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Used Notation

SDE Stochastic differential equation

Pδ Member of {Pδ : δ > 0}

Eδ Expectation with respect to Pδ
Pδ−→ Convergence in probability Pδ

supp µ Support of measure µ

Lp([0, T ], λ) Lp space with Lebesque measure

AC([0, T ]) Set of all absolutely continuous functions on
[0, T ]

C([0, T ]) Set of all continuous functions on [0, T ]

‖.‖sup Supremum norm

Ck([0, T ]), k ∈ N Set of all functions on [0, T ] with continuous
derivatives up to k-th order

Cα([0, T ]), α ∈ (0, 1
2
) Set of all α-Hölder functions on [0, T ]

‖.‖α α-Hölder norm

W s,p([0, T ]) Fractional Sobolev function space on [0, T ]

‖.‖W s,p Norm in fractional Sobolev space

M̃ Martingale part of semimartingale M

M̄ Bounded variation part of semimartingale M

〈M〉t Quadratic variation of M

‖M̄‖(t) Total variation of M̄ up to time t

i = 1, d i ∈ {1, .., d}

u× v Cartesian product of vectors u and v
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Introduction

The topic of this thesis lies in the field of stochastic analysis, in particular stochas-
tic differential equations (in the paper abbreviated to SDE).

Chapter one is devoted to explaining the problem, motivation, results and
applications and is divided into four sections. It starts with the definition of a
notion of SDE and related concepts, together with the description of the main
concept - characterization of the support of the solution to SDE. In the second
section, we compare previous results in the field and attempt to show the way
and motivation that led to the definition of our problem. Next, the contribution
of this work is described, together with the methods that were used to reach
the desired result. Chapter one is concluded with examples of newly covered
classes of stochastic differential equations.

In chapter two, we present some Lemmas that are needed for the proof
of the main Theorem and include a section about spaces of functions we will
be working with. We mostly present supporting results from other sources.

In the final chapter, we first state some preliminary results that were mostly
not found elsewhere and then prove the approximation Theorem 3.7, which en-
ables us to show the main Theorem 3.10.

As described in chapter one, the solution to an SDE on an interval [0, T ] is
a continuous random process on [0, T ], in other words a distribution on the set
of all continuous functions C([0, T ]). Our goal is to describe, where exactly
in the continuous functions the solution lies by means of approximation of the SDE
by a set of deterministic ordinary differential equations. To characterize the so-
lution of the SDE, we introduce a notion of support of distribution, which is
defined as the smallest closed set such that almost all trajectories of the solu-
tion still belong to the set (i.e. the smallest set F with Px(F ) = 1, where Px is
the distribution of the solution of SDE on C([0, T ])).

Every SDE depends on two coefficients, b and σ, called the drift and the dif-
fusion coefficients, respectively. Note that in this paper, we restrict ourselves
to Wiener process as an integrator in the diffusion term, i.e. to an SDE labeled
(1.1) in the paper. The idea is to remove the randomness from the equation by
replacing Wiener process with suitable deterministic functions from a certain set
H. We then take a set of all solutions to those approximating, deterministic,
ordinary differential equations (1.4) and denote it U . The problem was first ad-
dressed in the paper Stroock and Varadhan [1972], where it was shown under
certain conditions on b and σ that the support of the solution of the SDE is
equal to the closure of the set U in continuous functions. The characterization
was refined in many following papers, until now the best results were reached by
Gyöngy and Pröhle [1990] and Ben Arous, Gradinaru, and Ledoux [1994].

This thesis pushes the quality of the characterization forward in two ways.
Firstly, it reduces the conditions on the coefficients b and σ. We only require b
to be locally Lipschitz continuous and σ to have a continuous second derivative,
in comparison with Ben Arous et al. [1994] (both b and σ are required to be
smooth functions) and Gyöngy and Pröhle [1990] (b is globally Lipschitz con-
tinuous with linear growth and σ has a continuous second derivative and is also
at most of linear growth). A typical example of newly covered class of coeffi-
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cients is when the function b does not have a continuous derivative and neither
is of linear growth.

Secondly, the obtained characterization is also more accurate. Instead of work-
ing in the space of all continuous functions (as in Gyöngy and Pröhle [1990]) or
in the space of all Hölder functions (as in Ben Arous et al. [1994]), we work
in a smaller space (X, d), which is created as an intersection of all Hölder spaces
Cα([0, T ]) for α ∈ (0, 1

2
).

The contributions of this thesis are mostly the proof of Theorem 3.10 (via
Lemma 3.9) and the approximation Theorem 3.7. The paper Gyöngy and Pröhle
[1990] was thoroughly reviewed and the missing proofs were supplied as Lemmas
2.2 and 3.8. Also some results from Mackevicius [1985] and Mackevicius [1986]
had to be extended in the form of Lemma 2.5.
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1. Overview

Chapter one is divided into four section. Firstly, we introduce the concept of SDE
and support characterization. Secondly, we give a summary and comparison
of previous results in the field. In the third section, we explain our contribu-
tion and used methods and in the last section we give examples and applications
of the obtained results.
We use the following notation: All constants in the proofs will be denoted by
C > 0, even though they can change from one line to another. Parenthesis af-
ter the constant denote possible dependence (e.g. C(p)). When the constant
is required to be independent of certain parameter, it will be noted explic-
itly. Recall that we chose to abbreviate the term stochastic differential equa-
tion to SDE. When considering a function space, we usually do not explicitely
state the codomain, i.e. we write C([0, T ]) instead of C([0, T ];Rd). Note that
the codomains are mostly spaces of the form Rk for some k > 1.

1.1 Concept of Stochastic Differential Equation

The motivation for considering the notion of a stochastic differential equation
is the same as for ordinary (deterministic) differential equations. We would like
to model a certain process or function but we can only compute its derivative and
not the function itself. And while in the case of ordinary differential equations we
are certain about the values of the inputs and we can measure them accurately,
the SDE is designed for the cases when we admit a random term or error en-
tering our measurements and computations. It is not surprising that the output
- the solution - of the SDE reflects the randomness and is a stochastic process
as well. The derivative or change of a stochastic process is called the stochastic
differential and the main tool for examining stochastic differentials is nothing less
than the famous Itô formula.
A typical SDE consists of two parts - the drift part with drift function b (the de-
terministic part of the equation) and the stochastic part with diffusion function σ
(responsible for the random fluctuations of the solution). Just like its determinis-
tic alternative, an SDE can be easily transposed into its integral form. However,
both integrals contain random parts. Therefore, before we define the equation
itself, we need to address an important problem of stochastic integration.
The first case is when the integrator is a stochastic process of bounded variation
almost sure, which is the drift integral. We simply define the integral pathwise
by the Lebesgue-Stieltjes definition for each ω (each realization) separately t∫

0

b(s, .)dg(s, .)

 (ω) =

t∫
0

b(s, ω)dg(s, ω).

Most common case is when dg(s, ω) = ds.
For the diffusion process, we need to take a random process that is not of bounded
variation as an integrator, the most common choice being the Wiener process.
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Definition 1.1 (Wiener process). The stochastic process {W (t) : t ≥ 0} is called
Wiener process, if

(i) W (0) = 0 almost sure,

(ii) W (t3)−W (t2) and W (t2)−W (t1) are independent for all 0 ≤ t1 < t2 < t3
(W has independent increments),

(iii) W (t)−W (s) ∼ N(0, |t− s|) (W has Gaussian increments),

(iv) W is continuous (i.e. almost all paths are continuous).

The Wiener process is a continuous process that is nowhere differentiable
for almost all trajectories. It is apparent that we cannot use the Lebesgue-
Stieltjes approach to work with an integral where there is the Wiener process
as an integrator. There is a whole theory about the construction of stochastic
integral  t∫

0

σ(s, .)dW (s, .)

 (ω).

For our purposes it is enough to state that such integral is defined correctly
for certain classes of integrands (we will not leave this class in this paper) and
that the result of stochastic integration is not only a continuous stochastic process,
but even (local) martingale.
If not transposed, the vectors in this paper are column vectors. The integrals

of the form
t∫

0

f(s)dg(s), where f = (f1, .., fn) and g, f1, .., fn : R → R will be

interpreted as
t∫

0

f(s)dg(s) =

 t∫
0

fi(s)dg(s)

n

i=1

forming n−dimensional column vector. The SDE we consider here is of the form

dx(t) = b(x(t))dt+ σ(x(t)) ◦ dW (t), x(0) = x0.

We work with its multidimensional alternative

dx(t) = b(x(t))dt+
l∑

i=1

σi(x(t)) ◦ dW i(t), x(0) = x0, (1.1)

where W = (W i) is l-dimensional Wiener process (which is defined as a vector
of l independent one-dimensional Wiener processes), b : Rd → Rd and
σ : Rd → Rd × Rl, where σi(x) ∈ Rd is a column vector for each i = 1, l, with
σki (x) being its k-th element. The sign ◦ means that the stochastic integral is
in Stratonovich’s form and the equation can be transformed into more common
Itô’s form

dx(t) = b(x(t))dt+
l∑

i=1

σi(x(t))dW i(t) +
1

2

l∑
i,j=1

σi(j)(x(t))d〈W i,W j〉t,
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where

σi(j)(x) =
l∑

k=1

(
∂

∂xk
σi(x)

)
σkj (x). (1.2)

The term 〈W i,W j〉t denotes quadratic variation of W i and W j. As can be seen
from the definition of multidimensional Wiener process, it holds that
〈W i,W j〉t = tδij and the Itô’s version can be formulated as

dx(t) = b(x(t))dt+
l∑

i=1

σi(x(t))dW i(t) +
1

2

l∑
i=1

σi(i)(x(t))dt, (1.3)

x(0) = x0 ∈ Rd

or, in integral form,

x(t) = x(0) +

t∫
0

b(x(s))ds+
l∑

i=1

t∫
0

σi(x(s))dW i(s) +
1

2

l∑
i=1

t∫
0

σi(i)(x(s))ds.

The solution x(t) is a continuous stochastic process (since it is in form of an inte-
gral), in other words it is defined by a probability measure on a space of functions.
For every probability measure P, we can define its support as the smallest closed
set of probability 1 (i.e. here the smallest closed set of functions that covers al-
most all solutions to the equation 1.1). Since the solution is a continuous process,
the biggest space in which it makes sense to consider support is the space of all
continuous functions C([0, T ]) on an interval [0, T ], where we solve the SDE. And
it is the characterization and description of the support of the solution to (1.1)
in certain function spaces that plays the main role in this paper.

1.2 Previous Results

Let us recall some previous results. The main sources for this work that we di-
rectly work with are the following papers Mackevicius [1985], Mackevicius [1986]
and Gyöngy and Pröhle [1990].
The work that introduced the idea of support characterization was Stroock and
Varadhan [1972]. Their original motivation was to find the characterization
of the support of the solution of so called martingale problem, which they man-
aged to reduce to support characterization of a solution of a derived SDE. The re-
sult stated that if the coefficient functions satisfy that b is a bounded function,
globally Lipschitz continuous and σ is a bounded function with continuous deriva-
tives up to the second order (σ ∈ C2

b (Rd)), then

supp (Px0) = U,

Px0 being the probability measure defining the solution of the SDE (1.1) with
initial condition x(0) = x0 ∈ Rd and U is the closure of the set U
in (C([0, T ];Rd), ‖.‖sup), where

‖f‖sup = sup
t≤T
|f(t)|.
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The set
U = {xw ∈ C([0, T ];Rd) : w ∈ H}

is the set of all solutions xw of an approximating deterministic equation

dxw(t) = b(xw(t))dt+
l∑

i=1

σi(x
w(t))dwi(t), (1.4)

xw(0) = x0,

where H := {w ∈ C2([0, T ];Rd) : w(0) = 0 }. The proof used the following
convergence result about conditional probability

P
(
‖x(t)− xw(t)‖sup ≤ ε|‖W i(t)− wi(t)‖sup ≤ δ

) δ→0−−→ 0. (1.5)

One can see that the characterization of the support is a statement of the follow-
ing form.

Under certain assumptions on the coefficient b and σ and the inte-
grator in the diffusion term (in our case Wiener process), the support
of Px0 from (1.1) is the same as the closure of the set obtained by solv-
ing deterministic version (1.4), where we assume every w ∈ H instead
of Wiener process W (t) as an integrator.

What matters is how restrictive are the assumptions on b and σ (especially bound-
edness), how accurate is the characterization in terms of the space in which we
assume the support and closure and how big is the class of possible integrators.
Let us see what refinements of the first result the succeeding articles brought,
starting with Mackevicius [1986]. The assumptions on b and σ were that both
coefficients remained bounded and they were required to be in C3(Rd) and the clo-
sure was again assumed in C([0, T ];Rd) with the supremum norm. What changed
was that the characterization was extended to a broader class of continuous semi-
martingales as integrators instead of only Wiener process, Z = M +A, M being
the martingale part and A the bounded variation part. The set
H := {w ∈ C1([0, T ];Rd) : w(0) = 0} also changed slightly, but since we assume
the closure of U , it was only a matter of notation. We now cite the characteriza-
tion Theorem.

