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Název práce: Rezervovánı́ škod v rámci panelových dat

Autor: Michal Gerthofer

Katedra: Katedra pravděpodobnosti a matematické statistiky
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část je zaměřena na modelovánı́ panelových dat, zejména na zobecněné lineárnı́ smı́šené
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Introduction
Remember that all models are wrong; the
practical question is how wrong do they
have to be to not be useful.

George E.P. Box

The claims reserving problem or the run-off problem, has been one of the most
important issues handled in general insurance for many years. The proper determina-
tion of the reserves amount has a key impact on the financial position of an insurance
company, especially in the non-life insurance. Many various methods have been de-
veloped for this purpose beginning with deterministic approaches such as an original
chain-ladder and later stochastic models have been proposed.

However, various approaches and models lead to different results. Every method
is based on different ideas and uses different principles. Therefore, the most important
question in the practical application of these methods is model selection and the ade-
quacy of chosen models.

Stochastic methods for modelling claims development became popular among prac-
titioners in order to use more information about the data and consequently, to get deep-
er detail about the estimate as well. The major part of these approaches requires inde-
pendency of the incremental claims. In practice, this assumption often does not hold
and the methods can provide misleading results. This thesis deals with the stochastic
models based on generalized linear models, especially Generalized Linear Mixed Mod-
els (GLMM) and Generalized Estimating Equations (GEE), which are able to handle
the aforementioned dependency.

The purpose of the thesis will be the construction of suitable models for claims
reserving framework, then a description of model selection on representative datasets
and subsequently, the advantages and disadvantages of adequate models will be dis-
cussed. During this process, special attention is paid to the detailed analysis of a huge
number of datasets and their behaviour.

The structure of the thesis is as follows. In the first chapter, panel data framework
is introduced in general, starting with the most basic linear models and continuous-
ly, the correlation is introduced into models with random effect. Then, generalized
linear models are presented with their strength in various mean structure and possible
distributions of random variables. Finally, the advantages of these two mentioned mod-
els are introduced in GLMM and GEE models. For the purpose of the simplification
of GEE models, testing of coefficient is discussed as well.

The aim of the second chapter is to introduce the claims reserving problem in non-
life insurance and its standard notation. The incremental or cumulative claims are
understood as random variables ordered in the development triangles. At the end
of the chapter, basic reserving methods are introduced.

Next, the focus lies on the application of the panel data theory in claims reserving
framework. Specification of the models, which satisfy the theory associated with the ac-
tuarial practice, is discussed. In order to choose the most adequate model, useful
residual properties are presented. Moreover, the reasons for simpler models, if it is
possible, are listed.

Finally, in the fourth chapter, the application of model selection and residual
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diagnostic on real-life data is executed using R software. Firstly, the analysis
on the whole database is made and subsequently three main representative datasets
are chosen in order to demonstrate their strengths and weaknesses, as well as the dif-
ferences in the considered approaches.

Notation agreement
In this text we use following notation for indices, Yit ≡ Yi, t and Yit j ≡ Yi, t, j.

Thus, where two indices stay side by side, a comma should be imagined and there is no
multiplication of indices. For special cases where sum occurs in index, the same rule is
applied Y1+it+n ≡ Y1+i, t+n. The same holds for numbers in indices due
to the fact that we only use integers less than 10 in indices, thus notation is given
by Y12 ≡ Y1, 2 or Y1n−1 ≡ Y1, n−1.
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1. Panel data framework

1.1 Brief historical overview
The first mention of panel data framework is dated in the second half of the 19th

century. British astronomer George Biddel Airy laid the foundations for the linear
mixed-model formulation (1861), which he applied to errors of observation in astron-
omy.

About fifty years later, it was put on a more formal theoretical footing in the seminal
work of R. A. Fisher (1918), where he defined the terms “variance” and “Analysis
of variance” (ANOVA). In his later works, he elaborated on the concept of models
with fixed and random effects.

It did not take a long time until statisticians recognized similarities between a (pan-
el data) structure with N individuals and T repeated measurements and data collected
in randomized blocks. Thus, it seemed natural to apply ANOVA methods devel-
oped later (e.g., Yates, 1935; Scheffe, 1959) to the repeated-measures data collected
from studies of panel data, where the individuals were considered as the blocks.

Later, models with random effects were suggested for no experimental data, e.g.,
in astronomy, econometric or biostatistics. On the other hand, models with fixed effects
should be used for no experimental data, where there are concrete procedures like
in industry or agriculture.

The analysis of change is a fundamental component of many research endeavours.
Thus, these methods have been gradually used in almost every discipline including
econometrics, biostatistics, pharmacy, insurance, industry, agricultural etc.

For example, one of the first authors of econometrics application was Irving Hoch
(1962), who was estimating the Cobb-Douglas production function for 6 years of data
for 63 farms in Minnesota. Another improvement in this field was in the research
of dynamic models where models contain lagged explanatory variables or dependent
variables. This fact is very reasonable, especially for econometric data because there
is usually a very strong correlation to previous observations.

Another huge application was made in the analysis of human investigation, which
expanded explosively in the second half of the twentieth century by the US government
through the legislative foundation for the modern National Institute of Health (NIH).
In this field of research, term longitudinal or clustered data is often used instead of pan-
el data and term individual or panel member is usually replaced by subject or cluster.
In this text, we are going to deal with longitudinal data (time ordered data
within subjects) which is a special case of more general defined clustered data.

Investigators in this field were interested in the treatment of diseases that are not
typically life threatening and wanted to understand the development of disease
and to identify factors that cause changes. Before they began investigating tempo-
ral patterns of change, new and more computationally sophisticated approaches had
to be invented. In order to do this in the early 1980s, Laird and Ware proposed
the use of the Expectation Maximization (EM) algorithm to fit a class of Linear Mixed
Model (LMM) and Jennrich and Schluchter (1986) proposed a variety of alterna-
tive algorithms, including Fisher scoring (IWLS) and Newton-Raphson algorithms.
Ten years later, Liang and Zeger introduced Generalized Estimating Equations (GEE)
and proposed a family of Generalized Linear Model (GLM) for fitting repeated obser-
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vation of binary and counted data.
For more details about the history, see Fitzmaurice et al. [2004, Chapter 1.1]

or Diggle et al. [2002, Chapter 1].

1.2 Characterization of the data structure
Panel data contains observations of multiple phenomena obtained over multiple

time periods for the same individuals or subjects. Time series and cross-sectional data
are special cases of panel data that are in one dimension only. Cross-sectional data are
observations of different individuals or subjects on the same occasion. On the other
hand, time series capture the development of one individual during a time period.

In general, cross-sectional data does not have a special order and is commonly
considered independent, which is in contrast with chronologically ordered time se-
ries. It is also assumed that the structure of panel data is the same during collecting
and individuals are similar in a certain way. Due to this, we can apply a model
with the same structure on all of them.

Before we start describing models in mathematical formulae, we present some
advantages of panel data. One of them is the large number of observations, which
can bring a larger number of degrees of freedom and reduce the collinearity among
explanatory variables. More importantly, longitudinal data allows a researcher to ana-
lyse a number of important questions that cannot be answered using cross-sectional
or time-series data sets, e.g., by using models with fixed effects we can study how big
a part of disturbances should be explained by individual effects. Disadvantages include
challenging data collection and often an insufficient series length.

In this part, panel data framework is described more mathematically. Firstly,
the commonly used basic linear model is defined by the following form

Yit = X1itβ1 +X2itβ2 + · · ·+Xpitβp +uit , (1.1)

where p ∈ N, Y = (Y11,Y12, . . . ,Y1T , . . . , YNT )
> is the outcome of interest, vector

of explanatory variables, Xit = (X1it , . . . , Xpit)
>, is part of the model matrix

X = (X11,X12, . . . ,X1T , . . . ,XNT )
> ,

β=(β1, . . . , βp)
> is the vector of regression parameters, U=(u11, . . . ,u1T , . . . , uNT )

>

is the vector of residuals (disturbances). In this part t = {1, . . . ,T} is considered
as time index and i = {1, . . . ,N} is considered for individual or panel subject
and this structure is called balanced design, i.e., the same number of observations
for each subject.

The equation from 1.1 can be rewritten in the following form

Yit = X>it β+uit , (1.2)

where matrix notation is equal to

Y = Xβ+U.

In this text, we consider X as fixed but there is another approach, where X is taken
as random. However, both of them lead to the same conclusions.
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1.3 Basic Models
This section describes basic approaches for modelling panel data. Firstly, models

without correlation structure between dependent variables are presented and secondly,
correlation is introduced in basic form which is the main purpose of this section.

1.3.1 Pooled model (Classical linear model)
The first model presented is the simplest, the so called pooled model. It assumes

that residuals uit from (1.1) are not structured, which means that no individual or time
effects are present within them and they are not correlated with explanatory variables.
Moreover they are independent, identically distributed random variables with zero
mean and finite, positive variance equal to σ2

u . Therefore, there is no need to have
panel structured data and components of Y. Thus, Y and U can be equally reordered.

Finally, we can estimate unknown parameters applying the Ordinary Least Squares
(OLS) method, which leads to the solution

β̂P =
(

X>X
)−1

X>Y,

when an inverse matrix exists. For more information see, e.g., Rao et al. [1999, Chap-
ter 3]. It is common that β̂ depends on the number of observations, which is usually
written as β̂(n), where n stands for the number of observations.

1.3.2 Error component models
Now we continue to more sophisticated models with structured residuals, so called

error component models. These approaches allow us to model unobserved hetero-
geneity, e.g., we can add different intercepts for all individuals and thus better model
dependent variables.

Error component models are split into one-way error component models and two-
way error component models. The first mentioned models assume that residuals consist
of classical residuals ,i.e., independent random variables with zero mean and constant
positive variance, and cross sectional or time effect. The second mentioned models
assume that residuals consist of all three elements (classical residuals, cross sectional
and time effect).

One-way error component models

This text focuses only on one-way error component models where residuals con-
sist of classical residuals and individual effects. Firstly, a model with fixed indi-
vidual effects is presented, which as we mentioned before should be used for data
with a smaller number of observed individuals. Next, attention is paid to a model
with random effects which should be used for data with a huge number of individuals
or subjects.

Form from (1.2) holds, but the breakup of residuals is added

Yit = X>it β+uit , uit = bi + εit , (1.3)

where individual random or fixed effects bi reflect unobserved or unobservable fac-
tors that make individuals respond differently. Elements εit stand for the rest
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of unexplained residual effects that vary with time and individuals, i.e., classical
residuals.

One-way error component models with fixed effect
Let’s begin with the fixed effect model, where equation (1.3) can be re-written applying
dummy variables as follows

Yit = X>it β+d1itb1 +d2itb2 + · · ·+dNitbN + εit ,

where t = {1, . . . ,T} , i = {1, . . . ,N} and dkit is

dkit =

{
1 i = k,
0 otherwise.

It can also be written in matrix notion as follows

Y = Xβ+Dbb+ε,

where Db = IN ⊗ 1T is NT ×N model matrix , see definition in Abbreviations
(p. 53) and ε = (ε11,ε12, . . . ,ε1T , . . .εNT )

> is the vector of classical residuals. Here,
OLS method, in this case also called the Least Squares Dummy Variables (LSDV)
method, can be applied to get the estimation of unknown vector of regression parame-
ters
βb = (β1, . . . ,βp,b1, . . . ,bN)

> in the following form

β̂dummy =
(

X|D>b X|Db

)−1
X|D>b Y,

which can be expressed when an inverse matrix exists. For the definition of matrix
X|Db see Abbreviations (p. 53).

It is worth mentioning that by using dummy variables for creating model matrix
X|D·, it is possible to model two-way error component models with both fixed, cross
sectional and time effect as well.

One-way error component models with random effect
Until now, no correlation structure between dependent variables was considered.
In a model with random effects, simple correlation structure is introduced. Equation
(1.3) still holds, however with the following assumptions

Yit = X>it β+bi + εit ,

bi ∼ iid
(
0,σ2

b > 0
)
,

εit ∼ iid
(
0,σ2

ε > 0
)
,

E
(
εitb j

)
= 0, ∀ i, j and t,

E
(
bib j

)
= 0, i 6= j,

(1.4)

where ri ∼ iid (m,v) means that ri are independent, identically distributed random
variables with mean m and variance equal to v, for all i.
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Presence of two elements within residuals implies the following relation

Cov(uit ,uis) =Cov(εit +bi,εis +bi)

=Var (bi)+Cov(εit ,εis) =

=

{
σ2

b t 6= s, ∀i,
σ2

b +σ2
ε t = s, ∀i.

