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Abstract

This thesis examines the application of the spatial aspect applied in the com-

petitive models in the context of the natural resource economics. At first,

the spatial models are thoroughly derived in one dimension. Then also their

general properties such as the choice of the agents’ location or their payoff

function are examined. These properties are investigated for various distri-

butions of the resource, and therefore they depend also on their parameters.

The Nash equilibrium and local stability conditions are derived for the basic

setups. In the second part, these competitive models are numerically tested

also in a two-dimensional space. One of the results also suggests, that in the

setup where the players have perfect information, the beginning player is not

necessarily always better off than the second player. Throughout the entire

thesis it is also comprehensively examined whether the existence of corners of

the strategy space has an impact on the existence of the competition which

was successfully demonstrated on several cases.
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Abstrakt

Tato práce pojednává převážně o aplikováńı prostorového aspektu v kompet-

itivńıch modelech v kontextu ekonomie př́ırodńıch zdroj̊u. Tyto modely jsou

nejprve detailně odvozeny a jsou hledány jejich obecné vlastnosti pro r̊uzné

distribuce jako je volba strategie jednotlivých hráč̊u, př́ıpadně jejich výplatńı

funkce v závislosti na parametrech použitých distribućı. V druhé části práce

jsou tyto kompetitivńı modely testovány numerickými simulacemi v jednodi-

menzionálńım prostoru, ale také v dvojdimenzionálńım prostoru. V těchto sim-

ulaćıch je kromě hledáńı Nashovy rovnováhy zkoumán také koncept podmı́nek

lokálńı stability. Jako jeden z výsledk̊u simulaćı bylo mimo jiné také zjǐstěno, že

ve hře, kde hráči disponuj́ı kompletńı informaćı i zdroji, může být za určitých

podmı́nek nevýhodné pro hráče táhnout jako prvńı. V pr̊uběhu celé práce

je také rozsáhle zkoumán vliv existence okraj̊u prostoru na rozhodováńı jed-

notlivých hráč̊u, kdy v některých př́ıpadech tento efekt podńıtil vznik soutěže,

která by na otevřeném prostoru bez okraj̊u nevznikla.
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Chapter 1

Introduction

Spatial distributed common pool resource can be understood as any resource

distributed over a space shared by multiple agents who exploit it. Such a

common pool resource can face the problems of limited usage in case of over-

exploitation. The aim of this thesis is to analyze common pool stocks especially

in the analogy to the fisheries economics and try to emphasize the importance

of the spatial dimension in the analysis of the competitiveness of the individual

agents.

The fisheries analogy was chosen especially due to the recent calls for

the spatial extensions which was emphasized besides others for example by

Behringer & Upmann (2014). The most intuitive application could be rep-

resented by the case where two agents (e.g. fishers) compete along the same

space (e.g. lake) over the resource stock (e.g. fish) which is distributed spatially

around the space.

In the first part of the thesis, the goal is to propose an innovative general

description of a competition in the spatial models when the resource is exploited

by two agents. This analysis should provide a simple overview of how the basic

resource distributions differ and what effects can be observable for what types

of distributions. The usage of the common pool stock is limited to its size and

therefore the fundamental question which should be examined by this thesis

is what the factors determining the competitiveness of the agents are in the

environment, where the spatial dimension is regarded.

The emphasis is, therefore, put on the analysis of the resource distributed

in one dimension along a line segment or a circle. These two shapes of space

can help to analyze two different effects regarding the competition. In the first

one the distance from some central point (e.g. harbour) is important whereas
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for the second space the intuition is more about competing between the players

who have similar rather than different characteristics in terms of the distance

from the central point.

After the derivation of the general equilibrium and stability conditions and

an application of them on the selected resource stock distributions, the aim is

to simulate some more realistic scenarios also numerically, which could be hard

to examine analytically. Such scenarios may demand the numerical analysis

for example due to involvement not only of one dimension but two dimen-

sions. In such a two-dimensional spatial model the competition over a resource

stock can be simulated numerically far more easily than analyzing it strictly

mathematically.

The numerical simulations are aimed to be utilized also in case of simulating

the role of the information in the scenarios where there is not perfect informa-

tion, which is the second most important goal of this thesis. The imperfect

information is hard to examine analytically with the usage of only mathemat-

ical tools as it usually requires a lot of iterations, therefore in this part the

thesis would ideally use the numerical methods for an analysis of such scenar-

ios with imperfect information. The fundamental question for the numerical

simulations is to find what the role of the information about the distribution

of the resource is and how it affects agents’ payoffs in case of various distribu-

tions. The aim is also to compare what amount of information is how efficient

for attaining of the specific amount of the payoff.

One of the aims of the numerical simulations is also the scenario where the

players alternate under perfect information until they find the Nash equilibrium

and analyze thus, what conditions must be met for both players in order to

optimally maximize their payoff.

The thesis structure consists of the two main chapters called Theoretical

part and Numerical simulations, in which the main results are contained, and

three minor chapters which should help the reader to orientate, namely, Intro-

duction, Literature review, and Summary and conclusion.



Chapter 2

Literature review

In this chapter, the aim is to explain what the reasons were for investigating the

topic chosen in this thesis and how it is related to the literature that has been

written on this matter. This chapter also should help the reader to orientate in

the field of natural resource economics and especially in economics of fisheries

with emphasis on the spatial aspect. This literature review should help as a

guide in case of more interest in the areas covered by this work.

2.1 The historical roots of fisheries economics

Natural resource economics is a relatively well established interdisciplinary field

of study which goal is to find the linkages between human economies and natural

ecosystems. This thesis should provide a theoretical framework which finds its

application especially in the case of fisheries, however, with possible extension

also towards exploitation of other natural resources.

The most significant papers for the case regarding economics of fisheries are

represented by the papers of Gordon (1954) and Scott (1955) which serve as

base articles for the current analysis of the exploitation of the fishery stocks.

Unlike the former author who focuses his work mainly on over-exploitation of

the common pool fishery stocks, the latter uses more mathematical approach

when applied it on modelling of the optimal resource management and thus

paved way for many further research efforts. Basically, these two papers formed

the background for a wide-ranging literature of natural resource economics that

flourished especially in the 1970s and 1980s.

In contrast to the two papers mentioned which are predominantly theoret-

ical, Deacon et al. (1998) are advocates of extensions of these models to more
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realistic usage. The problems which they deal with are, therefore, more based

on what the fisheries managers or biologists are concerned with rather than to

make the analysis very technical as did Scott (1955) and many other economists

who chose to emphasize the optimization problem.

2.2 Integration of the spatial dimension concept

The most important and urgent extension Deacon et al. (1998) points on is the

involvement of the spatial dimension in the fishery models. Nevertheless, not

many papers are devoted to this kind of extension even though it is obviously

extremely relevant in case of fisheries. Practically no evidence of this topic is

being examined even in the recent textbooks related to the topic (e.g. Conrad

(2010), R. Perman & McGilvary (2011)).

The vast majority of authors included the dynamical aspect in their works

which was relatively exhaustively studied, however, they neglected also the im-

portance of the spatial dimension. The dynamical aspect adds quite a labouri-

ous solution of differential equations to the problems solved whereas the spatial

dimension added does not necessarily complicate the equations much. Even au-

thors M. D. Smith & Wilen (2009) note that there is a long tradition of both

aspects, however, they are too separated from each other and no authors com-

bine them in the single model.

Historically, the spatial dimension has been examined already since the 19th

century. For the first time it was in the model created by the famous farmer

and amateur economist von Thünen in his work The Isolated State (1826) (Hall

1966) which is often referred to in land economics and economic geography. The

more comprehensively studied spatial economics was also by Hotelling where he

separated the dynamical and spatial part in his two seminal papers (Hotelling

1929) and (Hotelling 1931) .

The idea of Hotelling to solve classical monopolistic competition model

with relevance to the location of the consumers by putting them on a line of

fixed length was crucial for further development of this concept. The spatial

competition introduced by Hotelling was extended by classic circle model by

Salop (1979) who solved the problem of product location similarly as Hotelling,

however, with emphasis on the neighbourhood of the particular consumers by

distributing them on the perimeter of a circle. This idea was innovative in

the sense of description of some situations which could not be described by

the Hotelling model. Although both models have their applications usually
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in industrial organization where it may describe product differentiation, the

fundamental ideas of these models to examine both a line segment and a circle

space are handled in this thesis as a very important spatial issue.

2.3 Game theoretical approach

Along with the natural resource economics the fisheries were comprehensively

examined also by game theory tools. This approach uses mathematical for-

malism to describe player strategies when there are any conflicts or common

interests. Modern approach is usually attributed to Neumann & Morgenstern

(1947) who laid its foundations and were followed by John Nash who worked

on the non-cooperative (Nash 1951) and cooperative (Nash 1953) solutions.

In the fisheries, game theory has found its place in the two-player game

analysis of sharing the fishery resource between two different coastal countries

(Munro 1979). Munro’s conclusion was that in the cooperative games of this

kind players usually do not have the same preferences and therefore simplifies

the joint management of a resource exploitation by introducing a concept of

transferable utility between the cooperative players using so-called side pay-

ments.

Following the approach that was presented by Munro, a lot of further works

related to fishery management occurred. These works usually utilized coopera-

tive or competitive game theoretical framework where the positive effect of the

cooperation of the players was consequently shown.

As the two player setups were examined, the condition for stability in such

scenarios is given first by the concept of Pareto Optimality, which says that

no player can achieve better payoff without decreasing the other cooperative

player’s payoff, and second by the concept of Individual Rationality Constraint,

which says the players who are cooperating must have the same or higher payoff

than in the case of no cooperation (Sumaila et al. 2010).

A very important conclusion for this thesis is made by Trisak (2005) who

showed that the size of the common pool fish stock influences the decisions of

the particular players whether to cooperate or not which will be analyzed later,

however, in a spatial setting. Almost all early contributions were assuming

two player game whereas in reality there can occur a more complex scenario.

This problem was usually solved by aggregating the players into two groups or

introducing the concept of the fishing coalitions (Kronbak & Lindroos 2007).

A coalition framework helps to handle large number of cooperating players,
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however, in this thesis we will use rather two-player analysis and simulations

as a trade-off in order to make it simpler both in analytical description and

also in numerical simulations. This approach is chosen even though there are

some notes that there might be limitations in the description of the real world

scenarios when using only two-player game analysis. (Hannesson 1995)

The literature on fisheries regarding two player games utilize a single stage

structure the most (i.e. both players make decisions at the beginning of the

game, where they are aware of what the future stock will look like). But there

are also papers where two stage or multiple stages are regarded (Hannesson

1995). In this thesis, more of these variants are simulated in the numerical

part and it is applying them predominantly in competition cases without per-

fect information about the future stages where the players play sequentially.

According to Sumaila et al. (2010) possible development in this field could be

in use of game theory in a broader ecosystem-based context. Whilst the ma-

jority of works is relating to single fish stocks, this thesis aims to describe the

fish stocks continuously and spatially in one-dimensional cases and also some

simulations in two-dimensional context which could help to link the importance

of spatial analysis with the utilization of the game theory framework in natural

resource economics.

2.4 Recent literature

The lack of investigation of spatial aspect in the natural resource economics is

according to Wilen (2007) contrasting with the very comprehensively exploited

spatial dynamic systems in the hard sciences such as mathematics or physics.

Recently there have been some efforts e.g.(Neubert & Herrera 2008) to employ

the spatial factor by implementing the diffusion coefficient which enables fish

to move from one place to another. Some other authors on the other hand link

the agent’s harvesting speed with the amount of resource that can be extracted

which reduces the complexity of the analysis. This approach was chosen by

Robinson et al. (2002) in a resource extraction (timber gathering) model.

Last but not least, the spatial dimension was examined in this spirit also by

A. O. Belyakov & Veliov (2013) and very similarly to them also by (Behringer

& Upmann 2014) where both groups of authors used a model assuming that

the agent (fisher) is moving along a circle where he is harvesting the resource

(fish stocks).