Theorem 1.2. (Mackevicius [1986]) Let the following conditions hold. Firstly,

〈Zi, Zj〉t = 〈Mi,Mj〉t =

∫ t

0

ci,j(s, ω)ds, t ≥ 0,

where
λ(t, ω)|Θ|2 ≤ |(c(t, ω)Θ,Θ)| ≤ CT |Θ|2

for all t ∈ [0, T ], Θ ∈ R2r and some constants CT and stochastic process λ such

that E exp

(
k

t∫
0

λ−1(s)ds

)
< ∞ for all k > 0 and t > 0. Secondly,

Ai(t) =

t∫
0

ai(s, ω)ds for |ai(t, ω)| ≤ CT , t ∈ [0, T ].

Then supp(Px) = U .
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Although the conditions on M and A are quite restrictive, the paper in-
troduced an important method. Instead of concentrating on the estimation
of the property (1.5), it uses an absolutely continuous change of probability P
to construct a family of probabilities {Pδ : δ > 0} with the use of Girsanov The-
orem (see [Ikeda and Watanabe, 1980, Theorem IV. 4.1]). The approximation is
then computed with respect to these probabilities.
The same idea was then used in the main source for this thesis - the paper Gyöngy
and Pröhle [1990] - and the way it is used can therefore be found here as well,
particularly in Lemma 3.8. In their paper, Gyöngy and Pröhle showed charac-
terization of the same accuracy (i.e. in continuous functions) and for the same
class of continuous semimartingales as integrators as in Mackevicius [1986], but
they significantly lowered the conditions on b and σ - they removed the require-
ment of boundedness (although they still assume the first partial derivative of σ
to be bounded, b to be globally Lipschitz continuous and b and σ to be of linear
growth). It will be shown later in the work that some of the assumptions on b
and σ required in the article are not necessary, either in such generality or at all.
We mention two other articles that used different approaches, but their results
are important for comparison. They both consider only Wiener process instead
of continuous semimartingale as an integrator in (1.1), but they pushed the ac-
curacy of the support characterization forward by proving the equality in Hölder
space (Cα([0, T ]), ‖.‖α) with the norm

‖f‖α := sup
0≤t≤T

|f(t)|+ sup
s 6=t

|f(t)− f(s)|
|t− s|α

for every α ∈ (0, 1
2
) instead of C([0, T ]) with supremum norm. We will now cite

their conclusions.
The first article is Millet and Sanz-Solé [1994]. They assumed the functions b and
σ satisfy the following condition

σ is of class C2, bounded together with its partial derivative of order one
and two, and b is globally Lipschitz continuous and bounded.

Note that the assumptions are identical to those in the original article Stroock
and Varadhan [1972], only the set H was changed to

H = {w ∈ AC([0, T ];Rd) : w(0) = 0 and ẇ ∈ L2([0, 1];Rd)}.

Their result is then again
supp (Px0) = U,

but we assume the support and the closure of U in Cα([0, T ];Rd) and for every
fixed α ∈ (0, 1

2
).

The last mentioned paper is Ben Arous, Gradinaru, and Ledoux [1994]. The sup-
port characterization is also in Hölder space and for Wiener process, but the as-
sumptions on the coefficients are different - the functions b and σ are both required
to be smooth, i.e. in C∞(Rd), but not bounded. Other assumptions and the re-
sult are the same as in the previous article.
Those were the main results in the field, how does this paper fit into the picture?
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1.3 Our Contribution and Methods

In our work, we only require b to be locally Lipschitz continuous and
σ ∈ C2(Rd) (i.e. all partial derivatives up to the second order are continuous
functions), which is in comparison with previous papers a very weak set of as-
sumptions. These assumptions yield local uniqueness and local existence of the so-
lutions of (1.1) and (1.4), but, unlike the assumptions from previous papers, do
not guarantee existence of the solution on the whole interval [0, T ]. Therefore, we
need to additionally assume that we have unique solutions on the whole interval
[0, T ]. In other words, we need some assumptions for non-explosion. In the last
section of this chapter, we give examples of coefficients that satisfy our assump-
tions but have not been covered in any of the previous papers.
The characterization result is much more accurate than before, we obtain the re-
sult in the space denoted X or (X, d) (d being a metric on X), which is an
intersection of all Hölder spaces for α ∈ (0, 1

2
), i.e.

X =
⋂
α< 1

2

Cα([0, T ]).

As stated in the introduction, we restrict ourselves to the case of Wiener process
as an integrator. The characterization is again

supp (Px0) = U,

where we assume the support and the closure of U in (X, d) with an inductive
topology. The characterization is formulated in Theorem 3.10. There is a section
called “Hölder and Fractional Sobolev Spaces” in chapter two that describes ev-
erything we need to know about the space (X, d) for our purposes.
Let us now shortly describe the methods used in our work. From the reasons
described in the section “Hölder and Fractional Sobolev Spaces”, it is convenient
for us to work in fractional Sobolev spaces W s,p([0, T ]) rather than in Hölder
spaces or the intersection space (X, d) itself. The general course of action is
the same as in Gyöngy and Pröhle [1990], the only difference is that we work
in the space (W s,p([0, T ]), ‖.‖W s,p) instead of (C([0, T ]), ‖.‖sup). We first define
the needed relations in the norm ‖.‖W s.p instead of the supremum norm, then
the [Gyöngy and Pröhle, 1990, Theorem 2.2] is reformulated as Theorem 3.7.
New assumptions had to be added, but the obtained result was stronger. Most
of the Lemmas from the section “Hölder and Fractional Sobolev Spaces” in chap-
ter two and from chapter three are used during the proof of this theorem.
After proving Theorem 3.7, we can state the first part of the main result, Lemma
3.9, where the support characterization in the space (W s,p([0, T ]), ‖.‖W s,p) is for-
mulated. It is in the proof of this Lemma, where we need to draw many results
from Mackevicius [1985] and Mackevicius [1986]. The needed results were directly
cited in section “Smooth Approximation Lemmas” in chapter two. Two slight
extensions of the Lemmas had to be made and are stated and proven in the same
section labeled as Lemma 2.5. When the proof of Lemma 3.9 is finished, we use
the equivalence of convergence in W s,p for all s < 1

2
, p ∈ (2,∞) and in (X, d)

to prove the support characterization in (X, d). This assertion is stated in Theo-
rem 3.10 and concludes chapter three and the whole work.
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1.4 Examples

Let us now present a few examples and applications. As stated in the previous
section, in order to use our results we need to verify that σ has a continuous
second derivative, b is locally Lipschitz continuous and both the SDE (1.1) and
the deterministic differential equation (1.4) have a global solution. Since the as-
sumptions on b and σ already yield local existence and uniqueness, we only need
to make sure that the solutions do not explode.

Remark. Recall that our SDE is either in the Stratonovich’s form (1.1) or in
the Itô’s form (1.3) and these two forms can be interchanged by adding or remov-
ing a correction term (1.2) to or from the drift coefficient b. The problem is that
in this thesis, we formulate our results for SDEs in Stratonovich’s form, while
the conditions that yield non-explosion are for SDEs in Itô’s form. Note that if
σ is a constant function, the correction term disappears and both equation are
the same.

Example 1. Let us start with a one-dimensional example and consider an equa-
tion

dx(t) = b(x(t))dt+ σ(x(t)) ◦ dW (t),

or equivalently

dx(t) =

(
b(x(t)) +

1

2
σ′(x(t))σ(x(t))

)
dt+ σ(x(t))dW (t),

where b, σ : R→ R, b is locally Lipschitz continuous, σ ∈ C2(R) and W is a one-
dimensional Wiener process. Define b̃ := b+ 1

2
σ′σ. The problem of non-explosion

for local solutions is addressed for example in [Seidler, 2011, Theorems 5.2 and
5.4]. Sufficient conditions for non-explosion in one-dimensional case are

|σ(x)| ≤ C(1 + |x|) and b̃(x)x ≤ C(1 + |x|2).

The condition on b is much weaker than linear growth. It is enough for b to satisfy
so called one-sided linear growth condition, i.e.

b̃(x) ≤ C(1 + x) for x ≥ 0,

b̃(x) ≥ C(x− 1) for x < 0

for some constant C > 0. Note that we do not require the function b to be
differentiable.
Let us first restrict ourselves to the case σ ≡ 1. Then we do not need to consider
the correction term and trivially σ ∈ C2(R) and b = b̃. Therefore any function b
that is neither of linear growth nor smooth gives a SDE that was not covered in
any of the previous articles but satisfies the assumptions of Theorem 3.10. An
example of such equation is

dx(t) = (|x(t)| − x3(t))dt+ dW.

Example 2. Consider again a one-dimensional equation

dx(t) = b(x(t))dt+ σ(x(t)) ◦ dW (t),

11



or equivalently

dx(t) =

(
b(x(t)) +

1

2
σ′(x(t))σ(x(t))

)
dt+ σ(x(t))dW (t).

This time it is not assumed that σ ≡ 1 and the correction term must be taken care
of. We need that σ ∈ C2(R), b is locally Lipschitz continuous and b̃ := b + 1

2
σ′σ

satisfies the one-sided linear growth condition. It is possible to show that σ need
not satisfy linear growth condition, provided the drift term b is “strong enough”
to compensate for the nonlinear effects. For example in equation

dx(t) = (|x(t)| − x5(t))dt+ x2(t)dW (t)

we see that the correction term is x3 and the function b̃ = |x(t)| − x5(t) + x3

still satisfies the assumptions of one-sided linear growth secured by the strongest
term −x5(t). Again, this is an example of an SDE that was not covered in any
of the previous articles.

In both examples, Theorem 3.10 gives the equality between the support
of the solution to the SDE and the closure of the set of solutions to all ap-
proximating equations in the space (X, d).

Example 3. Our last example is multidimensional, it is the stochastic geodesic
equation for the unit sphere, where we consider only space independent solutions.
Assume S2 = {u ∈ R3 : |u| = 1} to be the unit sphere in R3. Let TS2 be
a restricted tangent bundle of S2

TS2 = {(u, v) : |u| = 1, 〈u, v〉R3 = 0, |v| = 1} = {(u, v) : |u| = 1, u ⊥ v, |v| = 1},

where we added the constrain |v| = 1. Note that TS2 ⊆ R6.
A deterministic geodesic equation for the unit sphere is a second order differential
equation of the form

u′′ = −|u′|2u , |u| = 1, u(0) ⊥ u′(0), |u(0)| = |u′(0)| = 1. (1.6)

We now add random noise through one-dimensional Wiener process W and trans-
form (1.6) into a stochastic geodesic equation for unit sphere. Note that we are
forced to write the equation in the form of stochastic differentials instead of deriva-
tives.

du′ = −|u′|2udt+ (u× u′) ◦ dW , |u| = 1, u(0) ⊥ u′(0), |u(0)| = |v(0)| = 1.
(1.7)

The second order SDE (1.7) can be rewritten into two first order SDEs

dz = b(z)dt+ σ(z) ◦ dW, z ∈ TS2, z(0) ∈ TS2, (1.8)

where

z =

(
u
v

)
, b(z) =

(
v

−|v|2u

)
, σ(z) =

(
0

u× v

)
.

It holds that b is continuous and σ ∈ C2, which yields the local existence and
uniqueness of solution to (1.8). It is shown in [Ban̆as, Brzeźniak, Neklyudov,
Ondreját, and Prohl, 2015, Proposition 4.1] that the equation

dz = b(z)dt+ σ(z) ◦ dW, z(0) ∈ TS2

12



possesses global solution. Furthermore, |v(t)| = |v(0)| for every t ≥ 0 almost sure,
which yields that if our initial condition |v(0)| = 1 is satisfied then |v(t)| = 1
for every t ≥ 0 almost sure and therefore the solution z stays in TS2, i.e. it
is a solution to (1.8). The global existence for the apporixmating, deterministic
equation

u′′w = −|u′|2u+ ẇ(t)(u× u′) , |u| = 1, u(0) ⊥ u′(0), |u(0)| = |v(0)| = 1

for

w ∈ H = {w ∈ C([0, T ];R) : w(0) = 0, w is absolutely cont. and ẇ ∈ L2([0, 1];R)}

can be proven analogically.
Theorem 3.10 yields that

supp Pu,u′ = {uw : w ∈ H}
X
,

where Pu,u′ is the distribution of the solution to (1.8) for z = (u, u′), while at
the same time

{uw : w ∈ H}
X
⊆
{
h : [0, T ]→ TS2 : h(0) =

(
u(0)
v(0)

)}
by Ban̆as et al. [2015]. The characterization result yields that the solution to
the SDE (1.8) in R6 is actually contained in three-dimensional set

TS2 = {(u, v) : |u| = 1, u ⊥ v, |v| = 1}.
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2. Preliminary Results

In this chapter, we first shortly comment on the article Gyöngy and Pröhle
[1990], then cite the results from Mackevicius [1985] and Mackevicius [1986] and
in the last section we talk about the spaces we work in - Hölder spaces, fractional
Sobolev spaces and the space (X, d).

