
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Marie Píchová

Application Server NG

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Pavel Jeºek, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2015

Acknowkedgments

Firstly, I would like to express my gratitude to my supervisor Mgr. Pavel Jeºek,
Ph.D. for his motivation to make this thesis better, for guiding me through the
academic formalities, for suggesting me better solutions, for steering me in the
right direction and for his patience with me.

Secondly, I would like to thank my partner Viliam Sabol for providing the
testing application and helping me with �nal tests and preparations. But most
importantly, for taking care of every day necessities so I could concentrate on the
thesis.

My thanks also goes to my mother for her patience with me postponing the
thesis several times, for not asking me questions about the thesis status and for
not disinheriting me in the whole process.

Lastly, I would like to thank my employer and especially my boss Tomá²
Marek for not burdening me with excessive amount of work and for allowing me
to take prolonged leaves of absence.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, July 31, 2015 Marie Píchová

Abstract

Title: Application Server NG
Author: Marie Píchová
Department: Department of Distributed and Dependable Systems
Supervisor: Mgr. Pavel Jeºek, Ph.D.
Abstract: This thesis focuses on a proprietary solution of application server

providing business process execution. An existing solution of such
application server is analyzed with the focus on business process
programmer experience. From the analysis is made a proposition
of a new solution, which implementation is the major part of this
thesis. The implementation uses technologies like: Microsoft .NET,
WCF, Oracle, ODP.NET, PostgreSQL, Npgsql and PostSharp.

Keywords: Application server, programming practices, asynchronous program-
ming, aspect programming, distributed transactions, .NET, WCF,
Oracle, PostgreSQL.

Abstrakt

Titul: Application Server NG
Autor: Marie Píchová
Katedra: Katedra distribuovaných a spolehlivých systém·
Vedoucí: Mgr. Pavel Jeºek, Ph.D.
Abstrakt: Tato práce se zabýva propietárním °e²ením aplika£ního serveru,

který umoº¬uje vykonávání podnikových proces·. Existující re²ení
takovéhoto serveru je analyzováno, kde hlavním zam¥°ením analýzy
byla jednoduchost vytvá°ení nových proces·. Z této analýzy pak
vychází návrh nového °e²ení, jehoº implementace tvo°í zásadní £ást
této práce. B¥hem implementace byli pouºity technologie jako:
Microsoft .NET, WCF, Oracle, ODP.NET, PostgreSQL, Npgsql a
PostSharp.

Klí£ová slova: Aplika£ní server, programovací praktiky, asychnronní pro-
gramování, aspektové programování, distribuované transakce,
.NET, WCF, Oracle, PostgreSQL.

Contents

1 Introduction 3

1.1 Enterprise Software . 3
1.2 TollNet Solution . 3
1.3 Billien . 4
1.4 Application Server . 6

1.4.1 Technologies and Platforms 7
1.4.2 Modules in General . 8
1.4.3 Core . 8
1.4.4 Modules in Detail . 10

1.5 Conclusion . 14

2 Motivation 15

2.1 Flaws of the Current Solution . 15
2.1.1 Pattern Repetition . 15
2.1.2 Code Duplication . 17
2.1.3 Error Handling . 17
2.1.4 Transaction Control . 18
2.1.5 Generated Code . 19
2.1.6 Asynchronous Pattern . 20
2.1.7 Bad Testability . 21
2.1.8 Framework Interfaces . 21
2.1.9 Logging . 22
2.1.10 Visual Studio Projects . 23

2.2 Problem Statement and Goals . 23

3 Analysis 25

3.1 Refactoring vs. Rewrite . 25
3.2 Application Server Components 26

3.2.1 Application Server Libraries 26
3.2.2 Services . 31
3.2.3 Core . 39
3.2.4 WCF . 50
3.2.5 Database . 54

4 Implementation 59

4.1 Application Server . 60
4.1.1 Core . 60
4.1.2 WCF Api . 72
4.1.3 Database Api . 75
4.1.4 Service and Task Api . 77
4.1.5 Tools . 78

4.2 Tooling . 89
4.2.1 Visual Studio Projects . 89
4.2.2 Application Server Installer 91
4.2.3 Administration Console . 91

1

5 Conclusion 93

5.1 Comparison . 93
5.2 Goals Achievement . 94
5.3 Future Work . 96

5.3.1 Bridge to Application Server 96

Bibliography 99

Appendices 105

A Application Server Installation 107

B Application Server Con�guration 111

C Administration Console Installation 113

D Administration Console Manual 115

2

1. Introduction

The term software covers wide variety of programs from applications for mobile
devices through thick client programs to web applications. The type of software
this thesis focuses on is called enterprise software.

1.1 Enterprise Software

Enterprise software is software which purpose is to serve an organization rather
than a single user. It is usually large-scale software whose main purpose is to
execute business processes. It may be in form of packaged enterprise solutions
like SAP's NetWeaver [1] or it may be custom-tailored system. This thesis will
discuss the latter one, i.e. custom-tailored enterprise software. Speci�cally, it will
concentrate on software for organizations providing billable public services such
as utility provision (gas, water, electricity) or telecommunications.

One of such custom-tailored enterprise solutions is product Billien created by
company TollNet a.s. It is developed on proprietary framework called Application
Server . The goal of this thesis is to analyze the existing solution, identify its �aws
and recognize its bene�ts, and create a next generation of similar framework with
the help of the newest technologies and programming practices.

Firstly, the existing solution will be described in the rest of this chapter [1
Introduction]. Then, it will be analyzed and its major �aws will be pointed out in
the next chapter [2 Motivation]. Finally, the new solution will be introduced and
its advantages and disadvantages will be summarized in the rest of the thesis.

1.2 TollNet Solution

Billien is a large-scale enterprise software. It is always delivered as a part of
a whole software package including user interface for monitoring, maintenance
and general work with the system as well as database storage for persisting the
system data. The whole solution represents three-layered architecture shown in
Figure 1.1.

����������	�
�����

�	��
�����

����
�����

Figure 1.1: Three-Layered Architecture

The purpose of layered architecture is to separate responsibilities and delegate

3

the work through the in-between layers rather than calling it directly. In other
words, the layers provide services to the higher ones while consume capabilities
of the lower ones. In the case of the three-layered architecture, the highest pre-
sentation layer communicates only with the middle, logical layer, which calls the
lowest, data layer. In the instance of TollNet solution, Billien itself represents the
middle, logical layer. Following Figure 1.2 illustrates how Billien �ts it the three-
layered architecture of TollNet Solution, where the presentation layer resides at
the left side of Billien and the data layer at the right side.

��������

��		��

��

Figure 1.2: TollNet Solution

Figure 1.2 not just illustrates three-layered architecture of the whole solution,
but it also hints, that there is more than one instance of Billien at the middle
layer. This is due to the requirement of scalability, where higher throughput and
lower latency is achieved by replicating Billien instances on multiple machines.
In order to appear as one Billien instance on the outside, the individual Billien
instances are interconnected and the requests are transparently passed from one
to another.

1.3 Billien

Billien currently targets two business types: road-tolling (Tolling Billien) and
utilities (Utility Billien). And since these two variants of Billien serve a similar
line of businesses, much of their functionality, especially general one like con�g-
uration, supervision, maintenance and user management, is shared. Obviously,
Application Server , the framework on which Tolling Billien and Utility Billien
are based, is shared as Figure 1.3 shows.

�������

�������

	
���
�

�������

�����

�������
����������

Figure 1.3: Billien Project Level Architecture

Tolling Billien, Utility Billien and any other possible future version of Billien
are called projects and the functionality common for the two of them is simply

4

called Shared. Furthermore, what functionality belongs where is decided by a
simple rule: anything common for at least two di�erent projects is placed into
Shared, the rest to its corresponding project. Therefore, functionality which is
not relevant to some of the concrete projects may be placed in Shared. Because
of that, Shared must be divided into smaller self-contained units called modules,
which may or may not be used by a concrete project. To keep the rest of the
solution consistent, the concrete Billien projects are divided into modules as well.
However, since the functionality of a speci�c project is not general, the module
boundaries are not as strict as in Shared, hence the project modules are not self-
contained. In fact, the project modules might be intertwined among themselves
and dependent on each other. Thus, it may not be very clear what functionality
belongs where, making the modules at the project level only sets of functionality
arranged by their domain of interest. The detailed organization of projects and
their modules is captured in Figure 1.4.

�������

�������

	
���
�

�������

�����

�������
����������

����������
���

���������
������������
������

���
��������������

��������������

��	������
���

���
��������������

��������������

��
��������
���

�������

 ��!��
�

	
���
��

�������

�������

��������

������

Figure 1.4: Billien Module Level Architecture

The Figure 1.4 shows that Application Server is a module which belongs to
Shared. Apart from Application Server , Shared currently contains another two
modules: Access Control handling authentication and authorization and Con�g-
uration and Maintenance enabling customization and monitoring of the system.
Then there are Tolling Billien and Utility Billien modules, which may seem to
overlap and although their names and responsibilities are the same, their imple-
mentations are very di�erent. Among them belongs Customer Management and

5

Billing Engine, former holding customer details and latter billing those customers.
In case of Tolling Billien, the customers are truck drivers and shipping companies
and are billed for road usage. For Utility Billien, a customer is a household or
a factory and they are billed for consumed amount of gas. The rest of Tolling
Billien and Utility Billien modules are very speci�c to concrete projects and is
su�cient enough to know they exist.

From Figure 1.4 is apparent that each concrete project consists of Shared
modules and modules speci�c for the project. Thus, any project can be separated
into two parts that are further split into individual modules. This division into
smaller and smaller parts is physically represented by �le system folders, which
is illustrated in Figure 1.5.

��������	
���������������������

����������� �������������

�����������������

�������������

���������������

��������

����� ���

����� ��

�������!���

Figure 1.5: Billien Folder Structure

At the root of Figure 1.5 sits a concrete project, in this case it can be either
Tolling Billien or Utility Billien. Then, at the middle level, the project is split into
two parts: shared and speci�c. Finally, at the leaf level, sit individual modules
including Application Server as a Shared module.

Although these modules are the smallest units shown so far, they are not
anyhow small in the terms of the source code size, which spans spans from 1 to
10 megabytes (circa 10 to 100 thousands lines of code) for an individual module.
Thus, the source code size for a Billien project might climb up to 1 gigabyte
(circa 10 000 thousands lines of code). Evidently, such an extent is impossible to
cover in one thesis hence it must be narrowed down. Therefore, this thesis will
focus only on the most important, diverse and interesting part of whole Billien,
Application Server .

1.4 Application Server

Application Server has been �rstly introduced as a framework on which Tolling
Billien and Utility Billien are based and then as a Shared module. In fact,
Application Server is both. Its main purpose is to provide uni�ed environment to

6

implement and subsequently execute business processes hence being a framework.
And it is represented as an ever present module, which is utilized by every other
module of concrete Billien project. Another aspect that distinguishes Application
Server from ordinary module is that it does not implement any business processes.
On the other hand, ordinary modules, like Customer Management, implement
only speci�c business processes and do not provide nor even locally implement
any general functionality. And this is the purpose of Application Server , to
solve all the technical problems and non-functional requirements so the concrete
modules can concentrate only on theirs business processes.

For further explanations is necessary to de�ne the di�erence between Applica-
tion Server developer and module programmer. The �rst one is someone who
designs Application Server framework and brings new technologies and functions
into it. The latter one is a user of Application Server framework, he or she imple-
ments speci�c functionality required by a concrete project. This thesis will look
at Application Server from the developer point of view, but will aim at making
programmer's work as easy as possible.

1.4.1 Technologies and Platforms

In order to be able to talk about Application Server in detail, it is necessary to
introduce technologies, platforms and frameworks used. The current solution of
Application Server is mostly based on Microsoft technologies, especially .NET
Framework. The vast majority of source code is written in C# language and it
is built under the latest releases (C# 5 and .NET Framework 4.5.1), although it
does not fully leverages all the newest features like asynchronous programming
support through async/await keywords.

As Figure 1.2 shown before, Billien communicates with GUI, database and
other instances of Billien. Since Billien is based on .NET Framework, Windows
Communication Framework (WCF) is a natural choice for main communication
technology (introduction to WCF can be found in MSDN documentation [2]),
speci�cally its net.tcp binary binding (more details in MSDN documentation
[3]) is used to connect individual Billien instances. The GUI is implemented as
ASP.NET MVC web pages (more information can be found on ASP.NET MVC
home page in [4]), another .NET technology, hence Billien uses set WCF here as
well. Lastly, the database required by a customer is Oracle therefore Billien uses
ODP.NET connector to communicate with it (more information can be found on
ODP.NET home page in [5]). Figure 1.6 shows Billien in the same context as
Figure 1.2 only with the additional information about the concrete technologies.

7

��������

���	
�

��

��

�������������

�

���

�����������

������� ��� ��! �������

��!

��!

Figure 1.6: TollNet Solution

1.4.2 Modules in General

Billien is usually deployed as a group of several instances, as [1.2 TollNet Solution]
mentioned, and it is often desired to determine on which Billien instance a par-
ticular processes will run. For example, slow processes like document generation
might better be isolated on their own Billien instance, where they cannot in-
terfere with other processes and hinder them. However, these processes might
not represent a whole module, they may be only a part of it. Thus, a module is
further divided into dynamic libraries, which can be optionally loaded at di�erent
Billien instances.

Since the used development platform is .NET Framework and programming
language is C#, the module libraries are represented as C# class library projects
and are eventually built into .NET assemblies (.dll). Then, Application Server
framework can dynamically load individual libraries according to actual con�gu-
ration of the Billien instance.

1.4.3 Core

As mentioned in [1.4 Application Server], Application Server di�ers from ordinary
modules by implementing only generalized functionality, solving technical details
of used technologies, ensuring that non-functional requirements are met and pro-
viding uni�ed programming environment for business process development. Many
of these features, mainly uni�ed programming environment, is achieved by spe-
cial library called Core, which is referenced and used by every other library in
Billien. However, Core does not just provide the uni�ed programming environ-
ment for business processes, it also provides safe, performance e�ective, scalable
environment to run them. And for this purpose proprietary implementation of
thread pool called ProcessingUnit was designed.

ProcessingUnit is not just a simple thread pool, it has been tailored to serve
speci�c needs of Billien. The main requirement was to shield business process
programmer from concurrency issues. To achieve this, ProcessingUnit must
guarantee that any business process will always execute serially, processing one
request at a time. As a result, business process implementation does not need
to be concerned with thread synchronization, which fundamentally simpli�es its
code.

Another requirement emerged during performance testing, when some of the
business processes proved to be excessively resource and time consuming. This

8

is a similar problem to the one mentioned in [1.4.2 Modules in General] although
in �ner grained scale. A solution to this issue is to isolate problematic business
process to its own ProcessingUnit. Thus, one Billien instance may have many
ProcessingUnits from which one or more may be dedicated to serve only a cer-
tain set of business processes. Moreover, when a ProcessingUnit is dedicated
to execute only problematic business processes, it is necessary to control how
much of system resources it will consume. This is achieved by limiting a number
of threads used by the ProcessingUnit. In conclusion, it is possible to con�g-
ure how many ProcessingUnits a Billien instance will have, how many threads
each ProcessingUnit will have and which business process will be ec at which
ProcessingUnit. An example of ProcessingUnit con�guration is presented in
Figure 1.7.

����

��������	
�	���

���������

��������	
�	���

���������

��������	
�	���

���������

��������	
�	���

��������

����	������������

����	���������� ��

����	���������� ��

Figure 1.7: Core and its ProcessingUnits

The Figure 1.7 illustrates the most common scenario of ProcessingUnits
con�guration. The �rst three ProcessingUnits in Figure 1.7 have a default con-
�guration and are meant to serve standard, non-problematic business processes
represented by BusinessProcess.X and BusinessProcess.Y. On the other hand, the
last ProcessingUnit is con�gured to have only limited number of threads and is
intended for problematic business processes such as BusinessProcess.Z is.

Beside the uni�ed programming environment and the ProcessingUnits, Core
provides general functionality to simplify programming of business processes. One
of them is logging interface, which does not just expose logging methods but
logs most of the important events itself. Another feature allows monitoring and
supervision of the state of Billien instance via Windows Performance Counters
(for details see MSDN documentation [6]). Lastly, it enables remote management
of Billien instance which allows adjustment of selected con�guration values like
timeouts, polling intervals or thresholds for logging severities.

In conclusion, Core provides uni�ed programming and safe, performance ef-
fective execution environment for business processes, thus allowing module pro-
grammers to concentrate on what is relevant to them.

9

1.4.4 Modules in Detail

An ordinary module, not Application Server , consists of many business processes
and these business processes are divided into separate libraries as [1.4.2 Modules
in General] stated. One such library usually contains several business processes,
which are logically related to each other. For example, module Customer Man-
agement of Tolling Billien has libraries Customer and Vehicle. The �rst one
contains business processes related to customers like their registration in the sys-
tem, update of their information etc. The latter one de�nes business processes
for creating a vehicle record and subsequent assignment of it to a customer. Each
library containing business process is called service library and every individual
business process it contains is called service.

In [1.4.3 Core] was stated that Core provides programming and execution en-
vironment for business processes. And since businesses process are represented by
services, Core de�nes a contract in the form of a base class called ServiceLogic.
From this base class each service must inherit in order to be executable by
Core. Thus, each and every service library contains several implementations of
ServiceLogic base class. Then, Core dynamically loads these service libraries
according to the current con�guration of concrete Billien instance and executes
individual ServiceLogics at ProcessingUnit (either dedicated one if speci�ed,
or ordinary one).

Obviously, these ServiceLogics might need to call each other. For instance,
method assigning a vehicle to a customer from Vehicle service library will call
validation of given customer before it actually assigns the vehicle to him or her.
And as mentioned above, the Customer service library might not be present
at the same Billien instance as the Vehicle one. Therefore, one Billien instance
might need to call another, which is done through WCF interface as was de�ned
in [1.4.1 Technologies and Platforms]. This situation is presented at Figure 1.8.

���������

�		��
����������� ������������������

��� �����
���������

���������

�		��
����������� ������������������

���

���

�����
������
��

Figure 1.8: Vehicle and Customer services direct call

Although Windows Communication Framework (WCF) is very powerful tech-
nology, there is still quite a lot of con�guring and programming around it (for

10

more details see MSDN documentation in [2]), e.g. setting up bindings and be-
haviors, initializing a service host at the server side, opening and closing of a
channel at the client side, error handling etc. All of these steps necessary to
publish and consume a WCF interface are exactly the technical details from [1.4
Application Server] that should be solved inside Application Server framework so
the programmer does not need to be concerned with them. Thus, every WCF
interface should be wrapped and its methods exposed only through this wrapper.

Apart from WCF invocation, a service might need to call a database stored
procedure or execute an SQL statement. And from [1.4.1 Technologies and
Platforms] is known that database is accesses via ODP.NET connector (techni-
cal speci�cation can be found in Oracle documentation [5]), which is a database
client based on Microsoft ADO.NET data access abstraction library (de�nition
is available at MSDN documentation [7]). The same situation as in Figure 1.8 is
shown in Figure 1.9 including possible database calls.

���������

�		��
����������� ������������������

��� �����
���������

���������

�		��
����������� ������������������

��� �����
������
��

��� ���
��

�����	

�����	

Figure 1.9: Vehicle and Customer services database calls

As with WCF, ODP.NET requires some steps to be done before and after
a command (stored procedure or statement) is executed, e.g. connection string
construction, opening and closing of a connection, setting of session variables,
etc. Analogously to WCF, these steps are technical details, which should not be
handled by a programmer. Thus again, every database command should be
wrapped and the technical details hidden from the programmer.

The previous examples presented two technologies that a service might con-
sume, namely WCF interface and ODP.NET command. Both of them require
some additional steps to be done before and after, which are in fact technical
details repeated for every single call. Therefore, these steps are extracted and
moved into Application Server framework.

Apart from WCF and ODP.NET, services use other technologies to com-
municate with external systems. For instance, �le interface using either CSV or
XML �les or message queueing technologies like MSMQ (details in MSDN doc-
umentation [8]). Comparably to business process implementation in the form
of ServiceLogic, Application Server aims to provide a uni�ed programming en-
vironment for these technology wrappers as well. Moreover, Application Server
goal is to make an addition of a new technology as easy as possible. Thus, it

11

introduces a concept of api library whose sole purpose is to enable service to
easily use a concrete technology.

As with service libraries, api libraries are dynamically loaded by Core ac-
cording to the con�guration of a particular Billien instance and they must contain
an implementation of Api base class. However, since they do not represent any
concrete business process, they are not executed by Core. They either might
be invoked from within a ServiceLogic or by an external event, e.g. WCF ser-
vice host receives a request, a message is delivered to MSMQ or a �le appears in
a speci�c directory. And because apis are not allowed to contain any concrete
business process implementation, for that purpose service libraries exist, they
delegate the handling of an external event to a service through Core.

���������		���
�

�	�������
������ ��������
����������

���� ����������������

��		���
�

�	�������
������ ��������
����������

���� �������������	�

����	�

�������

�������

�����

�����

�	

!������	
��		

��������	���

�����

�����

�

�

"

#

$

%

&

'

Figure 1.10: Vehicle and Customer services calls through apis

Figure 1.10 presents the same situation from previous Figure 1.9 with the
addition of WCF and ODP apis through which are the actual calls made. Firstly,
Vehicle service internally calls WCF api (step 1) which passes the request to the
WCF api at the other Billien instance (step 2), i.e. WCF api at Billien 2 serves
as client and at Billien 1 as server. Secondly, at Billien 1, WCF api internally
invokes Customer service throughCore (steps 3 and 4) and then it gets customer
data from the database through ODP api (steps 5 and 6). Finally, when Customer
service �nishes and returns the data to Vehicle service, it updates vehicle data
in the database using ODP api once again (steps 7 and 8).

Furthermore, when a service calls either WCF or ODP api, it usually needs to
invoke a particular method with a concrete signature, e.g. Customer GetCustomer(

12

int customerId) of WCF interface or Oracle stored procedure update_vehicle(
in vehicle_id, in vehicle_lpn, in customer_id). Obviously, such domain
speci�c details cannot be part of a general api and should be rather implemented
within a speci�c module, e.g. Customer Management in this case. And since the
technical details of WCF interface or Oracle stored procedure invocation should
not be part of a service code, there need to be another type of library between
the service and the api. This type of library is called plugin, it is designed to
work only with speci�c type of api, e.g. OdpPlugin for ODP api and WcfPlugin
for WCF api. These plugins leverage general methods of the corresponding api
while expose methods with speci�c signature for concrete calls. For instance,
OdpPlugin will call Result ProcessCommand(string connectionName, string
procedureName, Parameters[] parameters) of ODP api in its wrapper method
void UpdateVehicle(int vehicleId, string vehicleLpn, int customerId)
for update_vehicle stored procedure. As a result, service calls a method with
strongly typed concrete signature and all the technical details are hidden inside a
plugin, which is part of a concrete module, and api, which belongs to Application
Server .

���������		���
�

�	�������
������ ��������
����������

���� ����������������

��		���
�

�	�������
������ ��������
����������

���� �������������	�

����	�

�������

�������

�����

�����

�	

!������	
��		

��������	���

�����

�����

�

��"	�����

��������

��"	�����

�����	�

�� "	�����

��������

�� "	�����

��������

�

#

$

%

&

'

�(

)

*

��

��

Figure 1.11: Vehicle and Customer services calls through apis and plugins

Once again, Figure 1.11 captures the situation from the previous Figure 1.10
but with the addition of Customer Management plugins. This depiction of the
situation is the �nal one and it shows how the calls are actually made. The whole
scenario starts with Vehicle service calling Customer service through Customer

13

WcfPlugin (steps 1, 2, 3, 4, 5 and 6). Then, Customer service invokes database
through Customer OdpPlugin (steps 7, 8 and 9) and returns the result to Vehicle
service the same way it came. In the end, Vehicle service interprets the result
from Customer service and stores it into database via Vehicle OdpPlugin (steps
10, 11 and 12).

1.5 Conclusion

Any Billien project consists of Application Server and several other modules (ei-
ther Shared or project speci�c). Furthermore, Application Server , apart from
Core, contains mostly api libraries and handful of plugins and services provid-
ing strictly general functionality. While, on the other hand, an ordinary module
is mainly composed of plugins and services and, although rarely, it may con-
tain one or more apis. Lastly, even though every plugin must belong to some
api, not all apis support plugins. For example, SchedulerApi allows scheduling
of periodically repeating ServiceLogics and since the ServiceLogic is invoked
without any input it does not require any method speci�c handling and may be
sent to Core for execution directly. Possible arrangement of api, plugin and
service libraries into modules is captured by the following Figure 1.12.

�������

������	
��������� ���
������	�	�����

����

������� �������

�����������

���
����

����

��������

�����������

����������

�����������

����������

�����������������

�����������

���
����

�������

���
����

�����������

�������

�������

�������

����

��	�����

Figure 1.12: Content of Application Server and an ordinary module

Aside from previously de�ned libraries like Core, WCF and ODP apis and
Customer and Vehicle plugins and services, Figure 1.12 illustrates that Appli-
cation Server contains plugin and service libraries as well. Similarly, Customer
Management, an ordinary module, contains an api library. Lastly, it shows an
existence of apis without plugins in the instances of Scheduler api and Ora-
cleAQ api (for access to Oracle Advanced Queueing service speci�cally used only
for tolling purposes).

14

2. Motivation

The previous chapter [1 Introduction] introduced the current solution of Appli-
cation Server . Unfortunately, it is far from optimal. It was developed over �ve
years ago and little to none refactoring has been done to it ever since. Moreover,
the team designing Application Server and its Core had come from real-time
programming background and put too much attention to premature optimization
instead of how easy the programming of concrete Billien modules will be. In
order to understand the need to improve the current solution, it is necessary do
delve deeper into its concrete problems.