The purpose of thesis is to continue in investigation of the spatial dimen-



2. Literature review 7

sion from the very basic perspective of a two-player game where the dynamic

aspect of the resource stock is not regarded. More emphasis is given on the

analysis of the agents’ behaviour if their information about the resource is not

perfect and how this factor contributes to the optimal locations of agents. The

spatial dimension is thoroughly examined in the theoretical chapter where one-

dimensional spatial distribution of the resource was assumed, which could have

intuitively a good real application to either a lake or a river fishing and also to

other natural resource extraction. The role of information is due to its analyt-

ical difficulty simulated in the second part of the thesis. That part continues

also in studying the problem of agents’ choice of location from the theoretical

part by using numerical simulations and also extends the spatial dimension

to a two-dimensional space in order to introduce a broader utilization of the

analysis to the real world cases.



Chapter 3

Theoretical part

This chapter analyzes a spatial competition game where two agents (e.g. fishing

nations, fleets or vessels) are competing along a one-dimensional space. The

space can be distinguished according to an existence of corners to either a line

segment space or a circle space. The aim of this chapter is not only to analyze

Nash equilibrium of the arising competition but also local stability conditions,

thus finding necessary and if possible also sufficient equilibrium conditions.

The agents’ payoff is dependent on the distribution of the natural resource the

agents are exploiting, therefore, the analysis proceeds from the most simple

uniform distribution to more complicated distributions.

In the following model each agent (denoted by subscript i ∈ {1; 2}) can

choose a strategy variable li from the set of strategies L = [0, 1] which intu-

itively describes agent’s location. The goal of both agents is to maximize their

individual payoff hi which can depend on the choice of their strategies, on their

range described by an exogenous parameter e, and thus also on the area in

which the players’ range overlaps. Last but not least, it depends also on the

shape of the space (existence of corners). In the cases where agents’ range

overlaps it is assumed that the payoff is split between the players equally.

3.1 Uniform distribution

The most simple distribution that can be mentioned is the uniform distribution.

In this chapter, a line segment space is assumed (with an exception of the

section 3.6) and hence also an existence of corners. As it is very intuitive and

literature related, from this point on will the agents be sometimes denoted



3. Theoretical part 9

as ”vessels” but the model could be applied in many diverse fields regarding

exploitation of some resource.

In equilibrium, both players will try to maximize the payoff they are able

to acquire. First, the model assumes no costs of transport. Second, the dis-

tribution of the resource stock is a uniform distribution on a line segment.

Therefore, there is no location which should naturally attract more activity.

The length of the line segment is normalized to 1. Without loss of generality

we denote the vessel 1 the vessel which is closer to the origin (left corner of the

line segment). The other vessel is the vessel 2.

Both players can choose their strategies li independently, however, they will

tend to respect two observations. First, they will try to avoid the space corners

because if they moved marginally beyond the corner, they would not increase

their payoff. Second, their willingness to enter a competition is low as they

can obtain only a half the payoff they could get alternatively, thus they will

avoid the competition too. In case of e1 + e2 ≤ 0.5 both observations can be

fulfilled. Hence, in these cases the players will choose such locations they will

not compete with each other. In other cases (e1 + e2 > 0.5), the marginal

gain from entering the competition equals 1
2

which is higher in comparison

to avoiding the competition and entering corner location with marginal gain

zero. In these cases the players maximizing their payoff will choose to enter a

competition rather than to avoid it by escaping towards the corner.

There are many different possibilities how the agents can choose their strate-

gies. As was written in the previous paragraph, the players will enter a compe-

tition if e1 + e2 exceeds the bound 0.5. Until that moment, if they are rational

they can choose any strategies that respect the two observations stated above.

Formally that means:

(l1, l2) ∈ [e1, l2 − e2 − e1]× [l1 + e1 + e2, 1− e2] (3.1)

In this analysis we will focus especially on the case where the convergence is

maximal. All other choices of (l1, l2) are either irrational (those not matching

the relation (3.1)) or with the same outcome as in the case where the players

converge to each other (and thus share one border). The reason why this is the

most interesting case is that in this case the players’ location can be understood

as a cutoff location where both players are maximizing their payoff and still

respecting the corner and competition evasion. As the e1 + e2 = 0.5 bound is

exceeded, both players’ strategy alternates to avoid the corners but also avoid
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the area shared with the competitor as much as possible (divergence).

With the focus on the cutoff case, if both players’ initial point is in the

middle of the line segment, the harvest of each player rises proportionally with

the increase of ei (see Fig. 3.1).

Figure 3.1: Vessels are not competing
Source: Author’s computation

Figure 3.2: Vessels start to compete
Source: Author’s computation

Figure 3.3: Vessels are competing
Source: Author’s computation

As the ei variables are gradually rising (in figures also symmetrically), the

whole model gets into the point where the vessels have to start to compete

for the shared area of the resource stock (see Fig. 3.2 and Fig. 3.3). The

equilibrium location of the individual vessels li will be a function of both e1, e2.

The cutoff location of the vessels diverges from the middle of the line segment

towards the point where neither of vessels can increase its resource area without

disrupting the opponent’s harvesting area.

When this point is reached, the equilibrium locations will start to gravitate

back towards the middle of the segment as the ei increases. The equilibrium
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locations of the vessels can be described by the following formulas

l1(e1, e2) =

{
1
2
− e2 if e1 + e2 ≤ 0.5

e1 if e1 + e2 > 0.5
, (3.2)

l2(e1, e2) =

{
1
2

+ e1 if e1 + e2 ≤ 0.5

1− e2 if e1 + e2 > 0.5
. (3.3)

This can be also rewritten in the form with absolute values

l1(e1, e2) =
1

2

(
1

2
+ e1 − e2 +

∣∣∣∣e1 + e2 −
1

2

∣∣∣∣) , (3.4)

l2(e1, e2) =
1

2

(
3

2
+ e1 − e2 −

∣∣∣∣e1 + e2 −
1

2

∣∣∣∣) . (3.5)

The next step is to characterize the harvest of each vessel. Let us denote

r1, r12, r2 the proportions of resource harvested by the vessel 1 only, both vessels

simultaneously, and the vessel 2 only, respectively. The amount of resource r1

is harvested solely by the vessel 1, and therefore it does not belong to the

shared area unlike the amount r12 which is shared equally by both vessels. The

amount r2 is harvested only by the vessel 2. The payoffs of both vessels can be

described in the following way

h1(r1, r12) = r1 +
r12
2
, (3.6)

h2(r2, r12) = r2 +
r12
2
, (3.7)

where the amounts of resource r1, r12, r2 can be derived geometrically from the

strategic variable li and the exogenous parameter ei of the vessels. If the players

are competing in the shared area, the equilibrium harvests r1, r12, r2 will be

r1(e1, e2, l1, l2) = (l2 − e2)− (l1 − e1), (3.8)

r12(e1, e2, l1, l2) = (l1 + e1)− (l2 − e2), (3.9)

r2(e1, e2, l1, l2) = (l2 + e2)− (l1 + e1), (3.10)

whereas if the players are not competing (the condition l1 + e1 ≤ l2− e2 holds),

the formulas will be slightly different as there will be no shared area.

r1(e1, e2, l1, l2) = (l1 + e1)− (l1 − e1) = 2e1, (3.11)
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r12(e1, e2, l1, l2) = 0, (3.12)

r2(e1, e2, l1, l2) = (l2 + e2)− (l2 − e2) = 2e2, (3.13)

If the equations (3.8),(3.9),(3.10) are substituted into the equations (3.6),

(3.7), the equations holding for the cases when the shared area exists are ob-

tained

h1(e1, e2, l1, l2) = (l2 − e2)− (l1 − e1) +
(l1 + e1)− (l2 − e2)

2
=

=
3e1 − e2 − l1 + l2

2
,

(3.14)

h2(e1, e2, l1, l2) = (l2 + e2)− (l1 + e1) +
(l1 + e1)− (l2 − e2)

2
=

=
−e1 + 3e2 − l1 + l2

2
.

(3.15)

If the equations (3.4),(3.5) are substituted into the equations (3.14),(3.15)

then it is obtained the formula for payoff depending only on the specific values

of the exogenous parameter ei for both vessels

h1(e1, e2) =
3e1 − e2 + 1

2
−
∣∣e1 + e2 − 1

2

∣∣
2

, (3.16)

h2(e1, e2) =
−e1 + 3e2 + 1

2
−
∣∣e1 + e2 − 1

2

∣∣
2

. (3.17)

Similarly, in the cases without shared area we will obtain the particular

payoffs by substituting the equations (3.11),(3.12),(3.13) into the equations

(3.6),(3.7)

h1(e1, e2, l1, l2) = r1(e1, e2, l1, l2) = 2e1, (3.18)

h2(e1, e2, l1, l2) = r2(e1, e2, l1, l2) = 2e2. (3.19)

The total harvest H can be computed as the sum of h1 and h2

H(e1, e2) = e1 + e2 +
1

2
−
∣∣∣∣e1 + e2 −

1

2

∣∣∣∣ . (3.20)

If we suppose that e1 = e2 = e the equations will simplify to

h1(e) = h2(e) = e+
1

4
−
∣∣∣∣e− 1

4

∣∣∣∣ =

{
2e if e ≤ 0.25
1
2

if e > 0.25
, (3.21)
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H(e) = 2e+
1

2
−
∣∣∣∣2e− 1

2

∣∣∣∣ =

{
4e if e ≤ 0.25

1 if e > 0.25
. (3.22)

These results imply that from the point when e ≥ 0.25 the total harvest is

not increasing (see Fig. 3.4). The only variables which are changing are the

variables denoting locations of vessels l1 and l2 which is also depicted in the

Fig. 3.4. Also the interval of competitive harvests changed according to the

following equation

r12(l1, l2, e) = 2e− (l2 − l1) = 2e− 1

2
+

∣∣∣∣2e− 1

2

∣∣∣∣ . (3.23)

An interesting implication of adding an equality e1 = e2 = e is that the sum

of strategy variables gives us always l1 + l2 = 1 in the cutoff case, which can

be easily seen from the Fig. 3.4 or derived from the equations (3.4),(3.5).

The location of both players in the cutoff case (the equilibrium with maximal

convergence of players) is at first non-competitively diverging as the players

want to avoid the competition, however, as the exogenous parameter e exceeds

the value 0.25, both players will rather choose corner avoidance than no com-

petition and thus will converge towards the middle of the line segment space

entering the competition while minimizing the shared area as much as possible.

Figure 3.4: Uniform distribution payoff and location summary
Source: Author’s computation
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3.2 Local stability conditions under the assump-

tion of agents’ symmetric range

In the model above it is assumed that the distribution of the resource stock

is uniform. Let us relax this assumption and suppose arbitrary distribution

with a density function f(x) and a cumulative distribution function given by

its definition F (x) =
∫ x

0
f(t)dt. In the uniform distribution setup above, it

held that

f(x) =

{
1 if 0 ≤ x ≤ 1

0 else
. (3.24)

F (x) =


1 if x > 1

x if 0 ≤ x ≤ 1

0 if x < 0

. (3.25)

With the arbitrary distribution given by density f(x), the general conditions

of equilibrium local stability can be examined. These conditions hold if there

does not exist any one-side marginal deviation of player strategy li which leads

to better payoff than the previous strategy. In other words it means that if a

player makes a marginal shift of strategy and it does not change the payoff,

then the local stability conditions hold.

Let us assume again that e1 = e2 = e. Now three different scenarios can

occur.

In the first scenario, the players do not share any area of the resource stock

(there is no competition). The local interior stability conditions for both vessels

are then

lim
x→li−

f(x− e) ≤ lim
x→li−

f(x+ e), (3.26)

lim
x→li+

f(x− e) ≥ lim
x→li+

f(x+ e). (3.27)

In the case of the continuous density function f(x) these conditions can be

simply rewritten as

f(li − e) = f(li + e). (3.28)

These stability conditions are not valid in the cases where other constraints

occur. This can happen for example in the cases of corners of the line segment.

If the player’s range is outside the line segment space (li− ei < 0 or li + ei > 1)

then it is locally stable equilibrium only if the marginal gain is zero at both

boundaries of player’s range. Therefore, the rational players will avoid the
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locations ranging beyond the corners as there is no payoff incentive.