2.1 Revision of Gyöngy and Pröhle

This thesis is from a large part an extension of the paper published by Gyöngy
and Pröhle [1990]. Therefore, a thorough revision of the article was carried out
before the start of the original work itself. We now state the results of the revision
(needed for our purposes).
There are a few minor typing errors in the paper, one that could be misleading
occured at the lower part of page 67 - the integrator in the definition of Aijδ (t)
should be

t∫
0

(mi
δ(s)−M i

δ(s))dM̄
j
δ (s) instead of

t∫
0

(mi
δ(s)−M i

δ(s))dM̄
i
δ(s).

Another thing to point out is that both in Gyöngy and Pröhle [1990] and in this
work, when one requires certain property to be fulfilled for all δ > 0 (typically
tightness of distribution uniform in δ > 0), it is required to hold only for δ ∈ (0, δ0)
for some δ0. This is because in the end, we are only interested in limit behavior
as δ tends to 0.
There are two Lemmas in the article, both are stated without proof. The proof
of Lemma 3.2 was elaborated using the given reference to Mackevicius [1986]. For
our purposes, a slightly weaker version of the Lemma is needed. This version is
stated and proved in chapter three as Lemma 3.8.
The biggest issue in the article is the Lemma 2.3, which is not applicable the way
it is stated. Primarily, we cannot assume the integrand F : [0,∞) × Rp → Rp×q

to be bounded. Also other assumptions are stronger than necessary and since
we work on a finite interval [0, T ], we are only able to verify the assumptions
of a “local” rather than “global” version of the Lemma (but, on the other hand,
we also need a weaker assertion than stated in the original paper). A more
suitable version of Lemma 2.3 and its proof follows.
First, we formulate a definition that is needed to formulate the Lemma.

Definition 2.1. For random processes xδ(t), yδ(t) and stopping times τδ, defined
on a stochastic basis Θδ = (Ωδ, Fδ, (Fδt)t≥0,Pδ) for every δ > 0, we write

xδ(t) ∼ yδ(t) on [0, τδ] (w.r.t. Θδ),

if limδ→0 Pδ(supt<τδ |xδ(t)− yδ(t)| > ε̄) = 0 for every ε̄ > 0.

Lemma 2.2. Let τδ be an Fδt-stopping time, T > 0 and uδ(t) and vδ(t) be con-
tinuous Fδt-adapted stochastic processes on Θδ for every δ > 0 such that

uδ(t)− vδ(t) ∼
∫ t

0

(F (s, uδ(s))− F (s, vδ(s)))dSδ(s) on [0, T ∧ τδ] (2.1)

14



with respect to Θδ, where F : [0,∞] × Rp −→ Rp×q is locally Lipschitz contin-
uous in x ∈ Rp, uniformly in t ∈ [0, T ] and Sδ(t) is a continuous semimartin-
gale in Rq for every δ > 0. Assume that the distributions of supt≤T∧τδ |uδ(t)|,
supt≤T∧τδ |vδ(t)|, ‖Sδ‖(T ∧ τδ) and 〈Sδ〉(T ∧ τδ) are tight, uniformly in δ > 0.
Then

uδ(t) ∼ vδ(t) on [0, T ∧ τδ].

Proof. Our aim is to prove that

∀ε̄ > 0 : lim
δ→0

Pδ
[

sup
t≤T∧τδ

|uδ(t)− vδ(t)| ≥ ε̄

]
= 0

The assumption (2.1) is equivalent to showing

lim
δ→0

Pδ
[

sup
t≤T ∧ τδ

|uδ(t)− vδ(t)−
∫ t

0

(F (s, uδ(s))− F (s, vδ(s)))dSδ(s)| ≥ ε̄

]
= 0

for all ε̄ > 0.
We start with some useful reductions used in [Gyöngy and Pröhle, 1990, proof
of Theorem 2.2]. Define an Fδt-stopping time τδ

L as

τδ
L = inf{t ≥ 0 : Hδ(t) ≥ L} ∧ T

where
Hδ(t) = sup

0≤s≤t
|uδ(s)|+ sup

0≤s≤t
|vδ(s)|+ ‖Sδ‖(t) + 〈Sδ〉(t).

It follows the very same way from the mentioned article using the assumptions
of uniform tightness that we can suppose Hδ(t) < L for some fixed L > 0.
The second reduction also follows the arcticle and deals with |uδ(t)− vδ(t)|. We
use an Fδt-stopping time

σεδ = inf{t ≥ 0 : |uδ(t)− vδ(t)| ≥ ε} ∧ τδL ∧T

and as a result can assume that |uδ(t) − vδ(t)| ≤ ε on [0, T ∧ τδ] for some fixed
ε > 0.
Let T > 0, ε > 0 and τδ be fixed. First we use the Markov inequality to get
expected value instead of probability.

Pδ
[

sup
t≤T∧τδ

|uδ(t)− vδ(t)| ≥ ε̄

]
≤ 1

ε̄2
E δ sup

t≤T∧τδ
|uδ(t)− vδ(t)|2

The main tool of the proof is from [Métivier, 1982, Lemma 29.1]. Let

Φ(t) = sup
0≤s≤t

|uδ(s ∧ τδ)− vδ(s ∧ τδ)|2 and Tδ(t) = ‖Sδ‖(t) + 〈Sδ〉(t).

Then (Tδ(t))t≥0 is a continuous, nondecreasing, adapted stochastic process for
each δ > 0, Tδ(t) ≥ 0 on [0, T ∧ τδ] and by the first reduction

sup
t≤T∧τδ

Tδ(t) ≤ 2L.
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The process Φ(t) is also nondecreasing, the only thing left to prove is that for all
stopping times σ such that σ ≤ τ = T ∧ τδ it holds

Eδ Φ(σ) ≤ Aδ + ρEδ
[ ∫ σ

0

Φ(s)dTδ(s)

]
for ρ ≥ 0 constant and Aδ

δ→0−−→ 0.
Let us choose a stopping time σ such that σ ≤ T ∧ τδ. Then

Eδ (Φ(σ)) = Eδ sup
0≤s≤σ∧T

|uδ(s ∧ τδ)− vδ(s ∧ τδ)|2

= Eδ sup
0≤s≤T

|uδ(s ∧ τδ ∧σ)− vδ(s ∧ τδ ∧σ)|2

≤ 2Eδ sup
0≤s≤T

|
∫ s∧σ ∧ τδ

0

(F (r, uδ(r))− F (r, vδ(r)))dSδ(r)|2

+ 2Eδ sup
0≤s≤T

|uδ(s ∧ τδ ∧σ)− vδ(s ∧ τδ ∧σ)

−
∫ s∧σ ∧ τδ

0

(F (r, uδ(r))− F (r, vδ(r)))dSδ(r)|2 ≡ (1) + (2).

Using Burkholder-Davis-Gundy inequality and the fact that F is locally Lipschitz
continuous (together with the first reduction) we obtain

(1) = 4Eδ sup
0≤s≤T

|
∫ s∧σ ∧ τδ

0

(r, F (uδ(r))− F (r, vδ(r)))dSδ(r)|2

+ 4Eδ sup
0≤s≤T

|
∫ s∧σ ∧ τδ

0

(F (r, uδ(r))− F (r, vδ(r)))dS̃δ(r)|2

≤ 4Eδ sup
0≤s≤T

∫ s∧σ ∧ τδ

0

|F (r, uδ(r))− F (r, vδ(r))|2d‖Sδ‖(r)

+ 4Eδ sup
0≤s≤T

∫ s∧σ ∧ τδ

0

|F (r, uδ(r))− F (r, vδ(r))|2d〈Sδ〉(r)

≤ C Eδ
∫ T ∧σ ∧ τδ

0

|uδ(r)− vδ(r)|2dTδ(r)

= C Eδ
∫ σ

0

|uδ(r)− vδ(r)|2dTδ(r)

≤ C Eδ
∫ σ

0

sup
u≤r
|uδ(u)− vδ(u)|2dTδ(r) = C Eδ

∫ σ

0

Φ(r)dTδ(r).

For the second term we use the following property. If it holds for a process (Xδ)δ≥0

that Eδ |Xδ|p ≤ K and Xδ
Pδ−→ 0 as δ → 0, then ∀ a > 0 Eδ |Xδ|p−a

δ→0−−→ 0. For
our purposes let p = 3, a = 1 and denote

Xδ(T ) := 2Eδ sup
0≤s≤T

∣∣uδ(s ∧ τδ ∧σ)− vδ(s ∧ τδ ∧σ)

−
∫ s∧σ ∧ τδ

0

(F (r, uδ(r))− F (r, vδ(r)))dSδ(r)
∣∣2.
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Then using K > 0 as the local Lipschitz constant for ‖x‖ ∨ ‖y‖ ≤ L (and for all
times t ∈ [0, T ]) we get

Eδ |Xδ(T )|3 ≤ 18Eδ sup
0≤s≤T

|uδ(s ∧ τδ ∧σ)︸ ︷︷ ︸
≤L

|3 + sup
0≤s≤T

| vδ(s ∧ τδ ∧σ)︸ ︷︷ ︸
≤L

|3

+ sup
0≤s≤T

|
∫ s∧σ ∧ τδ

0

(F (r, uδ(r))− F (r, vδ(r)))dSδ(r)|3

≤ 18L3 + 9

∫ T ∧σ ∧ τδ

0

|(F (r, uδ(r))− F (r, vδ(r)))|3d‖Sδ‖(r)|

+ 9C3 Eδ
(∫ s∧σ ∧ τδ

0

|(F (r, uδ(r))− F (r, vδ(r)))d〈Sδ〉(r)|
) 3

2

≤ 18L3 + 9K3

∫ T ∧σ ∧ τδ

0

|uδ(r)− vδ(r)︸ ︷︷ ︸
≤L

|3d‖Sδ‖(r)

+ 9K3C3

(∫ T ∧σ ∧ τδ

0

|uδ(r)− vδ(r)︸ ︷︷ ︸
≤L

|2d‖Sδ‖(r)
) 3

2

≤ 18L3 + 9K3(C3 + 1)L3
(
Eδ ‖Sδ‖(T ∧σ ∧ τδ)︸ ︷︷ ︸

≤L

+
(
Eδ 〈Sδ〉(T ∧σ ∧ τδ)︸ ︷︷ ︸

≤L

) 3
2
)
≤ C

Using the proposition we obtain

(2) = Aδ = Eδ |Xδ|2
δ→0−−→ 0.

This yields

Eδ (Φ(σ)) ≤ Aδ + ρEδ
∫ σ

0

Φ(r)dTδ(r),

from which using [Métivier, 1982, Lemma 29.1] follows that

∀ δ > 0 : Eδ (Φ(T ∧ τδ)) ≤ 2Aδ

b2ρlc∑
j=0

(2ρl)j = CAδ, i.e.

Eδ sup
0≤t≤T ∧ τδ

|uδ(t)− vδ(t)|2 ≤ CAδ
δ→0−−→ 0,

where
b2ρlc∑
j=0

(2ρl)j = C does not depend on δ.

�

2.2 Smooth Approximation Lemmas

In this part, we cite all the results from Mackevicius [1985] and Mackevicius [1986]
that were used in this thesis and a generalization of one of the results needed
for our purposes. The generalized Lemma is denoted 2.5, all other lemmas are
direct citations. It should be noted that the proof of the generalized lemma is
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based mostly on the proof of Lemma 3 from Mackevicius [1986]. It is vitally
important that the constants C do not depend on δ > 0 (dependence on p, T
does not matter).
Suppose ϕ ∈ C1[0, 1] is a nonnegative function such that ϕ(0) = ϕ(1) = 0 and∫ 1

0
ϕ(s)ds = 1 and define ϕδ(s) = 1

δ
ϕ( s

δ
), s ∈ R. Let z ∈ C([0,∞)), z(0) = 0 and

δ > 0, then

f δ(z, t) =

t∫
−∞

ϕδ(t− s)z(s)ds =

t∫
t−δ

ϕδ(t− s)z(s)ds

and

gδ(z, t) =

t∫
−∞

ϕδ(t−s)(z(s)∧δ−1)∨(−δ−1)ds =

t∫
t−δ

ϕδ(t−s)(z(s)∧δ−1)∨(−δ−1)ds

for z(s) = z(0), s < 0.
Suppose M , N are two one-dimensional martingales such that

〈M〉t + 〈N〉t ≤ C t

for some constant C > 0 and that we restrict ourselves to a finite interval [0, T ].

Lemma 2.3 (Mackevicius [1985], Lemma 1 and Corollary 1).

(i) E
(
T∫
0

|M − f δ(M, t)|d‖f δ(N, .)‖(t)
)p
≤ C(p), p ≥ 2

(ii) E
∥∥∥∥ t∫

0

(M(s)− f δ(M, s))df δ(N, s)− 1
2
〈M,N〉t

∥∥∥∥
sup

δ→0−−→ 0

(iii) Eδ
[
t2∫
t1

|Mt − f δ(M, t)|d‖f δ(N, t)‖

]p
≤ C|t2 − t1|p

Lemma 2.4 (Mackevicius [1986], Lemma 2 and Lemma 3).

