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Chapter 1

Introduction

”The development of full artificial intelligence could spell the end of the human
race.”

by Stephen Hawking.

1.1 Motivation

There has been an inconclusive debate about whether future artificial intelligence
could destroy mankind. Could AI destroy the world? Stephen Hawking told the
BBC about the effect of AI development to human and Elon Musk, CEO of
SpaceX and Tesla Motors, who has called AI as the ”biggest existential threat”
of humanity. AI has a great potential for the future, it is important to research
how to derive its benefits while voiding unexpected dangers. But many AI re-
searchers say that humanity is nowhere near being able to create strong AI. Demis
Hassabis, an AI scientist at Google DeepMind, said at a news conference about
AI: ”We are still decades away from any technology we need to worry about”. He
also added that: ”it is good to start the conversation now”.

People always dream to invent a machine that would do any complex be-
haviour like humans do. The machine could have an ability to think, act and
solve solutions for every problem in real life. Computers today can present any
computable problem and algorithm. This was already proved a long time ago
since Alan Turing showed that a Universal Turing Machine can solve any com-
putable problem.
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With the rapid growth of World Wide Web, now we have enormous various
data sources coming from images, text, video and speech, etc... Thus, the main
problem is how to teach the machine understand and perceive knowledge from
these data sources so that it would think and produce any complex human be-
haviour. The problem is still very difficult to be solved immediately, although
there are currently breakthroughs in machine learning, machine perception and
robotics techniques such as: deep learning and decision-theoretic planning. So at
the moment, it is too early to think about the effect of AI developing to human
race. There has been still a long-term goal to build a complete human-machine
system occurring in our dream.

To achieve the success towards an intelligent machine, we have to think of
several ways. The general problem of creating AI has been broken down into
a number of sub-problems such as: reasoning, knowledge acquisition and rep-
resentation, planning, human-computer interaction (including: natural language
processing and computer vision), perceptions and robotics (the ability to move
and manipulate objects). Among these sub-problems, machine learning, a study
of computer algorithms, has been central to AI research which can improve per-
formance automatically through experience. In other words, machine learning
explores the study and development of algorithms that can learn from data and
make predictions through its learning process.

The question: ”Can machines think?”, which is mentioned in Alan Turing’s
proposal in his paper ”Computing Machinery and Intelligence”, can be replaced
by this question ”Can machines do what humans can do?”. Firstly, people did
start to build a machine that can have human vision for perceiving and under-
standing our visual world. A machine can acquire, process and analyze basic
shapes and concrete images like digital written and concrete basic objects, then
improve it towards more complex visual contents such as human faces, running
vehicles and so on, finally creating a machine that can see (recognize and deep
understand) the real world.

Another possible way is building a machine which can communicate with us
using our natural language. Research in Natural language processing allows the
dreamed machine the ability to read, listen and understand the languages that
we speak in our everyday activities. Some straightforward applications of NLP
include information retrieval, dialogue system, question answering and machine
translation. We spend very expensive cost (e.g., time, money, human resource) to
build various rule-based language computational systems and develop a number
of language models to teach computers to “speak” and understand our natural
languages. The dreamed machine needs to have a lexicon of our language, a
parser and grammar rules to segment sentences into a machine-understandable
representation. The construction of lexical resources requires significant effort.
Also, the machine needs to have a semantic theory to deal with reading compre-
hension and so on.
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So now, we already have computational models for vision and language to
create our dreamed machine. That dreamed machine has an ability to produce
desired behaviors that humans consider intelligent from both modalities (lan-
guage and vision). As a result, the artificial intelligence community has extended
the research area in the interaction between language and vision. For example, if
a person is presented a picture and is asked to describe what he/she is seeing or
ask someone to imagine a scene, he/she is performing a task which links the two
modalities. We dream a machine that is able to think and imagine like humans.
Giving that machine an image, it can tell us the caption or predict the events
and the contexts depicted in the image. There has been significant growth in
the research direction of linking language and vision. Language can contribute
to expand the tasks of vision community such as: images to captions, describing
events in images, video to text. Conversely, how is vision able to contribute to
the linguistic side of the long-term goal of artificial intelligence?

Progress have already been obtained on the task of building a machine that
can form a coherent and global understanding of a scene in a picture or a video.
What is next? We will teach the machine to imagine a new scene never seen before
to step toward computer creativity and imagination.Imagination is constrained by
three different things. The first thing is the environment that you are in when you
are called upon to use your imagination and this might be the book that you are
reading or when we tell you to imagine a dog or something. The second thing is
what we understand about the world. Then finally are visual memory and that is
everything that we have ever seen during our life. To teach a machine to imagine,
we need to provide knowledge of the word and vision to that machine. Then, the
machine has an ability to think and draw a new scene based on that knowledge.
For example, the machine has an ability to draw a picture of a ”wampimuk” by
knowing this event ”we found a cute, hairy wampimuk sleeping behind the tree?
that a ”wampimuk” will probably look like a small furry animal, even though
a ”wampimuk” has never been seen before. In this thesis, we contribute to the
work on machine’s imagination, by starting to tack the question of how a machine
can draw knowledge that it learns from linguistic and visual environment. More
precisely, our idea is to create a machine that can produce a picture of concepts
it has rarely encountered or never seen before by generalizing from the semantic
information encoded in word embedding. We present a language-driven image
generation system which can visualize semantics encoded in word representations
induced from text corpora.

1.2 Main Contributions

To achieve our goal, we combine various results in language and vision. Thanks
to the latest research in distributed representation, tools such as word2vec [1, 2]
and Glove [3] have produced high-quality word embeddings from very large text
corpora. Most of the models are based on modern Recurrent Neural Networks
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(RNNs). They outperform traditional distributional approaches in many linguis-
tic tasks [4]. Meanwhile, in computer vision, semantic representation of concepts
are also extracted from images that they are associated (tagged) with. By using
very deep neural networks (e.g., Convolutional Neural Networks [5]), trained on
image datasets, Image embeddings can be represented by outputs (visual fea-
tures) of each neural networks’ layer.

Essentially, there are two challenges in this project: 1) translating word vec-
tors to visual feature representations, 2) generating an image based on a trans-
lated visual vectors. The first challenge is a problem of cross-model mapping
between language and vision domains. At the same time, in computer vision
community, there is currently much attention to better evaluate what the layers
of CNNs and other deep architectures have really learned. Furthermore, the un-
derstand of visual vectors extracted by CNNs remains limited, they need to be
assessed in an intuitive way. Therefore, some feature inversion algorithms [6, 7]
have been proposed to reconstruct the natural image from visual features (e.g.,
SIFT, HOG or CNN features).

Our language-driven image generation system1 takes a word vectors as an in-
put (e.g., word embedding of ”car”), translate it into visual feature space defined
by the outputs of CNN layer, then generate a natural image from transformed-
feature representation by applying the feature inversion technique in the HOGgle
framework [6]. We test our system generating images in a zero-shot way, in which
knowledge of testing concepts (semantic representations from text and image ) is
never used during training cross-modal mapping function as well as inducing the
feature inversion function. In particular, our system has an ability to project a
word vector of ”car” onto visual feature space and then reconstruct the image of
a ”car” without having ever seen any photo of ”car”.

We next design a series of CrowdFlower studies providing quantitative and
qualitative insights into visualizing semantic information encoded in word embed-
ding by allowing subjects inspect generated images based on their visual proper-
ties (e.g., shape, color and characteristic environment). The experimental results
show that our current system can capture visual properties related to color and
the environment in the task of object discrimination. However, it is not good
at expressing shape or size of objects because shapes are not often expressed by
linguistic means.

1Our work is accepted for a presentation at Multimodal Machine Learning Workshop @NIPS
2015 under the publication: ”Unveiling the Dreams of Word Embeddings: Towards Language-
Driven Image Generation”
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1.3 Structure of the thesis

This thesis is organized as follows:

Chapter 2 is a literature review of extracting semantic representations from
text and images and related works. It starts by briefly introducing recent ad-
vanced research in word and image embedding. We also describe the task of
cross-modal mapping in zero-shot manner. The last section is about recent re-
search in visual feature inversion.

Chapter 3 presents our language-driven image generation system. It describes
in detail our pipeline of image generation from word embeddings. The chapter
first sketches out the system and then specifies materials which used to do train-
ing and evaluation.

Chapter 4 provides a through model selection and experimental evaluation.
We carry our pre-experiments to determine the best model and parameters for
our system in the first section. Subsequently, evaluation section covers four dif-
ferent experiments which estimate visual properties of the generated images. In
each experiment, the task description is first described; hence the experimental
results and discussion.

