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Abstract 

Accurate visualization of structures and events at subcellular level is one of the major challenges of current 

neuroscience. Optical methods based on fluorescence imaging were optimized to record and control neural 

activity, thus presenting a powerful approach complementary to historically dominant electrophysiological 

techniques. The employment of two-photon excitation enabled in vivo imaging of neurons up to 1 mm from 

the sample surface without causing significant photodamage. The application of methods of molecular 

biology has yielded protein-based genetically targetable indicators of neural activity, possessing 

performance comparable to the traditional organic dyes. Moreover, heterologous expression of microbial 

opsins proved capable of light-induced neural excitation or silencing in a single-component manner. The 

combination of these optogenetic tools offers two-way control over neuronal populations with single cell 

resolution. If coupled with calcium or voltage fluorescent indicators and transgenic animal models, such 

systems represent a non-invasive, all-optical tool for simultaneous control and imaging of specific neuronal 

subtypes. Its application supported by electrical recordings may finally provide the data necessary for the 

uncovering of fundamental principles of neural functioning. 

Key words: neurophysiological models, transgenic animals, two-photon microscopy, optophysiology, 

synthetic indicators, genetically encoded indicators, optogenetics 

Abstrakt 

Jednou z hlavných výziev dnešných neurovied je presná vizualizácia štruktúr a procesov na sub-bunkovej 

úrovni Optické metódy založené na fluorescenčnom zobrazovaní optimalizované na záznam a ovládanie 

neuronálnej aktivity predstavujú prístup doplňujúci tradičné elektrofyziologické techniky. Použitie 

dvojfotónovej excitácie umožnilo zobrazovanie neurónov in vivo až do hĺbky 1 mm od povrchu vzorky a to 

bez významného poškodenia svetlom. Aplikácia metód molekulárnej biológie viedla k vytvoreniu 

proteínových indikátorov neurálnej aktivity, ktoré dnes už disponujú vlastnosťami tradičných syntetických 

farbív. Heterológna expresia mikrobiálnych opsínov umožňuje svetlom ovládané vyvolanie nervových 

vzruchov, alebo ich útlm za pomoci jediného komponentu. Kombinácia týchto optogenetických nástrojov 

poskytuje dvojsmernú kontrolu nad neurálnou aktivitou s rozlíšením na úrovni jednej bunky. V kombinácii 

s vápnikovým alebo napäťovým zobrazovaním neurálnej aktivity a transgénnymi zveracími modelmi takýto 

systém predstavuje neinvazívny optický nástroj schopný súčasného záznamu a kontroly neuronálnej 

aktivity. Jeho použitie podporené elektrickým záznamom, by mohlo viesť k pochopeniu základných 

princípov funkcie nervovej sústavy. 

Kľúčové slová: neurofyziologické modely, transgénne zvieratá, dvojfotónová mikroskopia, optofyziológia, 

syntetické indikátory, geneticky kódované indikátory, optogenetika	 	
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1 Introduction 
The origins of modern neuroscience are closely linked to a method capable of visualizing populations 

of cells in their native morphology. It was the staining method developed by Camillo Golgi that presented 

Santiago Ramón y Cajal with the key to discoveries ultimately resulting in the neuron doctrine. The 

following century was dominated by electrophysiology, extensively describing the electrical properties of 

single excitable cells.  

Today, 100 years after the neuron doctrine, novel optical methods capable of visualizing and control 

over neural activity of hundreds of cells have emerged. In combination with transgenic animal models, 

these methods are now capable of large-scale neural activity imaging and control in vivo, possibly 

presenting us with a similarly powerful tool capable of similarly redefining impact.  

The main motivation of this text is to review the tools and techniques capable of visualization and 

control over neural activity. These include transgenic model organisms, various methods of fluorescence 

microscopy (most notably the two-photon laser-scanning microscope), synthetic and protein-based 

optophysiological probes and optogenetics.  

2 Animal models 
In vivo experiments on animal models are an indispensable tool for understanding the function of 

neural tissue. The following table provides a list of model organisms along with their general 

characteristics. 

Table.1, A list of the most commonly used animal models in neuroscience along with their general characteristics 
(Riddle et al., 1997; Lambert, 2007; Wheeler and Brandli, 2009; IOM and NRC, 2012; Stewart et al., 2014)  
 Generati

on time 
Litter size Relation to 

human 
Cost of care General pros General cons 

C.elegans 4 days 
 
 

300/4 days Nematode, 
weakest relation 

Minimal; 
freezable stocks 

Constant number 
and fate of cells, 
transparent, 

Absence of site 
directed 
mutagenesis, 
simple nervous 
system  

Drosophila 10 days 500 eggs/30 
days 
lifespan 

Insect, poor 
relation 

minimal Good genetic 
tools available, 
cheap 

Discoveries may 
require revisiting 
if they are to be 
applied to 
humans 

Zebrafish 2-4 
months  

100-200 
eggs/week 

Vertebrate, 
worse than mice 

0,67$/month/fish Transparent, easy 
to keep 

Poor reverse 
genetics 

Mouse 
(Rat) 

6-8 
weeks 

5-10 (6-12) 
pups/litter 
5-10 
times/year 

Close - 
mammals, 
worse than 
macaque 

High compared to 
other models 
(aprox.1 $/day) 

Transgenic 
animals, nervous 
system close to 
humans 
 

Anatomical 
difference in 
selected CNS 
structures. Poor 
access to embryo 

Rhesus 
macaque 

12 years 1 /year An old world 
monkey, 
therefore the 
closest 

Very high. 30 000 
$ for acquisition 
and 80 - 110$/day 
for keeping 

The closest 
nervous system 
organization and 
function. 

Very expensive 
to purchase and 
keep. Ethical 
restrictions  
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 Caenorhabditis elegans is a nematode of microscopic size, possessing a simple nervous system. It 

has very low requirements for care since it can be cultivated in large numbers on agar and kept in frozen 

stocks. The constant fate and number of its cells made it into a widely studied developmental model. 

Furthermore, its relevance in neuroscience is increased by the fact that it is the only model organism of 

which the whole connectome has been mapped by serial section electron microscopy (White et al., 1986). 

Thus, making it a simple model for studying fundamental principles of neural tissue function, such as basic 

sensorimotor circuits responsible for modulating motor activity based on sensory input (Sengupta and 

Samuel, 2009).  

Drosophila melanogaster (fruit fly), is an insect which does not require extensive care and its 

keeping does not represent a significant economic burden. Forward genetics experiments conducted on D. 

melanogaster have led to the discovery of many genes active in neural development such as the Notch 

signaling pathway (Poulson, 1950), active in cell fate regulation (Breunig et al., 2007). Similar to 

C.elegans, it cannot provide detailed information about the function of the vertebrate brain; however, it may 

help understand fundamental principles of neural function and organization (Bellen et al., 2010). For 

example, neural circuits active in the sexual behavior (courtship behavior) of fruit flies are studied to better 

understand how sensory input is processed and how the associated motor output is generated (Pavlou and 

Goodwin, 2013). 

 Danio rerio, a teleost fish, can be characterized as a relatively new and, in terms of care, the least 

demanding vertebrate model (Streisinger et al., 1981). Similarly to C.elegans and Drosophila, maintenance 

of large numbers of zebrafish (D.rerio) is possible, which enables large-scale genetic experiments in 

developmental research (Driever et al., 1996). Nevertheless, zebrafish has also been a model for neural 

development on a cellular level (Kimmel, 1993), in vertebrate neural wiring principles (Kita et al., 2015), 

and in basic behavioral studies (Guo, 2004). These include the discovery of right eye preference in biting 

(Miklosi and Andrew, 1999) or a memory assessment proving zebrafish is a relevant model in learning 

experiments (Williams et al., 2002). 

Until the mid-1980s, feline models represented the largest fraction of animals used in neuroscience 

mainly due to their ability to withstand complicated surgical procedures using large instruments. However, 

negative public opinion about experimentation on companion animals and strict regulations have increased 

the cost of their use.  

Miniaturized equipment and the appearance of transgenic mice (Capecchi, 1989) have transformed 

rodents, such as Mus musculus (mouse) and Rattus norvegicus (rat), into the default animal model of 

neuroscience. Rodents are mammals; therefore, their relevance in terms of neural organization surpasses all 

listed models (Tab.1) except the non-human primates (NHPs). Moreover, the difference between rodent and 

NHP brain anatomy was shown not to be completely restrictive in terms of studying cognition (Kepecs et 

al., 2008). Consequently, the majority of research in neuroscience, including areas such as cell-fate 

determination or neural circuit wiring (Kabanova et al., 2015), can profit from the rodent model. 
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The non-human primates (NHPs) such as Macaca mulatta (rhesus macaque) are the most expensive 

and challenging animal model to keep. The main topographical and functional brain structures responsible 

for sensory, motor or attention processing appeared early enough in the evolution and are conserved among 

primates (Mantini et al., 2013). Information from NHPs can be often directly applied to humans. However, 

because of the high cost and limiting regulations, only a minority of the research is performed on NHPs 

(Roelfsema and Treue, 2014), while being restricted to areas where rodent models cannot provide relevant 

data such as higher visual sensory processing and attention (Moore and Armstrong, 2003). 

 

3 Related molecular biology 
3.1 Gene targeting 

Visualizations of different cell types in vivo, or pathology-related studies in neuroscience require 

the expression of exogenous genes by the cells of the model organism. In general, modification of genomic 

DNA, such as the insertion of an exogenous gene, is achieved through the in vitro introduction of a gene-of-

interest-containing vector into the cell (e.g. embryonic stem (ES) cell), by electroporation (Neumann et al., 

1982) or microinjection (Gordon et al., 1980). However, random integration of the construct may cause 

disruption of a potentially crucial coding region, which may lead to an altered phenotype. Furthermore, the 

expression of the transgene is influenced by many factors other than the promoter, such as missing 

regulatory sequences or different chromatin architecture (Huang, 2010). It is, therefore, preferable to target 

the exogenous gene by surrounding it with a specific sequence representing the context in which it should 

appear on the chromosome. Consequently, the disruption is limited to a specifically targeted gene, while all 

its regulatory sequences are transferred to the insert (Huang, 2010). 

The retention of the targeted gene may be required in cases where cell-type specific proteins are 

selected. Since the presence of these proteins often defines the otherwise thin lines between cell types, their 

further functionality is indispensable (Taniguchi et al., 2011). To avoid the loss of function of the targeted 

gene, the exogenous gene may be linked to its target by a bicistronic cassette (IRES (internal ribosome 

entry site), 2A); a short sequence of viral origin capable of manipulating the translational apparatus so that 

two proteins are co-expressed from a single mRNA, transcription of which is controlled by the endogenous 

gene promoter (Pelletier and Sonenberg, 1988; Radcliffe and Mitrophanous, 2004; Provost et al., 2007). 

