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Abstrakt:

Projekt Groningen Meaning Bank (GMB) vytvář́ı korpus s bohatou syntaktick-
ou a sémantickou anotaćı. Anotace v GMB jsou generovány poloautomaticky
na základě dvou zdroj̊u: (i) Vstupńı anotace ze sady standardńıch nástroj̊u
pro zpracováńı přirozeného jazyka (NLP) (ii) Opravy/vylepšeńı od lidských an-
otátor̊u.

Např́ıklad na úrovni anotace slovńıch druh̊u existuje 18 000 takových oprav,
nazývaných Bits of Wisdom (BOWs). V této práci zkoumáme možnosti zlepšeńı
technik NLP pomoćı zapojeńı těchto informaćı. V experimentech použ́ıváme
BOWs pro přetrénováńı analyzátoru slovńıch druh̊u. Zjistili jsme, že analyzátor
může být vylepšen tak, aby opravil až 70% nalezených chyb v testovaćıch datech.
Tento zlepšený analyzátor nav́ıc napomáhá ke zlepšeńı výkonu parseru. Nej-
spolehlivěǰśı cestou se ukázalo být preferováńı vět s vysokou mı́rou potvrzených
analýz po přetrénováńı.

V experimentu se simulovaným aktivńım učeńım použ́ıvaj́ıćım Query-by-Uncertainty
(QBU) a Query-by-Committee (QBC) jsme ukázali, že selektivńı vzorkováńı vět
pro přetrénováńı dává lepš́ı výsledky a vyžaduje méně dat než použit́ı náhodného
výběru.

V doplňkové pilotńı studii jsme zjistili, že standardńı analyzátor slovńıch druh̊u
trénovaný modelem maximálńı entropie může být rozš́ı̌ren použit́ım známých
analýz ke zlepšeńı svých rozhodnut́ı na celé sekvenci bez přetrénováńı modelu.

Kĺıčová slova: korpus, slovńı druhy, anotace, opravy, NLP
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Abstract:

The Groningen Meaning Bank (GMB) project develops a corpus with rich syn-
tactic and semantic annotations. Annotations in GMB are generated semi-
automatically and stem from two sources: (i) Initial annotations from a set
of standard NLP tools, (ii) Corrections/refinements by human annotators.

For example, on the part-of-speech level of annotation there are currently 18,000
of those corrections, so called Bits of Wisdom (BOWs). For applying this in-
formation to boost the NLP processing we experiment how to use the BOWs in
retraining the part-of-speech tagger and found that it can be improved to correct
up to 70% of identified errors within held-out data. Moreover an improved tagger
helps to raise the performance of the parser. Preferring sentences with a high rate
of verified tags in retraining has proven to be the most reliable way.

With a simulated active learning experiment using Query-by-Uncertainty (QBU)
and Query-by-Committee (QBC) we proved that selectively sampling sentences
for retraining yields better results with less data needed than random selection.

In an additional pilot study we found that a standard maximum-entropy part-of-
speech tagger can be augmented so that it uses already known tags to enhance
its tagging decisions on an entire sequence without retraining a new model first.
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1. Introduction

To a lot of tasks in Natural Language Processing (NLP), a corpus – a large col-
lection of (annotated) text – is indispensable. Since corpora can be seen as a
representation of a language, they provide the means of studying language quali-
tatively and quantitatively. They are the basis for an exploratory data analysis
or for corpus studies that can give insight to specific linguistic phenomena, help
to spot differences between different languages or can provide a way to prove or
disprove a theory. Moreover, annotated corpora, i.e. labeled data, are needed for
supervised learning. They are widely used as training and testing material for
statistical and machine-learning-based systems, that address all kinds of classic
NLP problems. For example, probabilistic methods for named entity (NE) recog-
nition or other information extraction problems heavily rely on annotated data
for training purposes [50].

Assembling an annotated corpus, however, can be a challenging and cost-
intensive endeavor. While collecting raw text data in large quantities is becoming
easier as more texts are available in digital form [4], annotating it usually still
consumes the largest portion of time and money. Traditionally, the biggest item in
terms of money and time is human labour for manually labeling text data. Cost
constraints, however, are usually the limiting factor when assembling a corpus
and render manual annotation for large corpora infeasible. Fortunately, there are
automatic tools (pre-trained on already existing corpora), which provide fairly
accurate annotations with little to no additional cost, that can help greatly in
the annotation procedure. For example in the setting of part-of-speech (POS)
tagging, taggers are reported to achieve an accuracy of above 97% [36]. Despite
very good performance of statistical tools on some annotation tasks, they are not
perfect and sometimes produce erroneous annotation, for example on unknown
words. In order to create a high-quality corpus with reliable annotation, those
errors require correction. This correction is typically again provided by human
annotators. It is aimed for high quality, while their manual effort is kept to a
minimum. This is why combining automatic pre-annotation and correction seems
to have obvious advantages over full annotation from scratch since it greatly
reduces the amount of manual work needed in the process of corpus creation.
In our research we are interested in investigating the effect of those (manual)
corrections of automatically annotated text. For this we work with the Groningen
Meaning Bank (GMB) corpus [5].

The GMB project compiles and maintains a corpus of texts with manifold
annotation, including deep semantic representations of the texts. In the pro-
cess of building this resource, statistical state-of-the-art NLP tools were used to
provide the first step of annotation. The annotations are continuously refined
through manual corrections provided by experts and non-experts. Annotation
can also be augmented or replaced by external annotation from trusted sources
like other corpora or special NLP tools. Within the GMB project these correc-
tions and external knowledge are referred to as Bits of Wisdom (BOWs). This
approach guarantees a steady improvement of the quality of annotation as long
as (more) human effort is invested. However it is not clear to date how efficient
this improvement is.
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Consider the following example sentences:

(1) a. Exercise every day!

b. Exercise regularly to be fit!

In the sentence given in (1a), the word ‘Exercise’ was incorrectly classified as
a noun. This error was corrected to the accurate verb classification. We can
assume that the tagger is also mistaken on similar cases like the one given in (1b)
or that it also misclassified other verbs in the imperative form as a noun. This
error still persists after the correction on the first sentence since this only corrects
the misclassification locally. This means that the correction has no influence on
the tagging in the rest of the corpus. Identifying all similar cases and correcting
them would be a laborious task. Besides, if for example more data gets added
to the corpus and is also automatically annotated, a newly added similar case
would still be misclassified. This is certainly an unwanted practice since it misses
any learning effect. Rather it is desirable that the already provided information
(i.e. the correction in the first example) helps to solve errors in all similar cases
(e.g. the second sentence). Moreover, correcting similar errors repeatedly gives
gradually less new information from correction to correction. The need of hu-
man involvement should be minimized, while the impact of manual corrections is
maximized.

In order to avoid further misclassifications the classifier has to learn the cor-
rections that are provided. In general retraining the statistical tool, employed
for providing the annotation, with the newly gained information/data is the only
available method to implement this demand. While we have to make sure that
the corrections are actually learned by the classifier, retraining raises at the same
time the possibility and problem of introducing new errors. If we recall the ex-
amples from above, we do not want that learning the interpretation of ‘Exercise’
as a verb causes other occurrences of this word to be misclassified as a verb. For
example, in the sentences given in (2) the classification of ‘Exercise’ as a noun
should not change.

(2) Exercise is the key to good health.

The central goal of this thesis is to assess the possible impact and effect of
manual corrections in the GMB. We want to address this objective by investigat-
ing and answering a number of questions:

• How can the models of the statistical annotation tools be retrained effec-
tively?

• How can the effect of a single BOW be maximized?

• How can the supervision of the retraining process be minimized?

• What can be learned from the existing corrections for future annotation
effort?

Answering these questions will help us find ways for exploiting the existing
corrections and effectively improving the annotation in the corpus. This will
bring us one step closer to building a high quality gold-standard resource that
can be of great use to the research community. Additionally, with repeated
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iterative retraining it might be possible to build a robust automatic annotation
system, that reduces the need for manual correction in the future. With our
experiments we also seek to gain knowledge useful for the further development of
the GMB corpus. At the moment BOWs are provided in an unguided fashion,
i.e. annotators are not specifically guided in their way where to look for possible
errors or where verification of annotation might be needed. This has a number of
implications, of which we are interested in the issues related to the efficiency of
the annotators. Most prominently it leads to the consequences that the provided
corrections can be of low value to the whole corpus or the provided corrections
are redundant. These two problems are immediately connected with each other.
Correcting a sentence might not provide much new information to the tagger
when it is added to the training data. The reasons for that might be that the
corrected error is infrequent in the corpus or only one word out of a long sequence
of reliably tagged tokens is corrected. In the case of only one corrected word out
of the entire sequence, only this word really contributes to the training. Many
similar corrections are likely to have only little added value in training. This is
problematic because we want maximum impact from the corrections since they
are costly manual effort.

As an extra to this main research focusing on retraining, we will investigate
another approach to make (additional) use of the corrections provided in our data.
We execute a small-scale pilot study on how corrections can be made available
to the tagger already at tagging time without retraining a new model first. We
consider it an unnecessary restraint that the tagger cannot use the already known
tags in a sequence and is thus blind to existing information. We hypothesize that,
if this information is used by the tagger, the tagging of other tokens is positively
influenced through reduced uncertainty in the sequence. Since this experimental
design explicitly avoids retraining, we separated it from the other experiments
and discuss it in an extra chapter. Its results, however, will add to the outcomes
of the rest of our research.

There are many different layers of annotation with existing corrections in the
GMB, but for this thesis we will concentrate on the POS level of annotation. The
choice of this level of annotation is motivated by two reasons. First, this level has
the highest amount of correction in comparison to the other levels of annotation.
Because of the high distribution of corrections on this layer, it is not only the most
interesting starting point, but it also will probably give the most reliable results.
Secondly, POS tagging takes place in the beginning of the processing pipeline
(only preceded by text segmentation) and higher levels need it as input. The
entire pipeline will profit from improvements made in early stages. Additionally,
since text segmentation operates on almost 100% accuracy, hardly any errors are
propagated from other tools earlier in the processing. This means that no errors
originating from other tools influence the results of our experiments.

The thesis will be structured as follows. First, we want to introduce the GMB
to outline the context in which this work was executed, as well as provide the
reader with relevant background information about POS tagging in general and
the statistical tools being used. After this an overview of related work relevant
to our research is given. The main experimental setup of this research is pre-
sented in chapter 4. The results are discussed in chapter 5. In chapter 6 we
propose an enhancement to the general POS tagger design in a proof-of-concept
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study. Finally we will conclude by summing up the results and answering the
research questions. Additionally, we draw conclusions for the GMB project and
give pointers for possible future work. We give a list with short explanations for
the POS tags used throughout the thesis in the appendix.
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2. Background

In this second chapter we want to give background information on three main
elements the reader should be familiar with in order to fully understand the im-
plications of our work: (i) the corpus that we work with (including information
about the manual correction/annotation available in the corpus), (ii) the statisti-
cal tools that provide annotation in the corpus and (iii) automatic part-of-speech
annotation.

2.1 The Groningen Meaning Bank

The Groningen Meaning Bank (GMB) [5, 10] is a publicly available corpus that
provides texts with syntactic and deep semantic annotation. The declared goal of
the GMB project is to create a gold standard corpus of meaning representations.
To achieve this goal, automatic annotation from state-of-the-art NLP tools is
combined with corrections and adjustments form both expert and non-expert an-
notators. For the semantic representation of the texts a variant of the Discourse
Representation Theory [31] was chosen. This theory employs Discourse Repre-
sentation Structures (DRSs), that can capture several linguistic phenomena, as
its basic meaning carrying units.

