UNIVERZITA KARLOVA V PRAZE
LÉKAŘSKÁ FAKULTA V HRADCI KRÁLOVÉ

Rehabilitační klinika

FYZIOTERAPIE U PACIENTŮ PO RUPTUŘE ACHILLOVY ŠLACHY

Bakalářská práce

Autor práce: Gabriela Wolfová
Vedoucí práce: Mgr. Bohumila Horká

2015
PHYSIOTHERAPY IN PATIENTS AFTER ACHILLES TENDON RUPTURE

Bachelors' thesis

Author: Gabriela Wolfová
Supervisor: Mgr. Bohumila Horká

2015
Prohlašuji, že předložená práce je mým původním autorským dílem, které jsem vypracovala samostatně. Veškerou literaturu a další zdroje, z nichž jsem při zpracování čerpala, v práci řádně cituji a jsou uvedeny v seznamu použité literatury.

V Hradci Králové

(podpis)
Poděkování:
Mé poděkování patří Mgr. Bohumile Horké za odborné vedení, trpělivost, cenné připomínky a ochotu, kterou mi v průběhu zpracování bakalářské práce věnovala.
OBSAH

ÚVOD..7
1 Teoretická část..9
 1.1 Kineziologie nohy ..9
 1.2 Funkční anatomie svalů ...10
 1.2.1 Zadní skupina svalů bérce ...10
 1.2.2 Musculus triceps surae ..10
 1.2.3 Kineziologie m. triceps surae ...11
 1.3 Šlacha obecně ..12
 1.4 Achillova šlacha ...13
 1.4.1 Členění poranění Achilovy šlachy ..16
 1.4.2 Ruptura Achilovy šlachy – etiologie ...16
 1.4.3 Ruptura Achilovy šlachy – dělení ..18
 1.4.4 Klinický obraz ruptury Achilovy šlachy ..20
 1.4.5 Diagnostika ruptury Achilovy šlachy ...20
 1.4.6 Terapie ruptury Achilovy šlachy ...21
 1.4.7 Pooperační péče ..23
 1.5 Fyzioterapie ..23
 1.5.1 Vyšetřovací metody ...23
 1.5.2 Krátkodobý a dlouhodobý rehabilitační plán ..26
 1.5.3 Fyzioterapie po operaci (časná fáze) ...27
 1.5.4 Pozdní poúrazová fáze fyzioterapie ..27
 1.5.5 Fáze připravy na specifickou sportovní zátěž ..28
 1.5.6 Metodický plán po sutuře AŠ dle Erica Berksona28
 1.5.7 Vybrané techniky a metody ..29
 1.5.8 Fyzikální terapie ...31
 2 Praktická část ..33
Příloha 2 – Obrazová příloha .. 90
Příloha 3 – Obrazová příloha ke kazuistice .. 91
ÚVOD

Ruptura Achillovy šlachy patří mezi hojná a velmi bolestivá poranění, která zhoršují kvalitu života a výkonnost jedince. Statisticky je třetí nejčastější rupturou šlachy, po přetržení rotátorové manžety a přetržení m. quadriceps femoris (Sirový, Carda, 2007). Nastává na základě patologických změn, přetížením nebo přetažením šlachy za mez její pevnosti. Faktorů podílejících se na vzniku poranění je mnoho a jsou vypracovány dvě teorie ozřejmující možné příčiny ruptury (Maffuli et al, 2005). Řadí se mezi akutní zavřená poranění, která obvykle postihují sportující muže ve středním věku.

Cíl mé práce je porovnat teoretické poznatky s kazuistikami probandů ve své praxi a zjistit, zda rozdílný způsob ošetření přetržené Achillovy šlachy má vliv na výsledný funkční stav pacienta po ukončené fyzioterapii.
1 TEORETICKÁ ČÁST

1.1 Kineziologie nohy

Noha je distální částí dolní končetiny, která zprostředkovává kontakt těl s podložkou, po které se pohybujeme. Základní funkcí je přenos váhy těla na podložku a vzpřímená bipedální chůze. Noha je způsobilá přizpůsobovat své postavení v závislosti na terénních nerovnostech a je schopna nahradit chápavou funkci ruky při ztrátě nebo nevyvinutí horních končetin. Zpětnou propriocepcí se podílí na udržování vzpřímeného držení těla. Přirozená noha je pružná, s plantigradním postavením při došlapu a s dostatečně vyvinutou příčnou a podélnou klenbou, které pružnost ve stoji a při chůzi umocňují. Je zároveň příměřeně rigidní, tak aby při zatínání udržela svůj tvar v opoře s fyziologickým rozsahem pohybu v jednotlivých kloubcích. Stabilita těla je zajištěna při opoře o tři body na chodidle, s těžištěm mezi těmito body (Dungl et al., 2005).

Z pohledu kineziologie skeletu je kostra nohy tvořena 26 kostmi (Čihák, 2001). Jedinou kostí v přímé souvislosti s Achillovou šlachou je os calcaneus (kost patní). Přejímá větší část zátěže z hlezenní kosti a přenáší ji na podložku. Zadní plocha kosti přechází v mohutný patní hrbol tuber calcanei, na který se do distální poloviny upíná Achillova šlacha, úponová šlacha musculus (dále jen m.) triceps surae (Dylevský, 2009).

Podrobnější informace nejsou cílem této práce. Lze je vyhledat v odkazech uvedených v seznamu použité literatury.
1.2 Funkční anatomie svalů

1.2.1 Zadní skupina svalů bérce

Svaly zadní skupiny se člení na povrchovou a hlubokou vrstvu. Přídatné mezisvalové septum, které odděluje obě vrstvy, se rozpíná od tibie k zadnímu osteofasciálnímu septu fibuly.

K povrchové vrstvě patří m. triceps surae a rudimentární m. plantaris.

K hluboké vrstvě se řadí m. popliteus, m. tibialis posterior, m. flexor digitorum longus, m. flexor hallucis longus. Funkcí je flexe nohy a prstů. Inervace: nervus (dále jen n.) tibialis, kořenová inervace L5-S2 (Čihák, 2001).

1.2.2 Musculus triceps surae

Mohutný, dlouhý sval m. triceps surae se skládá z dvou výrazných hlav mm. gastrocnemii (medialis et lateralis) tvořící viditelné kontury lýtka. Třetí hlava zvaná m. soleus je uložená v hloubce. Sval přechází v silnou Achillovu šlachu (dále jen AŠ), tendo calcaneus (Achillis) a upíná se spolu s m. plantaris na kost patní (Čihák, 2001).

Plochý, široký sval pokrývající skupinu svalů uloženou v hluboké vrstvě zadního bérce se nazývá m. soleus. Je tonické povahy (Dylevský 09). Začíná na hlavici a dorzální ploše fibuly a na tibii od linea musculi solei. Mezi oběma začátky je šlašitý oblouk arcus tendineus musculi solei, pod kterým procházíarteria (dále jen a.) tibialis posteriori a n. peroneus. Mohutné svalové bříško sestupuje distálně a spolu s m. gastrocnemius tvoří Achillovu šlachu (Čihák, 2001).

Mezi m. gastrocnemius a. m. soleus probíhá m. plantaris. Tento štíhlý rudimentární sval, začínající nad zevním kondylem femuru, přechází v dlouhou šlachu podél laterální hlavy m. gastrocnemius a sestupuje k mediálnímu okrají Achillových šlach. Spolu se upínají na tuber calcanei. Je flexor kolenního kloubu a spolupracuje s m. soleus (Dylevský, 2009, Véle, 2006).

1.2.3 Kineziologie m. triceps surae

Mm. gastrocnemii při chůzi odvíjí plantar, převažující funkce je dynamická. Přestože obě jeho hlavy mají začátek nad kolenním kloubem, zapojení do flexe kolenního kloubu je velice malé (Véle, 2006). Svalová síla se hodnotí vleče na břiše s extendovaným kolenem. Sleduje se plantární flexe nohy, pohyb patou kraniálně bez propnutí špičky a prstů (Janda, 2004).

M. soleus vykonává plantární flexi nohy. Ve stoji stále vykazuje určitou posturální aktivitu, přičemž je zatěžován převážně tonicky. Převládající funkce jsou statické (stoj). V klidu vyrovňává sklon tibie dopředu. Ve stoji se semiflexi kolen a s oporou na celém chodidle a v případě, že se pánev může posunout kraniálně, provádí současnou extenzi kolene a plantární flexi hlezenního kloubu. Není-li možno pánev posunout kraniálně,
provádí současně flexi kolene a plantární flexi. Při aktivaci svalu v sedu s chodidlem opřeným na podložku dochází k současně flexi kolenního a kyčelního kloubu a ke zvednutí paty (Věle, 2006). Při testování svalové síly pacient leží na břiše s flexí kolene (pro vyloučení m. gastrocnemius). Hodnotí se zvedání paty kraniálně bez substitucí, při kterých může být pohyb prováděn s výrazným zapojením flexorů prstů nebo se přidružuje exteze kolenního kloubu. Při převaze svalů na ventrální ploše bérce je pohyb spojen s vytáčením chodidla do supinace, při vytáčení do pronace je převaha peroneálních svalů (Janda, 2004).

1.3 Šlacha obecně

Funkci šlachy je přenos zatížení v tahu. Pružný přenos síly z kontrahujícího se svalu na kost je podmíněn úpravou svalových vláken a jejich připojením ke šlaše (Rosina et al, 2006).

Přechod svalu v šlachu probíhá v jejích vazivových složkách. Vazivo, které obaluje svalová vlákna (endomysium), přechází mezi vlákna šlachy do peritendinea internum
a spolu tvoří funkční celek se značnými viskoelastickými vlastnostmi. Zároveň se vlákna do sebe schodovitě zasouvají, tím přechod zpevňují (Dylevský, 2009).

Obecně lze říct, že včasná pooperační mobilizace šlachy přispívá ke zvýšení její pevnosti v tahu (Štefan et al, 2012).

1.4 Achillova šlacha

Achillova šlacha (dále jen AŠ) má v průměru 1 centimetr a její délka se pohybuje mezi 10-12 centimetry (Hart et al, 2000). V půli lýtku se aponeuróza mm. gastrocnemius a svalové břiško m. soleus spojují v širokou šlachu. K nim se připojuje m. plantaris.

Mezi šlachou a tuber je vložena bursa tendinis Achillis, v podkoží se nachází bursa subcutanea calcanea (Čihák, 2001).

Ve svém průběhu AŠ mění svůj tvar. V proximální části pod hlavami m. gastrocnemius je plochá a široká, směrem k úponu se zužuje a zaobírá. Distálně se opět rozšiřuje a úplně překrývá dorzální plochu tuber calcanei. Nejužší je asi 2-5 centimetrů nad svým úponem. Mezi šlachovými vláknami je malá vrstva chrupavky. Místo na kosti, kde šlacha plynule přechází do periostu, se podobá příčnému pruhu s lehce vlnitým povrchem. Tato oblast přechodu šlachy v kost má mimořádnou mechanickou pevnost (Bartoníček, 2004).

Obr. č. 1: Achillova šlacha (Heikura, 2011, s. 1)

Strukturální zvláštností šlachy jsou provazovitě přetočené snopce. Vlákna z mediálního bříška m. gastrocnemius formují horní vnitřní okraj šlachy, směrem distálním se stáčejí zevně a upínají se zhruba do středu úponového místa. Zevní hranu šlachy vytvářejí vlákna její prostřední části, která se rotují ventrolaterálně. Vnitřní hranu šlachy představují vlákna m. soleus. V případě, že vlákna m. plantaris splývají s AŠ vysoko nad úponem, přispívají k vytvoření její vnitřní hrany, ale nerotují se. Čihák (2001) uvádí, že vnitřní rotace vláken je až 180 stupňů. Torze zvětšuje pevnost šlachy v tahu (Stingl, 1967).
Obr. č. 2 Strukturální zvláštnosti AŠ 1. m. soleus, 2. m. gastrocnemius medialis, 3. m. gastrocnemius lateralis, 4. hrbol kosti patní, M. mediální, L laterální (Dungl et al, 2005, s. 1057)

Bylo zjištěno, že pevnost šlachy může být až čtyřnásobně vyšší než je maximální izometrický stah příslušného svalu. Zatížení AŠ při běhu se přibližuje k 9000 N (to odpovídá asi 12,5 násobku váhy těla). Při chůzi je šlachta zatížena asi 2600 N. Při jízdě na kole přibližně 1000 N (Maffulli et al., 2004). Věkem pevnost i pružnost šlachy klesá. Mez pevnosti AŠ je asi 53 MPa, v 70 ti letech věku je to jen 45 MPa, tj. o 15% méně. Protažlivost šlachy v dospělosti činí asi 10-12% její délky (v klidu). U novorozence lze šlachu v klidu protáhnout až o 18%. Při větším natažení se příčné vazby v molekulu kolagenu snižují a při pokračujícím natahování může dojít k ruptuře (Dylevský, 2009).

Při poškození AŠ dojde ke zhoršení nebo nemožnosti plantární flexe a excentrické dorzální flexe. Plantární flexi, potřebnou při každodenních pohybech – chůze, běh, chůzi po schodech, zvedání se ze sedu apod., provádějí z 93% m. gastrocnemius a m. soleus. Jejich poškozením je ovlivněn celý lokomoční pohyb jedince vpřed a nahoru Nastávají svalové dysbalance s dalšími zřetelnými reakcemi celého pohybového aparátu. Při následně fyzioterapii je důležité myslet na uvedené skutečnosti a cvičení zaměřit nejen na obnovení svalové síly, ale na komplexní ovlivnění pohybového aparátu (Hamill et al, 1995).

1.4.1 Členění poranění Achillovy šlachy

Mezi uzavřená poranění, která jsou častější, se řadí: zhmoždění šlachy (contusio tendinis), vymknutí šlachy (luxatio tendinitis) a přetržení (ruptura tendinitis).

1.4.2 Ruptura Achillovy šlachy – etiologie

Etiologie ruptury stále zůstává nejasná, přestože byla důkladně zkoumaná a je popsaná v mnoha lékařských pracích. Hlavní důvod vzniku ruptury AŠ tak je stále sporný. Faktoru je mnoho. Patří zde: minimální cévní zásobení šlachy 2–5cm nad úponem, degenerace šlachy, dysfunkce mezi m. gastrocnemius a m. soleus, jednorázové nebo chronické přetížení svalově vazivového aparátu, věk a pohlaví.

