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a automatizace
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List of Symbols

R the set of real numbers

N the set of natural numbers

(Ω,A ,P) probability space

A σ-algebra

P a probability measure on the measurable space (Ω,A )

ω an element in the set Ω

X random variable

X random vector or a set of random variables

B Borel σ-algebra

(S,S ) measurable space

F (x) distribution function

Q Lebesgue-Stieltjes measure

(X1, ...,Xn) a random vector

a ∈ A an element a is included in the set A

a ∉ A an element a is not included in the set A

(−∞,x) a multi-dimensional interval between minus infinity and
a vector x ∈ Rn

A,B, ... sets

A ∖B set difference

x→∞ variable x converges to infinity

⊂ nonstrict inclusion

⊊ strict inclusion

∏i∈C a product of functions or sets

B ×C Cartesian product

∫
b

a f(x)dx Lebesgue integral of the function f(x) over the interval
(a, b)

∫x∈A f(x)dx Lebesgue integral of the function f(x) over the setA ∈ B

P << Q measure P is absolutely continuous with respect to mea-
sure Q

⊗i∈V Pi a product measure of measures from the set {Pi, i ∈ V}

A ∪B = AB a union of sets

G = (V,E) a graph

(u, v) an ordered pair of elements from some set

{u, v} an unordered pair of elements from some set

u ≠ v element u is not equal to element v
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∶= is defined as

(vi)ni a finite sequence of elements {v1, ..., vn}

D ≃ D̃ D is Markov equivalent with D̃

∅ an empty set

∀x ∈ X for every element in the set X

∃c ∈ C there exists an element c in the set C

W Ô⇒ T W induced T

W ⇐⇒ T W is equivalent with T

u−−− v undirected edge between u and v

uÐ→ v directed edge between u and v

neG(v) a set of neighbours of v

chG(v) a set of children of v

paG(v) a set of parents of v

C(V) conditional independence structure

⋃i∈I Ai supremum of sets from the set {Ai, i ∈ I}

[D] a class of equivalent DAGs

A = (UA,NA) an annotated graph

cD characteristic imset based on graph D
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Introduction

This thesis deals with a topic, which lies on the intersection of two mathematical
fields: Probability Theory and Graph Theory. We examine multivariate dis-
tributions (both in the discrete and continuous case) and try to describe their
conditional independence structures. Some variables in the multivariate distribu-
tion are independent, some of them are conditionally independent given a set of
other variables and this gives structural information on every multivariate distri-
bution. Specifically, the conditional independence structure of a distribution is
the set of triplets (X,Y,Z) such that each component represents a disjoint subset
of variables from the multivariate distribution and the subset X is conditionally
independent of the subset Y given the subset Z. Recovering such conditional
independence structure from a data set is the first step in describing the whole
multivariate distribution.

It is inefficient to keep the whole list of the triplets from a conditional in-
dependence structure; therefore, more efficient ways of its representation were
introduced by various authors. In this thesis we describe some graphical methods
such as Undirected Graphs, Directed Acyclic Graphs (DAGs), Essential graphs
and Annotated graphs. Also, we present a non-graphical representation called
characteristic imset, which is a special zero-one vector. So far the most common
representation of conditional independence structures is Directed Acyclic Graphs,
also called Bayesian networks. DAG representation of a conditional independence
structure is in general not unique: two different DAGs may represent the same
conditional independence structure. The set of DAGs, who represent the same
conditional independence structure is called the class of equivalence of DAGs.

The main goal of this thesis is to analyse the relations between the anno-
tated graph and the other sorts of conditional independence structure represen-
tations. Firstly, we show that each class of equivalence of DAGs is represented
by one annotated graph. It means that two directed acyclic graphs from the
same equivalence class are represented by the same annotated graph, while two
DAGs which belong to different equivalence classes are represented by different
annotated graphs. This was discussed by Paz, in his papers (Paz [2003b], [Paz,
2003a]). Our contribution is a new direct graphical proof of the fact that non-
equivalent DAGs induce different annotated graphs. This proof was skipped in
Paz [2003a] with tacit assumption that a reader is able to derive that fact from
results of Paz [2003b] and further results on conditional independence structures
induced by DAGs. Our proof, however, does not rely on the concept of condi-
tional independence structure induced by a DAG.

Secondly, we found out what is the connection between the annotated graph
and the corresponding essential graph. Essential graph is known and used as a
uniquely determined graphical representative of a class of equivalence. We gave
two algorithms:

(i) the first one transforms the essential graph to the annotated graph, which
represents the same conditional independence structure
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(ii) the second one does the opposite transformation using the rules formulated
by Meek in his paper Meek [1995].

The fact that there exists the two-way transformation between the annotated
graph and the essential graph can also be used to show in another way, that the
annotated graph is a unique representative of the equivalence classes, since the
essential graph is.

Lastly, we find a similar connection between annotated graphs and character-
istic imsets (introduced by Hemmecke and Linder, M. Studený [2010]), which is
a unique representative of the equivalence class of DAGs. Characteristic imset
is the only non-graphical representation of conditional independence structures
discussed in this thesis. Its main advantage is that it allows one to implement
efficient algorithms for learning DAG conditional independence structure from
data, which is based on integer linear programming M. Studený [2014]. We in-
troduce an algorithm which transforms a characteristic imset into the annotated
graph, which corresponds to the same conditional independence structure as the
original characteristic imset. We provide a proof of the last statement.

In Chapter 1, we introduce the concepts of multivariate distributions and
conditional independence. In Chapter 2 we remind the reader of basic graph-
theoretical notions. Chapter 3 deals with different graphical representations of
conditional independence structures starting with undirected graphs and finishing
with annotated graphs. Two algorithms of transformations between essential
graphs and annotated graphs are introduced in Chapter 4. The hypothesis of
equivalence introduced by Paz [2003b] is proved in Chapter 5. Finally, in Chapter
6 we look into the concept of characteristic imset and introduce an algorithm,
which transforms an imset into an annotated graph, which corresponds to the
same conditional independence structure.
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1. Preliminaries

1.1 Probability concepts

All objects of interest presented in this thesis have a basis in a probability space
(Ω,A ,P), where we can find multiple (even infinitely many) random variables.
We use basic concepts of Probability Theory from the book by Loève [1955],
where all important definitions and properties of the probability space can be
found. Let us mention the ones, which are the most important for this thesis.
A random variable is a function from the above-mentioned probability space to
some target measurable space. If the target space of this function is the space
of real numbers with Borel sigma-algebra, we call such random variable a real
random variable. For example a real random variable X, which has the following
description:

X ∶ (Ω,A ,P) Ð→ (R,B)

ω z→ X(ω).

We will mostly use random variables with the target space Rn, n ∈ N and call
them random vectors :

X ∶ (Ω,A ,P) Ð→ (Rn,Bn).

It is possible to consider more general random variables (random elements),
with a general target measurable space (S,S ), which we can transform into a real
random variable or vector using some measurable function f ∶ (S,S )Ð→ (R,B):

X ∶ (Ω,A ,P)Ð→ (S,S )

f ∶ (S,S ) Ð→ (R,B)

Definition 1 (Distribution function of a random vector). Distribution function of
a random vector X is a monotonic non-decreasing function F defined as follows:

F (x) ∶= P ({ω ∶ X(ω) ≤ x}) = P (X ≤ x) for each x ∈ Rn,

where X ≤ x is true if and inly if, for each 1 ≤ i ≤ n: Xi ≤ xi. The Lebesgue-
Stieltjes measure P on (Rn,Bn) corresponding to the distribution function F is
called the distribution of the random vector X.

In the following text we use some basic definitions from the book by Anděl
[1985]. We start with a Chapter II, where we can find the definition of a marginal
distribution.

Definition 2 (Marginal distribution function). Let us have the random vector
(X1, ...,Xn) which has the distribution function F (x1, ..., xn). For each non-empty
subset K = {k1, ..., kr} of the set {1, ..., n}, the distribution function FK of the ran-
dom vector (Xk1 , ...,Xkr) is called a marginal distribution function. The marginal
distribution function can be obtained in the following way:

FK(xk1 , ..., xkr) = lim
z→∞F (x1, ..., xn),

where z is a sub-vector of the vector x = (x1, ..., xn), such that z = (xi)i∈{1,...,n}∖K.
Symbol z→∞ means, that for every i ∈ {1, ...n} ∖K, xi Ð→∞.

