STUDIUM OBSAHOVÝCH LÁTEK VYBRANÝCH TAXONŮ Z ŘÁDŮ LAURALES A RANUNCULALES S POTENCIÁLNĚ NEUROPROTEKTIVNÍ AKTIVITOU

Doktorská disertační práce

Mgr. Anna Hoštálková

Školitel: prof. RNDr. Lubomír Opletal, CSc.

Studijní obor: Farmakognosie a toxikologie přírodních látek
PROHLÁŠENÍ

Prohlašuji, že tato práce je mým původním autorským dílem, které jsem vypracovala samostatně (pod vedením svého školitele). Veškerá literatura a další zdroje, z nichž jsem při zpracování čerpala, jsou uvedeny v seznamu použité literatury a v práci řádně citovány. Práce nebyla využita k získání jiného nebo stejného titulu.

Hradec Králové, duben 2015

mgr. Anna Hoštálková
Disertační práce vznikla za podpory Specifického vědeckého výzkumu UK v Praze, Farmaceutické fakulty v Hradci Králové (SVV 260 063) a je spolufinancovaná Evropským sociálním fondem a státním rozpočtem České republiky, TEAB, registrační číslo projektu: CZ.1.07/2.3.00/20.0235 a celofakultním výzkumným programem PRVOUK P40, řešeným v rámci Programů rozvoje výzkumných oblastí na Univerzitě Karlově.

Dále bych chtěla poděkovat za spolupráci celé pracovní skupině ADINACO, především prof. Lubomíru Opletalovi za cenné rady a odbornou pomoc.

Za spolupráci bych chtěla poděkovat Mgr. Zdeňku Novákovi a doc. PharmDr. Jiřímu Kunešovi, Ph. D. za měření a interpretaci NMR spekter alkaloidů, doc. PharmDr. Lucii Novákové, Ph. D. za změření HRMS spekter nově izolovaných alkaloidů, Mgr. Martině Hrabinové a doc. PharmDr. Danieli Junovi, Ph. D. za stanovení inhibiční aktivity a Mgr. Šárce Štěpánkové, Ph. D. za stanovení typu inhibice aromolinu.
OBSAH

SEZNAM POUŽITÝCH ZKRATEK .. 8

PŘEHLED OBRÁZKŮ A TABULEK ... 10

1. ÚVOD .. 12

2. CÍL ... 14

3. TEORETICKÁ ČÁST .. 15

 3.1 Alzheimerova choroba ... 15

 3.1.1 Patofyziologie AD a možný účinek neuroprotektiv 15

 3.2 Hydrastis canadensis L. – vodilka kanadská ... 22

 3.2.1 Botanická charakteristika ... 22

 3.2.2 Obsah alkaloidů ... 23

 3.2.3 Biologická aktivita .. 24

 3.3 Peumus boldus Mol. – boldovník vonný .. 26

 3.3.1 Botanická charakteristika ... 26

 3.3.2 Obsah alkaloidů ... 27

 3.3.3 Biologická aktivita .. 29

 3.4 Berberis vulgaris L. – dříšťál obecný ... 31

 3.4.1 Botanická charakteristika ... 31

 3.4.2 Obsah alkaloidů ... 32

 3.4.3 Biologická aktivita .. 35

4. EXPERIMENTÁLNÍ ČÁST ... 37

 4.1 Materiální a instrumentální vybavení ... 37

 4.1.1 Chemikálie ... 37

 4.1.2 Rozpouštědla .. 38

 4.1.3 Pufry ... 38

 4.1.4 Adsorbenty pro chromatografii ... 39

 4.1.5 Pomocný materiál .. 39

 4.1.6 Přístroje ... 39
4.1.7 Vyvíjecí soustavy pro preparativní a analytickou TLC 40
4.1.8 Činidla pro detekci alkaloidů ... 41
4.1.9 Činidla pro stanovení inhibiční aktivity vůči AChE a BuChE 41
4.1.10 Činidla pro stanovení inhibiční aktivity vůči POP 41
4.2 Metody .. 42
4.2.1 Obecné postupy ... 42
4.2.2 Strukturní analýza včetně stanovení fyzikálně-chemických vlastností 44
4.2.3 Stanovení biologické aktivity ... 47
4.3 Izolace alkaloidů ... 50
4.3.1 Izolace alkaloidů z *Hydrastis canadensis* L. ... 50
4.3.2 Izolace alkaloidů z *Peumus boldus* Mol. .. 52
4.3.3 Izolace alkaloidů z *Berberis vulgaris* L. .. 55

5. **VÝSLEDKY** .. 61
5.1 Alkaloidy izolované z *Hydrastis canadensis* L. a jejich fyzikálně-chemická charakteristika ... 61
5.1.1 HC01: 1-(6’-Allyl-1’,3’-methylenedioxybenzoyl)-3-chloro-5,6-dimethoxyiso-
chinolin .. 61
5.1.2 HC02: (+)-Kanadalin ... 62
5.1.3 HC03: (±)-Hydrastin .. 63
5.1.4 HC04: (-)-Kanadin .. 64
5.2 Alkaloidy izolované z *Peumus boldus* Mol. a jejich fyzikálně-chemická charakteristika ... 65
5.2.1 PB01: (+)-Isokorydin ... 65
5.2.2 PB02: (+)-Norisokorydin ... 66
5.2.3 PB03: (-)-Pronuciferin .. 67
5.2.4 PB04: (-)-Sinoakutin ... 68
5.2.5 PB05: (-)-Glaziovín ... 69
5.2.6 PB06: (+)-N-Methyllaurotetanin ... 70
5.2.7 PB07: (+)-Boldin ... 71
5.2.8 PB08: (+)-Retikulin ... 72
5.2.9 PB09: (+)-N-Methylkoklaurin .. 73
5.2.10 PB10: (-)-Pallidin ... 74
5.2.11 PB11: (+)-Laurotetanin .. 75
5.3 Alkaloidy izolované z Berberis vulgaris L. a jejich fyzikálně-chemická charakteristika ... 76
5.3.1 BV01: Berlambin ... 76
5.3.2 BV02: (±)-1-[[6,7-isochinolin-1'-yl]methyl][phenoxy][phenyl][methyl]-2-methyl-1,2,3,4-tetrahydro-6,7-dimethoxyisochinolin ... 77
5.3.3 BV03: Berbidin .. 78
5.3.4 BV04: Berbanin .. 79
5.3.5 BV05: (+)-Bersavin ... 80
5.3.6 BV07: (+)-Berbamin ... 81
5.3.7 BV08: (+)-Aromolin ... 82
5.3.8 BV06: (-)-Muraricin .. 83
5.3.9 BV09: (-)-Berkristin ... 84
5.3.10 BV10: (-)-Verfillin ... 85
5.3.11 BV11: (+)-Obamegin ... 86
5.3.12 BV12: (+)-Chenabinol .. 87
5.3.13 BV13: (+)-Berbostrejdin ... 88
5.4 Biologická aktivita izolovaných alkaloidů ... 90
5.4.1 Inhibiční aktivita izolovaných alkaloidů vůči lidským cholinesterasám a POP 90
5.4.2 Inhibiční aktivita (+)-aromolinu s použitím BuChE z koňského séra 92
5.4.3 Typu inhibice (+)-aromolinu BuChE z koňského séra .. 92
6. DISKUSE ... 93
6.1 Výběr rostlinného druhu pro izolaci sekundárních metabolitů 93
6.2 Izolace alkaloidů ... 93
6.2.1 Alkaloidy izolované z Hydrastis canadensis L. ... 94
6.2.2 Alkaloidy izolované z Peumus boldus Mol. ... 94
6.2.3 Alkaloidy izolované z Berberis vulgaris L. ... 95
6.3 Biologická aktivita alkaloidů ... 97
6.3.1 Biologická aktivita alkaloidů izolovaných z Hydrastis canadensis L. 98
Seznam používaných zkratů

<table>
<thead>
<tr>
<th>Zkrat</th>
<th>Označení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ</td>
<td>β-amyloid</td>
</tr>
<tr>
<td>acetyl-CoA</td>
<td>acetyl koenzym A</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimerova choroba</td>
</tr>
<tr>
<td>ADINACO</td>
<td>Alzheimer disease and natural compounds</td>
</tr>
<tr>
<td>ACh</td>
<td>acetylcholin</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholinesterasa</td>
</tr>
<tr>
<td>APP</td>
<td>amyloidni prekurzorovy protein</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosintrifosfat</td>
</tr>
<tr>
<td>BACE1</td>
<td>enzym sekretasa stěpici APP v miste β</td>
</tr>
<tr>
<td>BDNF</td>
<td>mozkovy neurotrofni faktor</td>
</tr>
<tr>
<td>BuChE</td>
<td>butyrylcholinesterasa</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyklicky adenosinmonofosfat</td>
</tr>
<tr>
<td>CDK5</td>
<td>cyklin-dependentnich kinas 5</td>
</tr>
<tr>
<td>CITES</td>
<td>umluva o mezinarodnim obchodu s ohrozenymi druhy volne zivocichu a plane rostucich rostlin</td>
</tr>
<tr>
<td>CREB</td>
<td>transkripni faktor aktivovan cAMP</td>
</tr>
<tr>
<td>DPPH</td>
<td>difenypikryldrazyl radikal</td>
</tr>
<tr>
<td>DRP1</td>
<td>dynamin related protein 1</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminomaselna kyselina</td>
</tr>
<tr>
<td>GC</td>
<td>plynova chromatografie</td>
</tr>
<tr>
<td>GSK-3β</td>
<td>glykogen synthasa kinas 3β</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosintrifosfat</td>
</tr>
<tr>
<td>HEB</td>
<td>hematoencefalicka bariéra</td>
</tr>
<tr>
<td>ChAT</td>
<td>cholin acetyltransferasa</td>
</tr>
<tr>
<td>iNOS</td>
<td>indukovatelná NO synthasa</td>
</tr>
<tr>
<td>M-CSF</td>
<td>faktor stimulujici kolonie makrofagu</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemotactic protein</td>
</tr>
<tr>
<td>MIP-1</td>
<td>makrofagovy zanetlivy protein 1</td>
</tr>
<tr>
<td>MS</td>
<td>hmotnostni spektrometrie</td>
</tr>
</tbody>
</table>
nom. cons. — nomen conservandum – označení vědeckého jména taxonu, které by podle pravidel botanické nomenklatury bylo neplatné, nicméně je v odborné literatuře běžně používáno

nAChR — nikotinový typ acetylcholinového receptoru
NGF — nervový růstový faktor
NFTs — neurofibrilární klubka
NMDA — N-methyl-D-aspartát
NMR — nukleární magnetická rezonance
NOS — NO synthasáza
PAF — destičky aktivující faktor
PAS — periferní anionické vazebné místo
PBS — pufrovaný fyzioologický roztok
PC12 — buněčná linie odvozená od feochromocytomu dřeně nadledvin krys
PD — Parkinsonova choroba
PGE — prostaglandin E
PPARs — receptory aktivované proliferátor peroxizomů
POP — prolyl oligopeptidasa = prolyl endopeptidasa
RNS — reaktivní dusíkové částice
ROS — reaktivní kyslíkové částice
SOD — superoxid dismutasa
sp. (spp.) — druh (druhy)
TNF-α — tumor nekrotizující faktor α
∅ — průměr chromatografického sloupce
Obr. 1	*Hydrastis canadensis* L.	22
Obr. 2	*Peumus boldus* Mol.	26
Obr. 3	*Berberis vulgaris* L.	31
Obr. 4	1-(6'-Allyl-1',3'-methylenedioxybenzoyl)-3-chloro-5,6-dimethoxyisochinolin	61
Obr. 5	(+)-Kanadalin	62
Obr. 6	(±)-Hydrastin	63
Obr. 7	(-)-Kanadin	64
Obr. 8	(+)-Isokorydin	65
Obr. 9	(+)-Norisokorydin	66
Obr. 10	(-)-Pronuciferin	67
Obr. 11	(-)-Sinoakutin	68
Obr. 12	(-)-Glaziovin	69
Obr. 13	(+)-N-Methylaurotetanin	70
Obr. 14	(+)-Boldin	71
Obr. 15	(+)-Retikulin	72
Obr. 16	(+)-N-Methylkoklaurin	73
Obr. 17	(-)-Pallidin	74
Obr. 18	(+)-Laurotetanin	75
Obr. 19	Berlambin	76
Obr. 20	(±)-1-[[4-[2-Methoxy-5-[[1',2',3',4'-tetrahydro-6',7'-dimethoxy-2'-methylisochinolin-1'-yl]methyl][phenoxy][phenyl]methyl]-2-methyl-1,2,3,4-tetrahydro-6,7-dimethoxy-isochinolin	77
Obr. 21	Berbidin	78
Obr. 22	Berbanin	79
Obr. 23	(+)-Bersavin	80
Obr. 24	(+)-Berbamin	81
Obr. 25	(+)-Aromolin	82
Obr. 26	(-)-Muraricin	83
Obr. 27	(-)-Berkristin	84
Obr. 28	(-)-Verfillin	85
Obr. 29 (+)-Obamegin.. 86
Obr. 30 (+)-Chenabinol .. 87
Obr. 31 (+)-Berbostrejdin .. 88
Obr. 32 Závislost inhibice lidské BuChE na koncentraci (+)-aromolinu............................... 91
Obr. 33 Závislost v_0/v_i na koncentraci (+)-aromolinu .. 92
Obr. 34 Závislost rychlosti enzymové reakce na koncentraci (+)-aromolinu –
podle Lineweaver-Burke .. 92

Tab. 1 Strukturní typy alkaloidů izolovaných z *Hydrastis canadensis* L. 23
Tab. 2 Strukturní typy alkaloidů izolovaných z *Peumus boldus* Mol. 27
Tab. 3 Strukturní typy alkaloidů izolovaných z *Berberis vulgaris* L. 32
Tab. 4 Podmínky sloupcové chromatografie frakce A ... 50
Tab. 5 Výsledek chromatografie výtřepku A .. 51
Tab. 6 Podmínky sloupcové chromatografie alkaloidního výtřepku 52
Tab. 7 Výsledek chromatografie alkaloidního výtřepku .. 53
Tab. 8 Hmotnost a charakter výtřepků z kůry kořenů dřišťálu 55
Tab. 9 Čištěním výtřepku A za použití Al$_2$O$_3$... 56
Tab. 10 Podmínky sloupcové chromatografie frakce A-1 ... 56
Tab. 11 Výsledek chromatografie frakce A1 ... 57
Tab. 12 Podmínky sloupcové chromatografie frakce H ... 58
Tab. 13 Výsledek chromatografie frakce H ... 58
Tab. 14 Podmínky sloupcové chromatografie frakce CH ... 59
Tab. 15 Výsledek chromatografie frakce CH ... 60
Tab. 16 Biologická aktivita izolovaných alkaloidů .. 90
Tab. 17 Aktivita alkaloidních extraktů vybraných drog ... 93
1. Úvod

Sledování toxicity rostlin hraje v současné době velký význam a to zejména z hlediska čistoty a bezpečnosti potraviního (a tedy i krmivového) řetězce, protože znečištění těchto řetězců přináší riziko poškození lidského organismu. Sekundární metabolismy rostlin, které se vyskytují v krmivovém řetězci hospodářských zvířat, mohou být metabolizovány různou mírou a ukládat se v tkáních těchto živočichů. Vzhledem k tomu, že doba výkrmu zvířat bývá někdy krátká (slepičí brojleři 35-40 dnů), neprojevuje se zde akutní toxicita, ale může se vyskytnout chronická toxicita v tiché formě, která může být základem např. genotoxicity. Může se jednat o reverzibilní toxicitu, která uniká pozornosti díky regenerační schopnosti (lidských i zvířecích) tkání, ovšem v případě tak citlivých tkání, jako jsou tkáně zárodečné a CNS, se po delší době aplikace nežádoucích látek může objevit toxicita ireverzibilní.

V současné době se s takovým procesem prakticky nesetkáme. V úvahu přicházejí nově se vyskytující látky pocházející z krmných surovin (obilniny, senáž) jako nežádoucí přísada [1] nebo mohou vznikat v průběhu uskladňování a zpracování. Mohou to být metabolity mikromycet patogenních hub (Aspergillus spp., Fusarium spp.) [2,3] poškozující především játra a reprodukční systém, ale i vyšších rostlin, které mohou být při nadměrném výskytu spásány a kontaminovat např. mléko a výrazně snižovat jeho kvalitu (Colchicum autumnale L.) [4].

Sledování obsahu těchto nežádoucích látek je významným a primárním toxikologickým zájmem. Nicméně je nutné uvážit, že tento toxikologický zájem nemusí být pouze výhradní, ale může být základem pro další zjištění, které zcela nesouvisí s případnou toxicitou potraviních (krmivových) produktů. V historii Evropy se pravidelně objevoval ergotismus, který v určitých obdobích masivně postihoval obyvatelstvo (např. Athénský mor v r. 430 př. n. l. nebo masivní epidemie kolem r. 1200 n. l.). Tato mykotoxikóza postihující obyvatelstvo, které konzumovalo mouku s obsahem sklerocií námele (Claviceps purpurea, popř. C. paspali) > 2 %, decimovala tehdejší populaci; podobně byla objevena toxicita nikotinových a dalších alkaloidů [5]. Z poznání této toxicity se však odvíjelo poznání možného terapeutického využití některých nativních námelových alkaloidů, které se staly prvními využitelnými sympatolytyky. Jejich semisyntetické deriváty byly po desítky let 20. století používány jako efektivní adrenolytika [6]. Podobně vedlo poznání účinku nikotinu na vegetativní ganglia [7] k rozvoji poznání účinků

12
cholinergik jako účinných parasympatomimetik a poznání subtypů nikotinových receptorů a jejich souvislost s kognitivními funkcemi [8,9]. Poznání účinku toxických chinolidinových alkaloidů lupiny (Lupinus sp.) a jejich metabolismu významně přispělo k využití semen tohoto druhu ve výživě člověka a hospodářských zvířat [10].

Je tedy bez pochyb, že poznání toxikologie přírodních látek přináší nejen významné znalosti o negativním účinku na organismus, ale je i jakýmsi odrazovým můstkem pro hledání nových léčiv. Tyto trendy v oblasti přírodních zdrojů se uplatňují ve významné míře především při hledání potenciálních léčiv pro ovlivnění chronických onemocnění, které jsou v 21. století na významném vzestupu, zejména v oblasti neurodegenerativních onemocnění typu AD. Léčiva typu malých molekul, náležejících do skupiny kognitiv, tvoří velmi úzké portfolia a je poměrně příkladné, že se jedná o látky přírodního typu (galanthamin, huperzin A) nebo struktury, které polosynteticky z přírodních látek de facto vzešly (memantin, rivastigmin). Významně se zde uplatňují isochinolinové alkaloidy především terciárního typu a hlavně alkaloidy rostlin čeledi Amaryllidaceae [11]. Významný inhibiční účinek na acetylcholinesterasu (AChE) však byl nalezen i u některých isochinolinových alkaloidů dvouděložných rostlin [12], a proto je věnována pozornost i dalším dvouděložným rostlinám, v terapii široce používaným a je jisté míry toxickým, jako jsou boldovník vonný (Peumus boldus Mol.), dřišťál obecný (Berberis vulgaris L.) a vodilka kanadská (Hydrastis canadensis L.).

V případě těchto rostlin existují sice v nedávně publikované literatuře údaje o možném použití v případě AD [13,14,15], je však nutné pokládat je spíše za spekulativní, protože se pokaždé zabývají jinými obsahovými látkami než terciárními isochinolinovými alkaloidy, jejichž studium má smysl z hlediska přestupu přes hematoencefalickou bariéru (HEB) a distribuci v buněčném systému CNS. Těmto alkaloidům, u nichž není pochyb o tom, že svojí toxicitou přispívají k celkové toxicitě matečných rostlin, je vhodné věnovat pozornost nejen z hlediska proklamovaného účinku na AChE, ale také na BuChE, která tvoří nový terapeutický cíl při ovlivňování průběhu AD. Dále je potřeba se zaměřit i na další využitelné účinky, které mají při léčbě aditivní efekt, jako je např. inhibice POP. Shromáždění terciárních bazí, vytvoření knihovny látek a porovnání vztahů mezi strukturou a účinkem z hlediska inhibice cholinesteras může poskytnout nejen příspěvek k toxicitě těchto sloučenin, ale může směrovat toto studium do oblasti chemických struktur, které se mohou stát základem sloučenin, směřujícím k potenciálním léčivům.
2. Cíl

Cílem této studie bylo sledování terciárních alkaloidů některých morfologických částí taxonů z řádů Laurales a Ranunculales a to z těchto hledisek:

- zpracování literární rešerše na alkaloidy obsažené v těchto taxonech a jejich biologickou aktivitu,
- izolace terciárních alkaloidů z extraktů oddenků *Hydrastis canadensis* L., listů *Peumus boldus* Mol. a kůry kořenů *Berberis vulgaris* L.,
- určení jejich fyzikálně-chemických vlastností (vč. optické otáčivosti v případě přítomnosti chirálního atomu),
- změření a interpretace MS spekter izolovaných alkaloidů,
- podíl na řešení struktury (NMR spektra),
- stanovení biologické aktivity jednotlivých alkaloidů a to inhibiční aktivity vůči lidským cholinesterasám a prolyl oligopeptidase,
- porovnání účinnosti izolovaných alkaloidů se standardy a vyhodnocení jejich potenciální neuroprotektivní aktivity,
- doporučení, kterým alkaloidům je vhodné věnovat reálnou pozornost formou dalších izolací a rozšiřujících biologických studií.
3. Teoretická část

3.1 Alzheimerova choroba

Alzheimerova choroba je nejčastějším onemocněním spojeným se stárnutím, které celosvětově postihuje více než 35 milionů lidí [16]. Jde o neurodegenerativní onemocnění se specifickým neuropatologickým obrazem a je nejčastější příčinou demence. V důsledku tohoto onemocnění dochází k porušení normální funkce neurotransmise a remodelaci mozku s následkem postupné ztráty paměti a smrti. Léčba je doposud jen symptomatická vzhledem k tomu, že jde o multifaktoriální onemocnění s nejasným původem. Ačkoliv etiopathogeneze AD není plně vysvětlena, je diskutována celá řada hypotéz o jejím vzniku. Všeobecně jsou však uznávány pouze teorie dvě a to amyloidní a cholinergní [11], přičemž v dnešní době představují souhrn dějů zasahující dva vzájemně související patofysiologické celky.

Cholinergní teorie je založena na snížené cholinergní transmisi a degeneraci cholinergních neuronů předního mozku, které přímo korelují se stupněm demence [17]. Neurotransmitter ACh se podílí na procesech učení a paměti prostorové a epizodické, zároveň však ovlivňuje i produkci dalších neuromediátorů (glutamát, glycin, dopamin). U pacientů s AD je prostřednictvím AChE modulován metabolismus APP a také je usnadněna agregace Aβ do fibril, se kterými je AChE jako komplex toxicktější než fibrily samotné.

Podle amyloidní teorie je důvodem ukládání Aβ porucha metabolismu APP, přičemž v návaznosti dochází i k poruše metabolismu τ-proteínu. Ten je ve vyšší míře fosforylovan a místo výstavby mikrotubulů dochází ke shlukování do NFTs. Další kaskádu patofysiologických pochodů vyvolávají Aβ ve formě oligomerů či plaků a NFTs.

Změna metabolismu APP a tvorba amyloidu je patrně jedním z nejzáslužnějších patofysiologických celků v etiopathogenezi AD [11].

3.1.1 Patofyziologie AD a možný účinek neuroprotektiv

3.1.1.1 Aβ a amyloidní plaky

Změna metabolismu transmembránového glykoproteinu APP vede k produkci Aβ. Fyziologicky však APP přispívá k vývoji CNS, napomáhá při reakci na zranění mozku nebo na stres. U pacientů s AD podstupuje APP proteolýzu jak neamyloidogenní, tak amyloidogenní dráhou
V rámci neamyloidogenní dráhy je APP štěpen α-sekretasou vázanou na membránu, kdy vzniká rozpustný fragment s neuroprotektivní funkcí a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení β-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

Během amyloidogenní dráhy je APP štěpen BACE1. I nyní vzniká fragment ukotvený v membráně (C99), jeho další štěpení γ-sekretasou vede ke vzniku Aβ proteinu. Jednotlivé Aβ proteiny jsou rozpustné a monomerní, ty následně agregují do oligomerů, které jsou vůči neuronům toxické příznaky a membránou vázaný fragment (C83), který je dále štěpen, avšak nedovoluje vzniku Aβ.

3.1.1.2 Neurofibrilární klubka (NFTs)

τ-Protein je fyziologicky přítomný v neuronech, v nichž se podílí na inkorporaci tubulinu do mikrotubulů, stabilizuje je a ovlivňuje axonální transport [20]. Pokud je τ-protein hyperfosforylován, vytváří párová helikální vlákna, jež jsou hlavní součástí NFTs, rovněž destabilizuje cytoskelet neuronální buňky [21]. Mezi významné faktory hyperfosforylace τ-proteiny bývá uváděn vliv CDK5 a GSK-3β [22], přičemž toxické formy, uplatňující se v patofyziologii AD, jsou oligomery τ-proteiny [23].

Interakce mezi Aβ a τ-proteinem je spojována s mitochondriální dysfunktí [24].

3.1.1.3 Mitochondriální dysfunkce a oxidační stres

Byla předložena hypotéza „mitochondriální kaskády“, která vysvětluje mnoho biochemických, genetických a patologických jevů u AD. Podle této teorie je dědičností dána kvalita funkce a odolnost mitochondrií tak, jako jsou dány i jejich změny v průběhu stárnutí. Pokud mitochondriální změny dosáhnou určitého prahu, následuje vznik histopatologických změn a symptomů AD [25], nicméně stále není vysvětleno, zda Aβ způsobuje dysfunkci mitochondrií nebo naopak.

Mitochondrie jsou početné organely zajišťující mnoho zásadních buněčných pochodů, mimo jiné kontrolují energetický metabolismus buňky (produkují ca 90 % ATP) a oxidativní fosforylací. Jejich biogeneze probíhá nejvíce v těle neuronu, odkud jsou transportovány
do dendritů, axonů a synapsí, kde je jejich koncentrace nejvyšší. Zde zajišťují funkci synapsí produkci ATP a kontrolu hladin Ca$^{2+}$ [26]. Také jsou hlavním zdrojem ROS a RNS, které vznikají během buněčného dýchání [27].

Během AD je porušena rovnováha mezi fúzí a dělením mitochondrií, které jsou přirozenými pochody v životním cyklu mitochondrií [26]. Mitochondriální štěpení je regulováno DRP1, což je cytosolická GTPasa vázaná na membránu mitochondrií. Hladina DRP1 je při AD snížena a bylo pozorováno, že interaguje s Aβ monomery a oligomery (vysvětlující míru fragmentace mitochondrií korelující s fází onemocnění) a fosforylovaným τ-proteinem [28]. Aβ ve spolupráci s τ-proteinem rovněž narušuje axonální transport a funkci mitochondrií [29].

Porucha metabolismu mitochondrií zvyšuje oxidační stres (znásobuje produkci ROS a RNS), ten vede k dalšímu poškození mitochondrií, uvolnění cytochromu c, aktivaci kaspasového systému a k apoptóze [11].

3.1.1.4 Neuronální zánět

Vyvíjí se na základě oxidačního stresu a poškození mitochondrií. Je charakterizován aktivací astrocytů a mikroglií a produkci cytokinů a chemokinů. Mikroglie představují první linii v zánětlivé reakci proti patogenům v CNS a tvoří zde ca 10 % buněk. Aktivaci mikroglií rovněž způsobují extracelulární depozita Aβ, neuronální poškození vzniklé jeho vlivem anebo neurotoxicitou τ-proteinem a NFTs. Mezi další buňky podílející se na zánětlivé reakci v CNS patří i pericyty, endotelové buňky a neurony [30].