The left corner (li − e = 0) equilibrium is locally stable if

lim
x→li+

f(x+ e) ≤ f(0). (3.29)

The right corner (li + e = 1) equilibrium is locally stable if

lim
x→li−

f(x− e) ≤ f(1). (3.30)

In the second scenario, there exists an area where both players are harvest-

ing (l2−e < l1 +e). The payoff in the shared area is split equally between both

players. Therefore, in order to achieve locally stable equilibrium, the marginal

payoff of the divergence option must be equal to the marginal payoff of the

convergence option (which is, however, divided between both players). As it

is assumed that 0 ≤ l1 < l2 ≤ 1 the local interior stability conditions can be

written formally

lim
x→l1−

f(x− e) ≤ 1

2
lim

x→l1−
f(x+ e), (3.31)

lim
x→l1+

f(x− e) ≥ 1

2
lim

x→l1+
f(x+ e), (3.32)

1

2
lim

x→l2−
f(x− e) ≤ lim

x→l2−
f(x+ e), (3.33)

1

2
lim

x→l2+
f(x− e) ≥ lim

x→l2+
f(x+ e). (3.34)

Again, if the density function f(x) is continuous, the previous conditions

simplify to

f(l1 − e) =
1

2
f(l1 + e), (3.35)

1

2
f(l2 − e) = f(l2 + e). (3.36)

If the vessel 1 is in the left corner (l1−e = 0), the local constrained stability

condition is
1

2
lim

x→l1+
f(x+ e) ≤ f(0). (3.37)

If the vessel 2 is in the right corner (l2 + e = 1), the local constrained

stability condition is
1

2
lim

x→l2−
f(x− e) ≤ f(1). (3.38)

Finally, in the third scenario, we assume full competition (l1 = l2). Under
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the assumption of e1 = e2 = e it holds that all the payoff is split between both

players equally (r1 = r2 = 0, h1 = h2 = r12
2

). This scenario is very similar to the

previous one, therefore the formulas used in the previous scenario will be used

in this scenario using the substitution l1 = l2 = l. The local interior stability

conditions are thus formally

lim
x→l−

f(x− e) ≤ 1

2
lim
x→l−

f(x+ e), (3.39)

1

2
lim
x→l+

f(x− e) ≥ lim
x→l+

f(x+ e). (3.40)

If the density function f(x) is continuous, the previous conditions simplify to

f(l − e) ≤ 1

2
f(l + e), (3.41)

1

2
f(l − e) ≥ f(l + e), (3.42)

but this is the system of two linear inequalities and can be solved. After

substituting first inequality into the second the following result can be obtained

1

4
f(l + e) ≥ f(l + e), (3.43)

which holds if and only if f(l+e) = 0. This implies also f(l−e) = 0. Therefore,

the full competition in the interior can occur if and only if the density function

f(x) is discrete and matching the conditions (3.39),(3.40) or if the density

function f(x) is continuous but its functional value f(l− e) = f(l+ e) is equal

to zero.

If the players are both in the left corner (l − e = 0), the local constrained

stability condition can be written as

lim
x→l+

f(x+ e) ≤ 1

2
f(0). (3.44)

If they are in the right corner (l + e = 1), the local constrained stability

condition is

lim
x→l−

f(x− e) ≤ 1

2
f(1). (3.45)

Unlike the interior case, these stability conditions can be matched even if the

density function f(x) is continuous. It is sufficient to have enough fast declining

f(x) near the edges for the conditions to hold.
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The conclusion is that it is impossible to have a full competition in the

case of continuous density function unless 1) both players are near one of the

edges, 2) the players are harvesting along one peak in the interior which is

circumscribed by points with zero density. On the other hand, in the case of

discrete density function, the conditions are generally not as much restricted

as in the continuous case.

3.3 Symmetric strictly quasi-concave distribution

Let us now suppose a single-peaked symmetric distribution (i.e. density func-

tion is strictly quasi-concave and meets condition f(x) = f(1 − x)). In this

case the results will be very similar to the uniform case which was examined

before if the peak density is not very high in comparison to corners density. The

reason for this is that the location which naturally attracts more attention is

located in the middle of the line segment. Hence, if we compare this scenario to

uniform distribution scenario, the player have to be at least as much converging

to each other as in the uniform distribution scenario. The intuition behind is

that there is increased attractiveness only in the middle of the line segment

space, and therefore it simply cannot increase divergence of the agents.

The interesting fact is that players do not have incentives to compete if the

peak density is below twice as high as the density at the corner. Formally this

means that the analysis is exactly the same as in the uniform distribution if

the following condition is met:

f(0) = f(1) ≥
f(1

2
)

2
. (3.46)

The local stability conditions are sufficient to sustain no competition in such a

case.

On the other hand, a different scenario can happen if the distribution does

not meet the condition (3.46). If we suppose that e1 = e2 = e, both vessels will

start their harvest in the middle (as it is rational to harvest the highest density)

and they will diverge from each other while the local stability conditions are

met. However, as we assume strictly quasi-concave function with density at

the corners less than the half of the peak (i.e. negation of the condition 3.46),

the players have incentives to intrude into the competitor’s area as long as it

is more profitable than divergence. These incentives are driven by the local

stability conditions described in the previous subsection.
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Note, that if the exogenous parameter e is small, the local stability condi-

tions do not have to imply the competition occurrence. This holds because if

they operated nearby the peak and their range did not reach the points where

the divergence is not worthy, they would still rather diverge than converge into

a competition.

However, as we suppose symmetric distribution, both players will probably

mirror their strategies and if one vessel defected and intruded into the area of

influence of the other vessel the response would be the same and neither of

vessels would be better off as their harvests would cancel out. Furthermore,

they would be worse off as they would not use all the resource they would be

otherwise able to use if they did not compete. Therefore, the socially best

optimum would be if they cooperated and did not intrude into each other area

of influence.

The optimal scenario would therefore be to diverge until the entire area

is saturated and only after that the players should start to compete. In that

case, the equilibrium values of the strategic variables li are the same as in the

uniform distribution case.

The only difference in comparison to the uniform distribution analysis is

that in the strictly quasi-concave case there would not exist more optimal

strategies for low e as the player receives the highest payoff if he chooses to

converge as much as possible (but still not to compete!). Hence, the players

will always choose the equilibrium with the highest convergence, which was in

the uniform distribution analysis considered only as a cutoff case and there

were also other strategy choices which were admissible, too.

To sum it up, if the condition 3.46 holds or the players start to cooperate,

the equilibrium values of the examined variables would be very similar to the

uniform case only the equations describing it are generalized. For the detailed

analysis, see Appendix, where the equations are derived.

3.4 Symmetric quasi-convex distributions

In the previous section, the situation of two competing players in a symmetric

quasi-concave distribution setting was examined. Now, let us take a look at

cases where there is a symmetric (f(x) = f(1− x)) quasi-convex distribution.

Intuitively, these distributions tend to increase divergence between the locations

of the two players, therefore the detailed description of players’ strategies is

quite straightforward.
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Unlike the previous case, the players now do not have any incentives to

compete as they will be better off at each one’s corners of the distribution.

Therefore, they will choose the location where they harvest the most, which is

l1 = e (3.47)

l2 = 1− e (3.48)

Their payoff can be easily derived too

h1 = F (2e)− F (0), (3.49)

h2 = F (1)− F (1− 2e), (3.50)

in the case of e ≤ 0.25. On the other hand, when there is a partial competi-

tion caused by corner restriction (e > 0.25) the harvest of the players can be

described as

h1 =
F (2e)− F (1− 2e)

2
− (F (1− 2e)− F (0)), (3.51)

h2 = F (1)− F (2e) +
F (2e)− F (1− 2e)

2
. (3.52)

3.5 Linear distribution

Let us now suppose distribution given by formula: f(x) = ax+b on the interval

[0, 1] and f(x) = 0 else. The variables a and b are exogenous parameters. In

order to decrease the number of free parameters (degrees of freedom), we can

norm the distribution on the line segment so the total quantity of natural

resource is 1. Formally this means∫ 1

0

f(x)dx = 1. (3.53)

If we apply this norm on the distribution given by linear density function the

following condition is obtained∫ 1

0

(ax+ b)dx =

[
ax2

2
+ bx

]1
0

=
a

2
+ b = 1, (3.54)

a = 2(1− b). (3.55)
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Therefore the natural resource distribution is in this case a function not only

of a location denoted by x but also of one exogenous parameter b, which is

responsible for the slope and for the vertical shift of the density function of

the distribution. That means that b denotes the intercept of a vertical axis

(f(x)) but simultaneously also a parameter negatively related to the slope of

the density function.

As we do not suppose cases where the distribution could be negative, we

can consider that b ≥ 0 condition must hold. Similarly, if the parameter b was

greater than 2, there would emerge a region where the distribution would be

negative. If we think about cases where 1 < b ≤ 2, we can infer that they are

very similar to the cases where 0 ≤ b < 1. The only difference lies in the fact

that there is an axial symmetry and thus the former case is the mirror image

of the latter one (See Fig. 3.5). Without loss of generality we can, therefore,

assume b ∈ [0; 1]. The density and cumulative distribution functions are given

by

f(x) = 2(1− b)x+ b, (3.56)

F (x) =

∫ x

0

[2(1− b)t+ b]dt = (1− b)x2 + bx. (3.57)

Figure 3.5: Density functions depending on the parameter b
Source: Author’s computation
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The aim of this subsection is to find Nash equilibrium in pure strategies of

two players l1, l2 (if it exists). Under the assumption b ∈ [0; 1), the distribution

is upward sloping with a constant slope, therefore the location near the right

edge of the line segment naturally attracts attention of both players. In the

case of b = 1, the uniform distribution is obtained, which was discussed earlier.

If we supposed first only one player (i.e. player 2, which operates in the right),

he will naturally choose the location where he maximizes his payoff, which is

as close to the right corner as possible

h2(l2) = F (l2 + e)− F (l2 − e) =

= (1− b)(l2 + e)2 + b(l2 + e)− (1− b)(l2 − e)2 − b(l2 − e) =

= 4l2e(1− b) + 2be,

(3.58)

dh2
dl2

= 4e(1− b) > 0, (3.59)

d2h2
dl22

= 0. (3.60)

As the slope of the payoff function of the player 2 is positive for all e > 0

and b ∈ [0, 1). The closer the player is to the right edge of the line segment

space, the higher the payoff is (except the b = 1 case). This fact implies that

the player will maximize his harvest when he is in the right corner. It would

be nonsense to harvest zero natural resource (beyond the right point of the line

segment i.e. x = 1), hence he will choose the location where he is 1) in the

right as much as possible, 2) where there is a non-zero harvest at the maximum

point x which is, however, still in player’s range. This means he will choose the

location

l2(b, e) = l2(e) = 1− e, (3.61)

which is interestingly but not surprisingly not dependent on the distribution

parameter b. As will be shown later, the location of the player 1 will depend on

the parameter b. In contrast to these conditions, if the parameter b was equal

to 1, the distribution would be uniform with a density function as stated in the

subsection regarding uniform distribution. The Nash equilibrium in a case of

two players harvesting the resource with uniform distribution has been already

discussed, therefore it will be left here and aimed in this subsection to clearly

explain what happens in case of b ∈ [0, 1).

The position of the player 2 is already known. Now, let us take a look at
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what happens with the player’s 1 decision. If the areas of harvest of individual

agents overlapped, the payoff for each of them would reduce to half. Therefore,

the problem of how to set the location of the player 1 reduces to the problem

without competitor but with only half the resource available in the overlapped

area (See Fig.3.6).

The problem of finding the equilibrium strategy of the player 1 can lead to

situations where there exists an interior equilibrium (e.g. in Fig. 3.6). The

reason for this is that the second player has to balance marginal gains from

the non-competitive area with those in the competitive area, simply due to

observation of local stability conditions.

The existence of an interior equilibrium depends mainly on the value of

parameter b and partially also value of e. If the intercept b would be close to

zero (and thus also a slope would be high), the full competition could emerge.

In contrast, if the parameter b was close to 1, it would be very similar to the

uniform distribution scenario, and therefore no competition would be entered.

If the b is somewhere between those two values (depending also on the e value),

the case of interior equilibrium can emerge. The more specific conditions for

the nature of the equilibrium will be examined later.
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Figure 3.6: Determination of players’ location in setting b = 0.3, e =
0.25

Source: Author’s computation

This attitude towards setting the location of the player 1 in response of the

location of the player 2 can be utilized not only in this case with linear density

function but generally, which will be discussed later and is the way how the

numerical simulations are done. Now, let the rest of density available to the

player 1 denote as f̂(x) along with the definition

f̂(x) ≡

{
f(x)/2 if l2 − e ≤ x ≤ l2 + e

f(x) else
, (3.62)

where under f(x) it is supposed the linear density function stated formerly

f(x) = 2(1 − b)x + b. The player 1 has to make the same decision about

choice of strategy as the player 2 did previously but applies it on the altered
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distribution instead:

f̂(x) =


(1− b)x+ b

2
if 1− 2e ≤ x ≤ 1

2(1− b)x+ b if 0 ≤ x < 1− 2e

0 else

. (3.63)

If we define F̂ as the cumulative distribution function of the density function

F̂ (x) =

∫ x

0

f̂(t)dt, (3.64)

the harvest of the player 1 will be then

h1 = r1 +
r12
2

= F̂ (l1 + e)− F̂ (l1 − e) =

=
F (l1 + e)− F (1− 2e)

2
+ F (1− 2e)− F (l1 − e) =

= (1− b)1− 4e+ 3e2 − l21 + 6l1e

2
+ b

1 + e− l1
2

.