U sportovců (typicky běžci, raketové a míčové sporty) to může být trénink prováděný na tvrdém povrchu s jednostranným zatěžováním, s chronickým přetěžováním, s nedokonalým rozvíjením a nedostatečným prokrvením šlachy. Často předchází oslabení šlachy tendinozou (Pastucha et al, 2014).
V běžném životě může být šlacha ovlivněna např. používáním nevhodné obuvi, která způsobuje její útlak nebo tlak na její úpon, změnou obuvi přezutím z vysokých podpatků do obuvi na rovné platformě, po prochladnutí AŠ (Jelinek, 2007).

Řadí se zde i patologie šlachy v anamnéze jako: předchozí zranění s mikrotraumaty, zánětlivé změny dvouvrstvého synoviaálního šlachového obalu (peritendinitidy), degenerativní postižení struktury šlachy (tendinoza); dlouhodobé bolesti v průběhu šlachy, spojené se ztlustěním peritentiona (Achillodynie) nebo oslabení šlachy po aplikaci kortikoidů. Patologicky změněná šlacha je pak subjektivně a palpačně bolestivá, s narůstající bolesti při pohybu do dorzální flexe. Je difuzně prosáklá, mohou být otisky a zarudnutí na superiorním výběžku patní kosti. Na šlaše se objevují hmatní uzlovitá duření, někdy jsou hmatné krepitace (Galllo et al, 2011).

Ruptura je také spojována s onemocněním jako zánětlivé i autoimunitní stavy, geneticky podmíněné abnormality kolagenu, hyperurikemie, ledvinová nedostatečnost, hypertyreóza a další. V poslední době se hovoří o vlivu steroidních anabolik a fluorochinolonů a jejich účinku na kolagenní vlákna šlachy. Mohou způsobit dysplazii kolagenních vláken a snížit jejich pevnost (Maffuli et al, 2005).

Nemalou rolí hrájí biomechanické příčiny jako: vadná biomechanika kloubu, poruchy odvijení nohy při došlapu, nadměrná everze v subtalárním kloubu nohy (snížující stabilitu), osové odchyly končetin, statické deformity chodidel (pes cavus, pes calcaneus), rozdíly délky končetin, svalové dysbalance, excentrické přetěžování svalů, nesprávné pohybové stereotypy, běh přes špičky. Důsledkem bývají poranění z přetížení (Chaloupka, 2001).

Degenerativní teorie

Mění se poměr zastoupení počtu kolagenních vláken. Navýšením kolagenních vláken typu III na úkor kolagenních vláken typu I se pevnost v tahu šlachy výrazně snižuje (Maffulli et al, 05).

Mechanická teorie

Poškození může nastat u zdravé šlachy, která je fyziologicky namáhána, ale nemá dostatek času na svou regeneraci a opravu mikrotraumat, která v ní nastávají po překročení kritického bodu zatížení šlachy. K roztržení dochází při šikmo působící síle na nohu v supinaci nebo pronaci, kdy se vlákna konvexní strany prodlouží více než vlákna konkávní. Riziko je vysoké při sportech, kde je potřeba maximální kontrakce svalu k rychlému odrazení (Maffulli et al, 2005).

1.4.3 Ruptura Achillovy šlachy – dělení

Ruptury lze klasifikovat podle etiologie, mechanismu vzniku, klinického nálezu, intenzity poranění a věku.

1) Podle etiologie

Spontánní ruptury jsou málo časté. Mohou nastat v patologicky změněné šlaše, často po celkové nebo místní léčbě kortikoidy, které šlachu oslabují. Přetržení jsou spjata s násilím, které nepřesáhlo běžnou mezi pevnosti šlachy, např. i při běžné chůzi (Dungl et al, 2005). Ruptury na podkladě úrazového děje vznikají prudkým pohybem, intenzivním stahem m. triceps surae při rychlém odrazení, při akeleraci, při prudké rotaci chodidla, ve výskoku, při náhlém brzdění nebo při změně směru pohybu (Kolář et. al, 2009; Pokorný a kol., 2002). Jedná se o sportovní úrazy při badmintonu, basketbalu, fotbalu, tenisu, volejbalu, squash a při běhu. Také působením přímého násilí na šlachu, například kopnutím, úderem hole nebo šlápnutím do díry (Dungl et al, 2005; Flemr, 2014).

2) Podle mechanismu vzniku

,, Podle Hookera (1963) může dojít k přetržení Achillovy šlachy trojím mechanismem:
1. při náhlém zevním násili, působícím na napnutou šlachu
2. při náhlém pasivním přetažení uvolněné šlachy do nekontrolované dorziflexe
3. přímým úderem na napnutou šlachu“ (Dungl et al, 05, s. 1055-1056).

Maffulli (2005) je rozděluje následně:
1. V 53% ruptura nastává při zatěži přední části nohy s tlakem do extenze kolenního kloubu, typicky při startu sprintu nebo při výskocích v basketbalu. U osob s dominantní pravou horní končetinou je výšší výskyt ruptury levé AŠ.

2. V 17% případech nastává přetržení po náhlé neočekávané dorziflexi v hlezenném kloubu, např. sklouznutí do díry nebo při padání ze schodů.

3. 10% ruptur vzniká po pádu z výšky, násilím způsobí dorziflexi.

Zbývajících 20% pacientů nedokázalo popsat přesný mechanismus poranění.

3) Podle klinického nálezu

Obr. č. 3 Ruptury podle klinického nálezu: 1 - ve středu šlachy, 2 – v musculotendinózním přechodu, 3 – v místě úponu na os calcaneus (Dungl et al, 2005, s. 1057)

4) Podle intenzity poranění

5) Podle věku

U mladých osob dochází k přetržení ojediněle. Dojde-li k poranění, šlacha se poškodí v místě přechodu sval-šlacha nebo se vytrhne z úponu. Ve středním věku (30–55let) nastává poškození nejčastěji. K přetržení dochází při sportu, převážně u rekreačních sportovců se sedavým zaměstnáním, obutých do vysoce přilnavé obuvi. Ve starším věku
(6. decenium) šlacha praská při šlápnutí do díry a při doskoku. Příčinou je degenerace šlachy (Dungl et al, 2005).

1.4.4 Klinický obraz ruptury Achillovy šlachy

Úplné přetření se projevuje ostrou bolestí s oslabením končetiny a někdy pádem k zemi. Pacienti popisují slyšitelný zvuk „jakoby praskla větve“. Při vyšetření aspekci bývá v oblasti šlachy otok a hematom, v průběhu šlachy může být svalová deformita. Palpací lze v místě přetření určit vkleštinu a bolestivost. Pacient může někdy provést aktivní plantární flexi chodidla (m. plantaris zůstává nepoškozen) a je schopen chodit. Ale nepostaví se na špičku. **Pozitivní je Thompsonův test.** Reflex Achillovy šlachy bývá nevýbavný.

1.4.5 Diagnostika ruptury Achillovy šlachy

Pro účinnou následnou terapii jsou důležité údaje z anamnézy a klinického obrazu doplněné o Thompsonův test a pomocné zobrazovací metody.

Při **provádění Thompsonova testu** pacient leží na břiše nebo klečí, chodidla jsou přes okraj vyšetřovacího lehátka. Sevřením lýtka fyziologicky dojde k pasivní plantární flexi nohy. U ruptury plantární flexe chodidla nenastane, test je pozitivní.

Pro potvrzení nálezu a pro vyloučení odtržení patní kosti se provádějí snadno dostupné ultrazvukové vyšetření šlachy a rentgenové vyšetření. Boční rentgenový snímek znázorní přerušení stínu šlachy a zastření preachillárního trojúhelníku. Nákladnější a méně častě vyšetření pomocí magnetické rezonance posuzuje rozsah poškození šlachy a rychlost hojení po operaci (Dungl et al, 2014; Pokorný et al, 2002).
1.4.6 Terapie ruptury Achillovy šlachy

Konzervativní terapie

Operační léčba

Existuje více operačních postupů, které jsou prováděny podle zásad plastické chirurgie v celkové nebo svodné anestezii. Cílem včasného operačního výkonu je předejít retrakci a edematózní prosáknutí pahýlů šlachy. Provádí se otevřená revize a sešití šlachy anebo perikutální sutura. U čerstvých ruptur AŠ jsou oba konce rozvlákněné a sešití způsobem end to end nezajistí dostatečnou pevnost. Otevřená revize a sutura šlachy je klasickou metodou. Nejčastěji je provedena závěsným stehem podle Bunnela v modifikaci ILF. Délka řezu je mezi 8-12 centimetry, záleží na typu přerušení šlachy. Z důvodu častého poškození n. suralis se preferuje mediální řez. V plantární flexi se oba konce prošité dvojici pevných monofilních vláken, vyvedených po obou stranách paty a zauzlených pod tahem přes kotník, přiblíží k sobě a jednotlivými
stehy se sešíjí. Následně je rána uzavřena. Operuje se v bezkreví pacienta, k sutuře se používá vstřebatelný materiál a snahou je neporanit peritenonium, kterým se sešívaná část překryje (Dungl et al, 2005).

V případě potřeby zesílí suture se používají speciálně upravené části šlachy m. plantaris, šlacha m. peroneus brevis či o 180 stupňů otočený pruh z proximální části šlachy a aponeurózy m. gastrocnemius (Dungl et al, 2005).

Šetrnou metodou je tzv. perkutánní sutura AŠ dle Ma a Griffíta. Tento postup se provádí přes kůži v případě, že konce šlachy jsou neroztřepené, není nutná plastika šlachy. Po obou stranách šlachy se provedou bodové incize a šlacha se prošije rovnou jehlou s nevstřebatelným materiálem. Pooperační komplikace jsou minimální, není velká jizva a funkční výsledky jsou srovnatelné s otevřenou suturou (Dungl et al, 2005).

U zastaralých ruptur, kdy došlo k retrakci pahýlů, nebo při defektech AŠ je vhodné pro překlenutí defektu využít šlachy m. plantaris, m. peroneus brevis, pruhy z fascia lata či z aponeuerózy z m. gastrocnemius (Dungl et al, 2005).

Komplikace

1.4.7 Pooperační péče

Pooperační léčba se odvíjí od léčebných postupů na daném pracovišti. Záleží na rozhodnutí operátéra, který rozhodne o délce a druhu fixace.

Jinou možností pooperační terapie je nasazení krátké dorzální sádrové dlahy s nohou v plantární flexi po dobu 2-3 týdnů. Poté se na 3 týdny přiloží speciální vakuové fixační dlaha Vacoped. Noha je v plantiflexi 20 stupňů a každý týden se úhel snižuje o pět stupňů. Je doporučena zátěž na 20% váhy, s postupným zvyšováním do plna. Někdy je ortéza Vacoped nasazována bezprostředně po operaci, záleží to na domluvě. Pro pacienta Vacoped představuje komfort, protože jednoduchou manipulaci lze provést hygienu nohy a dovoluje přetvarování v případě změny otoku nohy. Hlavním přínosem je možnost včasné šetrné rehabilitace během doby fixace (Vacoped).

1.5 Fyzioterapie

Úkolem fyzioterapie je maximálně zlepšit funkční stav pacienta po úraze a docílit úpravu jeho zdravotního stavu za co nejkratší dobu. Volíme individuální přístup ke každému pacientovi s ohledem na jeho věk, přidružené nemoci, motivaci a spolupráci. Cílem je obnova funkce šlachy, snížení otoku a bolesti, nácvik mobility a zatěžování končetiny. Důležité je postupné zapojovalení končetiny do posturálních funkcí, jako je stoj, chůze, popř. běh a příprava na návrat k předchozím pohybovým aktivitám.

1.5.1 Vyšetřovací metody

Pro stanovení vhodného a účinného léčebného postupu je fyzioterapeutem proveden kineziologický rozbor. Na základě vstupní diagnózy od lékaře a informací o průběhu dosavadní terapie se fyzioterapeut zaměřuje na odběr anamnézy, subjektivní
Anamnéza je pohovor s pacientem. Dochází k navázání kontaktu a získání informací o jeho minulém i současném zdravotním stavu, o onemocnění nejbližších rodinných příslušníků, informaci o rodinném a sociálním prostředí. Hodnotí spolupráci pacienta, orientaci místem, časem, prostorem zvládání denních činností (dále jen ADL). Cíleně je dotaz na nemoc, se kterými se pacient léčí, na prodělané úrazy, operace a jejich léčbu. Následně je sestaven krátkodobý a dlouhodobý rehabilitační plán. Důležitou součástí plánu je cíl pacienta a terapeuta. Po ukončení léčby se provede výstupní vyšetření.

Anamnéza je pohovor s pacientem. Dochází k navázání kontaktu a získání informací o jeho minulém i současném zdravotním stavu, o onemocnění nejbližších rodinných příslušníků, informaci o rodinném a sociálním prostředí. Hodnotí spolupráci pacienta, orientaci místem, časem, prostorem zvládání denních činností (dále jen ADL). Cíleně je dotaz na nemoc, se kterými se pacient léčí, na prodělané úrazy, operace a jejich léčbu. Na potíže s AŠ (bolest, otok nebo zánět) zda a jaká byla předchozí terapie (obstřík, klidový režim, fixace, rehabilitace), na pracovní prostředí, na způsob vykonávání zaměstnání (fyzicky náročné, sedavé), na způsob trávení volného času a sportovní aktivity pacienta, na léky, které pacient užívá a které by mohly ovlivňovat strukturu šlachy.

Informacemi o nynějším onemocnění se zjišťuje, kdy a jakým mechanismem se úraz stal, způsoby vyšetření a ošetření, délku fixace, kolik je povolená zátěž, kdo doporučil rehabilitaci.

Subjektivním vyšetřením se popisují pocitky pacienta, bolestivost (její charakter, lokalizaci, vyzařování), úlevou polohu. Aspekci se popisuje držení těla a pohybové projevy, celkově, regionálně a místně. Pozoruje se držení těla a chůze hned při vstupu pacienta. Začíná se hodnotit držení těla jako celku a přechází se k hodnocení místnímu, posuzuje se postura zezadu, z boku a zepředu. Vychází se z klidové vzpřímené polohy (pokud nelze ve stoji, hodnotí se v poloze, kterou pacient svede). Popisuje se operovaná končetina, postavení patní kosti, symetrii rozložení sít na chodidle, vady chodidla a palce, otoky, hematomy, jizvy (i dřívější), ochlupení, trofika a barva kůže, tvar AŠ a lýtek, postavení kolen, konfigurace stehna, výška gluteálních rýh, trofika gluteální masy. Zepředu se sleduje deformace prstů a palce, tvar nožní klenby, postavení pately, trofika m. quadriceps, linie adduktorů kyčelního kloubu. Z boku se hodnotí linie lýtkového svalu, postavení v kolenním kloubu, konfigurace stehna. Porovnává se s druhostrannou končetinou. Ze všech tří pohledů se popisuje pánev, páteř, horní končetiny a hlava. Lze použít olovnici. Hodnotí se stereotyp chůze (i po patách a špičkách), provádění rytmu a délky kroku, způsob pokládání a odvíjení chodidla, zapojení palce a prstů do opory (Věle, 2006, Kolář et al., 2009).