Chapter 5 is a summary of our achievements throughout the previous chapters.
Some future research directions are also proposed to continue our recent work of
image generation.
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Chapter 2

Literature Review

In this thesis, we combine a variety of recent strands of research to perform
language-driven image generation. Firstly, we are focusing on the problem of
learning semantic representation from both modalities: language and vision. The
easiest way to teach computers to understand documents and images is develop-
ing a mathematical model of meaning representation. Computers discriminate
linguistic/visual units based on their semantic representations. We name seman-
tic representations inducing from text and images as Word Embedding and Image
Embedding, respectively. Secondly, we provide a review of cross-modal mapping
problem which has received much attention in the machine learning community
today. Finally, we introduce the literature on image generation by focusing on
works that look at the task as the one of visual feature inversion.

2.1 Semantic Space representation

Learning semantic information has been a hot topic in Natural Language Pro-
cessing. Semantic information has been represented in a number of ways such as:
feature-based representation, semantic networks and semantic space. Feature-
based models capture specific aspects of semantics, in which the semantic of a
concept can be learned through a list of human-defined features or attributes that
are related to the meaning of that concept [8, 9]. On the other hand, semantic
networks provide semantic relations between concepts. The most common ap-
proach of semantic networks is using directed or undirected graphs to present
concepts as vertices and semantic relations as edges. WordNet [10] is an example
for such a semantic network, where concepts are linked by semantic relations such
as: synonym or hypernym. The semantic similarity of two concepts is measured
by the path length between two vertices that denote two concepts.

Another approach for representing the meanings of words is semantic space, in
which words are represented by vectors. Each dimension represents some latent
categories (e.g. semantic or syntactic features). One of the key benefits of such a
representation is that it does not require human-defined features which are used
in feature-based approach. On the other hand, distance measures can be applied
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to estimate semantic similarity between words given their vector representations.
See Figure 2.1 for an example.

Similarity metrics: In many NLP tasks, it is necessary to estimate the se-
mantic similarity between concepts. Depending on the model setting and vector
normalization, there are two most common measures: Cosine distances and Eu-
clidean distances. The Cosine distance takes into account the angle between two
vectors, while the Euclidean distance measures the distance between two points.

cosine(A,B) = cos(θ) =
A.B

||A||.||B||
(2.1)

Eucl(A,B) = |A−B| =

√√√√ d∑
i=1

Ai −Bi (2.2)

In this section, we introduce Distributional Semantic and Distributed Seman-
tic representation. Both representations are based on the idea that the meaning of
a word can be captured form its linguistic environment. The idea of distribution-
al semantic (Section 2.1.1) approaches can be summed up in the distributional
hypothesis, while distributed semantic approaches (section 2.1.2) use neural net-
works to induce the meaning of words from text corpora.

2.1.1 Distributional Semantic

Distributional semantic models (DSMs) – also known as ”word space models”
are based on the distributional hypothesis. This hypothesis has been stated in
different ways: ”Linguistic items with similar distributions have similar mean-
ings” [11]; ”words which are similar meaning occurs in similar contexts” [12];
”a representation that captures much of how words are used in natural context
will capture much of what we mean by meaning” [13]; and ”words that occur
in the same contexts tend to have similar meanings” [14]. The basic idea is
collecting distributional information in high-dimensional representation. In oth-
er words, targeted words (concepts) are represented as vectors of distributional
characteristics, especially co-occurrences with other words in the same context
from large-scale linguistic data sources [15, 16, 17, 18]. The surrounding context
contributes meaning to the targeted words. It can be slide-window surrounding
words, a paragraph or a sentence, or even a document that targeted words appear.
Consequently, the meanings of concepts can be discriminated by their usages or
surrounding contexts.

DSMs typically represent meanings of concepts as context vectors in a high-
dimensional space; and it is called as ”vector space” or ”semantic space”. Con-
cepts that are semantically related tend to be closed in the semantic space. For
example, the concept ”sun” may be observed in the same context as the concept
”moon”. As a result, their vectors are expected to have large cosine distance.
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On the other hand, ”sun” and ”computer” rarely co-cocurs in a similar contexts;
therefore their meaning are not much related.

computer

sun

moon

Figure 2.1: Semantic Space representation

Based on semantic space models, semantic similarity between words can be
measured in term of vector similarity (e.g, Cosine distance...). These distribu-
tional representations have proven very effective in some NLP applications such
as word/document clustering [19], lexical ambiguity resolution [20], and cognitive
modelling [21]. We list successfully DSM techniques below:

• Latent semantic analysis

• Latent Dirichlet allocation

• Self-orgarnizing map

• Hyperspace Analogue to Language (HAL)

• Independent component analysis

• Random indexing

Extracting distributional representations can lead to very high-dimensional
vectors since most of methods are based on word counts. These methods, name-
ly Principal Component Analysis and Factor Analysis, are very useful both to
deal with sparsity problem via smoothing as well as to improve the efficiency of
subsequent models making use of such representations.

10



2.1.2 Distributed semantics

The last few years, there has seen an increase of research in distributed semantic
representation. In this review, we focus on distributed representations of words
induced by neural networks since it was shown that they have performed signifi-
cantly better than traditional distributional semantic models.

The first neural network language model (NNLM) was introduced by Y. Ben-
gio and his co-authors [22]. Their n-gram feed-forward NNLM has four layers
namely input, projection, hidden and output layers. At the input layer, each of
the previous n-1 words is encoded using 1-of-V orthogonal representation, where
V is the size of the vocabulary. Therefore, every word is associated with a vector
with length V , in which only one value corresponding to the index of a work in
the vocabulary is 1 and all other values are 0. The input layer is then projected
to a projection layer P called also a shared projection matrix. All words in a
context share the same projection matrix, more precisely the matrix is the same
when projection word wt−1, wt−2, etc. The third layer is a hidden layer with
non-linear activation function, where some common functions are applied such
as: a tanh or a logistic sigmoid function. The last layer is an output layer whose
size is equivalent to the size of vocabulary V . The output of this layer represents
the probability distribution P (wt|wt−1, ..., wt−n+1).

Being inspired by the feed-forward NNLM, Mikolov at el. proposed a different
neural network architecture to learn the representation of word sequence, which is
called Recurrent Neural Networks language model (RNNLM) [23, 24]. The main
difference between two models lies in the representation of the context. While the
feed-forward NNLM takes just the previous n−1 words as a history, the RNNNM
learn the representation of context from data during training. The hidden layer
of RNN represents all previous words, thus it can represent long contexts.

Mikolov and his co-authors also prove that the most of the complexity of
NNLM and RNNLM is caused by training the non-linear hidden layer. They
proposed new neural net architectures that might not only be able to learn word
embeddings as precisely as NNLM and RNNLM, but can be trained efficiently
on much more data by minimizing the computational complexity. An example of
a RNN language model is shown in figure 2.2.

The first architecture is similar to that of the feed-forward NNLM, where the
non-linear hidden layer is removed. The projection layer is shared for all words so
that all words project into the same position. The word order in the context does
not influence the projection, so they call the model Continuous Bag-of-Words
model CBOW. Unlike standard bag-of-words model, the new model uses con-
tinuous distributed representation of the context. In addition, the CBOW takes
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Figure 2.2: A simpler Recurrent Neural Network architecture.
[Source: Mikolov et al. 2012 [24] ]

into account words from the future. That means it predicts the current word in
the middle of a symmetric window based on the context (sum of vector repre-
sentations of words in the window). Context window is considered from 2 to 10
words either side of a targeted word. They obtained the best performance on the
task of semantic-syntactic Word Relationship[1] by building a log-linear classifier
with a context including four future and four history words, where the training
criterion is to correctly classify the middle word.

On the other hand, their second architecture Skip-gram is useful for predict-
ing surrounding words in a sentence instead of using context to predict the current
word. More precisely, they use each current word as an input in a log-linear classi-
fier with continuous project layer and predict other words in a symmetric window
context (words before and after the current word).

The newest language model for the unsupervised learning of semantic repre-
sentation is proposed in GloVe framework [3]. They use a specific weighted least
square model that trains on a global co-occurrence count matrix. Particularly,
their model efficiently leverages statistical information by training on non-zero
elements in a co-occurrence matrix, rather than a sparse matrix or small context
windows in traditional distributional methods and Skip-gram model proposed in
[2]. As a results, both Word2vec and GloVe models outperform any previous
methods on word analogy, word similarity and named entity recognition task.
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Figure 2.3: Mikolov et al. neural network architectures. The CBOW predicts
the current word based on for surrounding words, and the Skip-gram predicts
surrounding words given the current word.

