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Abstrakt: Maehara dokázal, že je-li F systém alespoň d+ 3 sfér v Rd takový, že
každých d + 1 sfér z F má neprázdný pr̊unik, pak celý systém F má neprázdný
pr̊unik. V této práci rozšǐrujeme jeho výsledek Hellyho typu ve dvou směrech.

Nejprve ukážeme platnost analogické věty pro systémy pseudosfér, tedy systémy
množin splňuj́ıćı, že pr̊unik každého neprázdného podsystému je homeomorfńı
sféře nějaké dimenze nebo je prázdný.

Dále využijeme toho, že sféru v Rd lze vyjádřit jako nulovou množinu reálného
polynomu. Je-li P množina polynomů, pak Hellyho č́ıslo systému nulových
množin polynomů z P je omezeno dimenźı vektorového prostoru generovaného P .
Pro systémy sfér ovšem Maehar̊uv výsledek dává silněǰśı odhad. Ukážeme některé
obecné postačuj́ıćı podmı́nky pro lepš́ı odhad Hellyho č́ısel v tomto kontextu.

Kĺıčová slova: Hellyho č́ıslo, nulové množiny polynomů, systémy pseudosfér, kom-
binatorická geometrie
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Abstract: Maehara has shown that a family F of at least d+3 spheres in Rd has a
nonempty intersection if every d+1 spheres from F have a nonempty intersection.
We extend this Helly-type result in two directions.

On the one hand, we show an analogous theorem holds for families of pseudo-
spheres, i.e., systems of sets such that the intersection of any nonempty subsystem
is homeomorphic to a sphere of some dimension or is empty.

On the other hand, a sphere in Rd can be expressed as the zero set of a real
polynomial. For a set of polynomials P , the Helly number of the family of zero
sets of polynomials from P is bounded by the dimension of the vector space
generated by P . For spheres, however, Maehara’s result gives a stronger bound.
We show some general sufficient assumptions that allow better bounds on the
Helly numbers in this context.
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Introduction

Helly’s theorem [1] is a fundamental result in discrete and combinatorial geometry
describing the way convex sets intersect. It states that if a finite family F of at
least d + 1 convex sets in Rd satisfies that every d + 1 sets from F have a point
in common, then all sets in F have a point in common. In this thesis, we present
similiar theorems about some families of not necessarily convex sets.

The Helly number

In the literature, there are various ways how to define the Helly number. We
have chosen the following definition (used in [2]), because it allows our results to
be expressed in the most natural way, as we will explain later.

Definition 1. Let F be a nonempty finite family of arbitrary sets. If F has
an empty intersection, then the Helly number of F is defined as the size of the
largest subfamily G ⊆ F such that G has an empty intersection and all its proper
subfamilies have nonempty intersections; if F has a nonempty intersection, then
its Helly number is 1.

Since this is a rather unintuitive definition, we will now clarify the motivation
behind it by reformulating the original Helly’s theorem. We claim that the Helly’s
theorem, as stated above, is equivalent to the assertion that the Helly number of
any finite family of convex sets in Rd is at most d+ 1:

Let F be a finite family of convex sets in Rd such that every d+1 sets from F
have a point in common and suppose that F has an empty intersection. Assuming
the Helly number of F is at most d+1, we obtain that there exists a subset G ⊆ F
of size at most d+ 1 with an empty intersection. This yields a contradiction with
the assumption on F .

Reversely, let F be a finite family of convex sets in Rd. The case that F has a
nonempty intersection is trivial, suppose the opposite. Let G ⊆ F be the largest
subfamily such that G has an empty intersection and all its proper subfamilies
have nonempty intersections. By applying the Helly’s theorem on G, we obtain
that the size of G is at most d+ 1, as desired.

In fact, it is easy to observe that using an analogous proof, we can derive the
following general statement. For a finite family of sets F , these two assertions
are equivalent:

(a) The Helly number of F is at most h.

(b) If every subfamily G ⊆ F of size at most h has a nonempty intersection,
then F has a nonempty intersection.

The results of this thesis bound the Helly numbers of certain families of sets
as in (a). The above observation thus provides a reformulation of our results and
a way to understand them with no need to use the explicit definition of the Helly
number.
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Known results

Helly’s theorem has spawned various versions and modifications for possibly non-
convex sets, such as topological Helly theorem [3] or Helly-type theorem for unions
of convex sets [4]. The foundation of our work are the following (reformulated)
results of Maehara [5].

Theorem 2. The Helly number of a family of spheres in Rd is at most d+ 2.

Theorem 3. The Helly number of a family of at least d + 3 different spheres
in Rd is at most d+ 1.

Theorem 3 is tight in the following way. There exists a family of d+2 spheres
such that every d + 1 of them intersect but the whole family doesn’t intersect;
however, the theorem claims that such a family is always maximal in the sense
that it is impossible to add another sphere to it while keeping the property that
every d + 1 of them intersect (see Fig. 1). This motivated us to seek more cases
of families where assuming greater size may reduce the Helly number.

Figure 1: A configuration of four circles such that every three of them intersect
but all four do not. It is not possible to add a different circle while preserving
the property that every three circles intersect.

The setting of spheres in Rd can be generalized as follows. A family of pseudo-
spheres is defined as a family F of subsets of Rd such that for any nonempty sub-
family G ⊆ F , the intersection

⋂G is homeomorphic to a k-dimensional sphere
for some k ∈ {0, . . . , d − 1}, to a single point, or is empty. It follows from
Goaoc et al. [2] that the Helly number of a family of pseudospheres is bounded.

Since spheres in the Euclidian space can be expressed as zero sets of quadratic
polynomials, it is a natural generalization to further study Helly-type theorems
for zero sets of polynomials of bounded degree. Motzkin [6] first showed that the
Helly number of such families is bounded by the dimension of the vector space
of polynomials. We mainly use an analogous version of a result of Deza and
Frankl [7]:

Let R[x1, . . . , xd] denote the vector space of real polynomials in d variables and
Rk[x1, . . . , xd] the subspace containing polynomials of degree at most k. Moreover,
Dd,k denotes the dimension of Rk[x1, . . . , xd].

Theorem 9. The Helly number of a family of zero sets of polynomials from
Rk[x1, . . . , xd] is at most Dd,k.

3



Their proof uses linear independence of polynomials as vectors in the space
of polynomials. We discuss the technique later and use it extensively.

