 10−7,

√
12
2
× 10−7)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .02 -.01 .01 39% -.00 -.00 .05 -.09 .10 1%
.1 .10 .10 .01 .09 .11 18% .10 .10 .03 .04 .18 0%
.5 .50 .50 .02 .48 .53 57% .50 .50 .08 .43 .59 6%
1 1.00 1.00 .04 .97 1.04 68% 1.00 1.00 .10 .92 1.11 20%
3 3.00 2.93 .54 2.93 3.06 87% 3.00 3.00 .15 2.84 3.12 45%
5 5.00 5.01 .07 4.95 5.11 88% 5.00 4.99 .18 4.72 5.18 55%

10 10.00 10.00 .05 9.89 10.18 94% 10.00 10.01 .17 9.85 10.29 72%

(c) β̂, U(−
√

12
2
× 10−6,

√
12
2
× 10−6) (d) β̂, U(−

√
12
2
× 10−5,

√
12
2
× 10−5)

0 -.00 .00 .13 -.29 .39 0% -.00 -.00 .20 -.48 .44 0%
.1 .10 .10 .09 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .49 .19 .00 .89 0% .50 .51 .27 -.16 1.25 0%
1 1.00 1.00 .25 .45 1.43 0% 1.00 .98 .41 -.12 2.01 0%
3 3.00 3.00 .35 2.62 3.42 3% 3.00 3.01 .74 2.15 4.04 0%
5 5.00 4.97 .54 4.44 5.41 12% 5.01 5.00 .86 3.84 5.84 2%

10 10.00 10.01 1.04 9.49 10.46 32% 10.00 10.02 1.38 9.23 10.90 21%

(e) β̂, U(−
√

12
2
× 10−4,

√
12
2
× 10−4) (f) β̂, U(−

√
12
2
× 10−3,

√
12
2
× 10−3)

0 .00 .00 .18 -.40 .42 0% .00 .00 .17 -.39 .42 0%
.1 .10 .10 .10 -.09 .29 0% .10 .10 .09 -.09 .29 0%
.5 .50 .50 .28 -.25 1.22 0% .50 .50 .27 -.23 1.25 0%
1 1.00 1.02 .44 -.03 2.36 0% 1.00 1.00 .39 -.06 2.08 0%
3 3.00 3.00 .80 1.48 4.29 0% 3.00 2.99 .74 2.01 3.85 0%
5 5.00 4.95 1.03 3.79 5.72 3% 5.00 5.03 .87 4.25 6.43 2%

10 10.01 9.93 1.79 9.41 10.74 19% 10.00 9.97 1.76 9.11 10.69 19%

(g) β̂, U(−
√

12
2
× 10−2,

√
12
2
× 10−2) (h) β̂, U(−

√
12
2
× 10−1,

√
12
2
× 10−1)

0 .00 .00 .17 -.40 .39 0% -.00 -.00 .17 -.40 .39 0%
.1 .10 .10 .09 -.08 .29 0% .10 .10 .10 -.09 .29 0%
.5 .50 .52 .27 -.15 1.21 0% .50 .49 .27 -.21 1.19 0%
1 1.00 .99 .45 -.23 2.21 0% 1.00 .99 .36 .13 1.91 0%
3 3.00 3.01 .72 2.15 4.44 0% 3.01 3.02 .80 1.71 4.55 0%
5 5.00 4.98 .90 4.08 5.87 3% 5.00 5.05 .97 4.51 5.81 1%

10 9.99 9.99 1.34 9.27 10.74 14% 10.01 10.02 1.51 9.44 10.71 2%

(i) β̂, U(−
√

12
2
,
√

12
2

) (j) β̂, U(−2
√

12
2
, 2
√

12
2

)

0 .00 .00 .06 -.11 .15 0% .00 .00 .02 -.04 .04 0%
.1 .10 .10 .06 -.02 .25 0% .10 .10 .03 .06 .16 0%
.5 .50 .50 .09 .34 .64 0% .50 .50 .06 .42 .59 2%
1 1.00 1.00 .08 .82 1.16 1% 1.00 1.01 .11 .87 1.18 3%
3 3.02 3.18 .82 2.64 6.53 3% 3.16 4.25 1.96 2.54 8.67 18%
5 5.13 6.62 2.89 4.34 13.75 6% 5.49 6.81 2.86 3.49 13.82 38%

10 11.05 14.78 6.59 8.05 29.42 17% 9.46 9.02 4.31 -5.54 17.48 68%

Note: Stochastic noise εt and {εi}Ni=1 drawn from uniform distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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Table 5.6: Results for β estimation with normal noise, fixed gh & bh

β (a) β̂, N(0, 0.12) (b) β̂, N(0, 1)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 .00 .13 -.26 .28 0% -.00 -.00 .05 -.10 .09 0%
.1 .11 .10 .12 -.10 .30 0% .10 .10 .06 -.02 .22 0%
.5 .49 .49 .11 .26 .71 0% .50 .51 .17 .19 .85 0%
1 1.00 1.00 .07 .86 1.14 0% 1.00 1.01 .18 .67 1.40 0%
3 3.01 3.00 .13 2.75 3.23 0% 3.03 3.12 .57 2.49 5.28 0%
5 5.00 5.00 .23 4.56 5.47 0% 5.19 6.42 2.70 4.25 13.65 4%

10 10.00 10.00 .12 9.77 10.23 0% 11.04 12.28 4.64 6.07 24.11 19%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

Next in this section, we only compute and depict results for two specification

of the stochastic noise which appeared the most useful based on results in

Table 5.1, namely N(0, 0.12) and N(0, 1). Comparing results in Table 5.6

with respective counterparts Table 5.1 [subparts (h) and (i)], aside a minor

reduction of the ‘NaN’ emergence probability we observe overall significant

reduction of standard deviations of β estimates. Fixing trend a bias parameters

thus naturally makes the system more predictable and leads to more efficient

estimates.

Tables 5.7 and 5.8 report results of another robustness check of the method-

ology focused on various distributions of belief parameters gh and bh (see Equa-

tion 4.18). To recap, in the general model we follow the previous work of

Barunik et al. (2009); Vacha et al. (2012); Kukacka & Barunik (2013) and thus

trend parameters gh are drawn from the normal distribution N(0, 0.42) and

bias parameters bh are drawn from the normal distribution N(0, 0.32). Here

we relax this assumption using a range of reasonable variances defining the

distribution of beliefs’ parameters: {0.12, 0.22, 0.32, 0.42, 0.62, 0.82, 1, 1.22}.
Analysing results in Tables 5.7 and 5.8, we observe the general ability of

the method to reveal accurately the true value of the intensity of choice β for

the vast majority of combinations of the simulation grid as well as for both

noise specifications. On the other hand, in specific cases we can observe signs

of an upward bias, values on the border of statistical significance, or consider-

able probability of ‘NaN’ outcome emergence. The upward bias is observable

only in Table 5.8 associated with the larger specification of the stochastic noise

N(0, 1) and for higher values of β. However, the upward bias tendency dis-
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Table 5.7: Results for β estimation w.r.t. various dist. of gh & bh I.

β (a) β̂, gh & bh ∼ N(0, 0.12) (b) β̂, gh & bh ∼ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .02 .01 .29 -.47 .48 0% -.02 -.01 .28 -.48 .48 0%
.1 .10 .10 .12 -.09 .29 0% .10 .10 .12 -.10 .30 0%
.5 .50 .51 .57 -.42 1.44 0% .51 .51 .48 -.40 1.39 0%
1 .87 .94 1.15 -.95 2.91 0% .99 .99 .80 -.73 2.73 0%
3 2.95 2.95 3.25 -2.67 8.69 0% 3.00 2.97 1.81 -1.65 7.43 0%
5 4.99 5.07 5.04 -4.26 14.17 0% 4.97 4.77 2.60 -3.23 10.94 0%

10 10.02 10.15 9.03 -8.22 27.82 0% 9.98 9.92 3.65 .31 18.84 0%

(c) β̂, gh & bh ∼ N(0, 0.32) (d) β̂, gh & bh ∼ N(0, 0.42)

0 .00 .00 .23 -.47 .47 0% -.01 -.00 .17 -.38 .43 0%
.1 .10 .10 .12 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .50 .34 -.34 1.27 0% .50 .50 .24 -.09 1.17 0%
1 1.01 1.01 .54 -.40 2.33 0% 1.00 1.00 .37 .20 1.85 0%
3 3.00 3.01 .83 1.57 4.93 0% 2.99 2.95 .78 1.24 3.76 0%
5 5.00 5.00 1.35 3.02 6.84 0% 5.00 5.00 .85 4.17 5.65 1%

10 9.99 10.01 1.87 8.19 11.55 1% 10.00 10.02 1.33 9.11 10.77 6%

(e) β̂, gh & bh ∼ N(0, 0.62) (f) β̂, gh & bh ∼ N(0, 0.82)

0 .00 -.00 .11 -.34 .25 0% .00 .00 .07 -.14 .16 0%
.1 .10 .10 .08 -.09 .29 0% .10 .10 .05 -.00 .25 1%
.5 .50 .50 .13 .28 .75 0% .50 .50 .08 .39 .62 2%
1 1.00 1.00 .15 .71 1.27 0% 1.00 1.00 .11 .84 1.16 6%
3 3.00 3.00 .19 2.72 3.29 7% 3.00 3.01 .27 2.84 3.18 29%
5 5.00 4.99 .31 4.62 5.26 16% 5.00 5.01 .29 4.80 5.27 42%

10 10.01 10.04 .88 9.55 10.36 28% 10.00 10.04 1.05 9.47 10.28 54%

(g) β̂, gh & bh ∼ N(0, 1) (h) β̂, gh & bh ∼ N(0, 1.22)

0 .00 .00 .05 -.06 .10 2% .00 .00 .03 -.05 .06 7%
.1 .10 .10 .04 .02 .18 2% .10 .10 .03 .05 .15 4%
.5 .50 .50 .07 .39 .58 9% .50 .50 .04 .43 .56 20%
1 1.00 1.00 .09 .91 1.13 20% 1.00 1.00 .05 .94 1.09 40%
3 3.00 3.00 .07 2.84 3.13 52% 3.00 2.99 .14 2.85 3.09 69%
5 5.00 5.01 .26 4.87 5.20 64% 5.00 5.04 .67 4.59 5.18 75%

10 10.00 10.21 1.78 9.59 11.98 73% 10.01 10.42 2.59 9.72 21.17 83%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise εt and {εi}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

appears with increasing variances of the distribution of beliefs’ parameters.

This is another example of somehow puzzling behaviour for which we cannot

find any obvious explanation. The problem with statistical insignificance of

estimates is naturally mostly evident for distribution specification with small

variances and small values of β, both technically inhibiting the dynamics of the

model. Increasing the variance of beliefs’ distribution associated with higher

values of randomly generated belief parameters gh and bh, we generally ob-

tain a richer model dynamics which can be more simply and more efficiently
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Table 5.8: Results for β estimation w.r.t. various dist. of gh & bh II.

β (a) β̂, gh & bh ∼ N(0, 0.12) (b) β̂, gh & bh ∼ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .02 .01 .29 -.47 .48 0% -.00 -.00 .24 -.47 .49 0%
.1 .10 .10 .12 -.09 .29 0% .10 .10 .13 -.10 .30 0%
.5 .51 .52 .57 -.44 1.46 0% .51 .53 .37 -.34 1.33 0%
1 1.02 1.05 1.11 -.85 2.92 0% 1.02 1.08 .58 -.12 2.64 0%
3 3.62 3.55 3.22 -2.50 8.75 0% 3.49 4.28 2.17 .83 8.59 0%
5 6.74 6.39 5.62 -4.34 14.58 0% 6.59 7.86 3.89 2.14 14.57 0%

10 12.73 12.32 11.46 -8.31 29.60 1% 12.51 13.98 8.89 -5.54 29.58 2%

(c) β̂, gh & bh ∼ N(0, 0.32) (d) β̂, gh & bh ∼ N(0, 0.42)

0 .00 .00 .16 -.39 .34 0% -.00 -.00 .09 -.21 .19 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .07 -.06 .26 0%
.5 .51 .52 .19 .17 .97 0% .50 .50 .11 .31 .73 0%
1 1.00 1.02 .30 .60 1.70 0% 1.00 1.01 .19 .75 1.32 1%
3 3.17 3.78 1.57 2.33 8.23 0% 3.05 3.43 1.25 2.48 7.72 4%
5 5.82 7.43 3.42 3.71 14.46 1% 5.35 6.92 3.15 3.89 14.39 8%

10 11.49 13.91 6.99 -.28 28.97 9% 11.16 13.21 5.83 6.10 28.03 25%

(e) β̂, gh & bh ∼ N(0, 0.62) (f) β̂, gh & bh ∼ N(0, 0.82)

0 -.00 -.00 .04 -.08 .08 0% .00 -.00 .02 -.05 .04 0%
.1 .10 .10 .04 .02 .20 0% .10 .10 .02 .05 .14 7%
.5 .50 .50 .06 .39 .63 12% .50 .50 .04 .42 .59 30%
1 1.00 1.00 .09 .83 1.23 16% 1.00 1.00 .07 .87 1.15 41%
3 3.02 3.17 .78 2.56 6.19 26% 3.02 3.08 .53 2.57 3.64 62%
5 5.29 6.67 2.84 4.20 13.73 42% 5.10 6.14 2.51 4.16 13.49 64%

10 10.52 12.26 4.88 6.59 25.70 62% 10.29 11.94 4.29 7.88 24.38 84%

(g) β̂, gh & bh ∼ N(0, 1) (h) β̂, gh & bh ∼ N(0, 1.22)

0 -.00 .00 .01 -.03 .03 3% .00 .00 .01 -.02 .02 9%
.1 .10 .10 .01 .07 .13 20% .10 .10 .01 .08 .13 38%
.5 .50 .50 .03 .45 .58 55% .50 .50 .02 .45 .54 68%
1 1.00 1.00 .06 .89 1.10 64% 1.00 1.00 .04 .91 1.09 77%
3 2.99 3.00 .30 2.61 3.34 75% 2.98 3.01 .31 2.65 3.41 87%
5 5.14 6.19 2.56 4.24 13.26 82% 5.04 6.17 2.69 4.36 13.96 93%

10 10.26 11.42 3.19 8.08 20.32 92% 9.85 10.75 2.88 8.47 19.13 96%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise εt and {εi}Ni=1 drawn from normal distribution N(0, 1), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

estimated. However, there is a crucial trade-off in form of model divergence

and results censorship by ‘NaN’ outcomes reported in the NN column. This

situation is generally more likely for higher values of the intensity of choice

β as well as for the higher potential values of belief parameters gh and bh.

For instance, the two highest values of our simulation range: {1, 1.22} induce

serious results censorship (up to 96%) for the majority of values from the dis-

crete range of βs, particularly when combined the stochastic noise N(0, 1) that

is generally associated with considerably higher probability of ‘NaN’ outcome
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emergence. Small stochastic noise specifications generally do not exhibit signs

of upward biases but can be also largely affected by ‘NaN’ outcomes. We refer

the reader to additional results of the stochastic noise specification N(0, 10−12)

and N(0, 10−14) summarized in Table B.1 and Table B.2 in Appendix B. The

inference based on such filtered result is invalid and we concur the discussion

about the ‘NaN’ outcomes originated in Section 5.3.1 via describing this third12

aspect triggering the divergence of the model leading to ‘NaN’ outcome of the

NPSMLE procedure. We observe a somewhat nontrivial complex interplay be-

tween the intensity of the stochastic noise, estimation efficiency, and probability

of ‘NaN’ outcomes. Higher probabilities are associated both with tiny noises

N(0, 10−14) and N(0, 10−12) (see Tables B.1 and B.2) as well as with larger

noise N(0, 1) (Table 5.8) when compared to N(0, 0.12) (Table 5.7). However,

the mitigating impact on the results censorship in specific setups is far from

solving the censorship issue. When comparing results of N(0, 0.12) and N(0, 1)

in terms of efficiency, one would conclude that the wider distribution interval

εt ∼ N(0, 1) increases the efficiency of estimates. But the opposite holds when

comparing N(0, 10−14) and N(0, 10−12) in Appendix B. We observe this partly

ambiguous relation between stochastic noise distributions intervals and values

of β also in the original results in Table 5.1.

To sum up hitherto findings regarding the robustness of the NPSMLE method

w.r.t. various setup specifications, we face an interesting ‘two-sided’ trade-off.

Basically, we are able to estimate relatively well a model exhibiting reasonably

rich dynamics. This is, however, on the one hand inhibited assuming:

1. low values of the intensity of choice β,

2. small distribution intervals of the stochastic noise εt,

3. or distribution specifications of belief parameters gh and bh with small

variances,

producing insufficient dynamics or fragile stability of the system. But the other

hand also by:

1. too high values of the intensity of choice β

2. large distribution intervals of the stochastic noise εt,

12Along with very small distribution intervals of the stochastic noise εt and high values of
the intensity of choice β.



5. Monte Carlo study: NPSMLE of the HAM 110

Table 5.9: Results for β estimation with various combined noises I.

β (a) β̂, εt ∼ N(0, 0.12), (b) β̂, εt ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1),

{εi}Ni=1 ∼ N(0, 1) {εi}Ni=1 ∼ U(−
√

12
2
,
√

12
2

)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .29 -.47 .47 0% -.01 -.00 .29 -.48 .47 0%
.1 .10 .10 .11 -.09 .29 0% .10 .10 .11 -.09 .29 0%
.5 .50 .50 .58 -.47 1.45 0% .51 .51 .58 -.47 1.46 0%
1 .97 .99 1.13 -.86 2.89 0% .99 .98 1.12 -.90 2.87 0%
3 2.87 2.84 3.30 -2.67 8.60 0% 2.87 2.86 3.43 -2.77 8.72 0%
5 4.89 4.87 5.31 -4.48 14.35 0% 5.24 5.32 5.70 -4.69 14.63 0%

10 10.96 11.42 10.56 -8.40 28.99 0% 11.19 10.21 11.65 -9.95 29.17 1%

(c) β̂, εt ∼ N(0, 1), (d) β̂, εt ∼ U(−
√

12
2
,
√

12
2

),

{εi}Ni=1 ∼ N(0, 0.12) {εi}Ni=1 ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1)

100% 100%

Note: Stochastic noise εt and {εi}Ni=1 drawn from the same distributions with different variances, R =
1.0001. Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of
observations t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard
deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal
digits. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

3. or distribution specifications of belief parameters gh and bh with large

variances,

potentially causing model to diverge and therefore censoring the results. This

seems to be another of challenging issues for the empirical application of the

NPSMLE method.

The last part of Section 5.3.1 addresses an important question of what hap-

pens if wrong stochastic noise assumption is used to perform the NPSMLE? This

can either be a right distribution, but with wrong parameters, or a completely

different distribution. This question is especially important w.r.t. empirical

application in Chapter 6 because in real world data we are rarely able to ascer-

tain proper noise. For the purpose of analysing this issue, we present results of

various combinations of different distributions used for random generation of

stochastic noise εt and {εi}Ni=1. In Table 5.9 we report the case where stochastic

noise εt and {εi}Ni=1 are drawn from the same distributions with different vari-

ances, Table 5.10 then displays results when different distributions with various

variances (same as well as different) are combined together. Basically, we use

combinations of normal and uniform distributions and for different variances

we use specifications with 10 time higher or lower values. Conclusions for this

robustness check are very clear and can be summarized into several points:
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Table 5.10: Results for β estimation with various combined noises II.

β (a) β̂, εt ∼ N(0, 1), (b) β̂, εt ∼ U(−
√

12
2
,
√

12
2

),

{εi}Ni=1 ∼ U(−
√

12
2
,
√

12
2

) {εi}Ni=1 ∼ N(0, 1)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 -.01 .14 -.38 .29 0% .00 .01 .12 -.25 .24 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .10 -.10 .30 0%
.5 .50 .51 .16 .19 .89 0% .50 .51 .14 .22 .82 0%
1 .99 1.00 .25 .54 1.56 1% 1.00 1.01 .23 .63 1.48 1%
3 3.05 3.22 .95 2.14 6.41 5% 3.07 3.56 1.44 2.25 7.97 3%
5 5.41 6.68 2.97 3.44 14.03 9% 5.55 7.27 3.28 3.79 14.34 6%

10 11.95 13.88 5.88 6.94 27.99 24% 11.39 14.03 6.84 5.51 29.30 13%

(c) β̂, εt ∼ N(0, 0.12), (d) β̂, εt ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1),

{εi}Ni=1 ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1) {εi}Ni=1 ∼ N(0, 0.12)

0 .02 .01 .27 -.50 .50 0% -.00 -.00 .22 -.47 .46 0%
.1 .10 .10 .14 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .40 -.43 1.44 0% .50 .50 .33 -.27 1.27 0%
1 1.01 1.01 .53 -.21 2.39 0% 1.00 1.03 .52 -.31 2.45 0%
3 3.02 3.03 .86 1.46 4.70 0% 3.00 3.03 1.06 .64 6.23 0%
5 5.01 5.01 1.18 3.05 6.76 0% 5.00 5.00 1.26 3.32 6.79 0%

10 10.00 10.01 1.43 8.13 11.88 2% 10.00 10.08 1.67 8.83 11.70 1%

(e) β̂, εt ∼ N(0, 0.12), (f) β̂, εt ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1),

{εi}Ni=1 ∼ U(−
√

12
2
,
√

12
2

) {εi}Ni=1 ∼ N(0, 1)

0 .01 .01 .28 -.47 .47 0% -.00 -.00 .29 -.48 .48 0%
.1 .09 .09 .12 -.09 .29 0% .10 .09 .12 -.09 .29 0%
.5 .46 .49 .58 -.46 1.43 0% .46 .48 .58 -.46 1.45 0%
1 .95 .98 1.18 -.94 2.88 0% 1.06 1.04 1.12 -.89 2.90 0%
3 3.28 3.07 3.42 -2.75 8.68 0% 3.07 3.06 3.34 -2.73 8.81 0%
5 4.98 5.11 5.73 -4.77 14.78 0% 5.02 5.20 5.28 -4.13 14.36 0%

10 12.01 10.84 11.87 -10.00 29.41 1% 12.23 12.13 10.62 -8.21 29.17 1%

(g) β̂, εt ∼ N(0, 1), (h) β̂, εt ∼ U(−
√

12
2
,
√

12
2

),

{εi}Ni=1 ∼ U(−
√

12
2
× 10−1,

√
12
2
× 10−1) {εi}Ni=1 ∼ N(0, 0.12)

100% 100%

Note: Stochastic noise εt and {εi}Ni=1 drawn from different distributions with various variance, R =
1.0001. Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of
observations t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard
deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal
digits. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

1. when a distribution with (10 times) higher variance is used for generat-

ing stochastic noise εt then for kernel approximation of the conditional

density ct(x|v; θ) via {εi}Ni=1, the NPSMLE method is inapplicable as this

situation leads to complete ‘NaN’ outcome. The reason is very different

from a usual ‘NaN’ occurrence caused by HAM divergence. In this case,

apparently, the method itself is not able to approximate the true condi-

tional density using {εi}Ni=1 generated from 10 times ‘smaller’ distribution.

This holds irrespective of whether same or different distributions are used

[see subparts (c) and (d) of Table 5.9 and (g) and (h) of Table 5.10];
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2. when a distribution with (10 times) lower variance is used for generating

stochastic noise εt then for kernel approximation of the conditional density

ct(x|v; θ) via {εi}Ni=1, the NPSMLE method works from the technical point

of view but produces completely statistically insignificant estimates and

very random uniform distribution of estimated values as captured in HQ

and LQ columns where the quantile values almost copy the borders of the

parameter space, this also holds irrespective of whether same or different

distributions are used;

3. when different distributions with the same variances are used [compare

subparts (a), (b) and (c), (d) of Table 5.10], the order and shapes of

distributions matter considerably. In our case, if stochastic noise εt is

generated from the normal distribution and {εi}Ni=1 is generated from

the uniform distribution [subparts (c) and (d)], we obtain considerably

better estimates with markedly lower standard deviations then if the order

is opposite [subparts (a) and (b)]. As both distributions have identical

mean and variance, there is not much than shape of the distribution

defined by higher moments to make difference.

These findings very strongly confirm the need of a proper noise specification

for the empirical application of NPSMLE which is at the same moment one of the

most important findings from the analysis of the original results from Table 5.1.

5.3.2 2-type model estimation

An important advantage of FABMs is that their dynamics is mostly driven by

a few crucials parameters. As a result, we might promisingly attempt to es-

timate all essential coefficients simultaneously and thus we do not need any

rigorous criteria for selection. In the Brock & Hommes (1998) setting we se-

lect estimated parameters consistently with the current literature (see Tables

2.1 and 2.2), i.e. the key switching parameter β and the behavioural belief

coefficients. The other coefficients, e.g. the risk aversion a, the conditional

variance of excess returns σ2, or the risk free rate R are simplified already in

the original model as constants and shared by all investor types. The model

is then theoretically derived based on those assumptions. These parameters

only influence the absolute values of the profitability measures Uh but not their

relative proportions (R additionally a little bit adjusts the model output xt).
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Thus we can naturally consider them not influencing dynamics of the model as

described in Section 5.1.

A natural subsequent step of the NPSMLE method testing is thus a mul-

tiple parameter estimation in which we simultaneously estimate the intensity

of choice β and agents’ belief coefficients gh and bh defining individual trading

strategies in the 2-type and the 3-type models for which both theoretical as well

as empirical rationale exists in the current literature as indicated in Chen et al.

(2012, pg. 191, 207). With reference to Biondi et al. (2012, pg. 5534), “it has

been advocated that the two broad categories of chartism and fundamentalism

account for most of possible investment strategies”. The aim of this analysis

is to assess the performance of the NPSMLE method in estimating other model

parameters then solely the intensity of choice β.

First, we study the most simple system consisting of two trading strategies,

where fundamental strategy again appears in the market by default (g1 = b1 =

0). Based of the knowledge gained in Subsection 5.3.1, we define a discrete grid

of combinations of the true intensity of choice β and the chartistic beliefs g2 and

b2 representing the second-type trading strategy to cover a purposeful range of

values w.r.t. issues studied in the previous sections. To keep a reasonable

number of combinations and lucidity of results, we opt for β = {0, 0.5, 3, 10}.
In defining a grid of chartistic beliefs, we also cover various combinations of

trend following (g2 > 0), contrarian (g2 < 0), upward-biased (b2 > 0), and

downward-biased (b2 < 0) strategies based on multiples of standard deviations

from the general model setting: 0.5×, 1×, 2×, 3×. We refer the reader to the

first column of Table 5.11 for detailed specification. We again employ only two

specification of noise, namely εt ∼ N(0, 0.12) and εt ∼ N(0, 1).

Quantitative results

In Table 5.11 and Table 5.12 we summarise the simulation results. Basically,

we are able to confirm all main findings from the single parameter β estimation

simulation analysis. First, the method is generally able to reveal accurately the

true values (see columns reporting sample medians and means denoted ‘Md’

and ‘Mn’, respectively) of estimated parameters also in the 3-parameter simul-

taneous estimation case. Especially belief coefficients g2 and b2 [subparts (b)

and (c)], that are of central importance in this section, are estimated overall

significant and with almost surprisingly high precision. The estimation preci-

sion of the β parameter is not directly comparable to previous results as the
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Table 5.11: Results of 3-parameter estimation of a 2-type model I.