Při počínající AD dochází k atrofii astrocytů, což vede k oslabení synaptických spojů a primárnímu kognitivnímu deficitu, v další fázi dochází k reaktivní astroglióze způsobenou Aβ plaky a poškození neuronální sítě, která vede k remodelaci mozu [31]. Mikroglie aktivované přítomností Aβ produkují ROS, glutamát, prozánětlivé cytokiny (např. TNF-α, IL-1β). Mezi další prozánětlivé působky produkované vlivem Aβ patří IL-6, IL-8, MCP-1, MIP-1α a M-CSF [32]. Na zánětlivých procesech se taktéž podílí kationty těžkých kovů vázané k Aβ plakům [33], které pravděpodobně vznikají inhibicí mitochondriálního dýchacího řetězce [34].

Do prozánětlivých procesů zasahuje i aktivita GSK-3β. Tato důležitá serin/threoninová protein kinasa se podílí na různých buněčných procesech jako např. syntéze glykogenu, regulaci genové transkripce, syntéze proteinů, plasticitě synapsí, regulaci buněčného cyklu (neurogenezi) a apoptóze [35]. Na základě studií se předpokládá, že hraje důležitou roli
v patofyziologii poruch nálad, AD a schizofrenii. Nedávné studie prokázaly její roli v regulaci pro- a protizánětlivých cytokinů [36,37]. Také bylo prokázáno, že procesy vedoucí k tvorbě Aβ vedou i k vyšší aktivitě GSK-3β [38]. Inhibitory GSK-3β mohou snížit neuronální zánět [39], Aβ neurotoxicitu, dále ovlivnit plasticitu nervových synapsí, paměť a životaschopnost neuronů, tudíž jsou studovány jako potenciální léčiva AD [40].

Dalším systémem ovlivňující zánětlivé procesy jsou nitrobenční receptory PPARs. Hrají důležitou roli v diferenciaci buněk, jejich vývoji a metabolismu (peroxidace tuků) [41]. Rovněž mají schopnost potlačit zánětlivou reakci periferních makrofágů a u některých modelů lidských autoimunitních onemocnění, což vedlo k idei pokusit se ovlivněním tohoto systému zmírňit neuronální zánět probíhající při AD. PPARγ agonisté snižují expresi prozánětlivých genů, vykazují neuroprotektivní vlastnosti [42], zmírňují zánětlivé procesy v makrofáziích a mikrogliích [43] a indukují apoptózu v gliových buňkách [44]. PPARs agonisté jsou potenciálně silná léčiva pro léčbu AD, nicméně bude třeba řešit určité genotoxické a metabolické nežádoucí účinky [45].

3.1.1.5 Změny v cholinergním systému

Acetylcholin je významným neurotransmiterem, který se podílí na mnoha pochodech v mozku např. zajišťuje neurotransmisi, procesy pozornosti, vnímání stimulů, učení a paměti, ale i ovlivnění tvorby dalších mediátorů (dopamin, glutamát atd.). Je syntetizován z acetyl-CoA a cholinu prostřednictvím ChAT a v synaptické štěrbině rozkládán AChE (a v případě patologických podmínek při AD a demenci s Lewyho tělísky i pomocí BuChE). Při AD je postižena presynaptická část neuronu a to vstup prekurzorů do neuronu, syntéza i uvolňování ACh.

Cholinergní neurony jsou rovněž ovlivňovány nikotinovými ACh receptory (nAChR) a některé AChE inhibitory (např. galanthamin) se vážou na alosterické vazebné místo a tím potencují receptorovou odpověď na přítomný ACh [47].

Acetylcholinesterasa hraje svou roli i ve vytváření Aβ depozit a pravděpodobně také interaguje s Aβ a podporuje jeho agregaci do amyloidních fibril prostřednictvím aminokyselin v blízkosti hydrofobního periferního anionického vazebného místa enzymu PAS [48]. S amyloidními fibrilami je AChE jako komplex toxické jsou některé fibrily samotné [11]. Je zde také souvislost mezi cholinergní aktivací a metabolismem APP – léze cholinergních jader vykazuje rychlé zvýšení množství APP. Snížení cholinergní transmise u AD vede k amyloidogennímu metabolismu a přispívá ke kognitivní dysfunkci [46]. Naopak změna exprese AChE u pacientů s AD naznačuje její zvýšenou aktivitu na okrajích Aβ plaků a schopnost Aβ ovlivnit hladiny AChE [49]. Užívání AChE inhibitorů (galanthamin) je také spojováno s protizánětlivým účinkem na makrofágy, mikroglie a neurony zprostředkovaným α-7 nAChR, rovněž byla pozorována zvýšená fagocytóza Aβ [50].

3.1.1.6 Porucha transmise na NMDA receptorech

N-Methyl-D-aspartátový receptor je specifický typ ionotropního glutamátového receptoru pro selektivní vazbu NMDA. Tento systém se podílí na kontrole plasticity synapsí a paměti [51]. Zásadním dějem je pohyb Ca²⁺ NMDA receptorem, který je vlastním mechanismem učení a paměti na buněčné úrovni.

Zvýšená excitotoxicita u neurodegenerativních poruch je částečně zprostředkována nadměrnou aktivací NMDA receptorů zvýšeným vstupem Ca²⁺ do buněk. Zvýšené hladiny Ca²⁺ vedou k produkci ROS a aktivaci dalších enzymatických (iNOS) systémů vedoucích k buněčné smrti [52]. Oxidační stres a zvýšená hladina intracelulárního Ca²⁺ produkovaná Aβ zvyšují glutamátem zprostředkovanou toxicitu. Rovněž může Aβ také zvýšit odezvu NMDA receptorů a tím excitotoxicitu [53]. Nadměrná aktivita NMDA receptorů vede také ke zvýšení hyperfosforylace τ-proteínu a tvorbě NFTs [54]. Nadměrné množství Ca²⁺ spouští procesy, které významně zatěžují mitochondrie, což následně iniciuje tvorbu ROS, aktivaci kaspas a uvolnění apoptózu-indukujícího faktoru, aktivaci neuronální NOS a další faktory vedoucí k apoptóze, nekróze či poškození dendritů a synapsí [55].
3.1.1.7 Nedostatek neurotropních faktorů
Neurotropní faktory tvoří malou skupinu univerzálních bioaktivních proteinů používaných pro dosažení funkcí a přežití specifických populací neuronů. Kontrolují růst axonů, buněčnou morfologii a mají klíčovou úlohu během kognitivních procesů a vytváření paměti. Při neuronálním poškození se zapojují do regenerace.

V průběhu neurodegenerativních onemocnění dochází často k poruše axonálního transportu, který je zásadní pro jejich funkci a regulaci, protože ne všechny bývají syntetizovány v místě účinku [56].

Neurotropní faktor NGF je jedním z nejdůležitějších neurotropních faktorů, fyziologicky biosyntetizovaný v hipokampu a neokortexu [57], odkud je aktivně transportován do bazálního předního mozku, kde stimuluje funkční neurony [58]. V důsledku jeho nedostatku dochází ke snížení počtu cholinergních neuronů, enzymů ChAT a AChE a tím cholinergní transmisi [59]. U pacientů s AD byla zjištěna změna obsahu NGF proteinu, mRNA, množství NGF receptorů a snížení NGF signálních komponent [60] a to hlavně v cholinergním bazálním předním mozku. To naznačuje deficit v retrográdním transportu v důsledku cytoskeletální dysfunkce neuronů, charakteristickém patofyziolózigickém znaku AD [61].

Transkripční faktor CREB ovlivňuje dlouhodobou plasticitu synapsí, jež představují základní faktor pro učení, paměť [62] a životaschopnost neuronů [63]. Peptidy Aβ pozměňují synaptickou plasticitu a paměť právě prostřednictvím CREB signalizační dráhy [64]. Rovněž se uvádí, že nadměrná exprese genu pro BACE1 snižuje CREB aktivaci (fosforylaci), aktivitu protein kinasy A a hladiny cAMP, přičemž snížená exprese genu pro BACE1 má opačný efekt [65].

Neurotropní faktor BDNF je nepostradatelný při vývoji mozku, pro neuroplasticitu a vitalitu neuronů, podílí se na mnoha nitrobuňčných signálních procesech. Snížené hladiny BDNF a fosforylovaného CREB jsou spolehlivými biomarkery depreseivní poruchy, dále je úbytek tohoto faktoru spojován s mnoha neuropsychiatrickými poruchami včetně afektivní poruchy, schizofrenie a dalšími [66]. V neposlední řadě je i biomarkerem poruch paměti a kognitivní funkce u starších žen [67].

3.1.1.8 POP
Cytosolická serinová endopeptidasa POP se uplatňuje při biosyntéze a degradaci peptidových hormonů a neuropeptidů přítomných v mozku, zapojených do procesů učení a paměti, její
funkce však ještě není plně objasněna [68]. Byl potvrzen současný výskyt POP s Aβ a τ-proteinem, dále se vyskytuje při agregaci α-synukleinu do Lewyho tělisek u PD, přičemž tuto agregaci pravděpodobně usnadňuje. Přesné působení POP v patofyziologii PD a AD zůstává stále nejasné, ačkoliv se do ní zjevně zapojuje [69]. Existuje názor, že „urychluje stárnutí“ vzhledem k její expresi v hipokampu jako ději pozorovaném při poruchách kognitivních procesů před objevením plaků. Inhibice POP proto může vést ke zlepšení kognitivních funkcí [70].
3.2 *Hydrastis canadensis* L. – vodilka kanadská

Ranunculales Juss. ex Bercht. & J. Presl (1820) – Ranunculaceae Juss. (1789), nom. cons. [123]

Obr. 1 *Hydrastis canadensis* L. [71]

3.2.1 Botanická charakteristika

Název „Hydrastis“ pochází z řečtiny [72]. V rodu jsou popsány pouze dva druhy, jeden se vyskytuje v Americe, druhý v Japonsku (*Hydrastis jezoensis* Siebold ex Miq.). Botanicky se řadí mezi bazální Ranunculaceae, dříve byla vodilka řazena též do samostatné čeledi nebo mezi Berberidaceae [73].

Tato vytrvalá bylina dorůstá ca 15–50 cm výšky, má jednoduchou ochlupacenou lodyhu, obvykle nesoucí bazální list a dva lodyžní listy u vrcholu. Listy jsou jednoduché se dvojitě zubatým okrajem, dlanitě 3–9laločnaté, oválně srdčité, na lodyze střídavé. Lodyha nese na vrcholu jeden květ, který během prvních fází vývoje halí vrchní list. Korunní lístky nejsou vyvinuté, kališní lístky jsou bílé, záhy opadající. Tyčinek je velké množství, obvykle přes 50,
pestíků 5–15. Květ má průměr kolem 1 cm. Kvete v květnu až červnu. Plodem je souplodí bobulí oranžovo-červené barvy, bobule obsahují dvě černá semena v každém plodolistu. Plazivý oddenek se nepravidelně větví a nese mnoho tenkých vláskovitých kořenů; má světle žlutou barvu a štípavou vůni [72,73].

Přirozeným prostředím jsou husté stinné lesy, vlhké louky a okolí potoků. V horách stoupá do nadmořské výšky ca 1200 m. Roste jednotlivě obvykle na jílovitém podloží. Její výskyt je omezen na východ Severní Ameriky – od kanadských hranic po jih Apalačského pohoří [73]. Populace vodílek ve volné přírodě byla v posledních letech značně oslabena kvůli jejímu masivnímu sběru a ztrátě přirozeného prostředí, což ji zařadilo na seznam ohrožených rostlin. Druh podléhá ochraně mezinárodní úmluvy o mezinárodním obchodu s ohroženými druhy volně žijících živočichů a planě rostoucích rostlin CITES [74]; pro farmaceutické účely je dnes proto pěstována [72].

3.2.2 Obsah alkaloidů

Dosud byly izolovány alkaloidy typu ftalidisochinolinového: hydrastin, hydrastidin a isohydrastidin; protoberberinového: berberin, berberastin, kanadin, korypalmin a isokorypalmin [72]; a sekoberberinového: kanadalín [75] a kyselina kanadinová [76].

V extraktech byly detekovány (UPLC-QTOF-MS) ve stopovém množství i další alkaloidy [77].

Tab. 1 Strukturní typy alkaloidů izolovaných z *Hydrastis canadensis* L.

<table>
<thead>
<tr>
<th>ftalidisochinolinový typ</th>
<th>R¹</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrastin</td>
<td>-CH₃</td>
<td>-CH₃</td>
</tr>
<tr>
<td>hydrastidin</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>isohydrastidin</td>
<td>-CH₃</td>
<td>-H</td>
</tr>
</tbody>
</table>
protoberberinový typ

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>korypalmin</td>
<td>-CH3</td>
<td>-H</td>
<td>-CH3</td>
</tr>
<tr>
<td>isokorypalmin</td>
<td>-H</td>
<td>-CH3</td>
<td>-CH3</td>
</tr>
<tr>
<td>kanadin</td>
<td>-CH2-</td>
<td>-CH3</td>
<td>-CH3</td>
</tr>
</tbody>
</table>

sekoberberinový typ

kanadalin

kyselina kanadinová

3.2.3 Biologická aktivita

Hydrastin vykazuje prokonvulzivní [78], stimulační a antinarkotický efekt [79], kompetitivně blokuje GABA_A receptory v laterální hypothalamické oblasti, čímž zároveň snižuje podíl lymfocytů a jejich proliferaci [80], také snižuje produkci dopaminu inhibicí tyrosin hydroxylasy v PC12 buňkách [81].

Hydrastinin ve vysokých dávkách blokuje nervová zakončení autonomního vegetativního systému v srdci [82], děloze [83] a střevu [84].

(+) Kanadalin inhibuje AChE i BuChE [85].
(-)-Kanadin tlamí CNS [86], nicméně GABA inhibice ani působení na ACh receptory není mechanismem účinku [87]. Kanadin zvyšuje barbiturátem-indukovanou hypnózu, blokuje aktivitu adenylát cyklasy stimulovanou dopaminem. Tato sloučenina vykazuje téměř ekvipotentní afinitu k D₁ a D₂ receptorům bez významné afinity k μ-opioïdním, muskarinovým a α₂-adrenergním receptorům a benzodiazepinovým vazebným místům. Nevyvolává kataleptogenní chování ani při vyšších dávkách [88]. Inhibicí buněčné adheze má také potenciál být účinný protizánětlivě [89]. (+)-Kanadin inhibuje AChE a mírně i BuChE [85], racemát s relativně nízkou toxicitou vůči buněčným kulturám má některé strukturní aspekty podobné s troloxem a tokofeorem, tudíž je potenciálním antioxidantem [90], je účinným inhibitorem redukce nitrotetrazoliové modři [91]. Také může zabránit apoptóze indukované Aβ snížením hladiny intracelulárního Ca²⁺ v hipokampu [92].

(+)-Korypalmin a (-)-isokorypalmin byly rovněž zkoušeny na inhibici cholinesteras, přičemž vykazovaly nízkou inhibiční aktivitu [85], isokorypalmin moduluje vazebnost GABA₆ receptorů [93] a D₂ receptorů [94].

Pro hydrastidin, isohydrastidin a kyselinu kanadinovou nejsou dostupná data o jakýchkoliv biologických účincích.
3.3 *Peumus boldus* Mol. – boldovník vonný

Laurales Juss. ex Bercht. & J. Presl (1820) – Monimiaceae Juss. (1809), nom. cons. [123]

Obr. 2 *Peumus boldus* Mol. [95]

3.3.1 Botanická charakteristika

Boldovník je malý (do 6 m vysoký) neopadavý strom či keř s kompaktním větvovím. Listy jsou krátce řapíkaté s čepelí šedě zelené barvy, která může být ovlána nebo podlouhlá, 3–6 cm dlouhá, 2–4 cm široká, zašpičatělá či zakulacená, lehce podvinutá, tvrdá a křehká, na svrchní straně pokrytá hrbolky, dodávající zrnitý vzhled, které jsou drsné na dotek. Květy jsou v malých, koncových vrcholících, vonné, relativně velké: samčí květy s bledě žlutými květními obaly, početnými tyčinkami; samičí květy se specifickým vajíčkem, které se vyvíjí v průsvitnou, žlutavou, aromatickou peckovici [96,97].
Je endemitem Chile a typickým zástupcem široko-sklerofylních (tvrdolistých) subtropických dřevin; jeho výskyt je omezen mezi 30° (Provincie Limari) a 41° (Provincie Osorno) j. š. Roste jednotlivě na slunných suchých horských stráních na přímořské i vnitrozemní straně [98].

3.3.2 Obsah alkaloidů

Dosud byly izolovány alkaloidy typu aporfinového: boldin, isokorydin, N-methyllaurotetanin [99], norisokorydin [100], isoboldin [101], laurotetanin, laurolitsin [102] a 6a,7-dehydroboldin [103]; benzylisochinolinového: retikulin [101] a koklaurin [104]; homomorfinanového: sinoakutin [100]; a proaporfinového: pronuciferin.

Tab. 2 Strukturní typy alkaloidů izolovaných z *Peumus boldus* Mol.

<table>
<thead>
<tr>
<th>Strukturní typ</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>R⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>aporfinový typ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boldin</td>
<td>-CH₃</td>
<td>-H</td>
<td>-CH₃</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>isoboldin</td>
<td>-H</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>laurolitsin</td>
<td>-CH₃</td>
<td>-H</td>
<td>-H</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>laurotetanin</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-H</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>N-methyllaurotetanin</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-H</td>
<td>-CH₃</td>
</tr>
</tbody>
</table>

dehydroboldin
aporfinový typ

isokorydin

norisokorydin

benzylisochinolinový typ

koklaurin

retikulin

homomorfinanový typ

sinoakutin
3.3.3 Biologická aktivita

Vodný extrakt vykazoval inhibiční aktivitu vůči AChE (IC${}_{50}$ infuse 1,24 ± 0,03 mg·ml$^{-1}$ a odvar 0,93 ± 0,2 mg·ml$^{-1}$) [105]. Aktivita jednotlivých alkaloidů však v tomto případě měřena nebyla.

Boldin je velmi silný antioxidant; inhibuje lipoperoxidaci [106] vychytává radikály (DPPH test) [107], snižuje dopady oxidace dopaminu na mozkové mitochondrie (změny v permeabilitě membrán mitochondrií vyvolané Ca$^{2+}$ a sukcinátěm, uvolnění mitochondriálního cytochromu c a pokles aktivity thioredoxin reduktasy t. j. vyšší oxidace thiolů, vznik melaninu a vychytávání ROS) a tím i dopaminem podminěnou buněčnou smrt PC12 buněk včetně apoptózy [108]. Svým antioxidačním účinkem působí i protizánětlivě a cytoprotektivně [109]. Boldin je naopak selektivně toxický vůči lidským a kysím gliomům v porovnání s normálními mozkovými buňkami [110]. Má určitý antinociceptivní účinek [107] a rovněž inhibuje AChE [111].

Isoboldin je inhibitorem AChE [111] a také inhibuje lipoperoxidaci [106].

Isokorydin velmi slabě inhibuje BuChE [112] neaktivní inhibitor AChE (IC${}_{50}$ > 50 µM) [113], ve vyšších dávkách způsobuje ztrátu koordinace, katalepsii a jiné nervové poruchy [114]. Jeho N-demethylovaný analog **norisokorydin** vykazuje antinociceptivní a antioxidační (DPPH test) účinky [107].

Koklaurin inhibuje lokomoční aktivitu a způsobuje ptózu a katalepsii [120], inhibuje uptake dopaminu v nervových buňkách sympatiku u myší [115].

Kolumbamin inhibuje BuChE [112].

Laurolitsin (norboldin) má určitý antinociceptivní a antioxidační (DPPH test) účinek [107].

Laurotetanin je inhibitorem AChE [111] a vykazuje antioxidační aktivitu (DPPH test) [107].
N-Methyllaurotetanin je bez cholinesterasové inhibiční aktivity [116] a vykazuje antioxidační aktivitu (DPPH test) [107].

Pronuciferin značně zvyšuje aktivitu NOS a hladiny NO, nemá však žádný efekt na iNOS. Může chránit endotelové funkce [117].

Retikulin tlamí CNS [118], blokuje zde dopaminové receptory [119,120] a vykazuje slibnou inhibiční aktivitu vůči BuChE [116] a antioxidační aktivitu (DPPH test) [107].

Sinoakutin (salutaridin) je parciální agonista GABA/benzodiazepinového receptorového komplexu [121] a vykazuje protizánětlivou aktivitu [122].

Pro **dehydroboldin** nejsou dostupná data o žádných biologických účincích.
3.4 *Berberis vulgaris* L. – dříšťál obecný

Ranunculales Juss. ex Bercht. & J. Presl (1820) – Berberidaceae Juss. (1789), nom. cons. [123]

Obr. 3 *Berberis vulgaris* L. [124]

3.4.1 Botanická charakteristika

Opadavý, až 3 m vysoký, hustý keř. Letorosty šedožluté, hranaté nebo rýhované, starší větve šedočerné, matné, se žlutým dřevem. Brachyblasty, hustě kryté šupinami, vyrůstají v úžlabí žlutavých 1–7dílných trnů listového původu. Listy bývají krátce řapíkaté, odčlánkované, s čepelí ± široce eliptickou, 2–5 cm dlouhou a 1–2 cm širokou. Čepel je tenká s okrajem nepravidelně osténkatě zubatým. Květy stopkaté, odčlánkované. Vnější kališní lístky široce vejčité, 1,5–2 mm dlouhé, 2x delší než vnější, všechny citrónově žluté; korunní lístky vejčité, 4–5 mm dlouhé, zlatožluté; tyčinky s krátkými tlustými nitkami, na dotek dráždívě; semeník ± válcovitý, čnělka chybí, blizna knoflíčkovitá, pupkatá [125]. Kvete v dubnu až v červnu [126].
Bobule je úzce elipsoidní, asi 1 cm dlouhá, karmínově červená, lesklá. Semena kapkovitá, mírně zploštělá, světle hnědá, lesklá [125].

Roste na suchých výslunných svazích, okrajích listnatých lesů a křovin, především na svazích údolí řek a chlumů. Roste jednotlivě nebo v nevelkých skupinách na sypkých písčitých až písčitohlinitých půdách, zejména na substrátech bohatých vápníkem [125]. Je rozšířen ve střední Evropě, jižní Evropě kromě pobřeží a ostrovů, přes Ukrajinu, Kavkaz a Malou Asii až po severozápadní Irán [126]. V Česku je druh zařazen do kategorie ohrožených rostlin [127].

Často se pěstuje pro dekorativní vzhled v parcích i zahradách, zejména červenolisté kultivary. Někdy se používají do živých plotů či ve volném terénu do remízků a bažantnic pro úkryt zvěři a potravu ptactvu. Tvrdé žluté dřevo se používalo v řezbářství a k vykládání dřevěných mozaik, barvivo sloužilo k barvení kůží a vlny. Kyselé bobule s velkým obsahem kyseliny askorbové, zvané dřišťálky, se používaly do kompotů [125].

3.4.2 Obsah alkaloidů

Dosud byly izolovány protoberberinové alkaloidy: berberin, jatrorrhizin [128], berlambin, palmatin, lambertin [129], kolumbamin [130] a berberrubin [131]; benzyloisochinolinové alkaloidy: juzifin [129]; bisbenzyloisochinolinové alkaloidy s jedním etherovým můstkem: berbamunin [128]; s dvěma etherovými můstkými: berbamin a oxyakanthin [128]; aporfinové alkaloidy: talikmidin, isokorydin [128] a magnoflorin [130]; bervulcin a vulracin s nevyjasněnou strukturou [132].

Tab. 3 Strukturní typy alkaloidů izolovaných z Berberis vulgaris L.

<table>
<thead>
<tr>
<th>protoberberinový typ</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>berberin</td>
<td>-CH₂-</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td></td>
</tr>
<tr>
<td>jatrorrhizin</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
</tr>
<tr>
<td>kolumbamin</td>
<td>-H</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
</tr>
<tr>
<td>palmatin</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
</tr>
<tr>
<td>berberrubin</td>
<td>-CH₂-</td>
<td>-H</td>
<td>-CH₃</td>
<td></td>
</tr>
</tbody>
</table>
protoberberinový typ

lambertin

berlambin

benzylisochinolinový typ

juzifin

bisbenzylisochinolinový typ s jedním etherovým můstkem

berbamunin
bisbenzylisochinolinový typ s dvěma etherovými můstky

berbamin

oxyakanthin

aporfinový typ

talikmidin
aporfinový typ

isokorydin

magnoflorin

Z B. vulgaris subsp. australis Boiss. bylo izolováno kvalitativně odlišné spektrum alkaloidů [133], což naznačuje kvalitativní variabilitu obsažených alkaloidů v rámci rodu [134].

3.4.3 Biologická aktivita

Berbamin výrazně zmírňuje dopady navozené ischemie mozkové tkáně; jeho antioxidační aktivita je zprostředkována vzýšením aktivity SOD [135], inhibicí vzniku malonyldialdehydu a vychytáváním O$_2^-$ [136]. Zároveň má i protižánětlivý účinek zprostředkovaný snížením infiltrace PMN indukovaných prostřednictvím PAF, IL-1 nebo TNF [137]. E$_6$-Derivát berbaminu (p-nitro-benzoát berbaminu) antagonizuje α3*nAChR a částečně i α7-nAChR v krysích neurokulturách [138] a účinně inhibuje BuChE v řádu mikromolů [139].

Berberin u myší značně snižuje deficity v učení a dlouhodobé prostorové paměti stejně jako zátěž amyloidními plaky oproti kontrolní skupině. Navíc byla prokázána redukce celkového množství jak rozpustného, tak nerozpustného Aβ [140]. Dále inhibuje BACE1, snižuje zánětlivou reakci a snižuje vývoj změn chování králíků při AD navozeném pomocí maltolátu hlinitého [141]. GSK-3β je berberinem značně inhibována a byla pozorována snížená hladina C-terminálních fragmentů APP, hyperfosforylovaného APP a τ-proteiny na liniích nervových buněk transgenních myší [140]. Také snižuje produkci neurotoxických mediátorů aktivovanými mikrogliemi (TNF-α, IL-1β, PGE2, intracelulární ROS). Mimoto berberin redukuje produkci NO mikrogliovními buňkami, jež byly aktivovány stimulací interferonem-γ a Aβ [142]. Byly pozorovány antiapopttické vlastnosti alkaloidu a zmírnění synaptických dysfunkcí [143].

U modelově navozené Parkinsonově chorobě u myší brání buněčné smrti dopaminergních neuronů v substantia nigra a neuronů v hipokampu (zlepšení krátkodobé paměti) [144].
Berberin je také výrazný inhibitor AChE [145,146] a slabší inhibitor BuChE [112,147], rovněž přímo inhibuje POP s IC₅₀ 145 µM způsobem závislým na dávce [148]. Dále podporuje NGF-indukovanou diferenciaci nervových buněk [149], také má antioxidační účinky (nižší než kys. askorbová) – vychytává radikály včetně ONOO⁻ [147], NO⁻ a O₂⁻, brání peroxidaci lipidů a chelatuje Fe³⁺ [150].

Berberrubin má antioxidační aktivitu – je zhášečem OH· radikálu a chelatuje Fe²⁺ ionty [151].

Berlambin (8-oxoberberin) inhibuje cholinesterasy [152].

Jatrorrhizin chrání kortikální neurony krys před působením H₂O₂ a před toxicitou indukovanou Aβ25-35, zároveň snižuje aktivaci kaspasy-3 a brání transportu cytochromu c do cytosolu [153]. Rovněž inhibuje AChE [147] a BuChE [112,152] a vychytává volné radikály (DPPH test) [154].

Palmatin mírně podporuje NGF-indukovanou diferenciaci nervových buněk, inhibuje AChE aktivitu [149] a mírně i MAO [155].

