

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Tuan Do Manh

Multi-platform Multiplayer RPG Game

Katedra softwaru a výuky informatiky

Vedoucí diplomové práce: Mgr. Jakub Gemrot

Studijní program: Informatika

Studijní obor: Softwarové systémy

Praha, 2015

Many thanks to Mgr. Jakub Gemrot and Bc. Otakar Nieder for their priceless

advices and guidance.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a výhradně

s použitím citovaných pramenů, literatury a dalších odborných zdrojů.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající

ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost,

že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této

práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne podpis

Název práce: Multi-platform Multiplayer RPG Game

Autor: Tuan Do Manh

Katedra / Ústav: Katedra softwaru a výuky informatiky

Vedoucí diplomové práce: Mgr. Jakub Gemrot, Katedra softwaru a výuky

informatiky

Abstrakt: V rámci práce byla vytvořena multiplatformní hra, kterou je možné

spustit na různých zařízeních se systémem Windows 8.1 a Windows Phone 8.1. Mělo

se jednat o univerzální herního klienta spustitelném na různých zařízeních (PC,

notebook, tablet, mobilní telefon). Hra měla spadat do žánru her na hrdiny (RPG) se

zaměřením na akčně tahový boj. V rámci práce byl vytvořen vlastní 3D renderer pro

malé scény umožňující renderování objektů a animování postav. V rámci práce byla

také implementována knihovna pro cross-device komunikaci zprostředkovávající

bluetooth technologii pro komunikaci mezi klienty běžících na různých zařízeních.

Dále byla vytvořena knihovna pro server-client komunikaci, která je použitá

v implementaci herního serveru, který nabízí možnost online hraní.

Klíčová slova: multiplatformní aplikace, cross-device komunikace, 3D herní

engine, DirectX, SharpDX

Title: Multi-platform Multiplayer RPG Game

Author: Tuan Do Manh

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Department of Software and Computer

Science Education

Abstract: A multi-platform game, which would be able to run on various

devices with Windows 8.1 and Windows Phone 8.1 systems, was created in this

work. It was supposed to be a universal game client executable on desktop PCs,

notebooks, tablets or mobile phones. The game was supposed to be role-playing

game (RPG) with focus on turn-based action combat. In this work, a 3D scene

renderer was written which supports rendering simple scenes with objects and

animated characters. A cross-device communication library based on bluetooth

technology was implemented in this project as well. This communication library

allows two game clients running on two different types of devices to communicate

with each other. Then a server-client communication library was created. This library

was then used to implement a game server which offers online gaming feature.

Keywords: multi-platform application, cross-device communication, 3D

game engine, DirectX, SharpDX

Table of Contents
Preface .. 1

General Introduction .. 1

Problem Statement ... 3

Goals ... 4

1. Game Inspirations and Our Game .. 6

1.1. Pokémon .. 6

1.2. Blood and Glory .. 8

1.3. Dragon Mania Legends ... 9

1.4. Our Game - Ninshu Arts ... 10

2. Implementation Analysis .. 12

2.1. Existing Tools for Developing Games .. 12

2.1.1. Unreal Engine ... 13

2.1.2. Unity ... 14

2.1.3. Paradox Engine .. 15

2.1.4. Wave Engine .. 16

2.2. Programming Environment ... 19

2.3. Targeted Devices ... 19

2.4. Game Graphics .. 21

2.5. Communications .. 22

2.5.1. Offline Multiplayer .. 22

2.5.2. Online Multiplayer ... 23

3. Designing the Game ... 27

3.1. Game Concept ... 27

3.2. Combat System ... 28

3.2.1. Turn-based Combat with Action Elements 28

3.2.2. Combat Techniques - Jutsus ... 30

3.2.3. Basic Elements ... 31

3.3. Game Character - Shinobi ... 33

3.3.1. Shinobi’s Stats .. 33

3.3.2. Experience and Levels ... 34

3.3.3. Progressing and Improving .. 35

3.4. Game Controls ... 36

4. Technical Documentation .. 39

4.1. Writing the 3D Renderer ... 40

4.1.1. SharpDX ... 40

4.1.2. Direct3D Introduction .. 41

4.1.3. Rendering Framework .. 44

4.1.4. Implementing the 3D Renderer .. 46

4.1.5. Changes Regarding Transitioning to Windows Store App 57

4.1.6. Compromises for Multi-platformity ... 59

4.2. Implementing the Communication Libraries 60

4.2.1. Bluetooth Communications .. 61

4.2.2. Web Communications .. 68

4.3. Game Logic and Features .. 72

4.3.1. Player .. 73

4.3.2. Jutsus and Missions Data ... 74

4.3.3. Combat Manager .. 76

4.3.4. Bluetooth Multi-player Battle .. 78

4.3.5. Sending Shinobi on Missions ... 82

4.3.6. Hunting and NPCs .. 83

4.4. Creating the GUI ... 84

4.4.1. GUI and XAML ... 84

4.4.2. Battle Screens ... 86

4.5. Game Server .. 87

4.5.1. Basis and Creation .. 88

4.5.2. Game Database ... 89

4.5.3. Web API ... 91

4.5.4. Testing environment ... 93

5. User's Documentation .. 94

5.1. Game Screens .. 94

5.1.1. Village .. 94

5.1.2. Profile ... 95

5.1.3. Missions ... 95

5.1.4. Hunting Assignments ... 96

5.2. Fighting ... 96

5.3. Bluetooth Multi-player .. 97

5.3.1. Pairing the devices for Bluetooth MP .. 98

5.3.2. Connecting for MP Battle .. 99

5.3.3. Bluetooth Troubleshooting ... 99

5.4. Distribution and Installation .. 100

5.5. Online Features ... 101

6. Making the Game ... 102

6.1. Game Development Stages ... 102

6.2. Artwork Phase ... 104

6.2.1. Drawing Character Concepts ... 104

6.2.2. Modeling Characters .. 105

6.2.3. Rigging Characters ... 106

6.2.4. Animating Characters ... 106

6.3. Issues During Game Design and Implementation Stages 107

6.4. Future Development .. 109

6.4.1. Things That Were Left Out .. 110

Conclusion .. 111

References .. 113

List of Tables .. 116

1

Preface

General Introduction

Computer games (PC games) have been a significant part of software market

for many years now. PC games have evolved so much over the years. Mainly the

demand for new titles from the players, improvement of computer hardware

components and other advancements in information technologies set the direction for

the evolution of PC games. If we compare the early games like Spacewar! [43] where

players could only see simple 2D objects flying on the screen with today’s AAA

games with stunningly beautiful realistic graphics, we must admit that it is a huge

leap forward.

The success of 3D console titles such as Super Mario 64 [44] increased the

interest in hardware accelerated 3D graphics on PCs which soon resulted in attempts

to produce affordable solutions. Soon 2D games left the screens of players and they

were replaced by 3D titles such as Tomb Rider [45] which was one of the first 3D

third-person shooter games and was praised for its revolutionary graphics. The faster

graphics accelerators and improving CPU technology resulted in inreasing levels of

realism in computer games. PC gaming currently tends strongly towards

improvements in 3D graphics. The high-speed internet access coming to households

lead to the next evolution step which was online gaming. Over the past years players

had the opportunity to see a lot of online games, especially massive multiplayer

online role-playing games (MMORPG) which is one of the most developed game

genre.

With the substantial development and progress in the area of partable devices

such as tablets and smartphones in the past years, the recent gaming trends move

towards cross-device and multi-platform games. Because the term „multi-platform

application“ can have more meanings, we will from now on mean an application that

is able to run on different types of devices.

2

Definition: By the term multi-platform application we will from now on mean an

application that is able to run on different type sof device.

As the number of portable devices grows, it is only natural for us to consider

applications that are capable of running on different types of devices and the same

goes to games. Multi-platform games are relatively new to the market and there are

not many quality multi-platform games out there. Most of these games are casual

games. This may include game genres such as following:

 Puzzle games (games for solving puzzles, matching color crystals

etc.)

 Endless running games (games where the player character is

continuoisly moving forward through a procedured and theoretically

endless game map)

 Word & trivia games

 Card & board games

 Hidden objects games

Almost all the games from the previously mentioned genres are simple games

where players are tasked to do the same thing over and over again. Even though

breaking the standing records and getting higher score than fellow players is a good

motivation to keep playing, after a short time players might still lose interest. On the

other hand, there are other game genres that require more time and offer more things

to do. This may include for example:

 Adventure games

 Role-playing games (RPG)

 Strategy games

3

Problem Statement

PC games have been here for decades. And even though tablets and

smartphones are relatively new in comparison to PCs, there is quite a number of

games for portable devices. Although many of these games are enjoyable and

popular, they share some of the following shortcomings:

1. Many games for portable devices are casual games which are simple

and do not offer much of a game content.

2. Role-playing and strategy games for portable devices offer some

content to entertain the players, but most of these games are designed

for online gaming. Players usually have to connect to the game server

in order to play. Casual games are playable offline, but they lack

complexity, while strategy and role-playing games offer richer game

content, but are not playable offline.

3. Very few games offer quality multiplayer gaming. While it is a

common thing for PC games to have a good multiplayer capabilities,

the number of games for portable devices supporting multiplayer is

very low. Possibility to be able to play with other human players and a

chance to compete with each other is a very strong motivation to play

the game.

4. Not all portable games are multi-platform and players will not be able

to run them on all the devices. You will find games for smartphones

and tablets which will not be available on PCs.

5. There are virtually no games on the market that support offline

multiplayer. This disadvantage applies to PC games as well, not only

portable device games. While this is a common feature for handheld

consoles and console games, developers for PC games do not feel the

need to implement offline multiplayer, if we consider that every

common household has internet access. Now if we take multi-

platform games into account, the offline multiplayer feature might

bring new gaming experience. Contemporary games with offline

multiplayer capabilities are virtually nonexistent.

4

Goals

We have defined multi-platform games as games capable of running on

different types of devices. We have also discussed contemporary gaming trends and

the state of the game market these days and we have pointed out some shortcomings

of what today’s games have to offer. With this in mind, we will attempt to develop a

new multi-platform game with the following criteria:

a) Multi-platformity – we will develop a single „universal“ game client

capable of running on different types of devices (PC, notebooks, tablets

and smartphones)
1

b) Multiplayer capabilities – the game will support both offline multiplayer,

where players will be able to engage in multiplayer battles even without

access to internet or local network, and online multiplayer to offer players

a possibility to play and compete with players from distant places

c) Turn-based role-playing game with action elements – we will try to

introduce a few game mechanics and game content and incorporate them

into a new RPG to offer better gaming experience than simple casual

games

Summary

The primary goals of this work are:

 Analyze the current gaming scene and relevant existing games to

address shortcomings and things we can include in our game to

introduce something new and at the same time follow contemporary

gaming trends.

1
 By the term „multi-platform application“ we mean an application which is able to run on

different types of devices such as desktop PC, notebook, tablet and smartphone as we defined in

General Introduction.

5

 Analyze available technologies and existing tools relevant to the

development process and choose a suitable direction of development

for our game

 Develop the game from the ground (design, analysis, implementation)

 Provide some additional information on developing a game as a one

man team

6

1. Game Inspirations and Our Game

In this first chapter we go over some existing games available today at the

market. With these quick reviews, we would like to talk about out certain game

mechanics that are interesting and relevant to our game. We highlight significant and

characteristic game elements which will bring inspiration to our own game. On the

other hand, we point out specific shortcomings in these games that we are going to

address. At the end of this chapter, we will summarize the features for the game that

we are trying to create.

First we will discuss one of the best selling role-playing game that has

obtained many awards, Pokémon. It is well known for its turn-based combat as well

as good looking pocket monsters and a nice fantasy world. Then we will turn to

contemporary game Blood & Glory which represents one of the current casual games

for mobile devices. Finally we will analyze Dragon Mania Legends which is a great

example of today’s gaming trend.

1.1. Pokémon

Pokémon [1] is a video game made for Nintendo [2] handheld consoles such

as Game Boy, Nintendo DS, Nintendo 3DS. It is a product of Japanese company

Nintendo. There are other Pokémon titles for other Nintendo consoles, but the main

focus was always on handheld titles. Pokémon game first saw the light of the world

in 1996 with its first two editions named Pokémon Red and Pokémon Blue. A year

after Pokémon games were released in Japan, 10.4 million copies were sold there.

The total combined sales of Red and Blue in the United States were 9.85 million by

1998. The Pokémon series continues till today and it has sold over 270 million units

as of May 2015, giving it the distinction of being one of the best-selling video game

series in history.

Pokémon is a role-playing game where players get to play as a teenager hero

who is traveling the world, catching and training pokémons and saving the world in

the spare time. Every few years Nintendo releases new generation of Pokémon

games and every time it brings some kind of improvements. Mostly they are graphic

7

and cosmetic changes. And of course, every new generation introduces a new

generation of pocket monsters. The story is roughly the same - the main hero gets a

starting pokémon and then travels the world to discover new pokémons and fights an

evil organization which strives for the world dominance.

The one thing that Pokémon is most known for is the turn-based combat

system. This is where players spend most of their time in the game. Through the

combat they train their pokémons, make them stronger and progress in the story. One

has to admit that the turn based combat system is very complex and quite powerful

and that a lot of interesting game mechanics can be found in it. Many factors and

hidden things contribute to the actual fight. Even though it works really well and it is

a lot of fun to play, there is one particular limit that Pokémon combat system will

never overcome - the fact that it is based on plain turn-based mechanic. There is no

way for a player to affect the outcome of the turn. Let us say that players A and B

will use the same attack ten times in a row. The outcome of these ten turns will be

more or less the same. If player B has a pokémon with better attributes, player A

cannot do anything to improve his/her chances to win the turn. As you can see, the

combat feels to be very static. There is no action in it. It is not possible for players to

actually execute the attack to express how well the attacks were performed.

Pokémon combat system is great for tactical thinking and players also have to

prove themselves in devising different strategies while putting together their teams to

work well in different situations. These are the things that we will try to keep in mind

while designing our game.

Pros: a lot of pokémons and attacks of various types, rich game content and

mechanics

Cons: pure turn-based combat

8

1.2. Blood and Glory

Blood and Glory [3] is an action role-playing game developed by Glu Mobile

[4]. You might have seen this game on one of the Android or iPad tablets. Blood and

Glory is a clear example of a new mobile game made specifically for tablets and

smartphones.

As a representative of games for mobile platforms, it shares their

characteristics, simplicity being the most notable. You will not find any great story

here nor great way to progress your character. In this game players are put in an

arena to fight with an enemy non-player character (NPC). As you defeat your

enemies, you face harder opponents. We mention Blood and Glory in this paper for

its action elements in turn-based combat.

In comparison with Pokémon, where you had so many pokémons with so

many different attacks, there are not many things you can do here in Blood and

Glory. The fight has 2 phases. The first one is where enemy attacks and you have to

defend yourself. You can either dodge, block or parry. After the enemy NPC tries to

hit you a few times, he gets tired and that is where the second phase begins. During

this phase you have an opening to counter strike. So basically you just have to avoid

attacks and then strike your opponent. The nice thing about Blood and Glory combat

is that when enemy NPC is attacking, it is shown as a slowed animation of enemy

movement (for example a swing of a sword from left to right), and you have to react

accordingly. In short, the developers introduced an interesting real-time action

elements in turn-based combat system.

Another thing worth mentioning is the way you control your character with

touch commands in the game. All the commands that you do in the game is tapping

on the screen or swiping with your finger. It is really important to have an easy and

intuitive way to control your game character on the touch device because many

games fail to deliver this. Programming character control on a touch device is

different than doing it on PC where you have keyboard and mouse. Many developers

try to create character control on a touch device as they would do it on PC and it just

9

does not work well. Blood and Glory has solved this really well. The touch input is

responsive and intuitive to use.

Even though Blood and Glory is not as complex game as Pokémon, players

could spend hours in the arena dodging and striking enemy NPC gladiators. All it

took was bringing little action into a turn-based system.

Pros: action elements in turn-based combat, intuitive way to control the game

character

Cons: not as rich game content, casual game

1.3. Dragon Mania Legends

Dragon Mania Legends [5] came from workshop of one of the great mobile

games developer Gameloft [6] in the first half of 2015 and immediately became a hit.

It is a game similar to Pokémon, but players breed and raise dragons instead of

pocket monsters. It has a little bit of strategy game flavour mixed in. Besides raising

and training dragons, players have to take care of an island that was given to them.

There is also a nice single player campaign with a brief story that will keep players

entertained for a while.

The combat system in Dragon Mania is also turn-based like we saw at

Pokémon games. It is nowhere near Pokémon’s combat mechanics, but there is a new

interesting element introduced in Dragon Mania. Unlike in Pokémon, players can

affect how well they perform an attack. Two teams of 3 dragons stand against each

other in one fight of Dragon Mania. As we said before, the fight has turns. In each

turn player selects a dragon’s attack and a target and then they execute the attack.

The execution lies in stopping the moving indicator in the allowed slim interval. If

player stops the indicator in a very slim green area, they get bonus and deal extra

damage. If they land on a wider yellow area, they deal normal damage. And if they

miss the yellow area, they miss the attack completely. Players have to pay attention

and focus on well performing the attacks.

10

Also in comparison with Blood and Glory, players have to think tactically,

because each of their dragon is of different type and has different type of attacks.

Some types are better used in various situations, so they have to plan their attacks.

We could say that the combat system in Dragon Mania is a combination of tactical

gameplay of Pokémon and a little action like in Blood and Glory.

One of the great things about Dragon Mania is that it is multi-platform. You

can run it on PCs, tablets or smartphones. With a great expansion of mobile devices,

it is important to target as many type of devices as possible, thus expanding the

player base. For players that play Dragon Mania on more than one device, their game

data is saved to their account on the game server. So while they are working on PC,

they can peek in the game for a little while, do some things and then later they can

log in on smartphone and continue where they left off. What Dragon Mania really

lacks is multiplayer gaming. Even though it is an online game, you cannot challenge

another player for a friendly duel in any way. In addition, you have to be connected

to the internet to be able to play. So you can forget about feeding your dragons while

commuting to work or casual quick fight with NPCs.

Pros: combines tactical turn-based combat with action elements, game is multi-

platform

Cons: requires internet connection, has no multiplayer

1.4. Our Game - Ninshu Arts

For the purposes of this project and hereinafter in the paper, we will call our

game Ninshu Arts.

We were talking about Pokémon game series and its powerful turn-based

combat system with a lot of possibilities and requirement for tactical thinking, but

lack of action elements in the game. Then we analyzed Blood and Glory where there

was a lot of action in the turn-based combat but little complexity and poor game

content. At last, there was Dragon Mania Legends where we saw little from both

worlds, but not exceeding in any of the two.

11

Ninshu Arts will have turn-based combat with action combat technique

system. Action elements will require players to stay alert, responsive and mindful of

the game. Also with a diverse combat technique system, players will also have to

think tactically.

A multi-platform feature and the multiplayer feature as we defined is not

likely to be found in any other games on the market these days. To have a

multiplatform game running on different types of devices with the ability to

communicate cross-device is a rarity.

The motivation to implement the offline multiplayer feature is described in a

following scenario. Two friends meet some place with no internet access nor local

network. One player is playing the game on a smartphone and the other on a tablet. It

would be great if they could just connect to each other and play. Or some people

commute to work and they like to kill some time playing games on their phones, but

not just a casual game. Even with no internet, they are still able to play. And when

they get home, they could just upload their local save from their phone to the game

server, turn on their desktop PC and start playing where they left off. Then they

could play online with other players who are connected to the game server.

12

2. Implementation Analysis

After analyzing current gaming trends and discussing a few games of interest,

we have described the main game features we want to implement in our game. This

chapter is focused on technical decisions regarding how our grame will be

implemented.

The task of creating a game is a demanding one and usually there is a whole

developer team involved, because the development process includes many areas (e.g.

artwork, game design, game programming, testing). There are two directions that

game developers can take:

1) Using an existing and complete game engine that provides developers

with a tool designed for creating games, or

2) build the game from the ground.

There are many existing game engines available. Many of them offer a

complete solution for developing a new game. They have a graphics core and other

components and some sort of development environment to create game scenes and

levels etc. In the following subchapter we will analyze some of these game engines.