2.1 Flaws of the Current Solution

The author with the help of other Application Server developers analyzed many
of the existing Billien modules and Application Server itself. Several areas of in-
terest were examined. Firstly and most importantly, it was examined how com-
plex and time consuming is to create a new business process including its interface
de�nitions. Secondly, how the implementation of an existing business process is
hard to comprehend and eventually �xed. With that was also analyzed how
much the implementation of a similar business process di�ers from one module
to another, i.e.: how consistent the code throughout Billien is. Then, since Bil-
lien contains a lot of generated code, it was investigated why it is generated and
whether it really needs to be generated. Finally, the readability and consistency
of individual Application Server libraries including Core were reviewed.

As a result, many design and implementation �aws were found. The severity
of the �aws and its impact on existing code were assessed and the most serious
ones were selected. These �aws are presented in following text.

2.1.1 Pattern Repetition

One of the major problems of the current version of Application Server is pattern
repetition. These patterns are usually solutions to concrete problems which arose
during testing and needed to be �xed fast. However, such a fast �x usually
means that it has to be copied at many places. Regrettably, the �x is almost
never refactored afterwards and becomes a code practice spreading throughout
the source code.

One of the repeated patterns is a solution to an issue with two-phase commit
protocol where it is not guaranteed when the committed data are visible outside
of the transaction. Such situation is illustrated by an example on the following
Figure 2.1.

15

������� ����	�
�

�������
���	��������
������

��
���	��������
�������������

�����������

��������
���	��������
������

�����
�����������������

�����������

��
���	��������
�������

�������������������

���������

��������

������������������

�������������� �
���

!�
�	�������� ��

����
�������

"������#����

����	�
����������� �

�����������������

���
����
������$����

�������������

Figure 2.1: Two-Phase Commit Protocol Issue

The problem stems from the fact that the session of a two-phase commit ends
at the moment when it is decided about the transaction outcome (commit or
rollback) and the subsequent processing of the outcome is done asynchronously.
As the example in Figure 2.1 shows, Billien received commit response at the same
time as the database started writing the Data X into a data �le. Immediately
after that, Billien sent an isolated query to retrieve the Data X and, because
the propagation of data into a data �le takes some time, the query was actually
executed before the Data X were visible hence failed.

The current solution to this problem involves continuous polling of the database
until the committed data are visible. And this polling procedure is copied at ev-
ery place where such situation may happen. Evidently, this kind of issue should
be addressed at framework level and not left for a module programmer to deal
with. In this case, the database access layer should be able to hold the actual
process until it is certain that the data are visible.

Another example of pattern repetition is data caching. Many tables whose
data are needed either for critical calculations (like price catalog data used by the
rating process for the total road usage price) or for some part of the system which
does not have direct access to the database (mainly the GUI and translations of
codebooks and error messages) are needed to be cached in memory. However, to
de�ne the data caching and most importantly to keep the content of the cache
updated is quite complex and extensive set of services and plugins. Moreover,
the pattern has changed and has been extended over the course of development
and maintenance of Tolling Billien, which consequently led to major code rewrites
in almost every module. On top of that, much of the code for data caching has
not been �xed to this day and the code that has is riddled with copy-paste errors.

In the ideal case, module programmer should only code a class de�ning
the content of the cache and how the data from the database are mapped to it
unless it can be inferred from the class itself. Then, the rest of the code should be
abstracted into base classes and appropriate api and only the necessary minimum
generated.

16

2.1.2 Code Duplication

Application Server framework asserts compartmentalization of code into api,
plugin and service libraries and subsequently enforces strict rules about what
type of library may reference which, i.e. service may reference anything, plugin
may reference its api and Core and api may reference only Core. These strict
rules allow Billien to be highly con�gurable and without them the Billien would
become an entangled cluster of inseparable libraries. The side-e�ect of this rule
is that many data classes (classes holding only data, without any inner logic)
are duplicated in di�erent, mostly plugin, libraries. For example, a simple get
method of customer data must query the data from database and then send them
over WCF to the original requester. Thus, there will be ODP and WCF plugins,
both de�ning the same Customer data class, and then the service will map the
ODP Customer data class to the WCF one. Naturally, many module program-
mers try to ease the work of data class mapping by using di�erent tools like
AutoMapper library (more info on AutoMapper homepage in [10]). Unfortu-
nately, if some properties are missing in either of the data classes, AutoMapper
silently continuous its work without prompting the error. Consequently, the error
is not revealed until later in the development process. Since the code duplica-
tion is unavoidable in this case, at least the mapping errors should be discovered
during compilation.

2.1.3 Error Handling

Currently, Application Server approach to error handling is to prefer result codes
to exceptions and return data in output parameters. When this decision was
made, the exceptions were considered too slow to be used, which made it one of
the worst cases of premature optimization done to Application Server . Although
it might not seem so bad at the �rst sight, the consequences of this particular
programming pattern are far reaching. One of them is the result code checking
followed by the error handling with very similar code everywhere in Billien code
as Listing 2.1 illustrates.

1 if (result != OK)
2 {
3 logging;
4 rollback;
5 end called method;
6 end service;
7 return;
8 }

Listing 2.1: Example of Error Handling

As already hinted, an obvious solution to this problem is to replace error
handling with exceptions. And, when an exception is thrown instead of error, the
method can return the data directly, which simpli�es is even more.

17

2.1.4 Transaction Control

Application Server supports distributed transactions by using .NET Framework
System.Transactions namespace (more details can be found in MSDN docu-
mentation in [11]). The support is provided at the service level so that each
ServiceLogic implementation must either derive from transactional or non-trans-
actional base class. Then, all the methods of a ServiceLogic are either in or out
of transaction. Moreover, when a transactional ServiceLogic is created within
another transaction (through a WCF call with TransactionFlow turned on) it
rather enlists into the existing transaction instead of creating a new one. Lastly,
when a ServiceLogic is transactional and needs to do a call outside of it, a special
parameter to suppress transactional behavior of the call must be set. Although
this approach is easy to use for simple scenarios, it has many disadvantages for
a complex one. One the biggest disadvantages is that module programmer has
no other options to control the transactionality of the part of the process than
to create a new instance of ServiceLogic through a redundant WCF call. For
example, Utility Billien contains a process which collects consumption estimates
(nominated by the consumer) for each entry point in the network, groups them by
the owner of the entry point (called partner) and sends the aggregated values via
email to the partner. And since it is undesirable to send the email twice for the
same partner, the part of the process relevant to one partner must be done in an
isolated transaction. Thus, in the case of a failure, the already sent data are not
processed again. This process is called SendMatchingRequest and is illustrated
in Figure 2.2.

����

�����	
����������
��

����	��	�
��	����������� �	
	�	��

���	
��	�
��������	
����

����

���	
��	
����

�����	�

�	�

����

�������

��	��	�
��

� �
��

Figure 2.2: SendMatchingRequest process

The diagram in Figure 2.2 contains three entities, the left one represents an in-
stance of ServiceLogic, speci�cally a TransactionalServiceLogic (ServiceLogic

18

subclass) which supports transactional processing, and the two reminding repre-
sent database and mail server. As was previously described, SendMatchingRequest
process needs to do transactional work in a loop. Unfortunately, with the current
capabilities of Application Server , ServiceLogic cannot explicitly start a new
transaction and for that purpose a new instance of TransactionalServiceLogic
must be created with each iteration of the loop. How the real scenario looks like
is shown in Figure 2.3.

����

�����	
����������
��

����	��	�
��	�����������

��������	
����������
�

����	��	�
��	����������� �	
	�	��

���	
��	�
��������	
����

��

��������	
����������

���	
��	
����

�����	�

�	�

��

����	
����������
���

�������

��	��	�
��

�!�
 �

Figure 2.3: Actual implementation of SendMatchingRequest process

Figure 2.3 introduces new entity representing an additional instance of
TransactionalServiceLogic, which is initiated through a WCF call and its only
purpose is to create the desired isolated transaction. As it is apparent from the dif-
ference between Figure 2.2 and Figure 2.3, even simple process with non-standard
transaction scopes can lead to non intuitive decomposition into ServiceLogics.
To prevent these complex scenarios, a module programmer should have a com-
plete control over transaction lifetime at his/her disposal.

2.1.5 Generated Code

The next issue is that Billien contains a lot of generated code which is unread-
able and cluttered. This code is unnecessary and decreases overall readability.
Although this code is generated, it does not mean it shouldn't be eliminated it.

The most of generated code appears in plugin libraries because they are just
wrappers around interfaces doing exactly the same with the change of method
name and parameters. Currently, both database and WCF plugin libraries are
generated either by T4 template or by a custom tool. Nevertheless, even the
generated code should be concise and readable, which is not. The �rst and
foremost improvement should be to avoid code generation as much as possible

19

by extracting the common functionality into base classes or by using aspects to
inject code into the hand written. Afterwards, if it is inevitable, some of the code
can be generated but still the result should be clean and easy to understand.

2.1.6 Asynchronous Pattern

Currently, everyWCF call between Billien instances is implemented asynchronously
with begin/end pattern as shown in Listing 2.2.

1 [OperationContract(AsyncPattern = true)]
2 IAsyncResult BeginGetCustomer(long customerId,
3 AsyncCallback callback,
4 object state);
5 WcfResult EndMethod(out Customer customer,
6 IAsyncResult asyncResult);

Listing 2.2: Asynchronous begin/end pattern

The reason for asynchronous WCF calls is that the called method might not
return immediately causing the calling service to idly occupy a thread of a
ProcessingUnit eventually leading to congestion of all ProcessingUnits. There-
fore, the choice of asynchronous pattern is indisputable. Regrettably, the asyn-
chronous call will always split a compact piece of code into two parts, where the
second part is a callback invoked after the asynchronous call �nished. As a con-
sequence, a service code is split into many callback methods and holds many
�elds in which the state of the service instance is saved, as Listing 2.3 hints.

1 long customerId;
2 void GetCustomer(long customerId)
3 {
4 this.customerId = customerId;
5 wcfCaller.BeginGetCustomerVehicles(this.customerId,
6 GetCustomerVehiclesCallback);
7 }
8 void GetCustomerVehiclesCallback(WcfResult result,
9 List<Vehicle> vehicles)

10 {
11 // continue processing
12 }

Listing 2.3: Asynchronous pattern impact on service - callback method

In the �rst method in Listing 2.3 (GetCustomer), the WCF interface is called
through a caller (wcfCaller), which is a proxy class de�ned in WCF plugin

along with the WCF interface. As was explained in [1.4.4 Modules in Detail],
where the concept of plugins was introduced, a service does not call WCF
interfaces directly, it uses a corresponding methods of plugins which are accessed
through callers (the sole purpose of callers is to group methods into smaller
units since the plugin can contain many WCF interfaces). This caller method
then sends the request to the plugin where the callback delegate, passed by the
service, is saved. Finally, when the response is received, the plugin looks up the
callback delegate and executes it through Core and a ProcessingUnit. Thus,

20

the second method in Listing 2.3 (GetCustomerVehiclesCallback) is executed
only after the WCF response has been received and within the safe environment
of a ProcessingUnit.

The inconvenience with the saving the state of the ServiceLogic can be mit-
igated by using anonymous delegates. On the other hand, this leads to high level
of nesting and unwanted variable scope overlapping as shown in Listing 2.4.

1 void GetCustomer(long customerId)
2 {
3 wcfCaller.BeginGetCustomerVehicles(this.customerId,
4 (result, vehicles) =>
5 {
6 // continue processing
7 });
8 }

Listing 2.4: Asynchronous pattern impact on service - anonymous delegate

Listing 2.4 represents the exactly same scenario as Listing 2.3 with the excep-
tion of using an anonymous delegate for the WCF callback.

Neither of the approaches to the asynchronous pattern is ideal. Moreover, the
transition from asynchronous to synchronous pattern is not possible. Fortunately,
since the version 5, C# language has a support for making the asynchronous calls
look like synchronous (for details about async/await see MSDN documentation
in [12]). However, transition to leverage the async/await C# language support
with the usage of ProcessingUnit thread pool instead of .NET default one, would
mean extensive rewriting of substantial portion of the current Billien code.

2.1.7 Bad Testability

Another big disadvantage of the current version of Application Server is that there
are no automatic tests in place. Moreover, it is impossible to directly write unit
tests for individual classes since all of them are usable only within the context of
Core. Consequently, the only way to test is to set up whole Billien stack locally
on development machine, boot up Application Server and the GUI and test the
feature by manually clicking on relevant button. In the easiest case, it is just one
click but most of the scenarios involves a set operation which need to be done
before the system is ready for a test of the new feature. Obviously, the longer
the process the higher probability that some other problem, which must be �xed
before, occurs. As a result, this cumbersome process discourages programmers
from doing proper testing and a substantial part of found bugs in testing phase
are bugs which should have been discovered during development tests.

It is apparent that some sort of automatic testing, preferably capable of being
integrated in continuous integration server, should be set in place. Furthermore,
the test writing and maintenance has to be easy and quick otherwise programmers
will not do it.

2.1.8 Framework Interfaces

In the time when Core was developed, little attention was paid to how much its
interfaces are convenient to use. For example, many exposed Core methods have

21

more than 10 parameters from which quarter to half is optional. Such method
is almost impossible to be used correctly due to the fact that only certain com-
binations of optional parameters are allowed. This approach to interface design
comes from an assumption that a module programmer knows and understands
how Application Server works hence is able to use it correctly. Unfortunately,
this assumption has proven wrong and most of the module programmers do
not care about how Application Server works. However, this approach of module
programmers is not inherently wrong, the purpose of Application Server is to
conceal technical details and expecting of a module programmer to know how
the framework works defeats the purpose.

The solution to this problem is to redesign the interfaces, always create a
new overload for each method utilization and do not expose anything that is
not intended for modules. And when there is an ambiguous way how to use an
interface, put in place compilation constraints or runtime checks to discover the
misuse as soon as possible.

2.1.9 Logging

The �rst problem with the current logging system of Application Server is that
is uses individual �le per each service, plugin and api library making the trac-
ing of one request across the libraries very inconvenient. To trace such a re-
quest a session is identi�ed by a unique TracingIdentifier. The very same
TracingIdentifier is used for the whole business process and ServiceLogic has
no control over it. Thus, if the process spans multiple items and does the same
logic in a loop for each of them, it is very hard to locate where the processing of
one concrete item begins and where ends. These problems should be addressed
with high priority because log �les are main source of information during testing.
In other words, the easier the log �les are analyzed, the faster the issues are �xed.

The next problem with current logging system is just another manifestation of
the problem from [2.1.8 Framework Interfaces], i.e. user non-friendly interfaces.
The logging interface is very verbose and requires a lot of unnecessary code around
it as can be seen in Listing 2.5.

1 this.DebugLog.WriteLine(TraceEventType.Verbose,
2 "TestMethod(inputString = " + inputString +
3 ", inputInt = " + inputInt + ")");

Listing 2.5: Logging interface

Code example in Listing 2.5 �rstly shows that to log a message with a certain
severity 5 words must be typed (this, DebugLog, WriteLine, TraceEventType and
Verbose), Secondly, that this interface does not support String.Format syntax
and the message must be build with sequential concatenation. As a result, many
module programmers create their own wrappers for logging thus making the
logging inconsistent across di�erent modules.

Obviously, it is not possible to accommodate every module programmer
demand on logging system. However, it should not deter a programmer from
using it. For example, the interface for logging could support String.Format
syntax. Also, the output of logging might be merged into one �le containing the
messages in the order of the time when they were logged.

22

2.1.10 Visual Studio Projects

When a new service, plugin or api library project is added into the solution,
several project attributes must be changed by hand. Most importantly, the output
path for where the build process will place the library must be redirected and
it must be done for both build con�gurations, i.e. Debug and Release. This
is due to the fact that the Application Server executable does not reference any
of these libraries (it dynamically loads them during runtime), thus they are not
automatically placed in the same directory as the executable where they must
be in order to load them correctly. The next manually done step is to add all
necessary references to Core and other used libraries and for 3rd party libraries
a �ag must be set in order to copy the library to the output directory within the
build process. Beside all these settings, the library project must be created in
an appropriate directory of a module to which it belongs. However, by default,
Visual Studio selects a parent directory for a new project based on the placement
of solution �le. In the case of Billien, it is always one directory higher than the
module directory is. As a result, quite often module programmer accidentally
creates a new project in a wrong directory a then must move it to the correct one
by hand and �x the path in the solution �le.

Although, these inconveniences might seem as marginal due to the frequency
of a new project creation, they very often cause build problems for fellow team
members and even cause runtime exception at testing platforms when some of
the libraries end up missing in the installation package. Therefore, it would be
worthwhile to create an extension for Visual Studio with project templates for
the most frequent types of Application Server libraries.

2.2 Problem Statement and Goals

As the previous sections listed, the current solution of Application Server can be
majorly improved in the terms of usefulness for a module programmer. For that
purpose is necessary to state the goals of these improvements:

� Application Server must serve as a framework for business process develop-
ment and must do so intuitively and safely (i.e. making the incorrect usage
of it implausible).

� ServiceLogic code must be inherently clean and concise and the framework
should encourage readable and consistent coding across modules.

� Framework interfaces must serve a module programmer primarily even though
it means complex design and more work for Application Server developer.

� The high level architecture of Application Server should be preserved since
it serves well for the Billien project and also ensures easier transition for
module programmers.

� No change should lead to severe performance decrease, the overall perfor-
mance should stay the same for similar business processes.

� Core features of Application Server should keep their expected behavior
and should not signi�cantly divert from the current behavior.

23

� If the changes are not backward compatible, the potential future need to
interconnect the old solution with the new one will be taken into consider-
ation.

24

3. Analysis

The major �aws of the current version of Application Server as well as re-
quirements on future improvements has been stated in the previous chapter [2
Motivation]. However, to properly design these improvements the current state of
Application Server must be analyzed in detail. Then the reasons for the current
state must be retraced back to their original motivation and decided what must
be kept and what can be redesigned. Therefore, this chapter will take each major
part of the current solution, examine it into great detail and suggest possible
changes or a completely new design.

3.1 Refactoring vs. Rewrite

One of the main decisions made early in the work on this thesis was whether
to slowly refactor Application Server or to completely rewrite it. As there is no
universal answer to this question, all the pros and cons of refactoring vs. rewrite
that seemed relevant to Application Server were gathered and are listed bellow.

Pros of Refactoring:

� When the code base is changed incrementally with smaller changes, it is
much easier to keep it well tested.

� If the piece of code is working well and is designed to everyone's bene�t it
is not necessary to redesign and rewrite it.

� Smaller incremental changes means less confusion among programmers
and shorter period of chaos after they are applied to the code base.

Cons of Refactoring:

� Unfortunately, not everything is refactorable, e.g. changes of technology
might not be compatible with the rest of the system and might require
extensive rewrites.

� When done to a live system (i.e. released regularly) there might be ten-
dencies to postpone the more extensive changes into later releases hence
making it di�cult to push the change into the code base.

� Each change must be carefully planned to not to interfere with other pro-
grammers work since the feature development is usually more important
than refactoring.

There are several concrete factors which need to be taken into account. The
�rst and probably the most important one is the transition from begin/end asyn-
chronous pattern to async/await C# language feature. This change has a severe
impact on Application Server and whole Billien code and in case of refactoring
would lead to a rewrite of all services. On the other hand, trying to make the
both patterns work together would lead to duplicitous behavior of Core and all
api and plugin libraries, making their already not-so-optimal code even more

25

incomprehensible. Another factor is that a rewrite might be done separately
without having any negative e�ect on projects already in development with set
release dates. The last factor is that in case of a rewrite there is no need to
make the solution backward compatible. This allows to �x the bad design deci-
sions made early in Application Server development which are now impossible to
reverse. All those factors lead to a decision to choose the rewrite.

Apart from all the previously listed reasons there are few others that stem from
working in a team and compromising. One of these reasons is that in the current
development team, each module of Billien and every part of Application Server
has their responsible programmer or developer, i.e. making them owners of
the particular piece of code. Regrettably, it is often di�cult to get a permission
to rewrite owner's code, especially if the change hints that the original design was
�awed. Another reason is that large-scale changes must be negotiated with all
involved parties and not everyone has immediately the positive attitude about
the change thus making the push for the change a cumbersome process. Lastly,
since the rewrite is done within the work on this thesis there were neither time
not money repercussions for the company.

3.2 Application Server Components

The following part of this thesis will focus on the actual components of Applica-
tion Server . It will analyze them into great detail, identify what behavior must
stay the same and what can change and �nally suggest a new solution or a set
improvements.

3.2.1 Application Server Libraries

As [1.4.3 Core] stated, Application Server contains a special library called Core.
However, Core is not the only special library (i.e. not being api, plugin or
service) in Application Server . In fact, Application Server has several other
libraries, each serving di�erent purpose. An overall view of these libraries and how
they depend on each other (dependency going from top to bottom) is captured
in Figure 3.1.

���������		���

��	�������������

����

������
������

����������������

����

��������������

���	��!������

�������

! ���"��

�����#!�

! �����	��

"��
�

��"����

���������

Figure 3.1: Special libraries of Application Server

26

3.2.1.1 AS.Loader

Beside the already introduced Core and apis, there is one isolated library named
AS.Loader. AS.Loader is the entry-point executable and actually does noth-
ing more than creates an instance of the Core class a starts it, the rest of the
processing like initialization and load of libraries, start of other threads, execu-
tion of services etc., is done inside Core library. The only reason to extract the
Main method into isolated library was that otherwise Core would have to be an
executable and every library in Billien would reference an executable instead of
a dynamic library. This division of the executable part from Core is actually
better solution than referencing an executable thus is kept in the new solution as
well.

3.2.1.2 Oracle.UdtTypes and Oracle Client

The next library inside Figure 3.1 is called Oracle.UdtTypes and contains .NET
classes for Oracle User-De�ned Types (more on the topic is in Oracle documenta-
tion in [13]). This is due to the fact that Oracle client scans application domain
for Oracle User-De�ned Types only once with the �rst usage of one of the types.
And since most of the Application Server libraries are dynamically loaded, it
often happened that the scan was done before all the types were loaded in the
application domain thus rendering some of the types invisible for the client.

However, one of the ambitions of the new solution is to allow usage of a
di�erent database than Oracle, in particular PostgreSQL was considered as a
possible substitute. Simultaneously, the purely managed .NET driver for Oracle
was released, until then the only Oracle .NET client available had been a wrapper
around native client called Oracle Call Interface (OCI) (more on the topic in on
OCI homepage in [14]). Therefore, two goals has been set for the new solution:
abstract Application Server away from the concrete database engine (allowing
usage of Oracle and PostgreSQL at least) and use only pure-managed clients
thus simplifying the installation process.

3.2.1.3 Interconnection.Agent

Interconnection.Agent library purpose is to provide replacement for WCF Dis-
covery service (de�nition in MSDN documentation in [15]). WCF Discovery ser-
vice allows WCF services to be seen by clients at runtime without con�guring the
exact address of each node in the network, which is done by sending UDP mul-
ticast messages to search for them (as stated in MSDN documentation in [15]).
However, there are two major problems with Microsoft solution. The �rst one is
a security requirement imposed by the customer (buyer of Billien solution) and
the second is that UDP multicast message is, by default, not allowed to cross
borders of a network hence making impossible to work remotely over VPN. The
reason to extract this functionality from Core was to be able to use the same
solution for Application Server and for the GUI (note that the GUI is not allowed
to use Core library).

In order to su�ciently replace WCF Discovery service, Interconnection.Agent
provides ability to detect other Billien instances as well as other users of Inter-
connection.Agent (e.g. GUI), commonly called nodes. This interconnection

27

of nodes is achieved by con�guring one of the nodes as the central one to which
every other node connects a retrieves the list of the other connected nodes (i.e.
star topology). Example of this organization of nodes is shown in Figure 3.2.

���������� ����������

��������	� ��������	�

����
����

Figure 3.2: Star topology of Interconnection.Agent nodes

In Figure 3.2 is one of the Billien instances, speci�cally instance A1, pro-
claimed as the central one and the rest of the nodes (Billien instances as well as
GUI nodes) connects to it to get list of other nodes. It means that the Billien
instances A2, B1, B2 and both GUI nodes have in their con�guration the address
of the Billien A1 instance. Then, whenever any node connects to the A1 Bil-
lien instance, it adds the connecting node into the updated list of known nodes
and sends the list back. Eventually, every node knows about all the other nodes
connected to the same central node, such a network of nodes is called a group.

Although Interconnection.Agent does know the address of each node in
the group, it does not directly exposes this information to the user. It is because
its another function is to provide load-balancing within the group. Furthermore,
Interconnection.Agent chooses the node which implements requested WCF
interface and returns already opened client channel (i.e. WCF client proxy).
However, the fact that an interface is implemented at a certain node does not
necessarily mean that a particular method is available. It is because a service
which handles the method might not be loaded at that node. For instance, the
user might want to call CreateCustomer method of ICustomer WCF interface
and the actual availability might look like in Table 3.1.

ICustomer CreateCustomer

Billien A1 3 3

Billien A2 3 3

Billien B1 3 7

Billien B2 3 7

GUI 1 7 7

GUI 2 7 7

Table 3.1: Availability of ICustomer WCF interface and its CreateCustomer
method.