Our contributions

A set A ⊂ Rd is said to be an affine sphere if it is an intersection of a (d − 1)-
dimensional sphere in Rd and an affine subspace of Rd and it contains at least
two points. Note that a sphere in Rd is also an affine sphere in Rd and a family
of affine spheres is also a family of pseudosphere (defined above).

In Chapter 1, we first discuss Helly numbers of families of affine spheres as
an intermediate generalization. Then, we extend Maehara’s results to families of
pseudospheres, showing analogous bounds on the respective Helly numbers.

Theorem 7. The Helly number of a family of pseudospheres in Rd with at least
d+ 3 different elements is at most d+ 1.

We proceed with Chapter 2, where we study families of zero sets of polynomials
and bound their Helly numbers. First, we observe that the bound from Deza and
Frankl’s result can be reduced if we choose an appropriate subspace of the space
of all polynomials of bounded degree.

Theorem 10. Let P ⊆ R[x1, . . . , xd] be a set of polynomials and DP the dimen-
sion of the linear hull of P. Then the Helly number of the family of zero sets of
polynomials from P is at most DP .

The polynomials whose zero set is a sphere in Rd are of the type p(x1, . . . , xd) =∑d
i=1(xi−βi)2+γ for some reals β1, . . . , βd, γ. Moreover, the linear hull containing

all these polynomials is a proper subspace of R2[x1, . . . , xd] and its dimension is
d + 2 (a possible basis is {1, x1, . . . , xd,

∑d
i=1 x

2
i }). We conclude that Theorem 2

is a special case of Theorem 10. The natural goal is to show a generalized version
of Theorem 3.

Let us observe the following property of spheres. If S is a family of d spheres
such that no sphere from S can be removed without changing the intersection
of the whole family (S is independent, in some sense), then the intersection of
S is at most two points. This motivates a similar assumption on the space of
polynomials.

Definition 12. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomi-
als. We say that P has the k-points-property if the following holds for all ` ∈
{0, 1, . . . , k}. If Q ⊆ P is a linearly independent set of D − ` polynomials, then
Z(Q) is at most ` points.

Using the definition, we can say that the space of polynomials that define
spheres has the 2-intersection-property. We further discuss the k-points-property
in Section 2.3. A sufficient condition for a space of polynomials to satisfy the
property is also shown and used to derive that Rk[x1, . . . , xd] has the k-points-
property for every k ∈ N.

We observe that the assumption in Theorem 3, that the spheres are different,
naturally translates to linear independence of polynomials. This allows us to
present the desired generalization of Theorem 3.
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Theorem 15. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomials
with the 2-points-property. Let P ⊆ P be a set of at least D + 1 polynomials
and suppose the polynomials from P are pairwise linearly independent. Then the
Helly number of the family of zero sets of polynomials from P is at most D − 1.

We further seek a more general bound on the Helly number under stronger
assumption. In Construction 2, we show that it is necessary to strengthen the
assumptions on linear independence, as well as the size of the set. The most
general result of the thesis is the following.

Theorem 16. For all positive integers k,D, there exists a constant N = N(k,D)
such that the following holds. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of
polynomials with the k-points-property. Let P ⊆ P be a set of at least N poly-
nomials and suppose that every k polynomials from P are linearly independent.
Then the Helly number of the family of zero sets of polynomials from P is at most
D − k + 1.

The bound on the necessary size N(k,D) in the above theorem is very poor.
We present a version of Theorem 16, which additionally assumes that P is in
general position (i.e., an even stronger assumption on linear independence) and
obtains a polynomial upper bound on the size of P sufficient to bound the Helly
number by D − k + 1.

Finally, we study the situation that no assumptions on linear independence
are allowed. In that case, it follows from Construction 2 that the Helly number
can be arbitrarily big. Nevertheless, we can still show a result about the structure
of intersections by bounding the piercing number of the family of zero sets.
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1. Affine spheres and
pseudospheres

In this chapter, we first introduce spheres and affine spheres in Rd and present
some fundamental properties. Then we state and give a proof of a version of a
theorem of Maehara [5]. Following that, we define a family of pseudospheres and
further generalize the previous results.

1.1 Preliminaries

A set S is a sphere in Rd if there exists a point z ∈ Rd and a positive parameter r
such that S consists of all points of Rd with Euclidian distance r from z. Thus
a sphere in R1 is any set of two different points, a sphere in R2 is a circle and
a sphere in R3 is the surface of a ball.

Furthermore, a set A is an affine sphere in Rd if A is an intersection of a sphere
and a flat (i.e., an affine subspace) and it contains at least two points. Clearly,
any sphere is also an affine sphere. For instance, if S is a sphere in Rd and h is
a hyperplane intersecting S, then S∩h is either a single point, or an affine sphere
in Rd (see Fig. 1.1).

For a set X ⊆ Rd, let aff(X) denote the affine hull of X and dim(aff(X)) the
dimension of the flat aff(X). Then, the dimension of an affine sphere A is defined
as dim(aff(A))− 1 and denoted dim(A). This definition respects the convention
of a d-dimensional sphere as a sphere in Rd+1. For example, the dimension of
an affine sphere formed by two different points in Rd is 0, regardless of the value
of d.

A fundamental tool when working with affine spheres is the following observa-
tion. Let S and R be affine spheres in Rd such that their intersection is nonempty
and not a single point. Then R∩S is also an affine sphere in Rd and its dimension
is at most the minimum of dim(S) and dim(R), with equality attained only in
the case that one of the spheres is contained in the other.

S1
S2

x1

x2

ℓ

Figure 1.1: S1 and S2 are 1-dimensional spheres in R2 and their intersection
{x1, x2} is a 0-dimensional affine sphere in R2, as it is an intersection of a line `
and the sphere S1.
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1.2 Families of affine spheres

Let us now recall the two theorems of Maehara [5]:

Theorem 2. The Helly number of a family of spheres in Rd is at most d+ 2.

Theorem 3. The Helly number of a family of at least d + 3 different spheres
in Rd is at most d+ 1.

The proof of Theorem 2 by Maehara proceeds by induction on d and uses
stereographic projection. We show the following generalization with a different,
arguably simpler, proof.

Theorem 4. The Helly number of a family of affine spheres in Rd is at most d+2.