The fairly complex processing pipeline in the GMB provides a number of
annotations on multiple layers. The tools that make up the pipeline will be
discussed shortly in the next section (2.2). Processing takes place on the following
levels:

1. sentence boundary detection/tokenization

2. POS tagging

3. NE tagging

4. supertagging (assigning the grammatical (CCG) categories)

5. parsing (syntactic analysis)

6. boxing (semantic analysis)

The GMB corpus consists of 100 parts, and the latest release (version 2.2.0)
contains 10,000 documents with 1,354,149 tokens. Since the GMB project is an
ongoing effort, more texts are added regularly. The current development version
includes an additional 103 documents. Moreover the project currently maintains
a backlog of roughly 63,000 documents with more than 32M tokens that are
placed at its disposal and ready to be checked but not accepted into the corpus
yet. The development version is accessible through the wiki-like interface,1 shown
in Figure 2.1, that allows easy editing of tokenization or annotation [6].

It is noteworthy that the GMB includes not only newswire text, a usual pre-
vailing genre of a corpus, but also jokes, fables and country descriptions. To
assure that the genres are distributed evenly in the corpus, the documents of the
respective subcorpora are spread across the parts. The GMB orientates itself

1 http://gmb.let.rug.nl/explorer
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Figure 2.1: The Explorer of the GMB in an Internet browser showing a document with
POS annotation.

on the CCGbank [29] for the representation of syntactic information and uses a
combinatory categorial grammar (CCG). CCG is a lexicalized theory of gram-
mar [59]. This means that most work is done on the word level (in the lexicon)
and only few grammar rules are needed. This makes it very easy to use with
manual corrections, since changes are done on the lexical category of a token
rather than by annotation of complex syntactic structures. Consequently also
the tagset for POS annotation is geared towards the tagset of the CCGbank with
minor changes. The tagset of the CCGbank is an extension of the classic Penn
Treebank tagset [37].

The primary language of the GMB project is English, but currently an effort
is made to integrate more languages to create a parallel meaning bank [10]. Sim-
ilar to parallel treebanks a parallel meaning bank could help improve machine
translation algorithms.

A fundamental concept in the design and the development of the GMB is the
notion of Bits of Wisdom (BOWs). All changes and corrections made to the data
in the corpus at any stage of the processing are subsumed by this concept. The
BOWs are designed to be information preserving, i.e. any change can be reverted.
As a consequence they are traceable and easy to administer, and this is especially
useful as there are a number of different sources. The two main sources for BOWs
are expert annotators and non-expert annotators. Experts can correct through an
online interface and at any level of annotation. The ‘wisdom’ of the non-experts
comes from the game with a purpose (GWAP) Wordrobe2, that was created
specifically for this purpose [66]. In this game players solve linguistic problems
(e.g. choosing the right grammatical category for a word) in a playful way. In
contrast to the experts not every suggestion by a player is directly adopted as a
BOW, but only those that are supported by a larger number of players. BOWs
can also come from external tools like for example a word-sense-disambiguation
system. As BOWs are applied in every step in the pipeline, they do not only
correct the final result of annotation, but the corrected data are also available to
higher levels of processing. If two or more BOWs contradict each other, a judging

2 http://wordrobe.org/
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component is employed. So far, judging follows a simple strategy by preferring
more recent BOWs and ranking expert annotators over every other source. More
sophisticated ways of resolving conflicting BOWs might follow in the future.

The total number of active POS BOWs provided by a human annotator (in the
current development version) is 18,006. There are 7,143 documents that contain
at least one POS BOW. From Figure 2.2 we can see that the 10 first sections in
the GMB contain a slightly higher amount of POS BOWs than the rest. In an
overall view the BOWs are distributed reasonably evenly. As we can see from
the chart in Figure 2.3 the POS level represent 12% of all BOWs. The NE level
has a significantly higher amount of BOWs which is partially due to the fact that
NEs often span multiple tokens and thus more tokens get annotated with a single
correction.

Figure 2.2: Distribution of BOWs on the POS level over the 100 parts of the GMB

2.2 The statistical tools: The C&C tools

The automatic text processing for the GMB corpus is done by a number of statis-
tical tools. Most of the tools in the pipeline are part of the C&C tools3 [20]. The
pipeline handles one document at a time in multiple different steps that provide
annotation in a cascading fashion.

Text segmentation (sentence splitting & tokenization) is the first step in the
processing and is done by the statistical tool elephant [22]. The centerpiece of
the C&C pipeline is a wide-coverage CCG parser (from the C&C tools) [14].
The annotation required by the parser as input features is provided by a number
of maximum entropy (ME) taggers. These taggers include a POS tagger, an NE

3 http://svn.ask.it.usyd.edu.au/trac/candc
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Figure 2.3: Annotation levels with the biggest portion of BOWs

recognizer, and a CCG supertagger [20, 19, 18]. The ME framework for tagging is
also shortly covered in the following section (2.3). All of these taggers are part of
the C&C toolchain. The pipeline is completed by boxer [9]. This last component
generates the semantic representations in the form of DRSs.

The Figure 2.4 shows an overview how the tools interact to produce the DRS
representation output from a document as input.

Figure 2.4: Schematic representation of the processing pipeline in the GMB

2.3 Part-of-speech Tagging: An example of Se-

quence Tagging

Part-of-speech (POS) tags are descriptive labels which are assigned to a token,
i.e. a word or a punctuation mark, in a text. As the name already indicates, these
tags describe the part-of-speech (noun, verb, adjective, ...) of a token. But this
is only a vague definition. The linguistic information contained in the tag differs
with tagset and language, and can include morphological and lexico-semantic
properties as well. For example this can include information about number,
grammatical gender or voice. Another name, proposed by van Halteren [63] as
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more ‘adequate’, is morphosyntactic tags. POS tagging is a form of sequence
tagging and the process of tagging involves disambiguating, determining a basic
form, lemma, and (automatically) assigning the tags to each token in a sequence
(usually a sentence). When considering the form of the words ‘study ’ and ‘work ’
in the example (3), both could be a verb or a noun. To be able to interpret the
sentence the two words have to be disambiguated. In this case ‘study ’ should be
tagged as a noun and ‘work ’ as a verb.

(3) I work on a study of language.

POS tagging is a prerequisite for a number of other NLP tasks, as they use
this preprocessing step as an input for more complex analysis (e.g. parsing). POS
tagging adds an extra layer of information to the text data at hand and is one step
for the interpretation of the text. For example in machine translation, adding
POS information to a phrase in the source language can help disambiguate it and
thus facilitate finding the correct translation in the target language [62].

A comprehensive overview of the history of POS tagging in the past decades
is given by Voutilainen [67] and van Halteren [63]. Over the years POS taggers
have moved from linguistically motivated, rule-based approaches to data-driven
machine learning (ML) and statistical techniques. Despite their expressive power
and their property of being able to tackle sophisticated linguistic knowledge,
hand-written rules are more limited and not easily transferable to other languages,
and domains/tagsets. The first statistical systems were able to easily outperform
systems with hand-written rules in terms of accuracy. Data-driven systems, in
general, learn a language model from training data to disambiguate words. A
basic, but effective, way of doing this is storing frequency information of short
word-tag-pair sequences (n-grams). This information about the frequency of a tag
for a given word in an n-gram context can then be easily applied in tagging. For
example, if a word that is noun-verb ambiguous is preceded by an unambiguous
determiner (e.g. ‘the’ ), the noun reading is chosen as this is more frequent and
thus more probable.

For morphologically rich languages this method has to be augmented since
many word forms are especially sparse in these languages. It is infeasible to
list all possible word forms with frequency estimates since there are too many
possibilities and estimating the frequency from data is challenging. A solution is
to use the lemma (base form) of words instead.

A common paradigm in POS tagging is the Hidden Markov Model (HMM).
The taggers are popular for their processing speed and accuracy. An HMM does
not encode the information about the tags (probability) explicitly. The underlying
assumption of this model is that the sequence of words that needs to be tagged
was ‘generated’ from a (hidden) sequence of tags. The probability of a tag in
this sequence depends on a fixed history (e.g. two preceding tags in case of a
trigram model). The probability of a word to be ‘generated’ depends on the POS
tag. The algorithm used for tagging essentially tries to recover the (most likely)
sequence of tags that ‘generated’ the string in question. Similar to all statistical
methods these parameters are usually estimated from annotated text. However,
an advantage of HMM-based taggers is that they can be learned from untagged
text only with the help of a lexicon (which gives the allowed tags for a certain
word). For this, an HMM model is initialized and the model parameters are
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refined iteratively by reducing the ambiguity measured on a training corpus with
the help of the Baum-Welch algorithm [7]. HMM taggers that are trained on
tagged data, however, usually have higher accuracy than those learned from raw
text [51, 67].

An approach that includes the notion of rules in data-driven learning is
transformation-based tagging. In this approach a set of ordered rules is learned
in an error-driven manner from labeled training data. Besides a tagged training
corpus a set of predefined local rule templates is needed from which rules can be
learned. In the learning phase the training corpus is tagged according to some
(initial) rules and compared to the true annotation. A new rule is created from
a template and adopted to refine the so far defined rules in order to minimize
misclassifications if it brings the best correction rate. In tagging the rules are
applied in the order that was learned [67].

A widely used state-of-the-art method for POS tagging is the maximum en-
tropy (ME) framework (sometimes also MaxEnt for short). A tagger algorithm
using this framework was put forward by Ratnaparkhi [42] and his implementa-
tion MXPOST reaches state-of-the-art accuracy (96.6%) on a test set for English.
The ME model gives the conditional probability of a tag in a context. The con-
textual, probabilistic information comes from a set of binary contextual features
(predicates). These contextual predicates usually include information about the
surrounding tags and tokens. The model keeps a weight for all of the predefined
features and in training, the weights for features are learned. The fundamental
concept of ME modeling is, that out of a set of potential models always the most
uniform model, which satisfies a set of constraints, is chosen. The model with the
highest entropy is the most uniform [17]. Hence the name maximum entropy. The
model is constrained by the expected value of each feature. The (approximated)
expected value according to the model should match the expected value empir-
ically observed in the training data. The tagger used in this work (mentioned
in section 2.2) is an ME tagger. The performance of an ME tagger can further
be refined by smoothing the model. Smoothing can help to avoid overfitting by
relaxing the model constraints on low-frequency features [17].

The performance of a POS tagger is most commonly measured by its accuracy
(sometimes also expressed as error rate). The correctness of the tagger is essen-
tial, whereas processing speed and memory requirements are nowadays negligible
factors. To evaluate the tagger, it is run on a corpus with trusted annotation,
a gold standard corpus, which is typically hand-annotated. By comparing the
tagger’s output to the gold standard data, the accuracy (the ratio of correctly
tagged tokens to all tokens) can easily be computed. Related measures, taken
from information retrieval, are precision and recall. These measures allow for a
more fine-grained analysis of results. For example, one can calculate precision
and recall for a specific tag to see whether too many false positives are produced.

The informative value of the tagset used with the tagger (in matters of the
ambiguity present in the input) influences the avail of the tagger output. It is
‘easier’ to tag a text with a tagset only containing a few tags since less choices
need to be made, but the information content might be bigger if a larger and
more delicate tagset is used. However this concept is more difficult to measure,
since no clear evaluation metric is defined.
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Tagsets used in POS tagging do not only differ for different languages but
also within one language usually multiple tagsets with varying specifications,
granularity and features are in use. The differences in the tagsets reflect needs of
different target applications or specific underlying linguistic theories. There exist
a few popular tagsets which are used for a number of applications and thus allow
for easy comparability of different systems. The Penn Treebank tagset [37] is
probably the most prevalent for English. With the diversity of tagset comes the
problem that information is often trapped in one tagset specification. Zeman [70]
presents a general means to convert linguistic information from one tagset to any
other tagset. A set of morphosyntactic features (the Interset) that is designed
to be universal and capture all information possibly present in a POS tag is the
medium to translate between tagsets. Once it is defined how a tagset can be
converted into the Interset (and how a tag can be found from the Interset) it can
be converted to any other tagset that is convertible to Interset. Another notable
effort to make linguistic annotation more generally accessible is the definition of a
universal tagset for POS tagging. A universal tagset that is aimed to be applicable
across languages is given by Petrov et al. [41]. In contrast to the Interset, this
tagset is specifically meant to be applied in tagging. As a consequence converting
a more specific tagset to this universal tagset implies that information is lost.