Talikmidin vykazuje α₁ antagonismus a antioxidační aktivitu, která může být vysvětlena potlačením produkce TNF-α, NO⁻ a O₂⁻ [156] a zvýšením hladiny NO [157]. Zároveň však slabě tlumí CNS [158], ve vyšších dávkách způsobuje ztrátu koordinace, katalepsii a jiné nervové poruchy [114].

Magnoflorin inhibuje cholinesterasy [152] a má i antioxidační účinky [154].

Biologické účinky isokorydinu byly popsány v kapitole o biologických účincích alkaloidů izolovaných z Peumus boldus. Pro berbamunin, juzifin, lambertin a oxyakanthin nejsou dostupná data o jakýchkoliv biologických účincích ve smyslu potenciální neuroprotektivity.
4. Experimentální část

4.1 Materiální a instrumentální vybavení

4.1.1 Chemikálie

- acetylhiocholin jodid p. a. (Sigma Aldrich, Praha) (ATChI)
- amoniak vodný roztok 25 – 29% p. a. (Ing. Švec – Penta, Praha) (NH₄OH)
- berberin chlorid > 95 % (Sigma Aldrich, Praha)
- butyrylcholinesterasa z koňského séra – lyofilizát, ≥900 jednotek·mg⁻¹ proteinu (Sigma Aldrich, Praha)
- butyrylthiocholin jodid p. a. (Sigma Aldrich, Praha) (BTChI)
- diethylamin p. a. (Ing. Švec – Penta, Praha) (Et₂NH)
- dihydrogenfosforečnan draselný bezvodý p. a. (Lach-Ner, Neratovice) (KH₂PO₄)
- dihydrogenfosforečnan sodný dihydrát p. a. (Ing. Švec – Penta, Praha) (NaH₂PO₄·2·H₂O)
- 5,5’-dithiobis-2-nitrobenzoová kyselina ≥ 98% (Sigma Aldrich, Praha) (DTNB)
- dusičnan bismutitý zásaditý č. (Lachema, Brno)
- galanthamin hydrobromid > 98% (Changsha Organic Herb Inc., China)
- hydrogenfosforečňan disodný bezvodý p. a. (Ing. Švec – Penta, Praha) (Na₂HPO₄)
- hydroxid sodný č. (Ing. Švec – Penta, Praha) (NaOH)
- huperzin A 98% (Tai’an zhonghui Plant Biochemical Co., Ltd., China)
- chlorid rtuťnatý p. a. (Fisher Scientific, Pardubice)
- chlorid draselný p. a. (Ing. Švec – Penta, Praha) (KCl)
- chlorid sodný p. a. (Lachema, Pardubice) (NaCl)
- jodid draselný č. (Lach-Ner, Neratovice) (KI)
- kyselina chlorovodíková 35% p. a. (Ing. Švec – Penta, Praha) (HCl)
- kyselina L-vinná p. a. (Balex, Pardubice)
- kyselina sírová 96% p. a. (Ing. Švec – Penta, Praha) (H₂SO₄)
- tetramethylsilan ACS reagent, NMR grade, ≥ 99.9% (Sigma Aldrich, Praha) (TMS)
- triethylamin p. a. (Sigma Aldrich Chemie GmbH, Steinheim, Germany) (Et₃N)
- uhličitan sodný bezvodý č. (Ing. Švec – Penta, Praha) (Na₂CO₃)
Z-Gly-Pro-\(p \)-nitroanilid ≥99% (Sigma Aldrich, Praha)
Z-Pro-prolinal ≥98% (Sigma Aldrich, Praha)

4.1.2 Rozpouštědla

- aceton p. a. (Ing. Švec – Penta, Praha) (\(\text{Me}_2\text{CO} \))
- acetonitril HPLC gradient (Lach-Ner, Neratovice) (\(\text{MeCN} \))
- dimethylsulfoxid p. a. (Sigma Aldrich, Praha) (DMSO)
- benzin lékařský RN vyhovující ČL 2009 a ČSN 65 6544 Ing. Švec – Penta, Praha) (benzin)
- cyklohexan č. (Ing. Švec – Penta, Praha) (\(\text{C}_6\text{H}_{12} \))
- diethylether p. a. (Ing. Švec – Penta, Praha) (\(\text{Et}_2\text{O} \))
- dichlormethan č. (Ing. Švec – Penta, Praha) (\(\text{CH}_2\text{Cl}_2 \))
- 1,4-dioxan č. (Ing. Švec – Penta, Praha)
- ethanol 95% (Lihovar Chrudim, Chrudim) (\(\text{EtOH} \))
- ethylester kyseliny octové (ethyl-acetát) č. (Ing. Švec – Penta, Praha) (\(\text{EtOAc} \))
- chloroform č. (Ing. Švec – Penta, Praha) (\(\text{CHCl}_3 \))
- chloroform deuterizovaný pro NMR analýzu chloroform-\(d \) 99,8 atom % D (Sigma Aldrich, Praha) (\(\text{CDCl}_3 \))
- methanol p. a. (Ing. Švec – Penta, Praha) (\(\text{MeOH} \))
- methanol deuterizovaný pro NMR analýzu c methanol-\(d_4 \) 99,8 atom % D (Sigma Aldrich, Praha) (\(\text{CD}_3\text{OD} \))
- methanol HPLC gradient (J. T. Baker, Deventer, Netherlands) (\(\text{MeOH} \))
- tolen p. a. (Ing. Švec – Penta, Praha) (\(\text{C}_6\text{H}_5\text{CH}_3 \))
- voda superčistá

4.1.3 Pufry

- 100mM fosfátový pufr pH 7,4 (připravený smícháním roztoků \(\text{NaH}_2\text{PO}_4 \cdot 2\text{H}_2\text{O} \) 31,2 g·l\(^{-1} \) a \(\text{Na}_2\text{HPO}_4 \) 28,4 g·l\(^{-1} \) s vodou v objemovém poměru 9,5 : 40,5 : 50)
- 5mM fosfátový pufr pH 7,4 (připravený smícháním roztoků \(\text{NaH}_2\text{PO}_4 \cdot 2\text{H}_2\text{O} \) 1,56 g·l\(^{-1} \) a \(\text{Na}_2\text{HPO}_4 \) 1,42 g·l\(^{-1} \) s vodou v objemovém poměru 9,5 : 40,5 : 50)
- 5mM fosfátový pufr pH 7,4 obsahující 150 mM NaCl (8,766 g NaCl bylo rozpuštěno v 5mM fosfátovém pufru pH 7,4, kterým byl objem doplněn na 1000 ml)
- PBS: 100mM Na/K fosfátový pufr pH 7,4 osahující 137 mM NaCl a 2,7 mM KCl (Roztok A: 0,68 g KH₂PO₄ a 1,5 g NaCl bylo rozpuštěno v 100 ml destilované vody. Roztok B: 0,89 g Na₂HPO₄ · 2 · H₂O a 1,5 g NaCl bylo rozpuštěno v 100 ml destilované vody. 20 ml roztoku A bylo smícháno s 100 ml roztoku B.)

Hodnoty pH všech připravených pufrů byly kontrolované na bezprostředně kalibrovaném pH metru PHM 220.

4.1.4 Adsorbenty pro chromatografii
- oxid hlinitý, pro chromatografii, neutrální, 63–200 μm; Across (Lach-Ner, Neratovice) (Al₂O₃) byl před použitím promyt směsí CHCl₃ + EtOH a vyušen odvětráním. Aktivace probíhala v sušárně po dobu 8 hodin při teplotě 200 °C. Vychladlý aktivní Al₂O₃ byl následně deaktivován přidávkem 6 % vody a ekvilibrován po dobu 1 hodiny [159]
- analytické TLC desky Silica gel 60 GF₂₅₄ for TLC (Merck Millipore, Praha) desky 20 x 20 cm byly pro kontrolní účely stříhány na výšku 7,5 a 10 cm (šířka dle potřeby); pro preparativní TLC 20 x 10 cm
- silikagel pro přípravu litých vrstev pro TLC: Silica gel 60 GF₂₅₄ (Merck Millipore, Praha)

4.1.5 Pomocný materiál
- křemelina Celite C 535 John’s Manville (Sigma Aldrich, Praha)
- silikagel sušicí perly (Ing. Švec – Penta, Praha)
- síran sodný bezvodý p. a. (Ing. Švec – Penta, Praha) (Na₂SO₄)
- skelná vata (Carl Roth GmbH, Karlsruhe, Germany)

4.1.6 Přístroje
- knihovna spekter NIST Virtual Library (NIST, Gaithersburg, Maryland, USA)
- microplate ELISA reader EL800 (Bio-Tek Instruments, Inc., Winooski, Vermont, USA)
- odstředivka Avanti J-301 s rotořem JA-30.50 (Beckman Coulter, Brea, California, USA)
odstředivka Boeco U-32R (Boeco, Hamburg, Germany) s rotorem Hettich 1611 (Hettich, Tuttlingen, Germany)

pH metr PHM 220 (Radiometer, Copenhagen, Denmark)

polarimetr P3000 (A. Krüss Optronic, Hamburg, Germany)

reader SynergyTM HT Multi-Detection Microplate Reader (BioTek Instruments, Inc., Winooski, Vermont, USA)

spektrometr EI/MS na GC-MS system using an Agilent 7890A GC 5975 inertní MSD; EI mód 70 eV; kolona DP-5 MS (30 x 025 mm x 0,25 µm) (Agilent Technologies, Santa Clara, California, USA)

spektrometr ESI/HRMS, Waters Synapt G2Si s hybridním analyzátorom quadrupole-time-of-flight (Q-TOF) připojený na Waters Acquity I-Class UHPLC System (Waters Corporation, Milford, Massachusetts, USA)

spektrometr ESI/MS Thermo Finnigan LCQDuo (GenTech Scientific, Arcade, New York, USA)

spektrometr Varian VNMR S500 (Varian, Palo Alto, California, USA)

statistický program GraphPad Prism 5.0 2006 (Graph PaD Software, SanDiego, California, USA)

ultrazvuková lázeň Sonorex Super 10P (Bandelin, Berlin, Germany)

vakuová odparka pro poloprovozní použití Laborota 20 Heidolph (Heidolph, Schwabach, Germany)

vakuová odparka Laborota 4000 (Heidolph, Schwabach, Germany)

4.1.7 Vyvíjecí soustavy pro preparativní a analytickou TLC

S1: C₆H₅CH₃ + CHCl₃ + EtOH + Et₂NH (70 : 20 : 10 : 3)

S2: C₆H₁₂ + Et₂NH (95 : 5)

S3: C₆H₁₂ + Et₂NH (90 : 10)

S4: C₆H₅CH₃ + CHCl₃ + Et₂NH (75 : 25 : 5)

S5: C₆H₅CH₃ + CHCl₃ + Et₂NH (45 : 45 : 10)

S6: C₆H₁₂ + EtOAc + Et₂NH (50 : 40 : 10)

S7: C₆H₁₂ + C₆H₅CH₃ + Et₂NH (48 : 48 : 4)

S8: C₆H₅CH₃ + Et₂NH (90 : 10)
4.1.8 Činidla pro detekci alkaloidů

Dragendorffovo činidlo (podle Muniera) bylo připraveno nejprve jako zásobní roztok, smíšením roztoku A (1,7 g bazického dusičnanu bismutitého a 20 g kyseliny vinné rozpuštěné v 80 ml vody) a roztoku B (roztok 32 g KI v 80 ml vody) v objemovém poměru 1 : 1. Detekční roztok byl připraven přidáním roztoku 10 g kyseliny vinné v 50 ml vody k 5 ml zásobního roztoku. Činidlo k postřiku i zásobní roztok byly uchovávány v chladničce při 4 °C.

Mayerovo činidlo bylo připraveno rozpuštěním 5 g KI ve 30 ml vody a do vzniklého roztoku bylo přidáno 1,35 g chloridu rtuťnatého v prášku. Vzniklá sraženina byla míchána, dokud nebyl roztok čirý a bezbarvý nebo světle žluté barvy. Činidlo bylo uchováváno v chladničce při 4 °C.

4.1.9 Činidla pro stanovení inhibiční aktivity vůči AChE a BuChE

Roztok 5mM DTNB byl připraven přímým rozpuštěním příslušného množství látky v 100mM fosfátového pufru pH 7,4. Roztok musel být jen slabě nažloutlý. Činidlo bylo uchováváno v chladničce při 4 °C po dobu maximálně 1 týdne.

Roztok 10mM (20, 40, 60mM) ATChI byl připraven rozpuštěním příslušného množství látky ve vodě. Roztok musel být čirý. Činidlo bylo uchováváno v chladničce při 4 °C po dobu maximálně 1 týdne.

Roztok 10mM (20, 40, 60mM) BuTChI dtto.

4.1.10 Činidla pro stanovení inhibiční aktivity vůči POP

Roztok 10mM Z-Gly-Pro-β-nitroanilidu byl připraven rozpuštěním příslušného množství látky v 40% 1,4-dioxanu. Činidlo bylo uchováváno v chladničce při 4 °C.
4.2 Metody

4.2.1 Obecné postupy

4.2.1.1 Příprava rozpouštědel
Komerční rozpouštědla (všechna kromě rozpouštědel deklarovaných pro HPLC a NMR) byla pro přečištění destilována dle standardního postupu [160] a destilát jímán podle tabulární teploty varu příslušného rozpouštědla [161].

4.2.1.2 Odpařování (zahušťování) extraktů a frakcí
Sumární ethanolové extrakty pro izolaci alkaloidů byly odpařeny na poloprovozní odparce Laborota 20 Heidolph na vodní lázní při teplotě 50 °C a sníženém tlaku ca 1,33 kPa.
Frakce získané ze sloupcové chromatografie elucí směsí benzin + CHCl₃ byly odpařeny na vakuové odparce Laborota 4000 Heidolph na vodní lázní při 30 °C. Frakce ze sloupcové chromatografie elucí směsí CHCl₃ + EtOH a eluáty získané při preparativní TLC byly odpařovány stejným způsobem při teplotě vodní lázně 40 °C.

4.2.1.3 Sušení extraktů a frakcí, izolovaných látek a jejich skladování
Alkaloidní extrakty, frakce v různých fázích zpracování i chemicky čisté látky byly vysušeny ve vakuovém exsikátoru (vakuum ca 1,33 kPa) nad sušicími perlami silikagelu min 24 h. Po vysušení byly skladovány v chladničce při teplotě 2-8 °C.

4.2.1.4 Sloupcová chromatografie
Chromatografický sloupec byl připraven obvyklým způsobem – nalitím suspenze Al₂O₃ ve směsi rozpouštědel, která byla následně použita jako zahajovací eluční soustava. Dělená směs alkaloidů byla nanesena do sloupce ve formě roztěru s adsorbentem v poměru 1 : 4 (w/w), chromatografie probíhala formou stupňovité eluce.

4.2.1.5 Příprava litých vrstev pro preparativní TLC
Preparativní TLC desky s litou vrstvou byly připraveny rozprostřením suspenze komerčního silikagelu Silica gel 60 GF₂₅₄ a vody na skleněné desky (29 mg silikagelu a 89 µl na 1 cm² desky) s/bez zdrsněným povrchem, před použitím byly sušeny za pokojové teploty min. 24 h.
4.2.1.6 Preparativní TLC

Dělená směs alkaloidů byla rozpuštěna ve směsi CHCl₃ + EtOH (1 : 1; v/v) a nanesena na chromatografickou desku v linii startu 1 cm od obou okrajů, tak aby množství dělené směsi nepřesahovalo 3 mg·cm⁻¹ (u litých vrstev) anebo 1 mg·cm⁻¹ desky (u komerčních Merck desek). Po odpaření rozpouštědel z nanášené směsi alkaloidů byly desky vyvíjeny v nasycených (min. 20 min) vyvíjících komorách příslušnými vyvíjíčími směsmi. Po odstranění rozpouštědel z vyvíjících směsí mohly být chromatogramy vyvíjeny opakovaně stejnou nebo odlišnou vyvíjíčí směsí. Po dělení byly chromatogramy detekovány UV světlem (λ = 254 a 266 nm), zóny označeny preparativní jehlou a jednotlivě vyškrábány a zóny o stejném Rf ze všech použitých desek byly spojeny. Separovaný adsorbent se zónou byl smíchán se stejným objemovým množstvím křemeliny Celite 535 a eluován v chromatografické trubici ca 20násobným množstvím směsi CHCl₃ + EtOH (1 : 1; v/v).

4.2.1.7 Detekce alkaloidů

Detekce alkaloidů v roztoku

Během přípravy alkaloidního extraktu vytřepáváním z vodné fáze byla přítomnost alkaloidů kontrolována reakcí s Mayerovým činidlem.

Roztok zkoumaného vzorku byl po odstranění organických rozpouštědel a přidání 1-2 ml vody smíchán s několika kapkami 2% HCl (pH 2-3), bylo přidáno 1-2 ml vody a roztok smíchán s několika kapkami činidla. V případě přítomnosti bazických látek (alkaloidů) docházelo k vyloučení hutné bělavé sraženiny [162].

Detekce alkaloidů po TLC

Po TLC frakcí ze sloupcové chromatografie případně při kontrolě čistoty izolovaných alkaloidů byly chromatogramy detekovány vizuálně UV světlem při vlnové délce λ = 254 a λ = 366 nm. Chromatogramy s označenými zónami (viditelnými s použitím UV záření) byly následně detekovány postřikem Dragendorffovým činidlem.

Činidlo bylo používáno k postřiku odvětraných desek. Při pozitivní přítomnosti alkaloidů vznikly intenzivní oranžové skvrny na světle růžovém či žlutém podkladě [163].
4.2.1.8 Příprava chloridů alkaloidů
Roztok suchého HCl v Et₂O (1M) byl připraven v příslušné aparatuře: do vyvíjecí baňky bylo vsypáno 3,1 g NaCl a do promývacího a připouštěcího tubusu vlito 15-20 ml 96% H₂SO₄. Náplň plynového filtru byla tvořena promytou skelnou vatou; do absorbéru (promývačky), umístěného za filtrem bylo vlito 50 ml Et₂O. Po sestavení aparatury se velmi pomalu přikapávala H₂SO₄ na NaCl. Kyseliny sírové bylo přidáno do reakční směsi mírný nadbytek (ca 5 %). Po ukončení reakce byl roztok HCl v Et₂O skladován v uzavřené baňce.

Navážka alkaloidu byla rozpuštěna v suchém Et₂O (případně krátká sonikace). Pokud nebyl alkaloid rozpuštěn ani v nadbytku Et₂O, bylo po částečném odpaření přidáno nejmenší nutné množství CH₂Cl₂. Po rozpuštění bylo po částech přidáno ekvimolární množství 1M HCl v Et₂O a krátce sonikováno. Sraženina chloridu se ponechala min. 1 h sedimentovat (úplnost reakce byla kontrolována přenesením malého množství čirého etherového supernatantu, na univerzální indikátorový papírek, po rychlém vysušení byla sledována kyselá reakce vnořením papírku do vodních par).

Vyloučený, zpravidla jemně krystalický až amorfní hydrochlorid byl filtrován na fritě a promyt dostatečným množstvím čistého Et₂O a sušen viz 4.2.1.3.

4.2.2 Strukturní analýza včetně stanovení fyzikálně-chemických vlastností

4.2.2.1 Hmotnostní analýza

Hmotnostní spektrometrie s ionizací elektrosprejem (ESI)
MS (ESI) spektra byla měřena na spektrometru LC/MS Thermo Finnigan LCQDuo s ionizací elektrosprejem v kladném modu a iontovou pastí jako analyzátorom. MSⁿ bylo prováděno při kolizní energii 40 eV. Alkaloidy byly rozpuštěny v MeOH (1 mg·ml⁻¹) a zaváděny přímou sondou.

Hmotnostní spektrometrie s elektronovou ionizací (EI)
MS (EI) spektra byla měřena na spektrometru Agilent 7890A GC 5975 v módu 70 eV na GC koloně DP-5 MS. Injektáž alkaloidního roztoku v MeOH (1 mg·ml⁻¹) byla provedena v split módu v poměru 1:10. Detekce byla provedena na základě porovnání spektér s NIST knihovnou a referenčními spektry alkaloidů již izolovaných a identifikovaných alkaloidů v rámci skupiny ADINACO.
Hmotnostní spektrometrie s vysokým rozlišením (HRMS-Q-TOF MS (ESI))

Hmotnostní spektra byla měřena na spektrometru s vysokým hmotnostním rozlišením Waters Synapt G2Si s ionizací elektrosprejem v kladném modu a kombinovaným analyzátorem – kvadrupól s analyzátorem doby letu. Vzorky byly měřeny v roztoku MeCN a bylo porovnáváno teoretické m/z s experimentálně zjištěným.

4.2.2.2 NMR analýza

NMR spektra byla měřena v roztocích CDCl₃ případně CD₃OD při teplotě 25°C na spektrometru VNMR S500 pracujícím při 499,87 MHz pro jádra ¹H a 125,70 MHz pro jádra ¹³C. K ozařování a detekci signálu byla použita sonda OneNMR, širokopásmová dvoukanálová gradientní sonda s regulací teploty. Chemické posuny byly změřeny jako hodnoty δ pers milion (ppm) a byly nepřímo vztaženy k TMS jako standardu pomocí zbytkového signálu rozpouštědla. Hodnoty chemického posunu pro CDCl₃ jsou u atomů ¹H δ = 7,26 ppm a u atomů ¹³C δ = 77,0 ppm, pro CD₃OD jsou u atomů ¹H δ = 3,30 ppm a u atomů ¹³C δ = 49,0 ppm. Měřením získaná data jsou prezentována v následujícím pořadí: chemický posun (δ), integrovaná intenzita ¹H NMR spekter, multiplicita (s: singlet, d: dublet, t: triplet, q: kvartet, dd: dublet dubletů, m: multiplet, bs: široký singlet) a interakční konstanta (Hz).

Dvoudimenzionální (2D) NMR experimenty (gCOSY, gHSQC, gHMBC, NOESY) byly měřeny standardními sekvencemi dodanými firmou Varian. Parametry jednotlivých experimentů byly nastavovány zejména podle množství vzorku, čistoty a molekulové hmotnosti. Pro gHSQC experimenty byl optimalizován směšovací čas na ¹JCH = 146 Hz, pro gHMBC pak na ³JCH = 8 Hz a pro NOESY na 400 – 600 ms.

gCOSY (gradient COrelation Spectroscopy): 2D NMR technika, kde crosspeak se objevuje mezi protony, které mají proton-proton přímé spojení přes tři vazby, ³JHH.

NOESY (Nuclear Overhauser Effect Spectroscopy): 2D NMR technika, kde se crosspeak objevuje mezi protony od sebe vzdálenými do 6 Å; intenzita crosspeak klesá se zvyšující se vzdáleností protonů v prostoru.
gHSQC (gradient Heteronuclear Single Quantum Coherence): 2D NMR technika, kde jedna osa představuje 1H a druhá ^{13}C. Tento experiment nevytváří diagonálu a crosspeaks představují korelaci H s C přes jednu vazbu.

gHMBC (gradient Heteronuclear Multiple Bond Coherence): 2D NMR technika, která umožňuje určit korelací C (či jiný heteroatom) s H přes 2-4 vazby, pouze takto vázané H a C poskytují crosspeak.

4.2.2.3 Optická otáčivost
Optická otáčivost byla měřena v roztocích alkaloidů (CHCl$_3$) na polarimetru P3000 a specifická otáčivost dopočtena dle vzorce:

$$\left[\alpha\right]_D = \frac{100 \times \alpha}{c \times l}$$

t – teplota měření; D – sodíková D čára = 589,3 nm; α – naměřená otáčivost [°];
c – koncentrace měřeného alkaloidu [g·100 ml$^{-1}$]; l – délka kyvety [dm].
4.2.3 Stanovení biologické aktivity

4.2.3.1 Příprava hemolyzátu a plazmy
Zdrojem lidských cholinesteras byla krev zdravého dobrovolníka, přičemž plazma bez erytrocytů byla použita jako zdroj BuChE a hemolyzát erytrocytů zdrojem AChE. K čerstvě odebrané krvi bylo přidáno 2 ml 3,4% citrátu sodného (w/v) na 18 ml krve [164]. Plazma byla oddělena z krve centrifugací při 4 °C a rychlosti 4000 ot.min⁻¹ na centrifuge Boeco U-32R a odsáta, tak aby v ní nybyly přítomné erytrocyty, a uchována jako zdroj BuChE.

Erytrocyty byly 3x promyty 5mM fosfátovým pufrem pH 7,4 obsahující 150mM NaCl (ca 100 ml) a opět centrifugovány stejným způsobem. Promyté erytrocyty byly podrobeny lýze pomocí 5mM fosfátového pufru pH 7,4 (1:9; v/v) po dobu 10 min za stálého míchání. Po lýze se suspenze dispendovala pro další měření.

Absorbance BuChE v plazmě a AChE v hemolyzátu byly stanoveny bezprostředně po přípravě (viz 4.2.3.2), případně dále ředěny příslušným množstvím 5mM fosfátového pufru pH 7,4. Enzymové preparáty byly do doby použití uchovávány při -22 °C.

4.2.3.2 Stanovení absorbance enzymových preparátů a stanovení inhibiční aktivity testovaných látek vůči lidským cholinesterasám
Inhibiční aktivita vůči cholinesterasám byla stanovena modifikovanou Ellmannovou metodou. Do jamky mikrotitrační destičky bylo vneseno 8,3 µl roztoku enzymového preparátu o určité koncentraci (objemový poměr 1 : 0, 3 : 1, 1 : 2, 1 : 3, 1 : 4 a 1 : 5 hemolyzátu v 5mM fosfátovém pufru pH 7,4; 1 : 0, 1 : 1, 2 : 1, 3 : 1, 4 plazmy v 5mM fosfátovém pufru pH 7,4), 283 µl 5mM roztoku DTNB ve fosfátovém pufru pH 7,4 a 8,3 µl sledovaného alkaloidu o určité koncentraci v DMSO (40mM, 10mM, 4mM, 1mM, 0,4mM a 0mM). Směs byla 1 min třepána na mikrotřepačce. Po vložení do readdr SynergyTM HT Multi-Detection Microplate Reader a 5 min inkubaci při teplotě 37 °C bylo k vzorkům přidáno 33,3 µl DMSO (při stanovení absorbance enzymových preparátů – slepý vzorek) nebo 33,3 µl enzymového preparátu a po 2 min měřena absorbance. Pokud je látku silný inhibitor cholinesterasy (0,4mM koncentrace alkaloidu vykazuje více než 3% inhibici) je nutné změřit další koncentrační řadu (0,1mM, 0,04mM, 0,01mM, 0,004mM, 0,001mM a čistý DMSO). Pro každou koncentraci enzymového preparátu je absorbance stanovena 6x při 37 °C, přičemž absorbance u stanovení
inhibiční aktivity AChE byla měřena při λ = 436 nm a BuChE při λ = 412 nm. 50% Inhibiční aktivita byla dopočítána pomocí programu GraphPad Prism dle vzorce:

\[
% I = 100 - \left(100 \times \frac{\Delta A_{Bl}}{\Delta A_{St}}\right)
\]

% I – procento inhibice; \(\Delta A_{Bl} \) – pokles absorbance slepého vzorku během 1 min; \(\Delta A_{St} \) – absorbance testovaného vzorku během 1 min.

Zjištěná inhibiční aktivita IC\(_{50}\) AChE a BuChE pro jednotlivé látky byla porovnána s IC\(_{50}\) referenčních látek např. galanthaminu a huperzinu A.

