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Academic Year: 2015/2016

http://www.cuni.cz/UKENG-1.html
http://fsveng.fsv.cuni.cz/FSVENG-1.html
http://ies.fsv.cuni.cz/index.php?module=board&action=board&lng=en_GB
mailto:krenar.avdulaj@gmail.com
mailto:barunik@fsv.cuni.cz


Acknowledgments
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Abstract
Proper understanding of the dependence between assets is a crucial ingredient

for a number of portfolio and risk management tasks. While the research in this
area has been lively for decades, the recent financial crisis of 2007-2008 reminded
us that we might not understand the dependence properly. This crisis served as
catalyst for boosting the demand for models capturing the dependence structures.
Reminded by this urgent call, literature is responding by moving to nonlinear de-
pendence models resembling the dependence structures observed in the data. In
my dissertation, I contribute to this surge with three papers in financial econo-
metrics, focusing on nonlinear dependence in financial time series from different
perspectives.

I propose a new empirical model which allows capturing and forecasting the
conditional time-varying joint distribution of the oil – stocks pair accurately. Em-
ploying a recently proposed conditional diversification benefits measure that con-
siders higher-order moments and nonlinear dependence from tail events, I docu-
ment decreasing benefits from diversification over the past ten years. The diver-
sification benefits implied by my empirical model are, moreover, strongly varied
over time. These findings have important implications for asset allocation, as the
benefits of including oil in stock portfolios may not be as large as perceived.

Further, I investigate the dependence structure in financial time series using
quantile regression framework. I model conditional quantiles of returns using non-
linear quantile regression models based on copula functions. I explore further
non-linearities in the data, and propose to use realized measures in the nonlin-
ear quantile regression framework to explain and forecast conditional quantiles of
financial returns. The nonlinear quantile regression models are implied by cop-
ula specifications and allow us to capture possible nonlinearities, and asymmetries
in conditional quantiles of financial returns. Using high frequency data covering
most liquid U.S. stocks in seven sectors, I provide ample evidence of asymmetric
conditional dependence and different level of dependence characteristic for each
industry.

Finally, I consider conditional Value-at-Risk estimation under copula quantile
regression models. I follow a slightly different approach compared to the current
literature, where in the focus is systemic risk, and estimate the risk contribution
that an asset has on some other individual asset. This approach allows the study
of risk spillovers among assets. The dataset which I use for the model is the
same as the one in Chapter 3. I find different risk spillover levels for distinctive
industries. Furthermore, in some cases the risk spillover levels within the assets
of the same industry are very different. These findings have great potential on
portfolio re-balancing policies under stress events.
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Chapter 1
Introduction

Modelling the dependence of financial time series has received high attention in
recent years. This not only because it is a crucial ingredient for a number of
portfolio and risk management tasks, but also because of the increased complexity
of the financial systems. Financial systems of today operate in global levels and
require far more complex models to capture the profound dependence structures.
Thus, quantifying the dependence is a much more difficult task that what it might
seem.

Linear correlation is the most common type of dependence used in financial
theory. This type of dependence is limited as it is a natural one only in the case
of multivariate normal distributions, or more broadly in elliptical distributions
family. Use of correlation coefficient outside the world of elliptical distributions
produces misleading conclusions. As a testimony, the financial crises of 2007-
2008 revealed that we might not understand the dependence properly. Typically,
the linear correlation was improperly used (mainly by practitioners) to model
situations far from elliptical. Thus, appropriate dependence measures such as rank
correlations and coefficients of tail dependence are attractive candidates to model
and estimate the nonlinear dependence which is commonly found in financial time
series.

Both, rank correlations and coefficients of tail dependence, are copula based
dependence measures. They depend on copula function only and are independent
of the margins. This property comes from the fact that copulas allow a bottom-
up approach to multivariate modelling i.e. model the marginal distributions first
and the dependence structure in a second step. Another useful property of copula
models is their help in understanding the dependence at a deeper level as they
express the dependence at a quantile scale.

Considering the advantages of copulas in multivariate modelling I turn them
into the main tool for this work. In my dissertation thesis I include three papers
in financial econometrics focusing on nonlinear dependence in financial time series
from different perspectives. Before continuing with the introduction of the papers
let me first recall some stylized facts on financial time series. These facts motivated



my research in nonlinear dependence and increased further the support in favour
of using copula models as the main tool for co-dependence estimation.

Stylized facts about financial time series do not support the assumption of nor-
mality, which for many decades prevailed many econometric models. Some stylized
facts common to a wide set of financial assets include heavy tails, volatility cluster-
ing, gain/loss asymmetry, slow decay of autocorrelations of absolute returns etc.
(for more stylized facts see Cont (2001)). Additionally, the correlations among
assets are not constant over time as Erb et al. (1994); Longin & Solnik (1995),
and Engle (2002) have documented. Furthermore, when estimating correlations
the asymmetry is a serious issue to deal with. Harlow (1991) shows that portfo-
lios which take into consideration an asymmetric measure of risk outperform the
classical mean-variance portfolios. The same principle should be applied when
considering correlation. Erb et al. (1994) emphasize the importance of future cor-
relation structure when making asset allocation decisions. Moreover, they examine
cross-correlation stock returns in G-7 countries and find that the correlations are
higher during recessions than during growth periods.

In the last three decades several models for measuring correlation in financial
time series have been proposed, simple ones like rolling historical correlations and
exponential smoothing or more sophisticated based on multivariate GARCH. The
multivariate GARCH models are the most popular multivariate models for cor-
relation estimation. We can mention here the Dynamic Conditional Correlation
(DCC)-GARCH model of Engle (2002) or the MGARCH model of Tse & Tsui
(2002).

In addition to these approaches financial econometrics attention is turning to-
wards dependence models based on copula theory. Copula models are a general
way of describing dependence in probability theory and statistics and in the fun-
damentals stands the theorem of Sklar (1959). This theorem shows that any joint
distribution can be written as a function of marginal distributions. Due to this the-
orem copulas allow to specify the models for the marginal distributions separately
from the dependence structure that links these distributions. In other words they
join multivariate distribution functions to their one-dimensional margins. This
property transforms the copulas into a bridge between univariate and multivari-
ate distribution functions. We can combine marginal distributions with copula
functions and get a valid multivariate distribution. Theoretically, the multivariate
distributions which we are able to model or generate are limitless.

As mentioned earlier in the text, tail dependence notion is closely related to
copula theory. Tail dependence is very useful in studying the joint tail behaviour
i.e. the probability that two or more assets will have large (often negative) returns
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at the same time. Thus, to model a multivariate distribution we should select
from the pool of copula functions the ones that exhibit the dependence found or
observed in that distribution because for different situations different copulas are
appropriate e.g. we should not use Gumbel copula to model lower tail dependence,
Clayton or t copula would be appropriate in such situation. For an introduction
to copulas Joe (1997) and Nelsen (2006) are highly recommended.

Although copulas in financial theory are relatively new, they constitute a fast-
growing field of research. To my best knowledge Embrechts et al. (1999) and Bouyé
et al. (2000) were among the first to use copula theory in financial applications.
Since then many papers have followed with applications in different fields e.g. Li
(2000) uses copulas in pricing Collaterized Debt Obligations; Patton (2006) studies
the dependence between foreign exchange rates (and introduces the first dynamic
copula models); Salmon & Schleicher (2006) uses copula models in currency option
pricing; Giacomini et al. (2009) estimate portfolio VaR; McNeil et al. (2005; 2015)
use copula models in the risk management context. For a survey on copula methods
please refer to Manner & Reznikova (2012) or the review of Patton (2012).

Having introduced the copula models let me continue with the introduction
of the chapters of this dissertation. I want to emphasize that all chapters in this
dissertation have resulted from cooperation with my PhD studies’ Supervisor, Jozef
Baruńık.

In Chapter 2 I study oil as a diversification tool for stock markets. We doc-
ument decreasing diversification benefits over the past ten years. This paper is
published recently in Energy Economics (Avdulaj & Barunik (2015)). A previous
version of this paper received the award ”Best research paper in Energy Economics
2013”, organized by Institute of Energy Economics of the Faculty of Finance and
Accounting at the University Economics in Prague.

The risk reduction from diversification has been a major subject of literature
for many decades. The literature studying the role of oil prices in equity returns
is scarce, but the idea of utilizing oil as a diversification tool has attracted a
number of publications e.g. Gorton & Rouwenhorst (2006); Buyuksahin et al.
(2010) and Fratzscher et al. (2014). They find that oil is a perfect diversification
tool for stocks because of either zero, or (even) negative correlation. This feature
was reflected in investor’s behaviour whose demand for products to diversify risk
increased. However, after the financial turmoil of 2008 literature identified an
increase in dependence due financialization of commodities Tang & Xiong (2012);
Büyükşahin & Robe (2014). Thus, given this increase in dependence we asked the
question whether oil is still a perfect diversification tool for stocks.

To answer the question two things are worth considering. First, the time-



varying nature of the correlations must be addressed properly. Second, linear
correlation may not be a satisfactory measure of dependence, as it does not account
for dependence between tail events. To cope with these considerations we propose
a flexible empirical model for oil-stock dependence, which couples time-varying
copula models with high frequency data. We employ the increasingly popular
Generalized Autoregressive Score (GAS) framework (Creal et al. 2013) and model
the joint distribution of oil-stock returns utilizing time-varying copula functions
to capture nonlinear dependence. The GAS framework, is an observation driven
one that uses the score of the conditional density function to drive the dynamics
of the time-varying parameters. In addition, we employ the recently developed
realized GARCH model (Hansen et al. 2012), which uses high frequency-based
measures of volatility to better capture the volatility process in the margins of the
oil-stocks return distribution. Our newly proposed empirical model, the realized
GARCH time-varying GAS copula, is thus a very flexible approach. Furthermore,
we study conditional diversification benefits, which are implied by our model using
the appealing framework of Christoffersen et al. (2012). This framework considers
higher-order moments and non-linear dependence, which is an important step to
take, as diversification benefits implied by simple linear correlations will likely be
under- or over-estimated, depending on the degree of dependence coming from the
tails.

Our realized GARCH (GAS) copula model identifies strongly varying correla-
tions over the data span, from January 2003 to December 2011. It fits the data
very well and the out-of-sample forecasts have good performance too. To translate
these results in economic implications we quantify the risk of an equally weighted
portfolio composed from oil and stocks, and study the benefits from diversifica-
tion to see how the strongly varying correlation affects the diversification benefits.
We evaluate model performance with respect to quantile forecasts, which repre-
sents the Value-at-Risk, and find that the model is accurate. Most important, we
translate the results into the conditional diversification benefits measure recently
proposed by Christoffersen et al. (2012). We find that the diversification benefits
greatly vary over time. Initially, the benefits from diversification were relatively
high, in the second period between 2006 and 2008, they decreased corresponding
to increasing correlation. In the several years after the 2008 crisis, benefits from
diversification between oil and stocks were decreasing rapidly, while we can see
some rebound in the last few years.

We claim that for the period under research, oil and stocks could be used in
a well-diversified portfolio less often than common perception would imply. This
because we find substantial evidence of dynamics in tail dependence, which trans-
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lates into dynamically decreasing diversification benefits from employing oil as a
hedging tool for stocks.

In Chapter 3 I investigate the VaR estimation under a nonlinear quantile re-
gression framework. This paper is submitted to Studies in Nonlinear Dynamics
and Econometric and is under revision. Financial institutions use VaR as the stan-
dard measure of market risk. Despite its simplicity, measuring and forecasting it
accurately is a challenging task. Recently, quantile regression models have been
used successfully to capture the conditional quantiles of returns.

Quantile regression models have important applications in risk management,
portfolio optimization, and asset pricing. Koenker & Bassett (1978) introduced
the quantiles regression more than three decades ago, but only in the last one the
financial literature paid more interest to it. Engle & Manganelli (2004) introduce
the conditional autoregressive value at risk, which is also known as the CAViaR
model. Instead of modelling the whole distribution, the authors model the quantiles
directly. In CAViaR model the quantile of the distribution is regressed on its lagged
values and a term which plays the role of the news impact curve for GARCH
models. The former ensures a smooth change of quantile, while the latter links the
quantile with the observable variables that belong to the information set. Under
a semi-parametric quantile regression framework Žikeš & Baruńık (2014) utilize
nonparametric measures of the various components of ex post variation in asset
prices to study the properties of conditional quantiles of daily asset returns and
realized volatility, and forecast their future values. We exploit the ideas discussed in
this paper in a nonlinear semiparametric conditional quantile regression framework
to estimate the dependency between returns and realized volatility at quantiles of
interest.

In our model the quantile dependence is implied by copula function alone. We
use Normal and t copula for quantile curves. Both copulas belong to the elliptical
families, and only the second one allows for tail dependence. For comparison we
also use the linear quantile regression. In all cases, nonlinear and linear models, we
quantile regress the returns at time t+1 (rt+1) on lagged realized volatility at time
t (ϑt). We apply the proposed model on 21 most liquid U.S. stocks from seven
main market sectors defined in accordance with the Global Industry Classification
Standard. We use three stocks with the highest market capitalization in a sector
as representative of the analyzed sector. The selected stocks account for approxi-
mately half of the total capitalization of the sector. The data spans from August
2004 to December 2011. The period under study is very informative because it
covers the recent U.S. recession of Dec. 2007 - June 2009 and three years before
and after the crisis.



We run our model on full sample and find nonlinear dependencies especially
for lower quantiles. However, most of the times we are interested in utilizing
the models to conduct predictions and not just to fit the data. For this reason
we split the data in the in-sample part where we estimate our model, and the
out-of-sample part where we forecast. We obtain the one-step-ahead and five-step-
ahead forecast for the quantiles of returns (or the VaR) for a forecasting window of
around two years. We asses absolute and relative performance of the conditional
quantile models. In absolute performance nonlinear and linear models perform
similarly well. We also find that the relative performance of nonlinear quantile
regression models improves significantly for longer forecasting periods, especially
for the t copula. We conclude that using the realized volatility under a copula
quantile framework is useful, especially in the cases where the quantile dependence
is nonlinear.

In Chapter 4, which is also the last one, we focus on conditional Value-at-
Risk (CoVaR) estimation under a copula quantile framework. The paper is work in
progress and is mostly based in methodology developed in Chapter 3. In this work
we analyze the risk contribution of institution i on institution j, or risk spillover of
i on j, where both institutions belong to the same industry. For VaR estimation we
use the nonlinear quantile copula regression models which we introduced in Chapter
3 of this dissertation. In contrast to the model introduced in 3.2 where we use own
lagged realized volatility as state variable, here we estimate the VaR using inter
lagged realized volatility as state variable1. We use the same data as in Chapter
3, which consider 21 assets from 7 different industries. Our analysis identifies the
risk transmission differences that exists between companies and industries. We
compare our results with a benchmark model for VaR based on rescaled realized
volatility and also compare with linear quantile regression model.

We propose to use a two-step procedure for CoVaR estimation. First step
consists in using semiparametric copula-quantile (CQ) regression models to obtain
the VaR. We quantile-regress the returns of institution j on realized volatility of
institution i. Using this nonlinear framework we obtain the V aRj|i. The second
step consists in CoVaR estimation, which is done by using the linear quantile
regression as in Adrian & Brunnermeier (2011). We apply this methodology on
the same dataset as in Chapter 3.

Overall we have four models for CoVaR estimation. Two of them are non-
linear, Normal and t copula quantile models, then the linear quantile regression
model and finally the benchmark model which estimates VaR using the rescaled

1By own we mean that the returns and volatility come from the same asset, while by inter
we mean that the return and volatility come from different assets (within the same industry).
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realized volatility. Based on t copula degree of freedom parameter we confirm the
stylized fact that the distribution of returns is heavy tailed. For identifying the
assets with high risk spillovers and for model comparison we use the average of
CoVaR (∆CoV aR) risk measure. We compare the average ∆CoV aR estimated
from four different models. The ranking of the risk contributors differs signifi-
cantly among the models used for CoVaR estimation but is more consistent if we
compare ranking of industries. We find that highest average risk contributors are
among Financial sector. In fact, most of top five or all top contributors belong to
assets from this sector. For example, for the benchmark model all the Financials
make the first six positions. Normal copula, t copula and the benchmark model
identify the contribution of Wells Fargo & Company on Citigroup as the highest
risk contributor, with very similar values for ∆CoV aR estimates. While for Finan-
cial sector it makes sense to see their assets to have higher risk spillovers among
each-other, it is interesting to see that Information Technology assets are ranked
the highest risk contributors based on Linear quantile regression model. Based on
this model, if Apple is under distress, Microsoft (at a higher extent) and Intel, are
both highly affected from its risk contribution. Another interesting result is that
Consumer Staples industry and Health Care have the lowest risk spreading among
seven industries considered. This result is supported by all models, even though
their estimated absolute ∆CoV aR value differs.

Finally, in Chapter 5, I make a short summary of the main results and conclude
the dissertation.

References

Adrian, T. & M. K. Brunnermeier (2011): “Covar.” Working Paper 17454, National Bureau
of Economic Research.

Avdulaj, K. & J. Barunik (2015): “Are benefits from oil-stocks diversification gone? new
evidence from a dynamic copula and high frequency data.” Energy Economics 51(0): pp. 31
– 44.
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Bouyé, E. & M. Salmon (2009): “Dynamic copula quantile regressions and tail area dynamic
dependence in forex markets.” The European Journal of Finance 15(7-8): pp. 721–750.

Buyuksahin, B., M. S. Haigh, & M. A. Robe (2010): “Commodities and equities:’a market of
one’?” Journal of Alternative Investment 12: pp. 76–95.
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Chapter 2
Are benefits from oil – stocks diversification gone? New evidence
from a dynamic copula and high frequency data

Abstract

Oil is perceived as a good diversification tool for stock markets. To fully un-
derstand this potential, we propose a new empirical methodology that combines
generalized autoregressive score copula functions with high frequency data and al-
lows us to capture and forecast the conditional time-varying joint distribution of
the oil – stocks pair accurately. Our realized GARCH with time-varying copula
yields statistically better forecasts of the dependence and quantiles of the distri-
bution relative to competing models. Employing a recently proposed conditional
diversification benefits measure that considers higher-order moments and nonlinear
dependence from tail events, we document decreasing benefits from diversification
over the past ten years. The diversification benefits implied by our empirical model
are, moreover, strongly varied over time. These findings have important implica-
tions for asset allocation, as the benefits of including oil in stock portfolios may
not be as large as perceived.

Keywords: portfolio diversification, dynamic correlations, high frequency data
time-varying copulas, commodities
JEL: C14, C32, C51, F37, G11

2.1 Introduction

The risk reduction benefit from diversification has been a major subject in the
finance literature for decades. The number of studies exploring the role of oil

This paper was co-authored with Jozef Baruńık and is published in Energy Economics 51(0):
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projects and the Grant Agency of the Charles University under the 1052314 project is grate-
fully acknowledged. The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme
FP7/2007-2013/ under REA grant agreement number 609642.
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prices in equity returns remains limited, with no consensus regarding the nature
and number of factors that play a role in determining equity returns. Despite the
rather scarce literature, the idea of utilizing crude oil as a diversification tool for
financial assets attracted number of publications (Gorton & Rouwenhorst 2006;
Buyuksahin et al. 2010; Fratzscher et al. 2014), which conclude that oil is a nearly
perfect diversification tool for stocks due to their null, or even negative, correlation.
This feature is also reflected in investors’ demand for products to diversify risk.
For example Morgan Stanley offers a product composed of oil and S&P 500 prices
with equal weights. After the recent financial turmoil in 2008, the literature began
to document rising dependence due to financialization of commodities (Tang &
Xiong 2012; Büyükşahin & Robe 2014). However, a majority of empirical studies
use linear (time-varying) correlations, ignoring the possible non-linear dependence
of tail events. Hence, it is natural to ask the question posed in the title of this paper:
“Are the benefits from oil-stocks diversification gone?” To answer this question, a
proper measure of the benefits, which will account for the following two key issues,
must be employed.

First, the time-varying nature of the correlations must be addressed properly.
The recent turmoil in financial markets, which began in September 2008, further
strengthened the focus on models that are able to capture dynamic dependencies
in data. Miller & Ratti (2009) analyze the long-run relationship between oil and
international stock markets utilizing cointegration techniques, and they find that
stock markets responded negatively to increases in oil prices in the long run before
1999, but after this point, the relationship collapsed. This finding is in line with
a number of studies reporting the negative influence of rising oil prices on stock
markets (Sadorsky 1999; Ciner 2001; Nandha & Faff 2008; O’Neill et al. 2008; Park
& Ratti 2008; Chen 2010). Generally, these results are consistent with economic
theory, as rising oil prices are expected to have an adverse effect on real output and,
hence, an adverse effect on corporate profits if oil is employed as a key input. This
phenomenon suggests that oil could be an important factor for equity returns. In a
large study of the relationship among oil prices, exchange rates and emerging stock
markets, Basher et al. (2012) confirm previous research by finding that a positive
shock in oil prices tends to depress stock markets and U.S. dollar exchange rates
in the short run. Wu et al. (2012) further study the depreciation in the U.S.
dollar causing an increase in crude oil prices. Geman & Kharoubi (2008) study the
maturity effect in the choice of oil futures with respect to diversification benefits
and find that futures with more distant maturities are more negatively correlated
with the S&P 500. More recently, new evidence from data during and after the
2008 financial crisis has emerged. Mollick & Assefa (2013) find that, while stock



returns were negatively affected by oil prices prior to the crisis, this relationship
became positive after 2009. The authors interpret this reversal as stocks positively
responding to expectations of recovery. Aloui et al. (2013) study the dynamics
of oil and Central and Eastern European (CEE) stock markets, and they find a
positive time-varying relationship utilizing recent data. Wen et al. (2012) finds
contagion between energy and stock markets that arose during the 2008 financial
crisis. Finally, Broadstock et al. (2012); Sadorsky (2012) document price and
volatility spillovers in oil and stocks.

Second, linear correlation may not be a satisfactory measure of dependence, as
it does not account for dependence between tail events. Correlation asymmetries
and changes in correlation due to business cycle conditions are crucial, as these
dependences will impact to a large degree the benefits from diversification.

In this paper, we provide a comprehensive empirical study of the dynamics in
dependence and tail dependence and translate the results directly to the diversifi-
cation benefits. We offer two contributions. First, we propose a flexible empirical
model for oil-stock dependence, which couples time-varying copula models with
high frequency data. Employing the increasingly popular Generalized Autoregres-
sive Score (GAS) framework (Creal et al. 2013), we model the joint distribution
of oil-stock returns utilizing time-varying copula functions and capture nonlinear
dependence. This is an important step to take, as the dynamics of correlations may
depart from the one imposed by the assumption of multivariate normality used in
many different approaches. In addition, we employ the recently developed realized
GARCH model (Hansen et al. 2012), which uses high frequency-based measures of
volatility to better capture the volatility process in the margins of the oil-stocks
return distribution. Our newly proposed empirical model, the realized GARCH
time-varying GAS copula, is thus a very flexible approach. Moreover, we employ
a semiparametric alternative to modeling strategy, which combines a nonparamet-
ric estimate of a margins distribution and parametric copula function. While this
approach is empirically attractive, it is not often employed in the literature.

Second, we study conditional diversification benefits, which are implied by our
model using the appealing framework of Christoffersen et al. (2012). This frame-
work considers higher-order moments and non-linear dependence, which is an im-
portant step to take, as diversification benefits implied by simple linear correlations
will likely be under- or over-estimated, depending on the degree of dependence
coming from the tails. In addition, we evaluate our empirical model utilizing
Value-at-Risk (VaR) forecasts.

We demonstrate that our newly proposed empirical model is able to capture and
forecast the time-varying dynamics in a joint distribution accurately. We revisit
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the oil-stock relationship utilizing the large span of data covering the periods for
which the literature finds a negative relationship, as well as the recent stock market
turmoil. The main finding is that we document decreasing benefits from the usage
of oil as a diversification tool for stocks until the year 2011, which can be attributed
to the changing expectations of investors after the recent market turmoil. After the
year 2011, diversification benefits started to increase slowly and showed promise to
investors who wish to use oil as a hedge for their stock portfolio. Moreover, in an
empirical section, we test the economic significance of the model and demonstrate
that our method yields more accurate quantile forecasts, which are central to risk
management due to the popular VaR measure.

The work is organized as follows. The second section introduces our empirical
model based on a dynamic copula realized GARCH modeling framework in detail.
The third section introduces the data, and the fourth section offers empirical re-
sults documenting the time-varying nature of dependence between oil and stocks
and good out-of-sample performance of models. The fifth section then elaborates
on the economic implications of our modeling strategy, employing quantile fore-
casts, quantifying the risk of an equally weighted portfolio composed of oil and
stocks and, finally, documents the time variation in the benefits of utilizing oil as
a diversification tool for stocks. The last section concludes.

2.2 Dynamic copula realized GARCH modeling framework

Our modeling strategy utilizes high frequency data to capture the dependence
in the margins and recently proposed dynamic copulas to model the dynamic de-
pendence. The final model is thus able to describe the conditional time-varying
joint distribution of oil and stocks, which will be very useful in the economic ap-
plication.

The methodology employed in this work is based on Sklar’s (1959) theorem
extended to conditional distributions by Patton (2006b). Sklar’s extended the-
orem allows us to decompose a conditional joint distribution into marginal dis-
tributions and a copula. Consider the bivariate stochastic process {Xt}Tt=1 with
Xt = (X1t, X2t)

′, which has a conditional joint distribution Ft and conditional
marginal distributions F1t and F2t. Then

Xt|Ft−1 ∼ Ft = Ct (F1t, F2t) , (2.1)

where Ct is the time-varying conditional copula of Xt containing all information
about the dependence between X1t and X2t, and Ft−1 the information set. Due
to Sklar’s theorem, we are thus able to construct a dynamic joint distribution



Ft by linking together any two marginal distributions F1t and F2t with any copula
function providing very flexible approach for modeling joint dynamic distributions.1

2.2.1 Time-varying conditional marginal distribution with realized measures

The first step in building an empirical model based on copulas is to find a proper
model for the marginal distributions. As the most pronounced dependence that
can be found in the returns time series is the one in variance, the vast majority
of the literature utilizes the conventional generalized autoregressive Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) approach of Bollerslev
(1986) in this step.

With the increasing availability of high frequency data, the literature moved
to a different concept of volatility modeling called realized volatility. This very
simple and intuitive approach for computing daily volatility employing the sum
of squared high-frequency returns was formalized by Andersen et al. (2003) and
Barndorff-Nielsen & Shephard (2004). While realized volatility can be measured
simply from the high frequency data, one must specify a correct model to be able
to use this parameter for forecasting. In past years, researchers found ways to
include a realized volatility measure to assist GARCH-type parametric models in
capturing volatility.

As noted previously, the key object of interest in financial econometrics, the con-
ditional variance of returns, hit = var(Xit|Ft−1), is usually modeled by GARCH.
While in a standard GARCH(1,1) model the conditional variance, hit, is dependent
on its past values hit−1 and the values of X2

it−1, Hansen et al. (2012) propose to uti-
lize a realized volatility measure and make hit dependent on the realized variance.
The authors propose a so-called measurement equation that ties the realized mea-
sure to latent volatility. The general framework of realized GARCH(p,q) models is
well connected to the existing literature in Hansen et al. (2012). Here, we restrict
ourselves to the simple log-linear specification of the realized GARCH(1,1). While
it is important to model the conditional time-varying mean E(Xit|Ft−1), we also
include the standard AR model in the final modeling strategy. As we will discuss
later, the autoregressive term of order no larger than two is appropriate for the oil
and stocks data in the study; thus, we restrict ourselves to specifying the AR(2)
with log-linear realized GARCH(1,1) model as in Hansen et al. (2012)

Xit = µi + α1Xit−1 + α2Xit−2 +
√
hitzit, for i = 1, 2 (2.2)

log hit = ωi + βi log hit−1 + γi logRVit−1, (2.3)

1Please note that the information set for the margins and the copula conditional density is
the same.
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logRVit = ψi + φi log hit + τi(zit) + uit, (2.4)

where µi is the constant mean, hit conditional variance, which is latent, RVit
realized volatility measure, uit ∼ N(0, σ2

iu), and τi(zit) = τi1zit + τi2(z2
it − 1) lever-

age function. For the RVit, we employ the high frequency data and compute it
as a sum of squared intraday returns (Andersen et al. 2003; Barndorff-Nielsen &
Shephard 2004). We will provide more detail on how we compute the realized
volatility measure in the empirical section. Hansen et al. (2012) suggests esti-
mating the parameters utilizing a quasi-maximum likelihood estimator (QMLE),
which is very similar to the standard GARCH. While we have realized measures
in the estimation yielding additional measurement error uit, we need to factor-
ize the joint conditional density2 f(Xit, RVit|Ft−1) = f(Xit|Ft−1)f(RVit|Xit,Ft−1)
which results in a sum after logarithmic transform and thus, is readily available for
finding parameters. In our model, we allow the innovations zit to follow skewed-t
distribution of Hansen (1994), having two shape parameters, a skewness parameter
λ ∈ (−1, 1) controlling the degree of asymmetry, and a degree of freedom parameter
ν ∈ (2,∞] controlling the thickness of tails. When λ = 0, the distribution becomes
the standard Student’s t distribution, when ν → ∞, it becomes skewed Normal
distribution, while for ν →∞ and λ = 0, it becomes N(0, 1). Thus, the choice of
the skewed-t distribution gives us flexibility to capture the potential measurement
errors from realized volatility and hence, possible departures from the normality
of residuals.

Thus, after the time-varying dependence in the mean and volatility is modeled,
we are left with residuals

ẑit =
Xit − µ̂i − α̂1Xit−1 − α̂2Xit−2√

ĥit
(2.5)

ẑit|Ft−1 ∼ Fi(0, 1), for i = 1, 2. (2.6)

which have a constant conditional distribution with zero mean and variance one.
Then, the conditional copula of Xt|Ft−1 is equal to the conditional distribution of
Ut|Ft−1:

Ut|Ft−1 ∼ Ct(γ0), (2.7)

with γ being copula parameters, and Ut = [U1t, U2t]
′ conditional probability inte-

gral transform

Uit = Fi (ẑit;φi,0) , for i = 1, 2. (2.8)

2Please note that information set Ft−1 contains the lagged values of RVit as well.



2.2.2 Dynamic copulas: A “GAS” dynamics in parameters

After finding a model for the marginal distribution, we proceed to the copula
functions. An important feature that is required for our work is the specification
that parameters are allowed vary over time. Recently, Hafner & Manner (2012);
Manner & Segers (2011) proposed a stochastic copula model that allows the param-
eters to evolve as a latent time series. Another possibility is offered by ARCH-type
models for volatility (Engle 2002) and related models for copulas (Patton 2006b;
Creal et al. 2013), which allow the parameters to be some function of lagged observ-
ables. An advantage of the second approach is that it avoids the need to “integrate
out” the innovation terms driving the latent time series processes.

For our empirical model, we adopt the Generalized Autoregressive Score (GAS)
model of Creal et al. (2013), which specifies the time-varying copula parameter (δt)
as a function of the lagged copula parameter and a forcing variable that is related
to the standardized score of the copula log-likelihood3. Consider a copula with
time-varying parameters:

Ut|Ft−1 ∼ Ct(δt(γ)). (2.9)

Often, a copula parameter is required to fall within a specific range, e.g., the
correlation for Normal or t copula is required to fall in between values of -1 and 1.
To ensure this, Creal et al. (2013) suggest transforming the copula parameter by an
increasing invertible function4 (e.g., logarithmic, logistic, etc.) to the parameter:

κt = h(δt)⇐⇒ δt = h−1(κt) (2.10)

For a copula with transformed time-varying parameter κt, a GAS(1,1) model is
specified as

κt+1 = w + βκt + αI
−1/2
t st (2.11)

st ≡
∂ log c(ut; δt)

∂δt
(2.12)

It ≡ Et−1[sts
′
t] = I(δt). (2.13)

While this specification for the time-varying parameters is arbitrary, Creal et al.
(2013) motivates it in a way that the model nests a variety of popular approaches

3 Harvey (2013); Harvey & Sucarrat (2014) propose a similar method for modeling time-
varying parameters, which they call a dynamic conditional score model.

4For example, for the Normal and t copula, the transformation is (1 − e−κt)/(1 + e−κt).
Concrete functions for other copulas employed in our work are given in Appendix 2.A, which
introduces copula functions.
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from conditional variance models to trade durations and counts models. Addi-
tionally, the recursion is similar to numerical optimization algorithms such as the
Gauss-Newton algorithm. In comparison to the approach of Patton (2006b), the
GAS specification implies more sensitivity to correlation shocks. Hence, reactions
from returns of an opposite sign in the situation of a positive correlation esti-
mate will be captured. For more details, and empirical comparison of the two
approached, see Section 3.1. in Creal et al. (2013).

Until now, we have focused attention on the specification of the dynamics of
the models. What remains to be specified is the shape of the copula. In our mod-
eling strategy, we will compare several of the most often utilized shapes of copula
functions, while the rest of the model will be fixed. For the dynamic parameter
models, we will employ the rotated Gumbel, Normal and Student’s t functional
forms described briefly in the 2.A. In our empirical application, we also employ
constant copula functions as a benchmark. These are described in the 2.A as well.

2.2.3 Estimation strategy

The final dynamic copula realized GARCH model defines a dynamic parametric
model for the joint distribution. The joint likelihood is

L(θ) ≡
T∑
t=1

log ft(Xt; θ) =
T∑
t=1

log f1t(X1t; θ1) +
T∑
t=1

log f2t(X2t; θ2) (2.14)

+
T∑
t=1

log ct(F1t(X1t; θ1), F2t(X2t; θ2); θc), (2.15)

where θ = (φ′, γ′)′ is vector of all parameters to be estimated, including parame-
ters of the marginal distributions φ and parameters of the copula, γ. The param-
eters are estimated utilizing a two-step estimation procedure, generally known as
multi-stage maximum likelihood (MSML) estimation, first estimating the marginal
distributions and then estimating the copula model conditioning on the estimated
marginal distribution parameters. While this greatly simplifies the estimation, in-
ference on the resulting copula parameter estimates is more difficult than usual
as the estimation error from the marginal distribution must be considered. As
a result, MSMLE is asymptotically less efficient than one-stage MLE; however,
as discussed by Patton (2006a), this loss is small in many cases. Moreover, the
bootstrap methodology can be utilized, as discussed in following sections.

Semiparametric models

One of the appealing alternatives to a fully parametric model is to estimate
univariate distribution non-parametrically, for example, by utilizing the empiri-



cal distribution function. Combination of a nonparametric model for marginal
distribution and parametric model for the copula results in a semiparametric cop-
ula model, which we use for comparison to its fully parametric counterpart. In
our modeling strategy, we concentrate on a full parametric model combining fully
parametric marginal distribution Fi with a copula function, while the theory is
developed for the inference. Still, a nonparametric distribution Fi has great em-
pirical appeal; thus, we utilize it for comparison and rely on bootstrap-based in-
ference for parameter estimates, as discussed later in the text. Forecasts based on
a semiparametric estimation where nonparametric marginal distribution is com-
bined with parametric copula function are not common in economic literature,
thus, it is interesting to compare it in our modeling strategy. For the margins of
the semi-parametric models, we employ the non-parametric empirical distribution
Fi introduced by Genest et al. (1995)5, which consists of modeling the marginal
distributions by the (rescaled) empirical distribution.

F̂i(z) =
1

T + 1

T∑
t=1

1{ẑit ≤ z} (2.16)

In this case, the parameter estimation is conducted by maximizing likelihood

L(γ) ≡
T∑
t=1

log ct(Û1t, Û2t; γ), (2.17)

Again, the inference of parameters is more difficult than usual. We discuss the
inference in the following section.

2.2.4 Inference for parameter estimates

For the statistical inference of parameters, we utilize the bootstrapping method-
ology as suggested by Patton (2006b). More specifically, for constant parametric
copulas, we employ the stationary bootstrap of Politis & Romano (1994), while for
the constant semi-parametric i.i.d. bootstrapping. The use of these bootstrapping
methods is justified by the work of Gonçalves & White (2004); Chen & Fan (2006a)
and Rémillard (2010). The algorithm utilized to obtain the statistical inference for
parametric model (both constant and time-varying) follows these steps:

1: Use a block bootstrap to generate a bootstrap sample of the data of length T.
2: Estimate the model using the same multi-stage approach as applied for the

real data.

5The asymptotic properties of this estimator can be found in Chen & Fan (2006b).
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3: Repeat steps 1-2 S times6.
4: Use the α/2 and 1−α/2 quantiles of the distribution of estimated parameters

to obtain a 1− α confidence interval for these parameters.

For the constant semi-parametric copulas the algorithm follows:

1: Use an i.i.d. bootstrap to generate a bootstrap sample of the estimated stan-
dardized residuals of length T.

2: Transform each time series of bootstrap data using its empirical distribution
function.

3: Estimate the copula model on the transformed data.
4: Repeat steps 1-3 S times.
5: Use the α/2 and 1−α/2 quantiles of the distribution of estimated parameters

to obtain a 1− α confidence interval for these parameters.

When we consider semi-parametric time-varying copulas, we cannot utilize the
iid bootstrap because the true standardized residuals are not jointly iid. Inference
methods for these models are not yet available. However, Patton (2013) suggests
employing the block bootstrap technique (e.g. stationary bootstrap of Politis &
Romano (1994)), stressing the need for formal justification.