Palpací se hodnotí hmatové vzemy a reakce organismu na dotyk. Posuzují se posunlivost a protažlivost všech měkkých tkání, elasticita, svalový tonus, odpor, změny teploty a prokrvení kůže, hyperalgické zóny (dále jen HAZ), TrP. Vyšetřuje se tukový
polštář paty, jizva, AŠ a měkké části pod AŠ, periostové body na celé DK. Z důvodu vzniku možných svalových dysbalancí, při odlehčování končetiny a zatěžování horních končetin při opoře o berle se hodnotí i druhostranná končetina a trup. Porovnává se taktéž čití bérce a nohy, které může být nejčastěji změněno poškozením n. suralis. Specifickým testem je tzv. Thompsonův test, který byl popsán výše (Věle, 2006).

Goniometrií se měří pohybový rozsah v kloubech DK. Pomocí tzv. goniometru se hodnoty aktivního a pasivního pohybu porovnávají s druhostrannou končetinou, zápis je zaznamenán po pěti stupních. Nejrozšířenější je zápis tzv. metodou SFTR, která uvádí hodnoty v rovinách sagitální, frontální, transverzální a rotace (Haladová, 2005).

Vyšetření pasivního pohybu určuje úhlový rozsah pohybu, typ odporu měkkých tkání nebo bolest (Věle, 2006).

Vyšetření aktivního pohybu informuje o úhlovém rozsahu pohybu, vlastní výkonnosti pohybového systému a o svalové koordinaci. Vyšetření hodnotí oboustranné pohyby hlezenního kloubu, kolene a kyčle. K posouzení zapojení m. triceps surae do plantiflexie ve stoji se testuje stoj na špičky. Porovnává se způsob provedení s druhostrannou končetinou, vyška oddálení paty od podloţky, zaznamenává se počet opakovaní a subjektivní pocity pacienta (Věle, 2006).

Antropometrické vyšetření zjišťuje délku a obvody obou dolních končetin. Odchylky informují o otoku, změně trofiky tkání a změně délky končetiny (Haladová, 2005).

Svalový test (dále jen ST) určuje sílu testovaného svalu či skupiny svalů. Hodnocení je nejčastěji funkčním svalovým testem dle V. Jandy. Šestistupňová škála udává stupeň svalového oslabení celé DK, hodnoty se porovnávají se zdravou DK a opakovaným hodnocením se sleduje léčebný postup. Jelikoţ jde o hodnocení subjektivní, je vhodné, aby kontrolní testování prováděla stejná osoba (Věle, 2006).

Kloubní vůle posuzuje nepatrné pohyby v kloubu ve směrech, které nejsou typické pro funkci kloubu, tzv. joint play. Vzhledem k postiţení se vyšetřují klouby prstů a nohy, dolní a horní hlezenní kloub, hlavička fibuly, kolenní kloub, patela a SI skloubení (Věle, 2006; Lewit, 1990).

Vyšetření zkrácených svalů je podstatné, protoţe po delší době fixace, ovlněním vazivové a kontraktilní sloţky svalů, dochází ke zkracování jejich klidové délky. Zkrácený sval tak omezuje plný rozsah pohybu v kloubu (Věle, 2006). Třístupňová škála hodnotí: m. triceps surae, m. soleus, flexory kyčle a kolene, m. rectus femoris, adduktory kyčelního kloubu a m. piriformis. Na trupu se hodnotí m.quadratus lumborum, vzpřimovače trupu,
mm. pectorales, m. trapezius, m. levator scapulae (Janda, 2004).

Vyšetření pohybových stereotypů dává kvalitativní informaci o pohybových stereotypech pacienta. Hodnotí se koordinace pohybu, aktivita a zapojení svalů při provádění vyšetřovaného pohybu. Při poškození AŠ se posuzuje pohybový stereotyp do extenze (dále jen EXT) a abdukce (dále jen ABD) v kyčelním kloubu podle Jandy.

Testování EXT se provádí vleže na břiše. Podává informaci o zapojení svalů (s důrazem na m. gluteus maximus) při extenčním stereotypu a z toho vyplývajících dynamických a statických poměrů při chůzi. Testování ABD se testuje vleže na boku. Vypovídá o převažujícím svalu při provádění abdukce a o výpadku m. gluteus medius (Haladová, 2005).

Vyšetření stoje na dvou vahách informuje o zátěži dolních končetin při navýklém stoji bez korekce zrakem. Hodnotí se rozdíl stranové zátěže obou dolních končetin, který nemá přesáhnout 10 -15 % hmotnosti těla (Véle, 2006).

Hluboký stabilizační systém páteře se hodnotí pomocí testů (např. bráničního, extenčního a testu flexe trupu) koaktivaci svalů pánevního dna, bránice, břišních svalů a hlubokých flexorů i extenzerů krku (Kolář et al, 2009).

Vyšetřením dechového stereotypu se posuzuje stabilizační funkce páteře a souhra mezi bránicí a dýchacími svaly. Provádí se vsedě, palpací dolního hrudníku a aspekci pohybu hrudníku a žebé.

Neurologické vyšetření posuzuje povrchové, hluboké a termické čití a myotatické reflexy: patelární a reflex Achillov šlachy (Kolář et al, 2009).

1.5.2 Krátkodobý a dlouhodobý rehabilitační plán

Krátkodobý rehabilitační plán určuje léčebné postupy, které jsou pacientovi navrženy po vyhodnocení kineziologického rozboru.

Cíle u ruptury AŠ jsou snížení otoku, úprava měkkých tkání a jizvy, obnovení hybnosti v hlezenním kloubu, navrácení síly svalů dolní končetiny (se zaměřením
na m. triceps surae), obnovení propiocepce, zvýšení stability, zlepšení koordinace pohybů, dosažení správného stereotypu chůze s postupnou zátěží do plna. Také zlepšování kondice a odstranění funkčních poruch pohybového aparátu.

Dlouhodobý rehabilitační plán stanovuje postupy s důrazem na maximální soběstačnost pacienta v pracovním a sociálním prostředí a návrat k pohybové aktivitě. Doporučuje pokračovat ve zvyšování svalové síly m. triceps surae, ve výcviku stabilizace a ve zlepšování fyzické kondice. Vhodná je jízda na rotopedu, posilování v posilovně. Nevhodné jsou jednostranně zatěžující aktivity. Nezbytné je prohrátí organismu a strečink před sportovní aktivitou.

1.5.3 Fyzioterapie po operaci (časná fáze)

Fyzioterapie probíhá od 1. dne po operaci a řídí se pokyny operátéra. Zaměřuje se na včasnou vertikalizaci pacienta, nácvik stojte a chůze o berlích bez zátěže končetiny s následným nácvikem chůze po schodech. Pacient je edukován o protiotokové terapii, polohování končetiny a bandážování elastickým obinadlem. Je aplikována kryoterapie. Cvičí cévní gymnastiku zapojením prstů, statickou a dynamickou dechovou gymnastiku. Aktivně procvičuje volný kyčelní kloub. Pokud je fixace pod koleno i pohyby v koleně operované končetiny, provádí izometrické stahy svalů a kondičně procvičuje nepoškozené části těla. Je poučen o nutnosti dodržovat povolenou zátěž a nepřetěžovat končetinu, aby nedošlo k reruptuře a instruován o cvičení na doma (Kolář et al, 2009; Berkson).

1.5.4 Pozdní poúrazová fáze fyzioterapie

Po sundání fixace nebo s končetinou ve snímatelné ortéze Vacuped, pacient dochází na pracoviště ambulantní rehabilitace. Je proveden kineziologický rozbor, stanoven krátkodobý a dlouhodobý rehabilitační plán, cíl pacienta a cíl terapeuta.

Zaměření cvičební jednotky je na péči o jizvu s využitím techniky měkkých tkání a pomocí fyzikální terapie. Dále pak obnovení kloubní vůle mobilizací podle Lewita, se zaměřením na klouby celého chodidla, talokrurální (dále jen TC) kloub, hlavičku fibuly, kolenní kloub, patelu a SI skloubení. Pomocí neuromuskulární techniky postizometrická relaxace (dále jen PIR), která ovlivňuje spoušťové svalové body, tzv. trigger points

Při terapii je možno použít techniky a metody: mobilizace měkkých tkání a kloubů, exteroceptivní stimulaci, izometrické pohyby, pasivní pohyby, aktivní cvičení v uzavřeném a následně v otevřeném pohybovém řetězci, cvičení proti oporu, cvičení s využitím therabandů, overballu, gymballu, senzomotorickou stimulaci, Vojtův princip, Brunkow metodu, dynamickou neuromuskulární stabilizaci, proprioceptivní neuromuskulární stimulace (dále jen PNF), SET koncept, strečink. Doporučuje se jízda na rotopedu, chůze na pásu, cvičení v bazénu (Kolář et al, 2009; Lewit, 2004; Berkson).

Léčbu doplňují procedury fyzikální terapie a aplikace kineziotapingu, ortezování.

1.5.5 Fáze přípravy na specifickou sportovní zátěž

Tato fáze se již patří do sféry tréninku sportoveců. Cílem je příprava k obnově sportovní aktivity před úrazem. Je zde zařazeno cvičení v posilovně, na strojích, různé metody rychlostně koordinačního tréninku (Kolář et al, 2009).

1.5.6 Metodický plán po sutuře AŠ dle Erica Berksona

1. týden po operaci
Berkson doporučuje častou elevaci operované končetiny v poloze vyšší než srdce (jako protiotokinová prevence), procvičování prstů operované končetiny v ortéze a chůzi s oporou o berle bez zátěže končetiny.

4. - 8. týden po operaci
Při otoku doporučuje pokračovat v elevaci operované končetiny, možno používat bandáž. Začít s cvičením hlezna bez ortézy do dorzální a plantární flexe, posilovat m. quadriceps
femoris, hemstringy a abduktory kyčelního kloubu. Doporučuje chůzi s oporou berlí s postupným zatěžováním operované končetiny v odnímatelné ortéze, která je opatřena podpatkem. Je povoleno zatěžovat patu. Po šesti týdnech je možná chůze v ortéze bez opory berlí. Doporučuje se kondiční cvičení a jízda na rotopedu.

8. – 12. týden po operaci
Je možná plná zátěž končetiny bez berlí v ortéze se sníženým podpatkem. Pokud je stále otok, doporučuje elevovat končetinu a pouzít bandáž. Doporučuje provádět pohyby v hleznu všemi směry, začít posilovat svaly běrce proti odporu využitím Therabandu s menším odporom (žlutý).

12. – 24. týden po operaci
Berkson doporučuje chůzi bez ortézy a 1 měsíc používat v botě podpatěnku. Poté chůzi s plným zatížením AŠ. Dále pokračovat s posilováním pomocí Therabandu s vyšší tuhostí (modrý) a začít s protahováním m. gastrocnemius a soleus ve stoji. Nacvičovat výpony na špičky a stoj na operované končetině. Se sportováním začít 6 měsíčů po operaci.

1.5.7 Vybrané techniky a metody

Metody svalové facilitace a inhibice

PIR je specifická terapie pro svalovou relaxaci zaměřená na kontraktivní složku svalů. Ovlivňuje a upravuje reflexní změny ve svalových (TrP), bolestivé úponové body na okosticí nebo místa přenesené bolesti. Způsob provedení: v bariéře inkoordinovaného svalového vlákna, pacient minimální sílou klade odpor ve směru svalového stahu po dobu 10 sekund. Následuje relaxace, během 20-50sekund dochází k uvolnění a spontánnímu prodloužení svalu dekontrakcí. Postup se opakuje 3-5krát. Může se kombinovat s dechem a pohyby očí (Lewit, 2004).

Reciproční inhibice protaženého hypertonického svalu nastává při repetitivním odporu proti antagonistovi svalu s TrP (Kolář et al, 2009).

Využití dechu je časté. Vdech má na svaly převážně facilitující a výdech inhibiční účinek.

Senzomotorická stimulace

Je to metodika, při níž dochází k propojení mezi senzorickými a motorickými strukturami, současně k aktivaci exteroceptorů, proprioceptorů a podkorových mechanismů řízení pohybu. Freeman konstatoval, že při poranění nohy dochází k porušení propriocepce, následně ke svalové inkoordinaci a kloubní nestabilitě (Haladová, 1997).

„Cílem SMS je dosažení rychlé reflexní automatické aktivace žádaných svalů, a to v takovém stupni a časovém sledu, aby pohyby, resp. pracovní úkony, nevyžadovaly výraznější kortikální, tj. volní kontrolu. Jen tak lze realizovat předpoklad, že pohybová činnost člověka bude ekonomická a zatížení periferních struktur, zvláště kloubů, bude udrženo v přijatelných fyziologických mezech“(Haladová, 1997, s. 127).

Technika senzomotorické stimulace, vypracovaná prof. Jandou, zahrnuje sestavu cviků v různých polohách. Podstatné jsou cviky ve vertikále, protože pomáhají rušit špatné pohybové stereotypy a nastavují správnou svalovou koordinaci potřebnou pro sed, stoj a chůzi. K ovlivnění držení těla a rovnováhy dochází facilitací plosky nohy stimulací kožních receptorů a nácvikem tzv. malé nohy a dále vlivem proprioceptorů z oblasti páneve a šíje (Haladová, 1997).

Nácviku jednoduchých i složitých pohybů s využitím balančních ploch předchází ošetření měkkých tkání na periferii a nácvik malé nohy. Tzv. malá noha znamená: při zapojení krátkých svalů nohy se zkracuje a zužuje chodidlo v podélné a příčné klenbě, prsty zůstávají natažené. Tím vzniká změna rozložení tlaků v kloubech, mění se napětí svalů a ovlivňuje se propriocepe a stabilita. Větší aktivace proprioceptorů nastává při cvičení na balančních plochách vychylovaním pacienta nebo vychylovaním podložky z rovnovážného postavení také přidruženými pohyby hlavy a horních končetin. Vyloučení zrakové kontroly při cvičení patří mezi náročnější provedení. K balančním pomůckám náleží válcové a kulové úseče, balanční sandále, točny, Fitter, minitrampoliny, čočky,
posturomed (Haladová, 1997).