4.2.3.3 Stanovení stanovení inhibiční aktivity testovaných látek vůči komerčním cholinesterasám a kinetiky inhibice

Stanovení IC\(_{50}\) – reakční směs obsahovala PBS (100mM pH 7,4), DTNB (100mM), ATCh (40mM) a inhibitor (0–35 mM). Reakce byla iniciována přidavkem cholinesterasy (0,2 U·ml\(^{-1}\)). Byla sledována závislost změny absorbance (rovněž při λ = 412 nm) na čas. Rychlost reakce (\(v = \Delta A/\Delta t \)) byla sledována u všech reakcí (neinhibovaných a inhibovaných) a určena závislost \(v_0/v_i \) na koncentraci inhibitoru (\(v_0 \) – rychlost neinhibované reakce; \(v_i \) – rychlost inhibované reakce). Pro toto stanovení byla spočítána i regresní faktor \(R^2 = k \cdot x + q \). IC\(_{50}\) hodnota (x hodnota v regresní rovnici) byla spočtena pro \(y = 2 \) (poloviční rychlost reakce). Stanovení bylo provedeno dvakrát.

Určení kinetiky inhibice – dtto, inhibované a neinhibované reakce byly však sledovány při třech různých koncentracích thiocholinu (20 mM, 40 mM, 60 mM). Pro vyhodnocení dat byl použit grafický výnos podle Lineweaver-Burk a zjištěny hodnoty \(K_m \) a \(V_m \) (Michaelisova konstanta a mezní rychlost). Stanovení bylo provedeno dvakrát.

4.2.3.4 Stanovení inhibiční aktivity testovaných látek vůči prolyl oligopeptidase

POP byla rozpuštěna v pufrovaném fyziologickém roztoku PBS; specifická aktivita enzymu: 0,2 U·ml\(^{-1}\). Test byl proveden na standardní polystyrenové 96-jamkové mikrotitrační destičce s rovným a průhledným dnem. Zásobní roztoky testovaných látek byly připraveny rozpuštěním v DMSO (10 mM). Roztoky pro testování (10\(^{-3}\) – 10\(^{-7}\) M) byly připraveny ředěním superčistou vodou; slepé vzorky byly použity o stejné koncentraci DMSO. Jako POP substrát byl použit Z-Gly-Pro-p-nitroanilid, který byl rozpuštěn v 40% 1,4-dioxanu (10 mM). Do jamky
mikrotitační destišky bylo smícháno 170 μl PBS, 5 μl roztoku testované látky o určité koncentraci a 5 μl roztoku POP a inkubovány 5 min při teplotě 37° C. Následně byl přidán substrát (20 μl) a směs byla inkubována 30 min při 37° C. Sledován byl vznik p-nitroanilinu, přímo úměrný POP aktivitě, a měřen spektrofotometricky při λ = 405 nm na microplate ELISA readeru EL800. Inhibiční aktivita testovaných látek byla vyjádřena jako IC₅₀. Zjištěná inhibiční aktivita IC₅₀ pro jednotlivé látky byla porovnána s IC₅₀ referenčních látek např. Z-pro-prolinal a berberin.
4.3 Izolace alkaloidů

4.3.1 Izolace alkaloidů z *Hydrastis canadensis* L.

1033 g suchého extraktu vodilky (Naturex, Wien) bylo 2x extrahováno 5násobným množstvím 95% EtOH za varu pod zpětným chladičem po dobu 30 min. Spojené extrakty byly zahuštěny za snížené teploty na viskózní žlutohnědý odparek (ca 300 g, sušina ca 80 %), který byl zahřát na 60° C a za stálého míchání k němu bylo po částeč přidáno 5,8 litru 2% HCl (pH ~ 1,5). Suspenze byla krátce sonikována a zfiltrována přes vrstvu křemeliny Celite 535, filtrační vrstva byla promyta 1 litrem vody a filtrát zředěn vodou na celkový objem ~ 12 litrů. Vodný kyselý extrakt byl vytřepán 3x 2 litry Et₂O (hnědý výtřepek L, 3 g), vodná fáze byla následně alkalizována 10% Na₂CO₃ (pH ~ 9,5) a suspenze po částeč vytřepána celkem 4x 8,6 litry CHCl₃ a chloroformový výtřepek zahuštěn za snížené teploty (žlutohnědý odparek, 33,9 g). Takto získaný alkaloidní extrakt byl následně přečištěn přetřepáním. K odparku bylo přidáno 165 ml 2% HCl, a směs krátce zahřáta na vodní lázní (ca 80° C) a roztok byl zředěn vodou na objem 1 litru a po zchladnutí vytřepán 3x 400 ml Et₂O. Vodná fáze byla poté alkalizována 10% Na₂CO₃ (pH ~ 9,5) a vytřepána 4x 400 ml CHCl₃. Chloroformový výtřepek byl vysušen Na₂SO₄ a po odpaření rozpouštědla a vysušení v exsikátoru vznikl žlutohnědý viskózní odparek (výtřepek A, 25,04 g).

Výtřepek A byl dále separován pomocí sloupcové chromatografie (viz Tab. 4 a Tab. 5).

Tab. 4 Podmínky sloupcové chromatografie frakce A

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost odparku 25,04 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbent na roztěr</td>
<td>100 g</td>
</tr>
<tr>
<td>Adsorbent</td>
<td>Al₂O₃; 1,2 kg</td>
</tr>
<tr>
<td>Dělicí vrstva ve sloupci</td>
<td>∅ : v = 4,5 : 61 cm</td>
</tr>
<tr>
<td>Vrstva s frakcí A-1</td>
<td>∅ : v = 4,5 : 7,5 cm</td>
</tr>
<tr>
<td>Mrtvý objem</td>
<td>1140 ml</td>
</tr>
<tr>
<td>Frakce</td>
<td>250 ml</td>
</tr>
<tr>
<td>Doba toku 1 frakce</td>
<td>ca 25 min</td>
</tr>
<tr>
<td>Kontrolní TLC</td>
<td>TLC Silica gel 60 F₂₅₄, soustava S1, dráha 8,5 cm, vyvíjení 1x</td>
</tr>
</tbody>
</table>
Tab. 5 Výsledek chromatografie výtřepku A

<table>
<thead>
<tr>
<th>Označení</th>
<th>Spojené frakce</th>
<th>Složení eluční směsi</th>
<th>Hmotnost [g]</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-16</td>
<td>benzin : CHCl₃ (80 : 20)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17-32</td>
<td>benzin : CHCl₃ (75 : 25)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>33-38</td>
<td>benzin : CHCl₃ (70 : 30)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>39-47</td>
<td>benzin : CHCl₃ (70 : 30)</td>
<td>0,976</td>
<td>žlutý, viskózní</td>
</tr>
<tr>
<td>B</td>
<td>48-66</td>
<td>benzin : CHCl₃ (70 : 30)</td>
<td>20,734</td>
<td>růžový krystalizující</td>
</tr>
<tr>
<td></td>
<td>67-85</td>
<td>benzin : CHCl₃ (60 : 40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>86-104</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105-116</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>117-124</td>
<td>CHCl₃ : EtOH (80 : 20)</td>
<td>0,771</td>
<td>hnědý, velmi viskózní</td>
</tr>
<tr>
<td>D</td>
<td>125-129</td>
<td>CHCl₃ : EtOH (80 : 20)</td>
<td>0,313</td>
<td>hnědý, viskózní</td>
</tr>
</tbody>
</table>

Frakce A (0,976 g) byla chromatografována preparativní TLC na litých deskách soustavou S1 (dráha 13,5 cm, vyvíjení 1x) a separovány dvě zóny (Rf 0,89 a 0,65). Z první zóny byla opakovanou preparativní TLC na analytických deskách soustavou S2 (dráha 8,5 cm, vyvíjení 1x) získána látka HC1, která byla následně krystalizována ze směsi CHCl₃ + EtOH (blíž krystaly, 9,3 mg). Z druhé zóny byla preparativní TLC na litých deskách separována soustavou S2 (dráha 13,5 cm, vyvíjení 2x) látka HC2, následně opakovaně krystalizována z EtOH (nažloutlé krystaly, 424,1 mg).

Z **frakce B** (20,734 g) byla opakovanou krystalizací v EtOH získána látka HC3 (blíž krystaly, 16,871 g).

Frakce C (0,771 g) byla zpracována preparativní TLC na litých deskách soustavou S3 (dráha 13,5 cm, vyvíjení 2x), přičemž byla separována pouze druhá zóna (Rf 0,38), ze které byla po eluci a zahuštění opakovanou preparativní TLC na analytických deskách soustavou S4 (dráha 8,5 cm, vyvíjení 1x) izolována látka HC4, poté krystalizována z MeOH (drobně žlutavé krystaly, 40,2 mg).

Frakce D (0,313 g) nebyla zpracována.
Izolace alkaloidů z *Peumus boldus* Mol.

20 kg suchých listů boldovníku (fa Berill-Exim s.r.o., Vysokov, pol. č. 026545)) bylo rozemleto (do 3 mm) a 2x extrahováno 5násobným množstvím 95% EtOH 30 minut za varu. Spojené extrakty byly zahuštěny za snížené teploty na řídký zelenohnědý sirupovitý odparek (ca 1,5 kg, sušina ca 50 %), silně páchl po silici. Tento odparek byl zředěn po krátkém zahřátí 3 litry horké vody, přidáno 5 litrů 2% HCl (pH ~ 1,5) a roztok byl ponechán za občasného promíchání do následujícího dne. Suspenze byla zfiltrována přes vliselin, zbytek v baňce rozechřát na ca 80° C a znova promyt nejprve 2 litry 0,5% HCl a poté 4 litry horké vody. Takto získaný spojený filtrát byl zředěn vodou do objemu 20 litrů.

Vodný roztok solí alkaloidů byl zneutralizován 10% Na₂CO₃ na pH ~ 9,5 (ca 5,5 litru) a suspenze byla vytištěna velmi zcela až 9 litry chloroformu. Chloroformová fáze byla vysušena bezvodým Na₂SO₄ a organická fáze odpařena při 40 °C. Bylo získáno 108,7 g řídkého, tmavě hnědého primárního alkaloidního extraktu.

Tento extrakt byl rozpuštěn při ca 60° C v 700 ml 1% HCl, přidáno 200 ml vody a suspenze byla po zchladnutí vytřepána za posudí až 3x 9 litry chloroformu. Chloroformová fáze byla zalkalizována 10% Na₂CO₃ a přečištěna 3x 250 ml CHCl₃. Chloroformové výtřepky byly spojeny, odpařeny a sucha a přečištění provedeno stejným způsobem ještě jednou. Po vysušení chloroformové fáze bezvodým Na₂SO₄ a odpaření organické fáze při 40° C vzniklo 27,3 g tmavě hnedého, velmi viskózního, prakticky nepáchoucího odparek.

Byla provedena sloupcová chromatografie způsobem pro tento typ separací obvyklým (viz Tab. 6 aTab. 7)

<table>
<thead>
<tr>
<th>Hmotnost odparku</th>
<th>27 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbent</td>
<td>Al₂O₃; 0,81 kg</td>
</tr>
<tr>
<td>Dělící vrstva ve sloupci</td>
<td>Ø : v = 4,5 x 7,5 cm</td>
</tr>
<tr>
<td>Vrstva s roztěrem</td>
<td>Ø : v = 4,5 x 65 cm</td>
</tr>
<tr>
<td>Frakce</td>
<td>250 ml</td>
</tr>
<tr>
<td>Doba toku 1 frakce</td>
<td>ca 25 min.</td>
</tr>
<tr>
<td>Kontrolní TLC</td>
<td>TLC Silica gel 60 F₂₅₄, soustava S5, dráha 8,5 cm, vyvíjení 1x</td>
</tr>
<tr>
<td>Označení</td>
<td>Spojené frakce</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>-</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>15-33</td>
</tr>
<tr>
<td>A</td>
<td>34-39</td>
</tr>
<tr>
<td>B</td>
<td>40-42</td>
</tr>
<tr>
<td>C</td>
<td>43-50</td>
</tr>
<tr>
<td></td>
<td>51-53</td>
</tr>
<tr>
<td>D</td>
<td>54-63</td>
</tr>
<tr>
<td></td>
<td>64-68</td>
</tr>
<tr>
<td>E</td>
<td>69-74</td>
</tr>
<tr>
<td></td>
<td>75-84</td>
</tr>
<tr>
<td></td>
<td>85-90</td>
</tr>
<tr>
<td></td>
<td>91-92</td>
</tr>
<tr>
<td>F</td>
<td>93-114</td>
</tr>
<tr>
<td></td>
<td>115-130</td>
</tr>
<tr>
<td></td>
<td>131-136</td>
</tr>
<tr>
<td></td>
<td>137-138</td>
</tr>
<tr>
<td>G</td>
<td>139-147</td>
</tr>
<tr>
<td></td>
<td>148-160</td>
</tr>
<tr>
<td></td>
<td>161-181</td>
</tr>
<tr>
<td></td>
<td>182-192</td>
</tr>
<tr>
<td></td>
<td>193-202</td>
</tr>
</tbody>
</table>

Frakce A (3,984 g) byla chromatografována preparativní TLC na litých deskách soustavou S6 (dráha 13,5 cm, vyvíjení 1x) a S7 (vyvíjení 2x). Získaný odparek byl opakovaně krystalizován z EtOH, čímž byla získána látka PB1 (nazelenalé krystaly, 497 mg).

Frakce B (0,664 g) byla spojena s frakcí C (1,073 g) a chromatografována preparativní TLC na litých deskách soustavou S4 (dráha 13,5 cm, vyvíjení 2x), první zóna obsahovala látku PB1,
z druhé zóny byl izolován alkaloid PB2, který byl následně převeden na chlorid baze a překrystalizován ze směsi Et₂O + MeOH (135 mg, našedlé drobné krystaly).

Frakce D (0,598 g) byla opakovaně chromatografována preparativní TLC na litých deskách soustavou S4 (dráha 13,5 cm, vyvíjení 4x), separována byla pouze první zóna (63,7 mg). Po eluci z adsorbentu a zahuštění byla dále chromatografována na analytických deskách soustavou S6 (dráha 4 cm, vyvíjení 1x) a S7 (dráha 8,5 cm, vyvíjení 2x) a byla získána látka PB3 (fialovějící, viskózní, 35,2 mg).

Frakce E (0,856 g) byla preparativní TLC na litých deskách soustavou S4 (dráha 13,5 cm, vyvíjení 2x) separována pátá zóna (164,8 mg). Po eluci z adsorbentu a zahuštění byla dále chromatografována na analytických deskách soustavou S8 (dráha 8,5 cm, vyvíjení 2x), přičemž byly separovány dvě zóny (Rf 0,41 a 0,28). Z první zóny (62,5 mg) byl izolován alkaloid PB4, který byl následně krystalizován z EtOH (průhledné krystaly, 30 mg). Z druhé zóny (28,9 mg) byl izolován alkaloid PB5, který byl dále přečištěn preparativní TLC na analytických deskách soustavou S4 (dráha 8,5 cm, vyvíjení 1x) a S5 (vyvíjení 2x) (vínový viskózní, 2,3 mg).

Frakce F (4,331 g) nebyla zpracována.

Frakce G (8,031 g) byla chromatografováno preparativní TLC na litých deskách soustavou S9 (dráha 13,5 cm, vyvíjení 2x).

Z první zóny (Rf 0,68, 971,6 mg) byl izolován alkaloid PB6, který byl krystalizován z EtOH (nažloutlé krystaly, 560,1 mg).

Z druhé zóny (Rf 0,57) byl izolován alkaloid PB7 (světle hnědý krystalický, 1236,1 mg).

Třetí zóna (Rf 0,35, 184,5 mg) byla po eluci a zahuštění dále chromatografována preparativní chromatografií na analytických deskách soustavou S6 (dráha 8,5 cm, vyvíjení 3x) a S8 (vyvíjení 2x), separovány byly tři zóny (Rf 0,61, 0,54 a 0,41). Z první zóny (12,3 mg) byl izolován alkaloid PB8 (hnědnocí viskózní 2,7 mg), z druhé zóny (25,8 mg) byl izolován alkaloid PB9 (hnědnoucí viskózní, 8,2mg) a z třetí zóny (114,7 mg) byla izolována látka PB10 (75,7 mg), která byla následně přetřepána přidáním 2% HCl (pH ~ 1,5), roztok byl zfiltrován přes křemelinu Celite 535, po promytí filtrační vrstvy vodou alkalizován 10% Na₂CO₃ (pH ~ 9,5) a vytřepán 4x 30 ml Et₂O. Přečištěný alkaloid PB10 byl následně převeden na chlorid baze a rekrystalizován ze směsi Et₂O + MeOH (drobné okrové krystaly, 43,8 mg).

Ze čtvrté zóny byl izolován alkaloid PB11 (1069,3 mg), k odparku byla přidána 2% HCl (pH ~ 1,5), roztok byl zfiltrován přes křemelinu Celite 535, po promytí filtrační vrstvy vodou alkalizován 10% Na₂CO₃ (pH ~ 9,5) a vytřepán 4x 100 ml Et₂O. Přečištěný alkaloid PB11 byl
následně převeden na chlorid baze a rekrystalizován ze směsi Et₂O + MeOH (drobné okrové krystaly, 148,6 mg).

4.3.3 Izolace alkaloidů z Berberis vulgaris L.

10 kg řezané kůry kořenů dřišťálu obecného (fa Magister Kottas, Wien, pol. č. A717201-001) bylo rozemleto v tříštivém mlýnku na velikost částic do 3 mm. Droga byla 3x extrahována 5násobným množstvím 95% EtOH za varu pod zpětným chladičem po dobu 30 min. Spojené extrakty byly zahuštěny za snížené teploty na viskózní hnědý odparek (ca 2 kg, sušina ca 70 %), který byl zahřát na 60° C a za stálého míchání k němu bylo po částech přidáno 6 litrů 2% HCl (pH ~ 1,5). Suspenze byla krátce sonikována a zfiltrována přes vrstvu křemeliny Celite 535, filtrační vrstva byla promyta 1 litrem vody. Po zředění 5 litry vody (celkový objem byl ~ 12,5 litrů) byl vodný kyselý extrakt vytřepeán 3x 2 litry Et₂O (světle hnědý viskózní výtřepek L, 12 g), vodná fáze byla následně alkalizována 10% Na₂CO₃ (pH ~ 9,5) a suspenze po částech vytřepeána celkem 4x 4,6 litry CHCl₃. Chloroformový výtřepek byl vysušen bezvodým Na₂SO₄ a odpařen (žlutohnědý výtřepek A, 128 g).

Vodná fáze byla alkalizována 50% NaOH (pH ~ 12) a vytřepeána 4x 3 litry Et₂O. Diethyletherový výtřepek byl vysušen bezvodým Na₂SO₄ a odpařen (výtřepek B, 34 g).

Tab. 8 Hmotnost a charakter výtřepků z kůry kořenů dřišťálu

<table>
<thead>
<tr>
<th>Výtřepek</th>
<th>Hmotnost [g]</th>
<th>Popis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>12,1</td>
<td>světle hnědý, velmi viskózní, nealkaloidní</td>
</tr>
<tr>
<td>A</td>
<td>128,4</td>
<td>tmavě hnědý, velmi viskózní, alkaloidní</td>
</tr>
<tr>
<td>B</td>
<td>34,1</td>
<td>žlutohnědý, pevný, alkaloidní</td>
</tr>
</tbody>
</table>

* přítomnost alkaloidů byla zjišťována reakcí s Mayerovým činidlem.

Zpracování výtřepeku A

Výtřepek A (128 g) byl rozpuštěn v 2,5 litrech CHCl₃, roztok byl vlit na sloupec Al₂O₃ (1,925 kg; Φ : v = 10 : 24,5 cm) a provedeno předčištění (viz Tab. 9)
Tab. 9 Čištěním výtřepku A za použití Al₂O₃

<table>
<thead>
<tr>
<th>Označení získaných frakcí</th>
<th>Eluce rozpouštědlo/objem</th>
<th>Hmotnost suchého odparku [g]</th>
<th>Popis odparku</th>
<th>Obsah látek*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>CHCl₃; 18,6 l</td>
<td>59,50</td>
<td>hnědý, velmi viskozní</td>
<td>terciární baze</td>
</tr>
<tr>
<td>A-2</td>
<td>EtOH; 1 l</td>
<td>7,78</td>
<td>hnědý, velmi viskozní</td>
<td>berberin + palmatin + 3 další terciární alkaloidy</td>
</tr>
<tr>
<td>A-3</td>
<td>EtOH; 1 l</td>
<td>6,32</td>
<td>vínový, velmi viskozní s vylučujícími se žlutými krystaly</td>
<td>berberin + stopy palmatínu + červená nealkaloidní látka</td>
</tr>
</tbody>
</table>

* přítomnost alkaloidů byla zjišťována detekcí na TLC deskách (soustava S₅, dráha 8,5 cm, vyvíjení 1x) a MS (ESI).

Zpracování frakce A-1

Byla provedena sloupcová chromatografie způsobem pro tento typ separací obvyklým (viz Tab. 10 a Tab. 11).

Tab. 10 Podmínky sloupcové chromatografie frakce A-1

<table>
<thead>
<tr>
<th>Hmotnost odparku</th>
<th>59,5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbent na roztěr</td>
<td>200 g</td>
</tr>
<tr>
<td>Adsorbent</td>
<td>Al₂O₃; 2,38 kg</td>
</tr>
<tr>
<td>Dělicí vrstva ve sloupci</td>
<td>⊙ : v = 7 : 65 cm</td>
</tr>
<tr>
<td>Vrstva s frakcí A-1</td>
<td>⊙ : v = 7 : 7,5 cm</td>
</tr>
<tr>
<td>Frakce</td>
<td>500 ml</td>
</tr>
<tr>
<td>Doba toku 1 frakce</td>
<td>ca 25 min</td>
</tr>
<tr>
<td>Kontrolní TLC</td>
<td>TLC Silica gel 60 F₂₅₄, soustava S₅, dráha 8,5 cm, vyvíjení 1x,</td>
</tr>
</tbody>
</table>
Tab. 11 Výsledek chromatografie frakce A1

<table>
<thead>
<tr>
<th>Označení</th>
<th>Spojené frakce</th>
<th>Složení eluční směsi</th>
<th>Hmotnost [g]</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1-14</td>
<td>benzin : CHCl₃ (85 : 15)</td>
<td>-</td>
<td>bez obsahu alkaloidů</td>
</tr>
<tr>
<td>A</td>
<td>15-19</td>
<td>benzin : CHCl₃ (85 : 15)</td>
<td>0.254</td>
<td>žlutohnědý krystalický</td>
</tr>
<tr>
<td>B</td>
<td>20-29</td>
<td>benzin : CHCl₃ (85 : 15)</td>
<td>0.329</td>
<td>žlutozelený pevný</td>
</tr>
<tr>
<td>C</td>
<td>30-36</td>
<td>benzin : CHCl₃ (85 : 15)</td>
<td>1.591</td>
<td>žlutohnědý krystalický</td>
</tr>
<tr>
<td>D</td>
<td>37-42</td>
<td>benzin : CHCl₃ (85 : 15)</td>
<td>0.083</td>
<td>oranžový, viskozní</td>
</tr>
<tr>
<td>E</td>
<td>43-54</td>
<td>benzin : CHCl₃ (80 : 20)</td>
<td>0.208</td>
<td>oranžový, viskozní</td>
</tr>
<tr>
<td>F</td>
<td>55-61</td>
<td>benzin : CHCl₃ (70 : 30)</td>
<td>0.385</td>
<td>zelenohnědý, viskozní</td>
</tr>
<tr>
<td>G</td>
<td>62-70</td>
<td>benzin : CHCl₃ (70 : 30)</td>
<td>0.368</td>
<td>světle zelený, viskozní</td>
</tr>
<tr>
<td></td>
<td>71-76</td>
<td>benzin : CHCl₃ (60 : 40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>77-110</td>
<td>benzin : CHCl₃ (60 : 40)</td>
<td>25.684</td>
<td>oranžovohnědý, viskozní</td>
</tr>
<tr>
<td></td>
<td>111-122</td>
<td>benzin : CHCl₃ (50 : 50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123-135</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>136-138</td>
<td>benzin : CHCl₃ (20 : 80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>139-171</td>
<td>benzin : CHCl₃ (20 : 80)</td>
<td>11.330</td>
<td>oranžový, viskozní</td>
</tr>
<tr>
<td></td>
<td>172-179</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>180-194</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td>1.037</td>
<td>okrový, pevný (pěna)</td>
</tr>
<tr>
<td></td>
<td>195-196</td>
<td>CHCl₃ : EtOH (80 : 20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>197-204</td>
<td>CHCl₃ : EtOH (80 : 20)</td>
<td>8.439</td>
<td>oranžovohnědý, pevný (pěna)</td>
</tr>
</tbody>
</table>

Frakce A (0,254 g) nebyla zpracována.

Frakce B (0,329 g) nebyla zpracována.

Z **frakce C** (1,591 g) byla opakovanými krystalizacemi ze směsi CHCl₃ + EtOH získána látka **BV1** (drobné žluté krystaly, 415 mg).

Z matečného louhu této frakce (1,080 g) byla pomocí preparativní TLC na litých deskách soustavou S5 (dráha 13,5 cm, vyvíjení 1x) získána látka **BV2** (světle žlutá pěna, 9,7 mg).

Frakce D (0,083 g) nebyla zpracována.

Frakce E (0,208 g) byla chromatografována preparativní TLC na analytických deskách v soustavě S8 (dráha 13,5 cm, vyvíjení 2x), čímž byly získány dvě zóny (Rf 0,62 a 0,34). Z první
zóny byla opakovanou preparativní TLC na analytických deskách soustavou S10 (dráha 8,5 cm, vyvíjení 2x) získána látka **BV3** (žlutý viskózní odperek, 4 mg) a z druhé zóny byla preparativní TLC na analytických deskách soustavou S11 (dráha 8,5 cm, vyvíjení 1x) získána **BV4** (žlutý viskózní odperek, 12 mg).

Frakce F (0,385 g) nebyla zpracována.

Frakce G (0,368 g) nebyla zpracována.

Frakce H (25,7 g) byla podrobená další sloupcové chromatografii (viz Tab. 12 a Tab. 13).

Tab. 12 Podmínky sloupcové chromatografie frakce H

<table>
<thead>
<tr>
<th>Hmotnost odparku</th>
<th>25,7 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbent na roztěr</td>
<td>120 g</td>
</tr>
<tr>
<td>Adsorbent</td>
<td>Al₂O₃, 1,05 kg</td>
</tr>
<tr>
<td>Dělicí vrstva ve sloupci</td>
<td>Ø : v = 5,1 : 52 cm</td>
</tr>
<tr>
<td>Vrstva s frakcí H</td>
<td>Ø : v = 5,1 : 6 cm</td>
</tr>
<tr>
<td>Frakce</td>
<td>250 ml</td>
</tr>
<tr>
<td>Doba toku 1 frakce</td>
<td>ca 25 min</td>
</tr>
<tr>
<td>Kontrolní TLC</td>
<td>TLC Silica gel 60 F₂₅₄, soustava S₅, dráha 6,5 cm, vyvíjení 2x,</td>
</tr>
</tbody>
</table>

Tab. 13 Výsledek chromatografie frakce H

<table>
<thead>
<tr>
<th>Označení</th>
<th>Spojené frakce</th>
<th>Složení eluční směsi</th>
<th>Hmotnost [g]</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1-35</td>
<td>benzin : CHCl₃ (50 : 50)</td>
<td>-</td>
<td>bez obsahu alkaloidů</td>
</tr>
<tr>
<td></td>
<td>36-40</td>
<td>benzin : CHCl₃ (45 : 55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41-45</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>46-56</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td>1,028</td>
<td>žlutý pevný</td>
</tr>
<tr>
<td>H-2</td>
<td>57-74</td>
<td>benzin : CHCl₃ (35 : 65)</td>
<td>12,6</td>
<td>oranžový, viskózní</td>
</tr>
<tr>
<td></td>
<td>75-84</td>
<td>benzin : CHCl₃ (30 : 70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85-100</td>
<td>benzin : CHCl₃ (20 : 80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101-103</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>104-115</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td>6,8</td>
<td>oranžovohnědý, viskózní</td>
</tr>
<tr>
<td></td>
<td>116-132</td>
<td>CHCl₃ : EtOH (90 : 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Podfrakce H-1 (1,028 g) byla podrobena opakované preparativní TLC na litých deskách soustavou S5 (dráha 13,5 cm, vyvíjení 2x), čímž byly získány 2 zóny (Rf ~ 0,7 a 0,3), opakovaná preparativní TLC první zóny na litých deskách vedla k izolaci BV5 a z druhé zóny BV6. Obě látky byly převedeny na chloridy bazí (BV5 nažloutlé velmi drobné krystaly, 470 mg; BV6 nazelenalá pěna, 24 mg).