6



We will consider a finite set V of real random variables on a probability space
(Ω,A ,P). Each non-empty subset A ⊂ V of the set of random variables has its
own marginal distribution function.

In this thesis we consider either that the random variables from the set V
have a discrete joint distribution (in which case the distribution function has a
finite number of different values) or that the variables have a continuous joint
distribution (which are characterised by a density function, whose definition is
stated below).

Definition 3 (Density function). If, for a random vector X = (X1, ...,Xn) with
the distribution function F (x), there exists a function f(x) = f(x1, ..., xn), such
that

F (x1, ..., xn) = ∫
x1

−∞
...∫

xn

−∞
f(u1, ..., un) du1 ... dun, for x1, ..., xn ∈ R,

then we call f the joint density function of the random vector X. From the view-
point of the Measure Theory, the density function is the Radon-Nikodym deriva-
tive of the distribution P of X with respect to Lebesgue measure on (Rn,Bn).

Remark. In Definition 3 we consider the Lebesgue measure on (Rn,Bn). In order
to cover also the cases, when a random vector X has a discrete distribution we
should instead consider the counting measure on the product of (finite) sample
spaces of discrete variables X1, ...,Xn, which are subsets of R. Therefore we say,
that a random vector X has a general density function if there exists a product
σ-finite measure µ such that the distribution P satisfies

P (A1, ...,An) = ∫
u1∈A1

...∫
un∈An

f(u1, ..., un) dµ(u1...un)

for A1, ...,An ∈ B. Such a distribution was named marginally continuous in
Studený [2014], section 1.3.

Some of the random variables defined on the probability space are stochasti-
cally independent, some of them might be stochastically dependent. Let us state
the definition of independence, which one can be found in the book Anděl [1985],
section II.2.

Definition 4 (Independence in terms of a distribution function). Let a random
vector X = (X1, ...,Xn) has a joint distribution function F (x1, ..., xn). Let Fi(xi)
denote the marginal distribution function of a variable Xi, i ∈ {1, ..., n}. Then
X1, ...,Xn are independent if

F (x1, ..., xn) =
n

∏
i=1
Fi(xi) for x1, ..., xn ∈ R.

The following definition can be found in Anděl [1985], section III.5 about
conditional density.

Definition 5 (Conditional density). Let us have a random vector
X = (X1, ...,Xn). Consider Y = (X1, ...,Xr) and Z = (Xr+1, ...,Xn), where
1 ≤ r < n. Suppose, that X has the density p(x) with respect to a product measure
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µ = λ × ν, where λ is a σ-finite measure on (Rr,Br) and ν is a σ-finite measure
on (Rn−r,Bn−r). Conditional density of a random vector Y given fixed Z = z
is such non-negative measurable function r(y ∣ z) that for every B ∈ Br and
C ∈ Bn−r the following relation is true:

P(B ×C) = ∫
C
[∫

B
r(y ∣ z) dλ(y)] g(z) dν(z),

where g(z) is the marginal density of vector Z.

Remark. In the generic cases (either discrete or continuous distributions) it is
assumed, that both λ and ν can be factorized into a product of one-dimensional
σ-finite measures: λ =∏

r
i=1 µi and ν =∏

n
i=r+1 µi.

We can also describe the conditional probability density function in the fol-
lowing way:

fX ∣Y(x ∣ y) =
fX,Y(x,y)

fY(y)
if fY(y) > 0, and,

if fY(y) = 0, the function fX∣Y(x∣y) is defined by 0 for all considered x.

As concerns the concept of conditional independence we take over the def-
inition for the case of marginally continuous distributions (see Studený [2014],
section 1.3). In order to formulate definition of conditional independence we first
need to state a definition of a marginally continuous measure and a system of
dominating measures. For union of sets A ∪B we use a shortcut AB.

Definition 6 (marginally continuous measure). Probability measure P is
marginally continuous if it is absolutely continuous with respect to a product of
its one-dimensional marginals: P <<⊗i∈V Pi.

Definition 7 (system of dominating measures). Every system of σ−finite mea-
sures µi on (Rn,Bn), such that P << ⊗i∈V µi is called a system of dominating
measures for measure P . Their product µ =⊗i∈V µi is called the joint dominating
measure for P.

Definition 8 (Conditional independence). Let (A,B,C) be a disjoint triplet over
V. Let P be a marginally continuous measure over V, specifically on (Rn,Bn)
(because ∣V∣ = n). Let {µi ∶ i ∈ V} be a system of one-dimensional dominating
measures for P . Then we say, that A and B are conditionally independent given
C with respect to P , if

for µ − a.s. x ∈ Rn fABC(xC)fC(xC) = fAC(xAC)fBC(xBC),

where fD for D ⊂ V denotes a version of marginal density P for D (with respect to
the considered system of dominating measures) and xD for D ⊂ V is a sub-vector
of the vector x, such that xD = (xi)i∈D.
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Remark. The concept of conditional independence from the Definition 8 does not
depend on the choice of the system of dominating measures. The Definition 8 is
equivalent to either of the following conditions (i) or (ii).

(i)
fXY∣ Z (x, y ∣ z) = fX∣ Z (x ∣ z) fY∣ Z (y ∣ z),

(ii)
fX∣YZ (x ∣ y,z) = fX∣Z(x ∣ z),

where X,Y,Z are random vectors, equations are valid almost surely, the symbol
fA for A ⊂ X ∪Y ∪Z denotes the marginal density of A conditional on a vector
Z.

Remark. We write (X áY ∣ Z) if a random vector X is conditionally independent
of the random vector Y given Z. If the opposite is true we write (X áY ∣ Z)
and say that X is conditionally dependent on Y given Z.

Every joint distribution of a collection of real random variables defines a cer-
tain structure of independences and conditional independences for the given ran-
dom variables. In this thesis we explore representations of these structures and
find some relations between different representations.

Definition 9 (Conditional independence structure). Conditional independence
structure defined by the joint probability distribution P of a set of random vari-
ables V is the set of all triplets (X,Y ∣ Z) with a following property, X,Y ,Z
are disjoint subsets of V such that (X á Y ∣ Z) with respect to P.
The structure is denoted by C(V). 1

It is possible to reconstruct the set of all of triplets in a CI structure from
a subset of the so-called elementary triplets. Their definition and the following
Lemma are stated and proved in lecture notes by Studený Studený [2014], section
2.3.

Lemma 1 (Characterization of a CI structure). The whole CI structure can
be reconstructed from the so-called elementary triplets, where there is only one
variable on the first and on the second place: ∣X∣ = ∣Y∣ = 1. Specifically, the CI
structure is reconstructible as follows (X áY∣ Z) iff

∀X ∈ X ∀Y ∈ Y ∀W with Z ⊂ W ⊂ X ∪Y ∪Z ∖ (X ∪ Y ) one has (X á Y ∣ W).

1.2 Graphical concepts

There are several ways to represent a CI structure in the memory of a computer.
One option is to save the whole list of triplets which form the CI structure. But
this way is very demanding on the memory of a computer and it is hard to verify if
some particular triplet is present in the structure. Another option is to use some
representation, where triplets of a CI structure are encoded in a specific way.
One of those representations is the Directed Acyclic Graph, also called Bayesian

1In this thesis we use a shortcut CI for the term conditional independence.
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network. The other representations are, for example, a simple undirected graph,
an annotated graph or an imset.

Let us give some graphical definitions, which we will need throughout the
thesis.

Definition 10 (Graph). A graph G over a non-empty set V is an ordered pair
(V,E) where V is called the set of nodes, while E is the set of edges, which are
ordered pairs of nodes (v, u), u, v ∈ V and u ≠ v.

Remark. Since we consider in E only pairs (u, v), where u ≠ v, our graphs will
be without loops. Also, we suppose that the number of nodes, the cardinality of
the set V, is finite.

Definition 11 (Types of edges). We distinguish two types of edges:

undirected edge An edge (u, v) is undirected if (u, v) ∈ E and (v, u) ∈ E.
We write u −−− v and say, that u, v are neighbours/ neighbouring nodes.

directed edge An edge (u, v) is directed if either [(u, v) ∈ E & (v, u) ∉ E]
or [(v, u) ∈ E & (u, v) ∉ E]. If (u, v) ∈ E and (v, u) ∉ E we write u Ð→ v
and say, that u is a parent of v, while v is a child of u.