(3.65)

The objective function we want to maximize is the player 1’s harvest h1. There-

fore we solve the maximization problem

max
l1∈[0,1]

h1(l1). (3.66)

If we assume b ∈ [0, 1), the first and second order conditions are

dh1
dl1

= (1− b)(−l1 + 3e)− b

2
= 0, (3.67)

d2h1
dl21

= b− 1 < 0. (3.68)

This means, there exists a maximum as the player 1’s harvest function is con-

cave at each point of the line segment. From the first order condition it follows

that the player 1 maximizes his payoff (harvest) at the location

l1 =
b

2b− 2
+ 3e. (3.69)

This is, however, valid only if there exists a competitive area, because the

player 1’s payoff function h1 would be defined in non-competitive scenario oth-

erwise than in the competitive one (which was done above). However, this

problem can be simplified even without solving the case, where there is no
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competition. The key lies in the fact that the density function f̂(x) has a pos-

itive slope along all the noncompetitive values x. This means, rational player

1 would choose the solution which is not competitive but as near as possible to

the player 2, i.e. solution where the player 1 is operating at the point l1 = 1−3e,

which is the first point where the shared payoff r12 is equal to zero (measured

from the location of the player 2). Furthermore, this solution is also consistent

with the equations regarding the non-negative r12 which were examined above.

Therefore, it is not necessary to examine also the cases where l1 < 1 − 3e,

because rational player 1 would not choose such positions and would rather

choose the most convergent no competition strategy possible. The choice of

the strategy l1 can be rewritten more precisely as

l1 = max

(
b

2b− 2
+ 3e, 1− 3e

)
, (3.70)

and in its core it means that the player 1 is trying to compete if possible, other-

wise he will choose the most convergent non-competitive equilibrium strategy

located at 1 − 3e. It is interesting to determine exactly what conditions must

be met in order to have no competition. As was stated before this happens

when player 1 decides to harvest exactly at point l1 = 1− 3e. This means the

condition for sustaining no competition is

1− 3e ≥ b

2b− 2
+ 3e. (3.71)

In order to find e such that there will not be competition for given exogenous

parameter b, it is necessary to think about the ”marginal player 1” (i.e. the

player 1 who is not competing but can enter competition if he moved marginally

along the line segment space). Let denote em such cutoff parameter e which is

owned by the ”marginal player 1”, then the following equation holds

1− 3em =
b

2b− 2
+ 3em. (3.72)

This can be rewritten as

em(b) =
b− 2

12(b− 1)
. (3.73)

From the definition of em it is only meaningful to find it if there can be no

competition. It is trivial that if the condition e > 1
4

is met, then it is certain

there will occur a competition (similarly as in the uniform distribution case).

Furthermore, by substituting eq.(3.73) into this condition the following relation
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is obtained

b >
1

2
. (3.74)

This means that if there is b > 1
2
, then there will always exist a competition

between the player 1 and the player 2 if the e exceeds 1
4
. In other cases there

can exist both competition or no competition depending on the value of b and

e.

Similarly, we can discuss also the cases where there will be a full competi-

tion. This happens when l1 = l2. This condition is met when

1− efc =
b

2b− 2
+ 3efc, (3.75)

where efc denotes the minimum exogenous variable e which is necessary to

sustain full competition given the parameter b. The last equation can be also

rewritten as

efc(b) =
2− b

8(1− b)
. (3.76)

This is meaningful only in cases where there is not full competition naturally

(i.e. e < 0.5). In the Fig. 3.7 the discussion about competitive cases is clearly

summarized. It can be seen which selections of parameters b and e lead to

either no competition, partial competition or full competition. Note that this

is only valid if both players are rational (maximize their payoff), otherwise they

could choose other locations than the equilibrium ones, which could cause a

competition in other cases than are discussed.
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Figure 3.7: Discussion of competitive behaviour depending on param-
eters b, e

Source: Author’s computation

It is interesting that the set of partial competition and also the set of full

competition is non-convex. It is driven mainly by the following two observa-

tions.

The first one is that two players in equilibrium simply cannot sustain no

competition if the e > 0.25 as the space they are competing in is not vast

enough and very similarly they cannot sustain partial competition if they can

harvest along the entire space (e ≥ 0.5).

The second observation is that as the parameter b drops to zero, there is

steeper density function, which forces players to compete more actively for the

location, where the resource is concentrated. Therefore, it is not surprising

that for lower values of the parameter b the lower e is sufficient to enter a

competition (or full competition). The closer the value of b is to 1, the more
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similar is the case to the uniform distribution case, where the first observation

dominates because agents do not have so strong incentives to change their

location. Thus, as the parameter e grows marginally with parameter b held

constant, it increases the competitiveness of both players.

Similarly, if the parameter b decreases marginally with parameter e held

constant, the players may switch from no competition to partial competition,

or from partial competition to full competition, again increasing the competi-

tiveness of both players.

The inverse to the parameter b (i.e. 1
b
) can thus be understood as a het-

erogeneity parameter. Generally, it holds that the higher the heterogeneity

parameter, the higher the competitiveness. It is caused by the simultaneous

effect of parameter b on an intercept but also a slope. The higher slope in

this case causes that the half marginal gain from the competitive area is more

attractive than in the cases where the slope is lower. Moreover, the lower the

intercept is, the higher willingness to compete occurs. Therefore, in this setting

both effects of the parameter b are cumulative and therefore the analysis of its

role is clear.

One could deduce from this that it means that raise in e and increase

in b at the same time will result in a specific, always the same change of

competitiveness. Unfortunately, that is not a correct deduction. The same

increase in the linear combination (b, e) can result in two completely different

effects (see Fig. 3.7).

The first effect regards the change from partial competition to no competi-

tion due to not sufficient slope of the density function (the second observation).

The second effect is the change from no competition again to partial competi-

tion as there is no more space for both players (the first observation).

Very similar situation happens in case of transition from the full competition

to partial competition as the (b, e) grows marginally. It suggests that the slope

of the density function is not enough steep to keep players competing in the full

competition. However, if the parameters (b, e) are keeping to grow up to the

point where there is not enough space for both players, the partial competition

will again change into a full competition. The different nature of the exactly

same marginal changes in the linear combination (b, e) can be seen as the

consequence of the non-convexity of the partial and full competition sets.

In other words, it can be observed that higher b and lower e are both leading

to lower competitiveness. These two parameters are not pure substitutes (they



3. Theoretical part 29

are complementary) and therefore the linear combination of their effects can

be non-monotonic.

To sum this subsection up, it may be argued that not all cases with linear

density function were examined, however, that is not true. Any density function

which respects proportionality (f(x) = ax) can be normed to the studied case

f(x) = 2x. Note that we do not suppose a ≤ 0 as the distribution would be

negative at the interval (0, 1] which would not make much intuition. In addition,

all the cases where there is a positive shift of density function (f(x) = ax + b

where b > 0) can be summarized in normed cases f(x) = 2(1 − b)x + b. If b

exceeded 1, we would get the same solutions, only inverted along the vertical

axis in x = 0.5.

The last case which we did not discuss is the case where there is zero density

in the left corner of the line segment and it continues being zero (there is zero

density in the left side of the interval [0, 1]) until there is a kink point where

the density starts to have positive values and respects the formula for linear

function. As we suppose zero density everywhere outside the [0, 1] interval, all

these cases can be handled if the origin is shifted towards the kink point and

the values at the horizontal axis are rescaled to the interval [0, 1] and afterwards

the distribution is normed again.

3.6 Non-existence of corners

Unlike the previous subsections, in this one we change the fundamental premise

we have faced until now, namely the space which is regarded can be now seen

as a circle. Thus, there are not any corners in which the players could operate.

This setting has its substantiation as it can simulate cases where there is not

important to distinguish the central part of the area from the periphery. Rather

it is useful for a description of the competition in neighbourhood with the same

local characteristics (not dependent on the distance from the centre).

The easiest distribution of the natural resource that can be supposed with-

out corners is the resource uniformly distributed along a circle. In order to

keep very similar notation as until this moment, let us assume the circle to be

normed to the circumference equal to 1. This assumption is again similarly as

in the line segment situation completely without loss of generality, because any

circle can be normed to a circle with such a circumference.

The reason why it is supposed normed to unit circumference and not to

unit radius is that it can be easily mapped on a unit line segment of which
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some of the scenarios were examined previously. The positions on the circle

are therefore parametrized in the original interval [0, 1] unlike the intuition

which could tempt us to parametrize it by interval [0, 2π].

In such a setting where there is a uniform distribution without corners, the

results do not differ much from the ones which were obtained in version with

corners. Players have no incentives to compete until the whole space is filled.

Therefore, the competition will start from the moment when the exogenous

parameter e describing their range is higher than e = 0.25.

In contrast to a line segment space scenario, there is a wider range of pos-

sibilities where the players can operate before they start to compete because if

the player who is situated more in the right than the other one was for example

nearby the origin, the left player has a possibility to escape from the corner be-

cause he will ”jump” immediately to the other side of the line segment (which

is actually a circle mapped to the line segment).

Therefore we may consider the exogenous parameter e as a parameter which

forbids the player to get closer to the other player than 2e (in absolute value).

The consequences of higher freedom in terms of location choice are, however,

not noticeable in terms of harvest which is dependent on the parameter e

exactly the same as in the scenario where the line segment space was reflected.

As it is not important what the position of the first player in this scenario

is, it is good enough to consider only the difference between the two locations.

Without loss of generality we can suppose the location of one player fixed at

location l1 = 0. This ensures that the other player will choose his location

included in the interval [2e, 1−2e]. It is obvious that it holds only if there is no

competition (e ≤ 0.25). When there is a partial or full competition, the player

2 will naturally choose the location l2 = 1
2

as it minimizes the area which is

shared with the player 1. The equations referring to players harvests in this

setting are the same as in the section regarding the line segment space, thus

we will skip it and focus on more interesting cases.

There are two naturally interesting cases of distributions along the circle.

The first one’s density function is a continuously differentiable function and

can be described by a function of sine. The second one could be summarized

by a symmetric linear density function with kink in the middle (x = 1
2
).

In the first scenario, the players are operating on a circle space, thus it is

not very important to distinguish, whether the distribution is sine or cosine,

because both of these functions can be mapped onto a line segment identically.

Furthermore, any horizontally shifted sine (cosine) function can be mapped
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onto the same line segment too. Therefore, the sine function is chosen without

loss of generality. The density function could be chosen in the following form

f(x) =

{
a sin(2πkx) + 1 if 0 ≤ x ≤ 1

0 else
, (3.77)

where a is an exogenous parameter and k is positive integer regarding number

of peaks.

The reason for this form is that it is normed again to the area of 1 which

is ensured by a vertical shift of the sine to 1. This is also done in order to

avoid cases where the distribution could be negative. However, this forces us

also to do a restriction on the distribution parameter a, which has to be less

than or equal to 1. There is also not much sense in supposing the parameter a

negative, as the identity

− sin(2πkx) + 1 = sin(2πkx+ π) + 1 (3.78)

holds and since it was written previously that the horizontal shift of the sine

function does not change the distribution at the circle space.

Let us suppose k = 1. The analysis of the players location choices is simple

as long as the sine amplitude is not very high. The distribution can be shifted

horizontally, if we shifted it so that the peak was in the middle of the density

function,

f(x) = a sin

[
2π

(
x− 1

4

)]
+ 1, (3.79)

we would get a quasi-concave function at interval [0, 1]. There is no reason

why the players should operate in the locations x = 0 or x = 1 since there is

a minimum of the natural resource. Therefore the players will make decisions

exactly the same as in the case of quasi-concave density function on the line

segment which was already discussed.