Z podfrakce H-2 (12,6 g) bylo zpracováno pouze množství 1 g a to preparativní TLC na litých deskách soustava S6 (dráha 13,5 cm, vyvíjení 3x), odkud byla izolována látku BV7 z hlavní zóny. Tato látku byla opakovaně rekristalizována ze směsi CHCl₃ + EtOH (bílé drobné krystaly, 230 mg).

Podfrakce H-3 (6,8 g) obsahovala převážně již izolovaný alkaloid BV7. Minoritní alkaloid BV8, který byl separován chromatografií 3 g podfrakce H-3 použitím preparativní TLC na litých deskách soustavou S6 (dráha 13,5 cm, vyvíjení 3x). Alkaloid BV8 byl dále opakovaně krystalizován ze směsi CHCl₃ + EtOH (drobné bílé krystaly, 139 mg).

Frakce CH (11,3 g) rovněž obsahovala již izolované alkaloidy BV7 a BV8. Pro získání minoritně zastoupených látek byla zvolena sloupcová chromatografie (viz Tab. 14 a Tab. 15).

Tab. 14 Podmínky sloupcové chromatografie frakce CH

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost odparku 11,3 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbent na roztěr</td>
<td>45 g</td>
</tr>
<tr>
<td>Adsorbent</td>
<td>Al₂O₃; 0,45 kg</td>
</tr>
<tr>
<td>Dělicí vrstva ve sloupci</td>
<td>∅ : v =3,5 : 48 cm</td>
</tr>
<tr>
<td>Vrstva s frakcí CH</td>
<td>∅ : v = 3,5 : 5,8 cm</td>
</tr>
<tr>
<td>Frakce</td>
<td>100 ml</td>
</tr>
<tr>
<td>Doba toku 1 frakce</td>
<td>ca 20 min</td>
</tr>
<tr>
<td>Kontrolní TLC</td>
<td>TLC Silica gel 60 F₂₅₄, soustava S5, dráha 6,5 cm, vyvíjení 2x,</td>
</tr>
</tbody>
</table>
Tab. 15 Výsledek chromatografie frakce CH

<table>
<thead>
<tr>
<th>Označení</th>
<th>Spojené frakce</th>
<th>Složení eluční směsi</th>
<th>Hmotnost (g)</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1 - 32</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td>-</td>
<td>bez obsahu alkaloidů</td>
</tr>
<tr>
<td>CH-1</td>
<td>33 - 40</td>
<td>benzin : CHCl₃ (40 : 60)</td>
<td>4,7</td>
<td>žlutooranžový, viskózní</td>
</tr>
<tr>
<td></td>
<td>41 - 77</td>
<td>benzin : CHCl₃ (30 : 70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-2</td>
<td>78 - 121</td>
<td>benzin : CHCl₃ (20 : 80)</td>
<td>3,8</td>
<td>oranžový, viskózní</td>
</tr>
<tr>
<td></td>
<td>122 - 128</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-3</td>
<td>129 - 139</td>
<td>CHCl₃ : EtOH (99 : 1)</td>
<td>1,3</td>
<td>okrový, pevný (pěna)</td>
</tr>
<tr>
<td></td>
<td>140 - 148</td>
<td>CHCl₃ : EtOH (80 : 20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Podfrakce CH-1 a CH-2 nebyly zpracovány.

Podfrakce CH-3 (1,3 g) byla podrobená preparativní TLC na litých deskách za použití vyvíjecí soustavy S9 (dráha 13,5 cm, vyvíjení 2x) a ze třetí zóny (Rf 0,35) byla získána látka BV9 (nažloutlá pěna 27 mg) a ze čtvrté zóny (Rf 0,24) BV10 (žlutá pěna, 53 mg).

Z frakce I (1,0 g) byla pomocí preparativní TLC na litých deskách soustavou S6 (dráha 13,5 cm, vyvíjení 3x) ze třetí zóny separována látka BV11, která byla opakovaně krystalizována v EtOH (drobné bílé krystaly, 25 mg).

Frakce J (8,5 g) byla zahřána na 60° C a bylo přidáno 50 ml 2% HCl (pH ~ 1,5), po krátké sonikaci filtrována přes křemelklu Celite 535 s následným promytím filtrační vrstvy vodou. Roztok byl doplněn na objem 300 ml, alkalizován 10% Na₂CO₃ (pH ~ 9,5) a suspenze vytřepána celkem 12x 100 ml Et₂O. Diethyletherový výtřepek byl vysušen bezvodým Na₂SO₄ a odpařen.

Podlečištěná frakce J (4,5 g) obsahovala rovněž alkaloidy BV7, BV8, BV11, minoritní alkaloidy byly separovány preparativní TLC na litých deskách soustavou S9 (dráha 13,5 cm, vyvíjení 1x) a S5 (vyvíjení 2x), přičemž byla separována čtvrtá zóna (Rf 0,38), ze které byl izolován alkaloid BV12 (žlutá pěna, 8 mg). Z páté zóny (Rf 0,19) byl izolován alkaloid BV13 (žlutý viskózní, 13 mg).
5. Výsledky

5.1 Alkaloidy izolované z *Hydrastis canadensis* L. a jejich fyzikálně-chemická charakteristika

5.1.1 HC01: 1-(6’-Allyl-1’,3’-methyleneedioxybenzoyl)-3-chloro-5,6-dimethoxyisochinolin

sumární vzorec: C_{19}H_{21}NO_{4}

Obr. 4 1-(6’-Allyl-1’,3’-methyleneedioxybenzoyl)-3-chloro-5,6-dimethoxyisochinolin

5.1.1.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 398 (100), 380 (11), 340 (5).

5.1.1.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 8,06 (1H, s, H4), 8,01 (1H, d, $J = 9,4$ Hz, H9), 7,37 (1H, d, $J = 9,4$ Hz, H8), 7,20 (1H, dd, $J=17,3$ Hz, $J = 11,0$ Hz, H18), 7,08 (1H, s, H14), 6,83 (1H, s, H17), 6,02 (2H, s, H20), 5,57 (1H, d, $J = 17,3$ Hz, H19), 5,22 (1H, d, $J = 11,0$ Hz, H19), 4,03 (3H, s H22), 4,02 (3H, s, H21).

13C NMR (125 MHz, CDCl$_3$): δ 193,8 (C11), 157,2 (C1), 152,1 (C7), 151,5 (C15), 146,7 (C16), 144,4 (C3), 140,8 (C6), 137,5 (C13), 135,8 (C18), 135,1 (C5), 129,2 (C12), 123,4 (C9), 121,0 (C10), 116,8 (C8), 116,2 (C19), 115,7 (C4), 111,8 (C17), 107,5 (C14), 102,0 (20), 61,4 (C21), 56,6 (C22).
5.1.1.3 Optická otáčivost

absence chirálního atomu (optická otáčivost nebyla měřena).

5.1.2 HC02: (+)-Kanadalin

sumární vzorec: C_{21}H_{23}NO_{5}

![Image](image_url)

Obr. 5 (+)-Kanadalin

5.1.2.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 370 (100), 328 (12), 311 (21).

5.1.2.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 10,41 (1H, bs); 6,98 (1H, d, J = 8,4 Hz); 6,79 (1H, d, J = 8,4 Hz); 6,51 (1H, s); 6,50 (1H, s); 6,50 (1H, s); 6,50 (1H, s); 5,86 (2H, d, J = 7,9 Hz); 3,93 (3H, s); 3,88 (3H, s); 3,62- 3,69 (1H, m); 3,18-3,31 (2H, m); 3,05-3,12 (1H, m); 2,70-2,86 (2H, m); 2,42-2,51 (1H, m); 2,37 (3H, s).

13C NMR (125 MHz, CDCl$_3$): δ 192,2, 152,7, 151,1, 145,8, 145,4, 133,2, 130,5, 129,1, 127,8, 127,3, 116,5, 108,2, 100,5, 64,1, 62,1, 55,9, 45,9, 42,5, 38,3, 24,8.

5.1.2.3 Optická otáčivost

\[[\alpha]_{D}^{25} = +30,0^\circ \text{ (c = 0,1499; CHCl}_3). \]
5.1.3 HC03: (±)-Hydrastin

sumární vzorec: C_{21}H_{21}NO_{6}

Obr. 6 (±)-Hydrastin

5.1.3.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 384 (100), 323 (8).

5.1.3.2 NMR analýza

{^1}H NMR (500 MHz, CDCl₃): δ 7,07 (1H, d, J = 8,2 Hz), 6,58 (1H, s), 6,52 (1H, d, J = 8,2 Hz), 6,37 (1H, s), 5,91 (1H, d, J = 1,5 Hz), 5,90 (1H, J = 1,5 Hz), 5,50 (1H, d, J = 3,9 Hz), 4,06 (3H, s), 3,99 (1H, d, J = 3,9 Hz), 3,89 (3H, s), 2,94-2,87 (1H, m), 2,65-2,56 (2H, m), 2,55 (3H, s), 2,32-2,25 (1H, m).

{^{13}}C NMR (125 MHz, CDCl₃): δ 167,7, 152,5, 148,0, 146,7, 145,8, 140,6, 130,2, 124,4, 119,6, 118,6, 117,6, 108,5, 107,7, 100,9, 82,8, 66,1, 62,3, 56,8, 49,0, 44,8, 26,5.

5.1.3.3 Optická otáčivost

[α]_{D}^{26} = 0^\circ (c = 0,2268; EtOH).
5.1.4 HC04: (-)-Kanadin

sumární vzorec: C_{20}H_{21}NO_{4}

5.1.4.1 MS analýza
MS (ESI): m/z (%) = [M+H]^+ 340 (100), 176 (4).

5.1.4.2 NMR analýza
1H NMR (500 MHz, CDCl$_3$): δ 6,86 (1H, d, $J = 8,3$ Hz); 6,79 (1H, d, $J = 8,3$ Hz); 6,72 (1H, s); 6,59 (1H, s); 5,91 (2H, s); 4,25 (1H, d, $J = 15,8$ Hz); 3,85 (3H, s); 3,84 (3H, s); 3,56 (2H, d, $J = 14,1$ Hz); 3,10-3,26 (3H, m); 2,80-2,89 (1H, m); 2,61-2,71 (2H, m).

13C NMR (125 MHz, CDCl$_3$): δ 150,3, 146,2, 146,0, 145,0, 130,5, 128,3, 127,6, 127,5, 123,9, 111,0, 108,4, 105,5, 100,8, 60,2, 59,6, 55,9, 53,8, 51,3, 36,2, 29,4.

5.1.4.3 Optická otáčivost
$[\alpha]_{D}^{25} = -286,1^\circ$ (c = 0,1328; CHCl$_3$).
5.2 Alkaloidy izolované z *Peumus boldus* Mol. a jejich fyzikálně-chemická charakteristika

5.2.1 PB01: (+)-Isokorydin

sumární vzorec: C_{20}H_{23}NO_{4}

Obr. 8 (+)-Isokorydin

5.2.1.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 342 (100), 311 (9), 279 (4).

5.2.1.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 2,94 (1H, dd, J = 7,0 Hz, H-4α); 3,09-3,13, (3H, br s, N-CH$_3$); 3,17 (1H, dd, J = 13,0 Hz, H-7α); 3,54-3,61 (1H, m, H-7β); 3,59-3,66 (1H, m, H-4β); 3,70-3,77 (1H, m, H-6αα); 3,73 (3H, s, OCH$_3$-1); 3,77-3,84 (1H, m, H-5α); 3,92 (3H, s, OCH$_3$-10); 3,92 (3H, s, OCH$_3$-2); 4,03-4,10 (1H, m, H-5β); 6,74 (1H, s, H-3); 6,86 (1H, dd, J = 8,3 Hz, H-8); 6,89 (1H, d, J = 8,3, H-9 Hz); 8,67 (br s, OH-11).

13C NMR (125 MHz, CDCl$_3$): δ 26,2 (C-4), 33,2 (C-7), 42,4 (N-CH$_3$), 52,8 (C-5), 56,0 (OCH$_3$-2), 56,2 (OCH$_3$-10), 62,3 (OCH$_3$-1), 63,3 (C-6a), 111,0 (C-3), 111,7 (C-9), 119,3 (C-11a), 119,7 (C-8), 122,1 (C-1b), 126,2 (C-1a), 126,2 (C-3a), 143,2 (C-1), 144,3 (C-11), 150,3 (C-10), 153,1 (C-2).

5.2.1.3 Optická otáčivost

$\left[\alpha\right]_D^{26} = +198,5^\circ$ (c = 0,1048; CHCl$_3$).
5.2.2 PB02: (+)-Norisokorydin

sumární vzorec: C_{19}H_{21}NO_{4}

![Chemical Structure of Norisokorydin](attachment:image.png)

Obr. 9 (+)-Norisokorydin

5.2.2.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 328 (100), 311 (9).

5.2.2.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 8,89 (1H, bs, OH), 6,84 (1H, d J = 8,0 Hz, H9), 6,81 (1H, d J = 8,0 Hz, H8), 6,71 (1H, s, H3), 3,91 (6H, s, OCH$_3$), 3,71 (3H, s, OCH$_3$), 3,74-3,66 (1H, m, H6a), 3,38 (1H, dd, J = 12,1 Hz, J=6,1 Hz, H5), 3,13-3,08 (1H, m, H4), 3,02-2,94 (1H, m, H5), 2,83 (1H, dd, J = 13,0 Hz, J = 3,9 Hz, H7), 2,74 (1H, dd, J=16,5 Hz, J=3,5 Hz, H4), 2,62 (1H, t, J = 13,2 Hz, H7).

13C NMR (125 MHz, CDCl$_3$): δ 151,5, 149,5, 144,1, 142,1, 130,0, 129,7, 129,5, 125,7, 120,0, 119,0, 111,7, 110,9, 62,1, 56,1, 56,0, 54,0, 42,6, 38,0, 29,0.

5.2.2.3 Optická otáčivost

$[^{[\alpha]}_D]^{26}$ = +134,9° (c = 0,1008; CHCl$_3$).
5.2.3 PB03: (-)-Pronuciferin

sumární vzorec: C_{19}H_{21}NO_{3}

![Structure of (-)-Pronuciferin]

5.2.3.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 312 (100), 269 (5).

5.2.3.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 7,02 (1H, dd, $J = 10,2$ a 2,7 Hz, H8), 6,86 (1H, dd, $J = 9,9$ a 2,7 Hz, H12), 6,61 (1H, s, H3), 6,38 (1H, dd, $J = 9,9$ a 2,0 Hz, H11), 6,27 (1H, dd, $J = 10,2$ a 2,1 Hz, H9), 3,78 (3H, s, OMe$_2$), 3,57 (3H, s, OMe$_1$), 2,34 (3H, s, NMe).

13C NMR (125 MHz, CDCl$_3$): δ 186,1 (C10), 153,5 (C12), 153,3 (C1), 150,0 (C8), 134,3 (C3a), 132,7 (C7c), 128,2 (C9), 127,7 (C7b), 127,4 (C11), 111,7 (C3), 65,7 (C6a), 61,1 (OMe), 56,3 (OMe), 54,9 (C5), 51,2 (C7a), 47,5 (C7), 43,6 (N-Me), 27,5 (C4).

5.2.3.3 Optická otáčivost

[α]$^D_{25}$ = -52,2° (c = 0,0983; CHCl$_3$).
5.2.4 PB04: (-)-Sinoakutin

sumární vzorec: C₁₉H₂₁NO₄

![Chemical structure of PB04](image)

Obr. 11 (-)-Sinoakutin

5.2.4.1 MS analýza

MS (ESI): m/z (%) = [M+Na]⁺ 350 (15), [M+H]⁺ 328 (100), 297 (7), 265 (4).

5.2.4.2 NMR analýza

1H NMR (500 MHz, CDCl₃): δ 7,53 (1H, s), 6,75 (1H, d, $J = 8,3$ Hz), 6,67 (1H, d, $J = 8,3$ Hz), 6,33 (1H, s), 6,22 (1H, s), 3,89 (3H, s), 3,75 (3H, s), 3,71 (1H, d, $J = 5,6$ Hz), 3,36 (1H, d, $J = 17,7$ Hz), 3,01 (1H, dd, $J = 17,7$, 5,7 Hz), 2,63 (1H, dd, $J = 12,8$, 4,4 Hz), 2,52 (1H, bd, $J = 12,8$ Hz), 2,47 (3H, s), 2,37 (1H, ddd, $J = 12,5$, 3,0, 2,1 Hz), 1,78 (1H, td, $J = 12,5$, 4,7 Hz).

13C NMR (125 MHz, CDCl₃): δ 181,3, 161,0, 151,0, 145,4, 143,3, 129,6, 123,9, 122,5, 120,3, 118,9, 109,5, 61,1, 56,3, 54,8, 47,0, 43,6, 41,6, 37,5, 32,7.

5.2.4.3 Optická otáčivost

$[\alpha]^{25}_D = -65,2^\circ$ (c = 0,1288; CHCl₃).
5.2.5 PB05: (-)-Glaziovin

sumární vzorec: C_{18}H_{19}NO_{3}

Obr. 12 (-)-Glaziovin

5.2.5.1 MS analýza

MS (ESI): \(m/z \) (%): [M+H]^+ 298 (100), 255 (4).

5.2.5.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta \) 6,93 (1H, d, \(J = 9,7 \) Hz, H8), 6,88 (1H, d, \(J = 9,7 \) Hz, H12), 6,59 (1H, s, H3) 6,38 (1H, d, \(J = 9,7 \) Hz, H9), 6,29 (1H, d, \(J = 9,7 \) Hz, H11), 3,83 (3H, s, OCH\textsubscript{3}), 3,51-3,39 (1H, m, H6a), 3,19-2,96 (2H, m, H5), 2,89-2,32 (4H, m, H4, H7), 2,40 (3H, s, overlapped NCH\textsubscript{3}).

\(^{13}\)C NMR (125 MHz, CDCl\textsubscript{3}): \(\delta \) 186,0, 152,3, 148,6, 146,7, 141,4, 134,9, 129,0, 128,1, 124,0, 121,8, 109,7, 65,5, 56,5, 54,8, 50,3, 47,5, 43,5, 26,8.

5.2.5.3 Optická otáčivost

\([\alpha]_{D}^{25} = -30,2^\circ \) (c = 0,1013; CHCl\textsubscript{3}).
5.2.6 PB06: (+)-N-Methyllaurotetanin

sumární vzorec: $C_{20}H_{23}NO_4$

Obr. 13 (+)-N-Methyllaurotetanin

5.2.6.1 MS analýza
MS (ESI): m/z (%) = $[M+H]^+$ 342 (100), 328 (12), 311 (21).

5.2.6.2 NMR analýza
1H NMR (500 MHz, CDCl$_3$): δ 8,05 (1H, s, H11), 6,81 (1H, s, H8), 6,58 (1H, s, H3), 3,89 (3H, s, OCH$_3$), 3,88 (3H, s, OCH$_3$), 3,65 (3H, s, OCH$_3$), 3,27-2,90 (4H, m, H4, H5, H6a, H7), 2,73-2,46 (3H, m, H4, H5, H7), 2,54 (3H, s overlapped, NCH$_3$).

13C NMR (125 MHz, CDCl$_3$): δ 151,9, 145,3, 144,8, 144,2, 130,0, 128,8, 127,0, 127,0, 123,9, 113,9, 111,2, 110,2, 62,5, 60,1, 56,0, 55,8, 53,3, 43,9, 34,2, 29,1.

5.2.6.3 Optická otáčivost
$[\alpha]_{D}^{26} = +104,1^\circ$ (c = 0,1076; CHCl$_3$).
5.2.7 PB07: (+)-Boldin

sumární vzorec C₁₉H₂₁NO₄

Obr. 14 (+)-Boldin

5.2.7.1 MS analýza
MS (ESI): m/z (%) = [M+H]^+ 328 (100), 297 (16), 265 (7).

5.2.7.2 NMR analýza

¹H NMR (500 MHz, CDCl₃): δ 7.89 (1H, s), 6.83 (1H, s), 6.63 (1H, s), 3.91 (3H, s), 3.59 (3H, s), 3.10 (1H, ddd, J = 15,8, 12,6, 6,1 Hz), 3.05-2.94 (3H, m), 2.63 (1H, dd, J = 15,9, 3,5 Hz), 2.56 (1H, dd, J = 15,6, 13,9 Hz), 2.53 (3H, s), 2.49 (1H, ddd, J = 12,1, 11,9, 3,9 Hz).

¹³C NMR (125 MHz, CDCl₃): δ 148,0, 145,6, 145,0, 142,0, 130,2, 129,9, 126,8, 125,9, 123,6, 114,2, 113,2, 110,1, 62,5, 60,3, 56,1, 53,3, 43,9, 34,1, 28,9.

5.2.7.3 Optická otáčivost

[α]D²⁵ = +119,0° (c = 0,1076; CHCl₃).
5.2.8 PB08: (+)-Retikulin

sumární vzorec: \(C_{19}H_{23}NO_4\)

Obr. 15 (+)-Retikulin

5.2.8.1 MS analýza

MS (ESI): \(m/z\) (%) = \([M+H]^+\) 330 (100), 300 (5), 192 (6).

5.2.8.2 NMR analýza

\(^1\)H (500 MHz, \(CDCl_3\)): \(\delta\) 3,66-3,69 (1H, t, H1), 2,99-3,04 (2H, m, Hα), 2,74-2,79 (2H, m, H3), 2,55-2,60 (2H, m, H4), 6,51 (1H, s, H5), 6,32 (1H, s, H8), 6,73 (1H, d, \(J = 1,72\), H2'), 6,69 (1H, d, \(J = 8,32\), H5'), 6,54 (1H, dd, \(J_1 = 8,28\), \(J_2 = 1,96\), H6'), 3,81 (3H, s, OMe6), 3,81 (3H, s, OMe4'), 2,44 (3H, s, N-Me).

\(^13\)C NMR (125 MHz, \(CDCl_3\)): \(\delta\) 64,45 (C1), 40,85 (Cα), 46,48 (C3), 24,65 (C4), 128,75 (C4a), 110,54 (C5), 145,31 (C6), 143,31 (C7), 113,70 (C8), 124,71 (C8a), 132,72 (C1'), 115,61 (C2'), 145,05 (C3'), 145,26 (C4'), 110,43 (C5'), 120,90 (C6'), 55,84 (OMe6), 55,79 (OMe4'), 42,12 (N-Me).

5.2.8.3 Optická otáčivost

\([\alpha]_D^{25} = +47,8^\circ\) (c = 0,0974; \(CHCl_3\)).
5.2.9 PB09: (+)-N-Methylkoklaurin

sumární vzorec: \(C_{18}H_{21}NO_3 \)

![Image](image)

Obr. 16 (+)-N-Methylkoklaurin

5.2.9.1 MS analýza

MS (ESI): \(m/z \) (%) = [M+H]⁺ 300 (100), 269 (7).

5.2.9.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 6,94-6,90 (2H, m, AA, BB, H13, H17), 6,56-6,52 (2H, m AA, BB, H14, H16), 6,54 (1H, s, H6), 6,40 (1H, s, H9), 3,84 (3H, s, OCH\(_3\)), 3,72 (1H, t, J = 6,3 Hz, H1), 3,29-3,19 (1H, m, H3), 3,01 (1H, dd, J = 14,6 Hz, J = 7,1 Hz, H11), 2,88-2,77 (3H, m, H3, H4, H11), 2,64-2,55 (1H, m, H4).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta \) 154,6, 145,3, 143,4, 130,5, 130,2, 129,6, 124,8, 115,5, 113,8, 110,6, 64,8, 55,8, 46,1, 41,9, 40,7, 24,2.

5.2.9.3 Optická otáčivost

\([\alpha]^{25}_D = + 62,8^\circ \) (c = 0,9745; CHCl\(_3\)).
5.2.10 PB10: (-)-Pallidin

sumární vzorec: C₁₉H₂₁NO₄

![Obr. 17 (-)-Pallidin]

5.2.10.1 MS analýza

MS (ESI): m/z (%) = [M+Na]⁺ 350 (15), [M+H]⁺ 328 (100), 320 (5), 297 (6).

5.2.10.2 NMR analýza

1H NMR (500 MHz, CDCl₃): δ 6,78 (1H, s, H₄), 6,71 (1H, s, H₁), 6,37 (1H, s, H₈) 6,35 (1H, s, H₅), 3,90 (3H, s, OCH₃), 3,80 (3H, s, OCH₃), 3,93-3,77 (1H, m, H₉), 3,54-3,36 (1H, m, H₁₀), 3,18-3,05 (1H, m, H₁₀), 2,85-2,66 (2H, m, H₁₆), 2,56 (3H, s, NCH₃), 2,09-1,96 (1H, m, H₁₅), 1,94-1,84 (1H, m, H₁₅).

13C NMR (125 MHz, CDCl₃): δ 180,5, 159,4, 151,5, 145,9, 145,1, 129,1, 128,4, 123,2, 118,5, 113,6, 107,5, 60,9, 56,1, 55,2, 45,7, 42,0, 41,3, 40,2, 32,5.

5.2.10.3 Optická otáčivost

$[\alpha]_{D}^{25} = -18,8°$ (c = 0,1492; CHCl₃).
5.2.11 PB11: (+)-Laurotetalinin

sumární vzorec: C_{19}H_{21}NO_4

![Laurotetalinin](image)

Obr. 18 (+)-Laurotetalinin

5.2.11.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 328 (100), 311 (54), 296 (7), 280 (9).

5.2.11.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 8,07 (1H, s), 6,79 (1H, s), 6,59 (1H, s), 3,88 (6H, s), 3,85 (1H, dd, $J = 14,1, 4,9$ Hz), 3,66 (3H, s), 3,44-3,39 (1H, m), 3,11-2,96 (2H, m), 2,82-2,68 (3H, m).

13C NMR (125MHz, CDCl$_3$): δ 152,3, 145,4, 145,0, 144,3, 129,4, 128,6, 127,0, 126,8, 123,8, 114,0, 111,3, 110,7, 60,1, 56,0, 55,8, 53,6, 42,8, 36,1, 28,6.

5.2.11.3 Optická otáčivost

$[\alpha]^{25}_D = +52,5^\circ$ (c = 0,1752; CHCl$_3$).
5.3 Alkaloidy izolované z *Berberis vulgaris* L. a jejich fyzikálně-chemická charakteristika

5.3.1 BV01: Berlambin

sumární vzorec: \(C_{20}H_{17}NO_5 \)

Obr. 19 Berlambin

5.3.1.1 MS analýza

MS (ESI): \(m/z \) (%) = \([2M+Na]^+ 725 (6), [M+Na]^+ 374 (100), 359 (10), 565 (6), 320 (31)\).

5.3.1.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7,31 (1H, d, \(J = 8,8 \) Hz, H11), 7,27 (1H, d, \(J = 8,8 \) Hz, H12), 7,21 (1H, s, H1), 6,71 (1H, s, H13), 6,70 (1H, s, H4), 6,00 (2H, s, OCH\(_2\)O), 4,29 (2H, dd, \(J = 7,0, 5,5 \) Hz, H6), 4,01 (3H, s, C9 - OCH\(_3\)), 3,94 (3H, s, C10 - OCH\(_3\)), 2,89 (2H, dd, \(J = 7,0, 5,5 \) Hz, H5).