Definition 12 (Neighbours, children, parents). For each node v ∈ V and for each
set of nodes A ⊂ V we introduce the following concepts:

neighbours We denote this set of nodes as neG(v) or neG(A) and define
in the following way: neG(v) ∶= {u ∈ V ∶ u−−− v}, whereas
neG(A) ∶= ⋃u∈A neG(u) ∖A;

children This set of nodes is denoted by chG(v) or chG(A) respectively,
where chG(v) ∶= {u ∈ V ∶ v Ð→ u}, chG(A) ∶= ⋃v∈A chG(v) ∖A;

parents The set of parents is denoted by paG(v) or paG(A) and defined as
follows:
paG(v) = {u ∈ V ∶ uÐ→ v}, paG(A) ∶= ⋃v∈A paG(v)

We will refrain from mentioning the graph G in the definition of neighbours,
children or parents when it is obvious, which graph G we have in mind. Thus,
for example, instead of paG(u) we may write pa(u).

Definition 13 (Subgraph). A graph G̃ = (Ṽ , Ẽ) is a subgraph of a graph
G = (V,E), if Ṽ ⊂ V , Ẽ ⊂ E and all of the edges in G̃ are of the same type as
in G.

Definition 14 (Induced subgraph). An induced subgraf Ĝ = (V̂ , Ê) of a graph
G = (V ,E) given by a non-empty set of nodes V̂ ⊂ V and the set of edges is
determined in the following way: Ê = E ∩ (V̂ × V̂ ).

Definition 15 (Path, cycle). We will distinguish several types of paths in a graph
G = (V ,E):

10



an undirected path is a sequence (vi)ni=1 , n ≥ 1 of distinct nodes from V
such that, for every i ∈ {1, ..., n − 1}, it holds that vi −−− vi+1. The length of
such path is the number of edges in the path, namely n − 1;

a semidirected path from node v1 to node vn, n ≥ 1, is a sequence of
distict nodes from V such that, for every i ∈ {1, ..., n − 1}, it holds that
(vi, vi+1) ∈ E and there exists j ∈ {1, ..., n − 1} such that (vj+1, vj) ∉ E, that
is vj Ð→ vj+1 and for i ≠ j, 1 ≤ i ≤ n − 1 either vi Ð→ vi+1 or vi −−− vi+1;

a directed path is a sequence (vi)ni=1, n ≥ 1, of distinct nodes from V
such that, for every i ∈ {1, ..., n − 1}, it holds that vi Ð→ vi+1;

an undirected cycle is an undirected path except that n ≥ 4 and there
are two equal nodes in the sequence, namely v1 = vn;

a semidirected cycle is a semidirected path except that n ≥ 4 and there
are two equal nodes in the sequence, namely v1 = vn;

a directed cycle is a directed path except that n ≥ 4 and there are two
equal nodes in the sequence, namely v1 = vn.

Remark. We denote a path (vi)ni=1 by π and the length of the path π by l(π). In
this case l(π) = n − 1.

Definition 16 (graph skeleton). A skeleton of a graph G = (V,E) is an undi-
rected graph UG = (V,E′), such that if (v,w) ∈ E then both (v,w) ∈ E′ and
(w, v) ∈ E′. In other words we forget all directions of edges.

Definition 17 (ancestor, descendant). Let G = (V,E) be a graph, then

an ancestor node a ∈ V is an ancestor of a node d ∈ V in G if there exists
a directed path from a to d in G;

a descendant node d ∈ V is a descendant of a node a ∈ V in D if a is an
ancestor of d in G.

Remark. Definition 17 takes into account paths which consist of a single node
(for n = 1). As a consequence, each node is its own ancestor and descendant.

Remark. On the other hand, when G is a Directed Acyclic Graph, a node v can
not be both an ancestor and a descendant of a different node w (that would mean
that there is at least one directed cycle in D).

The following definition was mentioned in S. A. Andersson [1977], Appendix
A.

Definition 18 (Chain graph). A graph G = (V,E) is a chain graph if it contains
no semidirected cycles.
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Definition 19 will be very useful throughout this thesis, the concept of Di-
rected Acyclic Graph is mainly based on the following induced subgraph called
an immorality.

Definition 19. (Immorality in a graph) A triplet of distinct nodes (p, q, c) in
a graph G is called an immorality in G if there is no edge between the nodes p
and q and the node c is a common child of the nodes p and q. In other words,
p Ð→ c ←Ð q is an induced subgraph of D. In this case, the nodes p and q are
called the unmarried parents or the unmarried couple.

Figure 1.1: Illustration of the immorality (p, q, c) with unmarried parents p and
q

p q

c
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2. Graphical models of
conditional independence
structures

2.1 Undirected graphs

Definition 20 (undirected graph - UG). An undirected graph U = (V,E) is a
graph where every edge from E is undirected.

Figure 2.1: Example of a UG G

1
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Definition 21 (cut set in a UG). Let us have an undirected graph U = (V,E)
and some disjoint subsets of its set of nodes: X,Y and Z. The set Z is called
a cut set between X and Y if every undirected path between any node from X
and any node from Y has non-empty intersection with Z. A minimal cut set Z
between X and Y is a cut set, such that for every W ⊊ Z, W is not a cut set
between X and Y.

Undirected graphs are used to represent CI structures C(V) implied by a proba-
bility distribution. Let us assume that we already have some conditional indepen-
dence structure C(V). An undirected graph U which represents C(V) is built
over a set of random variables V, which means that every node of the graph repre-
sents a random variable from V. The question is how to check if a certain triplet
from C(V) is represented in U . Due to the Lemma 1 it is enough to consider only
elementary triplets from C(V). The following Definition 22 can be extended to
the whole CI structure, which consists of general (not only elementary) triplets.

Definition 22 (UG criterion). Let us have two different nodes X,Y ∈ V and
a disjoint set of nodes Z ⊂ V. A triplet ⟨X,Y ∣ Z⟩ from CI structure C(V)
is represented in an undirected graph U = (V,E) if Z is a cut set (not necessarily
minimal) between X and Y .

For example in Figure 2.1 a set Z = {3,5} is a minimal cut set between two
sets of nodes, X = {2} and Y = {6}. That means, that the triplet ⟨X,Y∣ Z⟩ is
represented in graph G using the UG criterion from the Definition 22.
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The following facts come from Studený [2014], section IV. A graph can represent
a CI structure in two ways: fully and partially. In the first case every triplet from
a CI structure is represented in the graph, in the second case some information
about it is lost: some triplets, which can be found in the structure are not repre-
sented in the graph. In both cases of representation, triplets which do not belong
to the CI structure are not represented in the graph.

Definition 23 (UG representation of a CI structure). An undirected graph
U = (V,E) represents conditional independence structure C(V) given by a prob-
ability distribution

fully 1 if the set of triplets represented in U as in Definition 22 is exactly
the same as the set of triplets in C(V),

partially 2 if the set of triplets represented in U as in Definition 22 is a
subset of the set of triplets in C(V).

Not every CI structure can be represented fully by a UG. Therefore, we can only
approximate such CI structure by undirected graphs, which represent them par-
tially.

On the other hand, for every undirected graph U = (V,E), there always exists a
probability distribution over the set of random variables V, which defines the CI
structure induced by the graph U . See D. Geiger [1993].

2.2 Directed acyclic graphs

There are other ways to represent CI structures. We can use Directed Acyclic
Graphs instead of undirected graphs. These graphical models of CI structures
are named Bayesian networks and are widely used in such fields as artificial in-
telligence. The set of CI structures representable by directed acyclic graphs is
different from the one representable by undirected graphs (although their inter-
section is not empty). On the other hand, there still exist some CI structures
which can be represented neither by undirected graphs nor by directed acyclic
graphs.

Definition 24 (Directed graph). A directed graph D = (V,E) is a graph, where
each edge (u, v) ∈ E is directed.

Conditional independence structures are represented by a more restricted class
of directed graphs: directed acyclic graphs. It is appropriate to note, that the
name is misleading in a certain way: precisely it should have been acyclic directed
graphs. Then the meaning could be quite intuitive, because we will consider di-
rected graphs and forbid directed cycles in them. Nevertheless, the term ’directed
acyclic graph’ has become widely accepted in the community of graphical models.

1The terminology may vary here - most common name for the probability distribution, which
can be represented fully by a UG is perfectly Markovian distribution.

