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Katedra / Ústav: Katedra algebry

Vedoućı diplomové práce: prof. RNDr. Jan Trlifaj, CSc., DSc., Katedra algebry

Abstrakt: V kategorii modul̊u nad noetherovskými nebo Dedekindovými obory
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A note about conventions

All rings are associative with a unit. Further, except for Section 1, all rings are

assumed to be commutative. The ring shall be usually called R; thus, whenever

we speak about modules without specifying the ring, we mean R-modules. If R is

a domain, then Q denotes its field of fractions.

Notation used in the text

⊥S the class of all modules M such that Ext1R(M,S) = 0 for all S ∈ S
S⊥ the class of all modules M such that Ext1R(S,M) = 0 for all S ∈ S
R[s−1] the localization of R in the multiplicative set {1, s, s2, . . . }
R(p) the localization of R in the prime ideal p

E(M) the injective envelope (hull) of M

M̂s the completion of M in the principal ideal sR (i.e. lim←−i<ωM/siM)

AssRM the set of associated primes of M

SpecR the spectrum of R (i.e. the set of all prime ideals of R)

mSpecR the set of all maximal ideals of R

cardX the cardinality of X
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Introduction

Quasi-coherent sheaves on a scheme X can be studied as certain representations

of the quiver whose vertices correspond to affine open subschemes of X, [3]. The

key role here is played by various classes of flat modules, notably the projective

and Mittag-Leffler ones. These correspond to (infinite dimensional) vector bundles

and Drinfeld vector bundles on X, respectively, [4].

Further classes of flat modules were introduced in [4] in order to build new

monoidal model category structures on complexes of quasi-coherent sheaves, and

hence provide for new ways of computing cohomology. The idea is to follow the

approach of Hovey [10] which relies on existence of approximations (precovers).

However, while projective and flat modules always provide for approximations

[2], flat Mittag-Leffler modules over non-perfect rings do not. The latter fact is

not a curious exception: it is just a 0-dimensional instance of a more general

phenomenon arising in (infinite dimensional) tilting theory for all n-tilting modules

that are not Σ-pure-split [1].

In [14], Positselski introduced the dual notion of a contraherent cosheaf on X,

again as a certain representation of the quiver of affine open subschemes of X.

The modules relevant here are the contraadjusted and very flat ones. These are

the classes the nature of which we investigate, mostly in the setting of domains.

Our primary interest are the approximation properties of the classes.

In Section 2, we show that the class of all very flat modules is covering quite

rarely; for Noetherian domains, this is equivalent to the finiteness of the spectrum

of the ring.

Section 3 deals with a more pathological class: We define the locally very flat

modules, an analogy to flat Mittag-Leffler modules. We show that for Dedekind

domains, these classes exhibit very similar behavior. Further, over a Noetherian

domain, the class of all locally very flat modules is not precovering unless (again)

the spectrum is finite.

Finally, Section 4 focuses on contraadjusted modules. We show the connection

of completeness and contraadjustedness for torsion-free modules. The existence

of contraadjusted envelopes is somewhat harder to grasp; the (negative) result

we have here is only for Noetherian domains of cardinality less than 2ω. Finally,

we provide a characterization of torsion contraadjusted modules over Dedekind

domains.
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1. Basic notions and key facts

This section covers most of the (standard) definitions and propositions used in

the following sections. For further information we refer to [9].

Definition 1.1. Let A be a class of modules. We put

A⊥ = {B ∈ Mod-R | Ext1R(A,B) = 0 for all A ∈ A}

and
⊥A = {B ∈ Mod-R | Ext1R(B,A) = 0 for all A ∈ A}.

Definition 1.2. A pair of classes of modules (A,B) is a cotorsion pair provided

that A = ⊥B and B = A⊥.

Definition 1.3. Let A be a class of modules and M a module. A module A ∈ A
together with a homomorphism f : A→M is called A-precover of M if for every

A′ ∈ A and f ′ : A′ →M there is g : A′ → A such that f ′ = fg. An A-precover is

special if it is surjective and its kernel is an element of A⊥. Finally, an A-cover is

an A-precover with the following additional property: Whenever we have f = fg

for some g : A→ A, then g is an automorphism of A.

Dually, we define the A-preenvelope, special A-preenvelope, and A-envelope.

A class A is called precovering if every module has an A-precover; in the same

fashion we define special precovering class, covering class, etc.

Lemma 1.4 (Salce Lemma, [9, 5.20]). Let (A,B) be a cotorsion pair. Then the

class A is special precovering if and only if B is special preenveloping. In such a

case, the cotorsion pair is called complete.

Theorem 1.5 ([9, 6.11]). Let S be any set of modules. Then (⊥(S⊥),S⊥) is a

complete cotorsion pair (which is called the cotorion pair generated by S).

Definition 1.6. Let M be a module and A a class of modules. We say that M is

A-filtered or a transfinite extension of modules fromA if there is an ordinal-indexed

increasing chain (Mα | α ≤ σ) of submodules of M such that

(i) M0 = 0, Mσ = M ,

(ii) Mα =
⋃
β<αMβ for α limit (i.e. the chain is continuous), and

(iii) Mα+1/Mα is isomorphic to an element of A for each α < σ.