Do nácviku pohybu se zapojuje volní a reflexní řízení hybnosti. Na začátku převažuje korové řízení, které postupně nahrazuje zautomatizování pohybu. Záleží na zvoleném cvičení, na častém opakování a obměně cviků, postupném zvyšování náročnosti. Mezi zásady patří kraniálně od chodidel až po ramena, cvičení naboso, nikdy přes bolest a únavu a vždy se vyžaduje přesné provedení cviku (Haladová, 1997).

Proprioceptivní neuromuskulární stimulace

Základem PNF je ovlivňování motorických neuronů předních rohů míšních aferentními i eferentními impulzy, různými hmaty, pasivními a aktivními pohyby, dynamickou a statickou činností proti adekvátnímu odporu. Technika využívá spolupráce velkých svalových skupin, pohybové vzorce mají rotační a diagonální složky, které se podobají přirozeným pohybům. Diagonální pohyby jsou dány pro všechny části těla, každá z nich má flekční a extenční vzorec. Jsou vypracovány posilovací a relaxační techniky (Holubářová, Pavlů, 2012). Optimální diagonála a vzorec pro:

- m. gastrocnemius – laterální část
- I. diagonála, extenční vzorec
- m. gastrocnemius.- mediální část
- II. diagonála, extenční vzorec
- m. soleus – laterální část
- I. diagonála, extenční vzorec
- m. soleus – mediální část
- II. diagonála, extenční vzorec

Kineziotaping

1.5.8 Fyzikální terapie

Je to terapie, která využívá působení různých složek fyzikální energie na lidský organismus, s cílem ovlivnit aferentní části nervového systému. U ruptur AŠ je možno
aplikovat následující složky.

Fototerapie je léčba elektromagnetickým zářením o různých vlnových délkách, která využívá účinky energie fotonů.

1) Laser: zařízení, které uvolňuje polarizované, monochromatické a koherentní světlo s vysokou energií. Účinky: termický, fotochemický, biostimulační, protizánětlivý, analgetický. Podporuje hojení, tvorbu kolagenu, zlepšuje mikrocirkulaci, snižuje otok.

2) Biolampa: zařízení, které uvolňuje polarizované, polychromatické světlo. Účinky jsou převážně biostimulační.

Kryoterapie je procedura negativní termoterapie s teplotou 0 stupňů a nižší. Je to lokální přerušovaná aplikace chladu pomocí sáčků s ledem nebo tzv. kryosáčky. Účinky jsou antiedematózní, analgetické a snižuje krvácení.

Elektroterapie je léčba pomocí elektrických proudů s účinkem analgetickým, trofotropním, antiedematozním, myorelaxačním a myostimulačním.

1) distanční elektroterapie (dále jen DE) – bezkontaktní forma aplikace, vhodná i v době fixace, podporuje hojení, má analgetický a trofotropní účinek

2) diadynamické proudy (dále jen DD) – kontaktní forma s účinkem analgetickým nebo antiedematozním

3) TENS – je nízkofrekvenční terapie s více typy použitelných proudů, např. kontinuální má analgetický účinek. TENS surge bývá aplikován jako elektrogymnastika

4) elektrogymnastika využívá impulzů se strmým nástupem pro prevenci a léčbu hypotrofických svalů, např. mediálního vastu m. quadriceps femoris

5) klidová galvanizace – kontaktní forma s účinkem analgetickým a regeneračním

6) čtyřkomorová galvanizace – s účinky jako klidová galvanizace (Poděbradský et al, 2009)

Ultrasonoterapie využívá podélné vlnění o frekvenci větší než 20 kHz. Účinek je antiedematozní, myorelaxační, disperzní (Poděbradský et al, 2009).

Hydroterapie patří mezi terapie s kombinovaným mechanickým a tepelným účinkem. Vířivá koupel končetin s indiferentní teplotou vody zvyšuje metabolismus a aktivuje kožní receptory (Capko, 1998).
2 PRAKTICKÁ ČÁST

2.1 Metodika práce

Praktická část této práce vznikla v rehabilitačním ambulantním zařízení NZZ Rehabilitace Orlová, kde pracuji jako fyzioterapeut.

Zpracování empirické části je formou dvou kazuistik pacientů, oba jsou muži. Proband A s diagnózou parciální ruptura AŠ vpravo byl odeslán na rehabilitaci závodním lékařem. Proband B s diagnózou totální ruptura AŠ vpravo byl doporučen ošetřujícím ortopedem. Proband A byl ošetřen konzervativně sádrovou fixací a proband B byl léčen operativně s následnou fixací sádrovou dlahou a zinkoklihem. Probandu A byla v době imobilizace aplikována DE.

Oba probandi byli vyšetřeni rehabilitačním lékařem, který stanovil terapii. Probandi absolvovali 10 návštěv, 2-3x týdně, cvičební jednotka trvala 40 minut a byla doplněna o procedury fyzikální terapie a kineziotaping. Na základě kineziologického rozboru byl sestaven rehabilitační plán a vybrány vhodné techniky a metodiky. Používaly se techniky měkkých tkání a mobilizace dle Lewita, protahovací a posilovací cvičení, cvičení v uzavřeném a otevřeném pohybovém řetězci, metodika senzomotorické stimulace, metoda PNF, techniky postfacilitační inhibice, metodiky k posílení stabilizace trupu. V terapii byly použity nestabilní plochy, overbally, gymnabally, therabandy. Následná ošetření se vždy řídila subjektivními pocity a aktuálním stavem pacienta. Po vybrání série byl proveden výstupní kineziologický rozbor a efekt terapie byl zhodnocen.

Oba probandi byli seznámeni s účelem vyhotovení bakalářské práce a práce byla realizována na základě informovaného souhlasu pacientů.
2.2 Kaziustika č. 1

2.2.1 Vstupní vyšetření 1. 9. 2014

Proband A: muž, 48 let.
Diagnóza: Ruptura partialis tendinis Achillei l. dx, S 96. 0
Anamnéza:
Osobní anamnéza: výška: 176 cm, hmotnost: 90 kg, lateralita: pravák. Běžné dětské nemoci, úrazy: 0, operace: 0, kov: 0. Bolestivost ani obtíže s AŠ dříve nebyly.
Rodinná anamnéza: nevýznamná.
Farmakologická anamnéza: 0.
Abusus: kouření: 0, alkohol: příleţitostně, černá káva: 2x denně, závislost: 0.
Alergologická anamnéza: 0.
Pracovní anamnéza: policista, pracovní poloha: převáţně sed.
Sociální anamnéza: ženatý, žije v rodičinním domě, 7 přístupových schodů do domu a 16 schodů do patra se zábradlím, koupelna se sprchovým koutem i vanou. Hobby: letecké modelářství, rekreačně fotbal, nohejbal, florbal a společenský tanec.
Sportovní anamnéza: rekreačně fotbal (1x týdně), florbal (příleţitostně).
Rehabilitační anamnéza: v minulosti neproběhla rehabilitační terapie.
Nynější onemocnění:

Dne 11. 7. 2014 si při fotbale poranil pravou (dále jen P) AŠ. Při běhu pocitil náhlou ostrou bolest v oblasti nad P patou a uslyšel zvuk „jako by praskla větev“. Pak mohl jen lehce dostoupit na P nohu a objevil se otok okolo hlezna.

Dne 1. 8. 2014 proběhla kontrola na traumatologické ambulanci, fixace byla ponechána a po domluvě s ošetřujícím lékařem byla vypsána žádanka na fyzikální terapii pro ovlivnění hojení šlachy. Proband vybral 10x DE na oblast P AŠ.

Subjektivní vyšetření

Proband udával bolestivost v oblasti P hlezenního kloubu a AŠ při chůzi a při pohybu. Měl pocit ztuhlosti nohy a kolene, nejistotu a hlavně obavu ze zatížení nohy. Škála bolesti VAS 4/10. Úlevová poloha byla vleže na zádech s elevací PDK.

Objektivní vyšetření

Orientační neurologické vyšetření: proband byl orientovaný časem, místem osobou, dobře spolupracoval.

Celkové vyšetření postury aspekci

Stoj: s oporou o 2 FB, stoj byl možný i bez opory, ale přetrvávala obava zatížit končetiny. Váha těla spočívala převážně na levé (dále jen L) končetině, PDK byla v abdukcí (dále jen ABD) a chodidlo v everzi (dále jen EV). Při pokusu o korekci stoje udržel posturu jen krátkou dobu a citil se nekomfortně.

Zezadu: P spina iliaca posterior superior (dále SIPS) niže a sešikmení pánve vpravo dolů rotace pánve vlevo vzdálenost a laterální posun pánve doleva kapkovitý tvar a asymetrie P gluteálního masívu intergluteální rýha směřující doleva P subgluteální rýha niže P taile prvolubena hypertonus erektorů v oblasti thorakolumbálního přechodu (dále jen ThL) oboustranně, vlevo výrazněji hypertonus erektorů od středního úseku hrudní (dále jen Th) páteře vpravo P lopatka v protrakci ABD P lopatky dolní úhel P lopakty výše odstávající mediální okraj L lopatky
P rameno výše
hypertonus horních trapézů oboustranně, více vpravo
úklon hlavy doprava a rotace vlevo
dolní končetiny: vše vpravo: otok a lividita celého akra
pata oválná
AŠ ztlustělá
noha v EV s oporou o palcovou hranu chodidla
kůže nohy a lýtka suchá, olupující se
hypotrofie svalů lýtka
podkolenní rýha výše
kontura vnitřního stehna změněná nepoměrem
krátkých adduktorů

Vyšetření pomocí olovnice spuštěné ze záhlaví: páteř v Th oblasti od olovnice vychýlená
doleva s maximem v ThL přechodu, olovnice neprocházela intergluteální rýhou,
směřovala k P gluteálnímu masívu a k P patě.
Zboku: oploštělá bederní (dále jen L) lordóza, olovnice 2 cm
břišní stěna povolená
oploštělá Th kyfóza
zvýrazněn cervikothorakální (dále jen CTh) přechod
zvýšená krční (dále jen C) lordóza, olovnice 8 cm
dolní končetiny: vše vpravo: oploštělá kontura lýtka
semiflexe kolene
hypotonie gluteálního svalu

Vyšetření pomocí olovnice spuštěné od zevního zvukovodu: olovnice procházela středem
ramenního i kyčelního kloubu, mějela hlavičku radia i fíbuly a směřovala 6 cm před
laterální kotník.
Zepředu: P spina iliaca anterior superior (dále SIAS) a P crista ilica níže, sešíkmení pánve
vpravo dolů
P taile prohloubená
hypotonie břišních svalů
vypouklá břišní stěna s konkavitou laterální kontury vpravo
laterální rýha šikmých svalů výrazná oboustranně
pupek tažen vzhůru
hrudník soudkovitý v inspiračním postavení

36
L prsní bradavka výše
P mediální a L laterální konec klíční kosti výše
obě nadklíčkové jamky výrazně prohloubené
hypertonus obou m. sternocleidomastoideus (dále m. SCM), více vpravo
symetrie obličeje a hlavy
mimické svaly uvolněné
dolní končetiny: vše vpravo: valgozita hlezenního kloubu
opora o palcovou hranu
semiflexe 2-5 prstu
podélné plochonoţí
posun pately zevně a nahoru
hypotonie mediálního vastu m. quadriceps
vnitřní rotace v kyčli

Vyšetření stereotypu chůze

Vyšetření palpací

Celá P AŠ byla palpačně citlivá, HAZ s maximem na mediální hraně, byly nepohyblivé i neposunlivé měkké tkáně pod, podél a na AŠ. Byla zvýšená potivost P nohy. Periostové body: vpravo zvýšená citlivost 2-4 hlavičky metatarsu, os naviculare, hlavičky říbuly.
Kůţe a podkoţí: nebyla posunlivost a protaţlivost nárů, plosky a hlezna vpravo.
Tukový polštář P paty: neposunlivý distoproximálně.
Fascie PDK: neposunlivá plantární fascie, neposunlivá fascie zadní plochy lýtka kraniokaudálně i laterolaterálně.
Svaly: TrP na PDK: m. soleus, mediální i laterální hlava m. gastrocnemius, svalové bříško mm. peronei, úpon m. biceps femoris, m. rectus femoris uprostřed svalu, sedací hrbol. Oboustranně TrP v m. piriformis.
Svaly: trofika PDK: hypotonus svalů lýtka s maximem m. triceps surae; mediálního vastu m. quadriceps a m. gluteus maximus. Oboustranný hypertonus svalů chodidla a m. tensor
fascie latae a výrazný oboustranný hypertonus m. piriformis.

Thompsonův test: negativní.

Antropometrické měření

Výsledky antropologického měření jsou zaznamenány v tabulce č. 1.

Tab. č. 1 Antropometrické míry probanda A

<table>
<thead>
<tr>
<th></th>
<th>Dexter [cm]</th>
<th>Sinister [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkční délka DK</td>
<td>93,5</td>
<td>94</td>
</tr>
<tr>
<td>Anatomická délka DK</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Obvod stehna 15 cm nad patelou</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Obvod stehna 5 cm nad patelou</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Obvod kol. kl. přes patelu</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Obvod lýtka</td>
<td>35,5</td>
<td>39</td>
</tr>
<tr>
<td>Obvod hlezenního kl. (přes malleoli)</td>
<td>28,5</td>
<td>26,5</td>
</tr>
<tr>
<td>Obvod přes hlavice metatarsů</td>
<td>24,5</td>
<td>24</td>
</tr>
</tbody>
</table>
Goniometrické vyšetření

Vyšetření aktivního a pasivního pohybu DKK je zapsáno metodou SFTR. Výsledky jsou shrnuty v tabulce č. 2.