[Source: Mikolov et al. 2013 [2] ]

2.1.3 Applications

Semantic space representation can easily be plugged into many NLP applications.
Distributed representation has improved performance in a wide range of tasks by
providing richer semantic information than those of distributional semantics. We
list the usefulness of semantic representation across a variety of NLP applications
below.

The easy task is synonym or semantic similarity among wordsconcepts [25].
Topic modelling task has been explored by using distributional semantic [26, 27].
There are other applications such as: named entity recognition, word-sense dis-
crimination, document classification, discourse analysis, etc. Word vectors can
be used in entity recognition [28], question answering [29], sentiment analysis [30]
and parsing [31].

When considering semantic representation in the task of language driven im-
age generation, we only focus on word-level representation only. Having richer
semantic representations extracted from text is the prerequisite to succeed in our
project. Distributional techniques are memory intensive and not as efficient (not
a compact representation) as distributed representation. They are mainly sparse
and typical high-dimensional features (based on word counts), thus resulting in
interpretable representations. Distributed representations are, on other hand,
compact, dense and low-dimensional representations, and thus more difficult to
interpret. Our method is primarily developed on dense vectors. Tools such as

13



word2vec1 and Glove2 have shown to capture fine-grained semantic and syntactic
regularities to produce very high-quality word embeddings. Thus, we train our
word embeddings with word2vec toolkit on a language corpus of 2.8 billion words,
choosing the CBOW method [1] which produces state-of-the-art performance in
many linguistic tasks [4].

2.2 Image Embedding

The previous subsection introduces various approaches of learning word repre-
sentation from text. Many experimental studies show that human study lexical
semantics not only from the linguistic environment (verbal information), but also
from our interaction with the world such as: non-verbal experiments (e.g., vision)
and representations [32, 33]. So, we can learn semantic representation (we call
Image Embedding) from visual side or other data sources (e.g. images, videos,
fMRI...). The representation is mostly applied to many tasks in the computer
vision community. However, they can be used to open a new research direction
of interaction between language and vision such as: image to text, video to text
and vice versa. This section reviews the most successful method for learning
semantics from images: Convolutional Neural Networks (CNNs).

2.2.1 Deep Convolutional Neural Networks

A convolutional neural network (CNN) is a type of fead-forward artificial neural
network, where a individual neuron in a convolutional layer can connect to over-
lapping regions of the previous layer. CNNs were inspired by biological processes
in visual cortex of human brain. The visual cortex has a complex arrangement
of cell. These cells are sensitive to small sub-regions of the visual field, called a
receptive field. The sub-regions are not overlapped and tiled to cover the entire
visual field. These cells act as local filters over the input space and they are well-
suited to exploit the strong spatially local correlation present in natural images.
CNNs are widely used for image and video recognition in computer vision tasks.

Figure 2.4: The LeNet architecture for hand writing recognition.
[Source: deeplearning.net tutorial]

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
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An CNN architecture consists of various combinations of convolutional layers
and fully connected layers:

• Convolutional layer: It contains a rectangular grid of neurons, where the
output of its previous layer is also a rectangular grid of data. Each neuron is
connected only to rectangular sections of the previous layer and the weights
for this rectangular section are the same for each neuron. Therefore, a
convolutional layer is about to do a convolutional operation of its previous
layer, where the weights specify the convolution filter. Each convolutional
layer has several grids, each grid takes inputs from all the grids of the
previous layer using some different filters.

Figure 2.5: An example of a convolutional layer.
[Source: deeplearning.net tutorial]

• Pooling Layer: Another important term of CNNs is pooling. There may
be a pooling layer after each convolutional layer. The pooling layer parti-
tions the convolutional layer into a set of small non-overlapping rectangles
and for each sub-region, it produces a single output. There are several ways
to subsample such as: computing the average or the maximum or a learned
linear combination of the neutrons in a sub-region. Most CNNs architec-
tures include max-pooling layers, where they compute the maximum of the
sub-regions they are pooling. Max-pooling layers eliminate non-maximal
values, then reduce computation for upper layers (reducing the dimension-
ality of representations). These layers also reduce variance since outputs of
convolutional layers have small translations. This is an important operation
for object classification and detection.

• Fully-Connected layers: Upper layers of a CNN are high-level semantic
layers. A fully connected layer connects every single neuron to all neurons
in the previous layer (not doing convolutional operation).
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• Loss layer: It is the last fully-connected layer of CNNs, where a softmax
loss classification is applied to produce a distribution over K mutually exclu-
sive classes. There are some types of loss functions: a sigmoid cross-entropy
loss predicts K independent probability values in [0,1] or an Euclidean loss
predict to real-valued labels [-inf,inf ].

CNNs are trained with the Backpropagation algorithm which is a common
method for training artificial neural networks used along with an optimization
technique such as gradient descent. The method compute the gradient of a loss
function with all parameters in the neural network. Then, the gradient is used
to update the weights to minimize the loss function. Thanks to recent advance
in GPU computing, it has become possible to train larger neural networks. To
increase efficiently training computation, these below techniques are also used in
CNNs nets:

ReLU stands for Rectified Linear Units:

It is applied to the output of every convolutional and fully-connected layers
of a CNN network. Typically, we compute a neuron’s output f as a function
of its input x with a saturating hyperbolic tangent function f(x) = tanh(x),
f(x) = |tanh(x)| or with a sigmoid function f(x) = (1 + e−x)−1. However, in
terms of training time with gradient descent, these saturating nonlinearities are
much slower than the non-saturating activation function f(x) = max(0, x). This
is already proved in the paper Krizhevsky et al. [5]. CNNs train several time
faster with ReLU than their equivalents with tanh functions [5].

Dropout:

A CNN net has a large number of parameters (typically it contains at least
2 or 3 fully-connected layers), it is prone to overfitting. Deep and big neural
nets are also slow to train. It is too expensive for a neural network that already
takes several days to train. Recently, there is a technique addressing this prob-
lem, namely Dropout. The key idea is randomly to set to 0 the output of some
hidden neurons with probability p (normally, p = 0.5). The neurons which are
dropped out do not contribute to the forward and back-propagation computa-
tion. It means that every time an input is presented, the neural network samples
a different architecture, but all these architectures share weights. By avoiding
training all neurons in neural nets, Dropout decreases overfitting in neural nets
and improve training speed. Dropout is already shown to improves neural nets
performance on supervised learning tasks in vision, speech recognition, document
classification, producing state-of-the-art results on many benchmark datasets [34].
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Figure 2.6: An example of Dropout method. Left: A standard neural net with
2 hidden layers. Right: Applying dropout method to the network on the left.
Crossed neurons have been dropped.

[Source: Srivastava et al. 2012[34] ]

2.2.2 The state of the art CNN model

Krizhevsky’s architecture: In this project, we used pre-trained CNN model
introduced in Krizhevsky et al. [5], which produces state-of-the-art performance
in the task of object recognition. More precisely, performing on the test da-
ta of ImageNet LSVRC-2010 contest, they achieved top-1 and top-5 error rates
of 37.5% and 17.0% which is considerably state-of-the-art. They train a very
deep convolutional neural network to classify 1.2 million images from ImageNet
LSVRC-20123 dataset into 1000 different classes. The rest of this section is a
brief review of the architecture of this neural network model.

An illustration of the architecture of Krizhevsky’s CNN is depicted in Fig-
ure 2.7, it includes eight layers. The first five are convolutional and the remaining
three are fully-connected. The output layer is fed to a 1000-way softmax classified
into 1000 class labels.

The input data is 224× 224× 3 images which 96 kernels of size 11× 11× 3.
The output (response-normalized and pooled) of the first layer is the input of the
second convolutional layer which 256 kernels of size 5 × 5 × 48. The next three
convolutional layers are connected to one other without any intervening pooling
or normalization. The third layer has 384 kernels of size 3 × 3 × 256 connected
to the (normalized, pooled) output of second layer. The fourth convolutional
layer has 384 kernels of size 3× 3× 92 , and the fifth convolutional layer has 256
kernels of size 3×3×192. The fully-connected two layers have 4096 neurons each.

3http://www.image-net.org/challenges/LSVRC/2012/
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Figure 2.7: The Krizhevsky’s Convolutional Neural Network architecture.
[Source: Krizhevsky et al. 2012 [5] ]

Each output of each layer in CNN can be considered as an image embedding
or a visual feature. The last layer output is a vector of 1000 dimensions. CNNs
trained on natural images learn a hierarchy of increasingly more abstract prop-
erties: the features in the bottom layers resemble Gabor filters, while features in
the top layers capture more abstract properties of the dataset or tasks the CNN
is trained for [35] (e.g., the topmost layer captures a distribution over training
labels).