A class A is called deconstructible if it coincides with the class of all S-filtered

modules for some set of modules S.

Lemma 1.7 (Eklof Lemma, [9, 6.2]). Let M , N be modules. If M is ⊥N -filtered,

then M ∈ ⊥N . In particular, the class Pi of all modules of projective dimension

at most i is closed under transfinite extensions for every i < ω (this is often called

Auslander Lemma).
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Theorem 1.8 ([9, 6.14]). If S is a set of modules, then the class ⊥(S⊥) consists

of direct summands of extensions of free modules by S-filtered modules.

Finally, we recall the recent result due to Šaroch:

Theorem 1.9 ([1, 3.2]). Let F be a class of countably presented modules and B a

module which is a countable direct limit of modules from F . Let LF be the class of

all locally F-free modules, i.e. modules possessing a system E of submodules from

F closed under unions of countable chains and such that every countable subset

of the module is contained in an element of E . If B is not a direct summand in a

module from LF , then B has no LF -precover.

The module B from the preceding theorem is usually referred to as a Bass

module. The theorem, among others, implies the fact that unless the ring is (right)

perfect, the class of all flat Mittag-Leffler modules is not precovering, for this

is precisely obtained if one takes C to be the class of all countably presented

projective modules.
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2. Very flat modules

This section introduces very flat modules. Many facts concerning this class may

be found in [14], we recall only those needed for our results. The main result of

the section is Theorem 2.9 dealing with the covering property of very flat modules

over domains.

Definition 2.1. Let R be a ring and s ∈ R. We shall denote by R[s−1] the

localization S−1R in the multiplicative set S = {1, s, s2, . . . }. We also put

L = {R[s−1] | s ∈ R}.

Note that R[s−1] is a ring on one hand, and an R-module on the other hand.

In most cases, we shall view it as an R-module; should it be viewed as a ring, it

will be explicitly stressed or clear from the context.

To start with, note that for each s ∈ R, R[s−1] has the following two-term free

resolution,

0 −→ R(ω) fs−→ R(ω) −→ R[s−1] −→ 0, (1)

f being defined on the free generators as fs(1i) = 1i − 1i+1s, therefore R[s−1] is

flat (the exact sequence is pure) and of projective dimension at most 1.

Definition 2.2. A module M is very flat, provided that M ∈ VF , where (VF , CA)

denotes the (complete) cotorsion pair generated by the set L. The modules in the

class CA are called contraadjusted.

Lemma 2.3. The class VF consists of direct summands of L-filtered modules;

these are all flat and of projective dimension at most 1.

Proof. This is a direct consequence of Theorem 1.8 and Lemma 1.7.

Lemma 2.4. The class VF is closed under tensor products.

Proof. First notice that for any r, s ∈ R, we have R[r−1]⊗R R[s−1] ∼= R[(rs)−1],

so the set L is closed under tensor products.

Now let V be L-filtered module with L-filtration (Vα | α ≤ σ) and s ∈ R; let

us proceed by induction. Knowing that Vα ⊗R R[s−1] is L-filtered and assuming

that Vα+1/Vα ∼= R[r−1] for some r ∈ R, tensoring the pure exact sequence

0 −→ Vα −→ Vα+1 −→ R[r−1] −→ 0

by R[s−1] shows that Vα+1 ⊗R R[s−1] is an extension of an L-filtered module by

R[(rs)−1], hence L-filtered. For the limit steps, it suffices to utilize the fact that

the tensor product commutes with direct limits.

If V , W are two L-filtered modules, we may proceed in the same way, replacing

R[s−1] with W . When passing from Vα ⊗R W to Vα+1 ⊗R W , one uses the

observation from the preceding paragraph.
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Finally, for two general very flat modules V , W , by Lemma 2.3, we have V ′,

W ′ such that V ⊕ V ′ and W ⊕W ′ are L-filtered. Therefore,

(V ⊕ V ′)⊗R (W ⊕W ′) ∼= (V ⊗RW )⊕ (V ′ ⊗RW )⊕ (V ⊗RW ′)⊕ (V ′ ⊗RW ′)

is L-filtered, and we conclude that V ⊗RW is a direct sumand of an L-filtered

module, hence very flat.

From now on, we shall focus on the case when R is a domain. In such a

case, each R[s−1] is a subring/submodule of the fraction field Q containing R

and consisting of (equivalence classes of) the fractions whose denominators are

products of powers of s. In particular, if r divides s, then R[r−1] ⊆ R[s−1].

We begin with an observation concerning the relation of very flat modules to

the modules from L. For future purposes, we formulate it in a more general form,

dealing with submodules of very flat modules.

Lemma 2.5. Let M be a torsion-free module of rank κ, which is a submodule of a

very flat module. Then there is a filtration (Mα | α ≤ σ), where σ is an ordinal of

cardinality κ and Mα+1/Mα is a non-zero submodule of R[s−1α ] for some non-zero

sα ∈ R.

If κ is finite, there is 0 6= s ∈ R such that M ⊗R R[s−1] is a torsion-free

R[s−1]-module of rank κ; this is further finitely generated, provided that R is

Noetherian.