Tab. č. 2 Goniometrické vyšetření DKK probanda A

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Rovina</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Sa</td>
<td>5 – 0 – 130</td>
<td>10 – 0 – 130</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>40 – 0 – 40</td>
<td>40 – 0 – 40</td>
</tr>
<tr>
<td></td>
<td>Ra (S 90°)</td>
<td>40 – 0 – 30</td>
<td>40 – 0 – 30</td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Sa</td>
<td>0 – 0 – 120</td>
<td>0 – 0 – 120</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>Sa</td>
<td>0 – 5 – 25</td>
<td>15 – 0 – 60</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>0 – 5 – 35</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>5 – 0 – 10</td>
<td>20 – 0 – 40</td>
</tr>
<tr>
<td></td>
<td>Rp</td>
<td>10 – 0 – 15</td>
<td>N</td>
</tr>
<tr>
<td>Prsty</td>
<td></td>
<td>MOP do FL</td>
<td>N</td>
</tr>
<tr>
<td>Palec</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Vyšetření zkrácených svalů

Vyšetření zkrácených svalů DKK dle Jandy je zaznamenáno v tabulce č. 3.

Tab. č. 3 Vyšetření zkrácených svalů DKK probanda A

<table>
<thead>
<tr>
<th></th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>m. soleus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. gastrocnemius</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adduktory kyčelního kloubu</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flexory kolenního kloubu</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. iliopsoas</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. rectus femoris</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. tensor fascae latae</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Vyšetření zkrácených svalů trupu: P m. SCM, oboustranně m.quadraus lumborum, paravertebrální svaly, m. pectoralis major (všechny části) a m. trapezius: stupeň 1.
Vyšetření síly svalů DKK dle Jandy

Vyšetření svalové síly DKK je zaznamenáno v tabulce č. 4.

Tab. č. 4 Svalová síla svalů DKK probanda A

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Sval</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Flexor</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory (modifikace)</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory zevní</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory vnitřní</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Flexory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td>Hleznní kl.</td>
<td>M. triceps surae</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. soleus</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. tibialis anterior</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. tibialis posterior</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mm. peronei</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Prsty</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Palec</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Vyšetření kloubní vůle
Byla omezena kloubní vůle PDK: 2–4 metatarzálního (dále jen MT) kloubu ventrodorzálním směrem, Lisfrancova a Chopartova skloubení, paty mediálním a laterálním směrem, TC kloubu, hlavičky fibuly ventrodorzálně. LDK byla bez omezení kloubní vůle. Oboustranně bylo omezeno SI skloubení.

Vyšetření pohybových stereotypů
EXT v kyčelním kloubu: zapojení svalů bylo v tomto pořadí:
PDK: homolaterální erektory v lumbosakrální oblasti, kontralaterální erektory v lumbosakrální oblasti, ischiokrurální svaly, m.gluteus maximus
LDK: ischiokrurální svaly, m.gluteus maximus, kontralaterální erektory v lumbosakrální oblasti, homolaterální erektory v lumbosakrální oblasti
ABD v kyčelním kloubu: porucha zapojení svalů v tomto pořadí:
PDK: m tensor fascie latae, zevní rotátory, flexory kyčle a m. quadratus lumborum, m.gluteus medius
LDK: m. tensor fascie latae, m. quadratus lumborum, m.gluteus medius

Vyšetření stoje na dvou vahách
Vyšetření bylo provedeno z důvodu zjištění zátěže na PDK do bolesti. Zátěž na PDK byla 25 kg. Vzhledem k hmotnosti probanda 90 kg je to necelá ¼ váhy.

Vyšetření pohyblivosti páteře
FL: Thomayerova zkouška: 15 cm, rozvíjení bylo omezeno v úseku Th páteře a L páteře
EXT: byla omezená o 1/3, s bolestí a souhybem pánve vpřed
LF: vpravo: 14 cm, vlevo: 10 cm, rozvíjení bylo asymetrické s tahem svalů

Vyšetření neurologické
Patelární reflex byl výbavný oboustranně.
Čití při povrchovém, hlubokém i termickém čití.

Vyšetření hlubokého stabilizačního systému páteře
Bráníční test: nevytlačil břišní dutinu a dolní žebra, žebra se posouvaly kraniálně, mezížeberní prostory se nezvětšily.
Extenční test: výrazná aktivace erektorů v oblasti ThL přechodu, došlo k anteverzi pánve a k aktivaci ischiokrurálního svalstva.
Test flexe trupu: došlo k vyklenutí boční skupiny svalů a výraznému zapojení povrchových flexorů krku.
Vyšetření dechového stereotypu

Byl horní typ dýchání, bez rozvíjení dolních žeber do stran, s posunem sterna a klíčních kostí kraniálně a se zapojením pomocných svalů. Dechová vlna v břišní krajině nebyla.

Vyšetření soběstačnosti

Proband byl soběstačný při denních činnostech.

2.2.2 Závěr vstupního vyšetření

Proband měl doma dispozici gymball, červený theraband, masáţní míček a rotoped.

2.2.3 Krátkodobý plán

Cíl pacienta: odstranit bolest a otok
- zlepšit hybnost hlezna
- posílit lýtkové svaly
- zvýšit jistotu na PDK při chůzi
postupně zvládnout běh.

Cíl terapeuta: snížení otoku

uvolnění měkkých tkání
obnovení kloubní vůle
zvýšení mobility hlezenního kloubu
posílení svalové síly PDK
podpora propiocepte a stability
zlepšení koordinace pohybů v hlezenním a kyčelním kloubu
nácvik správného stojě
úprava stereotypu chůže s postupnou zátěží do plna a zapojením EXT v kyčli
odstranění funkčních poruch pohybového aparátu
zlepšení celkové kondice
snížení bolesti a obavy pacienta
edukace a motivace probanda

2.2.4 Průběh terapie

Terapie č. 1 dne 1. 9. 2014

Subjektivně (dále jen subj): byla bolest při pohybu, při chůzi, palpační bolestivost P AŠ. Udával pocit ztuhlosti v P hleznu a nejistotu.

Objektivně (dále jen obj): byl otok a lididita akra P nohy, omezená hybnost P hlezenního kloubu ve všech směrech pohybu. Odlehčoval PDK. Výborně spolupracující.

Terapie: byly provedeny techniky měkkých tkání a mičkování v oblasti nohy, AŠ, lýtka. Mobilizaci byla ošetřena všechna skloubení a klouby nohy a hlavička fibuly vpravo. Pacient masážním míčkem facilitoval obě chodidla. Aktivně cvičil pohyby v P hleznu do všech směrů pohybů. Nacvičoval oporu o tři body v lehu s elevací končetiny a nohou opřenou o zeď. Totéž v sedu s oporou o podlahu. Pomocí švíhadla protahoval P m. triceps surae a m. soleus v sedu a obostranně flexory kolena. Dále nacvičil techniku AGR m. piriformis a m. tensor fascie latae. Cvičení lze provádět doma. Pacient trénoval správné pokládání a odvíjení chodidla v sedu. Nacvičoval dvoudobou chůzi s oporou 2 FB
do bolesti. Protože chodí do práce, která je sedavého charakteru, byl edukován o pohybových a režimových opatření u poškození Achillovy slachy, o zařazení přestávek s protažením svalů PDK a nutnosti častější chůze po pracovišti.

Byla aplikována vířivá koupel termoneutrální na DKK po dobu 15 min. a DD proudy transregionálně na oblast P AŠ, DF1 CP2 LP3 na 6 minut.

Terapie č. 2 dne 4. 9. 2014

Ve stoji stále odlehčoval PD K, everze chodidla byla menší. Zatížení PDK byla zvýšena na 35 kg. Dvoudobou chůzi s oporou 2 FB zvládl, na pohyb chodidla se musí soustředit.

V uzavřeném kinematickém řetězci na velkém míči a overballu procvičoval PDK. Cviky lze cvičit doma. Pro zvýšení svalové síly m. quadriceps femoris posiloval sval analyticky se závažím 1 kg. Úmyslně jsem volila cvičení, kde se střídaly polohy DK tak, aby došlo k ovlivnění prokrvení PDK. Při dvoudobé chůzi se soustředil na uvědomělý pohyb chodidla a zapojení m. gluteus maximus ve stojné fázi.

Aplikace druhé termoneutrální vířivé koupele na DKK a DD proudů transregionálně na P AŠ. Byl aplikován kinesiotape na P AŠ. Doma denně jezdil na rotopedu po dobu 25 minut.

Terapie v 2. týdnu fyzioterapie ve dnech 8. a 11. 9. 2014

Subj: udával snížení bolestí při pohybu a ranní ztuhlosti, zlepšení pohyblivost
v kloubu. Byla menší intenzita bolesti P AŠ palpačně i při chůzi. Aplikaci kineziotapu hodnotil kladně, zdůrazňoval pocit větší jistoty a zpevnění.

Terapie: byly zopakovány cviky z minulé terapie, které měl jako autoterapii. Byly provedeny měkké techniky v oblasti AŠ a fascií lýtkových svalů a facilitace plosky nohy masážním míčkem, mobilizace TC kloubu a P SI skloubení, PIR TrP m. soleus, m. gastrcenmiius. Byl proveden nácvik AGR m.iliopsoas a m. biceps femoris, nácvik strečinky lýtkových svalů ve stoji. Posiloval technikou PNF pomalý zvrat pohybu, I. a II. diagonálu extenční vzorec se zaměřením na m. triceps surae. Analyticky posiloval m. gluteus maximus a m. quadariceps femoris se zvýšením 2kg. Nacvičoval „malou nohu“ v korigovaném stoji bipedálně na pevné podložce. Byly přidány náklony a postrky, pohyby horní končetinou a stoj bez zrakové kontroly, který byl výrazně nestabilní. Byla provedena korekce délky kroku a nesprávného pohybu chodidla při chůzi bez opory.

Aplikovala 3. a 4. termoneutrální vůlívou koupel na DKK a DD proudy transregionálně na P AŠ. Aplikace kineziotapu.

Terapie ve 3. týdnu fyzioterapie ve dnech 15. a 18. 9. 2014

Subj: stav byl zlepšen, pohyblivost hlezna byla lepší a bolestivost byla menší intenzity palpačně i při chůzi.

Obj: při chůzi se snažil o správný stereotyp, stále přetrvalo napadání na PDK a asymetrie kroku, nášlap byl zlepšen. M. gluteus maximus zapojoval ve stojné fázi výrazněji, odval chodidla vázl. Stoj na PDK svedl, byla patrná hra šlach P akra, se zavřenýma očima stoj zůstal stále výrazně nestabilní. Otok v oblasti P AŠ byl méně výrazný. Přetrvala TrP v mediální části m. gastrocnemius, vpravo. Došlo ke zvýšení svalové síly m. triceps surae (stupeň 3+), m. tibialis anterior, posterior, mm. peronei (stupeň 4). Kloubní vůle byla omezená jen u P hlavičky druhého MT kloubu směrem ventrálním. Nebyla posunlivost měkkých tkání pod P AŠ a fascie distální třetiny lýtky.

Terapie: zopakování strečinku lýtkových svalů ve stoji. Byla provedena uvolňovací masáž P AŠ a lýtku, facilitace masážním míčkem plosky nohy a PIR mediální části
P.m. gastrocnemius. Po mobilizaci hlavičky druhého MT kloubu došlo k jejímu uvolnění. Posíloval m. triceps surae metodou PNF. Cvičil „malou nohu“ ve stoji na PDK, cvičil bez zrakové kontroly, nacvičoval přední a zadní půlkrok a výpady na pevné podložce. Postupně cvičil půlkroky a výpady na pěnové podložce BIRK. Znovu nacvičoval správný krokový mechanismus při chůzi. Byl proveden nácvik zapojení HSS ovlivněním postavení hrudního koše a aktivací posturálního bráníčního dýchání vleče na zádech.

Aplikována 5. a 6. termoneutrální vířivá koupel na DKK a DD proudy transregionálně na PAŠ.

Terapie ve 4. a 5. týdnu fyzioterapie ve dnech 22., 25., 29. 9. a 6. 10. 2014

Subj: udával zlepšení pohyblivosti v hleznu a zvýšení jistoty na PDK. Bolest PAŠ při chůzi i palpačně byla stejná, intenzivnější bývá po větší zátěži a při změně počasí.

Obj: při chůzi bylo napadání na PDK menší, délka kroku se srovnala, ještě přetrvávala arytmie. Při rychlejší chůzi byl krok kratší a napadání na PDK bylo výraznější. Přetrvával otok a ztlustočení v oblasti PAŠ a TrP mediální hlavy P.m. gastrocnemius. Byla omezená posunlivost a protaţlivost kůţe a podkoţí PAŠ z mediální strany. Fascie a kloubní vůle byly bez omezení. Svalová síla m.triceps surae byla dle ST 4-.

Hlavní náplní těchto čtyř terapií bylo pokračování v metodice senzomotorické stimulace a posilování P.m. triceps surae. Cvičení senzomotorické stimulace bylo prováděno bipedálně, monopedálně a bez zrakové kontroly. Obtíţnost se zvyšovala cvičením na nestabilních plochách typu balanční pěnová podložka Brik, posturomed a bosu. Zde zvládl korigovaný stoj a cvičení s přidáním pohybů horními končetinami, hlavy, výpady a podřepy. Na kulové úseči zvládl jen korigovaný stoj. Další částí bylo posilování m. triceps surae metodou PNF, posilování pomocí therabandu modré barvy a excentrické posilování ve výponu u žebřin. Nacvičoval správný stereotyp chůze se změnou směru a rychlosti kroku pomocí valčíkového, walzového a polkového kroku. Cvičil aktivaci bránice a napřímení páteře vleče na břiše. Proběhla edukace probanda s doporučením dlouhodobého rehabilitačního plánu. Bylo provedeno výstupní vyšetření.

Aplikována 7. až 10. termoneutrální vířivá koupel na DKK a DD proudy transregionálně na PAŠ. Doma jezdí na rotopedu po dobu 25 minut denně.
2.2.5 Výstupní vyšetření 6. 10. 2014

Subjektivní vyšetření

Objektivní vyšetření

Celkové vyšetření postury aspekčí

Stoj již bez potřeby opory, zátěž byla rovnoměrně rozložena na obě DK. Postavení PDK bylo téměř symetrické s postavením LDK, již jen názorný znak everze P chodidla, bez lividity nohy. Došlo ke zmenšení otoku P hlezna viz tabulka č. 6, trofika svalů lýtků byla zlepšena viz tabulka č. 6, podkolenní rýhy byly v rovině, P koleno již nebylo v semiflekním postavení. Trofika mediálního vastu m. quadriceps byla zlepšena viz tabulka č. 6. Došlo k napřímení držení trupu a hlavy, ke zmenšení rotace a laterálního posunu pánu. Hypertonus erektoru ThL přechodu byl jen vlevo. Břišní svaly byly více tonizované a konkavita laterální kontury vpravo byla méně.