28

Obviously, none of the GUI nodes neither implements ICustomer WCF inter-
face nor provides CreateCustomer method. On the other hand, all four Billien
nodes implement ICustomer WCF interface, which means that all of them have
loaded WCF plugin containing this interface. Beside that, both A1 and A2
Billien nodes actually provide CreateCustomer method, meaning that an appro-
priate service library with a ServiceLogic that implements the method must
have been loaded at that Billien node. Thus, Interconnection.Agent has only
two real options where ICustomer.CreateCustomer might be call (i.e. Billien A1
and Billien A2), even though the service host for ICustomer interface is opened
at all Billien nodes. And in order to give the user the correct WCF client proxy
(i.e. ICustomer instance connected either to Billien A1 or Billien A2), it needs to
known the list of provided method for each interface. For that purpose, each con-
crete WCF interface must derive from base interface IWcfCommon with only one
method named Get that returns the list of method unique identi�ers of methods
for which the implementing services has been loaded.

The approach of Interconnection.Agent to provide this functionality su�ers
from a few issues and its current implementation is lacking the expected level of
quality for such an important library.

Interconnection.Agent issues:

1. The central node must be started �rst and only after it is up and running
other nodes can start. To ensure this behavior several steps must have been
injected into the start routine of Application Server .

2. IWcfCommon.Get method is used to ensure that the called node is alive.
Interconnection.Agent calls this method periodically every 30 seconds
for each interface at every node in the group (for Tolling Billien with group
of 8 nodes of 169 interfaces each node it means 7 * 7 * 169 = 8 281 calls),
which is unnecessary load on the network.

3. In order to call IWcfCommon.Get method, Interconnection.Agent keeps
an open channel for each interface (for Tolling Billien with group of 8 nodes
of 169 interfaces each node it means 7 * 7 * 169 = 8 281 opened channels)
regardless whether the interface is ever used.

4. The whole implementation of Interconnection.Agent is static, the reason
why has not been determined.

To overcome the �rst issue from item 1, two possible solutions exist. First
would be to just remove the necessity of the start of the central node as the �rst
one, e.g. until the central node starts, the other nodes in the group are isolated
and periodically try to connect to the central one. However, this still does not
solve the problem when the central node does not start at all. In which case
the other nodes stay isolated even though they might have communicated with
each other. It might by even better for the other nodes to not start than to stay
isolated since it is an error and this way is easier detected. The other solution
would be to decentralize, speci�cally, make every node in the group able to gather
and provide information of the nodes connected to it. In other words, give every
node in the group the capability to do what the central one does. Thus, the
nodes could connect to any other node in the group instead of just the central

29

one. In the terms of graph theory, it means, that it would be su�cient to form
a spanning tree covering all of the group nodes, where an edge means that one
of the node has the other one in its con�guration, regardless direction. However,
it is advised to connect the nodes in ordered fashion to prevent isolating a node
or a whole subgroup of nodes by wrong con�guration. For instance, connect the
nodes into a circle or connect them as Figure 3.3 shows.

���������� ����������

��������	� ��������	�

����
����

Figure 3.3: Mesh topology of node con�guration in the group

The following Table 3.2 represents the actual con�guration of the nodes from
Figure 3.3.

Node Con�guration

GUI 1 GUI 2, Billien A1

GUI 2 GUI 1, Billien A2

Billien A1 Billien A2

Billien A2 Billien A1

Billien B1 Billien A1, Billien B2

Billien B2 Billien A2, Billien B1

Table 3.2: Con�guration of nodes corresponding to Figure 3.3

In this example, described by Figure 3.3 and Table 3.2, it does not matter in
which order the nodes are started, eventually, all of them will get the information
about the rest of the group. Moreover, if any of the nodes fails to start, the rest
of the group will still be able to discover all the remaining, active node in the
group.

Although, this decentralized solution seems very robust, it still may not work
in every possible scenario. For instance, if the nodes are split into two sets, none
of the nodes from one set is con�gured to connect to any node from the other
set and vice versa. Apparently, those two sets would e�ectively form rather two
detached groups than one. However, the same problem can easily happen with
centralized solution as well, when two nodes are made the central ones and to
each of them is connected disjoint subset of nodes from the group. Despite this

30

�aw, the decentralized solution still has more advantages than the centralized one
and thus is more preferred.

The issue from item 2 can be solved by trading the periodical polling for
proactive sending of a state only when its being changed. The disadvantage of
this approach is that the message with state change might get lost. Thus, each
node must be able to recover from calling a node that might be down or refuse
the request. However, the original solution might encounter the same problem
if the request is issued between the change of state and the next periodical poll.
Moreover, since the interval is currently 30 seconds it may take up to the whole
30 seconds to discover the change. As a result, the node might have an outdated
information about the group and plausibly returning invalid proxy. Yet again,
the suggested new solution is not �awless, nonetheless it overcomes the issues of
the original one while it does not introduce new ones.

The next issue from item 3 can be easily remedied by exchanging the method
lists via a common interface instead of calling the Get method for each speci�c
interface individually. In fact, the interface used to exchange information about
the nodes in a group can be easily used to exchange method lists as well. Further-
more, to prevent opening channels which will never be used, a lazy initialization
might be used, i.e. opening the channel only when someone requires communica-
tion over it.

Lastly, the static implementation mentioned in item 4 is indisputably bad
design choice and during redesign will be �xed.

3.2.1.4 AS.FrameworkTypes

The last newly introduced library in Figure 3.1 is named AS.FrameworkTypes.
Similarly to Interconnection.Agent, it is meant to be used by the GUI as well as
by Billien itself. However, since the types within this library are not just used for
Billien proprietary solution of WCF Discovery but also for Oracle.UdtTypes
library, it was decided to isolate them from Interconnection.Agent. Thus,
many of the types inside AS.FrameworkTypes are not relating to each other
and the library is just a collection of very few and very general types.

Obviously, having this disordered kind of library (AS.FrameworkTypes)
as well as having a substantial piece of shared code divided into several other
libraries with no clear intention why is not optimal. Nonetheless, there is a clear
necessity to divide the shared code into at least two libraries: one to be used by
both Billien and the GUI and one solely for Billien purposes.

3.2.2 Services

In the current solution of Application Server writing a ServiceLogic is very
inconvenient process. There are many factors causing the current, inadequate
state of things and will be examined separately.

3.2.2.1 Asynchronous Calls

The impact of asynchronous pattern on the code of service was already presented
in [2.1.6 Asynchronous Pattern]. The previously named necessity of saving the
state of the ServiceLogic in between calls makes a call of a method in a loop very

31

impractical. Firstly, it is necessary to send forward and back some identi�cation of
the processed item, for instance an iterator used in the loop (e.g. an array index),
so when the callback is invoked, the service is able to match the result with the
request. Secondly, the calling service needs to count how many responses have
been received so far and eventually continue processing when the last one is
received. How this problem a�ects the service code is drafted in Listing 3.1 and
Listing 3.2 where the former one represents the simple loop and the latter one
the same loop with di�erence of being divided by an asynchronous call.

1 void SendMatchingRequests()
2 {
3 var partners = odpCaller.GetPartnersForMatching();
4 foreach (partner in partners)
5 {
6 // Make the WCF call.
7 PartnerData data;
8 var result = wcfCaller.ProcessPartner(partner, out data);
9 if (result != WcfResult.OK)
10 {
11 // ToDo: Error handling.
12 }
13 else
14 {
15 // ToDo: Finish the actual processing of partner with both
16 // the original and currently received data.
17 }
18 }
19 // Explicit call to end the service required by the framework.
20 this.End();
21 }

Listing 3.1: ServiceLogic with a call in a loop

1 // Partners retrieved from database as a first step of this process.
2 private List<Partner> partners;
3

4 // The actual number of received responses so far
5 // regardless the processing outcome.
6 private int receivedResponseCount;
7

8 public void SendMatchingRequests()
9 {
10 this.partners = odpCaller.GetPartnersForMatching();
11 this.receivedResponseCount = 0;
12 for (int i = 0; i < partners.Count; ++i)
13 {
14 // Make the WCF call.
15 wcfCaller.BeginProcessPartner(partner,
16 i,
17 ProcessPartnerCallback);

32

18 }
19 }
20 public void ProcessPartnerCallback(WcfResult result,
21 int i,
22 PartnerData data)
23 {
24 if (result != WcfResult.OK)
25 {
26 // ToDo: Error handling.
27 }
28 else
29 {
30 var partner = this.partners[i];
31 // ToDo: Finish the actual processing of partner with both
32 // the original and currently received data.
33 }
34

35 // In case of this is the last response,
36 // finish the process as a whole.
37 ++this.receivedResponseCount;
38 if (this.receivedResponseCount == partners.Count)
39 {
40 // Explicit call to end the service required by the framework.
41 this.End();
42 }
43 }

Listing 3.2: ServiceLogic with an asynchronous call in a loop

Both code examples (Listing 3.1 and Listing 3.2) represent the same situation
where the root service gets list of partners from database, calls a remote method
through WCF for each partner and, in the end, ends itself. As it is apparent from
the comparison of Listing 3.1 and Listing 3.2 the asynchronicity produces a quite
a lot of additional code (all the highlighted parts of Listing 3.2) around the whole
process. Obviously, these bits and pieces of code do not bring anything new into
the business process and are basically just supporting code to make the service
work within the Application Server framework. Beside introducing unneeded
code, this approach is also prone to errors due to its complexity. Among the
most prominent errors belong forgotten initialization of members from input and
overwriting variables with wrong values. As a result, many module program-
mers has tried to create their own wrappers, helpers and even mini-frameworks
to simplify the work with asynchronous calls. And since their mini-frameworks
di�er module from module, the code of services throughout Billien is very in-
consistent hence hard to understand without the prior knowledge of the concrete
module mini-framework.

The minor improvement of this problem would be to choose the best of the
mini-frameworks, combine it with other wrappers and helpers and extract it into
Core to be available for any module programmer. However, the indisputably
cleaner solution is the usage of async/await pattern from C# language even
though it imposes some restrictions (return type of async method must be Task

33

and method cannot have out or ref parameters, for details see MSDN docu-
mentation in [12]). In the end, the example from above would look similar to the
original code from Listing 3.1 with the slight change of making the method async,
using the keyword await for the WCF call and returning the data in return value
instead of out parameter as can be seen in Listing 3.3.

1 async Task SendMatchingRequests()
2 {
3 var partners = odpCaller.GetPartnersForMatching();
4 foreach (partner in partners)
5 {
6 // Make the WCF call.
7 // Note that now resultData must contain both WcfResult and
8 // PartnerData.
9 var resultData = await wcfCaller.ProcessPartner(partner);
10 if (resultData.Result != WcfResult.OK)
11 {
12 // ToDo: Error handling.
13 }
14 else
15 {
16 // ToDo: Finish the actual processing of partner with both
17 // the original and currently received data from
18 // resultData.PartnerData.
19 }
20 }
21 // Explicit call to end the service required by the framework.
22 this.End();
23 }

Listing 3.3: ServiceLogic with an async call in a loop

The example in Listing 3.3 shows the positive impact of the usage of async/await
pattern, but the simpler the service code is the more complicated Apllication
Server framework support is. Since it is fundamental to execute service code
inside ProcessingUnit and not in .NET default thread pool, the proprietary so-
lution of awaitable must be implemented (how to implement custom awaitable
can be found in book Async in C# 5.0 [18]). Also, it must ensure that every
continuation of such a proprietary awaitable (i.e. part of service in between
await commands) always executes inside ProcessingUnit. To achieve this, a
custom implementation of SynchronizationContext must be provided and set
as an ambient context (details in MSDN documentation in [19]). Undoubtedly,
introducing async/await pattern is quite complex task which requires extensive
knowledge of internal workings of C# language support for this pattern as well
as detailed knowledge of Task Parallel Library (details in MSDN documentation
in [20]).

Beside the complexity of async/await introduction, there are some limitations
of this pattern. One of them is the mandatory use of Task or Task<TResult> re-
turn type for async methods. The problem does not lie in the return type itself
but rather in the fact that it is a class, not interface, thus does not support covari-

34

ance (for the explanation of the concept of covariance see MSDN documentation
in [16]). Therefore, in the case of Task<TResult> it is not possible to utilize
inheritance of a concrete TResult type. For example consider following code in
Listing 3.4.

1 class MyBase
2 { }
3 class MyDerived : MyBase
4 { }
5

6 Task<MyDerived> x = Task.FromResult<MyDerived>(new MyDerived());
7

::::::::::::::
Task<MyBase>

:::
y

::
=
:::
x;

Listing 3.4: Non-covariance of Task<TResult>

The last line of Listing 3.4 will fail to compile with error: Cannot implicitly
convert type 'Task<MyDerived>' to 'Task<MyBase>'. Thus, if the consumer of
return type is neither generic nor aware of the speci�c TResult type and needs to
retrieve the result value as an object, the consumer has to resort to use re�ection
(for details see MSDN documentation in [17]).

Another limitation, as stated above, is that async method cannot use out or
ref parameters. Therefore, for any api or plugin method intended to be used by
a service and returning data in out parameters, a new type encapsulating these
parameters would have to be added and the method altered to return this type.
However, the idea of encapsulating the result into one type might eventually lead
to better design of api and plugin methods. Firstly, because returning more
than one type of data might be considered a code smell ("a surface indication
that usually corresponds to a deeper problem in the system" stated on Martin
Fowler personal page in [21]). Secondly, because using out parameters is in the
context of Application Server usually a side-e�ect of using the return value for
a result code of the method. This particular problem is analyzed in the next
[3.2.2.2 Errors and Result Codes].

3.2.2.2 Errors and Result Codes

In [2.1.3 Error Handling] was stated that currently almost every method provided
by plugin or api (i.e. an interface for service) returns some kind of result code
and the actual data are returned in out parameters. Therefore, every call of such
interface �rstly need to declare variables for these out parameters, making the
usage of var keyword impossible, and then it must check the result and handle
the potential error manually. For instance, the example from previous [3.2.2.1
Asynchronous Calls] in Listing 3.1 with the addition of error handling looks like
code in Listing 3.5.

1 async Task SendMatchingRequests()
2 {
3 var partners = odpCaller.GetPartnersForMatching();
4 foreach (partner in partners)
5 {
6 // Make the WCF call.
7 var resultData = await wcfCaller.ProcessPartner(partner);

35

8 if (resultData.Result != WcfResult.OK)
9 {
10 // Log the error, rollback transaction and
11 // end the service with indicating it failed.
12 this.DebugLog.WriteLine(TraceEventType.Error,
13 "ProcessPartner error " + result);
14 this.Rollback();
15 this.End("SendMatchingRequests failed.");
16 return;
17 }
18 else
19 {
20 // ToDo: Finish the actual processing of partner with both
21 // the original and currently received data.
22 }
23 }
24 // Explicit call to end the service required by the framework.
25 this.End();
26 }

Listing 3.5: ServiceLogic with error handling

Apart from already present declaration of PartnerData data for the out
parameter, Listing 3.5 now contains several lines long error handling (the high-
lighted part). This error handling is similar for any type of error occurring within
a service and can be easily generalized. Moreover, the error handling can be
considered as an instance of pattern repetition from [2.1.1 Pattern Repetition].
Evidently, any repetitive coding should be avoided as much as possible since
it leads to copy-paste errors, creation of previously mentioned mini-frameworks
and quite importantly discontented module programmers eventually leading to
worse code since the cleaner approach is discouraged by the framework itself. Al-
though this particular issue can be easily solved by moving the error handling into
Core, it still does not completely rid the service from patterns repetition. The
reason is that Core does not have see the concrete result codes of plugins and
apis hence it would have to work with its own de�nition of result codes leaving
the mapping of the codes in the hand of the programmer. Possible appearance
of the service code is captured in Listing 3.6.

1 async Task<ServiceResult> SendMatchingRequests()
2 {
3 var partners = odpCaller.GetPartnersForMatching();
4 foreach (partner in partners)
5 {
6 // Make the WCF call.
7 var resultData = await wcfCaller.ProcessPartner(partner);
8 if (resultData.Result != WcfResult.OK)
9 {
10 // Only return result, Core will handle the rest.
11 return ServiceResult.CommunicationError;
12 }

36

13 else
14 {
15 // ToDo: Finish the actual processing of partner with both
16 // the original and currently received data.
17 }
18 }
19 // Explicit call to end the service required by the framework.
20 this.End();
21 return ServiceResult.OK;
22 }

Listing 3.6: ServiceLogic propagating result to Core

As it is apparent from Listing 3.6, the code of service has not changed much
from Listing 3.5, the only di�erence is that the error handling block has been
shortened from 4 lines to 1 (the highlighted line). And since the goal is to remove
the error handling code completely, further simpli�cation of service code must
be made. Evident simpli�cation is to replace error codes with exceptions thus
Core error handling can work with base Exception class while apis, plugins
and even services themselves can work with specialized errors in the form of
Exception subclasses. Furthermore, the usage of exceptions �ts much better
with the async/await pattern than the result codes. Ultimately, the example
from Listing 3.6 simpli�ed by usage of exceptions instead of error codes resembles
the code in Listing 3.7.

1 async Task SendMatchingRequests()
2 {
3 var partners = odpCaller.GetPartnersForMatching();
4 foreach (partner in partners)
5 {
6 // Make the WCF call.
7 // Note that the infered type of data variable is PartnerData
8 // and there is no out parameter.
9 var data = await wcfCaller.ProcessPartner(partner);
10 // ToDo: Finish the actual processing of partner with both
11 // the original and currently received data.
12 }
13 // Explicit call to end the service required by the framework.
14 this.End();
15 }

Listing 3.7: ServiceLogic using exceptions

3.2.2.3 Transactions

The section [2.1.4 Transaction Control] presented current problem with transac-
tions, especially from the programmer perspective. The issue is rooted in the
inability to control the beginning and end of a transaction scope other way then
to create a new instance of ServiceLogic containing the part of the code that
belongs to the scope. The section also suggested that a syntax used by .NET
TransactionScope is well-designed and might serve as a template for the new

37

Application Server solution. If the same example as in Figure 2.3 is used with
the currently available tools of Application Server , the service implementation
would be close to the code in Listing 3.8 (for the sake of example brevity and
readability the WCF call is illustrated synchronously)

1 public class SendMatchingRequests : TransactionServiceLogic
2 {
3 public void SendMatchingRequests()
4 {
5 // Main transaction begins.
6 var partners = odpCaller.UpdatePartnersForMatching();
7 this.Commit();
8 // Main transaction committed,
9 // the rest of service is non-transactional.
10 foreach (partner in partners)
11 {
12 // Make the WCF call to create an isolated transaction.
13 var data = await wcfCaller.SendOneMatchingRequest(partner);
14 // ToDo: Finish the actual processing of partner with both
15 // the original and currently received data.
16 }
17 // Explicit call to end the service required by the framework.
18 this.End();
19 }
20 }
21 public class SendOneMatchingRequest : TransactionServiceLogic
22 {
23 // This method is eventually invoked as a reaction to the call of
24 // wcfCaller.SendOneMatchingRequest.
25 [WcfTrigger(Method.SendOneMatchingRequest)]
26 public void SendOneMatchingRequest(Partner partner)
27 {
28 // Isolated transaction begins.
29 var data = odpCaller.CreateMatching(partner);
30 mailCaller.SendMail();
31 // End the WCF call and send back the data to the caller.
32 wcfCaller.EndSendOneMatchingRequest(data);
33 // Explicit call to end the service required by the framework.
34 // Isolated transaction ends with implicit commit in End method.
35 this.End();
36 }
37 }

Listing 3.8: ServiceLogic with an isolated transaction

The example in Listing 3.8 points out that for the purpose of isolating the
transaction a whole new WCF method and implementing service must have
been created (the highlighted code). And, if the redundant WCF call is replaced
with TransactionScope syntax, the same result can be achieved more straight-
forwardly as Listing 3.9 illustrates.

38

1 public class SendMatchingRequests : ServiceLogic
2 {
3 public void SendMatchingRequests()
4 {
5 // Main transaction begins.
6 using (var ts = new TransactionScope())
7 {
8 var partners = odpCaller.UpdatePartnersForMatching();
9 ts.Complete();
10 // Main transaction committed.
11 }
12 foreach (partner in partners)
13 {
14 // Isolated transaction begins.
15 using (var ts = new TransactionScope())
16 {
17 var data = odpCaller.CreateMatching(partner);
18 mailCaller.SendMail();
19 ts.Complete();
20 // Isolated transaction committed.
21 }
22 // ToDo: Finish the actual processing of partner with both
23 // the original and currently received data.
24 }
25 // Explicit call to end the service required by the framework.
26 this.End();
27 }
28 }

Listing 3.9: ServiceLogic with the usage of TransactionScope

Once again, the example in Listing 3.8 and its improved version in Listing 3.9
demonstrates how much is possible to simplify the service code by a change
within Application Server framework. However, since this particular case was
based on a very speci�c scenario, the existing solution should not be completely
replaced but rather enhanced with the option of using the TransactionScope
syntax.

3.2.3 Core

As de�ned in [1.4.3 Core], Core is a special library de�ning base classes for apis,
plugins and services as well as implementing the proprietary solution of thread
pool and providing supporting functionality for module programmers. And
since improvements are made not only toward easier service programming, but
also toward faster and cleaner implementation of apis and plugins, many parts
of the Core are a�ected and will be analyzed one by one in the following text.

39

3.2.3.1 Life Cycle

Many objects within Application Server share the same life cycle. They are �rstly
instantiated (either loaded from a dynamic library or de�ned in Core or one of
its references), then initialized and started. Once they are running they can be
blocked or activated and, in the end, stopped. This life cycle pertains only to
singleton objects in Billien. Among them belongs the dynamically loaded apis
and plugins and the statically de�ned ProcessingUnits fromCore and the main
class of Interconnection.Agent (named InterconnectionAgent).

Singletons life cycle:

1. Instantiate: Core creates an instance of the singleton class.

2. Initialize: the singleton object loads con�guration, creates counters and
instantiate threads.

3. PreStart (optional): the singleton object loads data for memory caches
from database.

4. Start: the singleton object starts threads by which actual execution of
service starts.

4.1. Block: singleton object stops creating new instances of services.

4.2. Activate: singleton object starts creating new instances of services.

5. PreStop (optional): singleton object stops accepting requests to create
new instances of services.

6. Stop: singleton object stops threads and Core waits for all the running
services to �nish.

When the whole Application Server is up and running, the Activate and
Block can be repeatedly called to suspend or resume concrete Billien instance,
e.g. in case of active-backup con�guration. Obviously, the Activate procedure
is very similar to Start as well as Block to PreStop, the only di�erence is that
the latter ones (Start and PreStop) are �nal hence called only once in an entire
singleton life cycle.

Although all these singletons share the same life cycle, there is no com-
mon interface or abstract class to support it and allow some level of abstrac-
tion when working with these singletons. In reality it means that base class
for api (currently called ApiManager) de�nes all virtual methods for these life
cycle procedures. Also base class for plugin (currently called Plugin) de�nes
the same virtual methods. Furthermore, class ProcessingUnit de�nes these
method too, but it de�nes only the ones it actively uses (i.e. Instantiate,
Start and Stop) and even uses instantiation in the initialization phase. Sim-
ilarly, InterconnectionAgent de�nes only subset of these methods and, in some
of them, divert its behavior as ProcessingUnit does. Ultimately, the Core, the
root class controlling the life cycle of every other singleton, iterates through those
singletons and individually calls their corresponding methods for the change of the
life cycle phase. The nesting of these singletons can be imagined like a tree-like
structure with the Core as a root shown in Figure 3.4.

40

����

�������

	
�
�
��

������

�����

������

����������������

�����
���

������

�������
���������

����

Figure 3.4: Tree structure of singletons with life cycle

To get a notion of the problem severity an abbreviated pseudo-code (the actual
method is over 400 lines long) of the Core Initialize procedure is presented in
Listing 3.10.

1 public void Initialize()
2 {
3 load configuration file;
4 initialize core members according to the configuration;
5 initialize statistics;
6 initialize logging;
7 initialize InterconnectionAgent;
8 load apis and initialize them;
9 foreach (api in apis)
10 {
11 load plugins and initialize them;
12 }
13 load services and initialize them;
14 create counters;
15 }

Listing 3.10: Core Initialize procedure

Evidently, the current state is hard to understand and even harder to main-
tain. Moreover, every change done to these procedures is either extremely time-
consuming, if done in a clean fashion, or if faster, done without regard to the
readability of the �nal code. Obviously, a uni�ed approach to control a singleton
life cycle would greatly simpli�ed the whole process.

Firstly, it needs to be analyzed whether all the steps are necessary, because
originally there were only Initialize, Start and Stop. The steps PreStart and
PreStop have been added later in the Tolling Billien development. The for-
mer one has been added because it regularly happened that services started
their execution before memory caches have been initialized with database data.
This problem is only related to in-memory data caching and therefore is not
concern of general life cycle control. The latter one is in fact used only by
InterconnectionAgent to stop the threads that periodically poll WCF inter-
faces (the problem from item 2). And since the issue with continual polling has

41

been already solved in [3.2.1.3 Interconnection.Agent], this step does not need
to be preserved at all. Thus, there are only the original three steps (Initialize,
Start and Stop) left.

The motivation behind the sub-steps of running Application Server , i.e.Block
and Activate, was to allow gracefull stop of running Application Server before
its shut down. It also allows active-backup con�guration of the same Billien
instances where the active instance executes all the requests while the backup one
quietly waits to take over in case of the active instance failure. Therefore, when
Application Server is blocked it is not allowed to create new instances of services,
however it can continue to execute the running ones until they �nish. And, when
blocked Application Server is reactivated, it once again starts accepting requests
to run new services and restarts all the periodical ones. Actually, these two
phases of life cycle are rather states of running Application Server then sub-
steps and should be treated accordingly. For instance, the change from active to
blocked and back is issued from the supervision GUI thus does not originate from
the main thread (e.g. user input when Application Server runs in console mode),
also they can be issued repeatedly and even concurrently. Therefore, they should
be handled separately from Initialize, Start and Stop life cycle phases.