2.1. Existing Tools for Developing Games

The features of our interest are:

a) Programming language – language used for scripting in-game logic and

content

b) Targeted platforms – what platforms can the created games run on

c) Pricing – whether the game engines are free to use or there are royalties

associated

By searching internet for game engines, we are able to find numerous search

results. However, in this paper we are going to discuss only a few which we find to

be popular or relevant to our work.

13

A popular game engines with C++ as primary programming language:

 Unreal Engine

Some users prefer more user-friendly language like C# over C++. The

commonly used game engine for that is:

 Unity

And then we will point out two engines that not only use C# for scripting, but

they were also written in C# (meaning graphics core and other components of the

engine):

 Paradox Engine

 Wave Engine

2.1.1. Unreal Engine

Unreal Engine [12] is a game engine developed by Epic Games, it showcased

in the first-person shooter game Unreal in 1998. Although it was primarily developed

for first-person shooter games, it has been successfully used in variety of other

games. Latest Unreal Engine 4 offers tools for creating virtual reality and films. It is

a professional tool of first-rate quality.

The code of Unreal Engine and all its tools is written in C++. The source code

is available to users which is a big advantage. Before Unreal Engine 4 the developers

used UnrealScript which was Unreal Engine’s native scripting language. The newest

Unreal Engine 4 no longer supports UnrealScript, but instread supports game

scripting in C++. Unreal Engine 4 also offers so called Blueprint visual scripting

system that allows development of game logic without using C++.

Unreal Engine is free to use, but developers need to pay 5% royalties for each

released product.

14

Advantages

 Complex tools and editors

 Stunning graphics results

 Engine source code available to developers

Disadvantages

 5% royalties for every released product

 Some users prefer higher level programming language over C++

 Does not target all platforms as competition (e.g. Windows Phone)

2.1.2. Unity

Unity [11] is a game engine developed by Unity Technologies. Unity is

noteable for its ability to target games to multiple platforms. Within a project,

developers have control over delivery to mobile devices, desktops, consoles, even

web browsers. Supported target platforms include Windows, Windows Phone,

Android, iOS, Mac OS, BlackBerry 10.

Along with Unreal Engine, Unity is one of the most popular and commonly

used game engine among game developers. The quality of development environment

and tools correspond its popularity. The code of Unity engine is written in C and

C++, the game development environmemt (editor) is written in C#. The scripting and

game logic coding are done in the C# language which may be deciding factor for

many beginner and independent game developers.

Unity has a personal edition which is free to use, but it includes only the basic

features. The professional edition is available for developers for $1500 license or

$75/month subscription.

Advantages

 Professional and complex tools

 More user-friendly coding and scripting with C#

 Targets wide range of devices

15

Disadvantages

 Pricing, if personal edition features are not enough

 Engine source code provided on occasion via special agreements with

Unity development team

2.1.3. Paradox Engine

Paradox Engine is a new competitor in the field of game engines. It is

developed by Silicon Studio and was released just in Autumn 2014. Paradox Engine

targets Windows Desktop, Windows Store, Windows Phone, Android and iOS

devices.

Even though it is not a front-runner among game engines, we mention it here

because it is fully written in C# (game engine, graphics core and all its components).

It is running on DirectX for Windows platforms and OpenGL/ES for all other

platforms. DirectX normally does not support C#, but only C++. Paradox Engine is

powered by SharpDX [13] library which allows developers to access DirectX API

from .NET C#
2
. Source code of Paradox engine is available to developers. The

interesting feature is integration between Game Studio and Microsoft’s Visual Studio

where developers can edit the code more efficiently. Paradox might does not offer as

complete set of tools as Unreal Engine or Unity, but it includes all the basic

essentials.

Paradox Engine can be used free of charge in two ways. Either developers

can use Paradox official releases and distribute their games without disclosing the

source code, but there can be no change to the source code. Or developers can

compile Paradox themselves, they are allowed to change the engine’s source code,

but they must distribute all the source code with the game.

2
 SharpDX library was created by Alexander Mutel who is also part of the Paradox Engine

developer team.

16

Advantages

 Coding in C#

 Visual Studio integration

 Source code available to developers

 Free to use (with some conditions)

Disadvantages

 Does not offer as complete and complex tools compared to Unreal

Engine or Unity

 Targets less platforms than competition (but all the common)

2.1.4. Wave Engine

Wave Engine [47] like Paradox Engine is relatively new compared to Unity

and Unreal Engine. It was released by Wave Corporation in 2013. And just as

Paradox Engine, it provides simpler game editor compared to first-rate game engines,

but still offers a good environment for game development.

It targets all the common platforms including Windows Store, Windows

Phone, Android and iOS. Like Paradox Engine, Wave Engine is also entirely written

in C#. Wave Engine uses SharpDX library to access DirectX API for Windows

platform games and OpenTK library to access OpenGL for other platforms
3
. Coding

and scripting can also be done in the C# language. One of the notable Wave Engine

features is component based game development which usually increases productivity

and decreses cost of development. Wave Engine source code is not fully accessible

by users. The Wave Engine developer team only provided the source code of some

internal components to make the creation of custom components easier for game

developers.

3
 Information on the used libraries was provided by David Ávila, member of Wave Engine

developer team, November 11th, 2015.

17

Using Wave Engine is completely free for Windows Desktop, Windows

Store, Windows Phone devices, while for Android and iOS developers need to have

Xamarin [48] license.

Advantages

 Coding in C#

 Component based development

Disadvantages

 Does not offer as complete and complex tools compared to Unreal

Engine or Unity

 Targets less platforms than competition (but all the common)

 Free to use, but not for Android and iOS

 Not all source code available to users

 Unreal Unity Paradox Wave

Windows Desktop royalties free* free free

Windows Store App not supported free* free free

Windows Phone not supported free* free free

Android royalties free* free free**

iOS royalties free* free free**

Mac OS X royalties free* not supported free

Linux royalties free* not supported free

Table 1.: Table showing supported platforms for each engine. You can see whether the given engine

supports a platform and does not require royalties or is free to use, or if a platform is not supported at

all. (* free only with basic tools, ** requires Xamarin license)

18

Summary

Even though game engines may provide a complex environment and tools to

develop new games, they are not always appropriate. First-rate game engines offer a

variety of tools and there are usually a lot of tutorials and materials for them, but they

are pricey. On the other hand, less used engines are free to use, but do not offer as

rich toolset and there is usually less materials to learn how to use the engine or

information about the engine itself. Before choosing to use a game engine, one

should also account for the time needed to learn how to use the engine. Furthermore,

if developers have specific requirements for the game, choosing a game engine might

not be the right decision, because they might not have full control over those specific

things.

As for our game project, we would like to use the C# language to code the

game. Unreal Engine is not convenient, because it only supports C++ scripting and

on top of that is not free to use. On the other hand, Unity and does not provide its

source code and is not free either. In addition, we have very specific requirements for

our multiplayer features (offline and online multiplayer). Let us consider for a

moment that bluetooth is our technology of choice to implement offline multiplayer.

If we search for bluetooth plugins for Unity, we will only find a bluetooth plugin for

Android [55] and iOS [56] devices (thus connecting a phone to phone or tablet to

tablet). There is no simple way to connect a tablet and desktop PC for example. The

correct solution in Unity would be developing a new C/C++ plugin for Unity Engine

and then incorporating the new plugin in the Unity project. But that would require

the Pro version of Unity.

For our game we will not be using any game engine, but we will build Ninshu

Arts from the ground. Thus we will have full control over the communications which

have rather specific requirements and the game itself.

Please note that at the time when work on this project started, Paradox Engine was

not even released and Wave Engine was just released (there were not much

information on Wave Engine and at that time it did not have all the features it has

today).

19

2.2. Programming Environment

C# has been a very popular choice for programming language among

developers for a quite some time now. Over the years the C# language has been

extended with a lot of interesting features (e.g. lambda expressions, LINQ,

asynchronous programming) and thus it has attracted a wide user community. In

addition, the C# language hides many low-level aspects of programming from the

users (e.g. pointers, memory allocation and deallocation) and so it allows developers

to think in terms of greater level of abstraction. Also this approach is definitely easier

for beginner developers to learn. And if we combine this with advance and user-

friendly development tools such as Visual Studio, the C# language makes an excelent

choice for realization of our ideas.

Nowadays more games are built upon high-level programming languages. As

most 3D games are now mostly limited by the power of the graphics card, the

potential slowdown due to translation overheads to higher level languages become

negligible. For these reasons, we choose C# as the language for the development. We

will use Microsoft Visual Studio 2013 as our development environment.

2.3. Targeted Devices

As we stated earlier, we are developing a multi-platform game which means

we want our game to be able to run on different types of devices such as desktop

PCs, notebooks, tablets and smartphones.

There has been significant development and progress made in the area of

portable devices such as smartphones and tablets. In 2013 there have been several

millions smartphones sold all over the world and having a smartphone or a tablet at

home is a common thing these days. There are three distinct operating systems

running on portable devices. They are Android from Google, iOS from Apple and

Windows from Microsoft. The first two are dominant in the field of portable devices

and the number Windows tablets and smartphones is smaller. This is due to the fact

that Windows joined the market of portable devices later than Android and iOS.

20

Even though Android and iOS are greater in numbers of portable devices, let

us not forget the fact that these are only smartphones and tablets. Windows platform

is able to target every type of devices, i.e. PCs, notebooks, tablets and smartphones
4
.

In addition, the manufacturers are trying to follow the contemporary trend and

creating a lot of 2-in-1 devices and hybrid devices (notebooks with touch screens and

removable keyboards, devices that can flip the monitor and switch between notebook

and tablet mode, etc.). And almost all of these hybrid devices are running on

Windows operating system. In addition, desktop PCs and notebooks have been here

for decades and Windows operating system is running on most of them. This is why

we have decided to develop Ninshu Arts for Windows platform, as we want it to be

multi-platform in terms of being able to target every type of devices. And even

though Windows is lesser in numbers of portable devices, the number of targeted

desktop PCs and notebooks is still substantial and we will be able to approach a large

number of potential players. It is also noteworthy that there is not always need to

develop a game for all the operating systems, as exclusiveness to one platform can be

well sold to the platform developer.

Microsoft introduced the Universal Application model with the release of

Windows 8.1 operating system (Windows Phone 8.1 for smartphones) which allows

developers to reuse the code written for Windows 8.1 device to be shared to

Windows Phone 8.1 device and vice versa. It is important to note, that an application

written as Universal Application is still not 100% universal. There are certain things

regarding adjustment to Windows device or Windows Phone device that need to be

done, e.g. writing proper GUIs so they fit different screen sizes. This usually means

writing two different codes for small and large display. Nevertheless, the Universal

Application offers an elegant way to write one application that will be runnable an all

types of devices.

4
 Apple also manufactures its own notebooks and dekstop devices running Mac OS, but their

number is rather insignificant.

21

In this work we will use the Universal Application model and try to develop

an universal game client which players will be able run on every popular device with

Windows 8.1 operating system.

Note: We consider Windows 8.1 OS, because at the time of writing the thesis it was

the latest update of Windows platform. However the game application developed for

Windows 8.1 should be runnable and fully functional on Windows 10.

Hereinafter we will refer to Windows 8.1 and Windows Phone 8.1 as Win8 and WP8

respectively.

2.4. Game Graphics

The game graphics is an important part of the game, since we want to deliver

a good gaming experience. As we mentioned earlier, we are trying to develop a turn-

based combat game with action elements. To invoke a feeling of action is it almost

obligatory to gave a 3D scene with moving camera. For battles in Ninshu Arts, we

would like to have a 3D battle scene with moving characters doing attacks as players

commands.

DirectX and OpenGL are two common application programming interfaces

(API) used to develop graphics applications. In this project, we will choose DirectX

developed by Microsoft, since we are targeting Windows devices. Ordinarily,

DirectX only supports writing the graphics application in C++. However, there are

certain libraries that provide us with the ability to access DirectX API from .NET C#.

Namely, the two known libraries are SlimDX and SharpDX. In order to keep all the

source code in the C# language, we will be using SharpDX library to access DirectX

API. We chose SharpDX, becuase SlimDX is no longer being developed.

We will be developing our own 3D game renderer which will be able to

render simple scenes with objects and animated characters in DirectX using SharpDX

library. The character animation will be implemented using skeletal animation.

22

2.5. Communications

The multiplayer requirements for our game are quite unique, as we are trying

to implement both online multiplayer and offline multiplayer, which is a unusual

feature for PC and mobile platform games. We shlould carefuly think about what

technologies to use.

2.5.1. Offline Multiplayer

As we mentioned previously in previous chapters, games for mobile devices

do not support multi-player much. And if they do, it is mostly only the option to play

online. Games for mobile devices and even for PCs do not support offline multi-

player. It is not possible for 2 players to come together and have a multi-player battle

with no network or internet connection available. We design Ninshu Arts with

emphasis on multi-player battles and PvP. We believe that the possibility to play

with other people and compete with each other is a great motivation for players to

keep playing.

Back in 1990s when Gameboy Color was a hit, players were able to come

together, connect their Gameboys with a Game Link Cable [8] and have battles.

Nowadays, communication between devices are all based on wireless technologies. It

is only logical to be using wireless communication, especially if we are developing a

multiplatform game that is supposed to run on different types of devices, since

having different types of cables to connect various devices would be highly

impractical. In fact, it is possible to connect different types of devices, usually using

USB, mini USB or micro USB cables and their variations, but there are no available

APIs that we could base our communication library on. There are two wireless

technologies that would suit our purposes - Wi-Fi and Bluetooth. These two

technologies are very common these days and present in virtually all devices.

Originally, Wi-Fi does not support peer-to-peer (P2P) connection. Wi-Fi is

mainly seen in Personal Area Networks (PAN) where it connects devices to a local

network and provides access to internet using a Wi-Fi router. This is not exactly what

we want, since we want players to be able to play with each other even if they are not

23

connected to a local network. With introduction of Wi-Fi Direct technology [9] new

doors opened for us. Wi-Fi Direct offers a possibility to have a P2P connection

between two devices which have Wi-Fi adapters. This P2P kind of connection was

only possible through Bluetooth technology. Even though Wi-Fi Direct seems very

promising and offers new possibilities to us, we will not be using it for Ninshu Arts

project. However, it is still relatively a new technology and not all devices support

Wi-Fi Direct. Namely, WP8 operating system does not have any working API to

access Wi-Fi Direct. However, Win8 operating system is capable of working with

Wi-Fi Direct.

Our other option is to use Bluetooth [10]. Bluetooth is not a new technology
5
.

It has been in development for more than ten years now and it is quite a common

capability of nowadays devices. We will be using Bluetooth Rfcomm which is a

Windows Runtime API available in both Win8 and WP8 operating systems. This is

actually perfect for the purposes of the project, since Bluetooth Rfcomm API is

accessible from all kinds of devices running Win8. Furthermore, virtually all

smartphones have a Bluetooth adapter, most of tablets and notebooks have a

Bluetooth and some PCs that come with Bluetooth present on their motherboards.

And if not, buying a new Bluetooth adapter that is plugged into a USB port is not a

big deal, because they are really cheap. Since combat in Ninshu Arts is turn-based,

we will only need to send messages from one device to another. Bluetooth will

handle this task without any problems.

2.5.2. Online Multiplayer

Online gaming is a common feature in contemporary games on the market.

Providing players with the possibility to play offline multiplayer matches when they

do not have internet access is a nice feature, but we also need online multiplayer

feature to have a complete multiplayer experience. Through online gaming players

can reach competitors far away and test their skills against each other.

5
 Bluetooth 1.0 was released in 1999. First mobile phone with Bluetooth comes to market in

2000. For more information please read [11].

24

The initial idea was giving players the possibility to play the game on their

devices when they are not at home and have no internet on their mobile device. And

when they get home, they could connect to internet with their mobile device, upload

their data to the game server and synchronize their game data. Then they could for

example switch to a desktop PC and play with people all around the world.

To provide players with this gaming experience that we just described we

need to have a server that would be accessible through internet. Here are three things

we need from our server:

1. Store the players‘ data on the server, so they backup and synchronize

the data across all their devices

2. Host online battles, so players can challenge other players from far

away

3. Provide a website that serves as some sort of social hub, online

statistics about players and possibly a knowledge base for the game

Certainly we could have a single server for each role, but the most elegant,

economical and time-saving solution is to have a single game server which can

perform all the mentioned functions.

.NET provides us with many technologies and there is one that is perfect to

build our game server on – ASP.NET [49]. We will implement a simple ASP.NET

application that will be hosted on a web server. This ASP.NET application will use

MS-SQL database [50] which will both hold players‘ save data and information

related to hosting online battles, such as data from individual battle instances.

ASP.NET provides us with a few options to build our game website. They are

ASP.NET WebPages, ASP.NET WebForms, ASP.NET MVC. Each of them has

different workflow and it does not really matter which we choose. It depends on

user’s personal preferences. For our project, we will build a website using ASP.NET

MVC framework.

25

Communicating with Web Server over HTTP

HTTP protocol is not just for serving up web pages. It is also a powerful

platform for building APIs that expose services and data. HTTP is simple, flexible,

and ubiquitous. Almost any platform that you can think of has an HTTP library, so

HTTP services can reach a broad range of clients, including browsers, mobile

devices, and traditional desktop applications.

Our server application will be hosted on a web server and players will send

requests and messages to the server using their game client application. For example,

it might be a message containing data about performed attack in battle or on the

contrary it might be a request to fetch some data from the server. Since the server

application sits on the web server, we will be using HTTP implement the

communication between the client and the server.

For these purposes, we will use ASP.NET Web API framework to build a

web API
6
. The game clients will communicate with the game server through this web

API.

Duplex Communication over HTTP

Classic communication over HTTP has request-respond character. The client

sends a request to the server and the server sends a response back to the client.

However, we will need to send messages from the server to the client, in other words

push the message from the server to the client. For this purpose, it would be best if

the communication was duplex (bidirectional). That way both client and server could

freely send messages to the other. The normal communication over HTTP is not

duplex.

6
 Web API is a programmatic interface consisting of one or more publicly exposed endpoints

to a defined request-response message system, typically expressed in JSON or XML. For detailed

explanation of what web APIs are, please see [51].

26

There are two well known ways to achiev duplex communication over HTTP

or at least simulate the duplex connection. Web Socket [52] is a protocol providing

full-duplex communication channels over a single TCP connection. It is a relatively

new technology, but most major browsers currently support it. Regrettably, most of

the web hosting providers do not offer Web Socket technology, thus we will not be

using it for our project.

There are ways to simulate duplex communication over HTTP. They are

called push technologies
7
. We will be using technique called Long polling. In

principle, the client sends a request to the server and instead of the server returning

an empty response immediately, the server holds the request open and waits for

response information to become available. Once it does have new information, the

server immediately sends an HTTP response to the client, completing the open HTTP

request.

To summarize things, for offline multiplayer we will be using bluetooth. For

online multiplayer we will develop an ASP.NET MVC application with MS-SQL

database. We will use Web API communicate with game clients. And to simulate

duplex connection over HTTP, we will use long polling technique.

7
 Server push describes a style of Internet-based communication where the request for a given

transaction is initiated by the publisher or central server. For more information on push techniques,

please see [52].

27

3. Designing the Game

In this chapter we look into the game designing phase. We shall introduce all

important game mechanics with respect to the things that we pointed out in the

chapter 1. After the readers finish this chapter, they should have a good idea of what

features the game will have and what players will be able to do in the game.

3.1. Game Concept

Ninshu Arts is a role playing game. At the start the players create their own

character called Shinobi
8
 in the world of the game. The goal of the game is to

progress your character through Missions and Hunting assignments (both will be

explained later in section 3.3.3. Progressing Your Character) and improving your

battle skills to duel your fellow shinobis in multi-player battles. The strength of a

shinobi is determined by his attributes (stats) and by combat techniques that he can

use. Combat techniques are called Jutsus
9
. As players progress in game, they obtain

and learn new jutsus to have more tools to use in combat.

The readers of Japanese manga
10

 series Naruto
11

 are no strangers to the terms

“shinobi” and “jutsu”. It is no coincidence that we are using the same terms, since the

Ninshu Arts world is inspired by the story of Naruto. We could describe it as a

fantasy world with a little taste of Asian culture. There are several ninja villages in it

where shinobis live. Shinobis go on missions to improve their village status. Villages

might be in peace, compete or be at war with each other, so it is a primary objective

for a shinobi to grow stronger and stronger.