(i) E (‖M − f δ(M, t)‖2
sup) ≤ Cε̃(δ, T ), where ε̃(δ, T )

δ→0−−→ 0

(ii) E (‖M − gδ(M, t)‖2
sup) ≤ Cε̃(δ, T ), where ε̃(δ, T )

δ→0−−→ 0

(iii) E
(
T∫
0

|M − gδ(M, t)|d‖gδ(N, .)‖(t)
)p
≤ C(p), p ≥ 2

(iv) E (‖
t∫

0

(M(s)− gδ(M, s)) ◦ d(N(s)− gδ(N, s))‖2
sup) ≤ Cε̃(δ, T ),

where ε̃(δ, T )
δ→0−−→ 0
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(v)
∣∣∣dgδ(M,t)

dt

∣∣∣ ≤ Cδ−2

Now for the extension of the previous results.

Lemma 2.5. Let M , N be two one-dimensional martingales such that M0 =
N0 = 0 and d(〈M〉t + 〈N〉t) ≤ Cdt for some constant C > 0, where C does not
depend on δ > 0. Then

(i) Eδ
[

supt≤T

∣∣∣ ∫ t0 (Ms − gδ(s,M))dgδ(s,N)− 1
2
〈M,N〉t

∣∣∣] δ→0−−→ 0

(ii) Eδ
[
t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖

]p
≤ C|t2 − t1|p

Proof. Let us denote M∗
T = supt≤T |Mt| and N∗T = supt≤T |Nt| and Aδ the event

Aδ := {M∗
T ∨ N∗T > δ−1}. From the definitions of f δ and gδ it can be easily

verified that the following estimates hold for every t ∈ [0, T ] and M martingale.∣∣∣∣df δ(M, t)

dt

∣∣∣∣ = |ḟ δ(t,M)| ≤ Cδ−2M∗
T ,∣∣∣∣dgδ(M, t)

dt

∣∣∣∣ = |ġδ(t,M)| ≤ Cδ−2M∗
T ,

|Mt − f δ(t,M)| ≤ 2M∗
T ,

|Mt − gδ(t,M)| ≤ 2M∗
T .

Using Hölder and Burkholder-Davis-Gundy inequalities and the fact that on
the set {M∗

T > δ−1} it holds 1 < (δM∗
T )3, we now prove an estimate that turns

out to be useful for both (i) and (ii).

δ−2 Eδ [M∗
TN

∗
T ;M∗

T ∨N∗T > δ−1]

≤ δ−2
(
Eδ [M∗

TN
∗
T ;M∗

T > δ−1] + Eδ [M∗
TN

∗
T ;N∗T > δ−1]

)
≤ δ−2

(
E [M∗

TN
∗
T (δM∗

T )3] + E [M∗
TN

∗
T (δN∗T )3]

)
≤ δ
(

(E [(M∗
T )8]E [(N∗T )2])

1
2 + (E [(M∗

T )2]E [(N∗T )8])
1
2

)
≤ δ
(

(E [(M∗
T )8]E [(N∗T )2])

1
2 + (E [(M∗

T )2]E [(N∗T )8])
1
2

)
≤ δC

(
(E 〈M〉4T E 〈N〉T )

1
2 + (E 〈M〉T E 〈N〉4T )

1
2

)
≤ δ((CT )4CT )

1
2 + CT (CT )4) ≡ C ε̃(δ, T )

δ→0−−→ 0 (2.2)

Let us now prove the first assertion. We use the result from Lemma 2.3 (ii), which
states

E
[

sup
t≤T

∣∣∣ ∫ t

0

(Ms − f δ(s,M))df δ(s,N)− 1

2
〈M,N〉t

∣∣∣] δ→0−−→ 0.

From triangle inequality and the fact, that f δ(t,M) = gδ(t,M) and f δ(t, N) =
gδ(t, N) on the event [M∗

T ∨N∗T ≤ δ−1], we obtain
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E
[

sup
t≤T

∣∣∣ ∫ t

0

(Ms − gδ(s,M))dgδ(s,N)− 1

2
〈M,N〉t

∣∣∣]
≤ E

[
sup
t≤T

∣∣∣ ∫ t

0

(Ms − gδ(s,M))dgδ(s,N)−
∫ t

0

(Ms − f δ(s,M))df δ(s,N)
∣∣∣]︸ ︷︷ ︸

= 0 on [M∗T∨N
∗
T≤δ−1]

+ E
[

sup
t≤T

∣∣∣ ∫ t

0

(Ms − f δ(s,M))df δ(s,N)− 1

2
〈M,N〉t

∣∣∣]︸ ︷︷ ︸
≤εδT

δ→0−−→0 by Lemma 2.3

≤ εδT + E
[ T∫

0

|(Ms − gδ(s,M))|︸ ︷︷ ︸
≤2M∗T

|ġδ(s,N)|︸ ︷︷ ︸
≤Cδ−2N∗T

ds+

T∫
0

|(Ms − f δ(s,M))|︸ ︷︷ ︸
≤2M∗T

|ḟ δ(s,N)|︸ ︷︷ ︸
≤Cδ−2N∗T

ds;Aδ
]

≤ εδT + 4Cδ−2 E [M∗
TN

∗
T ;M∗

T ∨N∗T > δ−1],

which with the help of (2.2) yields the desired result.
The second estimate follows a similar path. We estimate the term on two events
separately.

Eδ
 t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖

p ≤ C Eδ
 t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖;Aδ
p

+ C Eδ
 t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖;M∗
T ∨N∗T ≤ δ−1

p ≡ (1) + (2)

The first term is straightforward, since again f δ(t,M) = gδ(t,M) and f δ(t, N) =
gδ(t, N) on Aδ and therefore

(1) = Eδ
 t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖;M∗
T ∨N∗T ≤ δ−1

p

= Eδ
 t2∫
t1

|Mt − f δ(M, t)|d‖f δ(N, t)‖;M∗
T ∨N∗T ≤ δ−1

p

≤ Eδ
 t2∫
t1

|Mt − f δ(M, t)|d‖f δ(N, t)‖

p ≤ C|t2 − t1|p,

by Lemma 2.3 (iii). The second term leads to (2.2).

Eδ
 t2∫
t1

|Mt − gδ(M, t)|d‖gδ(N, t)‖;Aδ
p = Eδ

 t2∫
t1

|Mt − gδ(M, t)|︸ ︷︷ ︸
≤2M∗T

|ġδ(N, t)|︸ ︷︷ ︸
≤Cδ−2N∗T

dt;Aδ


p

≤ 2C|t2 − t1|pδ−2 Eδ
[
M∗

TN
∗
T ;M∗

T ∨N∗T > δ−1
]
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2.3 Hölder and Fractional Sobolev Spaces

This section sheds some light on the spaces, in which we consider both the support
of the SDE solution (1.1) and the closure of the set of solutions of the approx-
imation equation (1.4) (these two sets are then proven to be equal). As stated
in chapter one, the most accurate characterization of the support was presented
in the papers Millet and Sanz-Solé [1994] and Ben Arous et al. [1994], who proved
the equality in Hölder space (Cα([0, T ]), ‖f‖α) for any fixed α ∈ (0, 1

2
). Since

Cβ([0, T ]) ⊂ Cα([0, T ]) for α < β <
1

2
,

a natural question arises, whether it would be possible to characterize the support
more accurately, namely in the space

X =
⋂

α<1/2

Cα([0, T ]).

It turns out that such assertion is valid, the way towards proving it is, however,
not that straightforward.

2.3.1 Reasons for choosing W s,p

Let us denote W s,p([0, T ]) a fractional Sobolev space for s < 1
2

and p ∈ (2,∞)
real, i.e.

W s,p([0, T ]) = {f ∈ Lp([0, T ]) : ‖f‖W s,p([0,T ]) < ∞},
where

‖f‖W s,p([0,T ]) = ‖f‖Lp([0,T ]) + ‖f‖Is,p([0,T ])

=

 T∫
0

|f(s)|pds


1
p

+

 T∫
0

T∫
0

|f(a)− f(b)|p

|a− b|1+sp
dadb


1
p

,

where we work with such (s, p) that s = 1
p

+ε for some ε > 0. For some purposes,

it will be more useful to write 1 + sp = 1 + (1
p

+ ε)p = 2 + εp in the denominator.

It can be shown that ‖.‖W s,p([0,T ]) is a norm on W s,p([0, T ]) and they together
form a complete separable metric space. We give a sketch of the most direct way
to come to such conclusion. For a σ−finite measure µ on [0, T ]2 defined as

dµs,p =
da db

|a− b|1+sp
,

and for F (x, y) := f(x)− f(y) it holds that

‖f‖Is,p([0,T ]) =

 T∫
0

T∫
0

|f(a)− f(b)|pdµ


1
p

= ‖F‖Lp([0,T ]2;µ).

Clearly, ‖f‖W s,p = ‖f‖Lp([0,T ]) + ‖F‖Lp([0,T ]2;µ) is a norm. Define a mapping

T : (W s,p([0, T ]), ‖.‖W s,p) −→ Lp([0, T ], λ)× Lp([0, T ]2, dµs,p)

f 7−→ (f, F )
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where λ denotes Lebesgue measure and we consider an additive norm on
Lp([0, T ], λ) × Lp([0, T ]2, dµs,p). Then T is linear, injective and trivially isomet-
ric mapping (the norms on domain and codomain are identical), which carries
the completeness and separability of

Lp([0, T ], λ)× Lp([0, T ]2, dµs,p) to (W s,p([0, T ]), ‖.‖W s,p).

It has already been said that we adapted methods from Mackevicius [1986]
and mostly from Gyöngy and Pröhle [1990], who proved the characterization
in the space of all continuous functions (C([0, T ];Rd), ‖.‖sup). To prove the result
in Hölder spaces and X, we chose to do most of the work in fractional Sobolev
spaces W s,p([0, T ]) rather than Cα([0, T ]). This decision requires an adequate
explanation. Apart from the fact that the estimations are smoother and quicker,
fractional Sobolev spaces posses an important property in comparison with Hölder
spaces - they are Polish, in particular separable (while Hölder spaces are not).
And since the original space (C([0, T ];Rd), ‖.‖sup) is separable as well, it is much
more convenient to extend the results to W s,p([0, T ]) rather than Cα([0, T ]) and
then return to the intersection space X.

Remark. Note that the norms in Hölder and fractional Sobolev spaces are not
defined that differently. Indeed, it is possible to show that

‖.‖W s,p ≤ K‖.‖s− 1
p

∀ 1

p
< s <

1

2

‖.‖β ≤ K‖.‖W s,p for s =
1

p
+ β <

1

2
,

(2.3)

where the second inequality is implied by the Garsia-Rodemich-Rumsey Lemma
(see Garsia, Rodemich, and Rumsey [1970/1971]).

Let us now see how to obtain the characterization in the space X. Since
we deal with support of some probability and closure of a set of approximating
solutions, we first need to know how the closed and open sets in X are actually
defined. In other words, we need a topology on X. We consider the space (X,S),
where S is the induced topology on X (it is the smallest topology such that
the mapping from (X,S) to Cβ([0, T ]) with its topology is continuous for each
β < 1

2
). Define

X =
⋂
s < 1

2
p∈(2,∞)

W s,p([0, T ])

and consider its induced topology S.
With the help of (2.3) it is possible to show that the spaces X and X and their
topologies S and S coincide, in other words the spaces (X,S) and (X,S) are
equal both pointwise and topologically. From now on, we will denote this one
space (X,S).
Furthermore, the inductive topology on X is metrizable. Let us choose sequences
(sn)n∈N and (pn)n∈N such that sn ↗ 1

2
and pn ↗ +∞ (and, naturally, sn <

1
2
)

and define

d(sn),(pn)(f, g) =
∞∑
n=1

1

2n
min{1, ‖f − g‖W sn,pn}.
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Since W s,p ⊂ W t,q for all t < s < 1
2

and q < p, the metrics dsn,pn are equivalent
for all choices of suitable (sn)n ∈ N and (pn)n ∈ N and they all give the same
topology, which enables us to fix one choice and denote the obtained space (X, d).
We do not explicitely state it, but we suppose that (X, d) is defined on the same
interval as W s,p (usually either [0, T ] or [0, τδ(ω)]).
It is interesting to note that even though the Hölder spaces Cβ([0, T ]) are not
separable for any β ∈ (0, 1

2
), the final space (X, d) is a separable, complete,

normed vector space. We now give a proof of another useful property - that
the convergence in (X, d) is equal to convergence in W s,p for all s, p, i.e.

Lemma 2.6.

d(f, fj)
j→∞−−−→ 0 ⇐⇒ ‖f − fj‖W s,p

j→∞−−−→ 0 ∀s < 1

2
∀p ∈ (2,∞).

Proof.