Hence correlation is equal to

Corr
(
uit ,u js

)
=


σ2

b
σ2

b+σ2
ε

t 6= s, i = j,

1 t = s, i = j,
0 otherwise.

This model was presented in order to realize what causes correlation. This idea is
very crucial for understand the following sections.

1.3.3 Linear mixed models
Finally, we come to generalization of one-way error component models with ran-

dom effect, Linear Mixed Models (LMM), which allow us to model more complex
covariance structures and can also handle the complications of mistimed and incom-
plete measurements in a very natural way. Model is given by

Yit = X>it β+Z>it bi + εit , or
Yi = Xiβ+Zibi +εi

(1.5)

where t = {1, . . . ,ni} , i = {1, . . . ,N}, i.e., different number of observations through
subjects, the so called unbalanced design. Furthermore, Yi = (Yi1,Yi2, . . .Yini)

> is vec-
tor of response for i-th individual and

Zi = (Zi1,Zi2, . . . ,Zini)
>

is a particular subset of model matrix

Xi = (Xi1,Xi2, . . . ,Xini)
>.

Next, random vector εi = (εi1, . . .εini)
> is independent with vector bi = (b1, . . . ,bq)

>

and both have multinomial normal distribution with zero mean and variance matri-
ces Ri, G respectively. Additionally, we assume Ri = σ2

ε Ini because it is not possible
to estimate unstructured both G and Ri.

As we mentioned, one-way error component model with random effect, (1.4), is
a special case of LMM design, (1.5), where Z>it equals one and bi is one dimensional
random variable and changes a fixed intercept to a random one.

Assume covariance matrix of dependent variable is known and has the following
form

Cov(Yi) = Σi

=Cov(Zibi)+Cov(εi)

= ZiGZ>i +Ri.
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Then unknown regression parameters β can be estimated by applying Generalized
Least Squares (GLS), which leads to the following estimate

β̂GLS =

(
N

∑
i=1

X>i Σ−1
i Xi

)−1( N

∑
i=1

X>i Σ−1
i Yi

)
. (1.6)

This is Best Linear Unbiased Estimate (BLUE) of β. For more details and properties
of the estimate, see Rao et al. [1999, Chapter 4] or Fitzmaurice et al. [2004, Chap-
ter 4.2].

In cases where we do not know Σi we have to find a consistent estimate Σ̂i using
Restricted ML (REML) or ML. Then, this estimate can be used for the estimation of β
in Feasible Generalized Least Squares (FGLS)

β̂FGLS =

(
N

∑
i=1

X>i Σ̂−1
i Xi

)−1( N

∑
i=1

X>i Σ̂−1
i Yi

)
.

See more about FGLS in Greene [2002, Chapter 10.5].
Iterative Generalised Least Squares (IGLS) can be applied as well to this procedure.

It is based on iterations between the GLS estimate of β for given estimate of covariance
matrix and consequently re-estimation of Σ̂i. This process is repeated until the required
precision is obtained.

In many applications, inference is focused on the fixed effects β, because of their
interpretation in terms of changes in the mean response over time. However, we may
want to predict an individual specific response profile, e.g., we may want to identify
those individuals who showed the greatest increase or decrease in the response over
time. The structure of this model allows us to estimate (predict) an individual specif-
ic response. Prediction of random variable translates into the problem of predicting
the conditional mean of bi, given the vector of response Yi, (β̂). Using properties
of join multivariate normal distribution, it can be written as

E (bi|Yi) = GZ>i Σ−1
i

(
Yi−Xi β̂

)
.

This is known as Best Linear Unbiased Predictor (BLUP). In practice, this predictor
is unusable due to unknown variance matrices as in the previous case, but they can
be replaced by REML (ML) estimates. Then we get empirical BLUP or “empirical
Bayes” estimator

b̂i = ĜZ>i Σ̂−1
i

(
Yi−Xi β̂

)
.

Predicted response profile is then given by

Ŷi = Xiβ̂+Zib̂i,

which can be re-written as follows

Ŷi =
(
R̂iΣ̂

−1
i

)
Xiβ̂+

(
Ini− R̂iΣ̂

−1
i

)
Yi.

This expression shows how the empirical Bayes estimator “shrinks” the i-th subject’s
predicted response profile to the population-average mean response profile. If
the within-subject variability Ri is large relatively to the between-subject variability
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Σi, more weight is given to Xiβ̂ than to the i-th observed response. For more details
about these estimates see Fitzmaurice et al. [2004, Chapture 8.7].

The reason why it is better to use REML for estimation of Σi is that the ML method
treats β as fixed but unknown quantities when the variance components are estimat-
ed. However, it does not take into account the degrees of freedom lost by estimating
these fixed effects. This causes the ML estimator to be more biased than the REML
estimate of Σi. It should be noted that the difference between the ML and REML es-
timation becomes less important when the number of sample size, N, is substantially
larger than the dimension of β. The advantage of ML over REML estimate of Σi is
that it is possible to compare two models in terms of their fixed and random effects.
On the other hand, if REML is used to estimate the parameters, it is possible to com-
pare only models that are nested in their random effects terms and the same in their
fixed effects. For more information about REML, see in Fitzmaurice et al. [2004,
Chapter 4.4, 4.5].

1.4 Generalized Linear Model
Until now, all mentioned models work with dependent variables whose mean is

defined on R and in LMM the dependent variable is expected to be normally distribut-
ed. This assumption is very restrictive for real data. Thus, we go on to more com-
plex models which are able to handle dependent variables from various distributions
and ranges of mean. Generalized Linear Models (GLM) deal with responses whose
distribution functions belong to exponential family. This fact allows us to model, e.g.,
zero-one (alternative) dependent random variable. Before we focus on GLM in detail,
it is appropriate to define exponential family of distributions.

Exponential family of distributions

Exponential family contains distributions with densities that can be written as

f (Y |θ ,ϕ) = exp
{

Y θ −b(θ)
ϕ

+ c(Y,ϕ)
}
, (1.7)

where θ ∈ R is canonical parameter, ϕ ∈ (0,∞) is dispersion parameter and b(·), c(·)
are real functions. The stated form of distribution is called canonical. Main members
of this family are normal, gamma, inverse Gaussian, Poison, over-dispersion Poison
and alternative distribution.

Assume random variable Y follows a distribution from exponential family and b(·)
is twice continuously differentiable. Then the moment generation function E exp{tY}
of Y exists, is finite and is equal to

mY (t) = E exp{tY}= exp
{

b(tϕ +θ)−b(θ)
ϕ

}
.

Consequently, since b(θ) is twice continuously differentiable, then mY (t) is also twice
differentiable at zero. Using property of moment generation function we can obtain
the following results

E(Y ) = b′(θ) (< ∞) ,

Var(Y ) = ϕb′′(θ) (< ∞) .
(1.8)
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Corollaries from (1.7) (ϕ > 0) and (1.8) (Var(Y )> 0) are that b(·) is convex func-
tion and b′(·) is strictly increasing. Hence b′(·) has a well-defined inverse.

Here we define variance function V (·) for which Var(Y ) = ϕV (µ) holds and satis-
fies b′′(θ) =V [b′(θ)]. For more details, see Fitzmaurice et al. [2004, Chapter 10.5].

Estimation of parameters of Exponential family distribution

Let Y1, . . . ,Yn be a random sample from the distribution with density (1.7), then we
can use ML method for estimation of θ . Thus, we obtain score statistic

Un(θ |Y1, . . . ,Yn) =
1
ϕ

n

∑
i=1

[
Yi−b′(θ)

]
.

Then estimate is defined as solution of equation Un(θ̂ |Y1, . . . ,Yn) = 0, which is equal
θ̂ = (b′)−1(∑n

i=1Yi/n), where θ̂ ≡ θ̂(n).
Solution is unique because b(·) is convex and it does not depend on ϕ . Moreover, if

regularity conditions are satisfied, the estimate is consistent and asymptotically normal

√
n
(

θ̂ −θ

)
D−−−→

n→∞
N
(
0,I−1(θ)

)
, (1.9)

where I−1(θ) is information number equal ϕ/b′′(θ).
In cases where the dispersion parameter is unknown, the asymptotic variance of θ̂

may change. However, the join information matrix for the vector (θ , ϕ)> from 1.10 is
diagonal.

I(θ ,ϕ) =−E
∂ 2 log f (Y ;θ , ϕ)

∂ (θ , ϕ)∂ (θ , ϕ)>
=

(
Iθθ Iθϕ

Iθϕ Iϕϕ

)
=

(
b′′(θ)/ϕ 0

0 Iϕϕ

)
(1.10)

Thus, corollary from (1.9) and (1.10) is that the asymptotic variance of θ̂ given
by ϕ/b′′(θ) holds also when ϕ is unknown, which imply asymptotic independence
of ML estimates θ̂ and ϕ̂ , when regularity conditions for vector (θ ,ϕ)> are satis-
fied. Unknown parameter ϕ is not needed for estimation of θ , only if we are interested
in asymptotic variance of θ . Then it can be estimated using moment estimator
because ML estimate cannot often be calculated explicitly. For more detailed
theory, see Lehmann [1983, Chapter 6.4]

Definition of Generalized Linear Model

Here we go on to the definition of GLM, where we want to express the dependence
of µi ≡ E Yi on explanatory variables Xi = (Xi1, . . . , Xip)

> using a more general model
than the linear one.

GLM is given by the following conditions.

• Y1, . . . ,Yn are independent random variables and distribution of Yi depends on Xi
through regression coefficients β = (β1, . . . , βp)

>.

• The canonical density of Yi is the same as (1.7), except for the canonical para-
meter θ , which depends on Xi and β. Therefore, from now on, we add index
to this, i.e., θi ≡ θ . Additionally, b(·) is assumed to be twice differentiable
for the reasons mentioned above.
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• Dependence between θi,Xi and β is expressed through linear predictor

ηi ≡ X>i β.

• There is a known strict monotone, twice continuously differentiable function
g(·) called link function, for which g(µi) = g [E(Yi)] = g [b(θi)] = ηi holds.

It is useful to define canonical link as a link function which satisfies the following
equation

g(µi) = ηi = θi = X>i β,

which implies (b′)−1(·) = g(·). Then, applying first derivation on g [b′(θi)] = θi we
obtain g′ [b′(θi)]b′′(θi) = 1 and continuously g′(µi) = 1/V (µi).

According to previous conclusions, the following parametrization is used

ηi = X>i β,
ηi = g(µi)⇐⇒ µi = g−1(ηi),

µi = b′(θi)⇐⇒ θi = (b′)−1(µi),

ηi = g
[
b′(θi)

]
⇐⇒ θi = (b′)−1 [g−1(ηi)

]
.

Maximum Likelihood Estimation in GLM

Let Y1, . . . ,Yn satisfy conditions of generalized linear model and ϕ is known dis-
persion parameter. Unknown parameter β can be estimated using ML method. Firstly,
log-likelihood is given by

`n(β|Y1, . . . ,Yn) =
n

∑
i=1

[
Yiθi−b(θi)

ϕ
+ c(Yi,ϕ)

]
,

where g(µi) = X>i β and µi = b′(θi). Furthermore, we express score function

U(β|Yi) =
∂

∂β

Yiθi−b(θi)

ϕ

chain
rule
=

∂

∂θi

Yiθi−b(θi)

ϕ

∂θi

∂ µi

∂ µi

∂ηi

∂ηi

∂β

=
Yi−µi

ϕ

1
V (µi)

1
g′(µi)

Xi.

