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Introduction

“Per aspera ad astra.”

– Latin proverb

The Standard model is a very succesful theory that describes interactions of ele-
mentary particles. Over many years it has faultlessly passed many experiments. For
instance, let us remember the discovery of the Higgs boson about three years ago. This
finding ended the search for particles contained in the model.

Although the Standard model seems to work very accurately, it is still obvious that
it is not a final theory but rather a low-energy approximation of a more general theory
because we still encounter problems that are not solved within the Standard model.

One of the parts of the Standard model is Quantum chromodynamics that describes
strong interactions between quarks and hadrons. However, at low energies, the quarks
and gluons are confined into hadrons - mesons and baryons. Therefore, it is obvious
that we need a different approach to describe the interactions at low energy. One of
the possible techniques includes so called Chiral perturbation theory and, for rather
higher energies, Resonance chiral theory. These methods are the cornerstones of our
work that rests in a low-energy region of QCD and we will devote detailed attention to
them in the following chapters.

Motivation

A general motivation of this thesis is to contribute to the systematic study of odd-
intrinsic parity sector of QCD by calculations of contributions of resonances into three-
point and four-point Green functions. Using this approach, it is possible to obtain
parameters that are suitable for being verified by experiments.

This paper is supposed to be an extension of an article [1] and a bachelor thesis [2],
where V V P, V AS and AAP correlators were studied. Following this journey, we present
here calculations of new Green functions that have not yet been studied extensively in
the literature before.

Outline

This thesis consists of the following. In the first chapter 1 we present a basic introduc-
tion into the quantum chromodynamics and cover various topics, from a construction
of the general QCD Lagrangian to generating functional to symmetry breaking.

In the second chapter 2, we pay our attention to the low-energy region of QCD and
its description using chiral perturbation theory and resonance chiral theory. We also
deal with a description of the resonance fields using different formalisms and study an
anomalous WZW Lagrangian in detail.

The third chapter 3 deals with a general description of the Green functions of cur-
rents. We also present a discussion regarding the topology of the correlators and revise
the Green functions that have already been studied in the past.

The fourth and fifth chapters 4-5 contain original calculations of the three-point
Green functions V V A and AAA in the antisymmetric tensor formalism. We present
the full procedure, from a determination of all the contributing Lagrangians to the
calculation of individual vertices and diagrams. In the case of V V A correlator, we
also determine several constraints for some of the coupling constants and calculate the
decay of the f1(1285) meson.

The sixth and seventh chapters 6-7 represent a short introduction to our original
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calculations of the four-point Green functions V V PP and V V V V . Despite their com-
plicated structure, we studied both of these correlators in the vector and antisymmetric
tensor formalism. Since the results are very difficult to present in a comprehensible form
due to the very extensive tensor structure, we just mention their basic properties and
present some of the phenomenological applications that we will pay our attention to in
future studies.

This thesis also includes a set of appendices, where we pursue an effort to give
a deeper description of the topics that could not be mentioned in detail in the main
chapters. Appendix A deals with mathematical aspects of the theory we used, whilst
Appendix B contains a general expansion of the chiral operators in its individual terms.
In Appendix C we present a formalism used to describe the spin one particles. Ap-
pendix D presents a survey of the Feynman rules for Lagrangians we used extensively
in this thesis and also for the ones that could be useful in future studies. We deal with
various Lagrangians, throughout the vertices that come both from χPT and RχT. The
results in this appendix were obtained by our algorithm, many of them have not been
studied before. Finally, in Appendix E, we give a complete description of the original
algorithm ’Mercury’ in FeynCalc, that we wrote and used for our calculations.

For clarity in the description of this topic, the reader is recommended to browse
this thesis in the following order, to get a complete understanding of the studied issues:

1. chapters 1, 2, 3.

2. appendices A, B, C, D.

3. chapters 4, 5, 6, 7.

4. appendix E.

Convention

Throughout this thesis, we use the ”West coast convention” for the metric tensor,

gµν = gµν = diag(+,−,−,−) ,

and for the Levi-Civita tensor we take

ε0123 = 1 .
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1. Quantum chromodynamics

Quantum chromodynamics (QCD) is a non-abelian gauge theory of the strong interac-
tions, based on the color SU(3) as the underlying gauge group, with the fundamental
degrees of freedom, gluons and quarks which are asymptotically free at high energies.
However, at low energies the quarks and gluons are coupled into hadrons. Therefore,
since quarks have not been observed as asymptotically free states, the meaning of quark
masses and their numerical values are tightly connected with the method by which they
are extracted from hadronic properties.

QCD is a very important part of the Standard model and a lot of experimental
evidences benefit for its excellent validity. Let us start this paper with a basic intro-
duction to the mathematical background of QCD so we can build our calculations on
these principles afterwards.

1.1 QCD Lagrangian

We present the quark colour triplet as the basic building block [3], [4], [5]

qf =

qrfqgf
qbf

 , (1.1)

where f stands for the flavour of the quark. The triplet transforms as

qf → U(x)qf , (1.2)

where U(x) is an element of SU(3) group that we can write in the form

U(x) = exp

(
− i

8∑
a=1

θa(x)
λa
2

)
, (1.3)

where θa is one of the eight parameters θ = (θ1, . . . θ8) that describes the gauge trans-
formation above and λa represents Gell-Mann matrices.

The SU(3) invariant Lagrangian can be written in the form [3], [4], [5]

Lq =
∑
f

qf (iγµ∇µ −mf )qf , (1.4)

where ∇µ is the covariant derivative and

∇µgf = ∂µqf − iqAµ(x)qf , (1.5)

where

Aµ(x) =

8∑
a=1

λa

2
Aaµ(x) (1.6)

is the octet of SU(3) gauge fields. The octet transforms as

Aµ(x)→ U(x)Aµ(x)U †(x)− i

g
∂µU(x)U †(x) . (1.7)

As an invariant object made out of gluon fields we present nonabelian stress tensor [3],
[4]

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.8)
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that transforms as

Gµν → U(x)GµνU †(x) . (1.9)

The only nontrivial scalar, considering dimensions equal to or less than 4, made out of
(1.4) and (1.8) is the contraction of the two stress tensors. Thus we have the complete
QCD Lagrangian [3], [4]

LQCD =
∑
f

qf (iγµ∇µ −mf )qf −
1

4

8∑
a=1

GaµνGµν,a . (1.10)

There are six quarks in the flavour sector. With respect to their masses we can
divide them into two parts consisting of quarks with masses less or greater than 1 GeV,
which is so called hadron scale ΛH . Schematically, we have

mu,md,ms � 1 GeV < mc,mb,mt . (1.11)

In the low-energy region only the first three quarks are necessary to be taken into
account. The approximation, based on the massless quarks, is called chiral limit. In
this case (1.10) has the form [3], [4]

L0QCD =
∑

f=u,d,s

qf iγ
µ∇µgf −

1

4

8∑
a=1

GaµνGµν,a . (1.12)

Massless QCD Lagrangian (1.12) is invariant under SU(3) and even possesses U(3)
symmetry.

In order to exhibit the global symmetries of (1.12), we consider the chirality matrix
γ5, also known as the fifth Dirac matrix, and projection operators

PL =
1

2
(1 + γ5) , PR =

1

2
(1− γ5) , (1.13)

These operators satisfy their expected properties, such as idempotent

P 2
L = PL , P 2

R = PR , (1.14)

orthogonality

PLPR = 0 , PRPL = 0 (1.15)

and completeness

PL + PR = 1 . (1.16)

The properties (1.14)-(1.16) guarantee that PL and PR project from the quark field q
to its chiral components qL and qR,

qL = PLq, qR = PRq , (1.17)

where

q = qL + qR . (1.18)

With the respect to the properties of Dirac matrices (see Appendix A), we can
rewrite the massless QCD Lagrangian (1.12)

L0QCD =
∑

f=u,d,s

(qR,f iγ
µ∇µqR,f + qL,f iγ

µ∇µqL,f )− 1

4

8∑
a=1

GaµνGµν,a . (1.19)
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Now we can see that (1.12) is also invariant under the independent transformations of
chiral components qL and qR,

qL → ULqL , qR → URqR , (1.20)

where UL and UR are unitary 3× 3 matrices. We say that (1.19) has a classical global
U(3)L ×U(3)R symmetry.

The result of Noether’s theorem is that there are 18 conserved currents associated
with the mentioned transformations of left-handed and right-handed quarks. The SU(3)
currents (a = 1 . . . 8) are defined as

Lµ,a = qLγ
µλ

a

2
qL , (1.21)

Rµ,a = qRγ
µλ

a

2
qR , (1.22)

with

∂µL
µ,a = 0 , (1.23)

∂µR
µ,a = 0 , (1.24)

and the U(1) singlet currents (a = 0) are

V µ = qγµq , (1.25)

Aµ = qγµγ5q . (1.26)

The singlet currents are conserved on the classical level, however, after the quantization,
the axial current is not conserved anymore. Also, the Lagrangian L0QCD is invariant
under the local group SU(3)L × SU(3)R ×U(1)V on the quantum level.

Instead of (1.21) and (1.22) it is more useful to take into account their linear
combinations

V µ,a = Rµ,a + Lµ,a = qγµ
λa

2
q , (1.27)

Aµ,a = Rµ,a − Lµ,a = qγµγ5
λa

2
q , (1.28)

with the parity transformations

V µ,a(x, t)→ V a
µ (−x, t) , (1.29)

Aµ,a(x, t)→ −Aaµ(−x, t) . (1.30)

In addition to the vector (1.27) and axial-vector (1.28) currents, it is also appropriate
to define the SU(3) densities, specifically the scalar density

Sa = q
λa

2
q , (1.31)

and the pseudoscalar density

P a = iqγ5
λa

2
q . (1.32)

The U(1) singlets are defined as

S = qq , (1.33)

P = iqγ5q . (1.34)
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The densities transform under parity transformations [3]

Sa(x, t)→ Sa(−x, t) , (1.35)

P a(x, t)→ −P a(−x, t) . (1.36)

We also define the external fields

vµ =

8∑
a=1

λa

2
vµa , aµ =

8∑
a=1

λa

2
aµa , s =

8∑
a=1

λa

2
sa , p =

8∑
a=1

λa

2
pa , (1.37)

represented in the flavour sector by Hermitian 3× 3 matrices. By coupling vector and
axial-vector currents to external fields we can get

L = L0QCD + Lext (1.38)

= L0QCD + qγµ

(
vµ +

1

3
vµ(s) + γ5a

µ

)
q − q(s− iγ5p)q . (1.39)

Here we added the single vector current vµ(s) together with other external fields, however

we omitted the axial-vector single current aµ(s) which has an anomaly. It is easy to notice
that we can recover the ordinary three flavor QCD Lagrangian by setting

vµ = vµ(s) = p = 0 (1.40)

and

s =

mu 0 0
0 md 0
0 0 ms

 (1.41)

in (1.39). The diagonal matrix (1.41) is usually called the mass matrix, denoted asM,
i.e. s =M is required in this case to recover the ordinary QCD Lagrangian.

If we define vector and axial-vector currents in the form

vµ =
1

2
(rµ + lµ) , aµ =

1

2
(rµ − lµ) , (1.42)

Lagrangian (1.39) now has the form

L =L0QCD + qLγ
µ

(
lµ +

1

3
v(s)µ

)
qL + qRγ

µ

(
rµ +

1

3
v(s)µ

)
qR (1.43)

− qR(s+ ip)qL − qL(s− ip)qR .

1.2 Green functions of currents

The amplitudes of physical processes can be calculated using LSZ reduction formula
from the Green functions, the vacuum expectation values of the time ordered products
of the quantum fields:〈

0
∣∣T[Õ1(p1) . . . Õn(0)

]∣∣0〉 = (1.44)

=

∫
d4x1 . . . d

4xn−1 e
i(p1x1+...+pn−1xn−1)

〈
0
∣∣T[O1(x1) . . .On(0)

]∣∣0〉 .
In our case, the operators Oi(x) stand for any of the currents (1.27), (1.28) or densities
(1.31), (1.32). Since we have a set of four possible operators which we choose from,
considering a general n-point Green function, we have a total number of

C ′n(4) =

(
n+ 3

n

)
(1.45)
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different Green functions for the given n because the choosing of the operators is basi-
cally a combination with repetitions.

Easily, one can find that we have 20 possible three-point, 35 four-point Green func-
tions etc. Of course, a lot of them are trivially zero. For example, there are only
five nontrivial three-point Green functions: V V P, V AS,AAP, V V A and AAA. More-
over, individual Green functions are connected with other ones due to the chiral Ward
identities.

1.3 Chiral Ward identities

The Green functions are connected through the ward identities that reflect the symme-
try properties of a given theory on the quantum level. The knowledge of the identities
allows us to determine the structure of the Green functions and other important prop-
erties.

The divergences of chiral Green functions (1.44) correspond to the linear combi-
nations of other Green functions. These relations are called chiral Ward identities,
explicitly

∂xµ
〈
0
∣∣T[Jµ(x)O1(x1) . . .On(xn)

]∣∣0〉 =
〈
0
∣∣T[(∂xµJµ(x)

)
O1(x1) . . .On(xn)

]∣∣0〉
+

n∑
i=1

δ(x0 − xi)
〈
0
∣∣T[O1(x1) . . . [J0(x),Oi(xi)] . . .On(xn)

]∣∣0〉 , (1.46)

where Jµ(x) stands for any of the Noether currents. Notice that here we let the diver-
gence act on the right side of (1.44). Integration out over coordinates, which eliminates
the divergence, we obtain chiral Ward identites for the Green functions in the impulse
representation, i.e. in the form of the left side of (1.44).

To evaluate chiral Ward identities it is necessary to know the equal-time commuta-
tion relations among currents V,A and densities S, P [3], [4].

[V a
0 (t,x), V b

µ (t,y)] = iδ3(x− y)fabcV c
µ (t,x) , (1.47)

[V a
0 (t,x), Vµ(t,y)] = 0 , (1.48)

[V a
0 (t,x), Abµ(t,y)] = iδ3(x− y)fabcAcµ(t,x) , (1.49)

[V a
0 (t,x), Sb(t,y)] = iδ3(x− y)fabcSc(t,x) , (1.50)

[V a
0 (t,x), S0(t,y)] = 0 , (1.51)

[V a
0 (t,x), P b(t,y)] = iδ3(x− y)fabcP c(t,x) , (1.52)

[V a
0 (t,x), P 0(t,y)] = 0 , (1.53)

[Aa0(t,x), V b
µ (t,y)] = iδ3(x− y)fabcAcµ(t,x) , (1.54)

[Aa0(t,x), Vµ(t,y)] = 0 , (1.55)

[Aa0(t,x), Abµ(t,y)] = iδ3(x− y)fabcV c
µ (t,x) , (1.56)

[Aa0(t,x), Sb(t,y)] = iδ3(x− y)

[
dabcP c(t,x) +

√
2

3
δabP 0(t,x)

]
, (1.57)

[Aa0(t,x), S0(t,y)] = iδ3(x− y)

√
2

3
P a(t,x) , (1.58)

[Aa0(t,x), P b(t,y)] = −iδ3(x− y)

[
dabcSc(t,x) +

√
2

3
δabS0(t,x)

]
, (1.59)

[Aa0(t,x), P 0(t,y)] = −iδ3(x− y)

√
2

3
Sa(t,x) . (1.60)
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1.4 Divergences of currents

The divergences of the currents (1.25), (1.26) and (1.27), (1.28) are possible to express
depending on the mass matrix, usually denoted as

M = diag(mu,md,ms) . (1.61)

The explicit forms of the divergences are as follows [3], [4]:

∂µV
µ,a = iq

[
M,

λa

2

]
q , (1.62)

∂µA
µ,a = iqγ5

{
M,

λa

2

}
q , (1.63)

∂µV
µ = 0 , (1.64)

∂µA
µ = 2iqMγ5q +

3g2

32π2
εµνρσGµν,aGρσ,a . (1.65)

The last term is a well known anomaly due to the violation of the axial-vector current
conservation.

For the purpose of an evaluation of the chiral Ward identities, it will be convenient
to express the divergences of the currents (1.62) and (1.63) in a more suitable way. Let
us start with the mass matrix. It is very easy to express it as a linear combination of
the Gell-Mann matrices, such as

M =
mu +md +ms√

6
λ0 +

mu −md

2
λ3 +

1
2(mu +md)−ms√

3
λ8 . (1.66)

Using easy matrix manipulations, explained in detail in Appendix A, one can arrive at[
M,

λa

2

]
=

[
i(mu −md)f

3ab +
i√
3

(mu +md − 2ms)f
8ab

]
λb

2
, (1.67){

M,
λa

2

}
=

[√
2

3
(mu +md − 2ms)δ

8a +

√
2

3
(mu −md)δ

3a

]
λ0

2
(1.68)

+

[
1√
3

(mu +md − 2ms)d
8ab + (mu −md)d

3ab

]
λb

2

+
2

3
(mu +md +ms)

λa

2
.

It might be helpful to notice the possible non-vanishing structure constants in the
previous expressions. Easily, one can find that the totally symmetric tensor d8ab in
(1.68) has the non-zero contributions only for a = b. Considering this fact, we can
rewrite (1.68) in the form{

M,
λa

2

}
=

[√
2

3
(mu +md − 2ms)δ

8a +

√
2

3
(mu −md)δ

3a

]
λ0

2
(1.69)

+

[
2

3
(mu +md +ms) +

1√
3

(mu +md − 2ms)d
8aa

]
λa

2

+ (mu −md)d
3abλ

b

2
.

Knowing the expressions (1.67) and (1.69) above, we can finally find the relations for
divergences (1.62) and (1.63) in the form

∂µV
µ,a = αabSb , (1.70)

∂µA
µ,a = βa1P

0 + β2P
a + βab3 P

b , (1.71)
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where we denoted

αab = −(mu −md)f
3ab − 1√

3
(mu +md − 2ms)f

8ab , (1.72)

βa1 =

√
2

3
(mu +md − 2ms)δ

8a +

√
2

3
(mu −md)δ

3a , (1.73)

β2 =
2

3
(mu +md +ms) +

1√
3

(mu +md − 2ms)d
8aa , (1.74)

βab3 = (mu −md)d
3ab . (1.75)

1.5 Generating functional and the anomaly

The Green functions associated with the vector, axial-vector, scalar and pseudoscalar
currents are generated by the functional [6]

exp
(
iZ[v, a, s, p, θ]

)
= 〈0out|0in〉v,a,s,p,θ , (1.76)

where 〈0out|0in〉 is the vacuum-to-vacuum transition amplitude in the presence of ex-
ternal fields, determined by the Lagrangian (1.39) with the included operator in the
form

− 1

16π2
θ(x)〈GµνĜµν〉 , (1.77)

where
Gµν = i[∇µ,∇ν ] (1.78)

is the gluon field strength (1.8) with the covariant derivative (1.5) and θ(x) is the
vacuum angle.

The meaning behind the vacuum-to-vacuum transition amplitude is the following.
Let us consider that, in the remote past, the system was in the ground state and
consider the evolution in the presence of the external fields. Then, the vacuum-to-
vacuum transition amplitude represents the probability amplitude for the system to
wind up in the ground state when x0 →∞ [6].

It is convenient to collect the currents into the universal definition of the generating
functional [6],

exp
(
iZ[v, a, s, p, θ]

)
=
∞∑
n=0

in

n!

∫
ddx1 . . . d

dxn f
i1
µ1(x1) . . . f

in
µn(xn)× (1.79)

×
〈
0
∣∣T[Jµ1i1 (x1) . . . J

µn
in

(xn)
]∣∣0〉 ,

where f iµ(x) is a set of external fields. In our case of the Lagrangian (1.39), we can
write the generating functional in the form

exp
(
iZ[v, a, s, p]

)
=
〈
0
∣∣T[ exp

(
i

∫
d4xLext(x)

)]∣∣0〉 . (1.80)

By expanding the generating functional around vµ = aµ = s = p = 0, θ(x) = θ0 one can
obtain the Green functions of QCD with massless u, d, s quarks. However, the Green
functions of the real world, i.e. with the mass quarks, are obtained by expanding the
functional around vµ = aµ = p = 0, s = M and θ(x) = θ0. In other words, the n-
point Green functions are obtained by variation with respect to corresponding external
sources, for example (we consciously do not consider θ(x) anymore)

〈
0
∣∣T[Aaµ(x)Abν(0)

]∣∣0〉 = (−i)2 δ2

δaµa(x)δaνb (0)
exp

(
iZ[v, a, s, p]

)∣∣∣∣v=a=p=0
s=M

. (1.81)
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Formally, the vacuum-to-vacuum amplitude is invariant with the respect to local
U(3)×U(3) transformations

q(x)→ VR(x)
1 + γ5

2
q(x) + VL(x)

1− γ5
2

q(x) , (1.82)

which generate a gauge transformation of the external fields

vµ + aµ → v′µ + a′µ = VR(x)(vµ + aµ)V †R(x) + iVR(x)∂µV
†
R(x) , (1.83)

vµ − aµ → v′µ − a′µ = VL(x)(vµ − aµ)V †L(x) + iVL(x)∂µV
†
L(x) . (1.84)

and

s+ ip→ s′ + ip′ = VR(x)(s+ ip)V †L(x) , (1.85)

s− ip→ s′ − ip′ = VL(x)(s− ip)V †R(x) . (1.86)

For an infinitesimal chiral transformation

VR(x) = 1 + iα(x) + iβ(x) + . . . , (1.87)

VL(x) = 1 + iα(x)− iβ(x) + . . . , (1.88)

where

α(x) = αa(x)
λa

2
, β(x) = βa(x)

λa

2
, (1.89)

the change in the external fields is given by

δvµ = ∂µα+ i[α, vµ] + i[β, aµ] , (1.90)

δaµ = ∂µβ + i[α, aµ] + i[β, vµ] , (1.91)

δs = i[α, s]− {β, p} , (1.92)

δp = i[α, p] + {β, s} . (1.93)

However, the anomalies of the fermion determinant break chiral invariance [12], i.e.
the generating functional is not invariant under the transformations (1.83)-(1.86). The
change in Z can be schematically given as

Z[v′, a′, s′, p′] = Z[v, a, s, p] + δZ[v, a, s, p, VLV
†
R] (1.94)

where [12]

δZ = − NC

16π2

∫
d4x

〈
β(x)Ω(x)

〉
(1.95)

with

Ω(x) = εαβµν
(
vαβvµν +

4

3
∇αaβ∇µaν +

2i

3
{vαβ, aµaν} (1.96)

+
8i

3
aµvαβaν +

4

3
aαaβaµaν

)
,

where we have defined

vαβ = ∂αvβ − ∂βvα − i[vα, vβ] , (1.97)

∇αaβ = ∂αaβ − i[vα, aβ] . (1.98)

An assumption to obtain (1.95) explicitly is that one simultaneously transforms the
external field θ(x) as

δθ(x) = −2〈β(x)〉 . (1.99)

Let us get back to (1.96) and rewrite the expression as

Ω(x) = εαβµνΩαβµν . (1.100)
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1.6 Symmetry breaking

1.6.1 Explicit symmetry breaking

So far we have not considered the quarks to have masses whatsoever. Taking them into
account, the symmetry is explicitly broken due to the presence of the mass term in the
Lagrangian (1.43), specifically by the existence of the part

LM = −qRs qL − qLs qR (1.101)

= −qMq , (1.102)

where we denoted mass matrix in its usual form (1.61) which is contained in the scalar
field s, cf. (1.41).

Depending on the masses of the quarks in the mass matrix, we can introduce the
following special cases [7], [8]:

1. mu = md = ms = 0: the octet vector and axial-vector currents are conserved,
the symmetry group is SU(3)L × SU(3)R ×U(1)V .

2. mu = md = ms 6= 0: vector current is conserved and the Lagrangian is invariant
under SU(3)V ×U(1)V .

3. mu = md = 0: the symmetry is SU(2)L × SU(2)R × U(1)SV × U(1)V , where
U(1)SV represents the conservation of the strangeness.

4. mu = md 6= 0: the chiral limit of the lightest quarks with the symmetry SU(2)V ×
U(1)SV ×U(1)V .

For the general values of mu,md,ms we have no flavor symmetry, except for U(1)V ,
which is always present and represents the conservation of the baryon number.

1.6.2 Spontaneous symmetry breaking

The symmetry group of QCD with the massless quarks, SU(3)L × SU(3)R × U(1)V , is
spontaneously broken to SU(3)V ×U(1)V due to the presence of an order parameter in
QCD. According to the Goldstone theorem, to each generator, which does not anihilate
the vacuum state, there corresponds one massless Goldstone boson. Therefore, an octet
of these particles appears in the spectrum of QCD.

The generators of SU(3)V symmetry are [3]

QaV (t) =

∫
d3xV a

0 (x, t) =

∫
q†(x, t)

λa

2
q(x, t) (1.103)

and satisfy the equal-time commutation relations with the SU(3)V octet of scalar den-
sities

[QaV (t), Sb(y)] = ifabcSc(y) . (1.104)

This relation can be used to express the scalar density in the form

Sa(y) = − i
3
fabc[QbV (t), Sc(y)] . (1.105)

Since the vacuum is invariant under SU(3)V , we can write the vacuum expectation
value of the scalar density to be zero, i.e.

〈0|Sa(y)|0〉 = 0 . (1.106)
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Let us consider a = 3 and a = 8. Then, we get

〈uu〉 − 〈dd〉 = 0 , (1.107)

〈uu〉+ 〈dd〉 − 2〈ss〉 = 0 , (1.108)

which leads to
〈uu〉 = 〈dd〉 = 〈ss〉 . (1.109)

Assuming the non-vanishing singlet scalar density, we simply obtain [3]

〈0|S|0〉 = 〈qq〉 = 3〈uu〉 6= 0 . (1.110)

For the equal-time commutation relation

i[QaA(t), P a(y)] = daacSc(x, t) +
2

3
S(x, t) , (1.111)

the vacuum expectation value is easily

i〈0|[QaA(t), P a(y)]|0〉 =
2

3
〈qq〉 6= 0 . (1.112)

In conclusion, we have found that the order parameter in QCD is 〈qq〉.
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2. Low-energy region of QCD

An approach, based on the strong interaction in terms of dynamical quarks and gluons,
fails in the low-energy region of hadronic spectrum, i.e. for energies less than 2 GeV,
where QCD becomes non-perturbative. An alternative way out would be to replace
QCD at low energies with a new theory that would take other relevant degrees of
freedom into account, i.e. mesons and baryons. However, the situation here is not that
simple since we do not know such a theory in the full low-energy spectrum.

Nevertheless, in the region of energies typically less than Mρ, with Mρ standing for
the mass of the ρ(770) meson, we have an effective field theory of QCD, called Chiral
perturbation theory.

2.1 Chiral perturbation theory

Spontaneous breaking of the chiral SU(3)L × SU(3)R symmetry down to SU(3)V in
QCD leads to the presence of Goldstone bosons [3]. Identifying them with the octet
of pseudoscalar mesons (π,K, η), as the lightest hadronic observable states, we can
construct Chiral perturbation theory (χPT). Then, the effective Lagrangian is expressed
in terms of the mentioned hadronic degrees of freedom [16]. The construction of such
a Lagrangian is now our task.

2.1.1 Chiral operators and the χPT Lagrangian

A general formalism of how to build effective Lagrangians with spontaneous symmetry
breaking was proposed in [9], where a suitable way of parametrization of the Goldstone
boson was provided. We can use this formalism to construct an effective Lagrangian to
describe the interaction among Goldstone bosons, the lightest pseudoscalar multiplet.
Considering the fact that there is a mass gap separating the pseudoscalar octet from
the rest of the hadronic spectrum, one can construct an effective field theory containing
only these modes.

Let us recall the spontaneous chiral symmetry breaking

G ≡ SU(3)L × SU(3)R −→ H ≡ SU(3)V . (2.1)

Denoting φa(a = 1 . . . 8) the coordinates describing the Goldstone fields in the coset
spaceG/H, a coset representative uR,L(φ) is chosen. The transformation of coordinates,
carrying the Goldstone modes, under a chiral transformation g = (gL, gR) ∈ G is given
by

uL(φ)
G−→ gLuL(φ)h†(g, φ) , (2.2)

uR(φ)
G−→ gRuR(φ)h†(g, φ) , (2.3)

where h(g, φ) ∈ H is the compensator field. We can take the choice of a coset repre-
sentative such that

uR(φ) = u†L(φ) ≡ u(φ) . (2.4)

The explicit form of parametrization can be written in the form of the basic building
block of χPT, i.e. [10], [11], [12]

u(φ) = exp

(
i√
2F

φ

)
, (2.5)
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where the low-energy parameter F is the pion decay constant and

φ =

8∑
a=1

λa√
2
φa =


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8

 (2.6)

is the matrix of the octet of pseudoscalar meson fields, i.e. Goldstone bosons, under
chiral SU(3) transformations.

The octet of pseudoscalar fields can be easily extended to include the η′ meson, the
singlet counterpart of the Goldstone boson octet. Although the η′ is not a Goldstone
boson due to the axial U(1) symmetry which is explicitly broken through the chiral
anomaly of the strong interactions, it combines with the Goldstone bosons to a nonet
at the level of the effective theory. The extension of the η′ to the nonet is possible due
to the ninth Gell-Mann matrix (see Appendix A).

The matrix (2.6) also says that physical fields representing the octet of pseudoscalar
mesons are linear combinations of real fields φa. It is also clear that physical fields on
the diagonal positions, π0 and η8, are singlets and for this reason they are representable
only by a single field, specifically:

π0 = φ3 , η8 = φ8 . (2.7)

For remaining components of dublets we can find the following field representation:

π+ =
1√
2

(φ1 − iφ2) , π− =
1√
2

(φ1 + iφ2) , (2.8)

K+ =
1√
2

(φ4 − iφ5) , K− =
1√
2

(φ4 + iφ5) , (2.9)

K0 =
1√
2

(φ6 − iφ7) , K
0

=
1√
2

(φ6 + iφ7) . (2.10)

Obviously, every couple in (2.8)-(2.10) makes up a mutually complex conjugated pair,
which we have to take into account to find φ†. It means that during every complex
transposition of φ, for example, physical field π+ in φ changes to π− and takes the
same place as π− had in the original matrix φ. This is just a simple consequence of
complex transposition, which is just a composition of matrix transposition and complex
conjugation. The same principle applies on every physical field in φ. This satisfies
the fact that φ ≡ φ†, which is also just a simple consequence of hermiticity of Gell-
Mann matrices λa and reality of fields φa. Knowing how to work under the complex
transposition, we will be able to express a few terms of an expansion of the building
block and covariant tensors. We will return to this point later on.

Mesonic chiral Lagrangians can be constructed by taking traces of products of chiral
operators X that either transform as [9], [10], [11], [12]

X
G−→ h(g, φ)Xh†(g, φ) (2.11)

or remain invariant under chiral transformations. The simplest such operators are

uµ = u†µ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
(2.12)

and
χ± = u†χu† ± uχ†u , (2.13)

where
χ = 2B0(s+ ip) (2.14)
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and B0 is a constant not restricted by chiral symmetry and related with the quark
condensate.

The χPT Lagrangian can be written in the form [10], [11], [12]

LχPT = L(2)χPT + L(4)χPT + L(4)WZW + . . . , (2.15)

where

L(2)χPT =
F 2

4
〈uµuµ + χ+〉 , (2.16)

L(4)χPT = L1〈uµuµ〉2 + L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉+ L4〈uµuµ〉〈χ+〉 (2.17)

+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
L8

2
〈χ2
− + χ2

+〉

− iL9〈fµν+ uµuν〉+
L10

4
〈f+µνfµν+ − f−µνf

µν
− 〉

+ iL11〈χ−(∇µuµ +
i

2
χ−)〉 − L12〈(∇µuµ +

i

2
χ−)2〉

+
1

2
H1〈f+µνfµν+ + f−µνf

µν
− 〉+

1

4
H2〈χ2

+ − χ2
−〉 .

The term L(4)WZW is the Wess-Zumino-Witten Lagrangian and we will pay special atten-
tion to it in the next chapter.

We see that the lowest order χPT Lagrangian (2.16) in chiral limit contains only
two unknown constants: F and B0 which is contained in the operator (2.13). However,
the situation in the next-to-leading order O(p4) is a bit complicated and there we al-
ready have 10 constants. The reader may notice that (2.17) contains 14 constants but
the constants L11, L12 vanish when the equations of motion are used and the constants
H1, H2 are needed only for the renormalization.

In the Lagrangian (2.17) we were required to introduce other additional operators
in order to have the most general Lagrangian which has to be invariant under parity,
charge conjugation and the local chiral transformations. Up to and including O(p6),
the operators

fµν± = uFµνL u† ± u†FµνR u (2.18)

and
hµν = ∇µuν +∇νuµ (2.19)

are suitable choices to satisfy the requested conditions. In (2.18),

FµνL = ∂µ`ν − ∂ν`µ − i [`µ, `ν ] , (2.20)

FµνR = ∂µrν − ∂νrµ − i [rµ, rν ] , (2.21)

are the left and right non-Abelian field-strength tensors and the covariant derivative in
(2.19) is defined by

∇µX = ∂µX + [Γµ, X] , (2.22)

where the chiral connection is

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − i`µ)u†

]
. (2.23)

An important note regarding the basic properties of the building blocks and the
chiral power counting has to be made. Simply,

u ∼ O(1) , (2.24)

∂µ, `µ, rµ ∼ O(p) , (2.25)

s, p ∼ O(p2) , (2.26)

whilst the constructed operators above have other additional properties, that are shown
in the table 2.1 below.
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operator P C h.c. power counting

uµ −uµ uTµ uµ O(p)

hµν −hµν hTµν hµν O(p2)

χ± ±χ± χT± ±χ± O(p2)
fµν± ±fµν± ∓fTµν± fµν± O(p2)

Table 2.1: The P,C and hermiticity properties of the chiral operators.

2.1.2 Expansion of the chiral operators

Calculations of chiral Lagrangians require one to expand the basic building block and
the chiral operators in several terms sufficient for the given case. For example, in the
case of three-point Green functions, it is sufficient to take into account only terms linear
in the fields, i.e. the basic building block of χPT reads

u = 1 +
i√
2F

φ+ . . . , (2.27)

which gives us the following forms for the chiral operators:

uµ ' −
√

2

F
∂µφ+ 2aµ + . . . , (2.28)

hµν ' −
2
√

2

F
∂µ∂νφ+ 2(∂µaν + ∂νaµ) + . . . , (2.29)

χ+ ' 4B0s+ . . . , (2.30)

χ− ' 4iB0p+ . . . , (2.31)

fµν+ ' 2(∂µvν − ∂νvµ) + . . . , (2.32)

fµν− ' −2(∂µaν − ∂νaµ) + . . . (2.33)

The chiral connection is

Γµ ' −ivµ + . . . (2.34)

so we have the covariant derivative in the form

∇µX ' ∂µX − i[vµ, X] + . . . (2.35)

Expansions of the chiral operators above are listed in Appendix B, where we considered
all terms that consist of the external sources that are coupled to three pseudoscalar
fields at most.

2.2 Wess-Zumino-Witten Lagrangian

The leading order of the pure Goldstone-boson part of the odd-intrinsic parity sector
starts at O(p4), as we have already seen in (2.15), and the parameters are set entirely by
the chiral anomaly. The Wess-Zumino-Witten Lagrangian contributes to the anomalous
term and is generated by the need of coupling the Goldstone bosons to the external
gauge invariant sources. The full action at next-to-leading order is written as [13]

S(u, `, r)WZW =− i NC

48π2

∫
d4x εµναβ

〈
W (U, `, r)µναβ −W (1, `, r)µναβ

〉
(2.36)

− i NC

240π2

∫
dσijklm

〈
ΣL
i ΣL

j ΣL
kΣL

l ΣL
m

〉
18



where

W (U, `, r)µναβ =− iΣL
µ`νU

†rαU`β + ΣL
µU
†∂νrαU`β − iΣL

µ`ν`α`β (2.37)

+ iU∂µ`ν`αU
†rβ + i∂µrνU`αU

†rβ +
1

2
ΣL
µ`νΣL

α`β

+ U`µ`ν`αU
†rβ − ΣL

µΣL
νU
†rαU`β − iΣL

µΣL
νΣL

α`β

+
1

4
U`µU

†rνU`αU
†rβ + ΣL

µ`ν∂α`β + ΣL
µ∂ν`α`β

− (L↔ R)

with the parametrization
U = u2 (2.38)

and
ΣL
µ = U †∂µU , ΣR

µ = U∂µU
† . (2.39)

The symbol (L ↔ R) in (2.37) stands for the interchanges U ↔ U †, `µ ↔ rµ and
ΣL
µ ↔ ΣR

µ . The tensor W (1, `, r)µναβ has the same meaning as W (U, `, r)µναβ but in
this case the building block (2.5) does not contain any pseudoscalar mesons, i.e. φ = 0
and for this reason U = u2 = 1. In this special case we then have ΣL

µ = ΣR
µ = 0.