2A distribution, which can be represented by a UG partially is also called Markovian distri-
bution.
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Definition 25 (Directed Acyclic Graph - DAG). A Directed Acyclic Graph
D = (V,E) is a directed graph where there are no directed cycles.

Figure 2.2: Example of a Directed Acyclic Graph D
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As mentioned before, DAGs are also used to represent CI structures. Similarly to
undirected graphs, each node in a DAG represent a random variable. It is possi-
ble to decide in multiple ways whether a certain triplet from a given CI structure
is represented in a DAG. We will give two criteria. The first criterion is based
directly on the original DAG, whereas the second one needs to modify the DAG
into an undirected graph and then uses the criterion described in Definition 22
from section 2.1.

We will need the following definition in order to formulate the first criterion.

Definition 26 (collider). Let us have a directed acyclic graph D = (V,E).
Then we say that a node v is a collider on a path (vi)ni=1 if there exists an index
i ∈ {2, ..., n − 1} such that vi = v and vi−1 Ð→ vi, vi+1 Ð→ vi.
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Figure 2.3: Illustration of the collider on the path

v

vi−1 vi+1

Definition 27 (DAG criterion 1). A triplet ⟨X,Y ∣ Z⟩ from CI structure C(V)
is represented in a DAG D = (V,E) if on every path (vi)ni=1 between X and Y ,
there is a node v, which is one of two sorts:

� v is a collider on the path (vi)ni=1 and there is no descendant of the node v
which belongs to Z,

� v is not a collider on the path (vi)ni=1 and v belongs to Z.

Remark. Criterion described in Definition 27 is sometimes called d-separation
criterion and it was introduced by Pearl. The d-separation criterion can be
found for example in the book Studený [2014], section 5.

There is another option, which includes modifying DAG in a certain way and
erasing direction of arrows. To modify a DAG in the right way, we will have to
detect certain structures (induced subgraphs) called immoralities and introduced
in the Definition 19.

Definition 28 (DAG criterion 2). A triplet ⟨X,Y ∣ Z⟩ from a CI structure C(V)
is represented in a directed acyclic graph D if it is represented in the undirected
graph U = (V′,E′), where U is obtained by the following construction:

(i) let V′ be the set of ancestors of the nodes {X∪Y ∪Z}; consider the subgraph
of D induced by the set V′ denoted as D′,

(ii) moralize immoralities: connect nodes in D′, which are unmarried parents
with an undirected edge,

(iii) erase all directions (consider the skeleton of a graph D′ after the step (ii)).
The resulting graph is the undirected graph U .

Remark. The criterion described in the Definition 28 is also called Lauritzen
criterion, in the article Paz [2003b] it is described as the algorithm L1.

Remark. Two criteria described in Definition 27 and in Definition 28 are equiv-
alent. This has been proven in the lecture notes Studený [2014] in the Lemma
5.7 (chapter Bayesian networks). The first criterion from Definition 27 is more
suitable if we want to confirm that a certain triplet is not represented in a DAG,
the second criterion from the Definition 28 is useful for showing that a triplet is
represented.
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2.3 Equivalence of directed acyclic graphs

Definition 29 (Markov equivalent DAGs). Two DAGs D and D̃ are Markov
equivalent if the sets of triplets represented in both graphs are identical. If D and
D̃ are Markov equivalent, we write D ≃ D̃.

There are several ways to decide whether two DAGs are Markov equivalent.
The Theorem 3, which is based on former results in the theory of Bayesian net-
works, gives us two options; it was formulated and proven in Studený [2014],
section 5.5. In order to state the observation we need to formulate the definition
of a reversible arrow.

Definition 30 (Reversible Arrow in a DAG). Let us have a directed acyclic
graph D = (V,E) and an arrow a Ð→ b which belongs to D. An arrow a Ð→ b is
reversible if the directed graph D̃ = (V, Ẽ), where Ẽ = (E ∖ (a, b)) ∪ (b, a), has
exactly the same immoralities as D and doesn’t contain directed cycles.

There exist several characterizations of the concept described in Definition
30. They are useful in different situations. The following characterization is
formulated in Studený [2014], Lemma 5.22.

Theorem 2. (Characterization of the reversibility) An arrow a Ð→ b is
reversible in a DAG D if and only if paD(a) = paD(b) ∖ a.

The following claim from Studený [2014] Statement 5.23, gathers different
characterisations of Markov equivalence for DAGs.

Theorem 3. (Characterization of DAG equivalence) Let us have two DAGs
D and D̃. Then the following statements are equivalent:

� D and D̃ are Markov equivalent (D ≃ D̃),

� There exists a sequence of DAGs: D1, ...,Dn, n ≥ 1 with a following property.
The first graph D1 is the original DAG D, the last one Dn is D̃. For
every i ∈ {1,2, ..., n − 1} it holds that Di+1 is obtained from Di by changing
the direction of one of the reversible arrows,

� D and D̃ have the same skeleton and immoralities.

2.4 Essential graphs

The set of all DAGs can be divided into equivalence classes using the relation of
Markov equivalence defined in the Definition 29. Let us denote the class contain-
ing a DAG D by [D]. We can decide whether two DAGs are Markov equivalent
using one of the criteria from the Theorem 3 - Characterization of DAG equiva-
lence. Moreover, there is a way to represent each equivalence class by a special
graph called the essential graph of the equivalence class. The essential graph
is a hybrid graph, which means that it may have both directed and undirected
edges. Its definition taken from the paper of Andersson, Madigan and Perlman
S. A. Andersson [1977] is stated below.
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Definition 31 (Essential graph). The essential graph D∗ associated with DAG
D is the graph

D∗ ∶=⋃ (D′ ∣D′ ≃D) ,

that is, D∗ is the smallest hybrid graph larger than every D′ in [D] (symbol ⋃
stands for supremum of graphs with respect to the ordering by larger).
Here, if H = (V,E1) and G = (VE2) are hybrid graphs H is larger than G if
E2 ⊂ E1.

For every DAG D let us also denote a class of equivalence [D] by [D∗], where
D∗ is an essential graph corresponding to D. This notation will simplify future
arguments.

Each essential graph represents a Markov equivalence class of DAGs and for
each class only one such representative exists. It follows from Definition 31 that
an edge e in the essential graph D∗ is directed if and only if in each DAG D in the
class [D∗] this particular edge is equally directed. Such arrow is called essential.
On the other side, if there exist two DAGs D and D′ in the equivalence class [D∗],
such that in D an edge e between two nodes a and b is directed form a to b and it is
directed from b to a in D′ then the edge e is undirected in the essential graph D∗.

In the paper S. A. Andersson [1977] a characterization of graphs that are
essential graphs is given. The characterization gives a necessary and sufficient
condition for a graph G = (V,E) to be the essential graph D∗ for some class
[D∗] of equivalent DAGs (in this case we are talking about a hybrid graph). The
following Theorem is a corollary of the Theorem 4.1 in S. A. Andersson [1977].

Theorem 4 (Properties of the essential graph D∗). If a graph G = (V,E) equals
to D∗ for some DAG D then G satisfies the following conditions.

(i) G is a chain graph;

(ii) No configuration a Ð→ b−−− c (called a flag) occurs as an induced subgraph
of G;

2.5 Annotated graphs

Here we introduce the concept of an annotated graph, which is the main topic of
this thesis. The annotated graphs can also be used as an efficient representation
of CI structures. The concept of an annotated graph does not fit into the general
definition of the graph stated Section 1.1, but its basis it comes from the concept
of the undirected graph. Each edge in an annotated graph is undirected, but some
of the edges have an annotation upon them. The annotation is a set of nodes,
which also belong to the node set of the graph. Therefore, an annotated graph
is basically an undirected graph, where some of the edges are paired with certain
sets of nodes from the graph. Let us give a formal definition of an annotated
graph, which uses the term of an element.

Definition 32 (Element). Let us have an undirected graph G = (V,E). An
element e in this graph is a triplet (p, q,S), where p, q ∈ V, p−−− q in G and S ⊂ V
is a set of nodes distinct from p and q.
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Definition 33 (Annotated graph). An annotated graph is a pair
A = (UA,NA) where UA = (V,E) is an undirected graph and NA is a set of
elements of UA.