2.2.5 Goodness-of-fit and copula selection

A crucial issue in empirical copula applications is related to the goodness-of-fit.
While copula models allow great flexibility, it is crucial to find the model that is
well specified for the data as more harm then help can be done when one relies on a
misspecified model. Genest et al. (2009) make a review on available goodness-of-fit
tests for copulas. Two tests that are widely used for goodness-of-fit tests of copula
models and that we utilize are the standard Kolmogorov-Smirnov (KS) and Cramer
von-Mises (CvM) tests. These approaches work only for constant copula models.
When dealing with time-varying copulas we should modify the testing procedure.
Thus, we utilize the fitted copula model to obtain the Rosenblatt transform of the
data, which is a multivariate version of the probability integral transformation.
In the multivariate version, these tests then measure the distance between the
empirical copula estimated on Rosenblatt’s transformed data denoted by ĈT and
the independence copula denoted by C⊥.

Rosenblatt’s probability integral transform of a copula C is the mapping R :
(0, 1)n → (0, 1)n. To every Ut = (U1t, . . . , Unt) ∈ (0, 1)n, this mapping assigns

6We use S=100 due to the high computational power needed for time-varying t copula and
because larger S in fact does not substantially improve the results (these “testing” results with
S=1000 are available upon request from authors).



another vector R(Ut) = (V1t, . . . , Vnt) with V1t = U1t and for each i ∈ {2, . . . , n},

Vit =
∂i−1C(U1t, . . . , Uit, 1, . . . , 1)

∂u1 · · · ∂ui−1

/
∂i−1C(U1t, . . . , Ui−1,t, 1, . . . , 1)

∂u1 · · · ∂ui−1

(2.18)

For i = 2, Equation (2.18) reduces to V1t = U1t, V2t = ∂C(U1t, U2t)/∂u1 because
the denominator ∂C(U1t, 1)/∂u1 = 1. Rosenblatt’s transformation has the very
convenient property that U is distributed as copula C if and only if R(U) is the
n-dimensional independent copula

C⊥(Vt; θ̂t) =
n∏
i=1

Vit (2.19)

Thus, the Rosenblatt transformation of the original data gives us a vector of i.i.d.
and mutually independent Unif(0, 1) variables, and we can utilize this vector to
compare the empirical copula on the transformed data with the independence cop-
ula. The KS and CvM tests follow in Equations 2.21 and 2.22, respectively.

ĈT (v) ≡ 1

T

T∑
t=1

n∏
i=1

1 {Vit ≤ vit} (2.20)

KSR = max
t

∣∣∣C⊥(Vt; θ̂t)− ĈT (Vt)
∣∣∣ (2.21)

CvMR =
T∑
t=1

{
C⊥(Vt; θ̂t)− ĈT (Vt)

}2

(2.22)

Critical values of the goodness-of-fit tests are obtained with simulations, as in
the Genest et al. (2009) algorithm, as asymptotic distributions are not applicable
in the presence of parameter estimation error. In the case of the full-parametric
model, the simulations involve generation and estimation of the data from both
the model for the margins and for the copula. For the semi-parametric model, the
data are generated and estimated only for the copula model. However, as Patton
(2013) notes, the approach of combining the non-parametric margins with dynamic
copulas does not yet have theoretical support.

Another important issue when working with copulas is the selection of the
best copula from the pool. Several methods and tests have been proposed for
the selection procedure. The methods proposed by Durrleman et al. (2000) are
based on the distance from the empirical copula. The authors show how to choose
among Archimedian copulas and among a finite subset of copulas. Chen & Fan
(2005) propose the use of pseudo-likelihood ratio test for selecting semiparametric
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multivariate copula models.7 A test on conditional predictive ability (CPA) is
proposed by Giacomini & White (2006). This is a robust test that allows one to
accommodate both unconditional and conditional objectives. Recently, Diks et al.
(2010) have proposed a test for comparing the predictive ability of competing
copulas. The test is based on the Kullback-Leibler information criterion (KLIC),
and its statistics is a special case of the unconditional version of Giacomini & White
(2006).

As our main aim is to employ the model for forecasting, out-of-sample perfor-
mance of models will be tested by CPA, which consider the forecast performance
of two competing models conditional on their estimated parameters to be equal
under the null hypothesis

H0 : E[L̂] = 0 (2.23)

HA1 : E[L̂] > 0 and HA2 : E[L̂] < 0, (2.24)

where L̂ = log c1(Û,γ̂1t) − log c2(Û,γ̂2t). This test can be used for both nested
and non-nested models, and we can utilize it for comparison of parametric and
semiparametric models as well. The asymptotic distribution of the test statistic
is N(0, 1), and we compute the asymptotic variance utilizing HAC estimates to
correct for possible serial correlation and heteroskedasticity in the differences in
log-likelihoods.

2.3 The Data description

The data set consists of tick prices of crude oil and S&P 500 futures traded on
the platforms of Chicago Mercantile Exchange (CME)8. More specifically, oil (Light
Crude) is traded on the New York Mercantile Exchange (NYMEX) platform, and
the S&P 500 is traded on the CME in Chicago. We use the most active rolling
contracts from the pit (floor traded) session. Prices of all futures are expressed in
U.S. dollars.

The sample period spans from January 3, 2003 to December 11, 2012, covering
the recent U.S. recession of Dec. 2007 - June 2009. We acknowledge the fact that
the CME introduced the Globex electronic trading platform on Monday, December

7Although some authors use Akaike Information Criterion (AIC) (or Bayesian Information
Criterion (BIC)) for choosing among two copula models, selection based on these indicators may
hold only for the particular sample in consideration (due to their randomness) and not in general.
Thus, proper statistical testing procedures are required [see Chen & Fan (2005)].

8The data were obtained from the Tick Data, Inc.
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Figure 2.1: Normalized prices and annualized realized volatilities of oil and stocks
(S&P 500), over the sample period extending from January 3, 2003 to December
11, 2012.

18, 2006, and begun to offer nearly continuous trading. However, we restrict the
analysis on the intraday 5-minutes returns within the business hours of the New
York Stock Exchange (NYSE) as most of their liquidity of S&P 500 futures comes
from the period when U.S. markets are open. Time synchronization of our data
is achieved in a way that oil prices are paired with the S&P 500 by matching
the identical Greenwich Mean Time (GMT) stamps. We eliminate transactions
executed on Saturdays and Sundays, U.S. federal holidays, December 24 to 26,
and December 31 to January 2 because of the low activity on these days, which
could lead to estimation bias. Hence, in our analysis we work with data from 2,436
trading days.

For our empirical model, we need two time series, namely daily returns and
realized variance to be able to estimate the realized GARCH model in margins.
We consider open-close returns; thus, daily returns are simply obtained as a sum of
logarithmic intraday returns. Realized variance is computed as a sum of squared
5-minute intraday returns

RVt =
M∑
i=1

r2
i , (2.25)

Figure 2.1 plots the development of prices of the oil and stocks together with its
realized volatility. Please note that plot of prices is normalized to make them com-
parable and for the plot of realized volatility, we utilize daily volatility annualized
according to the following convention: 100×

√
250×RVt. Strong time-varying na-

ture of the volatility can be noticed immediately for both oil and stocks. In Table
2.5, we present descriptive statistics of the returns of the data that constitute our
sample. Distributions of the daily returns are showing excess kurtosis. It is inter-
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esting that the volatility of oil is on average more than twice larger in comparison
to the volatility of stocks. In addition, the dynamics of volatilities differ, primarily
in the first part of the period. This, in fact, motivates a need for the flexible model,
which will capture the different dynamics in the marginal distributions for oil and
stocks.

2.4 Empirical Results

Before modeling the dependence structures between oil and stocks, we must
model their conditional marginal distributions first. Utilizing the Bayesian Infor-
mation Criterion (BIC) and considering general ARMA models up to five AR as
well as MA lags, we find an AR(2) model to best capture time-varying dependence
in the mean of S&P 500 stock market returns, while no significant dependence in
the mean was found for oil.

Table 2.1 summarizes the in-sample realized GARCH(1,1) fit for both oil and
stocks represented by the S&P 500 in our study. In addition, the benchmark volatil-
ity model from the GARCH family, namely, GJR model (Glosten et al. 1993), is
used for comparison. All the estimated parameters are significantly different from
zero and are similar to those obtained by Hansen et al. (2012). We can see that real-
ized volatility plays its role in the model as it helps to model volatility significantly.
By observing partial log-likelihood LLr as well as information criteria, we can see
that the realized GARCH brings significant improvement over the GJR GARCH
model in both oil and stocks. This is a crucial result for copulas, as we need to
specify the best possible model in the margins to make sure there is no univariate
dependence left. If a misspecified model is utilized for the marginal distributions,
then the probability integral transforms will not be Unif(0, 1) distributed, and
this will result in copula misspecification.

For the estimated standardized residuals from the realized GARCH(1,1), we
consider both parametric and nonparametric distributions, as noted previously.
The figure in 2.4 plots the histogram of the standardized residuals together with
quantile plots against skewed t distribution. We can see a reasonable fit of skewed
t distribution with the data, although a very small departure from tails can be
observed for the S&P 500 data. This also motivates us to choose to estimate a
full battery of copula models including those combining a nonparametric empiri-
cal distribution for margins and a parametric copula function; although from the
density fits, we can see that the gains will probably not be large.

To study the goodness of fit for the skewed t distribution, we compute the
Kolmogorov-Smirnov (KS) and Cramer von-Mises (CvM) test statistics with p-
values from 1,000 simulations, and we find KS (CvM) p-values of 0.452 (0.577) and



Crude Oil S&P 500 Crude Oil S&P 500

AR(2) AR(2)

c 0.0001 (0.29) 0.0000 (0.21) c 0.0001 (0.29) 0.0000 (0.21)
α1 - - -0.1095 (-5.42) α1 - - -0.1095 (-5.42)
α2 - - -0.0744 (-3.68) α2 - - -0.0744 (-3.68)

realized GARCH(1,1) GJR GARCH(1,1)

ω 0.0626 (6.14) 0.2000 (14.07) κ 0.0143 (2.69) 0.0028 (2.79)
β 0.7622 (46.41) 0.7176 (45.11) φ 0.0270 (2.57) 0.0187 (1.71)
γ 0.2081 (12.59) 0.2413 (19.04) ι 0.0390 (2.61) 0.0883 (5.72)
ξ -0.3173 (-9.26) -0.9018 (-21.84) ψ 0.9363 (72.58) 0.9321 (85.86)
φ 1.0758 (23.36) 1.1130 (40.87) - - - -
τ1 -0.0627 (-7.18) -0.0772 (-8.15) - - - -
τ2 0.1053 (16.62) 0.0999 (16.56) - - - -
ν 13.4633 (4.07) 12.2552 (5.49) ν 12.7026 (4.29) 7.9716 (6.48)
λ -0.0885 (-3.21) -0.1544 (-6.37) - - - -

LLr,x -4558.16 -4167.49 - -
LLr -3189.22 -2473.56 LL -3207.74 -2501.89
AICr 6396.43 4965.11 AIC 6425.49 5013.78
BICr 6448.61 5017.30 BIC 6454.48 5042.77

Table 2.1: Parameter estimates from AR(2) log-linear realized GARCH(1,1) and
benchmark GJR GARCH(1,1), the former with skew-t innovations and the latter
with standard Student’s t. t-statistics are reported in parentheses.

0.254 (0.356) for the oil and S&P 500 standardized residuals, respectively. Thus,
we are not able to reject the null hypothesis that these distributions come from the
skewed t, which provides support for these models of the marginal distribution.
The estimated parameters ν (λ) for the oil and stocks are 13.462 (-0.088) and
12.255 (-0.154), respectively. This allows us to continue with modeling time-varying
dependence.

2.4.1 Time-varying dependence between oil and stocks

By studying simple correlation measures of original returns, we find the linear
correlation and rank correlation for oil and stocks to be 0.29 and 0.224, respectively,
both significantly different from zero. Before specifying a functional form for a
time-varying copula function, we test for the presence of time-varying dependence
utilizing the simple approach based on the ARCH LM test. The test statistics
are computed from the OLS estimate of the covariance matrix, and critical values
are obtained employing i.i.d. bootstrap (for detailed information, consult Patton
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(2013)). Computing the test for the time-varying dependence between oil and
stocks up to p = 10 lags, we find the joint significance of all coefficients. Thus, we
can conclude that there is evidence against constant conditional correlation for oil
and stocks.

Parametric Semiparametric

Constant copula
Est. Param logL Est. Param logL

Normal ρ 0.2060 (0.0290) 52.56 0.2053 (0.0231) 52.43

Clayton κ 0.2392 (0.0353) 56.90 0.2738 (0.0322) 58.69

RGumb κ 1.1403 (0.0213) 66.40 1.1588 (0.0176) 69.13

Student’s t ρ 0.2051 (0.0261) 0.2183 (0.0214)
ν−1 0.1376 (0.0244) 79.74 0.1660 (0.0252) 81.78

Sym. Joe-Clayton τL 0.0941 (0.0268) 0.1209 (0.0254)
τU 0.0208 (0.0226) 66.14 0.0242 (0.0193) 67.38

“GAS” time-varying copula
Est. Param logL Est. Param logL

RGumbGAS ω̂ -0.0074 (0.2071) -0.0097 (0.4219)
α̂ 0.1038 (0.3131) 0.1184 (0.3575)

β̂ 0.9972 (0.0122) 135.06 0.9960 (0.0447) 139.15

NGAS ω̂ 0.0017 (0.0037) 0.0019 (0.0041)
α̂ 0.0474 (0.0109) 0.0553 (0.0124)

β̂ 0.9952 (0.0070) 152.47 0.9947 (0.0075) 153.59

tGAS ω̂ 0.0016 (0.0040) 0.0018 (0.0073)
α̂ 0.0493 (0.0128) 0.0579 (0.0193)

β̂ 0.9957 (0.0076) 0.9952 (0.0205)
ν̂−1 0.0775 (0.0259) 162.82 0.0940 (0.0315) 165.39

Table 2.2: Constant and time-varying copula model parameter estimates with
AR(2) realized GARCH(1,1) model for both fully parametric and semiparametric
cases. Bootstrapped standard errors are reported in parentheses.

Motivated by the possible time-varying dependence in oil and stocks, we can
specify the copula functions. We estimate three time-varying copula functions,
namely, Normal, rotated Gumbel and Student’s t using the GAS framework de-
scribed in the methodology part. As a benchmark, we also estimate the constant



copulas to be able to compare the time-varying models against the constant ones.
While semiparametric approach is empirically interesting and not often used in
literature, we employ it for all the estimated models as well.

Table 2.2 presents the fit from all estimated models. Starting with constant
copulas, all the parameters are significantly different from zero, and Student’s t
copula appears to describe the oil and stock pair best according to highest log-
likelihood. Semiparametric specifications combining nonparametric distribution in
margins with parametric copula function bring further improvement in the log-
likelihoods. Importantly, time-varying specifications bring large improvement in
log-likelihoods and confirm strong time-varying dependence between oil and stocks.

To study the goodness of fit for all the specified models, we utilize9 Kolmogorov-
Smirnov (KS) and Cramer von-Mises (CvM) test statistics with p-values obtained
from 1,000 simulations. The methodology is described in detail in previous sections.
None of the fully parametric models is rejected, while most of the semiparamet-
ric models are rejected with exception of constant Student’s t, Sym. Joe-Clayton
and time-varying Student’s t. This result suggests that fully parametric models
with realized GARCH and parametric distribution in margins are all well specified.
Thus, the realized GARCH appears to model very well all the dependence in mar-
gins, which is crucial for the good specification of the model in the copula-based
approach. Semiparametric models are interestingly rejected and are not specified
well, except for a few mentioned cases. This is in line with results of Patton (2013),
who finds rejections in semiparametric specifications in the U.S. stock indices data.
Still, both tests strongly support the realized GARCH time-varying GAS copulas
for the oil and stock pair.

2.4.2 Out-of-sample comparison of the proposed models

While it is important to have a well-specified model that describes the data,
most of the times we are interested in utilizing the model in predictions. Thus,
we conduct an out-of-sample evaluation of the proposed models. For this, the
sample is divided into two periods. The first, the in-sample period, is used to
obtain parameter estimates from all models and spans from January 3, 2003 to
July 6, 2010. The second, the out-of-sample period, is then used for evaluation of
forecasts. Due to highly computationally intensive estimations of the models, we
restrict ourselves to a fixed window evaluation, where the models are estimated
only once, and all the forecasts are performed using the recovered parameters from
this fixed in-sample period. This makes it even harder for the models to perform

9The results of the in-sample goodness of fit tests are available on request from the authors.
We do not include them in the text to save space.
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Figure 2.2: Left: linear correlation plotted against realized correlation. Right:
tail dependence from time-varying Student’s t-copula. The vertical dashed line
separates the in-sample from the out-of-sample (forecasted) part.

well in the highly dynamic data. The procedure for the out-of-sample estimations
is given in Algorithm 1, 2.C.

For the out-of-sample forecast evaluation, we employ the conditional predictive
ability (CPA) test of Giacomini & White (2006). Table 2.3 presents the results from
this test. The time-varying copula models significantly outperform the constant
copula models in the out-of-sample evaluation. This holds both for the parametric
and semiparametric cases. Thus, time-varying copulas have much stronger sup-
port for forecasting the dynamic distribution of oil and stocks. When comparing
the different time-varying copula functions, the test is not so conclusive. While
Student’s t statistically outperform rotated Gumbel, the forecasts from Student’s
t can not be statistically distinguished from the normal copula. When looking at
the out-of-sample log-likelihoods, Student’s t copula is the most preferred. Finally,
the bottom row shows that forecasts from parametric models and semiparametric
ones cannot be statistically distinguished.

Thus, we find strong statistical support that the realized GARCH time-varying
copula methodology well describes the dynamic joint distribution of the oil and
stocks in both the in-sample and out-of-sample.

2.4.3 Time-varying correlations and tails

Having correctly specified the empirical model capturing the dynamic joint
distribution between oil and stocks, we can proceed to studying the pair. Figure



Parametric margins

Normal Clayton R. Gum. Stud. t SJC RGumGAS NGAS tGAS

Normal
Clayton 0.36
R. Gum. 2.00∗∗ 4.37∗∗∗

Stud. t 1.78∗ 2.09∗∗ -0.15
SJC 1.91∗ 3.80∗∗∗ -1.94 -0.68
RGumGAS 2.75∗∗∗ 3.09∗∗∗ 2.34∗∗∗ 1.99∗∗ 2.53∗∗∗

NGAS 2.49∗∗∗ 2.31∗∗ 1.65∗ 1.48 1.94∗ 0.33
tGAS 3.94∗∗∗ 4.02∗∗∗ 3.42∗∗∗ 3.27∗∗∗ 3.73∗∗∗ 2.37∗∗∗ 1.09

LLOOS 33.14 34.62 43.74 43.17 40.74 60.10 62.65 69.79
Rank 8.00 7.00 4.00 5.00 6.00 3.00 2.00 1.00

Nonparametric margins

Normal Clayton R. Gum. Stud. t SJC RGumGAS NGAS tGAS

Normal
Clayton 1.12
R. Gum. 2.23∗∗ 3.88∗∗∗

Stud. t 2.17∗∗ 1.93∗ 0.43
SJC 2.39∗∗∗ 3.77∗∗∗ -1.18 -0.74
RGumGAS 3.24∗∗∗ 3.34∗∗∗ 2.90∗∗∗ 2.35∗∗∗ 2.95∗∗∗

NGAS 2.64∗∗∗ 2.32∗∗∗ 1.90∗ 1.57 2.03∗∗ 0.13
tGAS 4.05∗∗∗ 3.92∗∗∗ 3.55∗∗∗ 3.20∗∗∗ 3.69∗∗∗ 1.97∗∗ 1.06

LLOOS 28.74 32.73 38.51 39.96 37.42 59.11 60.04 66.49
Rank 8.00 7.00 5.00 4.00 6.00 3.00 2.00 1.00

Parametric vs. nonparametric margins

Normal Clayton R. Gum. Stud t SJC RGumGAS NGAS tGAS

t-stat 0.85 0.77 0.90 0.83 0.82 0.73 0.78 0.83
∗, ∗∗ and ∗ ∗ ∗ denote significantly better performance at the 90%, 95% and 99% significance levels, respectively.

Table 2.3: The t-statistics from the out-of-sample pair-wise comparisons of log-
likelihood values for five constant copula models and three time-varying copula
models, with fully parametric or semiparametric marginal distribution models.
Positive (negative) values indicate better performance of copula in the row (col-
umn) to a copula in the column (row). LLOOS is the out-of-sample log likelihood,
and “Rank” simply ranks all the models with respect to the log likelihood. In
the bottom row, we compare the performance of the same copula with different
margins i.e. parametric vs. nonparametric ones. The out-of-sample period is from
July 6, 2010 to December 11, 2012 and includes 609 observations.
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2.2 plots the time-varying correlations implied by our model with normal and
Student’s t GAS copulas. In the first period, correlations are obtained from an
in-sample fit of our model. In the second period, the model is used to forecast the
correlations. These dynamics are very close to the one reported by a recent study
of Wen et al. (2012), although they are more accurate due to the help of realized
measures utilized in our modeling strategy and GAS structure as well. To highlight
this point, we compare the in-sample and forecasted correlations from the model to
the actual correlation measured with the help of high-frequency data. The realized
correlation between oil and stocks for a given day t is measured using k = 1, . . . ,M
five-minute returns non-parametrically using realized volatility (Andersen et al.
2003; Barndorff-Nielsen & Shephard 2004) as

RCorrt =

∑M
k=1 r(1)k,tr(2)k,t√∑M

k=1 r
2
(1)k,t

√∑M
i=1 r

2
(2)k,t

,

and is depicted by the black dotted line in the Figure 2.2. We note that realized
correlations provide noisy estimates, and we can clearly see how correlations im-
plied by our model fit the actual correlations, as they also capture abrupt change
in the year 2008. The out-of-sample forecast of the correlations lags the actual
correlations and is slightly downward biased. The reason for this departure is that
we use a static forecast utilizing parameters estimated on the in-sample data set
as explained earlier in the text. Rolling sample forecasts would recover the actual
correlations with much better precision. Hence, the proposed approach can capture
the time-varying dynamics very well and is also able to forecast the dependence.

As we can see from the Figure 2.2, the dependence between oil and stocks
varies strongly over time. Wen et al. (2012) suggests that the correlations changed
dramatically during the 2008 crisis, but employing a larger data span, we suspect
the correlation to have more regimes. To find the presence of structural breaks
statistically, we employ the supF test (Hansen 1992; Andrews 1993), with p-values
computed based on Hansen (1997) and apply it to the correlations.10 Employing
this approach, we confirm two endogenous changes in the dependence, with March
14, 2006 and October 9, 2008 dividing the data into three distinct periods.

10To conserve space, we do not report the test statistics for the detection of structural breaks.
The results are available upon request. The test is used to evaluate the null hypothesis of no
structural change, utilizing an extension of the F test statistics. In the first step, the error sum
of squares is computed together with the restricted sum of the squares for every potential change
point utilizing least squares fits. Second, F test statistics are computed for every potential change
point, and third, a supremum is found from all the F test statistics constituting the structural
break. The p-values are computed based on Hansen (1997).



During the first period, the correlation was decreasing from zero to negative
values. An economic reasoning for this finding comes from the fact that the re-
sponse of the stock markets to oil price shocks differs according to the origin of
such shocks (Hamilton 1996). Specifically, a supply-side shock negatively impacts
stock market returns and leads to negative correlation in the oil-stocks pair. An
increase in oil prices – a supply-side shock – might result from an abrupt reduction
of output by major producers (e.g., OPEC countries) or due to a major political
event, such as the 1990-1991 Gulf War.

During the second period, beginning March 14, 2006, the correlation increased
to positive values, while after the turmoil of October 2008, identified by the test
very precisely with the date of October 9, 2008, the correlation became significantly
positive, suggesting that diversification opportunities are disappearing. In the
following years, correlations remained high, while in the last years of the sample,
they began to decrease but remained in positive territory. This may be attributed
to the changing expectations of market participants. After the financial crisis,
the oil market became very strongly financialized (Büyükşahin & Robe 2014), and
moves in stock prices also appeared to carry over to oil prices as well. After 2008,
stock market participants were much more uncertain about future behavior, which
translated into high volatility during this period.

In addition, the second part of the Figure 2.2 plots the dynamic tail depen-
dence from the Student’s t GAS model. In the first period, we document tail in-
dependence. The 2008 turmoil brought a large increase in tail dependence, which
remained highly dynamic. While one of the additional advantages time-varying
copula functions bring is allowing for asymmetric tails; in the final empirical model,
we also study tail asymmetry. Interestingly, we find no evidence for asymmetry in
the tails.

Our results have serious implications for investors as they suggest that diversi-
fication possibilities may be even larger than commonly perceived from the mere
dynamics of the correlations. In addition, correlations as well as tail dependence
have been rapidly changing over the past few years. We will utilize the results
and study the possible economic benefits of our analysis, with the main focus on
translating the dynamic correlation and tail dependence to a proper quantification
of the diversification benefits.

2.5 Economic implications: Time-varying diversification benefits and
VaR

Statistically significant improvement in the fit, or even out-of-sample forecasts
does not necessarily need to translate into economic benefits. Thus, we test the
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proposed methodology in economic implications. First, we quantify the risk of an
equally weighted portfolio composed from oil and stocks, and second, we study the
benefits from diversification to see how the strongly varying correlation affects the
diversification benefits.

2.5.1 Quantile forecasts

Quantile forecasts are central to risk management decisions due to a widespread
Value-at-Risk (VaR) measurement. VaR is defined as the maximum expected loss
that may be incurred by a portfolio over some horizon with a given probability.
Let qαt denote a α quantile of a continuous and increasing distribution. VaR11 of a
given portfolio at time t is then simply

qαt ≡ F−1
t (α), for α ∈ (0, 1). (2.26)

Thus, the choice of the distribution is crucial to the VaR calculation. For ex-
ample, assuming normal distribution may lead to underestimation of the VaR.
Our objective is to estimate one-day-ahead12 VaR of an equally weighted portfolio
composed from oil and stock returns Yt = 0.5X1t + 0.5X2t, which have conditional
time-varying joint distribution Ft. In the previous analysis, we found that the
realized GARCH model with time-varying GAS copulas well fits and forecasts the
data; thus, we utilize it in VaR forecasts to see if it also correctly forecasts the
joint distribution. As there is no analytical formula that can be utilized, the fu-
ture conditional joint distribution is simulated from the estimated models. Once
we obtain the future distribution of the portfolio, the VaR is computed from the
corresponding quantile.

While quantile forecasts can be readily evaluated by comparing their actual
(estimated) coverage Ĉα = 1/n

∑T
n=1 1(yt,t+1 < q̂αt,t+1), against their nominal cov-

erage rate, Cα = E[1(yt,t+1 < qαt,t+1)], this approach is unconditional and does not
capture the possible dependence in the coverage rates. The number of approaches
has been proposed for testing the appropriateness of quantiles conditionally; for

11VaR is typically a negative number, but in literature it is common to report it as positive
value. In my dissertation I do not follow this sign convention and report all downside risks in
negative numbers.

12It is possible to estimate h-step-ahead forecasts as well, but these are interesting when a
rolling scheme is utilized for forecasting. As explained previously, due to the computational
burden of the estimation methodology, we employ static forecasts. In addition, h-step ahead
forecast requires simulation of the conditional distribution from the model; hence, computational
intensity would increase with the horizon employed. The procedure for one-step-ahead VaR is
given in Algorithm 2, 2.C.



Table 2.4: Out-of-sample VaR evaluation for GJR GARCH and realized GARCH
models in margins. Empirical quantile Ĉα, estimated Giacomini and Komunjer
(2005) L̂, logit DQ statistics and its 1000× simulated p-val are reported. L̂ is
moreover tested with Diebold-Mariano statistics with the Newey-West estimator
for variance. All models are compared to tGAS with realized GARCH in margins,
while models with significantly less accurate forecasts at 95% level are reported in
bold.

Parametric Semiparametric

0.01 0.05 0.1 0.9 0.95 0.99 0.01 0.05 0.1 0.9 0.95 0.99

G
J
R

G
A

R
C

H

Normal

Ĉα 0.015 0.069 0.110 0.893 0.946 0.995 0.015 0.071 0.110 0.893 0.946 0.993

L̂ 0.025 0.083 0.132 0.108 0.062 0.015 0.024 0.082 0.131 0.108 0.061 0.015
DQ 8.392 8.031 4.323 3.740 8.755 3.572 8.392 8.468 3.126 7.352 4.962 1.674
p-val 0.211 0.236 0.633 0.712 0.188 0.734 0.211 0.206 0.793 0.290 0.549 0.947

RGumbGAS

Ĉα 0.008 0.043 0.090 0.901 0.957 0.998 0.008 0.039 0.087 0.905 0.959 0.998

L̂ 0.024 0.082 0.132 0.107 0.061 0.016 0.024 0.082 0.132 0.107 0.061 0.016
DQ 5.779 6.305 3.911 10.334 5.496 6.494 5.779 6.831 3.260 9.267 6.232 6.494
p-val 0.448 0.390 0.689 0.111 0.482 0.370 0.448 0.337 0.776 0.159 0.398 0.370

NGAS

Ĉα 0.013 0.043 0.090 0.911 0.967 0.998 0.010 0.041 0.087 0.913 0.970 0.998

L̂ 0.024 0.083 0.133 0.106 0.061 0.016 0.024 0.083 0.133 0.107 0.062 0.017
DQ 4.486 4.284 3.869 7.479 9.155 6.494 4.838 4.667 5.314 10.466 13.575 6.494
p-val 0.611 0.638 0.694 0.279 0.165 0.370 0.565 0.587 0.504 0.106 0.035 0.370

tGAS

Ĉα 0.010 0.046 0.085 0.908 0.966 0.998 0.011 0.044 0.089 0.905 0.969 0.998

L̂ 0.024 0.082 0.133 0.107 0.061 0.017 0.024 0.082 0.133 0.107 0.062 0.017
DQ 4.838 3.072 3.610 8.370 9.413 6.494 9.276 5.442 3.167 11.390 11.982 6.494
p-val 0.565 0.800 0.729 0.212 0.152 0.370 0.159 0.488 0.788 0.077 0.062 0.370

re
a
li
z
e
d

G
A

R
C

H

Normal

Ĉα 0.023 0.082 0.130 0.877 0.931 0.987 0.021 0.085 0.126 0.878 0.931 0.985

L̂ 0.026 0.083 0.132 0.107 0.062 0.015 0.025 0.083 0.132 0.107 0.062 0.015
DQ 11.782 13.015 7.838 8.558 10.076 3.421 10.578 14.582 8.282 8.101 10.076 4.249
p-val 0.067 0.043 0.250 0.200 0.121 0.755 0.102 0.024 0.218 0.231 0.121 0.643

RGumbGAS

Ĉα 0.016 0.064 0.117 0.890 0.934 0.990 0.016 0.062 0.112 0.890 0.938 0.990

L̂ 0.025 0.082 0.131 0.106 0.060 0.015 0.024 0.081 0.131 0.106 0.060 0.015
DQ 5.654 4.939 5.976 12.658 9.639 3.969 5.654 3.555 5.374 12.658 5.306 3.969
p-val 0.463 0.552 0.426 0.049 0.141 0.681 0.463 0.737 0.497 0.049 0.505 0.681

NGAS

Ĉα 0.018 0.062 0.115 0.893 0.944 0.990 0.018 0.061 0.115 0.895 0.947 0.992

L̂ 0.025 0.081 0.131 0.105 0.059 0.015 0.025 0.081 0.131 0.106 0.059 0.015
DQ 6.695 2.735 5.886 14.911 5.558 3.969 6.695 2.640 5.623 15.042 4.470 0.617
p-val 0.350 0.841 0.436 0.021 0.474 0.681 0.350 0.853 0.467 0.020 0.613 0.996

tGAS

Ĉα 0.016 0.066 0.113 0.893 0.946 0.993 0.015 0.061 0.112 0.895 0.949 0.997

L̂ 0.025 0.081 0.131 0.106 0.060 0.015 0.024 0.081 0.131 0.105 0.059 0.015
DQ 5.654 3.298 3.670 14.911 4.723 0.450 4.906 2.336 3.343 14.616 4.060 3.582
p-val 0.463 0.771 0.721 0.021 0.580 0.998 0.556 0.886 0.765 0.023 0.669 0.733
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the best discussion, see Berkowitz et al. (2011). In our out-of-sample VaR testing,
we employ an approach originally proposed by Engle & Manganelli (2004), who
use the n-th order autoregression

It = ω +
n∑
k=1

β1kIt−k +
n∑
k=1

β2kq
α
t−k+1 + ut, (2.27)

where It+1 is 1 if yt+1 < qαt , and zero otherwise. While the hit sequence It is a
binary sequence, ut is assumed to follow a logistic distribution, and we can estimate
it as a simple logit model and test whether Pr(It = 1) = qαt . To obtain the p-
values, we rely on simulations as suggested by Berkowitz et al. (2011), and we refer
to this test as a DQ test in the results.

The main motivation of the DQ test is to determine whether the conditional
quantiles are correctly dynamically specified; hence, it evaluates the absolute per-
formance of the various models. To assess the relative performance of the models,
we evaluate the accuracy of the VaR forecasts statistically by defining the expected
loss of the VaR forecast made by a forecaster m as

Lα,m = E
[(
α− 1

{
yt,t+1 < qα,mt,t+1

}) (
yt,t+1 − qα,mt,t+1

)]
, (2.28)

which was proposed by Giacomini & Komunjer (2005). The tick loss function
penalizes quantile violations more heavily, and the penalization increases with the
magnitude of the violation. As argued by Giacomini & Komunjer (2005), the tick
loss is a natural loss function when evaluating conditional quantile forecasts. To
compare the forecast accuracy of the two models, we test the null hypothesis that
the expected losses for the models are equal, H0 : d = Lα,1 − Lα,2 = 0, against
a general alternative. The differences can be tested using Diebold & Mariano

(2002) test statistics, S = d/

√
L̂RV /T , where d is the unconditional average of

loss difference d, and L̂RV a consistent estimate of the long-run variance of
√
Td.

Under the null of equal predictive accuracy, S ∼ N(0, 1)
Table 3.10 reports the out-of-sample VaR evaluation of all models. As standard

normal distribution is the most common choice for VaR computations, we also
report the results for the constant normal copula. In addition, we benchmark
all the models to versions with the GJR GARCH, which does not employ high
frequency data. We can see that all the time-varying models are well specified,
and the conditional quantile forecasts from them are not rejected by the DQ test.
This holds for both the GJR GARCH as well as the realized GARCH in margins.
With the constant copula model, quantile forecasts are rejected primarily for the



lower quantiles, and according to the empirical conditional rates, we can see that
it underestimates the risk.

For statistical testing, we employ time-varying Student’s t as a benchmark fore-
caster and test all the other models against it. When looking at the loss functions
L̂α,m, we can see that the constant copula model is usually rejected against the
time-varying Student’s t. This is also the case for other two time-varying specifica-
tions, and so, the realized GARCH time-varying Student’s t copula model appears
to have statistically the most accurate quantile forecasts. Interestingly, when look-
ing at the results from semiparametric models, we see fewer rejections, and overall,
these models appear to provide few more accurate quantile forecasts. The results
remain almost the same when the model is benchmarked to the GJR GARCH spec-
ifications. The GJR GARCH overestimates the VaR at all quantiles, while the use
of high frequency data help at the right tail of the distribution, where the realized
GARCH models outperform the GJR GARCH models. While one would expect
high frequency data to improve the forecasts, we note that this may be a feature of
the static nature of the forecasts. Even in a static environment, a high frequency
measure statistically outperforms the benchmark, and while we are evaluating the
VaR forecasts, this result has direct economic implications for the improvement of
dynamic hedging.

2.5.2 Time varying diversification benefits

In case the dependence of the assets is strongly changing over time, it needs
to translate into the changing of diversification benefits as well. While mean de-
pendence is employed in most of the studies to assess the diversification benefits,
independence in tails may translate into higher than anticipated benefits. In case
the empirical distribution departs from normality, it is important to also account
for this departure when calculating diversification benefits. In the previous section,
we have observed that the empirical model we have built captures the quantiles
of the return distribution well and is correctly specified. The correct choice of the
model for quantiles is also important for identification of diversification benefits,
which we will utilize here.

In this respect, we provide an important insight, as literature finds mixed re-
sults for oil – stocks relationship depending on whether the increase in oil prices
is driven by supply or demand shocks, or whether we are studying relationship
to oil importing or exporting country. Fundamentally, shocks in oil prices affect
the stock markets through several mechanisms. The literature on the negative
association between oil prices and stock market suggest unidirectional causality
from oil to stocks. At the micro level, an increase in oil prices will increase the
cost of production of the firms using oil as the main production factor, translating
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to lower earnings, hence stock prices. At the macro level, increase in oil prices
may cause pressures on inflation that force central banks to increase interest rates,
making bond markets more attractive to investors. On the other hand, increase in
oil prices may also cause increase in stock prices through income and wealth effect
channels for oil exporting country. In case the increased government revenues are
transferred back to the economy, it will result in increase in economic activity and
improve stock market performance.