8
 Shinobi or Ninja is a term for a covert agent in feudal Japan.

9
 Jutsu is a word from Japanese which translated means “technique”, “method” or “spell”.

10
 Manga are comics created in Japan or by Japanese creators conforming to a style

developed in Japan in the late 19th century.
11

 Naruto is a Japanese manga series written and illustrated by Masashi Kishimoto.

28

3.2. Combat System

The combat system is the core and most important part of the game. This is

where players will spend most of their time. All the collecting and learning new

jutsus and training is only to get stronger to be able to maximize their combat skills

and capabilities. Whether players are on an NPCs on hunting assignments or in a

multiplayer battle arena, they will be fighting using our combat system. Let us

introduce the key features of the combat system now.

3.2.1. Turn-based Combat with Action Elements

Battles in Ninshu Arts are conducted in a turn-based manner. Each turn

consists of an attack phase and a defense phase. At the start of a new turn, players

select their jutsu that they want to use. Then the attack phase begins. Players have to

perform the attack moves during the attack phase. Each jutsu can have one or more

hits. When players execute their jutsu, they need to do the attack to the right or the

left direction for the particular hit. These swipes to the left or right will form a combo

which then later the defender will have to counter. The defense phase begins after the

attack jutsu execution. The defender has to counter an incoming attack combo in this

phase. We can imagine this as if attacker sent several shots coming to us from the left

or right side and we have to counter them. The defender needs to swipe to the

direction that a shot is coming from to counter it. If the defender counters a hit, (s)he

will be inflicted with reduced damage, and if not, (s)he will receive full damage. By

watching the enemy movement, the defender will be able to predict from which

direction the attacks will be coming from. So players will have to perform the actual

attacks and then they will have to observe the enemy to be able to react properly to

defend themselves. After the defense phase the turn is evaluated and both players

will receive calculated damage based on their defense action.

29

Picture 1.: Combat turn model

It is important to note that during the attack phase both shinobis are attacking

at the same time and they are defending at the same time during the defense phase as

well. We can imagine this as both of them are performing a jutsu, then they shoot a

combo at the other at the same time and when an incoming shots approach, they have

to counter them, again at the same time.

In addition, we propose one more feature in order to make executing attack

and defense phase a little more interesting. We want to make sure that the execution

part will not be too easy. We require that in particular the swipes of attack or defense

combo are performed at a certain time, more or less. Each jutsu has times configured

in its definition so that swipes must be performed either exactly at those defined

times or in a allowed time interval. If a swipe was made within the allowed time

margin, it is considered a hit, otherwise we consider it a miss. Only hit swipes will be

included in damage calculations, missed swipes will be ignored. On top of that, the

defender will have to perform defense swipes right at those times that the attacker

performed attack swipes. We could visualize this feature as a panel with a moving

indicator and marked time intervals. And players need to do the swipes when the

indicator is within a marked interval. With this feature we want to make players pay

more attention to a battle and bring a little more complexity to the combat.

30

3.2.2. Combat Techniques - Jutsus

Combat techniques or jutsus, as we called them, are tools for shinobis to use

in battles. Each jutsu is different and unique in its own way. Players will start with

some basic jutsus and they will obtain new jutsus as they progress in the game. New

jutsus mean new options in combat.

Each jutsu is based on one of the basic elements - Fire, Wind, Lightning,

Earth and Water. We will explain each element in detail later in section 3.2.3.

Elements. If you recall, we mentioned earlier that a jutsu can have one or more hits.

Specifically, it can have up to three hits. In raw numbers, more hits usually mean that

you can deal more damage.

Every jutsu is divided into two types - offensive and defensive. Offensive

jutsus usually have more hits and the hits deal more damage than hits of defensive

jutsus. On the other hand, defensive jutsus have a special support combat effect

depending on the jutsu’s element (more on combat effects later). Combat effects

allow us to manipulate the enemy in different ways. As defensive jutsus and their

combat effects might be quite powerful, it takes more time until they can be used

again. In other words, defensive jutsus have bigger cooldown.

Jutsu’s cooldown tells us in how many turns can we use the jutsu again. Not

only that defensive jutsus have bigger cooldown than offensive jutsus, but the

stronger a jutsu is the longer its cooldown will be. That said, it is essential to plan

your moves wisely, because you do not want to use your super jutsu that deals a lot

of damage when you are affected by enemy jutsu and your damage is rapidly

reduced, since you will not be able to use that powerful jutsu again for a long time.

31

3.2.3. Basic Elements

There are five basic elements in the world of Ninshu - Fire, Wind, Lightning,

Earth and Water. Every shinobi is born with affinity for one element, which will be

their primary element. That means training and using techniques of this primary

element will come most natural to them. In time as shinobis progress, they will learn

to control and use other elements, though they will have to put in more effort to

training them. It is important for shinobis to master more elements because each

element has its special properties and different combat effect.

Let us now establish the meaning of terms “buff” and “debuff”. We say that a

shinobi is buffed, if (s)he is affected by a positive combat effect. On the other hand,

the shinobi that is affected by a negative combat effect is called debuffed. A positive

combat effect will be designated with a term buff, whereas negative combat effect

debuff.

Fire is the element of power. Its special effect is called Scorch. If shinobi

uses a defensive jutsu with the scorch effect, when (s)he is hit by an incoming attack,

(s)he retaliates against the attacker and deals them some damage in return. The more

attacker hits the more (s)he is retaliated. Defensive fire techniques are used when

player wants to deal extra damage to his/her opponent or player expects that in the

current turn the opponent will hit hard.

Wind is the element of swiftness. It can be used to affect the opponents so

they deal less damage in the next few turns. This combat effect is called Daze effect.

If shinobi uses a jutsu with daze effect, enemy shinobi will be dazed and have his/her

damage reduced. Players should use defensive wind jutsus when they want to make

sure that the opponent will be unable to hit hard for a short time.

Lightning is the element of unpredictableness. Its combat effect is called

Electrify and it affects the enemy cooldowns. When shinobi uses a defensive

lightning jutsu, the enemy shinobi is then electrified and his/her cooldown is

increased. Defensive lightning jutsus are perfect for delaying the opponent’s big

jutsus. They are great, if you want to buy some time.

32

Earth is the element of sturdiness. When shinobi uses a defensive jutsu of

earth element, (s)he gains Absorb effect. With this buff (s)he will absorb a part of the

incoming damage. Players should use defensive earth techniques when they expect to

be hit hard and they want to reduce the incoming damage right away.

Water is the element of recovery. Defensive water jutsus have Heal effect.

When shinobi uses a technique with heal effect, (s)he recovers some health at the end

of the turn. Note that absorb and heal effects may appear to be similar, but absorb

only blocks incoming damage. After the turn you cannot end up with more health

than in the previous turn using a jutsu with absorb effect, whereas it is possible, if

you used a jutsu with heal effect. That is the reason why earth techniques will absorb

more damage than water techniques will heal, if we consider earth and water

techniques of the same level.

Now that we have introduced all five basic elements, it is important that we

talk about elemental strengths and weaknesses. Every element is strong against a

different element and weak against another element. Strengths and weaknesses of

each element against others can be seen here in the following elemental wheel:

Picture 2. Elemental Wheel

33

As you can see from the picture, fire is strong against wind, but weak against

water. Wind is strong against lightning, but weak against fire etc. What it means is

that if you use one jutsu against opponent’s jutsu which is based on element stronger

against your jutsu’s element, your jutsu will lose against your opponent’s jutsu. As a

result, your jutsu’s damage will be reduced, while your opponent’s jutsu damage will

be increased.

3.3. Game Character - Shinobi

A shinobi, as we called the characters of Ninshu Arts world, is a player’s

representation in the game world. One of the primary goals of every role-playing

game is to improve your character, make it better and stronger. Strength and

capabilities of your shinobi is described by your shinobi’s attributes.

3.3.1. Shinobi’s Stats

Attributes are the basic building blocks for a character's combat ability. These

attributes are generally called stats in gaming terminology, as an abbreviation for

“statistics”. Here in the paper we will stick to the term stats and we will use it

normally. There are five main stats in Ninshu Arts - stamina, speed, attack, defense

and resistance. Each of them is important and each describes a shinobi’s

characteristics.

Stamina attribute determines how many health points a shinobi has. It is

important for players to improve this stat, because more health means player’s

shinobi will last longer in battle.

Speed attribute says how fast your shinobi is compared to your opponent’s

shinobi. If your shinobi is faster than your opponent’s, you will have more time to

perform a jutsu combo and more time to defend against enemy attacks. However, if

your shinobi is slower than opponent’s shinobi, you will have less time to perform

attack and defense actions.

34

Attack stat directly corresponds to shinobi’s attack power. The bigger attack

stat a shinobi has the bigger his/her attack will be. This stat is used in formulas to

compute final damage that a shinobi deals.

Defense stat increases shinobi’s defense capabilities. More defense means

that a shinobi will take less damage. This stat is used in formulas to compute final

damage that a shinobi receives.

Resistance stat is important for countering incoming attacks. High resistance

attribute will reduce more damage on a good counter. The more resistance your

shinobi has, the more damage can (s)he block when (s)he successfully counters a

shot.

3.3.2. Experience and Levels

In Ninshu Arts we would like to propose a slightly different way to interpret

experience and levels than other games. Players earn experience points through

various actions in game. When they reach certain amount of experience points, they

level up. Traditionally, in most games levels tell us how strong a player is. The

higher player’s level is, the better (s)he is.

From the previous description of experience and level model we can see that

it is virtually impossible for a player with a low level to defeat a player on a high

level. In reality it means that if a player spent longer time in game, (s)he defeats all

those players who spent less time. This traditional model has one flaw - it does not

take player’s skill into account. A player can be really skilled and good in combat,

but (s)he will never be able to defeat a player on a higher level, even if that player is

not very skillful.

Here in Ninshu Arts we propose a little different approach. Levels will only

indicate how long the player has played the game. Higher level means that a player

has already spent more time in game. However it will not give him/her a dominance

in combat. Combat system will only take player’s stats into account and those will be

a primary factor for computing damage output. Experience points will be gained

normally for most of game actions. Players will be rewarded for completing

35

missions, hunting assignments and fighting other players in Player vs Player battles

(PvP). When players reach a certain amount of experience points, they will gain a

new level. Of course we want to reward those players that have been playing more.

Time and effort put into game must be rewarded. So players with higher level will

have advantage over those players with lower level, but only advantage. It is still

possible for a lower player to defeat a higher player, if (s)he is better in tactical

thinking or more skilled in combat. We want players to stay alert and not think that

higher level will provide them the total dominance in game.

3.3.3. Progressing and Improving

There are two ways to progress and improve your character in Ninshu Arts -

active and passive way. We want to provide players with option to play actively if

they have time and want to. And we also want to give players a way to keep up with

active players and improve their shinobi’s stats even if they do not have time to play

actively all the time. It goes without saying that active progressing will be more

rewarding, but passive progressing will not be much worse.

Missions will be a passive way to progress your character. Players will be

able to send their shinobi on various missions that take a certain amount of time to

complete. During this time the shinobi is away and players will not be able to

perform any other actions. When the shinobi is finished, (s)he will come back to

village and will be rewarded with stats and possibly get a bonus reward. There will

be several levels of missions. At the start, players will only be able to go on easy

missions with minor rewards that take less time to complete. As players progress and

are more experienced, they will get access to more challenging missions with a

prospect to better rewards.

Besides missions, players will be able to send their shinobis on Hunting

assignments. Shinobis will be tasked to hunt down the enemies of the village and

defeat them. On this hunting assignments players will fight NPC shinobis. Like

missions, players will start with easy hunting assignments where players will have to

fight low level NPCs. Later, as they get stronger, they will be able to fight stronger

36

NPCs with higher levels, higher stats and better jutsus. After an NPC is defeated,

players will gain rewards for completing the assignment.

3.4. Game Controls

One of our objectives is to create a multi-platform game. It goes without

saying that players will have dissimilar gaming experience while playing on a PC

and on a tablet. On a desktop PCs and notebooks, players can use keyboards and

mice which is the most common way to interact with the game. Players have the

most control and precision while playing on PCs or notebooks.

On the other hand, touch devices are fairly new in comparison to desktop

PCs. They have their own perks, since controlling things with touch might feel a

little more natural and intuitive. On the other hand, touch input is definitely less

precise than mouse and in addition you are covering your view with your hand. Note

that in last years there was a huge expansion of hybrid devices (sometimes called 2 in

1 devices). It could be a notebook with a touchscreen monitor or a tablet with

attachable keyboard or a notebook that can be flipped in various ways. So this kind

of devices may have capabilities from both worlds. Also we should point out that not

all touch devices are alike. Some support multi-touch when the screen of the device

captures the movement of more fingers. And some devices have larger screen and

some only small screen (typically smartphones or small 7 inch tablets).

Since playing games on various types of devices is different, we have to come

up with a way to bring the players a comfortable, intuitive and responsive way to

control the game. This especially needs to be reflected in combat because battling is

going to be the main fun feature in Ninshu Arts. When we think about all the ways to

control different devices, we can only go as far as the least capable device. We want

to target as many devices as possible which means we have to consider supporting

only the most basic input capabilities. Namely, we can only consider touch input

with single finger (no multi-touch). Smartphones and tablets usually do not have

keyboards, so that is out of question. As for PCs and notebooks that do not support

touch input, we can easily simulate the behaviour with mouse. That is why we

limited the touch input to single finger earlier.

37

With that in mind, we ought to talk about controlling the game. Operations on

game screens and navigating through screens is typically done with mouse clicks and

touch tap gestures. Let us have a look at controlling a game character in battles now.

Imagine a battle scene with two characters in it. One character represents your

shinobi which you are able to control and the other character is your opponent’s.

Enemy character is either controlled by a human opponent or an NPC unit. Now if

you recall, one of the other objectives of this project is to create a 3D renderer

capable of rendering and animating characters. We would like to have an elegant

way to tell our character to do the right punch or left kick which would then be

shown on the screen with animations of our character doing the fighting moves.

If we were programming this as a PC game, we would simply take the user

input from a keyboard. Bind several keys to certain actions and animate the character

according to keys that were pressed. But as we said earlier, we want to design a

system that relies only on touch and mouse input. One of the first ideas how to deal

with this problem would be displaying a few buttons on the touch screen and

simulate the behavior as described with keyboard. This is a possible way to do it,

indeed. There are mobile games that work on this principle, role-playing game series

Dungeon Hunter [7] from Gameloft is a good example. However, this might not be

the best solution for us, because we have to consider even small screens on

smartphones and having a lot of buttons on the screen might not look good and

tapping small buttons might not be comfortable or on the contrary big buttons take

too much place on a small screen.

Now what if we could just control the character with swiping a finger over a

touch screen. If we think about it, we could just require direction command from the

player. Swiping in a particular direction tells the game what it needs. On a device

without a touchscreen we could just take mouse input instead. Clicking and dragging

a mouse in a direction is in fact the same as swiping a finger. Of course, if we decide

to use this system, we will have to make a few compromises. Specifically, we cannot

distinguish a command for a kick or a punch. One way how to cope with this issue is

not to distinguish kicks and punches and only require a direction information.

38

Even if we do not distinguish kicks and punches and take only direction

information into account, it would not look very action if characters were doing only

punches and simple moves. We need to incorporate both punches and kicks

animations into the combo to make a game look action. We could organize the

animations so that punches are used at the beginning and the middle of attack

combos and kicks will be used as a finishing blows of the combos. This way we will

keep the nice action feeling. With these compromises we hope to have a intuitive and

comfortable way for players to control their characters.

39

4. Technical Documentation

In this chapter we will discuss the process of implementing the game itself.

The game consists of a few main building blocks:

● 3D scene renderer (described in subchapter 4.1.)

● communication libraries (described in subchapter 4.2.)

● game logic layer (described in subchapter 4.3.)

● game presentation layer (described in subchapter 4.4.)

The 3D renderer is a DirectX [24] application that is supposed to bring

players into a combat scene where the battles take place and show players what is

actually happening in the battle. The communication libraries are responsible for

providing bluetooth or HTTP message exchanging. The game logic layer is where we

implement how the game is supposed to behave, the game features and mechanics

etc. The game presentation layer is what players will see on screens of their devices.

Thanks to the presentation layer players can interact with the game. It is what

connects players with the game. In following subchapters we discuss each of the

building blocks in detail.

Picture 4.: Game building blocks

40

4.1. Writing the 3D Renderer

The 3D scene renderer is a unit responsible for rendering a 3D scene and

animating characters. It represents a core unit for battles since it provides players

with a look into a battle scene and shows them all that is happening in the fight. We

will be developing a 3D renderer as DirectX application in C# using SharpDX

library. In this chapter we describe the process of writing a DirectX 3D graphic

application to render a 3D scene and animating characters.

A Direct3D Application typically consists of three stages:

 Initialization: This is a stage where we create a Direct3D device and

resources. We create a swap chain object here with proper swap chain

settings.

 Render loop: In this stage, we execute our rendering commands and

logic. This is the most important part of the application since

everything that a user sees on the screen is programmed here.

 Finalization: We clean up and free any resources here. The

finalization stage is quite simple. After the render loop exits, we clean

up any resources that were created and dispose of the device and swap

chain.

4.1.1. SharpDX

SharpDX [13] is a free and active open-source project that delivers a full-

featured Managed DirectX API including support for Direct3D9, Direct3D10.1,

Direct3D11, Direct3D11.1, Direct2D1, Direct2D1.1 and others. SharpDX supports

all Windows operating systems and .NET framework, including development for the

latest Win8 Metro
12

 applications and WP8 applications. Let us remind the readers

that we are developing a universal multi-platform app, which targets all types of

devices, not a regular desktop application.

12
 Metro application is an old way of calling Windows 8/8.1 applications. Microsoft now

uses Windows Store application which is a program different than regular desktop programs and is

able to run only on Windows 8/8.1 or Windows Phone 8/8.1 operating systems.

41

4.1.2. Direct3D Introduction

Direct3D is a part of the larger DirectX API comprised of many APIs that sits

between applications and the graphics hardware drivers. For the purposes of this

project, we will be working with Direct3D 11. Let us talk about some components

that Direct3D consists of. In the remainder of the section 4.1.2., we will have a brief

introduction to programming with DirectX.

Device

The main role of the device is to enumerate the capabilities of the display

adapter(s) and to create resources. Applications typically have a single device

instantiated. There has to be at least one device to use the features of Direct3D.

Unlike previous versions of Direct3D, in Direct3D 11 the device is thread-safe,

which means that resources can be created from any thread.

With Direct3D 11, Microsoft introduced Direct3D feature levels to manage

the differences between video cards. The feature levels define a matrix of Direct3D

features that are mandatory or optional for to implement in order to meet the

requirements for a specific feature level. This is an important aspect for us because

we have to consider a lot of different devices with various graphic processor units

(GPU).

Device Context

All rendering functions are encapsulated in the device context. These include

setting the pipeline state and generating rendering commands with resources created

on the device. Two types of device context exist in Direct3D 11, the immediate

context and deferred context. These implement immediate and deferred rendering

respectively
13

.

13
 Immediate and deferred rendering are two ways of rendering supported by Direct3D 11.

For more information, please read an article on MSDN [29].

42

The immediate context provides access to data on the GPU and the ability to

execute or playback command lists immediately. Each device has a single immediate

context and only one thread may access the context at the same time. All commands

that are to be executed eventually must pass through the immediate context. The

same rendering methods as for immediate context are available on a deferred context.

Nevertheless, the commands are added to a queue (called a command list) for later

execution.

Swap Chains

A swap chain helps us with the creation of one or more back buffers. These

buffers store rendered data before presenting to an output display. The swap chain

takes care of the low-level presentation of this data.

Swap chains are part of the DirectX Graphics Infrastructure (DXGI) API. It

is responsible for enumerating graphics adapters, display modes, defining buffer

formats, sharing resources between processes, and finally presenting rendered frames

to an output device (via the swap chain).