This leads to score statistic

Un(β|Y1, . . . ,Yn) =
1
ϕ

n

∑
i=1

w(µi)g′(µi)(Yi−µi)Xi,

where w(µi) = 1/
{

V (µi) [g′(µi)]
2
}

(> 0) is weight function. As a consequence
of this, the set of p likelihood equations for β can be expressed as follows

n

∑
i=1

w(µ̂i)g′(µ̂i)(Yi− µ̂i)Xi = 0, (1.11)
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where µ̂i = g−1(X>i β̂).
If g(·) is canonical link function, then g′(·) = 1/V (·), w(µi) = V (µi), and conse-

quently w(µi)g′(µi) = 1. Thus, score static and likelihood equations can be written
in the following form

Un(β|Y1, . . . ,Yn) =
1
ϕ

n

∑
i=1

(Yi−µi)Xi,

n

∑
i=1

YiXi =
n

∑
i=1

µ̂iXi,

where µ̂i = g−1
(

X>i β̂
)

are called the fitted values.
If we want to obtain a unique solution of likelihood equations, then link function

g(·) must be canonical and model matrix X = (X1, . . . ,Xn)
> must have full column

rank p, because otherwise, the equations may have multiple solutions. These con-
ditions imply that log-likelihood is a concave function of β, which can be proved
by properties of Fisher information.

Here, we must use a numerical algorithm to solve the likelihood equations, due
to the non-linearity in equations. They may iterate slowly and what is worse, they may
converge at the wrong solution if there is no canonical link or model matrix does not
have full column rank p.

Iterative Weighted Least Squares

We present one numerical method called Iterative Weighted Least Squares (IWLS),
which is a special use of the Fisher scoring algorithm. Before we describe the al-
gorithm it is necessary to state that the ML estimate, β̂, in GLM solves the system
of equations

β̂ =
(

X>ŴX
)−1(

X>ŴẐ
)
, (1.12)

where

Ŵ = diag [w(µ̂1), . . . ,w(µ̂n)] ,

Ẑ = (ẑ1, . . . , ẑn)
> ,

ẑi = η̂i +(Yi− µ̂i)g′ (µ̂i) ,

µ̂i = g−1(η̂i),

η̂i = X>i β̂ .

(1.13)

This can be proved by multiplying equation (1.12) with
(

X>ŴX
)

and substituting
values from (1.13), then we obtain[

n

∑
i=1

w(µ̂i)XiX>i

]
β̂ =

[
n

∑
i=1

w(µ̂i)XiX>i

]
β̂+

n

∑
i=1

w(µ̂i)g′(µ̂i)(Yi− µ̂i)Xi

which is equal to likelihood equations from (1.11), which we wanted to show.
Algorithm is based on iterations between Ŵ and β̂, until the given precision is

obtained. For a detailed description of IWLS method, see Dobson [2002].
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1.5 Generalized Linear Mixed Model

1.5.1 Advantages of GLMM
In the previous section we described LMM and by using individual random effect,

we were able to introduce the within-subject correlation. Furthermore, the “empirical
Bayes” estimator for individual random effects was listed. Nevertheless, it still has
a big limitation on the distribution of the response and range of the mean. Next, we
presented GLM, which allows us to model random variables from exponential fam-
ily of distribution and a more complex mean structure, but its disadvantage is that
the observations of these variables are assumed to be independent. Due to these facts
Generalized Linear Mixed Model (GLMM) was proposed. It combines all the benefits
from LMM and GLM.

1.5.2 Definition of GLMM
GLMM is given by the following conditions

• We assume that Yit follows unbalanced design with N individuals and ni meas-
ures for each of them, like in LMM. Furthermore, independence between indi-
viduals is assumed as well, i.e., Yi is independent with Y j for i 6= j.

• Next, the random effects bi, i = 1, . . . ,N are independent random vectors
and bi ∼N q(0, D), where D≡ D(ψ) depends on parameter ψ.

• Given bi, components of Yi = (Yi1, . . . ,Yini) are conditionally independent,
with density belonging to exponential family distribution

f (Yit |bi) = exp
{

Yitθit−b(θit)

ϕ
+ c(Yit , ϕ)

}
.

• Then the conditional mean of Yit given bi is

µit ≡ E(Yit |bi) = b′(θit)

and the conditional variance of Yit given bi has the following form

Var(Yit |bi) = ϕb′′(θit)≡ ϕV (µit).

• Furthermore, it is assumed that µit is related to the linear predictor

ηit = X>it β+Z>it bi (1.14)

through the link function g(µit) = ηit .

Conditional Yit given bi satisfy the GLM and the inclusion of bi in all ηit brings
in correlation between Yi1, . . . ,Yini like in LMM.
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1.5.3 Estimation of parameters
Due to the assumption of conditional distribution of dependent variables, the maxi-

mum likelihood method can be used. Unfortunately, this likelihood does not generally
have a closed-form solution and approximation methods for estimation must be used.
The likelihood is given by

L(β,ψ|Y) =
N

∏
i=1

f (Yi|β,ψ) =

=
N

∏
i=1

∫
Rq

ni

∏
t=1

f (Yit |β,bi) fb (bi|ψ)dbi.

(1.15)

Equation 1.15 can be expressed using canonical link g(·) and multivariate normal dis-
tribution fb as follows

L(β,ψ|Y) =
N

∏
i=1

(2π)−q/2|D|−1/2
∫
Rq

exp
{

1
ϕ

[
Y>i (Xiβ+Zibi)−1>ni

b(Xiβ+Zibi)
]}

× exp
{

1>ni
k (Yi,ϕ)−

1
2

b>i D−1bi

}
dbi,

where the functions b(·) and c(·) are applied to vectors by element-by-element calcu-
lation. Next, log-likelihood is stated in form

`(β,ψ|Y) =−N
2

log |D|+
N

∑
i=1

log
∫
Rq

exp{h(β,ψ,ϕ,Y)}dbi +C,

where C is constant with respect to β,ψ and h(·) is function of β,ψ,ϕ,Y.
There are many approaches to maximize `(β,ψ|Y) and we will present a few

of them. The first one is based on the Laplace approximation∫
Rq

exp{Q(b)}db≈ (2π)−q/2|−Q′′(b̃)|−1/2 exp
{

Q(b̃)
}
, (1.16)

where b̃ is the mode of Q(b), i.e., b̃ = argmaxQ(b).
This approximation is obtained by replacing Q(·) in the integrand by the second

order Taylor expansion of Q(·) around b̃ and integrating the exponentiated quadratic
function as a Gaussian density. Function Q(·) is equal to the sum of the second order
Taylor expansion and remainder, which can be written as follows

Q(b) = Q(b̃)+Q′(b̃)(b− b̃)+
1
2
(b− b̃)>Q′′(b̃)(b− b̃)+R(b),

where R(b) is the remainder and can be expressed, e.g., Lagrange’s form of the re-
mainder, R(b) = (b− b̃)3Q(c)′′′/6 for some c between b and b̃. Consequently, integral
can be re-written as∫

Rq

exp{Q(b)}db≈
∫
Rq

exp
{

Q(b̃)+
1
2
(b− b̃)>Q′′(b̃)(b− b̃)

}
db
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and after Gaussian integration, the expression 1.16 is obtained. For deeper theory, see
Raudenbush [2000].

Other approaches can be also used, e.g., numerical integration techniques, Gaus-
sian quadrature (GQ) described in McCulloch and Searle [2001, Chapter 10.3], which
approximate the integral appealing in (1.15) as weighted sum of a specified number
of quadrature points for each dimension of the integration. More quadrature points
mean an increase in accuracy of approximation, however it causes higher computation-
al demands, where we have some limitations. Thus, an appropriate balance between
accuracy and optimality must be chosen. In order to maximize such approximation,
Newton-Raphson can be used. More information can be found in Fitzmaurice et al.
[2004, Chapter 12.4] or Rabe-Hesketh and Skrondal [2002].

Marginal quasi-likelihood (MQL), Penalized Quasi-Likelihood (PQL), Markov
Chain Monte Carlo (MCMC) and Adaptive Gaussian Quadrature (AGQ) are other
commonly used methods for computing ML estimates. These approaches are described
in Diggle et al. [2002, Chapter 4.6] and in McCulloch and Searle [2001, Chapter 10.3].

After calculating estimates of β, D, ϕ , the prediction for bi can be calculated
as follows

b̂i = E(bi|Yi, β̂, ϕ̂, D̂),

which coincides with empirical “Bayes estimator” or BLUP for LMM as mentioned
in Section 1.3. Such prediction is also not easy to obtain due to integration over
the distribution of the unobserved random effects, bi, and again numerical methods
must be used. Prediction of bi is heavily influenced by the normal distribution
assumption of random effect. Thus, the prediction is very sensitive to misspecifica-
tion of the distribution. However, this misspecification does not produce a discernible
bias for estimates of the fixed effects. On the other hand, estimates of fixed effects
can be severely biased when the variance of random effects depends upon the subject.
For further details see Fitzmaurice et al. [2004, Chapter 12.4]

1.6 Generalized Estimating Equations
In this section we present another approach called Generalized Estimating

Equations (GEE) which is able to cope with correlated data within subjects. The main
idea behind GEE is to generalize and extend the usual likelihood equations from GLM
by including the covariance matrix of the vector Y. The biggest advantage
of this model is that we do not need to specify the whole distribution of the response.
On the other hand, the mean structure, the mean-variance relationship and specifica-
tion of the covariance structure need to be defined. The first two conditions are similar
to GLM, see definition below.

Definition of GEE model

• Unbalanced design with independence between individuals Yi, i = 1, . . . , N is
assumed like in GLMM.

• Denote expected value of response µit ≡ E(Yit), which depends on covariates,
Xit as follows

g(µit) = ηit = X>it β,
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where g(·) is link function and together with the linear predictor ηit fully specify
the mean structure µit .

• It is also assumed that the variance of each Yit depends on the mean according to

Var(Yit) = ϕV (µit), (1.17)

where V (·) is a known variance function and ϕ > 0 is a scale or dispersion
parameter, that can be known or may need to be estimated. It is worth mentioning
that a GLS estimate is obtained by using identity link function.

• Furthermore, correlation between components of Yi is represented by a working
correlation matrix Ci ≡ Ci(α), where α is s×1 vector of unknown parameters.

The name “working” comes from the fact that the structure of Ci does not need
to be correctly specified and asymptotic properties of estimate still hold. The corre-
sponding working covariance matrix for i-th subject can be constructed as the product
of standard deviations and working correlation matrix

Vi = ϕA1/2
i Ci(α)A

1/2
i ,

where Ai is diagonal matrix with V (µit) along the diagonal.
As we mentioned, it does not need to specify the whole distribution, but due

to form of variance from (1.17) we could consider that the (unknown) distribution
belongs to the exponential family of distributions. However, it is not necessary.

1.6.1 Estimation of parameters
As we know GLS estimate of β from (1.6) minimizes the function

N

∑
i=1

(Yi−Xiβ)
>Σ−1

i (Yi−Xiβ).

In GEE we have a similar situation, where estimator of β minimizes the objective
function

N

∑
i=1

(Yi−µi)
>V−1

i (Yi−µi) , (1.18)

where Vi is treated as known and µi ≡ (µi1, . . . , µini)
> is vector with elements given

by
µit = g−1(X>it β).

Consequently, it can be shown that if a minimum of the function (1.18) exists, it must
solve the generalized estimating equation

u(β) =
N

∑
i=1

D>i V−1
i (Yi−µi),

where Di = ∂µi/∂β ≡ {∂ µit/∂βk}ni,p
t,k=1 and u(β) is the so-called quasi-vector.

The estimate of β solves equation u(β̂) = 0. Usually, parameters ϕ and α from Vi are
unknown, so they can be estimated by moment estimates. As in previous approaches,
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we also use the iterative algorithm. In one step, we estimate β and in the next step, we
use this result for re-estimating (ϕ̂,α̂) until the required precision is obtained.

The most important properties of the estimate β̂ are consistency, efficiency
andasymptotic normality (for N→ ∞) with mean equal to β, variance equal to Covβ̂,
which hold even when the working correlation matrix Ci(α) is misspecified.

It is shown in Fitzmaurice et al. [2004, Chapter 11.3], that for large samples
the variance of β̂ can be expressed as follows

Cov(β̂)S = B−1MB−1,

where

B =
N

∑
i=1

D>i V−1
i Di, M =

N

∑
i=1

D>i V−1
i Cov(Yi)V−1

i Di.

ϕ,α, β in M and B can be replaced by their estimates. Moreover Cov(Yi) can be
also replaced by (Yi− µ̂i)(Yi− µ̂i)

>. Consequently, the estimate for variance of β̂,
known as the empirical or so-called sandwich estimator, is given by

Ĉov(β̂)S =

=

(
N

∑
i=1

D̂
>
i V̂
−1
i D̂i

)−1{ N

∑
i=1

D̂
>
i V̂
−1
i (Yi− µ̂i)(Yi− µ̂i)

>V̂
−1
i D̂i

}(
N

∑
i=1

D̂
>
i V̂
−1
i D̂i

)−1

.