Knowing the full action it is possible to extract the Wess-Zumino-Witten La-
grangian. Moving on from the parametrization (2.38) to (2.5) we can get the Lagrangian
in the form [13]

L(4)WZW =− i NC

48π2
εµναβ

〈
W (u, `, r)µναβ −W (1, `, r)µναβ

〉
(2.40)

+
NC

48π2F
εµναβ

∫ 1

0
dξ
〈
σξµσ

ξ
νσ

ξ
ασ

ξ
βφ
〉
,

where

Wµναβ(u, `, r) = LµLνLαRβ +
1

4
LµRνLαRβ + iLµνLαRβ + iRµνLαRβ (2.41)

− iσµLνRαLβ + σµRναLβ − σµσνRαLβ + σµLνLαβ

+ σµLναLβ − iσµLνLαLβ +
1

2
σµLνσαLβ − iσµσνσαLβ

− (L↔ R) ,

with L↔ R standing also for σ ↔ σ† interchange. In (2.41) we have denoted

Lµ = u `µu
†, Lµν = u(∂µ`ν)u† , (2.42)

Rµ = u†rµu, Rµν = u†(∂µrν)u (2.43)

and
σµ = {u†, ∂µu} , σ†µ = {u, ∂µu†} . (2.44)

The power ξ in (2.40) denotes a change of the building block u to

uξ = exp

(
iξ√
2F

φ

)
. (2.45)

It is important to notice that both definitions (2.37) and (2.41) are equivalent due
to the cyclic property of the matrix trace operation.

We can neglect the term under the integral sign in (2.40) as a higher order con-
tribution and consider only the upper line of the equation. In this case, considering
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that for W (1, `, r)µναβ we have σµ = 0, we have, in total, 10 contributing terms in the
means of vector and axial-vector external sources and pseudoscalar fields. However,
there are only two types of contributions if we consider only the three-point vertices.
In this case, the result can be written in the form

L(4)WZW =
NC

12
√

2π2F

〈
(∂µφ)aν(∂αaβ)

〉
εµναβ (2.46)

+
NC

12
√

2π2F

〈
(∂µφ)vν(∂αvβ)

〉
εµναβ +

NC

6
√

2π2F

〈
(∂µφ)(∂νvα)vβ

〉
εµναβ .

The detailed calculation can be found in Appendix D.

2.3 Resonance chiral theory

Taking the large-NC limit we can construct the effective theory of QCD for an inter-
mediate energy region that also satifies all symetries of the underlying theory [8], [17].
This effective theory is called Resonance chiral theory (RχT) and is relevant for ener-
gies Mρ ≤ E ≤ 2 GeV. For bigger energies RχT loses its convergence and can not be
properly used because of the higher masses that become significant in hadron dynamics.

Since we are in an intermediate region there is no suitable expansion parameter.
At lower energies we expand in small momenta while at high energies we can use the
1/NC expansion. In the resonance sector we are required to combine both expansion
parameters in order to get phenomenologically relevant results.

RχT increases the number of degrees of freedom of Chiral perturbation theory by
including massive U(3) multiplets of vector V (1−−), axial-vector A(1++), scalar S(0++)
and pseudoscalar P (0−+) resonances, denoted generically as a nonet field R. We assume
that this field can be decomposed into singlet R0 and octet Ra such as [17], [18]

R =
1√
3
R0 +

8∑
a=1

λa√
2
Ra , (2.47)

where R = V,A, S, P . For instance, let us show the nonets that are considered in this
thesis:

P =


1√
2
π0 + 1√

6
η8 + 1√

3
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η8 + 1√

3
η0 K0

K− K
0 − 2√

6
η8 + 1√

3
η0

 , (2.48)

V =


1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 K∗0

K∗− K
∗0 − 2√

6
ω8 + 1√

3
ω1

 , (2.49)

A =


1√
2
a01 + 1√

6
f81 + 1√

3
f11 a+1 K+

1A

a−1 − 1√
2
a01 + 1√

6
f81 + 1√

3
f11 K0

1A

K−1A K
0
1A − 2√

6
f81 + 1√

3
f11

 . (2.50)

2.3.1 RχT Lagrangian

A procedure of constructing the RχT lagrangian consists of the following steps [17], [18]:

1. In order to recover at low energies the results of χPT, to consider chiral sym-
metry seems to be a reasonable choice. On account of large-NC , the mesons are
contained in the U(3) multiplets shown above and the operators with only one
trace over flavour space are considered.
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2. To have a meaningful effective description, it is necessary to properly match the
incipient theory with the underlying theory. In this case, the underlying theory is
QCD with asymptotic behaviour that sets in at E ∼ 2 GeV. Therefore, the RχT
should recover the short-distance behaviour of QCD. This demand simplifies our
model because it excludes all interactions with large numbers of derivatives that
tend to violate asymptotic behaviour of form factors. The matching also allows
us to determine relations between coupling constants in the model Lagrangian
(see (2.68)). Without further discussion, let us introduce such relations [17]:

FV = 2GV =
√

2FA =
√

2F , (2.51)

cm = cd =
√

2dm =
F

2
, (2.52)

MA =
√

2MV , (2.53)

MP '
√

2MS . (2.54)

It is obvious now that all parameters are determined by the pion decay constant
F and the characteristic masses of the vector and scalar multiplets, MV and MS .

3. Some approximations are needed to construct the effective Lagrangian. As the
number of meson states is infinite at large-NC , the most common approximation
is the cut in the number of resonances, leaving us to consider only the lightest
states. Also, the contributions of the higher resonances are suppressed by their
masses.

4. It is known that L(4)χPT is largely saturated by the resonance exchanges generated
by the linear terms in the resonance field. Hence, the explicit introduction of the
terms constructed with no resonances and chiral operators of O(p4) would amount
to include an overlap between both contributions. Thus our theory stands for a
complete resonance saturation of the χPT Lagrangian.

To summarize the procedure above, to construct the RχT Lagrangian one takes into
account so called Single resonance approximation where just the lightest resonances are
considered. In this approach, the Goldstone bosons are coupled to massive U(3) mul-
tiplets. Then, the construction follows the path of using the operators that transform
similarly as in (2.11) but in our case we look for tensors that obey the transformation

X
G′−→ h(g, φ)Xh†(g, φ) , (2.55)

where
G′ ≡ U(3)L ×U(3)R . (2.56)

However, the situation here is a little bit tricky. Since one of the lightest resonances
are one-spin particles, we are allowed to use different formalisms to describe them.
Although the solution of any calculation should be independent of used formalism,
since we work with perturbation theories, we provide calculations only up to a given
order which makes different formalisms nonequivalent.

To obtain a more complete picture, in the construction of the RχT Lagrangians we
will distinguish within the most used formalisms which are vector and antisymmetric
tensor formalism.

2.3.2 Vector field formalism

The first formalism to describe one-spin resonances is the vector (Proca) formalism.
The resonances R̂µ = V̂µ, Âµ carry one Lorentz index and are defined in the usual way,
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together with the field made out of the covariant derivative acting on the resonance
[14], [15], [17]:

R̂µ =
8∑

a=1

λa√
2
R̂aµ , (2.57)

R̂µν = ∇µR̂ν −∇νR̂µ . (2.58)

The chiral order of the resonances in the vector formalism is Rµ ∼ O(p3) and Rµν ∼
O(p2). Then, the resonance Lagrangian up to O(p8) in the vector formalism is given
by [14], [15], [17]

L(8)res = L(6)V + L(6)A + L(8)V V + L(8)AA + L(8)V A (2.59)

where the individual terms are the following (we omit mass and kinetic terms)

L(6)V =− fV

2
√

2
〈V̂µνfµν+ 〉 −

igV

2
√

2
〈V̂µν [uµ, uν ] + iαV 〈V̂µ[uν , f

µν
− ]〉〉 (2.60)

+ βV 〈V̂µ[uµ, χ−]〉+ iθV 〈V̂ µuνuαuβ〉εµναβ + hV 〈V̂ µ{uν , fαβ+ }〉εµναβ ,

L(6)A =− fA

2
√

2
〈Âµνfµν− 〉+ iαA〈Âµ[uν , f

µν
+ ]〉+ γ

(1)
A 〈Âµuνu

µuν〉 (2.61)

+ γ
(2)
A 〈Âµ{u

µ, uνuν}〉+ γ
(3)
A 〈Âµuν〉〈u

µuν〉+ γ
(4)
A 〈Âµu

µ〉〈uνuν〉

+ hA〈Âµ{uν , fαβ− }〉εµναβ ,

L(8)V V =
δ
(1)
V

2
〈V̂µV̂ µuνu

ν〉+
δ
(2)
V

2
〈V̂µuν V̂ µuν〉+

δ
(3)
V

2
〈V̂µV̂νuµuν〉 (2.62)

+
δ
(4)
V

2
〈V̂µV̂νuνuµ〉+

δ
(5)
V

2
〈V̂µuµV̂νuν + V̂µuν V̂

νuµ〉+
κV
2
〈V̂µV̂ µχ+〉

+
iφV
2
〈V̂µ[V̂ν , f

µν
+ ]〉+

σV
2
〈V̂ µ{uν , V̂ αβ}〉εµναβ ,

L(8)AA =
δ
(1)
A

2
〈ÂµÂµuνuν〉+

δ
(2)
A

2
〈ÂµuνÂµuν〉+

δ
(3)
A

2
〈ÂµÂνuµuν〉 (2.63)

+
δ
(4)
A

2
〈ÂµÂνuνuµ〉+

δ
(5)
A

2
〈ÂµuµÂνuν + ÂµuνÂ

νuµ〉+
κA
2
〈ÂµÂµχ+〉

+
iφA
2
〈Âµ[Âν , f

µν
+ ]〉+

σA
2
〈Âµ{uν , Âαβ}〉εµναβ ,

L(8)V A = iA(1)〈V̂µ[Âν , f
µν
− ]〉+ iA(2)〈V̂µ[uν , Â

µν ]〉+ iA(3)〈Âµ[uν , V̂
µν ]〉 (2.64)

+B〈V̂µ[Âµ, χ−]〉+H〈V̂ µ{Âν , fαβ+ }〉εµναβ + iZ(1)〈uµuν{Âα, V̂ β}〉εµναβ
+ iZ(2)〈uµÂνuαV̂ β〉εµναβ .

2.3.3 Antisymmetric tensor field formalism

The second formalism is the antisymmetric tensor field formalism. Using the large-NC

approach, there is no limit to the number of resonances that can be included in the
effective Lagrangians. Hence, we can construct the RχT Lagrangian as an expansion
in the number of resonance fields, i.e. [1], [17]

LRχT = LGB + LR1R1,kin +
∑
R1

LR1 +
∑
R1,R2

LR1,R2 +
∑

R1,R2,R3

LR1,R2,R3 + . . . , (2.65)
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where the dots denote terms with four or more resonances, indices Ri run over all
resonances fields Ri = V,A, S, P and

LR1R1,kin =− 1

2
〈∇µRµν∇αRαν〉+

1

4
M2
R〈RµνRµν〉 (2.66)

+
1

2
〈∇αR′∇αR′〉 −

1

2
M2
R′〈R′R′〉

is the kinetic term, where we denoted Rµν = Vµν , Aµν and R′ = S, P to avoid confusion
with the previous notation Ri.

In (2.65), the term LGB contains only Goldstone bosons and external sources and
includes terms with the same structure as χPT Lagrangian (2.16) but differs in the value
of the couplings as LGB belongs to the theory where resonances are active degrees of
freedom.

operator P C h.c. power counting

Vµν V µν −V T
µν Vµν O(p2)

Aµν −Aµν ATµν Aµν O(p2)

S S ST S O(p)
P −P P T P O(p)

Table 2.2: The P,C and hermiticity properties of the resonances in the antisymmetric
tensor formalism.

Also, there is another expansion of the RχT Lagrangian, based on the ordering
according to the contribution to the chiral coupling constants. Here, the resonance
fields are effectively of the order O(p2) and the chiral building blocks are counted as
usual. Now we can write

LRχT = L(2)GB + L(4)GB + L(4)RR,kin + L(6)RR,kin + L(4)R (2.67)

+ L(6)GB + L(6)R + L(6)RR′ + L
(6)
RR′R′′ + . . .

The couplings of the massive U(3) multiplets with the pseudoscalar fields and ex-
ternal sources in the leading order of 1/NC are given by the linear interaction resonance
Lagrangian from (2.67), more specifically

L(4)R = L(4)V + L(4)A + L(4)S + L(4)P , (2.68)

with the following contributing terms [17]:

L(4)V =
FV

2
√

2
〈Vµνfµν+ 〉+

iGV

2
√

2
〈Vµν [uµ, uν ]〉 , (2.69)

L(4)A =
FA

2
√

2
〈Aµνfµν− 〉 , (2.70)

L(4)S = cd〈Suµuµ〉+ cm〈Sχ+〉 , (2.71)

L(4)P = idm〈Pχ−〉+
idm0

NF
〈P 〉〈χ−〉 . (2.72)

It is important to mention that the second term in (2.72) represents the η′ exchanges
that we do not consider in this paper. A short remark on this is made in appendix E.

In the antisymmetric tensor formalism with Lagrangians up to O(p6), we will use
the independent operator basis, relevant in the odd-intrinsic parity sector, which was
formulated in [1]. Every operator has the form

OXi = εµναβÔXiµναβ, (2.73)
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with all the contributing operators shown in the tables 2.3-2.5 below.

R i Operator ORiµναβ Vertex structure

V 1 i〈V µν(hασuσu
β − uβuσhασ)〉 V a3, V a2φ, V aφ2, V φ3

2 i〈V µν(uσh
ασuβ − uβhασuσ)〉 V a3, V a2φ, V aφ2, V φ3

3 i〈V µν(uσu
βhασ − hασuβuσ)〉 V a3, V a2φ, V aφ2, V φ3

4 i〈[V µν ,∇αχ+]uβ〉 V sa, V sφ

5 i〈V µν [fαβ− , uσu
σ]〉 V a3, V a2φ, V aφ2

6 i〈V µν(fασ− uβuσ − uσuβfασ− )〉 V a3, V a2φ, V aφ2

7 i〈V µν(uσf
ασ
− uβ − uβfασ− uσ)〉 V a3, V a2φ, V aφ2

8 i〈V µν(fασ− uσu
β − uβuσfασ− )〉 V a3, V a2φ, V aφ2

9 〈V µν{χ−, uαuβ}〉 V a2p, V apφ, V pφ2

10 〈V µνuαχ−u
β〉 V a2p, V apφ, V pφ2

11 〈V µν{fαρ+ , fβσ− }〉gρσ V va
12 〈V µν{fαρ+ , hβσ}〉gρσ V va, V vφ

13 i〈V µνfαβ+ 〉〈χ−〉 V vp

14 i〈V µν{fαβ+ , χ−}〉 V vp

15 i〈V µν [fαβ− , χ+]〉 V as

16 〈V µν{∇αfβσ+ , uσ}〉 V va, V vφ
17 〈V µν{∇σfασ+ , uβ}〉 V va, V vφ
18 〈V µνuαuβ〉〈χ−〉 V a2p, V apφ, V pφ2

A 1 〈Aµν [uαuβ, uσu
σ]〉 Aa4, Aa3φ,Aa2φ2, Aaφ3, Aφ4

2 〈Aµν [uαuσuβ, uσ]〉 Aa4, Aa3φ,Aa2φ2, Aaφ3, Aφ4

3 〈Aµν{∇αhβσ, uσ}〉 Aa2, Aaφ,Aφ2

4 i〈Aµν [fαβ+ , uσuσ]〉 Ava2, Avaφ,Avφ2

5 i〈Aµν(fασ+ uσu
β − uβuσfασ+ )〉 Ava2, Avaφ,Avφ2

6 i〈Aµν(fασ+ uβuσ − uσuβfασ+ )〉 Ava2, Avaφ,Avφ2

7 i〈Aµν(uσf
ασ
+ uβ − uβfασ+ uσ)〉 Ava2, Avaφ,Avφ2

8 〈Aµν{fασ− , hβσ}〉 Aa2, Aaφ

9 i〈Aµνfαβ− 〉〈χ−〉 Aap
10 i〈Aµνuα〉〈∇βχ−〉 Aap,Aφp

11 i〈Aµν{fαβ− , χ−}〉 Aap
12 i〈Aµν{∇αχ−, uβ}〉 Aap,Aφp
13 〈Aµν [χ+, u

αuβ]〉 Asa2, Asaφ,Asφ2

14 i〈Aµν [fαβ+ , χ+]〉 Avs

15 〈Aµν{∇αfβσ− , uσ}〉 Aa2, Aaφ
16 〈Aµν{∇σfασ− , uβ}〉 Aa2, Aaφ

P 1 〈P{fµν− , fαβ− }〉 Pa2

2 i〈Puαfµν+ uβ〉 Pva2, Pvaφ, Pvφ2

3 i〈P{fµν+ , uαuβ}〉 Pva2, Pvaφ, Pvφ2

4 〈Puµuνuαuβ〉 Pa4, Pa3φ, Pa2φ2, Paφ3, Pφ4

5 〈P{fµν+ , fαβ+ }〉 Pv2

S 1 〈S[fαβ− , uµuν ]〉 Sa3, Sa2φ, Saφ2

2 i〈S[fµν+ , fαβ− ]〉 Sav

Table 2.3: Monomials with one resonance field and possible vertex structures for four-
point Green functions at most.
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RR i Operator ORRiµναβ Vertex structure

V V 1 i〈V µνV αβ〉〈χ−〉 V V p
2 i〈{V µν , V αβ}χ−〉 V V p
3 〈{∇σV µν , V ασ}uβ〉 V V a, V V φ
4 〈{∇βV µν , V ασ}uσ〉 V V a, V V φ

AA 1 i〈AµνAαβ〉〈χ−〉 AAp
2 i〈{Aµν , Aαβ}χ−〉 AAp
3 〈{∇σAµν , Aασ}uβ〉 AAa,AAφ
4 〈{∇βAµν , Aασ}uσ〉 AAa,AAφ

SA 1 i〈[Aµν , S]fαβ+ 〉 ASv
2 〈Aµν [S, uαuβ]〉 ASa2, ASaφ,ASφ2

SV 1 i〈[V µν , S]fαβ− 〉 V Sa
2 i〈[V µν ,∇αS]uβ〉 V Sa, V Sφ

V A 1 i〈V µν [Aαβ, uσuσ]〉 AV a2, AV aφ,AV φ2

2 i〈V µν(Aασuσu
β − uβuσAασ)〉 AV a2, AV aφ,AV φ2

3 i〈V µν(Aασuβuσ − uσuβAασ)〉 AV a2, AV aφ,AV φ2

4 i〈V µν(uσA
ασuβ − uβAασuσ)〉 AV a2, AV aφ,AV φ2

5 〈{V µν , Aαρ}fβσ+ 〉gρσ AV v
6 i〈[V µν , Aαβ]χ+〉 AV s

PA 1 〈{Aµν , P}fαβ− 〉 APa
2 〈{Aµν ,∇αP}uβ〉 APa,APφ

PV 1 i〈{V µν , P}uαuβ〉 V Pa2, V Paφ, V Pφ2

2 i〈V µνuαPuβ〉 V Pa2, V Paφ, V Pφ2

3 〈{V µν , P}fαβ+ 〉 V Pv

Table 2.4: Monomials with two resonance fields and possible vertex structures for four-
point Green functions at most.

RRR i Operator ORRRiµναβ Vertex structure

V V P - 〈V µνV αβP 〉 V V P

V AS - i〈[V µν , Aαβ]S〉 V AS

AAP - 〈AµνAαβP 〉 AAP

Table 2.5: Monomials with three resonance fields and possible vertex structures for
four-point Green functions at most.

Thus, the Lagrangian is

L(6,odd)RχT =
∑
X

∑
i

κXi OXi , (2.74)

where X stands for resonance fields contributing to the Lagrangian, i.e. the single fields
V,A, S, P , the combinations of two fields V V,AA, SA, SV, V A, PA, PV and three fields
V V P, V AS,AAP .

In what follows we will strictly use the same notation as in [1] and consider this as a
referent basis, especially with indices i standing for a serial number of the Lagrangian.
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3. Green functions in the
odd-intrinsic parity sector

Before we make some steps ahead, we should establish some ground rules to work with.
First of all, let us introduce the difference between external and internal vertices.

• External vertex: a vertex where at least one external source is present.

• Internal vertex: a vertex where no external source is present.

• n-point diagram: a representation of only just n external sources where all the
sources are connected, either within the contact terms or by propagators.

Although we do not consider Feynman diagrams with loops, the n-point diagrams can
contain more than one external source in the external vertices. And since we require at
least one resonance exchange between the external vertices, the n-point diagram can
not be made up by only one contact term, that would contain all n external sources,
i.e. can not be made up by so called one n-contact term. In other words, the n-point
diagrams can be made of diagrams with (n− 1)-contact terms at most.

To calculate the Feynman diagrams contributing to the n-point Green functions,
one must find the appropriate topology of the graphs first. Basically, there are two
main possibilities of how to establish the topology.

1. First of all, one can find all topological combinations of how to connect four points
in the planar topology, regardless of the existing vertices of the χPT and RχT
and then select only the suitable ones.

2. The second approach is to find all existing diagrams based strictly on the knowl-
edge of χPT/RχT vertices, i.e. ’gluing’ the individual vertices of the graphs
together untill the full set of graphs is complete.

Although it may be seen as the method of trial and error, we would actually prefer the
first method. The reason is that in the closed channels (see section 3.2) it is actually
possible to have contributions via the resonances of the other types than the ones
entering through the external vertices. This feature gives us a rich set of contributing
diagrams and it could be very difficult to cover all the options from within the second
method above.

3.1 Three-point Green functions

Considering the general definition (1.44), we can define the three-point Green functions
as the vacuum expectation values of the time ordered products of the quantum fields:〈

0
∣∣T[Õ1(p1)Õ2(p2)Õ3(0)

]∣∣0〉 = (3.1)

=

∫
d4x1

∫
d4x2 e

i(p1x1+p2x2)
〈
0
∣∣T[O1(x1)O2(x2)O3(0)

]∣∣0〉 ,
where the operators Õ stand for any of the currents (1.27), (1.28) or densities (1.31),
(1.32). Despite the fact that we have 20 possible three-point Green functions in total, in
the odd-intrinsic parity sector of QCD exist only five nontrivial three-point correlators.
Three of them, V V P, V AS and AAP have been already studied in the past. In this
chapter, we will focus primarily on the study of the two remaining Green functions:
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V V A and AAA.
Also, in this chapter we take all the 4-momenta as ingoing to the vertices, i.e. the

law of 4-momentum conservation can be written in the form

p+ q + r = 0 . (3.2)

As it will be brighter later, structures consisting of the scalar product of the 4-momenta
associated with the appropriate vertices will develop in our calculations of the Feynman
rules. Using (3.2), it is more convenient to use the relevant combinations of the Lorentz
invariants instead:

p · q =
1

2
(−p2 − q2 + r2) , (3.3)

p · r =
1

2
(−p2 + q2 − r2) , (3.4)

q · r =
1

2
(p2 − q2 − r2) , (3.5)

that are easily obtained by multiplying (3.2) by all 4-momenta individually and solving
the system of equations formed.

In our future calculations, we will deal with contractions of components of 4-
momenta with Levi-Civita tensor. For simplicity, we will use the notation (A.72)-
(A.73). In our case, considering (3.2), we can explicitly write the shortened notation
in the form

εµν(p)(r) = εµν(p)(−p−q) = εµν(p)(−q) = −εµν(p)(q) , (3.6)

εµν(q)(r) = εµν(q)(−p−q) = εµν(q)(−p) = −εµν(q)(p) = εµν(p)(q) , (3.7)

εµ(p)(q)(r) = εµ(p)(q)(−p−q) = −εµ(p)(q)(p) − εµ(p)(q)(q) = 0 . (3.8)

3.1.1 Topology of the Feynman diagrams

The topology of the three-point diagrams is very simple. Just for now, let us assume
that a full line in figures 3.1-3.2 stands either for the pseudoscalar or resonance fields.

1-contact diagrams This type of Feynman diagrams describes all three individual
external sources that do not constitute a multiple contact vertex and, therefore, are
coupled together through at least two (three at most) propagators.

Considering all possible combinations, we can draw the full set of Feynman diagrams
with the couplings of pseudoscalar fields and resonances, without its physical relevance
yet.

Figure 3.1: A general 1-contact topology of the three-point Green functions.

2-contact diagrams Unlike the previous case, this type of Feynman diagrams de-
scribes the topology that include two external sources coupled together in one vertex
which is connected with the remaining external source through only one propagator.
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Figure 3.2: A general 2-contact topology of the three-point Green functions.

Before we advance to the study of the new Green functions, it is appropriate to
introduce some familiar results.

3.1.2 Familiar results

As we have already mentioned, the Green functions that have been already studied
in the literature contain the following correlators: V V P, V AS and AAP . All three of
them can be written in the simple forms(

ΠV V P (p, q; r)
)abc
µν

= ΠV V P (p2, q2; r2)dabcεµναβp
αqβ . (3.9)(

ΠV AS(p, q; r)
)abc
µν

= ΠV AS(p2, q2; r2)fabcεµναβp
αqβ , (3.10)(

ΠAAP (p, q; r)
)abc
µν

= ΠAAP (p2, q2; r2)dabcεµναβp
αqβ , (3.11)

due to the fact that the external sources, that generate the correlators, carry only two
different Lorentz indices together, it makes the tensor structure easy to express. The
high-energy behaviour within the OPE framework can be written as

ΠV V P

(
((λp)2, (λq)2; (λr)2

)
=
B0F

2

2λ4
p2 + q2 + r2

p2q2r2
+O

(
1

λ6

)
, (3.12)

ΠV AS

(
((λp)2, (λq)2; (λr)2

)
=
B0F

2

2λ4
p2 − q2 − r2

p2q2r2
+O

(
1

λ6

)
, (3.13)

ΠAAP

(
(λp)2, (λq)2; (λr)2

)
=
B0F

2

2λ4
p2 + q2 − r2

p2q2r2
+O

(
1

λ6

)
. (3.14)

By comparing this behaviour with the calculated Green functions, one can obtain im-
portant relations for the coupling constants, as we will see later.

V V P Green function The first correlator is a very important example in the odd-
intrinsic parity sector of QCD, with a lot of important phenomenological applications.
A full calculation [1] reads:

ΠV V P (p2, q2; r2) = −B0NC

8π2r2
− 64B0dmκ

P
5

r2 −M2
P

+
4B0F

2
V κ

V V
3 (p2 + q2)

(p2 −M2
V )(q2 −M2

V )r2
(3.15)

+
4B0F

2
V (8κV V2 − κV V3 )

(p2 −M2
V )(q2 −M2

V )
− 16

√
2B0dmFV κ

PV
3

(p2 −M2
V )(r2 −M2

P )
− 16

√
2B0dmFV κ

PV
3

(q2 −M2
V )(r2 −M2

P )

− 2
√

2B0FV
(p2 −M2

V )r2
[
p2(κV16 + 2κV12)− q2(κV16 − 2κV17 + 2κV12)− r2(8κV14 + κV16 + 2κV12)

]
− 2

√
2B0FV

(q2 −M2
V )r2

[
q2(κV16 + 2κV12)− p2(κV16 − 2κV17 + 2κV12)− r2(8κV14 + κV16 + 2κV12)

]
−

16B0dmF
2
V κ

V V P

(p2 −M2
V )(q2 −M2

V )(r2 −M2
P )

.
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Using the comparison with the necessarily fulfilled high-energy behaviour allows us to
extract the following constraints for the coupling constants:

κV V2 − dmκ
PV
3√

2FV
=

F 2

32F 2
V

−
NCM

2
V

512π2F 2
V

, (3.16)

8κV V2 − κV V3 =
F 2

8F 2
V

, (3.17)

κV16 + 2κV12 = − NC

32
√

2π2FV
, (3.18)

κV17 = − NC

64
√

2π2FV
, (3.19)

κV14 =
NC

256
√

2π2FV
, (3.20)

κP5 = 0 . (3.21)

As it is obvious, in this case we have two free parameters: κPV3 and κV V P .
Different phenomenological aspects were already discussed in [1], namely the Fπ0γγ

formfactor and its applications to the decays ρ→ πγ, π(1300)→ γγ and π(1300)→ ργ,
as well as the π0-pole contribution to the muon g − 2 factor.

V AS Green function A full calculation of the V AS, without the tensor structure,
simply reads [1]

ΠV AS(p2, q2; r2) =
8
√

2B0FV (κV4 − 2κV15)

p2 −M2
V

+
16
√

2B0FAκ
A
14

q2 −M2
A

+
32B0cmκ

S
2

r2 −M2
S

(3.22)

+
16
√

2B0FAcmκ
SA
1

(q2 −M2
A)(r2 −M2

S)
− 8
√

2B0FV cm(2κSV1 + κSV2 )

(p2 −M2
V )(r2 −M2

S)

− 16B0FAFV κ
V A
6

(p2 −M2
V )(q2 −M2

A)
+

16B0FAFV cmκ
V AS

(q2 −M2
A)(p2 −M2

V )(r2 −M2
S)

and the high energy behaviour dictates the following coupling constants constraints

2κSV1 + κSV2 =
F 2

16
√

2cmFV
, (3.23)

κV4 − 2κV15 = 0 , (3.24)

κSA1 =
F 2

32
√

2cmFA
, (3.25)

κV A6 =
F 2

32FAFV
, (3.26)

κS2 = 0 , (3.27)

κA14 = 0 . (3.28)

In this case we have only one free parameter, the coupling constant κV AS . This implies
that we can connect all processes of the type

(V : ρ, ω,K∗, γ . . .) ∼ (A : a1, f1,K1, GB,W . . .) ∼ (S : σ, κ, a0, f0, H . . .) (3.29)

via a single parameter. However, these processes are very rare and have not yet been
studied experimentally. For more details, see also [1].
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AAP Green function This Green function was a subject of study in [2]. There we
provided the complete calculations of this correlator both in vector and antisymmetric
tensor field formalism. The result in the vector formalism is quite easy, explicitly

ΠAAP (p2, q2; r2) =− B0NC

24π2r2
+

4
√

2B0fAhAp
2

(p2 −M2
A)r2

+
4
√

2B0fAhAq
2

(q2 −M2
A)r2

(3.30)

−
4B0f

2
AσAp

2q2

(p2 −M2
A)(q2 −M2

A)r2
,

whilst the antisymmetric tensor field formalism is a bit complicated due to the richer
set of contributing Lagrangians, leading to the result

ΠAAP (p2, q2, r2) =− B0NC

24π2r2
− 64B0dmκ

P
1

r2 −M2
P

+
32B0F

2
Aκ

AA
2

(p2 −M2
A)(q2 −M2

A)
(3.31)

+
4B0F

2
Aκ

AA
3

(p2 −M2
A)(q2 −M2

A)r2
(p2 + q2 − r2)

−
16B0F

2
Admκ

AAP

(p2 −M2
A)(q2 −M2

A)(r2 −M2
P )

+
4
√

2B0FA
r2(q2 −M2

A)

[
1

2
(p2 − q2 + r2)(κA3 + 2κA8 + κA15)− p2κA16

]
− 4

√
2B0FA

r2(p2 −M2
A)

[
1

2
(p2 − q2 − r2)(κA3 + 2κA8 + κA15) + q2κA16

]
− 8

√
2B0FAdm

(p2 −M2
A)(r2 −M2

P )
(2κAP1 + κAP2 )

− 8
√

2B0FAdm
(q2 −M2

A)(r2 −M2
P )

(2κAP1 + κAP2 )

+
8
√

2B0FA
p2 −M2

A

(
2κA11 + κA12

)
+

8
√

2B0FA
q2 −M2

A

(
2κA11 + κA12

)
.

In order to satisfy the high-energy behaviour for vector formalism, we obtain the con-
dition

− NC

24π2
− 4f2AσA + 8

√
2fAhA = 0 , (3.32)

from which it is obvious that vector formalism is not consistent with OPE at order
1/λ4. However, the antisymmetric tensor formalism satisfies the OPE well and gives
us the following constraints on the coupling constants:

2κAP1 + κAP2 − 2
√

2FA
dm

κAA2 = 0 , (3.33)

κA3 + 2κA8 + κA15 − 2κA16 = 0 , (3.34)

64dmκ
P
1 + 8

√
2FAκ

A
16 = − NC

24π2
, (3.35)

2κA11 + κA12 +
1

2
κA16 = 0 , (3.36)

κAA3 − 8κAA2 =
F 2

8F 2
A

, (3.37)

κAAP = 0 . (3.38)
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3.2 Four-point Green functions

The motivation to study the four-point Green functions is given mostly by the inter-
esting phenomenological applications, such as the conjecture that V V PP Green func-
tions in the antisymmetric tensor formalism for π0 Compton-like scattering violates the
Froissart bound while the vector formalism preserves it. Another example can be the
hadronic V V V V correlator that contributes to the anomalous magnetic moment.

As usual, let us start with the general definition of the four-point Green functions:〈
0
∣∣T[Õ1(p1)Õ2(p2)Õ3(p3)Õ4(0)

]∣∣0〉 = (3.39)

=

∫
d4x1 d4x2 d4x3 e

i(p1x1+p2x2+p3x3)
〈
0
∣∣T[O1(x1)O2(x2)O3(x3)O4(0)

]∣∣0〉 .
Equivalently as in the case before, for four-point Green functions we take all the

4-momenta as ingoing to the vertices, i.e. the law of conservation of energy takes the
form

p+ q + r + s = 0 . (3.40)

Besides the obvious invariants p2, q2, r2, s2 we can introduce the Mandelstam variables
S, T and U , typical for four-particle processes, in the form

S = (p+ q)2 = (r + s)2 , (3.41)

T = (p+ r)2 = (q + s)2 , (3.42)

U = (p+ s)2 = (q + r)2 , (3.43)

that can easily give us the following set of useful formulas:

p · q =
1

2
(S − p2 − q2) , (3.44)

r · s =
1

2
(S − r2 − s2) , (3.45)

p · r =
1

2
(T − p2 − r2) , (3.46)

q · s =
1

2
(T − q2 − s2) , (3.47)

p · s =
1

2
(U − p2 − s2) , (3.48)

q · r =
1

2
(U − q2 − r2) . (3.49)

3.2.1 Topology of the Feynman diagrams

The topology of the 4-point Feynman diagrams is a bit complicated. Instead of listing
all types of diagrams, let us mention that the complete set consists of ten types of
diagrams, some of the examples can be found in Chapters 6 and 7. Here we only
introduce some basic properties.

1-contact diagrams This type of Feynman diagrams describes all four individual
external sources that do not constitute a multiple contact vertex and, therefore, are
coupled together through at least three (five at most) propagators.

2-contact diagrams Unlike the previous case, this type of the Feynman diagrams
describes the topology that include two external sources coupled together in one vertex
which is connected with the two remaining external sources through at least two (three
at most) propagators.
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3-contact diagrams Finally, a topology that consists of one 3-contact vertex, where
three external sources are coupled together. The last one is connected with the contact
vertex through one propagator.

3.2.2 Froissart bound

Regarding one of the motivation topics to study four-point Green functions, the Frois-
sart bound is a very general property of the behaviour of total particle scattering cross
sections at very high energy. More specifically, the bound states that the total cross
section of four-particle scattering does not increase faster than

σtot . ln2 S . (3.50)

Violation of this limit would mean violation of unitarity. In what follows we concisely
derive the Froissart bound from the principles of quantum mechanics.
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4. V V A Green function

The standard definition of the V V A Green function, i.e. the correlator of two vector
and one axial-vector current, is(

ΠV V A(p, q; r)
)abc
µνρ

= i

∫
d4x d4y ei(px+qy)

〈
0
∣∣T[V a

µ (x)V b
ν (y)Acρ(0)

]∣∣0〉 . (4.1)

A calculation of (4.1) will be the task we will deal with in this chapter. To provide such
a calculation, it is necessary to determine which currents and chiral building blocks we
will need.