In conclusion, the uni�ed way of life cycle phase control should be established,
e.g. through interface of abstract base class. An automatic invocation of the life
cycle change routines in correct order and according to the nesting (as shown in
Figure 3.4) should be provided, for instance through utilization of C# attributes
(for details see MSDN documentation [22]).

3.2.3.2 Threading

There are several types of events which can create a new instance of service
and start execution of it. Already introduced were WCF calls, which are further
explained in [3.2.4 WCF]. Nonetheless, not only WCF api can create new in-
stances of services, in fact any api or plugin can do it and most apis and few
plugins do. But, in order to create and execute a new instance of service, there
has to be a running thread which will tell Core to do it. In case of WCF call,
it is the thread that received the WCF request, i.e. Windows I/O thread as [23]
states. In other cases, an api or a plugin might need their own thread to create
the services. For example, a scheduling api which periodically, in con�gured
interval, executes certain services.

However, apis and plugins are not the only objects using their own thread.
For instance, Application Server logging system uses a thread to write log mes-
sages into �les, or Interconnection.Agent uses a thread to discover and connect
other nodes. Those are Application Server fundamental services, which must be
always available thus cannot be implemented by a service and executed inside
ProcessingUnit.

Regardless the owner of the thread, all of them have in common several as-
pects: they are subjected to the changes of life cycle phases and they contain
an in�nite loop repeating the same action over and over. For instance, a plugin
thread which polls the database and looks for new records in a special table and if
such a record appears, it executes a handling service for this event. The content
of such thread method looks like code in Listing 3.11.

42

1 void ThreadMethod()
2 {
3 while (true)
4 {
5 try
6 {
7 // Either wait for external signal or wait predefined

interval.
8 this.waitEvent.WaitOne(this.waitInterval);
9

10 // ToDo: Do the actual thread action.
11 // In case of database polling,
12 // run the query and if it yields a result,
13 // execute the service.
14

15 // Stop the thread if requested from outside.
16 if (!this.isRunning)
17 {
18 break;
19 }
20 }
21 // Happens when the thread is blocked with the actual action and
22 // does not stop within reasonable time.
23 catch (ThreadAbortException)
24 {
25 break;
26 }
27 catch (Exception ex)
28 {
29 // ToDo: Log exception.
30 // Note that the thread continues here.
31 }
32 }
33 }

Listing 3.11: In�nite thread loop

Predictably, the thread method is very similar for every object hence it is
suitable to be extracted into shared helper class. Such a class then can have its
own life cycle controlled in the same manner as the singletons, i.e. being a part
of the tree from Figure 3.4.

Apart from sharing life cycle control, the threads in Application Server are
very often accompanied by a request queue. For example, implementation of
logging does not write the logged message synchronously from the caller thread
but it enqueues the message and a separate thread, which periodically checks
this queue for new messages, does the actual writing of the message into the log
�le. The reason for this, as for any other queueing of requests, is to regulate
the access to the �le. Once more, this functionality (thread accompanied with
queueing mechanism) can be extracted into shared helper class. Furthermore,
there should also be an implementation for queue with not one thread but with

43

whole thread pool since it is very common in Application Server as well.

3.2.3.3 Counters

Counters in Application Server represents a tool for monitoring the health of a
Billien instance. They are implemented via Windows Performance Counters (for
details see MSDN documentation in [6]) and can be monitored through Perfor-
mance Monitor (how to use it can be found in MSDN documentation in [24]). For
further reference, Counter in the context of Application Server will be written
in verbatim text while its Windows Performance counterpart will be written in
normal font, i.e. counter. There exist two types of counters: single and multi
instance. Single instance counters are counters for which exists only one machine-
wide value which is always present and can monitored continuously, e.g. System
counters for which does not exist instances as Figure 3.5 shows.

Figure 3.5: Single instance System counters

44

On the other hand, multi instance counters may have many values, distin-
guished by an instance name, which are dynamically created and destroyed. For
instance, .NET CLR Memory counters which have an instance of a counter for
each running .NET process as is captured in Figure 3.6.

Figure 3.6: Multi instance .NET CLR Memory counters

Figure 3.5 and Figure 3.6 also shows that the counters are grouped together
into categories (in the �gures System, respectively .NET CLR Memory) and the
fact whether a counter is single or multi instance is determined at the category
level, i.e. each category has either only single or only multi instance counters, they
cannot be mixed. Moreover, in case of multi instance, every counter in category
have the same set of instances, i.e. instance applies to the whole category rather
than to the individual counter. Also, if an instance is created for one counter in
the category, all the other category counters will have this instance as well albeit
with 0 value.

45

Originally, the usage of counters and categories in Application Server was
solely based on single instance counters. However, this proved to be troublesome
for several reasons. Firstly, because there was too many categories, speci�cally,
one single instance category for each dynamic library in Billien. The following
list illustrates the actual categories and counters for a service in the original
solution:

- Category Service.A
- Counter Execution Time Total

- Single instance value
- Counter Execution Time Average

- Single instance value
- Counter Waiting Time Total

- Single instance value
- Counter Waiting Time Max

- Single instance value
- Category Service.B

- Counter Execution Time Total
- Single instance value

- Counter Execution Time Average
- Single instance value

- Counter Waiting Time Total
- Single instance value

- Counter Waiting Time Max
- Single instance value

Consequently, creation of all categories and their counters in Windows took up
to 4 hours, which was unacceptable. Only after the discovery of this problem,
the possibility to use multi instance counters started to be examined. And since
Application Server already had had an implementation for Counters and Billien
had been actively using it, the support of multi instance counters was patched
on top of the existing solution instead of properly integrated. For example, the
previously listed service counters were eventually changed to multi instance in
the following way:

- Category AS.Service.multi
- Counter Execution Time Total

- Instance Service.A value
- Instance Service.B value

- Counter Execution Time Average
- Instance Service.A value
- Instance Service.B value

- Counter Waiting Time Total
- Instance Service.A value
- Instance Service.B value

- Counter Waiting Time Max
- Instance Service.A value
- Instance Service.B value

Furthermore, currently is not possible to create multi instance category with-
out prior creation of single instance one. Therefore, the Billien categories and
counters form a confusing model of empty single instance categories and their

46

multi instance counterparts su�xed with .multi as demonstrates Figure 3.7.

Figure 3.7: Billien counter categories

Secondly, the single instance counters are, by the de�nition, machine wide.
Thus, using single instance counters e�ectively prevents running more then one
Billien instance at the same machine. Actually, the Billien instances will run
next to each other, however their counters will show wrong values. Regrettably,
in the current version of Application Server , this problem prevails even with the
multi instance counters since they do not incorporate process identi�cation into
the instance name.

The easiest way to solve the both problem with single instance counters is to
completely switch to multi instance counters. Then, the originally multi instance
counters would combine the instance name with the process identi�cation and the
single instance one would directly use the process identi�cation as an instance

47

name.
Another aspect of counters is that they are part of the system (in the meaning

of Windows Operating System) and as MSDN documentation in [25] recommends
that they should be created during installation phase of the application:

It is strongly recommended that new performance counter categories be
created during the installation of the application, not during the execution of
the application. This allows time for the operating system to refresh its list of
registered performance counter categories. If the list has not been refreshed,
the attempt to use the category will fail.

Unfortunately, this was not taken into account when the original solution of
Application Server Counters was designed and the creation of counters has been
implemented as a part of the Initialize routine. And since the creation method
is not very performance e�ective and needs alleviated user rights, it resulted
in extremely long Billien startup times and necessity to run it under adminis-
trator account. The long Billien startup times caused that the programmers
completely stopped using counters during debugging. And due to the customer
requirement to not to run Application Server under administrator account (at
least for a release version), counter creation must have been moved into installa-
tion anyway. As a result, counters do not need to be created during the Initialize
routine at all. However, this did not lead to reimplementation of counter creation
and, actually, ended with Application Server having a special argument deter-
mining whether the counters should be created or not. Moreover, if the argument
is true, Application Server works in a special mode and only initializes its com-
ponents, creates the counters and ends. Then, in a debug mode the argument
is always false and, in order to create the counters, the Billien installer starts
Application Server in this special mode.

Obviously, the current state of counter creation should be properly reworked
and entirely removed from Application Server runtime. However, doing counter
creation from Application Server itself has the advantage of having the counter
de�nitions at hand, because currently counters are speci�ed programmatically in
Initialize routine as in Listing 3.12.

1 public override void Initialize()
2 {
3 this.FailConnectionCounter =

this.SingleInstanceCategory.RegisterIncrementalCounter("Fail
Connection", "Connection to database server is lost");

4 this.ConnectionRequestTimedOutCounter =
this.SingleInstanceCategory.RegisterIncrementalCounter("Connection
request timed out", "Connection to database server timed out");

5 this.ExecuteCommandErrorCounter =
this.SingleInstanceCategory.RegisterIncrementalCounter("Execute
Command Error", "Database returns error");

6 }

Listing 3.12: Counter creation in Initialize routine

Thus, for an external program the Counter �elds are not discernible from other
members and even though they may be distinguished by their type (Counter), it
is not enough information to create the counter properly. Therefore, the Counter

48

�elds must communicate necessary additional information, speci�cally category
name, counter name and description, in a way that an external program is able
to retrieve. For instance, the counter creation information may be saved in con-
�guration �le, but it means duplication of some of the information (counter and
category name being in con�guration �le and in Initialize routine), which is
prone to get desynchronized. In order to avoid the duplication, the creation from
installer and initialization from Application Server must use the same source of
information and for that purpose can be used C# attributes and re�ection. Thus,
the Counter �eld would be annotated with a custom attribute holding category
name, counter name and description. Then, Billien installer would probe the
assemblies for Counter �elds with this attribute in order to create counters and
Application Server would, during Initialize routine, locate and instantiate these
Counter �elds the same way.

3.2.3.4 Logging

Logging in Application Server is small but important part of Core. It is the main
source information when locating and �xing an error in Billien, thus its output
should be easy to analyze. The current version of Application Server provides
its proprietary solution for logging even though there are available many .NET
based logging system. Among the well-known .NET logging systems belongs
for instance Apache log4net (details on home page [29]) and Enterprise Library
(details on home page [30]). Furthermore, Application Server originally used
Enterprise Library solution for logging, but the biggest drawback was extensive
con�guration of it. Also Apache log4net su�ers from a similar issue and its
con�guration is a challenging task. The common denominator causing these
issues is that these common logging systems are too robust and are trying to
cover as much use-cases as possible. Therefore, the custom-tailored, lightweight
solution of Application Server is preferred over using one these logging systems.

The �aws of Application Server logging were introduced and solutions to them
already suggested in [2.1.9 Logging] and do not need to be repeated. Besides �xing
these �aws, a new logging should also unify its output (i.e. the content of the
log �les). Since one of the suggested improvements was to merge the log �les
into one, it also should ensure that the content of this �le will be consistent.
Currently, every programmer has his/her way of logging, for example consider
logging input parameters of service from di�erent modules in Listing 3.13.

1 // module Balancing and Nominations
2 this.DebugLog.WriteLine(TraceEventType.Verbose,

"ExportMatchingRequest(" + businessPartnerId + ", " +
nominationDate + ")");

3

4 // module Meter Logistics
5 DebugLog.WriteLine(TraceEventType.Verbose,

string.Concat("ValidateMeterForPallet() stockId=", stockId, ",
meterSn=", meterSn));

6

7 // module Configuration and Maintenance
8 this.DebugLog.WriteLine(TraceEventType.Verbose, "GetFile:

49

selfcareUserGroupId = " + selfcareUserGroupId + ",
integrationLogId=" + integrationLogId);

Listing 3.13: Di�erent ways of logging input parameters

Apparently, it is not possible to prevent programmers to do the logging the way
they consider suitable. However, it is possible to minimize the amount of it by
automatically logging input parameters for every service, every call of a caller
method including parameters, every returned value from a service etc. In the
end, the automatic logging should try to provide su�cient detail of information
to analyze the log �les without even doing any custom logging.

3.2.3.5 Aspects

During analysis of the problems from [3.2.3.4 Logging], the usage of aspect ori-
ented programming was considered. There are only few active solution for aspect
oriented programming for .NET, concretely Spring.NET AOP support (for detail
see documentation in [31]), which is .NET implementation of Spring Framework
for Java, and PostSharp (for detail see PostSharp homepage on [32]), which is
an AOP solution developed purely for .NET. The biggest di�erence between the
two is that Spring.NET AOP uses runtime generation of code while PostSharp
uses compile time weaving. Also, Spring.NET AOP admits to its limitations and
restriction in its documentation from [31]:

The aim of Spring.NET AOP support is not to provide a comprehen-
sive AOP implementation on par with the functionality available in AspectJ.
However, Spring.NET AOP provides an excellent solution to most problems
in .NET applications that are amenable to AOP.

Spring.NET currently supports interception of method invocations. Field
interception is not implemented, although support for �eld interception could
be added without breaking the core Spring.NET AOP APIs.

The current implementation of the AOP proxy generator uses object com-
position to delegate calls from the proxy to a target object, similar to how you
would implement a classic Decorator pattern. This means that classes that
need to be proxied have to implement one or more interfaces.

In the context of Billien, PostSharp is far more suitable AOP solution for
Application Server than Spring.NET AOP, even though it is commercial project
albeit free for personal and academic use. Therefore, several custom made Post-
Sharp aspect have been incorporated in the new Application Server . Speci�cally,
automatic injection of ToString override for logging purposes, automatic Counter
�eld initialization upon �rst get, compile time check of property types of classes
used in database calls and compile time validation of type compatibility for auto-
mapping.

3.2.4 WCF

WCF isa main communication technology used in the solution of Billien as [1.4.1
Technologies and Platforms] stated. However, it is not only used to communicate
with other Billien instances and GUIs, in fact, it is used for any communication
between two services, even though they are present at the same Billien instance.

50

This due to the fact that the service does not have the information whether a
requested method (i.e. other service) is present at the same Billien instance.
Moreover, the service does not know where the requested method is available,
Interconnection.Agent does. Thus, all the requests are sift through Inter-

connection.Agent in order to send them to the correct Billien instance, even
though it might end up at the very same one.

However, [1.4.4 Modules in Detail] explained that WCF is not accessed di-
rectly from the services, for this purpose apis and their plugins exist. The
whole sequence of a WCF call between two services is captured in Figure 3.8.
When a service needs to call a WCF interface it actually calls WcfPlugin through
a WcfCaller (step 1) in which the called interface is de�ned. Then, the WcfPlugin
passes the request to WcfApi which uses Interconnection.Agent to get a cor-
responding proxy for the call (step 2). On the other side of the call, the request
is received by the same WcfPlugin implementing the interface (step 3), but in a
server role (i.e. the same WCF plugin acts as a client on the originating side
and as a server on the other one). Next, the handling service is via WcfApi en-
queued into Core and executed inside a ProcessingUnit (step 4). Afterwards,
the result from the handling service is returned to the server WcfPlugin, again
through WcfCaller, which returns the result to the client-side WcfPlugin (step
5). Finally, the result is passed to the callback method of the original service by
enqueueing into Core (step 6).

���������	�
� �
������ �
������� �
����
�����
����
����

�����

���������
�����������

��������

���	�����	�
� �
������ �
������� �
���� ����

���
�����

 �������������
�����������

!��������	�
�

!�����������
�����������

���
�����

!�����������
�����������

����

!��������	�
�

���������
��������������"
#

���	��

������

���������
�����������

$

%

&

'

(

)

Figure 3.8: ServiceLogic to ServiceLogic communication via WCF

51

A method of a service handling a particular WCF method, or any plugin or
api method for that matter, is called an executor. And the mapping between a
plugin or api method and the service is done via C# attribute. For example, a
service handlingWCFmethod SendOneMatchingRequest is shown in Listing 3.14
(adopted part of code from Listing 3.8) and the WCF interface de�nition is in
Listing 3.15.

1 public class SendOneMatchingRequest : ServiceLogic
2 {
3 // This method is eventually invoked as a reaction to the call of
4 // wcfCaller.BeginSendOneMatchingRequest
5 [WcfTrigger(Method.SendOneMatchingRequest)]
6 public void SendOneMatchingRequest(Partner partner)
7 {
8 // ToDo: Process one matching request.
9

10 // End the WCF call and send back the data to the caller.
11 wcfCaller.EndSendOneMatchingRequest(data);
12 this.End();
13 }
14 }

Listing 3.14: ServiceLogic with a WCF executor

1 [ServiceContract]
2 public interface IMatching : IWcfCommon
3 {
4 [OperationContract(AsyncPattern = true)]
5 IAsyncResult BeginSendOneMatchingRequest(Partner partner,

AsyncCallback callback, object state);
6 WcfSystemData EndSendOneMatchingRequest(out PartnerData data,

IAsyncResult asyncResult);
7 }

Listing 3.15: WCF plugin inteface de�nition

Obviously, the signatures for begin, respectively end, methods must match
throughout all the levels: interface, WcfPlugin, WcfCaller and ServiceLogic.
Also, the code of WcfPlugin and its WcfCaller will di�er only in the name and
parameters for di�erent interface methods, therefore it is a good candidate to be
generated from the interface.

Currently, all WCF plugins in Billien are indeed generated from WCF in-
terfaces. However, the generated code is overly complicated with a lots of du-
plication and many illogical pieces of code. For instance, the code of generated
WcfPlugin class contains 2 methods for passing the request from client to server:
ProcessLocalRequest and ProcessRemoteRequest. Both of them are very sim-
ilar, both of them branch out for each interface de�ned in the WcfPlugin and
each branch contains a switch with case for every method of the current branch
interface as Listing 3.16 suggests.

1 public WcfResult ProcessRemoteRequest(...)
2 {

52

3 var proxy = api.GetProxy(calledInterface, calledMethod);
4 if (proxy is InterfaceA)
5 {
6 switch (calledMethod)
7 {
8 case Methods.MethodA1:
9 { ... }
10 break;
11 case Methods.MethodA2:
12 { ... }
13 break;
14 case Methods.MethodA3:
15 { ... }
16 break;
17 }
18 }
19 if (proxy is InterfaceB)
20 {
21 case Methods.MethodB1:
22 { ... }
23 break;
24 }
25 if (proxy is InterfaceC)
26 {
27 case Methods.MethodC1:
28 { ... }
29 break;
30 case Methods.MethodC2:
31 { ... }
32 break;
33 }
34 }

Listing 3.16: ProcessLocalRequest and ProcessRemoteRequest code

First of all, even for one method the code is very repetitive and for a WcfPlugin
with several interfaces with several methods will be quite extensive. Secondly, the
ProcessLocalRequestmethod contains the very same branching of execution and
di�ers only with the action taken in each case. Furthermore, ProcessLocalRequest
is actually never invoked. Although there is code calling it, the condition for the
call is never satis�ed. Sadly, most of the WcfPlugin code is generated in the same
fashion, i.e. working but incomprehensibly complex. In the end, the new solution
for WcfApi completely disregarded the current state of it, recollected the actual
requirements on it and reimplemented it from the scratch.

However, the state of the code is not the only problem with the WcfPlugin
generator. The most inconvenient one is that the generator is an external tool,
albeit hooked into the project pre-build step, but not anyhow integrated into
Visual Studio. Thus, when an error occurs or the input cannot be compiled by
the generator, it just aborts the build process with a general error and the concrete
error description must be located in the log �le created by the generator instead

53

of reporting back to Visual Studio and listing the error in the Error List window
(description is available in MSDN documentation in [26]). The next problem
stems from the actual implementation of the generator, it combines hand-written
textual parsing of the input with compilation of the input and subsequent analysis
through re�ection. Thus, it occasionally produces confusing errors, especially
when part of the input is commented out and still visible to the textual parser
while missing in the analyzed assembly. Therefore, the main objective of the new
solution is to fully integrate any code generation into Visual Studio and make the
error messages as descriptive as possible. Moreover, the generated code should
be easily readable, reasonably short and to the point.

There are several option to code generation, currently the WcfPlugin generator
is a hand-written C# program which uses standard �le and string functions to
create the code of a WCF plugin library. However, Visual Studio has its own
support for code generation in the form of T4 text templates, which MSDN
documentation in [27] describes as following:

In Visual Studio, a T4 text template is a mixture of text blocks and control
logic that can generate a text �le. The control logic is written as fragments of
program code in Visual C# or Visual Basic. The generated �le can be text
of any kind, such as a Web page, or a resource �le, or program source code in
any language.

Apart from being a native tool for code generation in Visual Studio, T4 text
templates have another advantage and that is direct access to EnvDTE interface
(details in MSDN documentation in [28]). EnvDTE is described as Visual Studio
Automation Object Model meaning that it allows the user to interact with di�erent
aspects and parts of Visual Studio. For example, it exposes abstraction over the
code of currently opened solution and allows to traverse it and even alter it. It
also enables interaction with Visual Studio windows and tools, including Error
List. Thus, the combination of T4 text templating with EnvDTE would allow
to analyze the input for the WCF plugin without any textual parsing or even
compilation. Moreover, it would provided a way to report any error during code
generation back to Visual Studio. Regrettably, the usage of EnvDTE brings one
severe setback, that is inability to run the template and generate the code outside
of Visual Studio context, for instance within the MSBuild process run at build
server. However, the input for the WCF plugin generator (i.e. WCF interface)
is always changed by a programmer, who works with Visual Studio. And the
programmer does the change inside of Visual Studio development environment,
rarely is the code written outside of it. Thus, it is up to the programmer to
regenerate the WCF plugin code with the change of its WCF interfaces.

3.2.5 Database

One of the major requirements of the Tolling Billien customer was to use Oracle
database, speci�cally 11g and later 12c version, as a data storage, since they
had already bought licenses for it. And another requirement was to access the
database solely through stored procedures (de�nition can be found in Oracle
documentation in [33]) and to always use proper parameter binding (details can
be found in Oracle documentation in [40]) for procedure calls.

54

Application Server presently supports database access via Oracle Data Provider
for .NET (ODP.NET), which is just a managed wrapper around native OCI li-
brary, as was stated in [3.2.1.2 Oracle.UdtTypes and Oracle Client]. This type
of client requires to be installed exclusively by an Oracle installer and cannot
be deployed any other way. Furthermore, the client bitness (i.e. 32 bit vs 64
bit) and version installed on the machine where Billien is deployed must ex-
actly match with what the Billien was built with. Therefore, upgrading Oracle
client to a higher version requires reinstallation of Oracle clients on every machine
where Billien will be deployed. Moreover, Oracle client does not integrate with
Windows Programs and Features list and must be uninstalled by a proprietary
Oracle uninstaller which was a separate tool (see Oracle documentation in [34])
up until 12c version (see Oracle documentation in [35]). Fortunately, since 12c
version Oracle provides purely managed ODP.NET driver, as stated in Oracle
documentation [36]. However, the managed driver does not support full range of
unmanaged driver features (the detailed table from Oracle documentation is in
[37]). Speci�cally, the features currently used by Billien and not supported by
the managed driver are Oracle Advanced Queue (AQ) and Oracle User-De�ned
Types (UDT) support, but it is possible to work around it.

Firstly, Oracle AQ is only used by Tolling Billien and only for one speci�c
task, which is to collect road usage data from vehicle on-board units. Although,
it is not planned to rewrite already deployed Tolling Billien for the new version of
Application Server , it would be plausible to keep the Oracle AQ support without
the unmanaged driver. Due to the fact that Oracle AQ has many interfaces
(for details see Oracle documentation in [38]) including PL/SQL (i.e. server side
procedural language, more info on Oracle web pages in [39]), hence it would be
possible to wrap the access to Oracle AQ inside database-side PL/SQL stored
procedures, which are accessible via managed driver.

Secondly, Oracle UDT are sparsely used for class-like types encapsulating
di�erent members into an object. In fact, such structures are mostly transferred
to database as a set of basic type values and, in case of transferring an array
of these structures, they are usually split into a set of basic type arrays. For
example consider structure in Figure 3.9.

��������	��
���������������

��
�����
�����������

��������������

�������

Figure 3.9: Vehicle structure

When an array of structures like Vehicle needs to be sent to database, it is
split into several arrays of basic types as Listing 3.2.5 demonstrates.

1 public void InsertVehicles(Vehicle[] vehicles)
2 {
3 resistrationNumbers = new string[vehicles.Length];
4 countryCodes = new string[vehicles.Length];
5 ownerIds = new int[vehicles.Length];
6 for (int i = 0; i < vehicles.Length; ++i)

55

7 {
8 resistrationNumbers[i] = vehicles[i].RegistrationNumber;
9 countryCodes[i] = vehicles[i].CountryCode;
10 ownerIds[i] = vehicles[i].OwnerId;
11 }
12 // ToDo: invoke insert_vehicles stored procedure with
13 // prepared data.
14 }

Therefore, it is possible to avoid using Oracle UDT for these cases and the choice
between UDT and set of basic type values is only matter of programmer's
preference.

Application Server currently supports only Oracle database, although one of
Billien potential customers expressed interest in using di�erent database, par-
ticularly PostreSQL. Regretfully, the current implementation of api to access
database is speci�cally made to support only Oracle and it is called OdpApi and
its plugins are called OdpPlugins. Furthermore, all OdpPlugins directly use data
types from ODP.NET driver, like OracleCommand, OracleParameter etc. As a
result, the hypothetical change of database engine would not just meant a change
of database-side code (i.e. SQL scripts) but also change of substantial part of
Billien code. Thus, as [3.2.1.2 Oracle.UdtTypes and Oracle Client] suggested,
it would be convenient to abstract the work with database from the concrete
choice of the database engine. For that purpose .NET Framework provides its
own database abstraction solution called ADO.NET (see MSDN documentation
in [7]) and both, ODP.NET and Npgsql (.NET client for PostgreSQL, see project
homepage in [41]), are based on in. Because ADO.NET was primarily devel-
oped with Microsoft SQL Server in mind and also because both, ODP.NET and
Npgsql, have their own deviations, extensions and limitations, it is not possible to
base Application Server database abstraction solely on ADO.NET. The list of the
most severe di�erences between Oracle and PostgreSQL relevant to Application
Server is summarized in the following table Table 3.3.