Při vyšetření pomocí olovnice spuštěné ze záhlaví došlo k posunu ke středu intergluteální rýhy a olovnice směrovala více mezi obě paty. Při vyšetření pomocí olovnice spuštěné od zevního zvukovodu olovnice směrovala 5 cm od zevního kotníku. Jinak byl stav nezměněn.

Vyšetření stereotypu chůze

Chůze bez opory s napadaním na PDK, arytmická, se stejnou délku kroku. Nášlap svedl přes patu, ve stojné fázi byla EV nohy menší, kyčel se zapojuje do extenze, odval chodidla vázl pro bolest, souhyb PHK byl jen naznačen. Chůzi po patách svedl, po špičkách svedl opakovaně, ale vzdálenost paty od podlahy byla ve srovnání s LDK snížena o ¼. Schody zvládl nahoru i dolů s přidržením se zábradlí. Běh nesvedl.

Vyšetření palpací

Pociťoval zvýšenou citlivost v dolní třetině mediální hrany P AŠ. Periostové body byly nebolestivé. Tukový polštář P paty a fáscie PDK byly posunlivé. Kloubní vůle nebyla porušena. Nebyla posunlivost a protažitivost kůže a podkoží v oblasti P AŠ z mediální strany. TrP na PDK byl na mediální hlavě m. gastrocnemius. Zlepšen tonus m. triceps surae, mediálního vastu m.quadriceps a m. gluteus maximus vpravo. Zmírněn hypertonus tensor fascie latae a m. piriformis, svaly chodidla byly uvolněné.
Antropometrické měření, goniometrické měření, vyšetření svalové síly a hodnocení zkrácených svalů DKK viz tabulky č. 5, 6, 7, a 8 v části Z hodnocení terapie.

Hodnocení zkrácených svalů trupu: m.quadraus lumborum vpravo, m. pectoralis major (všechny části) oboustranně, m. trapezius oboustranně, m. SCM vpravo: stupeň 1.

Vyšetření pohybových stereotypů
Zlepšeno, ale stále nebylo ideální zapojení svalů do EXT i ABD.

EXT v kyčelním kloubu: zapojení svalů bylo v tomto pořadí:
PDK: ischiokrurální svaly, m.gluteus maximus, kontralaterální erektory v lumbální oblasti, homolaterální erektory v lumbální oblasti.
LDK: ischiokrurální svaly, m.gluteus maximus, kontralaterální erektory v lumbosakrální oblasti, homolaterální erektory v lumbosakrální oblasti.

ABD v kyčelním kloubu: zapojení svalů zapojení svalů bylo v tomto pořadí
PDK: m.tensor fascie latae, m. quadratus lumborum, m.gluteus medius.
LDK: m. tensor fascie latae, m. quadratus lumborum, m.gluteus medius.

Vyšetření stoje na dvou vahách
Zátěž na PDK byla 41 kg, na LDK byla 49 kg. Rozdíl byl 8 kg, při celkové hmotnosti probanda 90 kg.

Vyšetření pohyblivostí páteře
FL: Thomayerova zkouška: 13 cm, rozvíjení nebylo symetrické v úseku Th a L páteře
EXT: omezená v krajní poloze s nestabilitou a pohybem pánve vpřed
LF: vpravo: 16 cm, vlevo: 12 cm.

Vyšetření neurologické
Reflexy a všechny druhy čití: beze změn.

Vyšetření hlubokého stabilizačního systému
Brániční test: vytačil břišní dutinu a dolní žebra, mezižeberní prostory se zvětšily a hrudník se rozšířil laterálně. Test proveden v sedu. Ve stoji a při chůzi bylo zapojení svalů s úsilím a výdrž byla kratší.

Extenční test: aktivace erektorů v oblasti ThL přechodu nebyla tak výrazná, zapojení laterální skupiny břišních svalů bylo výraznější, anteverze pánve a zapojení ischiokrurálních svalů bylo menší.

Test flexe trupu: hrudník v kaudálním postavení se značným soustředěním a ke konci pohybu ještě vyklenutí boční skupiny svalů, zapojení povrchových flexorů krku bylo stále.

Vyšetření dechového stereotypu
Naznačeno rozvíjení dolních žebra do stran, jinak beze změn.
2.2.6 Zhodnocení terapie

Proband byl motivován k léčbě a doma prováděl autoterapii, což mělo za následek zlepšení jeho funkčního stavu.

Po provedené terapii došlo ke zlepšení držení těla, ke zlepšení postavení chodidla a celé PDK, které se opticky přibližuje postavení LDK. Ve stoji na dvou vahách se zvýšilo zatížení PDK, došlo k lepšímu rozdělení zátěže na obě DKK a svedl stoj na špičkách. Stereotyp chůze po rovině, po patách a po schodech byl postupně zlepšen. Při chůzi vázně správné odvíjení chodidla, nesведe chůzi po špičkách, chůzi v rychlejším tempu a běh.

Došlo ke změnám hodnot antropometrického měření. Snížil se otek v oblasti P hlezna, přetrvává deficit lýtkového svalstva vpravo. Srovnání hodnot antropologického vstupního a výstupního vyšetření je zaznamenáno v tabulce č. 5.

Tab. č. 5 Srovnávací tabulka antropometrického měření probanda A

<table>
<thead>
<tr>
<th></th>
<th>Dexter (cm)</th>
<th>Sinister (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.9.</td>
<td>6.10.</td>
</tr>
<tr>
<td>Funkční délka DK</td>
<td>93,5</td>
<td>93,5</td>
</tr>
<tr>
<td>Anatomická délka DK</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Obvod stehna 15 cm nad patelou</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Obvod stehna 5 cm nad patelou</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>Obvod kolenního kloubu přes patelu</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Obvod lýtka</td>
<td>35,5</td>
<td>37</td>
</tr>
<tr>
<td>Obvod hlezenního kloubu, (přes malleoli)</td>
<td>28,5</td>
<td>27,5</td>
</tr>
<tr>
<td>Obvod přes hlavice metatarsů</td>
<td>24,5</td>
<td>24</td>
</tr>
</tbody>
</table>

V průběhu terapie byly obě délky PDK shodné, v porovnání s LDK zůstala funkční délka PDK o 0,5 cm kratší. Obvod hlezenního kloubu se zmenšil o 1cm, oproti LDK přetrvává rozdíl +1 cm. Zvýšil se obvod lýtka o 1,5 cm, oproti LDK byl rozdíl -2 cm. Obvod m. quadriceps femoris byl o 2 cm zlepšen, oproti LDK byl rozdíl -1 cm.

Terapii byla zlepšena hybnost P hlezna ve všech směrech pohybu. Srovnání hodnot vstupního a výstupního goniometrického vyšetření DKK je uvedeno v tabulce č. 6.
Tab. č. 6 Srovnávací tabulka goniometrického vyšetření DKK probanda A

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Rovina</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.9.</td>
<td>6.10.</td>
</tr>
<tr>
<td>Kyčelní kl.</td>
<td>Sa</td>
<td>5–0–130</td>
<td>10–0–130</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>30–0–30</td>
<td>30–0–30</td>
</tr>
<tr>
<td></td>
<td>Ra (S 90°)</td>
<td>40–0–30</td>
<td>40–0–30</td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Sa</td>
<td>0–0–120</td>
<td>0–0–120</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>Sa</td>
<td>0–5–25</td>
<td>15–0–55</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>0–5–35</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>5–0–10</td>
<td>15–0–40</td>
</tr>
<tr>
<td>Prsty</td>
<td>MOP do Fl</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Palec</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Aktivní pohyb do DF se zlepšil o 20 stupňů, do IN o 30 stupňů, výstupní hodnoty byly stejné jako u L hlezna. PF byla zlepšena o 30 stupňů, EV o 10 stupňů, přetrvalo mírné omezení hybnosti. Hodnoty pasivního pohybu P hlezna byly srovnatelné s hodnotami LDK.

Terapií došlo k uvolnění zkrácených svalů DKK. Přetrvalo zkrácení FL kolenních kloubů oboustranně. Srovnání hodnot vstupního a výstupního vyšetření zkrácených svalů DKK je uvedeno v tabulce č. 7

Tab. č. 7 Srovnávací tabulka vyšetření zkrácených svalů DKK probanda A

<table>
<thead>
<tr>
<th></th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.9.</td>
<td>6.10.</td>
</tr>
<tr>
<td>m. soleus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. gastrocnemius</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adduktory kyčelního kloubu</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flexory kolenního kloubu</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. iliopsoas</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. rectus femoris</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. tensor fasciae latae</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

PDK byla celkově posílena, zlepšila se síla a tonus svalů PDK. Srovnání hodnot vstupního a výstupního vyšetření svalové síly svalů DKK je zaznamenáno v tabulce č. 8.
Tab. č. 8 Srovnávací tabulka svalové síly svalů DKK probanda A

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Sval</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Flexor</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>4+</td>
</tr>
<tr>
<td></td>
<td>(modifikace)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>4-</td>
<td>4+</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>zevní</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotátory</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>vnitřní</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Flexory</td>
<td>4-</td>
<td>4+</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4-</td>
<td>4+</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>M.triceps</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>surae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. soleus</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>M. tibialis</td>
<td>3</td>
<td>4+</td>
</tr>
<tr>
<td></td>
<td>anterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. tibialis</td>
<td>3</td>
<td>4+</td>
</tr>
<tr>
<td></td>
<td>posterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mm. peronei</td>
<td>3</td>
<td>4+</td>
</tr>
<tr>
<td>Prsty</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Palec</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Svalová síla m. triceps surae a m. soleus se zvýšila ze stupně 3 na stupeň 4. V porovnání s L stranou byla menší o jeden stupeň. Svalová síla m. tibialis anterior, m. tibialis posterior a mm. peronei se zvýšila ze stupně 3 na stupeň +4. Hodnota svalové
síly m. gluteus maximus a abduktorů kyčelního kloubu se o jeden stupeň zvýšila ze stupně 4- na +4.

Došlo k uvolnění měkkých tkání a bolestivých periových bodů na PDK, zlepšila se kloubní vůle všech skloubení PDK i SI skloubení. Přetrvála omezená posunlivost kůže v oblasti P AŠ, ztlusťení P AŠ a TrP na mediální hlavě m. gastrocnemius vpravo.

Pohybové stereotypy v obou kyčelních kloubech do EX i ABD byly zlepšeny, ale zapojení svalů ještě nebylo ideální. Přetrvala hyporeflexie P AŠ.

Pohyblivost L páteře, posturální stabilita a stereotyp dýchání nebyly ideální, z časových důvodů však nebyla možnost se jimi více zabývat.

Po vybrání deseti procedur byla terapie ukončena. Vzhledem k přetrvávajícím poruchám pohybového aparátu bych doporučovala další terapie, kde by bylo vhodno zabývat se pohybovým aparátém jako celkem.

Cíle probanda a terapeuta byly z podstatné části splněny. Terapii považuji za přínosnou.

2.2.7 Dlouhodobý plán

Plné zapojení probanda do pracovního a sociálního procesu. Bylo mu doporučeno pokračovat ve cvičební jednotce, kterou zvládl, s cílem zvyšovat svalovou sílu m. triceps surae, zlepšovat stabilitu PDK, celkovou kondici a upevňovat správné pohybové stereotypy. Dalším cílem bylo zvládnout běh a připravit se na fyzické testy v rámci pracovního procesu, navrátit se k původní sportovní aktivitě nebo hledat nové pohybové činnosti, které nejsou jednostranně zaměřené.
2.3 Kazuistika č. 2

2.3.1 Vstupní vyšetření 1. 10. 2014

Proband B: muž, 51 let.

Diagnóza: Ruptura tendinis Achillei l. dx, S 96. 0

Anamnéza:

Rodinná anamnéza: nevýznamná.

Farmakologická anamnéza: Lorista 1–0–0.

Abusus: kouření: 15 cigaret denně, černá káva: 4x denně, alkohol: 0, závislost: 0.

Alergologická anamnéza: senná rýma, alergie na parfémy.

Pracovní anamnéza: řidič kamionu, pracovní poloha: převážně sed.

Sociální anamnéza: ženatý, žije v přízemním domě, bez schodů, koupelna se sprchovým koutem. Hobby: motorismus.

Sportovní anamnéza: dříve rekreačně fotbal, nyní cvičení v posilovně, relaxace.

Rehabilitační anamnéza: v minulosti nепroběhla rehabilitační terapie.

Nynější onemocnění:

berle nezatěžovat PDK.

Subjektivní vyšetření

Proband udával bolestivost v oblasti P zevního kotníku při pohybu do DF a při chůzi. Škála bolesti VAS 4/10. Úlevová poloha byla vleže na zádech s elevací končetin.

Objektivní vyšetření

Orientační neurologické vyšetření: proband byl orientovaný časem, místem, osobou, dobře spolupracoval.

Celkové vyšetření postury aspekci:

Stoj bez opory o širší bázi, s odležením PDK, která byla v ABD a chodidlo v EV. Zátěž spočívala převážně na LDK. Při pokusu o korekci stoje, udržel posturu, ale cítil se nekomfortně.

Zezadu: torze pánve
- laterální posun pánve doprava
- asymetrie a kapkovitý tvar P gluteálního masívu
- P taile prohloubená
- intergluteální rýha směřuje doleva
- P subgluteální rýha níže
- hypertonus erektorů obostranně v oblasti ThL př.
dolní úhel P lopatky výše
odstávající mediální okraj P lopatky
obě lopatky v protrakci, výrazněji pravá
P rameno výše
hypertonus horních trapézů oboustranně, více vpravo
úklon hlavy doprava a rotace vlevo
dolní končetiny, vše vpravo: otok hlezna
 P pata oválná
 L pata kvadratická
 P AŠ ztlustělá se zhojenou jízvou po sutuře
 zarudnutí ve střední části šlachy
 kůže v okolí AŠ suchá a šupinatá
 noha v everzi
 hypotrofie svalů P lýtka
 P podkolenní rýha výše
 hypotrofie P stehenního a gluteálního svalstva

Vyšetření pomocí olovnice spuštěné ze záhlaví: páteř v Th oblasti vychýlená doleva
s maximem v oblastinThL přechodu, olovnice neprochází intergluteální rýhou (odchylka 2 cm doprava), směřuje k P gluteální mase a k P patě.