Looking at the definition (4.1) it is obvious that we will need Lagrangians that
consist of vector and axial-vector currents. Given the structure of the independent op-
erator basis up to O(p6) one can find that only the linear terms in external sources and
pseudoscalar fields of the expansions of the chiral building blocks are needed. There-
fore, the covariant derivative can be simply identified with the standard derivative and
one can easily find (see chapter B) that the suitable operators are uµ, hµν and fµν± . The
building block fµν+ is the key ingredient for the V V A Green function since it is the only
chiral operator that contributes linearly as a vector external source in its expansion.
Obviously, since we do not have any scalar or pseudoscalar sources in this case, we do
not consider χ±.

Knowing the suitable building blocks, let us start with an introduction of the inde-
pendent operator basis contributing to this correlator.

4.1 Independent operator basis up to O(p6)

Before we start to determine the independent operator basis of O(p6), let us summarize
contributions of the Lagrangians of the lower powers.

Contribution up to O(p2)

aφ vertex First of all, we will need the contributions from χPT. Up to O(p2) there
is only one contribution of the lowest χPT Lagrangian and that is a contribution of the
coupling between an axial-vector external source and a pseudoscalar field. The relevant
part of the Lagrangian (2.16) is

L(2)χ = − F√
2
〈{∂µφ, aµ}〉 . (4.2)

Contributions up to O(p4)

Vertex vvφ A contribution of the anomalous Wess-Zumino-Witten Lagrangian (2.40)
comes by the term

L(4)WZW =
NC

12
√

2π2F

〈
(∂µφ)aν(∂αaβ)

〉
εµναβ (4.3)

and couples two vector external sources with the pseudoscalar field.

Vertex V v The contributions of the couplings between vector or axial-vector external
sources with the resonances comes from the Lagrangian (2.68). More specifically, a
contribution to the vertex consisted of vector external source and vector resonance is
given by the Lagrangian (2.69) with the relevant part

L(4)V =
FV√

2
〈Vµν(∂µvν − ∂νvµ)〉 . (4.4)
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Vertex Aa As in the previous case, a contribution to the coupling between axial-
vector external source and axial-vector resonance is given by the Lagrangian (2.70)
with the relevant part

L(4)A = −FA√
2
〈Aµν(∂µaν − ∂νaµ)〉 . (4.5)

Contributions up to O(p6)

Now, we can finally determine the independent operator basis of O(p6). We need
operators that couple vector or axial-vector resonances together with the building blocks
uµ, hµν and fµν± . Having considered all possible couplings from the tables 2.3-2.5, the
contributing Lagrangians of O(p6) can be schematically designed with respect to the
resonance exchanges, such as

LV = LV11 + LV12 + LV16 + LV17 , (4.6)

LV V = LV V3 + LV V4 , (4.7)

LV A = LV A5 , (4.8)

with the corresponding operators shown in the table below.

i OVi µναβ i OV V,V Ai µναβ

11 〈V µν{fαρ+ , fβσ− }〉gρσ 3 〈{∇σV µν , V ασ}uβ〉
12 〈V µν{fαρ+ , hβσ}〉gρσ 4 〈{∇βV µν , V ασ}uσ〉
16 〈V µν{∇αfβσ+ , uσ}〉 5 〈{V µν , Aαρ}fβσ+ 〉gρσ
17 〈V µν{∇σfασ+ , uβ}〉

Table 4.1: Monomials contributing into V V A Green function

Now we modify all contributing operators by rewriting them into the individual
terms of vector and axial-vector external sources, pseudoscalar and resonance fields. In
doing so, we will realize that we will have a rich set of vertices, given to the possible
expansion of the chiral operators. To simplify the writing, we use the notation (D.1).

Vertex V va The first possibility consists of one vector resonance field coupled to vec-
tor and axial-vector external sources. The relevant building blocks are fβσ− , hβσ, uσ, u

β

as axial-vector sources.

LV11 ' −4κV11〈V µν{∂αvρ − ∂ρvσ, ∂βaσ − ∂σaβ}〉gρσεµναβ (4.9)

= −2
√

2κV11
∑
(a,b)

dabcV µν
a (∂αvρb − ∂

ρvαb )(∂βaσc − ∂σaβc )gρσεµναβ , (4.10)

LV12 ' 4κV12〈V µν{∂αvρ − ∂ρvα, ∂βaσ + ∂σvβ}〉gρσεµναβ (4.11)

= 2
√

2κV12
∑
(a,b)

dabcV µν
a (∂αvρb − ∂

ρvαb )(∂βaσc + ∂σaβc )gρσεµναβ , (4.12)

LV16 ' 4κV16〈V µν{∂α∂βvσ − ∂α∂σvβ, aσ}〉εµναβ (4.13)

= 2
√

2κV16
∑
(a,b)

dabcV µν
a (∂α∂βvσb − ∂α∂σv

β
b )aσ,cεµναβ , (4.14)

LV17 ' 4κV17〈V µν{∂σ∂αvσ − ∂σ∂σvα, aβ}〉εµναβ (4.15)

= 2
√

2κV17
∑
(a,b)

dabcV µν
a (∂σ∂

αvσb − ∂σ∂σvαb )aβc εµναβ . (4.16)
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Vertex V vφ The second possibility is to consider building blocks hβσ, uσ, u
β as pseu-

doscalar fields. Since the operator fβσ− obviously does not contribute as a pseudoscalar
field, the Lagrangian L11 is trivially omitted here.

LV12 ' −
4
√

2κV12
F

〈V µν{∂αvρ − ∂ρvα, ∂β∂σφ}〉gρσεµναβ (4.17)

= −4
√

2κV12
F

∑
(a,b)

dabcV µν
a (∂αvρb − ∂

ρvαb )(∂β∂σφc)gρσεµναβ , (4.18)

LV16 ' −
2
√

2κV16
F

〈V µν{∂α∂βvσ − ∂α∂σvβ, ∂σφ}〉εµναβ (4.19)

= −2
√

2κV16
F

∑
(a,b)

dabcV µν
a (∂α∂βvσb − ∂α∂σv

β
b )(∂σφc)εµναβ , (4.20)

LV17 ' −
2
√

2κV17
F

〈V µν{∂σ∂αvσ − ∂σ∂σvα, ∂βφ}〉εµναβ (4.21)

= −2
√

2κV17
F

∑
(a,b)

dabcV µν
a (∂σ∂

αvσb − ∂σ∂σvαb )(∂βφc)εµναβ . (4.22)

Vertex V V a The third possibility is to consider uβ, uσ as axial-vector sources.

LV V3 ' 2κV V3 〈{∂σV µν , V ασ}aβ〉εµναβ (4.23)

= 2κV V3

∑
(a,b)

dabc(∂σV
µν
a )V ασ

b aβc εµναβ , (4.24)

LV V4 ' 2κV V4 〈{∂βV µν , V ασ}aσ〉εµναβ (4.25)

= 2κV V4

∑
(a,b)

dabc(∂βV µν
a )V ασ

b aσ,cεµναβ . (4.26)

Vertex V V φ The fourth possibility is to consider uβ, uσ as pseudoscalar fields.

LV V3 ' −
√

2κV V3

F
〈{∂σV µν , V ασ}∂βφ〉εµναβ (4.27)

= −2κV V3

F

∑
(a,b)

dabc(∂σV
µν
a )V ασ

b (∂βφc)εµναβ , (4.28)

LV V4 ' −
√

2κV V4

F
〈{∂βV µν , V ασ}∂σφ〉εµναβ (4.29)

= −2κV V4

F

∑
(a,b)

dabc(∂βV µν
a )V ασ

b (∂σφc)εµναβ . (4.30)

Vertex V Av The last possibility is quite simple, beacuse the operator fβσ+ represents
linearly only a vector source.

LV A5 ' 2κV A5 〈{V µν , Aαρ}(∂βvσ − ∂σvβ)〉εµναβ (4.31)

= 2κV A5

∑
(a,b)

dabcV µν
a (∂βvσb − ∂σv

β
b )Aαρc gρσεµναβ . (4.32)

These possibilities give us together five Feynman diagrams, which we will calculate
now.
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4.2 Feynman rules

Here we present all Feynman rules of contributing vertices. First of all, let us start
with the propagators needed in this case.

Tensor propagator The kinetic and mass terms form the tensor propagator

i(∆R(p))abαβρσ =− iδab

M2
R(p2 −M2

R)

[
gαρgβσ(M2

R − p2) + gαρpβpσ − gασpβpρ
]

(4.33)

− (α↔ β) ,

where R stands for any resonance field that carry two Lorentz indices in the antisym-
metric tensor formalism, of course, i.e. R = V,A.

Pseudoscalar propagator The kinetic term comes from L(2)χ whilst the mass term
does not exist since pseudoscalars are massless in the chiral limit. Then, the pseu-
doscalar propagator has the form

i(∆P (r))ab =
i

r2
δab . (4.34)

Figure 4.1: Tensor (left) and pseudoscalar (right) propagators.

Now we will present the Feynman rules for the Lagrangians up to O(p6). An
important note regarding the fixation of the notation is in order. Wherever we will
have an external source with the Lorentz index µ, we will assign it the group index a
and 4-momentum p, i.e. we will fix the trio (µ, a, p). Similarly, for the external sources
with Lorentz indices ν and ρ we will have fixed choices (ν, b, q) and (ρ, c, r).

Vertex WZW This vertex consists of two vector sources and one pseudoscalar. The
contributing Lagrangian is the anomaly Wess-Zumino-Witten Lagrangian (4.3). The
Feynman rule is due to Bose statistic

(VWZW )abdµν = −i NC

8π2F
dabdεµν(p)(q) . (4.35)

Figure 4.2: Feynman diagram of Wess-Zumino-Witten vvφ vertex.

Vertex 1 This vertex consists of a pseudoscalar field coupled to an axial-vector ex-
ternal source. The contributing Lagrangian is (4.2) with the Feynman rule for this
vertex

(V1)
ad
µ = Fpµδ

ad . (4.36)
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Vertex 2 This vertex consists of axial-vector source and axial-vector resonance. The
contributing Lagrangian is (4.5). The Feynman rule is

(V2)
ad
µαβ = −FA

2
(pαgµβ − pβgµα)δad . (4.37)

Vertex 3 This vertex consists of vector source and vector resonance. The contributing
Lagrangian is (4.4). The Feynman rule is

(V3)
ad
µαβ =

FV
2

(pαgµβ − pβgµα)δad . (4.38)

Figure 4.3: Feynman diagrams of vertices 1 (left), 2 (middle) and 3 (right).

Vertex 4 This vertex consists of axial-vector source, vector source and vector res-
onance. The contributing Lagrangians are (4.10)-(4.16). The second permutation of
this vertex is simply obtained by the interchange (µ, a, p)↔ (ν, b, q). this behaviour is
typical for every vertex in the case of V V A Green function. The Feynman rule of this
vertex is

(V 1
4 )acdµραβ =− 2i

√
2dacd

[
(κV11 − κV12)gµρεαβ(p)(q) + (κV11 − κV12)pρεαβµ(r) (4.39)

+ κ16pρεαβµ(p) +
1

2
(p2 − q2 + r2)(κV11 + κV12)εαβµρ − p2κV17εαβµρ

− κV17pµεαβρ(p) − (κV11 + κV12)rµεαβρ(p)

]
,

(V 2
4 )bcdνραβ = 2i

√
2dbcd

[
(κV11 − κV12)gνρεαβ(p)(q) − (κV11 − κ12)qρεαβν(r) (4.40)

− κ16qρεαβν(q) +
1

2
(p2 − q2 − r2)(κV11 + κV12)εαβνρ + q2κ17εαβνρ

+ κV17qνεαβρ(q) + (κV11 + κV12)rνεαβρ(q)

]
.

Figure 4.4: Feynman diagrams of vertex 4 (both permutations).
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Vertex 5 This vertex consists of vector source, vector resonance and pseudoscalar.
The contributing Lagrangians are (4.18)-(4.22). The Feynman rule is

(V 1
5 )adeµαβ =− 2

√
2dade

F

[
1

2
(p2 − q2 + r2)κV16εαβµ(p) + 2κV12rµεαβ(p)(q) (4.41)

+ κV17pµεαβ(p)(q) − (p2 − q2 + r2)κV12εαβµ(r) + p2κV17εαβµ(r)

]
,

(V 2
5 )bdeναβ =

2
√

2dbde

F

[
1

2
(p2 − q2 − r2)κV16εαβν(q) + 2κV12rνεαβ(p)(q) (4.42)

+ κV17qνεαβ(p)(q) − (p2 − q2 − r2)κV12εαβν(r) − q2κV17εαβν(r)
]
.

Figure 4.5: Feynman diagrams of vertex 5 (both permutations).

Vertex 6 This vertex consists of axial-vector source and two vector resonances. The
contributing Lagrangians are (4.24)-(4.26). The Feynman rule is

(V6)
cde
ραβγδ =− κV V3 dcde(pγεαβδρ − pδεαβγρ + qαεβγδρ − qβεαγδρ) (4.43)

− κV V4 dcde(gγρεαβδ(p) − gδρεαβγ(p) + gαρεβγδ(q) − gβρεαγδ(q)) .

Vertex 7 This vertex consists of two vector resonances and one pseudoscalar. The
contributing Lagrangians are (4.28)-(4.30). The Feynman rule is

(V7)
def
αβγδ =− iκV V3 ddef

F
(pγεαβδ(r) − pδεαβγ(r) + qαεβγδ(r) − qβεαγδ(r)) (4.44)

− iκV V4 ddef

F
(rγεαβδ(p) − rδεαβγ(p) + rαεβγδ(q) − rβεαγδ(q)) .

Figure 4.6: Feynman diagrams of vertex 6 (left) and vertex 7 (right).

Vertex 8 This vertex consists of vector source, vector resonance and axial-vector
resonance. The contributing Lagrangian is (4.32). The Feynman rule is

(V 1
8 )adeµαβγδ =− κV A5 dade(gγµεαβδ(p) − gδµεαβγ(p) − pγεαβδµ + pδεαβγµ) , (4.45)

(V 2
8 )bdeναβγδ =− κV A5 dbde(gγνεαβδ(q) − gδνεαβγ(q) − qγεαβδν + qδεαβγν) . (4.46)
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Figure 4.7: Feynman diagrams of vertex 8 (both permutations).

Subdiagram 1 This subdiagram consists of vertex 1 (4.36) and pseudoscalar prop-
agator (4.34). The Feynman rule is

(S1)
cd
ρ = (V1)

ce
ρ i∆P (r)de (4.47)

=
iF

r2
rρδ

cd . (4.48)

Subdiagram 2 This subdiagram consists of vertex 2 (4.37) and tensor propagator
(4.33). The Feynman rule is

(S2)
cd
ραβ = (V2)

ce
ργδi

(
∆A(r)

)de
γδαβ

(4.49)

=
iFA

r2 −M2
A

(rαgρβ − rβgρα)δac . (4.50)

Subdiagram 3 This subdiagram consists of vertex 3 (4.38) and tensor propagator
(4.33). The Feynman rule is

(S3)
ad
µαβ = (V3)

ae
µγδi(∆V (p))deγδαβ (4.51)

= − iFV
p2 −M2

V

(pαgµβ − pβgµα)δad . (4.52)

Figure 4.8: Feynman diagrams of subdiagrams 1 (left), 2 (middle) and 3 (right).

4.3 Feynman diagrams

Diagram χ This diagram consists of vertex WZW (4.35) and subdiagram 1 (4.48).
The Feynman rule is

(Πχ)abcµνρ = (VWZW )abdµν (S1)
cd
ρ (4.53)

=
NC

8π2r2
dabcεµν(p)(q)rρ . (4.54)
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Figure 4.9: Feynman diagram χ.

Diagram 1 This diagram consists of vertex 4 (4.39)-(4.40) and subdiagram 3 (4.52).
The Feynman rules of both permutations are as follows

(Π1
1)
abc
µνρ = (V 1

4 )acdµραβ(S3)
bd
ναβ (4.55)

=− 4
√

2FV d
abc

q2 −M2
V

[
1

2
(p2 − q2 + r2)(κV11 + κV12)εµνρ(q) − p2κV17εµνρ(q) (4.56)

+ κV17pµενρ(p)(q) + (κV11 + κV12)rµενρ(p)(q) − (κV11 − κV12 − κV16)pρεµν(p)(q)
]
,

(Π2
1)
abc
µνρ = (V 2

4 )bcdνραβ(S3)
ad
µαβ (4.57)

=− 4
√

2FV d
abc

p2 −M2
V

[
1

2
(p2 − q2 − r2)(κV11 + κV12)εµνρ(p) + q2κV17εµνρ(p) (4.58)

− κV17qνεµρ(p)(q) − (κV11 + κV12)rνεµρ(p)(q) − (κV11 − κV12 − κV16)qρεµν(p)(q)
]
.

Figure 4.10: Feynman diagram 1 (both permutations).

Diagram 2 This diagram consists of vertex 5 (4.41)-(4.42), subdiagrams 1 (4.48) and
3 (4.52). The Feynman rules of both permutations are as follows

(Π1
2)
abc
µνρ = (V 1

5 )adeµαβ(S1)
ce
ρ (S3)

bd
ναβ (4.59)

=
4
√

2FV d
abc

(q2 −M2
V )r2

[
1

2
(−p2 + q2 − r2)(2κV12 + κV16) + p2κV17

]
εµν(p)(q)rρ , (4.60)

(Π2
2)
abc
µνρ = (V 2

5 )bdeναβ(S1)
ce
ρ (S3)

ad
µαβ (4.61)

=
4
√

2FV d
abc

(p2 −M2
V )r2

[
1

2
(p2 − q2 − r2)(2κV12 + κV16) + q2κV17

]
εµν(p)(q)r

ρ . (4.62)

Figure 4.11: Feynman diagram 2 (both permutations).
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Diagram 3 This diagram consists of vertex 6 (4.43) and two subdiagrams 3 (4.52).
The Feynman rules of both permutations are as follows

(Π3)
abc
µνρ = (V6)

cde
ραβγδ(S3)

ad
µαβ(S3)

be
νγδ (4.63)

=
4F 2

V κ
V V
3 dabc

(p2 −M2
V )(q2 −M2

V )
× (4.64)

×
[

1

2
(p2 + q2 − r2)(εµνρ(p) − εµνρ(q))− qµενρ(p)(q) + pνεµρ(p)(q)

]
.

Diagram 4 This diagram consists of vertex 7 (4.44), subdiagram 1 (4.48) and two
subdiagrams 3 (4.52). The Feynman rules of both permutations are as follows

(Π4)
abc
µνρ = (V7)

def
αβγδ(S1)

cf
ρ (S3)

ad
µαβ(S3)

be
νγδ (4.65)

=
4F 2

V κ
V V
3 dabc

(p2 −M2
V )(q2 −M2

V )r2
(−p2 − q2 + r2)εµν(p)(q)rρ . (4.66)

Lagrangian (4.30) does not contribute to this diagram after all.

Figure 4.12: Feynman diagrams 3 (left) and 4 (right).

Diagram 5 This diagram consists of vertex 8 (4.45)-(4.46) and subdiagrams 2 (4.50)
and 3 (4.52). The Feynman rules of both permutations are as follows

(Π1
5)
abc
µνρ = (V 1

8 )adeµαβγδ(S2)
ce
ργδ(S3)

bd
ναβ (4.67)

=
4FAFV κ

V A
5 dabc

(q2 −M2
V )(r2 −M2

A)

[
1

2
(p2 − q2 + r2)εµνρ(q) − pρεµν(p)(q) + rµενρ(p)(q)

]
,

(4.68)

(Π2
5)
abc
µνρ = (V 2

8 )bdeναβγδ(S2)
ce
ργδ(S3)

ad
µαβ (4.69)

=
4FAFV κ

V A
5 dabc

(p2 −M2
V )(r2 −M2

A)

[
1

2
(p2 − q2 − r2)εµνρ(p) − qρεµν(p)(q) − rνεµρ(p)(q)

]
.

(4.70)

Figure 4.13: Feynman diagram 5 (both permutations).
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Taking all contributions together, we have established all Feynman diagrams that
contribute to (4.1).

4.4 Ward identities

Generally, the Ward identities reflect the global or gauge symmetries of the theory. In
our case, the determination of the identites tells us not only if we did not forget any
Feynman diagrams in our calculations, i.e. if the topology of the studied Green function
is complete, but also it allows us to verify the conservation of the vector current and
nonconservation of the axial current. Hence, the Ward identities have the general forms

{pµ, qν , rρ}
(
ΠV V A(p, q; r)

)abc
µνρ

, (4.71)

which we will calculate.
Considering the vector Ward identities first, it is very easy to verify that the results

are null for all contributing Feynman diagrams, i.e.

{pµ; qν}(Πχ)abcµνρ = {0; 0} , (4.72)

{pµ; qν}(Π1
1)
abc
µνρ = {0; 0} , (4.73)

{pµ; qν}(Π2
1)
abc
µνρ = {0; 0} , (4.74)

{pµ; qν}(Π1
2)
abc
µνρ = {0; 0} , (4.75)

{pµ; qν}(Π2
2)
abc
µνρ = {0; 0} , (4.76)

{pµ; qν}(Π3)
abc
µνρ = {0; 0} , (4.77)

{pµ; qν}(Π4)
abc
µνρ = {0; 0} , (4.78)

{pµ; qν}(Π1
5)
abc
µνρ = {0; 0} , (4.79)

{pµ; qν}(Π2
5)
abc
µνρ = {0; 0} . (4.80)

Then we can simply write

pµ
(
ΠV V A(p, q; r)

)abc
µνρ

= 0 , (4.81)

qν
(
ΠV V A(p, q; r)

)abc
µνρ

= 0 . (4.82)

The axial Ward identites are little tricky. Not only that some contributions are nonze-
ro after multiplication by rρ, but we can also notice the fact that some diagrams
compensate one another in order to reconstruct the anomaly term that causes the
nonconservation of the axial current. All individual results are listed below.

rρ(Πχ)abcµνρ =
NCd

abc

8π2
εµν(p)(q) , (4.83)

rρ(Π1
1)
abc
µνρ =

4
√

2dabcFV
q2 −M2

V

[
1

2
(p2 − q2 + r2)(2κV12 + κV16)− p2κV17

]
εµν(p)(q) , (4.84)

rρ(Π2
1)
abc
µνρ =

4
√

2dabcFV
p2 −M2

V

[
1

2
(−p2 + q2 + r2)(2κV12 + κV16)− q2κV17

]
εµν(p)(q) , (4.85)

rρ(Π1
2)
abc
µνρ =

4
√

2dabcFV
q2 −M2

V

[
1

2
(−p2 + q2 − r2)(2κV12 + κV16) + p2κV17

]
εµν(p)(q) , (4.86)

rρ(Π2
2)
abc
µνρ =

4
√

2dabcFV
p2 −M2

V

[
1

2
(p2 − q2 − r2)(2κV12 + κV16) + q2κV17

]
εµν(p)(q) , (4.87)
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rρ(Π3)
abc
µνρ =

4F 2
V d

abcκV V3

(p2 −M2
V )(q2 −M2

V )
(p2 + q2 − r2)εµν(p)(q) , (4.88)

rρ(Π4)
abc
µνρ =

4F 2
V d

abcκV V3

(p2 −M2
V )(q2 −M2

V )
(−p2 − q2 + r2)εµν(p)(q) , (4.89)

rρ(Π1
5)
abc
µνρ = 0 , (4.90)

rρ(Π2
5)
abc
µνρ = 0 . (4.91)

Now, it is obvious which diagrams compensate one another. More specifically, we see
that

rρ(Π1
1)
abc
µνρ + rρ(Π1

2)
abc
µνρ = 0 , (4.92)

rρ(Π2
1)
abc
µνρ + rρ(Π2

2)
abc
µνρ = 0 , (4.93)

rρ(Π3)
abc
µνρ + rρ(Π4)

abc
µνρ = 0 . (4.94)

Knowing that, we can finally establish that axial Ward identity takes the form

rρ
(
ΠV V A(p, q; r)

)abc
µνρ

=
NC

8π2
dabcεµν(p)(q) , (4.95)

i.e. the axial Ward identity is determined only by the anomalous term, as expected.
knowing the expected results of the Ward identities, let us rewrite the standard

definition (4.1) of the V V A correlator as

(
ΠV V A(p, q; r)

)abc
µνρ
≡ dabcΠµνρ(p, q; r) , (4.96)

where we have already separated the tensor structure and the part that comes from
the traces over flavor space. The Ward identities restrict the general decomposition of
the tensor part in (4.96) into four terms,

Πµνρ(p, q; r) = wLεµν(p)(q)rρ + w
(1)
T Π(1)

µνρ + w
(2)
T Π(2)

µνρ + w
(3)
T Π(3)

µνρ , (4.97)

where wL is the longitudinal part, entirely fixed by the anomaly term (4.54), and a trio
of formfactors

w
(1)
T ≡ w

(1)
T

(
p2, q2, r2

)
= +w

(1)
T

(
p2, q2, r2

)
, (4.98)

w
(2)
T ≡ w

(2)
T

(
p2, q2, r2

)
= −w(2)

T

(
p2, q2, r2

)
, (4.99)

w
(3)
T ≡ w

(3)
T

(
p2, q2, r2

)
= −w(3)

T

(
p2, q2, r2

)
, (4.100)

where we also introduced their properties under the Bose symmetry, and that stand by
the transversal tensors [20]

Π(1)
µνρ ≡ Π(1)

µνρ(p, q; r) = pνεµρ(p)(q) − qµενρ(p)(q) −
p2 + q2 − r2

r2
εµν(p)(q)rρ (4.101)

− 1

2
(−p2 − q2 + r2)(εµνρ(p) − εµνρ(q)) ,

Π(2)
µνρ ≡ Π(2)

µνρ(p, q; r) =

[
(p− q)ρ +

p2 − q2

r2
rρ

]
εµν(p)(q) , (4.102)

Π(3)
µνρ ≡ Π(3)

µνρ(p, q; r) = pνεµρ(p)(q) + qµενρ(p)(q) +
1

2
(−p2 − q2 + r2)εµνρ(r) . (4.103)
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Extraction of the formfactors

Now, our task will be an extraction of the formfactors w
(1)
T , w

(2)
T , w

(3)
T . Although we

already know the form of wL, we will include it in our procedure just to be sure we will
be able to recover the correct result.

Let us remind ourselves that in section 4.3 we have provided the final result (4.96).
To compare the result with the decomposition (4.97) in order to obtain the formfac-
tors, a simple method comes to mind. The principal is to multiply the expressions
(4.96),(4.97) by the components of 4-momenta p, q, r that will not make the results
vanish.

Easily, the components pν and qµ are clear choices. However, due to many nonzero
terms in (4.83)-(4.91), we will also take the components pρ, qρ into account. The reason
why we do not consider rρ at once is that we are looking for four formfactors so we
need a system of four equations in order to be able to solve it. If we did not want to
recover wL formfactor, a system of three equations, considering only rρ instead of both
pρ and qρ, would be sufficient.

Following the procedure above, using (4.96) we have

pνΠµνρ(p, q; r) =− 2
√

2FV
p2 −M2

V

[
(κV11 + κV12)(p

2 − q2 + r2) + κV17(p
2 + q2 − r2)

]
(4.104)

+
2
√

2FV
q2 −M2

V

[
(κV11 + κV12)(p

2 − q2 + r2)− 2p2κV17

]
+

2F 2
V κ

V V
3 (3p2 + q2 − r2)

(p2 −M2
V )(q2 −M2

V )
− 2FAFV κ

V A
5 (p2 − q2)(p2 − q2 + r2)

(p2 −M2
V )(q2 −M2

V )(r2 −M2
A)

,

qµΠµνρ(p, q; r) =
2
√

2FV
p2 −M2

V

[
(κV11 + κV12)(p

2 − q2 − r2) + 2q2κV17

]
(4.105)

− 2
√

2FV
q2 −M2

V

[
(κV11 + κV12)(p

2 − q2 − r2)− κV17(p2 + q2 − r2)
]

−
2F 2

V κ
V V
3 (p2 + 3q2 − r2)

(p2 −M2
V )(q2 −M2

V )
+

2FAFV κ
V A
5 (p2 − q2)(p2 − q2 − r2)

(p2 −M2
V )(q2 −M2

V )(r2 −M2
A)

,

pρΠµνρ(p, q; r) =
1

16r2

{
16FV (p2 − q2)

(p2 −M2
V )(q2 −M2

V )(r2 −M2
A)
× (4.106)

×
[
2p2
[
r2
(
− FAκV A5 +

√
2M2

A(−κV11 + κV12 + κV16 − κV17) + FV κ
V V
3

+
√

2M2
V κ

V
17 −

√
2q2(2κV12 + κV16)

)
+
√

2(r2)2(κV11 − κV12 − κV16 + κV17)

+M2
A

(
− FV κV V3 −

√
2M2

V κ
V
17 +

√
2q2(2κV12 + κV16)

)]
+ (q2 − r2)

[
r2
(
2(−FAκV A5 + FV κ

V V
3 +

√
2M2

V κ
V
17)

+
√

2M2
A(κV16 − 2κV11) +

√
2q2(2κV12 + κV16 − 2κV17)

)
−M2

A

(
2(FV κ

V V
3 +

√
2M2

V κ
V
17) +

√
2q2(2κV12 + κV16 − 2κV17)

)
+
√

2(r2)2(2κV11 − κV16)
]

+
√

2(p2)2(r2 −M2
A)(2κV12 + κV16 − 2κV17)

]
− NC(p2 − q2 + r2)

π2

}
,
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qρΠµνρ(p, q; r) =− 1

16r2

{
16FV (p2 − q2)

(p2 −M2
V )(q2 −M2

V )(r2 −M2
A)
× (4.107)

×
[
2p2
[
r2
(
− FAκV A5 +

√
2M2

A(−κV11 + κV12 + κV16 − κV17) + FV κ
V V
3

+
√

2M2
V κ

V
17 −

√
2q2(2κV12 + κV16)

)
+
√

2(r2)2(κV11 − κV12 − κV16 + κV17)

+M2
A

(
− FV κV V3 −

√
2M2

V κ
V
17 +

√
2q2(2κV12 + κV16)

)]
+ (q2 − r2)

[
r2
(
2(−FAκV A5 + FV κ

V V
3 +

√
2M2

V κ
V
17)

+
√

2M2
A(κV16 − 2κV11) +

√
2q2(2κV12 + κV16 − 2κV17)

)
−M2

A

(
2(FV κ

V V
3 +

√
2M2

V κ
V
17) +

√
2q2(2κV12 + κV16 − 2κV17)

)
+
√

2(r2)2(2κV11 − κV16)
]

+
√

2(p2)2(r2 −M2
A)(2κV12 + κV16 − 2κV17)

]
+
NC(p2 − q2 − r2)

π2

}
.

On the other hand, using (4.97) we get a simpler system of equations:

pνΠµνρ(p, q; r) =
1

2
p2(3w

(1)
T + w

(3)
T ) +

1

2
(q2 − r2)(w(1)

T − w
(3)
T ) , (4.108)

qµΠµνρ(p, q; r) =− 1

2
p2(w

(1)
T + w

(3)
T ) +

1

2
q2(w

(3)
T − 3w

(1)
T ) +

1

2
r2(w

(1)
T + w

(3)
T ) , (4.109)

pρΠµνρ(p, q; r) =− p2

2
(wL + w

(1)
T − 2w

(2)
T − w

(3)
T ) +

(p2)2

2r2
(w

(1)
T − w

(2)
T ) (4.110)

+
p2q2

r2
w

(2)
T −

q2 − r2

2r2

[
q2(w

(1)
T + w

(2)
T )− r2(wL + w

(2)
T + w

(3)
T )
]
,

qρΠµνρ(p, q; r) =
p2

2
(wL + w

(1)
T − 2w

(2)
T − w

(3)
T ) +

(p2)2

2r2
(w

(2)
T − w

(1)
T ) (4.111)

− p2q2

r2
w

(2)
T −

q2

2
(wL + w

(1)
T + 2w

(2)
T + w

(3)
T )

+
(q2)2

2r2
(w

(1)
T + w

(2)
T ) +

r2

2
(−wL + w

(2)
T + w

(3)
T ) .

By comparing appropriate expressions in both systems, we are able to determine the
final results for the formfactors:

wL =
NC

8π2r2
, (4.112)

w
(1)
T = −

2
√

2FV
[
κV17(p

2 + q2 − 2M2
V )−

√
2FV κ

V V
3

]
(p2 −M2

V )(q2 −M2
V )

, (4.113)

w
(2)
T = −2

√
2FV (p2 − q2)(2κV12 + κV16 − κV17)

(p2 −M2
V )(q2 −M2

V )
, (4.114)

w
(3)
T =

2
√

2FV (p2 − q2)
(p2 −M2

V )(q2 −M2
V )

(
2κV11 + 2κV12 − κV17 −

√
2FAκ

V A
5

r2 −M2
A

)
. (4.115)
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4.5 Coupling constants constraints

To be able to extract some relations for the coupling constants we will construct the
formactor in the form [20]

wT (Q2) = −16π2
[
w

(1)
T (−Q2, 0,−Q2) + w

(3)
T (−Q2, 0,−Q2)

]
. (4.116)

Using (4.98),(4.100), we simply obtain

w
(1)
T (−Q2, 0,−Q2) =

2
√

2FV
[
κV17(Q

2 + 2M2
V ) +

√
2FV κ

V V
3

]
M2
V (Q2 +M2

V )
, (4.117)

w
(3)
T (−Q2, 0,−Q2) = − 2

√
2FVQ

2

M2
V (Q2 +M2

V )

(
2κV11 + 2κV12 − κV17 +

√
2FAκ

V A
5

Q2 +M2
A

)
, (4.118)

i.e.

wT (Q2) =− 2
√

2FV
M2
V (Q2 +M2

V )

[
Q2

(
2κV11 + 2κV12 +

√
2FAκ

V A
5

Q2 +M2
A

)
−
√

2FV κ
V V
3

]
(4.119)

+
4
√

2FV κ
V
17

M2
V

.

In anticipation of what will follow, we will expand (4.119) into a series in the terms of
Q2 up to O(1/Q8). But first, let us simplify the previous expression by substituing for
κV17 from one of the coupling constraints for V V P Green function, [1], (3.19):

κV17 = − NC

64
√

2π2FV
. (4.120)

Then, the series reads

wT (Q2) =− 4FV
M2
V

[
NC

64π2FV
+
√

2(κV11 + κV12)

]
(4.121)

+
4FV
Q2

[
FV κ

V V
3 − FAκV A5

M2
V

+
√

2(κV11 + κV12)

]
− 4FV

Q4

[
FV κ

V V
3 +

√
2M2

V (κV11 + κV12)− FAκV A5

(
1 +

M2
A

M2
V

)]
+

4FV
Q6

[
M2
V (FV κ

V V
3 − FAκV A5 )− FAM2

Aκ
V A
5

(
1 +

M2
A

M2
V

)
+
√

2M4
V (κV11 + κV12)

]
+O

(
1

Q8

)
.