Proof. Let F be a family of affine spheres in Rd and suppose that every d+2 affine
spheres from F have a nonempty intersection. Our goal is to show that the
intersection of the whole family F is nonempty. We give a proof by contradiction,
therefore we assume that

⋂F = ∅.
Let G = {G1, . . . , Gk} ⊆ F be an inclusion-minimal subfamily such that⋂G =
⋂F = ∅. We denote C` =

⋂`
i=1Gi and claim that

C1 ) C2 ) · · · ) Ck. (1.1)

If we have Cj−1 = Cj for some j ∈ {2, . . . , k}, then⋂
(G \ {Gj}) =

⋂
G = ∅,

yielding a contradiction with the choice of G. Hence the equation (1.1) holds.
Consequently, C1, . . . , Ck−1 are nonempty, while Ck = ∅. Moreover, Ck−1 may

be a single point, but the sets C1, . . . , Ck−2 are surely affine spheres, as they
are intersections of affine spheres and contain at least two points. Combined
with (1.1), we derive that dim(C1), . . . , dim(Ck−2) is a decreasing sequence of
integers. It follows from the fact dim(Ck−2) ≥ 0 that

d− 1 ≥ dim(C1) ≥ dim(C2) + 1 ≥ · · · ≥ dim(Ck−2) + k − 3 ≥ k − 3,

therefore k ≤ d + 2. We obtain that G is a subfamily of F of size at most d + 2
with an empty intersection, which is a contradiction with the assumption.

A version of Theorem 3 generalized to affine spheres holds as well. We do not
explicitly state it here, as it will be a direct corollary of a more general Theorem 7.

The key properties of affine spheres used in the proof of Theorem 4 are the
following.

(a) If an affine sphere A1 is a proper subset of another affine sphere A2, then
the dimension of A1 is strictly less than the dimension of A2.

(b) The intersection of any number of affine spheres is an affine sphere, a single
point, or is empty.

The combinatorial nature of these properties motivated us to seek an appropriate
generalization of affine spheres, such that analogous Helly-type theorems would
hold.
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1.3 Families of pseudospheres

A family F of subsets of Rd is a family of pseudospheres if for any nonempty
subfamily G ⊆ F , the intersection

⋂G is homeomorphic to a k-dimensional sphere
for some k ∈ {0, . . . , d− 1}, to a single point, or is empty.

Moreover, we define the rank of an intersection I =
⋂G of a nonempty sub-

family G of a family of pseudospheres F in the following way. If I is homeomorphic
to a k-dimensional sphere, then its rank is defined as k; the rank of a single point
is defined as −1 and the rank of an empty set is defined as −2. Let rk(I) denote
the rank of I. It is intuitively clear that Sk is not homeomorphic to S` for k 6= `
and thus rk(I) is well-defined; see Lemma 5 for further discussion.

Clearly, a family of affine spheres A is also a family of pseudospheres. For
any nonempty A′ ⊆ A, if I =

⋂A′ is an affine sphere (i.e., contains at least
two points), then the dimension of I is equal to the rank of I. Furthermore, the
combinatorial properties of spheres and affine spheres are preserved:

b

b

E1

E2
E3

E4 ∈ E5

∈ E5

E′
1

E′
2

F1 :

F2 :

E′
3

Figure 1.2: The family F1 is a family of pseudospheres, whereas the family F2 is
not a family of pseudospheres, since E ′3 and the intersection of E ′1 and E ′2 are not
homeomorphic to a sphere of any dimension.

Lemma 5. Let F be a family of pseudospheres, G1 and G2 subfamilies of F such
that G1 ⊇ G2 and denote I1 =

⋂G1 and I2 =
⋂G2. Then the following assertions

are satisfied:

(a) The rank of I1 is well-defined.

(b) The rank of I1 is at most the rank of I2.

(c) The rank of I1 is equal to the rank of I2 if and only if I1 = I2.

Proof. Let Sd denote the unit sphere in Rd+1 centered in the origin. Abusing the
notation, Sk also denotes the projection of Sd into the first k + 1 coordinates in
Rd+1 for k ≤ d, i.e., a k-dimensional affine sphere in Rd+1. Thus we can write
Sk ⊆ S` for k ≤ `.

Obviously, any k-dimensional affine sphere in Rd for 0 ≤ k ≤ d − 1 is home-
omorphic to Sk. Recall that the homeomorphism relation is an equivalence on
subsets of Rd. Also, a restriction of a homeomorphism is a homeomorphism; we
will use this as follows. If A is a subset of B and B is homeomorphic to C, then
A is homeomorphic to a subset of C.
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It is common knowledge that Sk is not homeomorphic to S` for all k 6= `. We
will, however, need a strictly stronger assertion.

If A ⊆ Sd is homeomorphic to Sd, then A = Sd. (?)

A detailed proof and examination of (?) using homology groups can be found in
Hatcher’s book [8], page 170.

Let us now show how to infer Lemma 5 from (?):

(a) Our goal is to show that rk(I1) is a unique integer. First, the case rk(I1) < 1
is trivial, as then I1 is a finite set and thus can be homeomorphic only to
sets of equal size. Suppose that I1 is homeomorphic to both Sk and S` for
some k, ` ∈ N. This translates to a homeomorphism between Sk and S` by
transitivity. Hence k = `, as required.

(b) Let I1 be homeomorphic to Sk and I2 homeomorphic to S`; we aim to show
that k ≤ `. Since I1 ⊆ I2, by transitivity we obtain a homeomorphism
between Sk and a subset A ⊆ S`. If k ≥ `, then A ⊆ S` ⊆ Sk and we apply
(?) to get A = Sk. Therefore ` = k and (b) follows.

(c) Suppose that both I1 and I2 are homeomorphic to Sk. Since I1 ⊆ I2, we have
that I1 and a subsetA of Sk are homeomorphic through the homeomorphism
of I2. We obtain A = Sk by (?), hence I1 = I2 holds. The other implication
follows trivially from (a).

With Lemma 5 in hand, it is straightforward to translate the proof of Theo-
rem 4 into the setting of families of pseudospheres and obtain that an analogous
version holds.

Theorem 6. The Helly number of a family of pseudospheres in Rd is at most
d+ 2.

Let us now observe that the number d + 2 in the statement of Theorem 6
cannot be reduced without further assumptions.

Construction 1. We construct a family S of d + 2 spheres in Rd such that the
intersection of S is empty and the intersection of any proper subfamily of S is
nonempty.