The economic reasons for both negative and positive relationship between stock
and oil prices only underline the importance of proper quantification of the diversi-
fication benefits, which may be strongly dynamic. Here, we utilize the results form
previous sections to correctly quantify the dynamics of diversification benefits, as
we found the correlation to strongly vary over time. Unlike VaR, the expected
shortfall satisfies the sub-additivity property and is a coherent measure of risk.
Motivated by these properties, Christoffersen et al. (2012) propose a measure cap-
turing the dynamics in diversification benefits based on expected shortfall. The
conditional diversification benefit (CDB) for a given probability level α is defined
by

CDBα
t =

ES
α

t − ESαt
ES

α

t − ESαt
, (2.29)

where ESαt is the expected shortfall of the portfolio at hand,

ESαt ≡ E[Yt|Ft−1, Yt ≤ F−1
t (α)], for α ∈ (0, 1), (2.30)

ES
α

t is the upper bound of the portfolio, the expected shortfall being the weighted
average of the asset’s individual expected shortfalls, and ESαt the lower bound
on the expected shortfall being the inverse cumulative distribution function for
the portfolio. In other words, this lower bound corresponds to the case where
the portfolio never loses more than its α distribution quantile. The measure is
designed to stay within [0, 1] interval and is increasing in the level of diversification
benefits. When the conditional diversification benefit (CDB) is equal to zero, there
are literarily no benefits from diversification; when it equals one, the benefits from
diversification are the highest possible.

Figure 2.3 plots the conditional diversification benefits for the oil and stocks
portfolio implied by the two best performing models in the VaR evaluation for
α = 0.05. The correct dynamic specification of the quantiles from the empirical
models is crucial for the CDB, as it mainly captures the potential diversification
benefits from tail independence. Hence, to obtain a precise CDB, one needs to first
find a model that captures the dynamics in the quantiles correctly.
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Figure 2.3: Conditional diversification benefits, CDB0.05
t utilizing constant normal,

time-varying normal, and Student’s t copulas. The dashed line is the constant level
of diversification benefits, and in grey, its 90% confidence band.

Similarly to the VaR case, as there is no closed form to our empirical model,
we need to rely on the simulations for computing the CDB. Encouraged by the
previous results, we compute the CDB for the best performing models with time-
varying normal and student’s t copulas. As a benchmark, we include the model
with a constant copula. Moreover, we report 90% bootstrapped confidence bands
computed around a constant level of diversification benefits. Assuming the returns
data are independently distributed over time with the same unconditional correla-
tion as the oil and stocks pair, the bootstrap confidence level can be conveniently
computed with simulations. We use 10,000 simulations and report the mean value
together with the distribution of the constant conditional benefits.

From the Figure 2.3, we can see how greatly the diversification benefits vary
over time. Corresponding to the correlations, there are also several identifiable
periods where the benefits from diversification were significantly different. Thus,
we conduct the same endogeneity test to find whether there is a structural break in
the CDS, and the result is that the test identified exactly the same dates as using
the correlation. In addition, January 31, 2011 was identified as another structural
break.

While in the first period the benefits from diversification were relatively high,
in the second period between 2006 and 2008, they decreased corresponding to
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increasing correlation. In the several years after the 2008 crisis, benefits from
diversification between oil and stocks were decreasing rapidly, while we can see
some rebound in the last few years.

2.6 Conclusions

This work revisits the oil and stocks dependence with the aim of studying the
opportunities of these two assets in portfolio management. We propose utilizing
the high frequency data in the copula models by choosing to model the marginal
dependence with the realized GARCH of Hansen et al. (2012). Based on the
recently proposed generalized autoregressive score copula functions (Creal et al.
2013), we build a new empirical model for oil and stocks, the realized GARCH
time-varying GAS copula.

The modeling strategy is able to capture the time-varying conditional distribu-
tion of the oil stocks pair accurately, including the dynamics in the correlation and
tails. This also translates into accurate quantile forecasts from the model, which
are central to risk management, as they represent value-at-risk. Utilizing the ten
years of the data covering several different periods, we study the time-varying cor-
relations, and we find two main endogenous breaks in the dependence structure.
Most important, we translate the results into the conditional diversification ben-
efits measure recently proposed by Christoffersen et al. (2012). The main result
is that the possible benefits from using oil as a diversification tool for stocks have
been decreasing rapidly over time, while in the last year of the sample, it displayed
some rebound. These results have important implications for the risk industry and
portfolio management as commodities have recently become an attractive oppor-
tunity for risk diversification in portfolios. According to our results, the benefits
may not be as high as in the first half of the sample.

In conclusion, during the period under research, oil and stocks could be used
in a well-diversified portfolio less often than common perception would imply. We
find substantial evidence of dynamics in tail dependence, which translates into
dynamically decreasing diversification benefits from employing oil as a hedging
tool for stocks. The empirical results have important implications for portfolio
management, which should be explored in the future. It may be useful to think
about the improvement in dynamic hedging strategies, which will account for our
empirical findings. An interesting venue of research is the inclusion of a threshold
or multiple component dependences in the models.
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2.A Copula functions

2.A.1 Normal copula

The Normal copula does not have a simple closed form. For the bivariate case
and |ρ| < 1, we can approximate it by the double integral:

CN
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds (2.31)

− 1 < ρ < 1

where Φ−1 is the inverse of standard normal distribution (c.d.f ). The correlation is
modeled by the transformed variable ρt = (1− e−κt)(1 + e−κt)−1, which guarantees
that ρt will remain in (-1,1). For ρ = 0, we obtain the independence copula, and
for ρ = 1, the comonotonicity copula. For ρ = −1 the countermonotonicity copula
is obtained. We note that Normal copula has no tail dependence for ρ < 1.

2.A.2 Student’s t copula

The bivariate Student’s t copula is defined by

Ct
η,ρ(u, v) =

∫ t−1
η (u)

−∞

∫ t−1
η (v)

−∞

1

2π
√

1− ρ2

(
1 +

r2 − 2ρrs+ s2

η(1− ρ2)

)− η+2
2

drds (2.32)

where ρ ∈ (−1, 1), and 0 < η. The t−1
η is the inverse of t distribution with η

degrees of freedom. The correlation parameter of the t copula undergoes the same
transformation as in the case of the Normal to guarantee ρt ∈ (−1, 1). For the time
varying t copula, we allow only the correlation to vary through time, the degrees
of freedom η remain constant.

In contrast to the Normal copula, provided that ρ > −1, the t copula has
symmetric tail dependence given by

λL = λU = 2tη+1

(
−

√
(η + 1)(1− ρ)

1 + ρ

)
(2.33)

We utilize the time-varying dynamics of the correlation ρt for the time-varying tail
dependence λt.

2.A.3 Clayton copula

The bivariate Clayton copula is defined as

CCl
θ (u, v) = (u−θ + v−θ − 1)

−1
θ , 0 < θ <∞ (2.34)

In the limit as θ → 0, we approach the independence copula, and as θ → ∞, we
approach the two-dimensional comonotonicity copula.



2.A.4 (Rotated) Gumbel copula

The Gumbel copula is defined by

CGu
δ (u, v) = exp{−((− log u)δ + (− log v)δ)1/δ}, 1 ≤ δ <∞ (2.35)

The Gumbel copula parameter is required to be greater than one, and the trans-
formation δt = 1+exp(κt) guarantees this. For δ = 1. The Gumbel copula reduces
to the fundamental independence copula:

CGu
δ (u, v) = exp{−((− log u)1 + (− log v)1)1/1}

= exp{log u+ log v}
= exp{log(uv)} = uv

The rotated Gumbel copula has the same functional form as the Gumbel copula
and is obtained by replacing u and v by 1-u and 1-v, respectively.

2.A.5 Symmetrized Joe-Clayton Copula

The SJC copula is obtained from the linear combination of the Joe-Clayton
copula (CJC).

CSJC(u, v|τU , τL) = 0.5 · (CJC(u, v|τU , τL) +CJC(1− u, 1− v|τL, τU) + u+ v − 1)

where

CJC(u, v|τU , τL) =1− (1− {[1− (1− u)ψ]−γ + [1− (1− v)ψ]−γ − 1}−1/γ)1/ψ

(2.36)

ψ =1/ log2(2− τU)

γ =− 1/ log2(τL)

τU ∈(0, 1), τL ∈ (0, 1)

This copula has two parameters, τU and τL, representing the upper and lower tail
dependence, respectively. For more details on this copula, see Patton (2006b).
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2.B Figures and Tables
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Figure 2.4: First row shows fitted skew-t density and the histogram of standardized
residuals for Crude Oil and the S&P 500. In the second row, QQ plot is shown.

Returns Realized Volatility

Crude Oil S&P 500 Crude Oil S&P 500

Mean 0.000 0.000 0.016 0.007
Std dev 0.017 0.010 0.007 0.006
Skewness -0.083 -0.352 2.395 3.556
Ex. Kurtosis 3.924 10.940 8.049 19.944
Minimum -0.108 -0.082 0.005 0.001
Maximum 0.123 0.073 0.064 0.076

Table 2.5: Descriptive Statistics for daily oil and stock (S&P 500) returns and
realized volatilities (

√
RVt) over the sample period extending from January 3, 2003

until December 11, 2012.

2.C Algorithms

The forecasting algorithm follows the work from Patton (2013). We do several
adjustments to fit the specifics of our model.



Algorithm 1 Out-of-sample estimates

1: T ← length(data)
2: R← floor(0.75 ∗ T ) # Arbitrary choosing 75% length of the series for

in-sample (IS) data.
3: Estimate conditional mean models (ARMA) for the IS data and get 0 mean

residuals
4: Estimate Realized GARCH parameters on standardized residuals from ARMA

and from realized volatility using the in sample data
5: Get standardized residuals from Realized GARCH
6: Fit skewed-t distribution to previous step data
7: Get standard uniform data by applying estimated skewed-t distribution (or

empirical) to data in line 5
8: Estimate copula parameters for in-sample using the data in line 7
9: µ̂OOS ← Forecast the mean for out-of-sample (OOS) using the IS estimated

parameters in line 3
10: residuals OOS← returns− µ̂OOS # Get residuals from OOS data (and

standardize)
11: Forecast the volatility one-step-ahead using Realized GARCH parameters es-

timated in line 4
12: Get standardized residuals for OOS using results in lines 10 and 11
13: Get forecast of OOS uniform data by applying skewed-t (or empirical) distri-

bution with parameters obtained in line 6
14: Forecast one-step-ahead GAS copula parameters using data from line 13 and

estimated IS copula parameters (for constant copulas the parameters will be
the same as IS)

15: Get the OOS copula log-likelihoods by evaluating copula log-likelihood func-
tions using data from line 13 and with parameters the ones obtained from
IS
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Algorithm 2 Out-of-sample VaR (and ES) via simulations

1: T;q;w; # sample size; quantile of interest and portfolio weight
2: set t=1 # start at time t=1
3: get estimated parameters for copula C(·) at time t # these parameters

are estimated in steps 8 and 14 in Algorithm 1
4: U ← copula rnd(parameters;size=S) # generate S observations from

copula model. S=5000, thus U is of size 2 × 5000
5: E[,i] ← quantile(stdresids[, i], U [, i]) # get the implied standardized

residuals from copula model i ∈ {Oil, SP500} with stdresids from step 12
in Algorithm 1. Here copula function induces the dependence between Oil &
SP500. This step can also be interpreted as bootstraping.

6: Y[,i] ← µ̂+ vol[t] ·E[, i] # Form simulated returns at time ”t” for each
asset. Volatility vol comes from step 11 in Algorithm 1

7: pf ← w · Y [, i] + (1−w) · Y [, j] # Form the simulated portfolio returns
for time ”t”
Now use the empirical distribution of simulated portfolio returns to estimate
the VaR and ES measures

8: VaR[t] ← quantile(pf, q)
9: index ← (pf <= quantile(pf, q)) # get index where VaR is violated

10: ES[t] ← mean(pf [index]) # Expected Shortfall
11: Repeat steps 3 - 10 until t=T



Chapter 3
Semiparametric nonlinear quantile regression model for financial re-
turns

Abstract

Financial institutions use Value-at-Risk (VaR) as the standard measure of market
risk. Despite its simplicity, measuring and forecasting it accurately is a challenging
task. Recently, quantile regression models have been used successfully to capture
the conditional quantiles of returns. We explore further non-linearities in the data,
and propose to use realized measures in the nonlinear quantile regression frame-
work to explain and forecast conditional quantiles of financial returns. In addition,
we apply the proposed model to a pool of the most liquid U.S. assets across dif-
ferent industries. The nonlinear quantile regression models are implied by copula
specifications and allow us to capture possible nonlinearities, and asymmetries in
conditional quantiles of financial returns. Using high frequency data covering most
liquid U.S. stocks in seven sectors, we provide ample evidence of asymmetric condi-
tional dependence and different level of dependence characteristic for each industry.
The backtesting results of estimated VaR favour our approach.

Keywords: quantile copula regression, realized-volatility, value-at-risk
JEL: C14, C32, C58, F37, G32

3.1 Introduction

A number of important financial decisions require the specification and esti-
mation of the entire portfolio distribution. This is not an easy task in practice
considering that the joint distribution is nonelliptic and fat tailed, as is standard

This paper was co-authored with Jozef Baruńık and is submitted to Studies in Nonlinear
Dynamics and Econometrics. I gratefully acknowledge financial support from the Grant Agency
of the Charles University (GA UK) under the project 162815. We thank participants at the 2nd
International Workshop on “Financial Markets and Nonlinear Dynamics” for valuable comments.
All remaining errors are mine.



3. Semiparametric nonlinear quantile regression model for financial returns 47

with financial returns. The difficulty increases further if we take into account
that the distribution of financial returns typically changes over time. Modelling
of the distribution has direct implications in calculation of the standard measure
of the market risk, the Value-at-Risk (VaR). The Basel Committee on Banking
Supervision (1996) at the Bank for International Settlements requires financial in-
stitutions to use VaR to measure and report the market risk. This measure is
just the value of future portfolio returns at a particular quantile of the portfolio
distribution. Thus, a suitable model for time varying conditional quantiles is of
key importance. Most of conditional quantile models rely on global distributional
assumptions though, conditioning on past returns. In this paper, we propose to
model the future quantiles of returns using the realized volatility and nonlinear
quantile regression framework.

Quantile regression is lively area of research with several recent advances.
Koenker (2004) extends the quantile regression to panel data applications. The
author introduces a general approach to estimate quantile regression models for lon-
gitudinal data by employing `1 regularization methods. Xiao (2009) propose a coin-
tegration model with quantile-varying coefficients. In this model the cointegrating
coefficients are allowed to be affected by shocks received in each period over the
innovation quantile. Chen et al. (2009) introduce nonlinear-in-parameters quantile
autoregression (QAR) models using parametric copulas. They use a copula-based
Markov model which due to the stationarity of the process considered requires the
specification of only one margin in addition to the copula. Under mild conditions
their model allows for global misspecification of parametric copulas and marginals.
In a recent paper Cappiello et al. (2014) measure the comovements by using re-
gression quantiles. The authors compute the conditional probability that a random
variable is lower than a given quantile, when another random variable is also lower
than its corresponding quantile, for any set of prespecified quantiles.

Quantile regression models have important applications in risk management,
portfolio optimization, and asset pricing. Koenker & Bassett (1978) introduced
the regression quantiles more than three decades ago, but only in the last one the
financial literature paid more interest to it. Engle & Manganelli (2004) introduce
the conditional autoregressive value at risk, which is also known as the CAViaR
model. Instead of modelling the whole distribution, the authors model the quantiles
directly. In CAViaR model the quantile of the distribution is regressed on its lagged
values and a term which plays the role of the news impact curve for GARCH
models. The former ensures a smooth change of quantile, while the latter links the
quantile with the observable variables that belong to the information set. Under
a semi-parametric quantile regression framework Žikeš & Baruńık (2014) utilize



nonparametric measures of the various components of ex post variation in asset
prices to study the properties of conditional quantiles of daily asset returns and
realized volatility, and forecast their future values. We exploit the ideas discussed in
this paper in a nonlinear semiparametric conditional quantile regression framework
to estimate the dependency between returns and realized volatility at quantiles of
interest.

Our contribution of this paper is twofold: First, we propose to use realized
measures in the nonlinear quantile regression framework to explain and forecast
conditional quantiles of financial returns. Second, we apply the proposed model
to a pool of the most liquid U.S. assets across different industries. The article is
structured as follows. Section 2 introduces the copula quantile regression model.
Section 3 describes the data under analysis. Section 4 presents an application to
real data. Section 5 evaluates quantile forecast and section 6 concludes the article.

3.2 Modelling framework

Let us consider the logarithmic price process that obeys Itô semimartingale

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs,

where µ is a predictable process, σ is cadlag and W is the standard Brownian mo-
tion. The process is very general, and as Todorov & Tauchen (2011) show, it allows
to accommodate stochastic volatility with possible discontinuous sample paths. To
capture the conditional quantiles of returns rt+1 = Xt+1 − Xt, Žikeš & Baruńık
(2014) propose a simple linear semiparametric model based on quantile regression.
They assume that the α-quantile of future returns conditional on information set
Ωt, can be written as a linear function of its past quadratic variation,1

qα(rt+1|Ωt) = β0(α) + βϑ(α)′ϑt (3.1)

where ϑt is a measure of quadratic variation QVt =
∫ t

0
σ2
sds, commonly realized

volatility, and β0(α), βϑ(α) are vectors of coefficients to be estimated.
To see the connection that exists between the linear quantile model in Equation

3.1 and the logarithmic price process assumed to underly the data, Žikeš & Baruńık
(2014) argue that the conditional quantile qα(rt+1|IVt) can be obtained from the

1Note that Žikeš & Baruńık (2014) allow more general specification including various com-
ponents of volatility, and weakly exogenous variables to drive the conditional quantiles in the
model.
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conditional distribution of rt+1 given IVt in case quadratic variation of the process
is equal to integrated variance:

frt+1|IVt(wr|IVt) =

∫ ∞
0

frt+1|IVt+1,IVt(wr|wIV , IVt)fIVt+1|IVt(wIV |IVt)dwIV

where fy|X(wy|wX) is the conditional distribution of y given X evaluated at wy
and wX . For simplicity take the one-factor volatility model where σt follows an
Ornstein-Uhlenbeck process and µt = 0. Meddahi (2003) shows that the inte-
grated volatility IVt follows an ARMA(1,1) process with non-gaussian innovations.
It follows that fIVt+1|IVt has a non-gaussian density, while frt+1|IVt+1,IVt is the nor-
mal density with zero mean and variance IVt if there is no leverage effect, or a
non-gaussian density otherwise. The implied conditional quantiles of the densities
above, qα(rt+1|Ωt), α ∈ (0, 1), can be approximated by linear functions of the
current and past values of IVt and other volatility measures.

The model described by Equation 3.1 is a linear quantile regression proposed
by Koenker & Bassett (1978). They show that the parameters can be estimated a
solution to the following problem:

min
βββ∈Rk

∑
t∈Tα

α |rt+1 − β0(α)− βϑ(α)′ϑt|+
∑
t∈T1−α

(1− α) |rt+1 − β0(α)− βϑ(α)′ϑt|


(3.2)

with Tα = {t : rt+1 ≥ β0(α)− βϑ(α)′ϑt} and T1−α its complement.
In the special case where α = 0.5, the above quantile regression delivers the least

absolute deviation (LAD) model. The LAD model is more robust than ordinary
least squares (OLS) estimators whenever the errors have a fat-tailed distribution.
The problem defined in Equation 3.2 does not have a closed form-solution, however
Portnoy & Koenker (1997) provide computationally fast algorithm which is also
implemented in the quantreg package for R.

3.2.1 Copula quantile regressions

Conditional quantile functions allow for nonlinear parametric models. Bouyé &
Salmon (2009) introduced a general approach to nonlinear quantile regression based
on copula models. Using the properties of conditional probability distribution the
link between copula functions and conditional quantile functions becomes obvious.
Consider a random sample (x1, . . . , xT ) and (y1, . . . , yT ) from X and Y respectively.
The probability distribution of y conditional on x is defined as

α(y|x; δ) = Pr{Y ≤ y,X = x}



= E(1Y≤y|X = x)

= lim
ε→0

Pr{Y ≤ y|x ≤ X ≤ x+ ε}

= lim
ε→0

F (x+ ε, y; δ)− F (x, y; δ)

FX(x+ ε)− FX(x)

= lim
ε→0

C[FX(x+ ε), FY (y); δ]−C[Fx(x), Fy(y); δ]

FX(x+ ε)− FX(x)

Denoting by C1(·, ·; δ) the partial derivative of copula function with respect to the
first argument, the probability distribution of y conditional on x can also be writen
as

α(y|x; δ) =
∂C(u, v; δ)

∂u
= C1[FX(x), FY (y); δ] (3.3)

where u = FX(x) and v = FY (y). Refer to the Appendix 3.A for the proof. In
case Equation 3.3 is invertible with respect to v the relationship between X and
quantile of Y can be expressed as

QY (α|x) = q(x, α; δ) = F
[−1]
Y (D(FX(x), α; δ)) (3.4)

where D is the partial inverse of C1 in the second argument and F
[−1]
Y the pseudo-

inverse of FY . It may happen that relationship in Equation 3.3 is not invertible, and
if this is the case numerical methods should be used2. We can generate observations
on Y given X by evaluating Equation 3.4 and replacing α by independent uniformly
distributed draws.

The copula quantile regression is a special case of the nonlinear quantile regres-
sion, Before we introduce specific copula functions for estimation, we introduce
estimation of parameters in general nonlinear regression case with general quan-
tile curve function. Turning to the problem of explaining conditional quantiles of
future returns rt+1 using its past volatility ϑt utilizing nonlinear quantile regres-
sion, Equation 3.2 needs to be altered. The parameters of such regression can be
estimated as a solution to the following problem:

2 Gumbel copula is a typical example where numerical methods are required. Its α quantile
function is given by the following expression:

α = u−1(− log(u))θ−1e−((− log(u))θ+(− log(v))θ)
1/θ (

(− log(u))θ + (− log(v))θ
) 1
θ−1

As one can see this expression is not invertible. The implementation of the numerical methods
is time consuming though, because finding the root of the non-invertible quantile function above
needs extra time in addition to solving the non-linear quantile regression problem.
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min
δ

∑
t∈Tp

α|rt+1 − q(ϑt, α; δ)|+
∑
t∈T1−α

(1− α)|rt+1 − q(ϑt, α; δ)|

 (3.5)

with Tα = {t : rt+1 ≥ q(ϑt, α; δ)} and T1−α its complement. Koenker & Park
(1996) developed an interior point algorithm to compute the quantile regression
estimates for problems with nonlinear response functions. Their approach to solve
the nonlinear problem is by solving a succession of linearized `1 problems, i.e.
splitting the nonlinear problem into a set of linear ones.

In our model we regress future returns rt+1 on its lagged realized volatility
ϑt =

√
RVt computed as square root of a sum of squared 5-minute intraday returns

RVt =
M∑
i=1

r2
i , (3.6)

where i is the 5-minute intraday time interval.
When working with quantile regressions we may face the problem of quantile

crossing. The cause of quantile crossing may be due to estimation error, misspeci-
fication or both. Some recent papers provide a solution to this problem. Dette &
Volgushev (2008) propose a non-parametric estimate of conditional quantiles that
avoids quantile crossing. The method uses an initial estimate of the conditional
distribution function in the first step and solves the problem of inversion and mono-
tonization with respect to α ∈ (0, 1) simultaneously. Chernozhukov et al. (2009;
2010) propose a closely related, but different method to address the problem of
quantile crossing3. Their method consists in sorting the original estimated non-
monotone curve into a monotone rearranged curve. This is a two step procedure:
First, a preliminary (parametric) estimate of the conditional quantile curve is iso-
tonized and inverted. Next, the final non-crossing estimates are constructed by an
inversion of the curves that are obtained in the first step 4.

3.2.2 Copula quantile functions

Let us now introduce two specific copula quantile functions which we use in
this paper, first Normal and then t copula. The bivariate Normal copula function

3For a comparison of these approaches refer to Dette & Volgushev (2008).
4This method is incorporated in the quantreg package in R. This package is also used by us

in this paper.



can be written as

CN
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds

where Φ(·) is the standard Normal distribution and ρ the linear correlation. The
partial derivative with respect to u = FX(x) is

α = Φ

(
Φ−1(v)− ρΦ−1(u)√

1− ρ2

)
(3.7)

The quantile curve implied by copula function is obtained by solving Equation 3.7
for v :

v =Φ
(
ρΦ−1(FX(x)) +

√
1− ρ2Φ−1(α)

)
(3.8)

The relationship between x and the quantile of y is then

QY |X(α|x) =F
[−1]
Y

(
Φ
(
ρΦ−1(FX(x)) +

√
1− ρ2Φ−1(α)

))
(3.9)

where F
[−1]
Y is the pseudo-inverse of FY . The distributions of FX and FY can

be specified either parametrically or non-parametrically. If we assume that FY is
known only up to a location and scale parameter the quantile curve will have this
form

QY |X(α|x) = µ+ σF
[−1]
Y

(
Φ
(
ρΦ−1(FX(x)) +

√
1− ρ2Φ−1(α)

))
(3.10)

When the margins are estimated non-parametrically we get a semiparametric cop-
ula (quantile) model. The properties of this estimator are established by Chen
& Fan (2006). The authors also show that the semiparametric conditional quan-
tile estimators are automatically monotonic across quantiles, a useful property for
conditional value-at-risk models. In this work for margins of the returns and for re-
alized volatility we employ the non-parametric empirical distribution Fj introduced
by Genest et al. (1995), which consists of modeling the marginal distributions by
the (rescaled) empirical distribution.

F̂j(z) =
1

T + 1

T∑
t=1

1{ẑj,t ≤ z}, ẑj,t ∈ {rt,
√
RVt} (3.11)

where 1 is the indicator function.
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The bivariate t copula is expressed as

Ct
η,ρ(u, v) =

∫ t−1
η (u)

−∞

∫ t−1
η (v)

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

r2 − 2ρrs+ s2

η(1− ρ2)

)− η+2
2

drds

where Γ(·) is the Gamma distribution, ρ the linear correlation and η the degrees of
freedom parameter. As can bee seen in the expression below, the partial derivative
with respect to u is a bit more complicated

α = tη+1

 t−1
η (v)− ρt−1

η (u)√
(η+[t−1

η (u)]2)(1−ρ2)

η+1

 (3.12)

Following the same steps as previously, the quantile curve implied by t copula
is obtained by solving Equation 3.12 for v :

v =tη

[
t−1
η+1(α)

√
(η + 1)−1 (1− ρ2)

(
η + [t−1

η (FX(x))]2
)

+ ρt−1
η (FX(x))

]
(3.13)

The relationship between x and the quantile of y is then

QY |X(α|x) =F
[−1]
Y

(
tη

[
t−1
η+1(α)

√
(η + 1)−1 (1− ρ2)

(
η + [t−1

η (FX(x))]2
)

+ ρt−1
η (FX(x))

])
(3.14)

Again, if we assume that FY is known only up to a location and scale parameter
the quantile curve will have this form

QY |X(α|x) = µ+ σF
[−1]
Y

(
tη

[
t−1
η+1(α)

√
(η + 1)−1 (1− ρ2)

(
η + [t−1

η (FX(x))]2
)

+ρt−1
η (FX(x))

])
(3.15)

The theoretical quantile curves of models in Equations 3.8-3.9 and 3.13-3.14 are
plotted in Figure 3.1. From this Figure we can see that for the same correlation
parameter and same margins different copulas capture different type of dependence
(c and d). We know that Normal copula does not have tail dependence for ρ < 1,
while t copula has tail dependence which is symmetric and is estimated as τL =

τU = 2tη+1

(
−
√

(η+1)(1−ρ)
1+ρ

)
. The tail behaviour of these copulas is obvious if we

focus in Figure 3.1 a and b.



Figure 3.1: Theoretical quantile curves of Normal and t copula both with correla-
tion ρ = 0.7 and for the latter 3 degrees of freedom. The marginal distributions
in c) and d) are t3(·) and quantiles are α ∈ {.01, .05, .25, .5, .75, .9, .95, .99} in all
cases.
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3.3 The Data description

Using the proposed methodology, we study the conditional quantiles of the 21
most liquid U.S. stocks from the seven main market sectors defined in accordance
with the Global Industry Classification Standard (GICS).5 We use three stocks
with the highest market capitalization in a sector as representative of the analyzed

5Morgan Stanley Capital International (MSCI) and Standard & Poor’s developed the GICS.
This is a common global classification standard used by global financial community.



3. Semiparametric nonlinear quantile regression model for financial returns 55

Sector Stocks

Financials Bank of America Corporation (BAC), Citigroup
(C), Wells Fargo & Company (WFC)

Information Technology Apple (AAPL), Intel Corporation (INTC), Mi-
crosoft Corporation (MSFT)

Energy Chevron Corporation (CVX), Schlumberger Limited
(SLB), Exxon Mobil Corporation (XOM)

Consumer Discretionary Amazon.com (AMZN), Walt Disney Company
(DIS), McDonald’s Corp. (MCD)

Consumer Staples Coca-Cola Company (KO), Procter & Gamble Co.
(PG), Wal-Mart Stores (WMT)

Telecommunication Services Comcast Corporation (CMCSA), AT&T (T), Veri-
zon Communications (VZ)

Health Care Johnson & Johnson (JNJ), Merck & Co. (MRK),
Pfizer (PFE)

Table 3.1: Sectors and representative stocks.

sector. The selected stocks account for approximately half of the total capitaliza-
tion of the sector. The sectors and representative stocks are listed in Table 3.1.
The data spans from August 2004 to December 2011. The period under study is
very informative because it covers the recent U.S. recession of Dec. 2007 - June
2009 and three years before and after the crisis. The data were obtained from the
Price-Data.com.6

For the computation of realized measures, we restrict the analysis to 5-minute
returns during the 9:30 a.m. to 4:00 p.m. business hours of the New York Stock
Exchange (NYSE). The data are time-synchronized by the same time-stamps. To
rule out potential estimation bias which could come from low activity we eliminate
transactions executed on Saturdays and Sundays, U.S. federal holidays, December
24 to 26, and December 31 to January 2. Consequently, our data contains 1835
trading days.

In Table 3.2, we present descriptive statistics of the returns and realized volatil-
ity for the data that constitute our sample. All daily returns series have excess
kurtosis and, as usual, the stocks from Financial sector on average have higher
volatility than stocks from the other sectors.

6http://www.price-data.com/

http://www.price-data.com/


3.4 Empirical Results

3.4.1 Full sample results

We quantile-regress the returns at time t+1 conditional on the realized volatility
at time t using the full sample of data. We solve the copula quantile regression
problem as in Equation 3.5, where the quantile curve function q(·) follows either
Equation 3.10 in the case of Normal copula or Equation 3.15 in the case of t copula.
For comparison we also estimate the linear quantile regression as in Equation 3.1.
Given that the parameters of linear model are not directly comparable to the
nonlinear ones we do not report them here, but they are available on request7.

The parameters of copula quantile models for the full sample are summarized in
Tables 3.3-4.10 in Appendix 3.B. Due to the amount of output results it is difficult
to read in this form, thus we further synthesize these results using the boxplots. In
Figures 4.1-4.2 in Appendix 3.C, we plot the parameters ρ, µ, σ for both models and
the degrees of freedom η for t copula. Let us start with the analysis of correlation
parameter ρ. The first thing we notice is that Normal copula on average estimates
lower correlation than the t counterpart for all quantiles. In addition we see that the
t copula estimates a greater scale of asymmetry when comparing lower (α = 5%)
and upper (α = 95%) quantiles. Another important finding is that the distribution
of returns is heavy tailed at all quantiles under analysis. This can be seen in Figure
4.2 where the mean of the degrees of freedom is around 5 for all quantiles. The
degrees of freedom parameter allows the t copula to capture higher dependence,
especially in the tails of distribution. Finally, the location-scale parameters (µ
and σ) in general are different than 0 and 1 respectively. Thus, inclusion of these
parameters in the copula quantile curves (Equation 3.10 and 3.15) is a good choice.

We comment in more details the results for one time series to save space, but
they are similar for all the other 20. In Figure 3.2 we plot the fitted quantile curves
for Pfizer using Normal and t copula, and for comparison include the fitted curves
from linear quantile regression model. Positive (negative) slope curves correspond
to positive (negative) correlation. We notice that there are nonlinear dependen-
cies, especially for the lower quantiles, and lower quantiles seem to be driven by
past volatility with larger extend showing asymmetry. The findings from this illus-
tratory stock are uniform across all stocks considered, and support our nonlinear
model for conditional quantiles fo returns.

7Reporting the parameters for the linear model requires adding 7 more tables to current results,
and this would be too much. Besides, this would bring little value. To clarify the comparison of
these models, we do it with respect to the VaR performance.
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Figure 3.2: Semiparametric quantile regression of Pfizer returns rt+1 on its realized
volatility

√
RVt. For both models, linear and nonlinear, the regression is estimated

at quantiles α ∈ {.01, .05, .1, .25, .75, .9, .95}.
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3.4.2 Out-of-sample results

Most of the times we are interested in utilizing the models to conduct predic-
tions and not just to fit the data. For this reason we split the data to have 1335
observations for the in-sample set and leave 500 for the out-of-sample (OOS). This
corresponds to dates from January 2010 to December 2012. We estimate the mod-
els as previously using the in-sample data and then use the rolling window data
by shifting one-step-ahead 8. This way we obtain the one-step-ahead forecast of
the quantile of returns (or the VaR) for a window of 500, or a period of two years.
Model parameters for the OOS are represented in Figures 3.5 and 3.6. When look-
ing the parameters of the Normal copula we notice that the estimates have high
variance and many outliers. The t counterpart on the other hand produces much
stable correlation. This is because the Normal copula is not as flexible as t and
thus cannot cope with big changes in dependence. In addition for most assets there
is a slight correlation asymmetry when comparing lower and upper quantiles.

An interesting result is large heterogeneity of parameter estimates across in-
dustries. Financial industry tend to have largest negative correlation with increase
in volatility driving the future lower quantiles the most when compared to other
industries. Future quantiles of returns in Health and Cyclicals industries are much
less sensitive to increases in volatility. On the opposite, upper quantiles of re-
turns seem to be driven by volatility mostly in Consumer Cyclicals with highest
correlation.

8For t copula we estimate the degrees of freedom only for the in-sample data and then assume
it remains constant throughout the OSS. We could re-estimate it for every rolling window, but
the model estimation is already time-hungry and it would increase further more if we do so.



Following the same approach as above we forecast the quantile returns five-
step-ahead. As the estimated model parameters are not qualitatively different we
do not report them here. However, we will use the obtained forecasts from one
and five steps-ahead for comparing model accuracy in the following section. We
plot the V aRα=5% forecasts for one and five steps-ahead in Figures 3.7-3.10 in
appendix 3.C. We notice that all models (the linear, Normal and t copula) give
similar patterns and capture the conditional quantiles well. In order to distinguish
which one performs better we perform statistical testing in the next section.

3.5 Evaluation of quantile forecasts

We evaluate the absolute out-of-sample performance of the various conditional
quantile models using test originally proposed by Engle & Manganelli (2004), who
use the n-th order autoregression

It = ω +
n∑
k=1

β1kIt−k +
n∑
k=1

β2kq
α
t−k+1 + ut, (3.16)

where It+1 is 1 if yt+1 < qαt , and zero otherwise. While the hit sequence It is a
binary sequence, ut is assumed to follow a logistic distribution, and we can estimate
it as a simple logit model and test whether Pr(It = 1) = qαt . To obtain the p-
values, we rely on simulations as suggested by Berkowitz et al. (2011), and we refer
to this test as a DQ test in the results.

The main motivation of the DQ test is to determine whether the conditional
quantiles are correctly dynamically specified; hence, it evaluates the absolute per-
formance of the various models. This approach to evaluating absolute performance
of quantile forecasts is only suitable for one-step-ahead forecasts and to the best of
our knowledge, there is currently no alternative, reliable test for correct dynamic
specification of multi-step conditional quantiles.

To assess the relative performance of the models, we evaluate the accuracy of
the VaR forecasts statistically by defining the expected loss of the VaR forecast
made by a forecaster m as

Lα,m = E
[(
α− 1

{
yt,t+1 < qα,mt,t+1

}) (
yt,t+1 − qα,mt,t+1

)]
, (3.17)

which was proposed by Giacomini & Komunjer (2005). The tick loss function
penalizes quantile violations more heavily, and the penalization increases with the
magnitude of the violation. As argued by Giacomini & Komunjer (2005), the tick
loss is a natural loss function when evaluating conditional quantile forecasts. To
compare the forecast accuracy of the two models, we test the null hypothesis that
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the expected losses for the models are equal, H0 : d = Lα,1 − Lα,2 = 0, against a
general alternative. The differences can be tested using Diebold & Mariano (2002)
test statistics with Newey-West variance (in case of multi-step-ahead forecasts).
Under the null of equal predictive accuracy the test statistics is distributed N(0, 1).

The forecasting models performance for one and for five steps-ahead is summa-
rized in Tables 3.7 - 3.20. We report the unconditional coverage Ĉα, the tick loss
function L̂, DQ test statistics and the simulated p-values. The results are quite
mixed. For the one-step-ahead forecast the DQ test rejects the nonlinear quan-
tile regression (NQR) models about 12.3% and 20.4% of times for Normal and t
model respectively. While for LRQ the rejection rate is about 13% of times. Next
we test the relative model performance, where the NQR models are compared to
linear quantile regression (LQR) model. Sometimes the NQR models perform bet-
ter (with t copula being the better model) sometimes it is the LQR which performs
better. We should note that there are situations where the NQR models perform
worse than LQR, and at the same time all these models are rejected by DQ test
e.g. in Table 3.7 for AT&T and quantiles α = {.1; .9}. In such situations we cannot
say which model is the best as none of them passes the DQ.

As we cannot use the DQ test for the five-step-ahead forecast, the models are
compared only based on the relative performance. The performance of the NQR
models improves significantly, especially for the t copula. The NQR-t outperforms
the LQR model in 13 cases or about 9% of the times, but there are many times
where the tick loss function of NQR models is lower than the LQR counterpart,
although this difference is not statistically significant. In conclusion, the models are
well specified, and the NQR models seem to outperform LQR when five-step-ahead
forecasts are considered.