True (a) β̂ (b) ĝ2 (c) b̂2 (d) LL

β, g2, b2 Md Mn SD Mn SD Mn SD L-rat 2∆LL p-v NN

.0, .2, .15 -.01 -.00 .29 .20 .03 .15 .01 1 0 1 0%

.5, .2, .15 .49 .50 .57 .20 .03 .15 .01 1 0 1 0%
3, .2, .15 3.01 2.99 3.44 .20 .05 .15 .01 1 0 1 0%

10, .2, .15 11.60 12.19 9.46 .19 .10 .15 .01 1 0 1 0%

.0, -.2, -.15 .02 -.00 .28 -.20 .03 -.15 .01 1 0 1 0%

.5, -.2, -.15 .50 .48 .56 -.20 .03 -.15 .01 1 0 1 0%
3, -.2, -.15 3.11 2.97 3.39 -.20 .05 -.15 .01 1 0 1 0%

10, -.2, -.15 10.46 9.93 11.30 -.19 .10 -.15 .01 1 0 1 0%

.0, .2, -.15 .03 .01 .28 .20 .03 -.15 .01 1 0 1 0%

.5, .2, -.15 .56 .52 .56 .20 .03 -.15 .01 1 0 1 0%
3, .2, -.15 3.31 3.12 3.40 .20 .05 -.15 .01 1 0 1 0%

10, .2, -.15 11.97 12.23 9.60 .19 .10 -.15 .01 1 0 1 0%

.0, -.2, .15 -.00 -.01 .30 -.20 .03 .15 .01 1 0 1 0%

.5, -.2, .15 .53 .50 .60 -.20 .03 .15 .01 1 0 1 0%
3, -.2, .15 3.31 3.08 3.53 -.20 .04 .15 .01 1 0 1 0%

10, -.2, .15 11.37 10.62 11.69 -.19 .10 .15 .01 1 0 1 0%

.0, .4, .3 .00 .01 .33 .40 .03 .30 .01 1 0 1 0%

.5, .4, .3 .50 .49 .48 .40 .04 .30 .01 1 0 1 0%
3, .4, .3 2.99 3.04 .46 .40 .04 .30 .01 .99 .01 .92 0%

10, .4, .3 10.00 10.01 .61 .40 .03 .30 .01 .94 .13 .62 4%

.0, -.4, -.3 -.08 -.06 .30 -.40 .03 -.30 .01 1 0 1 0%

.5, -.4, -.3 .31 .35 .58 -.39 .04 -.30 .01 1 0 1 0%
3, -.4, -.3 2.96 2.84 1.47 -.39 .06 -.30 .01 1 0 1 0%

10, -.4, -.3 10.08 10.11 1.24 -.40 .04 -.30 .01 .99 .03 .86 2%

.0, .4, -.3 -.01 .00 .31 .40 .03 -.30 .01 1 0 1 0%

.5, .4, -.3 .51 .48 .48 .40 .04 -.30 .01 1 0 1 0%
3, .4, -.3 3.03 3.04 .46 .40 .04 -.30 .01 .99 .01 .92 1%

10, .4, -.3 9.98 10.02 .63 .40 .03 -.30 .01 .94 .13 .62 2%

.0, -.4, .3 -.06 -.05 .30 -.40 .03 .30 .01 1 0 1 0%

.5, -.4, .3 .23 .32 .58 -.40 .04 .30 .01 1 0 1 0%
3, -.4, .3 2.98 2.87 1.38 -.40 .06 .30 .01 1 0 1 0%

10, -.4, .3 9.98 10.00 1.13 -.40 .04 .30 .01 .99 .03 .86 2%

.0, .8, .6 -.00 -.00 .06 .80 .03 .60 .02 1 0 1 30%

.5, .8, .6 .50 .50 .06 .80 .03 .60 .02 .99 .02 .89 31%
3, .8, .6 2.99 3.00 .07 .80 .02 .60 .01 .59 1.07 .30 54%

10, .8, .6 9.99 9.99 .12 .80 .00 .60 .01 NA NA NA 95%

.0, -.8, -.6 .00 -.01 .27 -.80 .04 -.60 .01 1 0 1 17%

.5, -.8, -.6 .52 .51 .26 -.80 .04 -.60 .01 1 0 1 21%
3, -.8, -.6 3.00 3.00 .26 -.80 .04 -.60 .01 .99 .02 0 34%

10, -.8, -.6 9.98 9.99 .45 -.80 .03 -.60 .01 .89 .24 0 43%

.0, .8, -.6 .00 .00 .06 .80 .03 -.60 .02 1 0 1 32%

.5, .8, -.6 .50 .50 .06 .80 .03 -.60 .02 .99 .02 .89 33%
3, .8, -.6 3.00 3.00 .07 .80 .02 -.60 .01 .58 1.08 .30 58%

10, .8, -.6 9.97 9.99 .13 .80 .00 -.60 .00 NA NA NA 96%

.0, -.8, .6 -.00 -.00 .27 -.80 .04 .60 .01 1 0 1 16%

.5, -.8, .6 .52 .51 .26 -.80 .04 .60 .01 1 0 1 20%
3, -.8, .6 3.01 3.01 .27 -.80 .04 .60 .01 .99 .02 .89 31%

10, -.8, .6 10.04 10.02 .43 -.80 .03 .60 .01 .89 .24 .62 42%

.0, 1.2, .9 .00 .00 .01 1.20 .03 .90 .03 1 0 1 67%

.5, 1.2, .9 .50 .50 .01 1.20 .01 .90 .02 .70 .70 .40 77%
3, 1.2, .9 100%

10, 1.2, .9 100%

.0, -1.2, -.9 -.00 -.00 .11 -1.20 .04 -.90 .01 1 0 1 47%

.5, -1.2, -.9 .49 .50 .11 -1.20 .04 -.90 .01 1 0 1 49%
3, -1.2, -.9 2.99 3.00 .14 -1.20 .03 -.90 .01 .96 .09 .76 56%

10, -1.2, -.9 9.99 9.99 .29 -1.20 .02 -.90 .01 .60 1.03 .31 72%

.0, 1.2, -.9 .00 .00 .01 1.20 .03 -.90 .03 1 0 1 67%

.5, 1.2, -.9 .50 .50 .01 1.20 .02 -.90 .02 .70 .71 .40 76%
3, 1.2, -.9 100%

10, 1.2, -.9 100%

.0, -1.2, .9 .01 .00 .11 -1.20 .04 .90 .01 1 0 1 50%

.5, -1.2, .9 .51 .50 .11 -1.20 .04 .90 .01 1 0 1 52%
3, -1.2, .9 3.00 3.00 .13 -1.20 .04 .90 .01 .96 .09 .76 60%

10, -1.2, .9 10.00 10.00 .30 -1.20 .02 .90 .01 .60 1.03 .31 72%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based
on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000. Sample medians
(Md), means (Mn), and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘L-rat’ denotes
the likelihood ratio of the null static (i.e. restricted) model vs. the alternative switching model, ‘2∆LL’ is the test

statistics of the log-likelihood ratio test being approximately χ2 distributed with 1 degree of freedom, and ‘p-v’ is related
p-value of the test. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers. ‘NA’
typically means that the static model is associated with 100% of ‘NaN’ outcomes.

Source: Author’s own computations in MATLAB.
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Table 5.12: Results of 3-parameter estimation of a 2-type model II.

True (a) β̂ (b) ĝ2 (c) b̂2 (d) LL

β, g2, b2 Md Mn SD Mn SD Mn SD L-rat 2∆LL p-v NN

.0, .2, .15 .03 .02 .30 .20 .03 .15 .07 1 0 1 0%

.5, .2, .15 .62 .60 .56 .19 .03 .15 .07 1 0 1 0%
3, .2, .15 3.99 4.13 2.75 .19 .03 .15 .06 1 0 1 0%

10, .2, .15 11.42 11.23 11.08 .18 .04 .14 .05 1 0 1 1%

.0, -.2, -.15 -.06 -.04 .31 -.20 .03 -.15 .07 1 0 1 0%

.5, -.2, -.15 .46 .46 .57 -.20 .03 -.15 .07 1 0 1 0%
3, -.2, -.15 3.14 3.10 3.37 -.18 .04 -.13 .07 1 0 1 0%

10, -.2, -.15 9.54 9.53 11.40 -.16 .06 -.13 .06 1 0 1 1%

.0, .2, -.15 .03 .02 .30 .20 .03 -.15 .07 1 0 1 0%

.5, .2, -.15 .62 .59 .57 .19 .03 -.15 .07 1 0 1 0%
3, .2, -.15 3.99 4.16 2.61 .19 .03 -.15 .06 1 0 1 0%

10, .2, -.15 11.33 11.43 10.87 .18 .04 -.14 .05 1 0 1 0%

.0, -.2, .15 -.05 -.04 .31 -.20 .03 .15 .07 1 0 1 0%

.5, -.2, .15 .49 .49 .56 -.20 .03 .15 .07 1 0 1 0%
3, -.2, .15 3.42 3.37 3.36 -.18 .04 .13 .06 1 0 1 0%

10, -.2, .15 10.43 10.25 11.40 -.16 .06 .12 .06 1 0 1 2%

.0, .4, .3 .00 .01 .15 .40 .03 .30 .07 1 0 1 0%

.5, .4, .3 .49 .55 .26 .40 .03 .30 .07 1 0 1 0%
3, .4, .3 3.95 4.54 2.13 .38 .04 .29 .04 .99 .02 .89 0%

10, .4, .3 12.48 13.14 9.41 .38 .05 .27 .09 .98 .04 .84 4%

.0, -.4, -.3 .00 -.01 .14 -.40 .03 -.30 .07 1 0 1 0%

.5, -.4, -.3 .49 .52 .20 -.40 .03 -.30 .07 1 0 1 0%
3, -.4, -.3 3.96 4.38 2.41 -.38 .06 -.28 .06 .99 .02 .89 0%

10, -.4, -.3 10.76 10.44 10.21 -.33 .13 -.27 .08 .99 .02 .89 11%

.0, .4, -.3 -.00 .00 .15 .40 .03 -.30 .07 1 0 1 0%

.5, .4, -.3 .50 .54 .25 .40 .03 -.30 .07 1 0 1 0%
3, .4, -.3 4.01 4.53 2.05 .38 .04 -.29 .04 .99 .02 .89 0%

10, .4, -.3 12.30 13.17 8.79 .38 .05 -.28 .08 .98 .04 .84 4%

.0, -.4, .3 -.01 -.01 .13 -.40 .03 .30 .07 1 0 1 0%

.5, -.4, .3 .49 .51 .19 -.40 .03 .30 .08 1 0 1 0%
3, -.4, .3 4.03 4.40 2.47 -.38 .06 .28 .06 .99 .02 .89 0%

10, -.4, .3 10.42 9.92 10.17 -.33 .14 .26 .09 .99 .02 .89 12%

.0, .8, .6 .00 .00 .03 .80 .03 .60 .07 1 0 1 0%

.5, .8, .6 .50 .50 .07 .80 .03 .60 .06 .97 .05 .82 3%
3, .8, .6 3.01 3.04 .37 .80 .02 .60 .03 .83 .36 .55 23%

10, .8, .6 10.24 10.54 2.16 .80 .01 .60 .02 .75 .56 .45 72%

.0, -.8, -.6 .00 .00 .02 -.80 .03 -.60 .07 1 0 1 0%

.5, -.8, -.6 .50 .51 .08 -.80 .03 -.60 .08 .98 .04 .84 0%
3, -.8, -.6 3.19 3.61 2.47 -.74 .18 -.57 .09 .94 .12 .73 4%

10, -.8, -.6 8.50 4.97 8.61 -.57 .33 -.44 .26 .95 .09 .76 44%

.0, .8, -.6 -.00 -.00 .03 .80 .03 -.60 .07 1 0 1 0%

.5, .8, -.6 .50 .50 .07 .80 .03 -.60 .06 .97 .05 .82 2%
3, .8, -.6 3.00 3.04 .36 .80 .02 -.60 .03 .83 .36 .55 23%

10, .8, -.6 10.19 10.51 2.22 .80 .01 -.60 .02 .75 .57 .45 69%

.0, -.8, .6 .00 .00 .02 -.80 .03 .60 .07 1 0 1 0%

.5, -.8, .6 .50 .50 .08 -.80 .03 .60 .07 .98 .04 .84 1%
3, -.8, .6 3.19 3.62 2.38 -.75 .17 .57 .08 .94 .12 .73 4%

10, -.8, .6 8.56 5.67 8.17 -.60 .32 .46 .25 .95 .11 .74 44%

.0, 1.2, .9 -.00 .00 .01 1.20 .02 .90 .07 1 0 1 25%

.5, 1.2, .9 100%
3, 1.2, .9 100%

10, 1.2, .9 100%

.0, -1.2, -.9 .00 .00 .01 -1.20 .03 -.90 .07 1 0 1 19%

.5, -1.2, -.9 .50 .51 .05 -1.20 .03 -.90 .07 .91 .19 .66 28%
3, -1.2, -.9 2.97 2.39 2.06 -1.07 .34 -.79 .34 .83 .38 .46 48%

10, -1.2, -.9 7.86 3.28 7.85 -.82 .50 -.54 .54 .88 .25 .62 88%

.0, 1.2, -.9 .00 .00 .01 1.20 .03 -.90 .07 1 0 1 23%

.5, 1.2, -.9 100%
3, 1.2, -.9 100%

10, 1.2, -.9 100%

.0, -1.2, .9 .00 .00 .01 -1.20 .03 .90 .07 1 0 1 18%

.5, -1.2, .9 .50 .50 .05 -1.20 .03 .90 .07 .91 .19 .66 26%
3, -1.2, .9 2.94 2.34 1.95 -1.08 .34 .81 .30 .83 .38 .46 50%

10, -1.2, .9 8.25 3.21 8.26 -.79 .52 .57 .50 .89 .23 .63 89%

Note: Stochastic noise εt and {εi}Ni=1 drawn from normal distribution N(0, 1), R = 1.0001. Each sample is based on
1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000. Sample medians
(Md), means (Mn), and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘L-rat’ denotes
the likelihood ratio of the null static (i.e. restricted) model vs. the alternative switching model, ‘2∆LL’ is the test

statistics of the log-likelihood ratio test being approximately χ2 distributed with 1 degree of freedom, and ‘p-v’ is related
p-value of the test. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers. ‘NA’
typically means that the static model is associated with 100% of ‘NaN’ outcomes.

Source: Author’s own computations in MATLAB.
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setting of the 2-type model is different from the general model. Notwithstand-

ing, we still get generally conformable figures. Second, the ‘two-sided’ trade-off

(see Section 5.3.1) related to a reasonably rich model dynamics restricted from

both sides plays an important role. We again clearly observe the relative es-

timation inefficiency in case of setting combinations with small values of the

intensity of choice β = 0, 0.5, especially when combined with small values of

belief coefficients g2 and b2 (the upper half of Table 5.11 and Table 5.12). On

the other hand, for high values of belief coefficients g2 and b2 (the bottom

half of Table 5.11 and Table 5.12) we experience considerable number of model

overflows leading to significant censorship of results and thus generally confirm-

ing findings from β estimation exercise w.r.t. various distributions of beliefs

parameters (Tables 5.7 and 5.8). These effects to a large extent prohibit se-

rious results interpretation for reported combination with the smallest values

of belief coefficients g2 = ±0.2 and b2 = ±0.15 as well as for the combination

with the highest values of belief coefficients g2 = ±1.2 and b2 = ±0.9. We also

observe the nontrivial complex interplay between the intensity of the stochas-

tic noise, estimation efficiency, and probability of ‘NaN’ outcomes [in subparts

(d), ‘NN’ columnd] detected within the analysis of the general model. Here, a

stabilising effect is associated with the wider noise interval N(0, 1) leading to a

significant decrease of the number of model overflows (on the contrary, in the

case of 3-type model estimation in Subsection 5.3.3, the stability is higher for

the narrower noise N(0, 0.12) specification). This may paradoxically lead to a

seemingly lower efficiency as the divergent runs are not filtered out—this effect

is e.g. observable in Table 5.12 for combinations with β = 10, g2 = ±0.4, and

b2 = ±0.3 where β estimates are often biased upwards. The standard devia-

tions of these empirical estimates is significantly larger compared to Table 5.11

due to the effect of estimates close to the upper bound of the parameter space

that would otherwise be likely filtered out in the case of smaller stochastic

noise in the system. We further observe a prevailing upward bias tendency in β

estimates for smallest values of belief coefficients g2 and b2. When it comes to

efficiency of g2 and b2 estimates, the setup with noise interval N(0, 0.12) pro-

duces markedly more precise estimates but the overall statistical significance

of estimates is apparent for both setups.

Although we report all combination of trend following (g2 > 0), contrarian

(g2 < 0), upward-biased (b2 > 0), and downward-biased (b2 < 0) strategy spec-

ification mainly from technical reasons and the analysis of the model dynamics

goes beyond the scope of this paper, we can observe some patterns regarding
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the beliefs’ combination. For instance the efficiency of the estimation is consid-

erably higher for trend following (g2 > 0) beliefs than for contrarians (g2 < 0),

but setups with trend following beliefs are more vulnerable to overflows causing

‘NaN’ outcomes. On the other hand the direction of the bias parameter b2 does

not seem to play any important role based on reported results.

At the end of the 2-type model analysis, it is, however, important to stress

that this is the extreme case of the most simple setting more vulnerable to

potential extreme model dynamics. Nonetheless, this simple setting is the cor-

nerstone in the current HAM estimation literature (see Chapter 2) and there-

fore it needs to be properly elaborated also for the new NPSMLE method. The

favourable results presented above give promise for the function of the method

also in more complex settings.

Behaviour of the simulated log-likelihood function

To verify smoothness conditions and identification of parameters in the 2-type

model estimation case, we aim at depicting shape of simulated log-likelihood

functions also for the simultaneous estimation of three parameters. As we

can hardly demonstrate the 4D shape of the resulting simulated log-likelihood

function, we depict sub-log-likelihood functions in 2D and 3D making out the

global visualisation when combined together.

Figures 5.6 and 5.7 demonstrate simulated 2D sub-log-likelihood functions

for the single parameters intensity of choice β ∈ {0.5, 3, 10}, trend coefficient

g2 = 0.4, and bias coefficient b2 = 0.3 estimation (keeping the two others fixed)

combined with the two most ‘successful’ specifications of the stochastic noise

εt ∼ N(0, 0.12) and εt ∼ N(0, 1) found in Section 5.3.1. We again simply ob-

serve very smooth shapes and unique maxima generally shared for all random

runs. Moreover, consistent to Section 5.3.1 findings, small β = 0.5 is more

precisely detectable assuming stochastic noise εt ∼ N(0, 1) [subfigure (b) of

Figure 5.6], higher β ∈ {3, 10} assuming stochastic noise εt ∼ N(0, 0.12) [sub-

figures (c) and (e) of Figure 5.6], upward bias tendency of β̂ is clear for the

stochastic noise εt ∼ N(0, 1) in subfigures (d) and (f) of Figure 5.6 due to

very flat shape of the log-likelihood function above the positive subpart of the

domain, and finally the belief parameters b2 = 0.3 and g2 = 0.4 are very well

detected in both cases, however the performance of estimators is more efficient

for smaller stochastic noise εt ∼ N(0, 0.12). Next, in Figure 5.8 we visualise

3D simulated sub-log-likelihood functions based on all possible combinations of
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Figure 5.6: Simulated sub-log-likelihood functions for β estimation

(a) β = 0.5, N(0, 0.12)
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(b) β = 0.5, N(0, 1)
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(c) β = 3, N(0, 0.12)
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(d) β = 3, N(0, 1)
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(e) β = 10, N(0, 0.12)
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(f) β = 10, N(0, 1)
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Note: Results based on 100 random runs, g2 = 0.4, b2 = 0.3, number of observations t = 5000, and the
kernel estimation precision N = 1000. Stochastic noise εt and {εi}Ni=1 drawn from given normal distribution.
Black dotted vertical lines depict the true βs. Bold black full lines depict sample averages.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 5.8: Simulated sub-log-likelihood functions in 3D

(a) β, g2, N(0, 0.12) (b) β, g2, N(0, 1)

(c) β, b2, N(0, 0.12) (d) β, b2, N(0, 1)

(e) g2, b2, N(0, 0.12) (f) g2, b2, N(0, 1)

Note: Results averaged over 30 random runs, number of observations t = 5000, and the kernel estimation
precision N = 1000. The complete set of true parameters: β = 0.5, g2 = 0.4, b2 = 0.3. Stochastic noise εt
and {εi}Ni=1 drawn from given normal distribution.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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three parameters of interest, keeping one of them fixed, for the model setting

with: β = 0.5, g2 = 0.4, b2 = 0.3 and both stochastic noise specifications. The

smoothness of the surface generally keeps retained also in the 3D visualisa-

tions and regions of possible maxima are well detectable via red color although

the 3D depiction cannot provide such detailed and ‘zoomed’ view as the 2D

visualisations in Figures 5.6 and 5.7. For some combinations of parameters

the model is numerically unstable and thus for specific subsets of the domain

plane the shape is not well defined. However, these areas are always far from

maxima regions. Parameters g2 and b2 seem to be relatively well identified

which is further confirmed quantitatively in Section 5.3.2. As expected, the

most challenging is revealing the β coefficient in which direction the surface is

very flat for a large interval of the domain. These findings are largely in accord

with conclusions of Bolt et al. (2014, pg. 15) and Hommes & Veld (2015) who

claim that “the other parameters can to a large extent compensate for changes

in β” and report very flat shape of the likelihood function for the intensity of

choice selection. In any case, based on these results we again generally assume

that the regularity conditions are met and the identification of parameters is

assured also for the 2-type model estimation.

Likelihood-ratio test

Previous sections have shown that the NPSML estimation method does a fairly

good job in distinguish between various βs. As a next step we might be inter-

ested how capable the estimation method is in a rigorous statistical comparison

between static and switching models. As the static version of the model with

β = 0 and the switching version are nested, i.e. the less complex static model

is derived via a restriction on β from the switching model, we can apply the

usual likelihood ratio test to assess the relative goodness of fit between models

with and without switching. For this purpose Table 5.11 and Table 5.12 fur-

ther display information about tests of model fit in subpart (d). ‘L-rat’ column

denotes the likelihood ratio of the null static (i.e. restricted) model vs. the

alternative switching model, ‘2∆LL’ is the test statistics of the log-likelihood

ratio test being approximately χ2 distributed with 1 degree of freedom (because

only the switching parameter is restricted), and ‘p-v’ is related p-value of the

test. Application of the likelihood ratio test seems natural in this situation,

nevertheless the Monte Carlo simulation framework brings several imperfec-

tions. On the one hand, simulated data smartly avoid the problem of model
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misspecification, on the other hand the goodness of fit test is designed rather

for comparison based on a single empirical dataset. In our situation, new vari-

ables and a different dataset are randomly generated in each of 1000 random

runs and the test is then based on the aggregate mean values over all runs.

But since the standard deviation of individual maximum log-likelihoods is neg-

ligible compared to their value (around 1%), aggregation does not cause any

appreciable loss of information. A second imperfection is related to the rel-

ative flatness of the log-likelihood function in the dimension of the restricted

switching coefficient β for a large interval of the domain (see detailed discussion

in Section 5.3.2). Although the estimation method detects precisely the true

intensity of choice especially for combinations of higher values of β, stronger

strategies, and lower stochastic noise specification, due to flat likelihood the test

exhibits only a moderate capability of distinguishing between the restricted and

the unrestricted model. Translated into p-values of the test to reject the null

of the static model, in the most distinct cases the value reaches 30% which is

far above usual econometric levels. Inspecting subpart (d) of Table 5.11 and

Table 5.12, we observe expected behaviour but generally low power of the test.

For all true β = 0, the likelihood ratio is equal to 1 and the p-value remains

100%. Increasing true β and strength of strategies, the likelihood ratio and

the p-value naturally decrease (as the test statistics ‘2∆LL’ increases), but the

pace of the progress is low for the selected range of βs.

5.3.3 3-type model estimation

Results of simultaneous estimation of 5 parameters in the 3-type model includ-

ing three basic strategies: fundamental represented by g1 = b1 = 0 and two

chartistic defined in the Table B.3 and Table B.4, can be found in Appendix B.

We keep the strategy of defining a grid of chartistic beliefs from Subsection 5.3.2

based on various combinations of trend following (g2 > 0), contrarian (g2 < 0),

upward-biased (b2 > 0), and downward-biased (b2 < 0) strategies and the same

multiples of standard deviations from the general model setting. Conclusion

are generally in accord with the results of the 2-type model estimation, the

difference is mainly in efficiency of estimates that is by nature lower than for

the 2-type model. However, combining two chartistic strategies we also gain

some new knowledge about the system behaviour. For instance, in case of a

combination of two trend following strategies (g2 > 0, g3 > 0), it is rather com-

plicated for the NPSMLE method to distinguish between impacts of these two
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strategies leading to lower statistical significance of both estimates compared

to other combination of trend following and contrarian strategies. Conclusions

regarding the nontrivial interplay between the intensity of the stochastic noise,

estimation efficiency, and the probability of ‘NaN’ outcomes seem to be some-

what mixed in this markedly more complex case as the estimation efficiency is

comparable for both stochastic noise specifications N(0, 0.12) and N(0, 1), and

the stability of the system in terms of ‘NaN’ outcomes is higher for N(0, 1)

which is the opposite tendency than observed within the analysis of the 2-type

model estimation.

5.3.4 Suggestions for future research

Although this section has proven that the NPSMLE does a fairly good job in

retrieving true parameters of the HAM, two important methodological issues

remain open for future research. First, a further development of an appropri-

ate statistical framework for the goodness of fit testing to complement Sec-

tion 5.3.2 and be able to distinguish between the 2-type and the 3-type model

is advisable. For this purpose, we plan to consider a version of the Vuong’s

closeness test (Vuong 1989) which is an advanced likelihood-ratio test for model

selection that allows also for overlapping or non-nested models. Second—and

not only because the estimation method is relatively computationally inten-

sive compared to traditional methods—an important area for further research

is assessing performance benefits that the new method brings, i.e. whether

NPSMLE yields more precise results then other simulation-based or traditional

(see Tables 2.1 and 2.2) methods. However, this is a difficult task to tackle as

traditional methods are largely infeasible for the HAM.



Chapter 6

HAM estimation on empirical data

Equipped with the knowledge from the Monte Carlo study in Chapter 5, we

broaden the topic via an empirical application and estimate the Brock &

Hommes (1998) model using cross section of world stock markets. We analyse

S&P500 and NASDAQ for the U.S., DAX and FTSE and for Europe, NIKKEI 225

and HSI for Japan and Hong Kong, respectively.

6.1 The estimation setting

Compared to the simulation study in Chapter 5, the setting of models esti-

mated using real data is less challenging and in terms of statistical validity also

less computationally demanding. On the contrary, the estimation algorithm

is a bit technically more complicated as the structure of the real world data

is far away from the regularity of the simulated dataset. Concurring findings

about the sufficient setting of the NPSMLE method from Chapter 5, we com-

pute results for 1000 random runs, number of observations t = 5000, and the

kernel approximation precision is set to N = 500. On the other hand, because

of a problematic numerical stability of the model when real data analysis is

introduced we increase the number of starting points for the numerical opti-

misation to 8.1 The other setting remains the same as defined in Section 5.1.

More importantly, as the effect of the more complicated structure of the code

with multiple initial points, the paralellisation of the computational procedure

cannot be maintained via the MATLAB because of technical assumptions of

1Based on a preliminary analysis, 8 starting points are sufficient to filter out issues related
to numerical instability on the system.
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the paralellisation function. Therefore we are left with simple and relatively

slow standard one-core type of calculations.

Moreover, based on main findings of Chapter 5, the proper intensity of

stochastic market noise is crucial for the correct function of the NPSMLE method.

A wrong stochastic noise specification is likely to influence the behaviour of the

system and validity or results to a great extent. Hence we do not longer use

the grid strategy to ensure the robustness of result as e.g. the stochastic noise

intensity on various real markets is immensely unpredictable variable. Leaving

this idea, we instead add the intensity of the stochastic market noise to the

list of estimated parameters. Generally, we thus apply a simultaneous uncon-

strained multivariable function estimation of all interesting parameters: agents’

belief coefficients defining individual trading strategies gh and bh, the intensity

of choice β, and the intensity of market noise, which is defined as a fraction

of the standard deviation of the noise term and the standard deviation of the

data and denoted as noise intensity.