Resource Views

Resources must first have views before they can be used within a stage of the

pipeline. These views describe to the pipeline stages what format to expect the

resource in and what region of the resource to access. For example, type of resource

views include:

● Depth Stencil View (DSV)

● Render Target View (RTV)

● Shader Resource View (SRV)

● Unordered Access View (UAV)

43

Buffers

A buffer resource provides structured and unstructured data to stages of the

graphics pipeline. The usage is defined by how and where it is bound to the pipeline.

Type of buffer resources include:

● Vertex buffer

● Index buffer

● Constant buffer

● Unordered access buffer

Shaders and High Level Shader Language

The graphics pipeline consists of fixed function and programmable stages.

The programmable stages are called shaders which are small programs written in

High Level Shader Language (HLSL). The HLSL is implemented with a series of

shader models, each building upon the previous version. Each shader model version

supports a set of shader profiles, which represent the target pipeline stage to compile

a shader. Direct3D 11 introduces Shader Model 5 (SM5). And for example, shader

profile ps_5_0 indicated a shader is for use in the pixel shader stage and requires

SM5. Although it is best to use the newest shader model, it is not always possible. In

our case, we will not always be able to use SM5. Specifically, we will have to make

some compromises when it goes to WP8 devices, since they do not support feature

level 11_0 which means they do not support SM5 either (this problem will be

explained more in detail in subchapter 6.3).

Graphics Pipeline

The graphics pipeline is comprised of nine distinct stages that are generally

used to create 2D raster representations of 3D scenes. That means taking the 3D

model and turning it into what we see on the display. Four of these stages are fixed

function and the remaining five programmable stages - shaders. As our renderer is

supposed to provide basic functionality, we will only be needing Vertex Shader (VS)

and Pixel Shader (PS). In addition, it is a good practice to keep the number of stages

44

to a minimum to ensure faster rendering. Among other stages, there are Hull Shader,

Tessellator, Domain Shader, Geometry Shader
14

.

4.1.3. Rendering Framework

The rendering framework is a set of classes which will make it easier for us to

work with complex scenes. This framework will take care of initializing our

Direct3D device, swap chain and render targets. It will also provide appropriate

methods and events for managing Direct3D resource lifecycle in our Direct3D

application. In our project, we create the Renderer library which encapsulates the

3D renderer and provides an API to work with it from the outside.

We will not go into much detail for every source file here. Most of the code

in the rendering framework classes are straightforward commands with no deep

meaning. For example, commands to create devices, initialize swap chains etc. We

will only describe a larger picture so that the reader has the whole idea of how it all

fits together since this is an uninteresting part of this work
15

.

The three key elements of our rendering framework are following:

● Device manager: This is a class that manages the lifecycle of the

Direct3D device and device context.

● Direct3D application: This is a set of classes that manage the swap chain

and render targets, along with other common-size dependent resources

(such as depth/stencil buffer and the viewport setup). We descend from

one of these to create our render loop.

● Renderer: This is a class that implements a renderer for a single element

of the scene. We create instances of these within our Direct3D

application class.

14
 For more detail on other stages of the graphics pipeline and basics on programming for

DirectX we refer readers to the book Direct3D Rendering Cookbook [14], chapter 1.
15

 For more detailed explanation of initialization commands and their description we refer

readers to Direct3D Rendering Cookbook [14], chapter 1 and 2; and the Code Documentation on the

DVD attachment of this paper and the source code of this project.

45

Device Manager

We have DeviceManager.cs file in Common library. This class corresponds to

the device manager element of the rendering framework. It takes care of creating our

Direct3D device and context within its Initialize function.

Direct3D Application

The D3DApplicationBase.cs base class provides appropriate methods that

can be overridden to participate within the rendering process and Direct3D resource

management. Specific Direct3D application classes can then descent from the base

class and implement the abstract method Run() in order to provide a render loop.

Specifically, we have D3DApplication.cs class descending our base class that

implement a Direct3D application for our univeral application. The source code of

mentioned file is short and fairly self-explanatory on the first look.

Renderer Classes

Let us start on interesting things here. Renderer classes provide us with

ability to actually render something. All rendered objects, at their simplest form, are

made up of one or more primitives: points, lines, or triangles which are made up of

vertices. In Ninshu Arts project we need to create two renderer classes:

● Quad renderer: This renderer is used to render quads consisting of two

triangles.

● Mesh renderer: This renderer is responsible for rendering meshes loaded

from compiled mesh objects
16

 (CMO). It also includes methods

providing mesh animation.

There is a RenderBase.cs file which contains abstract class for all renderer

classes. We will analyze QuadRenderer.cs and MeshRenderer.cs classes

corresponding to the two mentioned renderer classes later.

16
 Compiled Mesh Object (CMO) is a file format used by Visual Studio graphics content

pipeline, as explained in Direct3D Rendering Cookbook [14], chapter 3.

46

4.1.4. Implementing the 3D Renderer

Shaders

Let us have a look at shaders first. We will start with our HLSL shader code

now. As we mentioned earlier, we will only need vertex shader and pixel shader for

the purposes of our project. There are three HLSL shader code files in our solution

and they are Common.hlsl, VS.hlsl and BlinnPhongPS.hlsl.

Common.hlsl file contains declarations of structures describing input for

vertex shader and pixel shader; and constant buffers, using which we pass data to

shaders. In VS.hlsl, there is a code for our vertex shader. Lastly,

BlinnPhongPS.hlsl is a file containing our pixel shader.

Our vertex shader is fairly simple, so we will not be breaking down the code

here. It has VSMain method which simply transforms UV coordinates and vertex

positions into world space. Vertex shader file also includes SkinVertex method

which we will analyze later when we explain character animation and vertex

skinning. Our pixel shader is nothing complicated either. In its PSMain method it

implements texture sampling and computes lighting using Blinn-Phong light model
17

.

For those readers, who are interested in the code, please see the source files.

Constant Buffers

 There are several constant buffers we are using in our Direct3D application.

First of them is the Per Object constant buffer. As the name suggests, it contains data

common for all rendered objects. Namely, we are talking about

WorldViewProjection matrix, World matrix needed for lighting calculation in

world space and InverseWorld matrix used for transformation of normal vectors

into world space.

17
 Blinn-Phong light model is a modification to the Phong reflection model. For more

information, see the book Moderní počítačová grafika [25], chapter 10.5.

47

Then there is the Per Frame constant buffer which is updated once per frame.

This buffer includes the position of camera and lighting settings. We only use

directional light in our scene, so we need to remember direction and color of light.

Next we have the Per Material constant buffer that holds the material

configuration for the currently rendered object. The configuration contains ambient,

diffuse, specular and emissive component of the material. Also it includes UV

transformation matrix.

Lastly, there is the Per Armature constant buffer which holds skin matrices

for the bones of animated character. Currently in our project, Per Armature buffer is

set to contain maximum of 80 bones. Normally the number would go much higher,

but we had to make some compromises in order to make our 3D Renderer to work on

WP8 devices.

A question arise - why do we have this many constant buffers. Why not to

just use one buffer and send all the data to shaders through that one buffer. The

answer is simple - efficiency. We only want to update the data in shaders as least

often as possible to minimize the traffic. It is essential to think of optimization where

we can because we have to keep in mind that some smartphone devices do not have

powerful CPUs and GPUs. It is also a good practice to group things that belong

together and send them at the same time. For example, while rendering objects, we

would keep the objects with the same material together and render them at the same

time simply because this way we do not have to resend the material data in Per

Material constant buffer.

In ConstantBuffers.cs file we will find classes representing each described

constant buffer. We created these classes to make it easier to save the data to buffers

and work with them. Here is the snippet from the code:

public struct DirectionalLight

{

 public SharpDX.Color4 Color;

 public SharpDX.Vector3 Direction;

 float _padding0;

}

48

And here is the corresponding declaration of constant buffer in HLSL code,

Common.hlsl file:

struct DirectionalLight

{

 float4 Color;

 float3 Direction;

};

cbuffer PerFrame: register (b1)

{

 DirectionalLight Light;

 float3 CameraPosition;

};

Quad Renderer

Our quad renderer is implemented in QuadRenderer.cs class. It inherits from

RendererBase abstract class, so it has to implement

CreateDeviceDependentResources() method where we create needed resources

for our quad renderer. And then it has to implement DoRender() method to actually

render the quad.

The CreateDeviceDependentResources() method does the following.

First, it retrieves the instance of the Direct3D device. Then it loads the texture for the

quad, if it has any:

string file = … ; // path to the texture file

LoadTexture.LoadFromFile(DeviceManager,file,out textureView);

Note the LoadFromFile() method from LoadTexture class. LoadTexture is

a static class implementing a methods to load textures in different formats. There are

methods to load textures from bitmaps as well as DDS. We will not go into the detail

here. For those interested, please see the source code
18

.

After the texture is loaded we create a sampler state object which controls

behavior of texture sampler. Then we simply create an array and fill it with vertices:

18
 LoadTexture class uses helper classes located in DDS folder of the Renderer library

project. These files were adopted from Alexander Mutel’s SharpDX repositories.

49

vertices = new[] {

new Vertex(new Vector3(-4f, 4f, 4f), Vector3.UnitZ),

 new Vertex(new Vector3(-4f, 4f, -4f), Vector3.UnitZ),

 new Vertex(new Vector3(-4f, 0f, -4f), Vector3.UnitZ),

 new Vertex(new Vector3(-4f, 0f, 4f), Vector3.UnitZ),

};

For example, here we have an array with four vertices. Each vertex is

represented by the Vertex class which simply describes the structure of the vertex

that we are sending into a vertex buffer. There are many constructors for Vertex

class. Here in the snippet we used a constructor with position and normal vector

parameters.

And finally when all is prepared, we create a vertex buffer out of vertices

array, vertex buffer binding object and index buffer:

vertexBuffer = ToDispose(Buffer.Create(device,

BindFlags.VertexBuffer, vertices));

quadBinding = new VertexBufferBinding(vertexBuffer,

Utilities.SizeOf<Vertex>(), 0);

 // v0 v1

 // |-----|

 // | \ A |

 // | B \ |

 // |-----|

 // v3 v2

indexBuffer = ToDispose(Buffer.Create(device,

BindFlags.IndexBuffer, new uint[] {

 0, 1, 2, // A

 2, 3, 0 // B

 }));

You can see the use of SharpDX.Component.ToDispose()
19

.

And with this we are done with CreateDeviceDependentResources()

method. Our quad renderer also needs to implement DoRender() method. Here is a

code snippet:

context.PixelShader.SetShaderResource(0, textureView);

context.PixelShader.SetSampler(0, samplerState);

context.InputAssembler.SetVertexBuffers(0, quadBinding);

context.InputAssembler.SetIndexBuffer(indexBuffer,

19
 ToDispose method allows us to create an object instance without having to

explicitly dispose of the instance; any objects registered within the ToDispose method will

be automatically released upon disposal of our SharpDX, as explained in [14], chapter 2.

50

Format.R32_UInt, 0);

context.InputAssembler.PrimitiveTopology =

SharpDX.Direct3D.PrimitiveTopology.TriangleList;

// Draw the 6 vertices (2 triangles) using the vertex indices

context.DrawIndexed(6, 0, 0);

To render vertices saved in a vertex buffer we only need to set shader

resources and sampler for pixel shader. Then we pass vertices from buffer to input

assembler, set index buffer. Before drawing anything, we need to set the primitive

topology to triangle list since we need to draw triangles. And eventually, we call

DrawIndexed() method on the context which draws triangles using the vertex

indices saved in index buffer.

Meshes

Now we will take a look at how we will get a model/mesh that artist provided

us with into our 3D renderer. Usually modeler would hand a model to us in a

Autodesk FBX format [26] (or some other format like DAE or OBJ; FBX is widely

used though). Visual Studio graphics content pipeline is able to compile an FBX

model into a compiled mesh object (.CMO) file which we will be working with.

Another question is how we will represent the data from CMO file in our 3D

renderer. For this purpose we create a Mesh class. It will represent a single mesh

within a CMO file. Mesh class also implements methods for extracting and parsing

the data from a CMO file. We will not analyze the exact structure of the CMO file

here
20

. It is just a technical thing with no deep meaning. Basically, the Load()

method has a BinaryReader and it reads how many materials there are in a CMO

file and then it reads the exact count of materials and then it repeats the same process

for other things (vertices, indices, bones, etc.). Mesh object contains submeshes from

which the mesh is comprised of, materials for each submesh, list of vertices and

vertex indices, and finally animation data such as list of bones, their names and

keyframes of the animation.

20
 Readers can see the source code of Mesh class for the details about the internal

structure of a CMO file or visit DirectX Tool Kit homepage [16] where they can find a

CMO file parser written in C++.

51

Character Animation Basics

There are several ways to animate a character. A current standard technique

for character animation is called skeletal animation. We will only explain the basics

of skeletal animation here
21

.

The key component of vertex skinning or skinning is the hierarchy of pose

and movement that is produced by a bone structure or skeleton within a mesh (also

known as an armature). As basic anatomy teaches us, a skeleton provides a

mechanism for transmitting muscular forces. It is a collection of bones, each

connected to another.

We apply the same concept to the armature of a mesh. We have a root bone,

and each subsequent bone is parented by the root bone or another bone that

ultimately resolves its parentage to this root bone. In this manner, if we move the

root bone, the whole body moves with it. But for example, if we move the shoulder,

then only the arm moves with it.

Picture 5.: Connected bones

The initial position or pose is referred to as the bind pose or rest pose, and it

represents the default starting transformation of each bone at the time the mesh was

bound to the armature or rigged. Simply having an armature in place is not enough

for it to apply forces upon the skin. We must bind the mesh to the armature and

21
 Skeletal animation is not a new technique. There are a lot of books and articles explaining how it

works in detail. For more information on skeletal animation we refer readers to [17], chapter 25.

52

specify how each of the bones will influence the vertices. By applying weights,

known as bone-weights or blend-weights, to the vertex of each of the influencing

bones, our armature will be able to influence the placement of vertices.

Our implementation supports up to four bone influences per vertex. This is

the maximum number supported by the CMO file format produced by Visual Studio.

As already mentioned, the key component of skinning is the hierarchy of

transformations that is produced from the bones of an armature. These

transformations or skin matrices are implemented using the 4x4 affine transformation

matrix. Nevertheless, instead of transforming from the local object space to world

space as we have done previously, we will be applying these transformations in bone

space.

The transformation to bone space involves calculating the current translation

and rotation for each bone as well as its scale against its parent bone. To bring the

transform into bone space, we apply the inverse bind pose matrix of the bone. The

result skin matrix for each bone is what we are storing in the PerArmature constant

buffer, and it is the matrix that we refer to within the vertex shader.

Inside the vertex shader we blend the bone influences together based upon

their weight. With the armature's skin matrices in place, we can apply the vertex

skinning within the vertex shader (you can see this in the code of VS.hlsl file).

float4x4 skinTransform = Bones[bones.x] * weights.x +

Bones[bones.y] * weights.y +

Bones[bones.z] * weights.z +

Bones[bones.w] * weights.w;

// Apply skinning to vertex and normal

position = mul(position, skinTransform);

normal = mul(normal, (float3x3)skinTransform);

For each of the bone influences, the skin transform matrix is retrieved and

multiplied by the bone-weight. These four matrices are then added together to

determine the final skin transform for this vertex. If the first bone has a weight of

zero, we are skipping this process. This is important because we are using this vertex

shader for meshes whether or not they have any bones.

53

Mesh Renderer

We will analyze the mesh renderer now. It is represented in

MeshRenderer.cs class. Just as QuadRenderer class, it descends from

RendererBase class which means it needs to override

CreateDeviceDependentResources() method and DoRender() method.

These are the properties that deserve pointing out:

// Create a timer

Stopwatch clock = new Stopwatch();

// The currently active animation (allows nulls)

public Mesh.Animation? CurrentAnimation { get; set; }

// Play once or loop the animation?

public bool PlayOnce { get; set; }

The clock object provides us with stopwatch use to control the animation.

CurrentAnimation remembers the animation that is currently being played. And

PlayOnce boolean variable tells us if we want the animation to repeat or play once.

The CreateDeviceDependentResources() method works in a similar

fashion as in QuadRenderer - it initialized resources for our mesh renderer. The code

is straightforward. It takes Mesh object corresponding to the current instance of the

MeshRenderer and initializes vertex buffer and index buffer. After that it loads

textures, if materials have any. Finally, we create a sampler state.

Now let us have a look at DoRender() method which not only renders a mesh

but also animates it, if animation data are present. If they are, we first retrieve local

transformation matrix for each bone. After that we load the key-frames of an

animation. Animation data in key-frames contain a transformation matrix for

particular bone which is identified by its index and time when the transformation

should be done:

public struct Keyframe : IDataSerializable

{

 public uint BoneIndex;

 public float Time;

 public Matrix Transform;

};

54

We iterate these frames up to the current frame time and replace the existing

bone's local transform with that of the key-frame:

for (i = 0; i < CurrentAnimation.Value.Keyframes.Count; i++)

{

// Retrieve current key-frame

 var frame = CurrentAnimation.Value.Keyframes[i];

 // If the current frame is not in the future

 if (frame.Time <= time)

 {

 // Keep track of last key-frame for bone

 lastKeyForBones[frame.BoneIndex] = frame;

 // Retrieve transform from current key-frame

 bones[frame.BoneIndex] = frame.Transform;

 }

 // Frame is in the future, check if we should

interpolate

 else

 {

// Interpolate a bone’s key frame

...

 }

}

We then interpolate each bone's current key-frame with its next future key-

frame based on the amount of time that has lapsed between the two frames. To

produce a smoother animation without artefacts introduced from the linear

interpolation of rotation matrices, we decompose our transformation matrices for the

two key-frames into its translation, rotation, and scale components. The translation is

stored within Vector3, the uniform scale within a float variable, and finally the

rotation component is now stored within a quaternion:

Vector3 t1, t2; // Translation

Quaternion q1, q2;// Rotation

float s1, s2; // Scale

// Decompose the previous key-frame's transform

prevFrame.Transform.DecomposeUniformScale(out s1,

out q1, out t1);

// Decompose the current key-frame's transform

frame.Transform.DecomposeUniformScale(out s2, out q2, out

t2);

We linearly interpolate (Lerp) between the two scale floats (s1 and s2) and

the two translation vectors (t1 and t2). Then we perform spherical linear

interpolation (Slerp) between the two quaternions (q1 and q2). The matrix is then

reconstructed from the interpolated scale, rotation, and translation. And to ensure that

we end up with the correct result, we multiply the matrices in the following order:

first apply scale, then rotate, and finally translate.

55

// Perform interpolation and reconstitute matrix

bones[frame.BoneIndex] =

 Matrix.Scaling(MathUtil.Lerp(s1, s2, amount)) *

 Matrix.RotationQuaternion(Quaternion.Slerp(q1, q2, amount))

*

 Matrix.Translation(Vector3.Lerp(t1, t2, amount));

The rest of the DoRender() method here is quite straight forward and similar

to the QuadRenderer.DoRender(). We update the constant buffers, group the sub-

meshes by material to render them together and call the context.DrawIndexed().

Putting it all together

Now we have all the needed ingredients. We just have to put it all together.

We are going to do it in D3DScene class which inherits from D3DApplication

classes. There are two important methods. They are

CreateDeviceDependentResources() and Render() methods. This is how our

CreateDeviceDependentResources() method works:

Firstly we need to load the vertex shader file:

#if WINDOWS_APP

StorageFile sampleFile = await

StorageFile.GetFileFromApplicationUriAsync(new

Uri(@"ms-appx:///Shaders/VS_5_0.fxo"));

#endif

#if WINDOWS_PHONE_APP

StorageFile sampleFile = await

StorageFile.GetFileFromApplicationUriAsync(new

Uri(@"ms-appx:///Shaders/VS_4_0_level_9_3.fxo"));

#endif

Note the #if WINDOWS_APP and #if WINDOWS_PHONE_APP directives. These

tell the compiler to compile the code between #if and #endif, if the condition is

met. Specifically, the first directive is satisfied when we are compiling the code for

Win8 app, the other directive is for WP8 applications. This is an elegant way to have

multiple versions of code snippet in one source file.

After we load vertex shader file, we convert it to shader bytecode which is

then used to create a vertex shader object. Then we need to create a vertex layout.