”=⇒” Let d(f, fj)
j→∞−−−→ 0 and s,p be fixed. Then

‖f − fj‖W s,p
j→∞−−−→ 0 ⇐⇒ 2−n min{1, ‖f − g‖W s,p} j→∞−−−→ 0

and for all n ∈ N

0 ≤ 2−n min{1, ‖f − g‖W s,p} ≤
∞∑
n=1

2−n min{1, ‖f − g‖W s,p} = d(f, fj)
j→∞−−−→ 0

”⇐=” Let us denote ‖.‖Wn := ‖.‖W sn,pn for each pair (sn, pn) from the definition
of the norm d. We use Lebesgue Theorem (Dominated Convergence Theo-
rem) for counting measure ν on N (ν{n} = 1 for each n ∈ N, otherwise 0).
Then for f(n, j) := 2−n min{1, ‖f − g‖Wn} one can write

∞∑
n=1

f(n, j) =

∫
N

f(n, j)µ(dn).

The assumptions of Lebesgue Theorem can be verified quite easily. First,

f(n, j)
j→∞−−−→ 0 for each n ∈ N, which is implied by the assumption and

|f(n, j)| ≤ 2−n =: g(n) and

∫
N

g(n, j)µ(dn) =
∞∑
n=1

2−n = 1 <∞.

By interchanging the integral and limit we get

0 =
∞∑
n=1

[
lim
j→∞

f(n, j)

]
= lim

j→∞

[
∞∑
n=1

f(n, j)

]
= lim

j→∞
d(f, fj)
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2.3.2 Deterministic Estimates in W s,p

The extension of the characterization from W s,p([0, T ]) to (X, d) is with the help
of Lemma 2.6 quite straightforward, so it is clear, that most of the technical
work and estimates is done in the space W s,p. We now state some Lemmas and
methods that we use in chapter three.

Remark. Suppose we have s, p fixed. How can we prove that some function f lies
in the space W s,p([0, T ])?
First of all, f has to be in Lp([0, T ]), i.e. ‖f‖Lp([0,T ]) <∞. The next thing to show
is that ‖f‖Is,p([0,T ]) <∞. A sufficient condition for our purposes turns out to be

|f(a)− f(b)|p ≤ C |a− b|
p
2 ∀a, b ∈ [0, T ] (a 6= b). (2.4)

Then

‖f‖Is,p([0,T ]) =

 T∫
0

T∫
0

|f(a)− f(b)|p

|a− b|1+sp
dadb


1
p

≤ C
1
p

 T∫
0

T∫
0

|a− b|
p
2
−1−spdadb


1
p

,

where the integral converges if and only if

p

2
− 1− sp > −1

p

2
> sp

1

2
> s =

1

p
+ ε,

which is exactly what we assume to be fulfilled by (s, p).

Lemma 2.7. For each s ∈ (0, 1
2
) and p ∈ (2,∞) there exist λ ∈ (0, 1), q < ∞

and t ∈ (0, 1
2
) such that

‖f‖W s,p ≤ C‖f‖1−λ
sup ‖f‖λW t,q .

Furthemore, it holds q < p, λ = q
p

and t = sp
q

= 1
q

+ εp
q

and C = C(p, q).

Proof. The norm in fractional Sobolev space W s,p([0, T ]) can be written as
‖f‖W s,p = ‖f‖Lp + ‖f‖Is,p . We will deal with these two parts separately.

(∫ T

0

|f(x)|pdx
) 1

p

=

∫ T

0

|f(x)|p−q︸ ︷︷ ︸
≤‖f‖p−qsup

|f(x)|qdx


1
p

≤ ‖f‖
1− q

p
sup

(∫ T

0

|f(x)|qdx
) 1

p

yields ‖f‖Lp ≤ ‖f‖1−λ
sup ‖f‖λLq . For the double integral part of the norm, choose q

sufficiently close to p, such that t = sp
q

is still less than 1
2
.

∫ T

0

∫ T

0

|f(a)− f(b)|p

|a− b|1+sp
dadb =

∫ T

0

∫ T

0

|f(a)− f(b)|p−q|f(a)− f(b)|q

|a− b|1+tq
dadb ≤

≤ 2p−q‖f‖p−qsup

∫ T

0

∫ T

0

|f(a)− f(b)|q

|a− b|1+tq
dadb, (2.5)
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where again

|f(a)− f(b)|p−q ≤
(
|f(a)|+ |f(b)|

)p−q
≤ 2p−q sup

t∈[0,T ]

|f(t)|p−q.

The equation (2.5) gives ‖f‖Is,p ≤ C(p, q)‖f‖1−λ
sup ‖f‖λIt,q and sp = tq.

Lemma 2.8. Let f, g ∈ W s,p([0, T ]), then ‖fg‖W s,p ≤ C‖f‖W s,p‖g‖W s,p, where
the constant C does not depend on the functions f ,g.

Proof. The Lemma is proved in an equivalent form ‖fg‖pW s,p ≤ C‖f‖pW s,p‖g‖pW s,p .
Choose s ∈ [0, T ] arbitrarily, it follows from Garsia-Rodemich-Rumsey Lemma
(see Garsia, Rodemich, and Rumsey [1970/1971]) and Hölder inequality that

|f(s)| ≤ |f(s)− 1

T

∫ T

0

f(t)dt|+ | 1
T

∫ T

0

f(t)dt|

≤ 1

T

∫ T

0

|f(s)− f(t)|dt+
1

T

(∫ T

0

|f(t)|pdt
) 1
p

≤ 1

T

∫ T

0

C‖f‖Is,p |t− s|β︸ ︷︷ ︸
≤Tβ

dt+
1

T
‖f‖Lp ≤ C(T, β, p)‖f‖W s,p

with s = 1
p

+ β for β > 0.
With the help of the estimate, we are now able to prove the assertion for both
parts of the W s,p norm. We start with the Lp norm.

‖fg‖pLp =

∫ T

0

|f(t)g(t)|pdt ≤
∫ T

0

Cp‖f‖pW s,p‖g‖pW s,pdt ≤ CpT‖f‖pW s,p‖g‖pW s,p

The double integral norm will be proven as follows

‖fg‖pIs,p =

∫ T

0

∫ T

0

|f(a)g(a)− f(b)g(b)|p

|a− b|1+sp
dadb

≤
∫ T

0

∫ T

0

(|f(a)||g(a)− g(b)|+ |g(b)|f(a)− f(b)|)p

|a− b|1+sp
dadb

≤ 2p−1

∫ T

0

∫ T

0

(‖f‖W s,p |g(a)− g(b)|)p + (‖g‖W s,p |f(a)− f(b)|)p

|a− b|1+sp
dadb

≤ C(‖f‖W s,p‖g‖Is,p + ‖g‖W s,p‖f‖Is,p) ≤ 2C‖f‖W s,p‖g‖W s,p .

To sum up,

‖fg‖pW s,p ≤ 2p−1(‖fg‖pLp + ‖fg‖pIs,p) ≤ C‖f‖pW s,p‖g‖pW s,p
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3. Characterization of Support

In this chapter, the final results of the thesis are presented. After a few defi-
nitions, we prove some Lemmas for convergence in W s,p([0, T ]). Then we show
the approximation theorem, which is a crucial tool for proving the main Theorem
3.10 that characterizes the support of the distribution of the solution to (1.1).
First, recall the definition 2.1 from chapter two.

Definition (2.1). For random processes xδ(t), yδ(t) and stopping times τδ, de-
fined on a stochastic basis Θδ = (Ωδ, Fδ, (Fδt)t≥0,Pδ) for every δ > 0, we write

xδ(t) ∼ yδ(t) on [0, τδ) (w.r.t. Θδ),

if limδ→0 Pδ(supt<τδ |xδ(t)− yδ(t)| > ε̄) = 0 for every ε̄ > 0.

Definition 3.1. For random processes xδ(t), yδ(t) and stopping times τδ, defined
on a stochastic basis Θδ = (Ωδ, Fδ, (Fδt)t≥0,Pδ) for every δ > 0, we write

xδ(t) ≈s,p yδ(t) on [0, τδ) (w.r.t. Θδ),

if limδ→0 Pδ(‖xδ − yδ‖W s,p([0,τδ]) > ε̄) = 0 for every ε̄ > 0.

Definition 3.2. For random processes xδ(t), yδ(t) and stopping times τδ, defined
on a stochastic basis Θδ = (Ωδ, Fδ, (Fδt)t≥0,Pδ) for every δ > 0, we write

xδ(t) ≈X yδ(t) on [0, τδ) (w.r.t. Θδ),

if limδ→0 Pδ(d(xδ, yδ)([0,τδ]) > ε̄) = 0 for every ε̄ > 0.

3.1 Convergence in Probability in W s,p

Lemma 3.3. Let n ∈ N, p ∈ N and ai ≥ 0 for i = 1, n. Then(
n∑
i=1

ai

)p

≤ np−1

n∑
i=1

api .

If we already know that xδ ∼ yδ on [0, T ], we do not need to prove the con-
vergence in W s,p([0, T ]) to get xδ ≈s,p yδ on [0, T ]. Instead, it is enough to show
boundedness, as Lemma 3.4 points out.

Lemma 3.4. Suppose that xδ(t) ∼ yδ(t) on [0, τδ] and let us choose s < 1
2

and
q < p < ∞, q close enough to p in the sense of Lemma 2.7. Define λ = q

p
and

u = sp
q
. Then

sup
δ∈(0,δ0)

Eδ
[
‖ xδ− yδ ‖

q
Wu,q([0,τδ])

]
<∞

for some δ0 > 0 implies

Pδ
[
‖ xδ − yδ ‖W s,p([0,τδ]) > ε̄

] δ→0−−→ 0 ∀ε̄ > 0, i.e. xδ(t) ≈ yδ(t) on [0, τδ].
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Proof. The proof is based on Lemma 2.7, we prove the assertion from the defini-
tion of a limit. Let ε̄ > 0, we need to prove

∀θ > 0 ∃δ0 > 0 ∀δ ∈ (0, δ0) : Pδ [‖ xδ − yδ ‖W s,p > ε̄] ≤ θ

Choose θ > 0 arbitrarily, we need to find suitable δ0 > 0. Assume further R > 0,
then using Chebyshev’s inequality

Pδ
[
‖ xδ − yδ ‖W s,p > ε̄

]
≤ Pδ

[
ε̄ < K‖ xδ − yδ ‖1−λ

sup ‖ xδ− yδ ‖λWu,q ; ‖ xδ− yδ ‖1−λ
sup ≤ R

]
+ Pδ

[
ε̄ < K‖ xδ − yδ ‖1−λ

sup ‖ xδ− yδ ‖λWu,q ; ‖ xδ− yδ ‖1−λ
sup > R

]
≤ Pδ

[( ε̄

RK

) 1
λ

< ‖ xδ − yδ ‖Wu,q

]
+ Pδ

[
‖ xδ− yδ ‖1−λ

sup > R
]︸ ︷︷ ︸

=: AδR

≤
(
RK

ε̄

) 1
λ

Eδ ‖ xδ − yδ ‖
q
Wu,q︸ ︷︷ ︸

=const.

+AδR.

Find R small enough such that the first term is smaller than θ
2
. Since AδR

δ→0−−→ 0
for each R > 0, there is δ0 > 0 such that for all δ ∈ (0, δ0) it holds AδR ≤ θ

2
.

Remark. By making use of Lemma 3.4, we never actually need to prove that

Eδ ‖f δ‖pIs,p([0,τδ])

δ→0−−→ 0, provided that f δ ∼ 0 on [0, τδ]. A sufficient result is

Eδ ‖f δ‖pIs,p([0,τδ])
≤ C, where C > 0 does not depend on δ > 0.

Further, let us denote aδ = a ∧ τδ and bδ = b ∧ τδ, then

Eδ ‖f δ‖pIs,p([0,τδ])
= Eδ

τδ∫
0

τδ∫
0

|f δ(a)− f δ(b)|p

|a− b|1+sp
dadb

=

T∫
0

T∫
0

Eδ |f δ(aδ)− f δ(bδ)|p

|a− b|1+sp
dadb.

By (2.4), it is enough to show that

Eδ |f δ(aδ)− f δ(bδ)|p ≤ K|a− b|
p
2 . (3.1)

The following Lemma is in combination with Lemma 3.4 a powerful tool
for proving convergence (through boundedness) for most of the integral terms
in the proof of Theorem 3.7.