First, we estimate the most simple 2-type model including two basic strate-

gies only—fundamental one represented by implicitly defined g1 = b1 = 0 and

chartistic one which is to be estimated. Within this setting, we simultaneously

estimate four parameters of interest—β, g2, b2, and the noise intensity. To

support the numerical stability of the estimated system, we constrain the in-

tervals for the starting points random generation to 〈−0.5, 0.5〉 for β, 〈1.3, 2.3〉
for g2, 〈−0.2, 0.2〉 for b2, and 〈0.4, 0.9〉 for the noise intensity. Nonetheless, as

the algorithm is designed to find an optimum of an unconstrained multivariable

function, it can freely leave these initial intervals during the search procedure.

We then continue with the estimation of the 3-type model including three

basic strategies—fundamental and two different chartistic strategies which are

to be estimated. Based on results of the 2-type model estimation, we assume

zero bias of both the trend following as well as the contrarian strategy, i.e.

b2 = b3 = 0. The simultaneous estimation of four parameters of interest—

β, g2, g3, and the noise intensity—technically requires a modification of the

algorithm setting to the constrained multivariable function estimation as the

two different strategies—the trend following g2 > 0 and the contrarian g3 < 0

need to be strictly distinguished using the following constrains: g2 ∈ 〈1.8, 2.8〉,
g3 ∈ 〈0,−0.5〉.
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6.2 Fundamental price approximation

Approximation of the fundamental price is inevitably the most ‘challenging’

issue of the entire empirical chapter. Unfortunately, in the original framework

of the Brock & Hommes (1998) asset pricing model of a simple stylised stock

market there is no hint about how the empirical fundamental value might be

derived.2 Thus, we are left with the existing literature and following Winker

et al. (2007); ter Ellen & Zwinkels (2010); Huisman et al. (2010), the funda-

mental price is approximated as a Moving Average (MA) value. Winker et al.

(2007) assume as the proxy for the fundamental price a MA over the last 200 ob-

servations of the DM/USD exchange rate time series for the period 1991/11/11

to 2000/11/9. ter Ellen & Zwinkels (2010) use the MA of the Brent and WTI

Cushing oil monthly USD prices over 24 months, i.e. from 1984/1 to 2009/8.

Huisman et al. (2010) employ the MA of European forward electricity daily

historical prices over 3 year for the base-load calendar year 2008 forward con-

tracts. Authors set the MA window to 3 as a calibration result of the optimal

length.

Long-term and short-term MAs are also commonly used by practitioners

in trading to extrapolate divergence from the fundamental value in technical

analysis. Since the fundamental value of stocks is essentially unknown, market

practitioners often tend to at least estimate whether the stock is over or under-

valued, whether the possible mispricing is small or large, and whether the gap

is going to increase or whether a soon correction is more likely. As the Brock &

Hommes (1998) model is also formulated in deviations from the fundamental

price, the MA approach seems to be one of reasonable guidances. The MA

filtering is the cornerstone of technical analysis and therefore widely used by

active traders: Allen & Taylor (1990, pg. 50) present empirical evidence on

the perceived importance of technical analysis among London foreign exchange

dealers and refer to prevalent mechanical indicators such as trend-following

rules: “buy when a shorter MA cuts a longer MA from below”. Taylor & Allen

(1992) survey chief foreign exchange dealers operating in London and report

2In contrast, another class of HAMs of FOREX markets successfully utilises the Purchasing
Power Parity between two countries as the approximation of the fundamental value of the
currency exchange rate [see e.g. Vigfusson (1997); Westerhoff & Reitz (2003); Manzan &
Westerhoff (2007); Wan & Kao (2009); Goldbaum & Zwinkels (2014); Verschoor & Zwinkels
(2013)]. Boswijk et al. (2007) and de Jong et al. (2009a) employ the static Gordon growth
model for equity valuation proposed by Gordon (1962), which is, however, infeasible for
the empirical validation of the original Brock & Hommes (1998) model. Some other papers
simply use a RW formula to drive the fundamental price (De Grauwe & Grimaldi 2005; 2006b;
Winker et al. 2007; Franke 2009).
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that 64.3% of organisations use MAs and/or other trend-following analytical

techniques. Brock et al. (1992, pg. 1735) refer to MA technical rules as to

one of the two simplest and most widely used: “when the short-period MA

penetrates the long-period MA, a trend is considered to be initiated”. Lui

& Mole (1998, pg. 541, 535) repeat largely analogical survey as Taylor &

Allen (1992) among Hong Kong foreign exchange dealers and report that MAs

“are seen to be the most useful technical technique at all three horizons” (i.e.

intraday, intramonth, > 1 month) and that “technical analysis is considered

. . . significantly more useful in predicting turning points”. Goldbaum (1999, pg.

70, 71) describes the way how in practice the MA trading rules translate into

buy-sell indicators: “when the short period moving average, say the average

price of the security over the last five trading days, rises above the long period

moving average, say the average of the price over the last 200 trading days,

this is a buy indicator. When the short period moving average drops below

the long period moving average, this is a sell indicator”. Sullivan et al. (1999,

1999) summarise that “MA cross-over rules . . . are among the most popular and

common trading rules discussed in the technical analysis literature”. To quote

from Isakov & Hollistein (1999), “the most popular moving average rule used is

(1,200), where the short period is one day (in fact it is the index itself) and the

long period is 200 days (almost a year)”. According to authors, “the academic

literature has shown that the best results were obtained when the short average

is one day”. Closely related to our work, “motivated by the popularity of MA

strategies in real markets and empirical studies” Chiarella et al. (2006, pg.

1748) propose a model in which the demand of chartists is determined by the

difference between a long-term MA and current market price.

For the MA setting in this analysis, we keep to the strategy of a wide range

of possible settings to ensure robustness of our findings. Within this work, we

present results for two specific window lengths, namely 61 and 121 days. For

the robustness check, we also tested other variants ranging from one month

to two years, namely 21, 241, and 481 days, leading to comparable results.3

Instead of usual ‘historical’ MA taking into account only the past information

for given time, we use the ‘centred’ MA taking into account the same number

of observation back as ahead. Both MA versions were analysed and found to

produce to a large extent comparable results. The centred MA is therefore sug-

gested to reduce the delay of the information flow. Moreover, the centred MA

incorporates a convenient property that the price converges to it by definition

3Results of this robustness testing are available upon request from authors.
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Figure 6.1: S&P500 fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 6.2: S&P500 fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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that is exactly a feature one would expect from the fundamental value. Al-

though undoubtedly our fundamental price approximation differ from the true

fundamental value, the MA filter produces a series of an anticipated structure

as depicted in Figures 6.1 and 6.2 for S&P500 and in Figures C.1 and C.2, C.3

and C.4, C.5 and C.6, C.7 and C.8, C.9 and C.10 for other respective indices

(in Appendix C).

6.3 Data description

We use daily closing prices of six world stock market indices as the base of our

empirical dataset. For S&P500, we retrieve the closing prices of the index using

the Wolfram Mathematica FinancialData function covering the period from

1994/02/23 to 2013/12/31, i.e. 5000 observations in total. For other indices,

only the starting dates of the dataset vary by reason of different public hol-

idays a calendar configurations around the world, i.e. 1994/04/22 for DAX,4

1994/11/02 for FTSE, 1994/02/23 for NASDAQ, 1993/09/03 for NIKKEI 225, and

1994/06/13 HSI. For each index we nonetheless also obtain comparable amount

of 5000 observations with the same end date 2013/12/31. The fundamental

price is simultaneously calculated as the centred MA as described in Section 6.2

and subtracted from the actual price following Equation 4.9.5 Thus we obtain

deviations xt from the fundamental price that are the subject of further esti-

mation. The span of the data is represented in Figure 6.1 and 6.2 where the

original time series of prices pt is depicted in the (a) part of the Figure to-

gether with the fundamental price p∗t approximation and the (b) and (c) parts

depict the implied series of deviations from the fundamental price xt = pt− p∗t .
Descriptive statistics of xt series for all indices and two MA lengths for the

fundamental value approximation are summarized in Table 6.1.

6.4 Static NPSMLE estimates

In the estimation, our main goal is to verify the HAM ability to describe world

stock market data and whether we obtain estimates of a reasonable precision

using the NPSMLE method. A special focus is also devoted to possible differ-

4For DAX the data are available from 1990/11/26, i.e. 5850 observations till 2013/12/31.
5For the calculation of the fundamental price we need some extra data points preceding

and succeeding the defined period, the complete dataset retrieved and used therefore consists
of ‘4999 + MA window length’ observations.
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ences and similarities between particular indices. For reader’s convenience we

briefly repeat the structure of the estimated model model:

Rxt =
H∑
h=1

nh,t(ghxt−1 + bh) + εt, (6.1)

nh,t =
exp(βUh,t−1)∑H
h=1 exp(βUh,t−1)

, (6.2)

Uh,t−1 = (xt−1 −Rxt−2)
ghxt−3 + bh −Rxt−2

aσ2
, (6.3)

where εt is an i.i.d. noise term sequence with normal distribution N (0, sd2).

Please, consult details of the model setting in Section 5.1. To recap, in the

2-type model (H = 2) we simultaneously estimate parameters β, g2, b2, and

the noise intensity. In the 3-type model (H = 3) we simultaneously estimate

parameters β, g2, g3, and the noise intensity.

6.4.1 Full sample estimates of the 2-type model

We start with the full sample static estimation summarised in Table 6.2. Gen-

erally, we can observe broad similarities across all indices and markedly statisti-

cally significant estimates of a positive belief parameter g2 revealing superiority

of trend following over contrarian strategies on markets. In contrast, the es-

timates of the intensity of choice—the switching parameter β—and the bias

parameter b2 are largely statistically insignificant. While for the bias this is an

expected result as there is no obvious reason why the trend following strate-

gies should be somehow biased in the long-term, the insignificance of β̂ is an

important and interesting result. We thus contrast a large subpart of the HAM

estimation literature (see Chapter 2) but confirm the main results of e.g. West-

erhoff & Reitz (2005); Boswijk et al. (2007); de Jong et al. (2009b); ter Ellen

et al. (2013); Bolt et al. (2014). Since the heterogeneity in trading regimes

is confirmed by the significance of g2, this might not worrying as discussed in

Boswijk et al. (2007, pg. 1995) or Hommes (2013, pg. 203) who emphasise that

“this is a common result in non-linear switching regression models, where the

parameter in the transition function is difficult to estimate and has a large stan-

dard deviation, because relatively large changes in β∗ cause only small variation

of the fraction nt. Teräsvirta (1994) argues that this should not be worrying as

long as there is significant heterogeneity in the estimated regimes.” Further-



6. HAM estimation on empirical data 133

T
ab
le
6.
2:

E
m

p
ir

ic
al

re
su

lt
s

of
th

e
2-

ty
p

e
β

m
o
d
el

es
ti

m
at

io
n

D
a
ta

,
M

A
p

er
io

d
(a

)
β̂

(b
)
ĝ
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more, as Huisman et al. (2010, pg. 17, 20) point out, “the significance of the

intensity of choice is not a necessary condition for the switching to have added

value to the fit of the model” and “the non-significant intensity of choice, as this

indicates that the switching does not occur systematically”. The magnitudes

of trend parameter estimates ĝ2, that keep roughly between 1.6 and 1.9, might

seem large, but it is important to note that they influence the price change

only from circa 50% implied by the insignificance of the intensity of choice β

keeping the population ratio of the two strategies stable around 0.5/0.5.

It is now important to contrast empirical findings with simulation results

of Chapter 5. Based on the analysis of the confidence bands in Figure 5.2,

our computational setting based on 1000 random runs, number of observations

t = 5000, and the kernel approximation precision N = 500 provides us with

a reasonably high precision of the intensity of choice β estimates. Figure 5.2

(bottom part) and further quantitative analysis clearly show that even for a

very small β = 0.5, when estimating a time series of 5000 observations and

considering 5% significance level, β is markedly statistically significant. Thus,

if there is some behavioural switching present in our empirical data, it should

have been detectable under similarly robust setting.

Differences across markets can be partly seen in the (d) column of Table 6.2

between well efficiently estimated values of the ̂noise intensity. Although the

difference are often on the border of statistical significance, it might be worth

mentioning that the highest stock market noise intensity has been estimated for

the U.S. indices, specifically S&P500 in case of MA61 based fundamental value

and NASDAQ in case of MA241 based fundamental value. Conversely, the lowest

values has been estimated for DAX and the difference is circa 30% in case of

the MA241 based fundamental value.

The level differences in values between the upper part of Table 6.2 depict-

ing results for the MA61 fundamental price approximation and the middle part

with results for the MA241 is perhaps mainly the technical feature of different

MA windows. It is therefore important to consider absolute values of esti-

mated coefficient with this respect and compare both versions. Nevertheless,

the main results concerning the positive sign and statistical significance of ĝ2

and insignificance of β̂ and b̂2 keep similar as well as the main detected rela-

tive relationships between values of the ̂noise intensity. Our most important

results thus demonstrate robustness w.r.t. the choice of the fundamental value

specification. The lower values of the ̂noise intensity might be explained by

reason of a better fundamental value approximation using bigger MA window.
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6.4.2 Behaviour of the simulated log-likelihood function

We verify the smoothness conditions and unique maxima presence of the simu-

lated log-likelihood functions that are crucial for the parameter detection and

identification also within the empirical application. However, the 5D surface

resulting from simultaneous estimation of four parameters makes the graphical

demonstration even more complicated than in Subsection 6.4.2. Therefore, we

again depict sub-log-likelihood functions in 2D and 3D, assuming other param-

eters fixed at estimated values from Table 6.2.

Figure 6.3 demonstrates partial 2D shapes of the simulated sub-log-likelihood

function in direction of individual parameters. Generally we observe a bit rough

shape in detail, but very consistent performance of the estimation method over

all 100 random runs leading to unique maxima consistent with the full sample

estimates in all cases. The shape is affected by the structure of the real world

data which is far away from the regularity of the simulated dataset. For this

reason, we also adapted the computational algorithm by increasing the number

of initial points (see details in Section 6.1) so that it is able to deal well with

the not-completely-smooth surface of the log-likelihood function. Figure 6.4

then visualises 3D simulated sub-functions for all combinations of four esti-

mated parameters, keeping the other two fixed. The relative smoothness of the

surface and well detectable regions of possible maxima keep generally retained

corresponding to simulation results from Section 5.3.2. For more ‘extreme’

combinations of parameters the model is again numerically unstable and we do

not depict the surface for these regions. Equivalently to full sample estimation

results, parameters β and g2 seem to be well detectable, while in the b2 direc-

tion [subfigures (b), (d), and (f)] the surface is very flat. Interestingly, based on

visual inspection of subfigures (g) and (h) we suspect a small potential upward

bias for the noise intensity estimates.

6.4.3 Robustness check of the 2-type model

For the robustness check of the validity of estimated values (results are reported

in Table 6.2, bottom part), we not only use more than single MA specification

of the fundamental value, but also consider several modification of the setup

and even different frequency of the data. Equipped with the knowledge from

previous analysis, we again only compute results for S&P500. Aside utilisation of

weekly and monthly data, we also follow the robustness testing from Chapter 5

and estimate the model using
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Figure 6.3: Simulated sub-log-likelihood fcns. for single parameters
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Note: Results based on 100 random runs, S&P500 data, given MA fundamental price approximation, number
of observations t = 5000, and the kernel estimation precision N = 1000. {εi}Ni=1 drawn from normal
distribution. Black dotted vertical lines depict estimated parameters (see Table 6.2).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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1. 10 times higher assumed market risk free rate R = 1.001;

2. nontrivial memory of agents defined via parameters mh = {40, 80} ∀ h.6

Three new dataset cover S&P500 weekly data from 1994/02/28 to 2013/12/30

(i.e. 1035 observations) and monthly data from 1994/03/01 to 2013/12/02 (i.e.

238 observations). Selected periods cover the same span as the original daily

dataset. The MA lengths have been selected so that they resemble most closely

the 61 and 241 days for the fundamental value specification, i.e. 13 and 49

weeks in case of weekly data and 13 months for monthly data. The assumed

market risk free rate has been adjusted to reflect the modified data periodicity,

namely to R = 1.0005 for weekly data and R = 1.002 for monthly data.

The most important findings of the original empirical analysis of six world

stock market indices remain unaffected under the robustness burden. The β̂

parameter still reveals evident statistical insignificance, the same does the bias

parameter b̂2. Differences are basically observable at the level of trend parame-

ters ĝ2 and ̂noise intensity, but the behaviour keeps patterns uncovered within

the original analysis—ĝ2 slightly increases and ̂noise intensity decreases mov-

ing from MA61 to MA241 fundamental value approximation. Results based on

monthly and weekly data show considerably lower ĝ2, the values fall even under

1 for the MA13 fundamental value specification—instead of strong trend chas-

ing strategy only the weak trend chasing strategy is detected—but this seems

to be again an implied technical side-effect of a small MA window that pro-

duces more average dynamics of the price deviations series. Monthly data with

insufficient length of the estimated series (238 observations) expectedly, based

on findings of the NPSMLE method performance analysis in Chapter 5, perform

the worst statistical fit compared to weekly and daily dataset. Memory only

slightly increases the model fit and as the interconnected effect decreases the

̂noise intensity. Nothing surprising is therefore found within the validity check

6Memory process is a substantial modification of the model structure. We employ the
similar approach as Barunik et al. (2009), Vacha et al. (2012), and Kukacka & Barunik
(2013), i.e. Equation 5.3 is extended via memory parameters mh:

Uh,t−1 =
1

mh

mh−1∑
l=0

[
(xt−1−l −Rxt−2−l)

ghxt−3−l + bh −Rxt−2−l

aσ2

]
. (6.4)

The memory for each individual strategy is then randomly generated from the uniform
distribution U(0,mh), therefore the average memory length resembles circa the one- or two-
month period, i.e. 20 or 40 days.
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of original results which prove robust to various data frequency specifications

as well as modifications of interesting parameters in the model.

6.4.4 Full sample estimates of the 3-type model

Estimation of a more-flexible 3-type model reveals markedly similar big picture

as the estimation of the 2-type model. For the matter of computational time,

based on our knowledge from the 2-type model estimation revealing large simi-

larities across all estimated stock market indices we again only compute results

for S&P500. Estimated parameters are reported in Table 6.3. The only new

conclusion is a statistical insignificance of the contrarian strategy represented

by coefficient ĝ3 (exactly specified in the model and defined via the constraint

g3 < 0). Although point estimates reported via median and mean values are

negative, this is only an effect of the enforced g3 < 0 constraint. The distri-

bution mass of estimates from all 500 runs concentrates close to 0 as depicted

in Figure 6.5. The optimised function is likely to be very flat in the dimen-

sion of g3 parameter because the effect of a very weak contrarian strategy is

overshadowed if combined with a very strong trend following strategy. The

estimate of the intensity of choice β keeps its statistical insignificance and the

trend following strategy coefficient ĝ2 retains its positive sign as well as high

statistical significance. The absolute value of ĝ2 is naturally higher because

the trend following strategy impacts the price via only the 1/3 weight in the

3-type model compared to 1/2 weight in the 3-type model (in both cases con-

ditional on insignificant β̂). Taking those weights into account, we obtain very

similar impact of the trend following strategy in both models. Comparing re-

sults for the MA61 and MA241 fundamental price approximation shows the very

same effects as within the 2-type estimation, under MA241 we reveal somewhat

stronger trend following strategy and lower intensity of stochastic noise.

6.5 Rolling NPSMLE estimates

To confirm the robustness of the full sample static estimates in Section 6.4

over time, we further investigate how the HAM estimation results might pos-

sibly change between 1994 and 2014. Utilising almost 20 years of data (5000

observations) used for the static estimates, we now estimate the HAM on one

year (240 days) rolling samples with steps of two months (40 days). Based on

results of the simulation Monte Carlo study in Chapter 5, the one year pe-
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Table 6.3: Empirical results of the 3-type β model estimation

Data, MA p. (a) β̂ (b) ĝ2 (c) ĝ3 (d) ̂noise i. (e) LL

Med. SD Med. SD Med. SD Med. SD Med. SD

SP500, 61 -.003 .082 2.502 .175 -.123 .111 .550 .047 -.127 .022
SP500, 241 .007 .050 2.674 .217 -.032 .142 .403 .045 -.289 .094

Note: Results are based on 500 random runs, number of observations t = 5000, and the kernel estimation
precision N = 500 i.i.d. draws from normal distribution. Sample medians and standard deviations (SD)
are reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are
rounded to 3 decimal digits.

Source: Author’s own computations in MATLAB.

Figure 6.5: Smooth histogram of the contrarian coefficient g3

(a) S&P500 MA 61
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Note: Results are based on 500 random runs. Produced using automatic SmoothHistogram kernel approxi-
mation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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riod still represents relatively sufficient length of the estimated time series for

a reasonable statistical inference based on the NPSMLE method. At the same

time it is a relatively short period to detect possible structural breaks in the

data.7 Due to high computational burden we have significantly decreased the

robustness of the algorithm setting: we display results based on 200 runs and

the number of initial points for the numerical optimisation has been decreased

to 4. We also always discard only 10 observations as the initial stabilising peri-

ods. The ‘cost’ of such relaxation of the computational setting is reflected in the

lower efficiency of estimates and the standard deviations of rolling estimates

are expected higher compared to full sample static estimates. On the other

hand, the rolling analysis still provides clear insight into the model dynamics

and credible conclusion.

6.5.1 Rolling estimates of the 2-type model

We depict rolling estimation results of the S&P500 in Figure 6.6. Rolling esti-

mate results for other indices are reported in Appendix D, Figures D.1, D.2,

D.3, D.4, and D.5. Interpreting primarily results in Figure 6.6, we can observe

relatively stable behaviour of the model throughout the entire investigated

period. The ĝ2 and ̂noise intensity estimates keep steadily around their long-

term static estimates and exhibit high statistical significance as traceable in

the (c) and (d) subparts of the Figure depicting rolling standard deviation for

all coefficients. The β̂ and b̂2 keep to zero and are statistically insignificant all

the time. This is something we generally expect to observe as the full sample

β̂ estimates (see Table 6.2) are close to zero, hence the dynamics is restrained

and the model in fact boils down to a simple model which we further analyse

in Section 6.6. Nonetheless, we might detect some signs of dynamics of ĝ2

e.g. around the Lehman Brothers bankruptcy and related U.S. recession be-

tween December 2007 and June 2009 in the MA61 case, but these shifts are

strongly bellow the level of statistical significance and also largely dependent

on the window length of the MA fundamental price approximation as one can

see when comparing the (a) and (b) part of Figure 6.6. Some slight dynam-

ics is also detectable for ̂noise intensity which slightly increases in turbulent

periods. The only clear dynamics seems to be observable at the level of the

log-likelihood LL. With this respect we highlight the fact that a direct compar-

7Various combinations of rolling sample windows and steps had been used in the prelimi-
nary analysis without impacting the overall results, e.g. comparing one month and one-half
year steps. The outcomes of the preliminary analysis are available from authors upon request.
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Figure 6.6: Rolling estimates of the 2-type model for S&P500

(a) MA61 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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ison of rolling log-likelihoods is methodologically disputable because it is based

on different rolling sub-samples. However, we argue that since rolling datasets

keep the same length and overlap by circa 83% between adjacent steps, the

overall evolution of the LL pattern provides us with a valuable information.

The fit is relatively higher during rather tranquil periods (e.g. at the beginning

and the end of the sample period or between 2003 and 2007) and on the con-

trary it generally decreases during volatile periods (well detectable in Figures

6.1 and 6.2), especially during highlighted recessions. This might seem puz-

zling as during the high volatile periods the trend following strategy is likely to

attract attention of market participants, however such behaviour is in accord

with the overall stability of the rolling estimates close to long-term values. A

potential dynamics is, however, much more observable at the level of standard

deviations [subparts (c) and (d) and detached Figure 6.7]. The standard devi-

ation of the trend following coefficient g2 clearly jumps up in volatile periods

such as recession around the WTC 9/11 attack, Lehman Bankrupcy, or down-

grade of USA ranking to AA+. This can be interpreted as a sign of increased

presence of contrarians (nonetheless, still being a large minority) during such

turbulent stock market periods. Although the method faces difficulties to ad-

just the average absolute value of the trend-following coefficient ĝ2 over 500

repeated runs, it detects increasing population of contrarians via less efficient

estimates of the effect of trend followers. A similar pattern is observable for

the ̂noise intensity and LL. This is again nothing surprising as econometrics

models generally perform better in periods of market stability. Using larger

MA241 fundamental value approximation naturally decreases the flexibility of

the estimation to detect effects of single events and so the captured dynamics

is considerably more stable.

We also observe some interesting signs of a specific and economically well

interpretable dynamic behaviour for other indices illustrated in Figure 6.8. For

NASDAQ behaviour, although otherwise considerably more stable compared to

S&P500, the worth mentioning is especially the drop of the standard deviation

of β̂ and increase of the standard deviation of the trend parameter ĝ2 around

the Asian Crisis in 1997 and the Dot-com Bubble Burst in 2000. Since NASDAQ

is especially used for trading technological and IT companies, this makes some-

what sense as technological companies are often based or produce in Asia and

IT companies were hit by the Dot-com Bubble much more than other sectors.

Similar behaviour is not observed for the more general S&P500. For both Euro-

pean indices DAX and FTSE the model on the level of standard deviations does
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Figure 6.7: Rolling behaviour of the SD of the ĝ2 estimate I.

(a) S&P500 MA61 fundamental price approximation
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(b) NASDAQ MA61 fundamental price approximation
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Note: Bold black full line depicts standard deviation of the ĝ2 estimate. Results are based on 200 random
runs, length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500
i.i.d. draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.

reflect the crisis around the Rubble devaluation in 1998, again not captured

by S&P500. The effect of both worldwide crises in 2001 and 2008-2009 is also

captured, but not the Asian Crisis of 1997. Interestingly, the HSI data repre-

senting Asia captures the effect of 1997 Asian Crisis as well as the worldwide

cries of 2008-2009 and 2011, but does not reflect neither the 1998 Rubble de-

valuation, nor WTC 2001/9/11 attack. Behaviour of model under NIKKEI 225

data resembles much more the patterns observed for S&P500 than for HSI. All

this can be attributed to increased presence of contrarians at specific periods

on specific markets detected via less efficient estimates of the effect of trend

followers. Finally for some indices, namely NASDAQ, FTSE and HSI (but not for

the other three) we can observe some intriguing negative correlation between

standard deviations of β̂ and ĝ2 in some turbulent periods.

In general, although we can reveal some patterns of interpretable dynamics
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Figure 6.8: Rolling behaviour of the SD of the ĝ2 estimate II.

(a) DAX MA61 fundamental price approximation
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(b) FTSE MA61 fundamental price approximation
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(c) HSI MA61 fundamental price approximation
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(d) NIKKEI 225 MA61 fundamental price approximation
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Note: Bold black full line depicts standard deviation of the ĝ2 estimate. Results are based on 200 random
runs, length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500
i.i.d. draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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for individual indices, the rolling approach in particular strongly supports the

stability of model behaviour over time and thus confirms the validity of full

sample estimation results from Subsection 6.4.1.