\(^13\)C NMR (125 MHz, CDCl\(_3\)): \(\delta \) 160,1 (C8), 151,4 (C10), 149,5 (C9), 148,4 (C3), 147,3 (C2), 135,6 (C13a), 132,3 (C12a), 130,0 (C4a), 123,7 (C13b), 122,3 (C12), 119,4 (C8a), 119,0 (C11), 107,9 (C4), 104,7 (C1), 101,4 (OCH\(_2\)O), 101,3 (13), 61,6 (C9 - OCH\(_3\)), 56,9 (C10 - OCH\(_3\)), 39,3 (C6), 28,7 (C5).

5.3.1.3 Optická otáčivost

absence chirálního atomu (optická otáčivost nebyla měřena).
5.3.2 BV02: (±)-1-[[4-[2-Methoxy-5-[[1′,2′,3′,4′-tetrahydro-6′,7′-dimethoxy-2′-methylisochinolin-1′-yl]methyl]phenoxy]phenyl]methyl]-2-methyl-1,2,3,4-tetrahydro-6,7-dimethoxyisochinolin

sumární vzorec C$_{39}$H$_{46}$N$_2$O$_6$

Obr. 20 (±)-1-[[4-[2-Methoxy-5-[[1′,2′,3′,4′-tetrahydro-6′,7′-dimethoxy-2′-methylisochinolin-1′-yl]methyl]phenoxy]phenyl]methyl]-2-methyl-1,2,3,4-tetrahydro-6,7-dimethoxyisochinolin

5.3.2.1 MS analýza

MS (ESI): m/z (%) = [M+H]$^+$ 639 (100), 596 (7), 565 (6), 320 (31).

5.3.2.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 7,00 (2H, d, J = 8,4 Hz, H10’), 6,87 (1H, d, J = 8,4 Hz, H14), 6,83 (1H, dd, J = 8,4, 1,9 Hz, H15), 6,78 (2H, d, J = 8,4 Hz, H11’), 6,72 (1H, d, J = 1,9 Hz, H11), 6,56 (1H, s), 6,53 (1H, s), 6,04 (1H, s), 5,97 (1H, s), 3,83 (3H, s), 3,82 (3H, s), 3,81-3,75 (1H, m), 3,79 (3H, s), 3,73-3,68 (1H, m), 3,59 (3H, s), 3,55 (3H, s), 3,30-3,10 (4H, m), 2,91-2,71 (6H, m), 2,68-2,59 (2H, m), 2,57 (3H, s), 2,52 (3H, s).

13C NMR (125 MHz, CDCl$_3$): δ 156,5, 149,8, 147,5 (2C), 146,5 (2C), 144,5, 133,1, 132,4, 130,8 (2C), 127,9 (2C), 126,1, 125,3, 125,0, 122,5, 116,7 (2C), 112,5, 111,2, 111,1, 111,0, 110,9, 64,8, 64,7, 56,1, 55,7 (2C), 55,6, 55,5, 46,5, 46,3, 42,2, 42,1, 40,4, 40,3, 24,8, 24,9.

5.3.2.3 Optická otáčivost

$[\alpha]^D_{25} = 0^\circ$ (c = 0,1238; CHCl$_3$).
5.3.3 BV03: Berbidin

sumární vzorec: C_{23}H_{28}N_{2}O_{5}

\[\text{Obr. 21 Berbidin}\]

5.3.3.1 MS analýza

MS (ESI): \(m/z\) (%) = [M+Na]⁺ 435 (21), [M+H]⁺ 413 (76), 384 (14), 370 (100), 338 (13), 313 (50).

5.3.3.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7,19 (1H, s, H8), 6,72 (1H, s, H5), 6,59 (1H, s, H5´), 4,41 (1H, dd, \(J = 16,0, 3,9\) Hz, H1´), 3,96 (3H, s, C6 - OCH\(_3\)), 3,85 (3H, s, C6´ - OCH\(_3\)), 3,83 (1H, dd, \(J = 16,0, 5,0\) Hz, H1´), 3,68 (3H, s, C7´ - OCH\(_3\)), 3,60-3,46 (3H, m, H3, H3, H3´), 3,45-3,36 (1H, m, H4´), 3,29-3,20 (1H, m, H3´), 3,07 (3H, s, N2 - CH\(_3\)), 3,05-2,88 (3H, m, H4, H4, H4´), 2,83 (3H, d, \(J = 5,0\) Hz, N2´ - CH\(_3\)),

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 164,2 (C1), 154,0 (C6´), 151,7 (C6), 145,8 (C7), 145,4 (C8´), 141,2 (C7´), 133,8 (C4a), 125,6 (C4a´), 122,0 (C8a), 113,0 (C8a´), 113,6 (C8), 110,5 (C5), 108,9 (C5´), 61,0 (C7´ - OCH\(_3\)), 56,2 (C6 - OCH\(_3\)), 56,1 (C6´ - OCH\(_3\)), 50,0 (C3´), 49,4 (C1´), 48,2 (C3), 40,9 (N2´ - CH\(_3\)), 35,0 (N2 - CH\(_3\)), 27,6 (C4), 23,7 (C4´).

5.3.3.3 Optická otáčivost

absence chirálního atomu (optická otáčivost nebyla měřena).
5.3.4 BV04: Berbanin

sumární vzorec C_{22}H_{22}N_{2}O_{5}

5.3.4.1 MS analýza

MS (ESI): \(m/z \) (%) = [M+H]^+ 395 (100), 349 (26).
MS (EI, 70 eV): \(m/z \) (%) = 394 [M]+ (100), 393 (35), 379 (7), 363 (9), 351 (8), 322 (8), 308 (8), 205 (33), 204 (25), 188 (53), 176 (10).
HRMS-TOF MS EI: \(m/z \) [M]+ teoreticky pro C_{22}H_{22}N_{2}O_{5}: 394,1529; experimentálně: 394,1533.

5.3.4.2 NMR analýza

\(^1\)H NMR (500 Hz, CDCl\(_3\)): \(\delta \) 9,23 (1H, d, \(J = 5,64 \) Hz, H1´), 8,35 – 8,31 (1H, m, H3´), 7,96 (1H d, \(J = 6,5 \) Hz, H4´), 7,20 (1H, s, H5´), 7,19 (1H, s, H8), 6,81 (1H, s, H5), 4,14 (3H, s, C6´ - OCH\(_3\)), 4,01 (3H, s, C6 - OCH\(_3\)), 3,93 (3H, s, C7´ - OCH\(_3\)), 3,54 (2H, t, \(J = 6,8 \) Hz, H3), 3,04 (3H, s, N - CH\(_3\)), 2,99 (2H, t, \(J = 6,8 \) Hz, H4).

\(^13\)C NMR (125 MHz, CDCl\(_3\)): \(\delta \) 163,9 (C1), 162,0 (C6´), 151,6 (C6), 146,2 (C7), 144,8 (C7´), 143,5 (C8´), 139,1 (C1´), 137,0 (C4a´), 135,0 (C4a), 130,8 (C3´), 122,5 (C4´), 122,1 (C8a), 119,3 (C8a´), 114,8 (C8), 110,7 (C5), 102,9 (C5´), 61,4 (C7´ - OCH\(_3\)), 57,1 (C6´ - OCH\(_3\)), 56,4 (C6 - OCH\(_3\)), 48,1 (C3), 35,0 (N2 - CH\(_3\)), 27,6 (C4).

5.3.4.3 Optická otáčivost

absence chirálního atomu (optická otáčivost nebyla měřena).
5.3.5 BV05: (+)-Bersavin

sumární vzorec C_{42}H_{51}N_{3}O_{6}

Obr. 23 (+)-Bersavin

5.3.5.1 MS analýza

MS (ESI): \(m/z \) (%) = [M+H]^+ 694 (58), 621 (100), 578 (12), 348 (25), 311 (6).

HRMS-Q-TOF MS (ESI): \(m/z \) [M+H]^+ teoreticky pro C_{42}H_{52}N_{3}O_{6}: 694,3856; experimentálně: 694,3858.

5.3.5.2 NMR analýza

\(^1\)H NMR (500 MHz, CD_{3}OD): \(\delta \) 7,35 (1H, dd, \(J = 8,2, 1,9 \) Hz, H10’), 7,08 (1H, dd, \(J = 8,2, 2,2 \) Hz, H11’), 6,66 (1H, s, H5’), 6,56 (1H, d, \(J = 1,3 \) Hz, H14), 6,51(1H, dd, \(J = 8,4, 2,2 \) Hz, H13’), 6,40-6,37 (3H, m, H14’, H10, H5), 5,98 (1H, brs, H8’), 4,00-3,92 (1H, m, H1’), 3,90 (1H, d, \(J = 9,2 \) Hz, H1), 3,83 (2H, d, \(J = 8,7 \) Hz, H15), 3,72 (3H, s, C6 - OCH₃), 3,56 (3H, s, C6’ - OCH₃), 3,49-3,40 (1H, m, H3’), 3,28-3,22 (2H, m, H3, H9’), 3,09 (3H, s, C7 - OCH₃), 3,01-2,84 (2H, m, H9, H4’), 2,94-2,81 (4H, m, H4, H3’, H4’, H9’), 2,75-2,70 (1H, m, H3), 2,71 (4H, q, \(J = 7,3 \) Hz, H17), 2,62-2,56 (1H, m, H9), 2,55 (3H, s, N2’ - CH₃), 2,54-2,45 (1H, m, H4), 2,18 (3H, s, N2 - CH₃), 1,16 (6H, t, \(J = 7,3 \) Hz, H18).

\(^{13}\)C NMR (125 MHz, CD_{3}OD): \(\delta \) 156,3 (C12’), 153,5 (C6), 151,3 (C6’), 149,6 (C11), 149,3 (C8), 146,8 (C12), 145,0 (C7’), 138,4 (C7), 136,2 (C9a’), 134,0 (C9a), 133,4 (C14’), 131,4 (C10’), 130,5 (C4a), 129,9 (C4a’), 128,8 (C8a’), 124,5 (C14), 123,2 (C13), 122,5 (C13’), 122,3 (C11’), 121,6 (C8a), 121,1 (C8’), 116,5 (C10), 112,5 (C5’), 107,0 (C5), 64,4 (C1’), 63,4 (C1), 61,0 (C7 - OCH₃), 60,1 (C7’ - OCH₃),
57,2 (C15), 56,3 (C6 - OCH₃), 55,9 (C6' - OCH₃), 47,6 (2C17), 46,1 (C3'), 45,5 (C3), 42,6 (N2' - CH₃), 43,1 (N2 - CH₃), 38,8 (C9), 37,3 (C9'), 26,1 (C4'), 24,9 (C4), 11,5 (2C18).

5.3.5.3 Optická otáčivost

\[[\alpha]^D_{25} = +101,2^\circ \ (c = 0,1344; \text{CHCl}_3). \]

5.3.6 BV07: (+)-Berbamin

sumární vzorec C₃₇H₄₀N₂O₆

Obr. 24 (+)-Berbamin

5.3.6.1 MS analýza

MS (ESI): \(m/z \) (%) = \([M+H]^+\) 609 (100), 578 (15), 566 (14), 381 (7), 305 (38).

5.3.6.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl₃): \(\delta \) 7,29 (1H, dd, \(J = 8,1, 2,2 \) Hz, H10'), 7,10 (1H, dd, \(J = 8,1, 2,5 \) Hz, H11'), 6,82 (1H, d, \(J = 8,1 \) Hz, H13), 6,76 (1H, dd, \(J = 8,1, 1,3 \) Hz, H14), 6,61 (1H, dd, \(J = 8,1, 2,5 \) Hz, H13'), 6,51 (1H, s, H5'), 6,44 (1H, brd, \(J = 8,1 \) Hz, H14'), 6,40 (1H, brs, H10), 6,27 (1H, s, H5), 5,98 (1H, brs, H8'), 3,91-3,83 (2H, m, H1, H1'), 3,75 (3H, s, C6 - OCH₃), 3,58 (3H, s, C6' - OCH₃), 3,50-3,39 (1H, m, H3'), 3,30-3,24 (2H, m, H3, H9'), 3,11 (3H, s, C7 - OCH₃), 3,02 (1H, d, \(J = 13,8 \) Hz, H9), 2,96-2,88 (2H, m, H9', H4'), 2,88-2,76 (4H, m, H3, H4, H3', H4'), 2,63-2,58 (1H, m, H9), 2,58 (3H, s, N2' - CH₃), 2,46-2,38 (1H, m, H4), 2,26 (3H, s, N2 - CH₃).

\(^{13}\)C NMR (125 MHz, CDCl₃): \(\delta \) 153,6 (C12'), 151,8 (C6), 149,8 (C6'), 148,1 (C8), 147,4 (C11), 143,6 (C12), 143,5 (C7'), 136,9 (C7), 135,7 (C9a'), 134,0 (C9a), 132,2 (C14'), 130,3 (C10'), 129,4 (C4a), 128,8 (C4a'), 127,4 (C8a'), 123,5 (C14), 121,7 (C13'), 121,4 (C11'), 120,6 (C8a), 119,8 (C8'), 115,1 (C10), 114,5 (C13), 111,2 (C5'), 105,4 (C5), 63,7 (C1'), 62,2 (C1), 60,5 (C7 - OCH₃),
55,7 (C6 - OCH₃), 55,5 (C6’ - OCH₃), 46,0 (C3’), 45,1 (C3), 42,8 (N2’ - CH₃), 42,8 (N2 - CH₃), 38,5 (C9), 37,8 (C9’), 25,5 (C4’), 23,8 (C4).

5.3.6.3 Optická otáčivost

\[\alpha]^{25}_D = +43,6^\circ \ (c = 0,101; \text{CHCl}_3).

5.3.7 BV08: (+)-Aromolin

sumární vzorec C₃₆H₃₈N₂O₆

![Obr. 25 (+)-Aromolin](image)

5.3.7.1 MS analýza

MS (ESI): m/z (%) = [M+H]^+ 595 (100), 564 (16), 552 (21), 521 (9), 298 (41).

5.3.7.2 NMR analýza

\(^1\text{H NMR (500 MHz, CDCl}_3\): } \delta 7,39 (1H, dd, J = 8,3, 1,4 Hz, H10’), 6,92-6,88 (2H, m, H11´, H14’), 6,78 (1H, d, J = 8,2 Hz, H13), 6,73 (1H, dd, J = 8,1, 1,1 Hz, H14), 6,66 (1H, s, H8), 6,41 (1H, dd, J = 7,1, 1,6 Hz, H13’), 6,35 (1H, s, H5), 6,30 (1H, s, H5’), 5,62 (1H, bs, H10), 4,18 (1H, d, J = 6,2 Hz, H1’), 3,80 (3H, s, C6’ - OCH₃), 3,58 (3H, s, C6 - OCH₃), 3,58-3,55 (1H, m, H1), 3,28 (1H, d, J = 12,8 Hz, H9’), 3,25-3,17 (1H, d, J = 12,5 Hz, H9’), 2,89 (1H, dd, J = 12,5, 7,3 Hz, H3’), 2,82-2,74 (3H, m, H4, H4’), 2,67 (1H, dd, J = 16,8, 5,6 Hz, H4’), 2,53 (3H, s, N2 - CH₃), 2,52 (3H, s, N2’ - CH₃), 1,24-1,40 (3H, m, H4, H4, H3).

\(^13\text{C NMR (125 MHz, CDCl}_3\): } \delta 152,9 (C12’), 148,5 (C6), 146,8 (C11), 146,5 (C6’), 144,0 (C7), 143,6 (C12), 141,7 (C8’), 138,4 (C9a’), 133,6 (C7’), 131,5 (C14’), 130,6 (C9a), 130,5 (C4a), 128,8 (C10’), 128,7 (C8a), 124,5 (C14), 122,9 (C4a’), 122,6 (C8a’), 121,6 (C11’), 120,7 (C13’), 117,4 (C8), 116,9 (C10), 114,5 (C13), 111,3 (C5), 104,7 (C5’), 64,4 (C1), 60,7 (C1’), 56,1 (C6’ - OCH₃),
55,3 (C6- OCH3), 50,8 (C3), 45,0 (C3'), 43,5 (N2 - CH3), 41,7 (N2' - CH3), 39,7 (C9'), 38,4 (C9), 28,2 (C4), 24,4 (C4').

5.3.7.3 Optická otáčivost

\([\alpha]_D^{25} = +258,5^\circ\) (c = 0,0944; CHCl3).

5.3.8 BV06: (-)-Muraricin

sumární vzorec \(C_{30}H_{36}N_2O_5\)

![Obr. 26] (-)-Muraricin

5.3.8.1 MS analýza

MS (ESI): \(m/z\) (%) = \([M+H]^+\) 505 (49), 413 (12), 253 (100).

HRMS-Q-TOF MS (ESI): \(m/z\) \([M+H]^+\) teoreticky pro \(C_{30}H_{37}N_2O_5\): 505,2702; experimentálně: 505,2707.

5.3.8.2 NMR analýza

\(^1H\) NMR (500 Hz, CDCl3): \(\delta\) 6,66 (1H, s, H5), 6,61 (2H, d, \(J = 8,2\) Hz, H11), 6,54 (2H, d, \(J = 8,2\) Hz, H12), 6,47 (1H, s, H5'), 4,86 (1H, s, H8), 3,89 (3H, s, C6 - OCH3), 3,80 (3H, s, C6' - OCH3), 3,78 (1H, d, \(J = 15,0\) Hz, H1'), 3,61 (1H, dd, \(J = 11,4\), 3,1 Hz, H1), 3,42-3,39 (1H, m, H3), 3,39 (3H, s, C7' - OCH3), 3,37-3,29 (2H, m, H4', H9), 3,30 (1H, d, \(J = 15,0\) Hz, H1'), 3,17-3,12 (1H, m, H3'), 3,05-2,99 (2H, m, H3, H4), 2,80 (1H, ddd, \(J = 14,8\), 5,7, 0,7 Hz, H4), 2,72 (1H, ddd, \(J = 16,1\), 3,5, 1,3 Hz, H4'), 2,61 (3H, s, N2' - CH3), 2,60 (3H, s, N2 - CH3), 2,52 (1H, dd, \(J = 2,5\), 11,4 Hz, H9), 2,47 (1H, ddd, \(J =15,3\), 11,7, 4,2 Hz, H3').

\(^13C\) NMR (125 MHz, CDCl3): \(\delta\) 156,2 (C13), 152,1 (C6'), 147,5 (C6), 144,2 (C7), 144,1 (C8'), 138,8 (C7'), 130,8 (C11), 128,9 (C10), 128,7 (C4a'), 125,6 (C8a), 125,3 (C4a), 118,2 (C8a'), 117,9 (C12), 115,1 (C8), 111,8 (C5), 108,1 (C5'), 64,7 (C1), 60,0 (C7' - OCH3), 56,1 (C6 - OCH3), 55,9 (C6' -
OCH₃), 52,5 (C1´), 52,0 (C3´), 45,0 (N2´ - CH₃), 44,9 (C3), 41,2 (N2 - CH₃), 39,3 (C9), 27,7 (C4´), 24,1 (C4).

5.3.8.3 Optická otáčivost

\[\alpha_{D}^{25} = -17,4^\circ \ (c = 0,115; \text{CHCl}_3). \]

5.3.9 BV09: (-)-Berkristin

sumární vzorec C₄₃H₄₉N₃O₈

Obr. 27 (-)-Berkristin

5.3.9.1 MS analýza

MS (ESI): \(m/z \) (%): \[\text{[M+Na]}^+ 758 \ (7), \text{[M+H]}^+ \ 736 \ (100), 679 \ (20), 637 \ (22), 369 \ (23). \]

HRMS-Q-TOF MS (ESI): \(m/z \) \[\text{[M+H]}^+ \text{ teoreticky pro C}_{43}\text{H}_{50}\text{N}_{3}\text{O}_{8}: 736,3598; \text{experimentálně: 736,3605}. \]

5.3.9.2 NMR analýza

\(^1\)H NMR (500 MHz, CDCl₃): \(\delta \) 7,25 (1H, s, H8), 7,09 (2H, d, \(J = 8,6 \) Hz, H10´), 7,06-7,00 (1H, m, H14), 6,97-6,95 (1H, m, H13), 6,95-6,92 (1H, m, H10), 6,80 (2H, d, \(J = 8,6 \) Hz, H11´), 6,69 (1H, s, H5), 6,52 (1H, s, H5´), 4,05 (1H, dd, \(J = 11,2, 3,0 \) Hz, H2´´), 3,91 (3H, s, C6´ - OCH₃), 3,87 (1H, dd, \(J = 8,7, 4,1 \) Hz, H1´), 3,83 (3H, s, C6´ - OCH₃), 3,60 (3H, s, C7´ - OCH₃), 3,52-3,47 (2H, m, H3), 3,42-3,34 (1H, m, H3´), 3,04 (3H, s, N2 - CH₃), 3,00-2,83 (6H, m, H4, H4, H3´, H4´, H9´, H9´), 2,54-2,48 (1H, m, H4´), 2,42-2,43 (3H, m, H3´´, H3´´, H5´´), 2,32 (3H, s, N2´ - CH₃), 2,41 (1H, d, \(J = 13,5 \) Hz, H5´´), 1,26 (3H, s, H7´´), 1,14 (3H, s, H7´´).
13C NMR (125 MHz, CDCl$_3$): δ 209,5 (C4´´), 164,4 (C1), 155,1 (C12´), 152,2 (C6´), 151,6 (C6), 147,4 (C12), 146,5 (C7), 145,7 (C8´), 143,7 (C11), 139,8 (C7´), 135,5 (C9a´), 135,1 (C9a), 132,9 (C4a), 130,6 (2C10´), 129,4 (C4a´), 122,8 (C8a´), 122,6 (C14), 122,0 (C8a), 117,6 (C10), 117,1 (2C11´), 116,4 (C13), 114,2 (C8), 110,2 (C5), 109,1 (C5´), 60,7 (C7´ - OCH$_3$), 60,2 (C1´), 56,1 (C6 - OCH$_3$), 55,9 (C6´ - OCH$_3$), 55,4 (C2´´), 54,0 (C5´´), 53,9 (C6´´), 49,8 (C3´´), 48,2 (C3), 44,0 (C3´), 41,9 (N2´ - CH$_3$), 40,1 (C9´), 35,0 (N2 - CH$_3$), 32,0 (C7´´), 27,6 (C4), 25,3 (C8´´), 22,5 (C4´).

5.3.9.3 Optická otáčivost

$[\alpha]_{D}^{25} = -18,7^\circ$ (c = 0,235; CHCl$_3$).

5.3.10 BV10: (-)-Verfillin

sumární vzorec C$_{42}$H$_{47}$N$_3$O$_8$

Obr. 28 (-)-Verfillin

5.3.10.1 MS analýza

MS (ESI): m/z (%) = [M+Na]$^+$ 754 (16), [M+H]$^+$ 722 (100), 665 (19), 623 (14), 361 (49).

HRMS-Q-TOF MS (ESI): m/z [M+H]$^+$ teoreticky pro C$_{42}$H$_{48}$N$_3$O$_8$: 722,3441; experimentálně: 722,3432.

5.3.10.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 7,26 (1H, s, H8), 7,11 (2H, d, J = 8,4 Hz, H10´), 7,07-7,03 (1H, m, H14), 7,01-6,97 (1H, m, H13), 6,96-6,94 (1H, m, H10), 6,82 (2H, d, J = 8,4 Hz, H11´), 6,72 (1H, s, H5), 6,51 (1H, s, H5´), 4,06 (1H, dd, J = 11,3, 3,3 Hz, H2´´), 3,97 (3H, s, C6 - OCH$_3$), 3,87 (3H,
s, C6' - OCH₃), 3,80 (1H, dd, J = 9,6, 2,5 Hz, H1’), 3,52-3,47 (2H, m, H3), 3,41-3,34 (1H, m, H3’), 3,04 (3H, s, N2 - CH₃), 2,99-2,83 (6H, m, H4, H4’, H3’, H4’, H9’, H9’), 2,49-2,31 (4H, m, H4’, H3’’, H3’’, H5’’), 2,29 (3H, s, N2’ - CH₃), 2,21 (1H, brd, J = 13,3 Hz, H5’’), 1,26 (3H, s, H7’’), 1,13 (3H, s, H8’’).

¹³C NMR (125 MHz, CDCl₃): δ 209,5 (C4’’), 164,4 (C1), 154,8 (C12’), 151,3 (C6), 147,2 (C12), 146,6 (C6’), 145,7 (C7), 143,7 (C11), 138,5 (C8’), 136,5 (C7’), 136,0 (C9a’), 135,3 (C9a), 132,9 (C4a), 130,6 (2C10’), 125,2 (C4a’), 123,5 (C8a’), 122,6 (C14), 122,1 (C8a), 117,4 (C10), 117,2 (2C11’), 116,3 (C13), 113,2 (C8), 110,2 (C5), 108,1 (C5’), 60,2 (C1’), 56,1 (C6 - OCH₃), 56,1 (C6’ - OCH₃), 55,5 (C2’’), 54,1 (C5’’), 53,9 (C6’’’), 49,9 (C3’’), 48,2 (C3), 44,0 (C3’), 42,0 (N2’ - CH₃), 40,3 (C9’), 35,0 (N2 - CH₃), 32,0 (C7’’), 27,6 (C4), 25,4 (C8’’), 22,2 (C4’).

5.3.10.3 Optická otáčivost

[α]D²⁵ = -31,6° (c = 0,1267; CHCl₃).

5.3.11 BV11: (+)-Obamegin

sumární vzorec C₃₆H₃₈N₂O₆

Obr. 29 (+)-Obamegin

5.3.11.1 MS analýza

MS (ESI): m/z (%) = [M+H]+ 595 (100), 564 (14), 552 (15), 532 (7), 367 (16), 298 (5).

5.3.11.2 NMR analýza

¹H NMR (500 MHz, CDCl₃): δ 7,32 (1H, dd, J = 8,3, 2,2 Hz, H10’), 7,07 (1H, dd, J = 8,3, 2,5 Hz, H11’), 6,79 (1H, dd, J = 8,3, 2,5 Hz, H13’), 6,78 (1H, d, J = 8,1 Hz, H13), 6,73 (1H, s, H5’), 6,67 (1H, dd, J = 8,1, 1,3 Hz, H14), 6,44 (1H, dd, J = 8,1, 2,2 Hz, H14’), 6,35 (1H, s, H5), 6,22 (1H, d,
$J = 1,3 \text{ Hz, H10}$, 6,05 (1H, s, H8$^\prime$), 4,05 (1H, d, $J = 10,5 \text{ Hz, H1}$), 3,89 (3H, s, C6$^\prime$ - OCH$_3$), 3,78 (3H, s, C6 - OCH$_3$), 3,70 (1H, dd, $J = 10,5$, 4,4 Hz, H1$^\prime$), 3,48-3,41 (1H, m, H3$^\prime$), 3,34-3,29 (1H, m, H9$^\prime$), 3,29-3,24 (1H, m, H3), 2,97-2,92 (3H, m, H9, H4$^\prime$, H4$^\prime$), 2,88-2,77 (4H, m, H3, H4, H3$^\prime$, H9$^\prime$), 2,68 (1H, dd, $J = 15,2$, 10,8 Hz, H9), 2,52 (3H, s, N2$^\prime$ - CH$_3$), 2,46-2,41 (1H, m, H4), 2,31 (3H, s, N2 - CH$_3$).

13C NMR (125 MHz, CDCl$_3$): δ 154,3 (C12$^\prime$), 149,4 (C6$^\prime$), 148,3 (C11), 147,0 (C6), 143,8 (C8), 143,5 (C7$^\prime$), 143,4 (C12), 136,1 (C7), 135,3 (C9a$^\prime$), 132,6 (C9a), 132,1 (C14$^\prime$), 130,5 (C4a$^\prime$), 130,3 (C10$^\prime$), 129,7 (C8a$^\prime$), 124,2 (C4a), 122,8 (C14), 122,7 (C13$^\prime$), 122,5 (C11$^\prime$), 121,8 (C8a), 121,4 (C8$^\prime$), 115,1 (C13), 114,5 (C10), 112,3 (C5$^\prime$), 107,3 (C5), 65,0 (C1$^\prime$), 60,7 (C1), 56,1 (C6$^\prime$ - OCH$_3$), 56,0 (C6 - OCH$_3$), 45,9 (C3$^\prime$), 44,3 (C3), 42,9 (N2$^\prime$ - CH$_3$), 42,5 (N2 - CH$_3$), 38,9 (C9), 38,3 (C9$^\prime$), 25,2 (C4$^\prime$), 23,0 (C4).