Lemma 3.5. Let τδ be a stopping time and Z(t) =
t∫

0

YsdXs for Ys continuous

process such that |Ys| ≤ C on [0, τδ] and semimartingale Xs = X̃s + X̄s such that

〈X〉a−〈X〉b ≤ C|a− b| 12 and ‖X̄‖(a)−‖X̄‖(b) ≤ C|a− b| 12 on [0, τδ] defined on a
stochastic basis Θδ, where the constant C > 0 does not depend on δ > 0. Then

Eδ ‖Z‖W s,p([0,τδ])
≤ C <∞ for each δ > 0.
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Proof. As discussed in the previous remark (3.1), we only need to focus on

Eδ |Z(aδ)− Z(bδ)|p = Eδ
∣∣∣∣∣∣
aδ∫
bδ

YsdXs

∣∣∣∣∣∣
p

≤ 2p−1 Eδ
∣∣∣∣∣∣
aδ∫
bδ

YsdX̃s

∣∣∣∣∣∣
p

+ 2p−1 Eδ
∣∣∣∣∣∣
aδ∫
bδ

YsdX̄s

∣∣∣∣∣∣
p

= 2p−1 ((1) + (2))

For (1) we employ Burkholder-Davis-Gundy inequality

(1) ≤ Cp Eδ
 aδ∫
bδ

|Ys|︸︷︷︸
≤K

d〈X̃〉s


p
2

≤ CpK Eδ
[
〈X̃〉aδ − 〈X̃〉bδ

] p
2

≤ CpK
p
2

+1 Eδ |aδ − bδ|
p
2 ≤ CpK

p
2

+1|a− b|
p
2 .

The term (2) is easier.

(2) ≤ Eδ
 aδ∫
bδ

|Ys|︸︷︷︸
≤K

d‖X̄‖(s)

p ≤ K Eδ
[
‖X̄‖(aδ)− ‖X̄‖(bδ)

]p
≤ Kp+1 Eδ |aδ − bδ|p ≤ Kp+1|a− b|p.

We will mostly use Lemma 3.5 in the following form.

Lemma 3.6. Let τδ be a stopping time and Z(t) =
t∫

0

YsdXs for Ys continuous

process such that |Ys| ≤ K on [0, τδ] and semimartingale Xs = X̃s + X̄s such that
d 〈X〉t ≤ Cdt and d‖X̄‖ ≤ Cdt on [0, τδ] defined on a stochastic basis Θδ. Then

Eδ ‖Z‖W s,p([0,τδ])
≤ C <∞ for each δ > 0.

3.2 Approximation Theorem

This is a crucial section, in which we state and prove an extension of an approx-
imation Theorem labeled Theorem 2.2 in Gyöngy and Pröhle [1990]. We first
state the assumptions, keeping the notation from the original article.
Just like in the definition 2.1, suppose we have a stochastic basis Θδ for each
δ > 0. Let M i

δ(t) and mi
δ(t) be continuous semimartingales and consider stochas-

tic differential equations

d xδ(t) = b(xδ(t))dt+
l∑

i=1

σi(xδ(t)) ◦ dM i
δ(t) , xδ(0) = x0 (3.2)

d yδ(t) = b(yδ(t))dt+
l∑

i=1

σi(yδ(t)) ◦ dmi
δ(t) , yδ(0) = x0, (3.3)
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where b and σi are the same as in (1.1), i.e. b : Rd → Rd and σ : Rd → Rd × Rl.
Let τδ be an Fδt-stopping time for every δ > 0 such that τδ ≤ T for some T > 0
and assume

(A1)

Mδ(t) ≈ mδ(t) on [0, τδ)

Ri,j
δ (t) =

t∫
0

(mi
δ −M i

δ)dM̄
j
δ (s) + 〈mi

δ −M i
δ,M

j
δ 〉t

+
1

2

(
〈M i

δ,M
j
δ 〉t − 〈m

i
δ,m

j
δ〉t
)
∼ 0

‖Ṙi,j
δ ‖(t) ∈ L

2([0, τδ], λ)

(A2) The distributions of the random variables

τδ∫
0

|mi
δ −M i

δ|d‖M̄
j
δ ‖(t) , 〈M

i
δ〉τδ , 〈mi

δ〉τδ , ‖m̄i
δ‖(τδ)

are tight, uniformly in δ > 0 for every i, j = 1, l.

(B1) The function b is locally Lipschitz continuous.

(B2) The derivatives ∂
∂xk

σi and ∂2

∂xk∂xj
σi are continuous functions on Rd for every

k, j = 1, d and i = 1, l.

(B3) The distributions of the stochastic process zδ(t) := yδ(t ∧ τδ ∧T ) is tight
in C([0, T ];Rd), uniformly in δ > 0.

Remark (comments on the definition). The assumptions that differ from those
in Gyöngy and Pröhle [1990] are (A1) and (B1).
The way we are going to use the assumption ‖Ṙij

δ ‖(t) ∈ L2([0, τδ], λ) is that

‖Rij
δ ‖(t)− ‖R

ij
δ ‖(s) ≤ C|t− s| 12 on [0, τδ).

The assumption (B1) implies that b is locally bounded.
The assumption (B3) will not be hard to verify. It turns out that the solution
yδ of (3.3) in our cases does not depend on δ > 0, which yields the tightness
by itself using [Štěpán, 1987, I.7.4] (every Borel probability on a Polish space is
tight). Note that this is one of the cases when we benefit from choosing the space
W s,p([0, T ]) instead of Cα([0, T ]).

Theorem 3.7. Choose s < 1
2

and p ∈ (2,∞). Suppose the assumptions (A1),
(A2) and (B1)-(B3) hold and that both equations (3.2) and (3.3) have a global
solution on [0, T ]. Then xδ(t) ≈s,p yδ(t) on [0, τδ ∧T ] with respect to Θδ.

Remark. Although we consider a stopping time τδ in the Theorem, we will only
use it for fixed T > 0 (on a fixed interval [0, T ]).
Under the assumptions, we are entitled to use the result of Theorem 2.2 in Gyöngy

29



and Pröhle [1990], which yields that xδ ∼ yδ on [0, τδ]. By Lemma 3.4, it is then
enough to prove that

sup
δ∈(0,δ0)

Eδ
[
‖ xδ − yδ ‖

q
Wu,q([0,τδ])

]
<∞,

for certain values of (u, q) derived from (s, p). Because the conditions on (u, q)
are the same as those on (s, p), we will keep the notation (s, p) instead of (u, q)
and only bear in mind the transformation.

Proof. In this proof, let us denote zδ(t) = xδ(t) − yδ(t) and assume a random
space with random norm

‖zδ‖W s,p([0,τδ]) =

( τδ∫
0

|zδ(s)|pds
) 1

p

+

( τδ∫
0

τδ∫
0

|zδ(a)− zδ(b)|p

|a− b|1+sp
dadb

) 1
p

,

where τδ = τδ(ω) is a Fδt-stopping time.
As stated in chapter two, the norm in W s,p consists of two parts ‖f‖W s,p =
‖f‖Lp + ‖f‖Is,p . Choose ε̄ > 0 arbitrarily, then

Pδ
[
‖zδ‖W s,p([0,τδ]) > ε̄

]
≤ Pδ

[
‖zδ‖Lp([0,τδ]) > ε̄

]
+ Pδ

[
‖zδ‖Is,p([0,τδ]) > ε̄

]
= Pδ

[( τδ∫
0

|zδ(s)|pds
) 1
p
> ε̄

]
+ Pδ

[
‖zδ‖Is,p([0,τδ]) > ε̄

]
≤ Pδ

[
T

1
p sup
t≤τδ
|zδ(t)| > ε̄

]
︸ ︷︷ ︸

δ→0−−→0

+Pδ
[
‖zδ‖Is,p([0,τδ]) > ε̄

]
,

so we only need to prove Pδ
[
‖zδ‖Is,p([0,τδ]) > ε̄

] δ→0−−→ 0.
To begin with, we make our work more convenient by introducing certain reduc-
tions. The first two reductions are the same as in Gyöngy and Pröhle [1990],
the other two are based on similar ideas. Define

σLδ = inf{t ≥ 0} : Hδ(t) > L} ∧ τδ ∧T.

The article yiedls that we can suppose that Hδ(t) ≤ L for t ∈ (0, T ∧ τδ] where
τδ = τδ ∧σLδ and

Hδ(t) = |ξδ|+ |yδ(t)|+
∑
i,j

∫ t

0

|M i
δ −mi

δ|d‖M̄ i
δ‖(s)

+ 〈Mδ〉(t) + 〈mδ〉(t) +
∑
i

‖m̄i
δ‖(t).

The second reduction leads to the same result as in Gyöngy and Pröhle [1990],
although the way to the result is different. We make use of the result of Theo-
rem 2.2 from Gyöngy and Pröhle [1990] that gives xδ(t) ∼ yδ(t) on [0, τδ). Define
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σε1δ = inf{t ≥ 0 : | xδ − yδ | ≥ ε1}. Then ∀ε̄ > 0

Pδ
[
‖zδ(t)‖Is,p([0,τδ]) > ε̄

]
≤ Pδ

[
‖zδ(t)‖Is,p([0,τδ]) > ε̄; sup

t≤τδ
|xδ(t)− yδ(t)| ≤ ε1

]
+ Pδ

[
‖zδ(t)‖Is,p([0,τδ]) > ε̄; sup

t≤τδ
|xδ(t)− yδ(t)| > ε1

]
≤ Pδ

[
‖zδ(t)‖Is,p([0,τδ]) > ε̄;σε1δ ≥ τδ

]
+ Pδ

[
sup |xδ(t)− yδ(t)| > ε1

]
︸ ︷︷ ︸

=:Aδ
δ→0−−→0

≤ Pδ
[
‖zδ(t)‖Is,p([0,τδ ∧σ

ε1
δ ]) > ε̄

]
+ Aδ

Denote τδ = τδ ∧σε1δ , we may assume that |xδ(t)− yδ(t)| ≤ ε1 on [0, τδ).
The third reduction stems from the assumption Mδ(t) ∼ mδ(t) on (0, τδ ∧T ].
The very same path as for the second reduction through the definition

τ ε2δ = inf{t ≥ 0} : |Mδ(t)−mδ(t)| ≥ ε2}

leads us to the assumption

|Mδ(t)−mδ(t)| ≤ ε2 on [0, τδ),

where τδ = τδ ∧τ ε2δ .
For the last reduction, let us denote zδ(t) = xδ(t)− yδ(t) and define
ηε3δ = inf{t ≥ 0} : ‖zδ(t)‖Is,p > ε3} ∧ τδ. Then

Pδ
[( τδ∫

0

τδ∫
0

|zδ(a)− zδ(b)|p

|a− b|1+sp
dadb

) 1
p

≥ 2ε3

]

≤ Pδ
[( η

ε3
δ∫

0

η
ε3
δ∫

0

|zδ(a)− zδ(b)|p

|a− b|1+sp
dadb

) 1
p

≥ ε3

]
.

It is therefore sufficient to prove the theorem on (0, ηε3δ ] for every ε3 > 0, which
allows us to suppose, that

‖zδ(t)‖Is,p =

( t∫
0

t∫
0

|zδ(a)− zδ(b)|p

|a− b|1+sp
dadb

) 1
p

≤ ε3 on (0, τδ],

where τδ := τδ ∧ηε3δ . Finally, we denote ε := ε1 ∨ ε2 ∨ ε3.
To sum up, we added all reductions in the form of stopping times (dependent
on δ and fixed constants) and denoted the final stopping time again τδ. We then

prove that Pδ
[
‖zδ(t)‖Is,p([0,τδ]) > ε̄

] δ→0−−→ 0 for every ε̄ > 0 and for every choice
of L,ε1,ε2 and ε3 positive.
We now have enough tools to deal with Eδ ‖ xδ− yδ ‖

p
Is,p directly. As stated above,

it is enough to prove that Eδ ‖ xδ− yδ ‖
p
Is,p ≤ C, where C in not a function of δ > 0.
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Using the formulas (3.2) and (3.3), we obtain

Eδ ‖ xδ − yδ ‖
p
Is,p = Eδ

∥∥∥ ·∫
0

b(xδ(s))− b(yδ(s))ds

+
l∑

i=1

·∫
0

σi(xδ(s))d(M i
δ(s)−mi

δ(s)) +
l∑

i=1

·∫
0

(σi(xδ(s))− σi(yδ(s)))dm
i
δ(s)

+
1

2

l∑
i,j=1

·∫
0

σi(j)(xδ(s))d〈M i
δ,M

j
δ 〉(s)−

1

2

l∑
i,j=1

·∫
0

σi(j)(yδ(s))d〈mi
δ,m

j
δ〉(s)

∥∥∥p
Is,p

As we have seen, there are assumptions on almost every term in the above expres-
sion but on ‖M̄δ‖, so it is not surprising, that the problematic term turns out to

be
·∫

0

σi(xδ(s))d(M i
δ(s)−mi

δ(s)). However, if we adapt the same idea as in Gyöngy

and Pröhle [1990] - starting with stochastic integration by parts, followed by Itô’s
Lemma for multidimensional semimartingales, we obtain many different terms,
but we will eventually be able to bound all of them independently of δ > 0.
The integration by parts procedure yields the following result

t∫
0

σi(xδ(s)d(M i
δ(s)−mi

δ(s)) = (M i
δ(t)−mi

δ(t))σi(xδ(t))

−
t∫

0

(M i
δ(s)−mi

δ(s))dσi(xδ(s))− 〈M i
δ −mi

δ, σi(xδ)〉(t).