In our project, using pre-trained CNN model4, we extract visual features from
ImageNet dataset. We experiment on outputs of pool5 (6x6x256=9216 dimen-
sions)and fc7 (1x4096 dimensions) layer as semantic representations of images.
Configuration details are mentioned in Section 3.3. Pool-5 is an intermediate pool-
ing layer that should capture object commonalities and fc-7 is a fully-connected
layer just below the topmost one, and as such it is expected to capture high-level
discriminative features of different object classes.

2.3 Cross-modal Mapping vs. Zero-Shot learn-

ing

Recently, the problem of zero-shot learning in cross-modal mapping has received
much attention in machine learning community. The key of cross-modal map-
ping is the use of a set of semantic embedding vectors associated with class
labels. These embedding vectors might be obtained from human-designed object
attributes, text corpora, fMRI signal or outputs of layers in neural network. The
goal of zero-shot learning is to learn a cross-modal classifier f : X → Y that
predicts novel class of Y which is not included in the training set.

Zero-data learning was firstly introduced by Larochelle et al. [36], in which

4http://www.caffe.berkeleyvision.org/model zoo.html
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they has shown an ability to predict novel classes of digits that are not includ-
ed in training set. Additionally, zero-shot learning is very common in vision
community since object classes generally share common visual attributes. Most
existing zero-shot models have a two-stage classification: given an image, firstly
visual features are predicted; hence predicting its class label based on those fea-
tures. For example, an image is represented by a binary indicator vector. The
image is mapped to an unseen class which is the most similar to its visual vector
prediction [37, 38, 39]. Another zero-shot strategy is using class relationship to
classify unseen objects. For instance, an unseen object’s class can be estimated
by the nearest classifiers trained with ImageNet hierarchy [40, 41] or the other
ones based on label co-occurrences [42].

In the neuroscience community, cross-modal mapping with zero-shot learning
has been applied in a variety of applications. Mitchell et al.’s approach uses se-
mantic features induced from text corpora to generate a neural activity pattern
for any noun in English [43]. By contrast, Palatucci et al. [44] focus on word
decoding, they desire to predict a word from a large set of possible words given
it novel neural image. They also consider manually designed semantic features in
addition to feature learned from text corpora. They develop a semantic classifier
(Semantic Output Codes) for a neural decoding task. The experimental results
has shown that it is possible to predict words that people are thinking about from
fMRI signal of their neural activity, even without seeing those words in training
set.

In recent years, there has been much attention to cross-modal mapping in
language and vision domain. Socher et al. ’s approach learns to map images to
a lower dimensional semantic vector space using a neural network architecture.
They link the image representation space to the word vector space by representing
8 classes for which they had labeled images. Firstly, a testing image can be
distinguish whether it belongs to seen or unseen classes. Then, if the model
determines a testing image to be in the set of 8 seen classes, a separately trained
softmax model is used to perform the 8-way classification; otherwise the model
predicts the nearest class in the word semantic space.

Meanwhile, the deep visual-semantic embedding model (DeViSE) [46] trains
a mapping function from two pre-trained neural network models. Word embed-
dings are induced from a text corpus by implementing the Skip-gram method
proposed in [2]. Image embeddings are low-level features of a deep neural net-
work successfully trained on a supervised object recognition task [5]. As a result,
their model can exploit semantic information to make predictions about ten of
thousand of images labels not appeared in training data. ConSE [47] is inspired
by the idea of DeViSE framework, but there is an important difference between
the neural network architectures when constructing semantic vectors of concepts
from image dataset. The ConSE model keeps the last layer of the convolutional
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Figure 2.8: Overview of Socher et al. cross-modal zero-shot model. Firstly,
mapping each new testing image into a lower dimensional semantic word vector
space; then, determine whether it is on the manifold of seen images. If the image
is not on the manifold, they classify it by unsupervised semantic word vectors.
In this example, the unseen classes are ”truck” and ”cat”.

[Source: Socher et al. 2013 [45] ]
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net, the softmax layer, by contrast the DeViSE model replaces it with a linear
transformation layer.

In our language-driven image generation pipeline, the first step is about map-
ping word vectors to visual feature space. Our cross-modal mapping is inspired
by the work of Lazaridou et al. [48, 49]. They first introduce a simple regres-
sion method to project BoVW semantic vectors to word embeddings [48]. Their
framework will predict an object occurring in a given input image. In their ex-
periments, the search for the correct label of an input image is performed in full
concept space. The experimental results are not promising because of lack of
data for training cross-modal function. Lately, they delve into zero-shot learn-
ing problem by using the max-margin method to deal with intrinsic property of
least-squares estimation and sparse matrix [49]. They also take into account vi-
sual semantic vectors extracted from ImageNet using CNN architecture. Unlike
them, our first step of image generation system implements a variety of regression
methods, especially lasso and elastic net with a purpose to solve a problem of
sparse learning. More details of our cross-modal implementation are shown in
Section 3.3.

2.4 Visual Feature Inversion

In this section, we will describe recent approaches in reconstructing an image from
its visual feature. Most image understanding and object recognition systems
build on image representations from histogram of oriented gradients (SIFT[50]
and HOG[51] feature) and Bag of Visual Words (BoW)[52] to lately deep neural
networks, especially the CNN variety [5, 53, 35]. This leads to an active area of
research in visualizing features[54, 7]. In other words, feature visualization can
be considered as a feature inversion problem which recovers the natural image
that the feature is extracted from. It shows us a deeper and more intuitive un-
derstanding of how object recognition systems work.

Feature inversion was first introduced by Weinzaepfel et al. [55], in which they
approximately recover images from its local descriptions (e.g, SIFT or PHOW fea-
tures). However, there is a problem of privacy information since local descriptions
of photos or videos are often used in many search purposes and image retrieval
systems. Kato et al. [56] tackle the problem of recover natural images from Bag-
of-Visual-Words (BoVWs) representations. BoVW representation is defined as a
histogram of local feature descriptors extracted on a regular grid at a particular
scale. There are two obvious challenges: 1) Local descriptions are assigned to
visual words, so BoVW has quantization errors 2) It lacks of spatial information
of local descriptors because we count their occurrences as semantic representa-
tions of images. To solve this problem, they use a very large image database to
estimate the arrangement of local descriptions and quantization errors. In their
experiments, they reconstructed 101 different images of objects, and showed that
original images can be recovered from their BoVW representations.
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Deep Convolutional Neural Networks allow us to produce state-of-the-art im-
age embeddings. [5]. It is an important component in almost computer vision
applications today. However, the understand of CNN features is still limited.
Mahendran et al. [7] propose a general method for inverting CNN visual features
by integrating natural image priors. The experimental results showed that their
inversion algorithm outperforms any alternatives in the frame of reconstructing
images from HOG and SIFT features. It is also reasonable and applicable for
CNN features. They also conclude that some deep layers (e.g., pool-5 and fc-7)
near the last layer of a CNN still retain rich semantic information of objects.

Finally, Cark Vondrick develops HOGgle framework[6, 57] that solves the
problem of visual feature inversion as paired dictionary learning. It was first
introduced to invert HOG visual features to natural images. However, it is cus-
tomized to train on CNN feature later. We implement some pre-experiments for
both latest methods to choose the most suitable one for our image generation
pipeline. As a result, the feature inversion method proposed by Mahendran et
al. [7] can invert CNNs features more accurately (shape and edge) than those
of HOGgles. However, the inverted images are too much ”blue” compared to
those of HOGgles. In addition, HOGgles seems to recover more image contents
such as: colors and background. Therefore, we decide to integrate the HOGgles
framework into the second step of our image generation pipeline. The output of
the first step is visual feature representations learned from cross-modal from word
embedding to visual semantic space. We desire to invert those learned features
back to pixel space to generate natural images of input concepts. Section 3.2 de-
scribes the HOGgles framework in more details, and training data and learning
process is introduced in Section 3.3.
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Chapter 3

Language-Driven Image
Generation System

This chapter provides some details of our language-driven image generation mod-
el. The first section describes the task of cross-modal mapping (using regression
to translate word embeddings to image embeddings), while the second is about
image generation process where we apply the method HOGles to inverted visual
feature back to pixel space (image generation). The last section is a description
of all materials we used in this project.

Figure 3.1: In the spirit of the English Idiom: ”A picture is worth a thousand
words”, referring to the notion that a complex idea can be conveyed with just a
single image or a picture tells a story just as well as a large amount of descriptive
text. It also expresses one of the main goals of visualization, namely making it
possible to absorb large amounts of data quickly.