First, for simplicity let us assume the cases where the parameter a ∈ (0, 1
3
]

as in that case the maximal value of the density function is 4
3

and the minimal

value 2
3
. This choice of parameter a ensures that according to quasi-concave

distribution analysis the players will behave exactly the same as in the uniform

case along the line segment (in the most converging equilibrium possible but

not competing).

When the players will start to compete (e > 0.25), they would intrude into

the competitors area not at the minimum value of the density function but
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at its peak (x = 0.5), as it seems more beneficial for both players. The part

of natural resource which is not shared until the full competition is the part

close to the minimum of the density function (x = 0 or x = 1). The players’

harvests can be described with the same equations as the equations from the

section Quasi-concave distribution available in the Appendix.

The problem emerges if the a ∈ (1
3
, 1] as the players will start to compete

with each other earlier than the entire space is covered. In such cases, the

equilibrium strategies can be found by balancing both players marginal gains

according to local stability conditions. This analysis would be relatively cum-

bersome and very technical, therefore we will not go into that much detail

analytically in this work, however, in the numerical simulations chapter, the

effects in that cases are investigated, simulated and discussed.

In contrast, if we still suppose a ∈ (0, 1
3
] but higher k than 1, the analysis

could be interesting. For example for k = 2, the results will be slightly different.

There will exist two peaks, where in each one one player will operate. As

these peaks are exactly the same distance no matter which direction the player

moves, the players will keep operating in the peaks even if a competition exists

there (e > 0.25). In case of competition, at one of the two minimums a fixed

boundary will be established whereas the players will intrude into each other

peaks via the second minimum.

The similar scenario will occur in case of even k, the players will continue

to operate so they are able to cover the whole peak (circumscribed by the

minimum density) and if their range is higher than the range covering exactly

one peak, they will start to cover the second. As we assume the players are

rational and are fully aware of how the other player behaves, both players will

choose the peak where the other player does not operate as their second peak.

This process continues (as e grows) until all the peaks are covered by the two

players. After the whole area is covered (e > 0.25) the players will compete

similarly as described in case of k = 1.

For odd k the discussion is similar as for even k, the only difference is that

the peaks are covered one by one until the last one rests as e grows. Then the

situation is exactly the same as in case of k = 1 and two players are sharing the

last peak where they also enter the competition in case of e > 0.25. The case,

where k = 2 and a = 1 is managed and discussed in the numerical simulations

chapter. The detailed analytical analysis for these distributions would be very

extensive and would not bring no new concept as the analysis would be driven

by the local stability conditions.
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The second scenario which could be quite realistic distribution along the

circle is, as was mentioned above, linear distribution with peak (kink-point) in

the middle (x = 0.5) described by formula for density function

f(x) =

{
a|x− 1

2
|+ b if 0 ≤ x ≤ 1

0 else
, (3.80)

where a and b are exogenous parameters of the distribution. It can be normed

to area of 1 as in the previous case. The following characteristics also apply for

all distributions that are equivalent to a horizontal shift of this distribution in

the interval [0, 1].

Again, the players do not have any incentives to operate in the locations

where the f(x) is minimal, therefore they will behave exactly the same as in

the sine case.

The same also applies for all distributions which are monotonic in the first

half of the interval [0, 1] and axially symmetric around the axis x = 0.5. The

harvests of the individual players will be similarly described by the formulas

used in Appendix describing the quasi-concave case. Note, that if the condition

(3.46) from the chapter 3.3 did not hold, the analysis would be more compli-

cated by following only the local stability conditions. This distribution is not

simulated in the numerical simulations chapter as it has similar characteristics

to the sine density function and therefore we only suggest it as a natural second

choice after the sine function.



Chapter 4

Numerical simulations

4.1 Methodology

In the previous chapter, the general equilibrium and stability conditions were

examined in a two player game for various distributions of the resource and

two different shapes of the strategy space (a line segment or a circle). In

this chapter, the aim is to make numerical simulations which will support

the theoretical framework from the previous chapter but also to simulate some

observations more generally, in two dimensions. The further goal of this chapter

is to create a pattern which will be applied by individual agents to predict the

information about the density of the natural resource. This pattern (or agent

heuristics) can be understood as an algorithm which agents use to predict the

information in a setup with imperfect information about the density function.

Consequently, the players’ payoffs in optimal scenarios with perfect infor-

mation will be compared to the players’ payoffs in scenarios where a restriction

on information exists. The difference between the optimal payoff and the pay-

off under imperfect information will be evaluated as an incentive to buy such

information. The goal is to evaluate whether the information is worth of pur-

chase and how gainful it is for various scenarios given different parameters of

players’ range and amount of information.

The discretization of the simulations is chosen dependent on its numerical

difficulty. According to results in figures, if there is a step in parameters e and

s 0.01, then the discretization chosen was 101 × 101 tiles. If the step is 0.02,

the simulation was made on 51× 51 tiles. The last one possibility used is the

step 0.05 in case of the most difficult calculations used on the 21 × 21 tiles,

which was used if there would be too many iterations otherwise.
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4.1.1 The choice of a two-dimensional space

There is a lot of different space shapes that could be supposed. To enumerate

some of the most useful we can consider for example an equilateral triangle, a

square, a hexagon or a circle. There is no specific reason why one of these shapes

(or a different one) should be preferred. However, in order to match the two-

dimensional simulations with the theoretical background, which we investigated

in one dimension formerly, we stick to a square shaped two-dimensional space.

The reason to choose a square arises from the existence of both analogies to one

dimensional simulations (a line segment as well as a circle mapped onto a line

segment). If we supposed the two opposite edges passable (i.e. if player moves

through one edge, he will instantaneously ”jump” onto the opposite edge), it

would be similar to the one dimensional case of a circle space.

It arises a question whether to suppose both pairs of edges passable or leave

one of them impassable. However, the space with both all passable edges is

relatively unrealistic. If one imagined such a space with connected edges in

three dimensions, it can be geometrically understood as a torus which is at

least in natural resource economics probably unusable.

The more realistic space is the space with connected only one pair of edges,

which can be understood as a space where some of the distribution characteris-

tics depend only on the radial direction from some central point (e.g. harbour)

but some other characteristics are not and alternate as the distance from the

point changes.

The last choice is probably the most realistic space as it can be simply used

for any natural resource which has a spatial distribution and can be depicted

on a two-dimensional map. Therefore, this is the space which will be assumed

from this point on in the simulations.

4.1.2 Agents’ range

For all simulations the assumption e = e1 = e2 which held throughout almost

the whole previous chapter (except the uniform distribution) will be assumed.

However, it is ambiguous what shape should this range parameter cover in a

two-dimensional space. The two most logical shapes are a square and a circle,

that means the parameter e could specify player’s range either radially (i.e.

the greater the parameter is, the greater the player’s the radial range is) or

squarely (i.e. player’s coordinates x and y are ranging from x − e to x + e or

y − e to y + e, respectively).
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As the two-dimensional space that is chosen is square, it would make sense

to suppose also square range, however, the radial range makes sense too as

it can describe symmetrical characteristics of players’ harvest and seems more

realistically. Therefore, the parameter e is an exogenous parameter describing

player’s radial range.

4.1.3 Agent heuristics

A very important part of the simulations refers to the players’ choice of strate-

gies. In the scenario, where we assume imperfect information about the density

of the natural resource, it is crucial to determine what the players’ information

is. Similarly as with the range issue, also here can be a variety of choices what is

agents’ information. We chose as an imperfect information scheme the scheme

where players have a restricted visibility over the natural resource. However,

their visibility can vary and is described by parameter s. This parameter is

supposed radial very similarly as the parameter e.

Basically that means the players see the same amount of information about

the density in any direction. Therefore, both exploitation and observation

depend on Euclidean distance, where the observation range naturally exceeds

exploitation range (i.e. s ≥ e). As an intuition, the parameter s could represent

for example an effective range of sonar (which could be used for finding large

fish stocks). Another analogy could be for example an existence of a fog which

exists in areas which are too far and therefore players do not know what the

density is out of their visibility range and therefore they must predict it.

The prediction of the density in areas where the players do not have any

information could be chosen in various ways, for example by extrapolating the

unknown values from the information the agents have. Other heuristics can be

that the density is predicted by extending the density at the boundary between

known and unknown density. In this work we stick to this kind of prediction and

therefore the agents extends the most distant value, which is still observable

for them, in all direction in all remaining points with unknown density.

If it is supposed the predicted point has coordinates [x, y] and the distance d

from the point is the Euclidean distance defined as d =
√

(xi − x)2 + (yi − y)2

where xi and yi are the components of vector li = (xi, yi) and describe i-

th player’s strategy (location) in both coordinates. The density function is

then predicted outside the player’s observation range by extending the density
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function that is known for him. Formally it can be derived for predicted density

g(x, y) as follows

g(x, y) =

{
f(x, y) if d ≤ s

f(xi + r(x− xi), y1 + r(y − yi)) else
, (4.1)

where r is the ratio of parameter s to the distance d (r = s
d
). The predicted

part consists basically of the player’s location point [xi, yi] and the distance

which must be added in horizontal and vertical direction to get to the point

which is on the borderline of the circle which is the furthest but still observable

for the i-th player.

In one-dimensional case it reduces to extending the last point visible to

player at both sides to all unknown points. Formally it reduces to:

g(x) =

{
f(xi) if |x− xi| ≤ s

f(xi + r(x− xi) else
, (4.2)

where r is the ratio of parameter s to the distance d which is this time defined

as d = |xi − x|.
The heuristics is slightly different for a circle space scenario, where we sup-

pose the player connects the boundary values of the observable density function

in the unobserved points linearly.

4.2 One player simulations in one dimension

First, we start with the most simple simulations in one dimension. These sim-

ulations are aimed to support the theoretical results from the previous chapter

and also to find out what the incentives of the player are to buy additional

information about the density function.

The most simple distribution that can be investigated is the uniform dis-

tribution (as was done in the theoretical chapter above). However, the results

are not very interesting for the examination of the agent’s heuristics because

no matter how much information the player buys, the prediction will be under

our algorithm of prediction always correct and will not result in any change of

behaviour in comparison to the case where no information is bought.

Nevertheless, the distribution with the linear density function was examined

in the theoretical chapter, too. This distribution can be more interesting in

predicting the density function as it is not constant.
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Let us denote x∗ the player’s location after he adjusts to the predicted most

efficient location. Similarly as in the theoretical part, we suppose increasing

linear density function f(x) = 2(1− b)x+ b, where b ∈ [0, 1).

Due to the fact that the observation range is s, the player will always predict

the distribution correctly in the interval [x0 − s, x0 + s], where x0 is player’s

initial strategy variable (location). In the remaining intervals he will predict

the density by extending the density in the boundary point to the rest of the

intervals. If we denote g(x) the predicted density, it follows that

g(x) =


f(x0 − s) = 2(1− b)(x0 − s) + b if 0 ≤ x < x0 − s
f(x) = 2(1− b)x+ b if x0 − s ≤ x ≤ x0 + s

f(x0 + s) = 2(1− b)(x0 + s) + b if x0 + s < x ≤ 1

0 else

. (4.3)

As the function g(x) is maximal and constant in the interval x ∈ [x0 +s, 1], the

player is indifferent between the choice of points in interval [x0 + s + e, 1 − e]
where he maximizes his payoff h1. There are two possibilities in change of

player’s strategy after the prediction.

First, let assume that player’s initial strategy x0 is far enough from the

point x = 1, that means there is a higher predicted payoff for the player if he

shifts towards the point x = 1. Second, the player is already close enough to

the point x = 1 and hence his prediction cannot help him to make any better

decision than to be as close to the corner as possible.