Figure 2.4: Example of an annotated graph A = (UA,NA)
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Figure 2.5: A DAG D which corresponds to the annotated graph A = (UA,NA)
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Annotated graphs as well as DAGs and UGs can represent conditional in-
dependence structures. Nodes from an undirected graph UA represent random
variables. In the paper Paz [2003b] annotated graphs were used to introduce
an alternative version of the algorithm described in Definition 28. It was stated
there, that with a preconditioning procedure of transforming DAG into an an-
notated graph, the task of deciding whether a given triplet is represented in a
DAG is faster, on the average, when compared with the other algorithms. The
algorithm provides us with a way to get an annotated graph from a DAG which
would represent the same CI structure.

Algorithm 1. (DAG to Annotated graph transformation ) 3

Input: a DAG D = (V,E);
Output: an annotated graph A = (UA,NA);
The steps are as follows:

3In Paz [2003b] there is a slightly complicated version of this algorithm, which cuts off parts
of annotations. It is called the algorithm L2 - preconditioning
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(i) Construct a UG out of DAG D, to be denoted by UA, by connecting all
unmarried parents by an edge and removing all directions;

(ii) Construct the set NA as a union of elements created as follows: if v,w is an
unmarried couple in D then construct an element (v,w,S), where S consists
of all common children of the nodes v and w and of all descendants of those
children.

The following algorithm provides us with a way to decide if a certain inde-
pendence triplet ⟨X,Y ∣ Z⟩ is represented in annotated graph A = (UA,NA).

Algorithm 2. (criterion - annotated graph)
Input: an annotated graph A = (UA,NA) and a triplet of disjoint subsets of nodes
X,Y,Z.
Output: the decision whether ⟨X,Y∣ Z⟩ is represented in the annotated graph A.

(i) 0. Denote T = X⋃Y⋃Z.

1. Find unmarked elements from NA and put them in a stack. If no such
elements exist, go to 3.

2. While the stack is not empty do
begin

(a) Remove an element e = (p, q,S) from the stack.

(b) If S⋂T = ∅ then (process the element)
begin

- Remove the nodes in S from U and remove incident edges. If
some of the nodes or edges have been removed in a previous
iteration, then remove only the remaining parts.

- Disconnect in U the pair of nodes {p, q}.

- Remove the element (p, q,S) from NA.

end.

(c) Else mark (p, q,S) end.

Go to 1.

3. Halt.

(ii) A triplet ⟨X,Y∣ Z⟩ is represented in an annotated graph A if it is represented
in the sense of Definition 22 in the UG U generated by the (i).

Theorem 5. Given a DAG D, if A is the annotated graph obtained by Algorithm
1 from D, then the set of triplets represented in the DAG D is exactly the same
as the set represented in the annotated graph A using the criterion described in
Algorithm 2.

Theorem 5 was proven in Paz [2003b].
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3. Hypothesis of equivalence

In the following section we will prove, that an annotated graph represents a
Markov equivalence class of directed acyclic graphs. This means that annotated
graphs corresponding to two Markov equivalent DAGs are identical and, for each
annotated graph, the set of corresponding DAGs is the equivalence class. This
idea has been introduced in paper Paz [2003b], where he offered an indirect proof
(using conditional independence structures) for one of the implications mentioned
above. In this thesis we give a direct (graphical) proof of both implications.

Definition 34 (skeleton for an annotated graph). The skeleton of an annotated
graph A = (UA,NA) is the undirected graph UA. In other words, we forget the
annotations.

Theorem 6. Let us have two DAGs D and D̃ which are Markov equivalent. Then
the annotated graphs A and Ã which correspond to each DAG (in the sense of
Algorithm 1) are identical, that means, that they have the same nodes, edges and
annotations.

Proof. We will apply Theorem 3 to simplify the task of verifying the statement of
Theorem 6. Instead of proving the result for two general DAGs D and D̃ we can
consider, without loss of generality, two DAGs which differ only in the direction
of one reversible arrow.

Let us look into the process of the construction of the annotated graph A
corresponding to some DAG D. The nodes of the annotated graph originate
from the given DAG D, whereas the edges in A are of two sorts:

� the edges present in D,

� the edges between parents in immoralities in the graph D.

The edges of the first sort are identical for the graphs A and Ã, because they
come from DAGs D, D̃ which only differ in direction of one arrow. The edges
of the second sort are not present in either D or D̃. But since D and D̃ have
the same immoralities, the pairs of nodes to be connected and annotated are the
same in both cases of A and Ã. Therefore, the skeletons of both annotated graphs
are identical.

The only component in which they could differ is the annotation for the edges
connecting unmarried parents. Let us fix an annotated edge between nodes p and
q. This edge (p, q) is present in both annotated graphs A and Ã, but we do not
know yet, if the annotations for this edge are identical in A and in Ã. Let us
denote the set of common children (of nodes p and q) and their descendants as S
for the first graph A and similarly S̃ for the second graph Ã.

Let node c be a common child of nodes p and q in D. Then the triplet
(p, q, c) is an immorality in D. Since D and D̃ are equivalent, they have the same
immoralities (due to the Theorem 4). Therefore, (p, q, c) is an immorality also in
the graph D̃, which means, that c is a common child of p and q in D̃.

Let us assume, that node a belongs to S, but it is not a common child of p
and q in D. Then, in the DAG D, there must exist a common child of nodes p
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and q whose descendant is the node a. We can denote it as c and know that it is
a common child of p and q in the graph D̃ as well.

Since a is a descendant of c, we also know that there exist some directed paths
in the DAG D from c to a. We can choose the shortest one from these paths
(a path with the smallest number of edges):

π ∶ (c = a1) Ð→ a2 Ð→ ... Ð→ (an = a) .

If D̃ differs from D in the direction of an edge between ai and ai+1 for some
i ∈ {1, ..., n − 1} and there is no edge between ai−1 and ai+1 then we get a contra-
diction as described below.

If i = 1, then the node a is child of a common child c of nodes p and q. If
D̃ differs from D in the direction of the edge between c and a, then to avoid
immoralities (p, a, c) and (q, a, c) in D̃, which are not present in D, there must
be two edges between p and a and between q and a in both DAGs. There are no
directed cycles in D, therefore p Ð→ a and q Ð→ a. But that means, that a is a
common child of p and q in D, which is a contradiction with our assumption.

Figure 3.1: Illustration of the case, when a2 is a child of c = a1
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In the case when i ≥ 2 we proceed as follows. Since no other edge in D̃ can
have a different direction than the one in D, there is an immorality ai−1 Ð→
ai ←Ð ai+1 in D̃, which is not present in D. It is a contradiction, because D and
D̃ are equivalent, therefore there must be an edge between ai−1 and ai+1.

There are two possible directions of an edge in the graph D between ai and
ai+1, for i ≥ 1 we have:

� An arrow ai−1 ←Ð ai+1. However, this arrow can not be present in D,
because D has no directed cycles. See Figure 3.2.

� An arrow ai−1 Ð→ ai+1. If this arrow is present in D, then there exists
a path between c and a which has less number of edges than the one that we
picked at the first place. But this fact is a contradiction with the assumption
that the path π has the smallest possible length in D. We can shorten it by
using an arrow ai−1 Ð→ ai+1 instead of two arrows ai−1 Ð→ ai Ð→ ai+1.
See Figure 3.3
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Figure 3.2: Illustration of the first option: directions of edges in D.
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Figure 3.3: Illustration of the second option: directions od edges in D.
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Therefore, the directions of all arrows in the path π in D̃ are the same as in
D. This means that in D̃ we can also find a directed path from c to a and the
node c is a common child in the graph D̃ as well as in D. Therefore, a ∈ S̃ and we
have that S ⊂ S̃. We can prove by a symmetrical argument that S̃ ⊂ S. Therefore,
the graphs A and Ã have the same annotations: NA = NÃ.

Theorem 7. Let us have two different DAGs D and D̃, by the procedure 1 we get
the corresponding annotated graphs A and Ã. If these two graphs are identical,
then the original DAGs D and D̃ are Markov equivalent.

Proof. Since the annotated graphs are identical, let us denote the unique anno-
tated graph which represents both DAGs as A. Due to Theorem 3 it is enough
to show that the graphs D and D̃ have the same skeleton and immoralities. Due
to the construction 1 there exists a bijection between non-annotated edges in the
graph A and the edges present in the graph D. The same is true for the other
graph D̃, therefore, both DAGs have the same edges.

Let us fix an immorality in the graph D to prove that it is also an immorality
in D̃. Denote the immorality by p Ð→ c ←Ð q, where p and q are parents and
c is their common child. First notice that there is no edge between p and q in
graph D̃. Let us assume though that the triple (p, q, c) is not an immorality in
graph D̃. Without loss of generality we can assume, that an arrow c Ð→ q is
present in D̃ (see Figure 3.4).