[Source: Wikipedia ]
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Figure 3.2: Overview of our language-driven image generation system
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3.1 From linguistic space to visual feature space

This step is to learn a cross-modal mapping function from word embeddings to
image embeddings (visual feature vector). In particular, the mapping is per-
formed by inducing a function f : Rd1 → Rd2 from data points (wi,vi) where
wi ∈ Rd1 : word representation, vi ∈ Rd2 : corresponding visual feature represen-
tation. The translation of a given word vector wj into visual feature space is
obtained by applying the mapping function v̂j = f(wj). We assume that the
cross-modal mapping is linear.

M̂ = argminM∈Rd1×d2 ||WM−V||F + λ1||M||1 + λ2||M||F (3.1)

From the above equation, we implement various regression methods by mod-
ifying λ1 and λ2.

• Plain Regression: λ1 = 0 and λ2 = 0, we estimate the coefficients M̂ ∈
Rd1×d2 by least squares:

M̂ = argmin
M̂∈Rd1×d2

||V −WM||22 (3.2)

• Ridge Regression: (λ1 = 0,λ2 6= 0), has better prediction error than plain
regression in a variety of scenarios, depending on the choice of λ2. Ridge
regression never set coefficients to zero exactly, and therefore it cannot
perform variable section in the linear model. This is not desirable in our
case as the number of variables (the dimension of word vectors and visual
features) is quite huge (a pool5 feature vector has 9216 dimensions).

M̂ = argmin
M̂∈Rd1×d2

||V −WM||22 + λ2||M ||22 (3.3)

• Lasso: (λ1 6= 0,λ2 = 0) is actually an acronym for: Least Absolute Selection
and Shrinkage Operator [58] Lasso problem uses a L1 penalty ||M ||1 while
ridge regression adds a (squared) L2 penalty ||M ||22 to least squares error.

M̂ = argmin
M̂∈Rd1×d2

||V −WM||22 + λ1||M || (3.4)
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The tuning parameter λ1 controls the strength of the penalty (like λ2 in
ridge regression) and generates a sparse model. Implementing Lasso will
balance two ideas: fitting a linear model of V on W , and shrinking the
coefficients. L1 penalty causes some coefficients to be shrunken to zero
exactly. This is our expectation because there are many dimensions of the
CNN visual feature extracted from images are equal to zero. This is the
substantially different from ridge regression: it is able to perform variable
selection in the linear model. Increasing λ1 will turn more coefficients are
set to zero (less variables are selected), and more shrinkages are employed
in the non-zero coefficients.

• Symmetric Elastic Net: (λ1 6= 0,λ2 = λ1) is a regularized regression
method that linearly combines the L1 and L2 penalties of the lasso and
ridge method. More precisely, symmetric elastic finds an estimator for
coefficients in a two-stage procedure: finding the ridge regression coefficients
for each fixed λ2, then doing a lasso shrinkage by tuning λ1. However, this
estimation makes double amount of shrinkage, which leads to increased bias
and poor predictions. To solve this problem, we may rescale the estimated
coefficients by multiplying them by (1 + λ2).

3.2 Image Generation

Most object recognition systems are built on image representations from his-
togram of oriented gradients (SIFT[50] and HOG[51] feature) and Bag of Visual
Words (BoW)[52] to lately deep neural networks, especially the Convolutional
Net variety [5, 53, 35]. This leads to an active area of research in visualiz-
ing features[54, 7]. In other words, feature visualization can be considered as
a feature inversion problem which recover the natural image that the feature is
extracted from. It shows us a deeper and more intuitive understanding of how
object recognition systems work.

We are inspired by Carl Vondrick’s framework[6] that solves the problem of
visual feature inversion as paired dictionary learning. A visual feature can be
various standards of image representations such as: SIFT, HOG, CNN features,
etc. In particular, given an image x0 ∈ RD and its visual feature y = φ(x0) ∈ Rd,
find an image x∗ so that minimizes the reconstruction error:

x∗ = argminx∈RD ||φ(x)− y||22

Suppose that x and y are written in terms of bases U ∈ RDxK and V ∈ RdxK

respectively, but they have paired representation through shared coefficients α ∈
RK :

x = Uα and y = V α
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To recover the original image, the visual feature y is firstly projected onto
basis V , then projecting α in the basis U . Therefore, inversion of visual feature
y is computed by the following formula:

Figure 3.3: Inverting HOG feature using paired dictionary learning: first, project
the HOG vector onto a HOG basis. By jointly learning a coupled basis of HOG
features and natural images, then transfer the coefficients to the image basis to
recover the natural image.

[Source: Vondrick et al. 2013 [6] ]

Figure 3.4: Some pairs of dictionaries for U (the left of every pair) and V (the
right). Notice the correlation between dictionaries.

[Source: Vondrick et al. 2013 [6] ]

θ−1D (y) = Uα∗

where α∗ = argminα∈K||V α− y||22 s.t. ||α1|| < λ
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The algorithm has to estimate coefficients α and find appropriate bases U
and V (paired dictionaries) to that minimize the reconstruction error. This is
solved by applying recent advances in sparse coding method [59, 60]. HOGgles
optimises SPAMS[61] to solve a standard sparse coding and dictionary learning
problem with concatenated dictionaries:

argminU,V,α
N∑
i=1

(||xi − Uαi||22 + ||θ(xi)− V αi||22)

s.t ||αi||1 ≤ λ∀i, ||U ||22 ≤ γ1, ||V ||22 ≤ γ2

In the first place, HOGgles was introduced to invert specific HOG features to
natural images, but learned paired dictionary algorithm does not depend on what
type of visual features is. So, it has also been used to invert CNN features back
to multiple natural images to gain new insight into the failure of object detection
systems[62, 57]. See the next section for details of our training data for CNN
features.

3.3 Pipeline’s Materials

3.3.1 Unseen Concepts

Unseen concepts are the words we generate images for. The set of unseen concepts
(testing concept, dreamed concept) contains concepts coming from a study of
McRae [9] in the context of property norm generation. McRae and his colleagues
provide a set of feature norms collected from approximately 725 participants for
541 living (e.g., cat, dog, etc.) and nonliving (e.g., chair, car, boat etc) concepts.
In many theories of word meaning and concept categorization, semantic feature
vectors have been a key factor. They are also used in many vector space models
of memory, object recognition and semantic memory. McRaer and his colleagues
have been collected semantic feature production norms since 1990. The major
goal of this work is to construct vector representations of concepts that can be
used to test theories of semantic computation.

Each of 541 normed concepts corresponds to a basic concrete English noun.
They are chosen from those used in various experiments about semantic memory
tasks. Participants are asked to list semantic features they think are important
for each concept. Each feature of each concept is assigned with a production
frequency, which means the number of participants who produce that feature
belonging to that concept (ranging from 1 to 30). For example, the semantic
representation of concept knife has some attributes such as: has-a-handle, has-a-
blade, made-of-steel, used-for-cutting, is-sharp, etc... Appendix B provides more
details of feature representations derived from such concepts. This collection of
feature norms 1 are also available for other research in: neuroscience and com-

1https://sites.google.com/site/kenmcraelab/norms-data
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puter science, etc.

The set includes 541 base-level concrete concepts (e.g., cat, apple, car etc.)
that span across 20 general and broad categories (e.g., animal, fruit/vegetable,
vehicle etc). For some of the reasons (concepts are ambiguous or technical rea-
sons), we exclude 69 McRae concepts, resulting in 472 test concepts (see in the
Appendix A). We aim at generating natural images for all these concepts from
their word embeddings. In one of the experiments we implement to evaluate our
system performance, given a generated image, we ask participants to choose the
right concept in a pair of an unseen concept and its confounder. The confounder
is computed as the nearest semantic neighbor of that unseen concept in MacRae’s
conceptual distance space (Chapter 4, Experiment 2 ).

3.3.2 Seen Concepts

Seen Concepts refer to the set of training words associated with real images which
are used for training cross-modal mapping functions. A set of 5K distinct con-
cepts labelling 480K images from ImageNet [63]. Note that Unseen Concepts
and Seen Concepts do not overlap, we want to stress again that our system is
generating images in a zero-shot manner.

ImageNet is a WordNet-based image dataset, where images are organized
according to the WordNet hierachy. Each ”synset”, described by a word or a
word phrase, is a meaningful concept in WordNet. ImageNet provides on average
500-1000 clean and full resolution images for each synset. This results in ten of
millions of annotated images organized by 80,000 synsets of WordNet. Recently,
ImagetNet has become a central resource for the computer vision community
following possible applications: a training dataset, a benchmark dataset, visual
semantic modelling and human vision research. The figure 3.5 illustrates an
example of ImageNet dataset.