Oracle PostgreSQL

Numeric one type for all[42] full range of types[43]

Data Types NUMBER integer, decimal, etc.

Enumeration no support full support[44]

table with FOREIGN KEY or create type x as enum

NUMBER/VARCHAR2 with CHECK

String Length 4000 (32767) in 11g (12c) [42] no limit[45]

Limitation VARCHAR2 varchar

Cursor Reading requires transaction[46]

Bulk Reading transparent[47] explicit[48]

OracleDataReader.FetchSize fetch x from cursor_name

Table 3.3: Oracle vs. PostgreSQL in the context of Application Server

56

Obviously, ADO.NET solution does not deal with the details of individual
database engines and is not able to compensate for such di�erences. For in-
stance, it is not possible to leverage cursor bulk reading without the knowledge
of a concrete database engine. Therefore, proprietary abstraction layer must be
designed speci�cally for Application Server needs.

Database abstraction layer requirements:

� Primarily supports stored procedure execution.

� Well de�nes supported basic data types.

� Provides conversion from .NET data types into procedure parameters in-
cluding arrays.

� Supports bulk reading of cursor data with speci�ed size of a bulk.

� While reading cursor rows, directly converts data into prede�ned .NET
class.

� Works with Oracle and PostgreSQL database engines at least.

The last problem with OdpApi is that it executes stored procedures syn-
chronously within the service thread which is a ProcessingUnit thread. The
consequence of this approach is that there is no regulation of how many parallel
calls are made to the database, which may easily lead to database-side session
depletion. Nevertheless, the synchronous execution was preferred because the
service code had already been complicated enough with asynchronicity of WCF
calls as was demonstrated in [3.2.2.1 Asynchronous Calls]. However, with the in-
troduction of async/await the reason to execute stored procedures synchronously
disappears. Therefore, a new solution for database access should be based on
queueing mechanism with precisely controlled number of concurrently executed
stored procedures, for which purpose may be used one of the already introduced
helper classes in [3.2.3.2 Threading].

57

4. Implementation

Contrarily to the previous chapters, which mostly concentrated on the old solu-
tion of Application Server , this chapter will focus on the new solution, Application
Server NG . Firstly, the distribution of responsibilities between libraries will be
explained and then the content of individual libraries itself. Moreover, this chap-
ter will only consider Application Server , respectively Application Server NG ,
libraries since the concrete module implementation is not in the scope of this the-
sis (as was stated at the end of [1.3 Billien]). Lastly, the implementation details
of concrete classes are skipped in this text since they are covered in source code
documentation. Therefore, any diagram capturing a class or classes will not be
described to the detail of the members. It is presumed that, if necessary, the
reader can �nd the details in the documentation.

The whole delivered content of Application Server NG source code is placed
in a directory of the following structure:

- Documents : Application Server NG documentation
- Thesis : the LATEX source of this thesis.
- Documentation: the generated documentation of Application Server
NG source code.

- SharedBinaries : third party libraries and Tools binaries.
- Source: source code of Application Server NG .

- ApplicationServer : the source code described in [4.1 Application Server].
- Web: the testing GUI described in [D Administration Console Manual].

- Tools : Application Server NG supporting tools described in [4.2 Tooling].

The Application Server NG source code has been developed in Visual Studio
2013 Professional, thus this particular version is required to build it. Nonetheless,
the source code can still be compiled without Visual Studio by MSBuild 12.0 (free
for download from Microsoft Download Center in [49]). Furthermore, Application
Server NG is built against .NET Framework and leverages several third party
libraries listed bellow:

.NET Framework 4.5.1.

PostSharp 3.1.44.0 Professional Edition1

Oracle.ManagedDataAccess 4.121.1

Npgsql 3.0.02

All of these libraries, except .NET Framework, are part of the source code and are
placed in SharedBinaries directory. Beside that, to be able to debug the solution,
Net.TCP Port Sharing service must be activated in Windows (instructions are
provided in MSDN documentation [50]). Finally, even though Application Server
NG is built under Any CPU con�guration, it is expected to run as a 64 bit process.

Apart from Application Server NG source code, there are also several tools
further described in [4.2 Tooling]. Their source code is placed in Tools directory
and their binaries are available in SharedBinaries.

1For the purpose of this thesis an academic license has been acquired for free.
2Unstable version. Used because supports enums used by Application Server NG , which

stable version does not.

59

4.1 Application Server

Application Server NG aims to stay the same development framework for business
process implementation as Application Server is. Therefore, its overall architec-
ture and code distribution into individual libraries is very similar to Application
Server . The main libraries, excluding supporting plugins and services, are
shown in Figure 4.1 (see Figure 3.1 for comparison with Application Server).

�������

������	
������������

����

������� �����	
	�	��

�����

��	���

���������� �����	��

�	
	�	������
��� �	
	�	�����	���

������

!�����"�

��	����!#

!�������"�

�"��

����	�"�

���������

Figure 4.1: Main libraries of Application Server NG

As Figure 4.1 shows, the library composition of Application Server NG does
not di�er from Application Server very much. It contains several apis, Core and
Loader, all of which represent the same functionality as corresponding libraries
in Application Server . The major di�erence is in the library Tools and its adja-
cent database drivers, Database.Oracle and Database.Postgre, which will be
discussed later in [4.1.5 Tools]

4.1.1 Core

The main library of Application Server NG is Core (fully named Application-
Server.Core). It contains base classes for every type of Application Server NG
dynamically loaded library (i.e. api, plugin and service) and most importantly
provides execution environment for services. The actual Core library is divided
into four areas of interest as Figure 4.2 demonstrates.

����

����

	
����
�

�������

	
����
�

����
��	��

	
����
�

�������	�

	
����
�

Figure 4.2: Core namespaces

The �rst namespace in Figure 4.2 is called Api and contains base classes for
apis, plugins and their callers. The second namespace, called Service, de�nes

60

base and supporting classes for services. The third namespace called Execution
is mostly internal (i.e. not visible outside ofCore) and its classes either represents
individual executable parts of services (e.g. methods) or support them. In
fact, this namespace represents the link between the Service and Threading
namespaces. And the last namespace, called Threading, contains implementation
of proprietary thread pool for service execution.

4.1.1.1 Example

The best way to explain all these parts of Core and, especially, how they relate to
each other is, by an example. For the purposes of the following example consider
a business process called from GUI, which receives an id of a log message and is
expected to retrieve the corresponding record from the database and return it to
GUI. The de�nition of the WCF interface called from GUI is in Listing 4.1.

1 [ServiceContract]
2 public interface ILoggingManagement
3 {
4 [OperationContract]
5 Task<WcfResult<LogMessageRecord>> GetLogMessage(int id);
6 }

Listing 4.1: The WCF interface called from GUI

The ILoggingManagement interface is de�ned in aWCF plugin called Supervision
(more details about WCF plugins are in [4.1.2 WCF Api]).

The skeleton of a service implementing the described business process is
captured in Listing 4.2.

1 public class LoggingService : ServiceBase
2 {
3 // Attribute name corresponds to the WCF plugin name.
4 // Attribute parameter is an enum value,
5 // where enum name corresponds to the interface name,
6 // and enum value corresponds to the method name.
7 [SupervisionWcfPluginExecutor(LoggingManagement.GetLogMessage)]
8 public async Task<LogMessageRecord> GetLogMessage(int id)
9 {
10 // ToDo: business process implementation.
11 }
12 }

Listing 4.2: The service skeleton of the WCF method

The SupervisionWcfPluginExecutor attribute above the GetLogMessagemethod
binds it to the corresponding ILoggingManagement operation. Ultimately, the
LoggingService.GetLogMessagemethod will end up registered inside the Supervision
WCF plugin (more details about service method registration are in [4.1.1.4
Service]). Then, when the SupervisionWCF plugin receives the GetLogMessage
request (more details about WCF are in [4.1.2 WCF Api]), it looks up the regis-
tered service method in its tables the operation. Once the method is located, it
tells the Core to instantiate LoggingService and to execute its GetLogMessage

61

method (more details about service execution are in [4.1.1.2 Threading and
Execution]).

In the end, the body of LoggingService will resemble the code in Listing 4.3.

1 public class LoggingService : ServiceBase
2 {
3 [SupervisionWcfPluginExecutor(LoggingManagement.GetLogMessage)]
4 public async Task<LogMessageRecord> GetLogMessage(int id)
5 {
6 // Step number 1.
7 var dbCaller = this.GetCaller<LoggingDatabasePluginCaller>();
8 // Step number 2.
9 ThreadPoolTask asTask = dbCaller.GetLogMessage(id);
10 // Step number 3.
11 var result = await asTask;
12 // Step number 4.
13 return result;
14 }
15 }

Listing 4.3: The service implementation of the WCF method

As the LoggingService body in Listing 4.3 demonstrates, it has to call a database
stored procedure in order to retrieve the record. Thus, it �rstly needs to get an
appropriate caller (step 1), where callers are service access points to api and
plugin methods (more details about callers are in [4.1.1.3 Api and Plugin]).
Once the service has the caller, it invokes the stored procedure behind the
GetLogMessage method of LoggingDatabasePlugin (step 2: right side of the
assignment). And since all the database calls are asynchronous (more details
about database are in [4.1.3 Database Api]), LoggingService gets an instance
of ThreadPoolTask (step 2: left side of the assignment) representing an Appli-
cation Server NG version of awaitable (more details about ThreadPoolTask are
in [4.1.1.2 Threading and Execution]). After that, LoggingService retrieves the
record by awaiting the ThreadPoolTask (step 3) and �nally returns the result
value (step 4). The result value is subsequently passed through the Core back to
the Supervision WCF plugin and sent back to GUI in a WCF response.

4.1.1.2 Threading and Execution

Application Server NG proprietary solution of the thread pool is implemented in
the ThreadPool class, which corresponds to the ProcessingUnit class from the
old Application Server (as was described in [1.4.3 Core]). The new Application
Server NG solution provides the same con�guration abilities as the old solution
does, which are: the number of ThreadPools, the number of threads per each
ThreadPool and a ThreadPool dedication to execute only certain services.

The main advantage of Application Server NG ThreadPool over the .NET so-
lution (description can be found in MSDN documentation in [51]) is that it guar-
antees serial execution of service instance methods, i.e. methods of one service
instance will never run concurrently. To achieve this behavior, each instance of
service is assigned to a concrete ThreadPool when is created. Because of that,

62

this service instance will always be executed in this one particular ThreadPool
and will never migrate to a di�erent one. Moreover, the ThreadPool threads
work over a queue of service instances for which applies an invariant, that each
service instance appears in the queue at most once. Thus, when a ThreadPool
thread dequeues a service instance, no other ThreadPool thread has access to it.

Execution

ThreadPool executes concrete service methods, which are called executors. An
executor is described by the type of declaring service and number and types of
its parameters. This description is held in the Executor class. The Executor class
is used for two purposes: registration of an executor to an api or a plugin (more
details about executor registration are in [4.1.1.4 Service]) and creation of a dele-
gate which can be executed by a ThreadPool. The envelope around the Executor
class instance and its concrete parameter values is called ExecutorInstance. Ob-
viously, each ExecutorInstance belongs to a certain service instance hence it
is held inside it. In fact, each service instance has a queue to which can be
enqueued many ExecutorInstances. The queuing of ExecutorInstances is nec-
essary, because there are actually two di�erent kinds of executors: triggers and
events. The di�erence between those two kinds is that a trigger is meant for a
new instance of a service while an event targets an existing one. As a result,
the queue of ExecutorInstances will always contain one initial trigger and zero
to many events.

Furthermore, ExecutorInstance represents the whole method of a service
(e.g. from SupervisionWcfPluginExecutor attribute to the return statement in
Listing 4.3). However, that is not the smallest uninterrupted executable part of
an executor, i.e. when executing, it occupies the thread and does not release
it. Such a part is the code between beginning of a method to the �rst await.
Then, between every pair of subsequent awaits. And �nally, between the last
await and the return statement. In the case of the example in Listing 4.3,
there are two parts: steps 1, 2, 3 up until the await statement and from the
await, through step 4, to the end of the method. These parts are represented
by the ExecutorInstanceUnit class and each ExecutorInstance holds a queue
of ExecutorInstanceUnit instances as illustrated in Figure 4.3.

���������	

����������� ��������������

����������

������������������������

�������������

���������������		���

������������������
�������������

Figure 4.3: ThreadPool queuing

Figure 4.3 captures the state of ThreadPool queues for example in List-
ing 4.3 in the moment when it is being awoken after the await (the light colored
GetLogMessage unit means that is has already been dequeued and executed).

63

To summarize it all, the ThreadPool �rstly dequeues a service instance.
Then, from the service instance dequeues an ExecutorInstance. And �nally,
from the ExecutorInstance dequeues an ExecutorInstanceUnit, which holds
the delegate with the executable part of the service.

Documentation:

For details about ThreadPool implementation see ApplicationServer.Threading
namespace: ThreadPool and ThreadPoolManager classes.
For details about ExecutorInstance queuing see ApplicationServer.Execution
namespace: ExecutorInstanceQueue, ExecutorInstance, ExecutorInstance<TResult>
and ExecutorInstanceUnit classes.

Task and Awaiter

Since each and every ExecutorInstanceUnitmust be executed inside a ThreadPool,
Application Server NG must ensure that every await continuation is enqueued
back to it and not executed in the .NET thread pool. For that purpose, a custom
implementation of awaitable is provided, which is subsequently leveraged by the
C# compiler. The C# compiler transforms async methods into code very similar
to the begin/end pattern described in [2.1.6 Asynchronous Pattern]. The result
of this transformation applied to the example presented in Listing 4.3 resembles
code in Listing 4.4.

1 public class LoggingService : ServiceBase
2 {
3 // The awaiter retrieved from the task.
4 private ThreadPoolAwaiter awaiter;
5

6 [SupervisionWcfPluginExecutor(LoggingManagement.GetLogMessage)]
7 public void GetLogMessage(int id)
8 {
9 // Step number 1.
10 var dbCaller = this.GetCaller<LoggingDatabasePluginCaller>();
11 // Step number 2.
12 ThreadPoolTask asTask = dbCaller.GetLogMessage(id);
13 // Awaiter is retrieved from awaitable task.
14 this.awaiter = asTask.GetAwaiter();
15 // Continuation callback is registered to the task
16 // through awaiter.
17 awaiter.OnCompleted(this.GetLogMessageContinuation);
18 }
19 // Continuation callback is invoked when the asTask is completed.
20 private LogMessageRecord GetLogMessageContinuation()
21 {
22 // Step number 3.
23 // The result of the task is available through the awaiter.
24 var result = this.awaiter.GetResult();
25 // Step number 4.
26 return result;

64

27 }
28 }

Listing 4.4: The C# compiler transformation of an async method

The code in Listing 4.4 introduces an awaiter (the awaiter member �eld), which
represents a binding link between the asynchronous operation behind the task
(the asTask local variable) and the callback (the GetLogMessageContinuation
method). Once the awaiter is retrieved from the task, it registers the callback
method to it, which is eventually used by the task to resume the execution of the
whole process.

TheApplication Server NG implementation of awaitable is the ThreadPoolTask
class and its awaiter is the ThreadPoolAwaiter class, their description is captured
in Figure 4.4. In the context of the example in Listing 4.4, the OnCompleted
method of the ThreadPoolAwaiter class registers the given delegate (the
GetLogMessageContinuation method) to its ThreadPoolTask. Afterwards, when
the called api or plugin �nishes the asynchronous operation (the database call of
dbCaller.GetLogMessagemethod), it noti�es the ThreadPoolTask about comple-
tion via either SetResult or SetException. Finally, the ThreadPoolTask creates
an instance of ExecutorInstanceUnit from the registered delegate and enqueues
it to the ThreadPool. Therefore, even the continuation method of a service is
executed inside Application Server NG ThreadPool.

ThreadPoolAwaiter

Class

public

GetResult() : void

IsCompleted : bool

OnCompleted() : void

ThreadPoolAwaiter()

ThreadPoolAwaiter<TResult>

Generic Class

public

GetResult() : TResult

IsCompleted : bool

OnCompleted() : void

ThreadPoolAwaiter()

ThreadPoolTask

Class

public

CallbackSuffix : string

FromResult() : ThreadPoolTask

SetCompleted() : bool

SetException() : bool

ThreadPoolTask()

ToString() : string

protected

ThreadPoolTask<TResult>

ThreadPoolTask

Generic Class

public

FromResult() : ThreadPoolTask<TResult>

SetResult() : bool

ThreadPoolTask()

INotifyCompletion

INotifyCompletion

Figure 4.4: The ThreadPoolTask and ThreadPoolAwaiter classes

On the other hand, if the .NET Task were used, the continuation would be
executed in the .NET thread pool. It actually depends on the current
SynchronizationContext. Although, for console applications it is the .NET
thread pool by default (for details about SynchronizationContext see article
from MSDN Magazine in [52]).

65

Documentation:

For details about ThreadPoolTask implementation see ApplicationServer.Threading
namespace: ThreadPoolTask, ThreadPoolTask<TResult>, ThreadPoolSynchro-
nizationContext and ThreadPoolTaskExtension classes.
For details about ThreadPoolAwaiter implementation see ApplicationServer.Threading
namespace: ThreadPoolAwaiter and ThreadPoolAwaiter<TResult> classes.

4.1.1.3 Api and Plugin

The concept of apis and plugins was already explained in [1.4.4 Modules in
Detail]. Basically, an api represents a technology used by services. And a
plugin, always belonging to a concrete api, represents a set of speci�c methods
based on that technology. And although each plugin must belong to some api,
not every api must have plugins. For instance, WCF and database apis do have
plugins while Service and Task apis do not (more detail about those two apis
are in [4.1.4 Service and Task Api]). For that purpose, Application Server NG
de�nes two base classes for api implementation: non-generic ApiBase for apis
without plugins and a generic one for apis supporting plugins. In the latter
case, the generic argument TPlugin of the ApiBase class de�nes the speci�c base
type for its plugins. The ApiBase classes are captured in Figure 4.5.

ApiBase

LifecycleControlable

Abstract Class

public

Executors : ExecutorRegistrar<ApiExecutorAttribute>

protected

ApiBase<TApi, TPlugin>

ApiBase

Generic Abstract Class

public

PluginManager : PluginManager<TApi, TPlugin>

protected

Figure 4.5: The base classes for apis

The most important di�erence between the two ApiBase classes is that the
generic one, supporting plugins, has PluginManager property. PluginManager
purpose is to load and hold plugins belonging to a declaring api.Furthermore,
the same way as PluginManager manages plugins, the Core does with apis via
ApiManager. In the end, the structure of apis and their plugins will resemble
the following list:

- Core
- ApiManager

- WcfApi
- PluginManager
- SupervisionWcfPlugin

66

- CustomerWcfPlugin1

- DatabaseApi
- PluginManager
- SupervisionDatabasePlugin
- CustomerDatabasePlugin1

- VehicleDatabasePlugin1

- ServiceApi
- TaskApi

This hierarchy is then used to initialize, start and stop the objects, which is
further explained in [4.1.5.3 Life Cycle].

Although each ApiBase and PluginBase implementation customarily resides
in its own library, it is not a requirement imposed by ApiManager, respectively
PluginManager. On the contrary, both manager classes are capable of dealing
with multiple apis, respectively plugins, in one library.

Furthermore, the PluginBase class, a base class for every plugin, is de�ned
in Application Server NG as well. However, every api supporting plugins must
de�ne its speci�c PluginBase subclass. Then, each of this api plugins will
derive from this subclass. For example consider WCF api library, which de�nes
the WcfApi class itself and the WcfPluginBase class for its plugins, as is shown in
Figure 4.6. Then, every concrete WCF plugin will derive from WcfPluginBase,
for instance SupervisionWcfPlugin.

PluginBase<TApi>

LifecycleControlable

Generic Abstract Class

public

Api : TApi

Executors : ExecutorRegistrar<PluginExecutorAttribute>

protected

WcfPluginBase

PluginBase<WcfApi>

Abstract Class

protected

Figure 4.6: The example of PluginBase subclass for WCF api

One of the most signi�cant traits of apis and plugins is that they are single-
tons, as was stated in [3.2.3.1 Life Cycle]. Once they are loaded and instantiated,
they exist inside the Core tables thus services may use their functionality. How-
ever, services do not access apis and plugins directly, they do it through a
speci�c CallerBase implementations. There are two reasons for this approach.
Firstly, not every method of an api or a plugin is meant for a service hence
should not be even visible to it. And secondly, most of the apis and plugins
de�nes big number of di�erent methods making the selection of a correct one
complicated. Thus, it is more convenient to have them grouped into smaller sets.

1The items printed in lighter color are only for the example purposes hence are not part of

the delivered source code.

67

For example, a WCF plugin often consists of many WCF interfaces, together
comprising of as much as hundreds di�erent method. And, provided that the
distribution of methods among individual WCF interfaces is done correctly, it is
logical to create a caller for each WCF interface. Obviously, since callers can
be de�ned for apis and for plugins, Application Server NG de�nes separate base
classes for them as is demonstrated in Figure 4.7.

CallerBase

Abstract Class

protected

PluginCaller<TApi, TPlugin>

CallerBase

Generic Abstract Class

public

Plugin : TPlugin

protected

ApiCaller<TApi>

CallerBase

Generic Abstract Cla…

public

Api : TApi

Name : string

protected

INameable

Figure 4.7: The CallerBase classes

Lastly, apis and plugins are also entry points to Application Server NG in
the sense that they react to external events, e.g. WCF request sent from GUI,
a new record in database table etc. Moreover, the reaction to such event is usu-
ally implemented as an executor, i.e. service method annotated with speci�c
attribute (details about executor registration are in [4.1.1.4 Service]). The reg-
istered executor is represented by the Executor class, as was stated in [4.1.1.2
Threading and Execution]. And for the purpose of enqueuing an executor to a
ThreadPool, the Executor class de�nes set of methods called Enqueue: a pair for
triggers and a pair for events, where the pair always de�nes one for void execu-
tors and one for methods returning a speci�c value. The, the Enqueue method
chooses the right ThreadPool (via ThreadPoolManager) for the executor based
on either con�guration for a trigger or the given service identi�cation for an
event (instances of services are �rmly bound to a concrete ThreadPool) and
passes the executor to it. From there on, the process of enqeueuing and subse-
quent execution described in [4.1.1.2 Threading and Execution] follows. Finally,
after the execution �nishes, the ExecutorInstance propagates the result of the
method back to the api or plugin, which enqueued the executor. The result
propagation is implemented by calling the ExecutorFinishedHandler which was
originally passed to the Enqueue method.

Documentation:

For details about api implementation see ApplicationServer.Api namespace: ApiBase,
ApiBase<TApi, TPlugin>, ApiManager and ApiExecutorAttribute classes.
For details about general plugin implementation see ApplicationServer.Api.Plugin
namespace: PluginBase<TApi>, PluginManager<TApi, TPlugin> and Plug-
inExecutorAttribute classes.
For examples of speci�c plugin base classes see ApplicationServer.Api.Database.Plugin

68

namespace: DatabasePluginBase class; and ApplicationServer.Api.Wcf.Plugin
namespace: WcfPluginBase class.
For details about caller implementation see ApplicationServer.Api.Caller names-
pace: CallerBase and CallerManager classes. For examples of speci�c caller base
classes see ApplicationServer.Api.Database.Plugin namespace: DatabasePlugin-
Caller<TDatabasePlugin> class; and ApplicationServer.Api.Wcf.Plugin names-
pace: WcfPluginCaller<TWcfPlugin, TInterface> class.
For details about the Enqueue method overloads see ApplicationServer.Execution
namespace: Executor class.
For details about the result propagation implementation see ApplicationServer.Execution
namespace: ExecutorFinishedHandler<TExecutorResult>, ExecutorResult and
ExecutorResult<TResult> classes; and ApplicationServer.Service namespace: Ser-
viceAttribute class, speci�cally the Finish method.

4.1.1.4 Service

The purpose of services is to implement business processes which is achieved
by executors, i.e. annotated methods of service classes with any subclass of
ExecutorAttribute. As was introduced in [4.1.1.2 Threading and Execution],
there are two di�erent kinds of executors: trigger and event. The main di�er-
ence between the two is that trigger always causes an creation of a new service

instance while event targets an existing one. The motivation behind events is
that they allow long-running, session-based processes. For example, report gen-
eration which in bulks reads big amount of data from the database and formats
it into the requested report document. In this example, each bulk is processed
by one event method which must keep the handle of the opened report �le in
between the calls. In this case, the type of the executor is de�ned in WCF
interface as is shown in Listing 4.5.

1 [ServiceContract]
2 public interface IReportManagement
3 {
4 [OperationContract]
5 [Trigger(IsFinal = false)]
6 Task<WcfResult> CreateFile(string reportName);
7

8 [OperationContract]
9 [Event(IsFinal = false)]
10 Task<WcfResult> WriteData(ReportData[] reportData);
11

12 [OperationContract]
13 [Event]
14 Task<WcfResult<string>> CloseFile();
15 }

Listing 4.5: WCF interface for session based business process

Then, when a service annotates a method with the ExecutorAttribute for Plu-
gin.Wcf.ReportManagement, for instance with an attribute for CreateFile
WCF operation, it is predetermined that the method is a non-�nal trigger. The

69

service implementation of the WCF interface from Listing 4.5 is in following
Listing 4.6.