In the next step, we further expand the integrator from the integral term
on the right-hand side using Itô’s Lemma for multidimensional semimartingales.
The next, rather technical part shows how to get rid of the term ‖M̄δ‖.
First, let us recall what d xδ

j(s) and d〈xδr, xδp〉(s) are equal to

d xδ
j(s) = bj(xδ(s))d(s) +

l∑
α=1

σjα(xδ(s))dM
α
δ (s)

+
1

2

l∑
α,β=1

d∑
k=1

σβ(xδ(s))
∂

∂xk
σjα(xδ(s))︸ ︷︷ ︸

=σj
α(β)

(xδ(s))

d〈Mα
δ ,M

β
δ 〉(s)

d〈xδr, xδp〉(s) =

〈
d∑

α=1

σpα(xδ(s))dM
α
δ ,

d∑
β=1

σrβ(xδ(s))dM
β
δ

〉
s

=
l∑

α,β=1

σrα(xδ(s))σ
p
β(xδ(s))d〈Mα

δ ,M
β
δ 〉s
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Itô’s Lemma then yields

dσi(xδ(s)) =
d∑
j=1

∂

∂xj
σi(xδ(s))d xδ

j(s) +
1

2

d∑
r,p=1

∂2

∂xr∂xp
σi(xδ(s))d〈xδr, xδp〉(s)

=
d∑
j=1

(
∂

∂xj
σi(xδ(s))

)
bj(xδ(s))ds+

l∑
α=1

d∑
j=1

(
∂

∂xj
σi(xδ(s))

)
σjα(xδ(s))︸ ︷︷ ︸

=σi(α)(xδ(s))

dMα
δ (s)

+
1

2

l∑
α,β=1

(
d∑
j=1

(
∂

∂xj
σi(xδ(s))

)
σjα(β)(xδ(s))

)
d〈Mα

δ ,M
β
δ 〉(s)

+
1

2

l∑
α,β=1

(
d∑

r,p=1

(
∂2

∂xr∂xp
σi(xδ(s))

)
σrα(xδ(s))σ

p
β(xδ(s))

)
d〈Mα

δ ,M
β
δ 〉s.

Itô’s Lemma has another useful implication. Note, that if we restrict ourselves
to the martingale part of σi(xδ(t)), it follows immediately that it is equal to

σi(xδ(0)) +
l∑

j=1

σi(j)(xδ(s))dM̃
j
δ (s).

Recall the well-known characterization of stochastic integral. For every continu-
ous local martingales X,M and suitable process ψ it holds that〈

X,

.∫
0

ψ(s)dM(s)

〉
t

=

t∫
0

ψ(s)d 〈X,M〉s .

This implies (note that the minus signed changed the order of M i
δ and mi

δ

in the quadratic variation)

−
〈
σi(xδ(.)),M

i
δ(.)−mi

δ(.)
〉
t

= −

〈
l∑

j=1

.∫
0

σi(j)(xδ(s))dM̃
j
δ (s),M i

δ(.)−mi
δ(.)

〉
t

=
l∑

j=1

t∫
0

σi(j)(xδ(s))d
〈
mi
δ(.)−M i

δ(.),M
j
δ (.)
〉
s
.

We have expanded the term Eδ ‖ xδ − yδ ‖
p
Is,p into many, mostly integral, terms.

In the second part of the proof, we need to bound all these terms in the norm
‖.‖Is,p([0, τδ]).
By the reductions and assumptions of Theorem 3.7, we can suppose, that for
t ∈ [0, τδ] it holds

|M i
δ(t)−mi

δ(t)| ≤ ε, | xδ(t)− yδ(t)| ≤ ε, Hδ(t) ≤ L, furthermore

d 〈Mδ〉t ≤ Kdt, d 〈mδ〉t ≤ Kdt and
l∑

i=1

d‖M̄ i
δ‖ ≤ Kdt.

33



The first reduction in particular implies | yδ(t)| ≤ L, which gives

| xδ(t)| ≤ | xδ(t)− yδ(t)|+ | yδ(t)| ≤ ε+ L =: Lε <∞.

Using assumption (B2) about continuity of σi(x) and its derivatives up to the sec-
ond order and local boundedness of bj(x), we can conclude that there is a positive
constant (denoted again C) independent of δ (since the estimates above are as
well) such that

|σi(xδ(t))| ∨ |σi(yδ(t))| ∨
∣∣∣∣ ∂∂xkσi(xδ(t))

∣∣∣∣ ∨ ∣∣∣∣ ∂2

∂xk∂xj
σi(xδ(t))

∣∣∣∣ ≤ C ∀i ∀j, k

on [0, τδ]. Also ‖ xδ − yδ ‖Is,p([0,τδ]) ≤ ε. Define

Aijδ (t) =

t∫
0

(M i
δ −mi

δ)dM̄
j
δ (s) + 〈mi

δ −M i
δ,M

j
δ 〉t +

1

2
〈M i

δ,M
j
δ 〉t,

i.e. Ri,j
δ (t) + 1

2
〈mi

δ,m
j
δ〉t = Ai,jδ (t).

We can use Lemma 3.3 to split the norm into single terms. Because of the imposed
reductions, we can directly apply Lemma 3.6 for most of the integral terms.
The remaining integral terms are bounded as follows

Eδ
∥∥∥ l∑
i,j=1

.∫
0

σi(j)(xδ(s)) (mi
δ −M i

δ)dM̄
j
δ + d〈mi

δ −M i
δ,M

j
δ 〉s +

1

2
d〈M i

δ,M
j
δ 〉s︸ ︷︷ ︸

= dAijδ (s)

− 1

2

l∑
i,j=1

.∫
0

σi(j)(yδ(s))d〈mi
δ,m

j
δ〉s
∥∥∥p
W s,p

≤ C(p, l)
l∑

i,j=1

Eδ
∥∥∥ .∫

0

σi(j)(xδ(s))dR
ij
δ (s)

∥∥∥p
W s,p

+ C(p, l)
l∑

i,j=1

Eδ
∥∥∥ .∫

0

σi(j)(xδ(s))− σi(j)(yδ(s))d〈mi
δ,m

j
δ〉s
∥∥∥p
W s,p

.

For both of these terms, it is again possible to use Lemma 3.6. For the integrator
in the first term we use the assumption ‖Ṙij

δ ‖(t) ∈ L2([0, τδ], dx), for the integrator
in the second term, we use Kunita-Watanabe inequality to bound the cross-
variation term with quadratic variation terms.
Finally, we show how to get the bound for the only non-integral term (obtained
through the integration-by-parts procedure)

l∑
i=1

‖(M i
δ(t)−mi

δ(t))σi(xδ(t))‖pW s,p([0,τδ])
.

According to Lemma 2.8 and Hölder inequality

Eδ
∥∥(M i

δ(t)−mi
δ(t))σi(xδ(t))

∥∥ p2
Is,p
≤ C Eδ

∥∥M i
δ(t)−mi

δ(t)
∥∥ p2
Is,p
‖σi(xδ(t))‖

p
2
Is,p

≤ C
(
Eδ
∥∥M i

δ(t)−mi
δ(t)
∥∥p
Is,p

) 1
2
(
Eδ ‖σi(xδ(t))‖pIs,p

) 1
2
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Since the first term tends to 0 as δ → 0, it is certainly bounded by some constant
C > 0, which is the same for all δ from (0, δ0) for some δ0 > 0.
We suppose | xδ(t)| ≤ Lε on [0, τδ], which enables us to first make use of the fact
that σi(x) is locally Lipschitz continuous.

Eδ ‖σi(xδ(t))‖pIs,p([0,τδ])
= Eδ

τδ∫
0

τδ∫
0

|σi(xδ(a))− σi(xδ(b))|p

|a− b|1+sp
dadb

≤ C(Lε, p)Eδ
τδ∫

0

τδ∫
0

| xδ(a)− xδ(b)|p

|a− b|1+sp
dadb = C(Lε, p)Eδ ‖ xδ(t)‖pIs,p([0,τδ])

It follows that

Eδ ‖ xδ(t)‖pIs,p([0,τδ])
≤ 2p−1 Eδ ‖ xδ(t)− yδ(t)‖

p
Is,p([0,τδ])︸ ︷︷ ︸

≤ ε

+2p−1 Eδ ‖ yδ(t)‖
p
Is,p([0,τδ])

≤ 2p−1ε+ 2p−1

T∫
0

T∫
0

Eδ | yδ(a ∧ τδ)− yδ(b ∧ τδ)|p

|a− b|1+sp
dadb.

and

Eδ | yδ(aδ)− yδ(b
δ)|p = Eδ

∣∣∣ aδ∫
bδ

b(yδ(r))dr +
∑
i

aδ∫
bδ

σi(yδ(r))dm
i
δ(r)

+
1

2

∑
i,j

aδ∫
bδ

σi(j)(yδ(r))d
〈
mi
δ,m

j
δ

〉
(r)
∣∣∣ ≤ C1|a− b|p + C2|a− b|

p
2

by employing triangle inequality and Lemma 3.6. As a result, we obtain a bound
Eδ ‖σi(xδ(t))‖pIs,p([0,τδ])

≤ K̃. The proof of the Theorem is finished.

3.3 Support Characterization Theorem

Having proved Theorem 3.7, we are now ready to formulate the main result we
have been aspiring to. Basically, we need to verify the assumptions of Theo-
rem 3.7 for two different pairs of semimartingales Mδ(t), mδ(t) - once for every
of the two inclusions needed for the characterization. For the more difficult inclu-
sion, a result taken from Mackevicius [1986] (denoted Lemma 3.2 in Gyöngy and
Pröhle [1990], used without proof) is emplyed. As promised in chapter one, we
now state and prove a slightly different version of the Lemma that better suits
our needs.

3.3.1 The Family of Approximating Probabilities

Lemma 3.8. Let w be an absolutely continuous function such that w(0) = 0 and
its derivative ẇ ∈ L2([0, T ];Rd) and W (t) be a P-Brownian motion in Rl. Then
there exists a family of probability measures {Pδ : δ > 0} on (Ω, F ) such that
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(i) the measure Pδ is absolutely continuous with respect to P and W (t) is a
Pδ-semimartingale for every δ > 0,

(ii)

W (t) ∼ w(t) on [0, T ] ( w.r.t. Θδ),
t∫

0

(wi(s)−W i(s))dW̄ j(s) ∼ 1

2
〈W̃ i

δ , W̃
j
δ 〉t on [0, T ]

(iii)
T∫
0

|wi −W i|(s)d‖W̄ j
δ ‖(s) is tight, uniformly in δ > 0 for every i, j = 1, l,

where Wδ(t) = W̃δ(t) + W̄δ(t) is the decomposition of Pδ-semimartingale W (t)
into martingale and bounded variation part.

Proof. The first part of the proof directly follows the second part of the article
Mackevicius [1985] on pages 60 and 61. After it is shown that the processWδ(t) (in
original article Zδ(t)) is Pδ-semimartingale, we use Lemma 2.5 to get the assertion.
Just as in the original article, we define Wδ(t) as a unique solution of the equation

W i
δ = W i − wi + gδ(W i

δ), i = 1, l.

Define

αjδ(s, ω) :=
dwi(s)

ds
− dgδ(W i

δ , s)

ds
(ω)

It follows from Lemma 2.4 that |dg
δ(W i

δ ,s)

ds
(ω)| ≤ Cδ−2, therefore

|αjδ(s, ω)|2 ≤ 2
(
C2(δ) + |ẇi(s)|2

)
. (3.4)

Now define a local P-martingale

Xδ(t) =
∑l

j=1

t∫
0

αjδ(s, ω)dWj(s), t ∈ [0, T ] and a process

ξδ(t) = exp
(
Xδ(t)− 1

2
〈Xδ〉t

)
, t ∈ [0, T ].

From the definition of Xδ and (3.4) it follows that

E exp

(
1

2
〈Xδ〉T

)
= E exp

1

2

l∑
i,j=1

T∫
0

αiδα
j
δd〈Wi,Wj〉s


= E exp

1

2

l∑
i=1

T∫
0

|αiδ|2ds

 ≤ E exp

 l∑
i=1

T∫
0

C2(δ)ds+

T∫
0

|ẇi(s)|2ds

 < +∞.

We have just verified the Novikov’s criterion from Novikov [1973], which gives
E ξδ(T ) = 1 and enables us to use Girsanov’s Theorem (see [Ikeda and Watanabe,
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1980, Theorem IV. 4.1]), which lets us for each δ > 0 construct a probability
dPδ = ξδ(T )dP such that for all i = 1, l the process

Bi(t) := W i(t)−
t∫

0

αiδ(s)ds

is Pδ-Wiener process. Moreover

B(t) = W (t)−

 t∫
0

dwi(s)

ds
− dgδ(W i

δ , s)

ds
(ω)ds

l

i=1

= W (t)− w(t) + gδ(Wδ, t) = Wδ(t).