3.3.3 Word Representation

Using word2vec toolkit2 to produce 300-dimemesional semantic vectors for Unseen
and Seen concepts from a very large text corpus of 2.8 billion words (e.g., BNC,
Wikipedia...)3. In more details, we implement the CBOW method [2, 1] which
predicts the semantic vector of the targeted word from the ones surrounding it,
perform state-of-the-art results in many linguistic tasks [4].

2https://code.google.com/p/word2vec/
3 Corpus sources: http://wacky.sslmit.unibo.it, http://www.natcorp.ox.ac.uk
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Figure 3.5: A snapshot of two root-to-leaf branches of ImageNet: the top row is
from the mammal subtree; the bottom row is from the vehicle subtree. For each
synset, 9 randomly sampled images are presented.

[Source: ImageNet.net ]

3.3.4 Visual Representation

We use the pre-train CNN model through the Caffe toolkit4 for extracting visual
representations of 480K seen concept images. In this work, we experiment with
visual features from two layers: pool-5 and fc-7

• Pool-5 (6x6x256=9216 dimensions): an intermediate pooling layer that
should capture object commonalities.

• Fc-7 (1x4096 dimensions): a fully-connected layer just below the topmost
one, and as such it is expected to capture high-level discriminative features
of different object classes.

Because each seen concept labels many images, we attempt to compute a
unique visual representation in two ways. Inspired of from categorization schemes
in cognitive science, we compute a visual representation by prototype [64] and
exemplar methods [65]. The exemplar visual vector of a concept is a certain
single vector that is the centroid vector among all visual features (either pool-5
or fc-7) extracted from the images it labeled. The prototype vector of a concept,
on the other hand, does not actually depict the concept, is constructed by average
the visual features of images tagged in ImageNet with the concept.

3.3.5 Feature Inversion Training

Training data for the second phrase feature inversion” are created by using the
PASCAL VOC 2011 dataset. We want our system generates an image for a
concept that it has never encountered before, so we pick 20 PASCAL objects
(labelling 15k images) which do not occur in our Unseen Concepts. At this point,

4http://caffe.berkeleyvision.org
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the feature inversion is also performed in a zero-shot manner. In order to increase
the size of the training data, from each image we divided several image patches xi
associated with different parts of the image and paired them with their equivalent
visual representations yi. We trained paired dictionary learning for both features
(pool-5 and fc-7) using the HOGgles software with default parameters5.

5 https://github.com/CSAILVision/ihog
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Chapter 4

Experiments

We have already introduce our Language-driven image generation system in
Chapter 3. Our system performs the task of visualizing semantics encoded in
word embeddings. Given a text-based vector of concept ”boat” , our system will
generate a natural image of a ”boat”. But how do we evaluate the quality of
semantic visualization? In this chapter, we design a series of ClowFlower studies
to evaluate our model. We also provide quantitative and qualitative insights into
the semantic information encoded in word embedding by allowing subjects judge
and inspect generated images based on their visual properties (e.g., shape, color,
characteristic environment).

4.1 Model Selection and Parameter Estimation

Recall from the last section, our system implements cross-modal mapping func-
tions, namely four regression functions, to translate word embeddings to visual
space. We also take into account two types of visual feature, which are outputs
of two CNN layers: pool5 and fc7 and also two methods of concept representa-
tion (prototype and exemplar). In overall, our system contains 16 settings for
each run. Therefore, to estimate quality of semantic visualization, we firstly need
to determine the optimal setting that produces the best performance of image
generation.

4.1.1 Visual feature type and concept representations

We set up a human study through CrowFlower1 to identify the ideal visual fea-
ture type (pool-5 or fc-7 ) and which concept representation method (prototype
and exemplar) is better. In this experiment, our system does not perform cross-
modal mapping, instead generate images from gold-standard visual vectors of
unseen concepts (inverted pool5 and fc7 features of a concept back to its natural
images.). We randomly choose 50 from unseen concepts and generate 4 different
images for each concept. Each obtained by inverting visual vector computed by
a combination of a feature type with a concept representation method. Table 1

1 http://www.crowdflower.com/
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Prototype Examplar
pool-5 fc-7 pool-5 fc-7

Catapult

Sailboat

Elk

Cucumber

Table 4.1: Inverted images from different visual type and concept representation

show an example of system’s outputs for each setting.

Task: Participants were asked to judge which one in 4 generated images is more
likely to denote the concept. We collected 20 judgements for each concept. Ta-
ble 4.1 provides generated images of four concepts with various feature types and
concept representation methods.

Result: Overall, there is no surprise that the strongest significant preference
of visual feature type is for pool-5 (28/50) because the reconstruction from the
pool-5 features keeps more rich information than that of fc-7 . Meanwhile, while
judging image generation quality from pool-5 visual feature, participants show
the best preference for the exemplar protocol (18/50)2. Therefore, all following
experiments are conducted using the pool-5+exemplar setting.

4.1.2 Cross-modal mapping function

After determining the best visual feature and concept representation setting,
we carry out another experiment to firmly decide which is the optimal learning
regression method among: plain regression, ridge regression, lasso and elastic net.
To do so, we need first to train mapping functions corresponding to four different
types of regression. Training data is described in Section 3.1.
Task: We set pool-5+exemplar space to run our system. For each in 50 above
concepts, our system produces four images for each mapping function. We asked
participants to decide which image is more likely to denote the unseen concept

2 Throughout this thesis, statistical significance is assessed with two-tailed exact binomial
tests with threshold α < 0.05, corrected for multiple comparisons with the false discovery rate
method.
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Catapult Sailboat Elk Cucumber

Plain Regression

Ridge

Lasso

Elastic Net

Table 4.2: Images inversion from four regression methods

and collected 20 judgements for each concept. Table 4.2 provides some generated
images in this task.

Result: Surprisingly, participants showed a preference for plain regression (9/50
significant tests in favor of this model). Consequently, we adopt plain regression
and pool-5+exemplar space for the rest of the experiments.

4.2 Inspecting Visual Properties of Generated

Images

The optional model and setting allow system produce the best quality generated
images of Unseen concepts. Bear in mind that Unseen concepts were never used in
any step of the pipeline of our system (cross-modal training or paired dictionary
learning for feature inversion), so they are generated in a zero-shot manner. That
means our language-driven image generation system leverages linguistic associa-
tions between Unseen concept and seen concepts to generate natural images. To
summary generated images of Unseen concepts, we randomly select 10 concepts
from each of 20 McRae categories, then plot them in Figure 4.1

Unexpectedly, these images do not clearly denote objects compared to those real
ones. However, the figure shows that most of images belonging to different cate-
gories are clearly distinguished, but concepts belonging to food and fruit/vegetable
group look pretty much the same. Food, fruit and vegetable are eatable thing,
they are likely co-occur in the same context. Modern object recognition systems
do not perform well on a task of food recognition and classification. Overall,
from the figure we can conclude that concepts belonging to different categories
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Figure 4.1: Generated images of 10 concepts per category for 20 basic categories
grouped by macro-category

(MAN-MADE and ORGANIC, ANIMAL) are clearly distinguished by color and
environment visual properties.

4.2.1 Experiment 1: Correct word vs. random confounder

This experiment allows us to examine whether visual properties help participants
distinguished between an Unseen concept and a random alternative.

Experiment Description: We present to participants the generated images
of all 472 Unseen concepts. For each image, participants have to judge which
concept (the unseen concept or a cofounder choosing randomly from the seen
concept) it denotes. We collected 20 votes for each trail.

Results and Discussion: Participants showed a strong preference for the cor-
rect word (Unseen concept) (medium of the vote in favor: 75%). Preference
for the correct concept is different from chance in 211/472 trails. Moreover,
there are 10 cases in favor of cofounders which participants expressed significant
preferences. Almost in these cases, unseen concepts and their cofounders have
some properties and attributes in common: cape-tabletop (both made of textile),
zebra-baboon (they are mammals), oak-boathouse (living in similar natural en-
vironments). To conclude, our method is able to capture at least those visual
properties encoding in word representations of Unseen concepts that distinguish
them from visually dissimilar random alternative.
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4.2.2 Experiment 2: Correct image vs. image of similar
concept

In Experiment 1, both cofounders and Unseen concepts are basic and concrete ob-
jects. In fact, the cofounder of the correct word is a randomly selected from Seen
concepts (Training concepts); hence they are related to each other by chance.
Consequently, the judgement task in Experiment 1is relatively simple. For an
example, participants easily guess correct concept ”turtle” over a random co-
founder ”bike” because they are totally not in the same class and not related
to each other. However, if we present to participants the correct image of test
concept and the generated image of its relevant concept. For example, ”turtle”
and ”tortoise” are presented. Is it still easy for subjects to discriminate which
image labelling ”turtle”. The Experiment 2 is conducted to discover those visual
properties in the generated images are informative enough for subjects to judge
an Unseen concept over its closely related concept.