The result for (4.116) up to O(1/Q8) can also be obtained from the OPE framework,
in which we have [21], [22]

wT (Q2) =
NC

Q2
+

128π3αsχ〈qq〉2

9Q6
+O

(
1

Q8

)
. (4.122)

By a comparison between (4.121) and (4.122) one can easily obtain the following con-
straints for the coupling constants:

κV11 + κV12 = − NC

64
√

2π2FV
, (4.123)

κV V3 = −
NCM

4
V

64π2M2
AF

2
V

(4.124)
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and

κV A5 = κV V3

FV
FA

(4.125)

= −
NCM

4
V

64π2M2
AFV FA

. (4.126)

Also, looking at (3.17), we can realize that knowing the constraint (4.124) for κV V3 , we
can extract a relation for κV V2

κV V2 =
1

64π2

(
F 2 −

NCM
4
V

8π2M2
A

)
, (4.127)

(4.128)

and then, from (3.16), also a constraint for κPV3 :

κPV3 = − F 2

32
√

2dmFV

[
1 +

NCM
2
V

8π2F 2

(
M2
V

M2
A

− 1

)]
. (4.129)

By the determination of (4.129) we can also obtain a relation for the deviation δBL

from the form of κPV3 if we take the Brodsky-Lepage behaviour [1], [23], [24] of the
Fπ0γγ formfactor into account (see (4.139)). Hence, the prediction is

δBL =
NCM

2
V

8π2F 2

(
M2
V

M2
A

− 1

)
. (4.130)

Finally, let us also introduce the numerical values of the fully obtained parameters:

κV V3 = −0.067 , (4.131)

κV A5 = −0.086 , (4.132)

κPV3 = 0.017 . (4.133)

and

δBL = −1.342 . (4.134)

We do not calculate errors of the obatined parameters since we get the values purely
by matching two theoretical approaches. Also, the only parameter that comes with an
uncertainty is FV but it is very small, less than two orders. To obtain the parameters
(4.131)-(4.134) we used the following numerical values:

MV = 0.775 GeV , (4.135)

F = 92.22 MeV , (4.136)

FV = (146.3± 1.2) MeV , (4.137)

dm = 26 MeV . (4.138)

Now, a discussion involving the parameter δBL is in order. Knowing the values
(4.133)-(4.134), one can apply them to study a particular example that could be verified
either by other theoretical consequences or experiments. In our case, a π0γγ formfactor
is a suitable tool. The formfactor is originally determined as

FRχT
π0γγ

(p2, q2; 0) =
F

3(p2 −M2
V )(q2 −M2

V )
× (4.139)

×
[
(p2 + q2)

(
1 + 32

√
2
dmFV
F 2

κPV3

)
−
NCM

4
V

4π2F 2

]
.
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Substituing from the expression (4.129) we can get

FRχT
π0γγ

(p2, q2; 0) = − F

3(p2 −M2
V )(q2 −M2

V )

[
δBL(p2 + q2) +

NCM
4
V

4π2F 2

]
, (4.140)

from which we can extract the experimentally measured object

FRχT
π0γγ

(0,−Q2; 0) =
F

3(p2 −M2
V )(q2 −M2

V )

(
Q2δBL −

NCM
4
V

4π2F 2

)
, (4.141)

which is sensitive to the value of δBL.
The formfactor (4.141) is depicted in Fig. 4.14 for our value (4.134) and for two

other values, based on [1]. The figure also contains experimentally obtained values of
FRχT
π0γγ

(0,−Q2; 0) from experiments BABAR [25], BELLE [26] and CLEO [27].
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Figure 4.14: A plot of BABAR (red), BELLE (green) and CLEO (blue) data fitted with
the formfactor FRχT

π0γγ
(0,−Q2; 0) (4.141) using the modified Brodsky-Lepage condition.

The full black line represents our fit with δBL = −1.342 (4.134) and the full brown line
is a fit using the LMD behaviour of the formfactor (4.145). The dashed line stands for
δBL = −0.055 and the dot-dashed line for δBL = 0.

We can clearly see that the formfactor (4.141) does not agree with the experimental
data. To get a full notion, one should discuss first if we even have a sufficiently consistent
theoretical model to describe such a behaviour. In other words, is it sufficient not to add
any other resonance fields and still have an agreement with the experiments? Obviously,
not. The reason is that our formfactor (4.141) for the value (4.134) is very close to the
behaviour of the formfactor FLMD(p2, q2; r2) describing the lowest meson dominance
(LMD) [15], [28] which is defined through the formfactor FVMD(p2, q2; r2) of the vector
meson dominance (VMD) [15] as

FVMD(p2, q2; r2) = − NC

8π2F

M4
V

(p2 −M2
V )(q2 −M2

V )
, (4.142)

FLMD(p2, q2; r2) = FVMD(p2, q2; r2)

[
1− 4π2F 2(p2 + q2)

NCM4
V

]
. (4.143)
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In our case, both expression take the forms

FVMD(0,−Q2; 0) = − NC

8π2F

M2
V

Q2 +M2
V

, (4.144)

FLMD(0,−Q2; 0) = − NC

8π2F

M2
V

Q2 +M2
V

(
1 +

4π2F 2

NCM4
V

Q2

)
. (4.145)

To support our explanation, the LMD fomrfactor (4.145) is also depicted in Fig. 4.14.
Finally, let us also mention that by using (4.129), one can determine more specific

relations for two low-energy constants:

CW7 =
F 2

32M2
V

(
1

2M2
V

+
1

M2
P

)
+

dmF
2
V

2M2
PM

4
V

κV V P +
NC

256π2M2
P

(
M2
V

M2
A

− 1

)
, (4.146)

CW22 =
NC

128π2

(
1

M2
V

+
1

M2
A

)
. (4.147)

4.6 Phenomenology

As a phenomenological example of the V V A Green function, we can study a decay of
the axial-vector meson f1(1285),

f1(1285)→ ρ+ γ , (4.148)

with the branching ratio [29]

Br = 0.055± 0.013 . (4.149)

An assignment of the 4-momenta is exactly the same as previously in this chapter, i.e.
the axial-vector meson f1(1285) carries 4-momentum r whilst vector states ρ and γ
carry 4-momenta p and q, respectively.

Since the photon in the final state is massless, we are required to take the decay
width in the form1

Γf→ργ =
1

3

1

8π

∑
pol.

∣∣M∣∣2M2
f −M2

ρ

2M3
f

, (4.150)

with the obvious designation of the masses of the particles involved. Also, we have
considered the decaying meson to be unpolarized.

Figure 4.15: A scheme of the decay f1(1285) → ργ: axial-vector resonance represents
the decaying f1(1285) meson and the vector external source stands for the ρ meson.

1For the sake of simplicity in equations, we will designate f1(1285) ≡ f .
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The matrix element

Before we make the step to contructing the matrix element itself, let us explain why
we can consider the decay channel that includes the electromagnetic interaction. The
reason is simple, considering the external sources (1.37) we have defined in Chapter
1. Since the quarks carry an electric charge, considering the vector-like nature of the
electromagnetic current, we can construct the external sources in the form

vµ = −eAµQ , (4.151)

aµ = 0 , (4.152)

where we have explicitly excluded the contribution of the axial-vector external source
to the interaction. In (4.151), we have designated Aµ as an electromagnetic field and
Q stands for the quark charge matrix

Q =
1

3
diag(2,−1,−1) . (4.153)

It is useful to express the quark charge matrix in terms of the Gell-Mann matrices.
This simply leads to the expression for (4.151) in the form

vµ = −eAµ
(
T 3 +

1√
3
T 8

)
. (4.154)

In order to have a nonzero contribution to the matrix element, i.e. to be able to
reconstruct the experimentally observed decay (4.148), we are now capable of resolving
that the matrix element has the form

iM = ieεµ(p)

[
1

MV FV
εν(q)(q2 −M2

V )

][
1

MAFA
ερ(r)(r2 −M2

A)

]
Π338
µνρ , (4.155)

where Π338
µνρ is given by (4.1) for the particular choice of group indices due to the

physical nature of the process. The contributing part of Π338
µνρ is determined only by

the expression proportional to the coupling constant κV A5 , i.e.

Π338
µνρ =

1√
3
d338Π(3)

µνρw
(3)
T (4.156)

= − 4FAFV κ
V A
5 (p2 − q2)

3(p2 −M2
V )(q2 −M2

V )(r2 −M2
A)
× (4.157)

×
[
pνεµρ(p)(q) + qµενρ(p)(q) +

1

2
(−p2 − q2 + r2)εµνρ(r)

]
.

For completeness, let us mention that the 1/
√

3 in (4.156) is a relict from (4.154).

Calculation of the decay width

The last expression is necessary to put back to the matrix element. Since this is a quite
difficult, we restrict ourselves only to the result. But before we do that, let us only
mention a short note regarding the polarization sums. Indeed, the following expressions
are useful. First of all, let us deal with the massless photon,∑

pol.

εµ(p)ε∗µ
′
(p) = −gµµ′ − 1

(η · p)2
pµpµ

′
+

1

η · p
(pµηµ

′
+ ηµpµ

′
) , (4.158)

where
η = (1, 0, 0, 0) , (4.159)
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and with the polarisation sums for the mass particles ρ and f1(1285),

∑
pol.

εν(q)ε∗ν
′
(q) = −gνν′ + qνqν

′

M2
ρ

, (4.160)

∑
pol.

ερ(q)ε∗ρ
′
(q) = −gρρ′ + rρrρ

′

M2
f

. (4.161)

Now, let us remind that the contributing part of (4.1) is transversal. In this case, only
the metric tensors in all polarization sums contribute, leaving the other parts to vanish.
This fact greatly simplifies the calculation. But still, the procedure is complicated due
to the difficult tensor structure and many non-vanishing terms. For simplicity, we will
skip the whole calculation.

Then, the decay width of this channel is

Γf→ργ =
e2M2

AM
10
ρ (M2

f −M2
ρ )

72πM3
fM

6
V (M2

A − 2M2
ρ )2

(κV A5 )2 . (4.162)

Comparing the result with the branching ratio and the total decay width of the f1(1285)
meson, one can determine the coupling constant κV A5 :

κV A5 = −0.062± 0.030 , (4.163)

where we have already chosen the negative value due to the already known sign from
(4.124). We see that both values agree on the given order.
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5. AAA Green function

The standard definition of the correlator consisting of three axial-vector currents is(
ΠAAA(p, q; r)

)abc
µνρ

= i

∫
d4x d4y ei(px+qy)

〈
0
∣∣T[Aaµ(x)Abν(y)Acρ(0)

]∣∣0〉 . (5.1)

The strategy of the calculation of (5.1) is the same as in the previous chapter. The only
difference is in the bulding blocks, we will need only uµ, hµν and fµν− . The assignment of
the indices is exactly the same, we still hold the following threesomes: (µ, a, p), (ν, b, q)
and (ρ, c, r).

5.1 Independent operator basis up to O(p6)

Now, we can easily start working on the contributing operators. As in the previous
case, we will also distinguish between contributions of the individual orders.

Contribution up to O(p2)

aφ vertex A very important contribution to AAA correlator comes from χPT. Up
to O(p2), we will need the coupling between an axial-vector external source and a
pseudoscalar field. The relevant part of the Lagrangian (2.16) is

L(2)χ = − F√
2
〈{∂µφ, aµ}〉 . (5.2)

Contributions up to O(p4)

Vertex aaφ We have also another contribution from χPT, more specifically from
the anomalous Wess-Zumino-Witten Lagrangian (2.40). The contributing part has the
form

L(4)WZW =
NC

12
√

2π2F

〈
(∂µφ)vν(∂αvβ)

〉
εµναβ +

NC

6
√

2π2F

〈
(∂µφ)(∂νvα)vβ

〉
εµναβ (5.3)

and couples two vector external sources with the pseudoscalar field.

Vertex Aa First resonance contribution to the AAA Green function comes as a
coupling between the axial-vector external source and the axial-vector resonance. The
relevant part of the Lagrangian (2.70) is

L(4)A = −FA√
2
〈Aµν(∂µaν − ∂νaµ)〉 . (5.4)

Contributions up to O(p6)

Finally, the contributions from Lagrangians up to O(p6). The AAA Green function
can consist only one or two axial resonance fields. Therefore, a set of all possible
contributions from tables 2.3-2.5 is easily ascertainable. Then, we can schematically
write the relevant Lagrangians in the form

LA = LA3 + LA8 + LA15 + LA16 , (5.5)

LAA = LAA3 + LAA4 , (5.6)
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where all the individual operators are listed in the table below.

i OAiµναβ i OAAiµναβ
3 〈Aµν{∇αhβσ, uσ}〉 3 〈{∇σAµν , Aασ}uβ〉
8 〈Aµν{fασ− , hβσ}〉 4 〈{∇βAµν , Aασ}uσ〉
15 〈Aµν{∇αfβσ− , uσ}〉
16 〈Aµν{∇σfασ− , uβ}〉

Table 5.1: Monomials contributing into AAA Green function

Now we can use the table 5.1 and rewrite the Lagrangians into its individual terms.
For simplicity, we will distinguish between all possible topological contributions. To
simplify the writing, we use the notation (D.2).

Vertex Aφφ First of all, let us turn our attention to the vertex consisted of one
axial-vector resonance and two pseudoscalar fields. The only possible contribution
could arise from the Lagrangian below:

LA3 '
4κA3
F 2
〈Aµν{∂α∂β∂σφ, ∂σφ}〉εµναβ (5.7)

=
4
√

2κA3
F 2

∑
(a,b,c)

dabcAµνa (∂α∂β∂σφb)(∂σφc)εµναβ . (5.8)

Given the structure of derivatives of the pseudoscalar field, coming from the term
∇αhβσ, the Feynman rule is trivially zero due to the product of the symmetric combi-
nation of 4-momenta, carrying Lorentz indices, and antisymmetric Levi-Civita tensor.
Hence, there are not any diagrams consisted of three axial-vector external sources cou-
pled together through one axial-vector resonance and two pseudoscalar fields.

Vertex Aaa The first nontrivial possibility is to consider all chiral building blocks
hµν , fµν− and uµ to be axial-vector external sources. Relevant Lagrangians are then

LA3 ' 4κA3 〈Aµν{∂α∂βaσ + ∂α∂σaβ, aσ}〉εµναβ (5.9)

= 2
√

2κA3
∑
(a,b,c)

dabcAµνa (∂α∂βaσb + ∂α∂σaβb )aσ,cεµναβ , (5.10)

LA8 ' −4κA8 〈Aµν{∂αaσ − ∂σaα, ∂βaσ + ∂σaβ}〉εµναβ (5.11)

= −2
√

2κA8
∑
(a,b,c)

dabcAµνa (∂αaσb − ∂σaαb )(∂βaσc + ∂σaβc )εµναβ , (5.12)

LA15 ' −4κA15〈Aµν{∂α∂βaσ − ∂α∂σaβ, aσ}〉εµναβ (5.13)

= −2
√

2κA15
∑
(a,b,c)

dabcAµνa (∂α∂βaσb − ∂α∂σa
β
b )aσ,cεµναβ , (5.14)

LA16 ' −4κA16〈Aµν{∂σ∂αaσ − ∂σ∂σaα, aβ}〉εµναβ (5.15)

= −2
√

2κA16
∑
(a,b,c)

dabcAµνa (∂σ∂
αaσb − ∂σ∂σaαb )aβc εµναβ . (5.16)

56



Vertex Aaφ This is a little complicated. The nontrivial contribution of the operator
OA3 is to consider hβσ to be an axial-vector sources and uσ as a pseudoscalar field. In
the operators OA8 ,OA15,OA16 we consider hβσ, uσ, u

β to be pseudoscalar fields.

LA3 ' −
2
√

2κA3
F

〈Aµν{∂α∂βaσ + ∂α∂σaβ, ∂σφ}〉εµναβ (5.17)

= −2
√

2κA3
F

∑
(a,b,c)

dabcAµνa (∂α∂βaσb + ∂α∂σaβb )∂σφcεµναβ , (5.18)

LA8 '
4
√

2κA8
F

〈Aµν{∂αaσ − ∂σaα, ∂β∂σφ}〉εµναβ (5.19)

=
4
√

2κA8
F

∑
(a,b,c)

dabcAµνa (∂αaσb − ∂σaαb )∂β∂σφcεµναβ , (5.20)

LA15 '
2
√

2κA15
F

〈Aµν{∂α∂βaσ − ∂α∂σaβ, ∂σφ}〉εµναβ (5.21)

=
2
√

2κA15
F

∑
(a,b,c)

dabcAµνa (∂α∂βaσb − ∂α∂σa
β
b )∂σφcεµναβ , (5.22)

LA16 '
2
√

2κA16
F

〈Aµν{∂σ∂αaσ − ∂σ∂σaα, ∂βφ}〉εµναβ (5.23)

=
2
√

2κA16
F

∑
(a,b,c)

dabcAµνa (∂σ∂
αaσb − ∂σ∂σaαb )∂βφcεµναβ . (5.24)

The additional possibility of considering hβσ to be a pseudoscalar field (and, of course,
uσ to be an axial-vector source) gives a zero contribution. It is obvious, given the
Lagrangian to be

LA3 ' −
4
√

2κA3
F

〈Aµν{∂α∂β∂σφ, aσ}〉εµναβ (5.25)

= −4
√

2κA3
F

∑
(a,b,c)

dabcAµνa (∂α∂β∂σφb)aσ,cεµναβ . (5.26)

Vertex AAa The third possibility is to consider building blocks uβ, uσ to be axial-
vector sources.

LAA3 ' 2κAA3 〈{∂σAµν , Aασ}aβ〉εµναβ (5.27)

= 2κAA3
∑
(a,b,c)

dabc(∂σA
µν
a )Aασb aβc εµναβ , (5.28)

LAA4 ' 2κAA4 〈{∂βAµν , Aασ}aσ〉εµναβ (5.29)

= 2κAA4
∑
(a,b,c)

dabc(∂βAµνa )Aασb aσ,cεµναβ . (5.30)

Vertex AAφ Finally, the last possibility is to consider building blocks uβ, uσ to be
pseudoscalar fields.

LAA3 ' −
√

2κAA3
F

〈{∂σAµν , Aασ}∂βφ〉εµναβ (5.31)

= −2κAA3
F

∑
(a,b,c)

dabc(∂σA
µν
a )Aασb (∂βφc)εµναβ , (5.32)
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LAA4 ' −
√

2κAA4
F

〈{∂βAµν , Aασ}∂σφ〉εµναβ (5.33)

= −2κAA4
F

∑
(a,b,c)

dabc(∂βAµνa )Aασb (∂σφc)εµναβ . (5.34)

5.2 Feynman rules

As in previous case, we also here present all Feynman rules of contributing vertices. To
be consistent with the previous chapter, we repeat two types of propagators that we
will use here, too.

Tensor propagator The kinetic and mass terms form the tensor propagator that in
the antisymmtric tensor formalis takes the form

i(∆R(p))abαβρσ =− iδab

M2
R(p2 −M2

R)

[
gαρgβσ(M2

R − p2) + gαρpβpσ − gασpβpρ
]

(5.35)

− (α↔ β) ,

where in this case we only consider R = A.

Pseudoscalar propagator The kinetic term comes from L(2)χ and pseudoscalars are
massless in the chiral limit. Then, the pseudoscalar propagator is

i(∆P (p))ab =
i

p2
δab . (5.36)

Figure 5.1: Tensor (left) and pseudoscalar (right) propagators.

Vertex WZW This vertex consists of two axial sources and a pseudoscalar. The
contributing Lagrangian is the anomaly Wess-Zumino-Witten Lagrangian (5.3). The
Feynman rule is due to Bose statistic

(V 1
WZW )abdµν =− i NC

24π2F
εµν(p)(q)d

abd , (5.37)

(V 2
WZW )abdµν = i

NC

24π2F
εµρ(p)(q)d

acd , (5.38)

(V 3
WZW )abdµν =− i NC

24π2F
ενρ(p)(q)d

bcd . (5.39)

Figure 5.2: Feynman diagram of Wess-Zumino-Witten aaφ vertex (all permutations).
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Vertex 1 This vertex consists of axial source and a pseudoscalar. The contributing
Lagrangian is (4.2). The Feynman rule is

(V1)
ad
µ = Fpµδ

ad . (5.40)

Vertex 2 This vertex consists of axial source and axial resonance. The contributing
Lagrangian is (4.5). The Feynman rule is

(V2)
ad
µαβ = −FA

2
(pαgµβ − pβgµα)δad . (5.41)

Figure 5.3: Feynman diagrams of vertices 1 (left) and 2 (right).

Vertex 3 This vertex consists of two axial sources and axial resonance. The con-
tributing Lagrangians are (5.10)-(5.16). The Feynman rules of all permutations are as
follows

(V 1
3 )abdµναβ =− 2i

√
2dabd

[
(p2 − q2)κA16εαβµν − (κA3 + κA15)(pνεαβµ(p) + qµεαβν(q)) (5.42)

+ κA16(pµεαβν(p) + qνεαβµ(q)) + 2κA8 (qµεαβν(p) + pνεαβµ(q))
]
,

(V 2
3 )acdµραβ =− 2i

√
2dacd

[
(p2 − r2)κA16εαβµρ − (κA3 + κA15)(pρεαβµ(p) + rµεαβρ(r)) (5.43)

+ κA16(pµεαβρ(p) + rρεαβµ(r)) + 2κA8 (rµεαβρ(p) + pρεαβµ(r))
]
,

(V 3
3 )bcdνραβ =− 2i

√
2dbcd

[
(q2 − r2)κA16εαβνρ − (κA3 + κA15)(qρεαβν(q) + rνεαβρ(r)) (5.44)

+ κA16(qνεαβρ(q) + rρεαβν(r)) + 2κA8 (rνεαβρ(q) + qρεαβν(r))
]
.

We can see that every one of the Feynamn rules are interchangeable either under
the permutations (µ, a, p) ↔ (ν, b, q), (µ, a, p) ↔ (ρ, c, r) or (ν, b, q) ↔ (ρ, c, r). This
feature is typical for AAA Green functions and we will be able to observe it in the next
vertices as well.

Figure 5.4: Feynman diagrams of vertex 3 (all permutations).

Vertex 4 This vertex consists of axial source, axial resonance and pseudoscalar. The
contributing Lagrangians are (5.18)-(5.24). The Feynman rules of all permutations are
as follows

(V 1
4 )adeµαβ =− 2

√
2dade

F

[
1

2
(κA15 + κA3 )(−p2 + q2 − r2)εαβµ(p) − p2κA16εαβµ(r) (5.45)

− κA8 (−p2 + q2 − r2)εαβµ(r) − (κA16pµ + 2κA8 rµ)εαβ(p)(q)

]
,
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(V 2
4 )adeµαβ =− 2

√
2dade

F

[
1

2
(κA3 + κA15)(−p2 − q2 + r2)εαβµ(p) − p2κA16εαβµ(q) (5.46)

− κA8 (−p2 − q2 + r2)εαβµ(q) + (κA16pµ + 2κA8 qµ)εαβ(p)(q)

]
,

(V 3
4 )bdeναβ =− 2

√
2dbde

F

[
1

2
(κA3 + κA15)(p

2 − q2 − r2)εαβν(q) − q2κA16εαβν(r) (5.47)

− κA8 (p2 − q2 − r2)εαβν(r) + (κA16qν + 2κA8 rν)εαβ(p)(q)

]
,

(V 4
4 )bdeναβ =− 2

√
2dbde

F

[
1

2
(κA3 + κA15)(−p2 − q2 + r2)εαβν(q) − q2κA16εαβν(p) (5.48)

− κA8 (−p2 − q2 + r2)εαβν(p) − (κ16qν + 2κA8 pν)εαβ(p)(q)

]
,

(V 5
4 )cdeραβ =− 2

√
2dcde

F

[
1

2
(κA3 + κA15)(p

2 − q2 − r2)εαβρ(r) − r2κA16εαβρ(q) (5.49)

− (κA16rρ + 2κA8 qρ)εαβ(p)(q) − κA8 (p2 − q2 − r2)εαβρ(q)
]
,

(V 6
4 )cdeραβ =− 2

√
2dcde

F

[
1

2
(κA3 + κA15)(−p2 + q2 − r2)εαβρ(r) − r2κA16εαβρ(p) (5.50)

− κA8 (−p2 + q2 − r2)εαβρ(p) + (κ16rρ + 2κA8 pρ)εαβ(p)(q)

]
.

Figure 5.5: Feynman diagrams of vertex 4 (all permutations).

Vertex 5 This vertex consists of axial source and two axial resonances. The con-
tributing Lagrangians are (5.28)-(5.30). The Feynman rules of all permutations are as
follows

(V 1
5 )adeµαβγδ =− κV V3 dade(qγεαβδµ − qδεαβγµ + rαεβγδµ − rβεαγδµ) (5.51)

− κV V4 dade(gγµεαβδ(q) − gδµεαβγ(q) + gαµεβγδ(r) − gβµεαγδ(r)) ,
(V 2

5 )bdeναβγδ =− κV V3 dbde(pγεαβδν − pδεαβγν + rαεβγδν − rβεαγδν) (5.52)

− κV V4 dbde(gγνεαβδ(p) − gδνεαβγ(p) + gανεβγδ(r) − gβνεαγδ(r)) ,
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(V 3
5 )cdeραβγδ =− κV V3 dcde(pγεαβδρ − pδεαβγρ + qαεβγδρ − qβεαγδρ) (5.53)

− κV V4 dcde(gγρεαβδ(p) − gδρεαβγ(p) + gαρεβγδ(q) − gβρεαγδ(q)) .

Figure 5.6: Feynman diagrams of vertex 5 (all permutations).

Vertex 6 This vertex consists of two axial resonances and a pseudoscalar. The con-
tributing Lagrangians are (5.32)-(5.34). The Feynman rules of all permutations are as
follows

(V 1
6 )defαβγδ =− iκV V3 ddef

F
(qγεαβδ(p) − qδεαβγ(p) + rαεβγδ(p) − rβεαγδ(p)) (5.54)

− iκV V4 ddef

F
(pγεαβδ(q) − pδεαβγ(q) + pαεβγδ(r) − pβεαγδ(r)) ,

(V 2
6 )defαβγδ =− iκV V3 ddef

F
(pγεαβδ(q) − pδεαβγ(q) + rαεβγδ(q) − rβεαγδ(q)) (5.55)

− iκV V4 ddef

F
(qγεαβδ(p) − qδεαβγ(p) + qαεβγδ(r) − qβεαγδ(r)) ,

(V 3
6 )defαβγδ =− iκV V3 ddef

F
(pγεαβδ(r) − pδεαβγ(r) + qαεβγδ(r) − qβεαγδ(r)) (5.56)

− iκV V4 ddef

F
(rγεαβδ(p) − rδεαβγ(p) + rαεβγδ(q) − rβεαγδ(q)) .

Figure 5.7: Feynman diagrams of vertex 6 (all permutations).

In order to simplify our calculations as much as possible, we now construct subdi-
agrams consisting of one vertex and one propagator. In the case of AAA correlator we
have the following subdiagrams.

Subdiagram 1 This subdiagram consists of vertex 1 (5.40) and pseudoscalar prop-
agator (5.36). The Feynman rule is

(S1)
cd
ρ = (V1)

ce
ρ i∆P (r)de (5.57)

=
iF

r2
rρδ

cd . (5.58)
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Subdiagram 2 This subdiagram consists of vertex 2 (5.41) and tensor propagator
(5.35). The Feynman rule is

(S2)
cd
ραβ = (V2)

ce
ργδi

(
∆A(r)

)de
γδαβ

(5.59)

=
iFA

r2 −M2
A

(rαgρβ − rβgρα)δac . (5.60)

Figure 5.8: Feynman diagrams of subdiagrams 1 (left) and 2 (right).

5.3 Feynman diagrams

Diagram χ This diagram consists of vertex WZW (5.37)-(5.39) and subdiagram 1
(5.58). The Feynman rules of all variants are as follows

(Π1
χ)abcµνρ = (V 1

WZW )abdµν (S1)
cd
ρ (5.61)

=
NC

24π2r2
εµν(p)(q)rρd

abc , (5.62)

(Π2
χ)abcµνρ = (V 2

WZW )acdµρ (S1)
bd
ν (5.63)

= − NC

24π2q2
εµρ(p)(q)qνd

abc , (5.64)

(Π3
χ)abcµνρ = (V 3

WZW )bcdνρ (S1)
ad
µ (5.65)

=
NC

24π2p2
ενρ(p)(q)pµd

abc . (5.66)

Figure 5.9: Feynman diagram χ (all permutations).

Diagram 1 This diagram consists of vertex 3 (5.42)-(5.44) and subdiagram 2 (5.60).
The Feynman rules of all permutations are as follows

(Π1
1)
abc
µνρ =(V 1

3 )abdµναβ(S2)
cd
ραβ (5.67)

=− 4
√

2FAd
abc

r2 −M2
A

[
(κA3 + 2κA8 + κA15)(ενρ(p)(q)qµ − pνεµρ(p)(q)) (5.68)

+ κA16(pµενρ(p)(q) − qνεµρ(p)(q)) + κA16(p
2 − q2)εµνρ(r)

]
,
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(Π2
1)
abc
µνρ =(V 2

3 )acdµραβ(S2)
bd
ναβ (5.69)

=− 4
√

2FAd
abc

q2 −M2
A

[
(κA3 + 2κA8 + κA15)(rµενρ(p)(q) + pρεµν(p)(q)) (5.70)

+ κA16(pµενρ(p)(q) + rρεµν(p)(q)) + κ16(r
2 − p2)εµνρ(q)

]
,

(Π3
1)
abc
µνρ =(V 3

3 )bcdνραβ(S2)
ad
µαβ (5.71)

=− 4
√

2FAd
abc

p2 −M2
A

[
(qρεµν(p)(q) − rνεµρ(p)(q))(κA15 + κA3 + 2κA8 ) (5.72)

− κA16(qνεµρ(p)(q) − rρεµν(p)(q))− κA16(r2 − q2)εµνρ(p)
]
.

Figure 5.10: Feynman diagram 1 (all permutations).

Diagram 2 This diagram consists of vertex 4 (5.45)-(5.50) and subdiagrams 1 (5.58)
and 2 (5.60). The Feynman rules of all permutations are as follows

(Π1
2)
abc
µνρ = (V 1

4 )adeµαβ(S1)
ce
ρ (S2(q))

bd
ναβ (5.73)

=
4
√

2FAd
abc

(q2 −M2
A)r2

rρεµν(p)(q)

[
−p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 ) + p2κA16

]
, (5.74)

(Π2
2)
abc
µνρ = (V 2

4 )adeµαβ(S1)
be
ν (S2(r))

cd
ραβ (5.75)

=
4
√

2FAd
abc

(r2 −M2
A)q2

qνεµρ(p)(q)

[
p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 )− p2κA16

]
, (5.76)

(Π3
2)
abc
µνρ = (V 3

4 )bdeναβ(S1)
ce
ρ (S2(p))

ad
µαβ (5.77)

=
4
√

2FAd
abc

(p2 −M2
A)r2

rρεµν(p)(q)

[
p2 − q2 − r2

2
(κA15 + κA3 + 2κA8 ) + q2κA16

]
, (5.78)

(Π4
2)
abc
µνρ = (V 4

4 )bdeναβ(S1)
ae
µ (S2(r))

cd
ραβ (5.79)

=
4
√

2FAd
abc

(r2 −M2
A)p2

pµενρ(p)(q)

[
−p2 − q2 + r2

2
(κA15 + κA3 + 2κA8 ) + q2κA16

]
, (5.80)

(Π5
2)
abc
µνρ = (V 5

4 )cdeραβ(S1)
be
ν (S2(p))

ad
µαβ (5.81)

=
4
√

2FAd
abc

(p2 −M2
A)q2

qνεµρ(p)(q)

[
−p2 + q2 + r2

2
(κA15 + κA3 + 2κA8 )− r2κA16

]
, (5.82)

(Π6
2)
abc
µνρ = (V 6

4 )cdeραβ(S1)
ae
µ (S2(q))

bd
ναβ (5.83)

=
4
√

2FAd
abc

(q2 −M2
A)p2

pµενρ(p)(q)

[
−p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 ) + r2κA16

]
. (5.84)
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Figure 5.11: Feynman diagram 2 (all permutations).

Diagram 3 This diagram consists of vertex 5 (5.51)-(5.53) and two subdiagrams 2
(5.60). The Feynman rules of all permutations are as follows

(Π1
3)
abc
µνρ = (V 1

5 )adeµαβγδ(S2)
bd
ναβ(S2)

ce
ργδ (5.85)

=
4F 2

Aκ
V V
3 dabc

(q2 −M2
A)(M2

A − r2)
× (5.86)

×
[
−p2 + q2 + r2

2
(εµνρ(r) − εµνρ(q))− rνεµρ(p)(q) + qρεµν(p)(q)

]
,

(Π2
3)
abc
µνρ = (V 2

5 )bdeναβγδ(S2)
ad
µαβ(S2)

ce
ργδ (5.87)

=
4F 2

Aκ
V V
3 dabc

(p2 −M2
A)(r2 −M2

A)
× (5.88)

×
[
p2 − q2 + r2

2
(εµνρ(r) − εµνρ(p))− rµενρ(p)(q) − pρεµν(p)(q)

]
,

(Π3
3)
abc
µνρ = (V 3

5 )cdeραβγδ(S2)
ad
µαβ(S2)

be
νγδ (5.89)

=
4F 2

Aκ
V V
3 dabc

(p2 −M2
A)(q2 −M2

A)
× (5.90)

×
[
p2 + q2 − r2

2
(εµνρ(p) − εµνρ(q))− qµενρ(p)(q) + pνεµρ(p)(q)

]
,

Figure 5.12: Feynman diagram 3 (all permutations).
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Diagram 4 This diagram consists of vertex 6 (5.54)-(5.56), subdiagram 1 (5.58) and
two subdiagrams 2 (5.58). The Feynman rules of all permutations are as follows

(Π1
4)
abc
µνρ = (V 1

6 )defαβγδ(S1)
af
µ (S2)

bd
ναβ(S2)

ce
ργδ (5.91)

=
4F 2

Aκ
V V
3 dabc

p2(q2 −M2
A)(r2 −M2

A)
(p2 − q2 − r2)pµενρ(p)(q) , (5.92)

(Π2
4)
abc
µνρ = (V 2

6 )defαβγδ(S1)
bf
ν (S2)

ad
µαβ(S2)

ce
ργδ (5.93)

=
4F 2

Aκ
V V
3 dabc

(p2 −M2
A)q2(r2 −M2

A)
(p2 − q2 + r2)qνεµρ(p)(q) , (5.94)

(Π3
4)
abc
µνρ = (V 3

6 )defαβγδ(S1)
cf
ρ (S2)

ad
µαβ(S2)

be
νγδ (5.95)

=
4F 2

Aκ
V V
3 dabc

(p2 −M2
A)(q2 −M2

A)r2
(−p2 − q2 + r2)rρεµν(p)(q) . (5.96)

Figure 5.13: Feynman diagram 4 (all permutations).

Taking all contributions together, we have finally calculated all possible Feynman
diagrams that contribute to (5.1) in the antisymmetric tensor formalism.