We say that a finite set of points Y ⊂ Rd is in general position if no m + 2
points from Y lie in an m-dimensional flat for any m ∈ {0, 1, . . . , d − 1}. Recall
that any d+1 points in general position uniquely determine a (d−1)-dimensional
sphere that intersects them.

Let X = {x1, x2, . . . , xd+2} ⊂ Rd be a set of d + 2 points in general position
that do not lie on a single sphere. We define Si to be the (d−1)-dimensional sphere
determined by X \ {xi} for i ∈ {1, . . . , d + 2}. Finally, set S = {S1, . . . , Sd+2};
see Fig. 1.3 for an illustration.

It is clear that xi ∈
⋂

(S \ {Si}), hence the intersection of any proper sub-
family of S is nonempty. We claim that the intersection of S is empty. To
show this, define C` =

⋂`
i=1 Si and observe that xj ∈ Cj−1 and xj /∈ Cj, de-

riving that Cj−1 ( Cj for all j ∈ {2, . . . , d + 2}. By Lemma 5, we obtain that
rk(C1), rk(C2), . . . , rk(Cd+2) is a decreasing sequence of d + 2 integers. Since
rk(C1) = d − 1 and rk(Cd+2) ≥ −2, we conclude that rk(Cd+2) = −2 and⋂S = Cd+2 = ∅.
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x1x2

x3

S3

S1

S2

x4

S4

Figure 1.3: The family S in Construction 1 for d = 2.

We have constructed a family of pseudospheres satisfying that every (d+ 1)-
element subfamily has a nonempty intersection, while the whole family has an
empty intersection. As is the case with spheres, we will show that an additional
assumption on the size of the family will avoid all such families. Thus an anal-
ogous version of Theorem 3 of Maehara holds for families of pseudospheres. We
are now ready to state the main result of this chapter.

Theorem 7. The Helly number of a family of pseudospheres in Rd with at least
d+ 3 different elements is at most d+ 1.

Before proceeding with the proof, we need to obtain some properties of the
“bad” families, such as the one in Construction 1.

Lemma 8. Let G be a family of pseudospheres in Rd of size d + 2 such that the
intersection of G is empty and the intersection of any proper subfamily of G is
nonempty. Then the rank of the intersection of a k-element subfamily of G is
exactly d− k for any 1 ≤ k ≤ d+ 2.

Proof. Let H ⊆ G be a subfamily of size k and denote I =
⋂H. We proceed by

induction on α = d − k + 2 (where d is fixed). If α = 0, then I =
⋂G, which is

empty by the assumption. Thus the rank of I is −2, as required.
Now, let α ≥ 1 and suppose that the proposition holds for all subfamilies

of greater size. Choose E ∈ F \ H arbitrarily and define H+ = H ∪ {E} and
I+ =

⋂H+. The rank of I+ is d − k − 1 by the induction hypothesis. If
I = I ∩ E = I+, then the intersection of G \ {E} is empty, a contradiction with
the assumption. Hence I is a proper superset of I+ and rk(I) > rk(I+) = d−k−1
by Lemma 5.

Suppose that rk(I) ≥ d − k + 1; order the elements H = {E1, . . . , Ek} ar-
bitrarily and denote C` =

⋂`
i=1Ei. The sequence rk(C1), rk(C2), . . . , rk(Ck) is

a non-increasing sequence of k integers by Lemma 5. Combining the fact that
rk(C1) ≤ d − 1 and the assumption rk(Ck) = rk(I) ≥ d − k + 1 gives us the
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existence of an index j ∈ {1, . . . , k − 1} such that rk(Cj) = rk(Cj+1). We ob-
tain Cj = Cj+1 by Lemma 5, hence the intersection of G \ {Ej+1} is empty, a
contradiction.

Proof of Theorem 7. Let F be the family of pseudospheres. Our goal is to show
that any (d + 2)-element subfamily of F has a nonempty intersection. Then we
can apply Theorem 6 and obtain that the intersection of F is nonempty.

Let G be an arbitrary subfamily of F of size d + 2 and suppose that the
intersection of G is empty. Observe that G satisfies the assumption of Lemma 8.
Denote G = {E1, . . . , Ed+2} and choose points X = {x1, . . . , xd+2} so that

xi ∈
⋂

(G \ {Ei}).

Clearly, xi 6= xj for any i 6= j, as otherwise xi ∈
⋂G. We denote Gi,j =

G \ {Ei, Ej} for i, j ∈ {1, . . . , d+ 2}, i 6= j. By Lemma 8, the rank of
⋂Gi,j is 0,

therefore
⋂Gi,j is a set of two points. Since xi, xj ∈

⋂Gi,j, we obtain⋂
Gi,j = {xi, xj} for all i 6= j.

We use the assumption on the size of F to choose some T ∈ F \ G. Also, we
assume that any d + 1 elements from F have a nonempty intersection, deriving
that T has to intersect

⋂Gi,j. Hence, for every i 6= j, at least one of the points
xi and xj is contained in T . We obtain that at most one point from X is not
contained in T . With no loss of generality, we assume X \ {x1} ⊆ T .

Since E1 and T are different, the rank of E1∩T is at most d− 2 by Lemma 5.
Let H ⊆ G \ {E1} be an inclusion-minimal subfamily such that

T ∩ E1 ∩
(⋂
H
)

= ∅.

The size of H is at least d by the assumption. Without loss of generality, we
assume H = {E2, E3, . . . , Ek}. We claim that k < d+ 2; denote

C` = T ∩
(⋂̀

i=1

Ei

)
for ` ≥ 1.

We have Ci ) Ci+1 from the minimality of H, therefore the sequence
rk(C1), rk(C2), . . . , rk(Ck) is decreasing. Since rk(C1) ≤ d − 2 and rk(Ck) = −2,
we obtain that k ≤ d+ 1, as desired.

We have shown that Ed+2 /∈ H. Hence

T ∩ E1 ∩ E2 ∩ · · · ∩ Ed+1 ⊆ T ∩ E1 ∩
(⋂
H
)

= ∅.

But xd+2 ∈ T and xd+2 ∈ Ei for all i ∈ {1, . . . , d + 1}, we have obtained a
contradiction.