Experiment Description: For each test concept, we need to find a related
concept as its cofounder. Thanks to the MacRae’s statistics of subject-based
conceptual distance [9], we consider a confounder of a concept as the closed se-
mantic neighbor of the concept in MacRae’s conceptual distance space. For more
details, we found 379/472 cofounders belong to the set of Unseen concept. Judg-
ing two semantic close concepts given an image is thus more challenging (e.g.
mandarin vs. pumpkin, turtle vs. tortoise, bowl vs. dish etc.). Participants were
presented with two images generated from an unseen concept and its cofounder,
and they were also asked to guess which image is more likely to depict the unseen
concept. The set up of the experiment is the same as that of Experiment 1.

Results and Discussion: Unexpectedly, in many cases (409/472) participants
did not express a strong preference for either the correct image or the cofounder.
This means that our current image generation system does not capture enough
yet visual properties from word embedding that could allow within-category dis-
crimination.

Observing within the subset of 63 cases expressed significant by participants, we
notice a clear trend in favor of the correct image (41 vs.22). Some visual properties
(e.g., edge and angle) are not good enough to discriminate two images of the
correct word and its cofounder although color and environment seem to be the
fine-grained properties which help subjects decided right or wrong choice within
this subset. In 63 pairs of images, there are 14 concepts coming from different
categories, and 49 concepts within the same-categories. In the different group,
11 cases were for the right images. In two of the wrong cases, images of correct
concept and cofounder have similar color (emerald vs. parsley, bowl vs. dish),
while (thermometer vs. marble has a typically ”brown” color. For the 49 pairs in
the same-category group, the task is very challenging, but participants expressed
30/49 right choices as a strong preference. Again, color and living environment
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Same category Different category Same category Different category

flamingo partridge helicopter shotgun alligator crocodile bowl dish

turtle tortoise barn cabinet sailboat boat emerald parsley

pumpkin mandarin whale bison asparagus spinach thermometer marble

In favor of Unseen concept In favor of confounder
8.6% (41/472) 4.6% (22/472)

Table 4.3: Examples of cases where subjects significantly preferred the dreamed
concept image (left) or the confounder (right)

play an important role in this preference. The judgement was mostly based on
different colors (e.g., flamingo vs. partridge), or living in different environments
(e.g., turtle vs. tortoise).

4.2.3 Experiment 3: Gold-standard Image Judgement

As far as we investigate, our current image generation system performs not quite
well on Unseen concepts. There might be some reasons we want to examine: the
quality of word embedding (cannot capture semantic information enough from
text corpus) or the poorly feature inversion algorithm. Although recently tool
Glove[3] is the best method to extract word representation from text, its perfor-
mance in many linguistic tasks is not significantly improved compared to that
of CBOW method that we implement in our approach. We suspect the main
reason behind this is a lack of HOGgle algorithm. To prove this, we carry out a
”gold-standard” image judgement flowing the Experiment 2.

Particularly, we generate images for each Unseen concept and its cofounder using
the ”gold-standard” visual features extracting from real existing images. That
means we do not take into account running cross-modal mapping in this exper-
iment. ”Gold-standard” visual features are also extracted using the consistent
setting (pool-5+exemplar). We replace the translated visual vectors with these
images and then repeat the Experiment 2 with the same setup.

The results are better than the case that visual features are translated from word
embedding, but it is not much different. Comparing to the earlier experiment, the
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number of pairs for which no consistent preference appeared was 75% (365/472
cases) and the strong preferences for the correct images and the cofounders were
17.6% (83/472 cases) and 7% (33/472). So our suspicion is right. Accordingly,
we hope to improve our system’s performance by applying upcoming advances
in image inversion in the future, such as: a CNN feature inversion approach is
proposed in [54, 7].

4.2.4 Experiment 4: Judging macro-categories of objects

The previous experiments have shown that our language-driven image generation
system visualizes semantic information that are salient and enough to discrimi-
nate unrelated concepts (Experiment 1), but not closely related ones (Experiment
2). We also prove that the inaccuracy of our image inversion algorithm can be
attributed to the matter of poor image generation (Experiment 3). In this ex-
periment, we want to check captured visual properties, whether allow subjects
classify generated images into high-level semantics groups.

Experiment Description: Unseen concepts are manually divided into three
macro- categories groups, namely ANIMAL vs. ORGANIC vs. MAN-MADE.
These groups are essential and unambiguous in cognitive science [9]. Subjects
were asked to categorize a given generated image under three macro-category
groups.

Results and Discussion: Table 4.4 denotes a confusion matrix of choices across
the macro-categories. Participants show a significant preference for ORGANIC
group (49/68 cases) while there are expectable preferences for images of MAN-
MADE and ANIMAL group: 142/266 cases and 56/128 cases respectively. How-
ever, looking at a subset of images which participants preferred, most of the
cases are in favor of the correct macro- category: 98% of the ORGANIC images
(70,5% of total), 90% of the MAN-MADE images (48% of total), and 59% of
the ANIMAL ones (25.7% of total). The table also shows that images of both
MAN-MADE and ANIMAL macro-categories are more often confused than that
of ORGANIC one.

man-made organic animal pref nopref total
man-made 128 9 5 142 124 266
organic 0 47 1 49 19 68
animal 9 14 33 56 72 128

Table 4.4: Confusion Matrix of significant choices of categories.

Color is till the most important property that allow subjects to classify objects
in three macro-categories. It is easy to see in the Figure 5.1 that orange, green
and a darker color characterizes objects in ORGANIC, ANIMALS, and MAN-
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MADE group respectively. Images which do not have these colors are harder to
be classified.

Figure 4.2: Distribution of macro-category preferences across the gold concepts
of the MAN-MADE and ANIMAL categories.

In the MAN-MADE macro-category (Figure 4.2, left), the generated images of a
building are easier to recognize because they share the same pattern: blue and
dark background of sky and ground and a polygon structure in the middle (the
building itself). Similarly, vehicles are mainly judged by colors visual properties.
For example, generated image of ”ambulance” is red, dark blue color of see en-
vironment allow subjects judge images of ”ship” and ”boat”. Beside, vehicles
display two layers with small horizontal structure crossing frames of images, they
are almost always correctly classified.

Within the ANIMAL macro-category (Figure 4.2, right), birds and fishes are more
often misclassified than other animals , with their typical environment probably
playing a role in the confusion. However, insects share the same environment pat-
tern with birds, but they are easily recognizable because of their small sizes. So,
our system can capture a little information to shape or size of objects. Obviously,
looking at generated images of ”camel” and calf, they depict animal leg shape
crossing land background. There is also the strongest preference for sub-class
mammal.
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Figure 4.3: Distribution of macro-category preferences across the gold concepts
of the ORGANIC categories.

Finally, the ORGANIC group is the most misclassified (Figure 4.3). Images of
food and fruits look like the same (color and size). This might be due to quality
of word embedding inducing. Word2vec tool cannot capture enough semantic
information from our text corpus to strongly distinguish between food and fruits.
However, it is still easier for participants to judge based on color properties In
the other hand, there are few mistakes for ORGANIC images belong to the nat-
ural object category (e.g., stone, rock...). They are mainly classified under the
ANIMAL macro-category.

4.2.5 Experiment 5: Automatic Evaluation

We have already introduced a series of CrowdFlower to examine our system per-
formance. Then, we provide quantitative and qualitative insights into the in-
formation that subjects can extract from the visual properties of the generated
images. In this experiment, we automatically evaluate the quality of generated
images of unseen concepts. Instead of calculating error per pixel, we turn to
The Structural Similarity (SSIM) algorithm, which is a method for measuring
the similarity between two images. The SSIM method can be viewed as a qual-
ity measure of one of the images being compared, provided the other image is
regarded as of perfect quality [66].
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Experiment Description: Due to independence property of unseen concepts,
we sample one hundred images for each unseen concept in order to calculate
SSIM. For each unseen concept, we calculate the SSI scores of each sample image
with the generated one3 Then, we average the 100 values as a SSIM score between
the generated image with 100 gold-standard images. We pick the top 15 highest
and lowest SSIM scores among 472 unseen concepts (lower is better). They are
shown in Table 4.5 and Table 4.6

Results and Discussion: Most of the best case (the lower scores) are concepts
belonging MAN-MADE macro-category. This validates our conclusion from the
Experiment 4 since images of the MAN-MADE concepts are easy to recognize
because their color and backgrounds. There are two ANIMAL concepts: ”otter”,
”blackbird” whose the quality of generated images are quite high. On the con-
trary, our system is not good at producing images for ORGANIC concepts which
is the most of cases in the top 15 worst performance. This is the reason why the
ORGANIC marco-category is the most misclassified group in the Experiment 4.