Zboku: trup v záklonu, váha těla na přednoţí
 oploštělá L lordóza, olovnice 2 cm
 břišní svaly povolené v dolní části
 oploštělá Th kyfóza
 zvýšená C lordóza, olovnice 6 cm
 semiflexe v P lokte
dolní končetiny, vše vpravo: oploštělá kontura lýtka
 semiflexe kolene
 hypotonie gluteálního svalu

Vyšetření pomocí olovnice spuštěné od zevního zvukovodu: prochází středem ramenního
i kyčelního kloubu, můží hlavicku radia i fibuly a směřuje 6 cm před laterální kotník.

Zepředu: torze pánve
 lateralizace pánve doprava
 P taile prohlubena
 břišní svaly méně tonizovány v dolní části
konkavita laterální kontury vpravo
laterální rýha šikmých svalů prohloubená v horní levé části
pupek tažen vzhůru
L mediální a laterální konec klíční kosti výše
hypertonus obou m. SCM, více vpravo
úklon doprava a rotace vlevo
symetrie obličeje a hlavy, mimické svaly uvolněné
pronační postavení P předloktí
dolní končetiny, vše vpravo: valgozita hlezenního kloubu
opora o palcovou hranu
2-4 prst kladívkovitý
hallux valgus
přičné plochonoţí
otok v oblasti hlezna
posun pately zevně
hypotonie mediálního vastu m. quadriceps

Vyšetření jízvy

Jízva byla zhojená, na laterální hraně P AŠ, délka 10 cm, v horní části hyperestetická, ve střední části suchá s olupující se kůţí. Měkké tkáně v okolí jízvy byly neposunlivé a neprotaţlivé všemi směry, byly oteklé a zarudlé se zvýšenou teplotou.

Vyšetření stereotypu chůze

Chůze po rovině byla bez opory s vadným stereotypem o širší bázi. Šetřil PDK a napadal na ní, PDK byla v zevní rotaci. Pohyb končetinou vprěd byl s elevací P boku, delším krokem a bez nášlapu nohy. Celé chodidlo pokládal toporně v EV a opíral se o palcovou hranu. V opěrné fázi chyběla EX kyčle a kolene, v odrazové fázi nebyl odval P chodidla. Po patách a špičkách nesvedl. Po schodech zvládl s přidrţením se zábradlí a přisunutím PDK. Při chůzi byla bolestivost v oblasti AŠ a nejistota. Stoj na špičkách nesvedl vpravo.

Vyšetření palpací

P AŠ byla celkově tuhá, na zevní části v horní polovině byla hyperestetická s maximem na jízvě po laterální hraně. Měkké tkáně na a pod šlachou byly nepohyblivé a neprotaţlivé.
Periostové body PDK: byla zvýšená citlivost 1-4 hlavičky metatarsu, hlavičky fibuly, sedacího hrbolu.
Kůže a podkoží: nebyla posunlivost a protažlivost nártu a okolo obou kotníků vpravo. Tukový polštář paty byl neposunlivý všemi směry.

Fascie PDK: neposunlivá plantární fascie, fascie zadní plochy lýtka neposunlivá laterolaterálě.

Svaly: TrP na PDK: m. soleus, mediální i laterální hlava m. gastrocnemius, svalové bříško mm. peronei, úpon a střed m. biceps femoris, m. rectus femoris uprostřed svalu, m. piriformis.

Svaly: trofika PDK: hypotonus svalů lýtka s maximem m. triceps surae; mediálního vastu m.quadriceps a m.gluteus maximus. Hypertonus P m. piriformis, oboustranně hypertonus svalů chodísla, m. tensor fascie latae a výrazný hypertonus hemstringů.

Thompsonův test: pozitivní.

Výšetření kloubní vůle

Na PDK byla omezena kloubní vůle 1-4 MT kloubu ventrodorzním směrem, Schopartova skloubení, TC kloubu, paty laterolaterálně, hlavičky fibuly ventrodorzně a SI skloubení. LDK bylo bez omezení kloubní vůle.

Antropometrické měření

Výsledky antropologického měření jsou zaznamenány v tabulce č. 9.

<table>
<thead>
<tr>
<th>Tab. č. 9 Antropometrické míry probanda B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkční délka DK</td>
</tr>
<tr>
<td>99</td>
</tr>
<tr>
<td>Anatomická délka DK</td>
</tr>
<tr>
<td>Obvod stehna 15 cm nad patelou</td>
</tr>
<tr>
<td>Obvod stehna 5 cm nad patelou</td>
</tr>
<tr>
<td>Obvod kol. kl. přes patelu</td>
</tr>
<tr>
<td>Obvod lýtka</td>
</tr>
<tr>
<td>Obvod hlezenního kl. (přes malleoli)</td>
</tr>
<tr>
<td>Obvod přes hlavice metatarsů</td>
</tr>
</tbody>
</table>
Goniometrické vyšetření

Vyšetření aktivního a pasívního pohybu DKK je zapsáno metodou SFTR. Výsledky jsou shrnuty v tabulce č. 10.

Tab. č. 10 Goniometrické vyšetření DKK probanda B

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Rovina</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Sa</td>
<td>5 – 0 – 130</td>
<td>10 – 0 – 130</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>40 – 0 – 40</td>
<td>40 – 0 – 40</td>
</tr>
<tr>
<td></td>
<td>Ra (S 90°)</td>
<td>40 – 0 – 20</td>
<td>40 – 0 – 20</td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Sa</td>
<td>0 – 0 – 120</td>
<td>0 – 0 – 120</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>Sa</td>
<td>0 – 5 – 35</td>
<td>15 – 0 – 55</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>0 – 5 – 40</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>5 – 0 – 20</td>
<td>20 – 0 – 40</td>
</tr>
<tr>
<td></td>
<td>Rp</td>
<td>10 – 0 – 25</td>
<td>N</td>
</tr>
<tr>
<td>Prsty</td>
<td></td>
<td>MOP do FL</td>
<td>N</td>
</tr>
<tr>
<td>Palec</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Vyšetření zkrácených svalů

Vyšetření zkrácených svalů DKK dle Jandy je zaznamenáno v tabulce č. 11.

Tab. č. 11 Vyšetření zkrácených svalů DKK probanda B

<table>
<thead>
<tr>
<th></th>
<th>DX</th>
<th>SIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>m. soleus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. gastrocnemius</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adduktory kyčelního kloubu</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flexory kolenního kloubu</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. iliopsoas</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. rectus femoris</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. tensor fascae latae</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Vyšetření zkrácených svalů trupu: P m. SCM, oboustranně m.quadraus lumborum, paravertebrální svaly, m. pectoralis major (všechny části) a m. trapezius: stupeň 1.

58
Vyšetření síly svalů DKK dle Jandy

Vyšetření svalové síly DKK je zaznamenáno v tabulce č. 12.

Tab. č. 12 Svalová síla svalů DKK probanda B

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Sval</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Flexor</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(modifikace)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory zevní</td>
<td>4+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory vnitřní</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Flexory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4-</td>
<td>5</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>M. triceps surae</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. soleus</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. tibialis anterior</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M. tibialis posterior</td>
<td>3+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mm. peronei</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Prsty</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Palec</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vyšetření neurologické

Reflexy: Achillov šlachy hyporeflexie vpravo, normoreflexie vlevo. Patelární reflex oboustranně výbavný.

Čítí: anestezie v oblasti zevního kotníku, hypestezie od paty přes laterální hranu k malíku. Bez poruchy hlubokého a termického čítí.
Vyšetření pohybových stereotypů
EXT v kyčelním kloubu: porucha zapojení svalů v tomto pořadí:
PDK: homolaterální erektory v lumbosakrální oblasti, kontralaterální erektory v lumbosakrální oblasti, ischiokrurální svaly, m.gluteus maximus
LDK: ischiokrurální svaly, kontralaterální erektory v lumbosakrální oblasti, homolaterální erektory v lumbosakrální oblasti, m.gluteus maximus
ABD v kyčelním kloubu: porucha zapojení svalů v tomto pořadí:
PDK: m. tensor fascie latae, zevní rotátory, flexory kyčle a m. quadratus lumborum, m.gluteus medius
LDK: m. tensor fascie latae, m. quadratus lumborum, m.gluteus medius

Vyšetření stoje na dvou vahách
Zátěž na PDK byla 30 kg, na LDK byla 58 kg. Vzhledem k hmotnosti probanda 88 kg, je to 1/3 váhy.

Vyšetření pohyblivosti páteře
FL: Thomayerova zkouška: 25 cm, rozvíjení bylo omezeno v úseku L páteře
EXT: omezená o 1/3, bolest a souhyb pánve vpřed.
LF: vpravo: 12 cm, vlevo: 10 cm, tah svalů, rozvíjení asymetrické.

Vyšetření hlubokého stabilizačního systému
Brániční test: nevytlačil břišní dutinu a dolní žebra, žebra se posouvaly kraniálně, mezižeberní prostory se nezvětšily.
Extenční test: výrazná aktivace erektorů v oblasti ThL přechodu s anteverzi pánve a zapojením ischiokrurálních svalů.
Test flexe trupu: vyklenutí boční skupiny svalů a výrazné zapojení povrchových flexorů krku.

Vyšetření dechového stereotypu
Horní typ dýchání bez rozvíjení dolních žebříků do stran, s posunem sterna a klíčních kostí kraniálně a se zapojením pomocných svalů. Bez dechové vlny v břišní krajině.

Vyšetření soběstačnosti
Proband je soběstačný při denních činnostech.
2.3.2 Závěr vstupního vyšetření

Proband měl doma k dispozici biolampu, gymball a rotoped.

2.3.3 Krátkodobý plán

Cíl pacienta: snížit bolest při chůzi
zlepšit chůzi
snížit otok
zlepšit pohyblivost hlezna a jistotu na celou končetinu.

Cíl terapeuta: snížení otoku
uvolnění jizvy a měkkých tkání
obnovení kloubní vůle
zvýšení mobility hlezenního kloubu
protažení zkrácených svalů a posílení svalů oslabených PDK
podpora propriocepce a zvýšení stability
zlepšení koordinace pohybů v hlezenním a kyčelním kloubu
úprava stereotypu chůze s postupnou zátěží do plnu
odstranění funkčních patologií pohybového aparátu
zlepšení celkové kondice
snížení bolesti

2.3.4 Průběh terapie

Terapie č. 1. dne 2. 10. 2014
Subj: byla bolestivost AŠ při chůzi a při pohybech v krajních polohách ve všech směrech. Proband pociťoval nestabilitu P hlezna.
Obj: okolo hlezna byl otok, jizva byla zhojená, nepohyblivá, měkké tkáně okolo zarudlé, nepohyblivé a teplota byla zvýšená. Byla omezená hybnost hlezenního kloubu vpravo, vadný stereotyp chůze s odlehčením PDK. Výborně spolupracoval.
Terapie: byla provedena uvolňovací masáž AŠ, míčkování v oblasti nohy a okolo jizvy. Mobilizací bylo ošetřeno: 1–4. MT kloub, Schopartovo skloubení, TC kloub, hlavička fibuly ventrodorzálně a SI skloubení vpravo. Masážním míčkem facilitoval obě chodidla. Pomocí švihadla protahoval P m. triceps surae a m. soleus v sedu a obostranně flexory kolena v lehu. Technikou AGR uvolňoval obostranně m. piriformis a m. tensor fascie latae. Aktivně cvičil pohyby v hleznu a prstů do všech směrů pohybů. Cvičil oporu o tři body v lehu s elevací končetiny s nohou opřenou o zeď. V sedu trénoval náspal a odval chodidla. Byla provedena korekce stereotypu chůze. Byl edukován o režimových opatřeních po operaci AŠ.
Byla aplikována vířivá koupel termoneutrální na DKK po dobu 15 min., DE na oblast P AŠ po dobu 20 minut. Doma používal biolampu na AŠ a chladivé zábaly na akrum PDK.

Terapie č. 2 dne 3. 10. 2014
Obj: otok okolo hlezna, AŠ ztlustělá, posunlivost měkkých tkání byla omezena...

Terapie: zopakování a kontrola cvičení z předchozí návštěvy. Bylo provedeno míčkování v oblasti od nárty po koleno, facilitace masážním míčkem chodidla, měkké techniky v okolí jizvy, pod AŠ, lýtkových fascií a tukového polštáře paty. Mobilizaci byly ošetřeny: 2. a 3. MT kloub, oba hlezenní klouby, hlavička fibuly ventrálně a SI skloubení. Technikou PIR byly ovlivněny TrP m. soleus, obě hlavy m. gastrocnemius. Technikou AGR uvolňoval extenzory prstů PDK, flexory kyčle a extensors kolena oboustranně. Nacvičoval oporu o 3 body na chodidle a tzv. „malou nohu“ v sedu. Aktivně cvičil hlezno s pomocí Therabandu žluté barvy do všech směrů pohybů. V uzavřeném kinematickém řetězci na velkém miči a overballu procvičoval PDK. Pro zvýšení svalové síly m. quadriceps femoris posíloval sval analyticky se závažím 1,5 kg. Také jsem úmyslně volila cvičení se střídáním poloh DK, tak, aby došlo k ovlivnění prokrvení PDK. Byla provedena korekce čoze, proband se zaměřoval na uvědomělý pohyb chodidla bez FL prstů a na zapojení m. gluteus maximus ve stojné fázi.

Aplikace druhé termoneutrální vířivé koupele na DKK a DE na P AŠ. Doma začal jezdit na rotopedu po dobu 10minut.

Terapie ve 2. týdnu fyzioterapie ve dnech 7. a 9. 10. 2014

Subj: pociťoval snížení bolesti a větší pohyblivost v hleznu.

Terapie: zopakování cvičení z poslední návštěvy. Byly provedeny měkké techniky v oblasti AŠ, míčkování, protažení fascií lýtkových svalů a facilitace plosky nohy masážním mičkem. Mobilizace TC kloubu a hlavičky fibuly. Pomocí PIR byly uvolňovány
TrP m. soleus, m. gastrecnemius, mm. peronei. Nacvičoval AGR svalů planty v sedu a strečink lýtkových svalů ve stoji. Bylo provedeno posilování technikou PNF pomalý zvrat pohybu, I. a II. diagonála, extenční vzorec se zaměřením na m. triceps surae a analytický posiloval m. gluteus maximus a m. quadriceps femoris se závažím 1,5 kg. Nacvičoval „malou nohu“ v korigovaném stoji. Byly přidány náklony a postrky, pohyby horní končetinou a stoj bez zrakové kontroly, který byl nestabilní. Nacvičoval správný stereotyp chůze před zrcadlem, s korekční délky kroku a plynulým pohybem chodidla při chůzi.