3.6 Conclusion

This paper proposes to use the nonlinear quantile regression with realized mea-
sures of volatility to forecast conditional quantiles of financial assets returns. To
make the results robust we apply this methodology on most liquid U.S. stocks in
seven sectors. We argue that using the realized volatility under a copula quan-
tile framework is useful, especially in the cases where the quantile dependence is
nonlinear. The proposed models capture and forecast the dynamics of quantiles
well.

Possible directions for further development would be to study the interdepen-
dence between asset returns or using copulas functions which allow for higher
dependence in the tails.
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3.A Proofs

Probability distribution of y conditional on x

α(y|x) =
∂C(u, v)

∂u

Proof. From

P (Y ≤ y,X = x) =
∂FX,Y (x, y)

∂x

it follows that

P (Y ≤ y,X = x) = lim
ε→0

Pr{Y ≤ y|x ≤ X ≤ x+ ε}

= lim
ε→0

F (x+ ε, y)− F (x, y)

FX(x+ ε)− FX(x)

≈ (∂F (x, y)/∂x) · ε
fX(x) · ε

=
1

fX(x)

∂C(FX(x), FY (y))

∂x

=
1

fX(x)

F

∂C(u, v)

∂u

∂FX(x)

∂x
F

= ∂C(u, v)/∂u

where u = FX(x), v = FY (y) and F terms cancel out.

Following the same path it is easy to show that

α(x|y) =
∂C(u, v)

∂v
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3.B Tables

Table 3.2: Descriptive Statistics for daily returns and realized volatility over the sample period

extending from August 2004 to December 2011.

Returns

Information Technology Consumer Discretionary Consumer Staples Telecommunication Services

AAPL INTC MSFT AMZN DIS MCD KO PG WMT CMCSA T VZ

Mean −0.0003 −0.0001 −0.0001 0.0015 0.0009 0.0004 0.0001 0.0006 −0.0001 0.0002 −0.0001 −0.0004
Std dev 0.0201 0.0164 0.0140 0.0224 0.0156 0.0121 0.0106 0.0099 0.0108 0.0187 0.0132 0.0127
Skewness −0.3097 0.0641 0.1483 0.3004 0.4682 0.2967 0.0474 −0.0580 0.4404 0.6274 0.5877 0.5984
Kurtosis 3.2914 3.3402 5.8121 4.4135 6.9769 6.0683 8.1274 6.6594 6.5979 18.2322 9.5964 8.3887
Minimum −0.1223 −0.0907 −0.0755 −0.1313 −0.0909 −0.0799 −0.0717 −0.0660 −0.0653 −0.1416 −0.0629 −0.0760
Maximum 0.1123 0.0880 0.1102 0.1388 0.1185 0.1035 0.0795 0.0776 0.0762 0.2325 0.1242 0.1118

Financials Energy Health Care

BAC C WFC CVX SLB XOM JNJ MRK PFE

Mean −0.0023 −0.0042 −0.0002 0.0001 −0.0002 0.0005 0.0001 0.0000 −0.0006
Std dev 0.0327 0.0341 0.0272 0.0154 0.0215 0.0147 0.0092 0.0152 0.0133
Skewness −0.4071 −1.7889 0.2458 0.0847 −0.4012 −0.0108 0.0305 −0.1710 0.1302
Kurtosis 13.6287 20.8588 13.0526 11.9675 5.4278 10.3940 9.6599 6.8905 3.2493
Minimum −0.2509 −0.3468 −0.2081 −0.1296 −0.1552 −0.1261 −0.0803 −0.1092 −0.0696
Maximum 0.2014 0.1992 0.1933 0.1460 0.1253 0.1189 0.0728 0.0919 0.0714

Realized Volatility

Information Technology Consumer Discretionary Consumer Staples Telecommunication Services

AAPL INTC MSFT AMZN DIS MCD KO PG WMT CMCSA T VZ

Mean 0.0004 0.0003 0.0002 0.0006 0.0003 0.0002 0.0001 0.0001 0.0002 0.0004 0.0002 0.0002
Std dev 0.0008 0.0005 0.0004 0.0009 0.0005 0.0004 0.0003 0.0004 0.0004 0.0007 0.0005 0.0005
Skewness 11.9764 10.7700 7.6919 7.6707 9.8775 25.3799 10.4895 26.0745 20.7189 12.7904 12.0541 15.4769
Kurtosis 209.4541 191.6730 90.6071 80.7537 151.3225 868.6006 175.7496 895.9773 625.6571 243.4969 242.6791 382.1494
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.0192 0.0121 0.0070 0.0144 0.0117 0.0157 0.0063 0.0143 0.0126 0.0169 0.0142 0.0148

Financials Energy Health Care

BAC C WFC CVX SLB XOM JNJ MRK PFE

Mean 0.0009 0.0011 0.0007 0.0003 0.0005 0.0002 0.0001 0.0003 0.0002
Std dev 0.0026 0.0040 0.0017 0.0007 0.0009 0.0007 0.0003 0.0007 0.0004
Skewness 7.9607 10.8488 5.7960 17.1272 8.3253 18.3961 18.5604 13.5083 8.8700
Kurtosis 95.3976 166.7985 45.1057 435.1365 111.8150 490.6232 486.2773 263.8237 125.7655
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.0489 0.0866 0.0231 0.0207 0.0178 0.0205 0.0090 0.0165 0.0079
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Table 3.7: Telecommunication Services: OOS 1-step-ahead VaR evaluation. Empirical

quantile Ĉα, estimated Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000×
simulated p-val are reported. L̂ is moreover tested with Diebold-Mariano statistics with Newey-

West estimator for variance. All models are compared to LQR (Linear Quantile Regression) while

models with significantly less accurate forecasts at 95% level are reported in bold, significantly

more accurate as underlined. NQR is Nonlinear Quantile Regression.

CMCSA 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.040 0.076 0.210 0.752 0.908 0.972

L̂ 0.041 0.158 0.263 0.465 0.453 0.257 0.153
DQ 2.165 9.015 5.525 16.927 4.456 4.508 10.126
p-val 0.826 0.108 0.355 0.005 0.486 0.479 0.072

NQR–t

Ĉα 0.010 0.050 0.082 0.222 0.746 0.910 0.954

L̂ 0.040 0.156 0.258 0.460 0.453 0.252 0.151
DQ 0.521 5.954 13.258 9.908 3.836 5.271 7.200
p-val 0.991 0.311 0.021 0.078 0.573 0.384 0.206

LQR

Ĉα 0.006 0.038 0.084 0.224 0.744 0.908 0.958

L̂ 0.039 0.156 0.259 0.461 0.452 0.251 0.152
DQ 0.625 4.904 11.263 9.165 4.509 5.249 6.382
p-val 0.987 0.428 0.046 0.103 0.479 0.386 0.271

T 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.042 0.084 0.212 0.774 0.924 0.960

L̂ 0.030 0.095 0.156 0.260 0.252 0.146 0.087
DQ 2.165 9.606 11.758 10.288 5.524 16.864 12.762
p-val 0.826 0.087 0.038 0.067 0.355 0.005 0.026

NQR–t

Ĉα 0.004 0.034 0.076 0.214 0.788 0.936 0.966

L̂ 0.030 0.093 0.150 0.257 0.254 0.144 0.085
DQ 2.165 8.537 13.035 13.799 12.260 16.804 11.533
p-val 0.826 0.129 0.023 0.017 0.031 0.005 0.042

LQR

Ĉα 0.004 0.030 0.070 0.216 0.780 0.928 0.976

L̂ 0.029 0.092 0.149 0.256 0.252 0.141 0.087
DQ 2.165 10.395 12.353 10.214 9.084 14.522 20.357
p-val 0.826 0.065 0.030 0.069 0.106 0.013 0.001

VZ 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.006 0.042 0.072 0.212 0.754 0.914 0.958

L̂ 0.031 0.102 0.165 0.279 0.270 0.155 0.100
DQ 0.677 5.986 10.494 13.396 3.761 9.754 10.353
p-val 0.984 0.308 0.062 0.020 0.584 0.083 0.066

NQR–t

Ĉα 0.006 0.044 0.070 0.220 0.726 0.906 0.962

L̂ 0.028 0.098 0.160 0.276 0.272 0.152 0.093
DQ 0.625 4.592 9.062 15.274 3.859 5.512 6.853
p-val 0.987 0.468 0.107 0.009 0.570 0.357 0.232

LQR

Ĉα 0.002 0.040 0.070 0.212 0.724 0.910 0.964

L̂ 0.029 0.099 0.160 0.275 0.271 0.151 0.093
DQ 4.700 6.736 10.288 17.995 4.711 6.614 12.255
p-val 0.454 0.241 0.067 0.003 0.452 0.251 0.031
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Table 3.8: Consumer Discretionary: OOS 1-step-ahead VaR evaluation. Empirical quantile

Ĉα, estimated Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-

val are reported. L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator

for variance. All models are compared to LQR (Linear Quantile Regression) while models with

significantly less accurate forecasts at 95% level are reported in bold, significantly more accurate

as underlined. NQR is Nonlinear Quantile Regression.

AMZN 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.012 0.058 0.110 0.246 0.774 0.904 0.952

L̂ 0.061 0.193 0.319 0.564 0.577 0.347 0.222
DQ 0.966 1.659 4.616 3.281 6.409 10.748 7.888
p-val 0.965 0.894 0.465 0.657 0.268 0.057 0.162

NQR–t

Ĉα 0.014 0.056 0.110 0.252 0.770 0.914 0.960

L̂ 0.057 0.193 0.315 0.564 0.574 0.343 0.219
DQ 1.794 2.370 1.090 3.630 10.132 4.090 6.057
p-val 0.877 0.796 0.955 0.604 0.072 0.537 0.301

LQR

Ĉα 0.010 0.060 0.102 0.256 0.762 0.910 0.960

L̂ 0.056 0.193 0.316 0.564 0.574 0.342 0.218
DQ 0.521 2.948 2.591 1.829 8.228 9.470 7.270
p-val 0.991 0.708 0.763 0.872 0.144 0.092 0.201

DIS 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.054 0.094 0.242 0.750 0.908 0.972

L̂ 0.034 0.128 0.219 0.386 0.379 0.214 0.128
DQ 2.165 2.470 3.303 8.491 2.848 9.416 10.126
p-val 0.826 0.781 0.653 0.131 0.723 0.094 0.072

NQR–t

Ĉα 0.008 0.066 0.098 0.262 0.742 0.912 0.968

L̂ 0.033 0.134 0.220 0.394 0.380 0.203 0.121
DQ 0.528 9.579 2.763 7.904 5.275 9.345 8.231
p-val 0.991 0.088 0.737 0.162 0.383 0.096 0.144

LQR

Ĉα 0.008 0.056 0.100 0.258 0.742 0.918 0.970

L̂ 0.032 0.131 0.221 0.391 0.378 0.206 0.124
DQ 0.528 6.652 3.406 8.984 2.772 7.556 9.004
p-val 0.991 0.248 0.638 0.110 0.735 0.182 0.109

MCD 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.010 0.044 0.090 0.230 0.784 0.920 0.956

L̂ 0.026 0.088 0.149 0.250 0.245 0.141 0.088
DQ 0.457 3.343 4.209 7.422 15.651 10.812 4.461
p-val 0.994 0.647 0.520 0.191 0.008 0.055 0.485

NQR–t

Ĉα 0.004 0.028 0.074 0.212 0.798 0.926 0.962

L̂ 0.025 0.092 0.148 0.250 0.249 0.144 0.090
DQ 2.165 9.724 9.260 7.631 16.153 16.112 4.894
p-val 0.826 0.083 0.099 0.178 0.006 0.007 0.429

LQR

Ĉα 0.006 0.032 0.084 0.208 0.798 0.926 0.960

L̂ 0.025 0.088 0.143 0.248 0.248 0.141 0.087
DQ 0.677 7.688 4.005 7.783 22.959 13.607 4.436
p-val 0.984 0.174 0.549 0.169 0.000 0.018 0.489



Table 3.9: Consumer Staples: OOS 1-step-ahead VaR evaluation. Empirical quantile Ĉα,

estimated Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-val

are reported. L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator

for variance. All models are compared to LQR (Linear Quantile Regression) while models with

significantly less accurate forecasts at 95% level are reported in bold, significantly more accurate

as underlined. NQR is Nonlinear Quantile Regression.

KO 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.016 0.054 0.080 0.226 0.730 0.886 0.934

L̂ 0.027 0.096 0.152 0.251 0.242 0.146 0.090
DQ 5.273 3.793 4.392 5.079 3.978 7.229 10.945
p-val 0.383 0.580 0.494 0.406 0.553 0.204 0.052

NQR–t

Ĉα 0.014 0.046 0.082 0.234 0.732 0.900 0.954

L̂ 0.024 0.093 0.147 0.252 0.240 0.143 0.088
DQ 1.794 7.628 7.248 4.474 2.975 3.694 7.425
p-val 0.877 0.178 0.203 0.483 0.704 0.594 0.191

LQR

Ĉα 0.016 0.048 0.084 0.238 0.730 0.890 0.956

L̂ 0.025 0.094 0.149 0.250 0.241 0.141 0.086
DQ 5.273 5.003 7.528 3.786 4.481 2.999 8.419
p-val 0.383 0.416 0.184 0.581 0.482 0.700 0.135

PG 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.010 0.054 0.108 0.260 0.740 0.892 0.944

L̂ 0.021 0.078 0.127 0.219 0.218 0.129 0.081
DQ 4.783 5.366 3.762 4.179 2.178 1.493 7.563
p-val 0.443 0.373 0.584 0.524 0.824 0.914 0.182

NQR–t

Ĉα 0.004 0.040 0.098 0.258 0.750 0.906 0.966

L̂ 0.021 0.078 0.124 0.218 0.218 0.123 0.078
DQ 2.165 6.561 3.944 1.120 5.113 8.247 9.596
p-val 0.826 0.255 0.557 0.952 0.402 0.143 0.088

LQR

Ĉα 0.006 0.048 0.096 0.266 0.740 0.904 0.956

L̂ 0.020 0.076 0.124 0.217 0.218 0.124 0.075
DQ 0.625 6.069 6.592 3.022 2.929 2.770 5.494
p-val 0.987 0.300 0.253 0.697 0.711 0.735 0.359

WMT 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.008 0.042 0.066 0.198 0.740 0.892 0.948

L̂ 0.023 0.088 0.146 0.238 0.237 0.142 0.085
DQ 0.528 6.672 10.904 9.091 4.147 13.113 12.194
p-val 0.991 0.246 0.053 0.106 0.528 0.022 0.032

NQR–t

Ĉα 0.012 0.040 0.060 0.190 0.748 0.908 0.958

L̂ 0.024 0.090 0.144 0.240 0.234 0.136 0.083
DQ 0.966 13.278 22.010 13.123 3.343 13.708 11.415
p-val 0.965 0.021 0.001 0.022 0.647 0.018 0.044

LQR

Ĉα 0.014 0.040 0.062 0.194 0.736 0.916 0.960

L̂ 0.023 0.088 0.142 0.239 0.233 0.135 0.083
DQ 1.794 10.615 24.678 10.871 5.367 17.762 11.334
p-val 0.877 0.060 0.000 0.054 0.373 0.003 0.045
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Table 3.10: Energy: OOS 1-step-ahead VaR evaluation. Empirical quantile Ĉα, estimated

Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-val are reported.

L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator for variance.

All models are compared to LQR (Linear Quantile Regression) while models with significantly

less accurate forecasts at forecasts at 95% level are reported in bold, significantly more accurate

as underlined. NQR is Nonlinear Quantile Regression.

CVX 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.008 0.048 0.086 0.218 0.742 0.920 0.942

L̂ 0.032 0.120 0.200 0.354 0.328 0.182 0.114
DQ 0.528 3.097 5.103 7.204 6.358 4.948 5.070
p-val 0.991 0.685 0.403 0.206 0.273 0.422 0.407

NQR–t

Ĉα 0.006 0.030 0.086 0.214 0.762 0.936 0.960

L̂ 0.033 0.122 0.198 0.357 0.327 0.187 0.113
DQ 0.625 8.748 3.705 8.766 9.360 13.662 6.086
p-val 0.987 0.120 0.593 0.119 0.096 0.018 0.298

LQR

Ĉα 0.006 0.034 0.080 0.210 0.752 0.930 0.966

L̂ 0.031 0.120 0.197 0.357 0.328 0.181 0.109
DQ 0.625 7.137 4.526 6.363 8.908 11.580 6.641
p-val 0.987 0.211 0.476 0.272 0.113 0.041 0.249

SLB 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.048 0.104 0.246 0.778 0.910 0.960

L̂ 0.055 0.189 0.317 0.555 0.537 0.297 0.173
DQ 2.165 3.090 1.714 6.479 7.796 2.743 7.098
p-val 0.826 0.686 0.887 0.262 0.168 0.740 0.213

NQR–t

Ĉα 0.006 0.050 0.104 0.246 0.774 0.918 0.968

L̂ 0.052 0.191 0.312 0.552 0.537 0.297 0.175
DQ 0.625 2.958 5.302 9.207 9.767 7.251 10.555
p-val 0.987 0.707 0.380 0.101 0.082 0.203 0.061

LQR

Ĉα 0.004 0.042 0.104 0.252 0.774 0.912 0.968

L̂ 0.051 0.187 0.315 0.552 0.536 0.296 0.174
DQ 2.165 2.551 5.436 9.337 9.156 7.249 10.555
p-val 0.826 0.769 0.365 0.096 0.103 0.203 0.061

XOM 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.006 0.042 0.080 0.218 0.754 0.896 0.918

L̂ 0.030 0.112 0.185 0.316 0.304 0.171 0.109
DQ 0.625 6.284 4.644 8.302 4.540 2.795 17.536
p-val 0.987 0.280 0.461 0.140 0.475 0.732 0.004

NQR–t

Ĉα 0.004 0.034 0.066 0.202 0.772 0.926 0.970

L̂ 0.033 0.119 0.185 0.321 0.310 0.170 0.107
DQ 2.165 6.967 11.610 17.769 2.698 6.640 8.944
p-val 0.826 0.223 0.041 0.003 0.746 0.249 0.111

LQR

Ĉα 0.004 0.036 0.056 0.204 0.752 0.924 0.960

L̂ 0.030 0.116 0.184 0.318 0.305 0.168 0.103
DQ 2.165 6.486 17.044 16.395 3.983 10.348 6.086
p-val 0.826 0.262 0.004 0.006 0.552 0.066 0.298



Table 3.11: Financials: OOS 1-step-ahead VaR evaluation. Empirical quantile Ĉα, estimated

Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-val are reported.

L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator for variance.

All models are compared to LQR (Linear Quantile Regression) while models with significantly

less accurate forecasts at forecasts at 95% level are reported in bold, significantly more accurate

as underlined. NQR is Nonlinear Quantile Regression.

BAC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.034 0.092 0.224 0.798 0.916 0.964

L̂ 0.079 0.277 0.410 0.693 0.682 0.386 0.239
DQ 4.700 7.862 9.525 18.985 10.441 4.778 7.500
p-val 0.454 0.164 0.090 0.002 0.064 0.444 0.186

NQR–t

Ĉα 0.012 0.074 0.130 0.264 0.762 0.884 0.928

L̂ 0.072 0.258 0.412 0.689 0.669 0.381 0.230
DQ 0.966 8.162 11.953 14.831 6.278 6.485 6.002
p-val 0.965 0.148 0.035 0.011 0.280 0.262 0.306

LQR

Ĉα 0.012 0.054 0.116 0.302 0.776 0.908 0.940

L̂ 0.074 0.247 0.408 0.695 0.672 0.384 0.230
DQ 4.729 4.113 7.873 18.698 9.527 2.779 9.004
p-val 0.450 0.533 0.163 0.002 0.090 0.734 0.109

C 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.038 0.080 0.188 0.760 0.918 0.968

L̂ 0.074 0.240 0.385 0.661 0.646 0.367 0.228
DQ 2.165 3.457 7.214 18.904 3.659 7.713 9.973
p-val 0.826 0.630 0.205 0.002 0.599 0.173 0.076

NQR–t

Ĉα 0.020 0.068 0.138 0.210 0.754 0.878 0.930

L̂ 0.059 0.229 0.383 0.650 0.642 0.374 0.222
DQ 7.278 5.646 11.310 8.423 5.226 11.960 11.945
p-val 0.201 0.342 0.046 0.134 0.389 0.035 0.036

LQR

Ĉα 0.012 0.050 0.092 0.216 0.738 0.902 0.958

L̂ 0.062 0.227 0.379 0.652 0.645 0.366 0.223
DQ 0.966 3.008 4.651 9.657 4.822 11.235 7.019
p-val 0.965 0.699 0.460 0.086 0.438 0.047 0.219

WFC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.020 0.068 0.216 0.784 0.934 0.966

L̂ 0.060 0.191 0.317 0.553 0.532 0.316 0.187
DQ 4.700 15.095 9.827 9.355 9.891 20.233 9.349
p-val 0.454 0.010 0.080 0.096 0.078 0.001 0.096

NQR–t

Ĉα 0.006 0.036 0.126 0.260 0.746 0.916 0.950

L̂ 0.053 0.180 0.307 0.549 0.531 0.308 0.180
DQ 0.625 5.946 5.528 2.432 3.187 11.603 6.409
p-val 0.987 0.311 0.355 0.787 0.671 0.041 0.268

LQR

Ĉα 0.004 0.040 0.104 0.252 0.744 0.906 0.954

L̂ 0.047 0.180 0.305 0.547 0.532 0.311 0.184
DQ 2.165 4.253 4.162 2.628 4.604 10.960 5.352
p-val 0.826 0.514 0.526 0.757 0.466 0.052 0.375
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Table 3.12: Health Care: OOS 1-step-ahead VaR evaluation. Empirical quantile Ĉα, es-

timated Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-val

are reported. L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator

for variance. All models are compared to LQR (Linear Quantile Regression) while models with

significantly less accurate forecasts at forecasts at 95% level are reported in bold, significantly

more accurate as underlined. NQR is Nonlinear Quantile Regression.

JNJ 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.008 0.050 0.086 0.242 0.750 0.916 0.940

L̂ 0.023 0.078 0.124 0.223 0.224 0.137 0.085
DQ 0.528 8.739 9.696 11.787 4.834 1.777 4.591
p-val 0.991 0.120 0.084 0.038 0.436 0.879 0.468

NQR–t

Ĉα 0.010 0.046 0.098 0.238 0.738 0.906 0.956

L̂ 0.023 0.077 0.125 0.222 0.227 0.134 0.085
DQ 0.521 5.373 7.201 8.620 4.583 1.614 4.235
p-val 0.991 0.372 0.206 0.125 0.469 0.900 0.516

LQR

Ĉα 0.008 0.046 0.092 0.246 0.740 0.908 0.954

L̂ 0.022 0.077 0.124 0.223 0.227 0.134 0.084
DQ 0.528 5.373 7.770 8.230 4.641 2.110 4.677
p-val 0.991 0.372 0.169 0.144 0.461 0.834 0.457

MRK 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.010 0.064 0.122 0.256 0.762 0.916 0.958

L̂ 0.036 0.120 0.198 0.324 0.316 0.185 0.114
DQ 0.521 11.754 6.019 4.120 6.632 4.045 6.776
p-val 0.991 0.038 0.304 0.532 0.249 0.543 0.238

NQR–t

Ĉα 0.002 0.046 0.096 0.250 0.784 0.930 0.978

L̂ 0.034 0.114 0.191 0.322 0.316 0.178 0.107
DQ 4.700 8.810 3.909 2.898 9.327 12.937 13.355
p-val 0.454 0.117 0.563 0.716 0.097 0.024 0.020

LQR

Ĉα 0.004 0.044 0.100 0.240 0.782 0.938 0.976

L̂ 0.031 0.115 0.191 0.321 0.316 0.180 0.110
DQ 2.165 8.823 5.160 4.349 8.123 15.792 11.610
p-val 0.826 0.116 0.397 0.500 0.150 0.007 0.041

PFE 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.010 0.034 0.086 0.224 0.762 0.918 0.962

L̂ 0.035 0.118 0.199 0.353 0.339 0.185 0.110
DQ 0.521 8.045 4.133 9.155 9.560 9.973 11.253
p-val 0.991 0.154 0.530 0.103 0.089 0.076 0.047

NQR–t

Ĉα 0.006 0.038 0.088 0.220 0.752 0.900 0.952

L̂ 0.033 0.118 0.195 0.353 0.342 0.184 0.109
DQ 0.625 8.253 6.215 7.514 7.169 2.850 5.355
p-val 0.987 0.143 0.286 0.185 0.208 0.723 0.374

LQR

Ĉα 0.008 0.038 0.092 0.222 0.748 0.906 0.964

L̂ 0.033 0.118 0.196 0.352 0.339 0.184 0.109
DQ 0.528 6.321 6.515 7.438 9.738 3.798 8.053
p-val 0.991 0.276 0.259 0.190 0.083 0.579 0.153



Table 3.13: Information Technology: OOS 1-step-ahead VaR evaluation. Empirical quantile

Ĉα, estimated Giacomini and Komunjer (2005) L̂, logit DQ statistics and its 1000× simulated p-

val are reported. L̂ is moreover tested with Diebold-Mariano statistics with Newey-West estimator

for variance. All models are compared to LQR (Linear Quantile Regression) while models with

significantly less accurate forecasts at forecasts at 95% level are reported in bold, significantly

more accurate as underlined. NQR is Nonlinear Quantile Regression.

AAPL 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.008 0.044 0.090 0.246 0.768 0.918 0.954

L̂ 0.037 0.142 0.235 0.407 0.421 0.250 0.151
DQ 0.528 7.313 12.154 4.184 9.674 4.354 6.992
p-val 0.991 0.198 0.033 0.523 0.085 0.500 0.221

NQR–t

Ĉα 0.004 0.052 0.088 0.242 0.798 0.920 0.966

L̂ 0.037 0.144 0.231 0.406 0.427 0.252 0.153
DQ 2.165 11.821 8.301 5.820 8.896 7.450 6.115
p-val 0.826 0.037 0.140 0.324 0.113 0.189 0.295

LQR

Ĉα 0.004 0.028 0.072 0.232 0.782 0.924 0.956

L̂ 0.037 0.142 0.236 0.409 0.419 0.252 0.151
DQ 2.165 10.803 12.643 7.312 6.676 6.676 5.293
p-val 0.826 0.055 0.027 0.198 0.246 0.246 0.381

INTC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.024 0.084 0.210 0.736 0.880 0.950

L̂ 0.040 0.136 0.228 0.400 0.396 0.217 0.130
DQ 2.165 11.939 5.714 6.955 1.610 8.670 2.643
p-val 0.826 0.036 0.335 0.224 0.900 0.123 0.755

NQR–t

Ĉα 0.008 0.034 0.080 0.208 0.730 0.890 0.946

L̂ 0.038 0.137 0.230 0.404 0.401 0.216 0.132
DQ 0.528 13.381 9.361 10.628 1.797 3.163 4.850
p-val 0.991 0.020 0.095 0.059 0.876 0.675 0.434

LQR

Ĉα 0.006 0.032 0.078 0.214 0.732 0.904 0.952

L̂ 0.037 0.136 0.228 0.401 0.397 0.214 0.129
DQ 0.625 9.235 9.069 6.843 1.051 6.436 1.743
p-val 0.987 0.100 0.106 0.233 0.958 0.266 0.883

MSFT 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.006 0.050 0.084 0.258 0.780 0.912 0.962

L̂ 0.036 0.134 0.216 0.369 0.357 0.212 0.130
DQ 0.625 7.825 7.001 2.623 6.287 2.177 6.331
p-val 0.987 0.166 0.221 0.758 0.279 0.824 0.275

NQR–t

Ĉα 0.014 0.048 0.100 0.278 0.770 0.912 0.960

L̂ 0.036 0.131 0.212 0.365 0.356 0.209 0.129
DQ 4.545 2.224 5.380 5.847 12.139 5.960 6.163
p-val 0.474 0.817 0.371 0.321 0.033 0.310 0.291

LQR

Ĉα 0.014 0.050 0.094 0.268 0.770 0.914 0.962

L̂ 0.038 0.130 0.211 0.364 0.357 0.210 0.129
DQ 4.545 3.315 5.653 6.091 10.553 2.825 7.831
p-val 0.474 0.651 0.341 0.298 0.061 0.727 0.166
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Table 3.14: Telecommunication Services: 5-days-ahead VaR evaluation. Empirical quantile

Ĉα, estimated Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano

statistics with Newey-West estimator for variance. All models are compared to LQR (Linear

Quantile Regression) while models with significantly less accurate forecasts at 95% level are re-

ported in bold, significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

CMCSA 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.006 0.044 0.088 0.218 0.702 0.880 0.942

L̂ 0.093 0.350 0.594 1.063 1.066 0.566 0.329
DM 0.619 0.154 1.218 1.093 -0.360 1.151 2.423

NQR–t

Ĉα 0.006 0.060 0.106 0.242 0.702 0.872 0.932

L̂ 0.088 0.347 0.582 1.051 1.067 0.553 0.314
DM -0.479 -0.306 0.939 0.112 -0.374 -0.546 0.258

LQR

Ĉα 0.016 0.056 0.104 0.232 0.688 0.872 0.938

L̂ 0.090 0.348 0.579 1.050 1.069 0.556 0.313

T 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.022 0.084 0.230 0.804 0.902 0.934

L̂ 0.049 0.173 0.298 0.536 0.555 0.341 0.216
DM 0.979 -0.022 1.094 0.515 1.102 1.653 1.988

NQR–t

Ĉα 0.002 0.022 0.068 0.220 0.808 0.930 0.960

L̂ 0.048 0.173 0.284 0.528 0.550 0.333 0.205
DM 0.954 -0.333 -1.305 -0.701 -0.002 0.885 0.743

LQR

Ĉα 0.002 0.014 0.060 0.206 0.798 0.928 0.966

L̂ 0.047 0.173 0.290 0.532 0.550 0.330 0.203

VZ 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.010 0.028 0.054 0.186 0.752 0.912 0.948

L̂ 0.054 0.194 0.330 0.580 0.601 0.356 0.219
DM 0.967 0.539 1.017 -0.513 -0.535 1.620 1.549

NQR–t

Ĉα 0.004 0.022 0.058 0.196 0.736 0.914 0.954

L̂ 0.047 0.186 0.320 0.577 0.609 0.339 0.199
DM -1.913 -1.776 -0.007 -1.011 0.631 -0.463 -0.939

LQR

Ĉα 0.002 0.020 0.056 0.186 0.726 0.920 0.958

L̂ 0.049 0.190 0.320 0.586 0.605 0.341 0.203



Table 3.15: Consumer Discretionary: 5-days-ahead VaR evaluation. Empirical quantile Ĉα,

estimated Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statis-

tics with Newey-West estimator for variance. All models are compared to LQR (Linear Quantile

Regression) while models with significantly less accurate forecasts at 95% level are reported in

bold, significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

AMZN 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.018 0.078 0.134 0.284 0.760 0.878 0.930

L̂ 0.098 0.402 0.692 1.297 1.423 0.777 0.452
DM 0.138 -0.169 -0.511 -0.173 -0.345 -0.205 0.632

NQR–t

Ĉα 0.016 0.072 0.126 0.284 0.760 0.880 0.928

L̂ 0.098 0.403 0.703 1.296 1.443 0.786 0.463
DM 0.247 0.009 0.807 -0.315 0.745 0.366 0.815

LQR

Ĉα 0.018 0.066 0.124 0.286 0.754 0.876 0.942

L̂ 0.097 0.403 0.698 1.299 1.426 0.779 0.442

DIS 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.012 0.058 0.114 0.266 0.764 0.922 0.952

L̂ 0.076 0.306 0.519 0.934 0.886 0.487 0.282
DM -1.203 -1.179 -1.428 -1.149 -0.086 1.293 1.013

NQR–t

Ĉα 0.028 0.064 0.114 0.268 0.756 0.904 0.954

L̂ 0.084 0.313 0.527 0.935 0.890 0.479 0.275
DM -0.661 -0.635 -1.579 -1.696 0.663 0.890 -1.097

LQR

Ĉα 0.022 0.060 0.118 0.272 0.752 0.904 0.954

L̂ 0.086 0.317 0.538 0.945 0.887 0.477 0.277

MCD 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.028 0.080 0.130 0.264 0.802 0.930 0.962

L̂ 0.061 0.211 0.362 0.588 0.499 0.289 0.175
DM 1.919 1.529 1.849 1.588 -1.293 -0.553 -1.150

NQR–t

Ĉα 0.002 0.048 0.106 0.252 0.812 0.946 0.976

L̂ 0.056 0.200 0.338 0.574 0.526 0.298 0.183
DM 1.063 1.386 1.316 1.245 2.505 1.857 2.224

LQR

Ĉα 0.014 0.052 0.100 0.212 0.800 0.948 0.976

L̂ 0.051 0.196 0.331 0.559 0.503 0.292 0.179
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Table 3.16: Consumer Staples: 5-days-ahead VaR evaluation. Empirical quantile Ĉα, esti-

mated Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statistics

with Newey-West estimator for variance. All models are compared to LQR (Linear Quantile

Regression) while models with significantly less accurate forecasts at 95% level are reported in

bold, significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

KO 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.014 0.056 0.112 0.248 0.686 0.868 0.942

L̂ 0.055 0.194 0.330 0.568 0.576 0.308 0.181
DM 1.957 0.221 0.708 -0.953 0.669 -0.005 1.014

NQR–t

Ĉα 0.012 0.056 0.102 0.252 0.686 0.864 0.948

L̂ 0.057 0.190 0.325 0.576 0.575 0.308 0.176
DM 2.269 -1.205 0.593 0.470 0.588 0.048 0.538

LQR

Ĉα 0.016 0.056 0.100 0.256 0.706 0.896 0.956

L̂ 0.052 0.193 0.323 0.574 0.571 0.308 0.174

PG 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.026 0.090 0.130 0.288 0.742 0.880 0.934

L̂ 0.050 0.177 0.285 0.495 0.477 0.267 0.162
DM 1.514 2.199 1.600 1.160 0.355 0.985 1.414

NQR–t

Ĉα 0.014 0.064 0.112 0.248 0.754 0.906 0.948

L̂ 0.046 0.166 0.274 0.495 0.476 0.259 0.156
DM 2.533 4.099 1.441 1.511 0.799 0.861 1.568

LQR

Ĉα 0.016 0.058 0.118 0.262 0.760 0.910 0.958

L̂ 0.042 0.161 0.271 0.488 0.474 0.257 0.153

WMT 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.022 0.052 0.080 0.192 0.680 0.870 0.934

L̂ 0.047 0.170 0.283 0.518 0.551 0.287 0.164
DM 0.559 -0.068 -0.529 -1.537 2.601 1.580 1.445

NQR–t

Ĉα 0.014 0.042 0.082 0.186 0.728 0.870 0.950

L̂ 0.046 0.171 0.289 0.518 0.533 0.282 0.157
DM 0.796 0.186 0.442 -1.916 1.809 1.388 0.664

LQR

Ĉα 0.008 0.036 0.070 0.170 0.710 0.888 0.968

L̂ 0.045 0.170 0.288 0.528 0.525 0.275 0.156



Table 3.17: Energy: 5-days-ahead VaR evaluation. Empirical quantile Ĉα, estimated Gi-

acomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statistics with

Newey-West estimator for variance. All models are compared to LQR (Linear Quantile Regres-

sion) while models with significantly less accurate forecasts at 95% level are reported in bold,

significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

CVX 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.012 0.064 0.102 0.238 0.736 0.894 0.940

L̂ 0.069 0.275 0.460 0.797 0.734 0.396 0.233
DM -0.686 -0.730 -1.314 -2.525 -0.780 0.218 0.788

NQR–t

Ĉα 0.014 0.062 0.102 0.224 0.774 0.922 0.952

L̂ 0.084 0.288 0.466 0.810 0.748 0.425 0.242
DM 2.826 1.248 -1.139 -2.035 0.454 1.815 1.923

LQR

Ĉα 0.012 0.056 0.104 0.210 0.726 0.902 0.960

L̂ 0.070 0.281 0.476 0.830 0.739 0.394 0.225

SLB 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.022 0.068 0.128 0.288 0.780 0.920 0.972

L̂ 0.101 0.398 0.676 1.233 1.157 0.640 0.375
DM -1.100 -0.849 -0.850 0.170 0.861 0.716 1.577

NQR–t

Ĉα 0.018 0.074 0.116 0.274 0.780 0.924 0.948

L̂ 0.106 0.404 0.676 1.229 1.156 0.640 0.382
DM -0.262 -0.646 -1.145 -0.034 0.387 0.772 0.775

LQR

Ĉα 0.018 0.066 0.120 0.282 0.778 0.928 0.972

L̂ 0.107 0.411 0.692 1.229 1.155 0.636 0.371

XOM 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.014 0.046 0.090 0.238 0.724 0.890 0.932

L̂ 0.065 0.250 0.410 0.708 0.688 0.387 0.239
DM -3.030 -1.576 -2.020 -1.340 -0.602 1.520 2.044

NQR–t

Ĉα 0.016 0.048 0.082 0.220 0.736 0.910 0.962

L̂ 0.072 0.253 0.414 0.705 0.700 0.392 0.233
DM 1.796 -2.325 -2.014 -2.052 1.079 1.913 1.680

LQR

Ĉα 0.014 0.044 0.078 0.200 0.724 0.906 0.960

L̂ 0.070 0.264 0.426 0.725 0.692 0.376 0.225
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Table 3.18: Financials: 5-days-ahead VaR evaluation. Empirical quantile Ĉα, estimated

Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statistics with

Newey-West estimator for variance. All models are compared to LQR (Linear Quantile Regres-

sion) while models with significantly less accurate forecasts at 95% level are reported in bold,

significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

BAC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.034 0.076 0.240 0.824 0.936 0.984

L̂ 0.177 0.494 0.788 1.396 1.461 0.819 0.498
DM 1.132 3.624 2.220 0.792 1.279 0.771 1.736

NQR–t

Ĉα 0.004 0.066 0.122 0.266 0.812 0.918 0.968

L̂ 0.147 0.465 0.777 1.366 1.440 0.803 0.484
DM -0.059 1.486 1.163 0.232 0.160 -0.416 1.178

LQR

Ĉα 0.006 0.052 0.104 0.296 0.796 0.922 0.972

L̂ 0.148 0.450 0.751 1.359 1.439 0.808 0.478

C 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.024 0.042 0.148 0.748 0.908 0.952

L̂ 0.204 0.482 0.797 1.434 1.348 0.782 0.451
DM 6.938 1.884 1.168 2.321 1.001 0.471 -0.317

NQR–t

Ĉα 0.020 0.058 0.078 0.202 0.720 0.900 0.902

L̂ 0.131 0.455 0.757 1.350 1.347 0.778 0.486
DM -0.298 -0.744 -1.371 0.150 0.571 0.439 1.347

LQR

Ĉα 0.008 0.024 0.070 0.202 0.748 0.888 0.938

L̂ 0.134 0.468 0.779 1.348 1.342 0.776 0.454

WFC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.004 0.040 0.092 0.204 0.778 0.930 0.970

L̂ 0.118 0.395 0.667 1.154 1.077 0.596 0.369
DM 8.562 1.652 1.383 1.001 -0.520 0.539 2.272

NQR–t

Ĉα 0.010 0.062 0.088 0.232 0.746 0.912 0.958

L̂ 0.094 0.393 0.650 1.147 1.074 0.584 0.351
DM -1.124 0.853 0.496 1.311 -1.798 -1.691 -0.895

LQR

Ĉα 0.004 0.052 0.088 0.248 0.736 0.900 0.962

L̂ 0.098 0.381 0.646 1.138 1.085 0.592 0.358



Table 3.19: Health Care: 5-days-ahead VaR evaluation. Empirical quantile Ĉα, estimated

Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statistics with

Newey-West estimator for variance. All models are compared to LQR (Linear Quantile Regres-

sion) while models with significantly less accurate forecasts at 95% level are reported in bold,

significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

JNJ 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.042 0.072 0.214 0.774 0.916 0.954

L̂ 0.042 0.144 0.255 0.465 0.484 0.288 0.175
DM 2.099 -0.295 -0.051 -1.145 0.440 0.636 -0.390

NQR–t

Ĉα 0.004 0.038 0.082 0.232 0.766 0.918 0.952

L̂ 0.040 0.144 0.253 0.465 0.485 0.286 0.176
DM 0.368 -1.050 -0.925 -2.047 0.694 0.385 -0.365

LQR

Ĉα 0.000 0.036 0.082 0.232 0.764 0.912 0.966

L̂ 0.039 0.146 0.255 0.474 0.482 0.284 0.178

MRK 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.020 0.082 0.138 0.268 0.802 0.924 0.958

L̂ 0.065 0.259 0.427 0.741 0.751 0.417 0.244
DM 0.857 0.979 0.684 0.360 -1.704 -0.612 -0.505

NQR–t

Ĉα 0.012 0.066 0.102 0.240 0.808 0.928 0.972

L̂ 0.068 0.244 0.418 0.732 0.754 0.415 0.252
DM 2.240 0.190 0.746 -0.213 -1.905 -1.123 0.474

LQR

Ĉα 0.010 0.064 0.102 0.238 0.818 0.942 0.970

L̂ 0.061 0.243 0.414 0.733 0.772 0.425 0.250

PFE 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.026 0.042 0.162 0.770 0.936 0.980

L̂ 0.067 0.264 0.443 0.717 0.687 0.372 0.231
DM 1.322 0.426 0.454 -0.136 -0.213 -0.423 2.287

NQR–t

Ĉα 0.002 0.026 0.044 0.164 0.752 0.908 0.966

L̂ 0.065 0.260 0.439 0.717 0.687 0.375 0.219
DM -0.479 -0.775 -0.322 -0.214 -0.075 -0.024 -1.022

LQR

Ĉα 0.004 0.026 0.046 0.168 0.764 0.916 0.974

L̂ 0.065 0.263 0.440 0.718 0.687 0.375 0.221
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Table 3.20: Information Technology: 5-days-ahead VaR evaluation. Empirical quantile Ĉα,

estimated Giacomini and Komunjer (2005) L̂, L̂ is moreover tested with Diebold-Mariano statis-

tics with Newey-West estimator for variance. All models are compared to LQR (Linear Quantile

Regression) while models with significantly less accurate forecasts at 95% level are reported in

bold, significantly more accurate as underlined. NQR is Nonlinear Quantile Regression.