5.3.11.3 Optická otáčivost
$[\alpha]_D^{25} = +221,1^\circ$ (c = 0,0814; CHCl$_3$).

5.3.12 BV12: (+)-Chenabinol

sumární vzorec C$_{37}$H$_{42}$N$_2$O$_7$

![Image of (+)-Chenabinol structure]

Obr. 30 (+)-Chenabinol

5.3.12.1 MS analýza

MS (ESI): m/z (%) = [M+H]$^+$ 627 (100), 314 (9).

HRMS-Q-TOF MS (ESI): m/z [M+H]$^+$ teoreticky pro C$_{37}$H$_{43}$N$_2$O$_7$: 627,307; experimentálně: 627,3068.
5.3.12.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 7,00 (1H, d, $J = 7,8$ Hz, H14), 6,95 (1H, d, $J = 7,8$ Hz, H13), 6,87 (1H, s, H10), 6,77 (2H, d, $J = 8,4$ Hz, H10'), 6,70(2H, d, $J = 8,4$ Hz, H11'), 6,66 (1H, s, H5'), 6,45 (1H, s, H5), 5,47 (1H, s, H8'), 4,49 (2H, s, CH$_2$OH), 3,89 (3H, s, C6' - OCH$_3$), 3,76 (3H, s, C6 - OCH$_3$), 3,55 (1H, d, $J = 15,6$ Hz, H1), 3,49 (1H, dd, $J = 9,2$, 2,5 Hz, H1'), 3,38 (1H, d, $J = 15,6$ Hz, H1), 3,34 (3H, s, C7 - OCH$_3$), 3,28-3,20 (1H, m, H3'), 3,10 (1H, dd, $J = 12,7$, 2,5 Hz, H9'), 3,05-2,96 (1H, m, H4), 2,95-2,78 (3H, m, H3, H3', H4'), 2,78-2,66 (2H, m, H4, H4'), 2,61-2,51 (2H, m, H3, H9'), 2,47 (3H, s, N2' - CH$_3$), 2,45 (3H, s, N2 - CH$_3$).

13C NMR (125 MHz, CDCl$_3$): δ 156,2 (C12'), 152,1 (C6), 149,1 (C12), 148,3 (C6'), 146,4 (C8), 145,3 (C7'), 143,8 (C9a), 138,8 (C7), 133,1 (C11), 132,9 (C9a'), 131,0 (2C10'), 129,0 (C4a), 128,0 (C8a'), 127,1 (C4a'), 124,0 (C14), 119,7 (C10), 119,6 (C8a), 118,0 (C13), 116,5 (2C11'), 116,2 (C8'), 112,1 (C5'), 108,2 (C5), 64,6 (CH$_2$OH), 64,5 (C1'), 60,1 (C7 - OCH$_3$), 56,0 (C6' - OCH$_3$), 55,9 (C6 - OCH$_3$), 51,8 (C1), 51,7 (C3), 45,8 (C3'), 44,9 (N2 - CH$_3$), 41,9 (N2' - CH$_3$), 39,7 (C9'), 27,4 (C4), 25,0 (C4').

5.3.12.3 Optická otáčivost

$[\alpha]_D^{25}$ = +57,3° (c = 0,1186; CHCl$_3$).

5.3.13 BV13: (+)-Berbostrejdin

sumární vzorec C$_{37}$H$_{43}$N$_2$O$_7$

![Obr. 31 (+:Berbostrejdin)](image)

5.3.13.1 MS analýza

MS (ESI): m/z (%) = [M+H]$^+$ 627 (100), 314 (96).
HRMS-Q-TOF MS (ESI): m/z [M+H]$^+$ teoreticky pro C$_{37}$H$_{43}$N$_2$O$_7$: 627,307; experimentálně: 627,3065.
5.3.13.2 NMR analýza

1H NMR (500 MHz, CDCl$_3$): δ 6,83-6,80 (3H, m, H13, H14, H13'), 6,74 (1H, brs, H10), 6,70 (1H, brs, H10'), 6,65 (1H, dd, $J = 8,2, 1,8$ Hz, H14'), 6,50 (1H, s, H5), 6,48 (1H, s, H5'), 6,28 (1H, s, H8), 6,26 (1H, s, H8'), 3,80 (6H, s, C6 - OCH$_3$, C6' - OCH$_3$), 3,78 (3H, s, C12 - OCH$_3$), 3,74-3,68 (2H, m, H1, H1'), 3,17-3,05 (4H, m, H3, H9, H3', H9'), 2,82-2,73 (6H, m, H3, H4, H9, H3', H4', H9'), 2,60-2,53 (2H, m, H4, H4'), 2,47 (3H, s, N2 - CH$_3$), 2,45 (3H, s, N2' - CH$_3$).

13C NMR (125 MHz, CDCl$_3$): δ 148,8 (C12), 145,9 (C12'), 145,8 (C6), 145,7 (C6'), 145,0 (C11), 144,2 (C11'), 143,8 (C7), 143,7 (C7'), 132,3 (C9a), 131,1 (C9a'), 128,6 (C8a'), 128,5 (C8a), 125,4 (C14), 125,3 (C14'), 124,3 (C4a), 124,3 (C4a'), 121,2 (C10), 119,8 (C10'), 116,0 (C13'), 114,4 (C8), 114,2 (C8'), 112,4 (C13), 110,8 (C5), 110,7 (C5'), 64,4 (C1), 64,4 (C1'), 55,9 (C12 - OCH$_3$), 55,7 (C6 - OCH$_3$), 55,7 (C6' - OCH$_3$), 46,7 (C3), 46,7 (C3'), 42,0 (N2' - CH$_3$), 41,9 (N2 - CH$_3$), 40,7 (C9'), 40,3 (C9), 24,6 (C4), 24,5 (C4').

5.3.13.3 Optická otáčivost

$[\alpha]_D^{25} = +25,2^\circ$ (c = 0,127; CHCl$_3$).
Biologická aktivita izolovaných alkaloidů

Inhibiční aktivita izolovaných alkaloidů vůči lidským cholinesterasám a POP

<table>
<thead>
<tr>
<th>Látka (označení)</th>
<th>AChE</th>
<th>BuChE</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Aromolin (BV08)</td>
<td>103,11 ± 11,48</td>
<td>0,82 ± 0,10</td>
<td>189,1 ± 31,7</td>
</tr>
<tr>
<td>(+)-Berbamin (BV07)</td>
<td>581,82 ± 90,95</td>
<td>245,22 ± 47,59</td>
<td>> 1000</td>
</tr>
<tr>
<td>Berbanin (BV04)</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Berbidin (BV03)</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>(+)-Berbostrejdin (BV13)</td>
<td>65,94 ± 7,49</td>
<td>6,91 ± 1,02</td>
<td>n. a.</td>
</tr>
<tr>
<td>(-)-Berkristin (BV09)</td>
<td>175,70 ± 18,08</td>
<td>208,60 ± 25,13</td>
<td>n. a.</td>
</tr>
<tr>
<td>Berlambin (BV01)</td>
<td>62,44 ± 11,47</td>
<td>286,07 ± 35,60</td>
<td>157,4 ± 10,0</td>
</tr>
<tr>
<td>(+)-Bersavin (BV05)</td>
<td>68,23 ± 10,54</td>
<td>139,46 ± 13,21</td>
<td>67,3 ± 6,2</td>
</tr>
<tr>
<td>(+)-Boldin (PB07)</td>
<td>192,33 ± 25,89</td>
<td>458,13 ± 16,68</td>
<td>602,8 ± 87,2</td>
</tr>
<tr>
<td>(±)-BV02</td>
<td>55,29 ± 6,64</td>
<td>169,24 ± 23,39</td>
<td>n. a.</td>
</tr>
<tr>
<td>(-)-Glaziovin (PB05)</td>
<td>> 1000</td>
<td>517,35 ± 71,62</td>
<td>n. a.</td>
</tr>
<tr>
<td>HC01</td>
<td>637,22 ± 83,32</td>
<td>560,23 ± 76,90</td>
<td>n. a.</td>
</tr>
<tr>
<td>(±)-Hydrastin (HC03)</td>
<td>604,00 ± 18,01</td>
<td>381,62 ± 34,97</td>
<td>> 1000</td>
</tr>
<tr>
<td>(+)-Chenabinol (BV12)</td>
<td>246,88 ± 26,93</td>
<td>44,83 ± 5,39</td>
<td>340,8 ± 45,4</td>
</tr>
<tr>
<td>(+)-Isokorydin (PB01)*</td>
<td>> 1000</td>
<td>657,1</td>
<td>> 1000</td>
</tr>
<tr>
<td>(+)-Kanadalin (HC02)*</td>
<td>32,86 ± 4,94</td>
<td>105,42 ± 15,64</td>
<td>> 1000</td>
</tr>
<tr>
<td>(-)-Kanadin (HC04)</td>
<td>637,22 ± 83,32</td>
<td>560,23 ± 76,90</td>
<td>> 1000</td>
</tr>
<tr>
<td>(+)-Laurotetanin (PB11)</td>
<td>438,67 ± 28,22</td>
<td>444,64 ± 63,93</td>
<td>522,4 ± 38,3</td>
</tr>
<tr>
<td>(-)-Muraricin (BV06)</td>
<td>357,30 ± 30,95</td>
<td>67,51 ± 5,90</td>
<td>682,1 ± 110,5</td>
</tr>
<tr>
<td>(+)-Norisokorydin (PB02)</td>
<td>625,96 ± 61,07</td>
<td>421,93 ± 51,87</td>
<td>320,4 ± 25,9</td>
</tr>
<tr>
<td>(+)-N-Methylkoklaurin (PB09)</td>
<td>220,21 ± 22,30</td>
<td>15,02 ± 1,35</td>
<td>n. a.</td>
</tr>
<tr>
<td>(+)-N-Methyllaurotetanin (PB06)*</td>
<td>898,03 ± 10,52</td>
<td>> 1000</td>
<td>135,4 ± 23,2</td>
</tr>
<tr>
<td>(+)-Obamegin (BV11)</td>
<td>97,42 ± 3,37</td>
<td>140,9 ± 3,05</td>
<td>> 1000</td>
</tr>
<tr>
<td>Látka (označení)</td>
<td>AChE</td>
<td>BuChE</td>
<td>POP</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>IC₅₀ [µM]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-)-Pallidin (PB10)</td>
<td>717,90 ± 78,33</td>
<td>220,14 ± 15,78</td>
<td>589,7 ± 54,1</td>
</tr>
<tr>
<td>(-)-Pronuciferin (PB03)</td>
<td>> 1000</td>
<td>850,10 ± 150,67</td>
<td>n. a.</td>
</tr>
<tr>
<td>(+)-Retikulin (PB08)*</td>
<td>509,05 ± 44,25</td>
<td>33,61 ± 3,04</td>
<td>392,3 ± 184,3</td>
</tr>
<tr>
<td>(-)-Sinoakutin (PB04)*</td>
<td>> 1000</td>
<td>> 1000</td>
<td>143,1 ± 25,4</td>
</tr>
<tr>
<td>(-)-Verfillin (BV10)</td>
<td>289,30 ± 30,01</td>
<td>180,55 ± 12,01</td>
<td>n. a.</td>
</tr>
</tbody>
</table>

Standardy

<table>
<thead>
<tr>
<th>Látka</th>
<th>AChE</th>
<th>BuChE</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)-Galanthamin</td>
<td>1,710 ± 0,065</td>
<td>42,30 ± 1,30</td>
<td>> 1000</td>
</tr>
<tr>
<td>(-)-Huperzin A</td>
<td>0,033 ± 0,001</td>
<td>>1000</td>
<td>> 1000</td>
</tr>
<tr>
<td>Berberin</td>
<td>0,705 ± 0,104</td>
<td>30,72 ± 3,49</td>
<td>142,3 ± 21,1</td>
</tr>
<tr>
<td>Z-Pro-prolinal</td>
<td>-</td>
<td>-</td>
<td>2,8 x 10⁻³ ± 2,2 x 10⁻³</td>
</tr>
</tbody>
</table>

n. a. – látka nebyla analyzována z důvodu izolace nedostatečného množství

Obr. 32 Závislost inhibice lidské BuChE na koncentraci (+)-aromolinu
5.4.2 Inhibiční aktivita (+)-aromolinu s použitím BuChE z koňského séra

![Graph](image)

\[y = 122143x + 0,9342 \]
\[R^2 = 0,9981 \]

Obr. 33 Závislost \(v_0/v_i \) na koncentraci (+)-aromolinu

\(v_0 \) – rychlost neinhibované reakce; \(v_i \) – rychlost inhibované reakce různým množstvím (+)-aromolinu

\(IC_{50} = 8,73 \pm 0,05 \, \mu M \)

5.4.3 Typu inhibice (+)-aromolinu BuChE z koňského séra

![Graph](image)

Obr. 34 Závislost rychlosti enzymové reakce na koncentraci (+)-aromolinu – linearizace podle Lineweaver-Burke
6. Diskuse

6.1 Výběr rostlinného druhu pro izolaci sekundárních metabolitů

Pro bližší studium cholinesterasové inhibiční aktivity sekundárních metabolitů rostlin alkaloidního typu byla vybrána vodilka kanadská (*Hydrastis canadensis* L.), boldovník vonný (*Peumus boldus* Mol.) a dřišťál obecný (*Berberis vulgaris* L.).

Cholinesterasová inhibiční aktivita alkaloidních extraktů z hlíz vodilky kanadské, listů boldovníku vonného a kůry kořenů dřišťálu obecného byla stanovena ve screeningu alkaloidních drog mimo rámec této práce. Pro screening cholinesterasové inhibiční aktivity byla použita upravená spektrofotometrická Ellmanova metoda, přičemž byly stanoveny IC₅₀ vůči lidské AChE i BuChE. Alkaloidní extrakty z vybraného rostlinného materiálu inhibovaly cholinesterasy viz Tab. 17.

Tab. 17 Aktivita alkaloidních extraktů vybraných drog

<table>
<thead>
<tr>
<th>Označení rostlinné drogy</th>
<th>AChE µg·ml⁻¹</th>
<th>BuChE µg·ml⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrastis canadensis L.</td>
<td>67,1 ± 11,3</td>
<td>78,9 ± 11,3</td>
</tr>
<tr>
<td>Peumus boldus Mol.</td>
<td>69,7 ± 11,2</td>
<td>46,9 ± 7,1</td>
</tr>
<tr>
<td>Berberis vulgaris L.</td>
<td>5,0 ± 4,2</td>
<td>0,7 ± 0,1</td>
</tr>
</tbody>
</table>

6.2 Izolace alkaloidů

Je známo, že berberin, kvarterní isochinolinový alkaloid a agens zasahující do patogeneze AD na různých úrovních [140-150], může mít vzhledem k přítomnosti kvarterního dusíku problém procházet přes biologické bariéry, čímž může být jeho biologická dostupnost omezena; u berberinu je prokázána nízká dostupnost z gastrointestinálního traktu [165,166], což vede k nutnosti aplikaci jiným než per os. Přestup přes HEB byl v poslední době diskutován, protože u pacientů s AD probíhá chronický zánět negativně ovlivňující funkce HEB a ovlivňující transport látek (v pozitivním i negativním smyslu) [167]. Z tohoto důvodu byla tato práce zaměřena na izolaci terciárních alkaloidů – u vysoce aktivních látek lze očekávat jejich
terapeutickou/toxickou aktivitu, nicméně díky nutnosti použití nižších účinných dávek i nižší periferní cholinomimetickou toxicitu.

6.2.1 Alkaloïdy izolované z *Hydrastis canadensis* L.

Z extraktu vodilky byl izolován jen omezený počet terciárních alkaloidů, většina byla izolována z vodilky již v minulosti (ftalidisochinolinový typ: hydrastin – směs enantiomerů, protoberberinový typ: (-)-kanadin a (+)-kanadalin) [72,75].

Alkaloidní látky 1-(6'-allyl-1',3'-methyleneoxybenzoyl)-3-chloro-5,6-dimethoxy-isochinolin (HC01) byla z vodilky izolována poprvé. Tento benzylosochinolinový alkaloid byl izolován již v minulosti z *Thalictrum foliolosum* DC. (Ranunculaceae) [168], triviální název v tomto patentu nebo jinde uveden nebyl. Ten zcela jisté, zda vznikl fotooxidací v roztoku chloroformu či je nativního původu.

Extrakt obsahoval převážně berberin a hydrastin, jak deklaroval výrobce – suchý extrakt získaný extrakcí kořenů vodilky (EtOH 70%; 4–6:1) s obsahem 50–7% hydrastinu, 14–18% sumárně hydrastinu a berberinu. Proto není izolace minoritních alkaloidů z tohoto typu komerčních extraktů optimální a je samozřejmě vhodnější získat kvalitní drogu.

6.2.2 Alkaloïdy izolované z *Peumus boldus* Mol.

Z *Peumus boldus* Mol. bylo izolováno celkem 11 alkaloidů 4 strukturních typů.

Alkaloidy (+)-boldin (PB07), (+)-isokorydin (PB01), (+)-N-methyllaurotetalin (PB06) [99], (+)-laurotetalin (PB11) [102] a (+)-norisokorydin (PB02) aporfinového typu, (-)-pronuciferin (PB03) proaporfinového typu, (-)-sinoakutin (PB04) morfinanového typu [100] a (+)-retikulin (PB08) [101] benzylosochinolinového typu byly již z boldovníku izolovány.

Alkaloidy (-)-pallidin (PB10) (homomorfinanového typu), (-)-glaziovin (PB05) (proaporfinového typu) a (+)-N-methylkoklaurin (PB09) (benzylosochinolinového typu), známé z jiných rostlinných taxonů, byly z *Peumus boldus* Mol. izolovány poprvé. (-)-Pallidin byl poprvé izolován z *Corydalis pallida* (Thunb.) Pers. (Papaveraceae) [169,170]. (-)-Glaziovin byl izolován z rostlinného materiálu již dříve, poprvé z *Ocotea glaziovii* Mez. (Lauraceae) [171], ale také z druhu *Berberis sibirica* Pall. [172]. (+)-N-Methylkoklaurin spolu s (+)-retikulinem jsou intermediáty při biosyntéze mnohých isochinolinových alkaloidů
(protoberberinového, aporfínového, benzofenantridinového a morfinanovanového typu), tudíž je jejich výskyt pravděpodobný alespoň ve stopovém množství v mnoha alkaloidních drogách [96].

Byl rovněž pozorován společný výskyt (+)-N-methyllaurotetaninu, (+)-laurotetaninu, (+)-boldinu, (-)-glaziovinu, (+)-retikulinu a (-)-pallidinu v Neolitsea konishii (Hayata) Kaneh. & Sasaki (Lauraceae) [173].

Během izolačních prací měly téměř všechny alkaloidy (kromě (-)-sinoakutinu, (+)-isokorydinu a (+)-N-methyllaurotetaninu) tendenci se rozkládat (hnědnout či fialově i při uchovávání v chladničce a pod argonem). Frakce s alkaloidním obsahem byly opakovaně přetřepávány při různém pH a chromatografovány pomocí preparativní TLC, nicméně nadále docházelo k rozkladu látek a výraznému poklesu množství jednotlivých frakcí. Frakce pravděpodobně obsahovaly látky urychlující rozklad, které nebylo možné oddělit běžnými fytochemickými metodami. Alkaloidně čisté entity, které byly zachovány v množství > 50 mg byly převedeny na chloridy ((-)-(+) pallidin, (-)-laurotetanin, (+)-norisokorydin), čímž se rozklad volných bazí zastavil. U dalších látek, izolovaných v malém množství, byla bezprostředně po identifikaci pomocí NMR a MS technik a jejich přěčištěním (opakováním posledního kroku separace) urychleně měřena cholinesterasová inhibiční aktivita.

6.2.3 Alkaloidy izolované z Berberis vulgaris L.

Z Berberis vulgaris L. bylo izolováno celkem 13 alkaloidů, přičemž 6 alkaloidů bisbenzylisochinolinového, 3 sekobenzylisochinolinového, 1 protoberberinového typu a 2 dimery isochinolinových monomerů a 1 dimer jednotek isochinolinového a benzylisochinolinového typu.

Alkaloidy berlambin (BV01) a (+)-berbamin (BV07) byly již z tohoto taxonu izolovány [128,129], (+)-aromolin (BV08), (+)-obamegin (BV11), berbidin a (+)-chenabinol jsou známé pro rod Berberis [134, 174].

Alkaloid BV02 (±)-1-[[4-[2-methoxy-5-[(1’,2’,3’,4’-tetrahydro-6’,7’-dimethoxy-2’-methylisochinolin-1’-yl)methyl]phenoxy]phenyl]methyl]-2-methyl-1,2,3,4-tetrahydro-6,7-dimethoxyisochinolin je bisbenzylisochinolinového typu s jedním etherovým můstkem (typ I), teoreticky je u něj možná existence čtyř enantiomerů (přítomnost dvou chirálních center), přičemž známé jsou 3: ((+)-(1S,1’S)-O-methylthalibrin, (--)-(1S,1’R)-O,O’-dimethylgrisabin
a (−)-(1R,1′R)-O-methylauricin); jeden enantiomer je nepopsaný a nepojmenovaný (1R,1′S). Vzhledem k zjištěné optické aktivitě (alkaloidní roztok nestáčel rovinu polarizovaného světla) a izolaci malého množství, které bylo použito na stanovení cholinesterasové inhibiční aktivity, nebylo možné zjistit přesné složení racemické směsi. O-Methylthalibrin byl již dříve byl izolován z Thalictrum minus L. [175], ale také syntetizován [176], O-methylauricin a O,O′-dimethylgrisabin byl izolován poprvé z B. amurensis Rupr. pod názvem O,O′,O″-trimethylimagnolin [177].

Berbanin (BV04), (+)-bersavin (BV05), (-)-muraricin (BV06), (-)-berkristin (BV09), (-)-verfillin (BV10) a (+)-berbostrejdin (BV13) jsou nové látky, které dosud nebyly syntetizovány ani izolovány z jiných přírodních zdrojů.

Bisbenzylisochinolinový alkaloid s dvěma etherovými můstkami (typ VIII), (+)-berbamin, byl z Berberis vulgaris L. již izolován, zatímco (+)-obamegin (alkaloid stejného typu) byl jako minoritní alkaloid izolován z B. boliviana Lechl. Bisbenzylisochinolinový alkaloid s dvěma etherovými můstkami (typ VI) (+)-aromolin byl jako minoritní alkaloid izolován z B. boliviana Lechl., B. laurina Billbg. a B. bumeliaefolia Schneid. Oba tyto minoritní alkaloidy byly izolovány rovněž z poddruhu B. vulgaris subsp. australis Boiss. [133].

(+)-Bersavin pravděpodobně vychází z (+)-berbaminu. Pro potvrzení, že se nejedná o artefakt vznikající interakci (+)-berbaminu s Et₂NH byl během preparativní TLC proveden experiment: 100 mg podfrakce H-1 (výtřepku A-1) bylo chromatografováno alternativní vyvíjecí směsí, kde byl nahrazen Et₂NH stejným množstvím Et₃N, kdy je jisté, že není možné, aby vznikl stejný artefakt. Takto izolovaný alkaloidní koncentrát byl porovnán s alkaloidem, již dříve izolovaným, pomocí MS (ESI) a TLC, kdy byly použity rozdílné vyvíjecí soustavy (S6 a S7) a potvrzena totožnost izolovaných alkaloidů. (+)-Bersavin je proto nativním alkaloidem dřišťálu.

(+)-Berbostrejdin představuje nový typ bisbenzylisochinolinového alkaloidu s jedním etherovým můstkem a spojením tail-to-tail. Velmi podobný je typ XXVII alkaloidů z Popowia pisocarpa (Blume) Endl. (Annonaceae) [178], nicméně můstek je etherový a nikoliv difenylový a na C-7 a C-7′ nejsou přítomny methoxyskupiny, ale hydroxyskupiny.

Sekobisbenzylisochinolinový alkaloid (+)-chenabinol (BV12) byl v minulosti získán redukcí chenabinu tetrahydridoboritanem sodným. (+)-Chenabin byl izolován z Berberis brandisiana Ahrendt a může být chápán jako metabolický produkt (+)-berbaminu vznikající
v rostlinně [174]. Je diskutabilní, zda se jedná o přirozený sekundární metabolit nebo artefakt vzniklý při zpracování extraktu.

Sekobisbenylisochinolinové alkaloidy (-)-berkristin (BV09) a (-)-verfillin (BV10) vykazují strukturní podobnost: hydroxyl C-7′ verfillinu je nahrazen u berkristinu methoxyskupinou. U těchto dvou látek není jisté, jda se jedná o nativní látky či artefakty vzniklé zpracováním extraktu a jednotlivých frakcí, ačkoliv není jasné, jakým způsobem by vznikaly. Pokud se jedná o nativní látky, pravděpodobně biosynteticky vychází verfillin z aromolinu a berkristin z oxyakanthinu (rovněž typu VI, který byl již z B. vulgaris L. izolován [128]).

Protoberberinový alkaloid berlambin (BV01) může být také artefakt vzniklý při procesu izolace a zůstává otázkou, zda nevzniká již v droze [179].

Isochinolinový dimer berbanin (BV04) izolovaný jako nová sloučenina je vlastně N-demethylovaný a dehydrogenovaný derivát berbidinu (BV03) (rovněž isochinolinový dimer), který byl již izolován z Berberis brandisiana Ahrendt [174]. Je diskutabilní, zda jsou oba produktem katabolismu berbaminu či vznikají pouze fotooxidací a Birchovou redukcí [180].

(-)-Muraricin (BV06) pravděpodobně rovněž vzniká buď katabolismem berbaminu (BV07) či jeho oxidací. Skeletem je podobný (+)-chenabinolu (BV12) se ztrátou 4-hydroxyfenylmethanolu (= p-hydroxybenzylalkoholu) a jedná se o dimer isochinolinového a benzylisochinolinového monomeru.

6.3 Biologická aktivita alkaloidů

Cholinesterasová inhibiční aktivita byla studována in vitro u 26 alkaloidů modifikovanou spektrofotometrickou Ellmanovou metodou. Jako zdroj AChE byl použit lyzát lidských erytrocytů, zdrojem BuChE byla lidská plazma. Výsledky byly vyjádřeny jako hodnoty IC\textsubscript{50} (μM), galanthamin, huperzin A a berberin byly použity jako pozitivní kontroly (viz Tab. 16). Huperzin A je selektivní inhibitor AChE (IC\textsubscript{50} = 0,033 ± 0,001 μM), vůči BuChE je inhibičně zcela neaktivní (IC\textsubscript{50} >1000 μM), galanthamin a berberin jsou silnými inhibitory AChE (s IC\textsubscript{50} hodnotami 1,710 ± 0,065 μM a 0,705 ± 0,104 μM) a výrazně inhibují i BuChE (IC\textsubscript{50} = 42,30 ± 1,30 μM a 30,72 ± 3,49 μM).
Inhibiční aktivita vůči POP byla studována in vitro u 18 alkaloidů spektrofotometrickou metodou, přičemž byla použita komerční lidská rekombinantní POP. Inhibiční potenciál měrených alkaloidů byl vyjádřen jako hodnota IC₅₀ (μM), Z-pro-prolinal a berberin byly použity jako pozitivní kontroly (viz Tab. 16). Z-Pro-prolinal je specifickým inhibitem POP s IC₅₀ = 2,8 x 10⁻³ ± 2,2 x 10⁻³ μM. Berberin, multitargetový agens přírodního původu, inhibuje POP s IC₅₀ = 142,3 ± 21,1 μM. Referenční látky pro cholinesterasovou aktivitu galanthamin a huperzin A byly vůči POP neaktivní (IC₅₀ > 1000).