The input to a POS tagger is a properly segmented (tokenized) text, the
output is a sequence of triples consisting of a token, its disambiguated lemmas
and its POS in the given utterance. Two key constituents are shared by most
classic POS tagging architectures: (i) ambiguity look-up and (ii) disambiguation.
First, all possible POS tags for the word in question have to be listed. This can
be done by a simple lexicon look-up or by sophisticated guessing. Secondly, the
potential tags have to be ranked or a single one has to be chosen as the correct
tag. This analysis builds on information about the word itself (e.g. frequency
of the word appearing in a certain part-of-speech) and contextual information.
The latter generally includes the surrounding words and their POS tags. Often
also the goal of maximizing the overall probability of a tag sequence rather than
just the probability of a single tag influences the choice of a specific tag. As a
lexicon can never be exhaustive, taggers also have to deal with unseen words.
Contextual information or morphological analysis (e.g. analyzing the affix of a
word) are often used as indicators of the correct tag.

The consensus view seems to be that POS tagging is considered a solved
problem. This is based on the fact that current state-of-the-art taggers for En-
glish manage to surpass up to 97% accuracy [36]. Despite of the fact that POS
tagging is considered a solved problem, there is still research actively involved
with developing it further and uncovering its limitations. Giesbrecht and Evert
[25] challenge the consensus that POS tagging is a solved problem. On the basis
of experiments they show that only if training and test set are similar a very
high accuracy can be achieved. Manning [36] gives a critical analysis on what
prevents POS tagging of reaching 100% accuracy. He finds that there is a num-
ber of different groups of errors, which can not all be addressed by improving
the semi-supervised learning component of the tagger and thus call for different
resolutions. For example, one of the main sources of errors are inconsistently
or wrongly tagged data in popular gold-standard corpora. This implies that a
tagger cannot reach 100% on a test set containing errors.
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3. Related Work

The discipline of corpus linguistics has a long history in collecting and using text
for linguistic research. Nowadays there is a large number of corpora available
in multiple languages, for both written text and transcribed speech. In the lit-
erature, we find various examples of experiences made by scholars in projects
involved with the construction of corpora. It seems that there is broad consensus
in best practices how to design the construction of a corpus. Those practices ad-
dress issues like copyright, balancing the data, data acquisition and preparation
[32, 38]. Basic procedures of annotation and preprocessing that are commonly
used for preparing data for linguistic research are also often used in the creation
of a corpus.

This chapter focuses on three major areas of research: first we want to show-
case a different approach used in corpus annotation in contrast to the ‘traditional’
way of manual annotation by an expert. Crowdsourcing, or annotation by non-
experts in general, is one way to reduce annotation costs. Then we discuss Active
Learning (AL) as a way of accelerating corpus annotation by bootstrapping it in
more depth, as this is of particular interest to our research. Finally, by discussing
research on error detection and correction in annotated corpora we hope to shed
light on the importance of correcting errors in an annotated corpus.

3.1 Crowdsourcing: Non-experts in annotation

To tackle the problem of costly expert annotation, the community has come
up with different ideas to delegate the work to non-experts. Employing non-
expert annotators has proven to be a cost-effective and still reliable way to gather
annotation. The idea behind crowdsourcing is that a final annotation decision is
the product of a number of single decisions of several amateur agents. Thus the
‘wisdom’ of the crowd is comparable to the ‘wisdom’ of a few experts.

Wang et al. [68] and Sabou et al. [48] compare different ways of crowdsourcing
against the background of their applicability in NLP and try to give best practice
guidelines. The three main approaches to involve non-experts in data preparation
tasks are crowdsourcing with paid workers, games with a purpose (GWAPs) and
altruistic work by volunteers. The biggest difference is that only in the first case
participants are rewarded financially. In this case annotation cannot only be
gathered cheaper but also faster, by distributing the annotation tasks via the
Web to many subjects that are paid small amounts of money for small tasks.
This type of crowdsourcing has been used with success in linguistic annotation
tasks like word sense disambiguation [57].

In a GWAP participants play a game to generate or validate data [13]. Play-
ers are attracted by an entertaining game design. An example of such a game
is Phrase Detectives [12]. In this game players help in annotating anaphoric
information.

Systems that are open for collaborative editing, such as Wikipedia1, have
proven to attract volunteers that are willing to generate or validate content with-

1 https://www.wikipedia.org/
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out special reward.
All three approaches come with a certain setup effort. While data preprocess-

ing has to take place in every annotation setting it is of particular importance
when employing non-experts to ensure a high usability. Better usability will at-
tract more subjects and positively influence annotation quality. For employing
paid workers there already exist a number of platforms with a permanent worker
base. For example the platform Amazon Mechanical Turk2 was successfully used
in linguistic research [52]. GWAPs have the disadvantage that they often have
to be designed and implemented from scratch and have to establish a user base.
Once they are in operation only little extra costs incur.

Within the GMB project two of the three ways (GWAP & effort from volun-
teers) of facilitating annotation have been used for different kinds of annotation
tasks [10]. As described above (in section 2.1), a volunteer (usually an expert)
is free to edit any level of annotation with the help of an online interface. In
the GWAP platform Wordrobe3 players solve a number of tasks including POS
tagging, NE tagging, co-reference resolution and word sense disambiguation by
playing different games [66].

3.2 Optimal Sampling: Active Learning

An increasingly popular form of bootstrapping an annotated corpus is Active
Learning (AL). It is sometimes also called optimal sampling or selective sampling
[45]. AL aims to reduce the amount of training data which need to be labeled
(additionally) by selecting those samples out of a pool of unannotated data, which
contribute the most. Starting from an initial training set a learner selects a
number of instances out of a set of unlabeled data and queries an oracle for
their annotation. This oracle is typically a human annotator. The newly labeled
data are then added to the training set and the algorithm proceeds in a iterative
fashion until a stopping criterion is met. In this way it can help to speed up
annotation and to minimize human involvement. AL was successfully applied
in a number of NLP tasks, including POS tagging [45], NE tagging [61, 26, 8]
and parsing [40]. AL is not only used in the setting of NLP, but also in other
ML related tasks. An encyclopedic overview over the research on AL is given by
Settles [53]. Most research on AL in NLP mainly concentrates on finding the best
selection algorithm for a specific task or establishing a benchmark for expected
reduction in training needed. The results are grounded on simulated (the oracle
is simulated by using pre-labeled data) or real life experiments. A common way
to estimate the training utility of a sample is to measure the uncertainty of a
classifier (or a set of classifiers). An extensive survey of many different selection
strategies, i.e. ways to measure uncertainty/informativeness, in sequence labeling
tasks is provided by Settles and Craven [54]. AL has been successfully applied to
learning POS taggers [45, 61].

While AL has an overall positive effect in terms of reduced need for training
examples (i.e. the annotator has to label less data), it has a negative effect on
the performance of an annotator. The examples that are ranked higher by an AL

2 http://www.mturk.com
3 http://www.wordrobe.org/
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selection scheme are in general more difficult to label and take longer to annotate
[26].

In AL those examples are selected which are helpful for rapidly learning a
classifier for a single annotation task. However it is not untypical to have multiple
levels of annotation in a single corpus. This makes bootstrapping a corpus a
multi-task annotation problem. Reichart et al. [44] extend AL from a single-task
to a multi-task paradigm. In multi-task Active Learning the selection strategies
of different learners are combined to identify examples which are most beneficial
to all classifiers. In experiments with a two-task setting (NE tagging and parse
tree annotation) they find that multi-task AL outperforms a random baseline and
a one-sided standard AL baseline.

A refinement of AL that promises to further reduce the amount of manually
labeled data is semi-supervised Active Learning [60]. The main difference to full
AL is that in this approach instead of querying the oracle for a full sequence,
e.g. a complete sentence, only a sub-sequence is presented for annotation. The
underlying hypothesis is that a learner/classifier is particularly confident on large
sub-sequences. If an annotator labels a full sequence (entire sentence), s/he would
also provide labels for those sub-sequences that have little to no added training
utility. One should note that in this work an annotator labels data rather than
corrects labels to prevent a biased decision. Experiments on NE tagging showed
when combining full with semi-supervised AL the amount of data labeled by a
human can be greatly reduced while keeping a decent accuracy on a test set.

AL is mainly used to reduce annotation effort and, ultimately in a practical
setting, annotation cost. However most research in this area focuses solely on
reduction in training size (e.g. the number of items annotated) and assumes a
uniform cost for all data. Ringger et al. [46] challenge this assumption and claim
that annotation cost may differ for every datum. For example in POS tagging an
annotator might need a varying amount of time per sentence depending on factors
like sentence length and ambiguity. In order to measure true annotation cost they
develop an ‘hourly cost model’ derived from data collected in an experiment on
POS tagging. This model is used to predict the actual time needed to annotate
a sequence of words. Such a cost estimator can be used to further refine the
selection strategy of an AL algorithm. In a follow-up study Haertel et al. [27]
seek to estimate the possible cost reduction by AL. By employing the previously
developed ‘hourly cost model’ and simpler cost measures they compare different
AL strategies in terms of their reduction in cost over a random baseline. In an
experiment on POS tagging they find that in general high cost reduction can only
be achieved when building a highly accurate model. Ultimately Haertel et al. [28]
present a framework for including cost in AL algorithms. They claim that AL
algorithms perform sub-optimally in terms of cost reduction if they select items
solely based on their expected benefit and ignoring their true cost. By adding a
cost heuristic into the selection strategies a more optimal trade-off between cost
and benefit can be achieved.

Baldridge and Osborne [3] propound the hypothesis that AL has the inherent
risk that the produced training data are hardly reusable with learners that are
different from the one employed in the AL selection. In a study on learning parsers
they found that created training data had low reusability value with other models
and thus the advantages from AL are lost for these models. Tomanek et al. [61]
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work on annotation of NEs contrasts this view. They suggest that reusability of
the training data might be dependent on the problem setting and the type of AL
method that was used.

3.3 Error detection in annotated corpora

Another type of research that is concerned with improving annotation is work that
focuses on detecting and consequently correcting errors in annotation in existing
resources. It stems from the problem that many corpora that are commonly used
and widely accepted as accurate still contain a serious amount of errors. These
errors in manually created or manually verified annotation persist, because even
expert annotators make mistakes or annotation guidelines are too vague and
allow for ambiguous interpretation. For example, the estimated error rate in
POS annotation in the Penn Treebank is 3% [36]. This has implications for a
number of different NLP tasks/studies. On the example of the Penn Treebank we
see that the accuracy of a POS tagger tested on it can never reach 100% accuracy
because of inconsistent annotation. Since the actions required for correction differ
with the characteristics of the type of annotation used and it is typically the same
as manual annotation, we will only present methods on the detection of errors.
The work on this topic is not very diverse and mostly directed or exemplified on
gold-standard POS annotated corpora.

A prominent approach is to find errors by inconsistency. It builds on the idea
that if a token has different labels in identical contexts, this is an indication of
an error. It works best for manually annotated or manually corrected corpora,
since a fully automatically annotated corpus is rather consistent in the annotation
and thus errors are more difficult to find. This approach can be implemented by
searching for and listing n-grams of tagged tokens that differ in the label of the last
token, so-called variation n-grams [21]. With this method Dickinson and Meurers
[21] found 2495 variation nuclei of n-grams with length of up to 224 tokens in
the POS annotation of the Wall Street Journal (WSJ) corpus. Another study
that uses this and two other methods is given by Loftsson [35]. Next to variation
n-grams they try to find inconsistencies in a POS tagged corpus of Icelandic by
employing an ensemble of five different taggers and generating shallow parses.
In their study the taggers are used to find instances where the ensemble agrees
on a label but this label disagrees with the existing gold-standard annotation.
An interesting outcome of the study is that each different technique of detecting
errors gives a different set of error candidates. A large number of errors could only
be found by one single approach respectively. Van Halteren [64] also uses a tagger
to find inconsistencies in manually tagged text. Possible inconsistent instances
are found by training a tagger on a corpus, tagging the very same corpus with
the newly trained tagger and checking where the corpus and the tagger’s output
disagree.
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4. Method

The central part of our work is to investigate how the gained knowledge of the
Bits of Wisdom (BOWs) can be used and exploited to yield best effect. Since we
learned correct labels from the BOWs and we want to get an improvement on the
whole corpus, improving the models that are used for the automatic annotation
is the obvious course of action. The way of improving the models consists in
including the acquired information from the BOWs in the retraining process.
Tagging the data in the corpus with an improved model will supposedly give an
annotation with less or at least a different set of errors. The newly obtained data
could then again be corrected. Figure 4.1 depicts how these steps can be looped
to achieve a constant refinement of the data in the corpus. To date only the
first step in this cyclic process, providing the corrected data, has been performed.
With our work we want to add the next two steps in the loop: selecting new
training data and retraining the part-of-speech (POS) tagger model.