Vertex layout defines a structure of a vertex that is sent to vertex shader, so that

56

vertex shader knows how to interpret the received data. Vertex layout might look as

follows:

vertexLayout = ToDispose(new InputLayout(device,

bytecode.GetPart(ShaderBytecodePart.InputSignatureBlob).Data,

new[]

{

new InputElement("SV_Position", 0, Format.R32G32B32_Float, 0, 0),

new InputElement("NORMAL", 0, Format.R32G32B32_Float, 12, 0),

new InputElement("COLOR", 0, Format.R8G8B8A8_UNorm, 24, 0),

new InputElement("TEXCOORD", 0, Format.R32G32_Float, 28, 0),

#if WINDOWS_APP

new InputElement("BLENDINDICES",0,Format.R32G32B32A32_UInt,

36, 0),

#endif

#if WINDOWS_PHONE_APP

new InputElement("BLENDINDICES",0, Format.R32G32B32A32_Float,

36, 0),

#endif

new InputElement("BLENDWEIGHT", 0, Format.R32G32B32A32_Float,

52, 0),

}));

When we are done with vertex shader, we load the pixel shader file and we

create pixel shader object from the loaded shader bytecode in a similar way. After

that we create constant buffer objects. Then we could create and configure a depth

buffer to discard pixels that are further than current pixel. Lastly we create renderers

and initialize them. For example this is how a QuarRenderer is initialized:

var q = new QuadRenderer(config.Vertices, config.Texture);

QuadRenderers.Add(ToDispose(q));

q.Initialize(this);

As for the Render() method of D3DScene class, it goes quite straight

forward. At the start of the method we call commands to set depth buffer and render

target view. After that we compute MVP matrix, get the camera position and

directional light settings. With these information we can fill the corresponding

constant buffers. After that we iterate through all the objects in the scene, each of

which has its own renderer object, and simply call Render() on the renderer.

It is important to note that before we iterate through objects in the scene and

call their Render() methods, we need to group the objects with the same material

together. It is to optimize the rendering process, so that we do not have to resend the

data in Per Material constant buffer.

57

4.1.5. Changes Regarding Transitioning to Windows Store App

Integrating Direct3D Application to XAML

Now we have to stop for a second and think for a while how we are going to

connect our 3D renderer to the game presentation layer. We have several options of

how to do the game presentation layer for a Windows Universal application. For

example, it is possible to write the graphical user interface (GUI) in JavaScript and

HTML. However, we are going with Extensible Application Markup Language

(XAML) [15].

We will render to an XAML SwapChainPanel. This panel allows us to

efficiently render using Direct2D/Direct3D within an XAML Windows Store app.

By integrating Direct3D into XAML we are able to use XAML to create flexible and

dynamic UIs for our DirectX application. The SwapChainPanel XAML element is

new to Windows 8.1.

In order to be able to integrate our DirectX to XAML, we have to create a

new D3DAppSwapChainPanelTarget class which inherits from our

D3DApplication. Our new class accepts a SwapChainPanel instance, attaches a

handler to its SizeChanged and CompositionScaleChanged events, and retrieves a

reference to the ISwapChainPanelNative interface.

It is important to note that the SwapChainPanel XAML control descends

from Windows.UI.Xaml.Controls.Grid and therefore, supports layouts for child

controls and can be added as a child to other controls. We will be using this fact

when we implement GUI for battles, but more on that later.

By retrieving the ISwapChainPanelNative interface from the

SwapChainPanel instance, we have connected our new swap chain to the panel

through the ISwapChainPanelNative.SwapChain property (natively this is done

58

through the ISwapChainPanelNative.SetSwapChain method). The panel then takes

care of associating the swap chain with the appropriate area on the screen
22

.

Loading and Compiling Resources Asynchronously

Within Windows Store applications, it is desirable to keep your application as

responsive as possible at all times. Instead of showing a static splash screen for the

duration of compiling shaders and loading resources. We will accomplish this by

initializing our renderers and resources using the async/await keywords.

Within the D3DScene class, we update the signature of

CreateDeviceDependentResources() method to include the async keyword as

shown in the following snippet:

protected async override void

CreateDeviceDependentResources(DeviceManager deviceManager)

{

...

}

Now when we compile our shaders, load our meshes or initialize our renderer

instances, we can do something like the following snippet:

// Compile shader, the event caller will continue executing

using (var bytecode = await

HLSLCompiler.CompileFromFileAsync(@"Shaders\VS.hlsl",

"VSMain", "vs_5_0"))

{ ... }

// Load mesh

var meshes = await Mesh.LoadFromFileAsync("Character.cmo");

// Other CPU-bound work

await Task.Run(() =>

{

... (e.g. initialize renderers)

});

This not an essential thing, it is just something we should do to improve user

experience for players. It will definitely make the game look more responsive. When

22
 Other stuff regarding transitioning to Windows Store application is quite insignificant and

not important for us at the moment. If the reader is interested in more details or other ways of

integrating Direct3D application to XAML, we refer the reader to Direct3D Rendering Cookbook

[14], Chapter 11.

59

we combine this with a simple XAML animation, we get a dynamic loading screen

rather than unappealing static splash screen.

4.1.6. Compromises for Multi-platformity

Shader Model Restrictions

There are a few things we have to consider regarding the multi-platformity

feature of our project. Firstly, we have to address the problem that WP8 operating

system does not support feature level 11_0. Normally desktop PCs, notebooks and

tablets running on Win8 OS have no problem with this since Win8 OS supports the

newest feature levels of DirectX API, including feature level 11_1. Unfortunately,

WP8 OS graphic capabilities are a little bit limited. WP8 devices can only access

feature level 9_3.

The most significant adjustment we have to make concerns shader models.

DirectX feature level 9_3 only allows us to use shader model 2 (SM2) which is a

great jump back compared to SM5. SM2 for WP8 operating system provides us with

shader profile vs_4_0_level_9_3 for vertex shaders and ps_4_0_level_9_3 for

pixel shaders. The restriction that affects us the most is that we can only use 256

constant float registers in vertex shaders. One constant float register can hold a single

float4 component.

Let us think about how we are sending bone matrices through a constant

buffer to vertex shader. We represent a bone matrix with float4x4 component (4x4

float matrix). If we only have 256 registers, we would only be able to store 64 bone

matrices in a vertex shader at a time. The real number of stored bones would be even

smaller because we must not forget that we have to store other data in vertex shader

apart from bone matrices (materials, light settings, etc.). So we would get to storing

about 43 bones which might not be enough in some cases. Most models come with

60 bones and more. And note that with SM5 we would be able to store maximum of

1024 bones. So you can see that the difference between SM5 and SM2 might be

significant. Of course we would not be using all 1024 bones in our models. It is also

recommended to keep the bone count to minimum to reduce the memory bandwidth.

60

There are several options to solve our problem. For example, one would be

CPU skinning. That means compute the bone transformations on CPU instead of

GPU. One would simply do the bone transformation on vertex position before

sending vertex into a vertex shader. We personally tested this method and results

were not good at all. Even on a Intel Core i7-4770 processor (4 cores, 3.4-3.9GHz)

with nVidia GeForce GTX 980 graphic card the scene would run with 24 frame per

second (FPS) at most. You can imagine the results on a low power smartphone.

Another way to address this problem would be not using float4x4 matrix,

but using three float4 vectors instead. If we think about how the transformation

matrix looks like, we notice that the last row is always zeros and one at the end. So

we can save some space by sending three float4 vectors which are three rows of the

original float4x4 matrix and send them separately. We then assemble the original

transformation matrix in a vertex shader and use it for bone transformation. If we use

this method, we get maximum of 80 bones which is sufficient for most cases.

Compiling Shaders

As we already mentioned, we have to take into account even the low budget

smartphones with low performance CPUs and GPUs. One of the issues while testing

the renderer was a long loading time into a 3D scene on some WP8 devices. To

optimize and reduce the loading time as much as possible we might consider

precompiling our shaders and then only load them in the initialization stage.

We could precompile our shaders using fxc.exe utility which is available in

DirectX SDK, for example. Now, the renderer only has to load the precompiled

vertex shader and pixel shader and use them.

4.2. Implementing the Communication Libraries

The communication libraries are responsible for any communications that

will be used for multiplayer gaming. As we already mentioned before, one of the

objectives of this project is to implement a communication library capable of

providing the ability to exchange messages between two devices of different types,

61

i.e. desktop PC to tablet, notebook to phone, etc. For the purposes of this project we

picked bluetooth technology since bluetooth is widely present on virtually all

smartphones and tablet devices. Most of notebooks nowadays have bluetooth

adapter. And some desktop PCs come with bluetooth adapter integrated on

motherboard; and if not, purchasing a USB bluetooth adapter is cheap and easy. All

the bluetooth communications will be implemented in BluetoothCommunications

library.

Our project also needs other type of communications. We need to be able to

exchange messages between game clients and the game server which will be hosted

on a web server and accessible through internet. We decided to use HTTP protocol to

communicate with the server application which will be ASP.NET MVC application

with Web API to communicate with game clients. To simulate the duplex

communication, we decided to use long polling technique. The library providing the

communications with the server application will be called WebCommunications.

(The analysis of mentioned technologies and the discussion on communications topic

was done in chapter 2 Implementation Analysis, for more detials see section 2.5.)

4.2.1. Bluetooth Communications

We will use Bluetooth Rfcomm Windows Runtime API
23

 which is accessible

from both Win8 and WP8 operating systems. Data reading and writing is designed to

take advantage of established data stream patterns and objects in

Windows.Storage.Streams.

We create a new distinct BluetoothCommunications library which will

provide the bluetooth communications. In this library we have a Bluetooth.cs class

that encapsulates everything about the bluetooth communication unit.

23
 There are other APIs to implement bluetooth communication for Windows 8.1.

If the readers are interested, we refer them to the MSDN article Supporting Bluetooth

Devices [18].

62

In Bluetooth.cs file we first create an abstract Bluetooth class:

public abstract class Bluetooth

{

 public abstract Task Send(string message);

 public abstract Task<string> Receive();

public abstract void Disconnect();

}

This abstract class represents a bluetooth unit for exchanging messages over

bluetooth. It defines three methods. The Send() method sends a message to another

bluetooth unit on the other side of the communication line. The Receive() methods

waits and listens for incoming messages from the other unit on the line. And

Disconnect() method terminates the communication line and cleans up.

One might think that both communication participants are equal because we

are working with P2P type of communication. However, it is not like that. For our

bluetooth communication line, one participant is considered server and the other

client. The server participant advertises the service. The client participant then

searches for advertised services and connects to the server. Note that both participant

devices need to be paired in order to be able to connect to each other. The

communication line is then established and from this time on, both participants

behave as equal. They can both send the message to the one on the other side of the

line and listen for the incoming messages. Once the communication is established,

we would not tell them apart.

As we need to represent a server participant and a client participant, we will

create a bluetooth server unit and bluetooth client unit, both descending from our

Bluetooth abstract class.

Bluetooth Server

First we create a BluetoothServer.cs class to represent our bluetooth server

participant. It is will contain these properties:

public class BluetoothServer : Bluetooth

{

public StreamSocket socket;

public DataWriter writer;

public DataReader reader;

public RfcommServiceProvider rfcommProvider;

public StreamSocketListener socketListener;

63

...

}

Here we can see the StreamSocket object representing a stream over which

the data are transmitted. Then we have a DataWriter and DataReader objects that

are associated with the StreamSocket for writing the data or reading the data over

the stream. The RfcommServiceProvider object is used for advertising the service

using a StreamSocketListener.

First of all, we need to initialize the bluetooth server instance:

public async void Initialize()

{

 rfcommProvider = await

 RfcommServiceProvider.CreateAsync(RfcommServiceId.FromUuid(

 RfcommChatServiceUuid));

 socketListener = new StreamSocketListener();

 awaitsocketListener.BindServiceNameAsync(

 bluetoothServer.rfcommProvider.ServiceId.AsString(),

 SocketProtectionLevel);

 // Set the SDP attributes and start Bluetooth advertising

 InitializeServiceSdpAttributes(bluetoothServer.rfcommProvider)

 rfcommProvider.StartAdvertising(socketListener);

}

As we can see from the code snippet, we first need to create a

RfcommServiceProvider instance. After that we create an instance of socket

listener on which we a ConnectionReceived event handler. Then we need to set

Service Discovery Protocol (SDP) attributes and start advertising our service and

listening for incoming connections. SDP attributes set using

InitializeServiceSdpAttributes() method. SDP attributes that are used in this

method are set when BluetoothServer instance is created. We need to pass SDP

attributes to the constructor. It is imperative that the SDP attributes passed to

BluetoothServer are the same that the BluetoothClient objects will be using to

find advertised services.

Now when a client participant connects to the service we are advertising,

socketListener.ConnectionReceived event is fired. We usually need to handle

this event by displaying a text message to the users, for example. To set an event

64

handler from outside to the internal ConnectionReceived event we use

BluetoothServer.SetConnectionReceived(eventHandler). In a method

handling the connected event, we need to call BluetoothServer.Connect() method

to start the communication. The method looks as follows:

public void Connect(StreamSocket streamSocket)

{

 socketListener.Dispose();

 socketListener = null;

 socket = streamSocket;

 writer = new DataWriter(socket.OutputStream);

 reader = new DataReader(socket.InputStream);

 }

As you can see, the Connect() method is quite simple. First, it disposes of

the listener which is no longer needed. Then it saves the reference for StreamSocket

object that was obtained when ConnectionReceived event was fired. Lastly, it

creates a DataWriter and a DataReader instances.

Bluetooth Client

Now we create a BluetoothClient.cs class that will represent a client

participant:

public class BluetoothClient : Bluetooth

{

 public StreamSocket socket;

 public DataWriter writer;

 public DataReader reader;

 public RfcommDeviceService rfcommProvider;

 public DeviceInformationCollection chatServiceInfoCollection;

}

As you can see here from the properties of the class, it has similar fields as

BluetoothServer class. The only thing that was added here is

DeviceInformationCollection object that is used to store the data of found

services later.

The first thing we must do for bluetooth client is to find nearby services that

are advertising:

65

public async Task<int> FindAll() {

 chatServiceInfoCollection = await

 DeviceInformation.FindAllAsync(

 RfcommDeviceService.GetDeviceSelector(

 RfcommServiceId.FromUuid(RfcommChatServiceUuid)));

 if (chatServiceInfoCollection != null)

 return chatServiceInfoCollection.Count;

 else

 return 0;

}

In this method we call DeviceInformation.FindAllAsync() method which

searches for all nearby advertised services. Remember that it will only find services

running on those server devices that are paired with our client device. All found

services will be stored in our chatServiceInfoCollection. The method then

returns the found item counts.

Once we have a collection of available services, we just need to pick the

service we want to connect to and initialize the connection to the server:

var attributes = await

 bluetoothClient.rfcommProvider.GetSdpRawAttributesAsync();

var attributeReader = DataReader.FromBuffer(

 attributes[SdpServiceNameAttributeId]);

var attributeType = attributeReader.ReadByte();

var serviceNameLength = attributeReader.ReadByte();

// The Service Name attribute requires UTF-8 encoding.

attributeReader.UnicodeEncoding = UnicodeEncoding.Utf8;

var name = attributeReader.ReadString((uint)serviceNameLength);

This code snippet simply shows that we need to read the SDP attribute on the

Rfcomm service that we picked earlier. This is to ensure that we are finding only the

advertising bluetooth services that are of our interest. Both bluetooth server and

client must have the same SDP attribute.

 All we need to do now is to connect to the server using the

BluetoothClient.Connect() method:

public async Task Connect()

{

 socket = new StreamSocket();

 await socket.ConnectAsync(rfcommProvider.ConnectionHostName,

 rfcommProvider.ConnectionServiceName);

 writer = new DataWriter(socket.OutputStream);

66

 reader = new DataReader(socket.InputStream);

}

In this simple method we create a new instance of StreamSocket and call

socket.ConnectAsync() method to establish connection to the bluetooth server.

Finally, we initialize the DataWriter and DataReader instances to write and read

messages.

Once the connection between the server participant and the client participant

is established, they can exchange messages using the Send() and Receive()

methods. The implementation of these methods is the same for both participants.

Here is the first one:

public override async Task Send(string message)

{

 writer.WriteUInt32((uint)message.Length);

 writer.WriteString(message);

 await writer.StoreAsync();

}

Using the DataWriter instance we first need to encode the length of the

message, so the recipient of the message knows how much data they will need to

read. After that we write the content of the message and close the message with

writer.StoreAsync() command.

Lastly, this is how we receive messages:

public override async Task<string> Receive()

{

 uint size = await reader.LoadAsync(sizeof(uint));

 if (size < sizeof(uint))

 {

 return null;

 }

 uint stringLength = reader.ReadUInt32();

 int actualStringLength = await

 reader.LoadAsync(stringLength);

 if (actualStringLength < stringLength)

 {

 return null;

 }

 return reader.ReadString(stringLength);

}

67

Before we start to read the message, we need to check if the underlying

socket was closed before we were able to read the whole message. To be sure that the

communication was not lost during the transmission, we first read the length that the

message is supposed to have. After that we find out the length of the following

message data, which we called actualStringLength in the code snippet. Then we

compare the actual string length with the alleged length. If both lengths are equal,

everything is ok and we can read the message content.

Communication Model in Offline Battles

As we mentioned earlier, the participants in bluetooth communication are not

equal. One is considered a server and the other is considered a client. Once the

pairing and connecting processes are done, they start to behave like equal

participants in P2P communication and it no longer matters who is the server and

who the client.

In the terms of communications two participants pose as equals, but in the

terms of battle participants they are not. The player running the bluetooth server will

take the role of both the game server and the game client. The other player will be

just the game client. That means in a P2P offline multiplayer battle, the server

participant will take on a role of a distant game server and will host a combat

managing unit. During a turn in combat, both players send their action to the combat

manager. But in our battle communication model that means that only the client

player sends the action to the server player while server player “sends the action to

himself”, since the combat manager unit is hosted in the server game application.

 When we implement online multiplayer for Ninshu Arts with the server

application on a distant server and online battles, we would simply need to relocate

the combat manager unit to the application running on a distant server and mark both

players as client applications.

68

4.2.2. Web Communications

Entire communications with the web server will be encapsulated in the

WebCommunications library. Communicating with a game server has a client-server

form, so we will implement WebServer class for handling communications on the

server side and WebClient class for the client side.

Web Server

The most important function of WebServer class is to simulate duplex

communication between the game server and the game client. For this purpose use

long polling technique (as we discussed in section 2.5.2.). To remind the readers,

long polling is a technique, when the server does not return the response to the client

immediately, but rather hold the request open until it has requested data for the

client. Only then it sends back the response with requested data.

Naive solution would be using active waiting, where on a new request the

server unit would sleep the thread and checks if the requested data are ready every

few seconds. As this solution consumes too much system resources, we will use

something different. We will be using TaskCompletionSource object, since it

provides asynchronous waiting which gives better results than active waiting.

If we look into the code of WebServer class, the most interesting thing we

find is:

ConcurrentDictionary<string,TaskCompletionSource<string>> clients

We are using ConcurrentDictionary instead of classic Dictionary,

because ConcurrentDictionary collection is thread safe. This dictionary will hold

all the pending requests from the clients. Note that there is string in

TaskCompletionSource<string>, because results the WebServer will be sending

back to WebClients will be string values.

WebServer class then contains 2 methods. The first one is AcceptClient():

69

public async Task<string> AcceptClient(string userID)

{

bool added = clients.TryAdd(userID, new

TaskCompletionSource<string>());

if (!added) clients[userID] = new

TaskCompletionSource<string>();

await clients[userID].Task;

TaskCompletionSource<string> tsc = null;

clients.TryRemove(userID, out tsc);

return tsc.Task.Result;

}

This method is called when the game server gets a request for some data that

are not ready to be sent back to the client. The input parameter userID serves as an

identifier and a key in clients dictionary, so that we can identify exactly which user

we want to send the message to. The AcceptClient() method also checks the

dictionary for duplicity. If we already have pending request from the particular

client, we simply delete the last request and replace it with a new one (new

TaskCompletionSource).

The other method in WebServer class is Send():

public void Send(string message, string userID)

{

 clients[userID].SetResult(message);

}

When we have all the requested data ready, we call Send() method on the

server which gets a particular TaskCompletionSource object from the dictionary,

which was asynchronously waiting, and we awake the it by calling

SetResult(message) with the message data that we want to send back to the

client.