Figure 3.4: An induced subgraph of a graph D̃.
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Since c ∈ S, where S is the annotation of the edge (p, q) in A, in D̃ there
must exist a common child d of nodes p and q such that c is a descendant of d.
Therefore, there also exist a directed path from d to c in D̃:

π ∶ d = c1 Ð→ ... Ð→ cn = c.

We can use this path to see, that in this situation, there is actually a directed
circle in D̃ starting and finishing in the node q:
q Ð→ d = c1 Ð→ ... Ð→ cn = c Ð→ q. Which leads to a contradiction with
the assumption that D̃ is acyclic.

As a consequence, an arrow c ←Ð q must be present in the DAG D̃. Using a
symmetrical argument pÐ→ c is also in D̃. Hence we can find an immorality
pÐ→ c←Ð q from D also in D̃. Therefore, each immorality present in D can be
also found in D̃. Using the same reasoning, we can show that every immorality
from D̃ is also in D. The edges and immoralities are the same in both graphs D
and D̃; therefore, they are Markov equivalent.
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Figure 3.5: An illustration of a cycle.
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Remark. Theorem 7 has been proven in the article Paz [2003b] in a different
way. Paz detected all triples from the CI structure which were represented in
an annotated graph A and concluded that since both DAGs D and D̃ represent
the same set of triplets, they must be Markov equivalent. The Theorem was also
mentioned in the paper Paz [2003a].

Theorems 6 and 7 give us an interesting result. For each CI structure repre-
sented fully by a DAG there exists an annotated graph A, which represents this
structure and it is unique.
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4. Essential graphs and
annotated graphs

Another task is to find an algorithm which would provide us with an annotated
graph corresponding to a given essential graph introduced in Definition 31. The
question is whether we can find an annotated graph A, which would represent
the same CI structure as the given essential graph D∗. In other words, we are
trying to find an annotated graph A which corresponds to any DAG D from the
equivalence class [D∗].

In order to construct the annotated graph which corresponds to a given essen-
tial graph we need to recognise the skeleton of the annotated graph, annotated
edges and annotations. An annotated graph is built over a DAG D, therefore we
need to examine some DAG D as an instance from the class [D∗].

Algorithm 3. (from essential graph to annotated graph)
Input: an essential graph D∗ = (V,E), which represents an equivalence class
[D∗];
Output: an annotated graph A = (UA,NA).

(i) The undirected graph UA = (V,E′) is built over the same set of nodes V as
D∗;

(ii) If (u, v) ∈ E then (u, v) ∈ E′ and (v, u) ∈ E′ for each pair of nodes u, v ∈ V
(the undirected graph UA will contain all directed and undirected edges from
E);

(iii) For each immorality (p, q, c) ∈D∗ with unmarried parents p, q we add moral
edges (p, q) and (q, p) to E′;

(iv) For each moral edge p−−− q we create its annotation S. S contains all com-
mon children of nodes p and q and descendants of those children in essential
graph D∗.

Theorem 8. (Correctness of Algorithm 4) The annotated graph A = (UA,NA)
produced as the output of the Algorithm 3 corresponds to the same CI structure
C(V) as the input essential graph D∗.

Proof. Essential graph D∗ represents a Markov-equivalence class [D∗]. Let us
take one DAG D from [D∗] and prove, that annotated graph A could have been
constructed from D using Algorithm 1. Then we will also know, that A represents
[D∗], due to Theorem 5.

(1) Steps (i), (ii), (iii) give us, that by Theorem 3 and the construction of
the essential graph (Definition 31) the essential graph D∗ has the same
skeleton as any DAG D ∈ [D∗]. Also, it has exactly the same immoralities
(the immoralities from a DAG D are preserved, whereas new ones can not
occur due to the fact that we can only erase arrows and replace them by
undirected edges).
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(2) In step (iv) we create the annotation for edges between immoral parents.
The question is, whether an annotation created from essential graph D∗

equals to an annotation recovered from DAG D. Let us have an immorality
(p, q, c), denote the set of all common children of p and q and their descen-
dants in essential graph D∗ as S∗. We claim that the set S∗ is equal to the
set S, which denotes the range for the unmarried couple (p, q) constructed
from the DAG D ∈ [D∗].
First, let us state, that S∗ ⊂ S. That is true, because if we can find a
directed path from one of the nodes p or q in D∗ to some node d through
their common child c, then we can find the same directed path in D (D
contains all of the directed edges present in D∗).
What about the other inclusion S ⊂ S∗? First, let us state, that all common
children of p and q are both in S and S∗. Let us fix one d ∈ S, who is not
a common child of p and q. The fact, that d ∈ S implies that there is a
directed path from one of the nodes from the domain (p, q) through their
common child c to d. Let us take a common child c of the nodes p and
q, such that the directed path between c and d is the shortest (contains
minimum of edges), denoted by

πD∗ ∶ (c = d1)Ð→ d2 Ð→ d3 Ð→ ...Ð→ (dn = d).

Let us assume, that d ∉ S∗. That means, that there is no directed path
from any common child of nodes p and q to node d. Which means, that
a path πD does not exist in essential graph D∗. The path is thus ’broken’
somewhere, which means, that one of the directed arrows is not essential
and looses its direction in the essential graph D∗. This arrow can not be
the one between p and c, because these belong to an immorality and stay
in the graph D∗. Let us, therefore, take the smallest i ∈ {1, ..., n − 1}, such
that the edge between di and di+1 is undirected in the essential graph D∗.

Let us consider the case, when i = 1 separately: when i = 1, then there is a
DAG D′ in D∗, such that d2 Ð→ d1. Therefore, there should be an arrow
from p to d2 as well as from q to d2 (see Figure 4.1), which makes d2 a
common child of p and q, which is a contradiction with the assumption.

Figure 4.1: Illustration of the case, when i = 1

p q

d1

d2

27



Figure 4.2: Illustration of the situation in the essential graph

p q
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Figure 4.3: Semidericted cycles
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Let us examine the case, i ≥ 2:

Since there are no flags in the essential graph (Theorem (4), point (ii)),
nodes di−1 and di+1 must be connected by an edge. Since the essential graph
D∗ is a chain graph (Theorem (4), point (i)) neither of the configurations
from Figure 4.3 can be a subgraph of D∗: because these are semidirected
cycles. Therefore node di−1 is connected with node di+1 by an arrow: di−1 Ð→
di+1. This means, that there exists a shorter directed path between c and d
in essential graph D∗:
π′D∗ ∶ (c = d1)Ð→ ...Ð→ di−1 Ð→ di+1 Ð→ ...Ð→ (dn = d). In particular the

same directed path exists in DAG D:
π′D ∶ c = d1 → ...→ di−1 → di+1 → ...→ dn = d. Which is a contradiction to the

assumption, that πD∗ is the shortest directed path from a common child
of nodes p and q, c to d.

In both cases we reach a contradiction, which means, that the shortest
directed path should be also in the essential graph D∗, which represents a
DAG D. Therefore, S∗ ⊂ S

The skeleton of A is the same, as of A′ built from D ∈ [D∗] using Algorithm
1. The annotated edges as well as the annotation for those edges are equal in A
and in A′, therefore A is equal to A′.

The following concepts, which include algorithm formulated by C. Meek will
be sed in the following text to formulate an inverse algorithm: from annotated
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graph to corresponding essential graph. Let us formulate the result of C. Meek,
published in the paper Meek [1995], section 2.1.2. In his work, Meek understands
the essential graph as a partially directed graph whose edges (called adjacencies
in the paper) are the same as any complete casual explanation for C(V). This
is in concordance with our observations after Definition 31. A hybrid graph D∗∗

used in the following Theorem is called a pattern. In Meek [1995] the set of
orientation rules for patterns is formulated and Theorem 9 is proven.

Theorem 9. Let us have a DAG D. Its pattern D∗∗, has the same skeleton and
the same immoralities as D. It is possible to reconstruct the whole essential graph
D∗, such that [D∗] = [D] following a set of rules from Meek [1995].

Algorithm 4. (from annotated graph to essential graph)
Input: an annotated graph A = (UA,NA), where UA = (VA,EA) is a UG;
Output: an essential graph D∗ = (V,E);
The steps are as follows.