5.4 Ward identities

Having the AAA Green function calculated, we can also study its property in the sense
of Ward identities. Since we have an anomalous correlator consisted of three axial-
vector currents, we can expect not to have these currents conserved on the quantum
level. To verify that, let us proceed in the following way. We can easily find out the
results below:

pµ(Π1
χ)abcµνρ = 0 , (5.97)

pµ(Π2
χ)abcµνρ = 0 , (5.98)

pµ(Π3
χ)abcµνρ =

NC

24π2
ενρ(p)(q)d

abc , (5.99)

pµ(Π1
1)
abc
µνρ =

4
√

2FAd
abc

r2 −M2
A

[
p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 )− q2κA16

]
ενρ(p)(q) , (5.100)

pµ(Π2
1)
abc
µνρ =

4
√

2FAd
abc

q2 −M2
A

[
p2 − q2 + r2

2
(κA15 + κA3 + 2κA8 )− r2κA16

]
ενρ(p)(q) , (5.101)

pµ(Π3
1)
abc
µνρ = 0 , (5.102)

pµ(Π1
2)
abc
µνρ = 0 , (5.103)

pµ(Π2
2)
abc
µνρ = 0 , (5.104)

pµ(Π3
2)
abc
µνρ = 0 , (5.105)
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pµ(Π4
2)
abc
µνρ =

4
√

2FAd
abc

r2 −M2
A

[
−p2 − q2 + r2

2
(κA15 + κA3 + 2κA8 ) + q2κA16

]
ενρ(p)(q) , (5.106)

pµ(Π5
2)
abc
µνρ = 0 , (5.107)

pµ(Π6
2)
abc
µνρ =

4
√

2FAd
abc

q2 −M2
A

[
−p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 ) + r2κA16

]
ενρ(p)(q) , (5.108)

pµ(Π1
3)
abc
µνρ = −

4F 2
Aκ

V V
3 dabc

(q2 −M2
A)(r2 −M2

A)
(p2 − q2 − r2)ενρ(p)(q) , (5.109)

pµ(Π2
3)
abc
µνρ = 0 , (5.110)

pµ(Π3
3)
abc
µνρ = 0 , (5.111)

pµ(Π1
4)
abc
µνρ =

4F 2
Aκ

V V
3 dabc

(q2 −M2
A)(r2 −M2

A)
(p2 − q2 − r2)ενρ(p)(q) , (5.112)

pµ(Π2
4)
abc
µνρ = 0 , (5.113)

pµ(Π3
4)
abc
µνρ = 0 . (5.114)

We see that the nonzero expressions cancel each other out,

pµ(Π1
1)
abc
µνρ + pµ(Π4

2)
abc
µνρ = 0 , (5.115)

pµ(Π2
1)
abc
µνρ + pµ(Π6

2)
abc
µνρ = 0 , (5.116)

pµ(Π1
3)
abc
µνρ + pµ(Π1

4)
abc
µνρ = 0 , (5.117)

except for the term that arises from the anomalous part of the contributions. Similarly,
we have

qν(Π1
χ)abcµνρ = 0 , (5.118)

qν(Π2
χ)abcµνρ = − NC

24π2
εµρ(p)(q)d

abc , (5.119)

qν(Π3
χ)abcµνρ = 0 , (5.120)

qν(Π1
1)
abc
µνρ =

4
√

2FAd
abc

r2 −M2
A

[
−p2 − q2 + r2

2
(κA15 + κA3 + 2κA8 ) + p2κ16

]
εµρ(p)(q) , (5.121)

qν(Π2
1)
abc
µνρ = 0 , (5.122)

qν(Π3
1)
abc
µνρ =

4
√

2FAd
abc

p2 −M2
A

[
p2 − q2 − r2

2
(κA15 + κA3 + 2κA8 ) + r2κA16

]
εµρ(p)(q) , (5.123)

qν(Π1
2)
abc
µνρ = 0 , (5.124)

qν(Π2
2)
abc
µνρ =

4
√

2FAd
abc

r2 −M2
A

[
p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 )− p2κA16

]
εµρ(p)(q) , (5.125)

qν(Π3
2)
abc
µνρ = 0 , (5.126)

qν(Π4
2)
abc
µνρ = 0 , (5.127)

qν(Π5
2)
abc
µνρ =

4
√

2FAd
abc

p2 −M2
A

[
−p2 + q2 + r2

2
(κA15 + κA3 + 2κA8 )− r2κA16

]
εµρ(p)(q) , (5.128)

qν(Π6
2)
abc
µνρ = 0 , (5.129)

qν(Π1
3)
abc
µνρ = 0 , (5.130)

qν(Π2
3)
abc
µνρ =

4F 2
Aκ

V V
3 dabc

(p2 −M2
A)(r2 −M2

A)
(−p2 + q2 − r2)εµρ(p)(q) , (5.131)
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qν(Π3
3)
abc
µνρ = 0 , (5.132)

qν(Π1
4)
abc
µνρ = 0 , (5.133)

qν(Π2
4)
abc
µνρ =

4F 2
Aκ

V V
3 dabc

(p2 −M2
A)(r2 −M2

A)
(p2 − q2 + r2)εµρ(p)(q) , (5.134)

qν(Π3
4)
abc
µνρ = 0 , (5.135)

where we can also notice that a lot of non-zero contributions compensate each other,

qν(Π1
1)
abc
µνρ + qν(Π2

2)
abc
µνρ = 0 , (5.136)

qν(Π3
1)
abc
µνρ + qν(Π5

2)
abc
µνρ = 0 , (5.137)

qν(Π2
3)
abc
µνρ + qν(Π2

4)
abc
µνρ = 0 , (5.138)

and only the anomalous term will now vanish. Thirdly, the last part of the Ward
identites lead to the following results.

rρ(Π1
χ)abcµνρ =

NC

24π2
εµν(p)(q)d

abc , (5.139)

rρ(Π2
χ)abcµνρ = 0 , (5.140)

rρ(Π3
χ)abcµνρ = 0 , (5.141)

rρ(Π1
1)
abc
µνρ = 0 , (5.142)

rρ(Π2
1)
abc
µνρ =

4
√

2FAd
abc

q2 −M2
A

[
p2 − q2 + r2

2
(κA15 + κA3 + 2κA8 )− p2κA16

]
εµν(p)(q) , (5.143)

rρ(Π3
1)
abc
µνρ =

4
√

2FAd
abc

p2 −M2
A

[
−p2 + q2 + r2

2
(κA15 + κA3 + 2κA8 )− q2κA16

]
εµν(p)(q) , (5.144)

rρ(Π1
2)
abc
µνρ =

4
√

2FAd
abc

q2 −M2
A

[
−p2 + q2 − r2

2
(κA15 + κA3 + 2κA8 ) + p2κA16

]
εµν(p)(q) , (5.145)

rρ(Π2
2)
abc
µνρ = 0 , (5.146)

rρ(Π3
2)
abc
µνρ =

4
√

2FAd
abc

p2 −M2
A

[
p2 − q2 − r2

2
(κA15 + κA3 + 2κA8 ) + q2κA16

]
εµν(p)(q) , (5.147)

rρ(Π4
2)
abc
µνρ = 0 , (5.148)

rρ(Π5
2)
abc
µνρ = 0 , (5.149)

rρ(Π6
2)
abc
µνρ = 0 , (5.150)

rρ(Π1
3)
abc
µνρ = 0 , (5.151)

rρ(Π2
3)
abc
µνρ = 0 , (5.152)

rρ(Π3
3)
abc
µνρ =

4F 2
Aκ

V V
3 dabc

(p2 −M2
A)(q2 −M2

A)
(p2 + q2 − r2)εµν(p)(q) , (5.153)

rρ(Π1
4)
abc
µνρ = 0 , (5.154)

rρ(Π2
4)
abc
µνρ = 0 , (5.155)

rρ(Π3
4)
abc
µνρ =

4F 2
Aκ

V V
3 dabc

(p2 −M2
A)(q2 −M2

A)
(−p2 − q2 + r2)εµν(p)(q) . (5.156)

Only the anomalous term will not be eliminated here also,

rρ(Π2
1)
abc
µνρ + rρ(Π1

2)
abc
µνρ = 0 , (5.157)

rρ(Π3
1)
abc
µνρ + rρ(Π3

2)
abc
µνρ = 0 , (5.158)

rρ(Π3
3)
abc
µνρ + rρ(Π3

4)
abc
µνρ = 0 . (5.159)
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Therefore, we have determined that the Ward identites for the AAA Green function
take the form

pµ
(
ΠAAA(p, q; r)

)abc
µνρ

=
NC

24π2
ενρ(p)(q)d

abc , (5.160)

qν
(
ΠAAA(p, q; r)

)abc
µνρ

=− NC

24π2
εµρ(p)(q)d

abc , (5.161)

rρ
(
ΠAAA(p, q; r)

)
µνρ

=
NC

24π2
εµν(p)(q)d

abc , (5.162)

that coincide with the non-conservations of the axial-vector currents on the quantum
level.

5.5 Phenomenology

A phenomenology study regarding the AAA Green function could not be done due to
the lack of experimentally relevant data for our purpose. We will certainly return to
this point in future studies and complete the task.
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6. V V PP Green function

Before we will define all required ingredients, let us stress properly enough that in this
and the next chapter we do not present any full calculations of the four-point Green
functions. Although we have obtained the results of the V V PP and V V V V correlators
both in the vector and the antisymmetric tensor formalims, the final expressions are
very complicated due to the complex tensor structure that it is not appropriate to show
them here in their full lenght. For this reason, we present only the set of all contributing
Feynman diagrams for Lagrangians of various chiral orders. The study of the results
in detailed will be dealt with in our future papers.

The standard definition of the V V PP correlator is(
ΠV V PP (p, q, r; s)

)abcd
µν

=
〈
0
∣∣T[Ṽ a

µ (p)Ṽ b
ν (q)P̃ c(r)P̃ d(0)

]∣∣0〉 (6.1)

=

∫
d4x d4y d4z ei(px+qy+rz)

〈
0
∣∣T[V a

µ (x)V b
ν (y)P c(z)P d(0)

]∣∣0〉 . (6.2)

As we have mentioned several times, the topology of the four-point Green functions
in general is complicated. Therefore, we are required to take the higher expansions of
the chiral operators into account. Specifically, we need the following operators that
couple vector external sources with pseudoscalars,

uµ =−
√

2

F
∂µφ−

i
√

2

F
[φ, vµ] , (6.3)

hµν =−
√

2

F
∂µ∂νφ−

i
√

2

F
[∂µφ, vν ]− i

√
2

F
[φ, ∂µvν ] + (µ↔ ν) , (6.4)

fµν− =
i
√

2

F
[φ, ∂µvν − ∂νvµ] , (6.5)

fµν+ = 2(∂µvν − ∂νvµ)− 2i[vµ, vν ] +
1

F 2
φ(∂µvν − ∂νvµ)φ (6.6)

− 1

2F 2
{φ2, ∂µvν − ∂νvµ} ,

and the building blocks that couple pseudoscalar external sources with the pseudoscalars,

χ− = 4iB0p , (6.7)

χ+ =
2
√

2B0

F
{φ, p} . (6.8)

In this case, we are also required to take the chiral connection and the covariant deriva-
tive in the forms

Γµ = −ivµ , (6.9)

∇µX = ∂µX − i[vµ, X] . (6.10)

To give a detailed description of the construction of the contributing Feynmand
diagrams, it is useful to present again the propagators that are needed. Except for the
tensor and pseudoscalar propagators, we will also use pseudoscalar and scalar resonance
propagators.

Pseudoscalar resonance propagator The kinetic and mass terms form the pseu-
doscalar resonance propagator.

i(∆P (p,MP ))ab =
i

p2 −M2
P

δab . (6.11)
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Scalar resonance propagator Similarly as in the previous case, the scalar resonance
propagator is formed by the kinetic and mass terms.

i(∆S(p,MS))ab =
i

p2 −M2
S

δab . (6.12)

Figure 6.1: Pseudoscalar (left) and scalar (right) resonance propagators.

Both previous propagators represent resonances that do not carry any Lorentz in-
dices, therefore they do not dependent on the used formalism. However, since we
calculate the V V PP and V V V V Green functions also in the vector formalism, we
need to introduce the appropriate propagator for the vector resonances in that case,
similarly as we have done in the case of the antisymmetric tensor formalism.

Vector propagator Vector propagator is formed by the kinetic and mass terms [7]:

i(∆R(p,MR))abµν = − i

p2 −M2
R

(
gµν −

pµpν
M2
R

)
δab , (6.13)

where R stands for the resonance. In our case, we consider only the vector resonances,
i.e. R = V .

Figure 6.2: Vector propagator.

Similarly as in the previous chapters, it is very useful to define subdiagrams to keep
our calculations as simple as possible. As an analogical case to subdiagram 3 (4.52)
in the antisymmetric tensor formalism, we can introduce the subdiagram in the vector
formalism.

Subdiagram 3’ This subdiagram consists of vertex (D.77) and vector propagator
(6.13). The Feynman rule is

(S′3)
ab
µα = − fV

p2 −M2
V

(p2gµα − pµpα)δab . (6.14)

Other subdiagrams consist of pseudoscalar external sources coupled either to pseu-
doscalar field or pseudoscalar resonance.

Subdiagram 4 This subdiagram consists of vertex (D.32) and pseudoscalar propa-
gator (4.34). The Feynman rule is

(S4)
ab = −FB0

p2
δab . (6.15)
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Subdiagram 5 This subdiagram consists of vertex (D.133) and pseudoscalar reso-
nance propagator (6.11). The Feynman rule is

(S5)
ab =

2
√

2B0dm
p2 −M2

P

δab . (6.16)

Figure 6.3: Subdiagram 3’ (left), 4 (middle) and 5 (right).

Before we advance to construct the Feynman diagrams, let us mention that we do
not consider any multiple permutations of the particular diagrams shown as examples.
In other words, the Feynman diagrams presented in this and next chapters are alway
one of the complete specific set of the Feynman diagrams that differ from one another
typically by interchanges vaµ ↔ vbν and pc ↔ pd in the case of V V PP Green function

and vaµ ↔ vbν ↔ vcρ ↔ vdσ in the case of V V V V Green function. The simultaneous
interchanges of corresponding 4-momenta is implicitly assumed. More specifically, one
topology of the Feynman diagrams then constitutes a complete set of typically six or
twelve particular diagrams.

Also, for simplicity, we do not show the Feynman diagrams with explicitly high-
lighted subdiagrams and propagators included in the Feynman diagrams. Not only
that it would lead to more complicated pictures but it is unnecessary for our case here.
Instead, we only indicate what resonance or pseudoscalar contributes in that channel.
In future studies, where we will work with detailed study of these correlators, we will
pay more attention to technicalities as we did in Chapters 4 and 5.

6.1 Non-resonance contribution up to O(p2)

Considering the lowest possible contribution into V V PP Green function, we have to
start with the chiral Lagrangian up to O(p2), i.e. with the Lagrangian (2.16):

L(2)χ =
F 2

4
〈uµuµ + χ+〉 . (6.17)

The lowest contribution consists only of two different topologies of the Feynman
diagrams, one with two possible permutations.

Figure 6.4: Feynman diagrams 1 and 2 in the χPT up to O(p2).
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6.2 Vector formalism up to O(p6)

Here we consider all possible diagrams given by the resonance Lagrangian in the vector
formalism up to O(p6). The relevant part of the Lagrangians (2.60)-(2.61) can be
written in the form

L =− fV

2
√

2
〈V̂µνfµν+ 〉 −

fA

2
√

2
〈Âµνfµν− 〉 −

igV

2
√

2
〈V̂µν [uµ, uν ]〉 (6.18)

+ iαV 〈V̂µ[uν , f
µν
− ]〉+ βV 〈V̂µ[uµ, χ−]〉+ hV 〈V̂ µ{uν , fαβ+ }〉εµναβ .

Note that we can also consider a term that consists of an axial-vector resonance. This
may seem odd but remember we use a higher expansion (6.5) of the fµν− operator in
order to avoid a presence of the axial-vector external source. Then, the axial-vector
resonance is fully coupled to vector sources and pseudoscalars.

Then, the contributing Feynman diagrams are the following.

Figure 6.5: Feynman diagrams 1 (left), 2 (middle) and 3 (right) in the vector formalism
up to O(p6).

Figure 6.6: Feynman diagrams 4 (left), 5 (middle) and 6 (right) in the vector formalism
up to O(p6).

Figure 6.7: Feynman diagrams 7 (left) and 8 (right) in the vector formalism up to
O(p6).
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Figure 6.8: Feynman diagrams 9 (left), 10 (middle) and 11 (right) in the vector for-
malism up to O(p6).

6.3 Antisymmetric tensor formalism up to O(p4)

The lowest resonance Lagrangian (2.68) in the antisymmetric tensor formalism up to
O(p4) has the following relevant part:

L(4) =
FV

2
√

2
〈Vµνfµν+ 〉+

iGV

2
√

2
〈Vµν [uµ, uν ]〉+

FA

2
√

2
〈Aµνfµν− 〉 . (6.19)

The contributing Feynman diagrams are the following.

Figure 6.9: Feynman diagrams 1 (left) and 2 (right) in the antisymmetric tensor for-
malism up to O(p4).

Figure 6.10: Feynman diagrams 3 (left) and 4 (right) in the antisymmetric tensor
formalism up to O(p4).
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Figure 6.11: Feynman diagram 5 in the antisymmetric tensor formalism up to O(p4).

6.4 Antisymmetric tensor formalism up to O(p6)

Finally, the resonance Lagrangian in the tensor formalism up to O(p6) has the relevant
part consisted of two Lagrangians, one of the order p4 and second of the order p6, i.e.

L(4) =
FV

2
√

2
〈Vµνfµν+ 〉+ idm〈Pχ−〉 , (6.20)

L(6) = LV12 + LV14 + LV16 + LV17 + LP5 + LV V2 + LV V3 + LSV2 + LPV3 + LV V P , (6.21)

where the contributing operators of the order p6 are shown in the table below.

i OV,Pi µναβ i OV V,SV,PVi µναβ i OV V Pi µναβ

5 〈P{fµν+ , fαβ+ }〉 2 i〈{V µν , V αβ}χ−〉 - 〈V µνV αβP 〉
12 〈V µν{fαρ+ , hβσ}〉gρσ 2 i〈[V µν ,∇αS]uβ〉
14 i〈V µν{fαβ+ , χ−}〉 3 〈{V µν , P}fαβ+ 〉
16 〈V µν{∇αfβσ+ , uσ}〉 3 〈{∇σV µν , V ασ}uβ〉
17 〈V µν{∇σfασ+ , uβ}〉

Table 6.1: Monomials contributing into V V PP Green function

The contributing Feynman diagrams are the following.

Figure 6.12: Feynman diagrams 1 (left), 2 (middle) and 3 (right) in the antisymmetric
tensor formalism up to O(p6).

Figure 6.13: Feynman diagrams 4 (left), 5 (middle) and 6 (right) in the antisymmetric
tensor formalism up to O(p6).
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Figure 6.14: Feynman diagrams 7 (left), 8 (middle) and 9 (right) in the antisymmetric
tensor formalism up to O(p6).

Figure 6.15: Feynman diagrams 10 (left), 11 (middle) and 12 (right) in the antisym-
metric tensor formalism up to O(p6).

Figure 6.16: Feynman diagrams 13 (left) and 14 (right) in the antisymmetric tensor
formalism up to O(p6).

Figure 6.17: Feynman diagram 15 in the antisymmetric tensor formalism up to O(p4).
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Figure 6.18: Feynman diagrams 16 (left) and 17 (right) in the antisymmetric tensor
formalism up to O(p6).

A summary of this chapter is stated in the table below.

contribution V V PP

χPT O(p2) 2
RχT O(p4) (tensor form.) 5
RχT O(p6) (tensor form.) 17
RχT O(p6) (vector. form.) 11

Table 6.2: A number of contributing Feynman diagrams into V V PP Green functions.

6.5 Phenomenology

Just for a motivation of the study of the V V PP Green functions, we can introduce the
Compton-like scattering of Goldstone bosons within the RχT.

Compton-like scattering of the Goldstone bosons

The on-shell matrix element of the Compton-like process in the chiral limit can be
written in the form [8](

A(p, q, r; s)
)abcd
µν

=
〈
φc(r)

∣∣T[Ṽ a
µ (p)Ṽ b

ν (0)
]∣∣φd(s)〉 (6.22)

= − lim
r2,s2→0

r2s2

B2
0F

2

〈
0
∣∣T[Ṽ a

µ (p)Ṽ b
ν (q)P̃ c(r)P̃ d(0)

]∣∣0〉 , (6.23)

i.e. (
A(p, q, r; s)

)abcd
µν

= − lim
r2,s2→0

r2s2

B2
0F

2

(
ΠV V PP (p, q, r; s)

)abcd
µν

. (6.24)

The pseudoscalar density satisfies

〈0|P a(0)|φb(s)〉 = B0Fδ
ab (6.25)

and |φa(p)〉 stands for the Goldstone boson state. Then, the amplitude of the Compton-
like scattering of the Goldstone bosons can be written in the form [8]

iMabcd
κλ (p, q, r, ; s) = lim

r2,s2→0
ε∗µ(p, κ)εν(q, λ)

(
A(p, q, r; s)

)abcd
µν

. (6.26)

76



Then, by calculating (6.1), one can study this important phenomenological example.
However, the total number of all contributing Feynman diagrams to (6.1) is reduced
due to the physical nature of the process - we are interested in the diagrams that consist
of the external legs of the pseudoscalar bosons. The number of all relevant diagrams is
not that high and detailed analysis can be found in [8].
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7. V V V V Green function

The standard definition of the V V V V correlator is(
ΠV V V V (p, q, r; s)

)abcd
µνρσ

=
〈
0
∣∣T[Ṽ a

µ (p)Ṽ b
ν (q)Ṽ c

ρ (r)Ṽ d
σ (0)

]∣∣0〉 (7.1)

=

∫
d4x d4y d4z ei(px+qy+rz)

〈
0
∣∣T[V a

µ (x)V b
ν (y)V c

ρ (z)V d
σ (0)

]∣∣0〉 . (7.2)

Similarly as in the previous chapter, the following chiral operators contribute to this
correlator:

uµ =−
√

2

F
∂µφ−

i
√

2

F
[φ, vµ] , (7.3)

hµν =−
√

2

F
∂µ∂νφ−

i
√

2

F
[∂µφ, vν ]− i

√
2

F
[φ, ∂µvν ] + (µ↔ ν) , (7.4)

fµν+ = 2(∂µvν − ∂νvµ)− 2i[vµ, vν ] , (7.5)

whilst the building blocks, that couple scalar and pseudoscalar external sources with
the pseudoscalars, do not,

χ± = 0 . (7.6)

Also in this case, it is necessary to take the chiral connection and the covariant derivative
as

Γµ = −ivµ , (7.7)

∇µX = ∂µX − i[vµ, X] . (7.8)

All required propagators and subdiagrams have been defined in the previous chap-
ter. Now we can finally introduce all contributing Feynman diagrams.

7.1 Non-resonance contribution up to O(p4)

The lowest non-resonance contribution into the V V V V Green function comes from
the anomalous Wess-Zumino-Witten vertex (D.73). The only contributing diagram is
shown below.

Figure 7.1: Diagram 1 in the χPT up to O(p4).
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7.2 Vector formalism up to O(p6)

The relevant part of the resonance Lagrangian up to O(p6) in the vector formalism is

LV = − fV

2
√

2
〈V̂µνfµν+ 〉+ hV 〈V̂ µ{uν , fαβ+ }〉εµναβ . (7.9)

The contributing Feynman diagrams are the following.

Figure 7.2: Diagrams 1 (left) and 2 (right) in the vector formalism up to O(p6).

Figure 7.3: Diagrams 3 (left) and 4 (right) in the vector formalism up to O(p6).

7.3 Antisymmetric tensor formalism up to O(p4)

The only relevant part of the Lagrangian (2.68) in the antisymmetric tensor formalism
is

L(4) =
FV

2
√

2
〈Vµνfµν+ 〉 . (7.10)

Taking the Lagrangian above into account, we are able to construct only one Feynman
diagram with the same type of contact vertices, connected through vector resonance
propagator. The contributing Feynman diagram is the following.

Figure 7.4: Diagram 1 in the antisymmetric tensor formalism up to O(p4).
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7.4 Antisymmetric tensor formalism up to O(p6)

The resonance Lagrangian in the tensor formalism up to O(p6) has the relevant part
consisted of two Lagrangians, one of the order p4 and second of the order p6. More
specifically,

L(4) =
FV

2
√

2
〈Vµνfµν+ 〉 , (7.11)

L(6) = LV12 + LV16 + LV17 + LP5 + LV V3 + LV V4 + LV A5 + LPV3 + LV V P , (7.12)

where the contributing operators of the order p6 are shown in the table below.

i OP,Vi µναβ i OPV,V V,V Ai µναβ i OV V Pi µναβ

5 〈P{fµν+ , fαβ+ }〉 3 〈{V µν , P}fαβ+ 〉 - 〈V µνV αβP 〉
12 〈V µν{fαρ+ , hβσ}〉gρσ 3 〈{∇σV µν , V ασ}uβ〉
16 〈V µν{∇αfβσ+ , uσ}〉 4 〈{∇βV µν , V ασ}uσ〉
17 〈V µν{∇σfασ+ , uβ}〉 5 〈{V µν , Aαρ}fβσ+ 〉gρσ

Table 7.1: Monomials contributing into V V V V Green function

The Lagrangian above allow us to construct the following set of Feynman diagrams.

Figure 7.5: Diagram 1 (left), 2 (middle) and 3 (right) in the antisymmetric tensor
formalism up to O(p6).

Figure 7.6: Diagram 4 (left), 5 (middle) and 6 (right) in the antisymmetric tensor
formalism up to O(p6).
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Figure 7.7: Diagram 7 (left), 8 (middle) and 9 (right) in the antisymmetric tensor
formalism up to O(p6).

Figure 7.8: Diagram 10 (left), 11 (middle) and 12 (right) in the antisymmetric tensor
formalism up to O(p6).

To summarize the construction of all the contributing Feynman diagrams, let us
mention right away the number of diagrams that are need to get a complete contribution
for different chiral orders.

contribution V V V V

χPT O(p4) 1
RχT O(p4) (tensor form.) 1
RχT O(p6) (tensor form.) 12
RχT O(p6) (vector. form.) 4

Table 7.2: A number of contributing Feynman diagrams into V V V V Green functions.

7.5 Phenomenology

Although unduly complicated, the V V V V correlator is a interesting object to study.
For instance, it represents hadronic contribution into the light-by-light scattering [30],
[31], [32], [33], [34]. This calculation, regarding our Lagrangian up to O(p6) in the odd-
intrinsic parity sector, has not yet been provided (at least to our knowledge). We plan
to return to this point later on. Here we only present a basic note on the anomalous
magnetic moment itself. In what follows we inherit the same notation as in [34].
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Anomalous magnetic moment

The muon anomalous magnetic moment,

a =
g − 2

2
, (7.13)

belongs to the most precisely measured physical quantities in particle physics. Recently,
it was was measured with a remarkable accuracy by the E821 experiment at Brookhaven
National Laboratory with the current rescaled result [35]

a = (116 592 089± 63)× 10−11 . (7.14)

However, there has been found a significant and still persisting discrepancy between the
theoretical prediction and the measured data. One of the greatest source of the theoret-
ical uncertainty stems from the so called hadronic light-by-light (HLbL) contribution.
This process is depicted in Fig. 7.9 below.

X

μ

q

kkk 21 3

p
1

p2

H

Figure 7.9: Hadronic light–by–light scattering contribution into anomalous magnetic
moment (taken from [34]).

The muon anomaly can then be extracted as follows [34]

aHLbL = −i e6

48mµ

∫
d4k1
(2π)4

∫
d4k2
(2π)4

1

k21k
2
2k

2
3

[
∂

∂qµ
Πµνρσ(q, k1, k3, k2)

]
q=0

× (7.15)

× Tr

{
(/p+mµ)[γµ, γλ](/p+mµ)γν

1

/p+ /k2 −mµ
γρ

1

/p− /k1 −mµ
γσ
}
.

Since this is not an easy calculation (the number of the independent contributing tensor
structures is 138 up to O(p6)), we will finish our discussion here. Detailed study can
be found for example in [33], [34]. However, we plan to return to this point in future
studies with our calculations of the tensor Πµνρσ(q, k1, k3, k2), i.e. (7.1) in our notation.
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Conclusion

To conclude this thesis, let us remember the topic we dealt with and summarize the
main results we have obtained in our work.

In the first two chapters we have studied the basics of quantum chromodynamics
and introduced the description of the QCD at low energies, the chiral perturbation
theory and resonance chiral theory.

In the third chapter we have dealt with the general properties of the Green functions
of currents and presented some familiar results that have been already obtained.

The fourth chapter contains our original calculation of the V V A Green function.
Extracting the formfactors from its result, we were succesful in obtaining some con-
straints for the coupling constants. We have also studied its phenomenology on the
decay f1(1285) → ργ from which we have recovered similar value for one of the cou-
pling constants.

The fifth chapter contains our original calculation of AAA correlator. Since the
experimental data are not readily available for our study, we did not deal with the
phenomenological predictions.

After finishing studies of the V V A and AAA Green functions, we have devoted our
time to study the four-point Green functions V V PP and V V V V in Chapters 6 and
7. As we have mentioned, the calculations were carried out both in the antisymmetric
tensor and vector field formalism, up to various chiral orders of the Lagrangians. To
accomplish this difficult task we had to extensively use our algorithm Mercury (see
Appendix E). Although we were successful and calculated all possible diagrams in the
antisymmetric tensor and vector formalisms with Lagrangians up to O(p6), we had to
make a decision regarding the publication of the results. Since these correlators, espe-
cially V V V V , have a very difficult tensor structure, the results are inconveniently long
for the purpose of this thesis. In addition, we had to deal with dozens of different types
of contributing Feynman diagrams, not to mention the permutations of the indices that
would take the total number of diagrams even higher. For this reason, we have only
mentioned basic properties of these correlators and introduced all contributing Feyn-
man diagrams. Also, we have briefly mentioned the phenomenological studies of these
correlator that we will devote our time to in the future.

To illustrate the difficulty of the previous task, let us mention that all calculations
of the four-point Green functions took several hours just to simplify the results slightly
and extract individual formfactors2.

To make the description of the topic clear, we have also included several appen-
dices. Some of them, D and E to be more specific, contain original results that have
been obtained in order to make our calculations as understandable as possible. For this
reason, we have wrote an algorithm in FeynCalc that allows us to carry out difficult
calculations in a very simple way. The source code and the files are also attached to
the thesis.

Future studies

As we have mentioned previously, not only will we want to carry on in the systematic
study of the odd-intrinsic parity sector itself, we will also pay our attention especially
to phenomenological studies of the V V A and AAA Green functions in the connection
with some new experimantal data that would allow us to widen our knowledge of this
topic.

2Used computers: Intel Core i5 CPU 2.80 GHz 64 bit, 16 GB RAM and Intel Core i7 CPU 2.20
GHz 64 bit, 8 GB RAM.
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Also, we will try to use our obtained results from V V PP and V V V V Green func-
tions on some phenomenologically releavant applications, such as Compton-like scat-
tering in case of V V PP correlator, or the hadronic light-by-light scattering in the case
of V V V V Green function.

Final remark

In conclusion, let us mention that the results of this thesis were presented in progress
during the work by a poster at MesonNet International Workshop 2014 in Frascati,
Italy [36], [37] and by talks at two international conferences, XIth Quark confinement
and the hadron spectrum 2014 in Saint-Petersburg, Russia [38] and 18th High-energy
physics international conference in QCD 2015 in Montpellier, France [39]. Also, during
the first year of the masters studies, the ongoing results were presented at 5th Czech-
Slovak student scientific conference in Prague.
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A. Mathematical appendix

A.1 Gell-Mann matrices

The Gell-Mann matrices are one of the possible representations of the infinitesimal
generators of the special unitary group SU(3) with dimension eight. Generally, this
representation gives us a set of eight linearly independent hermitian generators T a,
where a = 1 . . . 8. The element of the SU(3) group can be written in the form

U(x) = exp

(
− i

8∑
a=1

θa(x)T a
)
. (A.1)

These generators satisfy the following (anti)commutation relations [40]:

[T a, T b] = ifabcT c , (A.2)

{T a, T b} =
1

3
δab + dabcT c , (A.3)

where dabc is totally symmetric and fabc is antisymmetric tensor. The relations (A.2)-
(A.3) can be inverted into the definitions of these tensors:

fabc = −2i
〈
[T a, T b]T c

〉
, (A.4)

dabc = 2
〈
{T a, T b}T c

〉
. (A.5)

Non-zero elements of the tensors above are shown in the tables A.1 and A.2 below. The
particular choice of the generators T a is related to the hermitian Gell-Mann matrices
λa due the form

T a =
λa

2
, (A.6)

where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , (A.7)

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (A.8)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (A.9)

abc 118 146 157 228 247 256 338 344

dabc
1√
3

1

2

1

2

1√
3

−1

2

1

2

1√
3

1

2

abc 355 366 377 448 558 668 778 888

dabc
1

2
−1

2
−1

2
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1√

3

Table A.1: Totally symmetric non-vanishing structure constants of SU(3).
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abc 123 147 156 246 257 345 367 458 678

fabc 1
1

2
−1

2

1

2

1

2

1

2
−1

2

√
3

2

√
3

2

Table A.2: Totally antisymmetric non-vanishing structure constants of SU(3).

It is useful to add one additional matrix T 0, despite the fact that it is not a part of
SU(3) but corresponds to U(1). For this matrix we choose

T 0 =
1√
6

1 . (A.10)

It is also useful to define the symbol habc as follows

habc = dabc + ifabc (A.11)

with the identities for index permutations:

habc = hbca = hcab , hbac = hacb = hcba , (A.12)

habc + hbac = 2dabc , habc − hbac = 2ifabc . (A.13)

Jacobi identites

The Jacobi identities for the coefficients (A.4)-(A.5) are as follow:

fabkfkcl + f bckfkal + f cakfkbl = 0 , (A.14)

dabkfkcl + dbckfkal + dcakfkbl = 0 . (A.15)

Another useful identities are

fabkfkcl =
2

3
(δacδbl − δalδbc) + dackdblk − dalkdbck , (A.16)

dabkdkcl =
1

3
(δacδbl + δalδbc − δabδcl + fackf blk + falkf bck) . (A.17)

Products of T a matrices

In the following it will be useful to introduce a symbol for a product of n matrices T a

defined as:
T a1...an = T a1 . . . T an (A.18)

with a usual choice of a1 = a, a2 = b, a3 = c etc. For our purposes the following
formulas are useful:

T ab =
1

6
δab +

1

2
habkT k , (A.19)

T abc =
1

6
δabT c +

1

12
habc +

1

4
habkhkclT l , (A.20)

T abcd =
1

36
δabδcd +

1

24
habkhkcd +

1

12
(habcT d + δabhcdkT k) , (A.21)

+
1

8
habkhkclhldmTm .

For the same reason as above we also show here the formulas for a commutator and
an anticommutator of four T a matrices at most. For simplier notation, let us define a
symbol for a commutator of one and other n− 1 matrices T a for n > 1:

T a1...an− = [T a1 , T a2...an ] , (A.22)
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and equivalently for an anticommutator:

T a1...an+ = {T a1 , T a2...an} . (A.23)

The following formulas will be useful.

T ab− = ifabkT k , (A.24)

T ab+ =
1

3
δab + dabkT k , (A.25)

T abc− =
1

6
(δabT c − δbcT a) +

1

4
(habkhkcl − hbckhkal)T l , (A.26)

T abc+ =
1

6
(δabT c + δbcT a + habc) +

1

4
(habkhkcl + hbckhkal)T l , (A.27)

T abcd− =
1

12
(habcT d − hbcdT a) +

1

12
(δabhcdk − δbchdak)T k (A.28)

+
1

36
(δabδcd − δbcδda) +

1

24
(habkhkcd − hbckhkda)

+
1

8
(habkhkclhldm − hbckhkdlhlam)Tm ,

T abcd+ =
1

12
(habcT d + hbcdT a) +

1

12
(δabhcdk + δbchdak)T k (A.29)

+
1

36
(δabδcd + δbcδda) +

1

24
(habkhkcd + hbckhkda)

+
1

8
(habkhkclhldm + hbckhkdlhlam)Tm .

Traces of T a matrices

Knowing the basic properties above we can derive traces of products of the T a matrices.
Trivial calculations based on (A.2) and (A.3) lead to the following relations:

〈T a〉 = 0 , (A.30)

〈T ab〉 =
1

2
δab , (A.31)

〈T abc〉 =
1

4
habc , (A.32)

〈T abcd〉 =
1

8
habkhkcd +

1

12
δabδcd , (A.33)

that allow us to calculate the traces occurring in the (anti)commutators:

〈T ab− 〉 = 0 , (A.34)

〈T ab+ 〉 = δab , (A.35)

〈T abc− 〉 = 0 , (A.36)

〈T abc+ 〉 =
1

2
habc , (A.37)

〈T abcd− 〉 =
1

12
(δabδcd − δbcδda) +

1

8
(habkhkcd − hbckhkda) , (A.38)

〈T abcd+ 〉 =
1

12
(δabδcd + δbcδda) +

1

8
(habkhkcd + hbckhkda) . (A.39)
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A.2 Dirac matrices

Dirac gamma matrices, {γ0, γ1, γ2, γ3}, are a set of conventional matrices with spe-
cific anticommutation relations. These matrices ensure that they generate a matrix
representation of the Clifford algebra C`1,3(R) and they are defined as [40]

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (A.40)

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (A.41)

It is useful to define the product of the four gamma matrices as follows:

γ5 = iγ0γ1γ2γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (A.42)

Traces of Dirac matrices

The matrices shown above satisfy a lot of important properties, but we will introduce
here only the identities of traces of products of Dirac matrices. In this case we present
following identities [40]:

〈γµ〉 = 0 , (A.43)

〈γ5〉 = 0 , (A.44)

〈γµγν〉 = 4gµν , (A.45)

〈γµγνγ5〉 = 0 , (A.46)

〈γµγνγργσ〉 = 4(gµνgρσ − gµρgνσ + gµσgνρ) , (A.47)

〈γµγνγργσγ5〉 = −4iεµνρσ , (A.48)

〈γµγνγργσγλγκγ5〉 = 4i(gµνερσλκ − gµρενσλκ + gνρεµσλκ (A.49)

− gσκεµνρλ + gσλεµνρκ + gλκεµνρσ) .