6.6 Estimation of market fractions

Our findings from the performed estimations in Section 6.4 and Section 6.5,

mainly the overall statistical insignificance of the intensity of choice β̂, statisti-

cally insignificant sizes of ĝ3 coefficients of contrarian strategies, and stability of

rolling coefficients, lead us to another, this once truly significant modification of

the model. Interpreting these results, hitherto model specifications do not seem

to correspond to the data fully. In the 2-type model, the insignificant β̂ coeffi-

cient implicates stable population ratio of trading strategies n1,t/n2,t
.
= 0.5/0.5,

which means that the population of fundamentalists is forced to be of almost

the same magnitude as the population of chartists throughout the entire span

of the dataset. Thus the model in fact boils down to a simple weighted AR(1)

process and different types of traders cannot be identified because they do not

switch over time. In such a case the trend and bias parameters ĝ2 and b̂2 (or

ĝ3 in the 3-type model) can be viewed as nuisance parameters—they to a large

extent lose the original model interpretation and we cannot fully trust the es-

timated magnitudes of these parameters. Although we understand that it is

generally very complicated for the estimation method to detect some system-

atic evolutionary switching between trading strategies when it is exposed to

the full dataset (and therefore the average zero β̂ coefficient seems reasonable),

we cannot agree with such a strong assumption of similar population mag-

nitudes for both strategies. Moreover, contrarians in the 3-type model, who

technically account for 1/3 of the population size as the β̂ coefficient is steadily

insignificant, in fact behave as fundamentalists in terms of their price impact

because sizes of ĝ3 coefficients are small and statistically insignificant. These

findings from the analysis of the 2-type and 3-type model estimation imply two

important conclusions. First, the 3-type model does not really help us to cap-

ture additional features of the data-generating process and rather deviates the

implied market fraction. Second, it suggests there might be more fundamen-

talists than chartists on real markets and therefore the almost fixed population

ratio of trading strategies n1,t/n2,t
.
= 0.5/0.5 as the result of the 2-type model

estimation is much likely not capturing the real market population proportions.

Therefore, as a consequence of previous findings, we trivialise the simulated
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model (Equation 5.1, Equation 5.2, and Equation 5.3) via disabling the evolu-

tionary switching behaviour and fixing the population ratio of trading strategies

to n1,t/n2,t = const. A rationale of this step is further supported by overall sta-

bility of rolling estimates. Equation 5.2 and Equation 5.3 are now replaced by

Equation 6.6 and the coefficient n1, which we further call percentage fraction

of fundamentalists, is to be estimated instead of the switching coefficient β:

Rxt =
H∑
h=1

nhfh,t + εt ≡
H∑
h=1

nh(ghxt−1 + bh) + εt, (6.5)

n1 = 1− n2, (6.6)

where H = 2 in the 2-type model. Interval for the starting points random

generation is constrained to 〈0.3, 0.9〉 for fraction and to 〈1.5, 2.5〉 for g2, the

other setting remains the same as in Section 6.4. The modified setup keeps

the logic of aforementioned findings and does not distract the structure of the

original model. On the other hand, the population ratio of trading strategies

n1/n2 and implied percentage fraction of fundamentalists on the market is now

a direct subject of the interest.

6.6.1 Full sample estimates of the 2-type fraction model

Outcomes of the full sample static estimation of all six stock market indices

are reported in Table 6.4. The main interest lies in the behaviour of the new

variable fraction representing the percentage market fraction of fundamental-

ists (g1 = b1 = 0). All other variables behave at average very similar as in

the 2-type β model estimation, moreover we do not longer observe consider-

able distinctions caused by the MA window length for the fundamental value

approximation.

The ̂fraction coefficient is strongly statistically significant with it value

closely around 0.56, leaving only 44% of the market population to chartistic

strategies. The model therefore suggests overall proportional dominance of

the fundamental strategy on all investigated world stock markets. The sta-

bility of the ̂fraction coefficient is also confirmed via the rolling estimates in

Figure 6.10 where it closely oscillates around the long-term static value. Es-

timates of the trend following coefficient g2 are generally higher compared to

values for the 2-type β model estimation reported in Table 6.4 but one must

realise that within the 2-type fraction model the trend following strategy is
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relatively weaker in terms of impact to the market price (see Equation 4.13)

because the proportion of these strong trend chasers is lower than 0.5. If we

consider market proportions incorrectly implied by the 2-type β̂ coefficient and

related ĝ2 and compare it to ̂fraction and related ĝ2 estimated in this section

according to Equation 4.13, we deduce almost similar impact. This confirms

our suspicion about an improper specification of the model with insignificant

β̂ and we corrected for this misspecification introducing ̂fraction specification

via Equation 6.6. Evolutionary switching between strategies can be now cap-

tured via changes in the ̂fraction coefficient in its smooth form using the rolling

approach as asserted by Teräsvirta (1994, pg. 217): “if one assumes that the

agents make only dichotomous decisions or change their behaviour discretely, it

is unlikely that they do this simultaneously. Thus if only an aggregated process

is observed, then the regime changes in that process may be more accurately

described as being smooth rather than discrete.” Nonetheless, the rolling ap-

proach does not reveal any significant dynamics in the behaviour of ̂fraction
which again only confirms the validity of full sample estimation results from

Section 6.6.

6.6.2 Behaviour of the simulated log-likelihood function

Conclusions for the smoothness conditions and unique maxima presence of

the simulated log-likelihood functions for the β model (see Subsection 6.4.2)

hold generally identically for the fraction model. Here we only depict sub-log-

likelihood functions in 2D assuming other parameters fixed at estimated values

from Table 6.4. In Figure 6.9 we demonstrate 2D shapes of the simulated sub-

function in direction of individual parameters. Differences compared to the β

model are threefold:

1. in the fraction direction [subfigures (a) and (b)] the function behaves

more ‘nicely’;

2. in the b2 direction [subfigures (e) and (f)] we do not observe any optimum,

thus the identification of the parameter seems problematic;

3. on the contrary, we do not longer suspect the potential upward bias for

the noise intensity estimates [subfigures (g) and (h)] compared to Sub-

section 6.6.2.
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Figure 6.9: Simulated sub-log-likelihood fcns. for single parameters
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Note: Results based on 100 random runs, S&P500 data, given MA fundamental price approximation, number
of observations t = 5000, and the kernel estimation precision N = 1000. {εi}Ni=1 drawn from normal
distribution. Black dotted vertical lines depict estimated parameters (see Table 6.4).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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6.6.3 Robustness check of the 2-type fraction model

We employ an identical (except for now irrelevant effect of memory) robustness

check as in the previous case for the β model also for the fraction model. Re-

sults of the weekly and monthly data estimation and the model assuming higher

market risk free rate are reported in Table 6.4 (bottom part). Basic conclu-

sions for the robustness and validity check of the β model from Subsection 6.4.3

hold identically for the fraction model. The ̂fraction, g2, and ̂noise intensity

generally reveal strong statistical significance, the opposite does the bias pa-

rameter b̂2. Differences are again observable at the level of trend parameters ĝ2

and ̂noise intensity based on monthly and weekly data—results show lower ĝ2

and higher noise intensity compared to daily data and monthly data perform

the worst statistical fit compared to weekly and daily dataset. These findings

are once again likely to be an implied technical side-effect of small MA window.

6.6.4 Rolling estimates of the 2-type fraction model

We also follow the same logic of the assessing validity of the full sample static

estimates in Section 6.6 over time via rolling estimation on the entire investi-

gated period between 1994 and 2014 with the same general setting an in the

case of the β model. Results of the rolling estimation of the S&P500 are depicted

in Figure 6.10. Rolling estimate results for other indices are reported in Ap-

pendix D, Figures Figure D.6, Figure D.7, Figure D.8, Figure D.9, Figure D.10.

Comparing and contrasting rolling results with findings from the β model anal-

ysis in Subsection 6.5.1, at first sight we might conclude that the stability of

the fraction model is markedly higher and we neither observe much dynamics

around important crashes and turbulent periods from the stock market history

nor in recessions. We also do not observe any obvious specific behaviour for

individual indices.

The ̂fraction, ĝ2, ̂noise intensity estimates keep steadily around their long-

term static estimates with high statistical significance traceable in the (c) and

(d) subparts depicting rolling standard deviation. The b̂2 keeps to zero and is

associated with high standard deviation values over the entire data period. The

fit is again relatively higher during rather tranquil periods and on the contrary it

generally decreases during volatile periods. At the level of standard deviations

[subparts (c) and (d)] signs of potential dynamics are detectable for the MA241

fundamental value specification which shows apparently more chaotic behaviour

of standard deviations than the MA61 case. However, one can hardly detect



6. HAM estimation on empirical data 152

Figure 6.10: Rolling estimates of the 2-type fraction model for S&P500
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and LL+ 6 are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB.
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any clear pattern in it. This is, nonetheless somewhat interesting if compared

with the rolling results for the β model where larger MA241 fundamental value

specification considerably stabilises captured dynamics of standard deviations.

For some reason the fraction model behaves inversely in this respect.

Generally, the rolling approach again strongly supports the stability of the

fraction model behaviour over the entire investigated period and therefore af-

firms the validity of full sample estimates from Subsection 6.6.1.



Chapter 7

Simulation-based estimation of

FABMs: the case of Alfarano et al.

model

In this chapter we apply the NPSMLE methodology to another simple FABM

originally developed by Alfarano et al. (2008). The model is derived in the tra-

dition of Kirman’s ANT mechanics introduced by (Kirman 1991; 1993) that is

amended by asymmetric herding towards investment strategies resulting in the

IAH origin of the system. Unlike the most widely used discrete-choice multi-

nomial logit switching rule approach (Brock & Hommes 1998, Equation 4.16)

studied in previous chapters, the Alfarano et al. (2008) model is based on the

other typical ingredient of FABMs—the herding behaviour. The concept of

herding represents the second widely accepted principle of possible evolution

of market fractions applied in FABMs that can trigger interesting nonlinear en-

dogenous dynamics resulting in large aggregate price fluctuations. Therefore

estimation of two models based on these two leading principles—switching and

herding—is introduced in the thesis. A further motivation for the analysis and

repetitious empirical testing of the Alfarano et al. (2008) model comes from

somewhat puzzling conclusions of previous estimation attempts of similar con-

cepts via MSM. As concluded by Chen et al. (2012, pg. 207), “the Lux model

was rejected, similar to the rejection of the ANT model” based on its empiri-

cal validation (Winker et al. 2007) in favour of ABS. However, the most recent

studies (Franke & Westerhoff 2012; Ghonghadze & Lux 2015) accept the model

or systems based on the same origin as possible data generating processes with

high p-values of the J-test (see Subsection 2.4.4).
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Authors model the herding behaviour utilising the master equation ap-

proach from Physics and demonstrate that (and under what circumstances)

herding mechanism gives rise to realistic time series that resemble well various

stylised facts of financial data (see e.g. Figure 7.2 with illustrative examples

or related descriptive statistics in Table 7.1). The model generically replicates

the leptokurtic distributions of returns and volatility clustering that are di-

rectly linked to the herding component of the model which puts emphasis on

“the importance of bounded rational behaviour as a potential explanation of

the stylized facts” (Alfarano et al. 2008, pg. 125). Currently, two attempts

on the empirical validation of this model have been published by Chen & Lux

(2015) and Ghonghadze & Lux (2015) who estimate the model using MSM and

GMM, respectively. Utilising the same dataset we estimate the Alfarano et al.

(2008) model by NPSML.1

7.1 The model

In this section we briefly outline the computational design of the asset pricing

model based on the work of Chen & Lux (2015). A comprehensive analyti-

cal derivation of the model can be found in the original article by Alfarano

et al. (2008). The model assumes two distinct group of market participants—

fundamentalists and noise traders. Fundamentalists make their investment

decision based on the deviation from the fundamental value, i.e. buy/sell when

the asset is under/over valued. The population of fundamentalists consists of

Nf traders with average trading volume Vf and their excess demand is thus

expressed as:

Df = NfVf (Ft − pt), (7.1)

where Ft is the log fundamental value and pt is the log price at time t.

The other part of the artificial market is represented by Nc noise traders, each

of them being during each period either in a positive (optimistic) state which

is associated with buying Vc units of the asset, or in a negative (pessimistic)

mood associated with selling the same amount. The number of optimistic noise

1The dataset and the MATLAB code of the model have been kindly provided by prof.
Thomas Lux and Dr. Zhenxi Chen from the University of Kiel. However, for the purpose of
this study we employ a different span of the data than Chen & Lux (2015).
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traders in time t is denoted as nt and we define the population sentiment index

as:

xt =
2nt
Nc

− 1, (7.2)

i.e. xt ∈ 〈−1, 1〉, it is equal to zero for balanced sentiment and gains

positive or negative values when the majority of noise traders are optimistic or

pessimistic in time t, respectively. The value of the population sentiment index

directly translates into the excess demand of noise traders:

Dc = NcVcxt. (7.3)

The herding dynamics of the model is governed by a process of opinion

changes within the population of noise traders who dynamically switch be-

tween the optimistic and pessimistic regimes. The transition probabilities are

given by the Poisson intensity a ≥ 0 inducing autonomous switches of opin-

ion and the rate b ≥ 0 implicate ‘herding-based’ switches caused by pair-wise

communication among noise traders:

πx,t(− → +) =
Nc − nt
Nc

(
a+ b

nt
Nc

)
= (1− xt)

[
2a

Nc

+ b(1 + xt)

]
N2
c , (7.4)

πx,t(+→ −) =
nt
Nc

(
a+ b

Nc − nt
Nc

)
= (1 + xt)

[
2a

Nc

+ b(1− xt)
]
N2
c , (7.5)

where πx,t(− → +) denotes the probability that a pessimistic noise trader

switches to an optimistic mood and vice versa (note that the rate b needs to

be multiplied by the fraction of noise traders of the opposite opinion).

Assuming Walrasian price adjustment mechanism with instantaneous mar-

ket clearing, the price change is derived from the overall excess demand:

dp

dt
= Df +Dc = NfVf (Ft − pt) +NcVcxt. (7.6)

The equilibrium market price is then formulated as:
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pt = Ft +
NcVc
NfVf

xt. (7.7)

The complete model in continuous-time version is finally summarized by

four mutually dependent equations:

dFt = σfdB1,t, (7.8)

dxt = −2axtdt+

√
2b(1− x2

t ) +
4a

Nc

dB2,t, (7.9)

pt = Ft +
NcVc
NfVf

xt, (7.10)

rt = pt − pt−1,

≡ Ft − Ft−1 +
NcVc
NfVf

(xt − xt−1),

≡ σfet +
NcVc
NfVf

(xt − xt−1), (7.11)

where:

• the log fundamental value Ft follows a Brownian motion without drift,

σf denotes the standard deviation of innovations of Ft;

• B1,1 and B2,t stand for independent standard Wiener processes;

• rt is the log price and log return at time t, and et ∼ i.i.d. standard normal

distribution N(0, 1) as the fundamental value for a unit time change asso-

ciated with daily data, i.e. Ft+1, can be obtained by a normal distribution

N(Ft, σf ).

The sentiment dynamics process is characterised by a mean-reverting drift.

Parameter b relatively high compared to a brings about moderation of the ran-

dom variation and thus results in strong majorities of optimistic or pessimistic

noise traders over time, i.e. xt generally tends to occur close to bounds of its

stochastic process and the system is characterised by a bimodal distribution

of the sentiment index xt. In such case the pair-wise communication among

noise traders leads the sentiment dynamics and is responsible for a persistent

majority opinion. Conversely, if a > b, the sentiment index xt is dominantly

governed by autonomous opinion changes and therefore embodies unimodal

unconditional distribution with its peak at 0, i.e. the balanced situation.
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7.2 Computational setting

In our application we follow the Chen & Lux (2015) and Ghonghadze & Lux

(2015) computational setting of the model. First, a moderate number of noise

traders, Nc = 100, is assumed to reduce computational time. Second, to repre-

sent a specific unimodal and bimodal version of the model, a is fixed to 0.0014

and b to 0.0003 for the unimodal version and the reversed values, a = 0.0003

and b = 0.0014, define the bimodal setting. Third, the standard deviation of

innovations of Ft is set to σf = 0.03 for both cases and the complete set of pa-

rameters θ = (σf , a, b) is being estimated. As argued by Chen & Lux (2015, pg.

11), “adding NcVc
NfVf

as a fourth parameter would deteriorate results by so much

that the outcomes of our estimation would become almost useless”. Therefore

the NcVc
NfVf

term, which can, moreover, be interpreted as only a scale factor and

thus omitted, is set to 1. Finally, as a reasonable technical assumption, initial

values for Ft, xt, pt, and rt are jointly set to 0.

In order to demonstrate differences between the unimodal and the bimodal

version of the model, in Figures 7.1 and 7.2 we depict an illustrative example of

model outcomes based on a single random run and the very same random seed

so that the series of the log fundamental value Ft keeps identical for both cases

and any difference between the unimodal and the bimodal version is solely

due to the flipped setting of parameters a and b. Comparing bottom parts

of Figures 7.1 and 7.2, we clearly observe strong mean reverting behaviour of

the population sentiment xt for the unimodal setting and the bimodal pattern

of prevailing positive sentiment2 for the other setting. When sub-figures (e)

depicting log returns rt are preliminarily visually compared in terms of simi-

larity to real market returns, the bimodal version resembles the real data more

accurately, for instance we observe clusters of higher volatility followed by peri-

ods of lower volatility—one of the most robust stylised fact of financial returns.

Contrasting descriptive statistics of log returns rt summarised in Table 7.1, one

can detect higher extreme values and leptokurtic distribution for the bimodal

version, both important symptoms of a financial-like type of distribution.

2The prevailing positive sentiment xt as well as rather increasing fundamental value Ft

are chance results only based on the selected random seed.
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Figure 7.1: Illustrative example of model outcomes (unimodal v.)
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Note: An illustrative example of simulated time series and related smooth histograms for the unimodal
model version. Results based on a single random run and identical random seed as Figure 7.2, number
of observations t = 5000. Produced using automatic SmoothHistogram kernel approximation function in
Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.2: Illustrative example of model outcomes (bimodal v.)

(a) Ft

0 1000 2000 3000 4000 5000

-1

0

1

2

3

4

5

t

(b)

-1 1 2 3 4 5
Ft

0.05

0.10

0.15

0.20

0.25

(c) xt

0 1000 2000 3000 4000 5000

-1.0

-0.5

0.0

0.5

1.0

t

(d)

-1.0 -0.5 0.5 1.0
xt

0.5

1.0

1.5

2.0

(e) pt

0 1000 2000 3000 4000 5000

-2

0

2

4

6

t

(f)

-2 2 4 6
pt

0.05

0.10

0.15

0.20

0.25

(g) rt

0 1000 2000 3000 4000 5000

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

t

(h)

-0.15 -0.10 -0.05 0.05 0.10 0.15
rt

2

4

6

8

10

Note: An illustrative example of simulated time series and related smooth histograms for the bimodal
model version. Results based on a single random run and identical random seed as Figure 7.1, number
of observations t = 5000. Produced using automatic SmoothHistogram kernel approximation function in
Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Table 7.1: Descriptive statistics of simulated log-return r time series

Data Mean. Med. Min. Max. SD Skew. Kurt. LQ HQ AC AC r2
t

unimodal r .00094 .00061 -.16 .13 .038 -.0077 2.91 -.073 .076 -.0038 .0047
bimodal r .0011 .00056 -.18 .18 .039 .037 3.84 -.075 .079 .0031 .12

Note: Sample means, medians, minima, maxima, standard deviations (SD), skewnesses, kurtoses, 2.5%
(LQ) and 97.5% (HQ) quantiles, and autocorrelations (AC) are reported. Results based on the identical
random seed as Figure 7.1 and Figure 7.2. Figures are rounded to 2 valid decimal digits.

Source: Author’s own computations in MATLAB.

7.3 Monte Carlo study

For the NPSMLE setting, we simply follow the ‘best practice’ from Chapter 5.

Outputs of 100, 500, and 1000 random runs are compared, three levels of the

kernel estimation precision, N = 100, N = 500, and N = 1000, are considered,

and results based of five sample sizes ranging from 100 to 10000 are used for

graphical depiction in Figures 7.4, 7.5, and 7.6. The Gaussian kernel and the

Silverman’s (1986) rule of thumb (Equation 5.4) for finding the optimal size

of the bandwidth without the undersmoothing option are employed within the

kernel approximation of the conditional density (Equation 4.23). Log returns

are naturally used as the input of the NPSMLE procedure.

Omitting the scale factor NcVc
NfVf

(see discussion in Section 7.2) results in

a system of three parameters essential for the model dynamics—the switch-

ing coefficients a and b, and the fundamental volatility σf . We estimate this

parameter-triplet in all following sections.

Having all parameters of interest theoretically constrained by 0 from bellow,

we firstly perform a computationally feasible pre-estimation step based on 100

random runs, number of observations t = 1000, the kernel estimation precision

N = 1000, and with constrained parameter space set to 〈0, 20 × true value〉
for each parameter to gain preliminary knowledge about the approximate true

value of estimated parameters. The same intervals are also used for generating

single starting points drawn from the uniform distribution. Figure 7.3 depicts

a very sufficient pre-estimation performance providing us with a general pre-

sumption about the magnitude of true parameters that we can utilize in the

subsequent estimation step.

The algorithm to fine-tune final estimates is computationally very demand-

ing, although based on the preliminary results we constrain the parameter

space set to 〈0.1, 3× true value〉. Left nonzero bound increases precision of the

estimation considerably compared to zero bound and we also obtain a robust-
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Figure 7.3: Pre-estimation performance
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Note: Results based on 100 random runs, number of observations t = 1000, and the kernel estimation precision
N = 1000, initial point drawn from uniform distribution U(0, 20 × true value). Black dotted vertical lines
depict the true values of parameters. Produced using automatic SmoothHistogram kernel approximation
function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.

ness check knowledge as a considerably off-centered parameter space is used.

Again, the same intervals are used to randomly draw single starting points of

the optimisation procedure from the uniform distribution.

Figures 7.4, 7.5, and 7.6 demonstrate a general overview of the estimation

performance. Most importantly, we observe diametrically opposite patterns for

the unimodal and bimodal setting of the model. Under the unimodal setting

(left columns), the estimation reveals theoretically expected performance. For

parameter σf we observe a very precise estimation performance even for small

sample sizes with a general tendency of a tiny downward bias based on sample

mean. Effects of theoretical properties of the estimator, the consistency and

asymptotic efficiency, are well observable also in small samples for the model

although the differences implied by increasing sample size as well as increasing

kernel estimation precision are relatively small. Parameter a is associated with
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relatively worst estimation performance, nonetheless very satisfactory for larger

samples, t = {5000, 10000}, and high kernel estimation precision N = 1000.

For smaller samples, t = {100, 1000}, a persisting upward bias of the sample

mean is caused by bounds of the parameter space. The exemplary performance

is demonstrated for parameter b that is estimated very precisely with only a tiny

downward bias based on sample mean for the smallest sample size t = 100. We

observe a considerable effect of the sample length increase for the performance

of the estimator, but on the other hand the effect the kernel estimation precision

increase seems negligible—even the smallest option N = 100 performs almost

the same as N = 1000. Moreover, we do not see any considerable impact of the

number of random run—results based on 100 runs are almost identical to results

based on 1000 runs. Table 7.2 and Figure 7.7 partially attempt to compare and

contrast the estimation performance for both model versions quantitatively

and depicts selected descriptive statistics of samples of estimated coefficients

and related smooth histograms for 1000 random runs, the kernel estimation

precision N = 1000, and two distinct numbers of observation, t = {500, 5000}.
An important finding arising from Table 7.2 and Figure 7.7 is that sample

medians generally provide considerably better estimates of the true parameters

than sample means.

Under the bimodal setting (right columns) almost nothing holds from the

description of the unimodal version. At first glance the estimation procedure

reveals a pathological performance demonstrated by decreasing efficiency and

increasing upward bias of estimates of σf and b with increasing sample size,

markedly less clear effect of the kernel estimation precision for σf and a and

a puzzling behaviour of parameter a estimation for larger sample sizes t =

{1000, 5000, 10000}.
These somewhat strange outcomes of the estimation procedure are, how-

ever, well explainable by the nature of the bimodal version of the model. The

bimodality of xt directly translates into behaviour of rt via Equation 7.11.

This perhaps accounts for favourable aggregate behaviour of the time series

in terms of resembling the ‘big picture’ of financial stylised facts, but on the

other hand it is also likely to generate a specific pathological dynamics at the

detailed inter-period level causing further problems with kernel estimation and

parameter identification. This constitutes a serious challenge for the estimation

method and amplifies estimation inaccuracies and divergence with increasing

length of the time series. As Chen & Lux (2015, pg. 11) point out, even for the

simultaneous estimation of three parameters only, “we do have to cope with
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Figure 7.4: Simulation results of σf estimation
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Note: Black dotted lines with × depict the true parameter σf . Grey full lines depict sample means of
estimated σ̂f . Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour represents results for
N = 100, normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the length
of generated time series.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.5: Simulation results of a estimation
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Note: Black dotted lines with × depict the true parameter a. Grey full lines depict sample means of estimated
â. Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour represents results for N = 100,
normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the length of generated
time series.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.6: Simulation results of b estimation

(a) 100 runs, unimodal

× × × × ×

102 5×102 103 5×103 104
t

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
b

(b) 100 runs, bimodal

× × × × ×

102 5×102 103 5×103 104
t

0.001

0.002

0.003

0.004

b

(c) 500 runs, unimodal

× × × × ×

102 5×102 103 5×103 104
t

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
b

(d) 500 runs, bimodal

× × × × ×

102 5×102 103 5×103 104
t

0.001

0.002

0.003

0.004

b

(e) 1000 runs, unimodal

× × × × ×

102 5×102 103 5×103 104
t

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
b

(f) 1000 runs, bimodal

× × × × ×

102 5×102 103 5×103 104
t

0.001

0.002

0.003

0.004

b

Note: Black dotted lines with × depict the true parameter b. Grey full lines depict sample means of estimated
b̂. Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour represents results for N = 100,
normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the length of generated
time series.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Table 7.2: Quantitative results

(a) unimodal setting, t = 500 (b) bimodal setting, t = 500

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

σ̂f × 103 29.2 29.2 1.21 27.0 31.7 7% 29.5 29.8 2.19 27.0 36.6 6%
â× 103 1.29 1.78 1.54 .14 4.20 7% .27 .30 .23 .03 .90 6%

b̂× 103 .30 .30 .06 .19 .41 7% 1.41 1.52 .50 1.12 3.43 6%

(c) unimodal setting, t = 5000 (d) bimodal setting, t = 5000

σ̂f × 103 29.3 29.4 .81 27.9 31.0 5% 31.1 32.5 4.01 28.3 44.2 14%
â× 103 1.41 1.50 .54 .66 2.98 5% .29 .30 .16 .03 .76 14%

b̂× 103 .30 .30 .02 .24 .34 5% 1.39 1.59 .91 .17 4.13 14%

Note: Each sample is based on 1000 random runs, the kernel estimation precision N = 1000. Sample
medians, means, standard deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures
are multiplied by 1000 for better legibility and rounded to 1 or 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.

the issue of weak identification due to high correlations of our parameters”.

Results of the NPSMLE simulation study indicate that the method is well able

to cope with problematic identification of parameters for the unimodal case,

however, it is likely to experience similar difficulties as the MSM for the bimodal

version.

7.3.1 Behaviour of the simulated log-likelihood function

For simulation based verification of the smoothness conditions and identifica-

tion of parameters for both versions of the model, we depicts shapes of simu-

lated sub-log-likelihood functions in 2D and 3D in Figures 7.8 and 7.9.

Figure 7.8 provides the most artificial view as we assume the knowledge of

two other parameters and depict only a ‘slice’ view of the likelihood function

in direction of the third parameter. However, even based on such limited infor-

mation we observe crucial differences between the unimodal and the bimodal

version of the model. It is important to stress that Figure 7.8 is based on one

specific setting, namely 100 random runs, number of observations t = 5000,

and the kernel estimation precision N = 1000, i.e. it especially cannot reveal

the effect of sample size increase which seem crucial for estimation performance

of the bimodal version of the model. Despite this, it still captures the situation

when the unimodal setting produces very precise results and on the contrary

the bimodal setting demonstrates unsatisfactory results.