The player in this scenario does not have any incentive to converge towards

the point x = 0 as the predicted density function g(x) is upward sloping, and

thus non-increasing in that direction. If we set, as was already said earlier,

x∗ the agent’s strategy (location) with the highest possible predicted payoff

(and in case of multiple maxima we pick up the nearest one), then the agent’s

optimal location x∗ can be rewritten as a function of player’s initial position x0

x∗(x0) =

{
x0 + s+ e if 0 ≤ x0 < 1− 2e− s
1− e if 1− 2e− s ≤ x0 ≤ 1

. (4.4)

The agent’s location adjustment for the initial point x0 = 0.5 is depicted in the

figure 4.1 for various parameters of e and s.
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Figure 4.1: Player’s location adjustments x∗ if the initial point x0 =
0.5

Source: Author’s computation

The importance of the additional information is measured by players’ in-

centives to buy it. The incentives I(x0) to buy some information given the

initial location x0 are defined as:

I(x0) = (F (x∗(x0) + e)− F (x∗(x0)− e))− (F (x0 + e)− F (x0 − e)), (4.5)

where x∗(x0) is the agent’s location after he adjusts from his initial point x0 to

predicted the most efficient location, and F (x) = (1− b)x2 + bx is player’s cu-

mulative distribution function as follows from the section in theoretical chapter

referring to the case with linear density function. Therefore the equation (4.5)

can be rearranged

I(x0) = (1− b)((x∗(x0) + e)2 − (x∗(x0)− e)2) + b((x∗(x0) + e)− (x∗(x0)− e))−

− ((1− b)((x0 + e)2 − (x0 − e)2) + b((x0 + e)− (x0 − e))) =

= 4e(1− b)(x∗(x0)− x0).
(4.6)

Let us denote TI the total incentives player has to buy additional information

given specific parameter e. Formally they can be defined as
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TI =

∫ 1−e

e

I(x0)dx0 =

∫ 1−e

e

4e(1− b)(x∗(x0)− x0)dx0. (4.7)

These incentives can be understood as a difference in payoff between the

case where the player is predicting his optimal location and the case where he

is not and leaves his location unchanged. The initial location x0 can be chosen

purely random from the interval [e, 1 − e] (the corner cases were not included

because we suppose the player would naturally not choose such strategies). The

incentives I(x0) are summed by the integral over an interval of possible initial

positions in order to count for all the random cases that can happen for specific

parameters e and s (in simulations, the integral is discretized into a sum).

If we substitute eq.(4.4) into eq.(4.7) we can obtain

TI =

∫ 1−2e−s

e

4e(1− b)(x∗(x0)− x0)dx+

∫ 1−e

1−2e−s
4e(1− b)(x∗(x0)− x0)dx0 =

=

∫ 1−2e−s

e

4e(1− b)(s+ e)dx0 +

∫ 1−e

1−2e−s
4e(1− b)(1− e− x0)dx0 =

= 2e(s+ e)(2− 5e− s)(1− b).
(4.8)

However, this equation holds only in case of e ≤ 1− 2s− e. Otherwise, the

resulting incentives are defined only as the second integral in eq.(4.8) from e

to 1− e and the result is no longer dependent on the parameter s.

TI =

∫ 1−e

e

4e(1− b)(x∗(x0)− x0)dx0 =

∫ 1−e

e

4e(1− b)(1− e− x0)dx0 =

= 4e(
1

2
− 2e+ 2e2)(1− b)

(4.9)

The resulting total player’s incentives for various parameters e and s are de-

picted in the figure 4.2.
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Figure 4.2: Player’s incentives to adjust to the prediction instead of
remaining on the initial random point for various param-
eters e and s

Source: Author’s computation

To find for what parameters e,s the player has maximal incentives to buy

information the first order conditions must hold. Given fixed parameter b, the

highest total incentives TI the player has if both following terms are equal to

zero
∂TI(e, s)

∂e
= 2(1− b)(2s+ 4e− 12es− 15e2 − s2), (4.10)

∂TI(e, s)

∂s
= 4e(1− b)(1− 3e− s). (4.11)

If both derivatives are equal to zero, by solving the system of two equations

we can obtain the following results (Assuming e > 0,b ∈ [0, 1)). There are

two possible extremes, the first one is [e, s] = [1
6
, 1
2
], the second extreme is

[e, s] = [1
2
,−1

2
] which obviously does not have any tangible interpretation as it

has been assumed that the parameter s is at least as large as parameter e.

The numerical simulations were run for the setup, where the density func-

tion was specially chosen f(x) = 2x (parameter b was set 0). This choice was

done because the values of the function TI(e, s) describing incentives is only

amplified proportionally by changing the parameter b (it can be seen from the

functional form of eq.(4.8) and (4.9)). The line segment space was discretized

into 51 tiles, where each tile represented a point with its specific density func-

tion. This was simulated for different parameters e and s ranging from 0.02 to
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0.50, with step 0.02 matching the condition s ≥ e. The results of the simu-

lations are depicted in the figure 4.2. It is noticeable that the simulations are

matching the theory outlined above perfectly. The highest incentives namely

occur approximately for the parameter e ≈ 0.16 which is the nearest discretized

value to the theoretical maximal value of e which is as was stated earlier e = 1
6
.

Similar approach is done in case of density function

f(x) = a sin(2πkx) + 1, (4.12)

where a ∈ (0, 1] and k ∈ N. This density was also examined in the theoretical

chapter. This distribution is examined on a circle space where we specify the

agents’ heuristics in a way that the density predicted in an unknown point is

given by weighted average of the two furthest boundary points which the agent

can still observe. The weights are given proportionally according to distance

to the predicted point from the boundary points.

As a first scenario we suppose one-player in one dimensional circle space

whose location is given in interval [0, 1). Based on value of the parameter s,

agent then makes prediction about the density function. After this is done, the

strategy (location) of the agent is changed immediately to the point where the

payoff is the highest. This procedure is very similar to what has been already

examined in this section in case of distribution with linear density function.

At first we assume the density function parameters to be a = 1, k = 1. These

parameters are later altered to show also their effect.

The total incentives to buy information given by parameter s are, however,

in this case given by summing over incentives at all possible initial locations as

there are no corners (not only over [e, 1− e])

TI =

∫ 1

0

I(x0)dx0, (4.13)

where I(x0) are the incentives to buy additional information defined according

to equation (4.5) with cumulative distribution function of this ”sine” density

and x0 are possible initial locations. The highest total incentives were found by

numerical simulations in case of e ≈ 0.24 and s ≈ 0.50. For various parameters

e and s the results are depicted in figure 4.3.



4. Numerical simulations 43

Figure 4.3: Sine density: Agent’s total incentives TI given fixed den-
sity parameters a = 1, k = 1 and various parameters e
and s

Source: Author’s computation

In order to show how well the player predicts the location x∗, the figure 4.4

is depicted. As according to the functional form of the density function the

maximal density is in point x = 0.25, the player will in ideal case tend to move

towards this point. In the mentioned figure, it is apparent that only for low e

and s the ideal location x∗ is not predicted well. Note, however, that the figure

4.4 shows location adjustments only for initial position x0 = 0.5, therefore there

might exist also initial positions (e.g. minimum x = 0.75) where the prediction

adjustment of agent is significant for more combinations of parameters e and

s.
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Figure 4.4: Sine density: Agent’s location adjustments x∗ if the initial
point x0 = 0.5

Source: Author’s computation

The parameter a from the theoretical chapter lies in the interval (0,1] where

if we admitted to be equal to zero, the distribution would change to the uni-

form distribution, which we already discussed earlier. Let us now suppose the

parameter is not a = 1 but a = 0.5. A numerical computation is made to find

out, how the incentives of the agent change in comparison to the case where

a = 1. The results of the simulations are depicted in the figure 4.5.
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Figure 4.5: Sine density: Agent’s total incentives TI given fixed den-
sity parameter a = 0.5, k = 1 and various parameters e
and s

Source: Author’s computation

It is apparent that the incentives for the agent decreased. Moreover, they

decreased by half in comparison to the scenario where a = 1. This might be

interesting but not surprising because if the parameter a decreased down to the

zero, the distribution would be uniform, and there would be no incentives to

buy any parameter s. Hence, the parameter a has a proportional function i.e.

the higher the parameter a is, the higher are the incentives to buy information

about the distribution. This is very intuitive as the parameter a essentially

describes the concentration of the resource at one place (x = 0.25). As was

explained formerly in the theoretical chapter, due to non-existence of corners,

the distribution could be shifted to move the maximum, where the resource

concentrates, also to different point than x = 0.25.

In the next figure (Fig. 4.6) it is simulated what the agent’s incentives

to buy information s are if there is no single peak but there are two of them

(k = 2).
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Figure 4.6: Sine density: Agent’s total incentives given fixed density
parameter a = 1, k = 2 and various parameters e and s

Source: Author’s computation

In this setup, the agent has the highest incentives at two different points

in parametric space (e, s). The first one has the coordinates [e, s] ≈ [0.12, 0.5].

The second one has them [e, s] ≈ [0.36, 0.5]. These are probably not the peaks

themselves precisely because of the numerical discretization. If there was a

higher number of tiles in discretization, the resulting highest incentives would

be probably described by the parameters e which are exactly as high to cover

the highest part of either one peak or both two peaks of the density function

(e = 0.125, e = 0.375). Furthermore, the minimal incentives are in case of

[e, s] ≈ [0.24, 0.24]. This is again intuitive because if e = 0.25, then the player

should be indifferent between his strategies, as his harvest will cancel out and

will harvest always a half of the resource h1 = 0.5.

Very interesting point in (e, s) parametric space is also point with coordi-

nates [e, s] ≈ [0.10, 0.14] which is local maximum (not global). The reason this

maximum exists is that there are lower incentives generally for s ≈ 0.24, which

is probably caused by the fact that if s = 0.25 the agent would predict all re-

maining points with the correct average expected harvest. However, if the agent

predicted all points correctly, his incentives to buy information represented by

parameter s are lower and therefore this local maximum is separated from the

global maximum by a saddle point of lower incentives located approximately

at [e, s] ≈ [0.10, 0.24]. The parametric spaces (e, s) for density functions with



4. Numerical simulations 47

higher parameter k would probably look very similarly as this one, however,

the higher the parameter k is, the better discretization is needed to make the

differences between the points with low and high incentives still observable.

4.3 Two player simulations in one dimension

In the theoretical chapter, we analyzed predominantly the situation where there

were two agents. Let us now suppose again the situation with the linear density

function: f(x) = 2(1− b)x+ b (in simulations assuming b = 0). The numerical

simulations for the setup with two player are made with the following charac-

teristics.

In the beginning, the first agent chooses location randomly and then the

location is chosen also for the second agent. After they set their initial location,

the second player will predict in one stage the best optimal response on the

location of the first agent under limited information given the parameter s.

The payoff is then compared between the player who adjusted the strategy and

the player who remained inactive. The difference of their payoffs is depicted in

the Fig. 4.7.

Figure 4.7: Linear density: Agent’s total incentives given fixed den-
sity parameter b = 1 and various parameters e and s

Source: Author’s computation

It might seem that nothing has changed in the parametric space (e, s) in
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comparison to the case with one player (see Fig. 4.2), nevertheless, there is a

slight difference. The difference in the payoff incentives of these two cases (one

player v. two players) is depicted in the Fig. 4.8.

Figure 4.8: Linear density: Difference between the agents’ total in-
centives in two players case and in one player case given
fixed density parameter b = 1 and various parameters e
and s

Source: Author’s computation

This figure can be interpreted as the summary of where the difference

between the one player scenario and the two players scenario is significant

and where it is not. The highest difference is concentrated around the point

[e, s] ≈ [0.24, 0.24]. It can be understood as in case of both relatively low e and

s the adjustment of the second player is not very dependent on the location

of the first player. Similarly, in case of high e and s both players are covering

almost the entire space and therefore, there is not much added value in high

parameter s. Obviously, the most significant difference is in case of relatively

middle-sized parameters e and s. This is due to the players do not yet necessar-

ily know the optimal location without prediction but already harvest relatively

large amount of the resource stock with likely intrusion in the competitor’s

area. It is also very important to note, that the difference in incentives to buy

the information given by s may be also driven by impossibility of relocation of

the second player, the results would be lower if he relocated if he had payoff

below the average.
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Exactly the same analysis is done in case of ”sine” density function to

compare the effect of the second player also in case of distributions, where there

are no corners. In the figure 4.9, the incentives are depicted for the scenario,

where the first player is inactive and the second player adjusts his position to

maximize his payoff. The parameters a and k are now chosen equal to 1 for

simplicity. To compare what the difference between two stage procedure with

two players and one stage procedure with one player is, the differences in the

total incentives take place in the figure 4.10.

Figure 4.9: Sine density: Agent 2’s total incentives given fixed density
parameter a = 1, k = 1 and various parameters e and s

Source: Author’s computation
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Figure 4.10: Sine density: Difference between the agents’ total incen-
tives in two players case and in one player case given
fixed density parameter a = 1 and various parameters e
and s

Source: Author’s computation

The difference is now the greatest in the proximity of point [e, s] ≈ [0.22, 0.22].