3.2 In vivo application 

The integrated construct contains a selection cassette (such as the neomycin resistance) so that the 

cells where integration occurred can be selected on a selection medium and injected into the blastocoel of a 

host embryo, which is then placed into the uterus of a foster mother (Thomas and Capecchi, 1987; 

Capecchi, 1989). The resulting animal is a chimera containing modified ES cell descendants along with 

host embryo cells. If the germ-line cells are transgenic, further breeding leads to a homozygous animal.  
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Postnatal in vivo gene delivery is possible by exploiting the native ability of viral vectors to express 

their genes in host cells. Lentiviral (LV) expression vectors are capable of infecting non-dividing cells as 

opposed to the rest of the retroviruses (Wollebo, 2013). Since they integrate into the genome these vectors 

offer stable expression of transgenes up to 10 kbp long, within hours after transduction (Karra and Dahm, 

2010). However, the integration lacks specificity and may result in insertional mutagenesis (Karra and 

Dahm, 2010). The naturally non-pathogenic adeno-associated virus (AAV)-based vector is capable of 

transducing the host cell with a gene of ~5kbp (Karra and Dahm, 2010). Nevertheless, cell-type specificity 

limited by the length of the construct, can be compensated by choosing among various available serotypes 

with different tropisms (Shevtsova et al., 2005). AAV-based vectors lack the sequences responsible for 

integration into the genome and therefore persist episomally (Buning et al., 2008), thus causing multiple-

week long transient expression. The expression of transduced genes is high, while the immune reaction is 

minimal, although the onset of expression is up to 2 weeks (Karra and Dahm, 2010).  

3.3 Control over transgene by site-specific recombinases (SSRs) 

 The transgene affects the cells in which it is expressed. The cell has to spend considerable amount 

of its limited energy and resources on an unnecessary and possibly toxic product. If expressed (or 

overexpressed) in every cell from the early embryogenesis the transgene may affect ontogenesis resulting in 

abnormal development (McHenry et al., 1998).  

 Tyrosine SSRs of the integrase family are capable of providing control over the transgene 

expression, thus minimizing its negative effect. Cre, a 34kDa SSR from the P1 bacteriophage, recognizes 

two loxP sites consisting of a spacer sequence and two palindromic sequences on the sides with the total 

length of 34 bp (Sternberg and Hamilton, 1981; Sauer and Henderson, 1988). Analogously, Flp, a SSR 

from the 2µm plasmid of S.cerevisiae, recognizes two frt sites consisting of two 13bp inverted repeats 

separated by an asymmetrical 8bp spacer. (Schwartz and Sadowski, 1989; Sadowski, 1995). Depending on 

the relative orientation of the two recognition sites (loxP or frt), the sequence between them can be either 

excised/inserted, inverted or translocated (Fig. 1). 

 
Fig. 1, An overview of reactions mediated by SSRs along with the corresponding relative orientations of their 

recognition sites (Bockamp et al., 2002). 
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3.3.1 Conditional transgenesis – spatial control 

Conditional transgenesis is a method where the transgene is inactivated by default, thus eliminating 

its possible influence on ontogenesis. A loxP (or frt) flanked stop cassette is inserted between the promoter 

and the rest of the coding sequence. The excision of the stop cassette, only possible in Cre (or Flp) 

expressing cells, initiates the gene-of-interest transcription. The promoter controlling the expression of the 

SSR, therefore regulates the spatial aspect of the transgene expression (Lakso et al., 1992). A knock-in 

animal with such tissue-specific Cre activity (driver line) can be mated with a reporter-line animal 

containing a loxP-STOP-loxP-gene of interest knock-in. Their offspring will possess a heterozygous set of 

alleles where Cre will deactivate/activate the knock-in gene of interest, in a tissue specific manner (Orban et 

al., 1992). 

3.3.2 Viral transduction by a SSR 

Viral transduction may be combined with the Cre/loxP (or Flp/frt) system upon creating an alternative 

approach in conditional transgenesis (Ahmed et al., 2004). If a Cre-containing LV- or AAV-based vector 

transduces a reporter mouse, the stop cassette is excised only in the specific cell-type to which the viral 

vector was targeted (Ahmed et al., 2004). Alternatively, a viral vector containing the flanked STOP cassette 

can transduce a driver mouse with specific Cre expression (Kuhlman and Huang, 2008). The expression of 

the gene-of-interest is therefore limited to the injection site and time along with the genetically targeted 

cell-type. 

3.3.3 Temporal control 

 To achieve temporal control over the expression of the gene-of-interest, ligand-activated SSRs have 

been developed. A chimeric Cre recombinase has been constructed by fusing the recombinase with a 

mutated human estrogen receptor ligand-binding domain. This construct is activated by a synthetic ligand, 

tamoxifen (Feil et al., 1997), which can be injected at a certain time achieving temporal specificity of the 

conditional transgene (Hayashi and McMahon, 2002). 

3.4 Tetracycline-based expression control 

Apart from the SSR-based expression control, the tetracycline dependent tetOFF/tetON regulation 

is available. By fusing an E.coli tetracycline responsive tet repressor to a Herpes simplex virion protein (its 

activating domain), a tetracycline-dependent transactivator (tTA) was created. The tTA transactivator binds 

to a tetO operator sequence upstream from a promoter, which initiates the gene expression. In the case of 

tetOFF, tetracycline (or its derivative doxycycline) prevents the tTA from binding tetO (Gossen and Bujard, 

1992) (Fig. 2a). However, in the case of tetON, a mutant tTA binds the tetO operator only in the presence 

of tetracycline (or one of its derivatives) (Fig. 2b) (Gossen et al., 1995).  
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Fig.2. Schematic representation of Tet-off (a) Tet-on (b) systems. (tTA) tetracycline-dependent transactivator; (rtTA) 

modified tTA; (TRE) tetO operator (Bockamp et al., 2002). 

4 Fluorescence Microscopy (FM) 

Fluorescence microscopy (FM) relies on the presence of a fluorescent agent in the imaged tissue. In the 

case of one-photon FM, these agents are able to absorb light of a specific excitation wavelength and 

subsequently emit a photon of a longer wavelength (Stokes shift). The emitted light is detected by the 

microscope and defines spatiotemporal properties of the studied structure. The specific manner of 

interaction between the fluorescent molecule and the element of interest, results in augmented contrast 

between the studied structure and the background. This contrast helps visualizing structures otherwise 

barely visible in bright-field (for example the visualization of nuclei by DAPI (4',6-diamidino-2-

phenylindole)). 

4.1 Wide-field Fluorescence Microscopy (WFFM) 

WFFM is a relatively simple and inexpensive FM method. A basic WFFM setup includes a 

powerful light source (monochromatic lamp), an excitation and emission filter and a dichroic mirror. The 

last three components are usually combined within a replaceable cube. Advantages of a WFFM setup in 

comparison with other FM approaches include lower price and usually fast temporal resolution (provided 

using cooled CCD (charge coupled device) or EMCCD (electron multiplying CCD) cameras) (Combs, 

2010). On the other hand, WFFM is not capable of optical sectioning since the untraceable signal from 

deeper layers of the sample contaminates the relevant fluorescence from the focal plane (Fig. 4) (Combs, 

2010), therefore significantly lowering the resolution. 

4.2 Laser Scanning Confocal Microscopy (LSCM) 

 LSCM is capable of optical sectioning by eliminating the problematic out-of-focus fluorescence 

before it reaches the detector through two small apertures, “pinholes”. Both pinholes are in planes 

conjugate to the focal plane (Combs, 2010), while the illuminating pinhole narrows down the laser beam. 
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The emission pinhole is in the exact position so that only light originating from the focal plane may pass 

through the opening into the photomultiplier tubes (PMTs) (Shaw, 1995) (Fig. 3) 

 
Fig. 3, A schematic diagram of a LSCM setup (Shaw, 1995).  

 

The main advantage of LSCM lies within its axial and lateral resolution (near diffraction-limit) 

capable of high-resolution optical scanning in thin samples (Fig. 4). Also, LSCM supports a wide range of 

sample types, for example enabling precise sub-cellular 3D imaging of the intracellular pH regulation in 

continuously superfused cancer cells (Hulikova et al., 2011). On the other hand LSCM has slower scanning 

speed and its imaging depth is significantly limited by intense excitation light scattering resulting in signal 

loss (Combs, 2010). Thus, LSCM is not optimal for imaging of fast events such as fast trains of action 

potentials, or for deep-tissue imaging. 

 
Fig. 4, Two images of the same Drosophila embryo with rhodamine-phalloidin labeled actin. A wide-field 

fluorescence microscope with cooled CCD camera was used to obtain image A while a confocal microscope was used 

to obtain image B (Shaw, 1995) Light scattering makes it impossible to determine which photons originate from the 

focal plane and results in blurry images (A). In the case of LSCM, the increasing amount of scatter results in 

decreasing signal since more light has to be filtered out by pinhole. 

4.3 Non-linear optical microscopy 

Non-linear excitation optical microscopy generates signal via light-fluorophore interactions 

involving multiple photons (multiphoton absorption) simultaneously (~fs) interacting with the fluorophore 



	

	 8	

upon its excitation. The most probable and widely used non-linear process used in FM is the two-photon 

absorption (2PA). 

4.3.1 Quantum mechanics behind two-photon absorption (2PA) 

 The absorption or emission of a photon is usually mediated by transitions in electronic states of π-

conjugated electrons of the chromophore. The absorption of a photon (or a combined energy of two-

photons (2PA)) leads to a transition in the electronic state of π-conjugated electrons from a ground state (S0) 

to an excited state (Sn). Subsequent relaxation firstly leads to reaching the first excited state (S1). This 

relaxation is very fast (~10-12s) and non-radiative. Fluorescence is emitted only by the slower (~10-9s) 

relaxation from S1 to the ground state (S0), usually not ground vibrational state, regardless of which excited 

high-energy state (Sn) was reached by absorption (Vavilov-Kasha’s rule) (Drobizhev et al., 2011) (Fig. 5). 

The Jablonski diagram (Fig. 5) demonstrates how two photons of a longer wavelength combine 

their energies in 2PA, causing the electronic transition of the chromophore similar to the one caused by 

one-photon absorption. Both 1PA and 2PA finally generate the same fluorescence during relaxation even 

though the combination of wavelengths in 2PA may not be equal to the 1PA wavelength. 

 

 
Fig. 5, A Jablonski diagram representing two- and one-photon absorption during low- and high-energy electronic 

transitions (Drobizhev et al., 2011),. Generated fluorescence remains constant due to Vavilov-Kasha’s rule.  