Remark. It should be noted that the first half of the above proof of Theorem 7
proceeds in a way similiar to Maehara’s [5] proof of Theorem 3. In particular,
the definition of the points X and the conclusion that the intersection of the
examined (d+ 1)-element subfamily is exactly {xi, xj} are key components of our
proof and both are adopted from Maehara’s method. However, the conclusion
of Maehara’s proof is specific to the setting of spheres. The second half of our
proof, from the definition of the subfamily H, is thus new.
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2. Zero sets of polynomials

Recall that a sphere in Rd can be expressed as the zero set of a quadratic poly-
nomial. In this chapter, we seek to generalize Maehara’s results in the setting of
zero sets of polynomials, which are also called hypersurfaces or varieties.

First, we introduce necessary notation and establish some fundamentals re-
garding real polynomials of multiple variables. Then we state a known result by
Deza and Frankl [7], including a proof of a variation of the theorem. Follow-
ing that, we discuss necessary properties of spaces of polynomials and we show
some propositions further reducing the Helly number under some rather strong
assumptions. We also present an example showing these assumptions are neces-
sary. Finally, we discuss the piercing number, a notion related to Helly numbers.

2.1 Preliminaries

Let R[x1, . . . , xd] denote the vector space of real polynomials in d variables. More-
over, Rk[x1, . . . , xd] is the subspace of R[x1, . . . , xd] containing all polynomials of
degree at most k. For a set P ⊆ R[x1, . . . , xd], the zero set of P is defined as

Z(P) = {x ∈ Rd | p(x) = 0 for all p ∈ P}.

If p is a polynomial, we write Z(p) for Z({p}).
Note that Z(P) ⊇ Z(Q) for any sets P ⊆ Q. Furthermore, p·q is a polynomial

with zero set Z(p)∪Z(q) for any polynomials p, q ∈ R[x1, . . . , xd]. We say that a
set X ⊆ Rd is a hypersurface if there exists a polynomial p such that Z(p) = X.

For example, the zero set of the polynomial p(x, y) = x2 + y2 − 1 is the unit
circle. In general, spheres in Rd are hypersurfaces. A hyperplane can be defined
as the zero set of a linear polynomial. However, the boundary of a box in Rd is
not a hypersurface, hence, families of pseudospheres do not, in general, consist of
hypersurfaces.

Let Dd,k denote the dimension of the space Rk[x1, . . . , xd]. Since the set of
monomials provides a possible basis, we can obtain Dd,k =

(
d+k
d

)
by a simple

combinatorial argument. For a set of polynomials P , let spanP denote the linear
hull of P .

Following the usual conventions, a set of polynomials Q = {q1, . . . , q`} is
linearly independent if

∑`
i=1 αiqi = 0 (where 0 denotes the zero polynomial)

implies α1 = · · · = α` = 0 for any α1, . . . , α` ∈ R.
We will use the following observation extensively. Let P be a set of polynomi-

als and suppose that q = α1p1 + · · ·+α`p` is a linear combination of polynomials
p1, . . . , p` ∈ P . Then we have Z(P) ⊆ Z(q), since q(x) = α1p1(x)+· · ·+α`p`(x) =
0 for any x ∈ Z(P). Stated in the counterpositive, Z(P) ∩ Z(r) ( Z(P) implies
that r is linearly independent of P .

2.2 Basic bound on the Helly number

The cornerstone theorem of this chapter is the following result of Deza and
Frankl [7].

12



Theorem 9. The Helly number of a family of zero sets of polynomials from
Rk[x1, . . . , xd] is at most Dd,k.

We know from Maehara’s Theorem 2 that the Helly number of a family of
spheres in Rd is at most d + 2. Moreover, spheres are zero sets of polynomials
of degree two. But the dimension of R2[x1, . . . , xd] is Dd,2 =

(
d+2
2

)
> d + 2, so

the bound from Theorem 9 is much weaker. In fact, a slight modification of the
proof of Theorem 9 by Deza and Frankl [7] gives the following, stronger theorem.

Theorem 10. Let P ⊆ R[x1, . . . , xd] be a set of polynomials and DP the dimen-
sion of the linear hull of P. Then the Helly number of the family of zero sets of
polynomials from P is at most DP .

We will later show that in the special case of P being a set of polynomials
that define spheres, Theorem 10 attains the bound from Theorem 2.

We include a proof here, as it is simple and instructive. For this purpose, let
us first show a sufficient condition for linear independence of a set of polynomials.
We will use this later as well.

Lemma 11. Let Q ⊆ R[x1, . . . , xd] be a set of polynomials and suppose that
Z(Q) ( Z(Q \ {q}) for all q ∈ Q. Then Q is linearly independent.

Proof. Let us denote Q = {q1, . . . , qk}. By the assumption, there exist points
x1, . . . , xk ∈ Rd such that xi /∈ Z(qi) and xi ∈ Z(qj) for all indices i 6= j. We can
reformulate this as qi(xi) 6= 0 and qi(xj) = 0 for all i 6= j.

Suppose we have
∑k

i=1 αiqi = 0 for some reals α1, . . . , αk which are not all zero.
Without loss of generality, we assume α1 6= 0. Evaluating the linear combination
at x1, we obtain

k∑
i=1

αiqi(x1) = α1 q1(x1)︸ ︷︷ ︸
6=0

+
k∑

i=2

αi qi(x1)︸ ︷︷ ︸
=0

6= 0,

which is a contradiction. Therefore the set Q is linearly independent.

Proof of Theorem 10. Let P be a given set of polynomials, DP the dimension of
spanP and Z = {Z(p) | p ∈ P} the family of zero sets of polynomials from P .
Suppose that every DP sets from Z have a point in common. In other words,
Z(R) is nonempty for every subset R ⊆ P of size at most DP . Our goal is to
show that the intersection of Z is nonempty. Since

⋂Z = Z(P), we only need
to show Z(P) 6= ∅.

Let Q ⊆ P be an inclusion-minimal subset satisfying Z(Q) = Z(P). By the
minimality of Q and Lemma 11, Q linearly independent. It is well known that
the size of a linearly independent set is bounded by the dimension of the vector
space. Therefore, the size of Q is at most DP . Finally, we use the assumption to
obtain ∅ 6= Z(Q) = Z(P), as desired.