For parameter σf we observe an excellently smooth shape of all 100 ran-

domly generated functions over the entire domain for both model versions. An
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Figure 7.7: Smooth histograms of estimated simulated parameters
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(h) â, bimodal, t = 500

0.0002 0.0004 0.0006 0.0008 0.0010
a

500

1000

1500

2000

(i) b̂, bimodal, t = 500

0.001 0.002 0.003 0.004
b

500

1000

1500

2000

2500

(j) σ̂f , bimodal, t = 5000

0.030 0.035 0.040 0.045 0.050 0.055 0.060
σf

50

100

150
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Note: Note: Results based on 1000 random runs, number of observations t = 5000, and the kernel estimation
precision N = 1000. Black dotted vertical lines depict the true values of parameters. Produced using
automatic SmoothHistogram kernel approximation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.8: Simulated sub-log-likelihood functions
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Note: Results based on 100 random runs, number of observations t = 5000, and the kernel estimation
precision N = 1000. Black dotted vertical lines depict the true values of parameters. Bold black full lines
depict sample averages.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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obvious unique maximum is shared over all 100 random runs. This is noth-

ing surprising as based on knowledge gained from Figure 7.4, the estimation

performance for σf is generally strong, notwithstanding lower for the bimodal

setting compared to the unimodal case. The same can be concluded for the

unimodal sub-log-likelihood function for parameter b [subpart (e)]. Although

at the right side of the domain a bit rugged shape can be observed, around the

true value and also within the entire constrained interval 〈0.1, 3× true value〉
the shape is absolutely smooth allowing the optimisation procedure to find the

unique maximum easily. A more problematic situation can be seen in subpart

(c) for unimodal parameter a. The set of 100 randomly generated functions are

generally very nice behaving in terms of smoothness but they do not share a

unique maximum. On average the maximum can be detected, but the function

is relatively flat around the maxima region. Together, these two problematic

features explain well the relative weak performance of the estimation proce-

dure in Figure 7.5. However, for the a and b parameters in the bimodal setting

[subparts (d) and (f)] the shapes of the sub-log-likelihood functions are very

problematic w.r.t. both the smoothness conditions and identification of param-

eters. Although on average the true values seem to be detectable, an extremely

rough shape of individual realisations in all 100 random runs implies substantial

difficulties for the optimisation procedure and is also likely a consequence of a

violation of the regularity conditions regarding either data generating process

or its associated conditional density. This important finding is comparable to

conclusions of Chen & Lux (2015, pg. 16) who report serious issues related

to multiple local minima and a very rugged surface of the objective function,

further embarrassing standard methods of optimisation search. Our suspicion

is concurrently supported by the problematic performance of the estimation

procedure revealed in Figures 7.4, 7.5, and 7.6. 3D depictions and horizon-

tal projection in Figure 7.9 sketch in the smoothness of the the log-likelihood

functions in the unimodal case with clear maxima regions. Conversely, we draw

attention to the subpart (k & l) demonstrating the bimodal case where a very

rough surface of the sub-log-likelihood is demonstrated. Multiple local minima

and maxima thus impose a serious challenge for the estimation method. Al-

though a clear global maximum is well observable in the horizontal projection,

we need to stress that given depiction is not an outcome of any estimation

process, but it is solely of a simulation origin, i.e. all combination of axes of

the parameter space were simply input and the function was depicted.

To sum up, based on shapes of the simulated log-likelihood functions we
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Table 7.3: Descriptive statistics of empirical log-return r time series

Data Mean. Med. Min. Max. SD Skew. Kurt. LQ HQ AC AC r2
t

SP500 .00032 .0003 -.230 .11 .011 -1.18 30.59 -.022 .022 -0.031 0.14
DAX .00034 .0004 -.140 .11 .013 -.32 9.98 -.027 .025 -0.001 0.19

NIKKEI 225 .00011 0 -.160 .13 .013 -.33 12.42 -.028 .027 -0.014 0.20
GOLD .00009 0 -.180 .12 .012 -.46 18.75 -.025 .023 -0.033 0.15

USD/YEN .00007 0 -.058 .08 .007 .42 9.89 -.013 .015 -0.027 0.15
USD/EUR -.00001 0 -.038 .05 .006 .18 5.61 -.013 .013 0.015 0.04
EUR/CHF .00012 0 -.079 .13 .005 5.18 201.5 -.008 .009 0.140 0.25

Note: Sample means, medians, minima, maxima, standard deviations (SD), skewnesses, kurtoses, 2.5%
(LQ) and 97.5% (HQ) quantiles, and autocorrelations (AC) are reported. Figures are rounded to 2 valid
decimal digits.

Source: Author’s own computations in MATLAB.

assume that the regularity conditions are met for the unimodal version of the

model, but not for the bimodal case. The detection of true coefficients is

expected very challenging for a and b parameters in the bimodal case, for

which also the assumption ensuring the consistency and asymptotic efficiency

of the estimator are likely not met.

7.4 Empirical estimation

7.4.1 Data description and estimation setting

We estimate the Alfarano et al. (2008) model utilising a cross section of three

stock markets: S&P500, DAX, and NIKKEI 225, three exchange rates: USD/EUR,

USD/JY, and EUR/CHF, and the price of the troy ounce of gold, covering pe-

riods 1980/01/01 to 2015/02/24 for stock indices and gold, 1999/01/01 to

2015/02/24 for USD/EUR, 1986/01/02 to 2015/02/24 for USD/JY, and finally

2003/07/15 to 2015/02/24 for EUR/CHF. All data has been retrieved from

DataStream. Based on the design of the theoretical model, log returns are

used as a time series input of the NPSML method. Table 7.3 offers descrip-

tive statistics of the dataset. When simulation-based statistics from Table 7.1

are compared to those empirical data, noticeable similarities can be found,

especially between simulated data and stock market indices/gold. The main

differences appear in higher standard deviations and lower kurtosis produced

by the model.

To set the empirical estimation algorithm, we follow the ‘best practice’ from

Chapter 6 and compute the full sample static estimates to reveal robust aver-

age model behaviour as well as rolling estimates to capture possible dynamics
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Table 7.4: Empirical estimation results

Data (a) σ̂f (b) â

Med. Mean SD Med. Mean SD

SP500 .0164 .0165 .0013 .000113 .000135 .000111
DAX .0165 .0167 .0015 .000084 .000110 .000103

NIKKEI 225 .0169 .0171 .0014 .000097 .000122 .000108
GOLD .0162 .0164 .0015 .000107 .000127 .000111

USD/JY .0092 .0096 .0019 .000082 .000107 .000108
USD/EUR .0079 .0083 .0021 .000087 .000107 .000110
EUR/CHF .0106 .0111 .0022 .000104 .000120 .000116

(c) b̂ (d) LL

SP500 .0000023 .0000110 .0000328 2.819 2.815 .041
DAX .0000008 .0000080 .0000317 2.762 2.758 .042

NIKKEI 225 .0000006 .0000043 .0000199 2.727 2.726 .034
GOLD .0000007 .0000052 .0000218 2.791 2.788 .042

USD/JY .0000013 .0000061 .0000252 3.357 3.335 .108
USD/EUR .0000013 .0000046 .0000223 3.513 3.480 .136
EUR/CHF .0000011 .0000034 .0000170 3.252 3.232 .102

Note: Results are based on 1000 random runs, the kernel estimation precision N = 500.
Sample medians, means, and standard deviations (SD) are reported. ‘LL’ denotes log-
likelihoods of estimated models representing statistical fits.

Source: Author’s own computations in MATLAB.

of the model specification in time. To cope with computational burden of the

estimation procedure, for the full sample estimates we report results based on

1000 random runs and the kernel approximation precision N = 500. The num-

ber of starting points for the numerical optimisation is again set to 8. This

on the one hand crucially increases the strength of the estimation algorithm,

but on the other hand it sacrifices the parallel algorithm to speed up the com-

putation. Moreover, it is the length of the series that generally imposes the

highest computational burden on the estimation procedure. To support the

numerical stability of the estimated system, we constrain the intervals for the

starting points random generation to 〈0, 0.4〉 for σf and 〈0, 0.0002〉 for a and

b. The empirical optimisation algorithm, unlike the algorithm for simulations,

is however redesigned to the unconstrained version so that it can freely leave

bounds for initial conditions during the optimisation procedure.

For the rolling analysis, we estimate the model on one year (240 days)

rolling samples with two-month steps (40 days) and display results based on

100 random runs, 4 initial points for the numerical optimisation, and kernel

estimation precision N = 500. Based on the simulation study in Section 7.3, the

one year still period represents relatively sufficient length for the estimation.

Moreover, it well allows for detection of possible structural dynamics in the

data.
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Figure 7.10: Smooth histograms of estimated empirical parameters
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Note: Note: Results based on the same 1000 random runs as Table 7.4. Produced using automatic
SmoothHistogram kernel approximation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.11: Smooth histograms of estimated empirical parameters
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Note: Note: Results based on the same 1000 random runs as Table 7.4. Produced using automatic
SmoothHistogram kernel approximation function in Wolfram Mathematica.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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7.4.2 Full sample static estimates

The full sample static estimation results are depicted in Table 7.4. Sample me-

dians are mainly considered for the interpretation in the following text as they

generally (based on findings of the Monte Carlo analysis in Section 7.3) provide

considerably better estimates than sample means. In all cases, the volatility

of the fundamental value σ̂f is estimated clearly statistically significant, pa-

rameter â is by one or two digit places higher than b̂ but at the first glance

statistically insignificant, and parameter b̂ is at the first glance statistically

strongly insignificant.

However, it is important to highlight that for â the vast majority of the sam-

ple estimates are positive, i.e. the ‘illusive’ statistical insignificance does not

have its origin in negative estimates. The similar principle holds for b̂ in which

case, nonetheless, the large standard deviations are predominantly caused by

positive outliers but a relative high proportion (although still a minority) of

sample estimates are negative. Related smooth histograms of estimated empir-

ical parameters based on the same 1000 random runs as Table 7.4 are depicted

in Tables 7.10 and 7.11. â > b̂ indicates globally unimodal distribution of the

sentiment variable accompanied by a slow process of the opinion change, ten-

dency to fluctuate around the mean value, and most importantly theoretically

expected performance of the estimator based on findings from Section 7.3.

In a more detailed inspection, we can basically distinguish between the

interpretation of the stock/commodity market results and FOREX based esti-

mates. For stock market indices and gold the magnitude of σ̂f fluctuates be-

tween 0.016 and 0.017. For FOREX data we observe smaller magnitudes. While

the autonomous switching rate â estimates are generally comparable, some dif-

ference appears when contrasting the ‘herding-based’ switching coefficients b̂.

Stock/commodity market b̂ estimates are generally (with an exception of the

S&P500 that has the highest b̂) lower then currency b̂ estimates. An irrationally

impetuous herding behaviour leading to locally extremely enhanced volatility,

bubbles, and crashes is thus surprisingly found a bit stronger for FOREX mar-

kets. However, distinctions might be also to some extent caused by a different

structure of the data—while log returns of stocks and gold are based on prices,

FOREX log returns are derived from exchange rates. The upward bias tendency

of sample means compared to sample medians observable especially for â and

b̂ illustrates majorities of positive sample estimates as well as the existence of

positive outliers for b̂. The log-likelihoods embody very low standard deviations
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reflecting consistent optimisation performance over all random runs.

7.4.3 Rolling estimates

Rolling estimates reveals interesting dynamics of the model in time. A stock

market examples, S&P500 and NIKKEI 225, and a currency example, USD/JY

are depicted in Figures 7.12, 7.13, 7.14. Rolling estimates for DAX, GOLD,

U.S./EUR, and EUR/CHF are depicted in Appendix E in Figures E.1, E.2, E.3,

and E.4, respectively. While it seems very difficult for the model to detect signs

of a herding behaviour when exposed to the complete data samples, rolling

window estimation clearly captures jumps in the ‘herding-based’ switching pa-

rameter b̂ associated with some turbulent market periods and market crashes.

We also observe elevated fundamental volatility coefficient σ̂f (notice e.g. the

period around the Rubble 1998 devaluation for USD/JY). Rolling behaviour

of the autonomous switching parameter â does not reveal any interesting pat-

tern, only a weak negative correlation with b̂ for stock markets in several most

volatile periods (e.g. the Black Monday).

To interpret these results correctly, we need to discuss the nature of volatil-

ity in the model. The total volatility of the model output pt is derived from so

called fundamental value Ft and the effect of market sentiment xt (see Equa-

tion 7.10). However, the fundamental volatility in this highly stylised simple

model cannot be fully interpreted as the real world fundamental risk. When

bringing the model to empirical data, the fundamental volatility term to a large

extent represents all the remaining volatility that is not caused as the effect

of noise traders’ switching between the optimistic and pessimistic mood. E.g.

based on rolling estimation results, the estimation method seems to predom-

inantly assign the cause of the elevated market volatility to the fundamental

value term, although e.g. Black Monday can be hardly denoted as a fundamen-

tal event. However, we also observe jumps in the estimates of the herding inten-

sity b that definitely have a good economic interpretation for selected historical

events. The NPSMLE in combination with a very simple stylised model are thus

perhaps weak in distinguishing well between these two theoretical sources of

volatility. Comparing the shapes of the simulated sub-log-likelihood-functions

in Figure 7.8 and Figure 7.9 in dimensions of individual model parameters and

their combinations, we clearly observe relative flatness of the resulting log-

likelihood-function in dimensions of a and b w.r.t. the high-pitched shape in

the dimension of σf . Thus, the market volatility amplification is likely to be
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Figure 7.12: Rolling estimates for S&P500
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(b) b̂, meanSD = .0000132
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(c) â, meanSD = .000088
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.13: Rolling estimates for NIKKEI 225

(a) σ̂f , meanSD = .0026
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(b) b̂, meanSD = .0000130
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(c) â, meanSD = .000088
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure 7.14: Rolling estimates for U.S./JY

(a) σ̂f , meanSD = .0028
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(b) b̂, meanSD = .0000135
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(c) â, meanSD = .000087
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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assigned based on rather technical optimisation criteria mainly to the funda-

mental volatility, in which dimension the optimisation algorithm search can

work well better and which is likely to overshadow the effect of switching pa-

rameters a and b during the estimation procedure.

As expected, LL values describing the model fit generally decrease in tur-

bulent periods. We highlight the important remark from Subsection 6.5.1 that

direct comparison of rolling log-likelihoods is methodologically disputable be-

cause it is based on different rolling sub-samples. Nonetheless, since rolling

datasets overlap by circa 83% between adjacent steps, the rolling pattern of

LL provides us with a valuable information.

Standard deviations of the rolling estimates reveal an interesting behaviour.

They are naturally expected to be markedly larger compared to full sample es-

timates, but this only holds for standard deviations of rolling σ̂f , for which

the mean standard deviation (computed as the mean of standard deviations

for all rolling periods) is roughly twice as large. On the other hand, the mean

standard deviation of rolling â is a bit lower compared to full sample esti-

mates for all analysed datasets and the mean standard deviation of rolling b̂

is even circa two times lower in average. Moreover, all single sample estimates

for all three parameters for all datasets are positive. Conversely, we do not

observe any considerable distinctions between the mean values of full sample

estimates and average values of mean rolling estimates. Although results in-

dicating that â > b̂ suggest globally unimodal distribution of the sentiment

variable related to theoretically expected performance of the estimator and its

consistency and asymptotic efficiency observable also in small samples for the

model, the aggregate results of the rolling analysis seem to detect some glob-

ally pathological dynamics increasing estimation inaccuracies and divergence

with increasing length of the time series. Therefore, conditional modelling and

more elaborate time-varying empirical estimation, or possibly advanced data

driven bandwidth selection methods (e.g. based on OLS or ML cross-validation)

for kernel density estimation are candidates for future research on the NPSML

estimation of the Alfarano et al. (2008) model and are likely to bring a new

insight into the model behaviour.

7.5 Concluding remarks

In this penultimate chapter we show that the NPSMLE method generally works

for various types of HAMs. We confirm that simulated MLE constitutes a very
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flexible method to estimate complicated nonlinear models for which traditional

estimation approaches cannot be used and that historically remained to a large

extent inestimable. Employing NPSMLE, we are generally able to estimate mod-

els for which the closed-form solution or theoretical approximation of the ob-

jective function does not exist. We also prove that using simulation-based non-

parametric methods the parameters of such systems can be recovered reason-

ably well. Together with quickly increasing computational capabilities of per-

sonal computers, server clusters, and super-computers, we anticipate a bright

future and rapid development of simulation-based methods in next years.



Chapter 8

Conclusion

This thesis proposes innovative computational framework for empirical estima-

tion of FABMs. Motivated by the lack of general consensus on the estimation

methodology, not many examples on structural estimation of FABMs, and in-

conclusive results in recent FABM literature, we aim at developing and testing

more general methods for estimation of FABMs that significantly reduce the

importance of restrictive theoretical assumptions.

In Chapter 3 we develop a two-step estimation procedure and estimate

one of the historically first FABMs—the cusp catastrophe model—under time-

varying stock market volatility. Utilising the availability of high-frequency

data and the popular realised volatility approach, we estimate stock market

returns’ volatility in the first step and subsequently apply the stochastic cusp

catastrophe model to volatility-adjusted returns with constant variance. In the

empirical part, we use a high frequency and sentiment dataset and test the

model on nearly 27 years of U.S. stock market returns covering several impor-

tant recessions and crisis periods. The results suggest that over a long period,

stock markets are well described by the stochastic cusp catastrophe model.

Using our two-step modelling approach, we show that the cusp model fits the

data well and that the fundamental and bifurcation sides are controlled by the

indicators for fundamental and speculative money, respectively. While we find

that the stock markets showed signs of bifurcation in the first half of the period,

catastrophe theory was not able to confirm this behaviour in the second half.

Translating the results, we find that the U.S. stock market’s downturns were

more likely to be driven by the endogenous market forces during the first half

of the studied period, while during the second half of the period, the exogenous

forces seem to be driving the market’s instability. In conclusion, we find that
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despite the fact that we modelled volatility in the first step, the stock mar-

kets showed signs of bistability during several crisis periods. Our methodology

thus overcomes the difficulties of the cusp catastrophe model estimation using

financial data and provides an important shift in the application of catastrophe

theory to stock markets.

Chapter 4 introduces a general computational framework for empirical es-

timation of full-fledged FABMs. Because for many FABMs no closed-form rep-

resentation of the likelihood function exists, we follow the Kristensen & Shin

(2012) framework of a simulated MLE based on nonparametric kernel methods.

In situations when we cannot derive the usual MLE, simulated MLE constitutes

an opportune estimation method for general class of FABMs.

In Chapter 5 we customise the NPSMLE methodology of Kristensen & Shin

(2012) and elaborate its capability for FABMs estimation purposes. To start

with, we apply the methodology to the most famous and widely analysed model

of Brock & Hommes (1998). We extensively test small sample properties of the

estimator via Monte Carlo simulations and confirm the ability of the NPSMLE

method to reveal true parameters with high precision. We further show that

theoretical properties of the estimator, the consistency and asymptotic effi-

ciency, also hold in small samples for the model. Next, we assess the impact

of the stochastic noise intensity in the system and investigate the robustness

of the estimation method w.r.t. various modifications of the model as well

as of the estimation algorithm. Finally, using graphical computational tools

we analyse behaviour of simulated log-likelihood functions. Based on gener-

ally very smooth shape with a unique maximum we assume that the regularity

conditions are met for the HAM and the identification of parameters is assured.

Chapter 6 presents estimation results of the 2-type and the 3-type Brock &

Hommes (1998) model using cross section of world stock markets. We intro-

duce the full sample static estimates to reveal robust average relationships as

well as rolling window approach to detect possible dynamics in the behaviour

of market coefficients over time and eventual structural breaks. The crucial

result of our analysis is the statistical insignificance of the switching coefficient

β̂. This is a common result in the existing literature, but on the other hand

we contrast another part of the HAM estimation literature reporting significant

β̂s for various specific markets. In contrary, our estimation results of the 2-

type model reveal markedly statistically significant belief parameters defining

heterogeneous trading regimes with an absolute superiority of trend-following

over contrarian strategies. Our findings further indicate robustness w.r.t. the
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fundamental value specification and remain largely unaffected under the ro-

bustness burden of different than daily data frequency, jumps in market risk

free rate, or introducing of agents’ memory. Graphical inspection of simulated

log-likelihood functions reveals a bit rough surface, but very consistent per-

formance of the estimation method over all random runs leading to unique a

maxima. The adapted computational algorithm is, however, able to deal well

with the not-completely-smooth surface of the simulated log-likelihood function

and the important identification feature is thus verified also for the empirical

application.

Both main results are also stable over the entire period confirmed via rolling

estimation approach which primarily supports the validity of the full sample

static estimates. This is an expected result considering the insignificant switch-

ing parameter β̂ from the full sample estimation. However, a clear dynamics

is observable for the model fit which is markedly higher during tranquil peri-

ods and generally decreases during volatile and recession periods. Conversely,

intensity of market noise expectedly slightly increases in turbulent period. In-

teresting signs of a specific behaviour are detectable for rolling estimation of

individual indices on the level of standard deviations. S&P500 data detects tur-

bulent periods around the WTC 9/11 attack, Lehman Bankruptcy, or down-

grade of the U.S. ranking to AA+ in 2011 but also other tracked world events.

NASDAQ reflects mainly the Asian Crisis in 1997 and the Dot-com Bubble Burst

in 2000 which is, however, not observed for a more general S&P500. European

indices DAX and FTSE can detect the crisis around the Rubble devaluation

in 1998 but not the Asian Crisis of 1997. HSI conversely captures the effect

of 1997 Asian Crisis but not the 1998 Rubble devaluation. This can be in-

terpreted as a sign of increased presence of contrarians during such turbulent

stock market periods detected via less efficient estimates of trend following co-

efficients. NIKKEI 225 interestingly behaves more closely to S&P500 than to its

Asian ‘fellow’ HSI. Next, estimation of o more-flexible 3-type model with the

mix of fundamental, trend following, and contrarian strategy further suggests

redundancy of the contrarian strategy for the overall model fit.

All hitherto results lead us to a suspicion of a possible model misspecification

as an important technical side-effect of the zero β̂ coefficient are equal and stable

population magnitudes of the fundamental and trend following strategies. We

therefore correct for this possible misspecification introducing fixed fraction

of the fundamental strategy instead of switching coefficient β which seems

hardly to be estimated. The fraction is, however, the subject of empirical
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estimation and is found strongly statistically significant for all analysed indices.

A strong trend chasing strategy is then expressed via trend coefficient around

2 for all indices in the fraction model. The magnitude of the fundamentalists’

population closely around 56% represents overall proportional dominance of

fundamentalists over trend following chartists on world stock markets and even

stable in time.

Finally, in Chapter 7 we apply the NPSMLE methodology to a stylised herd-

ing FABM developed by Alfarano et al. (2008). First, we analyse small sample

properties of the estimator in a Monte Carlo study and show dissimilar estima-

tion performance for the unimodal and bimodal market sentiment version of

the model. Second, exploring behaviour of the simulated log-likelihood func-

tion we verify the identification of parameters and theoretical assumptions of

the estimation method for the unimodal case. Next, we estimate the model us-

ing three stock market indices, price of gold in USD, and three exchange rates.

The fundamental volatility σf is estimated strongly statistically significant, but

parameters governing opinion switches and sentiment dynamics face difficulties

with statistical significance mainly due to tiny magnitude very close to zero.

However, the ‘illusive’ statistical insignificance does not have its main origin

in negative estimates, rather in large standard deviations and positive outliers.

Generally, for FOREX data we observe smaller magnitude of the fundamen-

tal volatility and parameter estimates â > b̂ indicate unimodal distribution of

the sentiment variable accompanied by a general tendency of gradual reversion

back to the balanced situation and theoretically expected performance of the

estimator. Moreover, the ‘herding-based’ switching coefficients b̂ is the highest

for S&P500 but comparing other stock markets and gold with FOREX, an ir-

rationally impetuous herding behaviour leading to locally extremely enhanced

volatility, bubbles, and crashes is surprisingly found a bit stronger for FOREX

markets. While it seems very difficult for the model to detect signs of a herding

behaviour when exposed to the complete data samples, rolling window estima-

tion reveals interesting dynamics of model coefficients and clearly captures

jumps in the ‘herding-based’ switching parameter b̂ and elevated fundamental

volatility coefficient σ̂f in turbulent times.

After all, we would like to ‘pick up’ the gauntlet and summarise our thoughts

about the future of a broader field of AB modelling in Economics. Let us

approach this relatively unbounded and highly subjective area employing the

SWOT matrix from strategic analysis. The following text connects our ideas

about the current state and possible future development of both the broader
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picture of AB modelling in Economics as well as the empirical estimation of

ABMs, the central topic of this thesis.

In our opinion, the main strengths of the current field are a constantly

rising awareness of the AB approaches in Economics among broad audience

comprising scholars, policy makers, central bankers, or opinion leaders—note

e.g. a recent publication by Stiglitz & Gallegati (2011). As already men-

tioned in Chapter 1, a number of current research projects propose ideas of

complementing current mainstream policy making approaches through the use

of ABMs, new subjects comprising Behavioural Finance or Behavioural Macro

are being developed worldwide, number of related conferences, workshops, and

summers schools is growing. Based on our personal experience, students ac-

cept the critique of traditional mainstream Finance and Macro models well

and young research get easily attracted by enhanced realistic features of ABMs

and novel opportunities for economic analysis that these models bring. To-

gether with increasing computational power of computers to study AB systems

by simulation-based methods, the ABM estimation literature has a favourable

opportunity to flourish.

On the other hand, the field seems to be constrained by many weaknesses.

The biggest one can be according to our mind naturally found in the style

how the current research is done. The research efforts are highly fragmented.

Almost every researcher or small teams develop their own models. Numerical

methods, computational analysis, or programming are rarely part of the univer-

sity Economic curriculum even on the graduate/doctoral level. A huge effort

of young researchers is thus often expended to design and analyse relatively

elementary models, instead of extending some already successful and verified

approaches. An often seen strategy is to develop a model, calibrate it with insuf-

ficient verification of the consistency of calibration (i.e. calibrated coefficients

might have been derived under assumptions incompatible with the calibrated

model, see Section 2.1 discussing advantages and disadvantages of calibration

into details), possibly surrendering real empirical estimation, and relying in-

stead on simulation analysis. To complete the critique of traditional models

rigorously, a proper empirical validation of new AB approaches is needed. Nev-

ertheless, the validation phase is often based only on a casual comparison with

at least partially arbitrarily chosen set o stylised facts. The features that the

model replicates well are accentuated, but the other not-so-well-replicated facts

are either suppressed or might be left as an ‘area for improvement and further

research’. A considerable weaknesses is therefore the lack of proper empiri-
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cal validation and successful estimation attempts of AB models—the situation

which this thesis aims to contribute to.

We have also identified several crucial opportunities that lie in a synthe-

sis of the current state of art and findings. Although the community itself is

heterogeneous with regard to this issue, for me personally a consolidation of

modelling approaches would be highly beneficial for the field. This might com-

prise identification of best modelling practices, e.g. in form of a standardised

modelling cookbook/ABM textbook for student and young researchers or via

developing new ABM software packages for the most popular programming lan-

guages. So far there is no JEL classification for FABMs or Macro ABM, which

creation would definitely help to demarcate the field. We are personally aware

of only two special journal issues devoted to empirical validation of ABMs in

Economics, the special issue on Empirical Validation in Agent-based Models in

Computational Economics (Volume 30, Issue 3, October 2007) and the special

Issue on The Methodology of Simulation Models in Journal of Artificial So-

cieties and Social Simulation (Volume 12, Issue 4, October 2009). A support

from this direction would definitely be beneficial for the development of the

field.

We are not able to resolve whether this really is a threat, but the field

nowadays is highly concentrated and locked in several workplaces in Europe,

the U.S., and Australia. Moreover, we personally feel that the ABM field has

only a limited time to establish itself and defend its position and usefulness

within Economics. Spreading collaboration among these workplaces and inten-

sifying cooperation with other fields such as Mathematics or Computer Science

would decrease the thread of locking the ABM field at the edge Economics. Fur-

thermore, it would definitely bring benefits in the form of promoting the AB

approaches among wider (not only) Economics community, but also synergies

such as better publication opportunities, etc.
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Figure A.1: Gaussianity of cusp coefficients I.
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Note: Results based on the total sample of 100 random simulations and the unrestricted cusp model estimates
from Table 3.1 using yt = rt/σt. Figures depicts smooth histogram kernel approximations of the probability
density in black together with the fit of N (µ, σ2

data) in grey. ‘rejected’ indicates rejection of the null hypothesis
of normality based on the Jarque-Bera ALM test at 5% level (p-values in the two rejection cases are depicted
in parentheses).