(1.19)

The expression from (1.19) is consistent estimator of Cov(β̂). If Vi is modelled
correctly, Vi =Cov(Yi) and Cov(β̂) = B−1.

In some cases, the sandwich estimator of Cov(β̂) is not suitable, e.g., when
the structure of data is strictly unbalanced or subjects cannot be grouped on the ba-
sis of having identical covariate design matrices. The same problem can be caused
by a modest number of independent subjects (relative to the number of repeated mea-
sures). Therefore, a model-based Cov(β̂) is more appropriate

Cov(β̂)M = B−1, where B =
N

∑
i=1

D>i V−1
i Di, (1.20)

where α,β and ϕ in B can be replaced by their estimates, which gives us the mod-
el based estimate of Cov(β̂)M. However, in this case the choice of working covari-
ance matrix Vi should be a close approximation of the true covariance Cov(Yi), due
to current variance structure of β̂ from (1.20). Other properties of this estimate can be
found in Liang and Zeger [1986] or in Fitzmaurice et al. [2004, Chapter 11.3].

1.6.2 Correlation structure
Despite the fact that asymptotic normality of β̂ holds even when the correlation

matrix is misspecified, a more precise choice of this matrix to the true one leads
to more efficient estimates of β. Parameter α from Ci(α) is assumed to be the same
for all individuals and should be estimated in cases where it is unknown. Moreover, we
have to specify how the correlation matrix should look like. There are several common
choices for Ci(α) =

{
c jk
}ni,ni

j,k=1.
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• The first and simplest one is uncorrelated (or independent) structure

c jk =

{
1 if j = k
0 if j 6= k.

• The opposite of the first one is unstructured correlation matrix

c jk =

{
1 if j = k
α jk if j 6= k.

• A mixture of the previous two is exchangeable structure

c jk =

{
1 if j = k
α if j 6= k.

• Another choice is m-dependent correlation structure

c jk =


1 if j = k
α| j−k| if 0 < | j− k| ≤ m,
0 if | j− k|> m.

• The last one is an AR(1) correlation structure

c jk = α
| j−k|.

Choosing and estimation of covariance structure

In order to determine a suitable correlation structure and variance function, Pearson
residuals must be defined as follows

rit =
Yit− µ̂it√

V (µ̂it)
. (1.21)

Now we describe a general strategy how to estimate parametrized correlations
by the method of moments. Firstly, an estimate of β under working independence
must be calculated. Furthermore, Pearson residual based on this model are expressed.
Consequently, if the mean structure is correct, the following should hold

E rit ≈ 0
Var(rit)≈ ϕ

E ritrik ≈ ϕ {Ci}tk , i = 1, . . . ,N, t 6= k ∈ {1, . . . ,ni} .
(1.22)

Next, moment estimate of α is calculated using these Pearson residuals, e.g., esti-
mate of α for 1-dependent correlation structure is given by

α̂=
1
ϕ̂

1(
∑

N
i=1 ni

)
−N− p

N

∑
i=1

ni−1

∑
t=1

ritrit+1,

where p is number of components in vector β, α̂ is in this case a one dimensional
estimate and ϕ̂ is a moment estimate of ϕ given by

ϕ̂ =
1(

∑
N
i=1 ni

)
− p

N

∑
i=1

ni

∑
t=1

r2
it .
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1.6.3 Testing coefficients
This section deals with testing hypotheses for coefficients of vector β. We assume

that coefficient vector β consists of two sub vectors γ, δ with r and l components
respectively, for which holds p = r+ l. Thus, the vector of coefficient can be expressed
as β> = (γ>, δ>). The main aim of this section is testing hypothesis

H0 : γ = γ0,

where γ0 is hypothesized value of γ.
There are several approaches for constructing test statistics for hypothesis tests,

e.g., likelihood ratio test, Wald test or score test. The first one mentioned cannot be
applied to GEE directly because there is no likelihood underlying the model. However,
this test can be used with modified assumptions, where the likelihood ratio is calculated
under associated independence model. If zero hypothesis holds, then given test statistic
has χ2 distribution with r degrees of freedom.

The second mentioned test is calculated after model estimation. The test statistics
are typically calculated without adjusting the degrees of freedom and use the sandwich
estimate or model based estimate of Cov(β̂) from (1.19) or (1.20). The generalized
Wald test statistic with sandwich estimate of variance is given by

W = n(γ̂−γ0)
>Ĉov(β̂)−1

S (γ̂−γ0). (1.23)

The test statistic is also assumed to follow χ2 distribution with r degrees of freedom.
As we mentioned in the previous part dealing with the estimation of Cov(β̂),

the sandwich estimate is not always the best choice. If there are more covariates than
subjects or panels, it can cause the sandwich estimate of variance to be singular. Due
to this fact, an alternative to the generalized Wald test is the working Wald test, where
the sandwich estimate of covariance from (1.23) is replaced by model based estimate
of covariance matrix. To use this approach, it must be assumed that working correla-
tion matrix Ci describes the true correlation structure of the data. Likelihood ratio test
and score test are described in Hardin and Hilbe [2003, Chapter 4.5]

Model selection can also be done using modified information criteria, but it should
be used only in cases, where there is no other way to choose between models. Several
information criteria for GEE models are presented in Hudecová and Pešta [2013].
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2. Introduction to reserving theory
This chapter deals with claims reserving, which is the main problem in non-life in-

surance. Models for life insurance are rather different due to the structure of products,
nature of claims, risk drivers, term of contracts etc. These are the reasons for the sepa-
ration of life and non-life insurance.

Non-life insurance offers financial coverage against various types of random
occurrences in case that well-specified event happens. The value, which the insurer
is obligated to pay as coverage, is called claim amount or the loss amount.

According to the type of claim non-life insurance is split into several Lines
of Business (LoB), e.g., motor/car insurance, property insurance, liability insurance,
accident insurance, etc. Number and types of LoBs vary through different insurance
companies.

Reserving in non-life insurance needs a special approach because of a time-lag
between claims occurrence and claims reporting to the insurer, which is called report-
ing delay. It can also take several years until the process is finally closed after the claim
is reported. It is also possible that an already closed claim will need to be reopened
because of new facts.

Due to the mentioned time-lag, the claim cannot be settled right after its accident
day and so-called claims reserves have to be created. These reserves should represent
all future claims arising from policies currently in force and policies written in the past.
This amount of money should be held by the insurance company with the aim to meet
their future liabilities.

There are two main types of reserves. The first one is reserves for claims that
have been reported but have not been settled yet, so called RBNS (Reported But Not
Settled). The second one is reserves for claims that have occurred but have not been re-
ported, so called IBNR (Incurred But Not Reported). The last mentioned often contains
reserves for not enough reported incurred claims IBNeR (Incurred But Not enough Re-
ported).

It is worth mentioning that claims costs are often impacted by inflation. The main
effect of inflation is not related on the salary or price but on the specifications
of a particular LoB. For example, in the motor hull LoB, it is driven by the complexity
of car repairing techniques and in LoB accident insurance, it is driven by improvements
in medical care or in medicine. The impact of inflation develops through accident years
as well as development years.

2.1 Reserving terminology and notation
In this section, we introduce the classical claims reserving notations and terminol-

ogy. Reserving approaches are based on history of claims. In order to capture all this
information in standardized form, so-called claims development triangle is used, see
Table 2.1. Let Yit stand for all the claim amounts in development year t with accident
year i. We refer to Yit as incremental claims in accident year i made in the accounting
year i+ t. Then current year n corresponds to the most recent accident year as well
as the most recent development year. The history of claims are placed in right-angled
isosceles triangle {Yit}, where i = 1, . . . ,n and t = 1, . . . ,n+1− i.

Let us denote a random variables Cit , cumulative payments or cumulative claims,
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Accident Development year t
year i 1 2 · · · t · · · n-1 n

1 Y11 Y12 · · · Y1t · · · Y1n−1 Y1n
2 Y21 Y22 · · · X2t · · · Y2n−1
...

... · · · . . . · · · · · ·
i Yi1 · · · · · · Yit
...

... · · · · · ·
n Yn1

Table 2.1: Run-off triangle for incremental claim amounts Xit .

in origin year i after t development years, e.i. Cit = ∑
t
k=1Yik. Observations of Cit

for i+ t − 1 ≤ n form a cumulative run-off triangle. All our effort is concentrated
on estimating the ultimate claims amount Cin and consequently, on calculating reserves
for all accident years i = 2, . . . ,n as follows

R(n)
i =Cin−Cin+1−i. (2.1)

This text deals only with reserves defined in 2.1 and does not assume any tail factor.

2.2 Basic reserving methods
Early methods for distributing risk were practiced by Chinese and Babylonian

traders as long ago as the 3rd and 2nd millennia BC, respectively. Modern insurance
began in Europe where it became far more sophisticated and specialized. Insurance
as we know it today is dated to 1667 and was founded after the Great Fire of London
in 1666.

Claims reserving has significantly developed relatively recently. The first deter-
ministic reserving model, original chain-ladder, was developed by Fisher & Lange
in 1973. Later, more complex approaches were needed, so a random part was added
to the existing models, which resulted in stochastic models. The basis for these mod-
els was founded by Mack in 1993 and was built on assumption of proportionality
of columns in a run-off triangle. These stochastic approaches are presented and de-
scribed in Wüthrich and Merz [2008] or England and Verrall [2002]. Almost all
of these proposed stochastic models require independence of incremental claims Yit ,
which in practice does not often hold. Due to this, models such as GLMM and GEE
were introduced because of their ability to cope with dependencies within subjects.
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3. Claims reserving in panel data
framework

Previous chapters described all necessary theory in general. In this chapter,
theory of GLMM and GEE from Chapter 1 are applied on claims reserving present-
ed in Chapter 2. The advantages of these models seem to be a suitable solution
for the problem which is possible dependence among the incremental claims
within accident year i. This approach is also pointed out in a paper written by An-
tonio and Beirlant [2007].

Notation and terminology from Chapter 2 are used in GLMM and GEE models
for claims reserving. All general framework from Chapter 1 is adjusted to fit data
structure of claims.

The first section describes claims reserving in the GLMM framework. Discus-
sion is focused on a suitable choice of linear predictor, link function and distribution
of dependent variable.

Application of GEE to claims reserving is presented in Section 3.2. Just
as for GLMM, a suitable linear predictor is discussed as well as link function. Next,
the choice of working correlation matrix and variance function is described. Finally,
testing of coefficients and their reasons are discussed.

Prepared GLMM or GEE framework is applied on incremental claims Yit from run-
off triangle in Table 2.1, which represents known observations of random variables Yit .
The lower right part of the rectangle, Yit , i = 1, . . . ,n, n ≥ t > n− i+ 1, is unknown
and needs to be predicted in order to estimate the amount of total reserves which equals
to

R(n) =
n

∑
i=2

R(n)
i .

Sections 1.5, 1.6 deal with GLMM and GEE approaches using unbalanced design,
i.e., t = 1, . . . ni, and i = 1, . . . , N, where ni stands for number of observations in i-th
subject. Rewritten into reserving data structure ni = n− i+1, where n is current year
and i is accident year, which symbolizes i-th subjects in GLMM or GEE. From now
on, it holds that subject or accident year i is from the range 1, . . . , n.

3.1 GLMM method for claims reserving

3.1.1 Link function
This section describes the process of finding a suitable choice of GLMM. First

of all, link function must be specified. It was mentioned that the use of canonical link
function leads to several convenient mathematical properties and some calculations
then become easier. However, it does not mean that such link function will be usable,
because it might not fit the data well or the interpretation of coefficients may be unrea-
sonable or unexplainable. Due to these mentioned facts, commonly used link functions
are log-link, g(·) = log(·), or identity link function, g(·) = (·). By using the log-link,
the response in run-off triangle is assumed to be positive. If a few negative values oc-
cur, log-link can be applied, but non positive values must be replaced by positive ones
close to zero. However, the estimates vary widely due to slightly different choices
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of such values. Therefore, this approach of replacing values will not be applied in our
case. In insurance practice, log-link is preferred due to its interpretation, so we will
use this link function as well. However, we will only use it on datasets with positive
incremental data in run-off triangle.