3https://github.com/pornel/dssim
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Concept Score Gen Image Macro-Ca.

jet 0.510174

Man-Made
ship 0.540007

armour 0.573253

yacht 0.573513

skyscraper 0.574131

bus 0.597194

sailboat 0.598178

otter 0.608347 Animal

cottage 0.617131

Man-Made
harpoon 0.617627

submarine 0.620575

helicopter 0.622526

blackbird 0.624216 Animal

cannon 0.625781
Man-Made

apartment 0.627062

Table 4.5: Top 15 best generated images of our system comparing to 100 gold
standard images by Structural Similarity distance
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Concept SSMI Gen Image Macro-Ca.

ball 1.419652
Man-Made

pencil 1.262961

crayon 1.251465

eggplant 1.241847
Organic

rhubarb 1.201448

radish 1.188495

toy 1.187393 Man-made

pumpkin 1.186196
Organic

banana 1.178495

nectarine 1.174497

budgie 1.173635 Animal

strawberry 1.160650
Organic

tomato 1.158309

fawn 1.149805 Animal

plum 1.145742 Organic

Table 4.6: Top 15 worst generated images of our system comparing to 100 gold
standard images by Structural Similarity distance
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we introduce a new task of images visualizing the semantic in-
formation as encoded in word representation. We also review various research
directions related to our project such as: learning semantic representations from
text and image, cross-modal mapping and visual feature inversion. We develop
a completely language-driven image generation pipeline. Our pipeline takes a
text-based semantic vector of a concept as its input, then projects the vector to
the visual feature space. The visual features are thus inverted into pixel space
representing a natural image of the input concept.

Experimental results show that our current system seems capable to visualize
color properties of object classes and aspects of their characteristic environment.
However, the experimental results show that our pipeline might be used to enrich
the semantics encoding in word representations, by highlighting aspects of con-
cepts that are not salient in language such as characteristic environment. In this
sense, language-driven image generation is a tool to evaluate semantic quality
of word representation. In other words, our system take a word embedding as
an input, if we can check whether the representation is good or not by looking
at the generated image, where it depicts roughly visual properties of the con-
cept. In addition, when interpreting and evaluate dense vectors, there is only the
possibility of looking at their neighbours. Our method can be seen as a com-
plementary since intuitively visualizing those vectors by generating their natural
images. Nevertheless, our system is not good enough to capture visual properties
related to shape. The reason might be that there is often a lack of expressions
about shape in linguistic. (Although we all know that an ”elk” is a mammal,
it is very difficult to describe it in shape to discriminate to other mammal), but
in the same way we can easily recognize the ”elk” based on color and the envi-
ronment. Effective cross-modal learning functions or feature inversion algorithms
might lead us in the future by better visualizing typical shapes to shape-blind
linguistic representations.
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5.2 Future Work

Currently we propose a language-driven image generation pipeline as a two-step
process. As mentioned above, it still does not capture shape property information
enough. Meanwhile, in the work of [7], their inversion algorithm is better at
visualizing objects with shape properties, but not for expressing color of objects.
We plan to add more functionality to our system, in which it can generate black-
white image from word embeddings to effectively estimate in depth shape/size
expression. In addition, inspired from recent work on a generative model of
text conditioned on images by extending the Deep Recurrent Attention Writer
(DRAW) [67], we plan to build a generative model of images from captions. More
precisely, the future system will take textual descriptions as input and use them
to generate relevant images. For example, the future system will have an ability
to generate a scene given a caption such as: ”a car is running on a high-way.”
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Attachments

We provide lists of concepts names (Unseen concepts) of word embeddings as
input of language-driven image generation. Each table shows concepts names for
each category in Experiment 4.
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Figure 5.1: Generated images of 10 concepts per category for 20 basic categories
grouped by macro-category
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12 13 14 15

A biscuit apple beehive birch
B bread asparagus bouquet cedar
C cake avocado emerald dandelion
D cheese banana muzzle oak
E pickle beans pearl pine
F pie beets rock prune
G raisin blueberry seaweed vine
H rice broccoli shell willow
I cake cabbage stone birch
J biscuit cantaloupe muzzle pine

Table 5.1: Concept names of word embeddings used to generate ORGANIC im-
ages

1 2 3 4 5 6

A dishwasher ashtray bed accordion apron anchor
B freezer bag bench bagpipe armour banner
C fridge barrel bookcase banjo belt blender
D microwave basket bureau cello blouse bolts
E oven bathtub cabinet clarinet boots book
F projector bottle cage drum bracelet brick
G radio bowl carpet flute buckle broom
H sink box catapult guitar camisole brush
I stereo bucket chair harmonica cape candle
J stove cup sofa harp cloak crayon

Table 5.2: Concept names of word embeddings used to generate MAN-MADE
images

7 8 9 10 11

A axe balloon airplane barn apartment
B baton ball ambulance building basement
C bayonet doll bike bungalow bedroom
D bazooka football boat cabin bridge
E bomb kite buggy cathedral cellar
F bullet marble bus chapel elevator
G cannon racquet canoe church escalator
H crossbow rattle cart cottage garage
I dagger skis car house pier
J shotgun toy helicopter hut bridge

Table 5.3: Concept names of word embeddings used to generate MAN-MADE
images (cont.)
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s

16 17 18 19 20

A blackbird whale grasshopper alligator beer
B bluejay octopus hornet crocodile beaver
C budgie clam moth frog bison
D buzzard cod snail iguana buffalo
E canary crab ant python bull
F chickadee dolphin beetle rattlesnake calf
G flamingo eel butterfly salamander camel
H partridge goldfish caterpillar toad caribou
I dove guppy cockroach tortoise cat
J duck mackerel flea cheetah cheetah

Table 5.4: Concept names of word embeddings used to generate ANIMAL images
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Concept Name Feature Production Brain Region
Frequency Classification

Moose is large 27 visual-form and surface
has antlers 23 visual-form and surface
has legs 14 visual-form and surface
has four legs 12 visual-form and surface
has fur 7 visual-form and surface
has hair 5 visual-form and surface
has hooves 5 visual-form and surface
is brown 10 visual-color
hunted by people 17 function
eaten as meat 5 function
lives in woods 14 encyclopedic
lives in wilderness 8 encyclopedic
an animal 17 taxonomic
a mammal 9 taxonomic
an herbivore 8 taxonomic

Knife has a handle 14 visual-form and surface
has a blade 11 visual-form and surface
made of steel 8 visual-form and surface
made of metal 7 visual-form and surface
made of stainless stell 5 visual-form and surface
is shiny 5 visual-form and surface
used for cutting 25 function
used for killing 7 function
used by butchers 5 function
is sharp 29 tactile
is serrated 8 tactile
is dangerous 14 encyclopedic
found in kitchens 18 encyclopedic
used with forks 16 encyclopedic
a weapon 11 taxonomic
a utensil 19 taxonomic
a cutlery 15 taxonomic

Table 5.5: Feature Representations for Moose and Knife
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fc7+examplar fc7+prototype pool5+examplar pool5+prototype

Min. 0.00 0.00 0.00 1.00
1st Qu. 1.00 2.00 4.00 4.00
Median 2.00 2.00 8.00 5.00

Mean 2.66 3.12 7.36 6.86
3rd Qu. 3.00 4.00 11.00 9.00

Max. 16.00 9.00 16.00 19.00

Table 5.6: Model selection experiment

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1000 0.5500 0.7500 0.7061 0.8500 1.000

Table 5.7: Distribution of proportion of times when the correct label was picked
in Exp 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3500 0.5500 0.5299 0.7000 0.9500

Table 5.8: Distribution of proportion of times when the correct image was picked
in Exp 2

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0500 0.4000 0.6000 0.5679 0.7500 1.000

Table 5.9: Distribution of proportion of times when the correct image was picked
in Exp 3

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 7.00 11.00 10.62 14.00 20.00

Table 5.10: Distribution of preferences for the right category Exp 4
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