Source: Author’s own computations in R and Wolfram Mathematica.
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Figure A.2: Gaussianity of cusp coefficients II.
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Note: Results based on the total sample of 100 random simulations and the restricted cusp model estimates
from Table 3.1 using yt = rt/σt. Figures depicts smooth histogram kernel approximations of the probability
density in black together with the fit of N (µ, σ2

data) in grey. The null hypothesis of normality based on the
Jarque-Bera ALM test at 5% level is not rejected in any case.

Source: Author’s own computations in R and Wolfram Mathematica.
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Figure A.3: Histogram of the dip statistics for bimodality

Note: Computed for all of the rolling window periods, together with the bootstrapped critical value 0.0406
for the 90% significance level plotted in bold black.

Source: Authors’ own computations in MATLAB and Wolfram Mathematica.
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Figure A.4: Rolling regression estimates

Note: Rolling coefficients with their |z-values|. (a) Estimated ω1 coefficient values. (b) Estimated values
of asymmetry coefficients, α1 in bold black, α3 in black. |z-values| related to both coefficient estimates are
depicted as • and ∗, respectively. (c) Estimated values of bifurcation coefficients, β2 in bold black, β3 in
black. |z-values| related to both coefficient estimates are as • and ∗, respectively. Plots (b) and (c) also
contain the 95% reference z-value as a dashed black line.

Source: Authors’ own computations in MATLAB and Wolfram Mathematica.
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Table B.1: Results for β estim. w.r.t. various dist. of gh and bh III.

β (a) β̂, gh & bh ∼ N(0, 0.12) (b) β̂, gh & bh ∼ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .27 -.50 .50 0% .00 .00 .13 -.36 .39 0%
.1 .10 .10 .13 -.10 .30 0% .10 .10 .08 -.10 .30 0%
.5 .50 .49 .42 -.50 1.46 0% .50 .50 .17 .13 .83 0%
1 .99 .98 .63 -.62 2.70 0% 1.00 1.00 .24 .58 1.37 3%
3 3.02 3.08 1.24 -.20 6.18 0% 3.00 3.03 .38 2.65 3.59 15%
5 4.99 4.89 1.67 .58 8.08 1% 5.00 4.96 .88 4.27 5.51 28%

10 10.00 9.96 2.85 3.87 14.45 4% 10.00 9.89 1.26 8.84 10.74 46%

(c) β̂, gh & bh ∼ N(0, 0.32) (d) β̂, gh & bh ∼ N(0, 0.42)

0 -.00 -.00 .07 -.15 .11 1% .00 .00 .04 -.06 .06 10%
.1 .10 .10 .05 -.05 .23 0% .10 .10 .03 .04 .17 2%
.5 .50 .50 .11 .35 .68 7% .50 .50 .06 .43 .57 24%
1 1.00 .99 .17 .77 1.19 18% 1.00 1.00 .13 .84 1.08 40%
3 3.00 3.00 .12 2.79 3.18 46% 3.00 2.99 .33 2.79 3.21 64%
5 5.00 5.03 .39 4.77 5.32 56% 5.00 5.01 .13 4.82 5.20 74%

10 10.00 9.94 1.21 9.63 10.29 74% 10.00 10.00 .29 9.42 10.31 85%

(e) β̂, gh & bh ∼ N(0, 0.62) (f) β̂, gh & bh ∼ N(0, 0.82)

0 -.00 -.00 .02 -.02 .02 36% -.00 -.00 .02 -.03 .02 54%
.1 .10 .10 .01 .08 .12 15% .10 .10 .01 .08 .11 35%
.5 .50 .50 .05 .46 .55 51% .50 .50 .02 .47 .52 68%
1 1.00 1.00 .05 .92 1.07 67% 1.00 1.00 .01 .98 1.02 83%
3 3.00 3.01 .09 2.93 3.09 86% 3.00 3.02 .18 2.94 3.09 94%
5 5.00 5.05 .32 4.90 5.42 91% 5.00 5.00 .03 4.92 5.07 97%

10 10.00 9.97 .60 9.76 10.38 96% 9.99 10.28 4.14 .80 25.02 98%

(g) β̂, gh & bh ∼ N(0, 1) (h) β̂, gh & bh ∼ N(0, 1.22)

0 -.00 -.00 .01 -.02 .01 72% .00 .00 .03 -.01 .01 79%
.1 .10 .10 .01 .09 .11 53% .10 .10 .00 .10 .10 67%
.5 .50 .50 .01 .48 .51 78% .50 .50 .02 .47 .51 88%
1 1.00 1.00 .03 .97 1.02 89% 1.00 1.00 .02 .98 1.11 94%
3 3.00 3.30 1.16 2.96 8.29 97% 3.00 3.16 .49 2.98 4.82 98%
5 5.00 5.00 .05 4.91 5.15 99% 5.00 5.59 1.68 4.93 9.76 99%

10 10.02 11.61 4.69 5.79 20.28 99% 10.01 14.29 7.09 9.62 29.62 99%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise εt and {εi}Ni=1 drawn from normal distribution N(0, 10−14), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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Table B.2: Results for β estim. w.r.t. various dist. of gh and bh IV.

β (a) β̂, gh & bh ∼ N(0, 0.12) (b) β̂, gh & bh ∼ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .01 .00 .32 -.50 .50 0% .01 .01 .26 -.50 .50 0%
.1 .10 .10 .13 -.10 .30 0% .09 .09 .14 -.10 .30 0%
.5 .49 .50 .60 -.50 1.50 0% .50 .49 .39 -.43 1.39 0%
1 .99 .98 1.06 -.96 2.93 0% .99 1.01 .61 -.31 2.56 0%
3 3.03 3.05 2.59 -2.46 8.24 0% 3.00 3.06 1.11 .73 5.72 0%
5 5.06 5.20 3.77 -3.64 13.56 0% 5.00 4.90 1.73 -.77 7.65 0%

10 9.94 9.59 6.60 -7.20 25.75 0% 10.00 9.89 2.03 6.75 11.93 4%

(c) β̂, gh & bh ∼ N(0, 0.32) (d) β̂, gh & bh ∼ N(0, 0.42)

0 -.00 -.00 .18 -.49 .46 0% -.00 -.00 .12 -.34 .25 0%
.1 .10 .10 .11 -.10 .30 0% .10 .10 .08 -.10 .30 0%
.5 .50 .51 .25 -.14 1.15 0% .50 .50 .14 .19 .76 0%
1 1.00 1.00 .35 .27 1.74 0% 1.00 .99 .23 .58 1.35 3%
3 3.00 3.01 .51 2.43 3.73 4% 3.00 3.00 .47 2.53 3.45 15%
5 5.00 5.04 .59 4.34 5.83 10% 5.00 5.00 .31 4.51 5.44 29%

10 10.01 9.98 1.27 9.23 11.22 29% 10.01 9.99 .48 9.31 10.59 60%

(e) β̂, gh & bh ∼ N(0, 0.62) (f) β̂, gh & bh ∼ N(0, 0.82)

0 -.00 -.00 .07 -.11 .11 2% -.00 .00 .05 -.06 .08 11%
.1 .10 .10 .05 -.01 .22 0% .10 .10 .03 .05 .14 3%
.5 .50 .50 .08 .40 .61 7% .50 .50 .04 .43 .58 23%
1 1.00 1.00 .09 .86 1.15 18% 1.00 1.00 .04 .94 1.06 41%
3 3.00 3.00 .10 2.83 3.19 51% 3.00 3.00 .09 2.75 3.16 75%
5 5.00 5.00 .19 4.71 5.33 66% 5.00 5.01 .06 4.89 5.14 87%

10 10.00 10.12 .94 9.56 10.71 86% 10.00 9.95 .34 9.38 10.45 95%

(g) β̂, gh & bh ∼ N(0, 1) (h) β̂, gh & bh ∼ N(0, 1.22)

0 -.00 -.00 .04 -.03 .04 27% -.00 -.00 .02 -.02 .02 42%
.1 .10 .10 .02 .07 .13 12% .10 .10 .02 .08 .12 25%
.5 .50 .50 .04 .46 .55 43% .50 .50 .02 .47 .53 58%
1 1.00 1.00 .04 .94 1.04 62% 1.00 1.00 .05 .93 1.07 73%
3 3.00 3.00 .12 2.89 3.11 86% 3.00 3.00 .05 2.87 3.13 94%
5 5.00 5.25 1.16 4.85 10.13 94% 5.00 5.59 2.29 4.72 14.47 97%

10 10.00 10.76 3.36 5.79 22.97 97% 10.01 14.99 8.23 9.65 30.00 98%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise εt and {εi}Ni=1 drawn from normal distribution N(0, 10−12), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

Source: Author’s own computations in MATLAB.
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ĝ
3

(e
)
b̂
3

M
e
d
.

M
e
a
n

S
D

M
e
d
.

M
e
a
n

S
D

M
e
d
.

M
e
a
n

S
D

M
e
d
.

M
e
a
n

S
D

M
e
d
.

M
e
a
n

S
D

N
N

.5
,

.4
,

.3
,

.2
,

.1
5

.3
9

.4
8

.3
5

.3
0

.3
3

.2
3

.2
5

.2
5

.1
9

.2
7

.2
5

.2
2

.2
2

.2
0

.1
8

0
%

3
,

.4
,

.3
,

.2
,

.1
5

3
.3

3
3
.8

6
2
.4

3
.3

5
.3

3
.1

6
.2

6
.2

6
.1

4
.2

3
.2

4
.1

6
.2

1
.1

8
.1

4
0
%

1
0
,

.4
,

.3
,

.2
,

.1
5

1
0
.6

1
1
2
.6

9
8
.1

5
.3

7
.3

1
.1

3
.2

7
.2

4
.1

2
.2

5
.2

5
.1

5
.2

0
.1

8
.1

2
3
%

.5
,

-.
4
,

-.
3
,

.2
,

.1
5

.4
2

.5
7

.4
0

-.
4
2

-.
4
5

.1
4

-.
3
2

-.
3
4

.1
3

.2
1

.2
4

.1
5

.1
6

.1
8

.1
2

0
%

3
,

-.
4
,

-.
3
,

.2
,

.1
5

3
.5

6
3
.5

3
3
.1

7
-.

3
5

-.
3
1

.1
4

-.
2
5

-.
2
3

.1
2

.1
7

.1
5

.0
8

.1
2

.1
2

.0
7

0
%

1
0
,

-.
4
,

-.
3
,

.2
,

.1
5

1
0
.3

3
9
.0

5
1
0
.1

2
-.

3
7

-.
2
9

.1
7

-.
2
7

-.
2
2

.1
3

.1
8

.1
4

.0
9

.1
3

.1
2

.0
6

1
1
%

.5
,

-.
4
,

.3
,

.2
,

-.
1
5

.4
1

.5
6

.4
0

-.
4
3

-.
4
5

.1
4

.3
2

.3
3

.1
3

.2
1

.2
4

.1
4

-.
1
7

-.
1
9

.1
2

0
%

3
,

-.
4
,

.3
,

.2
,

-.
1
5

3
.8

0
3
.5

1
3
.3

1
-.

3
5

-.
3
0

.1
4

.2
5

.2
2

.1
2

.1
7

.1
4

.0
8

-.
1
2

-.
1
2

.0
6

0
%

1
0
,

-.
4
,

.3
,

.2
,

-.
1
5

1
0
.2

8
9
.3

7
1
0
.0

2
-.

3
7

-.
3
0

.1
6

.2
7

.2
2

.1
3

.1
8

.1
5

.0
9

-.
1
3

-.
1
2

.0
6

1
2
%

.5
,

.8
,

.6
,

.4
,

.3
.4

7
.4

5
.1

8
.7

2
.6

8
.3

4
.5

2
.5

2
.2

9
.4

9
.5

1
.3

4
.4

2
.3

8
.2

8
1
%

3
,

.8
,

.6
,

.4
,

.3
2
.9

4
2
.9

9
.4

1
.4

6
.5

7
.2

1
.3

7
.4

2
.1

7
.7

7
.6

3
.2

1
.5

6
.4

7
.1

7
2
1
%

1
0
,

.8
,

.6
,

.4
,

.3
9
.4

1
9
.6

8
2
.8

3
.5

1
.5

6
.2

3
.3

7
.4

2
.2

0
.7

9
.6

4
.2

2
.5

8
.4

6
.1

9
7
0
%

.5
,

-.
8
,

-.
6
,

.4
,

.3
.4

9
.5

2
.1

9
-.

8
1

-.
8
1

.0
9

-.
6
0

-.
6
1

.1
0

.4
0

.4
1

.0
8

.3
0

.3
1

.0
8

0
%

3
,

-.
8
,

-.
6
,

.4
,

.3
2
.9

4
2
.4

3
1
.7

6
-.

7
9

-.
7
0

.2
7

-.
5
9

-.
5
3

.1
9

.3
9

.3
5

.1
3

.3
0

.3
0

.0
5

7
%

1
0
,

-.
8
,

-.
6
,

.4
,

.3
8
.2

6
3
.0

9
7
.9

0
-.

7
8

-.
4
6

.4
0

-.
5
6

-.
3
5

.2
9

.3
8

.2
3

.2
0

.2
8

.2
7

.0
9

6
7
%

.5
,

-.
8
,

.6
,

.4
,

-.
3

.4
9

.5
2

.1
8

-.
8
1

-.
8
1

.0
9

.6
0

.6
1

.1
0

.4
0

.4
1

.0
7

-.
3
0

-.
3
1

.0
8

0
%

3
,

-.
8
,

.6
,

.4
,

-.
3

2
.9

6
2
.5

2
1
.6

8
-.

8
0

-.
7
1

.2
5

.5
9

.5
4

.1
8

.3
9

.3
5

.1
3

-.
2
9

-.
2
9

.0
5

5
%

1
0
,

-.
8
,

.6
,

.4
,

-.
3

8
.5

6
4
.0

7
7
.6

5
-.

7
9

-.
5
0

.3
9

.5
8

.3
8

.2
8

.3
9

.2
5

.1
9

-.
2
8

-.
2
7

.0
9

6
9
%

.5
.,

1
.2

,
.9

,
.8

,
.6

1
0
0
%

3
,

1
.2

,
.9

,
.8

,
.6

1
0
0
%

1
0
,

1
.2

,
.9

,
.8

,
.6

1
0
0
%

.5
,

-1
.2

,
-.

9
,

.8
,

.6
.5

1
.4

9
.1

4
-1

.1
9

-1
.1

6
.1

7
-.

8
9

-.
8
7

.1
4

.7
9

.7
7

.1
2

.5
9

.6
0

.0
7

8
6
%

3
,

-1
.2

,
-.

9
,

.8
,

.6
1
0
0
%

1
0
,

-1
.2

,
-.

9
,

.8
,

.6
1
0
0
%

.5
,

-1
.2

,
.9

,
.8

,
-.

6
.5

1
.4

9
.1

2
-1

.1
9

-1
.1

6
.1

8
.8

9
.8

7
.1

4
.7

9
.7

7
.1

2
-.

6
0

-.
6
2

.1
3

8
7
%

3
,

-1
.2

,
.9

,
.8

,
-.

6
1
0
0
%

1
0
,

-1
.2

,
.9

,
.8

,
-.

6
1
0
0
%

N
o
te
:

S
to

c
h
a
st

ic
n
o
is

e
ε
t

a
n
d
{ε

i
}N i

=
1

d
ra

w
n

fr
o
m

n
o
rm

a
l

d
is

tr
ib

u
ti

o
n
N

(0
,
1
),
R

=
1
.0

0
0
1
.

E
a
c
h

sa
m

p
le

is
b
a
se

d
o
n

1
0
0
0

ra
n
d
o
m

ru
n
s,

n
u
m

b
e
r

o
f

o
b
se

rv
a
ti

o
n
s
t

=
5
0
0
0
,

a
n
d

th
e

k
e
rn

e
l

e
st

im
a
ti

o
n

p
re

c
is

io
n
N

=
1
0
0
0
.

S
a
m

p
le

m
e
d
ia

n
s,

m
e
a
n
s,

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

(S
D

)
a
re

re
p

o
rt

e
d
.

F
ig

u
re

s
a
re

ro
u
n
d
e
d

to
2

d
e
c
im

a
l

d
ig

it
s.

‘N
N

’
c
o
lu

m
n

re
p

o
rt

s
th

e
p

e
rc

e
n
ta

g
e

o
f

ru
n
s

w
it

h
‘N

a
N

’
o
u
tc

o
m

e
ro

u
n
d
e
d

to
in

te
g
e
r

n
u
m

b
e
rs

.

S
o
u
rc
e:

A
u

th
o
r’

s
ow

n
co

m
p

u
ta

ti
o
n

s
in

M
A
T
L
A
B

.



Appendix C

Supplementary Figures

On the following pages, a few supplementary figures are provided.



C. Supplementary Figures XII

Figure C.1: NASDAQ fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.2: NASDAQ fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.3: DAX fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.4: DAX fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.5: FTSE fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.6: FTSE fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.7: HSI fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.8: HSI fundamental price MA241 approximation

(a) MA window 241 days

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

10000

15000

20000

25000

30000

P
ric
e

Asian

Crisis
Rubble

Devaluation

Dot-com

Bubble Burst
WTC 9/11

Attack

Lehman

Bankrupcy
Flash

Crash

USA

↓ to AA+

(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.9: NIKKEI 225 fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 61 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure C.10: NIKKEI 225 fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p∗t approximation via 241 days
centred MA in light grey. (b) plots the implied xt = pt − p∗t . The figure also depicts several important stock
market crashes (marked as vertical black lines) and recession periods (depicted in grey). (c) shows the same
data as (b) in a smooth histogram kernel approximation format in black together with the fit of N (µ, σ2) in
grey.

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.1: Rolling estimates of the 2-type β model for NASDAQ

(a) MA61 fundamental price approximation

× × × × × × × × × × × × × × × × × ×
× × × ×

× × × × × × × × × ×
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-2

-1

0

1

2

3

V
al
ue
s

Asian

CrisisRubble

Devaluation

Dot-com

Bubble Burst WTC 9/11

Attack

Lehman

Bankrupcy Flash

Crash

USA

↓ to AA+

(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.2: Rolling estimates of the 2-type β model for DAX

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.3: Rolling estimates of the 2-type β model for FTSE

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.4: Rolling estimates of the 2-type β model for HSI

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations

× × × × × ×

× ×
× × × × ×

× ×
×

× ×
×
×
× ×

×
×
× ×

×

×

×
× × ×

×
× ×

× × × × ×
× ×

× × × × × × × ×
× × × × × ×

× ×
× × ×

×
×
×
× × ×

× ×
× × × × ×

× × ×
× × ×

×

×
× × × × ×

×
×
×
×
× ×

× ×
×

× ×
×
× × × ×

×
×
× ×

× × × × × ×
× × × ×

× × ×

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
al
ue
s

Asian

CrisisRubble

Devaluation

Dot-com

Bubble Burst WTC 9/11

Attack

Lehman

Bankrupcy Flash

Crash

USA

↓ to AA+

Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.5: Rolling estimates of the 2-type β model for NIKKEI 225

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts β̂, black full line depicts ĝ2, and grey full line depicts b̂2. ̂noise intensity
and LL are represented by × and •, respectively. Results are based on 200 random runs, length of the rolling
window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes
(marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.6: Rolling est. of the 2-type fraction model for NASDAQ

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and L+ 6L are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.7: Rolling estimates of the 2-type fraction model for DAX

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and LL+ 6 are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.



D. Rolling HAM estimates XXX

Figure D.8: Rolling estimates of the 2-type fraction model for FTSE

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and LL+ 6 are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.9: Rolling estimates of the 2-type fraction model for HSI

(a) MA61 fundamental price approximation

× × × × × ×
× × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-2

-1

0

1

2

3

V
al
ue
s

Asian

CrisisRubble

Devaluation

Dot-com

Bubble Burst WTC 9/11

Attack

Lehman

Bankrupcy Flash

Crash

USA

↓ to AA+

(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and LL+ 6 are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure D.10: Rolling est. of the 2-type fraction model for NIKKEI 225

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts ̂fraction, black full line depicts ĝ2, and grey full line depicts b̂2.
̂noise intensity and LL+ 6 are represented by × and •, respectively. Results are based on 200 random runs,

length of the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d.

draws from normal distribution. Sample medians are reported. The figure also depicts several important
stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure E.1: Rolling estimates for DAX

(a) σ̂f , meanSD = .0026
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(b) b̂, meanSD = .0000128
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(c) â, meanSD = .000089
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure E.2: Rolling estimates for GOLD

(a) σ̂f , meanSD = .0026
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(b) b̂, meanSD = .0000133
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(c) â, meanSD = .000088
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure E.3: Rolling estimates for U.S./EUR

(a) σ̂f , meanSD = .0029
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(b) b̂, meanSD = .0000132
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(c) â, meanSD = .000087

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
al
ue
s

Dot-com

Bubble Burst

WTC 9/11

Attack

Lehman

Bankrupcy

Flash

Crash

USA

↓ to AA+

Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Figure E.4: Rolling estimates for EUR/CHF

(a) σ̂f , meanSD = .0033
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(b) b̂, meanSD = .0000150
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(c) â, meanSD = .000086
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Note: Results are based on 200 random runs, length of the rolling window is 240 days with 40 days steps,
and the kernel estimation precision N = 500. Sample medians are reported. The figure also depicts several
important stock market crashes (marked as vertical black lines) and recession periods (depicted in grey).

Source: Author’s own computations in MATLAB and Wolfram Mathematica.
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Estimation of Financial Agent-Based Models

by Jiri Kukacka

Dear Dr. Gerba, Dr. Vacha, and Dr. Zwinkels,

at the beginning, allow me to greatly thank you for your detailed discussion

and thoughtful suggestions on the pre-defense version of my dissertation. I

honestly appreciate your careful reading of the thesis and many insightful com-

ments. I have taken into account all your proposals and I believe that the thesis

has gained greater scientific value after all changes I have made. This report

provides a response to your Opponent’s Reports with detailed discussion and

list of revisions.

Note: text in italics is copied from the Opponent’s Reports to remind the

context for particular answers. I also specify respective pages for each comment

where the text of the dissertation has been modified or amended.
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Response to comments from Dr. Gerba

Q: Introduction: The introduction to the FABM is extremely vague and ex-

cessively broad. The student does not show he understands the reasons behind

the rational expectations (RE) departure of recent models, and what these new

models are trying to achieve. Relevant references are missing, as well as a

conceptual comparison of the standard RE models with their heterogeneous AB

counterpart. Also there is no discussion on the ‘endogeneity problem of hetero-

geneity’. The student should attempt to answer how much heterogeneity truly

exists in financial markets, and how much is ‘supra-imposed’ by the scientist.

This would help to focus much more the introduction and literature review of

the thesis. At the moment, the student simply lists a few references, with no

clear focus or conclusion on where the literature (currently) stands. Therefore,

synthesis is required. Some references that can assist the student in structuring

the ideas around heterogeneous agent-models is Branch and Evans (multiple

publications), or a recent work that I performed on RE versus AB modelling

(De Grauwe and Gerba (2015), “Stock Market Cycles and Supply Side Dy-

namics: Two Worlds, One Vision”, Banco de Espana Working Paper Series

(forthcoming)). Paper is attached.

A: Thank you very much for this guidance how to restructure and complete

the Introduction, often the most ‘tricky’ part of the entire work. According to

above mentioned suggestions, I have added several pages to cover all proposed

areas. In consideration of a reasonable length of the introductory chapter, I

have elaborated an essential part of the literature synthesis within Chapter 2 in

new sections ‘2.1 Estimation vs. calibration’, ‘2.4 Categorisation of findings’,

and ‘2.5 Best practices from DSGE estimation’ that I comment on in more details

in my further answers below. In the Introduction, I have completed the text by

a conceptual comparison between ‘traditional’ RE models and ‘modern’ ABMs

and further via a discussion of the importance of the ABMs development for

Economics. I have also outlined issues related to but also advantages of the RE

Hypothesis and motivation for the ‘AB paradigm shift’ in reaction to unrealistic

assumptions of the RE framework, the ‘Aggregation Problem’, criticism of the

EMH, and others. Regarding the ‘endogeneity problem of heterogeneity’, based

on preceding introduction of the term and a discussion on the design of FABMs

that is largely motivated by empirical evidence, I conclude that for the 2-type,

3-type, or generally ‘N-type’ models’, the phenomenon of supra-imposed artifi-

cial heterogeneity does not seem to play an important role, actually, researcher
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rather balance on the other side of the problem when designing relatively triv-

ial models that account only for the most robust heterogeneous features of real

markets. [pg. 2–8, 12–17, 28–38]

Q: Literature Review: What are the advantages (or marginal benefits) of

estimating AB-models compared to simply calibrating them? Are there any ad-

vantages/benefits that are different from the ones in standard financial/ macroe-

conomic models? Much of the recent DSGE/APT literature has shown that es-

timations of those have serious limitations, such as identification issues, limited

number of parameters allowed to be estimated, or the lack of structural inter-

pretation. This has led some to argue for calibration as the more ‘trustworthy

approach. Is that the same in (non RE) AB-models, or do other principles

apply?

A: This is a very important methodological question and topic not solely related

to AB-models. A new section ‘2.1 Estimation vs. calibration’ summarising,

comparing, and discussing advantages and shortcomings of both approaches

has been added to Chapter 2 ‘Literature Review’. It is also evident that the

evolution of the DSGE methodology in the last decade constitutes a crucial

source of knowledge, experience, and hints for current development of validation

methods for ABMs as many challenges clearly overlap. Issues discussed in the

new section are thus shared also by the ABM field to the similar extent as the

subject matter.

Compared to DSGE models and Macro ABMs, a distinguishing feature of

FABMs is the structure of the output which almost always is a single time series.

Thus, there are no cross-correlations observed and usual autocorrelations are

employed in a standard set together with other financial stylised facts. The

modellers are thus likely to avoid possibly arbitrary decisions what information

should be used for calibration and what reserved for model testing. On the

other hand, FABMs often share with DSGE models problems related to flat

likelihood function—most frequently likelihood encompasses little information

in a direction of a particular parameter. In such cases, according to Fagiolo

& Roventini (2012, pg. 81), informal calibration might be “a more honest and

internally consistent strategy to set up a model”. When it comes to estimation,

opposed to DSGE models and Macro ABMs with a relative large number of

parameters, where empirical estimation might not be feasible or advisable,

simple FABMs might contain only few parameters that often do not have any

obvious empirically measurable counterparts. It might even seem that some
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researchers ‘deliberately’ design simple stylised or highly aggregated models to

facilitate computations and estimation of a small set of crucial parameters, but

such an approach is fully scientifically legitimate and follows so called KISS

modelling principle.