Recall from the introduction that the linear hull of the set of polynomials that
define spheres is PS = span{1, x1, . . . , xd,

∑d
i=1 x

2
i }. It is a proper subspace of

R2[x1, . . . , xd] of dimension d+2. Theorem 2 is thus a special case of Theorem 10
for P ⊆ PS and DP ≤ d+ 2.
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2.3 Assumptions on spaces of polynomials

Viewing Theorem 10 as a more general version of Theorem 2, the goal of this
section is to show a generalized version of Theorem 3, i.e., reduce the bound on
the Helly number to DP − 1 under certain assumptions.

First, note that a simple assumption on the size of P is not sufficient, as Z(p) =
Z(αp) for any real α 6= 0, therefore different polynomials can have identical zero
sets. To avoid this issue, we will additionally require that the polynomials in
P are pairwise linearly independent, as will be discussed later. In general, this
assumption is still not sufficient; consider a set of polynomials P ⊆ R1[x1, x2]
which defines a family L of lines in R2 in general position. Then the bound
D2,1 = 3 from Theorem 10 cannot be improved, as any two lines from L intersect,
but the whole family may not. Hence, we will also need an assumption on the
space of polynomials.

A crucial property of families of spheres (and pseudospheres) used in the
previous chapter is the following. If F is a family of d spheres such that⋂

F (
⋂

(F \ {E}) for all E ∈ F , (⊗)

then the intersection of F is at most two points. For a set of polynomials P ,
if the family of zero sets of polynomials from P satisfies (⊗), then P is linearly
independent by Lemma 11. If we assume that Z(P) is also at most few points, we
may be able to use the approach of Theorem 3 to derive the desired generalization.

This correspondence motivates the following definition.

Definition 12. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomi-
als. We say that P has the k-points-property if the following holds for all ` ∈
{0, 1, . . . , k}. If Q ⊆ P is a linearly independent set of D − ` polynomials, then
Z(Q) is at most ` points.

Note that the property is monotone, meaning that P having the k-points-
property implies that P has the m-points-property for all m ≤ k.

As discussed above, the space of polynomials that define spheres has the 2-
points-property. Furthermore, we will show that the space of all polynomials of
bounded degree satisfies the property for general k.

Lemma 13. Let P ⊆ R[x1, . . . , xd] be a space of polynomials. If Rk[x1, . . . , xd] is
a subspace of P, then P has the k-points-property.

We postpone the proof, as it will be an easy corollary of Lemma 14, which
gives a sufficient condition for a space to have the k-points-property.

Let us now clarify the role of the space P in our further results. Through the
rest of this chapter, we view P as a given space with the k-points-property for
appropriate k and we bound the Helly number of zero sets of polynomials from a
subset of P with a function of the dimension of P. Given only a set of polynomials
P ⊆ R[x1, . . . , xd], the best bounds are therefore attained when P is chosen as a
space that has the k-points-property and contains P and whose dimension is the
least.

However, it is not clear how to determine this space P from the given set P
or what its dimension is. We can always work with Rk[x1, . . . , xd], which has
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the k-points-property by Lemma 13, but the dimension Dd,k grows fast and the
resulting bounds on the Helly numbers may not be as strong – as we have seen
on the example of spheres.

We were not able to obtain a complete solution to this problem in this thesis.
There is, however, a natural sufficient condition for a space to satisfy the k-points-
property.

Lemma 14. Let P ⊆ R[x1, . . . , xd] be a space of polynomials. Suppose that for
every ` ∈ {0, 1, . . . , k} and every set of ` + 1 points X ⊆ Rd, there exists a
polynomial p ∈ P such that Z(p) contains exactly ` points from X. Then P has
the k-points-property.

Proof. Let D denote the dimension of P. We proceed by induction on k. For
k = 0, the assumption says that no point is contained in all polynomials from P,
hence Z(P) is empty. If Q ⊆ P is a set of D linearly independent polynomials,
then Q is a basis of P. This means that Z(Q) ⊆ Z(p) for all p ∈ P, we obtain
that Z(Q) = Z(P) = ∅. Therefore P has the 0-points-property.

Suppose that k ≥ 1. By the induction hypothesis, P has the (k − 1)-points-
property. Let Q ⊆ P be a set of D − k linearly independent polynomials. We
only need to verify that Z(Q) is at most k points. Suppose that Z(Q) contains
at least k + 1 different points. Using the assumption, there exists a polynomial
p ∈ P whose zero set intersects exactly k of them. Since Z(p) avoids at least one
of the points in Z(Q), p is linearly independent of Q. We conclude that Q∪ {p}
is a linearly independent set of D − k + 1 polynomials whose zero set contains k
different points. This contradicts the (k − 1)-points-property of P.

Proof of Lemma 13. We only need to show the space Rk[x1, . . . , xd] satisfies the
assumptions of Lemma 14.

Let X be a set of `+ 1 points for some ` ≤ k. We denote X = {x1, . . . , x`+1}
and choose some hyperplanes h1, . . . h` such that hi contains xi and avoids x`+1

for all i ∈ {1, . . . , `}. Let qi be the linear polynomial defining hi as its zero set.
Finally, set p =

∏`
i=1 qi and observe that

x`+1 /∈ Z(p) =
⋃̀
i=1

hi ⊇ {x1, . . . , x`}.

It is also clear that p ∈ Rk[x1, . . . , xd], as it is a product of ` ≤ k linear polyno-
mials.

Using the observation that spaces of spheres have the 2-points-property, let
us now present the desired generalization of Theorem 3.

Theorem 15. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomials
with the 2-points-property. Let P ⊆ P be a set of at least D + 1 polynomials
and suppose the polynomials from P are pairwise linearly independent. Then the
Helly number of the family of zero sets of polynomials from P is at most D − 1.

We argue that the assumption on linear independence of pairs of polynomials
from P naturally corresponds to the assumption that no two spheres are the same.
The zero set of the zero polynomial is the whole space (so we need not consider it)
and if two polynomials are multiples of each other, then their zero sets are equal.
The proof of Theorem 15 is a combination of the proofs of Theorems 10 and 7.

15



Proof of Theorem 15. We assume that the zero sets of every D − 1 polynomials
from P intersect. Let Q ⊆ P be a subset of size D. If we show that Z(Q) is
nonempty for any such choice of Q, then Z(P) is nonempty by Theorem 10.

Suppose for a contradiction that Z(Q) = ∅. We denote Q = {q1, . . . , qD}
and choose r ∈ P \ Q arbitrarily. As the zero set of any proper subset of Q is
nonempty by the assumption, we can apply Lemma 11 to obtain that Q is linearly
independent. Therefore, Q forms a basis of P and r can thus be expressed as a
linear combination r =

∑D
i=1 αiqi for some reals α1, . . . , αD.