In comparison to the case where the distribution was linear the difference be-

tween the one-player scenario and two-player scenario is now more concentrated

in cases where s ≈ e (in Fig. 4.10 near the diagonal). This is given by the

fact that if the agents are operating on the ”sine” density, it is easier for them

to locate the point where the density is the highest, as they can move both

directions towards the peak. The highest difference can be seen in case where

the second player can be most better off in comparison to the first player who

did not adjust his position, i.e. in case of lower e and s than in case of linear

distribution.

Further analysis of the 2 player scenarios involve also the analysis of the

agents’ optimal payoff if there is complete information about the density. The

uniform and linear distribution have been already examined in the theoretical

chapter. The most difficult one to analyze analytically is the last one broadly

examined, namely ”sine” distribution. The players are competing along the

peak and do not necessarily have incentives to diverge when there is extra

space (but with lower density).

In the theoretical chapter we examined that the competition arises when
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a > 1
3
. In these cases the optimal strategy would be if both players cooperated.

The competition is depicted in the Fig. 4.11, where the optimal locations of

agents are denoted x1 and x2. The player one chooses his optimal location first,

therefore chooses the location x1 = 0.25 (in simulation 0.24, because of not

sufficient discretization). The second player then makes his best response on

player 1’s strategy. The two players keep to alternate until the Nash equilibrium

is found and they change their strategies no longer. Theoretically, there could

be the case where there is no Nash equilibrium but this distribution is not the

case. After this finite number of stages, the optimal location of both players is

found.

Figure 4.11: Sine density: Optimal locations of agents in Nash equi-
librium (discretized)

Source: Author’s computation

Note, that in an ideal case the locations in Fig. 4.11 are smooth and all

imperfections are caused by the discretization into 50 tiles. It is interesting

that for the small parameter e, the player 1’s position remains unchanged and

the player 2 accepts inferior strategy (in terms of payoff) and diverge from the

player 1, however, as the e rises, the player 2 stops to accept the inferior lo-

cation and the local stability conditions force him to enter a competition with

player 1. If the parameter e is high enough, both players are harvesting at the

peak (x = 0.25). The payoffs of the individual players and their difference are

depicted in the Fig. 4.12 (The figure is discretized as well, however, smoothed

additionally in order to get closer to theoretical outcomes). The greatest dif-

ference in players’ payoffs is if the parameter e ≈ 0.12 and then, as e rises, the

both payoffs converge to each other.
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Figure 4.12: Sine density: Optimal payoffs of agents in Nash equilib-
rium (discretized and smoothed)

Source: Author’s computation

4.4 One player simulations in two dimensions

Let us simulate the setup where one player chooses his location in a two-

dimensional square space with impassable edges. First, the emphasis is put

on the optimal case under perfect information. Second, the parameter s is

introduced in the scenario where the player at first appears randomly in any

point and then relocates to the point with predicted highest payoff.

In this section in two-dimensional simulations we suppose the density func-

tion of the resource the easiest possible for testing the prediction characteristics.

From the theoretical part it is obvious that the most simple density function is

linear. Such a distribution can be helpful as the agent with the agent heuristics

which was introduced in the beginning of this chapter cannot predict the full

information about the resource unless he has large parameter s and therefore

the effect of s is noticeable.

In two dimensions the question what slope and what direction should the

linear density function have. Although there is a huge number of possibilities

and it is also possible e.g. to have a density function linear in one direction

linear and in other different, which could also generate interesting results. We

leave, however, this topic for possible extension of this work and focus more

rigorously on the distribution growing in both directions, horizontally and ver-
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tically. The possible density function can be written as

f(x, y) = ax+ by + c. (4.14)

The overall density can normed again to area of 1∫ 1

0

∫ 1

0

f(x)dx = 1, (4.15)

which reduces number of free parameters to 2. In the numerical simulations

covered by this thesis the only one case is examined, namely f(x) = x+y. The

reason why to choose this one originates from the idea that in one-dimensional

simulations it has been examined that the higher the slope, the higher the effects

of the potential information asymmetry (or imperfection) which is amongst the

objects of this study. One could argue that the distribution could increase only

in one direction and in the second one could be uniform, however, that would

be very similar to already analyzed scenario in one dimension and therefore not

examined.

It is relatively clear that the player maximizes his payoff by choosing the

location as much close as possible to the corner with maximal density. However,

as the edges are impassable, the player would not get any reward if stepped away

from the square space. On the other hand, the concept of circle exploitation

range can be slightly tricky and give incentives to the player to step away in

order to get closer to the highest density points in the corner. Note that if the

player’s exploitation parameter e affected the agents range ”squarely” and not

radially, the rational agent would not leave the square of coordinates ranging

in [e, 1− e]× [e, 1− e].
However, even with the radial parameter e there is a rational bound above

which the player will not go. If the player is as close to the corner as possible,

the Euclidean distance from the corner would still be e which corresponds to

the point [1−
√
2
2
e, 1−

√
2
2
e].

The optimal location can be found analytically, however, it is quite laborious

and not very important, therefore we skip it and the ideal location is found

numerically. The ideal location for the player given the parameter e = 0.2 is

depicted in the Fig. 4.13, where the density function is depicted in a grid for

the points distanced 0.05 far from each other. It is considerable that the player

chooses rather to cut part of his payoff in order to get more closer to the corner

where the density is the highest. The exact payoff and agent’s coordinates are
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depicted in Fig. 4.13.

Figure 4.13: Two-dimensional density function with optimal agent’s
position at [x, y] = [0.85, 0.85] for parameter e = 0.2

Source: Author’s computation

Figure 4.14: Agent’s optimal position and payoff in a one player sce-
nario depending on parameter e

Source: Author’s computation

It is noticeable that the player gives up some tiles in favour of boosting

the payoff by exploiting the tiles closer to the corner with the highest density.

The frequency of this trade-off (exchanging tiles for higher payoff by shifting
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beyond the edges of the square space) rises as the parameter e grows. In the Fig.

4.14 there are points where the strategy variable x∗0 describing agent’s optimal

location does not change when the parameter e rises which is an indication of

such a trade-off happening.

The highest payoff for the agent, who is not restricted by any information

inefficiency, should be theoretically growing quadratically with increasing pa-

rameter e (as the area harvested depends on πe2), however, due to the effect

which was described in the previous paragraph, the agent will not operate in

the interior of the space and will maximize the payoff by moving towards the

corner as far as it is gainful. This effect slows the quadratic growth of the

payoff and for large e it is more similar to linear dependency which is shown in

Fig. 4.14.

The next scenario which is analyzed is similar to what has been simulated

previously in the one-dimensional setting. The procedure consists of at first

randomly assigned location for the agent, then this agent adjusts his position

according to his information, which is in this new setting assumed imperfect,

and is measured by the exogenous parameter s describing radial observation

range which was introduced earlier in this chapter. The agent makes his best

response and chooses location which maximizes the predicted payoff. Note, that

this predicted payoff usually differs from the optimal payoff. The efficiency of

his adjustment can be measured by the difference between payoffs before and

after the relocation. This concept has been already stated in one-dimensional

analysis and is denoted as agent’s incentives to buy some information described

by s. In the Fig. 4.15 these incentives are summed for all agent’s initial

locations for given parameters e and s.

Figure 4.15: Agent’s total incentives given various parameters e and
s in a two dimensions

Source: Author’s computation

There are evidently incentives to increase the parameter s in situations

of low e. This can be seen in the Fig. 4.15 where the payoff incentives are
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generally non-decreasing with the exception of results matching s = 0.25 which

are caused in this case by numerical inaccuracy. The highest increase in payoff

player has if [e, s] = [0.5, 0.25] which is relatively high in comparison with one-

dimensional case. It could be explained by the fact, that in the two-dimensional

space it is harder to find the optimal location and it barely happens randomly

whereas in one dimension the player usually cannot improve his position much

in case of higher e.

4.5 Two player simulations in two dimensions

The goal of this subsection is to simulate the setup which tries to approach a

more realistic space to some extent but is too complex to analyze it analytically

(surfaces of lakes, rivers, etc. are two-dimensional). We stick in this setup to a

two-dimensional square space with impassable edges. There is a huge number of

variants how to simulate the two player behaviour. However, to make this work

more consistent with the previous simulations the agent’s heuristics remain

exactly the same as was said in the beginning of this chapter. There emerges

also a choice whether to make players move and make decisions sequentially or

simultaneously. In this case the sequential movement was chosen in order to

better understand the movements as reactions on the previous actions of the

opponent.

The resolution of the discretization was chosen depending on numerical

difficulty. The optimal scenario where only changes in e are regarded (the

information is perfect) is discretized on 101 × 101 tiles. The scenario where

the player makes best response on the location of the other player and this

time with imperfect information was discretized to 21 × 21 tiles. In the last

part of this section, also one special scenario has been examined where the

discretization is 51× 51.

The density function of the distribution on which the agents are operating

is as in the previous section f(x, y) = x + y which gives us, similarly as in

the case with one-dimensional linear function, the highest density in the corner

(i.e. [x, y] = [1, 1]).

The first scenario examined in this section has two stages. In the first stage,

both agents are set their initial locations randomly. In the second stage, one

of the players changes his position according to his information in order to

maximize his payoff. The overall difference in payoff between these two players
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is measured as incentives to buy information and relocate. These incentives

are in terms of payoff depicted in the Fig. 4.16.

Figure 4.16: Agent’s total incentives given various parameters e and
s in a two player game in two dimensions

Source: Author’s computation

The incentives have according to the Fig. 4.16 very similar shape to the

incentives measured for an analysis with only one player. The difference lies in

the point where are these incentives maximal. This point is located in para-

metric space (e, s) at coordinates [e, s] ≈ [0.15, 0.50]. This result shows there is

a stronger effect of information in a situation where the exploitation range of

both players is low. It can be seen that there are similar numerical defects as

in the previous analysis of only one player prediction. These imperfections are

again probably caused by low numerical resolution (which was chosen due to

its high numerical difficulty) and they affect the parametric space (e, s) so that

the total incentives are not monotonic in neither of parameters, however, they

would probably be in parameter s given fixed parameter e if there was better

resolution of tiles.

The incentives are also influenced by another effect, namely the incentives

are regarded only at tiles which are not in corner because we assume, that

even the ”naive” player, who does not change his location, would not choose

his position near the edges or corners. This is the reason why for the high

parameter e the incentives diminish as there is higher probability the players

will end up at the same point.

This model can be also compared to the scenario with only one player,

examined previously, and by making differences in the incentives in these two

scenarios, the effect of evading the location of second player and the incentives

for doing so can be captured. It is, however, again very important to note,

that the difference in incentives to buy the information given by s may be

also driven by the non-relocating second player. All of this analysis has been

already done in one-dimensional scenario, where this effect was observable. For
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two dimensions, the effect is depicted in the Fig. 4.17. The most significant

difference between the scenario with two players and with only one player is for

a relatively high parameter e ≈ 0.30. This could be interpreted as the existence

of much higher incentives to accommodate agent’s position in a single player

scenario because there would not be any overlapped zones or a neighbouring

area where the potential payoff would be harvested by another player. The

player who adjusts the position in a two player scenario cannot be much better

off if the parameter e is too high because the same exploitation range is covered

also by the second player.

Figure 4.17: Difference between the agents’ total incentives in two
players case and in one player case in two dimensions
given various parameters e and s

Source: Author’s computation

The next scenario examined is the situation where the agents try to maxi-

mize their payoff and sequentially alternate until the optimal choice of location

(Nash equilibrium) is found. The first agent starts with choice of the location

exactly according to the analysis done in one player analysis section, then the

second player makes his best response. The series of best responses continues

until no player can improve his payoff by changing his strategy. The equilib-

rium locations for both players (denoted x∗1, y
∗
1, x

∗
2, y
∗
2 for the first and second

agent, respectively) are depicted in the Fig. 4.18.