U látek izolovaných v omezeném množství bohužel nebylo možné stanovit inhibiční aktivitu vůči POP nebo i cholinesterasám kvůli spotřebě veškerého izolovaného množství.

6.3.1 Biologická aktivita alkaloidů izolovaných z Hydrastis canadensis L.

Inhibiční aktivita 1-(6'-allyl-1',3'-methylenedioxybenzoyl)-3-chloro-5,6-dimethoxyisochinolinu (HC01), hydastinu (HC03) a (-)-kanadinu (HC04) byla vůči cholinesterasám stanovena poprvé, nicméně tyto látky nevykazovaly nijak zásadní inhibiční aktivitu (IC₅₀ > 1000 μM). (+)-kanadalin (HC02) vykazoval poměrně výraznou aktivitu vůči AChE a nižší vůči BuChE. V rámci pracovní skupiny byl již izolovaný z Corydalis cava (L.) Schweigg. & Koerte, u něhož byla stanovena inhibiční aktivita vůči lidským cholinesterasám a to IC₅₀ = 20,11 ± 1,19 μM vůči AChE a 85,21 ± 2,27 μM vůči BuChE [12], tudíž řádově výsledky odpovídají současnému měření (IC₅₀ = 32,86 ± 4,94 μM a 105,4 ± 15,64 μM).

Zajímavý je rozdíl v inhibiční aktivitě stereozomerů kanadinu, kdy (+) enantiomer izolovaný z Corydalis cava (L.) Schweigg. & Koerte je mnohem aktivnější vůči AChE [12] než (-) enantiomer z Hydrastis canadensis L.. Tento tetrahydroderivát berberinu je méně účinným inhibitem cholinesteras než samotný berberin, příčinou je pravděpodobně ztráta planárního uspořádání molekuly, nicméně vykazuje nižší cytotoxicitu a vyšší antioxydační účinek ve smyslu protekce peroxidace lipidů (testováno na buněčných liniích) [90].

Látky HC02 HC03 a HC04 jsou považovány za naprosto neúčinné inhibitory POP (IC₅₀ > 1000 μM). Alkaloid HC01 z důvodu spotřeby na identifikaci a stanovení inhibice cholinesteras testován nebyl.
6.3.2 Biologická aktivita alkaloidů izolovaných z *Peumus boldus* Mol.

(+)-Norisokorydin (PB02), (-)-pronuciferin (PB03), (-)-glaziovin (PB05), (+)-N-methylkoklaurin (PB09) a (-)-pallidin (PB10) byly testovány na inhibiční aktivitu vůči AChE poprvé; inhibiční aktivita (+)-norisokorydinu, (-)-pronuciferinu, (-)-glaziovinu, (+)-boldinu (PB07), (+)-N-methylkoklaurinu, (-)-pallidinu a (+)-laurotetaninu (PB11) vůči BuChE byla testována rovněž poprvé a inhibiční potenciál vůči POP nebyl u boldovníkových alkaloidů dosud testován vůbec.

Benzylisochinolinové alkaloidy (+)-retikulin (PB08) a (+)-N-methylkoklaurin (PB09) velmi výrazně inhibovaly BuChE. U (+)-N-methylkoklaurinu byla rovněž zjištěna blokáda dopaminergních stimulantů (vlastnost podobná neuroleptikům) [181]. Některé syntetické deriváty *N*-methylkoklaurinu (např. 7-O-benzyl-*N*-methylkoklaurin) jsou nekompetitivní inhibitory rekombinantních lidských α7, α4β2 a α4β4 nACh receptorů [182].

V rámci studie inhibice AChE vykazoval aporfinový alkaloid (+)-boldin (PB07) a benzylisochinolinový alkaloid (+)-*N*-methylkoklaurin (PB09) nízkou aktivitu s IC$_{50} = 192,3 \pm 25,9$ µM a IC$_{50} = 220,2 \pm 22,3$ µM. Ostatní alkaloidy [(+)-isokorydin, (+)-norisokorydin, (-)-pronuciferin, (-)-glaziovin, (+)-*N*-methyllaurotetanin (PB06), (-)-pallidin, a (-)-sinoakutin] byly považovány za neúčinné inhibitory. V některých případech se zde zjištěná data rozcházejí s literaturou; tento rozdíl je nejspíše spojen s některými faktory hodnocení.

Ve srovnání s nynějším stanovením u (+)-boldinu a (+)-laurotetaninu je v literatuře udávána výrazná inhibice AChE s IC$_{50} = 3,2 \pm 0,3$ µM a 8,57±1,4 µM respektive [111], což je hodnota o dva řády nižší, než byla stanovena v rámci této práce (IC$_{50} = 220,2 \pm 22,3$ µM a IC$_{50} = 438,7 \pm 28,2$ µM respektive), ale v literatuře nebylo možné dohledat, jaký zdroj AChE byl při stanovení použit (pravděpodobně byl zdrojem AChE elektrický úhoř). Tyto rozdíly v inhibiční aktivitě je však potřeba ještě prostudovat.

Ani jeden z enantiomerů sinoakutinu: (+)-salutaridin izolovaný z *Escholtzia californica* Cham. a (-)-sinoakutin z *Corydalis cava* (L.) Schweigg. & Koerte a *Peumus boldus* Mol. neinhibovaly cholinesterasy (IC$_{50} > 1000$ µM) [12,116].

Literatura uvádí, že retikulin a sinoakutin jsou prekurzory morfinu a rovněž parciální agonistí μ-opioidního receptoru aktivovaného G-proteinem [183], sinoakutin je zároveň parciálním agonistou GABA/benzodiazepinového receptorového komplexu [121] a vykazuje protizánětlivou aktivitu [122]. Retikulin rovněž blokuje dopaminové receptory [119,120].
(-)-Glaziovin vykazuje anxiolytické účinky a rovněž působí jako antidepressant CNS relativně bez vedlejších nežádoucích účinků [184,185]. V rámci účinků (-)-pallidinu na CNS je významný pouze sedativní efekt [170].

Inhibiční aktivita (+)-isokorydinu vůči AChE byla rovněž stanovena už v minulosti na AChE izolované mozkové kůry krys, avšak IC₅₀ > 50 µM [113] a látk byla pokládána za neaktivní, což koreluje i s nynějším stanovením aktivity. (+)-Isokorydin působí také jako imunostimulant prostřednictvím stimulace produkce cytokinu IL-2 a prozánětlivého IFN-γ [186].

(+)-N-methyllaurotetanin (NB06) je neúčinným inhibitorem cholinesteras, což bylo již publikováno dříve [116].

(+)-N-Methyllaurotetanin a (-)-sinoakutin (PB04) vykazovaly POP inhibiční aktivitu srovnatelnou se standardem berberinem, nicméně mnohem nižší než jakou vykazoval Z-pro-prolinal. U látek (-)-pronuciferinu (PB03), (-)-glaziovinu (PB05) a (+)-N-methylkoklaurinu (PB09) bohužel nebyla testována inhibiční aktivita vůči POP vzhledem k izolaci omezeného množství a spotřeby alkaloidů během identifikace a stanovení inhibice cholinesteras.

6.3.3 Biologická aktivita alkaloidů izolovaných z Berberis vulgaris L.

Alkaloidy (+)-berbamin (BV07), (+)-aromolin (BV08), (+)-obamegin (BV11) a (+)-chenabinol (BV12), již známé z rodu Berberis, byly testovány ve smyslu jejich inhibiční aktivity vůči cholinesterasám i POP poprvé. Byl zjištěn rozdíl ve stanovených aktivitách berlambinu (BV01) a berberinu (standard), u kterých byla testována aktivita vůči cholinesterasám již v minulosti. V rámci dříve stanovené aktivity berlambin inhiboval AChE s IC₅₀ = 10,5 ± 1,0 µM, BuChE s IC₅₀ = 117,5 ± 6,4 µM a berberin 2,7 ± 0,6 µM a 61,9 ± 3,1 µM [152], přičemž hodnoty jsou mírně nižší než hodnoty stanovené v rámci této práce (berlambin s IC₅₀ 62,4 ± 11,5 µM a 286,07 ± 35,60 µM vůči AChE a BuChE; berberin s IC₅₀ 0,705 ± 0,104 µM a 30,72 ± 3,49 µM) a řádově se neliší. Rozdíl lze vysvětlit původem cholinesteras; v dřívější práci byly použity AChE z elektrického úhoře a BuChE z koňského séra [152] a v této práci lidská erytrocytární AChE a sérová BuChE.
Ve věci inhibiční aktivity berberinu vůči POP byla zjištěna srovnatelná hodnota s předchozí studií (IC\textsubscript{50} 142,3 ± 21,1 µM nyní versus IC\textsubscript{50} 145 ± 19 µM [148]). Inhibiční účinnost berlambinu (BV01) byla srovnatelná s berberinem.

(+)-Berbamin (BV07) nevykazoval významnou inhibiční aktitu vůči AChE či POP, vůči BuChE vykazoval aktivitu nízkou s IC\textsubscript{50} 245,22 ± 47,59 µM. V minulosti byl však připraven jeho polycyklický derivát E6 berbamin = O-(4-nitrobenzoyl)-berbamin, který je účinným inhibitorem BuChE izolované z koňské plazmy i lidské BuChE s IC\textsubscript{50} 4,20 ± 0,21 µM a 2,14 ± 0,07 µM [139]. Berbamin vykazuje in vitro nízkou cytotoxicitou aktivitu vůči KB buňkám s IC\textsubscript{50} = 17,8 µM [187].

(+)-Aromolin (BV08) je v rámci této práce nejúčinějším inhibitorem BuChE s IC\textsubscript{50} = 0,82 ± 0,10 µM a rovněž nejúčinnějším inhibitorem BuChE vůbec (IC\textsubscript{50} fysotigminu 1,62 ± 0,06 µM [12]), proto byla sledována i inhibiční aktivita vůči komerční BuChE z koňského séra, kterou inhibuje s IC\textsubscript{50} = 8,73 ± 0,05 µM. IC\textsubscript{50} byla vypočtena z regresní rovnice (y = 2; rychlost reakce je snížena na polovinu). U této butyrylcholinesterasy bylo možné sledovat typ inhibice, která byla vyhodnocena jako smíšený typ. Smíšená (kompetitivní + nekompetitivní) inhibice je speciálním typem inhibice, kdy dochází k změně Michaelisovy konstanty i mezní rychlosti, ale mění se i jejich poměr. Další výhodou (+)-aromolinu je i POP inhibiční aktita srovnatelná s berberinem (IC\textsubscript{50} 189,1 ± 31,7 µM) a zanedbatelná in vitro cytotoxicita vůči KB buňkám [187].

Inhibiční aktita (+)-obameginu (BV11) nebyla obzvláště výrazná, cholinesterasy inhiboval středně (s IC\textsubscript{50} 97,42 ± 3,37 µM vůči AChE a IC\textsubscript{50} 140,9 ± 3,05 µM vůči BuChE), vůči POP nebyl účinný, ale také nevykazuje in vitro cytotoxicitu vůči KB buňčním liniím [187]. Vzhledem k tomu, že (+)-obamegin je účinnějším inhibitorem cholinesteras než (+)-berbamin (stejný strukturní typ alkaloidu), mohla by být inhibiční aktita jeho případně připraveného O-(4-nitrobenzoyl)-derivátu rovněž zvýšena, tak jako u (+)-berbaminu.

(+)-Chenabinol (BV12) inhiboval výrazným způsobem BuChE s IC\textsubscript{50} 44,83 ± 5,39 µM, AChE pouze slabě 246,88 ± 26,93 µM, stanovení inhibice POP bohužel provedeno nebylo z důvodu nedostatečného množství.

Mezi další inhibitory AChE patří látka (±)-BV02 (IC\textsubscript{50} 55,29 ± 6,64 µM), jež dosud nebyla sledována z pohledu inhibiční aktivity vůči cholinesterasám. Inhibiční aktity jednotlivých enantiomerů se mohou lišit (viz enantiomery kanadinu v 6.3.1), stanovení inhibice POP bohužel provedeno nebylo z důvodu nedostatečného množství.
Nová alkaloidní látka (+)-bersavin (BV05) byla vůči AChE aktivněší než strukturně podobný berbamin (IC₅₀ 68,2 ± 10,5 μM). Dále inhibiční aktivitu vůči BuChE vykazoval i (-)-muraricin (BV06) (s IC₅₀ 67,5 ± 5,9 μM). Nové alkaloidy (-)-berkrystin (BV09) a (-)-verfillin (BV10) byly bez zásadní inhibiční aktivity vůči cholinesterasám, inhibovali je pouze mírně (vůči AChE s IC₅₀ 175,70 ± 18,08 μM a 289,30 ± 30,01 μM; vůči BuChE s IC₅₀ 208,60 ± 25,13 μM a 180,55 ± 12,01 μM). Nový alkaloid (+)-berbostrejdin (BV13) výrazně inhiboval obě cholinesterasy s IC₅₀ 65,9 ± 7,5 μM vůči AChE a IC₅₀ 6,9 ± 1,0 μM vůči BuChE. Nové struktury byly kromě (+)-bersavinu izolovány pouze ve velmi omezeném množství, tudíž nebylo možné stanovit i inhibiční aktivitu vůči POP.

Berbidin (BV03) a berbanin (BV04) byly izolovány pouze v množství, umožňující strukturní analýzu, tudíž nebylo možné stanovit biologickou aktivitu.

6.4 Souhrn

V rámci této práce bylo izolováno 28 isochinolinových alkaloidů různých typů, z toho 6 nových látek popsaných poprvé. Izolované látky byly popsány pomocí spetrometrických technik MS, HRMS a NMR a v případě přítomnosti chirálního centra (či více) stanovena optická otáčivost. Izolované látky paří k těmto typům isochinolinových alkaloidů:

- aporfinový: (+)-boldin, (+)-isokorydin, (+)-laurotetanin, (+)-N-methyllaurotetanin a (+)-norisokorydin,
- benzylishochinolinový: (±)-HC01, (+)-N-methylkoklaurin a (+)-retikulin,
- bisbenzylishochinolinový:
 • typ I: (±)-BV02,
 • typ VI: (+)-aromolin,
 • typ VIII: (+)-berbamin, (+)-bersavin a (+)-obamegin,
 • nezařazený berbostrejdin
- dimer isochinolinového a benzylishochinolinového monomeru: (-)-muraricin,
- ftalidisochinolinový: (±)-hydrastin,
- isochinolinový dimer: berbidin a berbanin,
- morfinanový: (-)-pallidin a (-)-sinoakutin,
- proaporfinový: (-)-glaziovin a (-)-pronuciferin,
- protoberberinový: (+)-kanadalin, (-)-kanadin a berlambin,
sekobisbenzylisochinolinový: (-)-berkristin, (+)-chenabinol a (-)-verfillin.

Alkaloidy, izolované v dostatečném množství, byly testovány in vitro na potenciální neuroprotektivní aktivitu, představovanou inhibiční aktivitou vůči cholinesterasám a POP. Byla sledována biologická aktivita v souvislosti se strukturním typem alkaloidů.

Skupina aporfínových alkaloidů nebyla nijak zvlášť zajímavou z hlediska biologické aktivity; pouze (+)-N-methyllaurotetanin inhibitoval POP srovnatelně jako standard berberin.

Izolované a identifikované proaporfínové alkaloidy byly z důvodu nedostatečného množství sledovány jen z pohledu inhibice cholinesteras, přičemž byly v podstatě neaktivní.

Benzylisochinolinové alkaloidy (+)-retikulin a (+)-N-methylkoklaurin patří k vysoce účinným inhibitorům BuChE, nicméně jejich inhibice AChE nebyla nijak výrazná. Silný inhibitor z této skupiny 1-(3-hydroxy-4-methoxybenzyl)-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisochinolin (IC_{50} = 27.8 ± 0.4 µM) byl již izolován z *Eschscholtzia californica* Cham. [116].

nejúčinnějšími inhibitory BuChE byly bisbenzoisochinolinové alkaloidy (+)-aromolin a (+)-berbostrejandin, inhibiční schopnost u dalších zástupců tohoto strukturního typu (typu I a VIII) byla pouze mírná. (+)-Aromolin rovněž velmi silně inhibuje i BuChE z koňského séra smíšeným mechanismem. Kromě (+)-berbaminu však byla u všech ostatních alkaloidů tohoto typu pozorována mírná až výrazná inhibice AChE. Zajímavé je porovnání aktivit (+)-berbaminu a (+)-bersavinu lišících se pouze triethylaminovým substituentem, který pravděpodobně odpovídá za vyšší inhibiční aktivitu zejména vůči POP a AChE.

Ze skupiny sekobisbenzylisochinolinových alkaloidů byl nejúčinnějším inhibitorem (+)-chenabinol, který inhiboval významně BuChE, nicméně další biologická aktivity byla spíše nezajímavá. Ani jeden z nově identifikovaných alkaloidů tohoto typu však nebyl testován na inhibiční aktivitu vůči POP.

Biologická aktvita dimerů jednotek isochinolinového typu zůstává otázkou, nicméně srukturně jim nejblížší (-)-muraricin (dimer isochinolinového a benzylisochinolinového typu) vykazoval celkem významnou aktivitu vůči BuChE.

Tatalidisochinolinový alkaloid hydrastin je považován za neúčinný inhibitor cholinesteras a POP.

Morfinanové alkaloidy rovněž nebyly významnými inhibitory sledovaných enzymů, pouze (-)-sinoakutin inhibitoval POP srovnatelně se standardem berberinem.
Protoberberinové alkaloidy (+)-kanadalin a berlambin významně inhibovaly AChE, první zmíněný alkaloid i mírně BuChE, zatímco berlambin inhiboval POP srovnatelně s berberinem.

Pro případné další studium alkaloidů ovlivňujících AD je vhodné věnovat pozornost AChE inhibitoru (+)-kanadalinu (mírně inhiboval i BuChE), BuChE inhibitorům (+)-aromolinu (inhiboval i POP srovnatelně s berberinem), (+)-berbostrejdinu (výrazně inhiboval i AChE), (+)-N-methylkoklaurinu, (+)-retikulinu, (+)-chenabinolu a POP inhibitoru (+)-bersavinu (výrazně inhiboval AChE a mírně i BuChE). Zmíněné alkaloidy, které byly izolované v nedostatečném množství, je potřeba izolovat z frakcí dosud zpracovaných jen částečně či parciální syntézou a stanovit chybějící biologickou aktivitu včetně typu inhibice. Testy je vhodné rozšířit na další aktivity související s AD patogenezi (na katedře připravované testy inhibice GSK-3β a BACE1 případně ve spolupráci s dalšími pracovišti věnující se této problematice). Po stanovení širšího spektra aktivit, lze připravit analoga a zhodnotit vztah struktury a účinku. Alkaloidy berbidin a berbanin je potřeba připravit syntézou a stanovit biologickou aktivitu, která je u tohoto typu isochinolinových alkaloidů dosud neznámá.

Rozdílné hodnoty IC\(_{50}\) látek testovaných v této práci a v literatuře pravděpodobně souvisí s použitými modely cholinesteras. Pro testování inhibice AChE \textit{in vitro} je často používána AChE z elektrického úhoře (\textit{Electrophorus electricus}), jako zdroj BuChE je používáno sérum koně (\textit{equine serum}). Použitím lidských cholinesteras v této práci se předpokládá, že získané výsledky by mohly odpovídat inhibičním aktivitám \textit{in vivo} v lidském organismu.

Závěrem lze poznamenat, že isochinolinové alkaloidy stále zůstávají velmi slibnou skupinou látek s širokým spekterm účinků a mohou sloužit jako předlohouvé látky semi-syntetických derivátů při vývoji nových léčiv pro terapii různých chorob. AChE inhibitory jsou stále nejpoužívanějšími léčivy pro zmírnění příznaků AD a inhibice AChE a BuChE je stále žádoucí cíl zásahu při hledání účinných látek použitelných pro léčbu AD [188].

POP je přisuzována důležitá role při regulaci peptidových hormonů podílejících se na procesech učení a paměti. V nedávno publikovaných pracech bylo zjištěno, že některé inhibitory jsou účinné při léčbě demence [189].
7. Abstrakt

Univerzita Karlova v Praze, Farmaceutická fakulta v Hradci Králové
Katedra farmaceutické botaniky a ekologie
Kandidát: Mgr. Anna Hošťálková
Školitel: Prof. RNDr. Lubomír Opletal, CSc.
Název disertační práce: Studium obsahových látek vybraných taxonů z řádů Laurales a Ranunculales s potenciálně neuroprotektivní aktivitou.

Klíčová slova: Berberis vulgaris, Peumus boldus, Hydrastis canadensis, isochinolinové alkaloidy, acetylcholinesterasa, butyrylcholinesterasa, prolyl oligopeptidasa.

Jako zdroj isochinolinových alkaloidů pro studium jejich biologické aktivity byl vybrán komerční extrakt vodilky kanadské, listy boldovníku vonného a kůra kořenů dříštálu obecného. Sumární směsi s terciárními alkaloidy byly připraveny standardními extrakčními postupy a následně separovány sloupcovou chromatografií na oxidu hlinitém použitím stupňovité eluce benzinem, chloroformem a ethanolem. Opakované sloupcové chromatografie, preparativní TLC a krystalizace vedly k izolaci 28 isochinolinových alkaloidů, přičemž 6 sloučenin bylo identifikováno jako nové struktury (některé z nich jsou patrně artefakty). Identifikace izolovaných sloučenin byla provedena na základě spektrometrických technik (NMR, MS) a porovnáním s literaturou. Alkaloidy izolované v dostatečném množství byly testovány na schopnost inhibovat erytrocytární AChE a sérovou BuChE a POP (byla stanovena IC₅₀).

Cholinesterasová inhibiční aktivita byla stanovena in vitro modifikovanou spektrofotometrickou Ellmanovou methodou. (+)-Kanadalin byl nejúčinnějším inhibitorem AChE a slabě inhiboval i BuChE způsobem závislý na dávce s hodnotou IC₅₀ 32,9 ± 4,9 μM a 105,4 ± 15,6 μM. Mezi další inhibitory AChE patří (±) BV02 (IC₅₀ 55,3 ± 6,6 μM), berlambin (IC₅₀ 62,4 ± 11,5 μM), (+)-bersavin (IC₅₀ 68,2 ± 10,5 μM), (+)-obamegin (IC₅₀ 97,4 ± 3,4 μM) a (+)-berbostrejdin (IC₅₀ 65,9 ± 7,5 μM), který silně inhiboval i BuChE (6,9 ± 1,0 μM). Nejúčinnějším inhibitorem BuChE byl (+)-aromolin s IC₅₀ 0,82 ± 0,1 μM, který inhiboval i BuChE z koňského séra s IC₅₀ 8,7 ± 0,1 μM smíšeným mechanismem; dále

105
vykazovaly inhibici (+)-N-methylkoklaurin, (+)-retikulin, (+)-chenabinol a (-)-muraricin (IC₅₀ 15,0 ± 1,4 μM, 33,6 ± 3,0 μM, 44,8 ± 5,4 μM a 67,5 ± 5,9 μM respektive). Další izolované alkaloidy byly považovány za neaktivní (IC₅₀ > 100 μM).

Inhibiční aktivita vůči POP byla stanovena spektrofotometrickou metodou, jako substrát byl použit Z-Gly-Pro-p-nitroanilid. Nejúčinnějším inhibitorem byl (+)-bersavin (IC₅₀ 67,3 ± 6,2 μM), aktivita (+)-aromolinu, berlambinu, (+)-N-methyllaurotetaninu a (-)-sinoakutinu byla srovnatelná se standardem berberinem (IC₅₀ 142,3 ± 21,1 μM), nicméně žádný alkaloid nedosahoval úrovně inhibice standardu Z-pro-prolinalu. Další izolované alkaloidy byly považovány za neaktivní (IC₅₀ > 200 μM).
8. Abstract

Charles University in Prague, Faculty of Pharmacy in Hradec Králové
Department of Pharmaceutical Botany and Ecology
Candidate: Mgr. Anna Hošťálková
Supervisor: Prof. RNDr. Lubomír Opletal, CSc.
Title of Doctoral Thesis: Study of chemical constituents of taxons from order Laurales and Ranunculales with potential neuroprotective activity.

Key words: Berberis vulgaris, Peumus boldus, Hydrastis canadensis, isoquinoline alkaloids, acetylcholinesterase, butyrylcholinesterase, prolyl oligopeptidase.

Commercial goldenseal extrakt, boldo leaves and barberry root bark were selected as sources of isoquinoline alkaloids for study of their biological activity. Mixtures of summary tertiary alkaloids were prepared by standard extraction and subsequently fractionated in aluminium oxide chromatography column using the step gradient elution with petrol, chloroform and ethanol. Repeated column chromatographies, preparative TLC and crystallizations led to the isolation of 28 isoquinoline alkaloids, 6 of them were identified as new structures (some of them were probably artifacts). The chemical structures of isolated compounds were determined on the basis of spectrometric techniques (NMR, MS) and by comparison with literature. Isolated alkaloids in sufficient amount were tested on ability to inhibit human erythrocyte AChE and serum BuChE and POP (IC₅₀ was ascertained).

The cholinesterase inhibitory activity was determined in vitro by modified spectrophotometric Ellman’s method. (+)-Canadaline was the most potent inhibitor of AChE and also weak inhibitor of BuChE in a dose-dependent manner with IC₅₀ values of 32,9 ± 4,9 μM and 105,4 ± 15,6 μM respectively. The compound BV02 (IC₅₀ 55,3 ± 6,6 μM), berlambine (IC₅₀ 62,4 ± 11,5 μM), (+)-bersavine (IC₅₀ 68,2 ± 10,5 μM), (+)-obamegine (IC₅₀ 97,4 ± 3,4 μM) and (+)-berbostrejdine (IC₅₀ 65,9 ± 7,5 μM) inhibited AChE, the last one inhibited BuChE (6,9 ± 1,0 μM) as well. The most potent inhibitor of BuChE was (+)-aromoline with IC₅₀ value of 0,82 ± 0,1 μM, it also inhibited horse serum BuChE with IC₅₀ value of 8,7 ± 0,1 μM in a mixed manner; other effective inhibitors were
(+-)N-methylcoclaurine, (+)-retikuline, (+)-chenabinol and (-)-murarine (IC₅₀ values 15,0 ± 1,4 μM, 33,6 ± 3,0 μM, 44,8 ± 5,4 μM and 67,5 ± 5,9 μM respectively). Other isolated alkaloids were considered to be inactive (IC₅₀ > 100 μM).

The POP inhibition activity was determined spectrophotometric method using Z-Gly-Pro-p-nitroanilid as substrate. The strongest inhibition activity was shown by (+)-bersavin (IC₅₀ value of 67,3 ± 6,2 μM), inhibition activities of (+)-aromoline, berlambine, (+)-N-methyllaurotetanine and (-)-sinoacutine was comparable to the standard of berberine (IC₅₀ 142,3 ± 21,1 μM), nevertheless any of the alkaloids gained activity of the standard Z-pro-prolinal. Other isolated alkaloids were considered to be inactive (IC₅₀ > 200 μM).
9. Přehled vědeckých výstupů

9.1 Původní a přehledové práce

Alkaloids from *Peumus boldus* Mol. and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Natural Product Communications 2015, 10(4), 577–580.

9.2 Monografie (kapitoly)

9.3 Konference

9.3.1 Přednášky

9.3.2 Plakátová sdělení

10. Literatura

[77] Le, P. M.; McCooye, M.; Windust, A.: Application of UPLC-QTOF-MS in MSE mode
for the rapid and precise identification of alkaloids in goldenseal (*Hydrastis canadensis*). Analytical and Bioanalytical Chemistry 2014, 406(6), 1739–1749.

124