3.1.2 Linear predictor
Next, the choice of the linear predictor is important for the model. Due to the very

specific structure of our data, there are not many choices for the linear predictor from
1.14. First, the simple one can be written as

ηit = β0 +bi +βt , (3.1)

where β0 is intercept, same for all accident years i. In order to avoid over-parametriza-
tion, β1 is equal to zero. Random effect bi can be explained together with β0 as random
intercept with mean equal to β0. Finally, βt captures the impact of change for particular
development year.

However, it is possible to use a more complex model to capture sophisticated co-
variance structure. In order to do this, random effects bit for each development year t
are included in the following equation

ηit = β0 +bi0 +βt +bit , (3.2)

where β1 = bi1 = 0 for all i and factor βt + bit can be taken as random with mean βt .
Equation (3.2) can be written also as follows

ηit = X>it β+Z>it bi,

whereβ=(β0,β2, . . . ,βp)
>, random vector bi =(bi0,bi2, . . . ,bin)

> and vector Xit from
model matrix X is defined using dummy variables

Xit = (1,d2t , . . . ,dnt)
>.

Dummy variables are defined dnm = 1 for m = n and zero otherwise. Vector Zit equals
to vector Xit as a consequence of given linear predictor.

The practical part of this thesis deals only with the simplest model of linear predic-
tor 3.1, because the aim of this thesis is to compare the suitability of GEE and GLMM
methods in a certain way. In order to do this, a similar linear predictor must be chosen
for both methods, so for this purpose only random intercept is chosen, which can be
comparable in some sense to the fixed coefficients for accident years in GEE.

3.1.3 Distribution of incremental claims
We assume conditional distribution of incremental claims Yit given bi belongs to ex-

ponential family distribution. As it was mentioned before, significant members of ex-
ponential family distribution are Gaussian, inverse Gaussian, Poison, over-dispersion
Poison and gamma distribution. Poison distributions are not considered because they
are used for modelling non negative integers and amount of claims are not supposed
to be integers at all.
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The choice of a suitable distribution function is made according to precision
of the fitted values and residual diagnostic, where the relation between mean and vari-
ance is investigated. Connection between mean and variance is described through
variance function V (·) and for chosen distributions it is given by

Var(Yit |bi) =


ϕ Gaussian distribution, where V (µit) = 1
ϕµ3

it Inverse Gaussian distribution, where V (µit) = µ3
it

ϕµ2
it Gamma distribution, where V (µit) = µ2

it .

In cases, where we really could not decide on a suitable model according to residual
diagnostics or precision of fitted values, information criteria introduced in Bolker et al.
[2009] can be used. However, we try to avoid using such criteria because there is
enough information in the residual diagnostic for this purpose.

3.2 GEE method for claims reserving
Let’s go on to the application of GEE models to claims reserving. As it was already

mentioned, the advantage of this method in contrast to GLMM is that the distribution
of claims does not need to be specified. However, it brings other issues that need
to be dealt with, i.e., specification of variance function and working correlation matrix.
GLMM, as well as GEE, is applied on incremental claims Yit .

The specification of link function is the same as in the previous section. Log-link
is preferred due to its interpretation and practical usage in insurance.

3.2.1 Linear predictor
Mean structure in GEE is different than in GLMM, due to the absence of ran-

dom effects. As we mentioned, the choice of the linear predictor is a bit limited due
to the interpretation and structure of claims data. Firstly, basic linear predictor, which
use 2(n−1)+1 unknown coefficients, is given by

ηit = γ +αi +βt , (3.3)

where α1 = β1 = 0 and αi represents effect of accident year i, βt effect of development
year t. This can also be rewritten into vector notation

ηit = X>it β,

where β= (γ,α2, . . . ,αn,β2, . . . ,βn)
> and vector Xit is defined using dummy variables

as follows (1,d2i, . . . ,dn,i,d2t , . . . ,dnt)
>.

There are several other linear predictors, e.g., Hoerl curve with the log-link func-
tion, which can be parametrized by vectors Xit and β as follows

Xit = (1,d2i, . . . ,dn,i,2×d2t , . . . ,n×dnt ,d2t× log2, . . . ,dnt× logn)>,

β = (γ,α2, . . . ,αn,β2, . . . ,βn,λ2, . . . ,λn)
>,

which leads to linear predictor

ηit = log(µit) = γ +αi + tβt +λ j log j.
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However, we should realize that we have only n(n + 1)/2 observations and model
with 3(n−1)+1 parameters, what is not very useful for our purpose.

Due to the higher number of parameters relative to the lower number of observa-
tions, as well as possibility to compare it to GLMM approach, model from 3.3 is used
in the practical part, even though it still has a lot parameters.

The impact of inflation on the development of claims was discussed in Chapter
2, but in cases where the market is stable and inflation does not effect the amount
of claims much, more simpler models should be taken into account, e.g., models
with fewer numbers or even without accident year factors. Such models lead to bet-
ter interpretations, the estimates become more precise and efficient, which are very
important and practical properties.

Due to this, testing coefficient of particular accident or development year could
be made in order to obtain suitable model with appropriate number of coefficients.
In order to do this, the Wald test described in Section 1.6 can be used.

To sum up, our purpose is not to find the most complex model, which is difficult
to interpret, but to find a model which is reasonable and provides suitable properties.

3.2.2 Variance function
The next thing that needs to be specified is the variance function. It is possible

to define various functions but, in order to avoid confusion in the amount of models
used in the practical part, only three basic variance functions are assumed

V (µit) =


1,
µit ,
µ2

it .

It can be seen that two of them are the same as for GLMM, i.e., Gaussian, Gamma
models for which variance functions equal 1 and µ2

it , respectively.

3.2.3 Correlation structure
Finally, determination of working correlation structure is described in this part.

In Section 1.6 several correlation structures were introduced. However, only a few
of them are used in our practical analysis, due to the data structure of claims
and the number of parameters that need to be estimated in a working correlation matrix.
The choice is reduced to independent, exchangeable and AR(1) structure, where one
or no parameter needs to be estimated. The unstructured and m-dependent structure
are not considered due to the high number of parameters.

The appropriateness of a model with given correlation structure is made after fitting
the model, according to properties of Pearson residuals 1.22, as well as the whole
residual diagnostic. In the practical part, we will use plot of fitted values with respect
to observed values to see how good the model will fit the data. Next, QQ plot, scatter
plot, histogram of residuals and plot of classical residuals will be listed as well. These
criteria are used to assess GLMM as well.

As we already mentioned in Section1.6, when we are not able to decide between
GEE models, we can use information criteria, which can help us decide.
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4. Practical application of models
As it was already pointed out, this practical part focuses on models with log-link

function and linear predictors in form 3.1 for GLMM and 3.3 for GEE. There are
three proposed models for GLMM, first one with Gaussian, second one with inverse
Gaussian and the last one with gamma distribution.

For GEE, nine models are analysed. They differ by the choice of variance function
V (µit) which can be equal to one, µit or µ2

it . Furthermore, the model is defined by cor-
relation structure which, in our case, can be independent, exchangeable or AR(1). It
should be noted that random effects for accident years will be predicted as well.

For the purpose of clarity in our tables and figures, abbreviations for GEE models
are introduced. First letters stands for correlation structure, i.e., AR for AR(1), IND
for independent and EX for exchangeable correlation structure. Letters behind the un-
derscore denote variance function, i.e., 1 for V (µit) = 1, L for V (µit) = µit and Q
for V (µit) = µ2

it . For example, GEE model with exchangeable correlation structure
and variance function equal to 1 is label EX 1.

Everything is now prepared to apply theory to real data.

4.1 Datasets
The whole chapter deals with datasets of claims from the National Association

of Insurance Commissioners (NAIC) database, which can be found in Meyers and Shi
[2011].

The database contains cleaned claims developments of three lines for business (Pri-
vate passenger auto liability/medical, Commercial auto/truck liability/medical, Work-
ers’ compensation) for all U.S. property casualty insurers. The data corresponds
to claims from accident years 1988–1997 indexed from 1 to 10 with 10 years of de-
velopment lag. Both upper and lower triangles are included, so we use upper triangle
to develop the model and then to test its performance. Then, a retrospective analysis
using all data including lower triangle is made as well.

First of all, datasets populated with cumulative claims are transformed to incre-
mental ones and then the datasets, which contain non positive values in the upper in-
cremental triangle are excluded, due to the log-link function, which we decided to use
in Chapter 3.

Next, data analysis is performed on 16 datasets from Private passenger auto lia-
bility/medical (146), 12 datasets from Commercial auto/truck liability/medical (158)
and 30 datasets from Workers’ compensation (132). The total number of datasets in-
cluding those where non positive incremental values occurs is listed in parenthesis.

Three GLMM and nine GEE models are fitted on all of these datasets. Then, resid-
ual diagnostics on the upper triangles are performed in order to pick the best model
without knowing the lower triangle as would be the case in reality. Next, a residual
diagnostic is made using the whole rectangle and real reserves are computed, in order
to check the change of the residual diagnostic and the precision of prediction respec-
tively. The aim of this analysis is to try to find a suitable dataset for the GLMM
approach when the GEE method is not proper, then to find a dataset where GEE fits
better than GLMM and last, to find a dataset where all these methods do not work well.
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The best outcome would be, when we could generally say that in case when our data
has certain behaviour then GLMM is more suitable or vice versa.

According to the facts mentioned above, in following sections, three main and one
additional datasets are presented on which the advantages of the individual models
are described. Diagnostic figures are shown only for selected models because other-
wise it would be 12 diagnostic figures for each dataset, what would cause only opacity
in text. Nevertheless, all these figures could be generated by R scripts which are at-
tached in Appendix A. Software R is chosen for practical analysis because it offers
a wide range of packages that are useful for our purpose.

4.2 Claims reserving within GLMM

4.2.1 Dataset
The first dataset, Hastings Mut. Ins. Co., from line of business Workers’ com-

pensation, is chosen in order to show why in some cases, GLMM can be better than
GEE. It can be seen from incremental claims in Table 4.1, that the time-lag between
the claims occurrence and the claims payments in this dataset is pretty huge. The main
amount of claims is paid in the second development year, not in the first one, as is
usual. This property is better illustrated in Figure 4.1, where developments for each
accident year are shown.

Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10

1 1117 1116 630 304 369 80 152 46 37 24
2 1603 2007 1232 1052 432 259 188 109 32
3 2136 2600 2134 1670 562 340 147 86
4 2706 3009 2026 928 426 256 83
5 3229 4582 2757 1229 546 331
6 3381 4793 2524 1404 841
7 3969 4529 2897 1148
8 3661 4023 2828
9 3687 3848

10 3406

Table 4.1: Observed run-off triangle for incremental payments.
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Figure 4.1: Claims development for each accident year.

After a more detailed analysis of the data, it can be seen that the size of the peaks
varies a lot and no “trend” is present, i.e., a larger amount of claims in the first de-
velopment year does not imply a proportionally bigger or lower peak. This is a very
important property of the data and should be taken into account. This could be a case
where GLMM fit better, due to Bayesian approach used for prediction of random acci-
dent year factors as mentioned in Chapter 1. This Bayesian property could handle such
variation of the data properly. Similar behaviour appears in more analysed datasets,
but this is the most representative one. However, it does not mean that after such vari-
ation occurs, only GLMM should be chosen. Nevertheless, we should be aware of this
during the model selection.

Next, we present the lower part of the rectangle in Table 4.2, which will be used
later for a comparison with the predicted values of incremental payments and also
for a retrospective residual diagnostic. From rectangle of incremental claims, it can al-
so be seen that the highest amount of the last accident year claims is paid in the second
development year as well. Nevertheless, there is not such significant peak as in oth-
er accident years, which is an effect of the above mentioned behaviour of the data
and may have an impact on the accuracy of the predicted reserves.
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Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10

1
2 29
3 46 22
4 49 39 42
5 264 209 75 88
6 442 200 184 85 81
7 481 312 196 69 72 56
8 1065 488 249 235 73 62 50
9 2137 1083 589 411 317 122 171 52

10 3882 1474 832 511 195 135 149 106 46

Table 4.2: Lower triangle of incremental payments.

4.2.2 Residual diagnostic
Firstly, all selected models from Chapter 3 are fitted on the upper triangle and then

residual diagnostic based on the upper triangle is generated as well. Next, comparison
of all GLMM and GEE models is made. Due to the residual diagnostic in Figure 4.2,
the GLMM Gaussian model was chosen.