Proof. As M is a submodule of a very flat module, it is a submodule of an

L-filtered one by Lemma 2.3. Hence let M ⊆ V , where V is equipped with

an L-filtration (Vα | α ≤ σ). Put Mα = M ∩ Vα; then Mα+1/Mα embeds into

Vα+1/Vα ∼= R[s−1α ]. The chainM = (Mα | α ≤ σ) is readily seen to be continuous.

We may also force all the factors to be non-zero by omitting those terms of M
equal to some previous term. As Mα+1/Mα is a torsion-free rank 1 module, in

order to ranks to match, the chain has to have length κ.

If the rank is finite, say n, put s =
∏

i<n si. Then R[s−1i ]⊗R R[s−1] ∼= R[s−1],

so 0 6= Mi+1/Mi⊗RR[s−1] is isomorphic to an ideal in R[s−1] for each i < n. Thus

M ⊗RR[s−1] is a torsion-free R[s−1]-module of rank n. If further R is Noetherian,

then so is R[s−1], hence all the ideals are finitely generated and the same applies

to M ⊗R R[s−1].

The following type of domains will be of particular interest, playing the role of

the “trivial case” for very flat modules:

Definition 2.6. A domain R is said to be a G-domain (cf. [11]), if Q = R[s−1]

for some s ∈ R.

It is easy to see that a domain with a finite spectrum is a G-domain: It suffices

to take an element s belonging to all non-zero primes (e.g. pick a non-zero element

from each prime and multiply them) and we have Q = R[s−1], since rR intersects
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the set {1, s, s2 . . . } for each non-zero r ∈ R. For Noetherian domains, this is in

fact a characterization:

Lemma 2.7 ([11, Theorems 144 & 146]). Let R be a Noetherian domain. The

following are equivalent:

(i) R is a G-domain.

(ii) The spectrum of R is finite.

(iii) The spectrum of R is finite and all the non-zero prime ideals are maximal.

Let us put G-domains into our context:

Lemma 2.8. A domain R is a G-domain if and only if Q is very flat.

Proof. Since Q has rank 1, the chain constructed in Lemma 2.5 consists only of

two elements, 0 and Q, and Q is a submodule in R[s−1] for some 0 6= s ∈ R,

whence Q = R[s−1].

As a right class of a cotorsion pair generated by set, the class VF is always

special precovering. However, the case when it is covering happens only for

G-domains.

Theorem 2.9. Let R be a domain. The following are equivalent:

(i) Q has a VF-cover,

(ii) Q is very flat.

Proof. Assume that f : V → Q is the VF-cover of Q. Pick s ∈ R and consider

the map

fs = f ⊗R R[s−1] : V ⊗R R[s−1] −→ Q⊗R R[s−1] ∼= Q.

By Lemma 2.4, V ⊗R R[s−1] is very flat; hence, by the precovering property of V ,

there is g : V ⊗R R[s−1]→ V such that fs = fg.

On the other hand, tensoring the short exact sequence

0 −→ R −→ R[s−1] −→ R[s−1]/R −→ 0

by the flat module V , one obtains the inclusion morphism i : V → V ⊗R R[s−1]

(exploiting V ⊗R R ∼= V ). The cokernel of this morphism is V ⊗R (R[s−1]/R),

which is a torsion module (every element is annihilated by a power of s). Now

clearly f = fsi = fgi and by the covering property of V , we infer that gi is an

automorphism of V . This means that i is a split inclusion; however, it has to be

an isomorphism, since the torsion module V ⊗R (R[s−1]/R) cannot be (isomorphic

to) a submodule of the torsion-free module V ⊗R R[s−1].

We now see that V ∼= V ⊗R R[s−1] for each s ∈ R. As the tensor product

commutes with direct limits, we may pass to the directed union Q =
⋃
s∈RR[s−1]

(the directed system ordered by divisibility with the morphisms being inclusions)

and obtain V ∼= V ⊗R Q. This implies that the very flat module V is the direct

sum of copies of Q, forcing Q to be very flat.

The reverse implications is obvious.
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For Noetherian domains, we see that the class VF is yet another one which

supports the affirmative answer to the open question whether covering classes are

always closed under direct limits:

Corollary 2.10. The following are equivalent for a Noetherian domain R:

(i) R is a G-domain.

(ii) Each flat module is very flat.

(iii) The class VF is covering.

Proof. (i)⇒ (ii): By Lemma 2.7, the Krull dimension of R is at most 1. Therefore,

R is almost perfect in the sense of [9, 7.55]. By [9, 7.56], this implies that the

class of all flat modules is generated by the single module Q (i.e. all flat modules

are strongly flat). Since we assume that Q is very flat, we conclude that all flat

modules are very flat.

(ii) ⇒ (iii): The class of all flat modules is always covering, cf. [9, 8.1].

(iii) ⇒ (i): Follows from Theorem 2.9 and Lemma 2.8.

Finally, we turn our attention to the case of Dedekind domains. The direct

consequence of heredity is that the class VF is closed under submodules. Lemma

2.5 then shows that the rank 1 very flat modules are precisely the submodules

of the modules from L. If we denote this set of submodules S, then Lemma 2.5

again implies that the very flat modules are precisely the S-filtered ones.

For finite rank modules we can do even better:

Lemma 2.11. Let R be a Dedekind domain, M a torsion free module of finite

rank and

0 −→M ′ −→M −→M ′′ −→ 0

a pure-exact sequence. Then M is very flat if and only if both M ′, M ′′ are.