(i) The set of nodes is identical in graphs UA and D∗, in other words V = VA;

(ii) The set of edges differs in moral edges, E = EA ∖ {annotated edges};

(iii) For each element e = (p, q,S) ∈ NA let us find all c ∈ S such that (p, c) ∈ E
and (q, c) ∈ E, then direct those edges in the following way: pÐ→ c, q Ð→ c.

(iv) Expand the directed edges using the set of rules formulated by Meek.

Theorem 10. Using the Algorith 4 from an annotated graph A we get an essential
graph D∗, which corresponds to the same CI structure C(V).

Proof. First two steps (i) and (ii) of the Algorithm 4 are quite intuitive: both
graphs, A and D∗ have to be defined over the same set of nodes, V. Edge set of
an essential graph D∗ differs only in annotated edges, therefore by removing the
annotated edges we obtain the correct set of edges for D∗. The third step (iii)
recovers all of the immoralities in the essential graph D∗.

(i) If (p, q, c) is an immorality in the essential graphD∗, then it is an immorality
in every DAG D, which belongs to [D∗]. Therefore, p−−− c, q −−− c in A and
in NA, there is an element (p, q,C) ∈ NA with c ∈ S.

(ii) If (p, q,S) ∈ NA, then p, q is an unmarried couple in some DAG D, which
belongs to the class [D∗]. It also means, that every node from the set S is
either a common child of the nodes p and q in the DAG D or a descendant
of some common child from S. Let us take a node c ∈ S, that satisfies p−−− c
and q −−− c in A. If c is not a common child of the nodes p and q in D,
then c must be a parent of at least one of the nodes p or q. Let us assume
without loss of generality, that c is a parent of q in D. But it is also a
descendant of a common child of p and q. Therefore there exists a node d,
such that q Ð→ d, there is a directed path πD from the node d to the node
c and also an arrow cÐ→ q in D. All of these arrows form a directed cycle
in D, which is a contradiction since D is a DAG. Therefore the node c is a
common child of the nodes p and q.

The step (iv) is proven in Meek [1995].
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5. Characteristic imsets

Another essentially different way to represent conditional independence structures
induced by Bayesian networks is based on the concept of a characteristic imset,
which was first introduced in the paperM. Studený [2010]. The characteristic
imset which represents a CI C(V) is a zero-one vector whose components are
indexed by subsets of V which have at least two elements. Its definition is built
on the Directed Acyclic Graph, which represents some CI structure C(V). The
following definition is taken over from M. Studený [2014].

Definition 35 (Characteristic imset). Let D = (V,E) be an acyclic directed
graph. The characteristic imset over the set V for D can be introduced as a
zero-one vector cD with components cD(S), where S ⊂ V, ∣ S ∣ ≥ 2, and

cD(S) = 1 ⇐⇒ ∃i ∈ S such that S ∖ {i} ⊂ paD(i).

Let us consider a characteristic imset cD. If its component cD(S) for S ⊂ V
is 1, then there exists a node i ∈ S, such that every other node in S is its parent.
We call such node sink node within S.

Let us mention the most important properties of characteristic imset, which
are mentioned in M. Studený [2014], section 2.4.

Theorem 11. The characteristic imset is uniquely identified by its components
which are indexed by sets with two or three elements. Let us denote this essential
set by T = {cD(S), ∣ S ∣ ≤ 3}. All of the values for components which are indexed
by larger sets can be reconstructed from the set T.

Theorem 12. Two DAGs D and D̃ are Markov equivalent if and only if their
corresponding characteristic sets are the same: cD = cD̃.

Let us give an example, illustrating, how a characteristic imset can be obtained
from a DAG. In Figure 5.1 we can see a Directed Acyclic Graph, whereas Table
5.1 shows us the values of the corresponding characteristic imset.
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Figure 5.1: Example of a Directed Acyclic Graph D used to illustrate the concept
of a characteristic imset.

a b

c

de

Table 5.1: The characteristic imset cD, which corresponds to the DAG D from
Figure 5.1.

ab 0 ac 1 ad 0 ae 1 bc 1 bd 0

be 0 cd 1 ce 1 de 1 abc 1 abd 0

abe 0 acd 0 ace 1 ade 1 bcd 0 bce 0

bde 0 cde 1 abcd 0 abce 0 abde 0 acde 1

bcde 0 abcde 0

For example, the component indexed by ace is 1 because the set {a, c, e} con-
tains a sink node e. Both nodes in S∖ e are parents of e. On the other hand, the
component indexed by the set {a, b, e} equals 0, because neither of the nodes a, b
or e is a sink node: a is a parent of e, but b is not a parent of e. The component
indexed by the set acde has a value 1, because a, c and d are parents of e. Its
value may be also deduced from the values of the components which are indexed
by couples or triplets of nodes.

Since the primary goal of this thesis is to study properties of annotated graphs
and its connections with other representations of CI structures, in the following
text we provide an algorithm, which takes the characteristic imset cD and, with-
out reconstructing a corresponding DAG D, gives us the annotated graph A.
Whereas A corresponds to the same CI structure C(V) as cD. The Algorithm 5
is a new original contribution of this thesis.

A reconstruction algorithm for the essential graph from the characteristic im-
set is provided in M. Studený [2009].
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Algorithm 5. (From a characteristic imset to an annotated graph)
Input: the characteristic imset cD, shortly c;
Output: the annotated graph A = (UA,NA) , where UA = (V,E).

(i) begin with the undirected graph UA = (V,E), where E is the empty set of
edges and V is the set over which c is defined;

(ii) identify those edges from E that are not annotated: for each p, q ∈ V, p ≠ q,
if c({p, q}) = 1 then p−−− q, that is (p, q) and (q, p) are included in E;

(iii) identify the set of annotated edges and the annotations for them: for each
non-edge couple of nodes p, q ∈ V, p ≠ q such, that there exists c ∈ V ∖ {p, q}
with c({p, q, c}) = 1, p−−− q will be an annotated edge;
The annotation of this edge is constructed by applying the following steps:

(1) construct the set C:
C = {c ∈ V ∶ c({p, q, c}) = 1}; S = C ∪ {p, q}; M = {p, q};

(2) while the set C ∖M is not empty, take c ∈ C ∖M,

find all nodes d in V ∖ S such that c({c, d}) = 1 and either
c({p, c, d}) = 0 or c({q, c, d}) = 0.

Then include d in S: S = d ∪ S.

Mark c as a predecessor of d: pre(d) = c .

After finding all such d for the considered c ∈ C ∖M include c in
M : M = c ∪M.

(3) the set S ∖M is not empty, take a node d ∈ S ∖M,

for each node e ∈ V ∖ S, such that c({d, e}) = 1 and
c({pre(d), d, e}) = 0,

put S = e ∪ S, pre(e) = d. After finding all such e for considered
d ∈ S ∖M put M = d ∪M.

(4) the nodes p and q from the set S: S = S ∖ {p, q},

add the element (p, q,S) to NA.

Remark. Let us take a closer look at what each set in the Algorithm 5 represents.
In the step (iii) we fix one annotated edge p−−− q and reconstruct its annotation
from the characteristic imset cD and a skeleton of the annotated graph A built
in the steps (i) and (ii). The set S represents the annotation for the edge p−−− q,
therefore S contains all common children and their descendants in every DAG D,
which corresponds to the imset cD. The set C is a subset of S and it represents
all of the common children of p and q in the DAG D. The set M represents the
parents of the immorality (p, q) and all of the nodes from S, whose children in
the DAG D are already in the set S.
The symbol pre(d) stands for the predecessor of the node d on the implied path
between the unmarried parents p, q through their common child c to the node d.
The value of pre(d) does not change for fixed annotated edge (p, q) throughout
step (iii).

Example. Let us see how the algorithm works in case of the characteristic imset
cD from Table 5.1. First two steps, (i) and (ii), will give us the undirected graph
in Figure 5.2:
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Let us start with the part (iii). For the triplet (a, b, c) it is true that
c({a, b, c}) = 1, c({a, b}) = 0. Therefore, {p, q} = {a, b} is an annotated edge in
the graph A. Now we will focus on the annotation of the edge {a, b}. The set C is
C = {c}, because c is the only node, for which a−−−d, b−−−d and c({a, b, d}) = 1.
After step (1) we have S = C ∪ {a, b} = {c, a, b} and M = {a, b}.