Feynman slash notation

Let us introduce and an arbitrary four-vector aµ. Then we will denote a product of
Dirac matrix γµ and aµ in the Feynman slash notation as follows:

/a ≡ γµaµ . (A.50)

Using the anticommutators of the gamma matrices, one can show that for any four-
vectors aµ and bµ

/a/a = a2 (A.51)

and

/a/b + /b/a = 2(a · b) . (A.52)
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Further identities can be read off directly from the gamma matrix identities by replacing
the metric tensor with inner products. For example:

〈/a/b〉 = 4(a · b) , (A.53)

〈/a/b/c/d〉 = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)] , (A.54)

〈/a/b/c/dγ5〉 = 4iεµνρσa
µbνcρdσ . (A.55)

A.3 Matrix algebra

A tricky task to deal with is derivatives of a matrix with its components that are de-
pendent on a parameter. For this case, let us assume a general square matrix X(t),
dependent on a variable t, and a parameter α ∈ R. The first derivative of the exponen-
tial matrix can be expressed in the form

d

dt
eX(t) =

∫ 1

0
eαX(t)dX(t)

dt
e(1−α)X(t) dα . (A.56)

The key ingredient that we will need greatly is the derivative ∂µu, where u is defined
by (2.5). Analogically to (A.56), we can designate

X(t)→ βφ ,
d

dt
→ ∂µ , (A.57)

where φ is the matrix of pseudoscalar fields (2.6) and

β ≡ i√
2F

. (A.58)

It will be also appropriate to use the Taylor series to expand the exponential matrices
under the integral sign:

eαβφ ' 1 + αβφ+
1

2
α2β2φ2 +O(φ3) , (A.59)

e(1−α)βφ ' 1 + (1− α)βφ+
1

2
(1− α)2β2φ2O(φ3) , (A.60)

where we expanded the series only up to O(φ3) since we want to have ∂µu (and other
chiral building blocks) up to O(φ4). We have therefore

∂µu =

∫ 1

0
eαβφβ(∂µφ)e(1−α)βφ dα (A.61)

'
∫ 1

0

[
β(∂µφ) + (1− α)β2(∂µφ)φ+ αβ2φ(∂µφ) +

1

2
α2β3φ2(∂µφ) (A.62)

+
1

2
(1− α)2β3(∂µφ)φ2 + α(1− α)β3φ(∂µφ)φ

]
dα+O(φ4)

= β(∂µφ) +
1

2
β2{∂µφ, φ}+

1

6
β3{∂µφ, φ2}+

1

6
β3φ(∂µφ)φ+O(φ4) . (A.63)

Substituting back for (A.58) we get

∂µu '
i√
2F

∂µφ−
1

4F 2
{∂µφ, φ} −

i

12
√

2F 3
{∂µφ, φ2} (A.64)

− i

12
√

2F 3
φ(∂µφ)φ+O(φ4) ,
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which is a correct way of treating matrices. The same result can be obtained faster by
expanding (2.5) in the Taylor series and then derive term by term.

Since φ and ∂µφ generally do not commute,

[∂µφ, φ] 6= 0 , (A.65)

a wrong way of the calculation of ∂µu above would be the following treatment:

∂µu = ∂µ

[
exp

(
i√
2F

φ

)]
(A.66)

6= exp

(
i√
2F

φ

)
i√
2F

∂µφ =
i√
2F

u∂µφ (A.67)

' i√
2F

∂µφ−
1

2F 2
φ(∂µφ)− i

4
√

2F 3
φ2(∂µφ) +O(φ4) . (A.68)

Once again let us repeat that the result (A.64) is correct whilst (A.68) is not.

A.4 Levi-Civita tensor

Levi-Civita tensor (or ε-symbol) in four dimensions, assuming

ε0123 = 1 , (A.69)

has the following important properties:

εµναβε
ρσγδ = −

∣∣∣∣∣∣∣∣∣
gρµ gρν gρα gρβ
gσµ gσν gσα gσβ
gγµ gγν gγα gγβ
gδµ gδν gδα gδβ

∣∣∣∣∣∣∣∣∣ , (A.70)

εµναβε
ρσαβ = −2(gρµg

σ
ν − gσµgρν) . (A.71)

The examples of a contractions of components of 4-momenta with Levi-Civita tensor
can be written in the simplified forms such as

εµνα(p) ≡ εµναβpβ , (A.72)

εµν(p)(q) ≡ εµναβpαqβ (A.73)

etc.

Schouten identity

A very important example of the usage of such a tensor is the Schouten identity. For
any 4-vector pµ one has

pµενρστ + pνερστµ + pρεστµν + pσετµνρ + pτεµνρσ = 0 . (A.74)
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B. General expansion of the
building blocks

Now we will perform the procedure to find out the structure of the chiral tensors. Let
us start with the basic building block (2.5). Using the Taylor series (see also section
A.3), we can expand the matrix exponential in the infinite series of the powers of the
matrix of the pseudoscalar fields φ. Let us use only the terms up to O(φ4). The relevant
expansion of the basic building block, including its hermitian conjugation, is then

u ' 1 +
i√
2F

φ− 1

4F 2
φ2 − i

12
√

2F 3
φ3 +O(φ4) , (B.1)

u† ' 1− i√
2F

φ− 1

4F 2
φ2 +

i

12
√

2F 3
φ3 +O(φ4) , (B.2)

where it is obvious that (φ2)† ≡ φ2 and (φ3)† ≡ φ3 etc. Using basic manipulations with
matrices, such as

∂µφ
2 = {∂µφ, φ} , (B.3)

∂µφ
3 = {∂µφ, φ2}+ φ(∂µφ)φ , (B.4)

allow us to obtain derivatives of (B.1):

∂µu '
i√
2F

∂µφ−
1

4F 2
{∂µφ, φ} −

i

12
√

2F 3
{∂µφ, φ2} (B.5)

− i

12
√

2F 3
φ(∂µφ)φ+O(φ4)

and similarly for (B.2)

∂µu
† '− i√

2F
∂µφ−

1

4F 2
{∂µφ, φ}+

i

12
√

2F 3
{∂µφ, φ2} (B.6)

+
i

12
√

2F 3
φ(∂µφ)φ+O(φ4) .

The chiral operator (2.12) couples the vector and axial-vector sources together with the
pseudoscalar fields. Its expansion has the form

uµ '−
√

2

F
∂µφ+ 2aµ −

i
√

2

F
[φ, vµ] +

1

F 2
φaµφ−

1

2F 2
{φ2, aµ} (B.7)

− 1

3
√

2F 3
φ(∂µφ)φ+

1

6
√

2F 3
{∂µφ, φ2} −

i

2
√

2F 3
φ[φ, vµ]φ

+
i

6
√

2F 3
[φ3, vµ] +O(φ4) .

Indeed, it is easy to show that (B.7) still holds the relation uµ = u†µ (see 2.12). The
only possibly dangerous terms are the commutators, excluding them, we have left only
the hermitian single terms and symmetrical hermitian anticommutators. However, it
is easy to show that the mentioned hermiticity holds, because of the sign change of the
imaginary units and the reordering of the terms in the commutators, that leave the
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whole term itself the same as was before. In detail, we can write:

(
− i
√

2

F
[φ, vµ]

)†
=
i
√

2

F
[vµ, φ] = − i

√
2

F
[φ, vµ] , (B.8)(

i

6
√

2F 3
[φ3, vµ]

)†
= − i

6
√

2F 3
[vµ, φ

3] =
i

6
√

2F 3
[φ3, vµ] , (B.9)(

− i

2
√

2F 3
φ[φ, vµ]φ

)†
=

i

2
√

2F 3
φ[vµ, φ]φ = − i

2
√

2F 3
φ[φ, vµ]φ . (B.10)

The chiral operators (2.13) couple the scalar and pseudoscalar external sources together
with the pseudoscalar fields. The expansions of the operators have the forms

χ− '4iB0p−
2
√

2iB0

F
{φ, s} − 2iB0

F 2
φpφ− iB0

F 2
{φ2, p} (B.11)

+
iB0√
2F 3

φ{φ, s}φ+
iB0

3
√

2F 3
{φ3, s}+O(φ4)

and

χ+ '4B0s+
2
√

2B0

F
{φ, p} − 2B0

F 2
φsφ− B0

F 2
{φ2, s} (B.12)

− B0√
2F 3

φ{φ, p}φ− B0

3
√

2F 3
{φ3, p}+O(φ4) .

The left and right non-Abelian field-strength tensors (2.20), (2.21) occur in the following
combinations:

FµνR + FµνL = 2(∂µvν − ∂νvµ)− 2i[vµ, vν ]− 2i[aµ, aν ] , (B.13)

FµνR − F
µν
L = 2(∂µaν − ∂νaµ)− 2i[vµ, aν ]− 2i[aµ, vν ] . (B.14)

Using (B.13) and (B.14) one can extract the structure of the operators (2.18) that couple
the vector and axial-vector external sources together with the pseudoscalar fields. The
results are complicated and as follows:

fµν− '− 2(∂µaν − ∂νaµ) + 2i[vµ, aν ] + 2i[aµ, vν ] +

√
2

F

[
φ, [vµ, vν ]

]
(B.15)

+

√
2

F

[
φ, [aµ, aν ]

]
+
i
√

2

F
[φ, ∂µvν − ∂νvµ] +

i

F 2
φ[vµ, aν ]φ

+
i

F 2
φ[aµ, vν ]φ− 1

F 2
φ(∂µaν − ∂νaµ)φ− i

2F 2

{
φ2, [vµ, aν ]

}
− i

2F 2

{
φ2, [aµ, vν ]

}
+

1

2F 2
{φ2, ∂µaν − ∂νaµ}

+
i

2
√

2F 3
φ[φ, ∂µvν − ∂νvµ]φ+

1

2
√

2F 3
φ
[
φ, [vµ, vν ]

]
φ

+
1

2
√

2F 3
φ
[
φ, [aµ, aν ]

]
φ− i

6
√

2F 3
[φ3, ∂µvν − ∂νvµ]

− 1

6
√

2F 3

[
φ3, [vµ, vν ]

]
− 1

6
√

2F 3

[
φ3, [aµ, aν ]

]
+O(φ4)
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and

fµν+ ' 2(∂µvν − ∂νvµ)− 2i[vµ, vν ]− 2i[aµ, aν ]− i
√

2

F
[φ, ∂µaν − ∂νaµ] (B.16)

−
√

2

F

[
φ, [vµ, aν ]

]
−
√

2

F

[
φ, [aµ, vν ]

]
+

1

F 2
φ(∂µvν − ∂νvµ)φ

− i

F 2
φ[vµ, vν ]φ− i

F 2
φ[aµ, aν ]φ− 1

2F 2
{φ2, ∂µvν − ∂νvµ}

+
i

2F 2

{
φ2, [vµ, vν ]

}
+

i

2F 2

{
φ2, [aµ, aν ]

}
− i

2
√

2F 3
φ[φ, ∂µaν − ∂νaµ]φ− 1

2
√

2F 3
φ
[
φ, [vµ, aν ]

]
φ

− 1

2
√

2F 3
φ
[
φ, [aµ, vν ]

]
φ+

i

6
√

2F 3
[φ3, ∂µaν − ∂νaµ]

+
1

6
√

2F 3

[
φ3, [vµ, aν ]

]
+

1

6
√

2F 3

[
φ3, [aµ, vν ]

]
+O(φ4) .

The chiral connection (2.23) has the following form of the expansion:

Γµ '− ivµ −
1√
2F

[φ, aµ]− i

2F 2
φvµφ−

1

4F 2
[∂µφ, φ] +

i

4F 2
{φ2, vµ} (B.17)

− 1

4
√

2F 3
φ[φ, aµ]φ+

1

12
√

2F 3
[φ3, aµ] +O(φ4) ,

which allows us to determine the form for the covariant derivative (2.22) of an arbitrary
operator X:

∇µX ' ∂µX − i[vµ, X]− 1√
2F

[
[φ, aµ], X

]
− i

2F 2
[φvµφ,X] (B.18)

− 1

4F 2

[
[∂µφ, φ], X

]
+

i

4F 2

[
{φ2, vµ}, X

]
− 1

4
√

2F 3

[
φ[φ, aµ]φ,X

]
+

1

12
√

2F 3

[
[φ3, aµ], X

]
+O(φ4) .

Finally, the results obtained above enable us to identify the expansion of the operator
(2.19) with the most complicated structure. Since the structure is very complicated,
we will show here the result only up to O(φ3):

hµν '−
√

2

F
∂µ∂νφ+ 2∂µaν −

i
√

2

F
[∂µφ, vν ]− i

√
2

F
[φ, ∂µvν ] (B.19)

− 1

2F 2
{φ2, ∂µaν} −

1

2F 2

{
{∂µφ, φ}, aν

}
+

1

F 2
(∂µφ)aνφ

+
1

F 2
φ(∂µaν)φ+

1

F 2
φaν(∂µφ) +

i

2F 2

[
{φ2, vµ} − 2φvµφ+ i[∂µφ, φ], aν

]
− i
[
vµ,−

√
2

F
∂νφ+ 2aν −

i
√

2

F
[φ, vν ] +

1

F 2
φaνφ−

1

2F 2
{φ2, aν}

]
− 1√

2F

[
[φ, aν ],−

√
2

F
∂νφ+ 2aν −

i
√

2

F
[φ, vν ]

]
+O(φ3)

+ (µ↔ ν) .

Long story short, we now know the expansions of the basic building blocks into the
terms of vector, axial-vector, scalar and pseudoscalar fields. The results of this chapter
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are summarized below where we state the content of the building blocks in term of
pseudoscalar fields and external sources.

u ∼ φ, φ2, φ3 . . . , (B.20)

uµ ∼ a, φ, vφ, aφ2, φ3, vφ3 . . . , (B.21)

hµν ∼ a, φ, vφ, aφ2, φ3, vφ3 . . . , (B.22)

fµν− ∼ a, av, vφ, v2φ, a2φ, aφ2, avφ2, vφ3, a2φ3, v2φ3 . . . , (B.23)

fµν+ ∼ v, a2, v2, aφ, avφ, vφ2, a2φ2, v2φ2, aφ3, avφ3 . . . , (B.24)

χ ∼ s, p , (B.25)

χ− ∼ p, sφ, pφ2, sφ3 . . . , (B.26)

χ+ ∼ s, pφ, sφ2, pφ3 . . . (B.27)

Chiral operators for η′ exchanges

Taking the η′ meson into account requires a modification of the basic building block
(2.5) into [1]

ũ = exp

(
i√
2F

φ0T 0

)
u , (B.28)

where

T 0 =
1√
NF

1 (B.29)

is the ninth Gell-Mann matrix with NF being the number of flavours (see also (A.10),
where we explicitly used NF = 6). Therefore, we have an expression for the pseu-
doscalar singlet in the form

φ0 = −iF
√

2

NF
ln(det ũ) . (B.30)

The construction of the new chiral building blocks requires an application of (B.28)
and usual external sources introduced in Chapters 1 and 2. Here we will show only the
results:

ũµ = uµ −
√

2

F
(Dµφ

0)T 0 , (B.31)

χ̃± = exp

(
− i
√

2

F
φ0T 0

)
u†χu† ± exp

(
i
√

2

F
φ0T 0

)
uχ†u (B.32)

= χ± −
i

F

√
2

NF
φ0χ∓ + . . . , (B.33)

〈lµ〉 = l0µ

√
NF

2
(B.34)

etc., where the covariant derivative (in fact invariant) of φ0 is defined as

Dµφ
0 = ∂µφ

0 − 2Fa0µ . (B.35)

For detailed discussion see [1].
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C. Spin one particle formalisms

The spin one particles can be described in the means of a quntum field theory in two
main formalisms. Either we consider the particles to be described by the vector field
formalism or by the antisymmetric tensor fields formalism. Here we present the most
important properties of the mentioned formalism.

C.1 Vector field formalism

Let us consider a spin one field with a mass m. In the vector field formalism, the free
field Lagrangian can be written as [8], [41], [42], [43]

LV = −1

4
FµνF

µν +
1

2
m2AµA

µ , (C.1)

where
Fµν = ∂µAν − ∂νAµ . (C.2)

Easily, using the Euler-Lagrangian equation, the classical equation of motion reads

∂2Aµ +mAµ − ∂µ(∂ ·A) = 0 . (C.3)

Considering the Coulomb gauge condition,

∂ ·A = 0 , (C.4)

we get
(∂2 +m2)Aµ = 0 . (C.5)

The solution to the equation above can be guessed as a Fourier transform in the form

Aµ =
1

(2π)3/2

∑
λ

d3p√
2E

[
Bµ(p, λ)eip·x +B∗µ(p, λ)e−ip·x

]
, (C.6)

where it is necessary to sum over all polarizations, i.e. λ = {−1, 0,+1}.
In a quantum field theory it is required to change operators for functions. In this

case, (C.6) hence has the form

Aµ =
1

(2π)3/2

∑
λ

d3p√
2E

[
εµ(p, λ)a(p, λ)eip·x + ε∗µ(p, λ)a†(p, λ)e−ip·x

]
, (C.7)

where we have the following properties for the polarization vector εµ:∑
λ

εµ(p, λ)ε∗ν(p, λ) = −gµν +
pµpν
m2

, (C.8)

εµ(p, λ)εµ(p, λ′) = −δλλ′ , (C.9)

pµε
µ(p, λ) = 0 , (C.10)

and for the creation a†(p, λ) and annihilation a(p, λ) operators:[
a(p, λ), a(p′, λ′)

]
= 0 , (C.11)[

a(p, λ), a†(p′, λ′)
]

= δ3(p′ − p)δλλ′ , (C.12)[
a†(p, λ), a†(p′, λ′)

]
= 0 . (C.13)
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The vacuum expectation value of the time ordered product of two vector fields (C.7)
is called the propagator of the field, i.e. [8], [41], [42], [43]

i∆V
F (x− y)µν ≡

〈
0
∣∣T[Aµ(x)Aν(y)]

∣∣0〉 . (C.14)

The covariant part of the result has the form

i∆V
F (x− y)µν =

∫
d4p

(2π)4
i∆F (p)µνe

−ip·(x−y) , (C.15)

where

i∆F (p)µν = − i

p2 −m2 + iε

(
gµν −

pµpν

m2

)
(C.16)

is the vector propagator in the momentum representation. Here we tacitly assume the
”Feynman epsilon” iε to be infinitesimally close to i0.

C.2 Antisymmetric tensor field formalism

Equivalently as in the case above, let us consider a field with a mass m. In the anti-
symmetric tensor field formalism, the free field Lagrangian can be written as [8], [41],
[42], [43]

LT = −1

2
WµW

µ +
1

4
m2RµνR

µν , (C.17)

where

Wµ = ∂αRαµ . (C.18)

Classical equation of motion now reads

∂µ∂
αRαν − ∂ν∂αRαµ +m2Rµν = 0 , (C.19)

that implies

(∂2 +m2)(m∂αRαµ) = 0 , (C.20)

where the derivation of the field is multiplied by the mass due to the correct dimension
of the field. A general solution of the equation above is

Rµν(x) =
1

(2π)3/2

∑
λ

d3p√
2E

[
Aµν(p, λ)a(p, λ)eip·x +Bµν(p, λ)a†(p, λ)e−ip·x

]
. (C.21)

using the identities,

ipµAµν = mεµ(p, λ) , (C.22)

−ipµBµν = mεµ ∗(p, λ) , (C.23)

obtained by applying the derivative in the momentum space, we can write the solution
in the form

Rµν(x) =
1

(2π)3/2
i

m

∑
λ

d3p√
2E

[(
pνεµ(p, λ)− pµεν(p, λ)

)
a(p, λ)eip·x (C.24)

+
(
pνε
∗
µ(p, λ)− pµε∗ν(p, λ)

)
a†(p, λ)e−ip·x

]
.

The propagator of the field is now defined as [8], [41], [42], [43]

i∆T
F (x− y)αβµν ≡

〈
0
∣∣T[Rαβ(x)Rµν(y)]

∣∣0〉. (C.25)
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A direct calculation gives the covariant part

i∆T
F (x− y)αβµν =

∫
d4p

(2π)4
i∆F (p)αβµνe

−ip·(x−y) , (C.26)

where

i∆T
F (p)αβµν = (C.27)

= − i

m2(p2 −m2 + iε)

[
gαµgβν(m2 − p2) + gαµpβpν − gανpβpµ

]
− (µ↔ ν) .

is the tensor propagator in the momentum representation.
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D. Feynman rules of χPT and
RχT vertices

In this chapter we show the Feynman rules, corresponding to the Lagrangians we have
used in this paper.

Having some same currents, forming general Green functions, it forces us to include
all possible permutations of the Lorentz and the group indices of that current. This
naturally leads to presence of the terms in Lagrangians that differ from one another only
by the indices. To shorten the writing of such similar terms, we present the following
notation that is helpful in given cases.∑

(a,b)

≡ (a↔ b) , (D.1)

∑
(a,b,c)

≡ (a↔ b) + (a↔ c) + (b↔ c) , (D.2)

∑
(a,b)

∑
(c,d)

≡ (a↔ b) ∧ (c↔ d) , (D.3)

∑
(a,b,c,d)

≡ (a↔ b) + (a↔ c) + (a↔ d) + (b↔ c) + (b↔ d) + (c↔ d) . (D.4)

Obviously, in the descending order, the previous notations (D.1)-(D.4) are needed in
the cases of the V V A,AAA, V V PP and V V V V Green functions.

Now, let us define the projectors that one uses to calculate the Feynman rules.

projection projector

φa, pa, sa → φb, pb, sb δba
vaµ, a

a
µ → vbν , a

b
ν gµν δba

Ra → Rb δba
Raµ → Rbν gµν δba
Raµν → Rbαβ

1
2(gµαgνβ − gναg

µ
β)δba

Table D.1: Projectors.

Regarding the derivatives, coupled to the fields, let us remember that we consider
all 4-momenta as ingoing into vertices. In that case, the Feynman rule for the field with
derivative is −i multiplied by the component of that 4-momentum with the Lorentz
index same as the Lorentz index carried by the derivative. A more detailed explanation
can be found in the examples below.

Examples

To make the calculations as clear as possible, we will present illustrative examples of
calculations of the Feynman rules from the corresponding Lagrangians.

Vertex φp This vertex comes from the lowest Lagrangian of the χPT and contributes
by the term

L(2)χ =
B0F√

2
〈{φ, p}〉 . (D.5)
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Since we have only one pseudoscalar external field and one pseudoscalar field, we can
rewrite those terms in the means of the individual components pa and φb, i.e.

L(2)χ = B0F 〈{φbT b, paT a}〉 = B0Fpaφb〈{T b, T a}〉 , (D.6)

where we used the substitutions

p = paT
a , (D.7)

φ =
√

2φbT
b . (D.8)

Carrying out the trace over group indices we finally found the Lagrangian in the form

L(2)χ = B0Fpaφbδ
ab . (D.9)

Let us assume that we want to keep the group indices of the fields in the Feynman graph
the same as the indices we used in the Lagrangian. To coincide with this assumption, to
obtain the corresponding Feynman rule, one needs to apply the projectors we introduced
in the previous subsection. Let us rewrite the Lagrangian with the changed group
indices a′ and b′ for the correct use of the projectors so we could have the Feynman
diagrams with the indices a and b. Then, we have

L(2)χ = B0Fpa′φb′δ
a′b′ (D.10)

and by applying the corresponding projectors we find the Feynman rule to be

V ab = iB0Fδ
a
a′δ

b
b′δ

a′b′ = iB0Fδ
ab , (D.11)

where we obviously added the imaginary unit due to the transition from the Lagrangian
to the S-matrix.

Figure D.1: Vertex φp.

Vertex Saφ Next we will examine the vertex that is formed by the lowest resonance
Lagrangian (2.71) and couples together scalar resonance with the axial-vector external
source and pseudoscalar field. The relevant part is

L(4)S = −2
√

2cd
F
〈S{∂µφ, aµ}〉 . (D.12)

In this case we follow the procedure from the previous case until we get

L(4)S = −2
√

2cd
F

dabcaµaSb(∂µφc) . (D.13)

Now again, let us assume that we need to keep all the indices the same as on the
Feynman diagram. To allow this, we will rename the indices and apply the suitable
projectors. Also, it is crucial to notice that here we deal with the derivative coupled
to the pseudoscalar field, so we will also get 4-momentum of the pseudoscalar in the
Feynman rule. It is obvious that the result is

V abc
µ = i

(
−2
√

2cd
F

)
da
′b′c′gµ

′
µ δ

a
a′δ

b
b′(−irµ′)δcc′ = −2

√
2cd
F

dabcrµ . (D.14)
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Figure D.2: Vertex Saφ.

Vertex V V P For the last example we will take a look at the vertex that consists of
two vector and one pseudoscalar resonances. The relevant Lagrangian is

LV V P = κV V P 〈V µνV αβP 〉εµναβ . (D.15)

We perform the same steps as in previous calculations but we need to take into account
that now we have two vector currents,

V µν =
√

2V µν
a T a +

√
2V µν

b T b , (D.16)

each one of them carries its 4-momentum. Let us assign 4-momentum p to the V µν
a

component of the vector current and 4-momentum q to V µν
b . The assignment of the

4-momenta depends only on the group indices. The pseudoscalar resonance carries
4-momentum r. i.e.

LV V P = 2
√

2κV V P 〈(V µν
a T a + V µν

b T b)(V αβ
a T a + V αβ

b T b)PcT
c〉εµναβ . (D.17)

Now, the key part is to realize that only interference terms make up the interaction,
i.e. we are interested only in the combination of the fields that carry different group
indices. The terms with two same indices do not represent relevant parts of the vertex,
therefore we do not consider them at all. Keeping that in mind we find

LV V P = 2
√

2κV V P 〈(V µν
a V αβ

b T aT b + V µν
b V αβ

a T bT a)PcT
c〉εµναβ , (D.18)

=
κV V P√

2

∑
(a,b)

habcV µν
a V αβ

b Pcεµναβ . (D.19)

The last part of the calculation represents using the projectors. To make the calculation
as clear as possible, we will carry out the full procedure:

V abc
µν = i2

√
2κV V P

[
1

2
(gµ

′
µ g

ν′
ν − gν

′
µ g

µ′
ν )δaa′

1

2
(gα

′
α g

β′

β − g
β′
α g

α′
β )δbb′δ

c
c′h

a′b′c′ (D.20)

+
1

2
(gµ

′
α g

ν′
β − gν

′
α g

µ′

β )δbb′
1

2
(gα

′
µ g

β′
ν − gβ

′
µ g

α′
ν )δaa′δ

c
c′h

b′a′c′
]
εµ′ν′α′β′ .

After some algebra, we get the result

V abc
µναβ = i

√
2κV V Pdabcεµναβ . (D.21)

Figure D.3: Vertex V V P .
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D.1 χPT vertices

D.1.1 Vertices up to O(p2)

Let us start with the lowest Lagrangian (2.16) of χPT. Considering only the expansion
of the chiral operators that can build up three-point vertices at most, we can extract
the Lagrangians that describe the following types of vertices:

L(2)χ ∼ a2, aφ, avφ, vφ2, pφ, sφ2 . . . (D.22)

Vertex a2

L(2)χ = F 2〈aµaµ〉 , (D.23)

V ab
µν = iF 2gµνδ

ab . (D.24)

Vertex aφ

L(2)χ = − F√
2
〈{∂µφ, aµ}〉 , (D.25)

V ab
µ = Fpµδ

ab . (D.26)

Vertex avφ

L(2)χ = − iF√
2

〈{
[φ, vµ], aµ

}〉
, (D.27)

V abc
µν = −iFgµνfabc . (D.28)

Vertex vφ2

L(2)χ =
i

2

〈{
∂µφ, [φ, vµ]

}〉
, (D.29)

V abc
µ = −(q − r)µfabc . (D.30)

Vertex pφ

L(2)χ =
B0F√

2
〈{φ, p}〉 , (D.31)

V ab = iB0Fδ
ab . (D.32)
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Vertex sφ2

L(2)χ = −B0

2
〈φsφ〉 − B0

4
〈{φ2, s}〉 , (D.33)

V abc = −iB0d
abc . (D.34)

D.1.2 Vertices up to O(p4)

Since we do not consider the χPT Lagrangian in the next-to-leading order (2.17), we
take into account only the anoumalous Wess-Zumino-Witten Lagrangian (2.40). For the
purpose of the calculation of the WZW Lagrangian, we need to expand the definitions
(2.42) and (2.43):

Lµ ' `µ +
i√
2F

[φ, `µ] +
1

2F 2
φ`µφ−

1

4F 2
{φ2, `µ} (D.35)

+
i

4
√

2F 3
φ[φ, `µ]φ− i

12
√

2F 3
[φ3, `µ] +O(φ4) ,

Lµν ' ∂µ`ν +
i√
2F

[φ, ∂µ`ν ] +
1

2F 2
φ(∂µ`ν)φ− 1

4F 2
{φ2, ∂µ`ν} (D.36)

+
i

4
√

2F 3
φ[φ, ∂µ`ν ]φ− i

12
√

2F 3
[φ3, ∂µ`ν ] +O(φ4) ,

Rµ ' rµ −
i√
2F

[φ, rµ] +
1

2F 2
φrµφ−

1

4F 2
{φ2, rµ} (D.37)

− i

4
√

2F 3
φ[φ, rµ]φ+

i

12
√

2F 3
[φ3, rµ] +O(φ4) ,

Rµν ' ∂µrν −
i√
2F

[φ, ∂µrν ] +
1

2F 2
φ(∂µrν)φ− 1

4F 2
{φ2, ∂µrν} (D.38)

− i

4
√

2F 3
φ[φ, ∂µrν ]φ+

i

12
√

2F 3
[φ3, ∂µrν ] +O(φ4) .

Next, we will also use the definition (2.44). It is easy to obtain the appropriate
expansions in terms of pseudoscalar fields:

σµ '
i
√

2

F
∂µφ+

i

3
√

2F 3
φ(∂µφ)φ− i

6
√

2F 3
{∂µφ, φ2}+O(φ4) , (D.39)

σ†µ ' −
i
√

2

F
∂µφ−

i

3
√

2F 3
φ(∂µφ)φ+

i

6
√

2F 3
{∂µφ, φ2}+O(φ4) . (D.40)

Obviously, in the special case of u = 1 we have

Lµ = `µ , Lµν = ∂µ`ν (D.41)

Rµ = rµ , Rµν = ∂µrν (D.42)

and

σµ = σ†µ = 0 . (D.43)
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Let us now move forward to the calculation of (2.41). Let us rewrite the definition,
together with the special case of u = 1. We have

Wµναβ(u, `, r) = LµLνLαRβ +
1

4
LµRνLαRβ + iLµνLαRβ + iRµνLαRβ (D.44)

− iσµLνRαLβ + σµRναLβ − σµσνRαLβ + σµLνLαβ

+ σµLναLβ − iσµLνLαLβ +
1

2
σµLνσαLβ − iσµσνσαLβ

−RµRνRαLβ −
1

4
RµLνRαLβ − iRµνRαLβ − iLµνRαLβ

+ iσ†µRνLαRβ − σ†µLναRβ + σ†µσ
†
νLαRβ − σ†µRνRαβ

− σ†µRναRβ + iσ†µRνRαRβ −
1

2
σ†µRνσ

†
αRβ + iσ†µσ

†
νσ
†
αRβ ,

Wµναβ(1, `, r) = `µ`ν`αrβ +
1

4
`µrν`αrβ + i(∂µ`ν)`αrβ + i(∂µrν)`αrβ (D.45)

− rµrνrα`β −
1

4
rµ`νrα`β − i(∂µrν)rα`β − i(∂µ`ν)rα`β .

To be able to extract the interaction terms, one must deal with a lot of terms, many
of them eventually cancel each other out. For completeness, we will show all individual
terms that are present in (D.44).

LµLνLαRβ '− aµaνaαaβ + aµaνvαaβ − aµaνaαvβ + aµaνvαvβ (D.46)

+ vµaνaαaβ − vµaνvαaβ + vµaνaαvβ − vµaνvαvβ
+ aµvνaαaβ − aµvνvαaβ + aµvνaαvβ − aµvνvαvβ
− vµvνaαaβ + vµvνvαaβ − vµvνaαvβ + vµvνvαvβ ,

LµRνLαRβ ' aµaνaαaβ − aµaνvαaβ + aµaνaαvβ − aµaνvαvβ (D.47)

− vµaνaαaβ + vµaνvαaβ − vµaνaαvβ + vµaνvαvβ

+ aµvνaαaβ − aµvνvαaβ + aµvνaαvβ − aµvνvαvβ
− vµvνaαaβ + vµvνvαaβ − vµvνaαvβ + vµvνvαvβ ,

iLµνLαRβ ' i(∂µaν)aαaβ − i(∂µaν)vαaβ + i(∂µaν)aαvβ − i(∂µaν)vαvβ (D.48)

− i(∂µvν)aαaβ + i(∂µvν)vαaβ − i(∂µvν)aαvβ + i(∂µvν)vαvβ ,

iRµνLαRβ '− i(∂µaν)aαaβ + i(∂µaν)vαaβ − i(∂µaν)aαvβ + i(∂µaν)vαvβ (D.49)

− i(∂µvν)aαaβ + i(∂µvν)vαaβ − i(∂µvν)aαvβ + i(∂µvν)vαvβ ,

−iσµLνRαLβ '
√

2

F
(∂µφ)aνaαaβ +

√
2

F
(∂µφ)aνvαaβ −

√
2

F
(∂µφ)aνaαvβ (D.50)

−
√

2

F
(∂µφ)aνvαvβ −

√
2

F
(∂µφ)vνaαaβ −

√
2

F
(∂µφ)vνvαaβ

+

√
2

F
(∂µφ)vνaαvβ +

√
2

F
(∂µφ)vνvαvβ ,

σµRναLβ '−
i
√

2

F
(∂µφ)(∂νaα)aβ +

i
√

2

F
(∂µφ)(∂νaα)vβ (D.51)

− i
√

2

F
(∂µφ)(∂νvα)aβ +

i
√

2

F
(∂µφ)(∂νvα)vβ ,

−σµσνRαLβ '−
2

F 2
(∂µφ)(∂νφ)aαaβ −

2

F 2
(∂µφ)(∂νφ)vαaβ (D.52)

+
2

F 2
(∂µφ)(∂νφ)aαvβ +

2

F 2
(∂µφ)(∂νφ)vαvβ ,
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σµLνLαβ '
i
√

2

F
(∂µφ)aν(∂αaβ)− i

√
2

F
(∂µφ)vν(∂αaβ) (D.53)

− i
√

2

F
(∂µφ)aν(∂αvβ) +

i
√

2

F
(∂µφ)vν(∂αvβ) ,

σµLναLβ '
i
√

2

F
(∂µφ)(∂νaα)aβ −

i
√

2

F
(∂µφ)(∂νaα)vβ (D.54)

− i
√

2

F
(∂µφ)(∂νvα)aβ +

i
√

2

F
(∂µφ)(∂νvα)vβ ,

−iσµLνLαLβ '−
√

2

F
(∂µφ)aνaαaβ +

√
2

F
(∂µφ)aνvαaβ +

√
2

F
(∂µφ)aνaαvβ (D.55)

−
√

2

F
(∂µφ)aνvαvβ +

√
2

F
(∂µφ)vνaαaβ −

√
2

F
(∂µφ)vνvαaβ

−
√

2

F
(∂µφ)vνaαvβ +

√
2

F
(∂µφ)vνvαvβ ,

σµLνσαLβ '−
2

F 2
(∂µφ)aν(∂αφ)aβ +

2

F 2
(∂µφ)aν(∂αφ)vβ (D.56)

+
2

F 2
(∂µφ)vν(∂αφ)aβ −

2

F 2
(∂µφ)vν(∂αφ)vβ ,

−iσµσνσαLβ '
2
√

2

F 3
(∂µφ)(∂νφ)(∂αφ)aβ −

2
√

2

F 3
(∂µφ)(∂νφ)(∂αφ)vβ . (D.57)

Identically, the terms that arrise from the deduction of the L ↔ R interchange gives
the individual contributions:

−RµRνRαLβ ' aµaνaαaβ + aµaνvαaβ − aµaνaαvβ − aµaνvαvβ (D.58)

+ vµaνaαaβ + vµaνvαaβ − vµaνaαvβ − vµaνvαvβ
+ aµvνaαaβ + aµvνvαaβ − aµvνaαvβ − aµvνvαvβ
+ vµvνaαaβ + vµvνvαaβ − vµvνaαvβ − vµvνvαvβ ,

−RµLνRαLβ '− aµaνaαaβ − aµaνvαaβ + aµaνaαvβ + aµaνvαvβ (D.59)

− vµaνaαaβ − vµaνvαaβ + vµaνaαvβ + vµaνvαvβ

+ aµvνaαaβ + aµvνvαaβ − aµvνaαvβ − aµvνvαvβ
+ vµvνaαaβ + vµvνvαaβ − vµvνaαvβ − vµvνvαvβ ,

−iRµνRαLβ ' i(∂µaν)aαaβ + i(∂µaν)vαaβ − i(∂µaν)aαvβ − i(∂µaν)vαvβ (D.60)

+ i(∂µvν)aαaβ + i(∂µvν)vαaβ − i(∂µvν)aαvβ − i(∂µvν)vαvβ ,

−iLµνRαLβ '− i(∂µaν)aαaβ − i(∂µaν)vαaβ + i(∂µaν)aαvβ + i(∂µaν)vαvβ (D.61)

+ i(∂µvν)aαaβ + i(∂µvν)vαaβ − i(∂µvν)aαvβ − i(∂µvν)vαvβ ,

iσ†µRνLαRβ '−
√

2

F
(∂µφ)aνaαaβ +

√
2

F
(∂µφ)aνvαaβ −

√
2

F
(∂µφ)aνaαvβ (D.62)

+

√
2

F
(∂µφ)aνvαvβ −

√
2

F
(∂µφ)vνaαaβ +

√
2

F
(∂µφ)vνvαaβ

−
√

2

F
(∂µφ)vνaαvβ +

√
2

F
(∂µφ)vνvαvβ ,

−σ†µLναRβ '−
i
√

2

F
(∂µφ)(∂νaα)aβ −

i
√

2

F
(∂µφ)(∂νaα)vβ (D.63)

+
i
√

2

F
(∂µφ)(∂νvα)aβ +

i
√

2

F
(∂µφ)(∂νvα)vβ ,
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σ†µσ
†
νLαRβ '

2

F 2
(∂µφ)(∂νφ)aαaβ −

2

F 2
(∂µφ)(∂νφ)vαaβ (D.64)

+
2

F 2
(∂µφ)(∂νφ)aαvβ −

2

F 2
(∂µφ)(∂νφ)vαvβ ,

−σ†µRνRαβ '
i
√

2

F
(∂µφ)aν(∂αaβ) +

i
√

2

F
(∂µφ)vν(∂αaβ) (D.65)

+
i
√

2

F
(∂µφ)aν(∂αvβ) +

i
√

2

F
(∂µφ)vν(∂αvβ) ,

−σ†µRναRβ '
i
√

2

F
(∂µφ)(∂νaα)aβ +

i
√

2

F
(∂µφ)(∂νaα)vβ (D.66)

+
i
√

2

F
(∂µφ)(∂νvα)aβ +

i
√

2

F
(∂µφ)(∂νvα)vβ ,

iσ†µRνRαRβ '
√

2

F
(∂µφ)aνaαaβ +

√
2

F
(∂µφ)aνvαaβ +

√
2

F
(∂µφ)aνaαvβ (D.67)

+

√
2

F
(∂µφ)aνvαvβ +

√
2

F
(∂µφ)vνaαaβ +

√
2

F
(∂µφ)vνvαaβ

+

√
2

F
(∂µφ)vνaαvβ +

√
2

F
(∂µφ)vνvαvβ ,

−σ†µRνσ†αRβ '
2

F 2
(∂µφ)aν(∂αφ)aβ +

2

F 2
(∂µφ)aν(∂αφ)vβ (D.68)

+
2

F 2
(∂µφ)vν(∂αφ)aβ +

2

F 2
(∂µφ)vν(∂αφ)vβ ,

iσ†µσ
†
νσ
†
αRβ '−

2
√

2

F 3
(∂µφ)(∂νφ)(∂αφ)aβ −

2
√

2

F 3
(∂µφ)(∂νφ)(∂αφ)vβ . (D.69)

As we have mentioned earlier, many terms will drop out but a lot of terms will
survive at the same time. For our purposes it will be sufficient to present only the terms
that form interaction vertices consisted of two external sources and one pseudoscalar.
Then, we have only two simple contributions.