Proof. The if part follows from the class VF being closed under extensions.

For the only-if part, note that by heredity, M ′ is very flat. Further, by Lemma

2.5, there is non-zero s ∈ R such that M ⊗R R[s−1] is a finitely generated torsion-

free R[s−1]-module; the same clearly applies to M ′′⊗RR[s−1]. The domain R[s−1]

being Dedekind, too, the finitely generated torsion-free modules are projective, so

we infer that M ′′⊗RR[s−1] is a projective R[s−1]-module, and as such a submodule

of a free R[s−1]-module, say R[s−1](t). We have

M ′′ ⊆M ′′ ⊗R R[s−1] ⊆ R[s−1](t)

as R-modules. Since clearly R[s−1](t) ∈ VF , heredity implies M ′′ ∈ VF .
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3. Locally very flat modules

In this section we deal with locally very flat modules, which are obtained by

replacing “projective” with “very flat” in the definition of ℵ1-projective modules,

which are usually referred to as flat Mittag-Leffler modules, cf. [9, 3.19]. By the

results from [1], the class of all flat Mittag-Leffler modules is precovering if and

only if the ring is (right-) perfect, which is the result we are going to mimic.

Definition 3.1. A module M is said to be locally very flat provided there exists

a set T consisting of countably presented very flat submodules of M such that

each countable subset of M is contained in an element of T , and T is closed under

unions of countable chains. The set T is said to witness the local very flatness

of M .

The class of all locally very flat modules is denoted by LV. Note that a

countably generated module is locally very flat, iff it is very flat.

The class VF is a particular instance of so-called locally F-free modules in the

sense of [15]. As such, it is closed under transfinite extensions.

To efficiently show that certain modules are not very flat, we employ the

machinery of associated primes. For a module M , we shall denote the set of

associated primes AssRM .

Let R be a Noetherian domain. Then

E(Q/R) =
⊕
p∈P

E(R/p)(αp) (2)

where P ⊆ SpecR and αp = µ1(p,R) is the first Bass invariant of R at p (see [5,

§9.2]). For each i, let Pi denote the set of all prime ideals of height i. Since R is a

domain, we have P1 ⊆ P by [5, 9.2.13].

Let s ∈ R and O(s) = {p ∈ P1 | s ∈ p}. Then each p ∈ O(s) is a minimal

prime over sR, so the set O(s) is finite. Moreover, for each p ∈ P1, we have

(R/p)⊗R R[s−1] = 0, iff p ∈ O(s). Indeed, s ∈ p implies

(r + p)⊗ t/sk = (rs+ p)⊗ t/sk+1 = 0,

while if s /∈ p, then p⊗R R[s−1] is a prime ideal in R[s−1], and

(R/p)⊗R R[s−1] ∼= R[s−1]/(p⊗R R[s−1]) 6= 0.

Lemma 3.2. Let R be a Noetherian domain. Let M be a finite rank submodule

of a very flat module, and F be its free submodule of the same rank. Then the set

P1 ∩ AssRM/F is finite.

Proof. By Lemma 2.5, there is 0 6= s ∈ R such that M ⊗R R[s−1] is a finitely

generated R[s−1]-module, whence A = AssR[s−1]((M/F )⊗R R[s−1]) is finite.

10



Let p ∈ P1 ∩ AssRM/F , that is, R/p ⊆M/F . If p /∈ O(s), then

R[s−1]/(p⊗R R[s−1]) ⊆ (M/F )⊗R R[s−1]

so p⊗R R[s−1] ∈ A. It follows that

card(P1 ∩ AssRM/F ) ≤ cardA+ cardO(s)

is finite.

Example 3.3. The abelian group Zκ (κ ≥ ω), so-called Baer-Specker group, is

well-known not to be free, but it is flat Mittag-Leffler ([9, 3.35]), hence locally

very flat. To see that it is not very flat, we use the refined version of Quillen’s

small object argument from [6, Theorem 2] to obtain a short exact sequence

0 −→ Z −→ C −→ V −→ 0

with V very flat and C contraadjusted, both with cardinality at most 2ω. As C is

an extension of very flat groups, it is very flat; as such, it cannot be cotorsion,

for this would imply having the localization Z(p) as a subgroup for some prime p,

contradicting Lemma 3.2. Now [8, 1.2(4)] implies that Ext1Z(Zω, C) 6= 0. Hence

no infinite direct product of copies of Z is very flat.

We now proceed to construct so-called Bass module:

Lemma 3.4. Let R be a Noetherian domain such that SpecR is infinite. Then

there is an overring B of R such that B is a countable directed union of modules

from L, but B cannot be a submodule of a very flat module. Further, B can be

chosen so that U ∩ AssRB/R = ∅ for a given finite set U ⊆ P1.

Proof. First note that the set P1 is infinite, too, because of Lemma 2.7. Further,

for p, q ∈ P1, p ⊆ q or p ⊇ q if and only if p = q. Therefore, by prime avoidance

[11, Theorem 81], for finite O ⊆ P1, q ∈ O if and only if q ⊆
⋃
p∈O p.