AAPL 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.018 0.088 0.146 0.344 0.812 0.908 0.944

L̂ 0.073 0.302 0.525 0.926 0.894 0.527 0.309
DM 0.743 0.954 1.029 0.747 0.084 0.096 0.279

NQR–t

Ĉα 0.014 0.084 0.160 0.332 0.816 0.912 0.954

L̂ 0.067 0.276 0.474 0.902 0.895 0.528 0.307
DM -0.609 -0.336 -0.590 0.067 0.234 0.198 0.166

LQR

Ĉα 0.000 0.050 0.114 0.302 0.830 0.928 0.960

L̂ 0.069 0.280 0.482 0.901 0.894 0.526 0.306

INTC 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.002 0.020 0.064 0.194 0.694 0.906 0.952

L̂ 0.081 0.277 0.473 0.886 0.905 0.504 0.300
DM 3.748 1.701 -0.279 -0.645 -0.329 -0.501 -1.357

NQR–t

Ĉα 0.002 0.022 0.080 0.190 0.708 0.902 0.950

L̂ 0.077 0.269 0.476 0.882 0.912 0.511 0.317
DM 1.522 -0.002 0.377 -2.048 0.784 0.269 1.800

LQR

Ĉα 0.002 0.020 0.072 0.198 0.706 0.896 0.954

L̂ 0.075 0.269 0.475 0.894 0.909 0.510 0.307

MSFT 0.01 0.05 0.1 0.25 0.75 0.9 0.95

NQR–normal

Ĉα 0.018 0.048 0.092 0.230 0.794 0.912 0.946

L̂ 0.084 0.296 0.482 0.834 0.864 0.485 0.282
DM -0.540 0.100 0.739 1.204 1.363 0.616 -0.524

NQR–t

Ĉα 0.020 0.056 0.102 0.252 0.788 0.916 0.944

L̂ 0.092 0.294 0.474 0.823 0.862 0.483 0.283
DM 1.291 -0.272 0.035 0.023 1.441 0.312 -0.285

LQR

Ĉα 0.018 0.054 0.100 0.268 0.786 0.910 0.948

L̂ 0.089 0.295 0.474 0.822 0.859 0.481 0.284



3.C Figures

Figure 3.3: Estimated parameters from Normal and t copula using full sample
data. For each quantile level we are summarizing the results for 21 assets.
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Figure 3.4: Degrees of freedom for t copula using the full sample data. For each
quantile level we are summarizing the results for 21 assets.
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Figure 3.5: Out-of-sample correlation from Normal copula. The in-sample period
includes 1335 observations and the out-of-sample 500. We use the one-step-ahead
rolling window for a length for approximately two years.
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Figure 3.6: Out-of-sample correlation from t copula. The in-sample period includes
1335 observations and the out-of-sample 500. We use the one-step-ahead rolling
window for a length for approximately two years and assume that the degrees-of-
freedom are constant throughout the out-of-sample window.
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Figure 3.7: One-step-ahead forecast V aRα=5% from Linear quantile regression and
Normal and t copula regression. By row: technology, consumer cyclical, consumer
defense and communication.
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Figure 3.8: One-step-ahead V aRα=5% from Linear quantile regression and Normal
and t copula regression. By row: financial, energy and health.
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Figure 3.9: Five-step-ahead forecast V aRα=5% from Linear quantile regression and
Normal and t copula regression. By row: technology, consumer cyclical, consumer
defense and communication.
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Figure 3.10: Five-step-ahead V aRα=5% from Linear quantile regression and Normal
and t copula regression. By row: financial, energy and health.
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Chapter 4
A copula quantile approach to conditional Value-at-Risk estimation

Abstract

We propose to use copula quantile regression models and realized volatility to
estimate Value-at-Risk of an institution conditional on some other institution being
under financial distress. The model proposed uses copulas from elliptical family,
Normal and t copula, and the realized volatility measure which is calculated using
5 minutes returns. Contrary to the literature which studies the systemic risk of
financial institutions, we estimate the risk contribution of an institution to some
other institution. We apply the model on 21 most liquid U.S. stocks from seven
main market sectors. For comparison we use a benchmark model for VaR based on
rescaled realized volatility and also use linear quantile regression model. We find
that in most cases the average value of ∆CoV aR from copula models is between the
benchmark and the linear model. We also find that stocks from Financial sector
have the highest risk spillovers among each other, followed by the Information
Technology sector. Consumer Staples industry stocks and Health Care have the
lowest risk spillovers.

Keywords: value-at-risk, quantile copula regression, realized-volatility
JEL: C14, C32, C58

4.1 Introduction

Value-at-Risk (VaR) is the standard risk measure used by financial industry.
It is also used by regulators to determine the required capital which companies
have to set aside to tackle market risk. VaR considers only the market risk of an
institution viewed in isolation though. Thus, to avoid this shortcoming, alternative
measures which reflect the systemic risk have developed in the recent years.

Adrian & Brunnermeier (2011) introduce the conditional Value-at-Risk (CoVaR).
They define CoV aRj|i as the VaR of institution j conditional on institution i be-
ing at its VaR. If we denote the two random variables at time t by Rj,t and Ri,t

This paper was co-authored with Jozef Baruńık and is in preparation for submission.
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the conditioning event for CoVaR is Ri,t = V aRi
t. The authors estimate systemic

risk by replacing the financial system for the institution j. They use daily market
equity data and quarterly data for the balance sheet. The CoVaR is estimated by
linear quantile regression. After CoVaR introduction a number of systemic risk
research papers emerged. Most of them focus in studying financial institutions,
where banks and insurance companies prevail. López-Espinosa et al. (2012) use
the CoVaR approach to identify the main factors behind systemic risk in a set of
large international banks. They find that short-term wholesale funding is a key
determinant in triggering systemic risk episodes. In a recent paper Karimalis &
Nomikos (2014) use copula functions to model CoVaR. They measure the systemic
risk contribution for a portfolio of large European banks. The authors use copula
functions from Archimedean family, which in most cases offer closed-form expres-
sions for CoVaR estimation1. By construction, their CoVaR estimation is constant,
but they solve this shortcoming by employing time-varying copula models based
on work of Patton (2006).

In literature there is a second definition of CoVaR. Girardi & Ergün (2013)
propose the same risk metric, but the conditioning event is that institution i is
at most at its VaR level. This definition considers more severe distress events for
institution i that are further in the tail of losses distribution i.e Ri,t ≤ V aRi

t.
Mainik & Schaanning (2014) study the consistency of of CoVaR measure under
both definitions with respect to stochastic dependence. The authors show that
under stress event Ri,t = V aRi

t CoVaR is not dependence consistent. In particular
if (Rj, Ri) is bivariate normal, then CoVaR is not an increasing function of the
correlation parameter. Similar issues arise in the bivariate t model and in the
model with t margins and a Gumbel copula. On the other hand, they show that
the CoVaR estimated under the stress event Ri,t ≤ V aRi

t (in all cases) is an
increasing function of the dependence parameter.

Alternative systemic risk estimation approaches to CoVaR exist in literature.
Acharya et al. (2012) use equity returns of financial institutions to calculate sys-
temic expected shortfall (SES). The bank’s contribution to this risk is measured
by marginal expected shortfall (MES). Brownlees & Engle (2015) introduce the
SRISK index to measure the systemic risk contribution of a financial firm. The
SRISK index is a function of the firm’s size, its degree of leverage and its expected
equity loss conditional on a market downturn (LRMES). For LRMES predictions
authors propose to use DCC-GARCH model of Engle (2002) or dynamic copula

1Gumbel copula is an example where a closed-form solution does not exist. In such cases
numerical methods are required. For more details on this issue see the Footnote 2 in Chapter 3
of this thesis.



models as in Patton (2006). For a comprehensive survey on systemic risk measures
please refer to Bisias et al. (2012). The authors discuss 31 quantitative measures
of systemic risk in the economics and finance literature. In addition, they provide
an extensive appendix where they bring the definitions of these measures and show
how to implement them.

In this work we analyze the risk contribution of institution i on institution
j where both institutions belong to the same industry. This allows the study of
spillover effects within the industry. For VaR estimation we use the nonlinear
quantile copula regression models which we introduced in Chapter 3 of this dis-
sertation. In contrast to the model introduced in 3.2 where we use own lagged
realized volatility as state variable, here we estimate the VaR using inter lagged
realized volatility as state variable2. We use the same data as in Chapter 3, which
consider 21 assets from 7 different industries. Our analysis identifies the risk trans-
mission differences that exists between companies and industries. We compare our
results with a benchmark model for VaR based on rescaled realized volatility and
also compare with linear quantile regression model. In all cases the CoVaR is esti-
mated using linear quantile regression. Baruńık et al. (2015) study the same data
from a different perspective. They investigate how ”good” and ”bad” volatility
spills over stocks. The authors document asymmetric connectedness of markets
at the disaggregate sectoral level, which is in contrast to the symmetric volatility
transmission mechanism at the aggregate level.

In this study we propose to use a two-step procedure for CoVaR estimation.
First step consists in utilizing semiparametric copula-quantile (CQ) regression
models to obtain the VaR. We quantile-regress the returns of institution j on
lagged realized volatility of institution i. Using this nonlinear framework we ob-
tain the V aRj|i. The second step consists in CoVaR estimation, which is done
by using the linear quantile regression as in Adrian & Brunnermeier (2011). We
consider a total of 21 most liquid U.S. stocks which belong to 7 industries i.e.
three stock representatives for each industry. The data spans from August 2004 to
December 2011.

The organization of the rest of the paper is as follows. Section 4.2 introduces
the methodology. Section 4.3 describes the data used in the empirical part. Section
4.4 reports the results and Section 4.5 concludes.

2Refer to Footnote 1 in Chapter 1 for explanations on own and inter lagged realized volatility.
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4.2 Methodology

4.2.1 Model for VaR

Let the random variable ri,t represent the return of firm i at time t (i =
1, . . . , N, t = 1, . . . , T ). The Value-at-Risk of the random variable ri,t at confi-
dence level α ∈ (0, 1) is defined as the α quantile of the return distribution

V aRi
α,t = F−1

i,t (α) or equivalently Pr(ri,t ≤ V aRi
α,t) = α, (4.1)

where F−1
i,t is the generalized inverse distribution function of the return distribution

Fi,t, i.e. F−1
i,t := inf{ri,t ∈ R : Fi,t(ri,t) ≥ α}. Recall that for VaR we are

not following the usual sign convention and report all downside risks in negative
numbers.

For VaR estimation we employ the methodology introduced in Chapter 3.2. We
assume that the logarithmic price process obeys Itô semimartingale

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs (4.2)

where µ is a predictable process, σ is cadlag and W is the standard Brownian mo-
tion. The process in Equation 4.2 is very general, and as Todorov & Tauchen (2011)
show, it allows to accommodate stochastic volatility with possible discontinuous
sample paths.

Žikeš & Baruńık (2014) propose a linear semiparametric model for the quantiles
of future returns and volatility. They assume that the α-quantile of future returns
rt+1 = Xt+1 − Xt conditional on information set Ωt, can be written as a linear
function of the various components of the current and past quadratic variation
and weakly exogenous variables,

qα(rt+1|Ωt) = β0(α) + βββv(α)′vt + βββz(α)′zt (4.3)

where vt is a measure of quadratic variation QVt =
∫ t

0
σ2
sds = IVt, where IVt is the

integrated variance, zt is a vector of weakly exogenous variables and β0(α),βββv(α),βββz(α)
are vectors of coefficients to be estimated.

To see the connection that exists between the linear quantile model in Equation
4.3 and the logarithmic price process in Equation 4.2, Žikeš & Baruńık (2014)
consider a simplified case where the Ωt contains only IVt, i.e. vt = IVt and zt = 0.
The qα(rt+1|IVt) can be obtained from the conditional distribution of rt+1 given
IVt



frt+1|IVt(wr|IVt) =

∫ ∞
0

frt+1|IVt+1,IVt(wr|wIV , IVt)fIVt+1|IVt(wIV |IVt)dwIV

where fy|X(wy|wX) is the conditional distribution of y given X evaluated at wy
and wX . For simplicity take the one-factor volatility model where σt in Equation
4.2 follows an Ornstein-Uhlenbeck process and µt = 0. Meddahi (2003) shows
that the integrated volatility IVt follows an ARMA(1,1) process with non-gaussian
innovations. It follows that fIVt+1|IVt has a non-gaussian density, while frt+1|IVt+1,IVt

is the normal density with zero mean and variance IVt if there is no leverage effect,
or a non-gaussian density otherwise. The implied conditional quantiles of the
densities above, qα(rt+1|Ωt), α ∈ (0, 1), can be approximated by linear functions
of the current and past values of IVt and other volatility measures.

Let us formally introduce the linear quantile regression (LQR) proposed by
Koenker & Bassett (1978). Let (y1, . . . , yT ) be a random sample on Y and (x1, . . . ,xT )′

a random k sample on X. Then, the linear quantile regression definition follows.

Definition 4.1. The α quantile regression is any solution to the following problem:

min
β∈Rk

∑
t∈Tα

α|yt − x′tβ|+
∑
t∈T1−α

(1− α)|yt − x′tβ|

 (4.4)

with Tα = {t : yt ≥ x′tβ} and T1−α its complement.

In the special case where α = 0.5, the above quantile regression delivers the least
absolute deviation (LAD) model. The LAD model is more robust than ordinary
least squares (OLS) estimators whenever the errors have a fat-tailed distribution.
The problem defined in Equation 4.4 does not have a closed form-solution, however
Portnoy & Koenker (1997) provide computationally fast algorithm which is also
implemented in the quantreg package for R.

Conditional quantile functions allow for nonlinear parametric models. Bouyé &
Salmon (2009) introduced a general approach to nonlinear quantile regression based
on copula models. Using the properties of conditional probability distribution the
link between copula functions and conditional quantile functions becomes obvious.
The conditional probability distribution Pr(Y ≤ y|X = x) can be expressed in
terms of a copula function as

Pr(Y ≤ y|X = x) =
∂C(u, v; δ)

∂u
= C1[FX(x), FY (y); δ] = α (4.5)
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where C(u, v; δ) is the bivariate copula function with parameters δ3. In case Equa-
tion 4.5 is invertible with respect to v the relationship between X and quantile of
Y can be expressed as

QY |X(α|x) = q(x, α; δ) = F
[−1]
Y (D(FX(x), α; δ)) (4.6)

where D is the partial inverse of C1 in the second argument and F
[−1]
Y the pseudo-

inverse of FY . If relationship in Equation 4.5 is not invertible, the numerical
methods are required.

The distributions of FX and FY can be specified either parametrically or non-
parametrically. If we assume that FY is known only up to a location (µ) and scale
(σ) parameter the quantile curve will have this form

QY |X(α|x) = q(x, α;µ, σ, δ) = µ+ σF
[−1]
Y (D(FX(x), α; δ)) (4.7)

Thus, the copula quantile curve will have two more parameters which characterize
the distribution of Y .

In this work we use Normal and t copula, both belonging to the Elliptical
family. The quantile curve of Normal copula has the following form

QY |X(α|x) = µ+ σF
[−1]
Y

(
Φ
(
ρΦ−1(FX(x)) +

√
1− ρ2Φ−1(α)

))
(4.8)

while the quantile of t copula has the following

QY |X(α|x) = µ+ σF
[−1]
Y

(
tη

[
t−1
η+1(α)

√
(η + 1)−1 (1− ρ2)

(
η + [t−1

η (FX(x))]2
)

+ρt−1
η (FX(x))

])
(4.9)

For the derivation of these quantile functions please see Section 3.2.2 and Appendix
A.2.

The copula quantile regression is a special case of the nonlinear quantile regres-
sion. Again, let (y1, . . . , yT ) be a random sample on Y and (x1, . . . , xT ) a random
sample on X.

3Refer to Section 3.2.1 for the derivation.



Definition 4.2. The α copula quantile regression q(xt, α; δ) is a solution to the
following problem:

min
δ

∑
t∈Tp

α|yt − q(xt, α; δ)|+
∑
t∈T1−α

(1− α)|yt − q(xt, α; δ)|

 (4.10)

with Tα = {t : yt ≥ q(xt, α; δ)} and T1−α its complement.

In our model we regress returns at time t+1 (rt+1) on lagged Realized volatility
at time t (

√
RVt). The realized variance is computed as a sum of squared 5-minute

intraday returns

RVt =
M∑
i=1

r2
i , (4.11)

where i is the 5-minute intraday time interval. Thus, in the minimization problem
of Equation 4.10 we replace yt with rt+1 and xt with

√
RVt.

4.2.2 Model for CoVaR

In this work we consider the original definition of CoVaR as in Adrian & Brun-
nermeier (2011), i.e. the conditioning event for institution j is that institution i is
exactly at its VaR level of distress.

Definition 4.3 (CoVaR). We denote by CoV aRj|i(α, β, t) the VaR of institution j
conditional on institution i being under distress (ri,t = V aRi

α,t). That is, CoV aRj|i(α, β, t)
is implicitly defined by the

Pr(rj,t ≤ CoV aR
j|i
α,β,t|ri,t = V aRi

α,t) = β (4.12)

We denote institution i’s risk contribution to j by

∆CoV aRj|i(α, β, t) = CoV aRj|i(α, β, t)− CoV aRj|i(0.5, β, t) (4.13)

The estimation of CoVaR measure can be computed in various ways. Adrian
& Brunnermeier (2011) use quantile regressions, but they also show that other al-
ternatives like GARCH based models are possible. They primarily study the case
where j = system, i.e., when the return of the portfolio of all financial institutions
is at its VaR level. On the other hand, Girardi & Ergün (2013) introduce a new
conditioning event to describe the financial distress. They propose for distressed
institution being at most at its VaR as opposed to being exactly at its VaR. The
authors use a three-step procedure to estimate CoVaR. They employ univariate
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and multivariate GARCH models and take into consideration the skewness and
excess kurtosis using the skewed-t distribution of Hansen (1994) for innovations.
Karimalis & Nomikos (2014) use copulas from Archimedean family for CoVaR
estimation. The authors employ a bivariate parametric model and use Inference
Functions for Margins method to maximize the log-likelihood of the model. Having
obtained the copula parameters they get the innovations implied by copula func-
tions and the CoVaR is obtained rescaling Equation 3.4 by conditional mean and
standard deviation similar to Equation 3.104. The time-varying VaR is obtained
from GJR-GARCH model of Glosten et al. (1993). Our approach is different from
Karimalis & Nomikos (2014) in several aspects. We use semi-parametric copula
quantile regression model for VaR estimation where the inter realized volatility
drives the quantile returns forecast. Next difference consists in the definition of
CoVaR. Karimalis & Nomikos (2014) use both definitions, the original from Adrian
& Brunnermeier (2011) and the one from Girardi & Ergün (2013), whereas we use
just the former. Finally, we study the VaR of institution j conditional on insti-
tution i being at its VaR level, which allows the study of spillover effects within
specific industry.

4.2.3 Benchmark model for CoVaR

We compare the results from CoVaR model in subsection 4.2.2 with two al-
ternative models. The first model, which we consider as the benchmark model
estimates the VaR by rescaling the realized volatility. The second model estimates
the VaR by the use of linear quantile regression (LQR). Both models, the bench-
mark and the LQR, use the same method as the copula quantile regression for
CoVaR estimation. Thus, these models deffer in CoVaR estimation only on how
the VaR is estimated. The alternative models have the following form

V aRi
t+1 =φ−1(α) ·

√
RV i

t , (benchmark model) (4.14)

V aRi
t+1 =qα(rt+1|Ω) = β0(α) + β1(α)

√
RV i

t (linear model) (4.15)

where φ−1(·) is the quantile of standard Normal distribution and the linear model
in Equation 4.15 is the linear quantile regression model.

4.3 Data

We use the same data as in Chapter 3.3. Let us refresh the information about
this dataset. The data contain 21 most liquid U.S. stocks from the seven main

4The authors get the time varying innovations, hence time varying CoV aRt, by estimating a
time varying copula following the model introduced by Patton (2006).



market sectors defined in accordance with the Global Industry Classification Stan-
dard (GICS). We use three stocks with the highest market capitalization in a sector
as representative of the analyzed sector. The selected stocks account for approxi-
mately half of the total capitalization of the sector. The sectors and representative
stocks are listed in Table 3.1. The data spans from August 2004 to December 2011
and the source is Price-Data.com.5

For the computation of realized measures, we restrict the analysis to 5-minute
returns during the 9:30 a.m. to 4:00 p.m. business hours of the New York Stock
Exchange (NYSE). The data are time-synchronized by the same time-stamps. To
rule out potential estimation bias which could come from low activity we eliminate
transactions executed on Saturdays and Sundays, U.S. federal holidays, December
24 to 26, and December 31 to January 2. Consequently, our data contains 1835
trading days. A descriptive statistics for the data can be found in Table 3.2.

4.4 Empirical Results

4.4.1 VaR

Based on methodology introduced in Section 4.2, the first step in CoVaR esti-
mation is VaR estimation. We model the VaR using the copula quantile regression
models introduced in Section 4.2.1, and being more specific we use the quantile
curves from Equations 4.8 and 4.9. To save space, we report copula-quantile re-
sults in Appendix 4.A. We run the quantile copula regression for a set of quantiles
α ∈ {0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99}. For CoVaR estimation we make use of
the results only for quantiles α = 0.05 and α = 0.5 though. This because it is
a standard to use quantile α = 0.05 in risk reporting, while the use of quantile
α = 0.5 is due to the definition of ∆CoV aR. In Table 4.2 in Appendix 4.A we
provide the estimated parameters for Normal copula for Information Technology
stocks i.e. AAPL, INTC and MSFT. For estimating the VaR of each stock within
the industry V aRi

α,t is calculated by (copula) quantile regressing the returns of
asset i on lagged realized volatility of asset k at quantile α e.g. for Information
Technology i, k ∈ {AAPL, INTC,MSFT} and i 6= k. Thus, for every asset we

have two possible regressions (6 for each industry) e.g. RAAPL
t+1 ∼

√
RV

INTC

t and

RAAPL
t+1 ∼

√
RV

MSFT

t . Because we cannot arbitrarily omit any of the regressions
we consider both of them in the analysis. In Table 4.2 almost all parameters are

5http://www.price-data.com/

http://www.price-data.com/
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statistically significant6. We notice that for all pairs there is asymmetry in cor-
relations when comparing results of quantiles α with 1 − α. The correlation for
the left tail quantiles is higher (in absolute value) than the right tail quantiles. In
addition, when we compare the quantile regression of the pairs when assets switch

place (or from regressor to regressand), e.g. Ri
t+1 ∼

√
RV

k

t with Rk
t+1 ∼

√
RV

i

t,
we notice that other than for pair INTC-MSFT for the other pairs the dependence
level at specified quantiles is much different.

In the Appendix 4.A.1 we include the Normal copula parameters results for the
rest of industries. The correlation asymmetry holds for Consumer Discretionary
and Staples stocks, with higher magnitude for pairs MCD � AMZN , KO → PG
and KO → WMT 7. For the last two pairs it is interesting to see a change in
the direction of asymmetry, where the correlation of the right tail quantiles is
higher than the respective left tail. For Telecommunications stocks the correlation
asymmetry is almost lacking. For Financial stocks we observe a higher level of
correlation at all quantiles under study when compared with other industries. In
addition, the correlation asymmetry has higher magnitude and it is evident for
quantiles α = 0.01 and α = 0.99. The correlation asymmetry persists also for
Health Care and Energy stocks.

In comparison to Normal copula, the t copula allows for tail dependence through
the degrees of freedom parameter η. In Appendix 4.A.2 we report estimated pa-
rameters from t copula quantile model. Commenting on Information Technology
stocks in Table 4.9 we notice that t copula gives correlation estimates which are
higher (in absolute value) than Normal copula8. In addition the degrees of free-
dom parameter η is significant at almost all pairs and quantiles9. This confirms
the stylized fact that asset returns’ distribution are heavy tailed. Finally, t copula
gives consistent estimates as the Normal one with respect to correlation asymme-
try. For Financial stocks in particular we observe the highest correlation levels
and degrees of freedom in the rage 3-5. For the rest of industries we observe sim-
ilar correlation asymmetries as in Information Technology stocks. A synthesis for
copula parameter results reported in tables of Section 4.A, for both Normal and t
copula, is presented in figures of Section 4.B.1. In these figures, through boxplots,

6Insignificant parameters in general correspond to median regression or quantile α = 0.5. For
this quantile the dependence is very weak and the optimization problem as in Equation 4.10 has
converging difficulties.

7The arrows here show regression direction e.g. A → B means regression of returns of A on
(lagged) realized volatility of B.

8Recall that t copula is able to capture higher dependence than Normal copula due to the
degrees of freedom parameter.

9Again, we experience non-significant parameter for quantile α = 0.5.



we see more clearly the asymmetry of correlation and the distribution of parameter
estimates at each quantile.

4.4.2 CoVaR

We estimate CoVaR and ∆CoV aR as in Section 4.2.2. Recall that we use 4
models for CoVaR estimation, two based on copulas, one based on linear quantile
regression (LQR) and the last one based on rescaled realized volatility. All these
models allow for time-varying VaR and CoVaR. We plot the dynamics of VaR and
CoVaR in Figures 4.17 - 4.23 of Appendix 4.B.4. For both risk measures we use
the same confidence level i.e. α = β = 5%. From these plots it is evident that
there is a strong relationship between V aRi

α,t and ∆CoV aRα,β,t. The ∆CoV aR
achieves its highest (absolute) values during the 2008 and 2009, when crisis was at
its peak.

In order to compare the differences among models and to identify the assets with
the highest risk contribution we use the averages of ∆CoV aR. In Table 4.1 we rank
the average ∆CoV aR estimated from four different models10. The Normal copula
model ranks Wells Fargo & Company (WFC) risk spillovers to Citigroup (C) in
the top, with an average risk contribution of 4.75%. The next highest contributor
is Apple (AAPL), whose risk spillover contributes to Microsoft (MSFT) and Intel
Corporation (INTC) by an average of 4.6% and 4.54% respectively. The next top
ranks are occupied by Financial industry. We note that WFC highly affects C
and Bank of America Corporation (BAC), but not vice-versa. BAC and C risk
spillovers towards WFC are close to the mean of the rank with contribution of
around 2.7%. Similar risk spillover structure is between AAPL and MSFT and
INTC. The latter risk contribution ranks close to the mean of of ranked pairs.
For Apple it makes sense to highly contribute to INTC risk because the products
of former use the processors of the latter as input. Thus, returns of Apple serve
as a proxy for returns of Intel. At first look it might seem nonsense to see that
Apple risk spillovers towards Microsoft are high, but not the vice versa. The
economic rationale behind this result stands in the fact that Apple sells premium
products, the demand of which is nonelastic, while Microsoft market is focused to
products which are more affordable to general public, thus more prone to negative
shocks of the economy11. Energy and Consumer Discretionary stocks have higher

10The synthesized results of Table 4.1 are decomposed in Tables 4.16 - 4.19 in Appendix 4.C.
In those tables we bring summarized values for VaR and CoVaR for each industry.

11Recall that customers of Apple products stay in line for the newest models and pay the
premium to get their products. On the other hands PC users use the same Operating System for
years and update occasionally. In fact most of PC users postpone or do not even buy updates
during their product lifetime.
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Table 4.1: This table reports average ∆CoV aR
j|i
α,β,t based on four different models. For each model we sort the

stock pairs according to highest risk transmission. There are 42 pairs in total, i.e. 6 pairs for each industry. Each
colour represents assets from the same industry. The second asset in the pair is the conditioning variable e.g.
MSFT←AAPL means the VaR of MSFT conditional on AAPL being at its VaR. All risk measures, i.e. VaR and
CoVaR, are computed at α = β = 5% and expressed in percentage.

Normal copula t copula Benchmark model Linear model

Pair ∆CoV aR Pair ∆CoV aR Pair ∆CoV aR Pair ∆CoV aR

1 C←WFC -4.7475 C←WFC -4.9775 C←WFC -4.8964 MSFT←AAPL -5.4773
2 MSFT←AAPL -4.5977 BAC←WFC -4.8247 BAC←WFC -4.5013 INTC←AAPL -4.7151
3 INTC←AAPL -4.5369 MSFT←AAPL -4.3013 C←BAC -4.2574 C←WFC -4.7138
4 BAC←WFC -4.1345 SLB←XOM -4.2088 BAC←C -4.1724 BAC←WFC -4.6508
5 C←BAC -3.9245 BAC←C -4.0803 WFC←C -3.0602 C←BAC -3.9910
6 BAC←C -3.6531 INTC←AAPL -4.0251 WFC←BAC -2.9651 BAC←C -3.8761
7 AMZN←MCD -3.4096 AMZN←MCD -3.9389 SLB←CVX -2.3647 AMZN←MCD -3.7659
8 SLB←XOM -3.3051 C←BAC -3.8706 CMCSA←VZ -2.2746 SLB←XOM -3.5797
9 SLB←CVX -3.0459 CVX←XOM -3.6367 AMZN←MCD -2.2549 CVX←SLB -3.2955
10DIS←MCD -3.0408 DIS←MCD -3.3433 AMZN←DIS -2.2152 CMCSA←T -3.0624
11CVX←SLB -2.9900 CMCSA←T -3.2802 CVX←XOM -2.2103 CMCSA←VZ -3.0028
12DIS←AMZN -2.9765 CVX←SLB -2.9787 SLB←XOM -2.2057 SLB←CVX -2.9719
13MRK←PFE -2.9422 SLB←CVX -2.8687 MSFT←INTC -2.2051 DIS←MCD -2.9003
14CMCSA←VZ -2.8455 CMCSA←VZ -2.8571 MRK←PFE -2.0110 AAPL←INTC -2.8111
15MRK←JNJ -2.8367 AMZN←DIS -2.8383 CVX←SLB -1.9015 CVX←XOM -2.7831
16WFC←C -2.7777 WFC←C -2.7841 CMCSA←T -1.8663 AMZN←DIS -2.7789
17WFC←BAC -2.7140 MRK←PFE -2.6620 MRK←JNJ -1.8384 WFC←C -2.7753
18CMCSA←T -2.6000 AAPL←INTC -2.5454 INTC←AAPL -1.8009 WFC←BAC -2.7745
19XOM←SLB -2.5427 WFC←BAC -2.5376 DIS←AMZN -1.7628 MSFT←INTC -2.7574
20MSFT←INTC -2.5312 MSFT←INTC -2.4290 XOM←CVX -1.7431 XOM←SLB -2.7087
21AMZN←DIS -2.5275 XOM←SLB -2.4151 DIS←MCD -1.7339 MRK←PFE -2.7043
22AAPL←INTC -2.5206 DIS←AMZN -2.3823 MSFT←AAPL -1.5885 AAPL←MSFT -2.4092
23AAPL←MSFT -2.3860 AAPL←MSFT -2.1841 XOM←SLB -1.5733 DIS←AMZN -2.3836
24INTC←MSFT -2.3517 MRK←JNJ -2.1300 T←VZ -1.5471 MRK←JNJ -2.3298
25T←CMCSA -2.3413 KO←WMT -2.0976 KO←PG -1.4974 INTC←MSFT -2.1847
26CVX←XOM -2.3038 INTC←MSFT -2.0951 INTC←MSFT -1.4303 T←CMCSA -2.0873
27VZ←CMCSA -2.2275 XOM←CVX -1.8736 T←CMCSA -1.3972 KO←WMT -2.0648
28MCD←AMZN -2.2124 T←VZ -1.8615 PFE←JNJ -1.3666 T←VZ -2.0522
29T←VZ -2.1034 PG←WMT -1.8421 KO←WMT -1.3607 XOM←CVX -1.9989
30PFE←JNJ -2.0794 VZ←T -1.8229 AAPL←INTC -1.3604 MCD←AMZN -1.8687
31XOM←CVX -2.0598 PFE←MRK -1.7989 VZ←CMCSA -1.3452 PFE←JNJ -1.8218
32KO←WMT -1.8952 VZ←CMCSA -1.7943 VZ←T -1.3250 PFE←MRK -1.8163
33VZ←T -1.7802 KO←PG -1.7732 PFE←MRK -1.2978 VZ←CMCSA -1.8059
34KO←PG -1.7434 T←CMCSA -1.7636 WMT←PG -1.2549 VZ←T -1.7551
35PFE←MRK -1.6876 MCD←AMZN -1.7073 PG←WMT -1.2458 PG←WMT -1.7303
36PG←WMT -1.6452 PFE←JNJ -1.6750 JNJ←PFE -1.1468 KO←PG -1.6932
37MCD←DIS -1.5111 MCD←DIS -1.6251 PG←KO -1.1424 MCD←DIS -1.6878
38JNJ←PFE -1.4745 JNJ←PFE -1.6007 MCD←AMZN -1.0807 JNJ←PFE -1.5575
39WMT←PG -1.4654 WMT←PG -1.3861 AAPL←MSFT -1.0759 PG←KO -1.3929
40WMT←KO -1.3702 JNJ←MRK -1.3845 MCD←DIS -1.0291 JNJ←MRK -1.3608
41PG←KO -1.3666 PG←KO -1.2563 WMT←KO -0.9773 WMT←KO -1.3484
42JNJ←MRK -1.1422 WMT←KO -1.2225 JNJ←MRK -0.9578 WMT←PG -1.3303

Legend

Finanials IT Energy
Cons. Dis-
cretionary

Cons. Staples Telecommunication Health Care



than average risk spillover effects among each-other, while Consumer Staples and
Health Care stocks have the lowest risk contribution. The latter industries rank is
understandable as they produce and sell essential products that people are unable
or unwilling to cut out of their budgets regardless of their financial situation.