4.3.2 The probability of 2PA and its consequences 

In two-photon excitation (2PE), the absorption probability and, subsequently, the amount of 

emitted fluorescence is proportional to the square intensity of incident light (Zipfel et al., 2003). Therefore, 

it decreases with the second power of axial distance (z) (1/z2) from the focal plane (Eq. 1) (Fig. 6) (Tsai and 

Kleinfeld, 2009).  
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Fig. 6, Eq. 1, Elements contributing to the localization of 2PE in Eq. 1. The missing factor “P” represents laser power 

(Tsai and Kleinfeld, 2009) 

 

In summary, the probability of 2PA decreases rapidly with distance from the focal plane, while the 

area where fluorescence is generated is restricted to a near-diffraction limited focal spot (Denk et al., 1990), 

thus eliminating the need for a pinhole (Mainen et al., 1999). Optical sectioning is achieved solely by the 

spatially limited occurrence of fluorophore excitation (Mainen et al., 1999) effectively overcoming the 

depth limitations of single-photon absorption (1PA)-based setups (Vroom et al., 1999).  

4.3.3 The fluorophore 

The main prerequisite for 2PA, the simultaneous arrival of two photons, is achieved through 

generating highly concentrated excitation light. Based on their architecture, fluorophores may require 

different levels of spatiotemporal density of excitation light for successful 2PA, the quantification of which 

is expressed by the fluorophore molecular two-photon cross-section (σ2) (Mutze et al., 2012). Its value is 

usually expressed in GM units (named after Maria Goeppert-Mayer, the Nobel laureate who discovered the 

two-photon absorption phenomenon (Göppert-Mayer, 1931)) where: 

 

[σ!] = 1 GM =  10!!"𝑐𝑚!s  (Drobizhev et al., 2011) 

4.3.4 The setup for two-photon laser-scanning microscopy 

4.3.4.1 Generating high density of excitation light 

 The value of fluorophore σ2 defines the properties of excitation light. In order to meet the set 

requirements, a two-photon laser-scanning microscope (2PLSM) needs to be capable of generating highly 

point-concentrated light. High spatial density can be achieved by a high NA objective (Denk et al., 1990) 

focusing the laser beam into a diffraction-limit point effectively limiting the excitation occurrence to a 

femtoliter volume (Dunn et al., 2000). 

The power needed to nonlinearly excite the fluorophore molecule is very high (300 PW.m-2 at the 

focal point) and would massively photodamage the sample if applied for longer periods of time. Therefore, 

the employment of pulsed lasers (such as the most commonly used Ti:Sapphire) capable of delivering long 
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wavelength light (650-1300 nm) of sufficient focal point intensity, while only exposing the sample to 100 fs 

pulses (τp)  every 10 nanoseconds (corresponding to 100 MHz(ƒp)), is necessary. For optimal 2PLSM, all of 

the elements in the excitation pathway (Fig. 7) are optimized for near-infrared (NIR) light (Helmchen and 

Denk, 2005). 

4.3.4.2 xy deflection module – sample scanning 

The xy deflection module, usually a pair of galvanometric mirrors, effectively scans the sample by 

deflecting the laser beam in x,y dimensions. For higher acquisition speed, an Acousto Optic Deflector 

(AOD) may replace one of the mirrors.  

 
Fig. 7, A schema of a 2PLSM setup (Helmchen and Denk, 2005) 

4.3.4.3 Fluorescence detection 

The light emitted by the fluorophore can be detected either by transcollection or by epicollection. 

With thinner or transparent samples, and with samples where the fluorophore is excited using alternative 

non-linear techniques (second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS)) 

the transcollection is more efficient (Helmchen and Denk, 2005). On the other hand, in vivo-physiology 

related imaging is mostly performed on thicker samples where light cannot traverse the whole sample, thus 

preferring epicollection (Oheim et al., 2001). 

4.3.5 Light-matter interactions influencing image acquisition  

4.3.5.1 Scattering 

High energy density, needed for successful excitation of the fluorophore, is undesirably dissipated 

via scattering and absorption. Scattering is caused by interactions between light and matter, which lead to 

deviation of the photons from their original trajectory. The strength of scattering is described by the mean 
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free path (ls), which defines the average distance between two scattering events and is strongly dependent 

on wavelength. However, for heterogeneous samples where the wavelength is comparable to the size of the 

studied structure is the scattering anisotropic (quantified by anisotropy parameter (g)) and the average 

distance between two scattering events is described by a transport mean free path (lt): 

 

𝑙𝑡 =  𝑙𝑠/ (1 − 𝑔)  

The anisotropic factor (g) for brain tissue (gbrain≈0.9) (slightly higher for grey brain matter) rises 

with the wavelength (Yaroslavsky et al., 2002). According to the transport mean free path (lt) definition, 

longer wavelength photons (with higher g) averagely travel longer distances without being scattered 

(remain ballistic) and allow deeper imaging (Oheim et al., 2001; Yaroslavsky et al., 2002; Helmchen and 

Denk, 2005). Also, wavelength-dependent Rayleigh scattering (= λ-4), produced by single molecules and 

atoms, is lower for long wavelength light. 

The emitted fluorescence falls into the visible part of spectrum, and its anisotropic parameter (g) is 

lower. Consequently, emitted fluorescence is subject to stronger scatter (Yaroslavsky et al., 2002) and 

possibly none of the emitted photons remain ballistic upon leaving the sample (Oheim et al., 2001). Since 

the focal spot in multiphoton microscopy is a near-diffraction limit point, all emitted fluorescence is 

relevant and whole-area detection may be used to capture every photon leaving the sample (Oheim et al., 

2001).  

4.3.5.2 Absorption of biological tissues in near-infrared (NIR) 

Another argument in favor of the NIR excitation light is the existence of the NIR window, an interval of 

wavelengths with low absorption coefficients in biological tissue corresponding to light between 650 nm 

and 950 nm (covered by the tuning range of Ti:Sapphire lasers) (Smith et al., 2009). 

Fig. 8 represents the tissue absorption spectra surrounding the NIR (first optical) window. The 

minimum represents the optical window itself, where low light absorption of biological tissue permits 

deeper imaging. The surrounding peaks represent light of either shorter wavelength, which is absorbed by 

hemoglobin, or longer wavelength light absorbed by water (and lipids).  

 
Fig. 8, Graphical representation of the absorption spectrum for biological tissue including the first optical window 

between the hemoglobin and water absorption peak (Phan and Bullen, 2010). 
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4.3.5.3 Laser beam dimensions 

The numerical aperture (NA) of an objective is calculated for even illumination of the aperture. 

However, since the laser beam is Gaussian-shaped, the back aperture has to be slightly overfilled (Fig. 9a) 

under the conditions where 1/e of the laser beam diameter ≥ the back aperture diameter (Zipfel et al., 2003). 

The beam size “filling” the back aperture is often defined as the one where 86% of the power is transmitted 

through the objective. This corresponds to setting the beam width so that the point where the beam intensity 

falls to 1/e2 is at the edge of the aperture Fig. 9a. 

 
Fig. 9, a) The relation between laser beam size and aperture size and its impact on the focal spot dimensions. b) (top) 

Graphical representation of the relation between the “fill factor” (beam size/aperture size) and focal spot size, (bottom) 

Representation of the percentage of power throughput as a function of the “fill factor”. (Helmchen and Denk, 2005) 

4.3.5.4 Deep-imaging and its limitations 

When imaging deeper layers of the sample, the ballistic fraction of the photons decreases 

exponentially (Beer-Lambert law). To retain sufficient fluorescence with growing depth, the number of 

excitation photons entering the sample needs to grow as well (Tsai and Kleinfeld, 2009). However, the laser 

power cannot be increased above a certain tissue-damaging threshold. Therefore, it is not the available laser 

power, which ultimately limits the maximal depth penetration (Wang et al., 2013). 

The primary depth-limiting factor in 2PLSM is the growing scattering and absorption of excitation 

photons, which gradually leads to the loss of signal-to-background ratio (SBR) in deeper layers (Kobat et 

al., 2011). Low SBR results in insufficient contrast between the studied structure and the background, 

which prevents high-resolution image acquisition. Consequently, the maximal imaging depth for 800 nm 

excitation light corresponds to ~ 1 mm (Helmchen and Denk, 2005; Kobat et al., 2011).  

Longer wavelength excitation (~1300 nm), which is subject to less scatter might be employed to 

acquire deeper images (>1 mm) (Kobat et al., 2011). However, 2PE under such conditions renders lower 

fluorescence since this part of the spectrum is dominated by water absorption (Fig. 8) (Horton et al., 2013). 

4.3.6 Three-photon excitation as a tool for deeper imaging 

 The depth limitations restrict the use of in vivo 2PLSM imaging to the neocortex of the mouse brain 

(Horton et al., 2013). However, the existence of the second and third (plus suspected fourth) optical 
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window in biological tissue provides space for the application of even longer-wavelength excitation with 

deeper tissue penetration (Fig. 10) (Sordillo et al., 2014). 

 

 
Fig. 10, Graphical representation of optical windows in different parts of the spectrum correlated with the attenuation 

coefficient (wavelengths with a high attenuation coefficient are less transparent) (Sordillo et al., 2014). 

  

If the third optical window (~1700nm) (offering best scatter-absorption ratio) were to be targeted 

by two-photon excitation (2PE), the fluorophore excitation would occur in the NIR part of the spectrum. 

Moreover, the number of fluorophores capable of such absorption is still low (Horton et al., 2013).  

The three-photon absorption (3PE) is a non-linear process where the excitation of the fluorophore 

molecule is reached by simultaneous absorption of three photons. The generated fluorescence is cubically 

dependent on the excitation intensity (compared to the quadratic relation in 2PE) (Xu et al., 1996). 

Moreover, the fluorescence decreases with distance from to focal plane (z) at ≈ 1/z4 compared to the ≈ 1/z2 

of 2PE (Horton et al., 2013), which further eliminates the out-of-focus signal and generates superior SBR. 

Combined with the effect of scatter-proof excitation light (1700nm), the ballistic fraction arrives at greater 

depths, while generating more fluorescence, thus making 3PLSM capable of surpassing the depth limit set 

by 2PLSM while using regular fluorophores (Horton et al., 2013; Wang et al., 2013). 

4.3.7 Resolution and its limitations for FM methods 

The resolution achievable by an optical microscope can be theoretically defined by the Abbe 

diffraction limit (Abbe, 1873). It is a relation between the light wavelength (λ), the medium-specific 

refraction index (n) and the maximal half-angle of the objective light cone (θ), which defines the limit 

diameter (d) of the focal spot (Chereau et al., 2015) (eq2):  

𝑑 =
𝜆

2 𝑛 𝑠𝑖𝑛 𝜃
 

The values of θ and n for an objective are constant. Therefore, an objective lens can be 

characterized by their value in the form of a dimensionless number, the numerical aperture (NA) (Eq. 3): 

d =
𝜆

2 𝑁𝐴
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However, the diffraction-limit point is effectively represented by an approximately Gaussian-

shaped point spread function (PSF), defined by additional factors, thus altering the theoretical value. The 

PSF of a confocal microscope is defined by the illumination light and by the detection pinhole (Eq. 4): 

 

𝑃𝑆𝐹 = 𝑃𝑆𝐹!""#$!%&'(% × 𝑃𝑆𝐹!"#"$#%&'  ≈ 𝑃𝑆𝐹!""#$!%&'!(%!  