Our main focus for our work on the selection step. We conduct experiments
with two different general approaches to selecting data for retraining: corrected
self-training and Active Learning. In both we make the same training data avail-
able and investigate how this data can be used best in this approach. Finally,
the results of both are compared.

Figure 4.1: Schema of an iterative retraining process

The underlying automatic annotation in the GMB is based on the standard
models of the C&C tools (see also section 2.1). For the POS level the standard
model is trained on the training part of the CCGbank [29]. This model has a few
limitations. For example, additional to the standard training, the authors of the
C&C tools manually added support for quotation marks to the model by adding
them to the dictionary of the model. Quotation marks are underrepresented in
the training data and thus the standard model performs quite poorly when used
for tagging them. Moreover since it is trained on newswire text exclusively it
performs sub-optimally on non-newswire texts. The target of retraining is to
create a model that makes less errors than the existing one.

BOWs are only applied for single tokens alone. However, as training and
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tagging always needs a set of sentences rather than a set of words, it is the easiest
to treat the sentence as smallest unit in our experiments. Therefore we can only
expand our training data by full sentences with BOW-tokens. Adding a sentence
might be problematic, as it possibly can include unwanted information (e.g. errors
in annotation) and may negatively affect the results. This is a challenge to our
experiments as we have to find a way to avoid those parasitic errors.

To insure comparability with the default model of the C&C tagger the pa-
rameters for training the models in the experiments have been set to the same
values as the default model. This tagging model is a conditional ME model [17].
The model is defined by the following form:

p (y|x) =
1

Z (x)
exp

(
n∑
i=1

λifi (x, y)

)
(4.1)

where x denotes a context, y a tag, fi a feature, λi the corresponding feature
weight and Z(x) a normalization constant. The ME framework requires that from
all models which satisfy a set of constraints the most uniform model, i.e. the one
with the highest entropy, is chosen. The constraints are that the expected value
of each feature should match the observed expectation (estimated from training
data). The constraints can be written in the following form:

Epfi = Ep̃fi (4.2)

Epfi denotes the expected value of a feature fi according to the model p:

Epfi =
∑
x,y

p (x, y) fi (x, y) (4.3)

and Ep̃fi the empirical expected value:

Ep̃fi =
∑
x,y

p̃ (x, y) fi (x, y) (4.4)

The features of the model are binary-valued functions returning either 1 or
0 depending on a tag and a contextual predicate. For example, the following
feature returns 1 if the current word is that and the tag is DET :

fj (x, y) =

{
1 if word (x) = “that” & y = DET

0 otherwise
(4.5)

The contextual predicate in this case is word(x). The tagger is a reimplemen-
tation of the MXPOST [42] and uses the same contextual predicates. These
predicates include (among others) word and tag bigrams, single words and word
prefixes [17].

For estimating the parameters we use the BFGS algorithm [39], as this was
also used for the standard model. Similarly a Gausian prior (0.707) was used for
smoothing according to the standard model.

In this chapter we present the setup of our retraining experiments. We further
introduce the data sets that were used for training and evaluation. In addition to
evaluation on the POS level we describe how we assess the influence of retraining
on higher levels of annotation on the example of the parser. Results of the
experiments are presented in the following chapter.
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4.1 Data Sets

4.1.1 Training Data Set

The training data consist of two parts: a fixed initial part and an additional
variable part. The initial training data are taken from the WSJ part of the CCG-
bank, similar/according to the standard model of the C&C tools. The additional
part is the data we get from the BOWs and thus taken from the GMB.

The initial training data includes sections 02 – 21 from the CCGbank. This
training set comprises 39,604 sentences and roughly 930,000 tokens and is thus
significantly larger than the set of sentences with BOWs. Since the tagging in this
data set differed slightly from the tagset of the GMB, it had to be adapted. To
adjust the training data to the target tagset, the tags AS and SO were replaced.
Tokens that carried one of those labels were tagged with RB (adverb) instead.
This design choice was motivated by the following reason: The CCGbank is built
on the texts of the Penn Treebank and refined its POS annotation. The tags
AS (applied to the word ‘as’ in the adverbial use) and SO (applied to the words
‘so’ and ‘too’ used as a submodifier) were newly introduced to the CCGbank
and in all cases they only replaced RB tags. We are not aware of a documented
motivation of this refined distinction of the RB tag. As this is a deterministic
mapping, we are safe to revert those tags back to their original state.

To these data we want to add the information provided by the BOWs, i.e.
data taken from the GMB. We leave out sections 00 – 09 from the GMB as
held-out data and only use the remaining 90 sections. As we are interested in
improving the existing models, the information will be added to the existing
training data, rather than replacing it. This gives a richer representation of the
available training data and also helps to keep the comparability to the current
model. Since we chose the sentence as unit for our experiments, we consider all
sentences that contain at least one BOW on the POS level for our experiments as
possible training data. This results in a data set of 10,866 sentences with 262,101
tokens. These data contain 14,055 effective BOWs, i.e. corrected or verified POS
tags. The held-out data is referred to in more depth in the next section.

4.1.2 Creating Silver Standard and Selecting Gold Stan-
dard Test Data

The performance of a tagger is usually measured by the accuracy of the correctly
assigned tags on a given text [69]. This presupposes that a text with reliable
annotation is given. Within the GMB, there does not exist any gold-standard
part. As we want to do an evaluation within the GMB corpus and an evaluation
on gold-standard data, we choose three different test sets: two external gold-
standard and one within the GMB.

In order to test improvement within the GMB itself a test set was created,
which we call ‘silver standard’. The goal of this test set is to measure the improved
performance of a tagger in terms of corrected errors. Since the only labels we truly
can be sure about are the ones provided by a BOW, we use those as our main
source of measurement. We argue that tokens which had been incorrectly tagged
by a tagger and required manual correction are in general more difficult and thus
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more interesting cases. Thus evaluating changes on them can give an insightful
picture about the data in general. Moreover, this test set gives the possibility to
get a more specific measurement how retraining impacts the annotation in the
GMB. Since we measure on identified errors, we get a direct estimate how many
errors within our data get fixed by improving the tagging.

The silver standard was created out of the first 10 sections of the GMB and
contains 6,483 sentences and 142,344 tokens. Within the GMB silver-standard
test set there are 2,917 effective BOWs, i.e. corrected or verified POS tags, which
equates to 2.04% of the tokens.

We chose those sections as a test set since they had a slightly higher rate of
BOWs per token than the rest of the corpus. We further increased the value
of this test set by verifying the existing annotation and adding more BOWs.
Building on the assumption that the overall quality of the POS annotation is
reasonably correct, we did not verify each sentence individually, but rather tried
to find errors in annotation automatically. Possible errors in tagging were found
by disagreement of two models. By training a supposedly improved model and
retagging the sentences in the test set, it was possible to find instances where the
new and the old model disagree. In our case the old model is simply the default
model that provided the initial annotation. The newly trained model includes all
sentences that contain at least one BOW of the remaining 90 parts of the GMB
in addition to the original initial training data. By this means, more than 1,000
disagreements were identified.

These disagreements were manually checked and the correct tags assigned.
An advantage of this method is that not only brings up erroneous annotation but
existing annotation got also verified. In the process of the manual assessment,
the annotator was presented one sentence (without annotation) at a time and
the target word (the word with unclear labeling) was highlighted. The annotator
could choose from the two labels proposed by the taggers or overwrite with a
different tag. If necessary s/he could also access the context of the sentence, i.e.
the rest of the document.

Finally, it is noteworthy that our definition of silver-standard corpus differs
from the definition given by the creators of the CALBC corpus [43]. The main
difference is that the silver standard of the CALBC project is created by employ-
ing a sophisticated harmonization method on the output of multiple automatic
systems to get the final annotation rather than employing human annotators.

The biggest drawback of the silver standard described above is that it does
not allow any statement about the quality of all those changes in tagging that
are not covered by BOWs. This means that it is possible to measure how many
errors get corrected, but it does not give reliable information whether new errors
are introduced. To address this problem we need gold-standard data, i.e. data
that have fully verified annotation.

As the CCGbank corpus provided the initial training data, it is logical to also
use its test section as a gold-standard corpus for testing. We use sections 22 –
24 of the WSJ part (consisting of 126,751 tokens) of the CCGbank as test data.
The text in the WSJ corpus is purely newswire text. Considering the fact that
state-of-the-art POS taggers, including the tagger used in this work, have reached
an upper bound in accuracy (that hardly is surpassed by new methods) in this
particular genre, no significant increases in accuracy are expected on this test set.
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Similar to the initial training data, we also replaced all AS and SO tags with RB
in this test set to match the target tagset.

This outlook and the fact that adding sentences from the GMB to the training
corpus also means adding different genres encourages the use of a gold standard
with more diverse genres. Changes in performance of the tagger might be more
easy to quantify on non-newswire text. Furthermore, since the GMB incorporates
multiple genres it is of particular interest to measure performance on a variety of
genres. The Manually Annotated Sub-Corpus (MASC) [30] of the ANC project1

has been identified as a suitable resource. MASC includes 19 different genres and
more than 500,000 tokens of written text and transcribed speech. Annotation on
the POS level in this corpus was automatically created and manually validated.
We use the full corpus in our evaluation.

Even though the MASC has a part consisting of newswire text (including
some WSJ documents) we are convinced that the use of the WSJ test set in
addition to the MASC is advisable. This helps to ensure that the especially
high performance on this particular genre is not derogated by possible negative
influence of the added training data.

This gives three test sets for evaluation and we summarize their key charac-
teristics in Table 4.1:

Table 4.1: An overview of the three different test sets used

Name Type Size in tokens

MASC gold standard 500k
WSJ gold standard 126k
GMB silver standard 142k, thereof 2,917 BOWs (2.04 %)

4.2 Sampling strategies for selecting additional

training data

By retraining the statistical tagger with a model that includes data from the
corrected corpus, we strive to make the annotation on the whole corpus better.
Our working hypothesis is that, when correcting an incorrectly tagged sentence
and adding it to the training data, the model will take up this correction and
label similar instances correctly in the future. Since the tagger is (partly) trained
on its own output, this retraining process is related to self-training [16]. In
contrast to pure self-training, where no human agent is involved and a tagger is
trained iteratively on its own predictions, in our case the output of the tagger is
corrected before applying it in training. As there is no guarantee that sentences
are corrected in their entirety and thus there is still some semi-supervised element
to it, we refer to our technique as corrected self-training.

By exploring different ways of adding the gained knowledge of the added
BOWs, we want to address the question of how to retrain the statistical model
effectively. We want to be able to choose a subset of the corrected sentences for
retraining purposes that provides the optimal improvement for the tagger. By

1 http://www.anc.org/
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increasingly adding more sentences to the training data and iteratively training
and evaluating the tagger, we can measure the change of its performance with
varying amounts and subsets of additional training data. We will investigate three
different selection strategies. The success of the different selection methods also
gives information on how to minimize supervision of the retraining process. For
our experiments we iteratively retrain and evaluate after adding 200 sentences to
the training data. This allows a decent trade-off between reasonably small steps
and not too many training iterations.