In the step (2) for {p, q} = {a, b} we examine neighbours of the node c (except
from those connected by an annotated edge) from the set V∖S. These are nodes
e and d since c({c, e}) = c({c, d}) = 1 and {e, d} ∉ S. Since c({b, c, e}) = 0 and
c({a, c, d}) = 0 we include both e and d into S. Therefore, S = {e, d} ∪ S and
pre(e) = pre(d) = c. We need to modify the set M: M = c ∪ M. Since the set
C ∖M is empty, part (2) is finished.

In the step (iii) part (3) we take a node e ∈ S∖M. Since there are no nodes in
the set V∖S, we expand the set M to e∪M and process the node d from S∖M.
Situation is similar for d, the set V ∖ S is empty, therefore M = d ∪ M. Since
S∖M is empty, the step (iii) part (3) is finished and we can move to the next one.

In the step (4) we just remove the nodes a, b from the annotation S and add
an element (a, b,{c, d, e}) to NA. The partial result is in the Figure 5.3.

An analogous procedure (iii) can be performed for another non-edge couple
of nodes {p, q} = {a, d}. Since c({a, e, d}) = 1, a−−−d is an annotated edge in A.
The only ’common child’ is the node e, therefore C = S = {a, d, e}. M = {a, d}.
The only node which from V ∖ S, which is a neighbour of e in the undirected
graph from step (ii) is the node c. Since c({a, e, c}) = 1 and c({d, e, c}) = 1, c
does not belong to the range S. Therefore, after removing nodes a and d from the
range in the step (4), we get S = {e}. Since there are no more non - edge couples
p, q, where c(p, q, c) = 1 for some c ∈ V ∖ {p, q}, the Algorithm 5 is finished and
NA = {(a, b,{c, d, e}), (a, d,{e})}. The resulting annotated graph is shown in
Figure 5.4.

Now let us state the main result on Algorithm 5. But first we need to formulate
one useful lemma, which is an observation about Algorithm 5.

Lemma 13. Let us have a characteristic imset cD built over some DAG D. Then
in the part (iii) of the Algorithm 5 the following is true. If d ∈ M, then d is either
one of the unmarried parents p, q or Algorithm 5 has already included all of the
children of the node d in the DAG D to the set S.

Proof. First, let us assume, that d is not p or q.
For each node d ∈ V, let us consider a number n(d) ∈ N, which stands for the
length of the directed path πc(d) from one of the parents p or q through their
common child c to d in D. The directed path π(d) = (vi)ni=1 is implied by the
Algorithm 5 in the following way. vn = d, vi = pre(vi+1) for i ∈ 2, ...n − 1 and
v1 = p. The path πd is unique, every node d has at most one predecessor pre(d).
Let us proceed with the induction method and prove that for d ∈ M, chD(d) ⊂ S:

(i) If n(d) = 1, then for every node e ∈ V ∖ S, such that e ∈ neD(d),
cD({p, d, e}) = 1 and cD({q, d, e}) = 1. It implies, that d is a sink node for
both sets {p, d, e} and {q, d, e} (e ∉ C, therefore it can not be a sink node
of the sets), therefore e can not be a child of d.
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(ii) If n(d) > 1, then for every node e ∈ V ∖ S, such that e ∈ neD(d),
cD({pre(d), d, e}) = 1. n(pre(d)) < n(d), pre(d) ∈ Mtherefore due to induc-
tion hypothesis chD(pre(d)) ⊂ S. If d is a sink node in the set {pre(d), d, e},
then e ∉ chD(d). If e is a sink node in the set {pre(d), d, e}, then einchD(d)
and e ∈ chD(pre(d)) ⊂ S, which means, that e is already in S.

Therefore, we can conclude, that if d ∈ M, then chD(d) ⊂ S.

Theorem 14. Let D be a DAG over V. Algorithm 5 described in this section
transforms the characteristic imset cD into an annotated graph A = (UA,NA) (
UA = (V,E) ). Then both cD and A represent the same conditional independence
structure over V, namely the one corresponding to D.

Proof. The characteristic imset cD represents the same conditional independence
structure as the DAG D from which the characteristic imset was built.
Let us consider an annotated graph A′ = (U ′

A,N
′
A), which is the output of Algo-

rithm 1 used on the input DAG D. We will prove, that A = A′.

Let us consider couples of nodes p, q, which we find in the step (iii) of the
Algorithm 5. Firstly we prove, that those couples are immoral parents of im-
moralities from D and that every immoral couple from D is recovered by the
Algorithm 5.

(i) If (p, q, c) is an immorality in D with unmarried parents p and q then
cD({p, q}) = 0, because there is no edge in D between p and q. More-
over, cD({p, q, c}) = 1, because the node c satisfies the following condition:
{p, q, c} ∖ {c} ⊂ paD(c);

(ii) If cD({p, q}) = 0 and cD({p, q, c}) = 1, then there is no edge between p and
q and c has to be a sink node in the set {p, q, c}, because it can not be
any of the other nodes: p is not be a sink node, because there is no edge
between p and q (similarly for q). Therefore {p, q} ⊂ paD(c) and (p, q, c) is
an immorality with unmarried parents p and q.

Therefore the set of annotated edges in A is equal to the set of annotated edges
in A′. This also means, that UA = U ′

A′ , due to the fact, that both U ′
A and UA are

the skeletons of the DAG D together with the annotated edges.

Secondly we prove, that in the step (iii) part (1) of the algorithm, the set C
of common children of p and q in D is identified:

(i) If c is a common child of unmarried parents p and q then cD({p, q, c}) = 1 ;

(ii) If cD({p, q, c}) = 1 and p and q are disconnected then p Ð→ c and q Ð→ c,
so that the condition of a characteristic imset is satisfied
({p, q, c} ∖ {c} ⊂ paD(c)).

Thirdly we prove that the set of children of common children of p and q in D
is identified correctly in the step (iii), (2). In this part we add to the set S all
nodes which are children of nodes from C. We process every node from C one
by one and mark those nodes which are already processed by adding them to the
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set M (so that we do not process them twice). For each c ∈ M we consider a
potential child in the set V∖S, because we are not interested in the nodes, which
already belong to the annotation.

(i) If d is a child of c ∈ C in D and both cD(p, c, d) = 1 and cD(p, c, d) = 1,
we show, p Ð→ d ←Ð q in D. Indeed, if cD(p, c, d) = 1, since p and q have
children in {p, c, d} the sink node in {p, c, d} must be d. Similar reasoning
works for q. Then d is a common child of p and q, which is a contradiction
with the assumption, that d was chosen outside S, because C ⊂ S. Therefore
either cD({p, c, d}) = 0 or cD({p, c, d}) = 0.

(ii) If c−−−d and either cD({p, c, d}) = 0 or cD({p, c, d}) = 0 then d is a child of
c, because if d Ð→ c, then cD({p, c, d}) = 1 and cD({q, c, d}) = 1 (c would
be a sink node in both sets {p, c, d} and {q, c, d}).

Lastly, we identify the set of descendants of children of common children of
p, q. In Algorithm 5 in the step (iii) (3) for each d ∈ S ∖M we consider a set of
nodes from V ∖ S which are neighbours of d (not by an annotated edge). Let us
take one such node e. Since e ∈ V ∖ S there is no directed arrow from pre(d) to
e (d was added to S as a child of pre(d), therefore pre(d) ∈ M and Lemma 13
gives us, that chD(pre(d)) ⊂ S). Therefore there are two options:

(i) There is no edge between pre(d) and e. Then cD({pre(d), d, e}) = 0 if and
only if d is not a sink node and dÐ→ e (therefore e belongs to the range);

(ii) There is an edge e Ð→ pre(d) then again cD({pre(d), d, e}) = 0 if and only
if d is not a sink node and dÐ→ e (therefore e belongs to the range);

As a conclusion, let us see, that for each annotated edge {p, q} in A, the set of
annotation is the set of common children of nodes p and q in D and descendants
of those children. Therefore, the annotation of the edge {p, q} is equal in A and
in A′. Since the set of the annotated edges is also equal in two annotated graphs
A and A′, NA = N ′

A′ . Therefore A = A′ and we have proven, that the output
annotated graph of the Algorithm 5 represent the same CI structure as the input
imset.
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Figure 5.2: Annotated graph in process: after steps (i) and (ii)
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Figure 5.3: Annotated graph in process, (iii), first annotated edge
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Figure 5.4: The final annotated graph A
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