Vertex a2φ

L =
NC

12
√

2π2F

〈
(∂µφ)aν(∂αaβ)

〉
εµναβ , (D.70)

V abc
µν = −i NC

24π2F
dabcεµν(p)(q) . (D.71)

Vertex v2φ

L =
NC

12
√

2π2F

〈
(∂µφ)vν(∂αvβ)

〉
εµναβ (D.72)

+
NC

6
√

2π2F

〈
(∂µφ)(∂νvα)vβ

〉
εµναβ ,

V abc
µν =− i NC

8π2F
dabcεµν(p)(q) . (D.73)
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D.2 RχT vertices

D.2.1 Vector formalism up to O(p6)

The Lagrangians (2.60)-(2.61) in the vector formalism have the following three-point
structures:

LV ∼ V (v, φ2, aφ, a2, pφ, ap, av, vφ . . .) , (D.74)

LA ∼ A(a, vφ, va, aφ, a2 . . .) . (D.75)

Vertex V v

L = − fV

2
√

2
〈V̂µνfµν+ 〉 , (D.76)

V ab
µα = −ifV δab(p2gαµ − pαpµ) . (D.77)

Vertex V a2

L = − igV
2
√

2
〈V̂µν [uµ, uν ]〉+ iαV 〈V̂µ[uν , f

µν
− ]〉 , (D.78)

V abc
µνα = 2fabc

[√
2αV gµν(q − p)α (D.79)

+ gαµ(
√

2pναV − gV rν) + gαν(gV rµ −
√

2qµαV )
]
.

Vertex V aφ

L = − igV
2
√

2
〈V̂µν [uµ, uν ]〉+ iαV 〈V̂µ[uν , f

µν
− ]〉 , (D.80)

V abc
µα = −2i

F
fabc

[
gαµ
(√

2αV (p · r)− gV (q · r)
)

(D.81)

+ gV qµrα −
√

2pαrµαV

]
.

Vertex V φ2

L = − igV
2
√

2
〈V̂µν [uµ, uν ]〉 , (D.82)

V abc
α = −2gV

F 2
fabc

[
(p · q)rα − (p · r)qα

]
. (D.83)

Vertex V ap

L = βV 〈V̂µ[uµ, χ−]〉 , (D.84)

V abc
µα = −4i

√
2B0βV f

abcgαµ . (D.85)
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Vertex V φp

L = βV 〈V̂µ[uµ, χ−]〉 , (D.86)

V abc
α =

4
√

2B0βV
F

fabcrα . (D.87)

Vertex V av

L = hV 〈V̂ µ{uν , fαβ+ }〉εµναβ , (D.88)

V abc
µνα = −4

√
2hV d

abcεαµν(q) . (D.89)

Vertex V vφ

L = hV 〈V̂ µ{uν , fαβ+ }〉εµναβ , (D.90)

V abc
µα = −4i

√
2hV
F

dabcεαµ(p)(r) . (D.91)

Vertex Aa

L = − fA

2
√

2
〈Âµνfµν− 〉 , (D.92)

V ab
µα = ifAδ

ab(p2gαµ − pαpµ) . (D.93)

Vertex Aav

L = iαA〈Âµ[uν , f
µν
+ ]〉 , (D.94)

V abc
µνα = −2

√
2αV f

abc(qαgµν − qµgαν) . (D.95)

Vertex Avφ

L = iαA〈Âµ[uν , f
µν
+ ]〉 , (D.96)

V abc
µα = −2i

√
2αV
F

fabc
[
pαrµ − gαµ(p · r)

]
. (D.97)
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Vertex Aa2

L = hA〈Âµ{uν , fαβ− }〉εµναβ , (D.98)

V abc
µνα = −4

√
2hAd

abc(εαµν(p) − εαµν(q)) . (D.99)

Vertex Aaφ

L = hA〈Âµ{uν , fαβ− }〉εµναβ , (D.100)

V abc
µα =

4i
√

2hA
F

dabcεαµ(p)(r) . (D.101)

D.2.2 Antisymmetric tensor formalism up to O(p4)

Now, we present Feynman rules for the lowest resonance Lagrangian (2.68) that has
the following three-point structures:

L(4)V ∼ V (v, φ2, a2, v2, aφ . . .) , (D.102)

L(4)A ∼ A(a, av, vφ . . .) , (D.103)

L(4)S ∼ S(s, pφ, φ2, a2, aφ . . .) , (D.104)

L(4)P ∼ P (p, sφ . . .) . (D.105)

Vertex V v

L(4)V =
FV√

2

〈
Vµν(∂µvν − ∂νvµ)

〉
, (D.106)

V ab
µαβ =

FV
2
δab(pαgβµ − pβgαµ) . (D.107)

Vertex V a2

L(4)V = − iFV√
2

〈
Vµν [aµ, aν ]

〉
+ i
√

2GV
〈
Vµν [aµ, aν ]

〉
,

(D.108)

V abc
µναβ = i

(
GV −

FV
2

)
fabc(gανgβµ − gαµgβν) . (D.109)

Vertex V v2

L(4)V = − iFV√
2

〈
Vµν [vµ, vν ]

〉
, (D.110)

V abc
µναβ = − iFV

2
fabc(gανgβµ − gαµgβν) . (D.111)
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Vertex V aφ

L(4)V = − iFV
2F

〈
Vµν [φ, ∂µaν − ∂νaµ]

〉
(D.112)

− iGV
F

〈
Vµν [∂µφ, aν ]

〉
− iGV

F

〈
Vµν [aµ, ∂νφ]

〉
,

V abc
µαβ =

fabc

2F

[
FV (pαgβµ − pβgαµ) + 2GV (rαgβµ − rβgαµ)

]
.

(D.113)

Vertex V φ2

L(4)V =
iGV√
2F 2

〈
Vµν [∂µφ, ∂νφ]

〉
, (D.114)

V abc
αβ = − iGV

F 2
fabc(qβrα − qαrβ) . (D.115)

Vertex Aa

L(4)A = −FA√
2

〈
Aµν(∂µaν − ∂νaµ)

〉
, (D.116)

V ab
µαβ = −FA

2
δab(pαgβµ − pβgαµ) . (D.117)

Vertex Aav

L(4)A =
iFA√

2

〈
Aµν [vµ, aν ]

〉
+
iFA√

2

〈
Aµν [aµ, vν ]

〉
, (D.118)

V abc
µναβ =

iFA
2
fabc(gανgβµ − gαµgβν) . (D.119)

Vertex Avφ

L(4)A =
iFA
2F

〈
Aµν [φ, ∂µvν − ∂νvµ]

〉
, (D.120)

V abc
µαβ = −FA

2F
fabc(pαgβµ − pβgαµ) . (D.121)

Vertex Sφ2

L(4)S =
2cd
F 2
〈S(∂µφ)(∂µφ)〉 , (D.122)

V abc = −2i
√

2cd
F 2

dabc(q · r) . (D.123)
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Vertex Sa2

L(4)S = 4cd〈Saµaµ〉 , (D.124)

V abc
µν = 2i

√
2cdd

abcgµν . (D.125)

Vertex Saφ

L(4)S = −2
√

2cd
F
〈S{∂µφ, aµ}〉 , (D.126)

V abc
µ = −2

√
2cd
F

dabcrµ . (D.127)

Vertex Ss

L(4)S = 4B0cm〈Ss〉 , (D.128)

V ab = 2i
√

2B0cmδ
ab . (D.129)

Vertex Spφ

L(4)S =
2
√

2B0cm
F

〈S{φ, p}〉 , (D.130)

V abc =
2i
√

2B0cm
F

dabc . (D.131)

Vertex Pp

L(4)P = −4B0dm〈Pp〉 , (D.132)

V ab = −2i
√

2B0dmδ
ab . (D.133)

Vertex Psφ

L(4)P =
2
√

2B0dm
F

〈P{φ, s}〉 , (D.134)

V abc =
2i
√

2B0dm
F

dabc . (D.135)
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D.2.3 Antisymmetric tensor formalism up to O(p6)

Here we show the Feynman rules of appropriate Lagrangians consisted of the monomials
shown in tables 2.3-2.5. We consider only the three-point structures, i.e. all the chiral
operators in the Lagrangians below are considered to be expanded only to the linear
terms.

Vertex V sa

LV4 = iκV4 〈[V µν ,∇αχ+]uβ〉εµναβ , (D.136)

V abc
µαβ = −4

√
2B0κ

V
4 f

abcεαβµ(q) , (D.137)

LV15 = iκV15〈V µν [fαβ− , χ+]〉εµναβ , (D.138)

V abc
µαβ = −8

√
2B0κ

V
15f

abcεαβµ(p) , (D.139)
i.e. all together

V abc
µαβ = −4

√
2B0f

abc(2κV15εαβµ(p) + κV4 εαβµ(q)) . (D.140)

Vertex V sφ

LV4 = iκV4 〈[V µν ,∇αχ+]uβ〉εµναβ , (D.141)

V abc
αβ = −4i

√
2B0κ

V
4

F
fabcεαβ(p)(q) . (D.142)

Vertex V va

LV11 = κV11〈V µν{fαρ+ , fβσ− }〉gρσεµναβ , (D.143)

V abc
µραβ = −2i

√
2κV11d

abc
[
− gµρεαβ(p)(r) − rµεαβρ(p) (D.144)

+ pρεαβµ(r) − (p · r)εαβµρ
]
,

LV12 = κV12〈V µν{fαρ+ , hβσ}〉gρσεµναβ , (D.145)

V abc
µραβ = 2i

√
2κV12d

abc
[
− gµρεαβ(p)(r) + rµεαβρ(p) (D.146)

+ pρεαβµ(r) + (p · r)εαβµρ
]
,

LV16 = κV16〈V µν{∇αfβσ+ , uσ}〉εµναβ , (D.147)

V abc
µραβ = −2i

√
2pρκ

V
16d

abcεαβµ(p) , (D.148)

LV17 = κV17〈V µν{∇σfασ+ , uβ}〉εµναβ , (D.149)

V abc
µραβ = 2i

√
2κV17d

abc(pµεαβρ(p) + p2εαβµρ) , (D.150)
i.e. all together

V abc
µραβ = −2i

√
2dabc

[
− p2κV17εαβµρ + (κV11 − κV12)(pρεαβµ(r) − gµρεαβ(p)(r)) (D.151)

−
[
κV17pµ + (κV11 + κV12)rµ

]
εαβρ(p) + κV16pρεαβµ(p)

− (κV11 + κV12)(p · r)εαβµρ
]
.
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Vertex V vφ

LV12 = κV12〈V µν{fαρ+ , hβσ}〉gρσεµναβ , (D.152)

V abc
µαβ =

4
√

2κV12
F

dabc
[
rµεαβ(p)(r) − (p · r)εαβµ(r)

]
, (D.153)

LV16 = κV16〈V µν{∇αfβσ+ , uσ}〉εµναβ , (D.154)

V abc
µαβ =

2
√

2κV16
F

dabc(p · r)εαβµ(p) , (D.155)

LV17 = κV17〈V µν{∇σfασ+ , uβ}〉εµναβ , (D.156)

V abc
µαβ =

2
√

2κV17
F

dabc(pµεαβ(p)(r) − p2εαβµ(r)) , (D.157)

i.e. all together

V abc
µαβ = −2

√
2

F
dabc

[
− (κV17pµ + 2κV12rµ)εαβ(p)(r) + 2κV12(p · r)εαβµ(r) (D.158)

+ p2κV17εαβµ(r) − κV16(p · r)εαβµ(p)
]
.

Vertex V vp

LV14 = iκV14〈V µν{fαβ+ , χ−}〉εµναβ , (D.159)

V abc
µαβ = 8

√
2B0κ

V
14d

abcεαβµ(p) . (D.160)

Vertex Aa2

LA3 = κA3 〈Aµν{∇αhβσ, uσ}〉εµναβ , (D.161)

V abc
µναβ = 2i

√
2κA3 d

abc(pνεαβµ(p) + qµεαβν(q)) , (D.162)

LA8 = κA8 〈Aµν{fασ− , hβσ}〉εµναβ , (D.163)

V abc
µναβ = −4i

√
2κA8 d

abc(qµεαβν(p) + pνεαβµ(q)) , (D.164)

LA15 = κA15〈Aµν{∇αf
βσ
− , uσ}〉εµναβ , (D.165)

V abc
µναβ = 2i

√
2κA15d

abc(pνεαβµ(p) + qµεαβν(q)) , (D.166)

LA16 = κA16〈Aµν{∇σfασ− , uβ}〉εµναβ , (D.167)

V abc
µναβ = 2i

√
2κA16d

abc(−pµεαβν(p) − p2εαβµν (D.168)

− qνεαβµ(q) + q2εαβµν) ,
i.e. all together

V abc
µναβ = −2i

√
2dabc

[
− (κA3 + κA15)(pνεαβµ(p) + qµεαβν(q)) + κA16pµεαβν(p) (D.169)

+ κA16(p
2 − q2)εαβµν + κA16qνεαβµ(q) + 2κA8 qµεαβν(p)

+ 2κA8 pνεαβµ(q)

]
.
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Vertex Aaφ

LA3 = κA3 〈Aµν{∇αhβσ, uσ}〉εµναβ , (D.170)

V abc
µαβ = −2

√
2κA3
F

dabc(p · r)εαβµ(p) , (D.171)

LA8 = κA8 〈Aµν{fασ− , hβσ}〉εµναβ , (D.172)

V abc
µαβ = −4

√
2κA8
F

dabc
[
rµεαβ(p)(r) − (p · r)εαβµ(r)

]
, (D.173)

LA15 = κA15〈Aµν{∇αf
βσ
− , uσ}〉εµναβ , (D.174)

V abc
µαβ = −2

√
2κA15
F

dabc(p · r)εαβµ(p) , (D.175)

LA16 = κA16〈Aµν{∇σfασ− , uβ}〉εµναβ , (D.176)

V abc
µαβ = −2

√
2κA16
F

dabc(pµεαβ(p)(r) − p2εαβµ(r)) , (D.177)

i.e. all together

V abc
µαβ =

2
√

2

F
dabc

[
− εαβ(p)(r)(κA16pµ + 2κA8 rµ)− (κA15 + κA3 )(p · r)εαβµ(p) (D.178)

+ εαβµ(r)
[
p2κA16 + 2κA8 (p · r)

]]
.

Vertex Aφ2

LA3 = κA3 〈Aµν{∇αhβσ, uσ}〉εµναβ , (D.179)

V abc
αβ = 0 . (D.180)

Vertex Aap

LA11 = iκA11〈Aµν{f
αβ
− , χ−}〉εµναβ , (D.181)

V abc
µαβ = −8

√
2B0κ

A
11d

abcεαβµ(p) , (D.182)

LA12 = iκA12〈Aµν{∇αχ−, uβ}〉εµναβ , (D.183)

V abc
µαβ = 4

√
2B0κ

A
12d

abcεαβµ(q) , (D.184)
i.e. all together

V abc
µαβ = −4

√
2B0d

abc(2κA11εαβµ(p) − κA12εαβµ(q)) . (D.185)

Vertex Aφp

LA12 = iκA12〈Aµν{∇αχ−, uβ}〉εµναβ , (D.186)

V abc
αβ = −4i

√
2B0κ

A
12

F
dabcεαβ(p)(r) . (D.187)
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Vertex Avs

LA14 = iκA14〈Aµν [fαβ+ , χ+]〉εµναβ , (D.188)

V abc
µαβ = 8

√
2B0κ

A
14f

abcεαβµ(p) . (D.189)

Vertex Pa2

LP1 = κP1 〈P{f
µν
− , fαβ− }〉εµναβ , (D.190)

V abc
µν = 16i

√
2κP1 d

abcεµν(p)(q) . (D.191)

Vertex Pv2

LP5 = κP5 〈P{f
µν
+ , fαβ+ }〉εµναβ , (D.192)

V abc
µν = 16i

√
2κP5 d

abcεµν(p)(q) . (D.193)

Vertex Sav

LS2 = iκS2 〈S[fµν+ , fαβ− ]〉εµναβ , (D.194)

V abc
µν = −8i

√
2κS2 f

abcεµν(p)(q) . (D.195)

Vertex V V p

LV V2 = iκV V2 〈{V µν , V αβ}χ−〉εµναβ , (D.196)

V abc
αβγδ = −8iB0κ

V V
2 dabcεαβγδ . (D.197)

Vertex V V a

LV V3 = κV V3 〈{∇σV µν , V ασ}uβ〉εµναβ , (D.198)

V abc
µαβγδ = κV V3 dabc(−qγεαβδµ + qδεαβγµ (D.199)

− rαεβγδµ + rβεαγδµ) ,

LV V4 = κV V4 〈{∇βV µν , V ασ}uσ〉εµναβ , (D.200)

V abc
µαβγδ = κV V4 dabc(−gγµεαβδ(q) + gδµεαβγ(q) (D.201)

− gαµεβγδ(r) + gβµεαγδ(r)) ,
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i.e. all together

V abc
µαβγδ =− κV V3 dabc(qγεαβδµ − qδεαβγµ + rαεβγδµ − rβεαγδµ) (D.202)

− κV V4 dabc(gγµεαβδ(q) − gδµεαβγ(q) + gαµεβγδ(r) − gβµεαγδ(r)) .

Vertex V V φ

LV V3 = κV V3 〈{∇σV µν , V ασ}uβ〉εµναβ , (D.203)

V abc
αβγδ =

iκV V3

F
dabc(−qγεαβδ(p) + qδεαβγ(p) (D.204)

− rαεβγδ(p) + rβεαγδ(p)) ,

LV V4 = κV V4 〈{∇βV µν , V ασ}uσ〉εµναβ , (D.205)

V abc
αβγδ =

iκV V4

F
dabc(−pγεαβδ(q) + pδεαβγ(q) (D.206)

− pαεβγδ(r) + pβεαγδ(r)) ,
i.e. all together

V abc
αβγδ =− iκV V3

F
dabc(qγεαβδ(p) − qδεαβγ(p) + rαεβγδ(p) − rβεαγδ(p)) (D.207)

− iκV V4

F
dabc(pγεαβδ(q) − pδεαβγ(q) + pαεβγδ(r) − pβεαγδ(r)) .

Vertex AAp

LAA2 = iκAA2 〈{Aµν , Aαβ}χ−〉εµναβ , (D.208)

V abc
αβγδ = −8iB0κ

AA
2 dabcεαβγδ . (D.209)

Vertex AAa

LAA3 = κAA3 〈{∇σAµν , Aασ}uβ〉εµναβ , (D.210)

V abc
µαβγδ = κAA3 dabc(−qγεαβδµ + qδεαβγµ (D.211)

− rαεβγδµ + rβεαγδµ) ,

LAA4 = κAA4 〈{∇βAµν , Aασ}uσ〉εµναβ , (D.212)

V abc
µαβγδ = κAA4 dabc(−gγµεαβδ(q) + gδµεαβγ(q) (D.213)

− gαµεβγδ(r) + gβµεαγδ(r)) ,
i.e. all together

V abc
µαβγδ =− κAA3 dabc(qγεαβδµ − qδεαβγµ + rαεβγδµ − rβεαγδµ) (D.214)

− κAA4 dabc(gγµεαβδ(q) − gδµεαβγ(q) + gαµεβγδ(r) − gβµεαγδ(r)) .
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Vertex AAφ

LAA3 = κAA3 〈{∇σAµν , Aασ}uβ〉εµναβ , (D.215)

V abc
αβγδ =

iκAA3
F

dabc(−qγεαβδ(p) + qδεαβγ(p) (D.216)

− rαεβγδ(p) + rβεαγδ(p)) ,

LAA4 = κAA4 〈{∇βAµν , Aασ}uσ〉εµναβ , (D.217)

V abc
αβγδ =

iκAA4
F

dabc(−pγεαβδ(q) + pδεαβγ(q) (D.218)

− pαεβγδ(r) + pβεαγδ(r)) ,
i.e. all together

V abc
αβγδ =− iκAA3

F
dabc(qγεαβδ(p) − qδεαβγ(p) + rαεβγδ(p) − rβεαγδ(p)) (D.219)

− iκAA4
F

dabc(pγεαβδ(q) − pδεαβγ(q) + pαεβγδ(r) − pβεαγδ(r)) .

Vertex SAv

LSA1 = iκSA1 〈[Aµν , S]fαβ+ 〉εµναβ , (D.220)

V abc
µαβ = 4κSA1 fabcεαβµ(p) . (D.221)

Vertex SV a

LSV1 = iκSV1 〈[V µν , S]fαβ− 〉εµναβ , (D.222)

V abc
µαβ = −4κSV1 fabcεαβµ(p) , (D.223)

LSV2 = iκSV2 〈[V µν ,∇αS]uβ〉εµναβ , (D.224)

V abc
µαβ = 2κSV2 fabcεαβµ(r) , (D.225)

i.e. all together

V abc
µαβ = −2fabc(2κSV1 εαβµ(p) − κSV2 εαβµ(r)) . (D.226)

Vertex SV φ

LSV2 = iκSV2 〈[V µν ,∇αS]uβ〉εµναβ , (D.227)

V abc
αβ = −2iκSV2

F
fabcεαβ(q)(r) . (D.228)

Vertex V Av

LV A5 = κV A5 〈{V µν , Aαρ}fβσ+ 〉gρσεµναβ , (D.229)

V abc
µαβγδ = κV A5 dabc(−gαµεβγδ(p) + gβµεαγδ(p) (D.230)

+ pαεβγδµ − pβεαγδµ) .
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Vertex V As

LV A6 = iκV A6 〈[V µν , Aαβ]χ+〉εµναβ , (D.231)

V abc
αβγδ = 4iB0κ

V A
6 fabcεαβγδ . (D.232)

Vertex PAa

LPA1 = κPA1 〈{Aµν , P}f
αβ
− 〉εµναβ , (D.233)

V abc
µαβ = 4κPA1 dabcεαβµ(p) , (D.234)

LPA2 = κPA2 〈{Aµν ,∇αP}uβ〉εµναβ , (D.235)

V abc
µαβ = −2κPA2 dabcεαβµ(r) , (D.236)

i.e. all together
V abc
µαβ = 2dabc(2κPA1 εαβµ(p) − κPA2 εαβµ(r)) . (D.237)

Vertex PAφ

LPA2 = κPA2 〈{Aµν ,∇αP}uβ〉εµναβ , (D.238)

V abc
αβ = −2iκPA2

F
dabcεαβ(p)(r) . (D.239)

Vertex PV v

LPV3 = κPV3 〈{V µν , P}fαβ+ 〉εµναβ , (D.240)

V abc
µαβ = −4κPV3 dabcεαβµ(p) . (D.241)

Vertex V V P

LV V P = κV V P 〈V µνV αβP 〉εµναβ , (D.242)

V abc
αβγδ = i

√
2κV V Pdabcεαβγδ . (D.243)

Vertex V AS

LV AS = iκV AS〈[V µν , Aαβ]S〉εµναβ , (D.244)

V abc
αβγδ = −i

√
2κV ASfabcεαβγδ . (D.245)
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Vertex AAP

LAAP = κAAP 〈AµνAαβP 〉εµναβ , (D.246)

V abc
αβγδ = i

√
2κAAPdabcεαβγδ . (D.247)
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E. Algorithm in FeynCalc

Here we will describe the construction of the algorithm ’Mercury’ in Feyncalc, that we
have developed and used, and explain how it may be run by the reader to check the
results obtained in this thesis.

First of all, let us recall that FeynCalc is a package that is possible to instal into
Wolfram Mathematica software which allows us to do algebraic calculations in quantum
field theory easily. The FeynCalc can be obtained from the web page [44] and manually
installed or simply substituted by putting

Import["http://www.feyncalc.org/install.m"]

in the Mathematica notebook and executing this command. After restarting the Kernel,
the package is succesfully ready to use.

Now, let us assume that we already have the package at our disposal. If so, we need
to load the FeynCalc by the command

<< HighEnergyPhysics‘FeynCalc‘

To work with FeynCalc correctly, one has to use the given notation. Before getting any
further, we will introduce here some designations that FeynCalc work with.

E.1 Implementation of fields and chiral operators

In what follows we present the source code of the Mercury algorithm3. We simply
follow the structure of the code contained in the Mathematica files attached to this
thesis but we will enhance the source code for a discussion to get a better look at
the subject involved. Let us start with the definitions of the pseudoscalar fields nad
external sources. This part of the source code is contained in the file

01-mercury-definitions.nb

which must be run first to ensure we load all definitions to work with.
We have defined the components of pseudoscalar fields, pseudoscalar and scalar

external sources, together with their derivations (three, at most), in a following way.

1 Pseudoscalar[a_]:=QuantumField[GaugeField,SUNIndex[a]];

2 PseudoscalarDer[m_,a_]:=QuantumField[PartialD[m,GaugeField,

SUNIndex[a]];

3 PseudoscalarDerDer[m_,n_,a_]:=QuantumField[PartialD[m,PartialD[n],

GaugeField,SUNIndex[a]];

4 PseudoscalarDerDerDer[c_,m_,n_,a_]:=QuantumField[PartialD[c],

PartialD[m],PartialD[n],GaugeField,SUNIndex[a]];

5 ScalarSource[a_]:=QuantumField[GaugeField,SUNIndex[a]];

6 ScalarSourceDer[a_,a_]:= QuantumField[PartialD[a],GaugeField,

SUNIndex[a]];

3A reader should be aware of the spacing used in this text. Since the individual lines of the source
codes are usually long but the lenght of the row in this text is not, we simply break the line when
needed and continue on the next line without any unique meaning. For simplicity we use numbering of
the lines for a reader’s comfort. Every new definitions or commands start at the newly numbered line.
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7 PseudoscalarSource[a_]:= QuantumField[GaugeField,SUNIndex[a]];

8 PseudoscalarSourceDer[a_,a_]:= QuantumField[PartialD[a],

GaugeField,SUNIndex[a]];

Similarly as in previous steps we have also defined the components of vector and axial-
vector external sources. The only difference is in the presence of GaugeField that is
coupled directly to the components of the sources.

9 VectorSource[m_,a_]:= QuantumField[GaugeField,LorentzIndex[m],

SUNIndex[a]];

10 AxialSource[m_,a_]:= QuantumField[GaugeField,LorentzIndex[m],

SUNIndex[a]];

11 VectorSourceDer[a_,m_,a_]:= QuantumField[PartialD[a],GaugeField,

LorentzIndex[m],SUNIndex[a]];

12 VectorSourceDerDer[a_,b_,m_,a_]:= QuantumField[PartialD[a],

PartialD[b],GaugeField,LorentzIndex[m],SUNIndex[a]];

13 AxialSourceDer[a_,m_,a_]:= QuantumField[PartialD[a],GaugeField,

LorentzIndex[m],SUNIndex[a]];

14 AxialSourceDerDer[a_,b_,m_,a_]:= QuantumField[PartialD[a],

PartialD[b],GaugeField,LorentzIndex[m],SUNIndex[a]];

Now we can define the components of scalar and pseudoscalar resonances.

15 ScalarResonance[a_]:= QuantumField[GaugeField,SUNIndex[a]];

16 ScalarResonanceDer[a_,a_]:= QuantumField[PartialD[a],GaugeField,

SUNIndex[a]];

17 PseudoscalarResonance[a_]:= QuantumField[GaugeField,SUNIndex[a]];

18 PseudoscalarResonanceDer[a_,a_]:= QuantumField[PartialD[a],

GaugeField,SUNIndex[a]];

Similarly as above, the definitions of vector and axial-vector resonances in the antisym-
metric tensor formalism are following.

19 VectorResonance[m_,n_,a_]:= QuantumField[GaugeField,

LorentzIndex[m],LorentzIndex[n],SUNIndex[a]];

20 VectorResonanceDer[r_,m_,n_,a_]:= QuantumField[PartialD[r],

GaugeField,LorentzIndex[m],LorentzIndex[n],SUNIndex[a]];

21 AxialResonance[m_,n_,a_]:= QuantumField[GaugeField,LorentzIndex[m],

LorentzIndex[n],SUNIndex[a]];

22 AxialResonanceDer[r_,m_,n_,a_]:= QuantumField[PartialD[r],

GaugeField,LorentzIndex[m],LorentzIndex[n],SUNIndex[a]];

The resonances in the vector formalism takes the form

23 AxialResonanceVecForm[m_,a_]:=QuantumField[GaugeField,

LorentzIndex[m],SUNIndex[a]];
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24 VectorResonanceVecForm[m_,a_]:=QuantumField[GaugeField,

LorentzIndex[m],SUNIndex[a]];

25 AxialResonanceVecFormDer[r_,m_,a_]:=QuantumField[PartialD[r],

GaugeField,LorentzIndex[m],SUNIndex[a]];

26 VectorResonanceVecFormDer[r_,m_,a_]:=QuantumField[PartialD[r],

GaugeField,LorentzIndex[m],SUNIndex[a]];

Now it is possible to construct all kinds of fields and the chiral operators. Simply,
only by using FeynRule we can exchange a given object for its Feynman rule as we
have explained in Appendix D. We now present the implementation of the chiral op-
erators expanded only into their first term. We also define their first derivatives. The
designation of the functions fully coincides with their real meaning.

27 uAxial[m_,a_,n_,b_,p_]:=2 (-I)FeynRule[AxialSource[m,a],

{AxialSource[n,b][p]}]SUNT[SUNIndex[a]];

28 uPseudoscalar[m_,a_,b_,p_]:=-2/F (-I)FeynRule[PseudoscalarDer[m,a],

{Pseudoscalar[b][p]}]SUNT[SUNIndex[a]];

29 hAxial[m_,n_,a_,a_,b_,p_]:=2((-I)FeynRule[AxialSourceDer[m,n,a],

{AxialSource[a,b][p]}]+(-I)FeynRule[AxialSourceDer[n,m,a],

{AxialSource[a,b][p]}])SUNT[SUNIndex[a]];

30 hPseudoscalar[m_,n_,a_,b_,p_]:=-4/F (-I)FeynRule[

PseudoscalarDerDer[m,n,a],{Pseudoscalar[b][p]}]SUNT[SUNIndex[a]];

31 hDerAxial[c_,m_,n_,a_,a_,b_,p_]:=2((-I)FeynRule[

AxialSourceDerDer[c,m,n,a],{AxialSource[a,b][p]}]+(-I)FeynRule[

AxialSourceDerDer[c,n,m,a],{AxialSource[a,b][p]}])

SUNT[SUNIndex[a]];

32 hDerPseudoscalar[c_,m_,n_,a_,b_,p_]:=-4/F (-I)FeynRule[

PseudoscalarDerDerDer[c,m,n,a],{Pseudoscalar[b][p]}]

SUNT[SUNIndex[a]];

33 f-[m_,n_,a_,a_,b_,p_]:=-2((-I)FeynRule[AxialSourceDer[m,n,a],

AxialSource[a,b][p]]-(-I)FeynRule[AxialSourceDer[n,m,a],

AxialSource[a,b][p]])SUNT[SUNIndex[a]];

34 fDer-[c_,m_,n_,a_,a_,b_,p_]:=-2((-I)FeynRule[

AxialSourceDerDer[c,m,n,a],{AxialSource[a,b][p]}]-(-I)FeynRule[

AxialSourceDerDer[c,n,m,a],{AxialSource[a,b][p]}])

SUNT[SUNIndex[a]];

35 f+[m_,n_,a_,a_,b_,p_]:=2((-I)FeynRule[VectorSourceDer[m,n,a],

{VectorSource[a,b][p]}]-(-I)FeynRule[VectorSourceDer[n,m,a],

{VectorSource[a,b][p]}])SUNT[SUNIndex[a]];

36 fDer+[c_,m_,n_,a_,a_,b_,p_]:=2((-I)FeynRule[

VectorSourceDerDer[c,m,n,a],{VectorSource[a,b][p]}]-(-I)FeynRule[

VectorSourceDerDer[c,n,m,a],{VectorSource[a,b][p]}])

SUNT[SUNIndex[a]];

37 q-[a_,b_,p_]:=4I B0(-I)FeynRule[PseudoscalarSource[a],

{PseudoscalarSource[b][p]}]SUNT[SUNIndex[a]];
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38 qDer-[a_,a_,b_,p_]:=4I B0(-I)FeynRule[

PseudoscalarSourceDer[a,a],{PseudoscalarSource[b][p]}]

SUNT[SUNIndex[a]];

39 q+[a_,b_,p_]:=4B0(-I)FeynRule[ScalarSource[a],{ScalarSource[b][p]}]

SUNT[SUNIndex[a]];

40 qDer+[a_,a_,b_,p_]:=4B0(-I)FeynRule[ScalarSourceDer[a,a],

{ScalarSource[b][p]}]SUNT[SUNIndex[a]];

For our convenience, we also introduce definitions for the pseudoscalars and individual
external sources:

41 axial[m_,a_,n_,b_,p_]:=(-I)FeynRule[AxialSource[m,a],

{AxialSource[n,b][p]}]SUNT[SUNIndex[a]];

42 axialDer[m_,n_,a_,a_,b_,p_]:=(-I)FeynRule[AxialSourceDer[m,n,a],

{AxialSource[a,b][p]}]SUNT[SUNIndex[a]];

43 vector[m_,a_,n_,b_,p_]:=(-I)FeynRule[AxialSource[m,a],

{AxialSource[n,b][p]}]SUNT[SUNIndex[a]];

44 vectorDer[m_,n_,a_,a_,b_,p_]:=(-I)FeynRule[AxialSourceDer[m,n,a],

{AxialSource[a,b][p]}]SUNT[SUNIndex[a]];

45 phi[a_,b_,p_]:=(-I)FeynRule[Pseudoscalar[a],{Pseudoscalar[b][p]}]

SUNT[SUNIndex[a]]Sqrt[2];

46 phiDer[m_,a_,b_,p_]:=(-I)FeynRule[PseudoscalarDer[m,a],

{Pseudoscalar[b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

47 pSource[a_,b_,p_]:=(-I)FeynRule[PseudoscalarSource[a],

{PseudoscalarSource[b][p]}]SUNT[SUNIndex[a]];

48 pSourceDer[m_,a_,b_,p_]:=(-I)FeynRule[PseudoscalarSourceDer[m,a],

{PseudoscalarSource[b][p]}]SUNT[SUNIndex[a]];

49 sSource[a_,b_,p_]:=(-I)FeynRule[ScalarSource[a],

{ScalarSource[b][p]}]SUNT[SUNIndex[a]];

50 sSourceDer[m_,a_,b_,p_]:=(-I)FeynRule[ScalarSourceDer[m,a],

{ScalarSource[b][p]}]SUNT[SUNIndex[a]];

Resonances in the antisymmetric tensor formalism are defined as follows.