 

As for 2PLSM, the detection PSF is equal to the second power of the illumination PSF (Eq. 5): 

𝑃𝑆𝐹 = 𝑃𝑆𝐹!""#$!%&'!(%!  

 

In the case of LSCM, where the fluorophore is excited by 1PA, the excitation wavelength of 

commonly used fluorophores falls into the interval of [399nm (T-Sapphireg) – 590nm (mPlumg)] (Shaner et 

al., 2005). The excitation light applied in 2PLSM is of significantly longer wavelength (NIR-800nm). 

Therefore, theoretically, LSCM should obtain resolution superior by a factor of 2 since the detection PSF is 

equal to second power of the illumination PSF and LSCM operates with wavelengths two times shorter. 

However, this would only be true if the confocal microscope had an infinitely small pinhole (Zipfel et al., 

2003). Consequently, LSCM and 2PLSM are capable of achieving similar resolution (Helmchen and Denk, 

2005) of around 200 nm (Gustafsson, 2000). 

4.4 Light-sheet fluorescence microscopy 

 LSCM and 2PLSM acquire an image through point-illumination scanning. Consequently, the 

scanning speed of these methods is limited by the physical properties of the xy-deflection module. 

However, when analyzing neural activity, it is optimal to record from larger populations of cells 

simultaneously. This can be achieved by illuminating the sample from the side while the laser beam is 

focused into a micrometer thin “light-sheet” (Keller et al., 2008). Fluorescence is exclusively generated in 

the thin plane illuminated by the light-sheet, thus providing optical sectioning and a large field of view. A 

high-speed scanning light-sheet microscope, is capable of imaging the activity of the whole zebrafish brain 

every 1.3 s, while achieving cellular resolution in 80% of ~100 000 neurons (Ahrens et al., 2013). 

 

4.5 Breaking the diffraction limit 

The active zone of a synapse has a diameter of 300 nm (± 150 nm) (Ribrault et al., 2011). The 

2PLSM and LSCM diffraction-limit resolution prevents these methods from effective imaging of such 

structures. The imaging of synapses or even single molecules is the domain of superresolution imaging 

microscopy.  

4.5.1 Electron microscopy 

Superresolution can be achieved through applying accelerated electrons of picometer wavelength 

instead of photons, for image acquisition in electron microscopy. The extremely short wavelength results in 
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high resolution, which enables imaging of very small structures such as recombining DNA (Griffith et al., 

1999). The achievable resolution is demonstrated by an example, where spacing of less than 50 pm has 

been resolved using transmission electron microscopy (Erni et al., 2009) 

In terms of neurological significance, electron microscopy has been used to map the connectome of 

C.elegans (White et al., 1986), and is being used to map other model organisms as well. However, the 

amount of data generated by such mapping makes it currently impossible to apply this method to higher 

organisms. Therefore, while its benefit in the field of neurophysiology is significant, it is also limited. 

4.5.2 Recent superresolution methods 

The diffraction limit can also be broken by more recent methods. These, among else, include the 

following: 

Total internal reflection fluorescence (TIRF), a near-field method used for imaging cell surfaces 

with high axial resolution where excitation light reaches only 100-200 nm into the sample (Schermelleh et 

al., 2010). 

Structured illumination microscopy (SIM), a wide-field method where illumination of the sample 

by stripe-shaped sinusoidal patterns interferes with the emission of studied structures, thus surpassing the 

diffraction limited resolution by a factor of two (Schermelleh et al., 2010). 

Stochastic optical reconstruction microscopy (STORM) and photo-activated localization 

microscopy (PALM) are two closely related wide-field methods, which break the diffraction limit by using 

the fact that a single fluorophore molecule can be localized with nanometer resolution if not surrounded 

closely by other emitters (Rust et al., 2006). Switchable cyanine dyes in STORM, or genetically encoded 

switchable fluorophores in PALM present in the sample can be reversibly controlled by the applied laser 

wavelength. Only a fraction of the fluorophores emits fluorescence during a light cycle and therefore single 

points can be resolved with better resolution (up to 20 nm) (Rust et al., 2006).  

Stimulated-Emission-Depletion fluorescence microscopy (STED) possesses an excitation light 

pathway virtually identical to a regular confocal microscope. In addition, a second laser divided into two 

beams acts as a quencher by inducing de-excitation around the focal spot. Therefore, it effectively reduces 

the diameter of the point where excitation leads to the emission of fluorescence (Hell and Wichmann, 

1994). Today, instead of two laser beams, the quenching laser has a shape of a doughnut (Chereau et al., 

2015). The de-excitation of the fluorophore is realized through stimulated emission of a longer wavelength 

photon by the STED laser. Because of the wavelength difference between the standard fluorescence 

emission and the stimulated emission, it is possible to filter out the latter (Chereau et al., 2015). The 

resolution obtained by STED imaging is 4.5x higher than of regular confocal microscopy (Hell and 

Wichmann, 1994). For illustration, a fluorophore excitable by 400 nm can be imaged by a NA=1.4 objective 

at a resolution of 35 nm (Hell and Wichmann, 1994). 
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In neurosciences, STED is optimal for subcellular imaging such as studying dendritic spine 

plasticity in brain slices (Nagerl et al., 2008). However, recent publications showed its applicability even in 

vivo in cortical neurons of living mice (Berning et al., 2012). 

5 Reporting neuronal activity 
 High-resolution imaging tools such as 2PLSM combined with modern fluorophores have 

significantly increased the scale in which neural activity can be observed. Hopefully, these new methods 

will provide more insight into the, yet undiscovered, general principles of how information is coded and 

processed by neural tissue. 

5.1 Definition of neural activity 

Neural activity carries information in the form of a change in electrical behavior of the neuron 

membrane, the action potential (AP). An AP consists of a rapid depolarization (Na+ influx) followed by a 

brief hyperpolarization (K+ outflow) (Hodgkin and Huxley, 1952). Moreover, an AP is also accompanied 

by the rise of intracellular calcium (Ca2+) concentration (Baker et al., 1971) mediated by voltage-gated Ca2+ 

channels (Magee and Johnston, 1995) and Ca2+induced Ca2+ release from intracellular deposits (Llano et al., 

1994). Calcium is an important second messenger and it has a significant role in modulating cellular 

physiology (Berridge, 1998) such as the control of neuronal excitability (Berridge, 1998) or 

neurotransmitter release (Uchitel et al., 1992). 

5.2 Electrophysiology 

A high-resolution representation of neural activity can be achieved through directly monitoring 

electrical properties of single neurons via electrodes. 

5.2.1 Extracellular recording 

Extracellular electrical recording of neural spikes (corresponding to single APs) has been, 

classically, the dominant technique in in vivo neurophysiology (Chorev et al., 2009; Lutcke and Helmchen, 

2011). For example, it has been used to determine the receptive fields of single neurons in cat striate cortex 

(Hubel and Wiesel, 1959). Moreover, if multiple electrodes are used (tetrodes or multi-shank silicon 

probes), simultaneous recording from effectively up to 100 neurons is possible via triangulation and spike 

sorting algorithms (Buzsaki, 2004). The main limitations of extracellular recording lie within insufficient 

identification of recorded neurons (Buzsaki, 2004; Chorev et al., 2009). Also, this technique does not 

provide the means to manipulate with the neuron (Chorev et al., 2009) and may lead to ignoring silent 

neurons. 

On the other hand, juxtacellular electrical recording is capable of manipulating with, and labeling 

(biocytin) of single neurons via electroporation (Chorev et al., 2009). Furthermore, it is preferable over 

intracellular recording in terms of tissue damage. However, due to specific micropipette positioning and its 
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proximity to the cell, in vivo juxtacellular recording is restricted to a few cells, while there is a hazard of 

damaging them (Chorev et al., 2009). 

5.2.2 Intracellular recording 

 Intracellular recordings provide the most detailed insight into the electrical activity of single 

neurons. Aside from the possibility to stimulate and label neurons, intracellular recordings also detect sub-

threshold events such as synaptic potentials (Chorev et al., 2009). For example, whole-cell patch-clamp 

recordings of barrel cortex neurons were conducted to observe the dynamics of neural spikes during 

whisker-related behavior of awake mice (Crochet and Petersen, 2006). However, in awake studies, the rate 

of successful recordings is rather low, while the duration of the recording is limited to ~1 hour (Chorev et 

al., 2009). 

5.3 Optophysiology 

 Recordings of single cells cannot sufficiently uncover the function of multicellular neural networks 

(Knopfel et al., 2006). Small-molecule fluorescent dyes or fluorescent proteins capable of detecting the 

changes associated with an AP, significantly extend the scale of possible neural activity recordings. If 

imaged by high-resolution fluorescence microscopes, fluorescent probes exhibit alterations in emitted 

fluorescence coupled with the binding of Ca2+ ions or changes in membrane voltage.  

5.3.1 Fluorescence reporting 

 Fluorescent neural activity reporters include small organic fluorescent dyes and genetically encoded 

fluorescent proteins. These share similar general architecture and are dividable into two groups based on the 

number of employed fluorophores. In single-fluorophore reporters, binding of the ligand results in a 

conformational change of the sensor, which leads to altered fluorescence. In the case of Förster resonance 

energy transfer (FRET) reporters, two fluorophores are present in a single molecule. One, instead of 

fluorescence emission, transfers its energy to the other via a dipole-dipole interaction (Dunn et al., 1994). 

The binding of the ligand induces conformational changes resulting in reduced distance between the 

fluorophores. The resulting increase in energy transfer efficiency leads to a change in the ratio of the 

respective fluorescence contributions, which can be measured (Smedemark-Margulies and Trapani, 2013). 

Ratiometric fluorescence imaging allows for quantitative fluorescence microscopy (Dunn et al., 1994), 

since such reporters can be precisely calibrated. Moreover, it minimizes the effect of photobleaching, 

uneven dye loading, motion artifacts and leakage, all of which are common problems of single fluorophore 

reporter dyes (Paredes et al., 2008). 

5.3.2 Small organic dyes 

In the past, cellular morphology and physiology has been fluorescently imaged mostly using 

synthetic organic dyes (Lutcke and Helmchen, 2011). These include widely used molecules such as DAPI 

used to stain nucleic acids since 1970s (Kapuscinski, 1995), or others based on fluorescein or rhodamine 
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(Minta et al., 1989). The major advantages of synthetic dyes over protein probes lie within the ease of their 

application, commercial availability and large variety of different affinities (Paredes et al., 2008). 