Going back to our results, the specific ranking of the risk contributors differs
significantly among the models used for ∆CoV aR estimation but is more consistent
if we compare ranking of industries. Looking at the table we notice that highest
average risk contributors are among Financial sector. In fact, most of top five
or all top contributors belong to assets from this sector. For example, for the
benchmark model all the Financials make the first six positions. Normal copula, t
copula and the benchmark model identify the spillover of Wells Fargo & Company
on Citigroup as the highest risk contributor, with very similar values for ∆CoV aR
estimates. While for Financial sector it makes sense to see their assets to have
higher risk contribution among each-other, it is interesting to see that Information
Technology assets are ranked high. The linear quantile regression (LQR) model
ranks the Apple risk spillovers in the top. Based on this model, if Apple is under
distress, Microsoft (at a higher extent) and Intel, are both highly affected from its
risk contribution. Another interesting result is that the average ∆CoV aR of the
benchmark model have the lowest values when compared with the other models
and the linear quantile regression (LQR) model has the highest. Copula quantile
regression models have average ∆CoV aR values between the benchmark and the
LQR model.

4.5 Conclusions

In this paper we estimate the VaR of an asset conditional on some other asset
being under distress. Following a slightly different approach than current litera-
ture, where in the focus is systemic risk, we estimate the risk contribution that
an asset has on some other individual asset. This approach allows the study of
spillover effects within the industry. We estimate the conditional VaR on a set of
21 most liquid US assets from 7 industries and propose to use nonlinear quantile
regression models based on copula theory to estimate CoVaR. The individual risk
contribution estimated from these models gives estimates in between the bench-
mark model which is based on realized volatility and the Linear quantile regression
model. We find that assets from Financial industry have the highest risk contribu-
tion among each other. Our proposed copula quantile model also identifies Apple
to be a high risk contributor to Microsoft and Intel. Finally, assets from Consumer
Staples industry and Health Care have the lowest risk contribution.
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4.A Tables

4.A.1 Normal copula parameters

Table 4.2: Information Technology : Normal copula parameters estimated on full
sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

AAPL-INTC
ρ −0.3018 −0.2069 −0.1137 −0.3883 0.1422 0.1398 0.2022
s.e. 0.0494 0.0472 0.0306 4.3477 0.0194 0.0267 0.0637
µ 0.0523 0.2828 1.4089 0.0084 −1.4877 −2.2774 −1.2809
s.e. 1.6521 1.0467 1.0084 0.0485 0.9706 1.3031 2.6015
σ 1.1016 1.0963 1.5894 −0.0069 1.6961 1.7022 1.2547
s.e. 0.3184 0.3495 0.4475 0.1144 0.4409 0.4100 0.5310

AAPL-MSFT
ρ −0.2022 −0.1068 −0.0474 0.0236 0.1669 0.1277 0.1234
s.e. 0.0353 0.0307 0.0120 1.1751 0.0363 0.0351 0.0598
µ 0.4628 1.9205 4.6724 0.0053 0.0505 −1.0010 −0.8861
s.e. 3.3038 2.5420 2.6543 0.0495 0.6445 1.5744 3.3582
σ 1.0827 1.5968 2.9587 −0.0452 0.9934 1.3247 1.1991
s.e. 0.6484 0.8389 1.0620 2.3836 0.2856 0.5488 0.8062

INTC-AAPL
ρ −0.4040 −0.2370 −0.0543 −0.1273 0.1217 0.2999 0.2178
s.e. 0.0267 0.0324 0.0061 0.1373 0.0230 0.0270 0.0237
µ 0.1950 1.4547 9.6440 −0.0103 −2.5042 −0.4639 −2.5896
s.e. 0.3877 0.5864 1.6804 0.0442 0.8382 0.3799 1.3994
σ 1.0149 1.5443 6.2682 0.2381 2.4488 1.2307 1.4997
s.e. 0.1102 0.2080 1.0111 0.2736 0.5570 0.1955 0.3009

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

INTC-MSFT
ρ −0.3977 −0.2833 −0.1458 −0.1834 0.1562 0.1830 0.2532
s.e. 0.0246 0.0365 0.0280 0.1858 0.0202 0.0250 0.0339
µ 0.1761 0.1204 1.7209 0.0095 −1.4457 −2.0130 −0.7903
s.e. 0.4792 0.4330 0.9656 0.0457 0.7571 0.8937 0.9453
σ 1.0232 1.1126 1.9881 −0.1337 1.8426 1.7947 1.1236
s.e. 0.1149 0.1917 0.5532 0.2448 0.5567 0.3178 0.2232

MSFT-AAPL
ρ −0.5678 −0.2250 −0.1006 −0.0360 0.1214 0.1919 0.2688
s.e. 0.0428 0.0119 0.0192 0.0089 0.0395 0.0323 0.0532
µ −1.0770 1.2677 2.4011 0.0035 −0.4063 −0.4283 −0.5400
s.e. 0.3526 0.3471 0.7563 0.0311 0.7662 0.6367 0.9505
σ 0.7677 1.5972 2.6279 1.3990 1.3161 1.2427 1.1486
s.e. 0.0932 0.2289 0.4940 1.1010 0.5392 0.3328 0.3222

MSFT-INTC
ρ −0.4074 −0.2950 −0.0601 −0.1203 0.1015 0.1690 0.2305
s.e. 0.0380 0.0177 0.0047 0.1742 0.0159 0.0195 0.0247
µ 0.3323 0.5996 6.1525 −0.0192 −2.1877 −1.5339 −1.3391
s.e. 0.3957 0.2460 0.8571 0.0320 0.7413 0.7539 0.7042
σ 1.0348 1.2943 5.1246 0.1919 2.5346 1.7097 1.2661
s.e. 0.1221 0.1396 0.5698 0.4252 0.5660 0.3836 0.2122

Table 4.3: Consumer Discretionary : Normal copula parameters estimated on full
sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

AMZN-DIS
ρ −0.2302 −0.1949 −0.0809 0.0216 0.0957 0.1900 0.1670
s.e. 0.0226 0.0274 0.0124 0.0348 0.0124 0.0455 0.0482
µ 2.5660 0.8830 3.5374 0.0277 −4.2823 −1.3921 −1.3033
s.e. 0.9939 1.0964 1.3705 0.1173 1.4822 1.0701 1.9179
σ 1.4936 1.2796 2.6173 0.7514 2.6617 1.3887 1.1423
s.e. 0.1996 0.3745 0.6826 2.0731 0.5497 0.3007 0.3165

AMZN-MCD
ρ −0.3032 −0.2557 −0.1272 0.0149 0.1070 0.1951 0.1535
s.e. 0.0586 0.0428 0.0177 0.1855 0.0130 0.0261 0.0353
µ 0.2724 0.1958 2.0872 0.0548 −3.3348 −1.7327 −4.9249
s.e. 1.0942 0.8299 0.8500 0.1508 1.5219 0.8931 1.8886
σ 1.0392 1.0862 1.9976 0.2205 2.3446 1.4941 1.6137
s.e. 0.2000 0.3131 0.4030 2.7038 0.6562 0.2732 0.3587

DIS-AMZN
ρ −0.2386 −0.1733 −0.1068 −0.0144 0.1255 0.1721 0.2037
s.e. 0.0243 0.0199 0.0135 0.2234 0.0151 0.0173 0.0309
µ 1.4499 2.6172 2.2345 0.0733 −3.2836 −2.7928 −2.2100
s.e. 0.9410 0.8265 0.6382 0.1620 0.7525 0.9634 1.5971
σ 1.2686 2.2662 2.4924 −0.1709 3.0548 2.1981 1.4351
s.e. 0.2648 0.4256 0.4621 2.7328 0.5336 0.3905 0.3614

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

DIS-MCD
ρ −0.1960 −0.1436 −0.1252 −0.0290 0.1804 0.2028 0.2168
s.e. 0.0321 0.0158 0.0145 0.1704 0.0181 0.0176 0.0150
µ 2.2141 3.3323 1.6334 0.0568 −1.9383 −2.0906 −2.6558
s.e. 1.1852 0.9849 0.4045 0.0898 0.5781 0.5151 0.8883
σ 1.4559 2.6769 2.0469 0.1288 2.2199 1.8631 1.4605
s.e. 0.3003 0.5402 0.2841 1.2799 0.3591 0.2610 0.2169

MCD-AMZN
ρ −0.2481 −0.2226 −0.0806 0.0275 0.1369 0.1668 0.1439
s.e. 0.0312 0.0264 0.0108 0.0984 0.0246 0.0309 0.0466
µ 0.8400 0.2885 2.4849 0.0438 −0.8793 −0.8842 −0.8492
s.e. 1.2131 0.3516 0.8017 0.0734 0.6469 0.7791 1.2501
σ 1.2681 1.1515 2.8681 0.2125 1.6566 1.4779 1.2003
s.e. 0.4602 0.1977 0.5513 1.4219 0.5203 0.4893 0.3970

MCD-DIS
ρ −0.2697 −0.2006 −0.1466 0.1433 0.1454 0.2075 0.2056
s.e. 0.0325 0.0342 0.0169 0.1675 0.0475 0.0341 0.0441
µ 0.5597 0.4046 1.2078 0.0531 −0.6855 −0.7603 −0.3343
s.e. 0.7957 0.6003 0.5006 0.0284 0.8496 0.7444 0.7459
σ 1.1725 1.2065 1.9196 −0.1723 1.4782 1.4537 1.0361
s.e. 0.2829 0.2888 0.3830 0.3029 0.6668 0.4140 0.2986



Table 4.4: Consumer Staples : Normal copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

KO-PG
ρ −0.2171 −0.1741 −0.0976 −0.0209 0.2055 0.2037 0.2916
s.e. 0.0131 0.0131 0.0092 0.2549 0.0177 0.0313 0.0284
µ 1.8808 1.1478 2.2749 0.0217 −0.7804 −0.9719 −1.1547
s.e. 0.4458 0.4259 0.6103 0.0486 0.3115 0.4989 0.4680
σ 1.5545 1.6722 3.2332 −0.0790 1.7973 1.5843 1.3645
s.e. 0.1904 0.2845 0.6039 1.7422 0.3054 0.2793 0.1634

KO-WMT
ρ −0.2668 −0.2117 −0.1091 −0.2074 0.2099 0.2084 0.3695
s.e. 0.0327 0.0198 0.0119 1.1005 0.0220 0.0258 0.0513
µ 0.7997 0.8319 1.9967 0.0221 −0.3787 −0.7991 0.0579
s.e. 0.4426 0.3496 0.4251 0.0235 0.2819 0.4397 0.4091
σ 1.2215 1.4714 2.9722 −0.0204 1.4033 1.4676 0.9543
s.e. 0.1581 0.2574 0.4587 0.2269 0.3124 0.2932 0.1625

PG-KO
ρ −0.1840 −0.2018 −0.0939 −0.0045 0.1158 0.1455 0.2088
s.e. 0.0531 0.0311 0.0089 0.5389 0.0089 0.0202 0.0190
µ 1.6277 1.2082 2.1377 0.0728 −1.7513 −1.7293 −1.5831
s.e. 0.7927 0.4234 0.5415 0.5080 0.4438 0.5745 0.8119
σ 1.4605 1.8747 3.2391 −0.0630 2.6936 2.1101 1.4860
s.e. 0.3208 0.3049 0.4922 6.9210 0.4063 0.3129 0.3151

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

PG-WMT
ρ −0.2713 −0.2361 −0.1026 −0.1406 0.1333 0.2297 0.2234
s.e. 0.0274 0.0422 0.0119 0.1874 0.0136 0.0248 0.0197
µ 0.4777 0.2723 1.3943 0.0812 −1.2239 −0.4264 −0.9934
s.e. 0.2756 0.3760 0.4950 0.0350 0.3851 0.4576 0.6929
σ 1.1354 1.1655 2.4589 −0.1552 2.1708 1.3099 1.2837
s.e. 0.0900 0.2609 0.4564 0.3719 0.3533 0.2969 0.2618

WMT-KO
ρ −0.2164 −0.2588 −0.0995 −0.1177 0.0765 0.1444 0.1974
s.e. 0.0267 0.0280 0.0088 0.0908 0.0130 0.0212 0.0186
µ 2.1614 0.2751 1.9574 −0.0356 −2.5910 −1.6846 −2.6383
s.e. 0.8160 0.3023 0.4557 0.0236 1.1290 0.4544 1.6875
σ 1.8430 1.1544 2.7145 −0.2965 3.2276 2.0039 1.8978
s.e. 0.3222 0.1983 0.3865 0.2872 1.0533 0.3196 0.6491

WMT-PG
ρ −0.2275 −0.2061 −0.0996 −0.1636 0.0690 0.1274 0.1638
s.e. 0.0279 0.0211 0.0096 0.6551 0.0112 0.0151 0.0222
µ 2.6355 0.8259 2.1598 −0.0305 −2.7801 −1.4899 −3.2000
s.e. 0.7870 0.3464 0.4461 0.0249 0.8986 0.5270 1.5893
σ 1.9825 1.4751 2.8670 −0.0483 3.3785 1.8732 2.0791
s.e. 0.3252 0.1833 0.3588 0.3013 0.7366 0.3228 0.6154

Table 4.5: Telecommunication Services : Normal copula parameters estimated on
full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

CMCSA-T
ρ −0.2892 −0.2403 −0.1811 −0.1588 0.1589 0.2317 0.1810
s.e. 0.0302 0.0311 0.0214 0.1649 0.0155 0.0199 0.0210
µ 0.5777 0.7066 1.4168 −0.0048 −1.3133 −1.5753 −3.3138
s.e. 0.9266 0.5938 0.5676 0.0456 0.4946 0.7113 1.1396
σ 1.0198 1.2787 1.7753 0.1268 1.7121 1.6023 1.5512
s.e. 0.2455 0.2389 0.3098 0.2722 0.2855 0.2757 0.2062

CMCSA-VZ
ρ −0.2296 −0.2557 −0.1106 −0.1911 0.1582 0.2350 0.2128
s.e. 0.0259 0.0223 0.0107 0.4559 0.0168 0.0234 0.0220
µ 2.7956 0.5172 2.8640 0.0176 −1.6233 −1.9124 −2.7712
s.e. 1.5422 0.3361 0.6753 0.0451 0.4561 0.6093 0.8434
σ 1.5375 1.1802 2.5564 −0.0553 1.8196 1.6691 1.4722
s.e. 0.3644 0.1442 0.3775 0.2453 0.2303 0.2528 0.1840

T-CMCSA
ρ −0.3245 −0.2226 −0.1798 −0.0854 0.1004 0.1911 0.3005
s.e. 0.0234 0.0172 0.0152 0.0405 0.0180 0.0355 0.0268
µ 0.1521 1.1921 1.3137 −0.0182 −2.2852 −1.3076 −0.4049
s.e. 0.4456 0.5193 0.3227 0.0264 1.1036 0.5861 0.7470
σ 1.0175 1.5970 1.9760 0.6401 2.7649 1.7282 1.0242
s.e. 0.1359 0.3093 0.2421 0.4922 0.8464 0.3901 0.2664

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

T-VZ
ρ −0.2597 −0.2358 −0.1696 −0.1362 0.2413 0.2397 0.2596
s.e. 0.0520 0.0228 0.0184 0.0853 0.0235 0.0175 0.0227
µ 0.0841 0.8735 1.1975 −0.0174 −1.1558 −1.1774 −1.3821
s.e. 0.6194 0.3597 0.3790 0.0349 0.3144 0.3663 0.4878
σ 0.9248 1.4350 1.9270 0.2939 1.9074 1.5937 1.2655
s.e. 0.1603 0.1994 0.3020 0.3134 0.2512 0.2277 0.2148

VZ-CMCSA
ρ −0.2431 −0.2829 −0.1605 −0.0888 0.1163 0.2813 0.2492
s.e. 0.0241 0.0405 0.0211 0.0379 0.0147 0.0300 0.0197
µ 0.7632 0.2062 1.4174 −0.0301 −2.2303 −0.6762 −0.9731
s.e. 0.4456 0.2812 0.5804 0.0271 0.9422 0.4130 0.7381
σ 1.1390 1.1318 2.1258 0.5225 2.8362 1.4659 1.1823
s.e. 0.1441 0.1576 0.4613 0.4782 0.7355 0.2774 0.2551

VZ-T
ρ −0.2836 −0.2554 −0.1201 −0.1358 0.0885 0.2393 0.2046
s.e. 0.0306 0.0276 0.0131 0.0546 0.0096 0.0204 0.0231
µ 0.3330 0.5732 3.5643 −0.0308 −3.4365 −0.9265 −1.0626
s.e. 0.5599 0.4101 0.6214 0.0267 1.1059 0.3784 0.6018
σ 0.9879 1.3543 3.7717 0.5138 3.8306 1.4975 1.2012
s.e. 0.1716 0.2371 0.5308 0.2843 0.8328 0.2658 0.1945
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Table 4.6: Financials : Normal copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

BAC-C
ρ −0.4898 −0.3415 −0.1616 −0.0883 0.2666 0.3127 0.3691
s.e. 0.0124 0.0191 0.0129 0.0101 0.0102 0.0141 0.0116
µ 1.0091 1.7262 4.6336 −0.0288 −1.7085 −1.0404 −1.7173
s.e. 0.1973 0.2766 0.6074 0.0377 0.2034 0.2359 0.3359
σ 0.9299 1.1412 2.5833 1.8730 2.0586 1.1999 1.0157
s.e. 0.0571 0.1047 0.2587 0.6600 0.1311 0.1301 0.1126

BAC-WFC
ρ −0.4989 −0.2988 −0.1940 −0.1072 0.1407 0.2089 0.2649
s.e. 0.0101 0.0148 0.0087 0.0175 0.0072 0.0058 0.0063
µ 0.8276 1.9702 3.6565 −0.0651 −3.9266 −3.0406 −3.4353
s.e. 0.2326 0.4117 0.3563 0.0353 0.5615 0.3611 0.4496
σ 0.9141 1.2591 2.3514 1.4520 3.0609 1.8321 1.1318
s.e. 0.0836 0.1333 0.1752 0.5119 0.3109 0.1382 0.1243

C-BAC
ρ −0.4266 −0.3505 −0.2007 −0.1223 0.1958 0.3280 0.3906
s.e. 0.0204 0.0219 0.0080 0.0079 0.0160 0.0146 0.0137
µ 1.3907 1.4705 4.1262 0.0641 −2.2801 −1.1147 −1.1513
s.e. 0.4505 0.4752 0.3932 0.0649 0.4407 0.2407 0.4689
σ 0.8599 1.0958 2.4250 1.9100 2.1572 1.2732 0.8983
s.e. 0.1407 0.1363 0.1595 0.4799 0.2735 0.1012 0.1148

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

C-WFC
ρ −0.4256 −0.3271 −0.1540 −0.1251 0.1996 0.3010 0.3346
s.e. 0.0106 0.0236 0.0076 0.0080 0.0120 0.0176 0.0049
µ 1.5864 1.8386 4.5412 0.0763 −2.1263 −1.2492 −2.1101
s.e. 0.4165 0.3479 0.5302 0.0574 0.3857 0.3077 0.3492
σ 0.9038 1.1811 2.3055 2.0393 2.1587 1.3121 1.0749
s.e. 0.1330 0.1080 0.1940 0.4469 0.2151 0.1315 0.1080

WFC-BAC
ρ −0.4869 −0.2991 −0.1400 −0.0796 0.1395 0.2260 0.3103
s.e. 0.0124 0.0172 0.0104 0.0410 0.0086 0.0105 0.0039
µ 0.4065 1.3970 3.7640 −0.0294 −3.6765 −2.5140 −2.8862
s.e. 0.3367 0.2932 0.4361 0.0380 0.3966 0.3619 0.3555
σ 0.9104 1.2435 2.5098 −0.4230 2.5214 1.5155 1.1671
s.e. 0.0984 0.1085 0.2450 0.5113 0.1811 0.1293 0.0879

WFC-C
ρ −0.4898 −0.3133 −0.1705 −0.0818 0.2016 0.3186 0.3808
s.e. 0.0102 0.0156 0.0141 0.1616 0.0098 0.0127 0.0071
µ 0.5631 1.2163 2.9849 −0.0331 −2.4272 −1.4480 −1.9590
s.e. 0.2103 0.2604 0.4477 0.0430 0.3104 0.2107 0.3371
σ 0.9318 1.2135 2.1692 0.1204 2.0544 1.2950 1.0705
s.e. 0.0947 0.1188 0.2373 0.5547 0.1947 0.0978 0.0979

Table 4.7: Energy : Normal copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

CVX-SLB
ρ −0.2938 −0.2768 −0.0833 −0.0060 0.1475 0.1859 0.2498
s.e. 0.0401 0.0314 0.0103 0.0217 0.0280 0.0235 0.0207
µ 0.7555 0.7907 3.2223 0.2580 −0.5963 −1.1129 −2.6660
s.e. 0.9831 0.6673 0.8053 0.8672 0.7263 0.6131 1.0366
σ 1.1706 1.3534 2.9332 −2.3242 1.3042 1.4925 1.7428
s.e. 0.2512 0.3520 0.4506 12.3864 0.4046 0.3614 0.3793

CVX-XOM
ρ −0.2287 −0.1744 −0.0980 −0.0802 0.0951 0.1654 0.1733
s.e. 0.0370 0.0173 0.0088 0.6943 0.0141 0.0198 0.0331
µ 1.8817 3.0908 3.4911 0.0691 −1.8511 −2.4462 −3.2165
s.e. 1.0772 1.0102 0.6507 0.0825 1.0602 0.7429 1.6556
σ 1.3538 2.2894 3.1008 0.0415 2.1149 2.0813 1.7127
s.e. 0.3497 0.5143 0.3814 0.5968 0.6988 0.3813 0.5230

SLB-CVX
ρ −0.2700 −0.2026 −0.1032 −0.0176 0.1952 0.1958 0.2064
s.e. 0.0379 0.0195 0.0129 0.0124 0.0317 0.0341 0.0380
µ 1.4628 2.0515 3.2993 −0.0492 −0.3671 −1.1816 −2.0961
s.e. 1.5369 1.0646 0.9291 0.1036 0.6366 0.8214 3.4373
σ 1.2141 1.6561 2.3128 1.9378 1.2071 1.3529 1.4049
s.e. 0.3291 0.3575 0.4512 1.7277 0.2715 0.2464 0.6784

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

SLB-XOM
ρ −0.2915 −0.2252 −0.1871 −0.0152 0.1009 0.1775 0.2083
s.e. 0.0302 0.0264 0.0290 0.0077 0.0113 0.0237 0.0529
µ 1.7308 1.3181 1.2728 −0.0880 −2.9267 −1.5797 −2.9742
s.e. 1.2409 1.0366 0.6418 0.1179 1.1845 0.7914 3.2800
σ 1.2618 1.4015 1.5104 2.9786 2.2709 1.4726 1.5588
s.e. 0.2826 0.3924 0.2616 2.0523 0.5994 0.2800 0.6293

XOM-CVX
ρ −0.3456 −0.2246 −0.0868 −0.0556 0.0480 0.1342 0.1719
s.e. 0.0297 0.0144 0.0084 0.0515 0.0066 0.0222 0.0253
µ −0.1445 1.2888 3.8250 0.0373 −8.0802 −3.0127 −3.6629
s.e. 0.7383 0.4093 1.0220 0.0928 1.6566 1.3440 1.0393
σ 0.8133 1.5784 3.4312 0.5571 6.3133 2.3681 1.8558
s.e. 0.2444 0.2259 0.6358 0.7794 1.1772 0.5828 0.3066

XOM-SLB
ρ −0.3600 −0.3004 −0.1526 −0.0690 0.2665 0.2059 0.2424
s.e. 0.0583 0.0447 0.0176 0.5277 0.0376 0.0186 0.0326
µ 0.2347 0.2989 1.0143 0.0920 −0.4703 −1.5642 −1.6220
s.e. 1.1705 0.5472 0.3239 0.0733 0.3246 0.5211 0.9633
σ 0.9630 1.1750 1.6264 0.0528 1.3227 1.7139 1.3586
s.e. 0.2906 0.2341 0.2541 0.6711 0.2413 0.2745 0.2872



Table 4.8: Health Care: Normal copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

JNJ-MRK
ρ −0.3576 −0.2501 −0.1599 0.0056 0.1572 0.2867 0.3712
s.e. 0.0397 0.0301 0.0196 0.0016 0.0263 0.0490 0.0527
µ −0.0744 0.4198 0.4040 0.0018 −0.6003 −0.0780 0.6082
s.e. 0.3362 0.2320 0.2492 0.0208 0.3837 0.2418 0.4918
σ 0.8512 1.3027 1.4421 12.6582 1.6400 1.0434 0.8377
s.e. 0.1436 0.1983 0.2572 37.1725 0.4421 0.2128 0.1793

JNJ-PFE
ρ −0.2567 −0.2144 −0.0876 0.0209 0.0971 0.2173 0.2344
s.e. 0.0466 0.0335 0.0102 0.0148 0.0101 0.0235 0.0397
µ 0.2458 0.4224 1.7367 0.0038 −2.1685 −0.8518 −0.3788
s.e. 0.4200 0.5055 0.5118 0.0199 0.4697 0.4198 1.1707
σ 1.0364 1.3332 2.8181 1.0115 3.3308 1.6495 1.1140
s.e. 0.2064 0.4018 0.5976 1.8863 0.5556 0.3021 0.5082

MRK-JNJ
ρ −0.3811 −0.3084 −0.1156 −0.1711 0.1522 0.1860 0.2656
s.e. 0.0977 0.0348 0.0193 0.7588 0.0234 0.0295 0.0331
µ −0.5559 0.3588 2.0893 0.0154 −1.1245 −1.2435 −0.7549
s.e. 0.8834 0.3348 0.7380 0.0317 0.5905 0.6839 0.8950
σ 0.8155 1.1945 2.4225 −0.0512 1.7689 1.5079 1.1047
s.e. 0.2163 0.1373 0.5197 0.2959 0.3764 0.3327 0.2642

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

MRK-PFE
ρ −0.3011 −0.2487 −0.1040 −0.0301 0.1141 0.1992 0.1821
s.e. 0.0647 0.0310 0.0128 0.0530 0.0126 0.0233 0.0213
µ −0.6110 0.5085 2.7058 0.0201 −2.1410 −1.6425 −3.4688
s.e. 1.1298 0.3873 0.9486 0.0363 0.7592 0.6205 2.0479
σ 0.7644 1.2643 2.8082 −0.6637 2.4067 1.7247 1.8495
s.e. 0.2908 0.1872 0.6346 1.4241 0.5150 0.2895 0.5810

PFE-JNJ
ρ −0.2479 −0.2363 −0.1484 −0.0519 0.1253 0.1629 0.2092
s.e. 0.0397 0.0256 0.0227 0.0152 0.0160 0.0122 0.0527
µ 1.6450 0.9596 1.0225 −0.0320 −1.9691 −1.9270 −0.2407
s.e. 0.8058 0.5334 0.6003 0.0542 0.5845 0.5690 0.8891
σ 1.3972 1.4867 1.6755 0.6288 2.4635 1.9119 0.9347
s.e. 0.2570 0.2868 0.3593 0.6601 0.4266 0.2947 0.3698

PFE-MRK
ρ −0.2654 −0.2456 −0.1317 −0.0468 0.1389 0.2474 0.2514
s.e. 0.0515 0.0265 0.0142 0.0085 0.0221 0.0264 0.0500
µ 0.4508 0.7209 1.3551 0.0000 −1.5884 −0.6011 −0.2263
s.e. 1.3110 0.5312 0.5801 0.0563 0.7220 0.4585 0.6525
σ 1.1184 1.3660 1.8824 1.1536 2.2012 1.2444 1.0367
s.e. 0.3845 0.2390 0.3284 0.7537 0.4551 0.2170 0.1852

4.A.2 t-copula parameters

Table 4.9: Information Technology : t-copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

AAPL-INTC
ρ −0.3941 −0.1278 −0.1742 −0.0849 0.2013 0.2715 0.3409
s.e. 0.0836 0.0425 0.0504 0.4565 0.0451 0.0817 0.1581
η 7.7205 18.7120 6.6327 10.8098 10.0339 5.2677 6.4130
s.e. 2.5719 10.0473 1.9229 741.0530 3.6140 1.7872 4.5568
µ 0.1604 2.4298 0.4361 0.0066 −0.6131 −0.1714 −0.0866
s.e. 1.7539 2.1865 0.9788 0.0500 0.8293 0.9056 1.9587
σ 1.1061 1.7579 1.1819 0.0795 1.3005 1.0515 1.0568
s.e. 0.3436 0.6387 0.4094 0.4276 0.3687 0.2854 0.4770

AAPL-MSFT
ρ −0.3994 −0.3205 −0.2098 −0.0015 0.1787 0.2135 0.3188
s.e. 0.1156 0.0677 0.0756 0.0232 0.0807 0.0669 0.0910
η 4.0346 3.9905 4.8708 8.8790 5.6198 6.8023 4.8121
s.e. 1.1412 0.6994 1.5119 2324.5796 2.7556 2.2181 1.6639
µ 0.1243 0.0900 0.0910 0.0502 −0.2471 −0.2009 −0.5728
s.e. 1.2409 0.8959 0.6473 0.7129 0.8913 1.2162 2.2842
σ 1.1211 1.1070 1.0319 −1.9584 1.0818 1.0483 1.1764
s.e. 0.2338 0.2844 0.2844 28.9189 0.3693 0.3951 0.5321

INTC-AAPL
ρ −0.3951 −0.4724 −0.2151 −0.1177 0.1188 0.2672 0.3246
s.e. 0.0318 0.0402 0.0199 0.1669 0.0248 0.0363 0.0318
η 6.2286 7.0362 13.7402 3.4729 19.4200 7.8651 8.0456
s.e. 0.9944 2.4298 2.6852 6.1236 6.5501 1.8975 1.1501
µ 1.0377 −0.2923 1.3657 −0.0069 −3.0118 −0.8330 −2.3959
s.e. 0.9418 0.3211 0.7008 0.0450 1.0456 0.7983 1.0857
σ 1.2449 0.9783 1.8151 0.1753 2.7701 1.4363 1.5183
s.e. 0.2521 0.1826 0.3902 0.2453 0.5751 0.3554 0.2996

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

INTC-MSFT
ρ −0.3749 −0.2742 −0.1794 0.0922 0.2803 0.2603 0.3838
s.e. 0.0281 0.0385 0.0285 0.1374 0.0412 0.0348 0.0597
η 4.7682 5.9725 5.7730 7.0816 4.7484 6.9183 5.5225
s.e. 0.7175 1.0953 0.7667 37.3714 1.3206 1.4877 1.5045
µ 2.5420 1.0869 1.2730 0.0018 −0.1316 −1.1998 −0.9547
s.e. 1.0321 0.8048 0.6678 0.0408 0.4911 0.7252 1.2102
σ 1.6531 1.4661 1.6636 0.3375 1.0649 1.5287 1.2087
s.e. 0.2888 0.3525 0.3967 0.4725 0.2903 0.3012 0.3754

MSFT-AAPL
ρ −0.4422 −0.3270 −0.2317 −0.1977 0.1412 0.2509 0.3647
s.e. 0.0363 0.0279 0.0577 0.1886 0.0435 0.0470 0.0396
η 4.2981 5.4196 5.0348 4.0492 5.6595 5.5625 6.4122
s.e. 0.7114 1.3039 1.4926 8.5748 1.4990 1.1722 1.5157
µ 0.5769 0.4790 0.1035 −0.0140 −0.8041 −1.0802 −0.7860
s.e. 0.6154 0.5054 0.4139 0.0309 0.6709 0.7514 0.9555
σ 1.2009 1.2802 1.1295 0.2350 1.5706 1.6188 1.2696
s.e. 0.1623 0.2831 0.3145 0.2230 0.4425 0.3629 0.2333

MSFT-INTC
ρ −0.4186 −0.2622 −0.2166 0.5454 0.2698 0.2343 0.3923
s.e. 0.0437 0.0255 0.0317 1.1010 0.0592 0.0373 0.0540
η 8.3864 7.8105 5.9034 22.4841 4.4070 5.7390 5.1074
s.e. 2.8781 1.0434 1.2785 1418.3915 1.1478 1.1895 1.1646
µ 0.7897 1.9430 0.9747 −0.0164 −0.4346 −1.4513 −0.6577
s.e. 0.6517 0.5983 0.3600 0.0313 0.3728 0.5992 0.5686
σ 1.1837 1.9198 1.6243 −0.0396 1.3486 1.7233 1.1633
s.e. 0.1914 0.2729 0.2614 0.0919 0.2458 0.3125 0.1540
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Table 4.10: Consumer Discretionary : t-copula parameters estimated on full sam-
ple.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

AMZN-DIS
ρ −0.6081 −0.4461 −0.2356 0.0271 0.1853 0.3060 0.3202
s.e. 0.0729 0.0414 0.0544 0.0999 0.0354 0.0475 0.1858
η 6.0654 4.3560 4.1945 3.1796 3.1462 6.7294 4.0232
s.e. 2.5887 0.7737 1.0237 11.3754 0.4363 1.4954 2.2739
µ −0.9324 −0.0070 0.4888 0.0514 −0.2986 −0.8315 0.1127
s.e. 0.6229 0.4893 0.7086 0.0905 0.5934 0.8832 1.7865
σ 0.9917 1.1595 1.2420 0.3217 1.1418 1.2788 0.9688
s.e. 0.1478 0.1535 0.3365 1.2347 0.2329 0.2740 0.3104

AMZN-MCD
ρ −0.4307 −0.3335 −0.3473 0.0006 0.1544 0.2122 0.3027
s.e. 0.0932 0.0769 0.0417 0.0066 0.0155 0.0323 0.1093
η 5.4688 3.9616 4.7686 0.7197 6.8489 5.5982 3.9959
s.e. 1.7103 1.0277 1.2324 1.5498 1.0359 0.7934 0.8906
µ 0.6107 0.5715 −0.1869 0.0361 −2.5902 −1.1507 −0.2565
s.e. 0.8408 0.8697 0.4827 0.1265 1.0311 1.1184 1.3163
σ 1.1825 1.2754 0.9949 0.8563 2.0131 1.3139 1.0486
s.e. 0.1584 0.2567 0.2604 1.6188 0.4159 0.2758 0.2449

DIS-AMZN
ρ −0.3626 −0.3294 −0.2626 0.0247 0.1573 0.1815 0.2434
s.e. 0.0958 0.0564 0.0325 0.0543 0.0340 0.0300 0.0618
η 5.4802 4.7122 5.5212 1.2603 3.6530 9.5712 5.0761
s.e. 1.7786 0.9065 0.8291 2.3912 0.4663 1.7575 0.9853
µ 1.4857 0.2049 0.4150 0.0515 −0.7077 −2.2417 −0.5642
s.e. 0.9085 0.5944 0.4055 0.0518 0.4220 0.7353 1.4501
σ 1.3415 1.1205 1.3619 0.1994 1.3861 1.9731 1.0391
s.e. 0.2751 0.2775 0.2800 0.5214 0.2210 0.3068 0.2685

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

DIS-MCD
ρ −0.4628 −0.3367 −0.1661 0.0419 0.2361 0.2070 0.2594
s.e. 0.0332 0.0410 0.0437 0.0923 0.0256 0.0175 0.0328
η 4.5391 5.6541 5.1201 1.0368 6.8039 9.9698 9.2381
s.e. 0.8077 1.3732 1.4339 1.4335 1.2080 2.1395 1.9284
µ 0.0863 0.6088 0.4800 0.0597 −1.3150 −2.1336 −3.5283
s.e. 0.4289 0.4937 0.6603 0.0400 0.5170 0.5459 1.2610
σ 1.0622 1.3829 1.2936 0.1719 1.9018 1.9581 1.5692
s.e. 0.1150 0.2295 0.4530 0.2615 0.3678 0.2443 0.2741

MCD-AMZN
ρ −0.3668 −0.2971 −0.2493 −0.0141 0.2010 0.2706 0.3564
s.e. 0.0700 0.0666 0.0480 0.0927 0.0414 0.0687 0.0374
η 6.2910 3.6398 4.2812 7.9979 6.5799 2.8223 3.7746
s.e. 2.5887 0.7998 0.9674 308.1843 1.6432 0.5263 0.5637
µ 0.5109 0.1900 0.0833 0.0803 −0.7733 0.0222 −0.3429
s.e. 0.9637 0.3790 0.2367 0.2024 0.5055 0.4277 1.1510
σ 1.2311 1.1261 1.0215 −0.5018 1.6170 1.0203 1.1289
s.e. 0.3469 0.2222 0.1913 2.9682 0.4150 0.1551 0.4783