4.2.1 Random Sampling

For our baseline no special selection method is used. Examples are taken at
random (without replacement) out of the pool of available sentences. In order
to validate the results of the baseline, results are averaged over five different
samplings.

Random selection is a common baseline and gives the possibility to compare
results of more sophisticated selection methods to pure chance. It represents
retraining without any supervision.

4.2.2 Longest sentence first

Another baseline that requires only minimal supervision builds on the simple
supposition that longer sequences contain more information, since they contain
more (labeled) tokens. As more information also means a potentially higher
training utility, sentences get selected by their length starting with the longest.
We measure sentence length in number of tokens per sentence. This selection
method was for example used as a baseline in studies presented by Ringger et al.
[45] and Haertel et al. [27].

4.2.3 Cautious sampling

The biggest threat to an effective retraining process is adding flawed data. As
described above, there is no guarantee that a sentence, which contains at least
one corrected tag, is correct in its entirety. An example that contains incor-
rect tagging could be harmful in retraining. To ensure reliability in retraining,
only faultless examples should be considered while faulty examples should be
disregarded. However, there is no definite means to tell whether a sentence has
completely correct annotation. A simple way of estimating correctness of a sen-
tence is by its ratio of corrected tags. The ratio is easily calculated by dividing
the number of corrected tags by the number of all tags in a sequence. Building
on the assumption that all provided BOWs are correct, this measure can also be
seen as an indication of the probability that a sentence contains an incorrect tag.
A higher ratio implies a lower probability. We argue that a sentence with a high
ratio of BOWs has received high amount of attention by at least one annotator.
Since humans consider the context of a token when deciding the correct anno-
tation, it is likely that other flaws in the annotation are spotted and corrected.
This hypothesis augments the BOW ratio measure and renders examples with a
high ratio unlikely to be incorrectly tagged.
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With this selection method examples with a higher BOW ratio are added first,
since those are less likely to contain errors. In cases of equal ratio longer sentences
are preferred. In our data the mean ratio of BOWs per sentence is 0.059 with the
median at 0.0476. In the sentence with the highest ratio half of the tokens have
corrected tagging. In the sentence with the lowest ratio one out of 72 labels is
provided by a BOW.

4.3 The Active Learning approach

Active Learning promises to speed up the training of a classifier, or in our case
a tagger, by finding the items with the highest expected training utility in a
set of (unlabeled) data. As it also consequently reduces the amount of labeled
training data, that is needed to build a robust classifier, drastically, it is most
commonly used in bootstrapping data sets where only a small initial training set
is available. Both of these two characteristics are desired when (re-)training tools
for annotation.

With simulating AL we want to extend our approach to investigating the effect
of retraining a bit further. AL adds the notion of redundancy to the retraining
process as it prefers items with a high informative value. This means that it is
possible to find a subset of BOW-sentences which already has the same or at least
comparable informativeness and retraining value as the full set. Outcomes of the
experiments indicate whether AL would have helped to reduce the manual effort
invested in providing corrections by decreasing the amount needed. Another
point we might find is is that since we already have an initial training set of
significant size and AL is most effective in early stages of bootstrapping [45],
we might also find that bootstrapping approaches have insufficient effect in the
retraining. Ultimately we can draw conclusions whether AL is a suitable way of
directing future correction efforts.

In the AL framework data instances in a pool of unlabeled examples are rated
by their expected training utility. For the ones with the highest estimate an
oracle can be queried for the correct classification (or labeling) of the instance.
There are a number of different measuring techniques to assess the training value,
i.e. informativeness, of a datum. A general way to estimate expected training
utility of a sequence is by measuring the uncertainty of a classifier. Two very
common algorithms to get the uncertainty are Query by Uncertainty (QBU) and
Query by Committee (QBC) [27, page 2]. Both have successfully been applied to
POS tagging [45]. We use both in our experiments and their theoretical aspects
are described in the following subsections. In a real world setting the oracle,
that provides the true labels for a queried sentence, is typically a single human
annotator, that is assumed to be flawless, but it can also be multiple annotators
that are not unerring [28, page 2]. Since employing an actual human agent is not
feasible for our study, we use the BOW database as the oracle. We argue that this
is very close to an actual oracle of human annotators. Our working assumption
is that a sentence that carries at least one BOW has a high probability of being
correct.

We run the AL experiments in two different configurations of the pool of in-
stances that is queried by the AL selection method. First we use the same set
of sentences that we used in the retraining trials, i.e. all sentences containing at
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least one BOW. Secondly we limit the pool in this data set to 50% of sentences
that have the highest BOW ratio. By this we want to exclude examples that
might still contain errors. This helps to introduce the same notion that we fol-
lowed with sampling by BOW ratio (see section 4.2.3) into the AL experiments.
Namely, we want to prefer correct examples that have a higher expected training
value. Consequently, since less data are available in the latter configuration, few-
er iterations are run. In the experiments we use all available data exhaustively.
That means that no stopping criterion is defined and we use all sentences that
are available to us in the pool.

Commonly stopping criteria are designed to take effect at the point where
obtaining more labeled data (selected by the employed technique) loses its ef-
fectiveness and thus results in higher resource spending. This can also be the
case when the maximum accuracy possible for the classifier is achieved, e.g. a
measured plateau on a test set. Additionally a number of criteria have been
proposed, that are based on the concept of an intrinsic measure that signals de-
creasing usefulness by exceeding a certain threshold. In practice, however, AL is
often stopped by external factors, like resource limitations [53, p. 77].

As we have a rather small pool available we chose not to use any stopping
criterion. Since we only simulate AL, we don’t have any limitations other than
data limitations. Additionally, this allows us to see whether strong deterioration
effects occur by not stopping.

An important parameter to the AL algorithm is the number of elements added
to the training data in each iteration. In an ideal setting sequential selection (one
item is selected and added to the training data in each iteration) is executed.
In practice, however, batch selection (adding a number of items per iteration) is
more commonly used, as it allows for much faster running time of experiments by
significantly reducing the number of iterations. A number of studies employing
AL [45, 2] found no significant difference in performance when varying batch sizes.
For our experiments we use batch selection with a batch size of 200 sentences.
Similarly to the corrected self-training experiments, this allows a decent trade-off
between reasonably small steps and not too many training iterations.

4.3.1 Query by Uncertainty

Query by Uncertainty (QBU) is a measurement of informativeness that stems
from the general framework of uncertainty sampling [34]. The quintessence is the
idea that the training utility of an instance can be estimated by the classifiers
uncertainty. In the case of POS tagging, the output of a single probabilistic tagger
containing all possible tags with their associated probabilities is used. Sentences
on which the tagger is unsure have possibly a high training utility. Entropy [56]
is a useful measure for this uncertainty as it gives the information contained in
the probability distribution according to the tagger’s model. Specifically we use
the token entropy (TE) [54] of a sentence x which is calculated by the following
formula:

tokenentropy (x) = − 1

T

T∑
t=1

M∑
m=1

Pθ (yt = m) logPθ (yt = m) (4.6)
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For every token t in a sequence with length T it sums the entropy of the prob-
ability distribution of possible labels in M for t. The marginal probability that
m is the label for t according to the model θ is denoted by Pθ (yt = m). By nor-
malizing by the sentence length it is avoided that simply longer sentences, that
would otherwise have higher entropy values, are preferred.

4.3.2 Query by Committee

The Query by Committee (QBC) framework was proposed by Seung et al. [55].
Freund et al. [24] provide a in depth analysis of it and Argamon-Engelson and
Dagan [2] apply QBC together with HMMs in POS tagging. It is sometimes also
referred to as a Monte-Carlo technique.

In QBC the possible labels and their associated probabilities are provided
by a committee rather than a single classifier. The committee consists of an
ensemble of classifiers that all vote on a classification. The disagreement of the
classifiers (or in our case: taggers) can be used to identify difficult cases. Members
of the committee can be selected in different ways. For example, the members
can be chosen at random from a set of classifiers. Another possibility would be
to combine different algorithms to get diversity among the members. There are
different approaches to how to split the training data among committee members.
It can be sampled with or without replacement. Outcomes of QBC are also
influenced by the size of the committee. Small committees have proven to produce
results comparative to those produced by bigger committees [45, 2].

In order to get a diverse ensemble of taggers we train the taggers with different
subsets of the available training data. For our experiments we sample the training
data with replacement and make 80% available to each member. By this we aim
to ensure that the taggers maintain a fairly high accuracy, which is needed to
avoid disagreement caused by insufficient training. It also increases the chance
that each committee member gets a share of the newly added examples. We use
a committee with three members, i.e. three different models.

To measure disagreement among the members of a committee C on a certain
sequence x we use vote entropy (VE) [54], which is defined by the following
formula:

voteentropy (x) = − 1

T

T∑
t=1

M∑
m=1

V (yt,m)

C
log

V (yt,m)

C
(4.7)

where V (yt,m) denotes the number of committee members that voted on label
m for token t.

4.4 Impact on higher levels of annotation —

(Syntactic level)

Improving the annotation on one level in the corpus has an influence on all depen-
dent levels. Annotation is interdependent since the input features for a number
of classifiers are the output of another. For example, the parser uses the output
of the POS tagger and the supertagger. As a consequence incorrect annotation
can result in cascading errors in NLP pipelines [23]. But also the opposite is true:
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“even modest improvements in POS tagging accuracy can have a large impact on
the performance of downstream components in a language processing pipeline”
[19]. We are interested how our retraining efforts influence the results of other
parts in the pipeline. One of the integral parts of the pipeline is the parser. Fol-
lowing the proposition that improved performance on the POS level positively
influences the performance of subsequent processing, the parser should benefit
from an improved POS model.

Since no gold-standard parsed data exists within the GMB we can only es-
timate the improvement. One performance measure of a parser on unannotated
data is its coverage [11]. The coverage is defined as the percentage of sentences
that were successfully analyzed by the parser. Ideally the coverage of the parser
would increase with improved POS tagging. A decreased coverage could be an
indication of newly introduced errors and decreased consistency in the tagging.
Even though coverage is a weak indicator it will help to show whether there is a
performance change on our main data set. Similar to the other experiments this
evaluation is done on our GMB test set.

Additionally we evaluate the influence of an improved POS annotation on
the parser on a gold-standard test set. For this we use the WSJ test set from
the CCGbank. The produced dependency output from the parser is compared
to the gold-standard data. The CCG parser produces the dependencies as a 4-
tuple: a head of a functor, a functor category, an argument and a head of an
argument [15]. We calculate precision (p) and recall (r) for these dependencies
while differentiating between labelled and unlabelled dependencies. We further
calculate the F-measure as follows: (2 ∗ p ∗ r)/(p+ r). For a labeled dependency
to be matched correctly, the entire 4-tuple has to be matched. An unlabeled
dependency is matched if the heads of the functor and the argument appear
together in some relation [15].
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5. Results and Discussion

In this chapter we present and discuss the evaluation results of our retraining
experiments that were outlined in the previous chapter. We evaluate different
sampling strategies and compare those to two AL strategies. In both retraining
settings the default model is enhanced by data taken from the BOWs. Finally,
we assess the influence of a retrained POS tagger on higher levels of annotation.

For completeness we first present the results of the current baseline. The
default model trained on the original training data serves as the point of origin
for our experiments. The results produced by this model are given in Table 5.1.
Not surprisingly it achieves a very high performance on the WSJ test set and
a decent performance on the MASC. As one can expect in a contrast to that,
the rate of predicted labels that match the true label chosen by the annotator
(matched BOWs) in the GMB test set is rather low. Recall that in the GMB test
set we try to measure performance in terms of corrected errors or rather matched
manually verified labels. Thus the number of errors the baseline model makes is
high since all corrected errors are the ones corrected by this model. The number
of BOWs already matched BOWs by the baseline, however, can be attributed to
the fact that not all BOWs in the test set are corrections. Some of the BOWs
provided in the creation of the GMB test set verified existing annotation.