1 public class ReportGeneration : ServiceBase
2 {
3 private string reportFullPath;
4 private StreamWriter reportFile;
5

6 // The initial trigger, creates this instance.
7 [ReportWcfPluginExecutor(ReportManagement.CreateFile)]
8 public async Task CreateFile(string reportName)
9 {
10 this.reportFullPath = Path.FullPath("ReportDirectory",
11 reportName + ".csv");
12 this.reportFile = new StreamWriter(this.reportFullPath)
13 }
14 // The processing event, called repeatedly on this instance.
15 [ReportWcfPluginExecutor(ReportManagement.WriteData)]
16 public async Task WriteData(ReportData[] reportData)
17 {
18 foreach (var item in reportData)
19 {
20 // ToDo: format item into string.
21 this.reportFile.WriteLine(formatedItem);
22 }
23 }
24 // The final event, this instance is destroyed afterwards.
25 [ReportWcfPluginExecutor(ReportManagement.CloseFile)]
26 public async Task<string> CloseFile()
27 {
28 this.reportFile.Close();
29 return this.reportFullPath;
30 }
31 }

Listing 4.6: A session based service

Listing 4.5 and Listing 4.6 not just demonstrate the usage of events, they also
hint that the executors might be �nal or not. The di�erence resides in the
fact, that the �nal executor disposes the service instance after it �nishes while
the non-�nal one lets the instance live. In the example above, although it is
not directly visible in Listing 4.6 example, the �rst trigger CreateFile and the
middle event WriteData are non-�nal executors while the last event CloseFile
is. In fact, the speci�cation of the executor type and its �nality is hidden inside
the ReportWcfPluginExecutor attribute and originates from the WCF interface
de�nition in Listing 4.5 (more details about WCF ExecutorAttributes are in
[4.1.5.2 WCF]).

In order to execute an executor, it has to be registered in an appropriate
api or plugin, as was explained in [4.1.1.3 Api and Plugin]. This functionality
is provided by the ServiceManager class, which is another singleton held by

70

the Core. The major responsibility of the ServiceManager is to load service

libraries and probe them for ServiceBase implementations. The ServiceBase
class is a base class for every service and is captured in Figure 4.8. Then, the
ServiceManager searches the ServiceBase implementations for all occurrences
of executor methods. As stated several times before, an executor method
is annotated with a subclass of the ExecutorAttribute class. Moreover, the
ExecutorAttribute class knows to which api or plugin belongs thus determines
where to register the executor.

ServiceBase

Reentrantable<ServiceBase>

Abstract Class

public

Caller : SessionIdentifier

Configuration<TServiceConfiguration>() : TServiceConfiguration

GetCaller<TCaller>() : TCaller

Map<TSource, TResult>() : TResult

Name : string

ServiceId : int

ToString() : string

protected

IMapper

INameable

Figure 4.8: The ServiceBase classes

The important fact about the registration is that no instance of any ServiceBase
implementation exists until some api or plugin requests the Core to execute a
trigger. In fact, apis and plugins hold an instance of Executor class for each
registered executor, which serves as a template for eventual ServiceBase in-
stantiation and subsequent ExecutorInstance enqueuing into a ThreadPool, as
was described in [4.1.1.2 Threading and Execution].

Although the ServiceBase class provides essential methods like GetCaller
to access corresponding apis and plugins, it is not the entire feature set pro-
vided by the Service namespace. Along with ServiceBase, the Service names-
pace supports transactions, which are compatible with Application Server NG
ThreadPool. As was proposed in [3.2.2.3 Transactions], the new transaction
control allows using the using syntax in the same fashion as .NET does with
TransactionScope. The transaction control is exposed in the form of the
ServiceTransactionScope class and an example of its usage is in Listing 4.7.

1 public class LoggingService : ServiceBase
2 {
3 [SupervisionWcfPluginExecutor(LoggingManagement.GetLogMessage)]
4 public async Task<LogMessageRecord> GetLogMessage(int id)
5 {
6 using (var sts = new ServiceTransactionScope())
7 {
8 // Step number 1.
9 var dbCaller = this.GetCaller<LoggingDatabasePluginCaller>();

10 // Step number 2.

71

11 ThreadPoolTask asTask = dbCaller.GetLogMessage(id);
12 // Step number 3.
13 var result = await asTask;
14 // Complete the transaction so it does not rollback.
15 await sts.Complete();
16 // Step number 4.
17 return result;
18 }
19 }
20 }

Listing 4.7: The transaction support for services

The main di�erence between .NET implementation of TransactionScope and
Application Server NG implementation of ServiceTransactionScope is that the
latter one takes into account possibility of asynchronous interruption inside the
scope (i.e. await statement) and is able to reestablish the same state of trans-
action upon the execution of the await continuation. Moreover, it supports
nesting of the scopes and remembers all the active scopes when an await is
reached and properly resets the transactions in the continuation. The nest-
ing capability is implemented in the ServiceTransactionStack class to which
every ServiceTransactionScope registers itself. Finally, the last capability of
ServiceTransactionScope is that it commits the transaction asynchronously,
which TransactionScope does not support. This behavior prevents possible
blockage of the executing service since, in the context of distributed transactions,
the commit of the root transaction must always wait until all of the dependent
ones have voted.

Documentation:

For details about executor types see ApplicationServer.Execution namespace:
Executor and ExecutorAttribute classes and ExecutorType enumeration.
For details about executor registration see ApplicationServer.Execution names-
pace: Executor, ExecutorAttribute and ExecutorRegistrar<TExecutorAttribute>
classes and IExecutorRegistrable interface.
For details about transaction control implementation see
ApplicationServer.Service.Transactions namespace: ServiceTransactionScope, Ser-
viceTransactionStack and ServiceTransactionScopeAttribute classes.

4.1.2 WCF Api

The WCF api is implemented by WcfApi class, which only serves as a manager
of its plugins, WcfPluginBase subclasses. The WCF api library aims to sim-
plify the implementation of its plugins as much as possible. Thus, the smallest
possible amount of code de�ning the WCF plugin was identi�ed and a code gen-
erator is supplied to generate the rest of the plugin code. The code generator
is written as a set of T4 templates leveraging the helper library Application-
Server.TextTemplateExtensions, which simpli�es work with the EnvDTE in-
terface of Visual Studio. The identi�ed code elements for WCF plugin generation
are the WCF interfaces and the data classes used by the interfaces, i.e. interfaces

72

and classes annotated with either ServiceContract or DataContract attributes
(more info about the attributes in MSDN documentation [53] and [54]). Then,
from this interfaces and classes, the code generator produces:

WcfPlugin.tt : One WcfPluginBase subclass implementing all of the WCF inter-
faces. The class is generated as partial so the programmer may extend
it.

WcfPluginCallers.tt1: For each WCF interface one WcfPluginCaller subclass
providing client side access to the interface. The classes are generated as
partial so the programmer may extend them.

WcfPluginTypes.tt1: For each WCF interface one WcfPluginExecutorAttribute
subclass allowing executor registration at the server side.

ApplicationServer.TextTemplateExtensions1: A compiled library with the
Gui name su�x containing only the interfaces and data classes. GUI uses
this library instead of the plugin one since it is forbidden to reference
ApplicationServer.Core, which is referenced by every plugin.

Moreover, the T4 template also tries to generate clean, concise and readable
code, even though it is not expected to be manually edited. The code generated
by the T4 template is mostly one statement long methods working with the
concrete types of WCF operation parameters and return values. For example,
the WcfPluginBase subclass code for the operation de�ned in Listing 4.1 will
look like the code in Listing 4.8

1 // Client-side code.
2 internal ThreadPoolTask<LogMessageRecord> GetLogMessage(int id)
3 {
4 return this.SendRequestClient<LogMessageRecord>(
5 // Method identification.
6 LoggingManagement.GetLogMessage,
7 // Delegate determining the type of the call:
8 // anycast (trigger) or unicast (event)
9 () => this.clientILoggingManagement.Anycast(
10 // Method identification.
11 LoggingManagement.GetLogMessage,
12 // The invocation of the interface.
13 proxy => proxy.GetLogMessage(id)));
14 // Server-side code.
15 [OperationBehavior(TransactionScopeRequired = true)]
16 Task<WcfResult<LogMessageRecord>>

ILoggingManagement.GetLogMessage(int id)
17 {
18 return this.ReceiveRequestServer<LogMessageRecord>(
19 // Method identification.
20 LoggingManagement.GetLogMessage,
21 // The method is not event hence the null target.
22 null,

1Automatically included with WcfPlugin.tt

73

23 // Method parameters.
24 id);
25 }
26 }

Listing 4.8: The WcfPluginBase subclass code

The Listing 4.8 shows that the client-side GetLogMessage method uses an in-
terface speci�c clientILoggingManagement �eld to invoke the WCF operation.
This �eld is an instance of InterfaceClient<ILoggingManagement> class en-
veloping all available WCF proxies of ILoggingManagement interface in the cur-
rent group. The instance of this class is retrieved during initialization from the
DiscoveryService (formerly Interconnection.Agent) along with the registra-
tion of the plugin singleton instance as a service host for the interface (more
details about discovery service are in [4.1.5.2 WCF]).

Another objective of the new version of WCF api was to also simplify WCF
interface de�nition since the old version uses the very verbose begin/end asyn-
chronous pattern (for example see [3.2.4 WCF]). Luckily, WCF supports Task
based service contracts and is async/await compatible since the introduction of
async/await into C# language (for details see MSDN documentation in [55]).
Therefore, every WCF interface de�ned in any WCF plugin must return Task
and is always invoked asynchronously. However, it is not desired to return the
.NET Task to the calling service, as was explained in [4.1.1.2 Threading and
Execution]. Thus, the Task instance must be converted into Application Server
NG version of awaitable, an instance of ThreadPoolTask . And for that pur-
pose serves SendRequestClient method of the WcfPluginBase class, as can be
seen in the client-side code in Listing 4.8. Analogously, for the other direc-
tion, when a WCF request is received by the WCF plugin, an instance of .NET
Task representing the execution of the corresponding executor must be cre-
ated. This is achieved by calling ReceiveRequestServer, which leverages .NET
TaskCompletionSource class to control the state of the .NET Task manually, i.e.
to set its result when executor �nishes.

The last trait of WCF api is that it requires WCF interface method to return
WcfResult class or its generic counterpart. This is due to the fact that if an
exception is send over the channel, the channel transits into faulted state (as is
described in [56]) and faulted channel must be recreated before it is used again.
Although this behavior is acceptable for exceptional cases, it is not a suitable
solution for propagation of errors produced by the server-side service. Thus,
the errors must be passed to the client in a di�erent way hence the mandatory
WcfResult. The WcfResult implementation carries, apart from the actual return
value, the details about server-side errors, which are then used to reconstruct the
original exceptions at the client-side.

Documentation:

For details aboutWCF plugin implementation see ApplicationServer.Api.Wcf.Plugin
namespace: WcfPluginBase class.
For details aboutWCF interface supporting classes see ApplicationServer.Tools.Wcf
namespace: InterfaceClient<TInterface> and InterfaceServer<TInterface> classes.
For details about WCF errors see ApplicationServer.Tools.Wcf.Result namespace:
WcfResult, WcfResult<TResult>, WcfError and WcfException classes.

74

4.1.3 Database Api

The most prominent new feature of database api, in comparison to the old ODP
api, is that it works independently of the speci�c database engine. Underneath
this feature lays Application Server NG database abstraction layer (more details
are in [4.1.5.1 Database]), which uses drivers speci�c for a concrete database
engine. These drivers provide functions for stored procedure execution and daat
conversion to and from database values. This functionality is then leveraged by
DatabaseApi, the main api class, and �nally provided to the actual database
plugins.

Although the old Application Server executed database calls synchronously,
the new solution prefers to queue the requests for database calls and executes
them in its own thread pool, as was proposed in [3.2.5 Database]. This approach
has the advantage of precise control over how many parallel database calls may
be done simultaneously, which exactly corresponds to the number of threads in
DatabaseApi thread pool and can be con�gured.

Database api also aims to make the implementation of concrete database plu-
gins as easy as possible. Although it does not provide code generation like WCF
api does, it signi�cantly reduces amount of code necessary to call stored proce-
dure. In fact, both, DatabasePluginCaller (base class for database callers) and
DatabasePluginBase (base class for every database plugin), subclasses contain
only one line long methods, as Listing 4.9 demonstrates.

1 public class LoggingDatabasePluginCaller
2 : DatabasePluginCaller<SupervisionDatabasePlugin>
3 {
4 public ThreadPoolTask<LogMessageRecord> GetLogMessage(int id)
5 {
6 return this.Plugin.GetLogMessage(id);
7 }
8 }
9 public class SupervisionDatabasePlugin
10 : DatabasePluginBase
11 {
12 [StoredProcedure("Logging")]
13 internal ThreadPoolTask<LogMessageRecord> GetLogMessage(int id)
14 {
15 // The called stored procedure identification is
16 // supplied by StoredProcedure aspect.
17 return this.ProcessStoredProcedure<LogMessageRecord>(id);
18 }
19 }

Listing 4.9: The DatabasePluginCaller and DatabasePluginBase examples

The plugin method in Listing 4.9 calls general ProcessStoredProcedure,
which is implemented and exposed by DatabasePluginBase. This method con-
verts the input parameters and the stored procedure identi�cation into the struc-
tures understood by the database drivers (description of drivers is in [4.1.5.1
Database]) and passes it to the DatabaseApi queue while the calling service re-
ceives an instance of ThreadPoolTask. Finally, when the DatabaseApi �nishes the

75

stored procedure, it noti�es the plugin about the result which in turn completes
the ThreadPoolTask previously returned to the service.

Obviously, the conversion of database plugin .NET values to and from the
objects understood by the database drivers, is a challenging task. And as [3.2.5
Database] hinted, there are certain limitation to what is possible to transfer to
and from the database. Especially, if two database engines are supported and only
intersection of their abilities is available. Therefore, a set of restriction is imposed
on database plugin methods and is captured in following tables: Table 4.1 for
input parameters and Table 4.2 for a return value.

.NET Type Transformation Driver Input Parameters

basic type1 none one

array of basic type none one

entity type2 set of basic type values one per one entity property

IEnumerable of set of arrays of one per one entity property

entity type basic type values

Table 4.1: Allowed input parameters of database plugin methods.
.NET Type: determines the category of database plugin input parameter.

Transformation: describes how is a type of database plugin input parameter changed

to comply with database driver InputParameter restrictions.

Driver Input Parameters: speci�es number of InputParameter instances sent to

database driver, which must correspond to the in parameters of the called stored proce-

dure.

.NET Type Transformation Driver Output Parameters

none, i.e. void none none

basic type none one

entity type cursor with one row one

IEnumerable of cursor with many rows one

entity type

composite type3 each property separately, one per one class property

according to this table

Table 4.2: Allowed return value of database plugin methods.
.NET Type: determines the category of database plugin return value type.

Transformation: describes how is a return value type of database plugin changed to

comply with database driver OutputParameter restrictions.

Driver Output Parameters: speci�es number of OutputParameter instances sent to

database driver, which must correspond to the out parameters of the called stored pro-

cedure.

1.NET equivalent of one of the natively supported types by both database engines, e.g. int,
decimal, string, DateTime, etc.

2.NET class which consists only of basic type properties, no array properties and no com-

position of entity types is allowed.

76

All of the above mentioned restrictions are checked during compilation time
by the StoredProcedure attribute, which is, in fact, PostSharp aspect, thus
allows the compilation time validation (more details are in PostSharp online
documentation in [57]). The StoredProcedure attribute also propagates the
stored procedure identi�cation from the DatabasePluginBase implementation
(e.g. GetLogMessage in Listing 4.9) to the context of ProcessStoredProcedure
method via thread local variable.

Documentation:

For details about database plugin implementation see
ApplicationServer.Api.Database.Plugin namespace: DatabasePluginBase class.
For details about database abstraction layer see ApplicationServer.Tools.Database
namespace: DatabaseDriver class; and ApplicationServer.Tools.Database.Parameters
namespace: InputParameter, OutputParameter and OutputParameter<T> classes.
For details about plugin method parameters mapping to driver ones see Ap-
plicationServer.Api.Database.Plugin.StoredProcedure namespace: StoredProce-
dureAttribute, StoredProcedureInfo, StoredProcedureParameter and StoredPro-
cedureResult classes.

4.1.4 Service and Task Api

Service api provides two functions: periodical executions of services and running
of service tests. The former function is mostly used for periodical checks of
changes in database. The latter one is intended for testing methods and Service
api will run it only in Debug mode and only if it was allowed in con�guration.
Moreover, it supports chaining of tests and propagation of the result of one test
to the input of the following one, as example in Listing 4.10 shows.

1 // The return value will be passed to TestGetLogMessageDb.
2 [TestExecutor]
3 public async Task<string> TestGetLogMessage()
4 {
5 var result =
6 await this.GetCaller<LoggingManagementWcfPluginCaller>()
7 .GetLogMessage(1);
8 return result.MessageText;
9 }
10 // The TestExecutor attribute parameter defines the preceding test.
11 [TestExecutor("TestGetLogMessage")]
12 public async Task TestGetLogMessageDb(string messageText)
13 {
14 var result =
15 await this.GetCaller<LoggingDatabasePluginCaller>()
16 .GetLogMessage(1);
17 if (result.MessageText != messageText)
18 {

3A class containing only properties of either basic type, entity type or IEnumerable of entity

type.

77

19 throw new Exception("DB returned different message that WCF.");
20 }
21 }

Listing 4.10: The test executor examples

The TestGetLogMessageDb test will be run with the result of TestGetLogMessage,
but only if it succeeded. Otherwise, both tests will fail.

Task api is completely new concept in Application Server NG . Its only goal
is to provide equivalent of .NET Task supporting methods for ThreadPoolTask.
Therefore, it provides methods: WhenAny, WhenAll and Delay, doing exactly the
same as the .NET ones.

Both of the apis have in common one characteristic, which is that they do
not take into account concrete signatures of methods, either of the provided ones
or called ones via executor enqueuing. Thus, both apis are without plugins.

Documentation:

For details about Service api implementation see ApplicationServer.Api.Service
namespace: ServiceApi class.
For details about test chaining see ApplicationServer.Api.Service namespace: Ser-
viceApi and TestExecutorAttribute classes.
For details about Task api implementation see ApplicationServer.Api.Task names-
pace: TaskApi class.

4.1.5 Tools

Although it may seem thatTools library (fully namedApplicationServer.Tools)
represents only a merge of Interconnection.Agent andAS.FrameworkTypes,
it actually covers much more functionality, which is not only reusable by GUIs.
Tools library contains, apart from shared code with GUI, any reusable function-
ality, which is not tied to service execution. In other words, it contains anything
but: api, plugin and service base classes and service execution environment
(e.g. the ThreadPool class). And since Tools library consists of disjointed, sup-
porting code for Application Server NG , it can be divided into several separable
areas of interest:

� Database: de�nition of abstraction layer for database drivers.

� WCF: Application Server NG version of WCF discovery with supporting
classes for interface calls.

� Life cycle: complete handling of Application Server NG singleton objects.

� Counters: access to update and read Windows Performance Counters.

� Logging: Application Server NG lightweight logging solution.

4.1.5.1 Database

The main goal of this namespace is to de�ne an abstraction layer for access to
a di�erent database engines, as was proposed in [3.2.1.2 Oracle.UdtTypes and
Oracle Client]. For this purpose an abstract class DatabaseDriver was designed,
which is meant to be derived and implemented by a database speci�c driver (e.g.

78

Database.Postgre and Database.Oracle in Figure 4.1). Unfortunately, the
implementation of DatabaseDriver is not enough to fully support a concrete
database engine.

As was pointed out in [3.2.5 Database], one of the di�erences between Oracle
and PostgreSQL .NET clients is how bulk reading of data from DbDataReader
is done. Thus, the Application Server NG database driver must also provide a
speci�c implementation for this bulk data reading. For that purpose Application
Server NG de�nes another abstract class DataReader.

In the end, the actual database speci�c driver contains only two classes im-
plementing just the necessary minimum which di�ers from database engines to
database engine. Obviously, since Application Server NG solution is intended to
mainly work with Oracle and PostgreSQL, the abstract classes are de�ned ex-
actly for the di�erences between those two. Therefore, it might not be possible
to introduce another database engine without a change of these abstract classes.
However, that is not in the scope of the current solution. The example of Ap-
plication Server NG driver for Oracle is captured in Figure 4.9, where the top
classes are the abstract base classes from Tools library and the bottom classes
are the actual Oracle driver classes from Database.Oracle library.

OracleDatabaseDriver

DatabaseDriver

Class

public

Convert() : object

CreateDbParameter() : DbParameter

OracleDatabaseDriver()

ProcessCommand() : void

protected

OracleReader

DataReader

Class

public

OracleReader()

protected

DatabaseDriver

LifecycleControlable

Abstract Class

public

Convert() : object

CreateDbParameter() : DbParameter

Name : string

ProcessCommand() : void

protected

DataReader

Abstract Class

public

ContainsColumn() : bool

Dispose() : void

FetchRows : int

protected

INameableIDisposable

Figure 4.9: The example of DatabaseDriver implementation for Oracle

Since Application Server NG supports only database calls in the form of stored
procedures, which have parameters. These parameters must be abstracted from
speci�c database engine as well. The four classes for stored procedure parameter
de�nition are shown in Figure 4.10. These classes are the ones to and from which
a database plugin converts its method parameters and return values, as was
de�ned in [4.1.3 Database Api], speci�cally in Table 4.1 and Table 4.2.

79

InputParameter

Parameter

Class

public

Direction : ParameterDirection

InputParameter()

InputValue : object

Value : object

OutputParameter

Parameter

Class

public

CommandFinished() : void

Direction : ParameterDirection

OutputParameter()

OutputValue : object

Value : object

protected

OutputParameter<T>

OutputParameter

Generic Class

public

OutputParameter()

protected

Parameter

Abstract Class

public

Direction : ParameterDirection

Name : string

Type : Type

Value : object

protected

Figure 4.10: Stored procedure parameter de�nition classes

The abstract Parameter class serves as a handle for both, InputParameter
and OutputParameter, which both understand only basic type values (as was de-
�ned with Table 4.1). As was stated in [3.2.5 Database], when a complex data
need to be transferred to database, they are split into basic type parameters hold-
ing individual �elds. However, to get the complex data from database, database
cursors and DbDataReader is used and for that purpose serves the generic ver-
sion of OutputParameter. Moreover, Application Server NG provides automatic,
pre-bu�ered, bulk reading of such streamed data from database. This function-
ality is implemented in DataReaderParser, which not just reads the data but
also parses them into concrete .NET classes speci�ed as the generic argument of
the OutputParameter. Then, from the generic OutputParameter is instantiated
the corresponding DataReaderParser, which exposes IEnumerable access to the
parsed .NET objects.

Documentation:

For details about the abstraction layer implementation see ApplicationServer.Tools.Database
namespace: DatabaseDriver and DatabaseManager classes; and
ApplicationServer.Tools.Database.Parameters namespace: DataReader class.
For examples of DatabaseDriver implementation see ApplicationServer.Database.Oracle

80

namespace: OracleDatabaseDriver and OracleReader classes; and
ApplicationServer.Database.Postgre namespace: PostgreDatabaseDriver and Post-
greReader classes.
For details about parameter mapping implementation see
ApplicationServer.Tools.Database.Parameters namespace: Parameter, InputPa-
rameter, OutputParameter and OutputParameter<T> classes; and
ApplicationServer.Tools.Database namespace: DatabaseContext class.
For details about bulk reading of cursors see ApplicationServer.Tools.Database.Parameters
namespace: DataReaderParser<TObject> and DataReader classes; and Appli-
cationServer.Tools.Database namespace: EntityAttribute class.

4.1.5.2 WCF

The Tools support for WCF consists of two namespaces: Discovery for Inter-
connection.Agent replacement and Wcf for supporting class for WCF operation
invocation. The former one is represented by the DiscoveryService class, which
is another singleton held by the Core.

DiscoveryService uses IDiscoverable interface, presented in Figure 4.11,
to connect with other nodes in the group and to keep them updated about its
state. The connection process starts with getting the list of con�gured nodes and
trying to connect to them. When one of these nodes is successfully connected,
it is added into DiscoveryService tables with the de�nition of its interfaces and
provided methods. Moreover, the freshly connected node also sends a list of its
connected and connecting nodes, which are in turn tried to be connected from the
original node. In fact, the algorithm follows the suggested solution from [3.2.1.3
Interconnection.Agent]. For example, if the node A connects to the node B, which
is connected to the node C, the A learns about the existence of C and also tries to
connect to it. The actual implementation of connecting new nodes is implemented
in ModuleConnector class, held and controlled by DiscoveryService.

IDiscoverable

Interface

public

Connect() : DiscoveryModule

ImplementedInterfacesChanged() : void

LifecyclePhaseChanged() : void

Ping() : LifecyclePhase

Figure 4.11: IDiscoverable interface

IDiscoverable also de�nes two operations to keep the nodes in the group up-
dated about other node states. The �rst operation is LifecyclePhaseChanged,
which is used to propagate changes from Initialized to Started and to Stopped
(more details are in [4.1.5.3 Life Cycle]). For example, when a node sends that it is
stopping, the receivers will remove this node from their tables and gracefully close
all opened channels to it. The second operation is ImplementedInterfacesChanged,
which enables refresh of interface list and provided methods. This operation is
used to transits to and fro Active and Blocked state, because the Blocked Appli-
cation Server NG does not allow invocation of triggers. For example, consider

81

the context of the service from Listing 4.6, which shortened version is in List-
ing 4.10.