MCD-DIS
ρ −0.3920 −0.2441 −0.2308 −0.1726 0.2338 0.2402 0.3253
s.e. 0.0376 0.0640 0.0399 0.3097 0.0645 0.0744 0.0335
η 4.8791 3.7219 6.2660 6.2089 6.8874 4.1767 5.2737
s.e. 0.6364 0.7675 1.2175 61.9561 2.2394 1.0323 0.8319
µ 1.6598 0.1100 0.4556 0.0404 −0.0445 −0.2521 −1.2646
s.e. 0.8176 0.4522 0.3234 0.0332 0.5884 0.5501 1.4966
σ 1.6176 1.1075 1.4248 0.1130 1.0475 1.1672 1.4446
s.e. 0.3292 0.2631 0.2808 0.2594 0.4599 0.3353 0.5989

Table 4.11: Consumer Staples : t-copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

KO-PG
ρ −0.5467 −0.2943 −0.2705 0.0834 0.2949 0.2587 0.4221
s.e. 0.0442 0.0332 0.0308 0.3204 0.0256 0.0334 0.0290
η 4.8455 5.1834 5.5410 3.8298 5.8506 4.7753 5.6583
s.e. 1.6019 0.6657 1.2008 38.0262 0.7162 0.5178 0.6172
µ −0.0709 0.8910 0.5298 0.0120 −0.3583 −1.1917 −0.4970
s.e. 0.4254 0.3003 0.2737 0.0206 0.2432 0.4666 0.4375
σ 1.0247 1.5652 1.6094 0.0978 1.4212 1.8070 1.1230
s.e. 0.2024 0.1925 0.3083 0.5096 0.2691 0.3105 0.1605

KO-WMT
ρ −0.4098 −0.2951 −0.3062 −0.5980 0.2469 0.2977 0.3009
s.e. 0.0573 0.0243 0.0272 1.9021 0.0434 0.0575 0.0662
η 3.3061 5.7516 4.0527 9.3581 4.2463 4.0025 7.3824
s.e. 0.6025 0.8859 0.3788 455.9928 0.8404 0.6545 2.5548
µ 0.0138 0.7287 0.2913 0.0161 −0.3723 −0.2522 −0.8921
s.e. 0.4620 0.2236 0.1786 0.0215 0.2978 0.3546 0.5546
σ 1.0085 1.5096 1.3872 −0.0155 1.4468 1.1537 1.2606
s.e. 0.2226 0.1622 0.1783 0.0758 0.2876 0.1968 0.1929

PG-KO
ρ −0.3988 −0.3439 −0.2420 −0.0869 0.2224 0.3122 0.4638
s.e. 0.0258 0.0406 0.0280 4.2427 0.0416 0.0359 0.0472
η 7.1027 5.3880 6.0663 3.4218 5.8594 6.2189 5.4041
s.e. 0.7485 0.8725 1.2302 649.8348 1.3853 1.0649 0.8397
µ 0.7763 0.3024 0.4868 0.0666 −0.4465 −0.5096 −0.8004
s.e. 0.3165 0.2951 0.2056 0.0402 0.3331 0.3809 0.8170
σ 1.2105 1.1954 1.6073 −0.0069 1.4544 1.3703 1.4948
s.e. 0.1312 0.2173 0.2270 0.4394 0.2897 0.2598 0.3721

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

PG-WMT
ρ −0.4007 −0.3416 −0.2708 −0.0322 0.1607 0.2095 0.3062
s.e. 0.0764 0.0432 0.0290 0.0795 0.0086 0.0319 0.0236
η 7.5025 3.8608 4.4161 6.1874 7.6194 6.2295 8.3555
s.e. 2.7191 0.5318 0.8562 91.8275 1.0360 0.9353 1.3728
µ 0.0870 0.2064 0.3537 0.1223 −1.0382 −0.5904 −1.4729
s.e. 0.3718 0.2286 0.2218 0.0829 0.3474 0.4406 1.5490
σ 1.0032 1.1667 1.5094 −0.6716 2.0199 1.3120 1.5228
s.e. 0.1204 0.1785 0.2295 1.0579 0.3365 0.2895 0.6150

WMT-KO
ρ −0.4429 −0.3197 −0.2521 0.0839 0.2271 0.3384 0.4959
s.e. 0.0837 0.0395 0.0310 0.0843 0.0384 0.0739 0.0281
η 6.4868 4.9253 5.9577 4.4153 6.1286 4.9677 5.4838
s.e. 2.1599 0.5149 0.9044 16.7027 1.8411 1.4524 1.1593
µ 0.3728 0.2095 0.2592 −0.0166 −0.3995 −0.1833 −0.5919
s.e. 0.3550 0.3509 0.2067 0.0293 0.3730 0.3769 0.6813
σ 1.1444 1.1439 1.2908 0.3074 1.3462 1.1480 1.3422
s.e. 0.1470 0.2909 0.1692 0.4572 0.3456 0.2450 0.3421

WMT-PG
ρ −0.4881 −0.2836 −0.1647 −0.0206 0.2725 0.2729 0.4351
s.e. 0.0479 0.0509 0.0322 0.0192 0.0498 0.0815 0.0285
η 5.7325 4.7119 6.7667 4.3601 7.6452 4.3695 6.9597
s.e. 1.0964 0.7841 1.5980 18.5389 2.8727 1.3665 1.8585
µ 0.2747 0.7513 0.8762 0.0009 0.2044 −0.3595 −0.2297
s.e. 0.2271 0.6067 0.3499 0.0470 0.2854 0.4908 0.4841
σ 1.1085 1.4156 1.6835 1.1713 0.8710 1.2359 1.1603
s.e. 0.0716 0.3568 0.2888 1.2447 0.2724 0.3042 0.1579



Table 4.12: Telecommunication Services : t-copula parameters estimated on full
sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

CMCSA-T
ρ −0.5189 −0.3450 −0.3665 −0.2941 0.3417 0.3483 0.3570
s.e. 0.0287 0.0497 0.0421 0.4479 0.0343 0.0432 0.0331
η 5.2748 3.8115 3.7396 100.0000 4.5331 4.3670 4.0317
s.e. 0.5698 0.6213 0.7971 0.0000 0.6769 0.7898 0.6285
µ 1.1086 0.5198 0.1480 0.0101 0.1061 −0.8146 −1.5816
s.e. 1.0340 0.6070 0.3064 0.0473 0.2125 0.6913 2.2965
σ 1.3253 1.2137 1.2086 0.0640 1.0111 1.3101 1.3670
s.e. 0.2549 0.2968 0.1558 0.1400 0.1066 0.3056 0.6403

CMCSA-VZ
ρ −0.5148 −0.3935 −0.3651 −0.0679 0.3487 0.2526 0.3553
s.e. 0.0310 0.0367 0.0371 0.3127 0.0514 0.0368 0.0351
η 4.7581 3.9434 3.7016 7.5269 5.7447 5.1168 4.1458
s.e. 0.6058 0.5197 0.6101 235.5652 1.8243 0.6341 0.4976
µ 1.2101 1.1310 0.1278 0.0133 0.0869 −1.3643 −1.1852
s.e. 0.7665 0.5691 0.4161 0.0449 0.3036 0.8823 2.7437
σ 1.3399 1.4952 1.1494 −0.1925 1.0559 1.4908 1.2580
s.e. 0.1848 0.2550 0.2522 0.6772 0.1697 0.3404 0.8577

T-CMCSA
ρ −0.6395 −0.4168 −0.3037 −0.1955 0.2287 0.2463 0.3841
s.e. 0.0361 0.0555 0.0337 0.2175 0.0357 0.0828 0.0474
η 5.3816 5.5822 4.6792 5.7862 5.0016 4.3711 3.7748
s.e. 1.2604 1.3707 0.9217 27.4960 1.0009 1.2833 0.6374
µ −0.4801 0.0118 0.4444 −0.0190 −0.5325 −0.2954 −0.9330
s.e. 0.4074 0.1941 0.2967 0.0307 0.4429 0.6103 0.9720
σ 1.0345 1.0398 1.4059 0.1979 1.5205 1.2183 1.2776
s.e. 0.2120 0.0965 0.2400 0.2022 0.3322 0.3453 0.3639

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

T-VZ
ρ −0.4882 −0.2908 −0.1838 −0.2171 0.2216 0.2692 0.4385
s.e. 0.0895 0.0356 0.0197 0.1896 0.0224 0.0407 0.0494
η 4.1183 4.3306 8.0529 13.9711 5.7602 4.5236 4.8737
s.e. 1.0027 0.6515 1.0155 221.9730 0.8701 0.7835 0.6438
µ 0.0353 0.5053 1.2872 −0.0224 −1.1807 −0.7779 −0.8148
s.e. 0.3944 0.4286 0.4803 0.0387 0.4695 0.5358 0.6259
σ 0.9979 1.2570 2.0014 0.1878 1.9427 1.4228 1.1437
s.e. 0.1775 0.2252 0.3652 0.2187 0.3864 0.3210 0.2001

VZ-CMCSA
ρ −0.3317 −0.3412 −0.1869 −0.0866 0.1851 0.3255 0.3614
s.e. 0.0960 0.0486 0.0315 0.0381 0.0679 0.0345 0.0506
η 6.9976 6.4544 4.3069 100.0000 3.4135 3.6738 4.4027
s.e. 2.8600 1.1615 0.6621 0.0000 0.7166 0.4385 0.9766
µ 1.3286 0.4771 0.7976 −0.0201 −0.1567 −0.2503 −1.2240
s.e. 1.3540 0.3610 0.4241 0.0296 0.4410 0.3912 1.3381
σ 1.2847 1.3343 1.5282 0.5662 1.1226 1.1472 1.2957
s.e. 0.3151 0.2103 0.3561 0.4820 0.3387 0.2162 0.4762

VZ-T
ρ −0.4280 −0.3455 −0.2264 −0.1856 0.2131 0.3091 0.3560
s.e. 0.0835 0.0455 0.0419 0.1065 0.0232 0.0428 0.0301
η 3.1025 6.5807 8.1545 7.7244 5.1088 4.1033 4.5785
s.e. 1.0238 1.1980 2.6379 40.8954 0.6532 0.6441 0.7729
µ 0.1595 0.5346 1.0816 −0.0396 −0.9928 −0.3548 −0.8045
s.e. 0.5280 0.3294 0.4513 0.0264 0.5237 0.4585 0.9285
σ 1.0577 1.3471 1.9117 0.3351 1.8653 1.1972 1.1547
s.e. 0.1322 0.1676 0.3521 0.2244 0.4540 0.2863 0.3702

Table 4.13: Financials : t-copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

BAC-C
ρ −0.6092 −0.5082 −0.2404 −0.0658 0.2731 0.2816 0.5044
s.e. 0.0323 0.0152 0.0193 0.0059 0.0198 0.0091 0.0083
η 5.1322 3.6773 4.6995 100.0000 4.3899 6.4381 6.3814
s.e. 0.7578 0.1893 0.4527 0.0000 0.3938 0.3350 0.3175
µ 3.3529 1.6557 2.8622 0.0462 −1.4308 −2.8550 −3.3500
s.e. 0.5976 0.2539 0.6261 0.0464 0.4267 0.6632 0.3807
σ 1.1818 1.3384 1.9432 2.7294 1.6103 1.7085 1.2675
s.e. 0.1094 0.1029 0.2935 0.7993 0.2323 0.2581 0.0777

BAC-WFC
ρ −0.6708 −0.3809 −0.2234 −0.1155 0.3605 0.3435 0.6407
s.e. 0.0102 0.0173 0.0194 0.0235 0.0126 0.0146 0.0166
η 4.3438 5.2202 5.5846 100.0000 6.3733 4.4799 3.5123
s.e. 0.3522 0.4056 0.5427 0.0000 0.4251 0.2577 0.1640
µ 3.1615 3.1109 3.7092 −0.0663 −0.8119 −2.3349 −2.4277
s.e. 0.5037 0.3053 0.9813 0.0356 0.2443 0.4496 0.8990
σ 1.4565 1.6396 2.2969 1.4580 1.5338 1.5622 1.4119
s.e. 0.0987 0.1023 0.4109 0.5042 0.1351 0.1677 0.1940

C-BAC
ρ −0.6199 −0.4226 −0.2305 −0.1804 0.2878 0.2726 0.4479
s.e. 0.0249 0.0155 0.0149 0.0140 0.0168 0.0146 0.0220
η 3.9095 3.9890 7.1142 100.0000 5.6909 6.2101 5.6386
s.e. 0.3700 0.2360 0.7663 0.0000 0.6024 0.3690 0.5140
µ 4.5702 1.7429 5.3978 −0.0329 −2.1465 −2.7861 −4.7330
s.e. 1.6834 0.5141 0.8973 0.0444 0.4468 0.6607 1.4371
σ 1.4473 1.2678 2.7176 1.5247 2.1437 1.7349 1.4651
s.e. 0.3027 0.1293 0.3299 0.3203 0.2811 0.2191 0.1767

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

C-WFC
ρ −0.6418 −0.5182 −0.4063 −0.2886 0.2700 0.3058 0.3916
s.e. 0.0177 0.0167 0.0198 0.0395 0.0423 0.0173 0.0209
η 4.3168 3.5652 4.9179 57.7579 4.0342 7.7337 5.6259
s.e. 0.2902 0.1901 0.6168 617.0949 0.5129 0.6344 0.3345
µ 3.5512 2.0403 1.6664 −0.1816 −0.6095 −2.6485 −5.0457
s.e. 0.7651 0.4972 0.2933 0.0335 0.7290 0.4877 1.4072
σ 1.3725 1.4136 1.6767 0.8019 1.2674 1.7982 1.4392
s.e. 0.1501 0.1637 0.1555 0.2374 0.4254 0.1541 0.2162

WFC-BAC
ρ −0.6050 −0.6047 −0.2385 −0.2281 0.1811 0.4574 0.5286
s.e. 0.0346 0.0189 0.0186 0.1716 0.0161 0.0187 0.0110
η 4.0990 3.5547 4.1239 10.1991 5.7504 6.6267 4.5168
s.e. 0.4877 0.3350 0.4403 69.2091 0.5747 0.9925 0.2945
µ 2.2312 0.4315 2.0602 −0.0124 −2.8667 −0.9389 −2.8773
s.e. 1.3657 0.2881 0.5857 0.0487 0.6729 0.2977 0.8688
σ 1.3069 1.3457 1.8226 −0.1576 2.1599 1.3266 1.2951
s.e. 0.2761 0.1244 0.2837 0.1790 0.3194 0.1251 0.1812

WFC-C
ρ −0.6360 −0.4064 −0.3634 −0.1451 0.3315 0.3985 0.5587
s.e. 0.0223 0.0270 0.0176 1.3098 0.0272 0.0121 0.0159
η 3.1887 4.2440 5.1003 3.1906 4.0573 4.8506 4.9526
s.e. 0.2731 0.3718 0.4808 71.0041 0.4211 0.3018 0.3670
µ 2.8629 1.5460 1.3170 −0.0318 −0.9843 −1.3037 −3.3277
s.e. 1.0285 0.4589 0.3234 0.0458 0.3219 0.4402 0.6433
σ 1.4887 1.3615 1.7621 0.0202 1.4442 1.3003 1.4333
s.e. 0.2082 0.1861 0.1870 0.2206 0.2004 0.1729 0.1302
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Table 4.14: Energy : t-copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

CVX-SLB
ρ −0.4285 −0.2952 −0.1917 0.0125 0.1370 0.2189 0.3470
s.e. 0.0514 0.0315 0.0407 0.0283 0.0119 0.0343 0.0601
η 5.9577 5.9865 5.7372 1.1099 7.1709 5.8081 7.7720
s.e. 1.4900 1.0373 1.6203 1.0572 1.0867 0.9945 1.9260
µ 0.1885 1.9198 0.6516 0.0266 −2.8547 −1.0773 −0.7736
s.e. 0.3205 0.6238 0.7631 0.0518 0.6763 0.5540 0.8808
σ 1.0542 1.9111 1.4014 0.7657 2.8422 1.4370 1.1080
s.e. 0.0814 0.2968 0.4462 0.5341 0.4426 0.2698 0.2357

CVX-XOM
ρ −0.3697 −0.2848 −0.2604 −0.0292 0.1498 0.2655 0.3064
s.e. 0.0389 0.0332 0.0319 0.0614 0.0098 0.0655 0.0371
η 9.4907 6.7285 5.3883 100.0000 7.4652 4.4893 4.8485
s.e. 2.2810 1.0185 0.7988 0.0000 0.6146 1.0291 0.5881
µ 1.1165 2.1093 1.0977 0.0288 −3.3156 −0.3117 −0.5190
s.e. 0.3934 0.6507 0.4563 0.1454 0.8036 0.5296 1.1587
σ 1.2333 2.0415 1.6990 0.4451 3.1823 1.1191 1.0327
s.e. 0.1212 0.3517 0.2934 1.4660 0.4812 0.2611 0.4099

SLB-CVX
ρ −0.4379 −0.3074 −0.1992 −0.1674 0.2540 0.2319 0.3709
s.e. 0.0487 0.0253 0.0433 0.2221 0.0284 0.0500 0.1180
η 5.2786 6.8860 6.0897 3.4238 9.4498 8.9075 4.2650
s.e. 1.0946 1.3895 1.6504 11.2905 2.1898 2.8503 1.2413
µ 0.8955 1.3873 0.9004 0.0190 −0.0270 −0.7997 −1.9741
s.e. 1.8064 1.0022 0.7610 0.0543 0.4314 1.1113 2.1185
σ 1.1652 1.4433 1.3617 0.1494 1.0719 1.2439 1.4758
s.e. 0.3585 0.3185 0.3162 0.2031 0.1863 0.3647 0.4936

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

SLB-XOM
ρ −0.4324 −0.3460 −0.2190 −0.1702 0.2284 0.1523 0.2311
s.e. 0.0269 0.0426 0.0308 0.1076 0.0378 0.0711 0.1420
η 5.8729 6.8816 8.3675 4.8353 9.7633 5.2302 6.5226
s.e. 1.3733 1.5239 1.8104 9.4595 3.3286 1.2786 3.2939
µ 0.6996 1.0827 0.8374 −0.0125 −0.4060 −0.4376 −1.2432
s.e. 1.9964 0.8425 0.6144 0.0579 0.5153 1.3303 3.5210
σ 1.1336 1.3608 1.3483 0.2669 1.2257 1.1270 1.2380
s.e. 0.4456 0.2587 0.2729 0.1550 0.2172 0.3708 0.7401

XOM-CVX
ρ −0.4393 −0.3131 −0.2374 −0.2076 0.1778 0.2603 0.2720
s.e. 0.0303 0.0985 0.0379 0.2078 0.0163 0.0311 0.0438
η 5.9477 5.6742 6.5839 100.0000 7.0889 4.8911 5.4711
s.e. 0.9646 2.8890 1.1588 0.0000 1.0272 1.0623 1.3549
µ 0.2207 0.1771 0.6095 0.0690 −1.8986 −0.5312 −0.6969
s.e. 0.6407 0.5904 0.4480 0.0447 0.5417 0.4103 0.4994
σ 1.0861 1.1164 1.4313 0.1694 2.3233 1.1896 1.1052
s.e. 0.1945 0.2952 0.3091 0.2090 0.3645 0.2075 0.1663

XOM-SLB
ρ −0.3592 −0.3159 −0.2019 −0.1197 0.1356 0.2799 0.3591
s.e. 0.0907 0.0588 0.0509 0.2637 0.0119 0.0479 0.0609
η 4.1754 5.4335 6.6450 100.0000 8.1115 4.4443 5.1398
s.e. 1.1479 1.1733 1.9993 0.0000 1.0189 1.0236 1.0787
µ 0.1946 0.2514 0.7802 0.0832 −2.8297 −0.5532 −0.3555
s.e. 0.5978 0.4579 0.7005 0.0528 0.7357 0.3847 0.5925
σ 1.0865 1.1207 1.5256 0.0838 2.9620 1.2740 1.0619
s.e. 0.1467 0.2168 0.4660 0.3426 0.5872 0.1959 0.1397

Table 4.15: Health Care: t-copula parameters estimated on full sample.

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

JNJ-MRK
ρ −0.4057 −0.3003 −0.1618 −0.0489 0.3259 0.1873 0.3784
s.e. 0.1075 0.0442 0.0413 1.5574 0.0356 0.0860 0.0775
η 3.9995 4.6836 3.3134 16.9292 4.8582 4.8475 5.6663
s.e. 1.0939 0.8319 0.5100 0.0000 1.2305 1.5532 1.3380
µ 0.1020 0.4159 0.3466 −0.0008 −0.0069 −0.0948 0.0041
s.e. 0.6619 0.3256 0.2862 0.0197 0.1717 0.4346 1.0217
σ 1.0619 1.3275 1.3460 0.0119 1.0841 1.0687 1.0941
s.e. 0.3053 0.2706 0.3392 0.7807 0.2129 0.3532 0.4711

JNJ-PFE
ρ −0.4493 −0.4449 −0.4059 0.0205 0.1689 0.1908 0.2014
s.e. 0.0500 0.0250 0.0648 0.0266 0.0500 0.0429 0.1369
η 3.4241 3.4109 2.6166 1.8831 3.4316 9.0889 8.0286
s.e. 0.6649 0.6312 0.5041 4.3461 0.6941 2.3148 5.6685
µ 0.6772 0.1513 −0.0889 0.0024 −0.2407 −1.0044 −0.6014
s.e. 0.5694 0.2654 0.1532 0.0214 0.2246 0.5483 1.6099
σ 1.2893 1.2534 1.0249 0.6274 1.2284 1.7279 1.1782
s.e. 0.3074 0.2280 0.1771 1.2439 0.2652 0.3877 0.5999

MRK-JNJ
ρ −0.4177 −0.2558 −0.1850 −0.0441 0.2148 0.2698 0.2683
s.e. 0.2320 0.0250 0.0228 0.6151 0.0209 0.0417 0.1301
η 3.4736 6.6219 11.0402 8.9364 8.8457 14.6844 5.1001
s.e. 1.0474 0.9580 3.9363 1200.9245 1.4737 5.6752 1.0186
µ 0.0542 0.7437 1.0676 0.0170 −0.9916 −0.6490 −0.2090
s.e. 0.9687 0.4614 0.5629 0.0334 0.4928 0.5577 1.5157
σ 1.1024 1.3774 1.7919 0.0688 1.7149 1.2937 1.0126
s.e. 0.2307 0.1941 0.3873 0.9953 0.2975 0.2777 0.5353

α = 0.01 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.99

MRK-PFE
ρ −0.4211 −0.3749 −0.3508 −0.0372 0.2761 0.1706 0.3857
s.e. 0.1220 0.0698 0.0641 0.0656 0.0338 0.0439 0.0755
η 3.5197 3.3929 4.3190 2.1781 8.8416 5.9820 7.2204
s.e. 1.1319 0.6269 1.0819 4.6262 1.8663 1.1855 2.7809
µ 0.1245 −0.0296 −0.1739 0.0235 −0.1913 −0.7640 0.1699
s.e. 0.9344 0.4189 0.3540 0.0328 0.3681 0.6826 0.7310
σ 1.0638 1.0732 0.8903 −0.4182 1.1713 1.3043 0.9765
s.e. 0.2304 0.1910 0.2543 0.6839 0.2615 0.4005 0.2134

PFE-JNJ
ρ −0.5341 −0.3602 −0.2162 −0.0732 0.3312 0.2084 0.3782
s.e. 0.0394 0.0410 0.0369 0.0776 0.0408 0.0370 0.1556
η 5.5814 6.2800 7.9359 6.2729 5.8079 6.5144 3.4365
s.e. 0.9350 1.5549 1.7619 71.0738 2.1954 1.2281 0.8568
µ 0.4099 0.4866 0.4425 −0.0526 −0.0772 −0.8518 −0.3970
s.e. 0.4425 0.5627 0.4485 0.0439 0.2210 0.5838 0.8320
σ 1.1833 1.3266 1.3240 0.2991 1.1505 1.3825 1.1101
s.e. 0.1021 0.2905 0.3493 0.4647 0.1763 0.3380 0.2363

PFE-MRK
ρ −0.5044 −0.4744 −0.2368 0.0631 0.3632 0.2826 0.4055
s.e. 0.0697 0.0442 0.0333 0.0331 0.0623 0.0361 0.0411
η 4.3457 4.2681 5.8239 72.3943 5.5033 5.1581 6.5804
s.e. 1.1015 1.0641 1.1170 3423.2660 1.6058 0.7319 1.2744
µ 0.0058 −0.0886 0.9792 −0.1445 0.2304 −0.5626 −1.3408
s.e. 0.6699 0.3095 0.4899 0.0707 0.2022 0.3567 1.2798
σ 1.1452 1.0651 1.6984 −1.0642 0.9592 1.2713 1.4090
s.e. 0.2056 0.1795 0.3676 0.7443 0.1642 0.2193 0.3707



4.B Figures

4.B.1 Copula parameters’ summary

Figure 4.1: Estimated parameters from Normal and t copula using full sample
data. For each quantile level we are summarizing the results for 21 assets. Each
boxplot includes 42 observations. Note: Recall from Section 4.4.1 that for each
stock within the same industry there are two possible regressions.
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Figure 4.2: Degrees of freedom for t copula using the full sample data. For each
quantile level we are summarizing the results for 21 assets. Each boxplot includes
42 observations. Note: Recall from Section 4.4.1 that for each stock within the
same industry there are two possible regressions.
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4.B.2 Normal copula fit

Figure 4.3: Information Technology : Normal copula
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Figure 4.4: Consumer Discretionary : Normal copula
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Figure 4.5: Consumer Staples : Normal copula
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Figure 4.6: Telecommunication Services : Normal copula
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Figure 4.7: Financials : Normal copula
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Figure 4.8: Energy : Normal copula
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Figure 4.9: Health Care: Normal copula
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4.B.3 t-copula fit

Figure 4.10: Information Technology : t copula
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Figure 4.11: Consumer Discretionary : t copula
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Figure 4.12: Consumer Staples : t copula
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Figure 4.13: Telecommunication Services : t copula
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Figure 4.14: Financials : t copula

0 2 4 6 8

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−C

B
A

C

Lin

t

0 2 4 6 8

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−WFC

B
A

C

Lin

t

0 2 4 6 8

−
3
0

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−BAC

C

Lin

t

0 2 4 6 8

−
3
0

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−WFC

C

Lin

t

0 2 4 6 8

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−BAC

W
F
C

Lin

t

0 2 4 6 8

−
2
0

−
1
0

0
1
0

2
0

t−copula quantile

V−C

W
F
C

Lin

t

Figure 4.15: Energy : t copula
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Figure 4.16: Health Care: t copula
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4.B.4 CoVaR dynamics

Figure 4.17: Information Technology : The figure shows returns (in blue), 5% V aRj

from Normal and t copula quantile regression (dashed lines red and black respec-

tively), ∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and black

lines respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of institution

i on institution j. In the figure titles we have the label of the form (j|i ∼ k),
which means that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is
calculated by (copula) quantile regressing the returns of i on realized volatility of
k, where i, j, k ∈ {AAPl, INTC,MSFT} and i 6= j, j 6= k.
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Figure 4.18: Consumer Discretionary : The figure shows returns (in blue), 5%
V aRj from Normal and t copula quantile regression (dashed lines red and black

respectively), ∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and

black lines respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of insti-

tution i on institution j. In the figure titles we have the label of the form (j|i ∼ k),
which means that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is
calculated by (copula) quantile regressing the returns of i on realized volatility of
k, where i, j, k ∈ {AMZN,DIS,MCD} and i 6= j, j 6= k.
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Figure 4.19: Consumer Staples : The figure shows returns (in blue), 5% V aRj from
Normal and t copula quantile regression (dashed lines red and black respectively),

∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and black lines

respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of institution i on

institution j. In the figure titles we have the label of the form (j|i ∼ k), which means
that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is calculated
by (copula) quantile regressing the returns of i on realized volatility of k, where
i, j, k ∈ {KO,PG,WMT} and i 6= j, j 6= k.
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Figure 4.20: Telecommunication Services : The figure shows returns (in blue), 5%
V aRj from Normal and t copula quantile regression (dashed lines red and black

respectively), ∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and

black lines respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of insti-

tution i on institution j. In the figure titles we have the label of the form (j|i ∼ k),
which means that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is
calculated by (copula) quantile regressing the returns of i on realized volatility of
k, where i, j, k ∈ {CMCSA, T, V Z} and i 6= j, j 6= k.
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Figure 4.21: Financials : The figure shows returns (in blue), 5% V aRj from Nor-
mal and t copula quantile regression (dashed lines red and black respectively),

∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and black lines

respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of institution i on

institution j. In the figure titles we have the label of the form (j|i ∼ k), which
means that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is cal-
culated by (copula) quantile regressing the returns of i on realized volatility of k,
where i, j, k ∈ {BAC,C,WFC} and i 6= j, j 6= k.
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Figure 4.22: Energy : The figure shows returns (in blue), 5% V aRj from Normal and

t copula quantile regression (dashed lines red and black respectively), ∆CoV aR
j|i
5%

from Normal and t copula quantile regression (red and black lines respectively).

The ∆CoV aR
j|i
5% gives us the VaR contribution of institution i on institution j.

In the figure titles we have the label of the form (j|i ∼ k), which means that
we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is calculated by
(copula) quantile regressing the returns of i on realized volatility of k, where i, j, k ∈
{CVX, SLB,XOM} and i 6= j, j 6= k.
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Figure 4.23: Health Care: The figure shows returns (in blue), 5% V aRj from
Normal and t copula quantile regression (dashed lines red and black respectively),

∆CoV aR
j|i
5% from Normal and t copula quantile regression (red and black lines

respectively). The ∆CoV aR
j|i
5% gives us the VaR contribution of institution i on

institution j. In the figure titles we have the label of the form (j|i ∼ k), which means
that we are estimating the V aRj|V aRi i.e. CoVaR, and the V aRi is calculated
by (copula) quantile regressing the returns of i on realized volatility of k, where
i, j, k ∈ {JNJ,MRK,PFE} and i 6= j, j 6= k.
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4.C CoVaR models comparison

Table 4.16: Summary statistics for estimated risk measures using nonlinear quantile regression models. In the
asset pairs the first one represents asset j and the second asset i e.g. for pair AAPL-INTC we have j-i. The
V aRi,j is calculated by (copula) quantile regressing the returns of asset i,j on realized volatility of asset k e.g.
for Information Technology k ∈ {AAPL, INTC,MSFT} and i, j 6= k. Thus we have two V aR measures for
the same asset i or j. The summary statistics are based on both these measures e.g. the summary reported in

the table for V aR
CN ,j
5%,t

for AAPL includes the results of V aR
CN ,AAPL∼INTC
5%,t

+ V aR
CN ,AAPL∼MSFT
5%,t

. This is

why we have the same numbers for V aR in the table. We have similar situation for the ∆CoV aRj|i, where the
V aRi is calculated by (copula) quantile regressing the returns of asset i on realized realized volatility of asset k.
Continuing the example on Information Technology k ∈ {AAPL, INTC,MSFT} and i 6= k. All numbers are in
percentage, CN , Ct represent Normal and t copula respectively, and B and L represent the benchmark and linear
quantile regression.

Information Technology

AAPL-INTC AAPL-MSFT

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0268 2.0087 −0.0268 2.0087

V aR
CN,j

5%,t
−3.2590 0.5349 −3.2590 0.5349

V aR
Ct,j

5%,t
−3.3123 0.8776 −3.3123 0.8776

∆CoV aR
CN,j|i
5%,t

−2.5206 1.2166 −2.3860 1.0565

∆CoV aR
Ct,j|i
5%,t

−2.5454 1.4296 −2.1841 1.3118

INTC-AAPL INTC-MSFT

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0090 1.6404 −0.0090 1.6404

V aR
CN,j

5%,t
−2.5129 0.7506 −2.5129 0.7506

V aR
Ct,j

5%,t
−2.5004 0.9344 −2.5004 0.9344

∆CoV aR
CN,j|i
5%,t

−4.5369 0.8510 −2.3517 0.8241

∆CoV aR
Ct,j|i
5%,t

−4.0251 1.3419 −2.0951 1.0617

MSFT-AAPL MSFT-INTC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0096 1.4026 −0.0096 1.4026

V aR
CN,j

5%,t
−2.0256 0.7379 −2.0256 0.7379

V aR
Ct,j

5%,t
−2.0494 1.0410 −2.0494 1.0410

∆CoV aR
CN,j|i
5%,t

−4.5977 1.0894 −2.5312 0.8255

∆CoV aR
Ct,j|i
5%,t

−4.3013 1.4039 −2.4290 0.9601

Consumer Cyclical

AMZN-DIS AMZN-MCD

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.1497 2.2343 0.1497 2.2343

V aR
CN,j

5%,t
−2.9838 0.6678 −2.9838 0.6678

V aR
Ct,j

5%,t
−3.1187 1.3009 −3.1187 1.3009

∆CoV aR
CN,j|i
5%,t

−2.5275 0.8256 −3.4096 0.7270

∆CoV aR
Ct,j|i
5%,t

−2.8383 1.2253 −3.9389 1.1572

DIS-AMZN DIS-MCD

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0857 1.5579 0.0857 1.5579

V aR
CN,j

5%,t
−2.1698 0.7302 −2.1698 0.7302

V aR
Ct,j

5%,t
−2.1103 0.9202 −2.1103 0.9202

∆CoV aR
CN,j|i
5%,t

−2.9765 0.7125 −3.0408 0.6474

∆CoV aR
Ct,j|i
5%,t

−2.3823 0.9874 −3.3433 0.9796

MCD-AMZN MCD-DIS

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0394 1.2084 0.0394 1.2084

V aR
CN,j

5%,t
−1.7903 0.3727 −1.7903 0.3727

V aR
Ct,j

5%,t
−1.8024 0.5401 −1.8024 0.5401

∆CoV aR
CN,j|i
5%,t

−2.2124 0.5415 −1.5111 0.5413

∆CoV aR
Ct,j|i
5%,t

−1.7073 0.7522 −1.6251 0.7106

Information Technology

AAPL-INTC AAPL-MSFT

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0268 2.0087 −0.0268 2.0087

V aR
B,j

5%,t
−2.8858 1.6697 −2.8858 1.6697

V aR
L,j|i
5%,t

−3.2672 0.6426 −3.2672 0.6426

∆CoV aR
B,j|i
5%,t

−1.3604 0.6795 −1.0759 0.6034

∆CoV aR
L,j|i
5%,t

−2.8111 1.4292 −2.4092 1.5867

INTC-AAPL INTC-MSFT

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0090 1.6404 −0.0090 1.6404

V aR
B,j

5%,t
−2.6321 1.3148 −2.6321 1.3148

V aR
L,j|i
5%,t

−2.5312 0.9299 −2.5312 0.9299

∆CoV aR
B,j|i
5%,t

−1.8009 1.0420 −1.4303 0.8022

∆CoV aR
L,j|i
5%,t

−4.7151 1.0241 −2.1847 1.0061

MSFT-AAPL MSFT-INTC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0096 1.4026 −0.0096 1.4026

V aR
B,j

5%,t
−2.1677 1.2158 −2.1677 1.2158

V aR
L,j|i
5%,t

−2.1315 1.0147 −2.1315 1.0147

∆CoV aR
B,j|i
5%,t

−1.5885 0.9191 −2.2051 1.1015

∆CoV aR
L,j|i
5%,t

−5.4773 1.1230 −2.7574 1.1384

Consumer Cyclical

AMZN-DIS AMZN-MCD

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.1497 2.2343 0.1497 2.2343

V aR
B,j

5%,t
−3.4230 1.7934 −3.4230 1.7934

V aR
L,j|i
5%,t

−3.1486 1.3026 −3.1486 1.3026

∆CoV aR
B,j|i
5%,t

−2.2152 1.3460 −2.2549 1.2581

∆CoV aR
L,j|i
5%,t

−2.7789 1.2000 −3.7659 1.1905

DIS-AMZN DIS-MCD

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0857 1.5579 0.0857 1.5579

V aR
B,j

5%,t
−2.2875 1.3899 −2.2875 1.3899

V aR
L,j|i
5%,t

−2.1631 0.9456 −2.1631 0.9456

∆CoV aR
B,j|i
5%,t

−1.7628 0.9235 −1.7339 0.9674

∆CoV aR
L,j|i
5%,t

−2.3836 1.0342 −2.9003 0.9169

MCD-AMZN MCD-DIS

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0394 1.2084 0.0394 1.2084

V aR
B,j

5%,t
−1.8991 1.0596 −1.8991 1.0596

V aR
L,j|i
5%,t

−1.7794 0.5965 −1.7794 0.5965

∆CoV aR
B,j|i
5%,t

−1.0807 0.5662 −1.0291 0.6253

∆CoV aR
L,j|i
5%,t

−1.8687 0.9035 −1.6878 0.8113



Table 4.17: Summary statistics for estimated risk measures using nonlinear quantile regression models. In the
asset pairs the first one represents asset j and the second asset i e.g. for pair KO-PG we have j-i. The V aRi,j is
calculated by (copula) quantile regressing the returns of asset i,j on realized volatility of asset k e.g. for Consumer
Defensive k ∈ {KO,PG,WMT} and i, j 6= k. Thus we have two V aR measures for the same asset i or j. The

summary statistics are based on both these measures e.g. the summary reported in the table for V aR
CN ,j
5%,t

for KO

includes the results of V aR
CN ,KO∼PG
5%,t

+ V aR
CN ,KO∼WMT
5%,t

. This is why we have the same numbers for V aR

in the table. We have similar situation for the ∆CoV aRj|i, where the V aRi is calculated by (copula) quantile
regressing the returns of asset i on realized realized volatility of asset k. Continuing the example on Information
Technology k ∈ {KO,PG,WMT} and i 6= k. All numbers are in percentage, CN , Ct represent Normal and t
copula respectively, and B and L represent the benchmark and linear quantile regression.