A very interesting question arises here, namely, under what conditions the

players are competing and who is better off. In the mentioned figure, the

player 1 is the player whose turn was first and therefore the player 1 captured

the most profitable area. If the parameter e was high enough, the payoff of

the second player would be without intruding the opponent’s territory very

low. This can be seen as an incentive to compete for the corner with highest

density. As the parameter e increases, the zero payoff beyond the boundaries

will force the player 1 to choose the location closer to the middle of the space

which enables the player 2 to oust the player 1 out of his position and partially
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improves the payoff of player 2. In an extreme case of e ≈ 0.43 or higher, the

simulations suggest that the player 2 would oust the player 1 as an reaction on

player 1’s optimal location choice by entering the competition and a moderate

cut of player 1’s payoff. The lost payoff pushes the player 1 away from the

diagonal, where would be (from the one player analysis) the location optimal if

there was not a competition. The interesting thing about these extreme cases

is that as the player 1 leaves his optimal position, it enables player 2 to capture

more advantageous location than the player 1 after relocation has. This causes

switch in players’ payoffs and actually says that being an incumbent player

(player 1) is worse than being an entrant.

If the player 1 could detect that there is a danger in terms of other player

playing after him, the best strategy would be to not make the optimal choice

of location and satisfy with lower payoff than is optimal in a one-player case.

The competition between the two players, however, occurs already around

e ≈ 0.30 as there can be noticed that the location parameter x∗2(e) stops to

diverge from the other coordinates in the Fig. 4.18. From the Fig. 4.19 one can

also deduct that around e ≈ 0.30 the optimal payoff of the first player h∗1 starts

to be concave and the difference between the payoffs of both players starts to

diminish as the e increases. The interesting case happens also in scenarios of

e ≈ 0.46 or higher, where both players have approximately the same payoff. In

that situation their distance from the diagonal would be practically symmetric

and their exploitation range will cover almost the entire area which is why they

try to harvest the density at the corners further from the other player.

Figure 4.18: The optimal locations of the players in two dimensions
under perfect information

Source: Author’s computation
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Figure 4.19: The optimal payoffs of the players in two dimensions
under perfect information

Source: Author’s computation

In the last part of this chapter the special scenario is analyzed which has not

been investigated in the one-dimensional case. The aim of that scenario is to

examine, how efficiently the player can find out what parameter s is an optimal

for him in order to maximize the payoff or the difference between the payoff of

both players if there is only limited amount of observations available. The setup

tries to compare the situation from the reality where one player has a better

technology (e.g. sonar) and can more efficiently observe the information about

the density function. It is assumed that in this scenario both players can use

their predictive skills, however, the second player has only limited information

i.e. the player 2 does not radially observe any additional information above

the distance e whereas the player 1 does. The player 1 is also favourized as he

chooses his location first.

The game starts with the random setting of x and y coordinate of both

players ([x1, y1], [x2, y2]). Thereafter it is followed by the prediction of the den-

sity function in case of player 1. His predictive skills depend on the parameter

s which can be interpreted as the radial observation range. In order to con-

trol for the effect of this special predictive factor, we suppose the player 2 has

these predictive skills as was mentioned in the previous paragraph very limited,

namely by the parameter e. Therefore, the player 2 does not have as precise

information as the player 1 and bases his intuition about the density function

purely from the harvest that he can gather.

In this setup, we consider both players are aware of the opponent’s strategy
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(location) and it is assumed that the payoff (and their predicted payoff as well

in their decisions) is split between the players equally at the places where the

harvesting of two players overlaps.

First turn is the player’s 1 marginal move directly towards the point with

the highest predicted payoff. The real highest predicted payoff can differ from

the player’s prediction and the accuracy of the prediction depends on the value

of parameter s. In the discretized grid, the marginality of his movement is

exhibited by either a horizontal, vertical or diagonal shift of one tile. The

distance of diagonal movement is slightly higher than horizontal or vertical

movements, however, as the number of steps is finite, and both players moves

the same speed, it does not influence the results much (which may be seen

mainly in terms of differences between the players’ outcomes).

The player 2 responds immediately after player’s 1 first movement is done.

The procedure is exactly the same as in case of player 1 except for one thing, the

predictive parameter is not s but e. The player 2 has significant disadvantage,

because he is one turn delayed in movement and therefore is on average more

distant from the optimal point, this effect will be shown later in figures. The

player 2 moves again marginally to the point where predicts the highest payoff,

which could be somewhere else than was in the player 1’s prediction due to

the fact that the prediction was done in different location and under different

prediction parameter.

The players alternate until the equilibrium is found and the players no

longer change their positions. In some cases there can emerge a situation,

where neither player can find his equilibrium location and are changing their

position in a loop. These loops are only on a marginal level as the players are

competing for the tiles with imperfect information, therefore the simulation is

stopped after the players get into a loop and the payoff in a random of these

points is calculated.

This game is repeated 10 times with the same parameters only different

initial locations, for every choice of parameter s given parameter e. After this

procedure the player 1 counts what choice s is the most gainful for him as an

average payoff. It is important to note, that the player is not calculating his

payoff during the travel before he gets into the final point (and it thus does not

depend what path he chooses towards his final point).

The players’ payoffs per one tile are depicted in the figures 4.20 and 4.21.

The difference between these payoffs is depicted in the figure 4.22.
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Figure 4.20: Average payoff per tile for player 1 in two dimensions
Source: Author’s computation

Figure 4.21: Average payoff per tile for player 2 in two dimensions
Source: Author’s computation
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Figure 4.22: Difference between the average payoff per tile of player
1 and player 2 in two dimensions

Source: Author’s computation

It can be noticed that the most significant is the knowledge of the infor-

mation for low difference between values of s and e (in the figures near the

diagonal). The number of positive differences between the payoff of player 1

and player 2 increases for high s which can be seen if the Fig. 4.22 is examined

to the detail. It is, therefore, higher probability that the player 1 will have

higher payoff than player 2 if he buys more s.

However, the effect of the difference between the players’ information is not

very high. From the figure 4.22 it follows that the highest difference between

the payoffs of the players is concentrating around points where e ≈ 0.24 no

matter what the parameter s is. The results suggest that far more important

(in the composition of the payoffs) is the size of the parameter e which shows

that in this scenario, the advantage of having more knowledge about the density

is totally unimportant as the player 1 would have higher payoff almost by the

same level even if his information would be the same as the player 2’s (s = e).

It means that it is very important to be the beginning player if the steps can

be done only marginally, especially when e ≈ 0.24.

Other situation could be, if the moves were the best responses instead and

the steps would be not restricted by the marginality of movement. The analysis

would be then more similar to the analysis in an optimal scenario, where the

second player was enable to have higher payoff than the first player.



Chapter 5

Summary and conclusion

This thesis has analyzed the spatial dimension added to the problem of finding

the optimal strategies of natural resource exploitation. There is only a few

works emphasizing also the importance of the spatial aspect in a process of

making the decision how to harvest the resource. The most of literature related

to this topic considered rather dynamic aspect of the harvest instead of making

a spatial analysis which is strongly neglected. The special attention has been

paid to the field of economics of fisheries in this thesis, however, the analysis is

very abstract and applicable also to many other common pool resources.

In this work, the theoretical framework for the analysis of a spatial compe-

tition game has been rigorously analyzed and developed. In the game, where

two agents (e.g. fishing nations, fleets or vessels) are competing along a one-

dimensional strategy space, there have been assumed various distributions of

the common pool resource. These distributions of the natural resource (e.g.

fish stocks) were aimed to cover the most basic possibilities of this game and

thus the resources allocated along the one-dimensional space were studied the

most comprehensively.

The space where the agents compete was assumed to be a line segment of

a unit length or a circle of a unit circumference. Both shapes of space were

focusing on a different application. The resource distributed spatially along

the line segment can be characterized by the distance from its corners and thus

emphasize the effects of the difference between the center and the periphery

(e.g. distance from the harbour), whereas the circle space does not have any

corners and hence may control for the effects linked to the competition in areas

with the same characteristics (e.g. between the fishers at the same distance

from the harbour).
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A few special distributions of the natural resource were analyzed to the de-

tail (uniform, linearly increasing, sinusoidal, etc.). However, more importantly

also some general observations have been made and the effects which deter-

mine the agents’ competitiveness according to their strategies were studied.

Probably the most interesting result from the theoretical analysis is that the

set of strategies where the players do not compete is non-convex in the space

of the player’s range parameter e and the parameter b describing the inverse

concentration of the resource.

This in other words means that the same increase in the amount of resource

that is in player’s range together with the decrease of resource concentration can

result in two different effects even though the marginal change in the parameters

is the same, there can emerge a partial competition from no competition as well

as the partial competition can disappear and no competition will emerge. The

same results are also obtained for the transition from the partial competition to

the full competition. The different effects are caused by two observations, the

first one is the existence of corners which the players want to naturally evade,

the second one says that when the concentration of the resource diminish, it

can lead to lost incentives to compete.

Other interesting results of this work are found in the studied two-player

game where there was examined apart from the general equilibrium analysis

also the concept of local stability conditions of players’ strategies and was found

out that the full competition of both players cannot be sustained in interior

of the space if the resource is continuous unless the resource is bounded by

locations with no resource.

The second part of this thesis focused on the numerical simulations, which

were done to understand better the effects of competitive behaviour of the

agents in more realistic spatial cases in two-dimensions (e.g. a lake). The

simulations also broadly investigate what the role of player’s information about

the resource is and how it determines the payoff if the information is different

for each player.

Basically, two basic scenarios have been simulated for one-dimensional case

with corners, without corners and for two-dimensional case in a square space.

The first one is the scenario where all (one or two) players have perfect infor-

mation and their aim is to find Nash equilibrium in a game where the agents

adjust their locations sequentially. In this scenario the most interesting result

is that if the exploitation range is covering large amount of the resource in the

two-dimensional space, the beginning player may be in the end worse off than



5. Summary and conclusion 66

the second player even though he can choose better initial position.

The second scenario examined was the optimization of the player’s location

under imperfect information about the resource stock. Generally, there are two

basic contradictory effects which both lowers the player’s willingness to pay for

the additional information (e.g. purchase of better sonar). The first one is that

the observation range (the area which is visible for the player) is too low and

therefore the player cannot correctly predict the optimal location, the second

one is when the exploitation range (the area which is harvestable by the player)

is too high for the player and the role of information in such a system inflates

as the payoff would be similar even without the information.

There was also shown the effect how the existence of a competing player

diminishes the player’s payoff from the gained information. In the thesis the

most efficient amount of information and exploitation was found for specific

setups when compared to the ”naive” strategy where the player did not adjust

according to his information.

The further research on this topic could involve more advanced distribu-

tions of the resource. There could be also added the dynamic aspect which

was in this thesis neglected due to the focus on the spatial dimension. The

most interesting would be further extensions in the two-dimensions and finding

general conclusions resulting from such an analysis. That is however very dif-

ficult and often almost impossible to analyze without numerical methods. The

suggestion for the works related to natural resource exploitation and economics

of fisheries is to involve more of the spatial aspect as this thesis shows it can

explain the reasons for competitive behaviour significantly.
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Appendix A

The equations describing players’

behaviour in case of a symmetric

strictly quasi-concave distribution

If the condition (3.46), which holds if the peak density is at most twice as high as

the boundary density, matches or the players start to cooperate, the equilibrium

values of the examined variables would be very similar to the uniform case, only

the equations describing it are generalized.

l1(e) =
1

4
+

∣∣∣∣e− 1

4

∣∣∣∣ , (A.1)

l2(e) =
3

4
−
∣∣∣∣e− 1

4

∣∣∣∣ . (A.2)

The payoffs of the vessels still remain the combination of the payoff of the sole

vessel and the payoff from the shared area

h1(r1, r12) = r1 +
r12
2
, (A.3)

h2(r12, r2) = r2 +
r12
2
, (A.4)

The particular payoffs r1, r12, r2 can be easily described by the cumulative dis-

tribution function

r1(e, F (e)) = F (1− 2e)− F (0), (A.5)

r12(e, F (e)) = F (2e)− F (1− 2e), (A.6)

r2(e, F (e)) = F (1)− F (2e). (A.7)
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Therefore

h1(r1, r12) = −F (0) +
F (2e) + F (1− 2e)

2
, (A.8)

h2(r12, r2) = F (1)− F (2e) + F (1− 2e)

2
, (A.9)

however, if the players are not competing, the payoffs will be slightly different

as there will be no shared area.

r1(e, F (e)) = F

(
1

2

)
− F

(
1

2
− 2e

)
= h1(e, F (e)), (A.10)

r12(e, F (e)) = 0, (A.11)

r2(e, F (e)) = F

(
1

2
+ 2e

)
− F

(
1

2

)
= h2(e, F (e)). (A.12)
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