The first diagnostic plot in Figure 4.2 is a QQ plot, where points are expected to be
placed near the line, nevertheless, we do not have sufficient number of observations
for such asymptotic behaviour, thus diagnostic is not very significant for this purpose.
The next one is a plot of fitted values with respect to their observed values, where all
points should be and are placed near the diagonal, which implies that Gaussian model
fits the data well and could be a suitable choice. According to the scatter plot of resid-
uals, no correlation between residuals from development year t and t−1 in individual
accident years is observed, due to the horizontal dashed line, which is the result of basic
linear regression applied on the plotted points. This fact is in line with our assumption
of the conditional independence.

Skewness of the histogram may be caused by insufficient number of observation
as we mentioned by the QQ plot. Next to the histogram, a plot of Pearson residuals
with respect to fitted values is listed. There is no visible pattern, i.e., variance is not
increasing variance with higher fitted values, which coincides with our expectation.
The last plot illustrates a classical residual with respect to t which goes through all rows
of run-off triangle. Residuals are symmetrically placed around zero as we expected.
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Figure 4.2: Residual diagnostic generated using upper triangle.

Based on our previous diagnostic and the mentioned behaviour of the data, Gaus-
sian model was chosen as the final one. Here, it is time to look at residual diagnostic
in Figure 4.3 based on the whole rectangle. The QQ plot gets better, but still not as
good as we expected. Placement of the points implies heavy tails, which are visible
in the histogram as well. The histogram looks more like Gaussian one but still a little
bit skewed. The next plot, Pearson residuals with respect to fitted values, is still in line
with our assumption except for a few outliers. The last plot shows classical residuals,
which are uniformly placed around zero as it was in Figure 4.2.

The next step after choosing an appropriate model is the prediction of reserves,
which is described in the following section.
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Figure 4.3: Residual diagnostic generated using all rectangle.
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4.2.3 Claims reserving
Figure 4.4 illustrates all GLMM predictions for each accident year beginning di-

rectly after the vertical red line. Fitted values are graphed before the red line. Based
on the fitted values, gamma model seems to be suitable as well. Residual diagnostic
for this model is similar to the Gaussian model, except for a plot of Pearson residuals
with respect to fitted values in Figure 4.5, which implies that our GLMM with gamma
distribution is not suitable for our data. Let’s focus more on predicted values. It is hard
to say from Figure 4.4, which GLMM model has the most precise over all prediction.
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Figure 4.4: Fitted and predicted values vs. real values.
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Figure 4.5: Pearson residuals vs. fitted values generated using upper triangle.

This fact is clearer in Table 4.3, where, using information from the lower triangle,
real reserves are computed and compared with all GLMM and GEE predicted reserves.
Moreover, the Mack-chain-ladder model is used for this purpose as well. Howev-
er, we should be aware of the fact that this model has different, weaker, assumptions
and subsequently different interpretation. This can cause that it has worse prediction,
but on the other hand, in cases where assumptions of more restrictive models do not
hold it may still provide reasonable results. Table 4.3 shows that reserves predicted
by the inverse Gaussian model are the closest to the real one despite the worst residual
diagnostic. Almost all GEE predictions of reserves are much higher except the model
with independent correlation structure and variance function equal to one, which has
the same prediction of reserves as the Gaussian model in GLMM, but still is not better
than the gamma or inverse Gaussian model. It is worth to mentioning that prediction
of reserves using the Mack-chain-ladder model is the same as for GEE model with in-
dependent correlation structure and linear variance function, what can be also seen
in following datasets. To sum up, according to precision of the prediction and residual
diagnostic GLMM approach is more suitable for this dataset.

Reserves
Real Mack GLMM Predictions GEE models Predictions

17475 22625 Gaussian 22033 AR Q 23028
Inv. Gaussian 16077 AR L 22569
Gamma 19672 AR 1 22145

IND Q 22659
IND L 22625
IND 1 22033
EX Q 22659
EX L 23176
EX 1 25196

Table 4.3: Real and predicted reserves.

As it was mentioned in Chapter 3, our GLMM use basic linear predictor 3.1 with ran-
dom intercept and logarithmic link function. Table 4.4 lists estimated coefficients
for development years and predicted random factors for accident years.
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Coefficient β̂2 is positive as was expected, due to the time lag that occurred in the sec-
ond year. All other estimated development factors are negative and decreasing ex-
cept for development year 10, where there is a slight increase of estimated coefficient
in comparison with previous one. Predicted random factors fluctuate around the inter-
cept β̂0 = 7.896.

Accident year i Predicted β̂0 + b̂i Development year t Estimation β̂t
1 6.881 1 0
2 7.430 2 0.187
3 7.773 3 -0.259
4 7.852 4 -0.926
5 8.170 5 -1.591
6 8.203 6 -2.203
7 8.241 7 -2.747
8 8.164 8 -3.081
9 8.130 9 -3.743

10 8.132 10 -3.698

Table 4.4: Prediction and estimation of coefficient from linear predictor.

To sum up, if differences between the first and second development year vary a lot
through the accident years without any “trend” occurring and according to residual
diagnostic, some of the GLMM seem to be suitable, then we should really take them
into account. However, if the GEE model clearly has a better diagnostic, then this
model should be our choice, despite the variation of the data. This will be presented
in the following section.

4.3 Claims reserving within GEE

4.3.1 Dataset
The strengths of GEE models are shown on dataset Millers Mut Ins. Assoc.

from Workers’ compensation. Just as with the first dataset, this one also contains
the lower triangle which is further used for calculation of real reserves and retrospec-
tive residual diagnostic.

The process of finding a suitable model is the same as for the first dataset. How-
ever, when the residual diagnostic implies that GEE models are the more suitable ones
and some of them have similar good results, then special attention is paid to the men-
tioned properties of Pearson residuals. Furthermore, in order to optimize the number
of coefficients, testing of their significance is performed.

So back to the dataset description. Table 4.5 presents run-off triangle of incremen-
tal payments and is graphically interpreted in Figure 4.6. As in the previous dataset,
similar behaviour of peaks without any “trend” is observed. We should be aware of this
fact during the model selection.
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Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10

1 1769 3186 1457 1010 476 256 76 46 39 42
2 2605 3011 1713 1141 86 561 354 244 306
3 2277 3407 1580 1012 544 188 202 125
4 2062 2862 1357 811 417 298 159
5 1914 2534 1408 663 248 225
6 1737 2878 1382 754 450
7 1959 2263 1057 542
8 1381 1869 938
9 1565 2025
10 1475

Table 4.5: Observed run-off triangle for incremental payments.
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Figure 4.6: Claims development for each accident year.

The same behaviour of the data, as in the first example, is observed by adding
the lower triangle from Table 4.6, where the last accident year value in first develop-
ment year (upper triangle) is a bit higher than the value in second development year
(lower triangle). This development differs from upper triangle pattern and consequent-
ly, has an impact on the amount of real reserves as well.
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Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10

1
2 179
3 102 38
4 126 122 113
5 189 102 23 22
6 195 −77 91 44 31
7 333 201 140 49 53 108
8 497 179 109 −2 47 26 58
9 864 543 336 129 156 86 77 0

10 1449 827 319 419 342 213 140 130 131

Table 4.6: Lower triangle of incremental payments.

4.3.2 Residual diagnostic
Let’s go on to the model selection. According to the residual diagnostic of all

models, GEE models fit the data much better than GLMM. Especially models with ex-
changeable and AR(1) correlation structure, with the same variance function equal
to one have quite good results in diagnostic figures. In order to determine which corre-
lation structure is more appropriate, we focus on the third property of Pearson residuals
from 1.22. So we plotted these residuals from the model with independent correlation
structure and variance function equal to one in Figure 4.7, where red points symbolize
arithmetic means for given values. Based on this figure, we are not able to choose one
of these two models due to a lot of outliers which influence these arithmetic means
and an insufficient amount of data. Finally, we decide for model with exchangeable
correlation structure because, as it will be shown later, some coefficients are not statisti-
cally significant and simpler linear predictor can be used. Unlike the model with AR(1)
correlation structure where all coefficients are statistically significant.
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Figure 4.7: Products of Pearson residuals with respect to their distance within accident
year based on the upper triangle.
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Figure 4.8 shows residual diagnostic for chosen model with exchangeable corre-
lation structure, where the first diagnostic is a QQ plot, where all points are placed
on the line except some outliers. Then, a plot of observed values with respect to fitted
values is listed, where all points lay almost on a diagonal line as is expected. Next,
a scatter plot of residuals indicates a very small correlation between residuals in de-
velopment year t and t− 1. The histogram is a bit skewed but close to Gaussian one.
In the plot of Pearson residuals with respect to fitted values, no pattern is visible which
is a very important indicator for the right choice of variance function as well. The last
plot of classical residuals looks like we expected due to their symmetrical placement
around the zero. So, according to all above mentioned, the model with exchangeable
correlation structure and variance function equal to one seems to be the most suitable.
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Figure 4.8: Residual diagnostic generated using upper triangle for model EX 1.

In the following section, information from the lower triangle is used for the purpose
of reserve calculation and retrospective residual diagnostic in Figure 4.9. It is worth
mentioning that the change of the scatter plot, where the almost horizontal dashed
line does not imply linear dependency between residuals and residuals from previous
development year. The histogram changed a bit as well, i.e., looks more like Gaussian
one. Other indicators still look pretty good and have no significant changes. To sum
up, it confirms the suitability of the chosen model.
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Figure 4.9: Residual diagnostic generated using all rectangle.

4.3.3 Claims reserving
In order to see the reasons for the gap between predicted reserves and the real one,

the development of real claims, fitted values and predictions of GEE models with ex-
changeable correlation structure are illustrated in Figure 4.10. The fitted values are
pretty close to the real amounts of incremental claims except for the large difference
in the second development year of accident year 2. It is also visible that our final model
is the closest to the real value in the mentioned point.

Let’s focus more on the predicted values which are quite precise, except for the last
accident year, where the biggest gap occurs in the second development year. This fact
causes the predicted reserves to be quite higher than the real one.
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Figure 4.10: Fitted and predicted values vs. real values.

Data from Table 4.6 is finally used for the computation of real reserves in Table
4.7, where predictions of reserves for all models are presented. Table 4.7 shows that
all GEE models predict real reserves much better than the GLMM ones.

Our final model is the second worst in accuracy of prediction from all GEE models,
but still much better than all GLMM. However, GEE model with AR(1) correlation
structure and variance function equal to one, which also has similar reasonable residual
diagnostic has the third best prediction of total reserve. In this case, the Mack-chain-
ladder model provides reasonable prediction as well.
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Reserves
Real Mack GLMM Predictions GEE models Predictions
9259 11064 Gaussian 14857 AR Q 10817

Inv. Gaussian 14190 AR L 11084
Gamma 13143 AR 1 10953

IND Q 10656
IND L 11064
IND 1 11194
EX Q 10656
EX L 10994
EX 1 11171

Table 4.7: Real and predicted reserves.

4.3.4 Testing coefficient
Now, testing of coefficients for our final GEE model is discussed. The advantages

of a simpler model in the sense of the number of coefficients was described in Chapter
3. In order to do this a Wald test is performed. Chosen software provides the general-
ized Wald test with sandwich estimate of variance as mentioned in Chapter 1.

In order to avoid misinterpreting the results, the following must be explained. No-
tation α̂i (γ̂) from Tables 4.8 and 4.9 means that in the first row, i.e., accident year
i = 1, estimate γ̂ is listed otherwise α̂i. According to the results in Table 4.8, coeffi-
cients for accident years 4 and 6 are not statistically significant on given level equal
to 5 %. This fact is quite reasonable because the values of these coefficient are very
close to zero.

Accident Estimation P-values Development Estimation P-values
year i α̂i (γ̂) Wald test year t β̂t Wald test

1 7.60 .
= 0 2 0.331 .

= 0
2 0.228 .

= 0 3 -0.368 .
= 0

3 0.158 .
= 0 4 -0.874 .

= 0
4 0.0180 0.518 5 -1.765 .

= 0
5 -0.0842 0.011 6 -1.926 .

= 0
6 -0.0203 0.589 7 -2.357 .

= 0
7 -0.177 .