Moreover, synthetic reporters often outperform protein probes in binding kinetics and signal-to-noise ratio 

(SNR) (Hendel et al., 2008). However, high concentration of organic dyes may negatively interfere with 

physiological functions of cells (Paredes et al., 2008). Furthermore, organic dye targeting into specific cell 

populations is very limited. 

5.3.2.1 Voltage sensitive dyes (VSDs) 

The change in membrane potential was the first AP-associated phenomenon targeted by fluorescent 

probes. First fluorescent dyes such as 8-Anilinonaphthalene-1-sulfonic acid (ANS) (Tasaki et al., 1968) did 

not yet generate sufficient SNR for neural activity reporting (Cohen et al., 1978). However, inspired by 

these, merocyanine-rhodanine dyes were synthetized with the SNR as high as 100:1 (Ross et al., 1977). 

VSDs are normally membrane-bound molecules, which exhibit a fast change in the absorption during a 

change in membrane potential (Fig. 11). 

 

 
Fig. 11, Simultaneous recording of the change in absorption of a merocyanine dye (dotted) and the 

electrophysiological recording of an AP (line) (Baker et al., 2005) 

 

 Currently used VSDs such as RH1691 have improved sensitivity and staining efficiency (Lutcke 

and Helmchen, 2011). However, they are not capable of reporting at cellular resolution and are, therefore, 

limited to indication of neural activity of neural populations. For example the activity of rat barrel cortex 

columns during whisker stimulation (Petersen et al., 2003). The molecular mechanisms underlying the 

reporting of different VSDs include electrochromism, potential sensitive monomer-dimer equilibrium and 

dipole rotation (Baker et al., 2005). Since VSDs are lipophilic, cells can be placed directly into the VSD 

containing solution during in vitro studies (Berger et al., 2007). For in vivo studies, the VSD dissolved in 

artificial cerebrospinal fluid (ACSF) is directly applied to dura mater above the imaged brain region 

(Lippert et al., 2007). 
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 The major advantages of VSDs include high SNR and capacity to detecting sub-threshold activity. 

On the other hand, VSDs cannot report at the cellular resolution in vivo and are more suitable for large scale 

activity tracking such as the spread of tactile sensory information to the motor cortex (Ferezou et al., 2007). 

5.3.2.2 Calcium indicators 

Synthetic indicator-based fluorescent reporting on AP-evoked Ca2+ transients delivers a good 

representation of neuronal supra-threshold activity (Lutcke and Helmchen, 2011), providing single-cell and 

single-AP resolution in vivo (Kerr et al., 2005; Grewe et al., 2010). Synthetic calcium indicators are usually 

based on a highly selective calcium chelator such as EGTA or its derivative BAPTA, which is covalently 

linked to a fluorescent reporter (Thomas et al., 2000).  

As for the mode of delivery, firstly, small-molecule calcium reporters can be delivered into the cell 

as salts via microinjection, patch-pitpette or in liposomes (Paredes et al., 2008). However, these tend to 

compartmentalize which is negative for calcium imaging. This problem can be solved by the application of 

their dextran conjugates (Paredes et al., 2008). Nevertheless, these are also membrane impermeable and 

normally require invasive cell-loading (Paredes et al., 2008) such as cilia removal by a nonionic detergent 

,such as Triton X100 (Friedrich and Korsching, 1997), as when imaging olfactory bulb neurons by Calcium 

green dextran (Wachowiak and Cohen, 2001). Finally, the most widely used technique for in vivo calcium 

probe delivery is the multi-cell bolus loading (MCBL) (Stosiek et al., 2003). It is based on local pressure 

ejection of membrane-permeant acetoxymethyl (AM) esters of calcium indicators into the tissue (Stosiek et 

al., 2003). Such engineered probes traverse the plasma membrane into the cytosol, where the AM group is 

cleaved of by endogenous esterases, thus trapping the rest of the molecule inside (Grynkiewicz et al., 1985). 

As little as 400 fl of dye-containing solution is able to stain a spherical region with a diameter of 300 µm 

(Stosiek et al., 2003). 

Among the single-fluorophore calcium dyes, the best properties were attributed to fluo-3 over 

Oregon Green 488 BAPTA-1 (OGB-1) (Thomas et al., 2000). However, since OGB-1 (Fig. 12) is more 

suitable for 2PLSM (Paredes et al., 2008), it is the most widely used fluorescein-like calcium probe in in 

vivo calcium imaging. 

 
Fig. 12, The chemical structure of OGB-1 AM, the most widely used synthetic calcium indicator prepared for MCLB. 
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Among the ratiometric dyes fura-2 (Grynkiewicz et al., 1985) has been most popular for 

quantitative measurements, although it is non-ratiometric in 2PE (Paredes et al., 2008), while Indo-1 

(Grynkiewicz et al., 1985) remains ratiometric in 3PE (Paredes et al., 2008). The main disadvantage of 

synthetic calcium dyes is the absence of targeting, artificial buffering of calcium and also leakage after 

longer time periods (Thomas et al., 2000; Paredes et al., 2008), with low chance of successful relabeling 

(Lutcke and Helmchen, 2011). Nevertheless, synthetic Ca2+ reporters have historically outperformed protein 

probes in Ca2+ binding kinetics and SNR (Hendel et al., 2008). 

5.3.3 Protein-based indicators of neuronal activity 

Simultaneous recording of specific neuronal populations is essential for the understanding of  

fundamental principles of neural network functioning. Genetically encoded protein probes are composed 

entirely of amino acids and they are independent of cofactors (as opposed to synthetic dyes). Therefore, if 

their coding sequences are integrated into the genome of a model organism, the expression of the probe is 

mediated in situ by cells themselves and does not require loading (Mank and Griesbeck, 2008). 

Furthermore, the spatiotemporal aspects of protein expression can be controlled by genetic engineering 

methods, described in previous chapters. In addition, properties such as the dynamic range of protein 

reporters may be adjusted by targeted mutation to better fit the requirements of the experiment (Baker et al., 

2008). 

5.3.3.1 General architecture of protein indicators 

The principle of expressing genetically encoded indicators with cell-type specificity, was first 

proposed in the case of a bioluminescent calcium indicator, aqueorin (Knopfel et al., 2006). However, due 

to its requirement of a cofactor and limited light output, it proved suboptimal for brain imaging (Stables et 

al., 2000; Knopfel et al., 2006; Mank and Griesbeck, 2008). 

 Optimal probe properties were finally achieved by engineering reporters based on the Green 

Fluorescent Protein (GFP) (Heim et al., 1995; Tsien, 1998), exhibiting the unique trait of autocatalytic 

fluorescence (Mank and Griesbeck, 2008). A single XFP (a GFP mutant of a different color), or a FRET 

pair is fused to a transducer protein sensitive to specific neural activity-evoked physiological changes in 

parameters such as intracellular calcium concentration or membrane potential (Knopfel et al., 2006). A 

conformational change of the biosensor induced by the transducer protein in the event of neural activity, 

results in detectable change of fluorescence (Knopfel et al., 2003). 

 

5.3.3.2 Voltage sensitive protein reporters 

The first generation of genetically encoded voltage indicators (GEVIs) has been engineered by 

fusing a GFP-based reporter (or a FRET pair) to various sites of a voltage-gated ion channel (or a part of it), 
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with subsequent screening for functioning probes (Knopfel et al., 2003; Baker et al., 2008). This approach 

resulted in the creation of three different prototypes: FlaSh, based on the D. melanogaster K+ Shaker 

channel (Siegel and Isacoff, 1997), SPARC, exploiting the skeletal muscle Na+ channel (Ataka and 

Pieribone, 2002) and VSFP1, using only the voltage-dependent S4 domain of the Kv2.1 channel (Knopfel 

et al., 2003). The main limitation of the first generation voltage sensors has been mostly poor plasma 

membrane targeting in mammalian cells combined with large background signal (Dimitrov et al., 2007). 

The second generation of voltage-sensitive protein reporters has been focused on “self-contained” 

voltage-sensor domains (Baker et al., 2008). These do not form multi-subunit complexes such as ion 

channels, thus modulating the negative effect fluorescent tags might have had on the first generation 

reporter folding (Baker et al., 2008). A non-ion channel protein (Ci-VSP) containing a phosphoinositide 

phosphatase and a self-contained voltage-sensing domain (homologous to S1-S4 domains of voltage-gated 

channels) was discovered in an ascidian Ciona intestinalis (Murata et al., 2005). A FRET pair (CFP/YFP) 

was fused to the voltage-sensing domain of Ci-VSP, replacing the phosphatase domain (Dimitrov et al., 

2007) resulting in VSFP2(A-D). Additional refinement led to the development of ArcLight, the most 

advanced Ci-VSP-based GEVI to date, with superior SNR, capable of single-trial optical electrophysiology 

(Cao et al., 2013).	

However, Ci-VSP-based GEVIs suffer from weak dynamic responses, which prevent these sensors 

from reliably imaging fast-spiking neurons (Gong et al., 2014). Therefore, the next generation of GEVIs 

includes changes in protein architecture aimed at solving these issues. The Accelerated Sensor of APs 

(ASAP1) includes a single circularly permuted GFP attached to the extracellular S3-S4 loop of the VSD 

(Fig. 13) (originating from a chicken phosphatase), which ultimately enables higher brightness and faster 

kinetics (St-Pierre et al., 2014). Comparable values were reached creating a class of FRET-opsin sensors 

where Mac rhodopsin serves as both VSD and FRET acceptor, and mCitrine serves as FRET donor (MacQ-

mCitrine) (Gong et al., 2014). These third generation GEVIs have now approached the level of single-cell 

in vivo membrane-potential recordings, but have not yet surpassed the reliability of calcium indicators 

(Gong et al., 2014). 

 
Fig. 13, Schematic representation of the mechanism of neural reporting by ASAP1, which includes a cpXFP fused to 

the extracellular part of a VSD (St-Pierre et al., 2014). 
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 Among the advantages, GEVIs report on sub-threshold neural activity including inhibitory synaptic 

potentials at a very high temporal resolution (Lutcke and Helmchen, 2011). However, some GEVIs may 

change the physiological properties of the membranes by increasing their capacitance, which may result in 

altered subthreshold and spiking properties (Baker et al., 2008). 

5.3.3.3 Genetically encoded calcium indicators (GECIs) 

Apart from the fluorescent tag common for most of the genetically encoded protein indicators 

(XFPs/FRET pair), GECIs include a transducer domain capable of protein-based Ca2+ chelation (Mank and 

Griesbeck, 2008). The EF hand domain was selected among the other considered Ca2+-binding domains to 

serve as a transducer in GECIs since it binds one calcium ion with constant kinetics (Mank and Griesbeck, 

2008). The calcium ion is bound in the loop section of the helix-loop-helix motif first described in 

parvalbumin (Kretsinger and Nockolds, 1973). EF-hand domains always occur in pairs with cooperativity 

in Ca2+ binding (Grabarek, 2006), which in regulatory proteins, such as calmodulin or troponin C, results in 

conformational changes.  