Web Client

WebClient class represents an object that will provide communication with

the game server from the client side. First it needs a way to send HTTP requests. For

this purpose, we use HttpClient object. HttpClient class provides us with

everything we need for running WebClient, e.g. sending GET/POST requests,

sending authorized requests etc.

70

The first method we will be discussing is Send() method:

public async Task<bool> Send(string uri, string message)

{

 ...

HttpResponseMessage response = await

HttpClient.PostAsync(uri, new StringContent(message,

Encoding.UTF8, "application/json"));

 if (response.IsSuccessStatusCode)

 return true;

 else

 return false;

 ...

}

This Send() method is called when we need to send some data to the server

and we do not need any data in response. As you can see from the previous code

snippet, PostAsync() method is called on HttpClient object. It sends a POST

request to the certain address with a message. Note that we specified the string

content as “application/json“, since Web API usually works with JSON and

XAML. On the other hand, if we need to request some data from the server, we use

Receive() method:

public async Task<string> Receive(string uri)

{

HttpResponseMessage response = await

HttpClient.GetAsync(uri);

// check if everything was OK on the server side

// (authentication etc.), eg code 200

if (response.IsSuccessStatusCode)

return await response.Content.ReadAsStringAsync();

else

return null;

}

In comparison with Send() method, Receive() methods sends GET request

to the certain address. This is called when we need to receive data from the server. It

registers itself on the server and the requests sleeps on the server (long polling) until

the server can send back data or we hit request time-out. When we need to ensure,

that we get back requested data when calling Receive() and avoid time-out

problem, we use ReceivePersistent() method instead. This method is the same as

Receive() methods, the only difference is that when getting time-out response from

the server, it sends a new GET request.

71

 To make sure the game server attends to only registered users, we need to

have some kind of authorization. ASP.NET MVC authentication system works with

Tokens. The user first needs to log in and provide valid username and password.

Then he gets authorization token which he sends with every request that needs

authorization in a header. To log in and receive an authorization token, we use

Login() method:

public async Task<bool> Login(string uri, StringContent loginData)

{

HttpResponseMessage response = await

HttpClient.PostAsync(uri, loginData);

if (response.IsSuccessStatusCode)

{

Token = await GetToken(response);

// add the token to the request header

HttpClient.DefaultRequestHeaders.Authorization = new

AuthenticationHeaderValue("Bearer", Token);

 return true;

}

else

return false;

}

As we can see from the code snippet, we are sending a POST request to the

certain address used for authentication. We are sending username and password in

StringContent loginData which need to have a specific form, if we are working

with ASP.NET MVC. loginData need to be in “application/x-www-form-

urlencoded“ format. For example, it might look like this:

"grant_type=password&userName=myUserName&password=myPassword"

If the provided username and password were valid, the server returns a token

which is then stored in HttpClient.DefaultRequestHeaders.Authorization. After

this header is set, all the calls are authorized.

Using WebServer and WebClient with ASP.NET MVC

After importing WebCommunications library we have access to our

WebServer and WebClient classes. WebServer will be used in our ASP.NET MVC

project, where it will help manage requests. WebClient will be used in our game

client to send requests to the game server.

72

As me mentioned earlier, our ASP.NET application will implement a Web

API available to public. In this Web API we will have public addresses, each address

for each action our game server provides. For example, our server will receive log in

requests, accepting messages containing data on executed attacks in battles, requests

to get result of the battle turn, etc. Here are examples:

http://baseaddress.com/api/Account/Login

http://baseaddress.com/api/Battle/SendAttack

http://baseaddress.com/api/Battle/GetResult

 If we wanted to send a message containing data on executed attack, we

would use the WebClient.Send(uri, action) method where uri would be

/api/Battle/SendAttack. It is the address where the server accepts these kinds of

requests. The logic on processing individual requests in coded for each action in

ASP.NET application. We will me talking more in detail about the actual ASP.NET

application later in subchapter 4.5.

When we need the WebServer to push a message to a client, the client needs

to be listening for the response first. This is done by calling

WebClient.Receive(uri), where uri could be /api/Battle/GetResult. On this

address the server accepts the requests for waiting clients and calls

WebServer.AccaptClient(). When the data are ready to be sent back to the client,

it we call WebServer.Send(data, userId) and the client receives the data through

WebClient.Receive() method.

4.3. Game Logic and Features

In this subchapter we will look into implementing the game logic and game

features. So far we were only concerning ourselves with technical questions like how

to render a character model, how to make it move in the scene or how to send a

message to another game application. This subchapter will be more about turning the

things from the game design chapter into something real. We will be dealing with the

game content and how to store it, how to load it and how to use it.

To represent the game content and features and everything related to these

two, we created a new separate library GameContent.

73

4.3.1. Player

First of all we have to think of a way how to represent a player. The player

entity is something that will last for a long time. It will contain all the shinobi’s

attributes and it needs to remember the character’s progress. Because all of these

things that we just listed need to be remembered even when the game is turned off,

we will need to save the player entity to an external file which we will be able to

reuse when the player returns to the game again.

Let us take a look at the first class of the GameContent library, the

Player.cs class. This class represents the player entity in the game. First, you will

find string Name, long Experience and int Level properties here. As the names

suggest, these represent player’s name, gained experience and level. Next we will

find the properties for every player’s stats - Stamina, Speed, Attack, Defense and

Resistance. They are all represented by int variable. Then there are int properties

for each element. Lastly, the Player class has a collection of jutsus that (s)he

possesses - List<Jutsu> Jutsus. It is a list of Jutsu objects which we will

describe later.

Now let us talk about saving the player’s data to an external file. Windows

Store applications has its own data storage. This feature is provided by

Windows.Storage.ApplicationData
24

 class. We will be using this storage to store

our save data:

public async Task Save()

{

 StorageFolder localFolder =

 ApplicationData.Current.LocalFolder;

 StorageFile file = await localFolder.CreateFileAsync(

 Constants.PlayerSaveFilename,

 CreationCollisionOption.ReplaceExisting);

 string json = JsonConvert.SerializeObject(this);

 await FileIO.WriteTextAsync(file, json);

}

24
 ApplicationData is a class providing access to the application data store [19].

74

In this method we should notice a few things. First, we are accessing

Constants.cs static class that we created to hold all the constants in the game.

There we defined a file name for our save file to keep it unified. It is a good practice

not to hardcode values in the code and define constants instead. Second we are using

Json.NET framework
25

. We are using this framework to convert player object into

Javascript Object Notation
26

 (JSON) string. The procedure is straightforward. We

access the local folder of our Windows Store application, then we create a

StorageFile object to represent the file. Next we convert a Player object into a

JSON string and finally we write the text into the file. All manipulations with

players‘ save data is encapsulated in PlayersData static class which also takes care

of saving and loading saved data on online game server.

The process of loading a save file and converting a JSON back into the Player

object is exact reversed procedure, but instead of serializing the data we deserialize

the data. Here is the important line of code from Load() method:

player = (Player)JsonConvert.DeserializeObject(json,typeof(Player));

Only Windows Store application can access its local storage. In fact, it is

possible to access it outside the application, but only if you are not on WP8 device.

To prevent messing with the data, the save file should be encrypted.

4.3.2. Jutsus and Missions Data

Now we stand before a big question. We have to think of an elegant way to

represent and store a large amount of objects of the same type. We have a lot of

jutsus and we definitely plan on adding new jutsus in the future. In addition, we have

to consider more people working on the game. The game designer and the game

programmer roles do not have to be combined in one person. If that is the case, we

should provide the possibility for a person with no skills and knowledge of

programming to be able to edit and add the data. Everything that has been said about

jutsus applies to mission as well.

25
 Newtonsoft Json.NET is a high-performance JSON framework for .NET [20].

26
 JSON is a lightweight data-interchange format [21].

75

We propose a method where the data on a certain jutsu or a mission is stored

in an external Extensible Markup Language
27

 (XML) file. There will be a separate

XML file for each jutsu/mission. We will name these XML files in an definite way

and when they are needed, we simply load them into the memory and work with

them. XML has the advantage of being easy to read. So it is not very hard even for a

non-programmer person to edit them or create a new XML file with the new data. Or

for more comfort, the data on all jutsus and missions can be kept on Google Sheets
28

where all the people from the development team can access and edit them. It is not

hard to write an exporter which would take the sheet and export XML files from the

parsed data. In addition, we encapsulate the XML files in our GameContent library,

so the data are safely kept inside a DLL file where no one can mess with them.

Note: On our project we are working with both XML and JSON formats. The reason

for that is we only use XML format to store data that could come from game

designers (people with no programming skills), because XML is easily readable than

JSON. We use JSON format for everything else, especially for exchanging messages

in communications.

We create a Jutsu.cs and Mission.cs classes to represent a jutsu and

mission objects. Jutsu class contains all the properties needed to describe a single

jutsu such as jutsu’s ID, name, element, damage, hit count and times of those hits and

more.

We create a Mission class in a similar fashion. It contains mission’s ID,

name, description, duration in seconds and experience and stats rewards for

completion.

Here is the example XML file Jutsu_4.xml:

<jutsu>

 <id>4</id>

 <name>Atk_Earth_1</name>

 <description>Atk_Earth_1</description>

 <element>Earth</element>

 <rank>D</rank>

27
 XML is a simple and flexible text format derived from SGML (ISO 8879) [22].

28
 Google Sheets are Sheet files stored on Google Drive (cloud storage) [23].

76

 <damage>30</damage>

 <hitcount>2</hitcount>

 <hittimes>

 <time>0.5</time>

 <time>0.8</time>

 </hittimes>

 <cooldown>0</cooldown>

 <effect>none</effect>

 <effectvalue>0</effectvalue>

</jutsu>

And here is the Jutsu class that we load XML data into:

[XmlRoot(“jutsu“)]

public class Jutsu

{

 [XmlElement("id")]

 public int ID { get; set; }

 [XmlElement("name")]

 public string Name { get; set; }

 [XmlElement("hitcount")]

 public int HitCount { get; set; }

 [XmlArray("hittimes")]

 [XmlArrayItem("time")]

 public List<double> HitTimes { get; set; }

 [XmlElement("cooldown")]

 public int Cooldown { get; set; }

 [XmlElement("effect")]

 public CombatEffect Effect { get; set; }

 [XmlElement("effectvalue")]

 public int EffectValue { get; set; }

...

}

Please notice the XmlRoot, XmlElement keywords. We use XmlSerializer

class to deserialize our data which are stored on external files.

4.3.3. Combat Manager

Combat manager is a unit responsible for managing the battle. It keeps all the

current battle data about both shinobis participating the battle and keeps log about the

actions of each turn. Basically, players send their attack and defence actions to the

combat manage within each turn and the combat manager then evaluates them to

generate result of the turn.

77

In this section we implement the CombatManager class which represents our

combat manager. But first we should take a look at Turn.cs class:

public class Turn

{

 public Jutsu P1ExecutedJutsu { get; set; }

 public Jutsu P2ExecutedJutsu { get; set; }

 public int P1DamageTaken { get; set; }

 public int P2DamageTaken { get; set; }

...

}

It is easy to see from the previous code snippet that Turn object saves the

information about what justus players used this turn and how many damage each of

them took. Now we need to represent a shinobi fighting in a battle:

public class Shinobi

{

 public int HP { get; set; }

 public Player Player { get; private set; }

 public int Dazed { get; set; }

 public int Electrified { get; set; }

 public int[] Cooldowns { get; set; }

}

We will retain the data about shinobi’s health points (HP), reference to a

player that the shinobi represents, indicators if the shinobi is dazed or electrified (and

if they are then for how long) and cooldowns on shinobi’s jutsus.

The CombatManager is a static class that takes the data executed in one turn

and calculates the result to move on to the next turn. It is created as a static class,

because we want to separate data on the state of battle in a different object, that is

BattleInstance. This will be useful when we move the domain of offline and move

to online gaming. The game server will retain a lot of battles which will be stored in

individual BattleInstance objects. Then CombatManager is called to process the

battle instances that are ready to evaluate and ready to move to next turn.

Players send their attacks to the combat manager/to the battle instance using

ActionJson objects:

public class ActionJson

{

 public int JutsuID { get; set; }

 public SwipeHit[] SwipeHits { get; set; }

78

 public List<string> Animations { get; set; }

}

Specifically, it contains the ID of a jutsu that player picked, an array of

swipes (left/right swipe or miss) and list of names of animations from which we can

reconstruct the whole animation of a combo. The combat manager’s most notable

method is EvaluateTurn(). We will not be describing it here in detail, because it

includes calculations with numbers mostly which is not very interesting. Basically, it

tries to incorporate all the mechanics that we introduced in the game design chapter.

It takes players’s stats, jutsus that were used, jutsus info, elemental types and others.

It then edits the cooldowns on techniques and evaluates status change on players in

order to move to the next turn.

4.3.4. Bluetooth Multi-player Battle

With our combat manager unit done, let us see how a multi-player battle

would work. Multi-player battle can only be initialized after a successful connection

was established between the server application and the client application. Once the

server and client players are connected, the server application sends the client

application a control string. When the client application receives the control string, it

sends back the confirmation string. If the server receives the confirmation, the

connection is up and running and the server application initializes the battle. We will

analyze the battle from both server and client perspectives.

Server Side

When the battle starts, the very first thing that the server application has to do

is initialize a new instance of CombatManager which manages the whole battle. After

that the server player waits for the client player to send the information about the

client player/shinobi to the server player, because the server application hosts the

CombatManager and it needs the information about both players.

string json = await bluetooth.Receive();

EnemyPlayer = (Player)JsonConvert.DeserializeObject(json,

typeof(Player));

79

As you can see, everything that players send to each other is text in JSON

format. What we do is we convert the object we want to send to JSON and then we

send it over the bluetooth. The recipient receives the JSON and deserializes it into an

appropriate object. After the combat manager is initialized, we jump into a combat

loop. The combat loop for the server application is implemented in

ServerCombatLoop() method:

private async void ServerCombatLoop(CombatManager manager)

{

 while (true)

 {

 // ATTACK PHASE

 // ------------

 // we wait for player 2 to attack

 string json = await bluetooth.Receive();

 ActionJson clientAction =

 (ActionJson)JsonConvert.DeserializeObject(

 json,typeof(ActionJson));

 // if P1 didn't already finished attacking,

 // we wait for it

 if (!FinishedExecution)

 {

 UsedSemaphor = true;

 await WaitForAttack();

 }

 // set attack actions in CombatManager

 manager.Attack1 = ActionMessage;

 manager.Attack2 = clientAction;

 // send P1 attack action to P2 (server to client)

 json = JsonConvert.SerializeObject(ActionMessage);

 await bluetooth.Send(json);

 ...

Here is the snippet from the ServerCombatLoop() method. Specifically, this

is the attack phase in a turn. Before both players can proceed into the defense phase,

the combat manager needs to have attack actions of both players. First, the server

application waits for the client player to perform an attack action and sends it in an

ActionJson object over bluetooth. After that we check if the server player is

finished executing the attack action, because in fact the server player’s action might

take longer to perform.

We have two options here how to deal with the waiting for the server player’s

action to be executed. Either we could use an active waiting and jump into a loop

constantly asking if the server player is finished, but we know that it is not really an

option, because it uses system resources and do not forget that we have to consider

80

low performance smartphones. Much better alternative would be using passive

waiting. In our case, we are using SemaphoreSlim class which implements a

semaphore and supports calls with await. So basically, what we are doing is

checking if the server player is finished executing the attack action and if not, we call

WaitForAttack() method which will put the main thread to sleep until the server

player is finished. Once the server player’s attack action is done, we save both attack

actions into the CombatManager and proceed to the defense phase:

// DEFENSE PHASE

// -------------

json = await bluetooth.Receive();

clientAction = (ActionJson)JsonConvert.DeserializeObject(

json, typeof(ActionJson));

// if P1 didn't already finished defending, wait for it

if (!FinishedExecution)

{

UsedSemaphor = true;

await WaitForAttack();

}

manager.Defend1 = ActionMessage;

manager.Defend2 = clientAction;

manager.EvaluateTurn();

// get the result of this turn in json message

TurnResultJson turnResult = manager.GetTurnResut();

json = JsonConvert.SerializeObject(turnResult);

await bluetooth.Send(json);

The defense phase looks quite similar to the attack phase. We wait for the

defense action from the client player. After that we check if the server player is done

executing the defense action, if not, we use the semaphore for passive waiting again.

After the combat manager receives both defense actions, it evaluates the turn and the

turn result is then sent to the client player. Then a new turn begins.

Client Side

Now we will look at the battle from the other side. The first thing that client

player needs to do when the battle starts is send the Player object to the server

application, so that the combat manager has information on both players (for

computing damage taken and evaluating turns). The server player sends right back

the info on the server player, so that the client player can display current status of the

server player. And then the ClientCombatLoop() method begins:

81

private async void ClientCombatLoop()

{

 while (true)

 {

 // ATTACK PHASE

 // ------------

 // receive attack action of P1

 string json = await bluetooth.Receive();

 ActionJson attackJson =

 (ActionJson)JsonConvert.DeserializeObject(

 json, typeof(ActionJson));

 // remember attack message from enemy

 EnemyActionMessage = attackJson;

The attack phase in the ClientCombatLoop() only contains code for

receiving the attack action from the server player. We need that because we need to

animate the server player in order to see how we should counter the incoming attack.

Notice that the client player will not receive the attack action of the server player

before the client player is done executing his/her attack action. Remember that the

server player sends info about his/her attack action only after the combat manager

has attack actions of both players. It means that the client player must have already

executed the attack action before the call to receive the server player’s attack. For

better understanding, please see the picture 6. describing the battle cycle of both

players.

The defense phase for the client server is described by the following code

snippet:

// DEFENSE PHASE

// -------------

// Receive the result of the current turn

json = await bluetooth.Receive();

TurnResultJson turnResult =

 (TurnResultJson)JsonConvert.DeserializeObject(json,

 typeof(TurnResultJson));

// … updates status on the screen

In the defense phase of the ClientCombatLoop() method the client only

waits for the result of the turn and updates the players’ statuses. As for the attack

phase, the client player must have already executed the defense action before this

code is reached. The server application waits for both defense actions before

evaluating the turn and sending the turn result to the client player (see the picture 6).

82

Picture 6.: Combat cycle

4.3.5. Sending Shinobi on Missions

In this section we discuss how to implement the feature of sending a shinobi

on a mission. We want to be able to send our shinobi on a mission which takes a

certain amount of time to complete. When that time is elapsed, our shinobi returns

and is rewarded for completion of the mission.

First let us create a new class ActiveMission.cs which looks follows:

public class ActiveMission

{

 public int ID { get; set; }

 public bool Active { get; set; }

 public DateTime FinishTime { get; set; }

}

In the class description we can see the ID of the mission, boolean variable

saying if the mission is still active or not (mission is active until the player claims the

reward) and time when the mission is supposed to end.

83

When the player starts the mission, the system creates an ActiveMission

instance and calculates the time when it is supposed to finish. It simply takes

DateTime.Now to get the time at the moment and adds the duration of the mission to

calculate the finish time. After that we use ApplicationData class, just as we did

with Player object) to get access to local storage of our Windows Store application

and we save the instance of the active mission to an external file. We need to save it

to external file because there are missions that take several hours to complete and we

need to be able to preserve the information about active mission even when the game

is off.

4.3.6. Hunting and NPCs

The Hunting feature for Ninshu Arts can use a lof of the code we already

wrote. Basically we have all we need from the multiplayer battles, only now we will

act as if the player is a server player and the client player will not be represented by a

human player, but by an NPC unit.

We have a number of NPC units, each with its own preset of jutsus and stats.

These NPC units will be stored in our GameContent library as XML files, just like

we did with jutsus and missions. When needed, we load the XML file and parse the

data into a NPC class object.

The NPC class is described by the following code snippet:

public class NPC

{

 public int ID { get; set; }

 public Player Player { get; private set; }

 public int[] Cooldowns { get; set; }

 private Random rng;

 private int ChanceToHit;

...

}

When you look at the code, it seems a little similar to Shinobi class. It has

the ID of the NPC unit and a reference to a Player object. This might look confusing

at first, because there is no player controlling the NPC. But the NPC unit must have

stats and jutsus stored somewhere and all that is stored in a Player instance. Then it

has an array for cooldowns for jutsus.