Table 5.1: Results of the default model on the three test sets

Baseline

Accuracy, WSJ 96.914%
Accuracy, MASC 90.086%
Percentage of matched BOWs, GMB 15.05%

5.1 Random, Longest Sentence First, & Cau-

tious Sampling

The results from retraining after iteratively adding sentences with BOW-tokens
to the training data are given in Figure 5.1. We compare three different selection
strategies: (i) random selection, (ii) adding sentences by their length in tokens
starting with the longest (Longest Sentence First) and (iii) choosing sentences
with a higher ratio of BOWs before others (BOW Ratio). The graph does not
include performance on both gold-standard test sets (WSJ & MASC) since the
accuracy for those only changes insignificantly and no notable improvement or
decline was evident over the course of retraining. Testing on different subsets of
MASC with varying genre combinations to see, if at least partial improvement
has been achieved, showed similar results. A change in performance, however, is
clearly measurable on the GMB test set that gives an estimate of improvement
in terms of matched BOWs, i.e. the true labels that were predicted the same by
the tagger.
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Figure 5.1: Performance change with increased training size by three different selection
methods measured by matched BOWs

We see from the graph that all three methods achieve good results on the
GMB test set and for all of them the biggest gains are made in the early re-
training iterations with only a small subset of the data used. Already the first
200 sentences (first iteration) give a significant improvement over the baseline
model. With this first iteration already more than twice the amount of BOWs
in comparison to the baseline are matched. The rapid improvement rate already
slows down after only a quarter of the data is used. A ceiling is hit at roughly
70% of matched BOWs. A possible explanation for this is the notion that the
utility of the training data is exhausted, i.e. the information needed to correct
the persisting errors is not present in the training data. The simplest selection
method, random sampling, already shows decent results. Longest Sentence First
performs worse than the random selection. Selecting by BOW ratio outperforms
the other two.

BOW ratio perhaps not only describes how unlikely it is that a sentence still
contains errors, but can also be seen as a measuring tool of training utility since
sentences with a higher rate of mislabeled cases add more information about
correction in retraining.

The best model (chosen from the results on the GMB test set) achieves 69.56%
of matched BOWs with 96% of the available sentences added. A comparison to the
baseline is given in Table 5.2. This best model uses almost all data available and
performs marginally better than other models using less data. As described above
performance improvement stalls with increasing amount of the added training
data. A model for example that only uses 70% of the BOW-sentences performs
on a par with this model and matches 69.39% BOWs.
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Table 5.2: Comparison of the results of the default model and the best model chosen
from the corrected self-training on the three test sets

Baseline BOW Ratio

Accuracy, WSJ 96.91% 96.95%
Accuracy, MASC 90.09% 90.24%
Percentage of matched BOWs, GMB 15.05% 69.56%

Since the GMB test set is our strongest measure of improvement and it is no
gold standard, it is of special interest to see how big the impact of retraining is on
the annotation that is not verified by a BOW. Figure 5.2 shows how the amount
of changes in labeling not covered by BOWs varies with the training size. We see
that only a very small percentage of the labels that are not verified differ. This
reassures us that the results measured with the GMB test set are meaningful.

Figure 5.2: Percentage of changed labels that are not covered by a BOW with increased
training size

The number of changes increases in the early stages of retraining and decreas-
es with a growing amount of added training data. Retraining by BOW ratio
triggers the highest rate of changes. The low number of changes in the final
stages describes the fact that the new annotation is close to the original. This
could have two reasons: On the one hand, assuming that the original annotation
is correct it would be a sign of stabilized retraining. As more data get added,
the newly learned information gets refined by more examples and thus the model
makes less errors. This view is supported by the fact that no performance drop
was measurable on the silver nor on the gold standard test sets. On the other
hand, if inconsistencies in the training data are assumed (i.e. not all or too few
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instances of a characteristic error are corrected), it could mean that misclassifica-
tions are learned. In this case the corrections lose their effect in retraining. The
fact that the score of the BOW-measure was capped in the endmost rounds could
be evidence of inconsistencies in the training data and hence endorse the latter
interpretation.

If one were not to choose the best, but rather a model with the greatest
impact on annotation, the rate of improvement would need to be weighed up
against the amount of changes. In other words, the model performance could also
be optimized for producing the most changes in output with the least amount
of data added to the input possible. Such a model might be desired to find a
large quantity of changes that can be checked by annotators, while maintaining
an acceptable improvement rate. It could provide a way to get good results
before deterioration effects start to show. For example in our case, a model that
uses 25% of the additional training data can give a decent improvement over the
baseline (almost 65% of matched BOWs) and provide a bigger amount of so far
unchecked labels than the further refined models.

5.2 The Active Learning approach

Similarly to the results from the corrected self-training experiments presented in
the previous chapter, results on the gold-standard test sets show no significant
changes for all experimental conditions with the AL approach. We compare two
different conditions of AL: (i) making the full set of BOW-sentences available
and (ii) limiting the set to the upper half of all BOW-sentences sorted by BOW
ratio. In both conditions we compare the two selection methods (QBU & QBC).

We see from Figure 5.3 that AL with all available BOW-sentences is not better
than selecting by BOW ratio, but the performance is above random selection
with the exception of the very first rounds. The selection method QBU performs
significantly better than QBC in the first few iterations (with 10% – 30% of the
additional training data used). Not surprisingly AL also only reaches scores up
to 70% on the GMB test set.

When using the limited set of additional training data, the performance of
the AL selection exceeds the performance of AL with the full set. The graph
given in Figure 5.4 shows that both QBC and QBU achieve slightly higher rates
in matched BOWs with less training data. This supports the assumption that
the training data, that were excluded from the selection (the sentences with a
low ratio of BOWs) in the latter configuration of AL, do contain errors. This
would explain the fact that the sentences that were deemed valuable and got
selected in the first few iterations with the full set, do not achieve the same
performance as the sentences that got selected from the reduced set. Again
QBC is in general inferior to QBU, but the difference is smaller in comparison
to the first configuration, as QBC manages to outperform QBU in the very first
iterations. The second configuration of our AL experiments does not only give
a better performance but also a higher rate of changes in labels not covered by
a BOW in GMB test set. From Figure 5.5, that gives the changes in the second
configuration, we see that the two AL methods trigger less changes than selection
by BOW ratio. This is remarkable since they achieve a score comparable to BOW
ratio selection.
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Figure 5.3: Performance change with increased training size by QBU and QBC mea-
sured by matched BOWs (all sentences with BOWs available)

The effect of AL becomes especially visible when comparing the amount of
data needed to reach a certain level of performance. When looking at the max-
imum performance achieved with retraining (Figure 5.1), we can assume 70% of
matched BOWs as our upper bound. To surpass 90% of that upper bound (63%
of matched BOWs), i.e. to get a reasonably good performance, the different se-
lection strategies require different amounts of added training data. Figure 5.6
gives a comparison for four different selection methods. QBU (using the second
configuration) requires the least added sentences. Random selection and Longest
Sentence First need significantly more with almost up to twice the amount. Se-
lecting by BOW Ratio only requires slightly more than QBU. This shows how
selective sampling can help to reduce the amount of data needed for effective
retraining. As a conclusion this suggests that AL can indeed be of help to reduce
the correction effort needed by excluding redundant elements from correction.

When interpreting the results of the AL experiments we have to keep in mind
that results are not expected to be the same in a real world setting. By simulating
the human oracle and limiting the pool to a set of sentences that already have
a correction, we make our experiments artificial and the outcomes are influenced
by this. There is the possibility that performing AL in a real world scenario gives
better results and/or shows stronger effects. For example, with the whole corpus
available for selection it might show that so far uncorrected sentences have a
higher training utility. Effects of AL on error correction might also be boosted,
because a human annotator is required to correct the full sentence rather than
single tokens only and thus the training data are considered to be almost error-
free.
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Figure 5.4: Performance change with increased training size by QBU and QBC mea-
sured by matched BOWs (reduced set of sentences with BOWs available)

As the sampling of the training data that are selected for training the com-
mittee members in QBC is random, results might differ when testing again. Since
QBU and QBC, however, show similar results we are confident that the difference
for a varying committee will not be significant.

A risk of AL is that the selected training data are specific to the type of
classifier used and have low re-usability with other classifiers. Since the training
data which are produced by AL are only a small part of the overall training data,
we consider re-usability ensured. However we identified another risk in our setting
of AL. A characteristic of our added training data is that they were corrected on
single tokens only. If sentences that are selected for training still contain errors
in annotation, it might be problematic for future AL iterations since cases with
similar errors might not be selected as the uncertainty on those is already reduced.
This means that relying only on AL might make an annotator blind to certain
errors if the training data is erroneous.

While the two selection methods presented here (QBC & QBU) are the most
common within similar problem settings and are thus used to exemplify AL, it
is noteworthy that there do exist other approaches, for example query-by-model-
improvement [47, 1]. Moreover, within the two frameworks a number of different
ways of uncertainty measurement have been used to tune the properties of the
method.
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Figure 5.5: Percentage of changed labels that are not covered by a BOW with increased
training size (reduced set made available to the AL selection methods)

5.3 Impact on higher levels of annotation —

(Syntactic level)

We evaluate the influence of POS annotation on the parser on the GMB test set
and on the WSJ test set. Our main source of measurement on the GMB set is
the coverage of the parser. Due to the unvarying performance of the POS tagger
on the two gold-standard test sets, no significant change in parser coverage arose
on those test sets. We give dependency precision and recall scores for the WSJ
test set.

When testing the parser on different POS tagged versions of the GMB held-
out data, changes in coverage were observable. In Table 5.3 we compare how big is
the influence of changes in the POS annotation in the input data to the parser in
terms of coverage on the GMB data. With the annotation of the baseline model,
very high (almost full) coverage is already achieved. When employing the model
that achieved best performance in retraining, the coverage can be raised. The
improvement is only marginal (31 more sentences could be parsed). The highest
coverage is achieved when using the current annotation in the test set with all
available BOWs. This suggests that the best model after retraining, while it
reproduces almost 70% of the BOWs in the data (see Table 5.2), does not fix
a number of major errors in annotation that cause the parser to fail. Another
possible explanation would be that the newly trained model introduces new errors
which obstruct the parser. Those errors could be identified and corrected in
subsequent retraining iterations.

Evaluating the influence of improved POS annotation on gold-standard data
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Figure 5.6: Number of sentences added to the training data to achieve 63% matched
BOWs on the GMB test set

Table 5.3: Comparison of influence of different sources of POS annotation on the parser
coverage

Baseline model
Best model
after retraining

All provided
BOWs

Coverage on the
GMB test set

99.34% 99.46% 99.68%

gives a similar picture to what we saw on the GMB test set. As we can see from
Table 5.4 the performance of the parser improves with better POS annotation.
The baseline model has the lowest scores. Our hypothesis that an improved POS
tagger (represented by the best model we chose) has a positive influence on the
parser is supported by the fact that the retrained POS tagger model achieves
scores that are higher or at least on par with the baseline. However only a
slight improvement is visible. The (manually verified) gold-standard annotation
gives the best results for the parser. Not surprisingly, the scores for unlabelled
dependencies are higher in all three instances.

Since we saw no significant improvement of a retrained tagger on the POS
level of the gold-standard data itself, it is not surprising that no significant im-
provement is visible on the syntactic level. Another possibility of assessing the
influence of adapted POS annotation on the syntactic level, would be to evaluate
changes on the CCG supertags.
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Table 5.4: Evaluation of the parser on gold-standard data with different sources of POS
annotation

Baseline model
Best model
after retraining

Gold-standard
POSs

la
b

el
ed

d
ep

en
-

d
en

cy
Precision 84.99% 85.01% 86.85%

Recall 82.97% 83.07% 85.19%

F-measure 83.97% 84.03% 86.01%

u
n
la

b
el

ed
d
ep

en
-

d
en

cy

Precision 91.64% 91.67% 92.80%

Recall 89.46% 89.57% 91.03%

F-measure 90.54% 90.61% 91.91%

5.4 General Discussion

It is not surprising that the performance on the WSJ test set could not be in-
creased with retraining as it is already at the state-of-the-art level. Moreover,
since also no decrease in performance was visible it is an indication that the
added training data are not harmful. POS tagging is known to perform best
when training and test data are very similar [25]. Following this proposition
we hoped to increase the performance on newswire text genres tested with the
MASC corpus. However, also no significant improvement was measurable. An
explanation for this could be that the difference between the corpora is still too
big for our retraining to show effect. For example the MASC contains a number
of genres (e.g. transcribed speech, e-mails, Twitter, ...) that are not included in
the GMB.