1 public class ReportGeneration : ServiceBase
2 {
3 // The initial trigger, creates this instance.
4 [ReportWcfPluginExecutor(ReportManagement.CreateFile)]
5 public async Task CreateFile(string reportName)
6 { ... }
7 // The processing event, called repeatedly on this instance.
8 [ReportWcfPluginExecutor(ReportManagement.WriteData)]
9 public async Task WriteData(ReportData[] reportData)
10 { ... }
11 // The final event, this instance is destroyed afterwards.
12 [ReportWcfPluginExecutor(ReportManagement.CloseFile)]
13 public async Task<string> CloseFile()
14 { ... }
15 }

Listing 4.11: A session based service

The new list, after Blocked was called, would only contain WriteData and CloseFile
methods without the CreateFile one. And although the method lists can change
only to Application Server NG nodes, the GUI ones must at least understand this
operation and react accordingly.

Beside the interconnecting functionality, the Tools library exposes classes to
work with WCF interfaces consistently throughout the group, particularly to pre-
vent incompatible settings of WCF client channel and server-side host. Thus, the
Wcf namespace of Tools library de�nes InterfaceClient and InterfaceServer
classes representing the client, respectively server, side of a WCF interface. Then,
any node in the group may acquire an instance of one of these classes through
DiscoveryService and its RegisterClient or RegisterServer methods. Obvi-
ously, the registration methods are not dependent on each other and is perfectly
valid to register only one side of the interface. For instance, GUI ordinarily
registers only client-sides of interfaces.

Furthermore, the InterfaceClient class holds a WCF proxy of its interface
for every node in the group which registered an InterfaceServer for it. Then,
instead of exposing the proxies, InterfaceClient provides methods which ex-
ecute the required WCF operation themselves. The reason for this is that it
allows the InterfaceClient class to intercept a potential exception, which faults
the proxy as was explained at the end of [4.1.2 WCF Api], and eventually recre-
ate the proxy. For example, the WCF plugin code for an operation invocation
originally presented in Listing 4.8 and its relevant part captured in Listing 4.12
demonstrates the usage of an InterfaceClient instance.

1 // Client-side code.
2 internal ThreadPoolTask<LogMessageRecord> GetLogMessage(int id)
3 {
4 return this.SendRequestClient<LogMessageRecord>(
5 // Method identification.
6 LoggingManagement.GetLogMessage,

82

7 // Delegate determining the type of the call:
8 // anycast (trigger) or unicast (event)
9 () => this.clientILoggingManagement.Anycast(
10 // Method identification.
11 LoggingManagement.GetLogMessage,
12 // The invocation of the interface.
13 proxy => proxy.GetLogMessage(id)));
14 }

Listing 4.12: The WCF plugin operation invocation

The last parameter of the clientILoggingManagement call in Listing 4.12 is the
method executing the WCF operation, which will be wrapped into try-catch
block by the InterfaceClient. Beside that, Listing 4.12 also shows that there
are two di�erent ways how to call a WCF operation: anycast (trigger) or unicast
(event). The �rst one is the most common one and it invokes the WCF operation
at any possible node. In fact, the Anycast method ensures that the WCF request
are evenly distributed among all the nodes in the group thus providing load
balancing capability. The second one, the Unicast method is intended for event
calls, which were explained in [4.1.1.4 Service], and has an additional parameter
specifying the target of the call.

Lastly, the InterfaceServer class actually does not provide any functional-
ity, its only purpose is to open WCF service host during Start of Application
Server NG and to close it in the Stop procedure. Therefore, it is only held
by DiscoveryService since the registration, by which it becomes a part of the
whole hierarchy of life cycle controlable singletons (more detail about life cycle
and singletons in Application Server NG are in [4.1.5.3 Life Cycle]).

Documentation:

For details about the discovery implementation see ApplicationServer.Tools.Discovery
namespace: DiscoveryService class; ApplicationServer.Tools.Discovery.ModuleConnection
namespace: ModuleConnector class; and ApplicationServer.Tools.Discovery.Contracts
namespace: IDiscoverable interface.
For details about the operation method attributes see ApplicationServer.Tools.Wcf
namespace: OperationAttribute, TriggerAttribute and EventAttribute classes.
For details about client-side interface support see ApplicationServer.Tools.Wcf
namespace: InterfaceClient, InterfaceClient<TInterface>, Proxy<TInterface>,
RemoteProxy<TInterface> and LocalProxy<TInterface> classes.
For details about server-side interface support see ApplicationServer.Tools.Wcf
namespace: InterfaceServer class.

4.1.5.3 Life Cycle

In [3.2.3.1 Life Cycle] was introduced that Application Server contains many ob-
jects which behave like singletons, for instance the Core itself, every api and
plugin etc. Moreover, these objects form a tree structure, as Figure 3.4 illus-
trated, with the Core in its root. Finally, all of these singleton object are subjected
to three major life cycle phases: initialization, start and stop, appearing only in
this order. Thus, it was proposed to unify the work with life cycle phases and to
simplify de�nition of the singleton instance tree.

83

The �rst step was to de�ne an interface shared by every singleton object in
Application Server NG so that all of them can be handled in uni�ed way, e.g.
one de�nition for Initialize method, which can be called the same way for
the Core as for an api. For that purpose, ILifecycleControlable interface was
created. Another step was to �nd out the most convenient way to de�ne the
relationship tree between the singleton objects, which enables automatized way
of life cycle phase change. In other words, the new solution does not want the
singleton objects to explicitly call ILifecycleControlable methods in its code
for every child object, it aims to automatize it. Thus, when the relationship tree
is constructed, it will be su�cient to call the ILifecycleControlable method
at the root object and the method will be automatically called for every node
in the tree in the correct order (pre-order for Initialize, Start and Activate
and post-order for Block and Stop). There are two options how to de�ne the
relationship between singleton objects, �rst is an explicit registration by code
(e.g. parent object would call RegisterChild for every child object). The other
way is just to annotate the �eld containing the child object and collect them via
re�ection. The latter option was chosen for Application Server NG since it is less
work for developer and the actual link between parent and child object is at one
place, i.e. declaration of the �eld. Examples of these de�nitions via attribute are
shown in Listing 4.13.

1 // Simple object fields with explicitly stated
2 // order of initialization.
3 public abstract class Core : LifecycleControlable
4 {
5 [LifecycleControlableMember(OrderPriority: 1)]
6 private LogManager logManager;
7

8 [LifecycleControlableMember(OrderPriority: 2)]
9 private DatabaseManager databaseManager;
10

11 [LifecycleControlableMember(OrderPriority: 3)]
12 private DiscoveryService discoveryService;
13 }
14

15 // Child objects can be stored in IList,
16 // but it must be explicitly stated in attribute.
17 public sealed class LogManager : LifecycleControlable
18 {
19 [LifecycleControlableMember(MemberType.List, OrderPriority: 1)]
20 private List<Writer> writers;
21 }
22

23 // Child objects can be stored in a IDictionary as well.
24 public abstract class WcfPluginBase : PluginBase<WcfApi>
25 {
26 [LifecycleControlableMember(MemberType.Dictionary)]
27 private ConcurrentDictionary<string, InterfaceServer> servers;

84

28 }

Listing 4.13: Singleton object relationship tree de�nition

Since it is desired to change the life cycle phase of the whole tree auto-
matically from one place, either an external manager holding the tree de�ni-
tion must be implemented, or an abstract class must be plugged in between the
ILifecycleControlable interface and the concrete singleton class implementa-
tion. And because many of the singleton classes do not need to implement every
method of ILifecycleControlable interface and would actually welcome a de-
fault implementation for it, the latter option was selected, i.e. the abstract class.
The abstract class is called LifecycleControlable and is shown in Figure 4.12.
Apart from default implementation of ILifecycleControlable interface, this
class constructs the relationship tree according to the LifecycleControlableMember
attributes and also takes care of automatic invocation of individual interface
methods.

LifecycleControlable

Abstract Class

public

BlockedState : BlockedState

BlockedStateChanged : BlockedStateChangedHandler

ConfigurationNode : ConfigurationNode

LifecyclePhase : LifecyclePhase

LifecyclePhaseChanged : LifecyclePhaseChangedHandler

protected

Activate() : void

Block() : void

ConsoleColor : ConsoleColor

Initialize() : void

LifecycleControlable()

Start() : void

Stop() : void

ILifecycleControlable

Figure 4.12: The LifecycleControlable class

In the end, the developer implementing a singleton object needs only to de-
rive from LifecycleControlable, override relevant methods for the object life cy-
cle and annotate the �eld containing this object with LifecycleControlableMember
attribute.

Documentation:

For details about the LifecycleControlable implementation see Application-
Server.Tools.Lifecycle namespace: LifecycleControlable and LifecycleControlable-
MemberAttribute classes and ILifecycleControlable interface.

4.1.5.4 Counters

The Windows Performance Counter support in Application Server NG follows
all the proposed improvements from [3.2.3.3 Counters]. Counters in Application
Server NG can be de�ned for any class and to do so, it is su�cient to declare

85

private �eld of type Counter and annotate it with CounterAttribute as the code
in Listing 4.14 illustrates.

1 [Counter("How long does a method execution take, in miliseconds.")]
2 private Counter executionTime;

Listing 4.14: The Counter instance declaration

The CounterAttribute class serves two purposes. Firstly, this attribute is also
a PostSharp aspect and injects the instantiation routine to the get procedure of
the �eld (more information about �eld interception in PostSharp documentation
in [58]). Thus, the �rst time the Counter is used it is automatically instantiated.
However, the Counter class is only a de�nition of the counter type and does not
hold any actual instances. For that purpose serves CounterInstance class which
represents a link between Application Server NG counter and Windows Perfor-
mance Counter instance represented by .NET class PerformanceCounter. The
instance of the CounterInstance class (i.e. the link to the Windows Performance
Counter) is created later in the process when the �rst update of counter value
is requested. Thus, when the CounterInstance needs to be updated it uses one
of the exposed method of the Counter class shown in Figure 4.13, all of which
take an instanceName as a parameter and either create a new CounterInstance
or retrieve it from the Counter collection of instances.

Counter

Class

public

CurrentValues : Dictionary<string, long>

Decrement() : void

Increment() : void

SetValue() : void

Figure 4.13: The Counter class

All of the Counter methods in Figure 4.13 allow to create and update dif-
ference instance of the Counter. For example, ServiceBase de�nes a Counter
holding the time spent occupying the ThreadPool by a particular method. Such
Counter is then updated with not just providing the time but also the name of
the ServiceBase and the executed method.

Secondly, The CounterAttribute class is used to locate the Counters and
their de�nition in the built libraries (.NET assemblies). Then, an external tool
named ApplicationServer.CounterInstaller can be used to create Windows
Performance Counters manually. Or, the Application Server NG installer will
probe the libraries and include all the Counter de�nitions in its install routine so
they get created in Windows during Application Server NG installation.

The last characteristic of Application Server NG Counters is that behind each
instance is automatically created several Windows Performance Counters:

- The current value.

- The maximal value.

- The average value.

86

- The delta of the previous and current values.

Therefore, the ServiceBase Counter for method execution time will be register
in Windows Performance Category named ApplicationServer Service Base con-
taining four Windows Performance Counters: Execution Time for the current
values, Execution Time Average for the average values, Execution Time Max for
the maximal values and Execution Time Delta for the delta values. This Win-
dows Performance Category then will have an instance for each combination of
ServiceBase name and a method name.

Documentation:

For details about the Counter implementation see ApplicationServer.Tools.Counters
namespace: Counter, CounterAttribute, CounterInstance and CounterManager
classes.

4.1.5.5 Logging

The logging system of Application Server NG is accessed via the Log class. This
class is intentionally made static so its methods are available to everyone every-
where and their list is shown in Figure 4.14.

Log

Static Class

public

Error() : void

Exception() : void

Information() : void

Transfer() : void

Verbose() : void

Warning() : void

Write() : void (+ 1 overload)

Figure 4.14: The Log class

The methods are named after the Severity with which the message will be
logged except the Write method, which takes a Severity as parameter. When
any object in Application Server NG logs a message, this Log class through the
Core gets a handle of LogManager singleton and send the log message to it by
calling Write method. This sequence of events is captured in Figure 4.15.

��������	�

����

���	�����

�����	�

������	�����

�����������

���������

����

���������

����������

�����
�����

Figure 4.15: Log message processing

87

From Figure 4.15 can be seen that LogManager holds a queue for log messages.
This is due to the fact, that logging of message might not be an immediate
operation. Thus, the messages are queued and processed by a separate thread
running within the LogManager. The actual processing log messages depends on
the con�guration where is possible to specify types of outputs, e.g. �le, database
etc. These di�erent output types are represented by di�erent implementation of
the Writer class. The Writer class is an abstract base class de�ning abstract
method for the actual write of a log message. Application Server NG by default
supports �le and database logging and provides logging to the console intended for
showing errors so that they will not be overlooked in the log �les. The hierarchy
of log Writers is presented in Figure 4.16.

Writer

LifecycleControlable

Abstract Class

public

Severity : Severity

protected

internal

Write() : void

FileWriter

Writer

Class

public

FileWriter()

protected

internal

Write() : void

private

Nested Types

DatabaseWriter

Writer

Class

public

DatabaseWriter()

internal

Write() : void

private

ConsoleWriter

Writer

Class

internal

Write() : void

Figure 4.16: The log Writers

Finally, the LogManager thread dequeues a log message from the queue and
sends it to each con�gured Writer, e.g. FileWriter will append the message to
the �le, DatabaseWriter will save it into database.

Apart from the logging ability, it is also provided an automatic logging of the
most important events. For instance, every executor with its input, every caller
invocation including parameters, every ThreadPoolTask awaiter with the value
of the task result etc. As a result, a module programmer does not need to log
very often thus can avoid cluttering service code.

88

Documentation:

For details about the logging implementation see ApplicationServer.Tools.Logging
namespace: Log, LogMessage, LogManager and Writer classes.
For details about the Writer implementations see ApplicationServer.Tools.Logging
namespace: FileWriter, DatabaseWriter, and ConsoleWriter classes.

4.2 Tooling

With the Application Server NG are also delivered tools for easier service pro-
gramming or testing.

4.2.1 Visual Studio Projects

Among the tools belongs a set of Visual Studio extensions helping to create a
new service and plugin library projects. Thus, they are primarily targeted for
programmers.

All of the extensions are in ApplicationServer.VisualStudioExtensions

solution and to compile it Visual Studio 2013 SDK must be installed (free for
download from Microsoft Download Center in [59]). The solution consists of �ve
libraries:

ApplicationServer.ProjectWizard : An IWizard implementation (mode in-
formation in MSDN documentation in [60]).

ApplicationServer.Plugin.Database : The project template for database plu-
gins.

ApplicationServer.Plugin.Wcf : The project template for WCF plugins.

ApplicationServer.Plugin.Service : The project template for services.

ApplicationServer.VisualStudioExtensions : The VSIX project to install
the templates in Visual Studio.

The �rst item, ApplicationServer.ProjectWizard is used by every project
template for Application Server NG . It ensures that the created project is placed
in the correct directory. The Application Server NG source code directory struc-
ture is hierarchical, as was introduced in [1.3 Billien], and the actual Visual
Studio projects are placed in module directories. However, Visual Studio, by
default, places new projects to the same directory as the solution �le is, which in
case of Application Server NG is higher then the desired directory. To remedy
this behavior, ApplicationServer.ProjectWizard takes into account currently
selected solution directory, as is shown in Figure 4.17, and creates the new project
there.

89

Figure 4.17: Visual Studio Solution Explorer with selected directory

The example in Figure 4.17 shows that Con�gurationMaintenance directory
is selected. If no directory is selected for the project creation, the wizard will
report an error.

The next three items are project templates for Application Server NG plugins
and service. The created projects have properly set output directories for their
binaries, proper import of PostSharp MSBuild target, added references to relevant
Application Server NG projects like Core and sample code. The New Project...
dialog for Application Server NG project look like Figure 4.18.

90

Figure 4.18: Application Server NG New Project dialog

Figure 4.18 demonstrates that the Location cannot be changed, since it is
inferred from the selected solution directory, and that only the short project
name is required, i.e. for input Logging in a solution directory ApplicationServer
a library named ApplicationServer.Logging will be created.

4.2.2 Application Server Installer

4.2.3 Administration Console

Although Administration Console is a part of this thesis software package, it is
not in the thesis scope. Its only purpose is to demonstrate Application Server
NG basic abilities and prove its usefulness. Moreover, it was not implemented by
the author of this thesis, the credit belongs to Viliam Sabol.

The installation instructions are in [C Administration Console Installation]
and user manual in [D Administration Console Manual].

91

5. Conclusion

The goal of his thesis was to take an existing solution of Application Server and
improve it so that it provides the same functionality but in a more convenient
way. However, it is not possible to reimplement the whole Billien solution by
one person, thus the new solution concentrated only on the mostly used parts of
Billien, respectively Application Server .

5.1 Comparison

Obviously, not all apis and de�nitely not all supporting plugins and services
have been developed. The following Table 5.1 summarizes and compares the
current state of supporting libraries in Application Server and Application Server
NG .

Application Server Application Server NG

Core 3 3

async/await 7 3

GUI Support 3 3

Interconnection.Agent, Tools

AS.FrameworkTypes

WCF 3 3

Api.Wcf Api.Wcf

Database 3 3

Oracle Oracle, PostgreSQL

Api.Odp Api.Database

Data Caching 3 Work in Progress

Wcf.Plugin.CacheCacheName Api.Cache

Service Support 3 3

Api.Scheduler, Api.Timer Api.Service, Api.Task

File Support 3 7

Api.Bulk

Con�guration Module 3 7

Billien.CO

Supporting Modules 3 7

Billien.AC, ...

Table 5.1: Comparison of Application Server and Application Server NG

93

5.2 Goals Achievement

As can be inferred from Table 5.1, Application Server NG supports much less than
the original Application Server . However, to cover all the provided functionality
was never the goal of this thesis. The goal was to cover only the mostly used
functionality and concentrate on the quality, maintainability and usability of the
code. For that purpose, general goals were set at the end of [2 Motivation] and
their achievement is summarized in the next listing:

� Application Server must serve as a framework for business process develop-
ment and must do so intuitively and safely (i.e. making the incorrect usage
of it implausible).

Application Server NG de�nitely serves as a framework for business
process development and from all the examples shown throughout this
thesis it is apparent that it does so very intuitively. The requirement
of making the incorrect usage implausible is achieved by properly set-
ting up visibility of exposed code elements (e.g. classes, interfaces,
enumerations etc.) and using suitable patterns for method overriding
as demonstrated in Listing 5.1.

1 // Defined in Core.
2 public abstract class Base
3 {
4 protected abstract void BaseMethod();
5 }
6 // Defined in Application Server NG
7 public abstract class SpecificBase : Base
8 {
9 protected sealed override void BaseMethod()
10 {
11 // ToDo: SpecificBase work.
12 this.OnBaseMethod();
13 }
14 protected virtual void OnBaseMethod()
15 { }
16 }
17

18 // Defined in concrete module
19 public sealed class SpecificFinal : SpecificBase
20 {
21 protected override void OnBaseMethod()
22 {
23 // ToDo: SpecificFinal work.
24 }
25 }

Listing 5.1: The pattern for method overriding

� ServiceLogic code must be inherently clean and concise and the framework
should encourage readable and consistent coding across modules.

94

This was one of the major concerns of Application Server NG and,
hopefully was achieved in satisfying manner. The biggest contribution
to this goal was introduction of async/await majorly simplifying the
service code. Also transition from result codes to exceptions removed
a lot of code clutter from service code. And many other small im-
provements mentioned throughout this thesis have positive impact on
service code.

� Framework interfaces must serve a module programmer primarily even though
it means complex design and more work for Application Server developer.

Another of major goals of Application Server NG , thus addressed at
every exposed code element of Application Server NG , especially of
Core and Tools libraries. The two major apis (Database and WCF)
provide easy to use base classes, Visual Studio project generating ex-
amples and extensive documentation.

� The high level architecture of Application Server should be preserved since
it serves well for the Billien project and also ensures easier transition for
module programmers.

As was shown in [4.1 Application Server], the overall architecture is
same for Application Server and Application Server NG . The process
of decomposition into libraries and all the major concepts like api,
plugin, caller, service and executor are preserved.

� No change should lead to severe performance decrease, the overall perfor-
mance should stay the same for similar business processes.

Unfortunately, there were no load tests done on the new solution.
Therefore, there is no conclusive verdict whether theApplication Server
NG provides the same level of performance as Application Server does.
However, ordinary tests done during development have not shown any
signi�cant decrease of performance.

� Core features of Application Server should keep their expected behavior
and should not signi�cantly divert from the current behavior.

With Application Server NG solution was also done extensive analy-
sis of the old Application Server in order to properly identify feature,
which must be preserved and which may be altered, improved, re-
placed or completely dropped. This whole analysis is covered in [3
Analysis] and the Application Server NG implementation adhered to
the results of it.

� If the changes are not backward compatible, the potential future need to
interconnect the old solution with the new one will be taken into consider-
ation.

Since Application Server NG was completely written anew, it obvi-
ously is not backward compatible. Although it is not possible to use
the source code of Billien with the new Application Server NG solu-
tion, the hypothetical solution to reuse of existing code and/or inter-
connecting the old Application Server with the new Application Server

95

NG was devised and is further explained in the next [5.3.1 Bridge to
Application Server].

5.3 Future Work

As was stated before, Application Server NG does not cover complete function-
ality provided by Application Server (summarized in Table 5.1). Thus, there are
few areas which are expected to be focused on in the forthcoming work:

� Api.Cache : It is already work in progress and aims to completely replace
the trio of WCF cache plugin, cache service and ODP plugin of Appli-
cation Server by just one cache plugin in Application Server NG .

� Localization: Hand in hand with Api.Cache goes the functionality to
provide localization of data for GUIs, which is in the old Application Server
implemented as circa 500 di�erent caches. The future goal of Application
Server NG is to move the localization data into one table hence one cache.

� Database.Api : Since every database plugin method must match the de�-
nition in its stored procedures in database, it would be bene�cial to provide
code generators (for each DatabaseDriver one) to generate the database
plugin code.

� Api.File : Originally Api.Bulk, there has not been done any work on this
api, thus the full circle of analysis, design and implementation must be
done.

� Minor improvements: automatically map con�guration to attribute anno-
tated �elds instead of manual reading in Intialize, check whether all ser-
vice dependencies are loaded in the running Application Server NG , clean
up the redundancies in the client code of WcfPlugins (the de�nition of the
called WCF operation is passed in 3 di�erent parameters), etc.

5.3.1 Bridge to Application Server

Although the planned forthcoming work on Application Server NG is important,
the more crucial is bridging the gap between Application Server and Application
Server NG . There are two possible ways how to reuse existing code written for
Application Server while develop new code on Application Server NG . The �rst
one is to interconnect them over WCF, speci�cally to expose the reusable services
of Application Server via WCF. Apparently, a new functionality would need to
be added to Application Server NG in order to call WCF operations in the old
begin/end format and vice versa for Application Server and task-based WCF
operations. The second option is to port existing Billien code to Application
Server NG . Speci�cally, leave the code of services intact, but port the code all
plugins and apis to the new Application Server NG using automatization as
much as possible. Then, the new Core would be used and new services could
be written in async/await fashion. However, to make the old services work
with the new plugins some sort of bridging version of caller would have to be
designed and provided.

96

Obviously, the second option is much more challenging and complex thus
impractical in terms of time and work costs. Therefore, the �rst option would
be the logical choice for bridging the di�erences between Application Server NG
and Application Server .

97

Bibliography

[1] SAP NetWeaver Technology Platform | SCN. http://scn.sap.com/
community/netweaver. SAP SE, July 2015. Retrieved on July 15, 2015.

[2] What Is Windows Communication Foundation. https://msdn.microsoft.
com/en-us/library/ms731082(v=vs.110).aspx. Microsoft Corporation,
July 2015. Retrieved on July 15, 2015.

[3] NetTcpBinding Class (System.ServiceModel). https://msdn.microsoft.
com/en-us/library/system.servicemodel.nettcpbinding(v=vs.110)
.aspx. Microsoft Corporation, July 2015. Retrieved on July 15, 2015.

[4] ASP.NET MVC | The ASP.NET Site. http://www.asp.net/mvc. Microsoft
Corporation, July 2015. Retrieved on July 15, 2015.

[5] Oracle | .NET Developer Center. http://www.oracle.com/technetwork/
topics/dotnet/whatsnew/index.html. Oracle Corporation, July 2015. Re-
trieved on July 15, 2015.

[6] Performance Counters (Windows). https://msdn.microsoft.com/en-us/
library/windows/desktop/aa373083(v=vs.85).aspx. Microsoft Corpora-
tion, July 2015. Retrieved on July 15, 2015.

[7] ADO.NET. https://msdn.microsoft.com/en-us/library/e80y5yhx(v=
vs.110).aspx. Microsoft Corporation, July 2015. Retrieved on July 15,
2015.

[8] Message Queuing (MSMQ). https://msdn.microsoft.com/en-us/
library/ms711472(v=vs.85).aspx. Microsoft Corporation, July 2015.
Retrieved on July 15, 2015.

[9] AWS | Amazon Simple Queue Service - Hosted Message Queuing Service.
http://aws.amazon.com/sqs/. Amazon Web Services, Inc., July 2015. Re-
trieved on July 15, 2015.

[10] AutoMapper. http://automapper.org/. Jimmy Bogard, July 2015. Re-
trieved on July 15, 2015.