= 0 8 -2.703 .
= 0

8 -0.388 .
= 0 9 -2.352 .

= 0
9 -0.291 .

= 0 10 -608∗1016 .
= 0

10 -0.304 .
= 0

Table 4.8: Estimation of coefficient from linear predictor with corresponding P-values.
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It is not suitable to put all coefficients for these two accident years equal to 0
based on current results. It would be possible to use the test of join hypotheses,
but in this analysis, we apply a backward elimination approach using P-values as a cri-
terion. Hence, the coefficient for accident year 6 with the highest P-value is excluded
from the model and then again whole residual diagnostic is made in order to ensure
that the model still fits the data well. In this case, the residual diagnostic does not
change significantly.

Next, a test of coefficients is computed on the simpler model without effect for ac-
cident year 6. According to the results of this test, coefficient for accident year 4 has
the highest P-value (0.949), so this factor is excluded from the model as well. After
this, a residual diagnostic of model without effects for accident years 4 and 6 is gen-
erated in Figure 4.11. This model provides still comparable results with the original
model in Figure 4.9. According to Table 4.9, all coefficients are statistically signifi-
cant except for the last development factor, but it is not reasonable to exclude it from
the model due to the precision of prediction.

A figure of predicted, fitted and real claims of the simpler model is not listed be-
cause the change compared to Figure 4.10 is hardly noticeable. Nevertheless, the preci-
sion of reserve prediction gets worse, from 11172 in original model to 13316 in model
without two accident year effects. It is worth mentioning that after excluding only
the first mentioned coefficient, prediction was even worse (13642) than after exclud-
ing both of them.
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Figure 4.11: Residual diagnostic generated using all rectangle.
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Accident Estimation P-values Development Estimation P-values
year i α̂i (γ̂) Wald test year t β̂t Wald test

1 7.610 .
= 0 2 0.332 .

= 0
2 0.202 .

= 0 3 -0.366 .
= 0

3 0.139 .
= 0 4 -0.873 .

= 0
5 -0.096 .

= 0 5 -1.760 .
= 0

7 -0.187 .
= 0 6 -1.868 .

= 0
8 -0.399 .

= 0 7 -2.257 .
= 0

9 -0.302 .
= 0 8 -2.603 .

= 0
10 -0.314 .

= 0 9 -2.221 .
= 0

10 -3.841 0.392

Table 4.9: Estimation of coefficient from linear predictor with corresponding P-values.

The purpose of this dataset is to point out, that GLMM is not always the only
option, when “variation” between first and second development year occurs. It really
depends on the residual diagnostic as well.

On the other hand, it was observed, based on a quite large analysis, that if devel-
opments of claims are similar in a certain way through all accident years, i.e., with-
out “variation”, then it would be better to focus a bit more on GEE models. However,
only if there is reasonable residual diagnostic.

This type of data can be seen in dataset West Bend Mut Ins. Grp. also from line
of business Workers’ compensation. Just as in the previous example, the GEE model
with exchangeable correlation structure and variance function equal to one has the best
residual diagnostic and predicted reserves are nearest to the real one, from all GEE
and GLMM as well as Mack-chain-ladder predictions, see Table 4.10. Only to il-
lustrate how precise our chosen model is, plots of real incremental claims, predicted
and fitted values for GEE models with exchangeable correlation structure are shown
in Figure 4.12.

Reserves
Real Mack GLMM Predictions GEE models Predictions

45420 42755 Gaussian 42828 AR Q 42626
Inv. Gaussian 27418 AR L 42711
Gamma 36659 AR 1 42636

IND Q 42660
IND L 42755
IND 1 42828
EX Q 42660
EX L 42957
EX 1 45043

Table 4.10: Real and predicted reserves.
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Figure 4.12: Fitted and predicted values vs. real values.

4.4 Problematic example
This section describes a dataset which is not suitable for applying our models.

In order to do this, dataset Eveready Ins. Co. from line of business Commercial
auto/truck liability/medical is chosen. In Table 4.11, the upper incremental triangle is
listed. Already from this table, very volatile behaviour of the data is observed, which
is better seen in Figure 4.13.

For example, in accident years 4 and 5, incremental claims have a similar develop-
ment, but on the other hand, accident year 7 has a totally different pattern. So based
on mentioned results from our previous analyses, if we can not decide according
to residual diagnostic between GLMM or GEE and “variation” of the data is observed,
it may be more appropriate to choose GLMM. Therefore, let’s fit the models in order
to generate residual diagnostic.
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Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10

1 278 469 299 372 376 212 46 6 96 7
2 259 371 257 320 323 182 142 103 1
3 287 456 368 277 136 278 231 94
4 218 419 211 419 295 177 259
5 289 509 262 459 365 149
6 295 449 198 274 320
7 303 405 524 690
8 315 236 296
9 293 286
10 456

Table 4.11: Observed run-off triangle for incremental payments.
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Figure 4.13: Claims development for each accident year.
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During the fitting of GLMM to the data, the software did not mention any er-
ror in computation. Next, residual diagnostics are generated for all GLMM. Howev-
er, the obtained results were quite strange, e.g., plot in Figure 4.14, the fitted values
with respect to the observed ones, is the same for all three models. Moreover, the fit-
ted values have a range of few numbers, which implies that iterations for all models
stopped at the same step and did not converge at the goal. The reason is that the form
of the function should be maximized.

In order to fix this problem, different approximations than the Laplace approxima-
tion are used, e.g., the adaptive GQ approximation with various number of points per
axis for evaluating. None of these approaches make the results better, what implies
that GLMM can not be applied to this dataset.
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Figure 4.14: Fitted values with respect to observed values.

Furthermore, GEE models are fitted to this data. The whole process of fitting
goes well and also some of residual diagnostics seem to be reasonable. According
to them, model with AR(1) correlation structure and variance function equal to one is
chosen as the most suitable. Residual diagnostic from this model, listed in Figure 4.15,
does not immediately imply that this is a useless model. However, a deeper analysis
of the range of the residuals and range of the observed values implies that residuals are
quite huge. A similar result can be observed from the plot of fitted values with respect
to observed ones, where points are not placed around the diagonal much, which means
that current model does not fit the data well. This fact is better visible in Figure 4.16,
where unlike the previous examples, fitted values are often far away from the real ones.

There is no need to calculate a prediction of reserves because it can be seen mainly
from the last accident year in Figure 4.16, that predicted values are far above the real
claims. If we use this model, the reserve would be overestimated a lot. Hence, this
approach is not very suitable for calculating the prediction of reserve as well.

46



!

!

!
!

!

!

!

!

!

!
!!

!
!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

−2 −1 0 1 2

−1
50

−5
0

50

Theoretical quantiles
S

am
pl

e 
qu

an
til

es

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

0 200 400 600

0
20

0
40

0

Fitted values

O
bs

er
ve

d 
va

lu
es

!

!
!

!

!

!

!

!

!
!!

!
!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

−150 −50 0 50

−1
50

−5
0

50

Residuals(t−1)

R
es

id
ua

ls
(t)

Histogram

Fr
eq

ue
nc

y

−200 −100 0 50 150

0
5

10
15

!

!

!
!

!

!

!

!

!

!
! !

!
!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

0 100 300 500

−1
50

−5
0

50
Fitted values

Pe
ar

so
n 

re
si

du
al

s

!

!

!
!

!

!

!

!

!

!
!!

!
!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

0 10 20 30 40 50

−1
50

−5
0

50

t

R
es

id
ua

ls

Figure 4.15: Residual diagnostic generated using upper triangle for model AR 1.
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Figure 4.16: Fitted and predicted values vs. real values for models AR 1.

47



4.5 Comparison of results
To sum up, the practical part analyses datasets in order to find out which approach

or model is better to use in which case. For the purpose of comparison of the GLMM
with GEE models, log-link function is used for both approaches and similar forms
of linear predictor are used. The only difference is, that the coefficients for accident
years in GEE models are fixed and in GLMM are assumed to be random.

The first part describes the advantages of GLMM applied on volatile data, where
Gaussian model is chosen. Subsequently, prediction of reserves using this model was
the closest to the real one. In the next part, a dataset with similar data was picked
to show the importance of residual diagnostic in model selection. Here, we considered
two GEE models but in order to optimize the number of unknown coefficients, GEE
model with exchangeable correlation structure and variance function equal to one was
chosen. In this case, all GEE models predicted reserves much more accurately than
GLMM. Next, the significance of coefficients was tested in order to reduce their num-
ber, which has a few important consequences as mentioned in Chapter 3. Using a back-
ward elimination approach and P-values from the Wald test as a criterion, a simpler
model without two accident year factors was selected as the most appropriate. This
model still has a reasonable diagnostic, however, the prediction of reserve was a bit
worse than the original model with all coefficients.

An additional dataset is listed in the GEE section in order to highlight the observa-
tion (experience) from the whole database analysis, which favors GEE models when
the data is stable in a certain way, as was discussed.

The last but not least part deals with a very volatile dataset, where GLMM failed
during the fitting but no errors occurred in the software. This fact was subsequently
found out from the residual diagnostic. GEE models were fitted to this dataset as well.
However, the chosen model does not fit the data well and the obtained prediction of re-
serves is way higher than the real one. The purpose of this dataset was to show that
it really depends on the behaviour of our data and moreover, our models have their
limitations, computational as well as fitting.
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Conclusion
The aim of the presented thesis was to implement the GLMM and GEE models,

which in contrast to GLM are able to handle with the within-subject correlation,
to the problem of claim reserving. We have concentrated on the proper structure
of used models and consequently, significant attention has been paid to residual
diagnostics and to the suitable choice of the final model in the practical part.

In the first chapter of the thesis, we have presented the whole panel data theory
needed for the models definition in general. We have shown the main idea
of introducing correlation between the within-subject dependent variables by including
additional random variable into the disturbances. The generalization of this idea has led
up to the LMM. The advantages of this model, as well as the strengths of GLM, are
present in GLMM. Next, we have described the GEE approach, which is able to cope
with the within-subject correlation using the working correlation matrix. Our focus
has been paid to estimates of unknown regression parameters and unknown working
correlation matrix as well as to their properties.

At the beginning of the second chapter, we have introduced the standard notation
common in the actuarial science. Furthermore, basic reserving methods have been
listed.

The third chapter has joined the first and second chapter in order to synchro-
nize the notation and structure of the models. The goal of this chapter has been
to choose the models, which are proper for the insurance data. Attention has been paid
to the interpretation and the number of unknown regression parameters that must
be estimated. The impact of the inflation and stability of the market has been dis-
cussed for this purpose. Due to this, log-link function has been chosen and testing
of the coefficients has been made.

Finally, the application of the proposed models on real data has been carried out
for the purpose of their analysis and comparison of their performance. All computa-
tions have been performed in R software. Firstly, we have made a quite large analysis
on the whole database to see in which cases which models are more suitable according
to residual diagnostic as well as the precision of fitted values. We have introduced three
main datasets. The first one has shown the strength of GLMM, which is the empiri-
cal “Bayes estimator” of random intercept. This property works mainly on “volatile”
datasets described in GLMM section. The second dataset has had similar variability
structure of the data, nevertheless, GEE models has much better residual diagnostic
as well as prediction of reserves. This result has implied that firstly, the residual di-
agnostic should be taken into account. Nevertheless, when we still cannot decide be-
tween the GLMM and GEE models, we would recommend GLMM for more “volatile”
dataset. The last dataset has shown the limitations: computational for GLMM as well
as fitting for GEE models. This fact has confirmed the idea from the quote of George
E.P. Box mentioned in the introduction.

Although results from our analysis were satisfactory, the GLMM approach offers
much more possibilities in choice of the linear predictor in sense of the random effects.
It could be interesting to investigate how these models would fit the data and predict
the reserves.
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A. Source code
In this section, three main R scripts are listed, from which it is easy to construct

the whole analysis. The first one is a control script, which goes through the whole
database, prepares datasets and calls the functions which form other scripts prepared
for each model separately. We describe only two of them because the following scripts
are just copies of them with changed distributions, correlation structure or variance
function. Hence, the second script constructs the GLMM gamma model with all fig-
ures and calculations used in this thesis. The last one is for GEE model with indepen-
dent correlation structure and variance function equal to one. In this script, all used
diagnostics and computations are performed.