Let U ⊆ P1 be finite. We define sequences (ri | i < ω) and (si | i < ω)

of elements of R as follows: r0 = 1, and if r0, . . . , ri are defined, we let Oi =

U ∪
⋃
j≤iO(rj). Then Oi is a finite subset of P1. Let si =

∏
k≤i rk. Then

si ∈
⋂
p∈Oi

p and si /∈ q for each q ∈ P1 \Oi. In particular, s−1i +R has zero q-th

component in the decomposition of E(Q/R) from (2) for each q ∈ P1 \ Oi. It

follows that P1 ∩ AssR(s−1i R/R) ⊆ Oi. Since P1 is infinite, by prime avoidance,

we can find qi ∈ P1 such that qi /∈ Oi. We take ri+1 ∈ qi \
⋃
p∈Oi

p.

Since ri+1 /∈ p, the p-th component of r−1i+1 + R ∈ E(Q/R) is zero, for each

p ∈ Oi. Since r−1i+1R/R
∼= R/ri+1R maps surjectively onto R/qi, there is a non-zero

homomorphism ϕ : E(r−1i+1R/R) → E(R/qi). By [5, 3.3.8], this implies that the

qi-th component of r−1i+1 +R ∈ E(Q/R) is non-zero, and qi ∈ P1 ∩AssR(r−1i+1R/R).

By construction,

R ⊆ R[s−10 ] ⊆ R[s−11 ] ⊆ . . . ⊆ R[s−1i ] ⊆ R[s−1i+1] ⊆ . . .
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is an increasing chain of very flat submodules of Q. Moreover, for each i < ω,

R[s−1i ] 6= R[s−1i+1], because qi ∈ AssR(s−1i+1R/R) \ AssR(s−1i R/R).

Let B denote the union of the chain above. Then B has rank one and

P1 ∩ AssRB/R =
⋃
i<ω(P1 ∩ AssR(s−1i R/R)) ⊇ {qi | i < ω} is infinite. From

Lemma 3.2, we conclude that B is not a submodule of a very flat module.

For the final claim, note that for each q ∈ U and i < ω, ri /∈ q, and so si /∈ q
as well. Thus U ∩ AssR(s−1i R/R) = ∅, and consequently, U ∩ AssRB/R = ∅.

Remark 3.5. The construction above may be viewed geometrically: In the affine

scheme SpecR, we construct a descending chain of principal open subsets, the

intersection of which is not open, cf. [14, Lemma 1.2.4]

Theorem 3.6. For a Noetherian domain R, the class LV is precovering if and

only if the spectrum of R is finite.

Proof. By Corollary 2.10, the finiteness of SpecR implies that the classes of very

flat and flat modules coincide, hence the intermediate class LV equals both of

them and therefore is even covering. On the other hand, we may use the module

B constructed in Lemma 3.4 together with Theorem 1.9 to show that B has no

LV-precover.

Finally, we examine the nature of locally very flat modules for Dedekind

domains. The heredity implies that the class LV is closed under submodules: As

VF is closed under submodules, the system witnessing local very flatness of a

submodule is simply obtained by intersecting the modules in the witnessing system

of the larger module. Moreover, SpecR is finite, iff R is a discrete valuation ring,

cf. [12, p.86].

In this case, the analogy between flat Mittag-Leffler modules and the locally

very flat ones goes much further: for example, Definition 3.1 can equivalently

be formulated using pure submodules in M , and we also have an analogy of

Pontryagin’s criterion for abelian groups (cf. [9, 3.14]):

Theorem 3.7. Let R be a Dedekind domain and M be a module. Then the

following conditions are equivalent:

(i) For each finite subset F of M , there exists a countably generated pure

submodule N of M such that N is very flat and contains F .

(ii) For each countable subset C of M , there exists a countably generated pure

submodule N of M such that N is very flat and contains C.

(iii) Each finite rank submodule of M is very flat.

(iv) Each countably generated submodule of M is very flat.

(v) M is locally very flat.

Proof. (i) ⇒ (ii): Let C = {ci | i < ω}. By induction, we define a pure chain

M = (Mi | i < ω) of very flat submodules of M of finite rank such that

12



{cj | j < i} ⊆ Mi for each i < ω as follows: M0 = 0, and if Mi is defined, then

there is a finitely generated free submodule G EMi + ciR. By (i), there is also a

countably generated pure submodule D of M such that D is very flat and contains

G. If D is of finite rank, put Mi+1 = D; otherwise we may assume D E Q(ω) and

let Mi+1 = D ∩Q(k), where k < ω is chosen so that G ⊆ D ∩Q(k). Now Mi+1 is a

finite rank pure and very flat submodule of D, and hence also Mi + ciR ⊆Mi+1.

By Lemma 2.11, Mi+1/Mi is very flat of finite rank, hence countably generated.

Moreover, M is a VF-filtration of N =
⋃
i<ωMi. We conclude that N is a

countably generated very flat and pure submodule of M containing the set C.

(ii)⇒ (iii): Let G be a finite rank submodule of M . Then F E G for a finitely

generated free module F . By (ii), there is a countably generated very flat pure

submodule N of M containing F . Then also G ⊆ N , whence G is very flat.

(iii)⇒ (iv): Let C be a countably generated submodule of M of countable rank.