[11] System.Transactions Namespace (). https://msdn.microsoft.com/
library/system.transactions. Microsoft Corporation, July 2015. Re-
trieved on July 15, 2015.

[12] Asynchronous Programming Patterns. https://msdn.microsoft.com/
en-us/library/jj152938(v=vs.110).aspx. Microsoft Corporation, July
2015. Retrieved on July 15, 2015.

[13] Oracle User-De�ned Types (UDTs) and .NET Custom Types. http://docs.
oracle.com/cd/E51173_01/win.122/e17732/featUDTs.htm#ODPNT379. Or-
acle Corporation, July 2015. Retrieved on July 15, 2015.

99

http://scn.sap.com/community/netweaver
http://scn.sap.com/community/netweaver
https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.nettcpbinding(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.nettcpbinding(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.nettcpbinding(v=vs.110).aspx
http://www.asp.net/mvc
http://www.oracle.com/technetwork/topics/dotnet/whatsnew/index.html
http://www.oracle.com/technetwork/topics/dotnet/whatsnew/index.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/e80y5yhx(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/e80y5yhx(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://aws.amazon.com/sqs/
http://automapper.org/
https://msdn.microsoft.com/library/system.transactions
https://msdn.microsoft.com/library/system.transactions
https://msdn.microsoft.com/en-us/library/jj152938(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/jj152938(v=vs.110).aspx
http://docs.oracle.com/cd/E51173_01/win.122/e17732/featUDTs.htm#ODPNT379
http://docs.oracle.com/cd/E51173_01/win.122/e17732/featUDTs.htm#ODPNT379

[14] Oracle Call Interface (OCI). http://www.oracle.com/technetwork/
database/features/oci/index-090945.html. Oracle Corporation, July
2015. Retrieved on July 15, 2015.

[15] WCF Discovery Overview. https://msdn.microsoft.com/en-us/library/
dd456791(v=vs.110).aspx. Microsoft Corporation, July 2015. Retrieved on
July 15, 2015.

[16] Covariance and Contravariance (C# and Visual Basic) https://
msdn.microsoft.com/en-us/library/ee207183.aspx. Microsoft Corpora-
tion, July 2015. Retrieved on July 15, 2015.

[17] Re�ection in the .NET Framework. https://msdn.microsoft.com/en-us/
library/f7ykdhsy(v=vs.110).aspx. Microsoft Corporation, July 2015. Re-
trieved on July 15, 2015.

[18] Davies, Alex. Async in C# 5.0. First Release. O'Reilly Media, Inc., 2012.
Chapter 14, Writing Custom Awaitable Types, pp.83-84. ISBN 978-1-449-
33716-2.

[19] SynchronizationContext Class (System.Threading). https:
//msdn.microsoft.com/en-us/library/system.threading.
synchronizationcontext(v=vs.110).aspx. Microsoft Corporation, July
2015. Retrieved on July 15, 2015.

[20] Task Parallel Library (TPL). https://msdn.microsoft.com/en-us/
library/dd460717(v=vs.110).aspx. Microsoft Corporation, July 2015.
Retrieved on July 15, 2015.

[21] Fowler, Martin. CodeSmell. http://martinfowler.com/bliki/
CodeSmell.html. Martin Fowler, February 2006. Retrieved on July
15, 2015.

[22] Attributes (C# and Visual Basic). https://msdn.microsoft.com/en-us/
library/z0w1kczw.aspx. Microsoft Corporation, July 2015. Retrieved on
July 15, 2015.

[23] Löwy, Juval. Programming WCF Services. Third Edition. O'Reilly Media,
Inc., 2010. Chapter 8, Concurrency Management, pp.383. ISBN 978-0-596-
80548-7.

[24] Windows Performance Monitor. https://technet.microsoft.com/en-us/
library/cc749249.aspx. Microsoft Corporation, July 2015. Retrieved on
July 15, 2015.

[25] PerformanceCounterCategory Class (System.Diagnostics). https:
//msdn.microsoft.com/en-us/library/System.Diagnostics.
PerformanceCounterCategory(v=vs.110).aspx. Microsoft Corporation,
July 2015. Retrieved on July 15, 2015.

[26] Error List Window. https://msdn.microsoft.com/en-us/library/
33df3b7a.aspx. Microsoft Corporation, July 2015. Retrieved on July 18,
2015.

100

http://www.oracle.com/technetwork/database/features/oci/index-090945.html
http://www.oracle.com/technetwork/database/features/oci/index-090945.html
https://msdn.microsoft.com/en-us/library/dd456791(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd456791(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee207183.aspx
https://msdn.microsoft.com/en-us/library/ee207183.aspx
https://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.synchronizationcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.synchronizationcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.synchronizationcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CodeSmell.html
https://msdn.microsoft.com/en-us/library/z0w1kczw.aspx
https://msdn.microsoft.com/en-us/library/z0w1kczw.aspx
https://technet.microsoft.com/en-us/library/cc749249.aspx
https://technet.microsoft.com/en-us/library/cc749249.aspx
https://msdn.microsoft.com/en-us/library/System.Diagnostics.PerformanceCounterCategory(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Diagnostics.PerformanceCounterCategory(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Diagnostics.PerformanceCounterCategory(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/33df3b7a.aspx
https://msdn.microsoft.com/en-us/library/33df3b7a.aspx

[27] Code Generation and T4 Text Templates. https://msdn.microsoft.com/
en-us/library/bb126445.aspx. Microsoft Corporation, July 2015. Re-
trieved on July 18, 2015.

[28] EnvDTE Namespace (). https://msdn.microsoft.com/en-us/library/
envdte.aspx. Microsoft Corporation, July 2015. Retrieved on July 18, 2015.

[29] Apache log4net - Apache log4net: Home. http://logging.apache.org/
log4net/. Apache Software Foundation, July 2015. Retrieved on July 18,
2015.

[30] Enterprise Library. https://msdn.microsoft.com/en-us/library/
cc467894.aspx. Microsoft Corporation, July 2015. Retrieved on July
18, 2015.

[31] Chapter 13. Aspect Oriented Programming with Spring.NET. http:
//www.springframework.net/doc-latest/reference/html/aop.html. Piv-
otal Software, Inc., July 2015. Retrieved on July 18, 2015.

[32] PostSharp - the #1 pattern-aware extension to C# and VB. https://www.
postsharp.net/. SharpCrafters s.r.o., July 2015. Retrieved on July 18, 2015.

[33] Glossary - stored procedure. http://docs.oracle.com/database/121/
CNCPT/glossary.htm#CNCPT44583. Oracle Corporation, July 2015. Retrieved
on July 19, 2015.

[34] Removing Oracle Database Client Software. http://docs.oracle.com/cd/
E11882_01/install.112/e47959/deinstall.htm. Oracle Corporation, July
2015. Retrieved on July 19, 2015.

[35] Removing Oracle Database Client Software. http://docs.oracle.com/
database/121/NTCLI/deinstall.htm. Oracle Corporation, July 2015. Re-
trieved on July 19, 2015.

[36] Changes in This Release for Oracle Data Provider for .NET.
http://docs.oracle.com/cd/E56485_01/win.121/e55744/release_
changes.htm#ODPNT8127. Oracle Corporation, July 2015. Retrieved on July
19, 2015.

[37] Di�erences between the ODP.NET Managed Driver and Unmanaged Driver.
http://docs.oracle.com/cd/E56485_01/win.121/e55744/intro004.htm#
ODPNT8146. Oracle Corporation, July 2015. Retrieved on July 19, 2015.

[38] Introduction to Oracle Database Advanced Queuing. http://docs.oracle.
com/database/121/ADQUE/aq_intro.htm#i1009241. Oracle Corporation,
July 2015. Retrieved on July 19, 2015.

[39] Oracle PL/SQL. http://www.oracle.com/technetwork/database/
features/plsql/index.html. Oracle Corporation, July 2015. Retrieved on
July 19, 2015.

101

https://msdn.microsoft.com/en-us/library/bb126445.aspx
https://msdn.microsoft.com/en-us/library/bb126445.aspx
https://msdn.microsoft.com/en-us/library/envdte.aspx
https://msdn.microsoft.com/en-us/library/envdte.aspx
http://logging.apache.org/log4net/
http://logging.apache.org/log4net/
https://msdn.microsoft.com/en-us/library/cc467894.aspx
https://msdn.microsoft.com/en-us/library/cc467894.aspx
http://www.springframework.net/doc-latest/reference/html/aop.html
http://www.springframework.net/doc-latest/reference/html/aop.html
https://www.postsharp.net/
https://www.postsharp.net/
http://docs.oracle.com/database/121/CNCPT/glossary.htm#CNCPT44583
http://docs.oracle.com/database/121/CNCPT/glossary.htm#CNCPT44583
http://docs.oracle.com/cd/E11882_01/install.112/e47959/deinstall.htm
http://docs.oracle.com/cd/E11882_01/install.112/e47959/deinstall.htm
http://docs.oracle.com/database/121/NTCLI/deinstall.htm
http://docs.oracle.com/database/121/NTCLI/deinstall.htm
http://docs.oracle.com/cd/E56485_01/win.121/e55744/release_changes.htm#ODPNT8127
http://docs.oracle.com/cd/E56485_01/win.121/e55744/release_changes.htm#ODPNT8127
http://docs.oracle.com/cd/E56485_01/win.121/e55744/intro004.htm#ODPNT8146
http://docs.oracle.com/cd/E56485_01/win.121/e55744/intro004.htm#ODPNT8146
http://docs.oracle.com/database/121/ADQUE/aq_intro.htm#i1009241
http://docs.oracle.com/database/121/ADQUE/aq_intro.htm#i1009241
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://www.oracle.com/technetwork/database/features/plsql/index.html

[40] OracleCommand Object - Parameter Binding. http://docs.oracle.com/
database/121/ODPNT/featOraCommand.htm#i1007242. Oracle Corporation,
July 2015. Retrieved on July 19, 2015.

[41] Npgsql. http://www.npgsql.org/. The Npgsql Development Team, July
2015. Retrieved on July 19, 2015.

[42] Data Types - Oracle Built-in Data Types. http://docs.oracle.com/
database/121/SQLRF/sql_elements001.htm#i54330. Oracle Corporation,
July 2015. Retrieved on July 19, 2015.

[43] PostgreSQL: Documentation: 9.4: Numeric Types. http://www.
postgresql.org/docs/9.4/interactive/datatype-numeric.html. The
PostgreSQL Global Development Group, July 2015. Retrieved on July 19,
2015.

[44] PostgreSQL: Documentation: 9.4: Enumerated Types. http://www.
postgresql.org/docs/9.4/static/datatype-enum.html. The PostgreSQL
Global Development Group, July 2015. Retrieved on July 19, 2015.

[45] PostgreSQL: Documentation: 9.4: Character Types. http://www.
postgresql.org/docs/9.4/interactive/datatype-character.html. The
PostgreSQL Global Development Group, July 2015. Retrieved on July 19,
2015.

[46] PostgreSQL: Documentation: 9.4: Cursors. http://www.postgresql.org/
docs/9.4/static/plpgsql-cursors.html. The PostgreSQL Global Devel-
opment Group, July 2015. Retrieved on July 19, 2015.

[47] OracleDataReader Class. http://docs.oracle.com/cd/E51173_01/win.
122/e17732/OracleDataReaderClass.htm#i1004048. Oracle Corporation,
July 2015. Retrieved on July 19, 2015.

[48] PostgreSQL: Documentation: 9.4: FETCH. http://www.postgresql.org/
docs/9.4/static/sql-fetch.html. Oracle Corporation, July 2015. Re-
trieved on July 19, 2015.

[49] Download Microsoft Build Tools 2013 from O�cial Microsoft Download
Center. https://www.microsoft.com/en-us/download/details.aspx?id=
40760. Microsoft Corporation, July 2015. Retrieved on July 24, 2015.

[50] How to: Enable the Net.TCP Port Sharing Service. https://msdn.
microsoft.com/en-us/library/ms733925(v=vs.110).aspx. Microsoft Cor-
poration, July 2015. Retrieved on July 24, 2015.

[51] ThreadPool Class (System.Threading). https://msdn.microsoft.com/
en-us/library/system.threading.threadpool(v=vs.110).aspx. Mi-
crosoft Corporation, July 2015. Retrieved on July 24, 2015.

[52] Cleary, Stephen. MSDN Magazine: Parallel Computing - It's
All About the SynchronizationContext. https://msdn.microsoft.com/
magazine/gg598924.aspx. Stephen Cleary, February 2011. Retrieved on July
24, 2015.

102

http://docs.oracle.com/database/121/ODPNT/featOraCommand.htm#i1007242
http://docs.oracle.com/database/121/ODPNT/featOraCommand.htm#i1007242
http://www.npgsql.org/
http://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#i54330
http://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#i54330
http://www.postgresql.org/docs/9.4/interactive/datatype-numeric.html
http://www.postgresql.org/docs/9.4/interactive/datatype-numeric.html
http://www.postgresql.org/docs/9.4/static/datatype-enum.html
http://www.postgresql.org/docs/9.4/static/datatype-enum.html
http://www.postgresql.org/docs/9.4/interactive/datatype-character.html
http://www.postgresql.org/docs/9.4/interactive/datatype-character.html
http://www.postgresql.org/docs/9.4/static/plpgsql-cursors.html
http://www.postgresql.org/docs/9.4/static/plpgsql-cursors.html
http://docs.oracle.com/cd/E51173_01/win.122/e17732/OracleDataReaderClass.htm#i1004048
http://docs.oracle.com/cd/E51173_01/win.122/e17732/OracleDataReaderClass.htm#i1004048
http://www.postgresql.org/docs/9.4/static/sql-fetch.html
http://www.postgresql.org/docs/9.4/static/sql-fetch.html
https://www.microsoft.com/en-us/download/details.aspx?id=40760
https://www.microsoft.com/en-us/download/details.aspx?id=40760
https://msdn.microsoft.com/en-us/library/ms733925(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733925(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.threadpool(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.threadpool(v=vs.110).aspx
https://msdn.microsoft.com/magazine/gg598924.aspx
https://msdn.microsoft.com/magazine/gg598924.aspx

[53] ServiceContractAttribute Class (System.ServiceModel). https:
//msdn.microsoft.com/en-us/library/system.servicemodel.
servicecontractattribute(v=vs.110).aspx. Microsoft Corporation,
July 2015. Retrieved on July 25, 2015.

[54] DataContractAttribute Class (System.Runtime.Serialization). https:
//msdn.microsoft.com/en-us/library/System.Runtime.Serialization.
DataContractAttribute(v=vs.110).aspx. Microsoft Corporation, July
2015. Retrieved on July 25, 2015.

[55] Synchronous and Asynchronous Operations. https://msdn.microsoft.com/
en-us/library/ms734701(v=vs.110).aspx. Microsoft Corporation, July
2015. Retrieved on July 25, 2015.

[56] Löwy, Juval. Programming WCF Services. Third Edition. O'Reilly Media,
Inc., 2010. Chapter 6, Faults, pp.257-261. ISBN 978-0-596-80548-7.

[57] Validating Aspect Usage. http://doc.postsharp.net/aspect-validation.
SharpCrafters s.r.o., July 2015. Retrieved on July 25, 2015.

[58] Intercepting Properties and Fields. http://doc.postsharp.net/
location-interception. SharpCrafters s.r.o., July 2015. Retrieved on
July 28, 2015.

[59] Download Microsoft Visual Studio 2013 SDK from O�cial Microsoft Down-
load Center. https://www.microsoft.com/en-us/download/details.aspx?
id=40758. Microsoft Corporation, July 2015. Retrieved on July 28, 2015.

[60] IWizard Interface (Microsoft.VisualStudio.TemplateWizard). https://
msdn.microsoft.com/en-us/library/vstudio/Microsoft.VisualStudio.
TemplateWizard.IWizard(v=vs.120).aspx. Microsoft Corporation, July
2015. Retrieved on July 28, 2015.

[61] Extended Data Types. http://docs.oracle.com/database/121/SQLRF/sql_
elements001.htm#BABCIGGA. Oracle Corporation, July 2015. Retrieved on
July 30, 2015.

[62] PostgreSQL: Documentation: 9.4: CREATE ROLE. http://www.
postgresql.org/docs/9.4/static/sql-createrole.html. The Post-
greSQL Global Development Group, July 2015. Retrieved on July 30,
2015.

[63] CREATE USER. http://docs.oracle.com/database/121/SQLRF/
statements_8003.htm. Oracle Corporation, July 2015. Retrieved on
July 30, 2015.

103

https://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.DataContractAttribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.DataContractAttribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.DataContractAttribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms734701(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms734701(v=vs.110).aspx
http://doc.postsharp.net/aspect-validation
http://doc.postsharp.net/location-interception
http://doc.postsharp.net/location-interception
https://www.microsoft.com/en-us/download/details.aspx?id=40758
https://www.microsoft.com/en-us/download/details.aspx?id=40758
https://msdn.microsoft.com/en-us/library/vstudio/Microsoft.VisualStudio.TemplateWizard.IWizard(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/vstudio/Microsoft.VisualStudio.TemplateWizard.IWizard(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/vstudio/Microsoft.VisualStudio.TemplateWizard.IWizard(v=vs.120).aspx
http://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#BABCIGGA
http://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#BABCIGGA
http://www.postgresql.org/docs/9.4/static/sql-createrole.html
http://www.postgresql.org/docs/9.4/static/sql-createrole.html
http://docs.oracle.com/database/121/SQLRF/statements_8003.htm
http://docs.oracle.com/database/121/SQLRF/statements_8003.htm

Appendices

105

A. Application Server Installation

Prerequisites:

1. Windows 7 SP 1 64bit or higher

2. .NET Framework 4.5.1 Runtime, by default included in Windows 7 SP 1

3. Access to either one of the following databases

(a) PostgreSQL 9.4

(b) Oracle 12c Enterprise Edition with con�gured MAX_STRING_SIZE =
EXTENDED[61]

Installation:

1. Enable Net.TCP Port Sharing Windows Service

Start� Control Panel�Administrative Tools� Services�Net.TCP
Port Sharing Service � Properties � Startup Type: Automatic

Figure A.1: Enable Net.TCP Port Sharing

107

2. Enable XA Transactions DTC (not necessary for local machine only usage)

Start � Control Panel � Administrative Tools � Component Ser-
vices � Computers � My Computer � Distributed Transaction Co-
ordinator � LocalDTC

Figure A.2: LocalDTC

� Properties � Security � Change the setting to correspond to the
one in Figure A.3

108

Figure A.3: LocalDTC

3. Create a database user according to chosen database (PostgreSQL[62], Oracle[63])

Default values used in Application Server NG con�guration are:
user_name = application_server
password = tollnet

4. Install database schema

CD � Installation � Database � Postgre/Oracle � Create.cmd
(change connection data inside Create.cmd according to you environ-
ment)

5. Install Application Server

CD � Installation � ApplicationServer � ApplicationServer.msi

(a) Optionally change installation directory

109

B. Application Server Con�guration

1 <?xml version="1.0" encoding="utf-8"?>
2 <ApplicationServer groupId="1" moduleId="1"

transactionTimeout="00:01:00">
3 <LogManager>
4 <DatabaseWriter severity="Verbose" />
5 </LogManager>
6 <DatabaseManager>
7 <DatabaseDriver

assemblyName="ApplicationServer.Database.Postgre">
8 <ConnectionString name="application_server"

user="application_server" password="tollnet"
database="application_server" server="localhost"
port="5432" />

9 </DatabaseDriver>
10 <DatabaseDriver

assemblyName="ApplicationServer.Database.Oracle">
11 <ConnectionString name="application_server"

user="application_server" password="tollnet" database="si"
/>

12 </DatabaseDriver>
13 </DatabaseManager>
14 <DiscoveryService port="8002">
15 <RemoteModule port="8002" moduleId="2" />
16 </DiscoveryService>
17

18 <ThreadPoolManager>
19 <ThreadPool threadCount="10" />
20 <ThreadPool threadCount="10" />
21 </ThreadPoolManager>
22

23 <ApiManager>
24 <Api assemblyName="ApplicationServer.Api.Database">
25 <QueueThreadPoolRunner threadCount="1" />
26 <PluginManager>
27 <Plugin

assemblyName="ApplicationServer.Plugin.Database.Supervision"
connectionName="application_server" />

28 </PluginManager>
29 </Api>
30 <Api assemblyName="ApplicationServer.Api.Service"

runTests="false" />
31 <Api assemblyName="ApplicationServer.Api.Task" />
32 <Api assemblyName="ApplicationServer.Api.Wcf">
33 <PluginManager>
34 <Plugin

111

assemblyName="ApplicationServer.Plugin.Wcf.Supervision"
/>

35 </PluginManager>
36 </Api>
37 </ApiManager>
38 <ServiceManager>
39 <Service assemblyName="ApplicationServer.Service.Supervision" />
40 </ServiceManager>
41 </ApplicationServer>

Listing B.1: The Application Server NG con�guration �le

ApplicationServer: De�nes module identi�cation and group, also de�nes trans-
action timeout for all transactions within Application Server NG .

LogManager: De�nes only logging to database via DatabaseWriter with sever-
ity threshold set to Verbose. Other possible writers are FileWriter and
ConsoleWriter, however they are intended only for debugging purposes.

DatabaseManager: De�nes available drivers. The �rst one, Postgre, becomes the
default one. Both drivers de�ne their own set of connection strings.

DiscoveryService: De�nes the initial remote Application Server NG instance to
which will this instance try to connect. The RemoteModule element may re-
peat as many times as wished and contains optional attribute machineName
for the case when the node resides on di�erent machine.

ThreadPoolManager: De�nes con�guration for individual ThreadPools, which
can optionally contain attribute name.

ApiManager: De�nes which apis are loaded to this Application Server NG in-
stance. Subsequently, PluginManagers de�ne which plugins are loaded.

ServiceManager: De�nes which services are loaded to this Application Server
NG instance. Each service has two optional attributes: threadPoolName for
thread pool dedication and lifetime to override default 5 minute timeout
for a service instance life (after this timeout is the instance killed).

112

C. Administration Console

Installation

Prerequisites:

1. Windows 7 SP 1 64bit or higher

2. .NET Framework 4.5.1 Runtime, by default included in Windows 7 SP 1

3. IIS 7 or higher with ASP.NET

Installation:

1. Enable Internet Information Services

Start � Control Panel � Programs and Features � Turn Windows
features on or o� � Check Internet Information Services

2. Install Administration Console

CD� Installation� Administration Console � AdministrationCon-
sole.msi

(a) Optionally change installation directory

Figure C.1: Destination Folder

113

(b) Optionally change IIS con�guration

Figure C.2: IIS Con�guration

3. Browse http://localhost:8090 to check if the Administration Console is
running (use the port entered during installation process)

114

D. Administration Console Manual

Navigation menu appears either on the left side or is hidden at the top right
corner of the page depending on the screen size. There are three items in the
menu:

Discovery Set of screens that displays information about available Application
Server NG instances.

Performance Counters Screen displays selected counters value history in graph.

Logs Screen displays database log records from Application Server NG instances.

Discovery

Discovery main screen is sortable and �lterable grid with connected Application
Server NG instances to this Administration Console.

Figure D.1: Discovery

Detail is displayed after an item is selected in the grid. The detail displays
several properties:

Log Messages Chart with counts of logged messages by severity.

Assembly Errors Chart with counts of error messages by originating assembly.

Available Methods List of methods implemented in Application Server NG
instance.

Loaded Services List of services loaded in Application Server NG instance.

Visible Modules List of Application Server NG instances visible to the cur-
rently displayed one.

115

Figure D.2: Detail

Counters

Counter monitor displays counter values for selected counter instances in graph.
Set of watched counters is remembered per one browser tab.

116

Figure D.3: Counters

Logs

Shows a sortable and �lterable grid of log messages saved in the database. Detail
of a log message is displayed after it is selected.

117

Figure D.4: Logs

Since Administration Console is based on Tools, it must be con�gured via
similar XML �le as Application Server NG . However, this con�guration is much
more compact.

1 <?xml version="1.0" encoding="utf-8"?>
2 <ApplicationServer groupId="1" moduleId="100">
3 <LogManager>
4 <FileWritter severity="Transfer" />
5 </LogManager>
6 <DatabaseManager />
7 <DiscoveryService port="8002">
8 <RemoteModule port="8002" groupId="1" moduleId="1" />
9 </DiscoveryService>
10 </ApplicationServer>

Listing D.1: The Application Server NG con�guration �le

Note that if the con�gured remote Application Server NG instance is not avail-
able, or connection is lost, Administration Console displays error message with
detailed information about connection error.

118

	Introduction
	Enterprise Software
	TollNet Solution
	Billien
	Application Server
	Technologies and Platforms
	Modules in General
	Core
	Modules in Detail

	Conclusion

	Motivation
	Flaws of the Current Solution
	Pattern Repetition
	Code Duplication
	Error Handling
	Transaction Control
	Generated Code
	Asynchronous Pattern
	Bad Testability
	Framework Interfaces
	Logging
	Visual Studio Projects

	Problem Statement and Goals

	Analysis
	Refactoring vs. Rewrite
	Application Server Components
	Application Server Libraries
	Services
	Core
	WCF
	Database

	Implementation
	Application Server
	Core
	WCF Api
	Database Api
	Service and Task Api
	Tools

	Tooling
	Visual Studio Projects
	Application Server Installer
	Administration Console

	Conclusion
	Comparison
	Goals Achievement
	Future Work
	Bridge to Application Server

	Bibliography
	Appendices
	Application Server Installation
	Application Server Configuration
	Administration Console Installation
	Administration Console Manual