When selecting sentences according to their expected correctness of annota-
tion we only consider the ratio of BOWs in the sentence. However, there might
be other indicators within our data, for example the number of different anno-
tators that provided corrections for a sentence. Additionally, we could assume a
sentence with many BOWs on higher levels of annotation is likely to be correct
on the POS level since the annotator would probably have corrected this level as
well otherwise. We also do not consider the cost of correction associated with a
sentence nor the cost associated with single BOWs as we assume a uniform cost.
When implementing a cost-sensitive retraining process one should keep in mind
that BOWs come from different sources that are linked to different costs.

We only investigated the effect of retraining a single POS tagger. Another
way to improve annotation might be to retrain and use multiple taggers. It
was found that when employing a number of different taggers accuracy can be
improved [58, 65]. The different POS tagging approaches and algorithms are to
some extent complimentary in the errors they make.

We discussed how redundancy in our training set can be reduced, but redun-
dancy is not inherently bad. If we have redundancy in the training sentences
selected from the GMB, it might also mean that there is a higher chance that
possible errors still persisting in the training set are most likely counterbalanced
by a greater number of correct examples. This implies that when trying to elim-
inate redundancy in the training data, like it is done with approaches like AL,
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flaws in the annotation might carry more weight. This might be most apparent
when looking at words that are newly added to the training data. Since we add
new genres to the training data we suspect that also a number of so far unseen
words are added to the training data. If, by inaccurate correction, a newly added
word is incorrectly tagged and added to the training data, this error is likely to
propagate into the tagging process.

(4) Pray
NN

help
NN

me
PRP

now
RB

and
CC

scold
VB

me
PRP

afterwards
RB

.

.

Due to carelessness the word Pray in example (4) might not be spotted as in-
correctly tagged. The tagger has seen this word in the training data and will
be more confident with assigning the label to the word Pray. This means that
sentences containing that word will less likely be chosen as suitable for correction
and retraining by algorithms in AL such as QBU. Since QBC splits the training
data among its committee members, it might be less prone to such an error.

One of the biggest objections against the validity of the results is the com-
position of the silver standard test set. The silver standard cannot guarantee a
representative estimate since the initial set of BOWs covers an arbitrary part of
the data. For adding more BOWs only a method building on the disagreement of
two taggers was used. This could have been augmented by other methods specif-
ically developed for detecting errors or inconsistency in annotation to ensure an
extensive coverage. Despite those shortcomings, we think that the silver standard
actually provides fairly good coverage.

Along the lines of the described deficiency of the silver standard to give a
global estimate of the performance of the tagger is the problem of measuring
newly introduced errors. As stated above there is a small percentage of tags that
are changed in the GMB test set without being covered by a BOW. However on
the basis of the design of our silver standard we can assume that we are still able
to estimate the rate of newly introduced errors. The tagger that was used to
find disagreements in the creation process of the silver standard, was trained in
a similar way (namely: adding sentences containing BOWs to the training data)
to the taggers that were tested later on the data set. This allows to assume that
a large quantity of changes that are likely to appear by this means of retraining
were manually checked and added as test material. This assumption is supported
by the fact that only a small percentage of tokens not covered by a BOW was
changed. We do not want to disclaim that employing a more sophisticated method
of detecting errors would improve coverage even further. However, we expect that
this significantly increases the amount of manual effort needed. The only definite
way to a reliable estimation of error rate would be to turn the silver standard
into a gold standard by full manual annotation.
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6. Pilot Study: Building a
smarter tagger

As we have seen from the results of the retraining process presented in chapter
5, the accuracy of a tagger can be improved by adding automatically tagged
and manually corrected sentences to its training data. The tagger learns, in a
way, from the mistakes it has made earlier. Those very mistakes, that had been
corrected and the confirmed/correct tagging has been learned, are consequently
less likely to appear again in the future. This improvement, however, is only
possible if the tagger has access to the corrections in the training process. Even
after retraining it is not guaranteed that a sentence, that was corrected and used
in retraining, gets tagged correctly. The tagger might still make the same mistake
as before or introduce new errors. This is due to the fact that the tagger’s model
abstracts, which is a desired and vital characteristic of a good tagger.

In the general design, a tagger uses only tokens as an input and is therefore
ignorant of the corrections (known labels), that might be associated with the
tokens, in the process of tagging. This is in fact an unnecessary restraint. The
tagger has to ‘guess’ while the true labeling is already known, and if the tagger
‘guessed’ incorrectly, its decision gets corrected not before the tagging is finished.
We hypothesize that by making fractional reliable tagging information available
to the tagger, its accuracy can be increased. We believe the tagger will benefit
in one major way: The known labels will positively influence the decision making
for the so far unknown labels. In tagging contextual information and the fitting
together of all tags in a sequence play an important role. By effectively fixing the
tags for a subset of the sequence, the contextual information for the rest changes
and the tagging can be improved. In general, this approach builds on the idea of
reducing the ambiguity in the tagging process.

As outlined above, such a tagger might be helpful in environments where only
patchy annotation is available. For example, employing non-expert annotators
can result in incomplete annotation. The non-experts might not be able to anno-
tate a full sentence (i.e. decide all cases) or are not presented with the full set of
choices, for example in a GWAP where they only have to decide about a single
problem (e.g. the correct label for a single word). Of course, a situation, like it is
present in the GMB, where corrections get provided on token level, fits the scope
of a possible application perfectly.

The aim of this chapter is to present an enhancement to the general POS
tagger paradigm. In a proof-of-concept scenario we want to test, whether it
provides appreciable improvement and we try to get an impression of its effects
and possibilities.

6.1 Method

The proposed enhancement to the tagger can be implemented quite easily. Two
steps are necessary: The known labels have to be made accessible to the tagger
at run time and the tagger must definitely choose the known label for a token
if available. While the former is trivial, the latter can be achieved by simply
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allowing only one tag for the target token. This can be done by effectively setting
the probability for this tag to 100% (e.g. by simulating a dictionary look-up) and
thus reducing the ambiguity to zero.

For the experiment, an implementation of an ME tagger was used that exhibits
all characteristics of a state-of-the-art POS tagger [33]. It was merely modified
to allow the use of true labels in the tagging process as indicated above. Sections
02 – 21 of the WSJ part of the CCGbank serve as training data. The tagging
algorithm and the chosen feature set is a reimplementation of the MXPOST [42]
and achieves an accuracy of over 96% when tested on test sections (22 – 24) of
the WSJ corpus of the CCGbank. We give a formal description of this tagging
model in chapter 4.

Figure 6.1: Schema of applying a known label in the tagging process.

Since this tagger model, similar to most probabilistic taggers, includes sur-
rounding tags of the target word as features in the decision process when calcu-
lating the most likely tag sequence for a sequence of tokens, we expect the effects
of the modifications to be visible in the direct context of the known tags. Figure
6.1 depicts how a fixed tag influences the tagging of its direct context.

In the ME tagging model the probability of a sequence of tags y1 . . . yn given
a sequence of words w1 . . . wn is approximated in following form:

p (y1 . . . yn|w1 . . . wn) ≈
n∏
i=1

p (yi|xi) (6.1)

where xi denotes the context for a word wi. As described above, in our enhance-
ment we want to fix the probability for a tag yj (where 1 ≤ j ≤ n) to 1 if we
know it is a true tag.

For evaluation we compare the output of two taggers (or rather two tagger
configurations): A tagger in standard configuration and our proposed augmented
tagger, that makes use of the true labels at tagging time. Both taggers use
the same model, i.e. both taggers are trained in the same way using the same
training data. Since for this pilot study we are only interested in changes that
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do not appear on the pre-labeled tokens, the output of the standard tagger is
corrected using known true labels. Differences in tagging, as depicted in figure
6.2, are then evaluated qualitatively. We are interested in the number of positive
changes made by the enhancement, as well as in the kind of tag, in which tag
differences appear most frequently. We will focus on disagreement pairs where
correct solutions can easily be determined and avoid those tokens that can have
multiple allowed tags. An example for a token with more than one possible
interpretation is given in (5) (taken from [49]). The example sentence has two
different readings depending on whether ‘Sampling’ is interpreted as a noun or
as a participle of the corresponding verb.

(5) Sampling/NN|VBG data can be fun.

Figure 6.2: Schema of the expected difference in output of the two taggers.

The evaluation data set consists of all sentences that contain at least one
manual correction out of the entire GMB. Since quotation marks are not included
in the training data, we also exclude all sentences with quotations marks from
the test set. This results in a test set with 12,015 sentences and 285,359 tokens.
There are 15,152 BOWs, i.e. known labels, in these data.

Since tagging is a deterministic procedure, all differences between the two
taggers are due to the fixed incorporated known labels. This implies that changes
will only appear in sentences where the tagger actually mislabels tokens that
have an associated known label. For 27.17% of the tokens with known tags the
standard tagger already produces the true label. Thus we do not expect any
changes in analysis in the context of these tokens.

6.2 Results

We observed 619 differing tags in 568 sentences. This shows that changes are
only triggered by a small subset of BOWs and consequently only appear on a
small percentage (4.7%) of sentences.

As expected, most changes appear in the direct context (2-token range) of
the pre-labeled tokens. In a few cases, changes also appear outside of the direct
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context. These changes always occur together with changes within the direct
context. The altered analysis that is started by the fixed label is propagated in
a chain-like fashion.

Table 6.1 gives an overview of the disagreements in tagging. For brevity only
labels appearing in the top 10 most common changes are included. The majority
of the changes appear on a few tags (e.g. NNP, VBD, ...) only.

Table 6.1: Selection/Digest of differences in tagging between the improved and the de-
fault tagger.

Standard Tagger

JJ NN NNP NNS VBD VBN VBZ

A
u
gm

en
te

d
T

ag
ge

r JJ – 27 56 0 4 2 0

NN 16 – 88 3 1 0 0

NNP 15 33 – 4 0 0 0

NNS 1 6 28 – 0 0 21

VBD 5 1 0 0 – 29 0

VBN 1 0 1 1 60 – 0

VBZ 0 0 1 4 0 0 –

It is easy to spot that some pairings of differences are distinctly more often
than others. Table 6.2 gives the result of the evaluation of four different dis-
agreement pairs. For each disagreement pair (tag1 (chosen by the default tagger)
→ tag2 (chosen by the improved tagger)), we table the number of correct and
incorrect assigned tags by the improved tagger for both possible combinations.
Additionally the combined accuracy for a pair of tags is given. The evaluation
gives two pairs with a decent performance (NNS↔ NNP, VBZ↔ NNS) and two
pairs with rather poor performance (NNS ↔ NNP, VBD ↔ VBN). In the latter
two cases the poor results seem to be unidirectional. For example, results are
reasonably good for changes from VBN to VBD, but unsatisfactory for the other
direction.

By investigating the sentences in which a proper noun tag was wrongly changed
to a noun tag (NNP → NN), we found that 57 times the word ‘Baghdad’ was
the target token that was incorrectly classified as a noun. Example (6) shows
a typical misclassification for this case.1 When checking the tagger model we
found, that this token was not present in the training data. Due to the fact that
it is an unknown word it has high uncertainty. The changes in the tagger seem
to have worsened the performance on this token.

(6) North
RB

of
IN

Baghdad
NNP/NN

,
,

gunmen
NNS

killed
VBD

a
DT

policeman
NN

.