W.l.o.g., R(ω) E C E Q(ω). For each n < ω, let Cn = C ∩ Q(n). By assumption,

for each n < ω, Cn is a very flat pure submodule of C, whence Cn+1/Cn is very

flat by Lemma 2.11, and so is C.

(iv)⇒ (v): If (iv) holds, then the set T of all countably generated submodules

of M witnesses the local very flatness of M .

(v) ⇒ (i): First, (v) clearly implies (iv), since each countably generated

submodule of M is contained in a (very flat) module from T .

In order to prove that (iv) ⇒ (i), we let F be a finite subset of M and

G be a pure submodule of M of finite rank, say n, such that F ⊆ G. Then

R(n) E G E Q(n). It suffices to prove that G is countably generated.

If this is not the case, we let Gi = G ∩Q(i) for each i ≤ n, and let k < n be

the largest index such that Gk is countably generated (and hence very flat). Then

H = Gk+1/Gk is a torsion-free module of rank one, so w.l.o.g. R ⊆ H ⊆ Q, but

H is not countably generated. Hence AssRH/R is uncountable.

Let {pi | i < ω} be a set of distinct elements of AssRH/R. We can choose

g0 ∈ Gk+1 such that g0 +Gk = 1 ∈ R, and for each i < ω, gi+1 ∈ Gk+1 such that

(〈gi+1 +Gk〉+ 〈g0 +Gk〉)/〈g0 +Gk〉 = R/pi ⊆ Q/R.

Let G′ be the submodule of Gk+1 generated by Gk ∪ {gi | i < ω}. Since G′ is

countably generated, it is very flat, and so is its rank one pure-epimorphic image

H ′ = G′/Gk = 〈gi + Gk | i < ω〉 (see Lemma 2.11). By the definition of H ′,

R ⊆ H ′ ⊆ H, and pi ∈ AssRH
′/R for each i < ω. So AssRH

′/R is infinite, in

contradiction with Lemma 3.2.
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4. Contraadjusted modules

Recall that a module C is contraadjusted if Ext1R(R[s−1], C) = 0 for each s ∈ R.

This can be easily rephrased using the short exact sequence (1):

Lemma 4.1. A module M is contraadjusted, if and only if for each s ∈ R and

for each sequence (mi | i < ω) of elements of M , the countable system of linear

equations with unknowns xi

xi − sxi+1 = mi (i < ω) (3)

has a solution in M .

Proof. Applying the contravariant functor HomR(−,M) to (1), one sees that

the condition Ext1R(R[s−1], C) = 0 is equivalent to the map HomR(fr,M) being

surjective. The latter condition easily translates into the solvability of the countable

system (3).

Proposition 4.2. If f : R→ S is a ring homomorphism and C is a contraadjusted

S-module, then it is also contraadjusted as an R-module.

Proof. This follows immediately from Lemma 4.1, since the solvability of each

system of the form (3) still holds.

Proposition 4.3. If R is a semiprime Goldie ring (e.g. a domain), then every

divisible module (i.e. sM = M for each non zero-divisor) is contraadjusted.

Proof. By [9, 9.1], for semiprime Goldie rings, Ext1R(P,D) = 0 whenever P has

projective dimension ≤ 1 and D is divisible, so the claim follows from Lemma

2.3.

If M is a module and 0 6= s ∈ R, we let M̂s be the completion of M in the

ideal sR, i.e. the module

lim←−i<ωM/siM

(the maps between the modules being m+ siM 7→ m+ si+1M). We further denote

by cs the canonical morphism M → M̂s. The following lemma shows that for

torsion-free modules over domains, the property of being contraadjusted can be

translated to some form of completeness:

Lemma 4.4. Let R be a domain and M a torsion-free module and 0 6= s ∈ R.

Then Ext1R(R[s−1,M ]) = 0 if and only if the canonical homomorphism cs is

surjective.

Proof. Assume that cs is surjective and let m0,m1, . . . be a sequence of elements of

M ; we shall check the solvability of the system (3). In M̂s viewed as a submodule

of the product
∏

i<ωM/siM , consider the element(∑
k<i

mks
k + siM

∣∣∣ i < ω
)

;
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let x0 be any of its preimages in cs. Now the elements x1, x2, . . . can be simply

constructed by a recurrence: By the definition of x0, we have x0 −m0 ∈ sM , so

there is x1 ∈M such that x0 − sx1 = m0. Given x1, we observe that

s(x1 −m1) = x0 −m0 − sm1 ∈ s2M ;

since M is torsion-free, we infer that x1 −m1 ∈ sM and proceed as before to find

x2, x3, . . . .

On the other hand, assume the solvability of (3) and pick an element (ti+s
iM |

i < ω) in M̂s. Put m0 = t0 and mi = s−i(ti − ti−1) for i > 0; the division by s is

possible because of the definition of inverse limit and the torsion-freeness of M .

Let x0, x1, . . . be the solution of the system (3) with the given right-hand side

m0,m1, . . . . It is now easy to check x0 − t0 ∈ sM , x0 − t1 ∈ s2M , etc. Hence x0
is the sought preimage of the element of the completion.

The kernel of the homomorphism cs above is the intersection
⋂
i<ω s

iM , which

is for torsion-free M an R[s−1]-module. Thus, roughly said, there are two reasons

for contraadjustedness of torsion-free modules: divisibility and completeness.