Let x1, . . . , xD ∈ Rd be points such that xi ∈ Z(Q\{qi}), which is nonempty by
the assumption. The points x1, . . . , xD are all different, as otherwise Z(Q) would
be nonempty. Since P satisfies the 2-points-property, we have Z(Q\{qi}) = {xi}
and moreover, Z(Q \ {qi, qj}) = {xi, xj} for any i 6= j.

By the assumption, Z(r) intersects the zero set of every choice of D − 2
polynomials from P . In particular, Z(r) has to contain at least one of the points
xi, xj for every i 6= j. This implies that at most one of the points x1, . . . , xD is
not contained in Z(r). With no loss of generality, we assume xi ∈ Z(r) for every
i ≥ 2.

Observe that xi ∈ Z(r) if and only if αi = 0. Therefore αi = 0 for all i ≥ 2.
We obtain that r = α1q1 which is a contradiction with the assumption that every
two polynomials from P are linearly independent.

2.4 Stronger linear independence

The key features of Theorems 3, 7 and 15 are the assumptions on the sizes of
the sets. As a continuation of Theorem 15, one can ask for better bounds under
stronger assumptions. Specifically, if we assume that P has the 3-points-property
and the size of P is sufficient, can we bound the Helly number by D−2? We will
later present an example showing this is not the case.

All is not lost, however. If we additionally strengthen the assumption on linear
independence of polynomials in P and we require the set P to be sufficiently huge,
we can reduce the bound further.

Theorem 16. For all positive integers k,D, there exists a constant N = N(k,D)
such that the following holds. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of
polynomials with the k-points-property. Let P ⊆ P be a set of at least N poly-
nomials and suppose that every k polynomials from P are linearly independent.
Then the Helly number of the family of zero sets of polynomials from P is at most
D − k + 1.

Observe that Theorem 15 is a special case of the above with k = 2 and
N(2, D) = D + 1. The assumption in Theorem 15 that pairs of polynomials are
linearly independent was rather natural and followed nicely from the situation
of simple spheres. Theorem 16, however, assumes that every k polynomials are
linearly independent, which is a direct generalization, but there seems to be no
straightforward geometrical insight explaining this assumption. As mentioned,
we will see it is necessary in Construction 2.

Proof of Theorem 16. Let us assume that (a) every k polynomials from P are
linearly independent, (b) the zero sets of every D − k + 1 polynomials from P
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intersect and (c) Z(P) is empty. We will bound the size of P by N(k,D)− 1 and
thus prove the theorem.

Let Q ⊆ P be a basis of the linear hull of P . This choice immediately implies
that Z(Q) = Z(P) = ∅. We set m = |Q|−D+k, then m is at least 2, as otherwise
|Q| ≤ D−k+1 and Z(Q) 6= ∅ by the assumption, which is a contradiction. Also,
m ≤ k, simply because |Q| ≤ D. We now define a set of points

X =
⋃
R⊆Q
|R|=D−k

Z(R),

where the sets Z(R) are always at most k points by the k-points-property of P.
Therefore |X| ≤ k

( |Q|
D−k

)
≤ k

(
D

D−k

)
.

Let Q denote P \ Q, we will bound the size of Q and thus the size of P . We
claim that for every different r1, . . . , rm ∈ Q there exist indices i 6= j such that
Z(ri) ∩X 6= Z(rj) ∩X. Suppose for a contradiction that r1, . . . , rm ∈ Q satisfy

Z(r1) ∩X = Z(r2) ∩X = · · · = Z(rm) ∩X.

Since m ≤ k, we assumed that r1, . . . , rm are linearly independent. Hence
there exists R ⊂ Q such that R∪{r1, . . . , rm} is again a basis of spanP . Observe
that the size of R is exactly D − k, therefore Z(R) 6= ∅ and moreover, Z(R ∪
{ri}) 6= ∅ for every i ∈ {1, . . . ,m}. But from the choice of r1, . . . , rm and the fact
that Z(R) ⊆ X, we derive

∅ 6= Z(R∪ {r1}) = Z(R) ∩ Z(r1) ∩ · · · ∩ Z(rm) = Z(R∪ {r1, . . . , rm}).

We have found a basis of P whose zero set is nonempty, this is a contradiction.
We obtain that the same intersection pattern Z(r)∩X can be attained by at

most m − 1 ≤ k − 1 polynomials from Q. Therefore |Q| ≤ (k − 1)2|X|, which is
again finite. Finally, we bound the size of P = Q∪Q and set N(k,D).

|P| ≤ D + (k − 1)2|X| ≤ D + (k − 1)2k( D
D−k) = N(k,D)− 1

The bound on N(k,D) in Theorem 16 is indeed very poor. Our method allows
us to greatly reduce the bound if we assume that the set P is in general position,
i.e., every DP polynomials from P are linearly independent, where DP is the
dimension of the linear hull of P .

Theorem 17. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomials
with the k-points-property. Let P ⊆ P be a set of at least D + k2 − 2k + 1
polynomials and suppose that P is in general position. Then the Helly number of
the family of zero sets of polynomials from P is at most D − k + 1.

Proof. We assume that the zero sets of every D − k + 1 polynomials from P
intersect and that P is in general position. Moreover, suppose that Z(P) is
empty. Our goal is to show that the size of P is at most D + k2 − 2k.

Let R be an arbitrary subset of P of size D − k. Note that R is linearly
independent by the general position of P . We set X = Z(R), which is nonempty
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by the assumption. We denote R = P \R and X = {x1, . . . , x`}; note that ` ≤ k
by the k-points property of P. Finally, let Qi for i ∈ {1, . . . , `} be the subset of
R containing the polynomials whose zero set contains xi.

We claim that the size of Qi is at most k−1 for every i ∈ {1, . . . , `}. Suppose
for a contradiction that |Qj| ≥ k, then the size of R∪Qj is at least D. Therefore
R ∪ Qj contains a basis of the linear hull of P by the assumption on general
position. But xj ∈ Z(R∪Qj), which contradicts Z(P) = ∅.