84

4.4. Creating the GUI

In this subchapter we will briefly go over game presentation layer. It is what

connects players with the inner game logic layer where all the game features and

mechanics are. To create a GUI for our game, we will use XAML
29

. We will not be

going into much detail here. We will only point out some of the interesting features

and visual effects achievable in XAML.

4.4.1. GUI and XAML

We will only go over this part quickly, since XAML is not very difficult and

many things are apparent at first glance.

There are several game screens in the game. We have the main village screen

which acts as a signpost to other screens. Then there is screen for mission module,

screen for hunting module, screen for profile, screen for multiplayer and others. Each

of these screens has their XAML file, for example, Village.xaml, Missions.xaml,

etc.

Placing and positioning XAML elements to create a complete XAML page is

done using XAML layouts
30

. These layouts are designed to provide a way to describe

a page layout that would be robust for screen scaling. In most cases, StackPanel

layout and Grid layout and their combinations are sufficient.

As all the screens are written in a similar way, we will only provide the code

snippet of Village.xaml page as an example. Other XAML pages were created in a

similar way.

<Grid Background="{ThemeResource

 ApplicationPageBackgroundThemeBrush}">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="1*"/>

 <ColumnDefinition Width="6*"/>

29
 We will not be explaining basics of XAML here. It is fairly easy to understand after

reading first chapters of almost any tutorial found on internet. For those readers who are more

interested in learning XAML, we recommend the book Building Windows 8 Apps with C# and

XAML by Jeremy Likness [27].
30

 For more information on XAML layouts, please visit the article Defining Layouts

(XAML) on MSDN [28].

85

 <ColumnDefinition Width="1*"/>

 </Grid.ColumnDefinitions>

 <Image Grid.ColumnSpan="3" Source="./Images/village.jpg"/>

 <!-- RIGHT COLUMN -->

 <Grid Grid.Column="2">

 <Grid.RowDefinitions>

 <RowDefinition Height="1*"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 RowDefinition Height="7*"/>

 </Grid.RowDefinitions>

 </Grid>

...

</Grid>

Picture 6.: Grid columns

Picture 7.: Grid rows

86

4.4.2. Battle Screens

Let us now talk about a little more interesting matter that is a battle screen. In

this project we implemented three battle screens, MultiplayerBattle.xaml,

SingleplayerBattle.xaml and ArenaBattle.xaml. The three are very similar.

We will only describe the MultiplayerBattle.xaml page here since the

other are implemented the very same way. Here is how the XAML page of multi-

player battle scene looks like:

<Page

 x:Class="WindowsStoreClient.MultiplayerBattle"

 ...

 Loaded="Page_Loaded">

 <Grid Background="{ThemeResource

 ApplicationPageBackgroundThemeBrush}">

 <local:D3DMPBattleScene Margin="0"/>

 </Grid>

</Page>

This is virtually the whole code of the MultiplayerBattle.xaml page. The

most important part of this code is the D3DMPBattleScene element inside the Grid

layout. In section 4.1.5. we were talking about combining a Direct3D application into

XAML. We said back then that we are going to integrate our 3D renderer into

XAML using a SwapChainPanel. Let us take a look at the D3DMPBattleScene.xaml

page which contains definition of the D3DMPBattleScene element that we just talked

about earlier:

<SwapChainPanel x:Name="swapChainPanel"

 x:Class="WindowsStoreClient.D3DMPBattleScene"

 ...>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="150"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

</Grid>

// other content

</SwapChainPanel>

87

Instead of having Page element as for other XAML files, this XAML file has

SwapChainPanel as a root element. If you recall, SwapChainPanel inherits from

Grid, so in essence it is an advanced Grid layout with a Direct3D application

running on the background. This is how the D3DMPBattleScene class looks like:

public sealed partial class D3DMPBattleScene : SwapChainPanel

{

...

}

If you think about it, this is quite a powerful tool for us. XAML alone is fairly

potent. Combining XAML with DirectX might bring out a lot of interesting visual

effects. As for our project, we use XAML to add buttons for players to control the

battle.

Other thing we can do is to use storyboard animations to create little

animations to make the game look more alive. Here is the example of a storyboard

animation:

<Storyboard x:Name="ElementAnimation">

<DoubleAnimation Storyboard.TargetName="ElementImage"

 Storyboard.TargetProperty="Opacity"

 From="0" To="1" Duration="0:0:0.5"

 AutoReverse="True" RepeatBehavior="Forever"/>

</Storyboard>

This particular storyboard animations animates a semitransparent image of an

element when a shinobi executes a jutsu and changes the opacity of the image from 0

to 1 and backwards. The animations starts after we call

ElementAnimation.Begin().

Lastly, we used a Canvas element inside of SwapChainPanel. Canvas allows

us to draw points, lines and shapes on it. So if we actually have a Canvas on top of a

SwapChainPanel, we can draw on top of a 3D scene rendered by our renderer. This

is used to draw a trail after swiping over the screen by finger or mouse.

4.5. Game Server

In this subchapter we will discuss how our game server was implemented. To

remind the readers, we are implementing ASP.NET MVC application with Wep API

and we use MS-SQL database to store our data.

88

We are going to ignore the website part of our ASP.NET application, since it

is not relevant to our work. We will design a simple database to keep the data that we

need and we will be focusing primarily on Web API which processes requests from

game clients manages the communication between the game server and clients.

4.5.1. Basis and Creation

The game server will be hosting games. The server will hold the instances of

battles in progress. All playing clients will be sending their executed attacks and

defences to the server which will assign the attack/defence actions to the right battle

instance and when the server has all the needed data to in a battle turn, it evalues the

turn and then sends results to appropriate players.

The game logic is all coded in our GameContent library, specifically in our

CombatManager class which responsible for all combat data evaluating. Our

ASP.NET application will only include the GameContent library and it has access to

the CombatManager.

We will create a new ASP.NET Web API project to our solution in Visual

Studio 2013. This will create a preset application that provides with a few things

right from the start. First, it creates a default website which has some info pages that

are really not that important at the moment. We are going to ignore it.

More interesting that is already done in the preset of our newly created

ASP.NET application is Identity
31

 membership system. It is very convenient to use,

because after the first registration all the tables related to membership system are

created. This is done thanks to Entity Framework
32

 which is typically paired with

ASP.NET MVC. This includes tables for Users, Roles and others.

31
 ASP.NET Identity system is designed to replace previous ASP.NET Membership and

Simple Membership systems, for more information please see [53].

32
 Entity Framework is a set of technologies in ADO.NET that support development of data-

oriented software applications, for more information please see [54].

89

4.5.2. Game Database

Our server application needs to store two types of data. First, it is players‘

data. Players need to be able to send their saved data to the game server in order to

backup and synchronize their save to other devices. Second, the server application

needs to store data on battles in progress, since HTTP communication is stateless.

For each type, we will have one table in our database – Players and Battles.

Player and Battle entities can be found in Models/ArenaModels.cs file.

Internal structures of entities correspond to the collumns in respective tables, i.e. the

fields in Player entity corresponds to collumns in Players table.

Players

Table Players contains the data of Ninshu Arts players. It is in one to one

relation with table Users (which belongs to Identity membership system). Table

Players will have a foreign key from table Users. An entry in Users table corresponds

to one entry in Players table. It means that each user has one entry in Players table

and one place to store their save data. Here you can see a code snippet from Player

entity:

public class Player

{

[ForeignKey("ApplicationUser")]

public string ID { get; set; }

public string Data { get; set; }

public int Rating { get; set; }

public DateTime Queue { get; set; }

}

The int Rating field tells us what rating a player has. This will later help us

to create statistics to provide players with information on how strong particular

players are. The DateTime Queue is a time when players enqueued themselves for

online match. This is used in matchmaking system to find players their opponents.

Finally the string Data contains converted players’s saves into JSON format.

90

Battles

Battles table contains stored data on battle instances. A single battle instance

corresponds to one row in Battles table. For each battle instance we need to store

following data:

public class Battle

{

 public int ID { get; set; }

 public string Player1ID { get; set; }

 public string Player2ID { get; set; }

 // additional data

 public string Shinobi1 { get; set; }

 public string Shinobi2 { get; set; }

 public string Attack1 { get; set; }

 public string Attack2 { get; set; }

 public string Defend1 { get; set; }

 public string Defend2 { get; set; }

 public string Turn { get; set; }

}

For each battle we need to store Shinobi objects for both players. Each

Shinobi object contains data on current condition in battle, i.e. how many HP they

have left, status condition, cooldowns etc. Then there are attack and defend actions.

These are ActionJson objects sent from players. Each time a players sends an

executed attack/defence action, it is stored to the right battle instance in these fields.

This one row in Battles table contains data on a specific battle in a particular turn, so

we easily are able to tell the state of a battle in progress.

After entities we need to discuss database context. Database contexts in

ASP.NET MVC is responsible communication between the web application and the

database. We have defined our database context as follows:

public class ApplicationDb

{

 public DbSet<Player> Players { get; set; }

public DbSet<Battle> Battles { get; set; }

 ...

}

The DbSet objects correspond to the tables in the database. While working

with the context, we use ApplicationDb.Players or ApplicationDb.Battles to

work with the particular table. Lastly, you will find OnModelCreating() method

91

which is called when the tables in the database is being created. This method states

the relations between tables, specifies additional information of individual fields etc.

4.5.3. Web API

Let us now discuss the Web API of our server application. Web API manages

the communication on the server. Web API consists of Controllers and Actions.

Usually actions that have something in common are grouped in a single controller.

For example, all our actions which concern battles will be in our BattleController

class. Our BattleController has SendAttack action for instance. The address that

players would be sending their attacks data to would be:

http://baseaddress/api/Battle/SendAttack

Base address depends on where the ASP.NET application is hosted. The

“Battle“ in the uri corresponds to the name of BatteController and “SendAttack“

to the action defined in the controller. The address looks like this, because it was

defined in App_Start/WebApiConfig.cs file. In ASP.NET it is called routing.

We just clarified that each controller has some actions defined. Let us look at

our BattleController. It provides following actions:

 Send attack – action that processes attacks sent from players. It

identifies the player that sent the attack action and stores the attack

into a appropriate row in Battle table. Then it checks if the processed

battle has both attack actions. If it does, it sends enemy attacks to both

players to move on to defense phase of the battle.

 Send defense – action that processes defences sent from players. It

also identifies the player that sent the defence action and stores data in

the database in appropriate battle. Then it checks if the processed

battle has both defence actions. If it does, it calls CombatManager to

evaluate the turn. It then uses WebServer.Send() method to send turn

results to both players. Calling WebServer.Send() method will

release the asynchronous waiting in GetResult() action.

92

 Get result – action that accepts players that are waiting to get the

result of a turn in battle. Usually the server will not have the turn

results immediately. This is where we use WebServer object to hold

the requests open by calling WebServer.AcceptClient(). The

request is put on hold (asynchronous waiting) and we push the results

to clients after the server evaluated the data.

Our BattleController class looks as follows:

public class BattleController : ApiController

{

private ApplicationDb db = new ApplicationDb();

private static WebServer Server = new WebServer();

// actions definitions

}

The ApplicationDb is a database context that provides us the connection to

our database, so we can make queries. Then we have our WebServer object to help

simulate duplex connection when needed.

Besides BattleController we also have QueueController which manages

queue system. Using queue system are players able to find opponents for online

battle. It has following actions:

 Enter – action when players enter a queue to wait for opponents. If

there are no players waiting, it enqueues the player by setting time

they entered the queue in the Player.Queue field in the Players table.

If there are players waiting, it takes a player from the queue and

matches him with the new player. Then a battle instance is created and

both players will receive data on started battle.

 Leave – action when player leaves a queue. It looks up the player in

Players table and sets the Queue time to default value.

Last noteworthy controllers are AccountController and

PlayerController. The first processes actions regarding the user account such as

registering a new user, password change etc. and the other contains actions for saving

and loading players’ saved data.

93

4.5.4. Testing environment

All the development and testing of the server application was done in Visual

Studio 2013. Other needed and used tools are Microsoft SQL Server 2014 for

running an MS-SQL database on a local work station. We also used Microsoft SQL

Managment Studio to easily execute the initial database setup.

Since two Windows Store applications cannot run on one device, we needed

to test them on two different devices. In order to debug the server application on one

device in a local network and be able to access the server application from another

device in the network, we needed to setup the local IIS server. The server application

is then deployed to the local IIS and is accessible to all computers in a local network.

In this simulated environment, we performed stress test. Our estimate on

players count that are using our game server is hundreds to thousands. The server

application managed the stress test fine and was able to hold hundreds till thousand

open requests and process them.

When the server application is deployed on a local IIS and is accessible on a

certain address, for example http://10.0.0.20/NinshuServer, this uri needs to be

set to the WebServerBaseAdress constant in GameContent/Constants.cs file. If

this is not set correctly, the game client will not have server to connect to.

http://10.0.0.20/NinshuServer

94

5. User's Documentation

This chapter will work as a game manual for the players. We describe all the

game screens here. After reading this, the reader should be able to tell what to find

where and have an idea how things work. Chapter 4 along with chapter 2 should

provide all the necessary information for players to understand Ninshu Arts and

know how to play it.

5.1. Game Screens

In this subchapter we describe the game screens to the reader. We will try to

explain what each screen contains and what it provides.

5.1.1. Village

The village is a first thing that players will see when they enter the game. It

serves as a signpost to other places of the game. When looking at the village screen,

you will see icons leading to other places. Clicking on the appropriate icon will take

you to the place you want.

Picture 8.: Village

95

5.1.2. Profile

In the profile screen you will find all the informations on your character. This

is a place where you can come when you need to find out your shinobi’s level or

check the general stats or elemental stats.

Picture 9.: Profile

5.1.3. Missions

You can visit the missions screen to send your sinobi on a mission. When you

first come to the missions screen, you will see the missions that are available to you.

After you pick the one you want, you can start the mission. Each mission takes a

certain amount of time to complete. If you come back to the missions screen and

your shinobi is still not back from the mission, you will see how much time is left.

After the mission is completed, you can come to this screen and claim your reward.

96

5.1.4. Hunting Assignments

Your shinobi can take hunting assignments on this screen. The game will find

you an assignment suitable for your level. You will be sent to hunt down enemies of

the village and dispose of them. After you start the hunting assignment, you will be

sent into a single-player battle, where you have to defeat your opponent. If you are

successful, you will get a reward for completing the hunting assignment.

5.2. Fighting

This subchapter will give players instructions to win the battle. We briefly

review the course of the battle and explain what players should do.

First, let us remind the readers how the battle goes on. The battle is conducted

in turns. Each turn has the attack phase and the defense phase. Both shinobis are

attacking at the same time and defending at the same time. At the start of each turn,

players selects a jutsu that they want to use in that turn. To find out information

about the jutsu, right click on it with mouse or use hold gesture, if you are using a

touch device (hold your finger on jutsu icon). Then you select a jutsu by

clicking/tapping on it. After that the attack phase begins.

Each jutsu has a certain number of hits. That means how many hits players

can execute during the attack phase. When the attack phase starts, time panel with

green colored intervals is displayed at the top of the screen. Players are supposed to

execute the hit when the indicator is inside the green area. Hits can be executed by

either swiping with a finger in left or right direction, if they are playing on a touch

device, or clicking a mouse and dragging the mouse in left or right direction. Please,

be reminded that the hit needs to be executed while the time panel indicator is in the

green area. If player misses the green area, the hit is not valid and is considered a

miss. See the picture below for better understanding.

97

Picture 10.: Battle

After the attack phase ends, the defense phase starts. Now players have to

counter the incoming attacks. Right after the defense phase starts, players are shown

the animation of their enemy attack combo. The enemy shinobi either punches or

kicks from left or right direction. To block/counter their incoming hit, player needs to

perform a swipe to the direction from where the attack is coming, i.e. if you see the

enemy shinobi doing a kick from the right, you have to perform a right swipe to

counter, and vice versa. The animations may vary, so you need to pay attention. Also

the animations are not always the same.

5.3. Bluetooth Multi-player

The bluetooth multi-player (MP) battle is fought the same way that was

described in subchapter 5.2. But compared to a single-player battle, you will be

fighting against a human player, not an NPC. To engage in a battle with your friend,

you need to establish the connection in the game. And to do that, the first need to pair

your devices over bluetooth correctly.

MP battles can be fought between any type of devices. It can be a desktop

PC, notebook, tablet or smartphone; provided that the devices are running Windows

8.1 or Windows Phone 8.1 operating systems and they have a bluetooth adapter.

98

MP screen can be accessed from the village screen. On the first page you will

see two options - host or join. Click on “host”, if you want to be the server player and

host the game, or click on “join” to be the client player.

Caution: In case the MP battle is fought on a smartphone and a non-smartphone

device, it is highly recommended that the MP game is hosted on a non-smartphone

device. The reason is simple, PCs, notebooks and tablets are more powerful devices

than smartphones. To ensure the best game experience for both players, it is

recommended to follow this warning.

5.3.1. Pairing the devices for Bluetooth MP

Pairing the devices over bluetooth might be tricky at times. We would like to

point out that it is not a flaw in our game. If you have ever dealt with bluetooth

technology before, you surely know that pairing the devices might take some time to

do successfully. With that said, here is a set of instructions to pair the devices (in this

example we will be pairing the notebook and the smartphone):

1. On the server application go to the MP screen and click on Hosting

2. Now we recommend to split the screen to see the Ninshu Arts on one half

and the desktop on the other half (make sure that you are in desktop and

your bluetooth settings windows is closed, it is important!)

3. On the server application click on Start Advertising

4. On the client device go to bluetooth settings (make sure bluetooth is

enabled on both devices), find the server device and click to pair with the

device

5. The notification should appear on both devices, asking to check if the

confirmation number code matches; click yes

6. After that devices should be paired correctly

99

The pairing of the devices should be persistent. Usually, the pairing needs to

be done once and then the players can engage in any number of battles. However, if

for any reason, you are not able to connect to the server player in the game, try to

remove the paired device from both devices and start the pairing process from the

start.

Note: If you are pairing a smartphone to a smartphone, it is important that the

client device starts the pairing when the server is advertising the service.

5.3.2. Connecting for MP Battle

Once the devices are connected, one player assumes the role of a server

player and hosts the game and the other player assumes the role of a client player and

joins a hosted game. To make a connection between two game applications, the

server player needs to go the the host game screen and click on Start Advertising.

While the server player advertises the service, the client player needs to go to the join

game screen and search for advertised games. If the devices are paired correctly, the

client player should be able to find the server application. After the advertised

application is found, the client player clicks on the name in the list and establishes a

connection to the server. On a successful attempt, both players get the notification.

When both players are connected, the server player can start the game.

5.3.3. Bluetooth Troubleshooting

If for any reason the client player is not able to find the server player or if the

client finds the server, but cannot make a connection, try one of the following:

1. Make sure bluetooth is enabled on both devices

2. Make sure the drivers are fully updated

3. On both devices remove the paired device and try pairing the devices

from the very beginning

4. On PCs go to bluetooth settings and check „“Allow bluetooth devices to

find this computer“

100

5.4. Distribution and Installation

As all Windows Store applications, Ninshu Arts will be distributed and

installed automatically through Windows Store in the future. It cannot be found and

installed through Windows Store yet, because first it needs to go through the long

certification process. For the time being, Ninshu Arts can be acquired as a

downloadable package. Here are the steps to install the application from the

downloaded package:

1. Extract the RAR or ZIP archive

2. You will see .appxupload file and a folder; go to the folder

3. In the folder you will see .ps1 file; right-click on in and click on “Run

with Powershell”

4. Follow the instructions on screen

5. You will be asked to sign log into your Microsoft account (the one you

use to log into your Windows 8.1 / Windows Phone 8.1 system)

Note that this method only works for devices with Windows 8.1 and

Windows 10.

Another way to launch Ninshu Arts on your device (this works for phone

devices as well, but you need to have your phone unlocked for development), is to

open game project in Visual Studio and use Deploy or just simply launch the project.

Note: The package provided in the attachment to this paper is fully working and it

includes a preset character (stats and skill set) to make it easier and more comfortable

to try and test the game.