5.3.3.3.1 FRET sensors 

The first GECI, cameleon-1, was constructed exploiting the conformational change of calmodulin 

(CaM) coupled with a change in the fluorescence ratio of a FRET pair (Miyawaki et al., 1997). Apart from 

a XFP, CaM is also fused to a calmodulin-binding peptide (M13) from the myosin light chain kinase (Ikura 

et al., 1992), also bearing a fluorescent tag (Fig. 15). Binding of a calcium ion results in close interaction 

between CaM and M13, which subsequently brings the two XFPs closer together, thus altering the 

fluorescence ratio of the FRET pair (Miyawaki et al., 1997). The employment of M13 was motivated by the 

aim to increase fluorescence and by the need to interfere with possible binding of endogenous CaM-binding 

proteins (Mank and Griesbeck, 2008).  

Further development led to Yellow cameleon (YC), later refined into YC2.60, or D3cpVenus and 

YC3.60, which use circularly permuted variants of XFPs (Baird et al., 1999) with higher SNR (Nagai et al., 

2004). These probes, however, still proved not sensitive enough for in vivo studies (Horikawa et al., 2010). 

Further extension of the linker between CaM and M13 of YC2.60 led to the creation of the ultrasensitive 

probe YC-Nano. YC-Nano proved capable of imaging small perturbation of Ca2+ concentration (10 -100 

nM) in vivo by 2PLSM (Horikawa et al., 2010). 

However, native CaM (playing a significant role in cell signaling) has been known to interact with 

CaM-based GECIs, thus interfering with their reporting (Nakai et al., 2001). Apart from the alteration of 

CaM and M13 (Palmer et al., 2006), this problem may be addressed by using a different EF-hand-

containing protein for Ca2+ chelation such as Troponin C (TnC) (Mank and Griesbeck, 2008). The role of 

muscle TnC, which is not found free in the cytosol, is exclusive to muscle contraction regulation (as a part 

of a complex) and therefore TnC-based reporters are not subject to endogenous protein binding (Mank and 

Griesbeck, 2008), which minimalizes their impact on cell physiology (Mank et al., 2006). TnC-based FRET 
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sensors were constructed, similarly to their CaM-based counterparts, by sandwiching the TnC construct 

between two XFPs, such as CFP and Citrine in the first sensor TN-L15 (Heim and Griesbeck, 2004). 

Subsequently, versions with enhanced signal strength such as TN-XL (Mank et al., 2006) or further 

improved TN-XXL (Mank et al., 2008) were engineered. Twitch sensors represent the most recent 

development in TnC-based FRET sensors. They were designed on the basis of TN-XXL, with the aim to 

reduce the Ca2+-sensitive domain to a minimum, since originally these sensors bind up to 4 calcium ions per 

molecule (Thestrup et al., 2014). As a result a minimal calcium-binding motif was identified (C-terminal 

domain of TnC), binding only 1 or 2 ions per molecule, thus reducing the calcium buffering and the 

subsequent effect on cell physiology (Thestrup et al., 2014). Twitch sensors have proven useful in in vivo 

neural activity reporting, while outperforming the CaM-based FRET sensor, YC3,60 (Thestrup et al., 2014) 

5.3.3.3.2 Single-fluorophore 

As opposed to FRET sensors, single-fluorophore GECIs report on calcium transients by altering the 

fluorescence of a single XFP. The fusing of GFP (or its mutated forms) to transducer proteins has been 

made possible by the emergence of its circularly permuted variants (cpXFPs) (Baird et al., 1999), which 

have altered N and C termini locations. Subsequent successful fusion of a cpEYFP to the C terminus of 

M13 and to the N terminus of CaM has yielded a fluorescent Ca2+-sensitive protein pericam (Nagai et al., 

2001). The most popular single-fluorophore GECI (Mank and Griesbeck, 2008), GCaMP, was created 

analogously using a cpEGFP fluorescent tag instead of its yellow mutation (Fig. 15) (Nakai et al., 2001). 

Further targeted improvements of GCaMP were made possible by the description of its structure 

and molecular mechanisms underlying fluorescence generation (Akerboom et al., 2009). Subsequent 

structure-guided mutagenesis and semi-rational library screening resulted in versions such as GCaMP3 with 

improved parameters including SNR, photostability and kinetics. However, GCaMP3 is not capable of 

resolving single APs during in vivo experiments and further refinement (same principle as before) was 

required to obtain higher sensitivity found progressively in GCaMP5 (Fig. 14) (Akerboom et al., 2012) and 

most recently GCaMP6, which has become the first GECI to reach single AP resolution (Chen et al., 2013). 

In order to include the specific properties of neuronal calcium signaling, the development of 

GCaMP6 included screening of the generated mutants in neurons (Chen et al., 2013) rather than in E.coli 

(used previously (Akerboom et al., 2012)). Multiple rounds of targeted mutagenesis resulted in three 

GCaMP6 variants (s-slow, m-medium and f-fast). The most sensitive variant, GCaMP6s, produces 

fluorescence signals more than 10 times larger than GCaMP3, while the fastest variant, GCaMP6f, 

achieved unprecedented sensitivity (in terms of GECI) for single APs, comparable to OGB-1 (Chen et al., 

2013) (Fig. 14). Moreover, GCaMP6 sensors are capable of detecting more active neurons than other 

GECIs or OGB-1. In addition, experiments coupled with electrophysiological recordings have proven that 

GCaMP6 sensors are able to resolve single spikes at high detection rates (Chen et al., 2013). Finally, long-

term experiments including multiple imaging sessions separated by months suggest that the expression of 

GCaMP6 does not interfere with the function of neural circuits (Chen et al., 2013). 
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Fig. 14, Average responses to one action potential for different variants of GCaMP- (6f, 6M, 6S, 5G, 3) and OGB-1 

(Chen et al., 2013). 

 

The novel advancements transformed GECIs into the most widely used method for in vivo neural 

activity reporting, while modern GEVIs are well-suited to complement calcium imaging by adding more 

temporal precision to electrical events beyond single spikes (Gong et al., 2014). 

5.3.3.4 FRET vs. single-fluorophore reporters 

 The choice of a specific sensor is strictly dependent on the nature of the experiment. The FRET-

based sensors are universally better for quantification studies, which may be advantageous during long-term 

functional imaging (Thestrup et al., 2014), or when expecting significant background noise (Smedemark-

Margulies and Trapani, 2013). Also, FRET-based sensors generate higher resting signal, which enables 

easier identification of inactive cells, as well as the distinction between resting and continually active 

neurons (Thestrup et al., 2014). On the other hand, single-fluorophore sensors exhibit higher photostability 

and better SNR (Nakai et al., 2001) with stronger signal and faster kinetics (Tian et al., 2009), which 

enables modern sensors such as GCaMP6 to detect single APs in large scale with high reliability. 

 

 
 

 

Fig. 15, Left: A schematic representation of the GCaMP family of calcium probes. The use of cpEGFP has enabled the 

fusion of both CaM and M13 to a signle cpXFP (Nakai et al., 2001). Right: A graphic representation of the mode of 

action of FRET CaM-based calcium sensors (cameleon-1) (Miyawaki et al., 1997). 
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5.3.3.5 Synthetic dyes vs. protein-based sensors 

Synthetic dyes lack the cell-type-specifity or large-scale application possible by protein indicators. 

However, their ease of use, high SNR and the fact that they do not require valuable transgenic models, 

makes them continuously relevant in acute in vivo experiments. 

5.3.3.6 Optophysiology vs. electrophysiology 

Recordings based on neural activity-dependent changes in fluorescence should always be supported 

by electrophysiological recordings in order to be completely relevant (Gong et al., 2014). This is due to the 

fact that electrophysiological techniques are capable of recording neural activity with high temporal 

resolution and AP-detection reliability much greater compared to synthetic or protein-based probes. 

However, large-scale cell-type-specific recordings of neural networks in vivo are technically unfeasible by 

electrophysiological methods and remain an exclusive domain of optophysiology. Therefore, it is safe to 

say that optophysiological and electrophysiological methods are, in many aspects, complementary.  

5.4 Review of selected methods 

Recently, a number of new techniques have further extended the applicability of the mentioned 

imaging methods. Some of these are reviewed in the following paragraphs. 

5.4.1 Cranial window technique 

The application of 2PLSM in chronic in vivo brain experiments required a method capable of 

eliminating the natural optical barrier represented by the skull. The cranial window was originally 

developed as a tool for studying angiogenesis of transplanted tumors in mice models (Yuan et al., 1994), 

while being later repurposed for neurophysiology, first during studies concerning long-term synaptic 

plasticity using 2PLSM (Trachtenberg et al., 2002). The chronic cranial window is created by carefully 

drilling the skull with a small-sized burr-tip drill, while applying cold saline in order to minimize thermal 

damage of the underlying tissue (Yuan et al., 1994). Upon removing a region of the skull, the exposed dura 

is usually covered with agarose, coverslipped and sealed by dental acrylic. After 7-10 days of recovery, the 

animal is ready for imaging (Trachtenberg et al., 2002) and does not display any behavioral deficits. 

Besides experiments under anesthesia, such mice may also be used for cortical calcium imaging under 

diverse behavioral conditions (Dombeck et al., 2007).  

Another related method, the transcrianial imaging, does not require craniotomy and therefore 

represents a less invasive alternative for cortical imaging. In some cases, it has surprisingly rendered 

different results compared to craniotomy-based experiments (Wilt et al., 2009). Transcranial two-photon 

imaging includes thinning of the skull with a high-speed drill (including frequent cooling with cold sterile 

solution) to a thickness of ~ 50µm (Grutzendler et al., 2002). For example, this technique was used for 

calcium imaging of the auditory cortex of a unanesthethized GCaMP3-expressing mouse (Issa et al., 2014). 
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However, repeated skull thinning results in opaqueness of the skull due to bone regrowth, which limits the 

number of screenings (Wilt et al., 2009). 

5.4.2 Microendoscopy 

Whole-brain anatomy and physiology can be studied by non-invasive methods such as PET 

(positron emission tomography) or MRI (magnetic resonance imaging) (Jacobs and Cherry, 2001). 

However, the achievable resolution is significantly lower in comparison to fluorescence microscopy 

(Levene et al., 2004). On the other hand, advanced FM methods, such as 2- or 3PLSM, are capable of 

imaging structures only in the order of one millimeter from the surface, (corresponding to mouse neocortex) 

(Horton et al., 2013).  