We obtain that each point xi is contained in the zero set of at most k − 1
polynomials from R. Conversely, each polynomial q ∈ R has to contain at least
one of x1, . . . , x`, as R ∪ {q} is a set of D − k + 1 polynomials from P and its
zero set is nonempty by the assumption. This yields

|P| = |R|+ |R| ≤ D − k + (k − 1)k = D + k2 − 2k.

Let us now present a construction showing that the assumption on linear
independence of polynomials from P in Theorem 16 is indeed necessary.

Construction 2. We construct a set of polynomials P ⊂ R3[x1, x2] that satisfies
the following:

(a) Z(P) = ∅
(b) Every 2 polynomials in P are linearly independent.

(c) The zero set of every Q ⊂ P of size at most D2,3 − 2 = 8 is nonempty.

(d) P is infinite.

h1 ⊂ Z(q), q ∈ P1

h2

h3h4

h5
x34

x25
⊂ Z(q), q ∈ P1

x23

x45

x35 x24

Figure 2.1: An illustration of Construction 2. Zero sets of polynomials from P0

are unions of three of the lines h1, . . . , h5. The zero set of a polynomial from
P1 is drawn bold and consists of the line h1 and a curve intersecting the points
x23, x35, x24, x45.

This constitutes a counterexample to a version of Theorem 16 with the as-
sumption that every k polynomials from P are linearly independent relaxed to
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k−1. In particular k = 3 and d = 2 and P = R3[x1, x2] here, but the construction
can be generalized.

Let h1, h2, h3, h4, h5 be lines in general position, meaning that every two in-
tersect in a point and no three intersect. Choose p1, . . . , p5 ∈ R1[x1, x2] so that pi
defines hi, i.e., Z(pi) = hi. Let xij ∈ R2 denote the intersection point of hi and
hj. We now define

P0 = {pijk = pi · pj · pk | i, j, k ∈ {1, . . . , 5}, i < j < k}.

Clearly, |P0| =
(
5
3

)
= 10 and Z(P0) = ∅, as the zero set of each polynomial

from P0 intersects all of the points xij except for one. For instance, the point
x12 is not contained in Z(p345). Furthermore, removing any polynomial from P0,
say p123, will result in a nonempty zero set: x45 ∈ Z(pijk) for every {i, j, k} 6=
{1, 2, 3}. Therefore the zero set of every subset Q ⊂ P0 of size at most D2,3− 1 =
9 is nonempty. Also, note that the polynomials from P0 are pairwise linearly
independent, since they have different zero sets.

It remains to add infinitely many polynomials and preserve the property that
the zero set of any eight polynomials is nonempty. We define

P1 = {αp125 + (α + 1)p134 | 0 6= α ∈ R+},

and set P = P0∪P1 (see Fig. 2.1). Observe that for all q ∈ P1 we have xij ∈ Z(q)
for all i, j except for x34 and x25. Our goal is to show that Z(Q) is nonempty for
every Q ⊂ P of size 8. Note that

Z(P0 \ {p125, p134}) = {x34, x25},

which are the only points the zero sets of polynomials from P1 avoid. A point
xij different from x34 and x25 will therefore appear in the zero set of any seven
polynomials from P0. This point is also contained in Z(q) for all q ∈ P1. Hence
the zero set of Q is nonempty for every Q ⊂ P of size at most 8. It is clear that
no two polynomials in P are linearly dependent. Therefore P indeed satisfies all
the assumptions, but Z(P) = ∅ and it is infinite.

2.5 The piercing number

As we have seen above, the assumption on linear independence of polynomials
is necessary for bounds on the Helly number better than D. Indeed, there exist
collections of polynomials satisfying the property that the zero sets of every D−
k + 1 polynomials intersect and yet the family of all zero sets has an empty
intersection. However, we can still show some meaningful observations about the
structure of these collections. In particular, there exists a set of few points such
that the zero set of every polynomial contains at least one of them.

The piercing number P (P) of a set of polynomials P ⊆ R[x1, . . . , xd] is defined
as the minimum size of a set of points Y ⊂ Rd such that Z(p) contains at least
one point from Y for every p ∈ P .

The theorems above conclude that Z(P) 6= ∅ for appropriate sets P , which
means the piercing number P (P) is exactly 1. We now omit the assumption on
linear independence from Theorem 16, at the cost of weaker conclusion.
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Theorem 18. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomials
with the k-points-property. Let P ⊆ P be a set of polynomials and suppose that
Z(Q) is nonempty for every Q ⊆ P of size at most D− k+ 1. Then the piercing
number of P is at most k.

Proof. Let P be given and the assumptions satisfied. Let Q ⊆ P be a basis of
the linear hull of P . If |Q| ≤ D − k + 1, we obtain Z(P) = Z(Q) 6= ∅ directly
from the assumption and therefore P (P) = 1.

Otherwise, we define R ⊆ Q to be a subset of size D− k, then |Z(R)| ≤ k by
the k-points-property of P. Also, for any p ∈ P we have Z(R)∩Z(p) 6= ∅ by the
assumption. Therefore the zero set of any polynomial in P contains at least one
point from Z(R). We obtain

P (P) ≤ |Z(R)| ≤ k.

We can now use the bound on the piercing number to derive that there exists
a large subset with nonempty zero set. This result is in the spirit of the fractional
Helly theorem.

Corollary 19. Let P ⊆ R[x1, . . . , xd] be a D-dimensional space of polynomials
with the k-points-property. Let P ⊆ P be a set of polynomials and suppose that
Z(Q) is nonempty for every Q ⊆ P of size at most D− k + 1. Then there exists
a subset R ⊆ P of size at least 1

k
|P| such that the zero set of R is nonempty.

20



Open problems and further
directions

In Section 2.3, we introduced the k-points-property, a monotone property of
spaces of polynomials motivated by an observation about families of spheres.
It is an open problem to characterize spaces of polynomials with the k-points-
property. We also ask how to determine the least dimension of a space with the
k-points-property containing a given set of polynomials. It seems that techniques
from algebraic geometry will be needed for satisfactory answers to these problems.

In Theorem 16, we provided a general bound on the Helly number of families
of hypersurfaces that are sufficiently big and satisfy strong assumptions on linear
independence. As discussed before, the bound on the least sizeN(k,D) is nowhere
close to tight. A careful analysis is likely to improve the bound considerably. We
know that N(2, D) = D + 1 and conjecture the following.

Conjecture 1. The number N(k,D) grows linearly in D + k.
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