We will now be interested in how much “redundancy” is in the set L. For

example, if R is a Dedekind domain and r, s ∈ R are such that r divides s, then

clearly

Ext1R(R[s−1],M) = 0 =⇒ Ext1R(R[r−1],M) = 0

for any module M , so for testing contraadjustedness it suffices to take “large” s.

The generalization of this fact is the following:

Proposition 4.5. Let R be a domain and r, s ∈ R such that rR+ sR = R. Then

Ext1R(R[(rs)−1],M) = 0 =⇒ Ext1R(R[r−1],M) = 0

for any module M .

Proof. We start with a classical observation: If a, b ∈ R are such that ar+ bs = 1,

then for any k < ω there are also c, d ∈ R such that crk + dsk = 1; these are

obtained by expanding the left-hand side of the equality (ar + bs)2k = 1.

Next, applying the contravariant functor HomR(−,M) to the short exact

sequence

0 −→ R[r−1] −→ R[(rs)−1] −→ R[(rs)−1]/R[r−1] −→ 0

shows that it suffices to prove that the projective dimension of the module

R[(rs)−1]/R[r−1] is at most 1, too. This would follow if we prove the isomorphism

R[s−1]/R ∼= R[(rs)−1]/R[r−1].

For this it is enough to show that R[r−1] +R[s−1] = R[(rs)−1] (as R-submodules

of the module R[(rs)−1]) and R[r−1] ∩ R[s−1] = R, the rest is the standard

isomorphism

R[s−1]/(R[r−1] ∩R[s−1]) ∼= (R[r−1] +R[s−1])/R[r−1].
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The equality R[r−1] + R[s−1] = R[(rs)−1] is easy: Observe that 1/(rs)k =

a/sk + b/rk, where a, b ∈ R are chosen so that ark + bsk = 1.

Finally, the fact R[r−1] ∩ R[s−1] = R can be viewed this way: Assume that

x/rk = y/sk for some x, y ∈ R, k < ω. Again, take a, b ∈ R such that ark+bsk = 1.

Now

x = x(ark + bsk) = rk(xa+ by),

thus x/rk ∈ R as desired.

Example 4.6. Let k be a field and R = k[w, z], the ring of polynomials in two

variables. Put M = R̂wz. As R is Noetherian, M is wzR-complete, so by Lemma

4.4, Ext1R(R[(wz)−1],M) = 0. However, it is easy to show that the system (3) with

s = w and mi = 1 for all i < ω has no solution in M , thus Ext1R(R[w−1],M) 6= 0.

Our next goal will be to examine the existence of CA-envelopes.

Lemma 4.7. Let M be an R-module, which is an R[s−1]-module for some non-

zero s ∈ R. Then there is a CA-preenvelope of M (in the category of R-modules),

which is an R[s−1]-module.

Proof. It suffices to construct a special CA-preenvelope

0 −→M −→ C −→ V −→ 0

in the category of R[s−1]-modules. By Proposition 4.2, we see that the C

is a contraadjusted R-module. Likewise, V is a very flat R-module, because

R[s−1][(r/sk)−1] ∼= R[(rs)−1] as R-modules for each 0 6= r ∈ R,

Proposition 4.8. Assume that R is a Noetherian domain with infinite spectrum.

Let B be the module constructed in Lemma 3.4. If the CA-envelope of B exists, it

is equal to B.

Proof. The module B is just the union of the rings of the form R[s−1], hence it is

a module over each of them. By Lemma 4.7, it has a CA-preenvelope which is a

module over R[s−1] for each such ring in the union. If the CA-envelope exists, it is

a direct sumand in each such preenvelope, hence a B-module (note that to verify

that a torsion-free module M is an R[s−1]-module, it suffices to check sM = M ,

which is preserved under pure submodules).

Assume that C is the CA-envelope of B. By Wakamatsu lemma [9, 5.13],

C/B is very flat; however, as a factor of B-modules, it is a B-module. So unless

C/B = 0, B is a submodule of a very flat module. However, this is not possible

by Lemma 3.2.

Corollary 4.9. Let R be a Noetherian domain of cardinality less than 2ω with

infinite spectrum. Then the class of all contraadjusted modules is not enveloping.
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Proof. The module B from Lemma 3.4 has the same cardinality as the ring R;

we may also assume that B 6= Q using the final claim from Lemma 3.4. This

implies that there is a non-zero s ∈ R such that B̂s is non-zero. However, the

latter module has always cardinality at least 2ω, thus the canonical map cs cannot

be onto. By Lemma 4.4, B is not contraadjusted, so Lemma 4.8 shows that B

has no CA-envelope.

As in the previous sections, we now turn our attention to Dedekind domains R.

Our main goal is the characterization of torsion contraadjusted modules. Most of

the facts concerning the used apparatus are covered in [13].

Recall that in the setting of Dedekind domains, we have the isomorphism

Q/R ∼=
⊕

p∈mSpecR

E(R/p).

Also, a module M is cotorsion if and only if Ext1R(Q,M) = 0. (cf. [13, 7.1]). Every

reduced module M has a cotorsion envelope

Ext1R(Q/R,M) ∼=
∏

p∈mSpecR

Ext1R(E(R/p),M)

(cf. [7, VIII.6]) and the inclusion is given via the short exact sequence

0 −→M ∼= HomR(R,M) −→ Ext1R(Q/R,M) −→ Ext1R(Q,M) −→ 0,

which is obtained by applying HomR(−,M) to the sequence

0 −→ R −→ Q −→ Q/R −→ 0.