To overcome this limitation, invasive microendoscopes, which serve as an “extension” of the 

original setup, can be introduced into the sample tissue. The microendoscope is comprised of a gradient-

index (GRIN) lens triplet including an objective lens, a relay lens and a coupling lens (Fig. 16b) (Jung and 

Schnitzer, 2003). These GRIN triplets are capable of translating an excitation beam focused at the coupling 

lens, so that it is focused approximately the same way by the objective lens into a focal plane within the 

sample (Fig. 16a) (Jung and Schnitzer, 2003). Today, microendoscopy is performed using both two-photon 

(laser-scanning) and one-photon (laser-scanning, or wide-field) excitation including miniaturized setups 

(Fig. 16c) capable of long-term calcium imaging of hippocampal CA1 neurons in behaving, freely-moving 

mice (Ziv et al., 2013) 

 

 
 

 

Fig. 16, a: a schematic representation of a multiphoton endoscopy setup, b: a representation of how the focused laser 

beam is relayed by a GRIN triplet, c: a miniaturized portable setup enabling calcium imaging of deep brain regions 

(Jung and Schnitzer, 2003; Ziv et al., 2013). 

 

 The achievable resolution of multiphoton GRIN-based microendoscopy is around 850 nm (Jung et 

al., 2004), while the depth reachable by the probe is in the order of centimeters (Levene et al., 2004). The 

price for the recording from almost any depth is the fact that the insertion of the microendoscope 
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traumatizes the above lying tissue. However, such tradeoff is often acceptable since the diameters of the 

endoscopes range from 350 to 1000µm. 

5.4.3 Two-photon Targeted Patching (TPTP)  

Classical electrophysiological recordings provide data with superior temporal resolution. However, 

the inability to target specific neurons has been a significant limitation of the application of 

electrophysiology in vivo (Margrie et al., 2003). This problem may be solved by genetically labeling target 

neurons with fluorescent probes, which then mark the cells of interest for optically targeted whole-cell 

recordings. This technique, called two-photon targeted patching (TPTP), has allowed the identification and 

whole-cell recordings of any type of cortical cell in a living experimental animal (Margrie et al., 2003).  

6 Modulation of neural activity; Optogenetics 
As proposed by Francis Crick (Crick, 1979), the key to profound understanding of how the brain 

functions, may not lie within the outside analysis of natural or unnatural behavior, but in the capacity to 

precisely interfere at multiple levels, most notably cellular and molecular (Crick, 1999). Electrophysiology 

is capable of achieving high temporal precision in electrical manipulation, however, with poor cell-

specificity. Conversely, genetic and pharmacological tools are able to target specific cell-types, although 

not with sufficient temporal resolution (Fenno et al., 2011).  

The lack of methods with sufficient cellular and temporal resolution has inspired the search for new 

approaches. The combination of optical and genetic methods, optogenetics, possesses optimal properties 

since it allows non-invasive high-resolution manipulation (microseconds and micrometers) upon minimal 

interference with cellular physiology. 

6.1 Multi-component tools 

First methods capable of light-driven control over cellular physiology relied on multi-component tools. 

In the beginning, these approaches aimed for direct optical control over the loss, or gain of function of 

specific proteins or ligands. 

6.1.1 Chromophore-assisted laser inactivation (CALI)  

The chromophore-assisted laser inactivation of a protein uses specific antibodies or ligands conjugated 

with malachite green, to denature the bound protein if irradiated by a specific wavelength (Jay, 1988). This 

technique was, for example, used for studying stage-specificity of the segments-polarity protein Patched 

during D. melanogaster embryogenesis (Schmucker et al., 1994). 

6.1.2 Uncaging 

Another multi-component method involves the conditional inactivation of a molecule active in cellular 

physiology by adding a photolabile group, also termed “caging”. This blocking group is degraded upon 

irradiation by a specific wavelength, thus freeing, or “uncaging” an active agonist (Mayer and Heckel, 

2006). Neurophysiology has adapted this method for spatially conserved light-activation of caged 
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neurotransmitter receptor agonists, mostly glutamate hence its capacity to activate most of the mammalian 

brain neurons, thus provoking neural activity with high specificity (Callaway and Katz, 1993). Moreover, 

2PLSM has now allowed the photolysis of caged glutamate in vivo, thus further expanding the tools needed 

to study synaptic properties, for which this method proved optimal (Noguchi et al., 2011).  

To further improve cell-type specificity, heterologous receptors responding to non-neurotransmitter 

ligands can be genetically encoded into the targeted neuronal type, thus adding a different level of control 

over the neuron stimulation (Zemelman et al., 2003). The nociceptive vanilloid (TRPV1) and menthol 

(TRPM8) ionotropic receptors present ideal heterologous receptors for neurons of the mammalian brain. 

They are naturally expressed exclusively in the peripheral nervous system, and their agonists capsaicin or 

menthol do not act as neurotransmitters while they contain acceptor sites for a photoremovable caging 

group (Zemelman et al., 2003). For experiments in D. melanogaster, nociceptive channels were replaced 

with a purinergic P2X2 channel due to the retention of TRPV1 in ER (endoplasmic reticulum) of insect 

cells. During these experiments, it was shown that stimulation of dopaminergic neurons triggers changes in 

locomotion along with inducing exploratory behavior (Lima and Miesenbock, 2005) 

6.1.3 Photoswitchable receptors 

Another approach to achieving remote control over genetically specified cell-types is to covalently 

bond an ion channel to a “tethered” agonist through a photoisomerizable azobenzene linker. Light-induced 

photoisomerization of the linker optimally manipulates with the position of the ligand in relation to its 

binding site, thus activating the channel, as in the LiGluR (light-activated ionotropic glutamate receptor) 

(Volgraf et al., 2006). The LiGluR can be “turned on” by a light pulse inducing the cis- transition (380 nm) 

and remains in this state even without photostimulation up until the trans- state is provoked by a light pulse 

of 500 nm (Fig. 17) (Volgraf et al., 2006). This allows for long depolarizations without extensive exposure 

to light (Szobota et al., 2007). Moreover, control over the neuronal activity achieved through 

photoswitching allows reliable recreation of subthreshold activity (Szobota et al., 2007). It has been shown 

that the activation of LiGluR in specific neurons of transgenic zebrafish may result in a change of behavior 

such as blocking of the escape reflex, while not being toxic to the animal (Szobota et al., 2007). 

 
Fig. 17, Schematic representation of the light-induced activation of LiGluR. Wavelength-dependent 

photoisomerization of the tethered ligand, maleimide-azobenzene-glutamate (MAG) results in the activation of 

LiGluR, while illumination by light of 500nm leads to its inactivation (Szobota et al., 2007). 
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Multi-component tools include cascades of engineered proteins along with exogenous synthetic 

molecules, which need to be introduced into the tissue. Moreover, their presence alters the native 

physiological state more than the presence of a single-component tool would, and therefore, may present 

greater danger in terms of cell damage (Deisseroth, 2011).  

6.2 Single-component tools 

Single-component tools combine light-detection and effector domains into one protein, therefore 

reducing the size of foreign DNA or material, which needs to be introduced into the targeted neurons. They 

also represent the optimal measure of neuronal manipulation as was once projected by Francis Crick, by 

being capable of changing the properties of single neurons while not affecting other cells. 

6.2.1 Microbial opsins 

The capacity to detect and react to light is shared by all three domains of life. In all these domains, 

light-detection is often mediated by opsins; a family of seven transmembrane proteins divisible into two 

relatively unrelated superfamilies (Fenno et al., 2011). Type I opsins include light-driven proton pumps and 

channels, and are exclusively used by prokaryotes, algae and fungi (Spudich, 2006). Type II opsins encode 

light-sensitive G-protein coupled receptors (GPCRs), and are solely used by higher eukaryotes. Both types 

of opsins require a small, vitamin A-related organic cofactor, retinal, which grants the cofactor-apoprotein 

complex (rhodopsin) its light-sensitivity (Fenno et al., 2011). In the case of type II opsins, the absorption of 

a photon leads to the photoisomerization of retinal from cis- to trans-state, coupled with its dissociation 

from the complex (Hofmann et al., 2009). On the other hand, type I opsins, are activated by trans to cis 

photoisozomeration of retinal with the cofactor remaining covalently bound to the channel. Subsequent 

spontaneous thermal reisomerization from cis to trans completes the cyclic reaction termed “photocycle” 

(Haupts et al., 1997). Unfortunately, the application of microbial opsins as a possible optogenetical tool was 

long overlooked since the discovery of the light-driven proton pump bacteriorhodopsin (Oesterhe and 

Stoecken, 1973) due to general disbelief in their single-component functionality (Deisseroth, 2011). 

6.2.1.1 Neural excitation 

The discovery of two type I rhodopsins found in a green alga (Chlamydomonas reinhardtii), the 

light-driven proton channel Channelrhodopsin 1 (ChR1) (Nagel et al., 2002) and the light-driven cation 

channel Channelrhodopsin 2 (ChR2) (Nagel et al., 2003), finally led to the first application of rhodopsins as 

tools for neuroscience (Boyden et al., 2005). If illuminated by light of 470nm wavelength, the all-trans 

retinal undergoes isomerization, which triggers conformational changes leading to the opening of the ChR2 

channel pore and subsequent membrane depolarization (Fig. 18a) (Zhang et al., 2006). The expression of 

ChR2 in mammalian neurons was deemed stable and safe while conserving natural basal electrical 

properties of the membrane (Boyden et al., 2005). Moreover, ChR2 is not only capable of generating 

precisely controlled spike activity while mimicking native neuronal firing (provided by diverse light 
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sources) (Fig. 18b), but it is also capable of producing physiologically significant subthreshold 

depolarizations, although in a less precise manner (Boyden et al., 2005).  

 
Fig. 18, a: An inward current evoked by a 500ms pulse of blue light in a voltage-clamped ChR2-expessing neuron. b: 

Electrical recording of a ChR2-expressing current-clamped neuron illuminated by trains (20, 30 and 50 Hz) of 10ms 

pulses of blue light (Zhang et al., 2006). 

 

Although type I opsins require retinal for functioning, their in vivo application in mammalian 

central nervous system (CNS) does not require supplementary delivery of exogenous cofactors since 

sufficient level of native retinoids is already present in the tissue (Zhang et al., 2006). However, in the case 

of invertebrate models, such as D. melanogaster or C. elegans, the insufficient level of endogenous cofactor 

needs to be supplemented in diet (Nagel et al., 2005). Therefore, type I opsins serve as an effective single-

component optogenetic tool, where one protein complex (such as the 315 amino-acid long ChR2 (Zhang et 

al., 2006)) detects light and also mediates the electrical response (Fig. 19). Since type I opsins are of 

microbial origin, one of the challenges was to ensure mammalian codon-optimization and successful 

membrane-trafficking in mammal neurons (Gradinaru et al., 2010). Further refinement through rational 

engineering of ChR2 led to versions such as ChETA with faster deactivation kinetics, capable of production 

of high frequency spiking with increased reliability while reducing the occurrence of extra spikes and 

plateau potentials (Gunaydin et al., 2010).  