A.1 Main control script
#pakages

library(lme4)

library(geepack)

library(ChainLadder)

library(tables)

# LoBs: wkcomp_pos, comauto_pos, ppauto_pos

# read data from database

a=read.csv("wkcomp_pos.csv",header=TRUE)

grp.code=unique(a$GRCODE)

ins.line.data=function(g.code){

b=subset(a,a$GRCODE==g.code)

name=b$GRNAME

grpcode=b$GRCODE

ay=b$AccidentYear

dev=b$DevelopmentLag

cum_pdloss=b[,7]

data.out=data.frame(name,grpcode,ay,dev,cum_pdloss)

return(data.out)}

# for cycle goes through whole database

#GLMM: 14176 GEE: 715,8559 grp.code (wrk. comp)

#probpematic dataset 11037 (com. auto)

for (f in (grp.code)){

#data into triangles

data=ins.line.data(f)

upper=subset(data,ay+dev<=1998)

triangle=as.triangle(upper,origin="ay", dev="dev",

value="cum_pdloss")

lower=subset(data,ay+dev>1998)

triangle_low=as.triangle(lower,origin="ay", dev="dev",
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value="cum_pdloss")

low_inc=cum2incr(triangle_low)

# data from whole rectangle

cely=as.triangle(data,origin="ay", dev="dev", value="cum_pdloss")

cely_inc=cum2incr(cely)

incc=as.vector(t(cely_inc))

# figure of devepment for incremental claims

plot(as.triangle(upper,origin="ay", dev="dev", value="cum_pdloss")

,lattice=TRUE, xlab="Development year",ylab="Incremental claims")

#incremental data upper triangle

pom=upper[5]

for (k in (2:91)){

if ( is.na(upper[k,3])!=’TRUE’ & upper[k,3]==upper[k-1,3])

pom[k,1]=upper[k,5]-upper[k-1,5]

else if (is.na(upper[k,3])!=’TRUE’) pom[k,1]=upper[k,5]}

upper[5]=pom

#incremental data from lower triangle

data1=data

pom=data1[5]

pom

for (k in (2:length(data1$cum_pdloss))){

if ( is.na(data1[k,3])!=’TRUE’ & data1[k,3]==data1[k-1,3])

pom[k,1]=data1[k,5]-data1[k-1,5]

else if (is.na(data1[k,3])!=’TRUE’) pom[k,1]=data1[k,5]}

data1[5]=pom

lower_inc=subset(data1,ay+dev>1998)

# controll for nonposite incremental values in upper tringle

nonpositive=0

if ( min(upper[,5])<=0) {

nonpositive=1}

# input data preparation for model

inc_data=cbind(upper[3],upper[4],upper[5])

colnames(inc_data)[3]="inc_loss"

if (nonpositive == 1 ) {} else {

############################## GLMMM ############################

# inicialization of variables

fitall13=rep(0,100)

fitall13=rep(0,100)

fitm12=0

fitm12=0
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rezgaus=0

rezinv=0

rezgam=0

# conditions for datasets which should be skipped with the purpose

# of uninterrupted calculation because they do not converge

if (f == 1538| f== 9466| f == 12297| f==14320 | f==21172) {} else {

# next commands call other R scripts for GLMM models described

# below

source("inverse_Gaussian.R")

m12=inverse11(f)

fitm12=m12$first # just fitted values

fitall12=m12$third # predictions and fitted values

rezinv=m12$fourth}

if (f == 86 | f == 337 | f == 388| f == 1767| f == 2135| f == 2712

| f == 7080 | f==23108 | f==1767) {} else {

source("Gaussian.R")

m13=gausian11(f)

fitm13=m13$first

fitall13=m13$third

rezgaus=m13$fourth}

# an aggregate script plots all models together

source("gamma.R")

m15=gamma11(f)

rezgam=m15$fourth

################################ GEE ##############################

# commands which call scripts for GEE models

source("INDEP_Q.R")

m25=INDEP_Q(f)

fitm5=m25$first

rez1=m25$second

source("INDEP_L.R")

m24=INDEP_L(f)

fitm4=m24$first

rez2=m24$second

source("INDEP_I.R")

m25=INDEP_I(f)

rez3=m25$second

........next GEE models follow

# mack chain ladder

mack <- MackChainLadder(triangle, est.sigma="Mack")
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mackrez=summary(mack)$Total["IBNR",]

# real reserve

realreserve=sum(lower_inc[,5])

realreserve

print("Dataset:")

print(f)

print(c(realreserve,mackrez,rezgaus, rezinv, rezgam))

print(c(rez1, rez2, rez3, rez4, rez5, rez6, rez7, rez8, rez9)) }}

A.2 GLMM script
# for each model we should have special script like following one

# this script must be saved with name "gamma.R"

gamma11=function(code){

nazov=toString(code)

m1=glmer(inc_loss ~ as.factor(dev) +(1 | ay), data=inc_data,

family=Gamma("log"), nAGQ=0)

summary(m1)

coef(m1)

fitm1=cbind(inc_data,fitted(m1))

colnames(fitm1)[4]="fit_val"

# fitted values and predictions

c1=c(0,summary(m1)$coef[2:10])

c2=c(exp(coef(m1)[[1]][[1]]))

fit0=c2%o%exp(c1)

fit=as.vector(t(fit0))

# generation of fitted values real claims and predictions only for

#gamma model because it is an aggregation script

pdf(paste("/Users/Michal/Desktop/diplomka/data_analysis/

testovanie_modelov/grafy/",nazov,"GLMM_gamma_prediction_all.pdf"))

par(mfrow=c(3,4))

for (k in (1:10)){

plot(incc[(10*(k-1)+1):(10*k)] ~ inc_data$dev[1:10],type="l",

, ylab="Incremental claims",xlab= paste("Development year"),

caption="",xlim=c(1,10),ylim=c(0,max(incc[1:100])))

lines(fit[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10], lwd=1,

col="orange")

lines(fitall12[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10],lwd=1,

col="brown")

lines(fitall13[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10],lwd=1,

col="blue")

abline(v=(10-k+1),col="red")

title(main=paste("Accident year ", k)
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, cex.main=1)

fit }

# legend for plot

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n" ,

axes = F, xlab = NA, ylab = NA)

legend("center", c("Real claims", "Gaussian", "Inv. Gaussian",

"Gamma"),

xpd = TRUE, horiz = FALSE, inset = c(0, 0), bty = "n",

lwd = c(1, 1, 1, 1), col = c("black", "blue", "brown","orange"),

cex = 1)

dev.off()

# reserve from GLMM Gamma model

rez=0

for (k in (2:10)){

rez=rez+sum(fit[(10*k-k+2):(10*k)]) }

# residual diagnostic using whole rectangel

pdf(paste("/Users/Michal/Desktop/diplomka/data_analysis/

testovanie_modelov/grafy/",nazov,"GLMM_gamma_residuals.pdf"))

par(mfrow=c(3,3))

res1=(incc-fit)/fit #Pearson residuals

resm1=(incc-fit)

qqnorm(resm1,main="",xlab="Theoretical quantiles",

ylab="Sample quantiles")

qqline(resm1)

plot(fit~incc,xlab="Observed values",ylab="Fitted values")

d1 = length(resm1)

r1=lm(resm1[2:d1]~resm1[1:(d1-1)])

summary(r1)

plot(resm1[2:d1]~resm1[1:(d1-1)],xlab="Residuals(t-1)",

ylab="Residuals(t)")

abline(r1, lty=2)

hist(resm1,main="",xlab="Histogram")

shapiro.test(resm1)

plot(res1 ~ fit, xlab="Fitted values",ylab="Pearson residuals")

plot(resm1, xlab="t",ylab="Residuals")

abline(h=0,lty=2)

dev.off()

return(list(first=fitm1, third=fit, fourth=rez))}
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A.3 GEE script
# this script is for GEE model INDEP_I and we should make scripts

# like this one for each GEE model

# this script must be saved with name "INDEP_I.R"

INDEP_I=function(code){

nazov=toString(code)

m8=geeglm(inc_loss ~ as.factor(dev) + as.factor(ay), data=inc_data,

family=gaussian("log"), corstr="independence",id=ay)

summary(m8)

coef(m8)

off8=log(inc_data[1,3])

c8=coef(m8)[1]+c(0,coef(m8)[2],coef(m8)[3],coef(m8)[4],coef(m8)[5],

coef(m8)[6],coef(m8)[7], coef(m8)[8],coef(m8)[9],coef(m8)[10])

r8=c(coef(m8)[11],coef(m8)[12],coef(m8)[13],coef(m8)[14],

coef(m8)[15],coef(m8)[16],coef(m8)[17], coef(m8)[18],coef(m8)[19])

#fitted values

fitm7=cbind(exp(c8),exp(r8[1]+c8),exp(r8[2]+c8),exp(r8[3]+c8),

exp(r8[4]+c8),exp(r8[5]+c8),exp(r8[6]+c8),exp(r8[7]+c8),

exp(r8[8]+c8),exp(r8[9]+c8))

# prediction of the ultimate reseves

reserves7=c(fitm7[20],sum(fitm7[29:30]),sum(fitm7[38:40]),

sum(fitm7[47:50]),sum(fitm7[56:60]),sum(fitm7[65:70]),

sum(fitm7[74:80]),sum(fitm7[83:90]),sum(fitm7[92:100]))

reserves7

ultimatereserve7=sum(reserves7)

ultimatereserve7

# this figure is generated only in models when variance function

# is equal to one (like in our case), this is taken as an aggregate

# script and take fitm8 and fitm9 from the control script

pdf(paste("/Users/Michal/Desktop/diplomka/data_analysis/

testovanie_modelov/grafy/",nazov,"GEE_INDEP_I_prediction_all.pdf"))

par(mfrow=c(3,4))

for (k in (1:10)){

plot(incc[(10*(k-1)+1):(10*k)] ~ inc_data$dev[1:10],type="l",

, ylab="incremental claims",xlab= toString(1987+k)

,xlim=c(1,10),ylim=c(0,max(incc[1:100])))

lines(fitm8[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10], lwd=1,

col="blue")

lines(fitm9[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10],lwd=1,

col="green")

lines(fitm7[(10*(k-1)+1):(10*k)]~inc_data$dev[1:10],lwd=1,

col="brown")
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abline(v=(10-k+1),col="red")}

dev.off()

# residual diagnostic using all rectangle is listed only,

#it is not hard to change it only to upper triangle

pdf(paste("/Users/Michal/Desktop/diplomka/data_analysis/

testovanie_modelov/grafy/",nazov,"GEE_INDEP_I_residuals.pdf"))

par(mfrow=c(3,3))

resm8=(incc-fitm7)

plot(resm8,xlab="",ylab="residuals")

abline(h=0,lty=2)

hist(resm8,main="",xlab="Histogram")

shapiro.test(resm8)

d8 = length(resm8)

r8=lm(resm8[2:d8]~resm8[1:(d8-1)])

qqnorm(resm8,main="")

qqline(resm8)

plot(resm8[2:d8]~resm8[1:(d8-1)],xlab="Residuals(t-1)",

ylab="Residuals(t)")

abline(r8, lty=2)

plot(resm8 ~ fitm7,xlab="fitted values",ylab="residuals")

plot(as.vector(fitm7)~incc,xlab="fitted values",

ylab="observed values")

cor(fitted(m8),inc_data$inc_loss)

plot(as.vector(resm8) ~ rep(c(1:10),10),xlab="accident year",

ylab="residuals")

# this is diagnostic plot for correlation structure only for this

# model

options("scipen"=100, "digits"=3)

mat=matrix(nrow=100, ncol = 10)

pers=vector()

for (j in (1:9)){

for (k in (1:(10-j))){

for (l in ((k+1):(10-j+1)) ){

mat[(k+(9*(j-1))),(l-k)]=(resm8[j,k]*resm8[j,l])}}}

y=c(rep(0,9))

x=c(1:9)

matplot(t(mat),type="p", pch=1, lty=1, lwd=1, col="black",

xlab="|t-k|",ylab=expression(r[it] * r[ik]))

mm=apply(t(mat), 1, function(x) mean(x, na.rm=TRUE))

matpoints(mm,type="p", pch=19, lty=1, lwd=1, col="red")

matlines(c(1:9),c(rep(0,9)), type = "l", lwd = 1,lty=2, pch = NULL)

dev.off()

# in other models, it return data to use them in an aggregate

# script

return(list(first=fitm7,second=ultimatereserve7))}
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