101

5.5. Online Features

On the Village screen you can see the login panel on the top. Players use this

panel to register and log in to the online game server. After players are logged in,

they are able to:

 Upload saved data to the game server to backup as well as to

synchronize the save to their other devices.

 Download saved data from the game server to the local device

 Online multiplayer – the button appears after players log in. After

clicking this button players are redirected to Arena Lobby page where

they enter a queue to look for opponents that are also playing online.

When the game server finds an opponent, the waiting player is moved

into a battle scene where the fight begins.

102

6. Making the Game

In this chapter we are going to sum up the process of making the whole game.

Creating a new game from nothing might not look complicated to someone, but in

reality it is a very complex and difficult task where one needs to focus on many

different things. It is not a task that you could do on your own. Usually a whole

development team is needed. However, in this chapter we would like to describe how

a one-man team would cope with such a task. Also during the process of developing

Ninshu Arts we have run into some problems regarding the multi-platformity. We

would like to provide some informations on how we coped with these issues.

6.1. Game Development Stages

This subchapter should summarize the process of Ninshu Arts development

and shortly describe the individual stages of the development. Even though the stages

of our development process might differ from the process of other development

teams, we believe it is overall the same.

The stages of Ninshu Arts development:

1. Artwork stage

a. Drawing character concepts

b. Modeling characters

c. Rigging characters

d. Animating characters

2. Designing stage

3. Implementation stage

a. 3D renderer

b. Communication library

c. Game logic layer

d. Game presentation layer

103

Picture 11.: Development stages

As you can see the picture, there were three separate areas in the Ninshu Arts

development process. Ordinarily, the development team would divide work and

artists would be working on the artwork stage, game designers would be working on

game design and programmers would be working on the game implementation. Even

though the three stages are connected, the whole process could be parallelized to

shorten the development time.

In Ninshu Arts we have a 3D scene where characters fight against each other.

The main focus in the artwork stage should be on characters. We need to have a 3D

representation of characters in our renderer. In order to do that, we need rigged and

animated models. Usually, the first step would be acquiring concept drawings which

are then used by modelers to model the characters. Models are then rigged and

animated. The stage 1. of the Ninshu Arts development will be described in

subchapter 6.2.

The stages 2. and 3. of the development process is actually what we covered

in chapter 3 (game design) and chapter 4 (game implementation). We will not be

going over those again. However, we will point out some issues that we ran into

while developing Ninshu Arts. These will be discussed later in subchapter 6.3.

104

Of course, there are other things that need to be done. For instance, testing

stages are very important part of the development process. We did not include it to

the previous stages because large scale testing is not part of this work.

6.2. Artwork Phase

The artwork phase stands at the beginning of the development pipeline.

Along with the game design phase, it is basically creating something out of nothing.

In Ninshu Arts project we need 3D models of characters. In the following four

sections, we will try to describe the process of coming from character drawings to the

point where you have rigged and animated character models.

6.2.1. Drawing Character Concepts

This is a very first step of the artwork stage. In this step artist are tasked to

design a character and create concept drawings. It is not a work for anyone. Not

everyone has talent and the right sense which are definitely needed for this kind of

job. Modelers need concept drawings as a template or an example in order to be able

to create models. Usually the artists need to provide drawings of the designed

character in front view and side views, possibly top view. The more drawings, the

better, but sometimes the front view and left/right view is sufficient. Also the

characters are drawn in T-Pose or sometimes in A-Pose (see pictures below).

As for Ninshu Arts project, this step was skipped, because we could not find

suitable artists to colaborate with.

105

Picture 12.: Concept drawing of a character in T-Pose

Picture 13.: Concept drawing of a character in A-Pose

6.2.2. Modeling Characters

When the concept drawings are done, they are handed to modelers. Every

modeler has his/her own skill set and can use different software to create models.

Modelers nowadays usually work with Autodesk Maya [32], Autodesk 3DS Max

[33], ZBrush [34] or Blender [35]. There is a lot of other available tools, but these

four are among those commonly used. Maya and 3DS Max are products of Autodesk

which is a major company in the field. ZBrush is favourite for its different approach.

While in Maya and 3DS Max modelers are working with faces, vertices and edges,

ZBrush provides sculpting brushes, where you start with a shape and manipulate it

106

and sculpt it. Blender is also popular, mainly because it is free, while the first three

are very expensive.

In this step of artwork stage, we were not creating models from concept

drawings, because we were not provided by the drawings from any artist. In addition,

creating a single model can take weeks or even a month. The models that are used in

this project are downloaded free models and edited in Maya to suit our purposes
33

.

6.2.3. Rigging Characters

Next step in the artwork stage is rigging the characters. In the process of

rigging, the artist creates a skeleton for a model (also called a rig). This skeleton is

then used to map animation data to it. It is essential to have a rigged model, because

our renderer implements skeletal animation. Rigging can be done in any of the

mentioned tools, except for ZBrush, which is only a modelling tool. Nevertheless,

Maya, 3DS Max and Blender have tools that modelers can use to rig a model.

As for Ninshu Arts, we personally rigged the edited models in Maya. Maya is

not just a modeling software, it is mainly an animating software. So naturally it

includes tools to rig and animate characters. Usually, it is better for a single person to

work on the rigs because sometimes it is essential that the models have the same

number of bones and the same bone structure.

Readers might be interested to know that there are auto-rigging services that

take only a few minutes. Users only need to upload a model in T-Pose or A-Pose,

usually in FBX format. Mixamo
34

 offers many services including auto-rigging which

works surprisingly well. However, these are paid services.

6.2.4. Animating Characters

Animating is the last step of the artwork stage. When the models are rigged,

the only things that is left is to make the character models move. Maya, 3DS Max

33
 Free models were downloaded on TF3DM [42].

34
 Mixamo is an online service providing models, auto-rigging and animating [36].

107

and Blender have tools to animate character models. Every software is different

though. Skills in one software do not essentially transfer to the other. Usually, large

companies are oriented in one software that they are using and they focus on it.

In the process of developing Ninshu Arts we tried a little different approach.

All the three mentioned applications are based on moving the bones and working

with keyframes to create the animation. We were trying to animate characters using

motion capture
35

 (mocap) and using the data from mocap to map it on the rigged

characters. The problem is that big mocap studios use equipment that is not

affordable to small development teams. However, there is a way how to get an

affordable small mocap studio. The only thing that you need is a device called

Kinect
36

. Kinect has infrared sensors and is able to capture the body movement.

There are two applications that are able to record mocap data using the Kinect - iPi

Soft [39] and Brekel Pro Body [40]. The mocap data are then imported into Autodesk

MotionBuilder [41] which is a specialized software for animating. Along with mocap

data you are able to import your rigged model. You can then work on your

animations in MotionBuilder where you can edit animations, cut animations or create

entirely new animations.

6.3. Issues During Game Design and Implementation Stages

Ninshu Arts is a multi-platform game featuring PvP multiplayer battles with

cross-device communication. This single sentence presents a lot of problems. Since it

was supposed to be a multi-platform game, there were a lot of matters in game

design stage that needed to be handled with caution. Multi-platformity was not easily

achieved in the implementation stage either. The fact that Ninshu Art is supposed to

target so many different types of devices is challenging on its own. Each device has

different hardware capabilities. In addition, not all the devices that we target are

running the same operating systems. Smartphones are running on Windows Phone

8.1 OS, while tablets, notebooks and desktop PCs are running on Windows 8.1 OS. It

goes without saying that these two OS have different capabilities.

35
 Motion capture is the process of recording movement of objects or people [37].

36
 Kinect is a sensor developed by Microsoft [38].

108

While we were working on the 3D renderer, we found out that not all the

devices running WP8 and Win8 operating systems support DirectX feature level

11_0, even though Direct3D 11 is supported by both OS. If you recall, we pointed

out this problem in subchapter 4.1., when we were implementing the game 3D

renderer. In order to map the devices that we could eventually target, we did a little

research and testing on different types of devices. We would like to present the

results of the research here. The following table contains data on tested devices.

Device OS Feature Levels Shader Model Shader Profiles

desktop PCs Win 8.1 11_1, 11_0 SM5 5_0

notebooks Win 8.1 11_1, 11_0 SM5 5_0

HTC 8X WP 8.1 9_3 SM2 4_0_level_9_3

Samsung Ativ S WP 8.1 9_3 SM2 4_0_level_9_3

Lumia 930 WP 8.1 9_3 SM2 4_0_level_9_3

Surface 3 Win 8.1 11_1 SM5 5_0

Surface 2 WinRT 8.1 9_1 SM2 4_0_level_9_1

Table 2.: Tested devices with their supported feature levels, shader models and profiles

As you can see from the previous table, desktop PCs and notebooks running

Windows 8.1 OS do not have problems with running Ninshu Arts with full

capabilities of our 3D renderer. Virtually all the smartphones with Windows Phone

8.1 OS can use our 3D renderer with slight limitations that were mentioned in

subchapter 4.1. due to the support of feature level 9_3 and SM2. We also conducted

testing on two tablet devices. One of them is Surface 3 tablet from Microsoft which

is running Windows 8.1 OS and has no problem at all. On the other hand its older

predecessor, Surface 2 tablet, was very problematic. Surface 2 is running the

Windows 8.1 RT
37

 OS which is no longer developed. It appeared on several devices,

but after two years it was written off. It only supported feature level 9_1. Also

SharpDX library, as it appeared after some testing and researching, does not support

Surface 2 devices. That is the reason why we were not able to run the 3D renderer on

37
 Windows RT is an OS developed by Microsoft running on devices with ARM processors.

For more information, please see [31].

109

a Surface 2 tablet (please note that Ninshu Arts does not target devices with

Windows 8.1 RT OS).

6.4. Future Development

Ninshu Arts project is only a starting point for a much larger project that we

plan to extend in the future. In order to compete with other mobile games at the

market today, Ninshu Arts also needs to grow. Here is a short list of features that are

planned to be implemented.

Feature list for future development:

1. In-game online social hub (online village)

2. Multi PvP battles with more than two players (2v2, 3v3)

3. Implement more visual effects in the 3D scene renderer

Being able to play an RPG game where you improve and progress your

character and are able to play with your friends no matter on what device (Windows

based) you play was just a first step. Having an online village which could function

as a social hub and where players can trade scrolls and challenge each other brings a

lot of new opportunities.

If playing with a fellow player is fun, playing with more must be even better.

Team battles might introduce a totally new gaming experience even for vetaran

players. The possibilities and combinations of outcomes is much greater. That is a

feature 3 in the future development list.

The previous points were only concerning game mechanics, bringing

something new to do. We cannot neglect the visual side of the game. So far there is

only faint visual interpretation of jutsus when shinobis are attacking. To provide the

players with effects that would catch their eyes is also important.

110

6.4.1. Things That Were Left Out

In this section we would like to mention a few things that were originally

planned to include or implement in this project, but due to insufficient work of artists

and a little time shortage and other factors, they were eventually left out.

The spritesheet animation
38

 engine was created in Ninshu Arts in order to

provide some visual effects of jutsus. In principle, we have a number of images of an

object as it moves in time. The animation is achieved on a flipbook principle where

one image is replaced by the following so fast it creates an impression of movement.

The images are arranged in a single spritesheet file so that the spritesheet engine has

to access the file system only once to load all the images at once. We then retrieve a

single image that is needed from the spritesheet. Although the spritesheet animation

is present in our game, we are missing the artwork that artists were supposed to

provide us.

38
 Spritesheet animation is a technique to create an impression of movement using image

spritesheet. For more details on the topic, we refer readers to this article [30].

111

Conclusion

At the end of this thesis we would like to recapitulate the goals of this project

and summarize the things that were done. In this work we were supposed to analyze

the current trends in the gaming world. With this analysis and some inspiration taken

from a few existing titles we formulated the game that we wanted to create. We

decided to develop a multi-platform game with emphasis on multiplayer features.

Our next goal was to analyze available technologies and tools relevant to game

development and to our game. The next objective was to develop the game from the

ground. In the process of making the game, we covered almost all the stages of game

development, including artwork, game design, game implementation and testing. As

we covered so many areas, we set our last objective to be providing some

information on non-programming activities of the development and summing up the

overall development process.

In the first chapter of this thesis we got some inspiration analyzing some great

game titles. After that we decided to implement an RPG game providing both offline

and online multiplayer capabilities. Offline communication was supposed to be

implemented using bluetooth technology, while online gaming was supposed to

feature a game server application which would enable players to play online. We also

decided to follow the gaming trend and make a multi-platform game, meaning a

game that is able to run on different types of devices such as desktop PC, notebooks,

tablets and smartphones. After making our game features clear, we also performed an

analysis of existing favourite game engines. After the discussion we decided to build

our game from the ground. We targeted Windows platform, since its Universal

Application model enables targeting of all the types of devices that we mentioned.

While developing the game from the ground, we focused a lot of our effort on

creating a 3D renderer unit which provides rendering of simple scenes with objects

and animated characters. As a result we have a simple renderer which can be reused

in other projects for Windows Store applications. Then we created two

communication libraries. One provides bluetooth communication for cross-device

communication on various devices with no need of local network or internet. The

112

other provides HTTP communication between a client and a server applications.

Then we implemented the game itself featuring the game mechanics introduced in

our game design. Lastly we created a server application that provides data storage for

players to backup and to synchronize their game data across their devices. The server

also hosts battles and offers online playing.

The overall process of game development is a demanding one. The result of

this fact is that the Ninshu Arts might not look as nice and beautiful as first-rate

games. This is mainly caused by the lack of artwork, drawings, new models and

animations, since they provide the effects that catch the eye. In addition, most of the

server application testing was done in a simulated environment on a local network.

The game itself was released to beta testing a while ago, but the game server still

needs to undergo large scale testing on a real server. Nevertheless, the game is in a

stable state and it provides a solid ground to build new things on. Ninshu Arts is just

a starting point of a much larger project.

113

References

[1] Pokémon official web page - http://www.pokemon.com/, Last checked 2015-06-11

[2] Nintendo official - http://www.nintendo.com/, Last checked 2015-06-11

[3] Blood and Glory game info page - http://www.glu.com/games/viewGame/6, Last

checked 2015-06-11

[4] Glu Mobile homepage - http://www.glu.com/, Last checked 2015-06-11

[5] Dragon Mania Legends game info page - http://dragon-mania-legends.wikia.com/, Last

checked 2015-06-11

[6] Gameloft official web page - http://www.gameloft.com/, Last checked 2015-06-11

[7] Dungeon Hunter game info page - http://dungeonhunter5.com/, Last checked 2015-06-11

[8] Game Link Cable article on Wikipedia -

https://en.wikipedia.org/wiki/Game_Link_Cable, Last checked 2015-06-20

[9] Wi-Fi Direct info page - http://www.wi-fi.org/discover-wi-fi/wi-fi-direct, Last checked

2015-06-20

[10] Bluetooth official web page - http://www.bluetooth.com/, Last checked 2015-06-20

[11] Unity3D official web page - http://unity3d.com/, Last checked 2015-06-20

[12] Unreal Engine 4 official web page - https://www.unrealengine.com, Last checked 2015-

06-20

[13] SharpDX official web page - http://sharpdx.org/, Last checked 2015-06-20

[14] Justin Stenning, ‘Direct3D Rendering Cookbook’, (2014)

[15] XAML article on MSDN - https://msdn.microsoft.com/en-us/library/cc295302.aspx,

Last checked 2015-06-21

[16] DirectX Tool Kit page on Codeplex - https://directxtk.codeplex.com/, Last checked

2015-06-21

[17] Frank D. Luna, ‘Introduction to 3D Game Programming with DirectX 11’, (2012)

[18] Supporting Bluetooth Devices article on MSDN - https://msdn.microsoft.com/en-

us/library/windows/apps/xaml/dn264587, Last checked 2015-06-30

[19] ApplicationData class documentation on MSDN - https://msdn.microsoft.com/cs-

cz/library/windows/apps/br241587, Last checked 2015-06-30

114

[20] Newtonsoft Json.NET official web page - http://www.newtonsoft.com/, Last checked

2015-07-15

[21] JSON info page - http://json.org/, Last checked 2015-07-15

[22] XML info page - http://www.w3.org/XML/, Last checked 2015-07-15

[23] Google Sheets info page - https://www.google.com/sheets/about/, Last checked 2015-

07-20

[24] DirectX article on Wikipedia - https://en.wikipedia.org/wiki/DirectX, Last checked

2015-07-15

[25] J. Žára, B. Beneš, J. Sochor, P. Felkel, ‘Moderní počítačová grafika’, 2nd edition,

(2004)

[26] FBX format article on Wikipedia - https://en.wikipedia.org/wiki/FBX, Last checked

2015-07-25

[27] Jeremy Likness, ‘Building Windows 8 Apps with C# and XAML’, (2012)

[28] Defining Layouts (XAML) article on MSDN - https://msdn.microsoft.com/en-

us/library/windows/apps/xaml/hh465337.aspx, Last checked 2015-07-25

[29] Immediate and Deferred Rendering article on MSDN - https://msdn.microsoft.com/en-

us/library/windows/desktop/ff476892(v=vs.85).aspx, Last checked 2015-07-25

[30] Spritesheet Animation article - http://gamedevelopment.tutsplus.com/tutorials/an-

introduction-to-spritesheet-animation--gamedev-13099, Last checked 2015-07-25

[31] Windows RT article on Wikipedia - https://en.wikipedia.org/wiki/Windows_RT, Last

checked 2015-07-27

[32] Autodesk Maya - http://www.autodesk.com/products/maya/overview, Last checked

2015-07-27

[33] Autodesk 3DS Max official web page - http://www.autodesk.com/products/3ds-

max/overview, Last checked 2015-07-27

[34] ZBrush official web page - http://pixologic.com/, Last checked 2015-07-27

[35] Blender official web page - https://www.blender.org/, Last checked 2015-07-27

[36] Mixamo official web page - https://www.mixamo.com/, Last checked 2015-07-28

[37] Motion capture article on Wikipedia - https://en.wikipedia.org/wiki/Motion_capture,

Last checked 2015-07-28

[38] Kinect info page - https://www.microsoft.com/en-us/kinectforwindows/, Last checked

2015-07-28

115

[39] iPi Soft official web page - http://ipisoft.com/, Last checked 2015-07-28

[40] Brekel Pro Body official web page - http://brekel.com/brekel-kinect-pro-body/, Last

checked 2015-07-28

[41] Autodesk MotionBuilder official web page -

http://www.autodesk.com/products/motionbuilder/overview, Last checked 2015-07-28

[42] TF3DM, 3D models database - http://tf3dm.com/, Last checked 2015-07-08

[43] Spacewar! (video game) article on Wikipedia -

https://en.wikipedia.org/wiki/Spacewar_(video_game), Last checked 2015-11-28

[44] Super Mario 64 article on Wikipedia - https://en.wikipedia.org/wiki/Super_Mario_64,

Last checked 2015-11-28

[45] Tomb Rider article on Wikipedia – https://en.wikipedia.org/wiki/Tomb_Raider, Last

checked 2015-11-28

[46] Paradox Engine official web page - http://paradox3d.net/, Last checked 2015-11-30

[47] Wave Engine official web page - https://waveengine.net/, Last checked 2015-11-30

[48] Xamarin official web page - https://xamarin.com/, Last checked 2015-11-30

[49] Microsoft ASP.NET development community - http://www.asp.net/, Last checked

2015-11-30

[50] Microsoft SQL server article on Wikipedia -

https://en.wikipedia.org/wiki/Microsoft_SQL_Server, Last checked 2015-11-30

[51] Web API article on Wikipedia - https://en.wikipedia.org/wiki/Web_API, Last checked

on 2015-11-30

[52] Web Sockets article on Wikipedia - https://en.wikipedia.org/wiki/WebSocket, Last

checked on 2015-11-30

[53] ASP.NET Identity - http://www.asp.net/identity, Last checked on 2015-12-02

[54] Entity framework article on Wikipedia -

https://en.wikipedia.org/wiki/Entity_Framework, Last checked on 2015-12-02

[55] Android official pages - https://www.android.com/, Last checked on 2015-12-04

[56] Apple official pages - http://www.apple.com/, Last checked on 2015-12-04

116

List of Tables

Table 1. – Game engines and supported target platforms and whether they are

free to use or royalties are involved, (page 17)

Table 2. – Tested devices with their supported feature levels, shader model

and shader profiles, (page 108)