Furthermore, molecular engineering targeted at the ChR2 photocycle steps have rendered bi-stable 

mutants termed step-function opsins (SFOs). The SFOs include multiple bi-stable variants with slightly 

different properties, all of which lack the native time constant of ChR2 (~10ms) (Berndt et al., 2009). Most 

importantly, along with being activated (activation can last for minutes) by short pulses of blue light, these 

rhodopsins are turned off by pulses of green light, therefore allowing photoswitching similar to that of 

LiGluR, but with all the advantages of a single-component tool (Berndt et al., 2009).  

 The search for similar rhodopsins in other organisms has rendered a light-gated cation 

channelrhodopsin from an spheroidal alga (Volvox carteri), which was, due to its homology to ChR1, 

termed VChR1 (Zhang et al., 2008). The importance of VChR1 lies within its photostimulation wavelength, 

which is red-shifted compared to ChR2. This allows simultaneous control of two genetically targeted 

neuronal populations, since exclusive excitation of either ChR2- or VChR1-expressing neurons can be 

reached by using light of 406nm or 589 nm respectively (Zhang et al., 2008). Unfortunately, due to strong 

scatter, it is impossible to effectively separate both excitation wavelengths in vivo.  
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6.2.1.2 Neural inhibition  

 Light-driven neural excitation first mediated by ChR2 inspired the need for complementary light-

driven neural inhibition. The search for such tool has first led to archeal light-driven chloride pumps, 

halorhodopsins. Among these, NpHR of Natronomonas pharaonis was ultimately selected, codon-

optimized for mammals and tested in cultured current-clamped neurons proving its capability to mediate 

light-driven hyperpolarization (Zhang et al., 2007). If combined with a calcium indicator and 2PLSM, the 

NpHR/ChR2 system provides an all-optical tool for control and imaging of neural network (Zhang et al., 

2007). 

However, sub-optimal performance of NpHR, including trouble with membrane trafficking in non-

mammalian models such as C elegans. (Husson et al., 2012), has motivated the search for alternative 

hyperpolarizing optogenetic tools found in light-driven proton pumps Arch and Mac (Chow et al., 2010). 

Their in vivo application in “circuit breaking” of nematode nociception and mechanosensation proved their 

ability to overcome certain limitations of NpHR (Husson et al., 2012) along with presenting the possibility 

of simultaneous silencing of multiple neuronal populations due to different excitation spectra (Chow et al., 

2010). Nevertheless, neuronal silencing matching the performance of ChR2 was not achieved until the 

recent discovery of light-driven chloride channels from the cryptophyte Guillardia theta (Govorunova et 

al., 2015). The Anion Channel Rhodopsins (ACRs) show faster kinetics and significantly higher 

photosensitivity than any other tool for neural inhibition, including the third generation of Arch 

(Govorunova et al., 2015).  

The most red-shifted among the light-driven neural silencers is the recently engineered chloride 

channel Jaws, a cruxhalorhodopsin capable of neural inhibition properties inferior only to ACRs (Chuong et 

al., 2014). It shows potential for combination with ChR2 in a system, which would offer bidirectional in 

vivo control of neural activity.  

6.2.2 Biochemical optogenetics 

 Neural activity can be modulated by factors other than membrane voltage, such as intracellular 

signaling. To test the causal impact of signaling pathways, optogenetic tools obtained by replacing 

intracellular loops of bovine rhodopsin (a type II opsin) with those of adrenergic receptors were engineered 

(OptoXRs) (Airan et al., 2009). Analyses of acute brain slices revealed that the chimeric receptors were 

capable of light-induced production of cyclic AMP (cAMP), or inositol-3-phosphate (IP3) and 

diacylglycerol  (DAG) (Fig. 19). Subsequent in vivo experiments using transgenic animals with optoXR 

expression limited to nucleus accumbens, revealed that light-driven modulation of biochemical signaling in 

behavior-related neurons leads to behavioral changes (Airan et al., 2009).  
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Fig. 19, General representation of the mode of function in three selected optogenetic tools. Right: blue-light-driven 

depolarizing cation channel ChR2. Middle: Yellow-light-driven chloride channel NpHR, capable of causing 

hyperpolarization. Right: light-activated GPCR: OptoXR capable of modulating intracellular physiology through 

second messengers upon illumination by green light (Fenno et al., 2011) 

 

6.3 Light delivery 

 In the case of in vivo experiments, most notably using freely moving animals, the activation of 

light-driven channels proved challenging. Cortical neurons within the depth limit of 2PLSM may be 

photostimulated through a cranial window (Aravanis et al., 2007), while simultaneously imaged for neural 

activity by indicators such as VSDs (Zhang et al., 2010) or GECIs. Photostimulation of deeper structures is 

often performed through precise optical fiber-based laser illumination such as in the optical neural interface 

(ONI) (Aravanis et al., 2007). Alternatively, excitation light can be delivered by a wireless head-mountable 

LED device, implanted above a thinned region of the skull (Iwai et al., 2011), or implanted deep in the 

brain (Rossi et al., 2015) thus allowing remote control over various brain regions in a freely moving rodent.  

7 Recent applications of optophysiological methods 
Optogenetics and optophysiology provide the tools capable of unprecedented control and imaging of 

neural tissue. The following paragraphs list several recent studies illustrating the potential of these tools. 

GECI-based calcium imaging (GCaMP5) was involved in studying changes of neural activity during 

sleep and wake of fruit flies (Bushey et al., 2015). It was shown that Drosophila sleep (period > 5min of 

immobility) is coupled with reduced spontaneous and evoked activity of Kenyon cells present in its 

mushroom bodies. Moreover, it was shown that sleep deprivation caused inconsistent responses of the 

studied neurons. The discovered sleep- or wake- related changes in neural activity of insects strongly 

resemble those previously observed in mammals, thus suggesting a possible link between the physiology of 

sleep between these two groups (Bushey et al., 2015). 

Optogenetic stimulation of specific substantia nigra pars retucilaris (SNR) neurons projecting into the 

superior colliculus (SC) was performed on living mice to assess the role of the nigrotectal pathway in 

voluntary drinking behavior. It was found that the activity of SNR and SC neurons reflects the licking 

pattern in self-initiated drinking (electrophysiological recordings). To test the possible inhibitory role of 

GABAergic SNR neurons projecting into the tectum, these neurons were transduced with ChR2. 
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Subsequent laser stimulation of SNR in the event of drinking has resulted in a disruption of the natural 

behavior by significantly reducing the number of licks (Rossi et al., 2016).  

Calcium imaging and optogenetic tools were also applied in a recent study regarding the role of dorsal 

raphe nucleus (DRN) neurons in reward signals (Li et al., 2016). GCaMP6m-based calcium imaging of 

serotonergic (5-HT (5-hydroxytryptamine)) DRN neurons of freely moving mice was done by fiber 

photometry; a method based on an optical fiber attached to a microscope setup through an optical 

commutator, capable of imaging the general activity of indicator-expressing cells. In this study, it was 

shown that 5-HT neurons are activated by natural rewards such as food, sex and social interaction. 

Moreover, the anticipation of a reward is accompanied by tonic activity of these neurons, which changes to 

phasic firing upon reaching the anticipated reward. Therefore, the data suggests that DRN neurons may 

perform dual roles of both anticipating and evaluating rewards. On the other hand, the GABA (gamma-

Aminobutyric acid) -ergic neurons of DRN were found to be activated by painful stimulation (foot shock in 

this case) and silenced by reward, thus proposing that GABA and 5-HT neurons of DRN may be 

responsible for overall organization of responses to rewards and aversive stimuli. In this case, ChR2 was 

used for optical tagging of specific neuronal types (5-HT or GABA neurons of DRN). Optical tagging 

includes a device called optetrode, which is capable of verifying the cell type of a neuron by evoking 

ChR2-mediated APs through light stimulation and simultaneous electrical recording of responding cells (Li 

et al., 2016). 

Finally, the application of two-photon optogenetics combined with calcium imaging in studying cortical 

circuits has been recently demonstrated in the article concerning disinhibition of pyramidal cells (PCs) in 

mice (Karnani et al., 2016). Lateral inhibition in rodent neocortex was shown to be mediated by 

somatostatin-expressing interneurons (SOMs) by experimentally inhibiting their activity with Arch. SOMs 

combined with parvalbumin-expressing (PV) interneurons and chandelier cells create a “blanket of 

inhibition” over the axonal arbors of PCs. Activation of these blocked PCs can be achieved through their 

selective disinhibition. Selective photoactivation of vasoactive intestinal peptide-expressing (VIP) 

interneurons through ChETA led to the conclusion that VIPs are capable of inhibiting SOMs, thus causing 

the disinhibition of PCs. Furthermore, the consequences of in vivo optogenetically-driven activation of 

VIPs, were directly imaged by GCaMP6s. The acquired spatiotemporal data led to the discovery that single 

VIP cells can form holes (60-120 µm) in the densely inhibited network. The authors suggest that this 

principle might be employed in the production of specific cortical circuits out of neural networks, while the 

holes might represent single “spotlights of attention” (Karnani et al., 2016). 

8 Conclusions 
 The advent of molecular biology and genetics has had a significant impact on virtually every field 

of biology including neuroscience. Novel tools such as transgenic animal models, genetically encoded 

indicators of neural activity or optogenetics, along with modern methods of optical imaging are finding 

their way into the area classically occupied by electrophysiology. For example, two-photon calcium 
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imaging is capable of in vivo large-scale single-cell neural activity recording of specific cell-types in 

behaving, freely-moving animals; far beyond the achievable scale and spatial resolution of 

electrophysiology. However, compared to electrical recordings, which directly detect voltage-based neural 

activity, optical recordings use foreign molecules to translate, the otherwise invisible information, into 

optically detectable fluorescence. Consequently, optophysiological methods import a number of additional 

variables into the process of detection, thus negatively affecting the achievable precision. In summary, due 

to the underlying mechanisms of signal generation and detection, neural activity reporting based on 

fluorescent probes cannot reach the precision of classical electrical recording and requires its support if to 

be trusted completely. The role of novel, genetically targetable optical methods reviewed in this text is not 

to replace classical, well-attained methods of neuroscience, but to serve as their complementary partner 

suitable for genetically targeted large-scale recordings (or manipulations), with precision limited to 

physiologically significant changes. Combined in innovative experimental protocols, these approaches will 

hopefully provide the data required for the understanding of the fundamental principles underlying the 

function of neural tissue. 

 Further refinement of the existing genetically encoded tools for optical recording and control 

(mainly through structure-guided rational mutagenesis) will hopefully lead to proteins with better kinetics 

and overall performance. The ultimate goal is to reach the resolution, which would allow non-invasive 

recording of physiologically significant events with detection reliability matching supporting 

electrophysiological data. 
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