This thesis focuses on three well-known FABMs. In the Cusp model (Zeeman

1974,Thom 1975, see Chapter 3), the parameters are to a large extent artificial

without any apparent economic interpretation. They rather represent weights

of control variables that need to be optimised to fit the data. I can hardly imag-

ine a reasonable calibration procedure in this case. For the Brock & Hommes

(1998) model (see Chapters 4, 5, 6), the crucial switching coefficient—the inten-

sity of choice β—needs to be retrieved from data also using some optimisation

technique. Since the literature lacks a general consensus either on existence of

behavioural switching on various markets or its intensity, the calibration ap-

proach would not be of much help in this situation. As aptly summarised by

Chen et al. (2012, pg. 202), “supposing that we are given the significance of the

intensity of choice in generating some stylized facts, then the next legitimate

question will be: can this intensity be empirically determined, and if so, how

big or how small is it?”. In some ways similar uncertainty hinders calibration

also for the market noise intensity that we estimate in Chapter 6. Conversely,

some of model parameters allow for calibration based on micro-studies or liter-

ature surveys, e.g. the overall market risk aversion or specifications of trading

strategies on specific markets. Finally, in the Alfarano et al. (2008) model (see

Chapter 7), the autonomous and herding switching intensities also do not have

reasonable empirical proxies. Clearly, the model allows for calibration using the

‘natural sciences’ approach to replicate a set of financial stylised facts—that

was perhaps done by the original authors as well as by Chen & Lux (2015)

and Ghonghadze & Lux (2015) resulting in the proposed simulation setting—

but then an interesting scientific question appears whether one can estimate

comparable values from the market data. [pg. 12–17]

Q: Table 2.1 and 2.2 are incomplete. To give the reader a better overview of

the literature, I would also include information such as: Total number of pa-

rameters in the model, number of estimated parameters, number of endogenous

variables in the model, number of simulation periods, the statistical fit of the

estimations (i.e. R-squared, or analogues), the estimated values of the beta

parameter (where relevant).

A: Thank you for the suggestion, Tables 2.1 and 2.2 have been supplemented
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by the following information (resulting in creation of a new Table 2.3) that I be-

lieve is the most beneficial for the subject matter of the thesis: total number of

estimated parameters; data frequency coded by ‘d/w/m/q/a’ for daily/weekly/

monthly/quarterly/annual; number of observations/periods; type of data coded

by ‘s/fx/c/g/re’ for stock markets/FX/commodity markets/gold/real estate;

statistical fit of the estimation (R2, its alternatives, p-value of the J-test of

overidentifying restrictions to accept the model as a possible data generat-

ing process); and the absolute estimated value of the intensity of choice—the

switching parameter from the multinomial logit model—together with its sta-

tistical significance/insignificance at 5% level coded by ‘s’/‘i’. [pg. 19–21]

Q: To iterate on my point above, it is not clear what the ‘take home’ message of

the literature review section is, apart from studies not agreeing on the param-

eter values. More analytical work on the review is needed. In particular you

should answer questions such as: Are there any patterns in the studies that you

mention which can assist you in categorizing them according to methods, struc-

tures, dimensions, etc? In what cases do estimations perform better (and with

what methodologies)? When do estimations fail? Are the only issues with esti-

mations of AB model the dimensionality curse and non-linearity complication,

or do these studies point to some additional problems?

A: I have elaborated a new section ‘2.4 Categorisation of findings’ where I

especially focus on aspects mentioned in this comment. I aim at providing a less

robust and possibly incomplete or ad hoc, but deeper and more quantitatively

based alternative categorisation based on findings in Chapter 2 and focused on

empirical estimation aspects of the analysed models. Given the fact that “a

strongly heterogeneous set of approaches to empirical validation is to be found

in the AB literature” (Fagiolo et al. 2007, pg. 199), categorisation attempts

are far from being a simple and clear-cut task. A special attention is devoted

to possible connections between estimation methods and types or frequencies

of data, to the performance of estimation methods based on model fits and

its relation to analysed categories, and to various aspects of the statistical

significance of behavioural switching. [pg. 28–34]

Because many analogies can be found between ABMs and DSGE models and

several econometric issues evidently overlap, I have further added a new sec-

tion ‘2.5 Best practices from DSGE estimation’ where I outline some important

sources of guidance, experience, hints, but also caution, that may be potentially

utilised or adapted within the field of ABMs estimation. [pg. 35–38]
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Q: Chapter 3 and onwards: You do not provide a motivation on why you

have chosen to estimate those parameters in the model over others. Did you

choose them because they are elementary for driving the full model dynamics, or

did you use any other criteria when selecting specifically those? (For instance,

why is the beta parameter so important for the micro-dynamics of AB models?)

A: In accordance with the opponents’ suggestion, I have now added further

motivation about the choice of estimated parameters to relevant parts of the

text, i.e. pg. 55, 89, 112, and 161. I also added a (last) paragraph [pg. 16–17]

of the new section ‘2.1 Estimation vs. calibration’ summarizing motivation for

estimation of particular parameters and discussing why calibration would not

be of much help in these specific situations. Conversely, I also suggest there

for which parameters a calibration based on micro-studies or literature surveys

might be an advisable strategy. Finally, I have amended the sections explaining

the model and estimation setups [pg. 83–84, 87–90, and 89] by sources of

rationale and inspiration for the specific setting, what previous literature it

follows, where has it already been successfully applied, etc.

An important advantage of simple FABMs is that their dynamics is mostly

driven by a few crucial parameters. As a result, we might promisingly attempt

to estimate all essential coefficients simultaneously and thus we do not need any

rigorous criteria for selection. Moreover, these parameters often do not have

obvious empirically measurable counterparts that would allow for alternative

calibration. Some other parameters, on the other hand, can be interpreted

as scale factors. For those coefficients, a calibration is an advisable strategy

because adding too much parameters into the estimation problem may dete-

riorate outcomes and bring more disadvantage then new knowledge. I believe

that the extended discussion and also findings from relevant literature offer a

good justification of my choice, i.e. that I for each analysed model managed

to select an optimal set of key parameters that can on one hand be reasonably

well estimated and on the other hand brings sufficient information about the

model dynamics.

In the cusp I simply estimate all parameters of the cusp equation, i.e. ω0

and ω1, defining the first order approximation of a smooth transformation of

the actual state variable, together with six parameters (α0, α1, α2, β0, β1, β2)

determining two independent variables. At first, I estimate all parameters

of the cusp equation and contrast these result to estimation results of the

restricted model with α2 = β1 = 0 according to our hypothesis about primary

driving forces of the asymmetry and bifurcation sides of the model.
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In the Brock & Hommes (1998) setting I select estimated parameters consis-

tently with the current literature (see Tables 2.1 and 2.2), i.e. the key switching

parameter β and the behavioural belief coefficients. The intensity of choice β is

the most important parameter influencing the dynamics of the system through

the multinomial logit model of a continuous adaptive evolution of market frac-

tions. Not only its magnitude between two extreme cases β = 0 and β = ∞
is important, but β also determines the type of the model equilibrium that

can generally take the form of a (multiple) steady state(s), cycles, or even

chaotic behaviour. The intensity of choice β is also crucial for its conceptual

importance—it represents the dominant approach how the boundedly rational

choices of agents are mathematically modelled in the current literature indi-

cated by the ABS origin in Tables 2.1 and 2.2. The other coefficients, e.g. the

risk aversion a, the conditional variance of excess returns σ2, or the risk free rate

R are simplified already in the original model as constants and shared by all

investor types. The model is then theoretically derived based on those assump-

tions. These parameters only influence the absolute values of the profitability

measures Uh but not their relative proportions (R additionally a little bit ad-

justs the model output xt). Thus I can naturally consider them not influencing

dynamics of the model. Number of strategies is also taken from literature where

almost only the simplest 2-type and 3-type models are estimated.

In the Alfarano et al. (2008) model I estimate a natural parameter-triplet

essential for the model dynamics—the switching rates a and b, and the funda-

mental volatility σf . As argued by Chen & Lux (2015, pg. 11), “adding NcVc
NfVf

as a fourth parameter would deteriorate results by so much that the outcomes

of our estimation would become almost useless” due to high autocorrelation

between parameters and implied problems with their identification. Therefore

the NcVc
NfVf

term, which can, moreover, be interpreted as only a scale factor and

thus omitted, is set to 1. There are no other parameters in the Alfarano et al.

(2008) model.

Q: Chapter 3: page 20: You reference Creedy et al (1993, 1996) and Koh

et al (2007) as the closest studies to yours, but they estimate exchange rates.

What are the core differences with respect to modelling equity markets (as in

your case), and how will this influence the assumptions that you impose on

the underlying process? In other words, how do you expect your results to

differ from theirs based on the different processes governing Forex and equity

markets?
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A: Thank you for an interesting comment. Although FOREX and equity mar-

kets might be based on (partially) different underlying processes, in both cases

the dominant part of the process would be the assumed cusp model. It is a very

general process which principal intriguing part is the possible presence of bifur-

cation (bistability). The presence of bifurcation is according to current finan-

cial literature a reasonable assumption also for FOREX markets (De Grauwe &

Grimaldi 2006b;a; De Grauwe & Kaltwasser 2012). Both markets are to a large

extent similar and exhibit same important empirical stylised facts of financial

time series, so I would expect a different intensity and frequency of crashes,

but generally the process should be to a large extent the same. On the other

hand, with reference to Alfarano et al. (2007, pg. 183), “noise traders seem

to dominate in stock markets, while fundamentalists dominate in foreign ex-

change markets”. Thus one of possible hypotheses when utilising FOREX data

might be a stronger impact of variables that proxy activities of fundamental

investors (compared to the stock market data application) and vice versa for

the chartistic side proxy.

However, I would expect that differences in estimated parameters are likely

to be more influenced by selected proxy data for the fundamental and chartist

side of the FOREX market then by differences in returns between these two

markets. The main difficulty in application is the availability of empirical prox-

ies for control variables. For modelling of a single currency pair, any FOREX

counterpart of the ADV/DEC ratio does not exist. On the other hand, some

fundamental or news-driven indicators might appear useful. For FOREX, the

Purchasing Power Parity is often used as a good proxy variable of the funda-

mental value, but it describes the long-term behaviour of exchange rates and

does not affect daily exchange rate changes. The main issue for empirical appli-

cation thus remains in the availability of data in a reasonable (daily) frequency.

Such data are (although paid) available for the U.S. stock market, but I am not

aware of any advisable data source in case of FOREX markets. [pg. 44]

Q: Page 28: Could you compare the cusp catastrophe model results to the ones

obtained in standard GARCH-type models, or just a plain random walk? (The

second is frequently used as a comparison benchmark for model performance in

the finance industry).

A: I largely share the opponent’s concern in comparison of the cusp results

with traditional models and I always report estimation performance comparison

with the linear and logistic models in Tables 3.1, 3.3, and 3.4. On the other
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hand, contrasting the cusp catastrophe model results to GARCH or random walk

seems methodologically disputable. The cusp catastrophe framework is based

on modelling the endogenous structure of the system based on the interactions

of control variables determining the state variable at time t, but GARCH and RW

represent temporal dependence modelling based on a single variable an its lags.

These are two relatively distinct modelling approaches and their comparison is

problematic also because they do not share the same dataset (the cusp model

needs market returns and a set of control variables, however, for GARCH or RW

market returns are sufficient). Additionally, the ARIMA-GARCH error term does

not have any counterpart in the cusp model. The linear and logistic model are

natural candidates for estimation performance comparison as they share the

similar empirical dataset. A comparison of forecasting performance is another

issue for the cusp models as for determining the state variable (market return)

in time t the control variables from time t are used—i.e. in contrast to the

GARCH family of models or RW, the cusp catastrophe model is not designed for

forecasting. [pg. 52]

Another important point connected to this comment is the fact that our

two-step estimation procedure could have been applied using any other model

for market volatility. A related footnote was added to the text [pg. 43]. How-

ever, there is a general consensus in the literature that realised volatility is

a supreme model of volatility to use and therefore I adhere to the realised

volatility approach.

Q: Page 29: You assume the parameters in the cusp model to be Gaussian.

Could you please provide some motivation as many would disagree with that

(strong) assumption?

A: This is an important question and I have extended the study by smooth

histogram kernel approximations of the probability density of individual pa-

rameters depicted in Appendix A, Figures A.1 and A.2 compared to normal

distribution. I have further statistically tested the normality via the Jarque-

Bera ALM test at 5% level. I have additionally edited the text to state that the

distribution of the parameters of our main interest using yt = rt/σt is Gaus-

sian. Based on the Jarque-Bera ALM test at the 5% level, the null hypothesis

of normality is only rejected for ω0 and α2 of the unrestricted model. Moreover,

ω0 is a constant term and α2 is left out in the restricted model which further

testifies the Gaussianity of key parameters. For the restricted model normality

of parameters is not rejected in any case. [pg. 54]
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Q: Page 32: Could you provide some descriptive statistics for the time period

that you use in your empirical modelling section so that the reader can get

a rough idea on how volatile (and asymmetric) those periods were on the US

equity market.

A: In accordance with the opponent’s suggestion, I have added Table 3.2. [pg.

61] containing eleven descriptive statistics of all important datasets I use for

empirical modelling: the S&P500 stock market returns rt, realized volatility RVt,

daily returns normalized by the realized volatility rtRV
−1/2
t and data for the

independent variables—the ratio of advancing and declining stock volume, the

OEX put/call options and the change in total volume. I have displayed this

set of descriptive statistics for the full sample period 1984-2010 as well as for

two crash periods to allow for direct comparison: 1987 crash and 2008 crash

analysed in Section ‘3.4.3 Examples of the 1987 and 2008 crashes’.

Q: Chapters 4 and 5: Very nice discussion and the chapters are well-

structured and clear.

A: I am really happy for this appreciation. Thank you!

Q: Chapter 6: page 93: Can you run more than 500 runs in order to

assure that a convergence in the estimation is achieved? In standard time-series

methods between 1000 and 10.000 runs are needed to achieve convergence.

A: I agree with the opponent that the convergence issue is one of the crucial

aspects in the estimation and 500 runs might not be sufficient. Unfortunately,

I need to take into account also the considerable computational burden of the

estimation procedure (obtaining pre-defense results e.g. for Table 6.2 used to

full capacity of a high-speed multi-core server at the Czech Academy of Sci-

ence for circa ten days). I have doubled number of runs to 1000 and after a

detailed check of the new results, I neither observed any considerable difference

in absolute values of parameters, nor any pattern in tiny decimal differences

(e.g. expected prevailing decrease on standard deviations). I therefore did not

continue in increasing number of runs and I finally report final results based

1000 runs in Tables 6.2 and 6.4. (Due to a very problematic computational

stability of the 3-type model under S&P500 MA241 fundamental value approxi-

mation, I have re-computed results for 1000 random runs only for the S&P500

MA061 case. Again, no considerable difference was observed and therefore in

Table 6.3 I consistently report original results based on 500 random runs for

both MA061 and MA241 FV approximations.)
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W.r.t. to the number of runs, it is important to highlight that in each

run the number of starting points for the numerical optimisation is 8 and I

choose the best result according to maximal log-likelihood. Technically, the set

of 1000 estimates is therefore based on 8000 optimisation calculations to solve

possible problematic numerical stability of the model when real data analysis

is introduced. [pg. 133]

Q: Chapter 7: I am fully aware that this chapter is still work in progress, and

that more time will be spent in drafting it. However, I wish to provide some

comments/questions that will be useful for the student to take into account when

drafting the final version of this piece.

While the application to the Alfarano et al model is interesting, it is not clear

what the contribution of that chapter is (apart from just another application of

the same method). Are there are any deeper insights from this estimation that

you can bring forward (which were not discussed or hinted in the previously)?

Why exactly did you choose the Alfarano et al (2008) model, and not any other?

Also 300 runs seem to be a small number in order assure convergence. Could

you maybe increase it?

A: The opponent is absolutely correct to point out that motivation for the

Alfarano et al. (2008) model definitely needs to be extended and more properly

discussed in the text. The following sections were added to the text [pg. 154–

155]:

“Unlike the most widely used discrete-choice multinomial logit switching

rule approach (Brock & Hommes 1998, Equation 4.16) studied in previous chap-

ters, the Alfarano et al. (2008) model is based on the other typical ingredient of

FABMs—the herding behaviour. The concept of herding represents the second

widely accepted principle of possible evolution of market fractions applied in

FABMs that can trigger interesting nonlinear endogenous dynamics resulting in

large aggregate price fluctuations. Therefore estimation of two models based

on these two leading principles—switching and herding—is introduced in the

thesis. A further motivation for the analysis and repetitious empirical testing

of the Alfarano et al. (2008) model comes from somewhat puzzling conclusions

of previous estimation attempts of similar concepts via MSM. As concluded

by Chen et al. (2012, pg. 207), “the Lux model was rejected, similar to the

rejection of the ANT model” based on its empirical validation (Winker et al.

2007) in favour of ABS. However, the most recent studies (Franke & Westerhoff

2012; Ghonghadze & Lux 2015) accept the model or systems based on the same
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origin as possible data generating processes with high p-values of the J-test (see

Subsection 2.4.4).”

“The model generically replicates the leptokurtic distributions of returns

and volatility clustering that are directly linked to the herding component of the

model which puts emphasis on “the importance of bounded rational behaviour

as a potential explanation of the stylised facts” (Alfarano et al. 2008, pg. 125).”

Moreover, the bimodality of the sentiment variable surprisingly brings cru-

cial difficulties to the estimation procedure—a pattern not observed for any

setting in the switching Brock & Hommes (1998) model.

Another practical reasoning is that that the same model has recently been

investigated by FinMaP colleagues from the University of Kiel, Germany, via

MSM and GMM, bringing merits of possible future comparisons.

Regarding number of runs, 300 repeats were applied for preliminary results

only. To report final results, I have increased the number of runs to 1000

(taking the advantage of our knowledge from previous chapters).

Q: General for the entire thesis: A spelling-check needs to be run to remove

all typos. Also, the LaTex PDF-compiler did not compile correctly some of the

words. Please, re-run it.

A: I apologise for these imperfections. I re-read the thesis and ran a spell-

check once again to get rid of remaining typos. I also multiply checked the

final version of the thesis for possible LATEXcompiling errors.

Q: At the beginning of the thesis, state how much of the thesis is your own

work, and how much is of supervisor(s), co-authors, or others (in percentages).

That is normal practice at UK institutions.

A: Thank you for this suggestion. A new page ‘Declaration of Authorship’

defining how much of the thesis text is the work of the author, and how much

is of supervisor has been added. [pg. v]

Chapter 3 has already been published under the full title “Realizing stock

market crashes: stochastic cusp catastrophe model of returns under time-

varying volatility” in Quantitative Finance, 2015, 15 (6), pp. 959-973. It is

a joint work with the thesis supervisor Jozef Barunik and both authors con-

tributed equally to this work. The rest of the (yet unpublished) dissertation

thesis text has been composed solely by Jiri Kukacka under the standard aca-

demic guidance of the thesis supervisor. The approximate contribution to the

text of the dissertation thesis can be divided to 90% by Jiri Kukacka and 10%
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by Jozef Barunik. There are no other co-authors, collaborators, or students

involved.
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Response to comments from Dr. Vacha

I am grateful to Dr. Vacha for his kind assessment of my dissertation. Dr.

Vacha recommended the thesis for defense without substantial changes and

did not suggest any major comments. I would like to thank to Dr. Vacha for

many useful discussions with during doctoral seminars and collectively attended

conferences.

Q: However, Dr. Vacha raised an interesting question during the pre-defense

regarding possible datasets in which the intensity of choice might be potentially

expected statistically significant using NPSMLE. I would be happy to summarise

my answer and comment on this question here in more detail than discussed

in September 2015.

A: I would suggest four potential categories of data where I personally be-

lieve the probability of revealing statistically significant behavioural switching

is relatively high. The first candidate are single stocks of specific industries

vulnerable to speculative mispricing and subsequent corrections, typically the

IT sector, especially in specific periods as the Dot-com financial bubble. How-

ever, a related research would necessarily require arbitrary decisions regarding

the selected data, sample coverages, etc., and embody signs of data-mining.

Moreover, the fundamental value approximation would be largely problematic

and unrepresentative for single stocks compared to aggregate market indices.

The second candidate are low-frequency data, that is, quarterly or annual

observations for which, on the other hand, the fundamental value approxima-

tion is much simpler, e.g. via the dynamic Gordon growth model following

Boswijk et al. (2007) or using the Purchasing Power Parities as the fundamen-

tal rate for FX data. However, as analysed in Section ‘2.4.6 Switching’, so far no

conjunction can be observed between the intensity of choice and the frequency

and length of the data as statistically significant as well as insignificant find-

ings are reported across these categories without any clear pattern. Combining

these two aspects, we might attempt to approximate the fundamental value

of single stocks using valuation techniques based on information from annual

reports of selected companies.

Third, as interestingly concluded in Section 2.4.6 ‘Switching’, statistically

significant estimates largely dominate for commodities. Finally, important in-

sights into behavioural switching might be gained via data from highly specu-
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lative markets such as Bitcoin exchanges, where a ‘laymen’ trend extrapolation

seems to be a strongly dominating belief principle in several historical periods.
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Response to comments from Dr. Zwinkels

In what follows, I will present a list of my comments, in order as they appear

in the thesis. Not all of them need to be addressed before the defense, but the

author can use them to his advantage. I would like to see the highlighted

points addressed by the candidate before the final defense.

Chapter 1:

Q: 1. Pg 1: ‘beliefs and expectations’. What is the difference?

A: This is an interesting point. Technically (in the terminology of Chapters

4-6) there is no difference. I personally can feel some narrative distinction,

but the comment is absolutely correct, this might be confusing for the reader.

I deleted ‘beliefs’ in the final text as the other term ‘expectations’ is more

standard and clear in Economics. [pg. 1]

Chapter 2:

Q: 1. Pg 10 , . . . estimate a HAM based oN Kirman’s ant. . .

A: Corrected, thank you for noticing! [pg. 23]

Q: 2. Page 13, middle of the page: In fact, Frijns et al. (2010)

do not use QML to estimate their model, but apply a simulation

approach.

A: I apologise, the entry was corrected in Table 2.2 as well as in the text, thank

you! [pg. 20, 26]

Q: 3. Pg 14, middle of the page: Here, the author is comparing

intensity of choice (IOC) parameters that different authors have

found. The IOC parameter, however, can NOT be compared across

assets or time periods because it is unit free. The magnitude of the

estimated IOC parameter is conditional on the exact definition of

performance of the rules as well as the exact market characteristics

in that particular sample period. Ter Ellen and Zwinkels (2010)

propose an alternative switching functions that DOES allow for

comparison of the IOC across time/markets. This issue repeats

itself on several occasions throughout the thesis.

A: This is an important methodological comment. The opponent is absolutely

correct that a very same values of the intensity of choice are likely to have some-

what different effect across various specification of models/time periods/assets
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in the same family of switching HAMs. On the other hand, the intensity of

choice is a crucial and robust driver of the data generating process behind

switching HAMs and to a large extent determines the behaviour of the system

in a consistent manner: zero intensity of choice fixes market fractions and does

not allow for any evolutionary switching, high values implicate wild switching

for vast majority of model specifications, assets, or periods. Relatively small

positive intensity of choice is associated with a presence of some detectable be-

havioural switching. A rigorous comparison is truly not possible and it was not

my aim. I mainly intended to avail the general knowledge of previous estima-

tion results from literature for setting meaningful simulation grids in Chapter

5 or to constrain random generation of initial points in Chapter 6. I honestly

believe that taking such advantage from knowledge of recent literature makes

sense and brings important benefits.

A paragraph with related discussion has been added. [pg. 18, 22, 84]

Chapter 3:

Q: 1. Entire chapter: Throughout the chapter, the authors uses

the “we” form, and he refers to Barunik & Vosvrada (2009) as

“we”. First of all, this is inconsistent with the rest of the thesis.

Second, and more importantly, for the cynical reader (which I am

not), this could raise the impression that the author’s contribution

to this particular chapter are not as much as for the other chapters.

A: Thank you very much for noticing, the ‘we’ form was corrected throughout

the entire text. Chapter 3 has already been published under the full title

“Realizing stock market crashes: stochastic cusp catastrophe model of returns

under time-varying volatility” in Quantitative Finance, 2015, 15 (6), pp. 959-

973. It is a joint work with the thesis supervisor Jozef Barunik and both authors

contributed equally to this work. However, as Jozef is the co-author of both

Cusp research projects (Barunik & Vosvrda 2009; Barunik & Kukacka 2015),

this appeared in the text of the paper as well as Chapter 3.

A new page ‘Declaration of Authorship’ defining how much of the thesis

text is the work of the author, and how much is of supervisor has been added.

[pg. v]

Q: 2. The model used in this chapter, the CUSP model, originates from the

natural sciences. I would like to see a more thorough motivation of why and

how it is possible to apply this particular model (without modification) into a

social science, what economics is.
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A: There are many applications of the cups model in psychology, political sci-

ence, sociology, marketing, and also economics. I have elaborated an extended

literature review comprising and motivating both applications in other natural

sciences as well as in social sciences. [pg. 40–42]

Q: 3. Pg. 19: The author argues that the availability of high-frequency data

and the Realized-Volatility (RV) methodology allows him to use the two-step

procedure as presented in the chapter. In fact, this is NOT the case, because

the two-step procedure can be applied using ANY model for market volatility.

I agree that using RV is the BEST model to use, however, it is not the ONLY

possible model (think of GARCH type models or Heston type stochastic volatility

models).

A: I do agree and a related footnote has been added to the text. In any case,

using the supreme model of volatility is likely to produce the best results,

therefore I adhere to the realised volatility approach. [pg. 43]

Q: 4. The two step method in this chapter is born from the restriction that

the CUSP model requires data with stationary volatility. As such, the authors

proposes to first normalize the input data by dividing returns by their realized

volatility before estimating the CUSP model. This is an intuitive way to address

to issue. This method, however, is somewhat counter intuitive to me because

FABMs are especially designed to be able to generate time-varying volatility!

Hence, the CUSP model itself should, theoretically, be able to generate time

varying volatility. As such, estimating the model itself in the raw data could,

theoretically, resolve the problem (as long as the residuals have stationary vari-

ance, this should be consistent with the model’s assumptions). As such, I would

like to see a comparison in the chapter in which the author first estimates the

model in the raw data, then on the normalized data, and compare the results.

A: Thank you for an insightful comment. The constant difusion function is

an assumption of the catastrophe theory that was developed in the framework

of natural sciences (biology). As such, it was also adopted by the estimation

procedure (Grasman et al. 2009). The cusp model can be understood as one

of the first HAMs not because it replicates the stylised facts of financial time

series but because of its economic interpretation by Zeeman (1974). Following

Zeeman (1974) the application of the cusp model in Finance utilises the idea

of interaction between evolving populations of fundamentalists and chartists

as all later HAMs. In fact, the model itself produces time series with constant
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volatility (see Fig. 3.1 b), volatility clustering appears only when time-varying

volatility is artificially added (see Fig. 3.1 c). A comparison of estimation using

raw and normalised data is always offered in all important cases both for the

Monte Carlo study as well as for the empirical estimation: right (b) parts of

Tab. 3.1, 3.2. Naturally, normalised data always perform significantly better.

In a sense, our approach can be viewed as generalisation of the original

cusp model, that in the two equation setting is able to produce time-varying

volatility and reproduce the stylised fact about volatility of returns.

Q: 5. Pg 34: in the data description, exogenous data is introduced.

At that point, it was not clear to me why the exogenous data was

needed.

A: This was not very clear from the text, a further extended explanation re-

garding the empirical datasets has been added. Exogenous data is needed to

drive the asymmetry (fundamental) side and bifurcation (chartistic) side of the

market/model. A detailed description of the data appears in the text. The

choice of CME data was also determined by their availability as I was able to

obtain high-frequency data related to S&P500 from there by Tick Data, Inc.

[pg. 59]

Q: 6. Following up on the previous point, the choice of exogenous

variables appears to be a rather ad-hoc choice. Why these vari-

ables? Why not others?

A: The choice of variables partially follows a successfull aplication in Barunik

& Vosvrda (2009), where more options are compared: the daily change of total

trading volume, ratio of advancing stocks volume and declining stocks volume,

OEX put/call ratio, Dow Jones Composite Bond Index, and one-day lag of

SP 500 returns. Authors show that fundamentalists are best described by the

ratio of advancing and declining stock volume, and chartists are best described

by the OEX put/call ratio. We have used the same proxy variables as in the

original Barunik & Vosvrda (2009) work to maintain reproducibility, and to

motivate the importance of our generalisation of the model. Moreover, nobody

else so far estimated cusp on long-span stock market data and we are not aware

of any better dataset of exogenous variables for this purpose.