.

For many of the misclassifications in the case of VBD → VBN, a certain
pattern was identified in which the misclassification makes sense. The wrongly
tagged verb was often preceded by a noun in the plural or singular form, as shown

1 The fixed label is set in bold face.
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Table 6.2: Evaluation on interesting cases of newly assigned tags by the augmented
tagger depending on the tagging of the standard tagger.

standard → augmented correct false combined accuracy

NN → NNP 33 0
35.54 %

NNP → NN 10 78

NNS → NNP 2 2
71.88 %

NNP → NNS 21 7

VBD → VBN 4 56
29.21 %

VBN → VBD 22 7

VBZ → NNS 17 4
76 %

NNS → VBZ 2 2

in example (7). A correct form of appearance for this pattern is given in example
sentence (8).

(7) A
DT

Lion
NN

used
VBD/VBN

to
TO

prowl
VB

about
IN

...

(8) Major
JJ

exports
NNS

made
VBN

up
RP

of
IN

copra
NN

and
CC

...

Next to the shortcomings there is a number of positive changes. These are es-
pecially prevalent in the pairs NNS↔ NNP and VBZ↔ NNS. For both pairs only
one direction gives meaningful results as the other is underrepresented. Instances
of such positive changes for each pair respectively are presented in examples (9)
and (10).

(9) Dozens
NNP/NNS

of
IN

Egyptians
NNS

protested
VBD

...

(10) His
PRP$

early
JJ

blues
NN

hits
VBZ/NNS

included
VBD

...

6.3 Discussion

We can draw two major conclusions from the evaluation of the tagger: Only a
small number of changes is produced by the proposed method and the changes
give only moderate improvement. Our evaluation covers a large quantity of the
changes but might not be fully representative in terms of accuracy as not all
cases are covered. A large-scale evaluation on a gold-standard data set would be
a proper way to estimate the rate of improvement such an enhancement yields to
a tagger. However this raises the problem how to realistically model incomplete
annotation on the input data. The evaluation suggests that the results depend on
the type of tag that is fixed for the tagging. This means that performance may
vary with the distribution of fixed tags in the data. Additionally, it is interesting
to see that most of the changes appear on the typical (for a tagger) hard-to-
distinguish cases. Those cases include ambiguous words (verb-noun homographs)
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as well as grammatical distinctions (past tense vs. past participle). Cases of
uncommon distinctions might also be well justified but are infrequent in the
results.

Two weak points that gave rise to poor performance could also be identi-
fied. The results showed that the augmented tagger systematically misclassified
a number of tokens as a past participle. It also performed remarkably poor on one
particular token that was not present in the training data. A linguistic prototype
that matches the pattern of the misclassification could be found to describe the
former problem. The poor results on the latter case could be mitigated if the
tagger is combined with suitable retraining. Since we only assess the correctness
of the labels produced by the augmented tagger, we cannot draw any conclusions
about the correctness of tagging without augmentation. This means, if the label
applied by the improved tagger was incorrect, it does not imply that the tag pro-
duced by the standard tagger was correct. However, this might help to identify
difficult cases.

There are two possible main explanations for the fact, that there were only a
few changes produced: On the one hand it could simply mean that the method we
propose has only little effect. The modification applied to the tagger might not
be strong enough to force a supposedly correct analysis. On the other hand it is
possible that there are not many errors that could be found in our data. Building
on the hypothesis that if a human annotator corrects a label in the data, s/he
will also correct surrounding labels, we can assume that not many errors might
be present in the direct context of corrected labels. When taking into account
that changes only appear in the direct context of the fixed labels, this might be
an explanation for the small number of changes.

In addition to the conclusions drawn from the results, we want to discuss
the usability and possible scope of application of our tagger. Our enhancement
might only be useful in a small number of contexts as incomplete annotation is not
very common. In the traditional corpus annotation paradigm sentences always
get labeled in their entirety. Settings similar to the GMB, where annotation is
replaced by correction, are most suitable. An important prerequisite is that the
provided fixed labels are reliable.

When using the presented enhancement to the tagging, information about
the tagger’s uncertainty on a sequence containing a known label is altered or
lost. Detecting possible errors in annotation or cases that are hard for the tagger
might become more difficult, as they are obscured by the fact that the tagger has
less choices available and thus a higher confidence. This implies the tagger is not
suitable for approaches like AL or similar.

This tagger might be a way to reduce errors from human annotators that
manually correct annotated text. It can indicate errors otherwise missed by an
annotator by giving feedback about changing analysis on other tokens directly
after the corrections are applied. For this purpose it is a much more convenient
way to make ad hoc use of the provided corrections than retraining and tagging,
since it is significantly faster.

The tagger that we augmented with an extension for our experiments builds
on the same algorithm as the tagger (C&C) that is used in the GMB project.
We can expect similar results from augmenting the C&C tagger. Due to differ-
ent parameter settings (e.g. smoothing), however, results are not fully transfer-
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able/comparable. With a retrained tagging model, such as one presented in the
previous chapters, only a small number of tokens with associated known labels
will be incorrectly tagged. Thus augmenting the tagger in this situation would
yield hardly any differences.

We only presented an enhancement to a tagger used for POS annotation.
However, taggers with an analog design used in other tasks like NE recognition
might benefit similarly and offer an interesting avenue for future work. We are
currently not aware of any published work on a tagger extension similar to the
approach proposed here.
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7. Conclusion

In this chapter we summarize the most important results of this thesis in order to
answer our research questions. Furthermore, we want to advice on how findings
of this thesis can be implemented to get a benefit for the Groningen Meaning
Bank (GMB) project. Finally we give pointers to future work.

7.1 Findings

This thesis has described possible ways how to use manually verified tags, the
Bits of Wisdom (BOWs), to effectively improve overall part-of-speech (POS)
annotation in the GMB corpus. Our results show in general that by retraining
the POS tagger after including sentences with BOWs in the training data the
annotation within the GMB corpus can be improved by correcting numerous
errors. No change in performance was observable on external gold-standard test
sets. Our best model, that uses 96% of the BOW-sentences in retraining, managed
to make the correct prediction for almost 70% of manually verified tags in the test
set, which is an improvement of roughly 65% over the baseline. Employing the
improved POS tagger model as an input to the parser leads to a slightly raised
parse coverage.

We investigated how the existing BOWs can be sampled most effectively and
found that already 70% of the data can give a performance comparable to the one
of our best model. Prioritizing those sentences in retraining with a high ratio of
verified annotation proved to yield more effect than random selection. A strong
effect of retraining in terms of corrected tags was especially visible after adding
only a fraction (up to one third) of the available data. When adding more data
the improvement effect is slowed down. Furthermore, most changes in tagging
were triggered when only using a smaller set of additional training examples.
This leads us to the conclusion that the set of provided corrections in the GMB
contains a high degree of redundancy. As a consequence, if retraining is applied
iteratively, the process can be directed to only allow sentences with a high ratio
of BOWs.

In simulating Active Learning (AL) we found that the sampling methods
Query by Uncertainty (QBU) and Query by Committee (QBC) are able to select
training data that have a retraining value comparable to data selected by BOW
ratio. Selecting sentences with AL enables the tagger to achieve 90% of the
performance of our best model while applying almost half the data in comparison
to random selection. It is essential, however, that the data selected by AL are
reliably tagged. AL suggests itself to be used to guide future annotation effort in
the GMB since it provides a way of ensuring an effective impact of the corrections
provided.

In addition to the findings of the retraining experiments, we proposed a way
of making sporadic corrections in annotation directly available to the tagger with-
out retraining. In a pilot study we showcased how a tagger can use known labels
at tagging time to augment its decision making for other tags in the sequence.
Testing this extension on the GMB showed only modest results. The main limi-
tation we found was that only very few changes in the annotation were triggered
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by the augmented tagger. However, we believe, that in the context of creating
a gold-standard corpus it is a promising approach and presents an avenue for
further research.

7.2 Advice

One of the main findings of this thesis is that retraining (the POS tagger) helps.
By continuing to use the standard models, the GMB project would restrain itself
unnecessarily. Retraining, even with only a small fraction of the added knowledge
of the correction, can help to advance the corpus.

The GMB project should adopt a way how to direct annotation effort. This
would help to ensure that corrections are of high informative value and the pro-
vided effort is used beneficially. Annotation effort could be directed towards
interesting and hard cases to get an optimal effect for example by using AL. But
also a simpler procedure like checking differences in tagging after applying an im-
proved tagger model could already be an effective approach. Since it was found
that sentences with a high ratio of BOWs are especially helpful in retraining,
focusing on further correcting and verifying sentences which have already been
corrected at least once can help to enhance the existing information. This would
also help to mitigate negative effects of using sentences that carry a BOW in
retraining by further checking so far unverified annotation. In addition it would
be a first step in creating a gold-standard POS part within the corpus. Our work
started the development of a gold-standard part on the POS level in form of a
silver standard. By gradually increasing the amount of manually verified tags the
value of this part could be increased further.

When choosing AL for future annotation, it might be wise not only to tar-
get a single level of annotation but rather multiple. The motivation should be
improving annotation on all levels of annotation and pursuing the global goal
of the GMB to build a gold standard for semantic representations. One way of
fulfilling this intention would be to use alternating selection [44]. In this from of
AL instances are chosen to maximize training utility on more than one level of
annotation. This fits the idea of the GMB since it is focused on many levels of
annotation.

7.3 Future Work

In this thesis we only evaluated the effect of retraining on the POS level of
annotation. But also any other level of annotation with a high amount of BOWs,
such as the named entity (NE) level, lends itself to retraining. Investigating
retraining on other layers could help to find a more general approach that applies
to multiple types of annotation.

In addition to the main evaluation of retraining on the POS level, the effect on
other layers of annotation in the pipeline was only tested on the example of the
parser. To get a proper estimation of the influence on higher levels of annotation
an analysis in more depth is needed. The evaluation could also include how
parallel retraining on different levels influences the rest of the corpus.
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In retraining the POS tagger we chose to set the training parameters (e.g.
smoothing parameter, feature cutoff, ...) to the same values as the default model.
However when building and tuning an improved model this parameters should also
be adjusted for best results. For example, Curran and Clark [17] suggest that the
smoothing parameter is dependent from the number of training examples used.
Since the number of training examples largely increases this is one example for
possible tuning.

Future work should also include actual periodical retraining and a later evalu-
ation in a practical setting to see how the effect of manual corrections changes
over time.
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List of abbreviations

Notation Description Page List
AL Active Learning 1, 14–18, 24, 25, 28,

31–34, 36, 37, 43, 45,
46

BOW Bit of Wisdom: A manual correction or a ver-
ification of annotation authored by a human
annotator

3–5, 8–10, 18–25, 28–
37, 40, 45, 46

CCG combinatory categorial grammar 7–10, 27, 35

DRS Discourse Representation Structures 7, 10

GMB Groningen Meaning Bank 3–10, 15, 18, 20–22,
27–31, 34–38, 40, 43,
45, 46

GWAP game with a purpose 8, 14, 15, 38

HMM Hidden Markov Model 11, 12, 26

MASC Manually Annotated Sub-Corpus 22, 28, 36
ME maximum entropy 9, 10, 12, 19, 39
ML machine learning 11, 15

NE named entity 3, 7, 9, 15–17, 44, 46
NLP Natural Language Processing 3, 7, 11, 14, 15, 17, 26

POS part-of-speech 1, 3, 5–13, 15–22, 24–
28, 34–36, 38, 39, 44–
47

QBC Query by Committee 24, 26, 31–33, 37, 45
QBU Query by Uncertainty 24, 25, 31–33, 37, 45

TE token entropy 25

VE vote entropy 26

WSJ Wall Street Journal 17, 20–22, 27, 28, 34,
36, 39
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A. Part-of-speech Tags

Tag Short Explanation

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LQU Opening quotation mark
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
RQU Closing quotation mark
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb
# Pound sign
$ Dollar sign
. Sentence-final punctuation
, Comma
: Colon, Semi-colon
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