It is also worth noting that each module Ext1R(E(R/p),M) is cotorsion and a

module over the ring R̂(p), i.e. the completion of the localization of R in p.

In the following, we shall always view M as a submodule of its cotorsion

envelope.

Definition 4.10. Let P be a set of prime ideals of the Dedekind domain R. By

R[P−1] we shall denote the (unique) subring of Q such that its factor by R (as

R-modules) is isomorphic to
⊕

p∈P E(R/p). For P = {p} we abbreviate R[{p}−1]
to R[p−1].

Note that if the set P ⊆ mSpecR is finite and product of its elements is

a principal ideal sR, then R[P−1] ∼= R[s−1] (using Definition 2.1 for the latter

module).

Lemma 4.11. Let P be a finite subset of mSpecR. Then P can be extended to

finite P ′ ⊆ mSpecR such that the product of primes in P ′ is a principal ideal.

Proof. Pick any non-zero t in the intersection of P ; the principal ideal tR factors

into the product of prime ideals, among which have to be the primes from P . We

let P ′ to be the set of the prime ideals in the product.
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Lemma 4.12. Let M be a reduced module over a Dedekind domain R and P a

subset of mSpecR. The following statements are equivalent:

(i) Ext1R(R[P−1],M) = 0,

(ii) the projection Ext1R(Q/R,M)→
∏

p∈P Ext1R(E(R/p),M), restricted to M ,

is surjective.

Proof. Let us apply the functor HomR(−,M) to the short exact sequence

0 −→ R −→ R[P−1] −→
⊕
p∈P

E(R/p) −→ 0.

As M is reduced, we have

HomR

(⊕
p∈P

E(R/p),M
)

= 0,

so the result is

0 −→ HomR(R[P−1],M) −→ HomR(R,M) −→

−→
∏
p∈P

Ext1R(E(R/p),M) −→ Ext1R(R[P−1],M) −→ 0.

As HomR(R[P−1],M) corresponds to the elements of M divisible by all p ∈ P ,

the corresponding submodule of the cotorsion envelope is

HomR(R,M) ∩
∏
p/∈P

Ext1R(E(R/p),M).

(We exploit the purity of M in its cotorsion envelope.) Consequently, the map

HomR(R,M)→
∏

p∈P Ext1R(E(R/p),M) is the restriction in question. We infer

that this map is onto if and only if Ext1R(R[P−1],M) = 0.

Using the preceding lemmas, we may characterize the contraadjusted modules

via the relation to their cotorsion envelope:

Corollary 4.13. Let M be a reduced module over a Dedekind domain R. Then M

is contraadjusted, if and only if for every finite set P ⊆ mSpecR, the projection

Ext1R(Q/R,M)→
∏

p∈P Ext1R(E(R/p),M) restricted to M is onto.

Proof. If P is a finite subset of mSpecR, then we may extend it to a set of

primes with principal product. Therefore, R[P−1] ⊆ R[s−1] for some s ∈ R and

Ext1R(R[s−1],M) = 0 implies Ext1R(R[P−1],M) = 0 (heredity). On the other hand,

given non-zero s ∈ R, we have R[P−1] = R[s−1], where P is the (finite) set of

primes in the decomposition of sR. The rest is just Lemma 4.12.

Note that this property may be stated in a “topological” way: If each compo-

nent Ext1R(E(R/p),M) is equipped with the discrete topology and their product

Ext1R(Q/R,M) with the product topology, then the module M is contraadjusted

if and only if it is dense in Ext1R(Q/R,M).
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Example 4.14. If

M ∼=
∏

p∈mSpecR

Ext1R(E(R/p),M)

is a cotorsion module, then ⊕
p∈mSpecR

Ext1R(E(R/p),M)

is a contraadujsted module; it is cotorsion if and only if R is a discrete valuation

ring.

The previous example is in fact the sought defining property of (reduced)

torsion contraadjusted modules:

Theorem 4.15. Let M be a reduced torsion contraadjusted module over a Dedekind

domain R. Then

M ∼=
⊕

p∈mSpecR

Ext1R(E(R/p),M),

each module in the sum being p-primary and bounded.

Proof. The module M being torsion, it decomposes into a direct sum of p-primary

components, so we may w.l.o.g. assume that M is p-primary. In such a case,

HomR(R[p−1],M) = 0, which yields M ∼= Ext1R(E(R/p),M) in the light of Lemma

4.12. Since this module is cotorsion (it is a direct summand of Ext1R(Q/R,M)),

together with the fact that M is reduced we conclude that M is bounded, cf. [13,

7.8].

Note that in the proof above, we did not need the “full power” of M being

contraadjusted, only the fact that Ext1R(R[p−1],M) = 0 for every p ∈ mSpecR

was used. This is, in general, not sufficient: For example, if R = Z, then the class
⊥({R[p−1] | p ∈ mSpecZ}⊥) does not contain the (very flat) groups of the form

Z[s−1], where s has more than one prime divisor.
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