To conclude the first part, we showed that Wδ(t) is Pδ-Wiener process and W (t)
is Pδ-semimartingale that admits a decomposition

W (t) = Wδ(t)︸ ︷︷ ︸
martingale part

+ w(t)− gδ(Wδ, t)︸ ︷︷ ︸
bounded variation part

. (3.5)

We see that W (t)−w(t) = Wδ(t)−gδ(Wδ, t). Using this property we can estimate
W (t) − w(t) with Wδ(t) − gδ(Wδ, t), for which we can use Lemmas 2.3 and 2.4.
The fact that gδ(M, t) is a bounded variation process for any martingale M is
made clear in [Mackevicius, 1985, page 345]. It is worth mentioning that since
ξδ(T ) > 0, the probabilities P and Pδ are equivalent. First we use Lemma 2.4 (ii),
which yields

Eδ
[
‖W − w‖2

sup

]
= Eδ

[
‖Wδ − gδ(Wδ)‖2

sup

] δ→0−−→ 0,

i.e. W (t) ∼ w(t) on [0, T ].
Let us now turn our attention to the second part of (ii). Note that
dW̄ j

δ (s) = w − gδ(Wδ) by (3.5). Then∫ t

0

(wi(s)−W i(s))dW̄ j
δ (s) =

∫ t

0

−(W i
δ(s)− gδ(W i

δ , s))d(wj(s)− gδ(W j
δ , s))

=

∫ t

0

(W i
δ(s)− gδ(W i

δ , s))dg
δ(W j

δ , s)−
∫ t

0

(W i
δ(s)− gδ(W i

δ , s))dw
j(s)

=

∫ t

0

(W i
δ(s)− gδ(W i

δ , s))dg
δ(W j

δ , s)−
∫ t

0

(W i
δ(s)− gδ(W i

δ , s))d(wj(s)− gδ(wj, s))

−
∫ t

0

(W i
δ(s)− gδ(W i

δ , s))dg
δ(wj, s) ≡ (1) + (2) + (3).

It follows that

(1) ∼ 1

2
〈W i

δ ,W
j
δ 〉t by Lemma 2.5 (i)

(2) ∼ 0 2.4 (iv)

(3) ∼ 1

2
〈W i

δ , w
j〉t = 0 by Lemma 2.5 (i),
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which implies the desired result.

The only assertion left to prove is tightness of
T∫
0

|wi −W i|(s)d‖W̄ j
δ ‖(s), where

again dW̄ j
δ (s) = w − gδ(Wδ). Choose K > 0 and 0 < δ < 1, then

Pδ

 T∫
0

|wi −W i|(s)d‖W̄ j
δ ‖(s) > K


≤ 1

K
Eδ
 T∫

0

|wi −W i|(s)d‖gδ(W j
δ )‖(s)


︸ ︷︷ ︸

≤C by Lemma 2.5 (ii)

+
1

K
Eδ
 T∫

0

|wi −W i|(s)d‖wj‖(s)



≤ C

K
+

1

K
Eδ
[

sup
t∈[0,T ]

|Wδ(t)− gδ(Wδ, t)|‖wj‖(T )

]
≤ 1

K
(C + Lε(1, T ))

by Lemma 2.4 (ii) for all δ ∈ (0, 1]. For any ε̄ > 0 and every δ ∈ (0, 1] choose K ε̄

such that

K ε̄ >
C + Lε(1, T )

ε̄
,

which implies

Pδ

 T∫
0

|wi −W i|(s)d‖W̄ j
δ ‖(s) > K ε̄

 ≤ ε̄.

3.3.2 Main Theorem

The environment in which we work is quite similar to the one described in the last
part of Gyöngy and Pröhle [1990]. The only change we need to make is that
the set H, from which the approximating functions for Wiener process arise, is
a Cameron-Martin space

H = {w ∈ AC([0, T ];Rl) such that w(0) = 0 and ẇ ∈ L2([0, T ];Rl)}.

For w ∈ H consider the approximating ordinary differential equation (1.4)

dxw(t) = b(xw(t))dt+
l∑

i=1

σi(x
w(t))dwi(t),

xw(0) = x0 ∈ Rd.

The additional condition ẇ ∈ L2([0, T ];Rl) ensures that xw ∈ W s,p([0, T ]) for
s < 1

2
and p > 2. It was for example also assumed in Millet and Sanz-Solé [1994],

where the support characterization in Hölder space was proven.

Lemma 3.9. Assume (B1), (B2) and that the equations (1.1) and (1.4) have
global solutions on [0, T ], choose s ∈ (0, 1

2
) and p > 2 such that s = 1

p
+ ε

for some ε > 0. Then
supp µ = Ū ,
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where supp µ is the topological support of the distribution of the solution (1.1)
in W s,p([0, T ]) and Ū is the closure in W s,p([0, T ]) of the set

U := {xw ∈ W s,p([0, T ]) : w ∈ H}.

Proof. The proof follows a similar path as in the proof of Theorem 3.1 in Gyöngy
and Pröhle [1990].
Let us start with supp µ ⊆ Ū . Define Wδ(t) := f δ(W, t) for δ > 0 as an
approximation for Wiener process W . We would like to use the Theorem 3.7
for Mδ(t) := Wδ(t) and mδ(t) := W (t). We need to show that

Wδ(t) ≈s,p W (t) on [0, T ].

First, Lemma 2.4 (ii) yields

Wδ(t) ∼ W (t) on [0, T ].

Now set q < p, u := sp
q

and λ = q
p
, Lemma 3.4 then implies that it is enough to

show

E ‖Wδ −W‖Wu,q([0,T ]) ≤ E ‖Wδ‖Wu,q([0,T ]) + E ‖W‖Wu,q([0,T ]) ≤ C <∞. (3.6)

For Wiener process W (t), the inequality is trivial by remark 3.1, since

E |W (a)−W (b)|r ≤ K|a− b|
r
2 .

for all r > 2. To show (3.6) for Wδ, we need to be a little more careful. We have
u = 1

q
+ η < 1

2
, choose η̃ > η such that ũ := 1

q
+ η̃ < 1

2
. Define W (t) = 0

for t < 0, then with the help of Garsia-Rodemich-Rumsey Lemma (see Garsia,
Rodemich, and Rumsey [1970/1971])

|f δ(W,a)− f δ(W, b)|q ≤

 δ∫
0

|W (a− r)−W (b− r)|ϕδ(r)dr

q

≤ sup
r∈(0,δ)
a>r,b>r

|W (a− r)−W (b− r)|q ≤ C

 T∫
0

T∫
0

|W (t)−W (s)|q

|s− t|1+ũq
dsdt

 |a− b|η̃q.
(3.7)

Therefore E |Wδ(a)−Wδ(b)|q ≤ C|a−b|η̃q E ‖W‖η̃,q, so we need η̃q−1−ηq > −1,
i.e. η̃ > η, which is exactly how we chose η̃.
Regarding the other part of (A1), we can use Lemma 2.3 (iii).

Eδ
 b∫
a

|W i(s)− f δ(W i, s)|d‖f δ(W j)‖(s)

p ≤ C|a− b|p

This estimate then implies that ‖Ṙi,j
δ ‖(t) ∈ L2([0, T ], λ).

The remaining assumptions can be verified fairly easily. The fact that Rij
δ (t) ∼ 0

follows from Lemma 2.3 (ii) and the tightness of the integral in (A2) is implied
by Lemma 2.3 (i). Since we suppose (B1) and (B2) hold in this Lemma, only
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the assumption (B3) is left to show. But since the equation (3.3) is the same
for all δ > 0, we gain the tightness of the solution with no extra effort from
[Štěpán, 1987, I.7.3], as discussed in the remark after definition of the assumptions
of Theorem 3.7.
Theorem 3.7 then yields that

xδ(t) ≈s,p x(t) on [0, T ].

When we use characterization of convergence in distribution (and consequently
in probability) from [Štěpán, 1987, Theorem III.4.1 (2)] and the fact that Wδ ∈ H,
we obtain

P
[
x(.) ∈ Ū

]
≥ lim sup

δ→0
P
[
xδ(.) ∈ Ū

]
= 1,

which makes the first part of the proof complete.
To prove supp µ ⊇ Ū , we use the Theorem 3.7 with

Mδ(t) := W (t) and mδ(t) := w(t)

(i.e. for the equations (1.1) and (1.4)) and with changing stochastic basis Θδ that
we, together with the verification of the assumptions, obtain from Lemma 3.8,
which was designed especially for this use.
As can be seen from the proof of Lemma 3.8, it holds that W −w = Wδ−gδ(Wδ),
where Wδ is Pδ-Wiener process. To show W (t) ≈s,p w(t), it is actually enough to
show W (t) ≈s,p gδ(Wδ, t), which enables us to proceed the same way as above.
We only need to deal with gδ instead of f δ, but the extension is straigtforward.
Define Rδ(x) := (x∧ δ−1)∨ (−δ−1), Rδ(x) is lipchitz continuous with constant 1.
Then

|gδ(W,a)− gδ(W, b)|q ≤

 δ∫
0

|Rδ(W (a− r))−Rδ(W (b− r))|ϕδ(r)dr

q

≤ C

 δ∫
0

|W (a− r)−W (b− r)|ϕδ(r)dr

q

and the proof follows the same path as (3.7).
The relation Rij

δ ∼ 0 follows directly from (ii) of Lemma 3.8. We need to show
that

Eδ
 b∫
a

|W i(s)− gδ(W i, s)|d‖gδ(W j)‖(s)

p ≤ C|a− b|p,

again this time with gδ instead of f δ. This extension is covered by Lemma 2.5 (ii).
The other assumptions are the same as above.
The crucial part of the proof is done, Theorem 3.7 yields

x(t) ≈s,p xw(t) on [0, T ] w.r.t. Θδ.

That means limδ→0 Pδ
(
‖x− xw‖W s,p([0,T ]) ≥ ε̄

)
= 0 for each ε̄ > 0.

Hence for every ε̄ > 0 : Pδ
(
‖x− xw‖W s,p([0,T ]) < ε̄

)
> 0 for δ > 0 sufficiently

small.
Since Pδ � P, we have P

(
‖x− xw‖W s,p([0,T ]) < ε̄

)
> 0.

Hence xw ∈ supp µ, i.e. supp µ ⊇ Ū , which concludes the proof.
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There is only a small step from the characterization in W s,p([0, T ]) for each
(s, p) to the same result in the space (X, d).

Theorem 3.10. Assume (B1) and (B2) and that the equations (1.1) and (1.4)
have unique solutions on [0, T ]. Then

supp µ = Ū ,

where supp µ is the topological support of the distribution of the solution (1.1)
in (X, d) and Ū is the closure in (X, d) of the set

U := {xw ∈ X : w ∈ H}.

Proof. The proof of both inclusions is based on the approximation Theorem 3.7.
In both cases, the Lemma 3.9 gives the convergence in W s,p([0, T ]) for each s ∈
(0, 1

2
) and p > 2, which is according to Lemma 2.6 equivalent to convergence

in (X, d). We can then finish both parts in the same manner, using ≈X instead
of ≈s,p and d(., .) instead of ‖.‖W s,p([0,T ]).

41



Conclusion

The most challenging parts of the process of creating this thesis were studying
the paper Gyöngy and Pröhle [1990] and adapting their method for the space
(X, d) instead of C([0, T ]). In order to obtain a stronger assertion, the as-
sumptions of the approximating Theorem 3.7 had to be more restrictive than in
the original article. But since it was possible to verify all the additional assump-
tions of the approximating Theorem “for free” - i.e. using only the assumptions
from the original article - there were no effects on the assumptions of the main
Theorem 3.10.

We even showed that the assumptions in Gyöngy and Pröhle [1990] were too
restrictive by separating the assumptions needed for the support characteriza-
tion itself from those that guarantee the existence and uniqueness of the solution
of the examined SDE and the approximating differential equations. It is there-
fore possible to combine our findings with the results about existence of unique
solutions to SDEs. As we argue in the section “Examples”, our assumptions al-
ready give us local existence and uniqueness and so we only need to make sure
the solutions of both equations do not explode in finite time.

It would certainly be possible to look for refinements of the presented re-
sults. We restricted ourselves to the case of Wiener process as an integrator,
where the characterization in (X, d) is in some sense probably the best possible.
However, we could assume different integrators - martingales, or even general con-
tinuous stochastic processes such as fractional Wiener process - and try to charac-
terize the support of the distribution of the solution to the corresponding SDEs.
Perhaps some interesting results could be obtained, maybe under different sets
of conditions on the coefficients or in different function spaces.
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J. Štěpán. Teorie pravděpodobnosti. Prvńı vydáńı. Academia, Praha, 1987.

43


	Used Notation
	Introduction
	Overview
	Concept of Stochastic Differential Equation
	Previous Results
	Our Contribution and Methods
	Examples

	Preliminary Results
	Revision of Gyöngy and Pröhle
	Smooth Approximation Lemmas
	Hölder and Fractional Sobolev Spaces
	Reasons for choosing Ws,p
	Deterministic Estimates in Ws,p


	Characterization of Support
	Convergence in Probability in Ws,p
	Approximation Theorem
	Support Characterization Theorem
	The Family of Approximating Probabilities
	Main Theorem


	Conclusion
	Bibliography