Consumer Defensive

KO-PG KO-WMT

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0103 1.0565 0.0103 1.0565

V aR
CN,j

5%,t
−1.4157 0.4428 −1.4157 0.4428

V aR
Ct,j

5%,t
−1.4739 0.8064 −1.4739 0.8064

∆CoV aR
CN,j|i
5%,t

−1.7434 0.5692 −1.8952 0.4934

∆CoV aR
Ct,j|i
5%,t

−1.7732 0.7969 −2.0976 0.7997

PG-KO PG-WMT

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0624 0.9851 0.0624 0.9851

V aR
CN,j

5%,t
−1.3646 0.4347 −1.3646 0.4347

V aR
Ct,j

5%,t
−1.3099 0.6112 −1.3099 0.6112

∆CoV aR
CN,j|i
5%,t

−1.3666 0.4233 −1.6452 0.4347

∆CoV aR
Ct,j|i
5%,t

−1.2563 0.6859 −1.8421 0.7290

WMT-KO WMT-PG

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0121 1.0774 −0.0121 1.0774

V aR
CN,j

5%,t
−1.5506 0.3780 −1.5506 0.3780

V aR
Ct,j

5%,t
−1.5039 0.5552 −1.5039 0.5552

∆CoV aR
CN,j|i
5%,t

−1.3702 0.4262 −1.4654 0.4924

∆CoV aR
Ct,j|i
5%,t

−1.2225 0.6668 −1.3861 0.6719

Telecommunication Services

CMCSA-T CMCSA-VZ

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0201 1.8655 0.0201 1.8655

V aR
CN,j

5%,t
−2.6018 0.7634 −2.6018 0.7634

V aR
Ct,j

5%,t
−2.5225 1.3769 −2.5225 1.3769

∆CoV aR
CN,j|i
5%,t

−2.6000 0.8379 −2.8455 0.9481

∆CoV aR
Ct,j|i
5%,t

−3.2802 1.3957 −2.8571 1.3127

T-CMCSA T-VZ

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0142 1.3164 −0.0142 1.3164

V aR
CN,j

5%,t
−1.8462 0.6278 −1.8462 0.6278

V aR
Ct,j

5%,t
−1.8215 0.7974 −1.8215 0.7974

∆CoV aR
CN,j|i
5%,t

−2.3413 0.6800 −2.1034 0.6579

∆CoV aR
Ct,j|i
5%,t

−1.7636 0.9697 −1.8615 0.8572

VZ-CMCSA VZ-T

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0418 1.2736 −0.0418 1.2736

V aR
CN,j

5%,t
−1.8833 0.6232 −1.8833 0.6232

V aR
Ct,j

5%,t
−1.8559 0.8615 −1.8559 0.8615

∆CoV aR
CN,j|i
5%,t

−2.2275 0.6469 −1.7802 0.5772

∆CoV aR
Ct,j|i
5%,t

−1.7943 0.9717 −1.8229 0.7903

Consumer Defensive

KO-PG KO-WMT

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0103 1.0565 0.0103 1.0565

V aR
B,j

5%,t
−1.6138 0.9566 −1.6138 0.9566

V aR
L,j|i
5%,t

−1.5528 0.8388 −1.5528 0.8388

∆CoV aR
B,j|i
5%,t

−1.4974 0.9034 −1.3607 0.7656

∆CoV aR
L,j|i
5%,t

−1.6932 0.7996 −2.0648 0.8985

PG-KO PG-WMT

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0624 0.9851 0.0624 0.9851

V aR
B,j

5%,t
−1.6308 0.9839 −1.6308 0.9839

V aR
L,j|i
5%,t

−1.3984 0.6891 −1.3984 0.6891

∆CoV aR
B,j|i
5%,t

−1.1424 0.6772 −1.2458 0.7010

∆CoV aR
L,j|i
5%,t

−1.3929 0.7379 −1.7303 0.7512

WMT-KO WMT-PG

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0121 1.0774 −0.0121 1.0774

V aR
B,j

5%,t
−1.8358 1.0329 −1.8358 1.0329

V aR
L,j|i
5%,t

−1.6164 0.6748 −1.6164 0.6748

∆CoV aR
B,j|i
5%,t

−0.9773 0.5793 −1.2549 0.7571

∆CoV aR
L,j|i
5%,t

−1.3484 0.7155 −1.3303 0.6350

Telecommunication Services

CMCSA-T CMCSA-VZ

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0201 1.8655 0.0201 1.8655

V aR
B,j

5%,t
−2.7010 1.5787 −2.7010 1.5787

V aR
L,j|i
5%,t

−2.6707 1.3179 −2.6707 1.3179

∆CoV aR
B,j|i
5%,t

−1.8663 1.1984 −2.2746 1.4267

∆CoV aR
L,j|i
5%,t

−3.0624 1.3784 −3.0028 1.2985

T-CMCSA T-VZ

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0142 1.3164 −0.0142 1.3164

V aR
B,j

5%,t
−2.1481 1.3793 −2.1481 1.3793

V aR
L,j|i
5%,t

−1.8739 0.8968 −1.8739 0.8968

∆CoV aR
B,j|i
5%,t

−1.3972 0.8166 −1.5471 0.9704

∆CoV aR
L,j|i
5%,t

−2.0873 1.0586 −2.0522 0.8593

VZ-CMCSA VZ-T

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0418 1.2736 −0.0418 1.2736

V aR
B,j

5%,t
−2.0340 1.2758 −2.0340 1.2758

V aR
L,j|i
5%,t

−1.8629 0.8191 −1.8629 0.8191

∆CoV aR
B,j|i
5%,t

−1.3452 0.7862 −1.3250 0.8508

∆CoV aR
L,j|i
5%,t

−1.8059 0.9037 −1.7551 0.7806
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Table 4.18: Summary statistics for estimated risk measures using nonlinear quantile regression models. In the
asset pairs the first one represents asset j and the second asset i e.g. for pair BAC-C we have j-i. The V aRi,j

is calculated by (copula) quantile regressing the returns of asset i,j on realized volatility of asset k e.g. for
Financials k ∈ {BAC,C,WFC} and i, j 6= k. Thus we have two V aR measures for the same asset i or j. The

summary statistics are based on both these measures e.g. the summary reported in the table for V aR
CN ,j
5%,t

for

BAC includes the results of V aR
CN ,BAC∼C
5%,t

+ V aR
CN ,BAC∼WFC
5%,t

. This is why we have the same numbers

for V aR in the table. We have similar situation for the ∆CoV aRj|i, where the V aRi is calculated by (copula)
quantile regressing the returns of asset i on realized realized volatility of asset k. Continuing the example on
Information Technology k ∈ {BAC,C,WFC} and i 6= k. All numbers are in percentage, CN , Ct represent Normal
and t copula respectively, and B and L represent the benchmark and linear quantile regression.

Financials

BAC-C BAC-WFC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.2287 3.2662 −0.2287 3.2662

V aR
CN,j

5%,t
−3.5153 2.5213 −3.5153 2.5213

V aR
Ct,j

5%,t
−3.6270 4.1774 −3.6270 4.1774

∆CoV aR
CN,j|i
5%,t

−3.6531 2.4349 −4.1345 2.2968

∆CoV aR
Ct,j|i
5%,t

−4.0803 4.8295 −4.8247 4.4158

C-BAC C-WFC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.4165 3.4154 −0.4165 3.4154

V aR
CN,j

5%,t
−3.7100 2.4754 −3.7100 2.4754

V aR
Ct,j

5%,t
−3.8720 4.4056 −3.8720 4.4056

∆CoV aR
CN,j|i
5%,t

−3.9245 2.7817 −4.7475 2.6371

∆CoV aR
Ct,j|i
5%,t

−3.8706 4.5434 −4.9775 4.5553

WFC-BAC WFC-C

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0189 2.7202 −0.0189 2.7202

V aR
CN,j

5%,t
−3.0109 1.6453 −3.0109 1.6453

V aR
Ct,j

5%,t
−3.1319 2.8500 −3.1319 2.8500

∆CoV aR
CN,j|i
5%,t

−2.7140 1.9244 −2.7777 1.8528

∆CoV aR
Ct,j|i
5%,t

−2.5376 2.9787 −2.7841 3.2953

Energy

CVX-SLB CVX-XOM

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0114 1.5384 0.0114 1.5384

V aR
CN,j

5%,t
−2.1110 0.6879 −2.1110 0.6879

V aR
Ct,j

5%,t
−2.3312 1.2602 −2.3312 1.2602

∆CoV aR
CN,j|i
5%,t

−2.9900 0.7326 −2.3038 0.6720

∆CoV aR
Ct,j|i
5%,t

−2.9787 1.1728 −3.6367 1.1700

SLB-CVX SLB-XOM

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0180 2.1495 −0.0180 2.1495

V aR
CN,j

5%,t
−3.3431 0.9044 −3.3431 0.9044

V aR
Ct,j

5%,t
−3.2637 1.3489 −3.2637 1.3489

∆CoV aR
CN,j|i
5%,t

−3.0459 1.0325 −3.3051 0.9748

∆CoV aR
Ct,j|i
5%,t

−2.8687 1.5376 −4.2088 1.3675

XOM-CVX XOM-SLB

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0511 1.4661 0.0511 1.4661

V aR
CN,j

5%,t
−2.0919 0.6549 −2.0919 0.6549

V aR
Ct,j

5%,t
−2.0847 0.7165 −2.0847 0.7165

∆CoV aR
CN,j|i
5%,t

−2.0598 0.6520 −2.5427 0.6227

∆CoV aR
Ct,j|i
5%,t

−1.8736 0.9974 −2.4151 0.9508

Financials

BAC-C BAC-WFC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.2287 3.2662 −0.2287 3.2662

V aR
B,j

5%,t
−3.4063 3.5345 −3.4063 3.5345

V aR
L,j|i
5%,t

−4.0146 4.3168 −4.0146 4.3168

∆CoV aR
B,j|i
5%,t

−4.1724 4.4315 −4.5013 4.1964

∆CoV aR
L,j|i
5%,t

−3.8761 3.8197 −4.6508 4.5421

C-BAC C-WFC

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.4165 3.4154 −0.4165 3.4154

V aR
B,j

5%,t
−3.7836 4.0186 −3.7836 4.0186

V aR
L,j|i
5%,t

−4.4367 4.4916 −4.4367 4.4916

∆CoV aR
B,j|i
5%,t

−4.2574 4.4175 −4.8964 4.5648

∆CoV aR
L,j|i
5%,t

−3.9910 4.1336 −4.7138 4.6007

WFC-BAC WFC-C

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0189 2.7202 −0.0189 2.7202

V aR
B,j

5%,t
−3.2013 2.9845 −3.2013 2.9845

V aR
L,j|i
5%,t

−3.2915 3.1642 −3.2915 3.1642

∆CoV aR
B,j|i
5%,t

−2.9651 3.0767 −3.0602 3.2502

∆CoV aR
L,j|i
5%,t

−2.7745 2.8730 −2.7753 2.7317

Energy

CVX-SLB CVX-XOM

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0114 1.5384 0.0114 1.5384

V aR
B,j

5%,t
−2.3468 1.4215 −2.3468 1.4215

V aR
L,j|i
5%,t

−2.3060 1.2054 −2.3060 1.2054

∆CoV aR
B,j|i
5%,t

−1.9015 0.9947 −2.2103 1.3838

∆CoV aR
L,j|i
5%,t

−3.2955 1.2660 −2.7831 1.1622

SLB-CVX SLB-XOM

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0180 2.1495 −0.0180 2.1495

V aR
B,j

5%,t
−3.3654 1.7604 −3.3654 1.7604

V aR
L,j|i
5%,t

−3.4224 1.4077 −3.4224 1.4077

∆CoV aR
B,j|i
5%,t

−2.3647 1.4324 −2.2057 1.3810

∆CoV aR
L,j|i
5%,t

−2.9719 1.6038 −3.5797 1.5344

XOM-CVX XOM-SLB

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0511 1.4661 0.0511 1.4661

V aR
B,j

5%,t
−2.1698 1.3585 −2.1698 1.3585

V aR
L,j|i
5%,t

−2.1814 0.9465 −2.1814 0.9465

∆CoV aR
B,j|i
5%,t

−1.7431 1.0558 −1.5733 0.8230

∆CoV aR
L,j|i
5%,t

−1.9989 1.0605 −2.7087 1.0434



Table 4.19: Summary statistics for estimated risk measures using nonlinear quantile regression models. In the
asset pairs the first one represents asset j and the second asset i e.g. for pair JNJ-MRK we have j-i. The V aRi,j

is calculated by (copula) quantile regressing the returns of asset i,j on realized volatility of asset k e.g. for Health
Care k ∈ {JNJ,MRK,PFE} and i, j 6= k. Thus we have two V aR measures for the same asset i or j. The

summary statistics are based on both these measures e.g. the summary reported in the table for V aR
CN ,j
5%,t

for

JNJ includes the results of V aR
CN ,JNJ∼MRK
5%,t

+ V aR
CN ,JNJ∼PFE
5%,t

. This is why we have the same numbers

for V aR in the table. We have similar situation for the ∆CoV aRj|i, where the V aRi is calculated by (copula)
quantile regressing the returns of asset i on realized realized volatility of asset k. Continuing the example on
Information Technology k ∈ {JNJ,MRK,PFE} and i 6= k. All numbers are in percentage, CN , Ct represent
Normal and t copula respectively, and B and L represent the benchmark and linear quantile regression.

Health Care

JNJ-MRK JNJ-PFE

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0107 0.9193 0.0107 0.9193

V aR
CN,j

5%,t
−1.2303 0.3581 −1.2303 0.3581

V aR
Ct,j

5%,t
−1.2622 0.6414 −1.2622 0.6414

∆CoV aR
CN,j|i
5%,t

−1.1422 0.4328 −1.4745 0.3838

∆CoV aR
Ct,j|i
5%,t

−1.3845 0.6153 −1.6007 0.5810

MRK-JNJ MRK-PFE

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0012 1.5244 0.0012 1.5244

V aR
CN,j

5%,t
−2.2939 0.8205 −2.2939 0.8205

V aR
Ct,j

5%,t
−2.2700 1.0097 −2.2700 1.0097

∆CoV aR
CN,j|i
5%,t

−2.8367 0.8490 −2.9422 0.7697

∆CoV aR
Ct,j|i
5%,t

−2.1300 1.0864 −2.6620 0.9867

PFE-JNJ PFE-MRK

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0573 1.3253 −0.0573 1.3253

V aR
CN,j

5%,t
−2.0483 0.5362 −2.0483 0.5362

V aR
Ct,j

5%,t
−2.0848 0.7625 −2.0848 0.7625

∆CoV aR
CN,j|i
5%,t

−2.0794 0.7084 −1.6876 0.6402

∆CoV aR
Ct,j|i
5%,t

−1.6750 0.8756 −1.7989 0.8125

Health Care

JNJ-MRK JNJ-PFE

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0107 0.9193 0.0107 0.9193

V aR
B,j

5%,t
−1.4584 0.8995 −1.4584 0.8995

V aR
L,j|i
5%,t

−1.2983 0.5980 −1.2983 0.5980

∆CoV aR
B,j|i
5%,t

−0.9578 0.5948 −1.1468 0.6003

∆CoV aR
L,j|i
5%,t

−1.3608 0.6559 −1.5575 0.6555

MRK-JNJ MRK-PFE

Mean Std.Dev. Mean Std.Dev.

X
j
t 0.0012 1.5244 0.0012 1.5244

V aR
B,j

5%,t
−2.3359 1.4507 −2.3359 1.4507

V aR
L,j|i
5%,t

−2.3021 1.0942 −2.3021 1.0942

∆CoV aR
B,j|i
5%,t

−1.8384 1.1339 −2.0110 1.0526

∆CoV aR
L,j|i
5%,t

−2.3298 1.0683 −2.7043 1.1150

PFE-JNJ PFE-MRK

Mean Std.Dev. Mean Std.Dev.

X
j
t −0.0573 1.3253 −0.0573 1.3253

V aR
B,j

5%,t
−2.1959 1.1494 −2.1959 1.1494

V aR
L,j|i
5%,t

−2.0713 0.8246 −2.0713 0.8246

∆CoV aR
B,j|i
5%,t

−1.3666 0.8429 −1.2978 0.8060

∆CoV aR
L,j|i
5%,t

−1.8218 0.8408 −1.8163 0.8773



Chapter 5
Conclusion

In my dissertation I study the nonlinear dependence in financial time series from
different perspectives. First, I investigate the dependence between oil and stocks
with the aim to explore opportunities in portfolio management. Using high fre-
quency data and copula models I capture the time-varying conditional distribution
of the oil stocks pair accurately, including the dynamics in the correlation and
tails. This also converts into accurate quantile forecasts from the model, which are
central to risk management, as they represent value-at-risk. These results then are
translated into the conditional diversification benefits measure which is proposed
recently by Christoffersen et al. (2012). I find that possible benefits from using oil
as a diversification tool for stocks have been decreasing rapidly over time, while in
the last year of the sample under study, it displayed some rebound. These results
have important implications for the risk industry and portfolio management as
commodities have recently become an attractive opportunity for risk diversifica-
tion in portfolios.

Next I focus in modelling and forecasting the conditional quantiles of financial
assets returns. I explore further non-linearities in the data, and propose to use
realized measures in the nonlinear quantile regression framework to explain and
forecast conditional quantiles of financial returns. The nonlinear quantile regression
models are implied by copula specifications and allow me to capture possible non-
linearities and asymmetries in conditional quantiles of financial returns. Modelling
of the conditional quantiles has direct implications in calculation of the standard
measure of the market risk, the Value-at-Risk (VaR). I apply this methodology to
estimate and forecast the VaR of 21 most liquid U.S. stocks which com from seven
sectors. I find that using the realized volatility under a copula quantile framework
is useful, especially in the cases where the quantile dependence is nonlinear.

Finally I consider the VaR of an asset conditional on some other asset being un-
der distress or the conditional Value-at-Risk (CoVaR). I follow a slightly different
approach than current literature, where in the focus is systemic risk. I estimate the
risk contribution that an asset has on some other individual asset, which allows the
study of risk spillovers among assets. I estimate the conditional VaR on the same
data as previously and propose to use nonlinear quantile regression models based



on copula theory to estimate CoVaR. The individual risk contribution estimated
from these models gives estimates in between the benchmark model which is based
on realized volatility and the Linear quantile regression model. I find that assets
from Financial industry have the highest risk contribution among each other. The
model I propose identifies Apple to be a high risk contributor to Microsoft and
Intel. While for assets from Consumer Staples industry and Health Care I find
that they have the lowest risk spillovers.
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Response to Reviewers

for the Dissertation Defense

December 21, 2015

on manuscript
Essays in Financial Econometrics

by Krenar Avdulaj

I thank the reviewers for insightful comments on the pre-defense version of my
dissertation. Since the reviewers suggest that the dissertation can be submitted
without major changes, I have made minor adjustments in the text.

Response to Comments from Prof. Ing. Evžen Kočenda PhD.

I thank Prof. Kočenda for his kind assessment of my research. Prof. Kočenda
has several suggestions for thesis improvement, mainly for the third essay. I have
taken all these comments in consideration while preparing the final version of the
dissertation.

Response to Comments from Prof. Tiziana Di Matteo

I am grateful to Prof. Di Matteo for her kind words on my dissertation. Prof.
Di Matteo has few minor suggestions with respect to organization and coherent
presentation of the dissertation. I considered all her suggestions which resulted in
further improvement of my thesis. Thank you!

Response to Comments from Doc. RNDr. Jǐŕı Witzany Ph.D.

I thank Doc. RNDr. Witzany for his kind assessment of my research. Below
I answer his questions/comments (”Q” refers to question or comment and ”A” is
my answer).

• Q: The first paper focuses on oil-stock dependence and the diversification
benefits. My understanding of the results of the realized GARCH with time
varying copula is that the diversification benefits are lower than commonly



believed (2.6 Conclusions and Figure 2.3). But conclusions at the end of Sec-
tion 2.4 say the opposite: “Our results have serious implications for investors
as they suggest that diversification possibilities may be even larger than com-
monly perceived from the mere dynamics of the correlations.” I would like to
ask the author to clarify the inconsistent interpretations of the results.

A: In fact this is some misunderstanding caused by the text. Up to the end
of Section 2.4 we are considering the cumulative results which do not take
into consideration conditional diversification benefit (CDB).

• Q: According to Section 2.5.1, it appears that the investigated diversified port-
folio of stocks and oil is equally weighted and the weights do not change over
time. However, the changing volatilities and correlations (copula parame-
ters) allow re-balancing of the portfolio optimizing the diversification bene-
fit, for example, measured by the diversification index proposed in the paper.
The changing volatilities and dependence structure may just cause the equally
weighted portfolio being less optimal, not necessarily implying a lower diver-
sification benefit on an optimally diversified portfolio. I would like the author
to comment this objection.

A: From the literature we know that diversification on an equally weighted
portfolio in the case of two assets cannot be (easily) beaten using a dynamic
asset allocation strategy. The transaction costs often overcome the bene-
fits. In addition, Christoffersen et al. (2012) compare the CDB using equally
weighted and optimally weighted portfolios. They find that the difference is
nonzero, but not very large. They claim that relatively modest differences
between optimal and equal-weighted diversification benefits suggest that the
1/N style portfolios recently advocated in a normal setting may work rela-
tively well in our nonnormal context as well.

• Q: A formal remark concerns the quantile definition (2.26) implicitly assum-
ing that the cdf is continuous increasing which does not have to be necessarily
the case (e.g. in case of an empirical cdf).

A: Yes, this is the underlying assumption. I made it clear in the final version
of the dissertation.

• Q: The second paper uses high frequency data and the nonlinear quantile
regression framework to study conditional quantiles of returns on a pool of
the most liquid US assets across different industries. A formal remark is that
sometimes there are notions or shortcuts that are firstly used and only later
defined in the text. For example, IVt, integrated variance, is firstly used in
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Section 3.2, but more precisely defined in 4.2. Similarly, the shortcut LQR is
firstly used in Section 3.5 but more specifically defined in Section 4.2 (it would
be useful to mention it already in Section 3.2). Figure 3.2 shows dependence
of a set of quantiles of a stock returns on its realized volatility. I have not
found (in the text preceding the figure) any specification of the probabilities
for which the quantiles are calculated.

A: This is true. I introduced the acronyms when they first appear in the text
and also add the missing information in the text.

• Q: Finally, the last paper focuses on Conditional Value at Risk estimated
using the nonlinear quantile copula regression technique and using the same
dataset as the second paper. Already in the introduction, the concept of VaR
is used in the nonstandard convention where the values are negative (equal
to the respective quantile) while the standard convention is to report VaR as
a positive number. This is explained later, in Section 4.2. I recommend to
explain this change of convention already in the introduction in order to avoid
confusion. I am not sure that the methodology section explains the notion of
“inter lagged realized volatility” as opposed to “own lagged realized volatility”
used already in section 4.1?

The “benchmark” model is based on VaR estimated by rescaling the realized
volatility, but still using the same linear quantile regression for CoVaR esti-
mation (Section 4.2.3). It is surprising why the author does not use as a basic
benchmark a simpler and easier to implement model, e.g. based on constant
correlations and multivariate normality, or DCC GARCH, etc.?

A: This is correct, I introduced the Value-at-Risk (VaR) convention earlier
in the text and also explain “own” and “inter” volatility.

Regarding the choice of the benchmark model I chose realized volatility be-
cause of three main reasons:

1. The parametric models tend to overestimate the risk.

2. Given that the realized volatility is the best in the market, why to use
another metrics?

3. We already are using realized volatility in our model so it is easily im-
plemented.

• Q: Besides the minor comments above there is a more general practical ques-
tion I would like to ask. It is obvious that the complex realized GARCH dy-
namical copula and quantile regression modeling framework is technically very



demanding in terms of presentation and implementation. On the other hand,
it brings a better precision of the VaR estimations, conditional dependence
measures, portfolio diversification, etc. Does the author think that, from the
practical point of view (of banks, financial institutions, and investors), the
benefits out-weight the “costs”?

A: I think that all modelling framework I have in my dissertation can be
easily implemented. The most demanding from the computational point of
view is the provision of inference via bootstrapping and simulations. How-
ever, this is done only once to show that the model estimates are significant.
Besides, using C code for the bottlenecks of estimation significantly reduces
the (computational) costs.
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Appendix A
Copula properties

In this appendix I provide some properties of bivariate copula functions which I
have used in my dissertation.

A.1 Tail Dependence

If the limit

lim
ε→0

Pr[U ≤ ε|V ≤ ε] = lim
ε→0

Pr[V ≤ ε|U ≤ ε] = lim
ε→0

C(ε, ε)

ε
= τL (A.1)

exists, then the copula C exhibits lower tail dependence if τL ∈ (0, 1] and no lower
tail dependence if τL = 0. The lower quantile-quantile dependence measure is
defined as

τL(ε) =
C(ε, ε)

ε
(A.2)

Similarly, if the limit

lim
δ→1

Pr[U > δ|V > δ] = lim
δ→1

Pr[V > δ|U > δ]

= lim
δ→1

1− 2δ + C(δ, δ)

1− δ
= τU (A.3)

exists, then the copula C exhibits upper tail dependence if τU ∈ (0, 1] and no
upper tail dependence if τU = 0. The upper quantile-quantile dependence measure
is defined as

τU(δ) =
1− 2δ + C(δ, δ)

1− δ
(A.4)

A.2 Elliptical copulas

A.2.1 Normal copula

CN
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds



where

ρ ∈ (−1, 1)

and upper and lower tail dependence

τL = τU = 2 lim
r→−∞

Φ

(
r

√
1− ρ

1 + ρ

)
= 0

For ρ = 0 we obtain the independence copula, while for ρ = 1 the comonotonicity
one. For ρ = −1 the countermonotonicity copula is obtained. We note that Normal
copula has no tail dependence for ρ < 1.

In Figure A.1 we plot the (upper and lower) quantile-quantile dependence for
Normal copula. The plots are generated using the Equation A.2 for a) and Equa-
tion A.4 for b). From these plots it is clear that Normal copula has 0 tail dependence
for all ρ < 1.
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Figure A.1: Quantile-quantile dependence for Normal copula.

Partial derivative(s)

Assign

g(r, s) =
1

2π
√

(1− ρ2)
exp

{
−r

2 − 2ρrs+ s2

2(1− ρ2)

}
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and

b1 = Φ−1(u), b2 = Φ−1(v)

Then,

CN
1 (u, v) =

∂CN(u, v)

∂u

=
∂

∂u

∫ b1

−∞

∫ b2

−∞
g(r, s) dr ds

=
∂b1

∂u

∂

∂b1

∫ b1

−∞

∫ b2

−∞
g(r, s) dr ds

=
1

φ(b1)

∂

∂b1

∫ b1

−∞

∫ b2

−∞
g(r, s) dr ds

=
1

φ(b1)

∫ b2

−∞

[
∂

∂b1

∫ b1

−∞
g(r, s) ds

]
dr

=
1

φ(b1)

∫ b2

−∞
g(b1, s) ds

=
1

φ(b1)

∫ b2

−∞

1

2π
√

(1− ρ2)
exp

{
−b

2
1 − 2ρb1s+ s2

2(1− ρ2)

}
ds

=
1

φ(b1)

∫ b2

−∞

1

2π
√

(1− ρ2)
exp

{
−(s− ρb1)2 + (b2

1 − ρ2b2
1)

2(1− ρ2)

}
ds

=
1

φ(b1)

∫ b2

−∞

1

2π
√

(1− ρ2)
exp

{
−b

2
1(1− ρ2)

2(1− ρ2)

}
exp

{
−(s− ρb1)2

2(1− ρ2)

}
ds

=
1

φ(b1)

1√
2π

exp

(
−b

2
1

2

)∫ b2

−∞

1√
2π(1− ρ2)

exp

{
−(s− ρb1)2

2(1− ρ2)

}
ds

=
1

φ(b1)
φ(b1)Φ

(
b2 − ρb1√

1− ρ2

)

=Φ

(
b2 − ρb1√

1− ρ2

)

=Φ

(
Φ−1(v)− ρΦ−1(u)√

1− ρ2

)

The derivative w.r.t. v can be derived in similar way. However, due to symmetricity



we can get C2(u, v) =
∂C(u, v)

∂v
by just replacing u for v and vice-versa in the result

above.

A.2.2 Student’s t

Ct
η,ρ(u, v) =

∫ t−1
η (u)

−∞

∫ t−1
η (v)

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

r2 − 2ρrs+ s2

η(1− ρ2)

)− η+2
2

drds

where

ρ ∈ (−1, 1), 0 < η

In contrast to Normal copula, provided that ρ > −1, the t copula has symmetric
tail dependence given by:

τL = τU =2tη+1

(
−

√
(η + 1)(1− ρ)

1 + ρ

)
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Figure A.2: Quantile-quantile dependence for t copula.

In Figure A.2 we plot the (upper and lower) quantile-quantile dependence for t
copula. The plots are generated using quantile-quantile dependence measure as in
Equation A.2 for a) and as in Equation A.4 for b). From these plots we see that t
copula has tail dependence for all ρ > −1, and this dependence is symmetric.
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Partial derivative(s)

Assign

g(r, s) =
Γ(η+2

2
)

Γ(η
2
)πη
√

1− ρ2

(
1 +

r2 − 2ρrs+ s2

η(1− ρ2)

)− η+2
2

fη(s) =
Γ(η+1

2
)

Γ(η
2
)
√
πη

(
1 +

s2

η

)− η+1
2

and

b1 =t−1
η (u), b2 = t−1

η (v)

Then,

Ct
1(u, v) =

∂Ct(u, v)

∂u

=
∂

∂u

∫ b1

−∞

∫ b2

−∞
g(r, s) dr ds

=
∂b1

∂u

∂

∂b1

∫ b1

−∞

∫ b2

−∞
g(r, s) dr ds

=
1

fη(b1)

∫ b2

−∞

[
∂

∂b1

∫ b1

−∞
g(r, s) ds

]
dr

=
1

fη(b1)

∫ b2

−∞
g(b1, s)ds

=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

b2
1 − 2ρb1s+ s2

η(1− ρ2)

)− η+2
2

ds

=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

(s− ρb1)2 + (b2
1 − ρ2b2

1)

η(1− ρ2)

)− η+2
2

ds

=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

(s− ρb1)2

η(1− ρ2)
+
b2

1

η

)− η+2
2

ds

=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

(s− ρb1)2(η + b2
1)

η(1− ρ2)(η + b2
1)

+
b2

1

η

)− η+2
2

ds



=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

η(s− ρb1)2

η(1− ρ2)(η + b2
1)

+
b2

1(s− ρb1)2

η(1− ρ2)(η + b2
1)

+
b2

1

η

)− η+2
2

ds

=
1

fη(b1)

∫ b2

−∞

Γ(η+2
2

)

Γ(η
2
)πη
√

1− ρ2

(
1 +

(s− ρb1)2

(1− ρ2)(η + b2
1)

)− η+2
2
(

1 +
b2

1

η

)− η+2
2

ds

=
1

fη(b1)

Γ(η+1
2

)
√
π(1− ρ2)(η + b2

1)

Γ(η
2
)πη
√

1− ρ2

(
1 +

b2
1

η

)− η+1
2
(

1 +
b2

1

η

)− 1
2

·
∫ b2

−∞

Γ(η+2
2

)

Γ(η+1
2

)
√
π(1− ρ2)(η + b2

1)

(
1 +

(s− ρb1)2

(1− ρ2)(η + b2
1)

)− η+2
2

ds

=
1

fη(b1)

Γ(η+1
2

)
√
η + b2

1

Γ(η
2
)η
√
π

√
η

η + b2
1

(
1 +

b2
1

η

)− η+1
2

︸ ︷︷ ︸
fη(b1)

·
∫ b2

−∞

Γ(η+2
2

)

Γ(η+1
2

)
√
π(1− ρ2)(η + b2

1)

(
1 +

(s− ρb1)2

(1− ρ2)(η + b2
1)

)− η+2
2

ds

=

∫ b2

−∞

Γ(η+2
2

)

Γ(η+1
2

)
√
π(1− ρ2)(η + b2

1)

(
1 +

(s− ρb1)2

(1− ρ2)(η + b2
1)

)− η+2
2

ds

Replace,

ν =η + 1

µ =ρb1

σ2 =
η + b2

1

η + 1
(1− ρ2)

Then

Ct
1(u, v) =

∫ b2

−∞

Γ(ν+1
2

)

Γ(ν
2
)
√
π

(η+1)(1−ρ2)(η+b21)

η+1

1 +
(s− ρb1)2

(η+1)(1−ρ2)(η+b21)

η+1

− ν+1
2

ds
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=

∫ b2

−∞

Γ(ν+1
2

)

Γ(ν
2
)
√
πνσ

1 +
(s− ρb1)2

(η+1)(1−ρ2)(η+b21)

η+1

− ν+1
2

ds

=

∫ b2

−∞

Γ(ν+1
2

)

σΓ(ν
2
)
√
πν

(
1 +

1

ν

(
s− µ
σ

)2
)− ν+1

2

ds

=

∫ b2

−∞

1

σ
fν

(
s− µ
σ

)
ds

=

∫ (b2−µ)/σ

−∞
fν(y)dy

=tν

(
b2 − µ
σ

)

Setting back the values for b1, b2, σ, µ and ν we recover the expression

Ct
1(u, v) =tν

(
b2 − µ
σ

)

=tη+1

 t−1
η (v)− ρt−1

η (u)√
(η+[t−1

η (u)]2)(1−ρ2)

η+1


The derivative w.r.t. v can be derived in similar way. However, due to symmetricity

we can get C2(u, v) =
∂C(u, v)

∂v
by just replacing u for v and vice-versa in the result

above.

A.3 Archimedian copulas

A.3.1 Clayton copula

CCl
δ (u, v) =

(
u−δ + v−δ − 1

)−1
δ

where

0 < δ <∞



and lower and upper tail dependence

τL = 2−
1
δ , τU = 0

For δ → 0 implies independence, while δ → ∞ perfect dependence. This can also
be seen in Figure A.3 a), where for parameter δ = 0.1 the tail dependence is almost
0 and for parameter δ = 20 the tail dependence is close to 1. Figure A.3 b) just
shows that, indeed, Clayton copula does not have upper tail dependence. Both
plots are produced using quantile-quantile definitions in Section A.1. Note that
Clayton copula allows for negative dependence for δ ∈ (−1, 0), however this form
of dependence is not used in empirical work.
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Figure A.3: Quantile-quantile dependence for Clayton copula.

Partial derivative(s)

CCl
1 (u, v) =

∂CCl(u, v)

∂u

=
∂

∂u

(
u−δ + v−δ − 1

)−1
δ

=u−δ−1
(
u−δ + v−δ − 1

)−1
δ
−1

A.3.2 Gumbel copula

CGu
δ (u, v) = exp{−([− log u]δ + [− log v]δ)1/δ}



A. Copula properties 147

where

1 ≤ δ <∞

and lower and upper tail dependence

τL = 0, τU = 2− 21/δ

For δ = 1 Gumbel copula reduces to the fundamental independence copula:

CGu
δ (u, v) = exp{−((− log u)1 + (− log v)1)1/1}

= exp{log u+ log v}
= exp{log(uv)} = uv

In Figure A.4 we plot the quantile-quantile dependence for Gumbel copula.
From b) we see that for parameter δ = 1.1 we get almost 0 dependence. Figure a)
shows that Gumbel copula does not have lower tail dependence.
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Figure A.4: Quantile-quantile dependence for Gumbel copula.

Partial derivative(s)

CGu
1 (u, v) =

∂CGu(u, v)

∂u



=
∂

∂u
exp{−([− log u]δ + [− log v]δ)1/δ}

=CGu(u, v)
1

u
(− log u)δ−1([− log u]δ + [− log v]δ)

1
δ
−1

A.3.3 Rotated Gumbel copula

CRGu
δ (1− u, 1− v) = exp{−([− log(1− u)]δ + [− log(1− v)]δ)1/δ}+ u+ v − 1

where

1 ≤ δ <∞

and lower and upper tail dependence

τL = 2− 21/δ, τU = 0

In Figure A.5 we plot the quantile-quantile dependence for Rotated Gumbel
copula. As the name suggests this copula is just the rotated Gumbel. Thus,
when compared to Gumbel its tails are switched. From Figure A.5 a) we see
that for parameter δ = 1.1 we get almost 0 dependence, which increases with δ.
Whereas from Figure b) we see that Rotated Gumbel copula does not have upper
tail dependence.
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Figure A.5: Quantile-quantile dependence for Rotated Gumbel copula.



5. Copula properties 149

Partial derivative(s)

CRGu
1 (1− u, 1− v) =

∂CGu(1− u, 1− v)

∂(1− u)

=
∂u

∂(1− u)

∂CRGu(1− u, 1− v)

∂u

=
1

∂(1−u)
∂u

∂CRGu(1− u, 1− v)

∂u

=− 1[exp{−([− log(1− u)]δ + [− log(1− v)]δ)
1
δ }

· (−1)([− log(1− u)]δ + [− log(1− v)]δ)
1
δ
−1[− log(1− u)]δ−1 −1

1− u
+ 1]

=− exp{−([− log(1− u)]δ + [− log(1− v)]δ)
1
δ }

· ([− log(1− u)]δ + [− log(1− v)]δ)
1
δ
−1[− log(1− u)]δ−1 1

1− u
− 1
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