51 VectorFRule[m_,n_,a_,a_,b_,b_,p_]:=(-I) 1/2 (FeynRule[

VectorResonance[m,n,a],VectorResonance[a,b,b][p]]-FeynRule[

VectorResonance[n,m,a],VectorResonance[a,b,b][p]]);

52 VectorFRuleDer[r_,m_,n_,a_,a_,b_,b_,p_]:=(-I) 1/2 (FeynRule[

VectorResonanceDer[r, m,n,a],VectorResonance[a,b,b][p]]-FeynRule[

VectorResonanceDer[r, n,m,a],VectorResonance[a,b,b][p]]);

53 AxialFRule[m_,n_,a_,a_,b_,b_,p_]:=(-I) 1/2 (FeynRule[

AxialResonance[m,n,a],AxialResonance[a,b,b][p]]-FeynRule[

AxialResonance[n,m,a],AxialResonance[a,b,b][p]]);
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54 AxialFRuleDer[r_,m_,n_,a_,a_,b_,b_,p_]:=(-I) 1/2 (FeynRule[

AxialResonanceDer[r, m,n,a],AxialResonance[a,b,b][p]]-FeynRule[

AxialResonanceDer[r, n,m,a],AxialResonance[a,b,b][p]]);

55 VectorR[m_,n_,a_,a_,b_,b_,p_]:=VectorFRule[m,n,a,a,b,b,p]

SUNT[SUNIndex[a]]Sqrt[2];

56 VectorRDer[r_,m_,n_,a_,a_,b_,b_,p_]:=VectorFRuleDer[r,m,n,a,a,b,b,p]

SUNT[SUNIndex[a]]Sqrt[2];

57 AxialR[m_,n_,a_,a_,b_,b_,p_]:=AxialFRule[m,n,a,a,b,b,p]

SUNT[SUNIndex[a]]Sqrt[2];

58 AxialRDer[r_,m_,n_,a_,a_,b_,b_,p_]:=AxialFRuleDer[r,m,n,a,a,b,b,p]

SUNT[SUNIndex[a]]Sqrt[2];

59 ScalarR[a_,b_,p_]:=(-I)FeynRule[ScalarResonance[a],

{ScalarResonance[b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

60 ScalarRDer[a_,a_,b_,p_]:=(-I)FeynRule[ScalarResonanceDer[a,a],

{ScalarResonance[b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

61 PseudoscalarR[a_,b_,p_]:=(-I)FeynRule[PseudoscalarResonance[a],

{PseudoscalarResonance[b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

62 PseudoscalarRDer[a_,a_,b_,p_]:=(-I)FeynRule[

PseudoscalarResonanceDer[a,a],{PseudoscalarResonance[b][p]}]

SUNT[SUNIndex[a]]Sqrt[2];

On the other hand, resonances in the vector formalism take the forms

63 AxialResonanceVecFormFRule[m_,a_,n_,b_,p_]:=(-I)FeynRule[

AxialSource[m,a],{AxialSource[n,b][p]}];

64 VectorResonanceVecFormFRule[m_,a_,n_,b_,p_]:=(-I)FeynRule[

VectorSource[m,a],{VectorSource[n,b][p]}];

65 AxialResonanceVecFormDerFRule[r_,m_,a_,n_,b_,p_]:=(-I)FeynRule[

AxialSourceDer[r,m,a],{AxialSource[n,b][p]}];

66 VectorResonanceVecFormDerFRule[

r_,m_,a_,n_,b_,p_]:=(-I)FeynRule[VectorSourceDer[r,m,a],

{VectorSource[n,b][p]}];

67 VectorR1VecForm[m_,a_,n_,b_,p_]:=(-I)FeynRule[VectorSource[m,a],

{VectorSource[n,b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

68 AxialR1VecForm[m_,a_,n_,b_,p_]:=(-I)FeynRule[AxialSource[m,a],

{AxialSource[n,b][p]}]SUNT[SUNIndex[a]]Sqrt[2];

69 VectorR2VecForm[m_,n_,a_,a_,b_,p_]:=(-I)(FeynRule[

VectorSourceDer[m,n,a],{VectorSource[a,b][p]}]-FeynRule[

VectorSourceDer[n, m,a],{VectorSource[a,b][p]}])SUNT[SUNIndex[a]]

Sqrt[2];

70 AxialR2VecForm[m_,n_,a_,a_,b_,p_]:=(-I)(FeynRule[

AxialSourceDer[m,n,a],{AxialSource[a, b][p]}]-FeynRule[

AxialSourceDer[n,m,a],{AxialSource[a,b][p]}])SUNT[SUNIndex[a]]

Sqrt[2];
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To summarize this section, we present here the table in which the commands that one
explicitly uses in our code are shown.

Command Chiral operator

uAxial[m,a,n,b,p] (2.28)
uPseudoscalar[m,a,b,p] (2.28)
hAxial[m,n,a,a,b,p] (2.29)
hPseudoscalar[m,n,a,b,p] (2.29)
hDerAxial[r,m,n,a,a,b,p]

hDerPseudoscalar[r,m,n,a,b,p]

f-[m,n,a,a,b,p] (2.33)
fDer-[r,m,n,a,a,b,p]

f+[m,n,a,a,b,p] (2.32)
fDer+[r,m,n,a,a,b,p]

q-[a,b,p] (2.31)
qDer-[a,a,b,p]

q+[a,b,p] (2.30)
qDer+[a,a,b,p]

Command External source

axial[m,a,n,b,p] (1.37)
axialDer[m,n,a,a,b,p]

vector[m,a,n,b,p] (1.37)
vectorDer[m,n,a,a,b,p]

phi[a,b,p] (2.6)
phiDer[m,a,b,p]

pSource[a,b,p] (1.37)
pSourceDer[m,a,b,p]

sSource[a,b,p] (1.37)
sSourceDer[m,a,b,p]

Command Resonance field

VectorR[m,n,a,a,b,b,p] (1.27)
VectorRDer[r,m,n,a,a,b,b,p]

AxialR[m,n,a,a,b,b,p] (1.28)
AxialRDer[r,m,n,a,a,b,b,p]

ScalarR[a,b,p] (1.31)
ScalarRDer[a,a,b,p]

PseudoscalarR[a,b,p] (1.32)
PseudoscalarRDer[a,a,b,p]

VectorR1VecForm[m,a,a,b,p] (2.57)
VectorR2VecForm[r,m,a,a,b,p] (2.58)
AxialR1VecForm[m,a,a,b,p] (2.57)
AxialR2VecForm[r,m,a,a,b,p] (2.58)

Table E.1: Chiral operators, pseudoscalar fields, external sources and resonances de-
fined in the Mercury code.
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E.2 Implementation of propagators

The definitions for the propagators are as follows.

71 PropagatorVectorFormVectorR[p_,m_,n_,a_,b_]:=

-I/(ScalarProduct[p]-MV^2)

(MetricTensor[m,n]-(FourVector[p,m]FourVector[p,n])/MV^2)

SUNDelta[SUNIndex[a],SUNIndex[b]];

72 PropagatorVectorFormAxialR[p_,m_,n_,a_,b_]:=

-I/(ScalarProduct[p]-MA^2)

(MetricTensor[m,n]-(FourVector[p,m]FourVector[p,n])/MA^2)

SUNDelta[SUNIndex[a],SUNIndex[b]];

73 PropagatorTensorFormVectorR[p_,m_,n_,a_,b_,a_,b_]:=

-I/(MV^2(ScalarProduct[p]-MV^2))

((MV^2-ScalarProduct[p])MetricTensor[m,a]MetricTensor[n,b]

+MetricTensor[m,a]FourVector[p,n]FourVector[p,b]

-MetricTensor[m,b]FourVector[p,n]FourVector[p,a]

-(MV^2-ScalarProduct[p])MetricTensor[n,a]MetricTensor[m,b]

-MetricTensor[n,a]FourVector[p,m]FourVector[p,b]

+MetricTensor[n,b]FourVector[p,m]FourVector[p,a])

SUNDelta[SUNIndex[a],SUNIndex[b]];

74 PropagatorTensorFormAxialR[p_,m_,n_,a_,b_,a_,b_]:=

-I/(MA^2(ScalarProduct[p]-MA^2))

((MA^2-ScalarProduct[p])MetricTensor[m,a]MetricTensor[n,b]

+MetricTensor[m,a]FourVector[p,n]FourVector[p,b]

-MetricTensor[m,b]FourVector[p,n]FourVector[p,a]

-(MA^2-ScalarProduct[p])MetricTensor[n,a]MetricTensor[m,b]

-MetricTensor[n,a]FourVector[p,m]FourVector[p,b]

+MetricTensor[n,b]FourVector[p,m]FourVector[p,a])

SUNDelta[SUNIndex[a],SUNIndex[b]];

75 PropagatorPseudoscalar[p_,a_,b_]:=I/ScalarProduct[p]

SUNDelta[SUNIndex[a],SUNIndex[b]];

76 PropagatorPseudoscalarR[p_,a_,b_]:=I/(ScalarProduct[p]-MP^2)

SUNDelta[SUNIndex[a],SUNIndex[b]];

As we have already used subdiagrams in Chapters 4-7, we now present definitions for
them in our code.

77 SubDiag1[p_,m_,a_,b_]:=(I F)/ScalarProduct[p] FourVector[p,m]

SUNDelta[SUNIndex[a],SUNIndex[b]];

78 SubDiag2[p_,m_,a_,b_,a_,b_]:=(I FA)/(ScalarProduct[p]-MA^2)

(FourVector[p,a]MetricTensor[m,b]-FourVector[p,b]MetricTensor[m,a])

SUNDelta[SUNIndex[a],SUNIndex[b]];

79 SubDiag2VecForm[p_,m_,a_,a_,b_]:=fA(-Pair[LorentzIndex[a],

Momentum[p]]Pair[LorentzIndex[m],Momentum[p]]+Pair[LorentzIndex[a],

LorentzIndex[m]]Pair[Momentum[p],Momentum[p]])SUNDelta[SUNIndex[a],

SUNIndex[b]])/(Pair[Momentum[p],Momentum[p]]-MA^2);
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80 SubDiag3[p_,m_,a_,b_,a_,b_]:=(-I FV)/(ScalarProduct[p]-MV^2)

(FourVector[p,a]MetricTensor[m,b]-FourVector[p,b]MetricTensor[m,a])

SUNDelta[SUNIndex[a],SUNIndex[b]];

81 SubDiag3VecForm[p_,m_,a_,a_,b_]:=fV(Pair[LorentzIndex[a],

Momentum[p]]Pair[LorentzIndex[m],Momentum[p]]-Pair[LorentzIndex[a],

LorentzIndex[m]]Pair[Momentum[p],Momentum[p]])SUNDelta[SUNIndex[a],

SUNIndex[b]])/(Pair[Momentum[p],Momentum[p]]-MV^2);

82 SubDiag4[p_,a_,b_]:=(-F B0)/ScalarProduct[p]

SUNDelta[SUNIndex[a],SUNIndex[b]];

83 SubDiag5[p_,a_,b_]:=(2Sqrt[2]B0 dm)/(ScalarProduct[p]-MP^2)

SUNDelta[SUNIndex[a],SUNIndex[b]];

84 SubDiag6[p_,a_,b_]:=(-2Sqrt[2]B0 cm)/(ScalarProduct[p]-MS^2)

SUNDelta[SUNIndex[a],SUNIndex[b]];

At the end of this section, we present a table that consists of the propagators and
subdiagrams defined in the code.

Command Vertex

PropagatorTensorFormVectorR[p,m,n,a,b,a,b] (4.33)
PropagatorTensorFormAxialR[p,m,n,a,b,a,b] (4.33)
PropagatorVectorFormVectorR[p,m,n,a,b] (6.13)
PropagatorVectorFormAxialR[p,m,n,a,b] (6.13)
PropagatorPseudoscalar[p,a,b] (4.34)
PropagatorPseudoscalarR[p,a,b] (6.11)
PropagatorScalarR[p,a,b] (6.12)

Table E.2: Propagators defined in the Mercury algorithm.

Command Vertex

SubDiag1[p,m,a,b] (4.48)
SubDiag2[p,m,a,b,a,b] (4.50)
SubDiag2VecForm[p,m,a,a,b]

SubDiag3[p,m,a,b,a,b] (4.52)
SubDiag3VecForm[p,m,a,a,b] (6.14)
SubDiag4[p,a,b] (6.15)
SubDiag5[p,a,b] (6.16)
SubDiag6[p,a,b]

Table E.3: Subdiagrams defined in the Mercury algorithm.
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E.3 Procedures and rules

Finally, we also present the procedures and rules that we have used, mostly for a simpler
form of strictures generated by the traces of products of the Gell-Mann matrices. These
definitions are based on the identities (A.15) and (A.16)-(A.17).

85 DFJacobiRule=

SUND[SUNIndex[a_],SUNIndex[b_],SUNIndex[k_]]

SUNF[SUNIndex[k_],SUNIndex[c_],SUNIndex[l_]]:>

-SUND[SUNIndex[b],SUNIndex[c],SUNIndex[k]]

SUNF[SUNIndex[k],SUNIndex[a],SUNIndex[l]]

-SUND[SUNIndex[c],SUNIndex[a],SUNIndex[k]]

SUNF[SUNIndex[k],SUNIndex[b],SUNIndex[l]];

86 DDSumRule=

SUND[SUNIndex[a_],SUNIndex[b_],SUNIndex[k_]]

SUND[SUNIndex[k_],SUNIndex[c_],SUNIndex[l_]]:>

1/3 (SUNDelta[SUNIndex[a],SUNIndex[c]]

SUNDelta[SUNIndex[b],SUNIndex[l]]

+SUNDelta[SUNIndex[a],SUNIndex[l]]

SUNDelta[SUNIndex[b],SUNIndex[c]]

-SUNDelta[SUNIndex[a],SUNIndex[b]]

SUNDelta[SUNIndex[c],SUNIndex[l]]

+SUNF[SUNIndex[a],SUNIndex[c],SUNIndex[k]]

SUNF[SUNIndex[b],SUNIndex[l],SUNIndex[k]]

+SUNF[SUNIndex[a],SUNIndex[l],SUNIndex[k]]

SUNF[SUNIndex[b],SUNIndex[c],SUNIndex[k]]);

87 FFSumRule=

SUNF[SUNIndex[a_],SUNIndex[b_],SUNIndex[k_]]

SUNF[SUNIndex[k_],SUNIndex[c_],SUNIndex[l_]]:>

2/3 (SUNDelta[SUNIndex[a],SUNIndex[c]]

SUNDelta[SUNIndex[b],SUNIndex[l]]

-SUNDelta[SUNIndex[a],SUNIndex[l]]

SUNDelta[SUNIndex[b],SUNIndex[c]])

+SUND[SUNIndex[a],SUNIndex[c],SUNIndex[k]]

SUND[SUNIndex[b],SUNIndex[l],SUNIndex[k]]

-SUND[SUNIndex[a],SUNIndex[l],SUNIndex[k]]

SUND[SUNIndex[b],SUNIndex[c],SUNIndex[k]];

The following rule represents the expressions (3.6)-(3.8):

88 Epsilon3Rule=

Eps[LorentzIndex[a_],LorentzIndex[b_],Momentum[p],Momentum[r]]:>

-Eps[LorentzIndex[a],LorentzIndex[b],Momentum[p],Momentum[q]],

Eps[LorentzIndex[a_],LorentzIndex[b_],Momentum[q],Momentum[r]]:>

Eps[LorentzIndex[a],LorentzIndex[b],Momentum[p],Momentum[q]],

Eps[LorentzIndex[a_],Momentum[p],Momentum[q],Momentum[r]]:>0;
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E.4 Vertex functions

For comfort, we have defined the following vertex functions that already represent
Feynman rules for the relevant vertices. The following functions are defines in the file

02-mercury-vertices.nb

An important fact to mention is that all vertex functions below are defined in the full
agreement with the designation of the vertices shown in Appendix D. Also, when it is
necessary to explicitly emphasize the demand on the 4-momenta conservation, we use
−p− q instead of r.

Command Vertex

ChPTp2Vertex1[m,a,p,n,b,q] (D.24)
ChPTp2Vertex2[m,a,p,b,-p] (D.26)
ChPTp2Vertex3[m,a,p,n,b,q,c,-p-q] (D.28)
ChPTp2Vertex4[m,a,p,b,q,c,r] (D.30)
ChPTp2Vertex8[a,p,b,-p] (D.32)
ChPTp2Vertex9[a,p,b,q,c,r] (D.34)

Table E.4: Vertex functions for the χPT vertices up to O(p2).

Command Vertex

ChPTp4WZWVertex1[m,a,p,n,b,q,c,r] (D.71)
ChPTp4WZWVertex2[m,a,p,n,b,q,c,r] (D.73)

Table E.5: Vertex functions for the Wess-Zumino-Witten χPT vertices up to O(p4).

Command Vertex

RchTp6VectorVertex1[m,a,p,a,b,-p] (D.77)
RchTp6VectorVertex2[m,a,p,n,b,q,a,c,r] (D.79)
RchTp6VectorVertex3[m,a,p,a,b,q,c,r] (D.81)
RchTp6VectorVertex4[a,a,p,b,q,c,r] (D.83)
RchTp6VectorVertex5[m,a,p,b,q,a,c,r] (D.85)
RchTp6VectorVertex6[a,p,a,b,q,c,r] (D.87)
RchTp6VectorVertex11[m,a,p,n,b,q,a,c,r] (D.89)
RchTp6VectorVertex12[m,a,p,a,b,q,c,r] (D.91)
RchTp6VectorVertex13[m,a,p,a,b,-p] (D.93)
RchTp6VectorVertex14[m,a,p,n,b,q,a,c,r] (D.95)
RchTp6VectorVertex15[m,a,p,a,b,q,c,r] (D.97)
RchTp6VectorVertex20[m,a,p,n,b,q,a,c,r] (D.99)
RchTp6VectorVertex21[m,a,p,a,b,q,c,r] (D.101)

Table E.6: Vertex functions for the RχT vertices in the vector formalism up to O(p6).

Command Vertex

RchTp4TensorVertex1[m,a,p,a,b,b,-p] (D.107)
RchTp4TensorVertex2[m,a,p,n,b,q,a,b,c,-p-q] (D.109)
RchTp4TensorVertex3[m,a,p,n,b,q,a,b,c,-p-q] (D.111)
RchTp4TensorVertex4[m,a,p,a,b,b,q,c,r] (D.113)
RchTp4TensorVertex7[a,b,a,p,b,q,c,r] (D.115)
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RchTp4TensorVertex8[m,a,p,a,b,b,-p] (D.117)
RchTp4TensorVertex9[m,a,p,n,b,q,a,b,c,-p-q] (D.119)
RchTp4TensorVertex10[m,a,p,a,b,b,q,c,r] (D.121)
RchTp4TensorVertex14[a,p,b,q,c,r] (D.123)
RchTp4TensorVertex15[m,a,p,n,b,q,c,r] (D.125)
RchTp4TensorVertex16[m,a,p,b,q,c,r] (D.127)
RchTp4TensorVertex19[a,p,b,-p] (D.129)
RchTp4TensorVertex20[a,p,b,q,c,r] (D.131)
RchTp4TensorVertex22[a,p,b,-p] (D.133)
RchTp4TensorVertex23[a,p,b,q,c,r] (D.135)

Table E.7: Vertex functions for the RχT vertices in the antisymmetric tensor formalism
up to O(p4).

Command Vertex

RchTp6TensorVertex5[m,a,p,b,q,a,b,c,r] (D.140)
RchTp6TensorVertex6[a,p,b,q,a,b,c,r] (D.142)
RchTp6TensorVertex10[m,a,p,a,b,b,q,r,c,r] (D.151)
RchTp6TensorVertex11[m,a,p,a,b,b,q,c,r] (D.158)
RchTp6TensorVertex12[m,a,p,a,b,b,q,c,r] (D.160)
RchTp6TensorVertex18[m,a,p,n,b,q,a,b,c,r] (D.169)
RchTp6TensorVertex19[m,a,p,a,b,b,q,c,r] (D.178)
RchTp6TensorVertex20[a,b,a,p,b,q,c,r] (D.180)
RchTp6TensorVertex24[m,a,p,b,q,a,b,c,r] (D.185)
RchTp6TensorVertex25[a,p,a,b,b,q,c,r] (D.187)
RchTp6TensorVertex29[m,a,p,b,q,a,b,c,r] (D.189)
RchTp6TensorVertex30[m,a,p,n,b,q,c,r] (D.191)
RchTp6TensorVertex39[m,a,p,n,b,q,c,r] (D.193)
RchTp6TensorVertex43[m,a,p,n,b,q,c,r] (D.195)
RchTp6TensorVertex44[a,p,a,b,b,q,g,d,c,r] (D.197)
RchTp6TensorVertex45[m,a,p,a,b,b,q,g,d,c,r] (D.202)
RchTp6TensorVertex46[a,p,a,b,b,q,g,d,c,r] (D.207)
RchTp6TensorVertex47[a,p,a,b,b,q,g,d,c,r] (D.209)
RchTp6TensorVertex48[m,a,p,a,b,b,q,g,d,c,r] (D.214)
RchTp6TensorVertex49[a,p,a,b,b,q,g,d,c,r] (D.219)
RchTp6TensorVertex50[m,a,p,a,b,b,q,c,r] (D.221)
RchTp6TensorVertex54[m,a,p,a,b,b,q,c,r] (D.226)
RchTp6TensorVertex55[a,b,a,p,b,q,c,r] (D.228)
RchTp6TensorVertex59[m,a,p,a,b,b,q,g,d,c,r] (D.230)
RchTp6TensorVertex60[a,p,a,b,b,q,g,d,c,r] (D.232)
RchTp6TensorVertex61[m,a,p,a,b,b,q,c,r] (D.237)
RchTp6TensorVertex62[a,p,a,b,b,q,c,r] (D.239)
RchTp6TensorVertex66[m,a,p,a,b,b,q,c,r] (D.241)
RchTp6TensorVertex67[a,b,a,p,g,d,b,q,c,r] (D.243)
RchTp6TensorVertex68[a,b,a,p,g,d,b,q,c,r] (D.245)
RchTp6TensorVertex69[a,b,a,p,g,d,b,q,c,r] (D.247)

Table E.8: Vertex functions for the RχT vertices in the antisymmetric tensor formalism
up to O(p6).
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E.5 Source code for Green functions

To conclude this chapter, we show here the source code for the calculations of all five
nontrivial Green functions in the odd-intrinsic parity sector. The individual files can
be found in the attachment:

03-vvp-rcht-tensor-p6.nb

04-vas-rcht-tensor-p6.nb

05-aap-rcht-tensor-p6.nb

06-vva-rcht-tensor-p6.nb

07-aaa-rcht-tensor-p6.nb

V V P Green function in the antisymmetric tensor formalism up to O(p6)

1 I SUNSimplify[Contract[RchTp6TensorVertex12[m,a,p,a,b,d,q,c,r]

SubDiag3[q,n,a,b,b,d]]]

2 I SUNSimplify[Contract[RchTp6TensorVertex12[n,b,q,a,b,d,p,c,r]

SubDiag3[p,m,a,b,a,d]]]

3 I SUNSimplify[Contract[RchTp6TensorVertex39[m,a,p,n,b,q,d,r]

SubDiag5[r,c,d]]]

4 I SUNSimplify[Contract[RchTp6TensorVertex11[m,a,p,a,b,d,q,e,r]

SubDiag3[q,n,a,b,b,d]SubDiag4[r,c,e]]]

5 I SUNSimplify[Contract[RchTp6TensorVertex11[n,b,q,a,b,d,p,e,r]

SubDiag3[p,m,a,b,a,d]SubDiag4[r,c,e]]]

6 I SUNSimplify[Contract[RchTp6TensorVertex66[m,a,p,a,b,d,q,e,r]

SubDiag3[q,n,a,b,b,d]SubDiag5[r,c,e]]]

7 I SUNSimplify[Contract[RchTp6TensorVertex66[n,b,q,a,b,d,p,e,r]

SubDiag3[p,m,a,b,a,d]SubDiag5[r,c,e]]]

8 I SUNSimplify[Contract[RchTp6TensorVertex44[c,r,a,b,d,p,g,d,e,q]

SubDiag3[q,n,g,d,b,e]SubDiag3[p,m,a,b,a,d]]]

9 I SUNSimplify[Contract[RchTp6TensorVertex46[f,r,a,b,d,p,g,d,e,q]

SubDiag3[p,m,a,b,a,d]SubDiag3[q,n,g,d,b,e]SubDiag4[r,c,f]]]

10 I SUNSimplify[Contract[RchTp6TensorVertex67[a,b,d,p,g,d,e,q,f,r]

SubDiag3[p,m,a,b,a,d]SubDiag3[q,n,g,d,b,e]SubDiag5[r,c,f]]]

V AS Green function in the antisymmetric tensor formalism up to O(p6)

1 I SUNSimplify[Contract[RchTp6TensorVertex5[n,b,q,c,r,a,b,d,p]

SubDiag3[p,m,a,b,a,d]]]

2 I SUNSimplify[Contract[RchTp6TensorVertex29[m,a,p,c,r,a,b,d,q]

SubDiag2[q,n,a,b,b,d]]]

3 I SUNSimplify[Contract[RchTp6TensorVertex43[n,b,q,m,a,p,d,r]

SubDiag6[r,c,d]]]
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4 I SUNSimplify[Contract[RchTp6TensorVertex6[c,r,e,q,a,b,d,p]

SubDiag1[q,n,b,e]SubDiag3[p,m,a,b,a,d]]]

5 I SUNSimplify[Contract[RchTp6TensorVertex50[m,a,p,a,b,d,q,e,r]

SubDiag2[q,n,a,b,d,b]SubDiag6[r,c,e]]]

6 I SUNSimplify[Contract[RchTp6TensorVertex54[n,b,q,a,b,d,p,e,r]

SubDiag3[p,m,a,b,a,d]SubDiag6[r,c,e]]]

7 I SUNSimplify[Contract[RchTp6TensorVertex60[c,r,g,d,e,q,a,b,d,p]

SubDiag2[q,n,g,d,b,e]SubDiag3[p,m,a,b,a,d]]]

8 I SUNSimplify[Contract[RchTp6TensorVertex55[a,b,d,p,f,r,e,q]

SubDiag1[q,n,b,e]SubDiag3[p,m,a,b,a,d]SubDiag6[r,c,f]]]

9 I SUNSimplify[Contract[RchTp6TensorVertex68[a,b,d,p,g,d,e,q,f,r]

SubDiag2[q,n,g,d,b,e]SubDiag3[p,m,a,b,a,d]SubDiag6[r,c,f]]]

AAP Green function in the antisymmetric tensor formalism up to O(p6)

1 I SUNSimplify[Contract[RchTp6TensorVertex24[m,a,p,c,r,a,b,d,q]

SubDiag2[q,n,a,b,b,d]]]

2 I SUNSimplify[Contract[RchTp6TensorVertex24[n,b,q,c,r,a,b,d,p]

SubDiag2[p,m,a,b,a,d]]]

3 I SUNSimplify[Contract[RchTp6TensorVertex30[m,a,p,n,b,q,d,r]

SubDiag5[r,c,d]]]

4 I SUNSimplify[Contract[RchTp6TensorVertex19[m,a,p,a,b,d,q,e,r]

SubDiag2[q,n,a,b,b,d]SubDiag4[r,c,e]]]

5 I SUNSimplify[Contract[RchTp6TensorVertex19[n,b,q,a,b,d,p,e,r]

SubDiag2[p,m,a,b,a,d]SubDiag4[r,c,e]]]

6 I SUNSimplify[Contract[RchTp6TensorVertex25[c,r,a,b,d,p,e,q]

SubDiag1[q,n,b,e]SubDiag2[p,m,a,b,a,d]]]

7 I SUNSimplify[Contract[RchTp6TensorVertex25[c,r,a,b,d,q,e,p]

SubDiag1[p,m,a,e]SubDiag2[q,n,a,b,b,d]]]

8 I SUNSimplify[Contract[RchTp6TensorVertex61[m,a,p,a,b,d,q,e,r]

SubDiag2[q,n,a,b,b,d]SubDiag5[r,c,e]]]

9 I SUNSimplify[Contract[RchTp6TensorVertex61[n,b,q,a,b,d,p,e,r]

SubDiag2[p,m,a,b,a,d]SubDiag5[r,c,e]]]

10 I SUNSimplify[Contract[RchTp6TensorVertex47[c,r,a,b,d,p,g,d,e,q]

SubDiag2[p,m,a,b,a,d]SubDiag2[q,n,g,d,b,e]]]

11 I SUNSimplify[Contract[RchTp6TensorVertex20[a,b,d,p,f,r,e,q]

SubDiag1[q,n,b,e]SubDiag2[p,m,a,b,a,d]SubDiag4[r,c,f]]]

12 I SUNSimplify[Contract[RchTp6TensorVertex20[a,b,d,q,f,r,e,p]

SubDiag1[p,m,a,e]SubDiag2[q,n,a,b,b,d]SubDiag4[r,c,f]]]

13 I SUNSimplify[Contract[RchTp6TensorVertex62[d,p,a,b,e,q,f,r]

SubDiag1[p,m,a,d]SubDiag2[q,n,a,b,b,e]SubDiag5[r,c,f]]]
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14 I SUNSimplify[Contract[RchTp6TensorVertex62[d, q,a,b,e,p,f,r]

SubDiag1[q,n,b,d]SubDiag2[p,m,a,b,a,e]SubDiag5[r,c,f]]]

15 I SUNSimplify[Contract[RchTp6TensorVertex49[f,r,a,b,d,p,g,d,e,q]

SubDiag2[p,m,a,b,a,d]SubDiag2[q,n,g,d,b,e]SubDiag4[r,c,f]]]

16 I SUNSimplify[Contract[RchTp6TensorVertex69[a,b,d,p,g,d,e,q,f,r]

SubDiag2[p,m,a,b,a,d]SubDiag2[q,n,g,d,b,e]SubDiag5[r,c,f]]]

V V A Green function in the antisymmetric tensor formalism up to O(p6)

1 SUNSimplify[Contract[RchTp6TensorVertex10[m,a,p,a,b,d,q,r,c,r]

SubDiag3[q,n,a,b,b,d]]]

2 SUNSimplify[Contract[RchTp6TensorVertex10[n,b,q,a,b,d,p,r,c,r]

SubDiag3[p,m,a,b,a,d]]]

3 SUNSimplify[Contract[RchTp6TensorVertex11[m,a,p,a,b,b,q,e,r]

SubDiag1[r,r,c,e]SubDiag3[q,n,a,b,b,d]]]

4 SUNSimplify[Contract[RchTp6TensorVertex11[n,b,q,a,b,d,p,e,r]

SubDiag1[r,r,c,e]SubDiag3[p,m,a,b,a,d]]]

5 SUNSimplify[Contract[RchTp6TensorVertex45[r,c,r,a,b,d,p,g,d,e,q]

SubDiag3[p,m,a,b,a,d]SubDiag3[q,n,g,d,b,e]]]

6 SUNSimplify[Contract[RchTp6TensorVertex46[f,r,a,b,d,p,g,d,e,q]

SubDiag1[r,r,c,f]SubDiag3[p,m,a,b,a,d]SubDiag3[q,n,g,d,b,e]]]

7 SUNSimplify[Contract[RchTp6TensorVertex59[m,a,p,a,b,d,q,g,d,e,r]

SubDiag2[r,r,g,d,c,e]SubDiag3[q,n,a,b,b,d]]]

8 SUNSimplify[Contract[RchTp6TensorVertex59[n,b,q,a,b,d,p,g,d,e,r]

SubDiag2[r,r,g,d,c,e]SubDiag3[p,m,a,b,a,d]]]

AAA Green function in the antisymmetric tensor formalism up to O(p6)

1 SUNSimplify[Contract[RchTp6TensorVertex18[m,a,p,n,b,q,a,b,d,r]

SubDiag2[r,r,a,b,c,d]]]

2 SUNSimplify[Contract[RchTp6TensorVertex18[m,a,p,r,c,r,a,b,d,q]

SubDiag2[q,n,a,b,b,d]]]

3 SUNSimplify[Contract[RchTp6TensorVertex18[n,b,q,r,c,r,a,b,d,p]

SubDiag2[p,m,a,b,a,d]]]

4 SUNSimplify[Contract[RchTp6TensorVertex19[m,a,p,a,b,d,q,e,r]

SubDiag1[r,r,c,e]SubDiag2[q,n,a,b,b,d]]]

5 SUNSimplify[Contract[RchTp6TensorVertex19[m,a,p,a,b,d,r,e,q]

SubDiag1[q,n,b,e]SubDiag2[r,r,a,b,c,d]]]

6 SUNSimplify[Contract[RchTp6TensorVertex19[n,b,q,a,b,d,p,e,r]

SubDiag1[r,r,c,e]SubDiag2[p,m,a,b,a,d]]]

7 SUNSimplify[Contract[RchTp6TensorVertex19[n,b,q,a,b,d,r,e,p]

SubDiag1[p,m,a,e]SubDiag2[r,r,a,b,c,d]]]
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8 SUNSimplify[Contract[RchTp6TensorVertex19[r,c,r,a,b,d,p,e,q]

SubDiag1[q,n,b,e]SubDiag2[p,m,a,b,a,d]]]

9 SUNSimplify[Contract[RchTp6TensorVertex19[r,c,r,a,b,d,q,e,p]

SubDiag1[p,m,a,e]SubDiag2[q,n,a,b,b,d]]]

10 SUNSimplify[Contract[RchTp6TensorVertex48[m,a,p,a,b,d,q,g,d,e,r]

SubDiag2[q,n,a,b,b,d]SubDiag2[r,r,g,d,c,e]]]

11 SUNSimplify[Contract[RchTp6TensorVertex48[n,b,q,a,b,d,p,g,d,e,r]

SubDiag2[p,m,a,b,a,d]SubDiag2[r,r,g,d,c,e]]]

12 SUNSimplify[Contract[RchTp6TensorVertex48[r,c,r,a,b,d,p,g,d,e,q]

SubDiag2[p,m,a,b,a,d]SubDiag2[q,n,g,d,b,e]]]

13 SUNSimplify[Contract[RchTp6TensorVertex49[f,p,a,b,d,q,g,d,e,r]

SubDiag1[p,m,a,f]SubDiag2[q,n,a,b,b,d]SubDiag2[r,r,g,d,c,e]]]

14 SUNSimplify[Contract[RchTp6TensorVertex49[f,q,a,b,d,p,g,d,e,r]

SubDiag1[q,n,b,f]SubDiag2[p,m,a,b,a,d]SubDiag2[r,r,g,d,c,e]]]

15 SUNSimplify[Contract[RchTp6TensorVertex49[f,r,a,b,d,p,g,d,e,q]

SubDiag1[r,r,c,f]SubDiag2[p,m,a,b,a,d]SubDiag2[q,n,g,d,b,e]]]
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