I provide further motivation for our choice directly in the text: e.g. “The

variables related to the trading volume generally correlate with the volatility

and therefore are considered good measures of the trading activity of large
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funds and other institutional investors” or “Financial options are widely used

and are the most popular instruments for speculative purposes. Therefore, they

serve as a good measure of speculative money in capital markets (see e.g. Bates

(1991), Finucane (1991), or Wang et al. (2006)) because they represent the data

about extraordinary premiums and excessive greed or fear on the market.”

A further explanation about a relation between market volume, liquidity,

and fundamental money has been added to the text. [pg. 60]

Q: 7. Pg 38: Looking at the LL values of the restricted and unre-

stricted models, it becomes clear that the fit of the RESTRICTED

model is HIGHER than the fit of the UNRESTRICTED model.

This is impossible; the LL of the restricted model can only be

smaller or equal than the LL of the unrestricted model. If the

restricted model was best, the alpha 2 and beta 1 coefficients in

the unrestricted version of the model should have been put equal

to zero. Therefore, it appears that one of the two models has not

converged to its global optimum. As such, the interpretation of the

coefficient cannot be trusted.

A: Many thanks for the detailed inspection, I checked the computational results

and found that figures from a slightly different estimation based on a shorter

dataset were copied in case of the (a) part, restricted model (second column).

I have corrected the coefficients (only minor changes) as well as R2, LL, AIC,

BIC (natural significant changes). I have adapted the interpretation of results

with this respect. [pg. 63–64]

Q: 8. Pg 42, Figure 3.5: BIC values cannot be compared over different sample

periods. It is a unit-free metric.

A: I of course agree with the opponent that BIC cannot be directly compared

across various time periods. However, I did not intend to track their dynamic

evolution in time but to contrast the criteria of the cusp model and the logistic

model in every single rolling one-half year period. I have clarified this in the

text. [pg. 69]

Q: 9. Pg 43: volume is used as a proxy for fundamentalist activity. This is a

rather loose interpretation of the model. Giving a fundamentalist/chartist type

interpretation to the CUSP model is hard to sell.

A: Fundamentalist-chartistic interpretation of the Catastrophe theory comes

from Zeeman (1974), this Chapter is in fact only an empirical verification of



F. Response to opponents LVIII

his hypotheses. Regarding the ratio of advancing and declining stock volume,

a further possible motivation than already provided in the text (Section ‘3.4.1.

Data description’) might be related e.g. to the ARMS INDEX used in techni-

cal analysis that is based exactly on (not only) the volume of advancing and

declining stocks and is generally used as an indicator of overall market senti-

ment. I have already provided motivation for our choice of this proxy variable

in Section ‘3.4.1. Data description’: “The variables related to the trading vol-

ume generally correlate with the volatility and therefore are considered good

measures of the trading activity of large funds and other institutional investors.

Trading volume indicators thus represent the fundamental side of the market

and can be used as a good proxy for fundamental investors. Therefore, the

ratio of advancing and declining stock volume should mainly contribute to the

asymmetry side of the model.” [pg. 68–69]

Q: 10. Pg 44: The high frequency data is said to be unique. This

is not the case.

A: Thank you for the point, ‘unique’ was deleted from the text. [pg. 70]

Chapter 4:

Q: 1. Chapter 4 merely contains the background for the following chapters 5 to

7. As such, it doesn’t contain original work. Therefore, my suggestion would

be to integrate Chapters 4 and 5.

A: This is a meaningful suggestion. Unfortunately, Chapter 5 is already rela-

tively extensive. More importantly, the NPSMLE method is a general framework

not solely related to the Brock & Hommes (1998) model. Thus I would like

to keep it as a separate part of the work and I believe such division helps to

make the structure of the thesis more clear. In the preliminary draft of the the-

sis, however, the NPSMLE was presented in a preceding detached chapter, but

then I have changed the order to the more standard one: model—estimation

methodology—empirical estimation.

Chapter 5:

Q: 1. Pg 56: under equation 5.3: it would be good to say something about the

properties of ε?

A: I have provided the reader with an extended description of the properties

of ε in the text and a related footnote. [pg. 83]

Q: 2. Pg 56: Why is the risk free rate r kept constant? A stochastic process

would be closer to reality.
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A: I agree with the opponent that a stochastic process would more closely

resemble reality, but I keep to the constant value for the reason of simplicity.

Our ‘daily’ value translates into approximately 2.5% risk free rate annually. We

can see that the estimation performance is very robust w.r.t. absolute value of

r in Table 5.2 as commented on [pg. 101]: “The robustness of the method w.r.t.

assumption of the real market risk free rate therefore relaxes the need of a very

precise derivation of this parameter for various countries and historical periods

and the reasonable approximation R = 1 + r = 1.0001 representing circa 2.5%

annual risk free interest rate can be generally used in Chapter 6.” Furthermore,

r only influences the absolute value of xt (see Equation 5.1), not the dynamics

of the model. [pg. 83]

Q: 3. Pg 56: The author makes the assumption that variance is constant.

As also pointed out above, this is a peculiar assumption because these types of

models are specifically designed to generate time-varying variance. I realize this

is a common assumption to make, but it might be good to point this out.

A: I agree this is an important point and as suggested, I have pointed this

out in the text: I have added a further discussion about the computational

setting of the model and clarified advisability of related assumptions. From

the theoretical derivation of the model, constant σ2 denotes traders’ beliefs

about the conditional variance of excess returns. The model output is, on

the other hand, usually characterised by time-varying variance as a resut of

interaction of fundamental and chartistic strategies. For analytical tractability

the assumption of constatnt σ2 has already been made in the original Brock

& Hommes (1998) model that I aim to estimate, so I stick to their design.

It is important to note that a and σ2 are in fact only scale factors for the

profitability measure U . Their magnitudes do not affect relative proportions

of Uh,t and thus do not influence the dynamics of the model output. In other

words, although I assume constant σ2, the output time series generated by the

model does not have constant variance. Strategy-specific ah or time-varying

σ2
h;t are appealing concepts mainly for simulation analyses of HAMs. [pg. 83]

Q: 4. Pg 57: The author argues that the IOC is typically a single-

digit positive number. As pointed out above, this is hard to ra-

tionalize because the IOC parameter cannot be compared across

models/time/assets.

A: I have clarified in the text that although the intensity of choice β cannot be

directly rigorously compared across various models, assets, or time periods, I
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utilise the general knowledge of previous estimation efforts for models sharing

similar framework to set meaningful simulation grids in this chapter. [pg. 84]

Q: 5. Pg 57: The author states that it is out of the scope of the model to

study the dynamics of the model for different values of β. I would agree with

this statement, although it IS important to check what type of equilibrium the

model is in with the stated values of β (i.e., a stable fixed point equilibrium,

limit cycle, or chaotic). This could have a major influence on the estimation

procedure.

A: The suggested analysis constitutes a considerable enhancement of the esti-

mation performance investigation and I would like to thank the opponent for

this notable remark. This can be generally achieved using the tools of the bi-

furcation analysis: depicting the bifurcation diagram or computing evolution of

the Lyapunov exponent for the stated values of β. However, for the bifurcation

analysis to provide us with meaningful and unambiguous results, we need to

define a very specific model setting. Moreover, the bifurcation analysis is an

appropriate tool mainly for the deterministic part of the model (i.e. without

the i.i.d. noise term sequence εt). In our setting of a robust Monte Carlo

analysis based on random generation of 4 sets of belief coefficients combined

with 10 intensities of the stochastic noise εt, a simple analysis of the stability

of the model is unfortunately not likely to bring credible and unambiguous

conclusions. [pg. 85]

Q: 6. Pg 58: The author states that he is using different types of

distributions for the noise process. 1) Give a full list of the dif-

ferent specification. 2) What I miss, is a heavy-tailed distribution,

such as the Student-t. Again, the FABMs are specifically designed

to generate time-varying volatility and heavy tails. This should

come back in the simulation study of this chapter. In addition, the

uniform distribution that the author uses does not make much eco-

nomic sense to me; I do not know of any processes that generate

this type of distribution.

A: I largely agree this part was not clearly written and I have enriched the text

regarding the description of different noise specifications. I also have made

clearer in the text that a detailed description of all 30 stochastic noise spec-

ifications can be found in Table 5.1, Table 5.4, and Table 5.5. My original

intention was to not double the information that is already included.
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The normality of market noise is a usual assumption in the literature: “the

nonlinear models are fed with an exogenous stochastic process, but the noise

process is ‘nice’, which in this case means that it is normally distributed”, as

pointed out by Amilon (2008, pg. 344). It is also crucial that using normal dis-

tribution we can take the advantage of the favourable theoretical properties of

the Gaussian kernel (Kristensen & Shin 2012, pg. 81) in Equation 4.23 for the

NPSMLE. The same kernel distribution as is the distribution of stochastic noise

is an important assumption of the estimation procedure. Normality of the stock

market noise seems as reasonable assumption, at least I am not aware of any

more resonable assumption for nonobservable noise. The uniform noise concurs

the previous research in Barunik et al. (2009); Vacha et al. (2012); Kukacka &

Barunik (2013). As for the NPSML estimation (in a simulation study) the theo-

retical distribution of the stochastic noise can be any, the uniform distribution

represents an extreme not-very-realistic case intended for comparison with and

contrasting the results based on normally distributed noise.

Whilst I agree with the opponent that heavy tails are one of the key stylised

facts FABM are specifically designed to generate, I intentionally do not con-

sider any at first sight soliciting heavy-tailed noise distribution. The fact that

financial data are heavy-tailed does not suggest any specific distribution of the

market noise. In fact the situation is opposite. The attractiveness of the HAM

is based on its ability to produce a heavy-tailed distribution of model out-

put although we input normally distributed stochastic noise. Thus the HAM

explains one of the most important stylised facts of financial time series via

endogenous interactions of fundamentalists and boundedly rational chartists,

not as an effect of a specific distribution of noise input.

This discussion has been added to the text. [pg. 85–86]

Q: 7. Pg 62 + 63: My conclusion from these graphs would be that the mean/

median estimate of the coefficients is fine, but that the confidence bands are com-

pletely uninformative. This is directly comparable to the results of Terasvirta

(1997) when using NLLS/(Q)ML. This calls for a proper comparison of model

with/without switching.

A: The analysis of the confidence bands primarily shows that theoretical prop-

erties of the estimator, the consistency and asymptotic efficiency, also hold in

small samples for the model. We can clearly observe the consistency of the

estimator and how the efficiency of the mean estimate increases simultaneously

with increasing length of generated time series t as well as the precision of the
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kernel estimation N . Therefore, the confidence bands were not expected to be

completely informative for all combinations of N and t. Nonetheless, the crucial

result is that they are informative for larger lengths of generated time series,

i.e. 5000 and 10000 for small βs, but only 100 is sufficient for β = 10. These

features have important favourable consequences for application of the method

to datasets of various lengths—we should be able to detect even weak signs of

behavioural switching in long-span daily financial data, but also stronger signs

of switching in macroeconomic data where typically lower-frequency time series

of shorter lengths are available.

The opponent is correct that the precision of confidence bands in the Monte

Carlo analysis might have been somewhat better, but w.r.t. the complexity of

the estimation issue in the nonlinear HAM setting with five repeatedly ran-

domly generated strategies (as well as to many other estimation attempts from

literature that have found the switching coefficient insignificant) I consider the

results very promising. The most important property of the estimation method

in the current setting is the ability to distinguish between various βs and assess

statistical significance and this objective is well achieved.

It is important to stress that the confidence bands provide only a part of the

information about estimates of the coefficients. Another important information

is reported by Figure 5.4. that depicts smooth histograms of selected estimated

βs. Although we can observe a nontrivial interplay between the magnitude of

βs, noise intensity, and the estimation precision, the mass of the distribution

is generally concentrated around the true value and we observe considerably

positive excess of kurtosis, especially in cases of noise specification for which

the estimation performs best.

Figures 5.2 and 5.3 also allow for comparison between estimation of models

with and without switching. The left column of Figure 5.2 represents the model

without switching (β = 0), the right column and Figure 5.3 illustrate estimation

performance for models with switching (β > 0). The model without switching

is then always included as the first row of all panels in all tables in Subsection

5.3.1. However, β is always being estimated as it is the only parameter of

interest in these sections.

To make the situation more clear, this discussion has been added on [pg.

92–93]. [Tables can be now found on pg. 90–91]

A rigorous statistical comparison of the estimation method performance for

model with/without switching is possible for the 2-type model. Please, see
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extended Section 5.3.2. [pg. 121–122] and related discussion to point 9 below.

Q: 8. Pg 66 Table 5.1: The results in the bottom row of panel j are different

thus interesting. They require a more in-depth discussion.

A: I agree that these figures are interesting, however, at the same moment very

problematic as they go along with an extreme number of ‘NaN’ outcomes (96%)

as a result of a very strong stochastic noise N(0, 22) added to the system. This

simply means that only 40 out of 1000 random runs converged and produced

point estimate for β. I have addressed this issue further on [page 96]: “We

do not consider results with high number of ‘NaN’ outcomes relevant within

this analysis, however, we keep displaying them to retain the completeness

of provided information as well as an optimal warning signal of an improper

behaviour of the system under scrutiny.”

Q: 9. The author focuses fully on the proper estimation of the IOC parameter

β in this chapter. This makes sense because it is an important question to

address. Another important question, though, is the issue surrounding model

fit. Specifically, the author does different checks with two and three type models.

I would be interested in seeing an extension in which the author tests whether

the method is capable of 1) distinguishing static from switching models, and 2)

distinguishing two from three (or more) type models.

A: This is a very important suggestion and I share with the opponent the no-

tion of importance of a rigorous statistical assessment of the NPSMLE capability

to distinguish between ‘competing’ models. With regard to 1), i.e. the com-

parison between static and switching model, as these models are nested, we

can apply the standard likelihood-ratio goodness of fit test. For this purpose,

Tables 5.11 and 5.12 [pg.114–115] summarising result for the 2-type model have

been extended by information about likelihood ratios, log-likelihood ratio test

statistics, and related p-values to reject the null of the static model. I have

also added a new subsection ‘Likelihood-ratio test’ discussing test results [pg.

121–122]. The situation with 2), i.e. distinguishing the 2-type from the 3-type

model is more challenging. As a result of nonlinear nature of the model gov-

erned by discrete choice probability multinomial logit model (Equation 5.2),

we are not able to apply simple restrictions so that we compare nested models

again. Technically, two options suggest itself to design the restricted (null) 2-

type model. First, we can restrict the parameters g3 = 0 and b3 = 0 to displace
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the third strategy type, but then the displaced strategy in fact follows the role

of the fundamental strategy and for small βs the market fractions fluctuate

around 66.6% for fundamentalists and 33.3% for chartists (instead of 50%/50%

in the 2-type model). Second, we can decrease the number of strategies to 2

and use the ‘usual’ 2-type model from Section 5.3.2, but then the structure

of compared models is not a result of parameter restrictions but of a differ-

ent structure of the model (because number of strategies is not an estimated

parameter) where for small βs market fractions fluctuate around 50%/50% (in-

stead of 33.3%/33.3%/33.3% in the 3-type model). In both cases, I apprehend

the non-nested character of the models prohibiting application of the simple

likelihood-ratio test. These concerns were further confirmed by preliminary

trial computations bringing absurd results. For the future research I plan to

consider a version of the Vuong’s closeness test (Vuong 1989), which is an ad-

vanced likelihood-ratio test for model selection that allows also for overlapping

or non-nested models.

I have reflected upon this important methodological issue in the text as one

of the future extension of the NPSMLE of HAM related research in a new section

‘5.3.4 Suggestions for future research’ on [pg. 123].

Q: 10. The added value of this chapter is the empirical methodology to estimate

the FABM. The author shows that the model does a good job in identifying the

coefficients. What I would be interested in seeing, though, is a comparison of

this new method with the traditional methods used to estimate this model (i.e.,

NLLS as in Boswijk et al. 2006). Does the method the author proposes also

yield BETTER results than the traditional methods? This important also given

the level of computational demands of the new method.

A: I definitely agree that this is an important area that requires further re-

search. And also a very difficult task to tackle as traditional methods are

largely infeasible for the HAM. The Boswijk et al. (2007) serves as a good ex-

ample: it is in fact philosophically close to the model under our scrutiny, but

unfortunatelly technically it has markedly different specification: 1) the model

is considerably redesigned compared to the original (and thus to our) approach;

2) different assumptions about fundamentalists are used (the trend coefficient

g1 is expected to be lower than 1 to reflect gradual mean-reverting tendency

instead of strict g1 = 0 in the original Brock & Hommes (1998) model design);

3) the identification issue of the fundamental and trend following AR(1) coeffi-

cients is problematic from definition in Boswijk et al. (2007) as both coefficients
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are based on the same value xt−1; 4) it uses annual empirical data (those are

difficult to proceed in our framework of MA fundamental value as the jumps in

annual data are huge) instead of daily data I use in the analysis.

I have reflected upon this important methodological issue in the text as one

of the future extension of the NPSMLE of HAM related research in a new section

‘5.3.4 Suggestions for future research’ on [page 123].

Chapter 6:

Q: 1. Pg 95: Important in the discussion about the fundamental

value is not necessarily whether the fundamental value estimate

reflects the TRUE fundamental value, but rather whether it reflects

a value that could reasonably proxy for the fundamental value as

seen by market practitioners.

A: I largely support the opponent’s point. Long-term and short-term MAs are

commonly used by practitioners in trading to extrapolate divergence from the

fundamental value in technical analysis. Since the fundamental value of stocks

is essentially unknown, market practitioners often tend to at least estimate

whether the stock is over or under-valued, whether the possible mispricing is

small or large, and whether the gap is going to increase or whether a soon cor-

rection is more likely. As the Brock & Hommes (1998) model is also formulated

in deviations from the fundamental price, the MA approach seems to be one of

reasonable guidances. Moreover, I decided to keep to current literature and fol-

low some other works using MA as an approximation for the fundamental value,

e.g. Winker et al. (2007); ter Ellen & Zwinkels (2010); Huisman et al. (2010).

To reduce the arbitrariness, I test the effect of 5 window lengths, namely: 21,

61, 121, 241, and 481 days. As all specifications lead to comparable results, I

report results for 61 and 121 days in the thesis.

I have added a new paragraph discussing this issue and a short literature

review summarising the use of MA filtering by practitioners and active traders

[pg. 126–127]

Q: 2. Pg 95: Using a CENTERED moving average for the fundamental value

leads to a look-ahead bias. Why not a simple moving average?

A: This question is closely related to the previous one and I agree with the

opponent that the look-ahead bias is likely to play some role in our proxy

variable. Both MA versions were analysed and found to produce to a large

extent comparable results. The centred MA is therefore suggested to reduce the
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delay of the information flow and for several additional related reasons stated

in the paragraph below. Moreover, the centred MA incorporates a convenient

property that the price converges to it by definition that is exactly a feature

one would expect from the fundamental value. These justifications have been

added to the text. [pg. 127]

First, the simple MA is associated with problematic numerical stability

of the model/estimation method because resulting deviations based only on

past information are significantly larger. Second, I might argue that approx-

imation based on a simple (historical) MA struggles from something what

might be called a ‘historical bias’: the simple MA might systematically poorly-

approximate. Imagine e.g. the situation that the price is growing for some

period (this might not necessarily be an effect of growing mispricing but also of

rising fundamental value or likely of both going hand in hand). The fundamen-

tal value proxy based on historical MA will constantly underestimate. Third,

the future expectations (which might have been part of the information set of

market participants at given time) should also be reflected in the rational fun-

damental value, but based on historical data in hand, I am not able to extract

possible expectations about future price from anywhere else than somewhat

implicitly from the future price evolution itself.

Q: 3. Table 6.1: Include the autocorrelation in x as well as the

autocorrelation in x2.

A: Thank you for the suggestion, this is an important aggregate information

that can be simply checked. As the autocorrelation in x as well as in x2 is

closely related to important financial stylised facts, together with Table 6.1

[pg. 131]. I have also added this informmation to all other tables of descriptive

statistics: Tab. 3.2. on [pg. 61] for Cusp, Tab. 7.1. on [pg. 161] and 7.3. on

[pg. 172] for the Alfarano et al. (2008) model.

Q: 4. Pg 99: Please repeat the exact model that you are estimating.

This would help the reader.

A: In accordance with the opponent’s suggestion, I have repeated the structure

of the model for reader’s convenience. Thank you. [pg. 132]

Q: 5. Pg 99: The author concludes that the estimated β is insignif-

icant. In the previous chapter, however, we have seen that the

confidence bands are largely uninformative (see point 7 of chap-
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ter 5). Hence, how would the results from Chapter 5 apply to the

findings of Chapter 6?

A: This comment is likely to stem from possible misunderstanding which is

clarified in the discussion to point 7. of Chapter 5. In fact results from Chapter

5 were directly used for the computational setting in Chapter 6. The crucial

result of Chapter 5 is that the confidence bands are informative for larger

lengths of generated time series, i.e. 5000 and 10000 even for small βs and a

reasonable kernel estimation precision N = 500. So we should be able to detect

even very weak signs of behavioural switching in long-span daily financial data.

This is exactly the reason why the length of 5000 observations is used for the

empirical datasets as I mention in Section ‘6.1 The estimation setting’ on [pg.

124].

In order to clarify this in the text as well, a paragraph with this discussion

has been added on [pg. 134].

Q: 6. Related to the former: If there is no switching, the different types are

actually not identified from each other; there will be nuisance parameters.

A: It is a good point that if we estimate statistically insignificant intensity of

choice parameter β, the model in fact boils down to a simple weighted AR(1)

process because the population weights are fixed to constant 1/H. Different

types of traders then cannot be identified (because they do not switch over time)

and the model actually is not heterogeneous agent model any more. In such a

case the trend and bias parameters ĝ2 and b̂2 (or ĝ3 in the 3-type model) can be

viewed as nuisance parameters—they to a large extent lose the original model

interpretation and we cannot fully trust the estimated magnitudes of these

parameters. A stable population ratio of trading strategies n1,t/n2,t
.
= 0.5/0.5

technically means that the population of fundamentalists is forced to be of the

same magnitude as the population of chartists. As we cannot agree with such

a strong assumption of similar population magnitudes for both strategies (that

are likely not capturing the real market population proportions), in Section ‘6.6

Estimation of market fractions’ I trivialise the simulated model via disabling

the evolutionary switching behaviour and fixing the population ratio of trading

strategies to n1,t/n2,t = const. The population ratio of trading strategies n1/n2

and implied percentage fraction of fundamentalists on the market is then a

direct subject of the estimation interest.

A further explanation regarding nuisance parameters has been added to the

text. [pg. 146]
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It is, however, important to note that zero intensity of choice β does not

disrupt identification of estimated parameters. This is confirmed by the analysis

of the empirical log-likelihood function in Figure 6.3. [pg. 136] where β is

estimated close to 0, but g2, b2 as well as noise intensity are generally well

identified via unique maxima of transversal cuts of the log-likelihood function.

Also for the trivialised fraction model the empirical log-likelihood function in

Figure 6.9. [pg. 150] is very informative for all estimated parameters except

the bias parameter b2.

Q: 7. Pg 104: Why not use actual risk-free data?

A: I agree with the opponent that using actual risk-free data represents a more

proper way of approximating the risk free rate parameter, but I decided to

follow the same setting as I analyse in the Monte Carlo sections to be consistent.

It would be relatively difficult to precisely proxy the r for all analysed stock

markets from 1994 and finally it would only make things more complicated

without bringing any difference in results. Negligible (because daily) differences

caused by deviations of the actual risk-free figure from our constant r are likely

to be to a large extent nullified by the fundamental value approximation. [pg.

138]

Q: 8. Pg 106: Can you statistically distinguish the two-type model from the

three-type model? The thesis needs proper tests of model fit.

A: This is another important suggestion closely related to the point 9. of

the previous part. Although we now only have one empirical dataset, the

problem with non-nested character of the models persists also for the empirical

application. Primarily, however, the ‘message’ from the estimation is essential

and clear: zero β implicates that the goodness of fit test does not make much

sense, because the model boils down into a simple model without switching.

Thus neither the 2-type nor the 3-type model is likely to be optimal. For my

interest, I have preliminary checked results of the simple likelihood ratio test

(perhaps incorrectly applied due to the non-nested character of the models)

and it is not able to distinguish between the two types of the model. I do not

report results of this preliminary testing in the thesis.

Q: 9. Pg 108: The author compares LL values across different sub-samples.

This is not possible; only nested models are comparable.

A: The opponent is again absolutely correct. I have added a note to the text

[pg. 143] that a direct comparison of rolling log-likelihoods is methodologically
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disputable because it is based on different rolling sub-samples. However, I

argue that since rolling datasets keep the same length and overlap by circa

83% between adjacent steps, the overall evolution of the LL pattern provides

us with a valuable information.

Q: 10. As for the previous chapter, it would be interesting to see the perfor-

mance of the new estimation method in comparison to the performance of the

traditional method.

A: As already discussed in point 10. of Chapter 5, I completely agree with

the opponent that this is an important area for further research. At the same

moment, I would like to highlight the fact that the main motivation of this

work is that traditional methods are largely infeasible for many FABMs and

generally require strong compromises in theoretical assumptions. As I see the

future of the field primarily in application of simulation-based methods rather

than compromising ABMs’ design in order to apply traditional method (i.e.

NLS in the specific case of Brock & Hommes (1998) model), I consider these

performance comparison efforts mostly as a complement or a verification tool

for the development and application of simulation-based techniques.

Chapter 7:

Q: 1. I realize that this chapter is work in progress. It is interesting work,

though, and the results are promising. Currently, it is still a rather dry summa-

tion of empirical results. What about economic intuition? To give an example:

Figure 7.10 panel (b) shows that the fundamental variance shoots up at Black

Monday. Does this imply that Black Monday was a fundamental event?

A: To interpret these results correctly, we need to discuss the nature of volatil-

ity in the model. The total volatility of the model output pt is derived from so

called fundamental value Ft and the effect of market sentiment xt. However,

the fundamental volatility in this highly stylised simple model cannot be fully

interpreted as the real world fundamental risk. When bringing the model to

empirical data, the fundamental volatility term to a large extent represents

all the remaining volatility that is not caused as the effect of noise traders’

switching between the optimistic and pessimistic mood. E.g. based on rolling

estimation results, the estimation method seems to predominantly assign the

cause of the elevated market volatility to the fundamental value term, although

e.g. Black Monday can be hardly denoted as a fundamental event. However,

we also observe jumps in the estimates of the herding intensity b that definitely
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have a good economic interpretation for selected historical events. The NPSMLE

in combination with a very simple stylised model are thus perhaps weak in dis-

tinguishing well between these two theoretical sources of volatility. Comparing

the shapes of the simulated sub-log-likelihood-functions in Figure 7.8. and Fig-

ure 7.9. in dimensions of individual model parameters and their combinations,

we clearly observe relative flatness of the resulting log-likelihood-function in

dimensions of a and b w.r.t. the high-pitched shape in the dimension of σf .

Thus, the market volatility amplification is likely to be assigned based on rather

technical optimisation criteria mainly to the fundamental volatility, in which

dimension the optimisation algorithm search can work well better and which

is likely to overshadow the effect of switching parameters a and b during the

estimation procedure.

This discussion has been added to the text [pg. 177 and 181]. I have also

completed the chapter by an extended model description [pg. 155–156], via

further discussion of new results, and a short section of concluding remarks.

[pg. 176–182]

Chapter 8:

Q: 1. The chapter gives a good overview of the work the author has

done in the thesis. I would like to challenge the author, though,

to also include his thoughts about the bigger picture: What is the

current stance of the literature, where is it going, or where should

it be going? What are the current strengths, weaknesses, threats,

and opportunities.

A: I would like to thank the opponent for this challenge. It motivated me to

take a deep think about the field and its future. As an outcome, I have added

an attempt at a largely subjective SWOT analysis of the field as the very last

part of the Conclusion. [pg. 186–188]
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