Terapie ve 3. týdnu fyzioterapie ve dnech 13. a 16. 10. 2014

Subj: stav byl zlepšen, pohyblivost hlezna byla lepší, bolestivost byla palpačně a při chůzi v odrazové fázi. Kineziotape byl 4 dny s dobrou tolerancí, pak se samovolně odleplil.

Obj: při chůzi byla snaha probanda o správný stereotyp, stále přetrvávalo napadání na PDK s asymetrií kroku. Byl zlepšen násloup i zapojení m. gluteus maximus ve stojné fázi, ale odval chodidla byl porušen. Stoj na PDK svedl, byla patrná hra šlach P akra. Se zavřenýma očima byl nestabilní bipedální i monopedální stoj. Otok v oblasti P AŠ byl méně výrazný, přetrvávalo ztlustění šlachy. Byly TrP v m. soleus a v mediální části m. gastrocnemius. Došlo ke zlepšení svalové síly m. triceps surae na stupeň 3++; m. tibialis anterior, m. tibialis posterior a mm. peronei na stupeň 4+. Kloubní vůle byla omezená jen v 2. a 3. MT kloubu vpravo. Nebyla posunlivost P AŠ, okolních měkkých tkání a fascie distální třetiny lýtka. Jizva byla ve střední části přirostlá, na koncích byla posunlivost zlepšena.

Terapie: zopakování strečinku lýtkových svalů ve stoji. Byla provedena uvolňovací masáž P AŠ a lýtka, facilitace masážním měkkým ploskym plošky nohy a okoli jizvy, PIR m. soleus a mediální části m. gastrocnemius, mobilizace 2. a 3. MT kloubu. Proband posiloval m. triceps surae metodou PNF. Cvičil „malou nohu“ ve stoji na PDK, cvičil se zavřenýma očima, nacvičoval přední a zadní půlkokrku, výpadky na pevné podložce a podložce z paměťové pěny. Znovu nacvičoval správný krokový mechanismus při chůzi. Nacvičoval zapojení HSSP ovlivněním postavení hrudního koše a aktivaci posturálního bráníčního dýchání vleže na zádech.
Byla aplikována 5. a 6. termoneutrální vířivá koupel na DKK a DE na P AŠ. Doma jezdil na rotopedu po dobu 25 minut a aplikoval biolampu na jizvu.

Terapie ve 4. a 5. týdnu fyzioterapie ve dnech 20., 23., 29. 10. a 3 11. 2014

Subj: zlepšení hybnosti v hleznu a zvýšení jistoty, bolest P AŠ byla při odrazové části chůze, palpačně byla bolest menší. Objevila se bolest P paty po delší zátěži.

Hlavní náplní v těchto čtyřech terapiích bylo pokračování v metodice senzomotorické stimulace, pěče o jizvu a okolí AŠ a posilování P m. triceps surae. Cvičení senzomotorické stimulace bylo prováděno bipedálně i monopedálně a bez zrakové kontroly. Obtížnost se zvyšovala cvičením na nestabilních plochách typu balanční podložky, posturomed, bosu. Zde zvládl korigovaný stoj i cvičení, kdy byly přidány pohyby horními končetinami, hlavy a podřepy. Na kulové úseči zvládl korigovaný stoj, při cvičení měl potíže udržet „malou nohu“. Další části bylo posilování m. triceps surae pomocí therabandu modré barvy. Na velkém míči cvičil v uzavřeném i otevřeném kinematickém řetězci, v polohách: leh na zádech, vleže na břiše a v sedu. Z důvodu dostat se do kamionu nacvičoval u žebřin výstupy na příčky v různých výškách a excentricky posila. H ledí m. triceps surae ve výponu. Nacvičoval správný stereotyp chůze se změnou směru a rychlosti kroku. Cvičil aktivaci bránice a napřímení páteře vleže na břiše. Proběhla edukace probanda s doporučením dlouhodobého rehabilitačního plánu. Bylo provedeno výstupní vyšetření.

Aplikována 7. až 10. termoneutrální vířivá koupel na DKK a DE na oblast P AŠ. Dne 23. 10. a 3. 11. byl nalepen kineziotape na P AŠ, se kterým při cvičení a chůzi pociťoval zpevnění a větší jistotu v oblasti hlezna. Doma chladil P akrum dle potřeby a jezdil 25 minut na rotopedu. Osvěcoval jizvu biolamou (pokud není kineziotape).

2.3.5 Výstupní vyšetření 3. 11. 2014

Subjektivní vyšetření

Pacient udával zlepšení stavu, zlepšení pohyblivosti v P hleznu a větší jistotu

Objektivní vyšetření.

Celkové vyšetření postury aspekčí

Ve stoji byla hmotnost těla rovnoměrně rozložena na obě DK. Postavení PDK bylo téměř symetrické s postavením LDK. Prsty byly v uvolněném postavení, everzní postavení P chodidla bylo naznačeno. Otok P hlezna se zmenšil viz tabulka č. 13, AŠ byla stále ztlustělá, okolní měkké tkáně byly prosáklé, bez zarudnutí, kůže bez suchých míst, jizva bude zhodnocena níže. Trofíka svalů lýtka a mediálního vastu m. quadriceps se zlepšila viz tabulka č. 13, podkolenní rýhy byly v rovině. Došlo k napřímení trupu a hlavy, laternařských posun pánve doprava a prohloubení P taile byly méně, hypertonus eretorů v oblasti ThL přehodu byl jen vlevo. Jinak stav nezměněn.

Při vyšetření pomocí olivnice spuštěné ze záhlaví byla odchylka od intergluteální rýhy 1 cm doprava a olivnice směřuje k P patě. Při vyšetření pomocí olivnice spuštěné od zvnitého zvukovodu olivnice směřuje 4 cm před laterální kotník.

Výšetření jizvy

Jizva byla zhojená, hyperestetická. Uprostřed zůstala přirostlá, na obou koncích byla uvolněná a pusunlivá.

Výšetření stereotypu chůze

Výšetření palpací

Zůstává palpačně zvýšená citlivost ve střední třetině P AŠ po obou hranách a pod šlachou. Periostové body nebyly bolestivé. Přetrvává snížená posunlivost a protažlivost kůže a podkoží v oblasti P AŠ. Tukový polštář P paty a fascie byly posunlivé. Kloubní vůle PDK byla bez omezení. Svaly TrP: zůstal jen v mediální části m. gastrocnemius. Byl zlepšen tonus m. triceps surae, mediálního vastu m.quadriceps a m. gluteus maximus vpravo. Byl zmírněn hypertonus tensoru fascie latae a hemstringů. P m. piriformis a svaly
chodidla byly uvolněné.

Thompsonův test: pozitivní.

Antropometrické měření, goniometrické měření, vyšetření svalové síly a hodnocení zkrácených svalů viz tabulky č. 13–16 v části *Z hodnocení terapie*.

Hodnocení zkrácených svalů trupu: m.quadraus lumborum a m. SCM vpravo, m. pectoralis major (všechny části) a m. trapezius oboustranně stupeň 1.

Vyšetření neurologické

Reflex Achillovy šlachy a patelární beze změn. Povrchové čití: nyní hypestezie v oblasti zevního kotníku.

Vyšetření pohybových stereotypů

Byly zlepšeny, ale stále nebylo ideální zapojení svalů do EXT i ABD.

EXT v kyčelním kloubu: zapojení svalů bylo v tomto pořadí:

PDK: ischiokrurální svaly, m.gluteus maximus, kontralaterální erekty v lumbální oblasti, homolaterální erekty v lumbální oblasti.

LDK: ischiokrurální svaly, m.gluteus maximus, kontralaterální erekty v lumbosakrální oblasti, homolaterální erekty v lumbosakrální oblasti

ABD v kyčelním kloubu: zapojení svalů svalů bylo v tomto pořadí:

PDK: m.tensor fascie latae, m. quadratus lumborum, m.gluteus medius.

LDK: m. tensor fascie latae, m. quadratus lumborum, m.gluteus medius.

Vyšetření stojí na dvou vahách

Zatížení PDK bylo 40 kg, LDK bylo 48 kg. Vzhledem k hmotnosti probanda to byla necelá 1/2 váhy.

Vyšetření pohyblivostí páteře

FL: Thomayerova zkouška: 20 cm, rozvíjení nebylo symetrické v úseku od ThL přechodu po Lpátěř

EXT: omezená v krajní poloze a souhyb pánve vpřed.

LF: vpravo: 16 cm, vlevo: 16 cm.

Vyšetření neurologické

Reflexy a všechny druhy čití: beze změn.

Vyšetření hlubokého stabilizačního systému

Brániční test: malou silou vytlačil břišní dutinu a dolní žebra, mezižeberní prostory se zvětšily, hrudník se rozšířil laterálně. Test proveden v sedu. Ve stoji a při chůzi zapojení svalů nezvládl.

Extenční test: aktivace erektorů v oblasti ThL přechodu ještě výrazná, anteverze pánve...
byla menší.
Test flexe trupu: hrudník v kaudálním postavení se soustředěním, ke konci pohybu dochází k vyklenutí boční skupiny svalů, zapojení povrchových flexorů krku je méně výrazné.

Vyšetřením dechového stereotypu

Přetrvává horní typ dýchání bez dechové vlny v oblasti dolní části břicha.

2.3.6 Zhodnocení terapie

Proband byl motivován k léčbě a doma prováděl autoterapii, což mělo za následek zlepšení jeho funkčního stavu.

Po provedení terapie došlo ke zlepšení držení těla a hlavy, ke zlepšení postavení chodidla a celé PDK, které se opticky přibližuje postavení LDK.

Dále došlo k uvolnění měkkých tkání a jizvy. Přetrválo ztlustění P AŠ a omezená posunlivost kůže v oblasti střední části jizvy, která zde byla přirostlá s podkožím. Uvolnily se bolestivé periostové body, nadále byl TrP v mediální hlavě m. gastrocnemius. Byly uvolněny hypertonické svaly a zlepšil se svalový tonus oslabených svalů PDK. Došlo k obnovení kloubní vůle všech kloubů PDK a Sí kloubů.

Postupně se zlepšil stereotyp chůze, proband zvládl správný nášlap chodidla a ve stojné fázi kroku lépe zapojil EXT kyčle. Zvládl chůzi po patách a po schodech. Ve stoji na dvou vahách bylo zjištěno téměř symetrické rozdělení zátěže na obě DKK. Stoj na špičkách zvládl. Chůzi po špičkách, rychlejší chůzi a běh nesvedl pro bolestí PAŠ. Přetrvával snížený reflex P AŠ.

Pohybové stereotypy v kyčelních kloubach do EX i ABD byly zlepšeny, ale nebyly ještě ideální. Rovněž posturální stabilita a stereotyp dýchání nebyly ideální, ale z časových důvodů nebyla možnost se jim v terapii více zabývat.

Došlo ke změnám hodnot antropometrického vyšetření. Srovnání hodnot antropologické vstupního a výstupního vyšetření je zaznamenáno v tabulce č. 13.
Tab. č. 13 Srovnávací tabulka antropometrického měření probanda B

<table>
<thead>
<tr>
<th></th>
<th>Dexter (cm)</th>
<th>Sinister (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.10.</td>
<td>3.11.</td>
</tr>
<tr>
<td>Funkční délka DK</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Anatomická délka DK</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Obvod stehna 15 cm nad patelou</td>
<td>56,5</td>
<td>57,5</td>
</tr>
<tr>
<td>Obvod stehna 5 cm nad patelou</td>
<td>48,5</td>
<td>49,5</td>
</tr>
<tr>
<td>Obvod kolenního kloubu přes patelu</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Obvod lýtky</td>
<td>35,5</td>
<td>36,5</td>
</tr>
<tr>
<td>Obvod hlezenního kloubu, (přes malleoli)</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Obvod přes hlavice metatarsů</td>
<td>23,5</td>
<td>23</td>
</tr>
</tbody>
</table>

V průběhu terapie se zmenšil otok, obvod přes P hlezeno se zmenšil o 1 cm, oproti LDK byl rozdíl -1 cm. Zlepšila se trofika lýtky, obvod přes P lýtko byl zvýšen o 1,5 cm, oproti LDK zůstal rozdíl -2 cm. Obvod m. quadriceps femoris byl zlepšen o 1 cm, oproti LDK zůstal rozdíl jeden cm ve výši 15 cm nad patelou a 1,5 cm ve výši 5 cm nad patelou.

Terapií došlo k uvolnění zkrácených svalů DKK. Srovnání hodnot vstupního a výstupního vyšetření zkrácených svalů DKK je zaznamenáno v tabulce č. 14.

Tab. č. 14 Srovnávací tabulka vyšetření zkrácených svalů DKK probanda B

<table>
<thead>
<tr>
<th></th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.10.</td>
<td>3.11.</td>
</tr>
<tr>
<td>m. soleus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. gastrocnemius</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Adduktory kyčelního kloubu</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flexory kolenního kloubu</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. iliopsoas</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>m. rectus femoris</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>m. tensor fasciae latae</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Přetrvává 1 stupeň zkrácení flexorů kolene oboustranně a m. iliopsoas vpravo.

Terapií se zlepšil rozsah P hlezenního kloubu ve všech směrech pohybu. Hodnoty goniometrického vyšetření jsou uvedeny ve srovnávací tabulce č. 15.
Tab. č. 15 Srovnávací tabulka goniometrického vyšetření DKK probanda B

<table>
<thead>
<tr>
<th>Kloub</th>
<th>Rovina</th>
<th>Dexter</th>
<th>Sinister</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.10.</td>
<td>3.11.</td>
</tr>
<tr>
<td>Kloub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyčelní kl.</td>
<td>Sa</td>
<td>5 – 0 – 130</td>
<td>10 – 0 – 130</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>40 – 0 – 40</td>
<td>40 – 0 – 40</td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>40 – 0 – 20</td>
<td>40 – 0 – 20</td>
</tr>
<tr>
<td></td>
<td>(S 90°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Sa</td>
<td>0 – 0 – 120</td>
<td>0 – 0 – 120</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>0 – 5 – 35</td>
<td>10 – 0 – 50</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>10 – 0 – 25</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>Sa</td>
<td>0 – 5 – 025</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Fa</td>
<td>0 – 5 – 35</td>
<td>10 – 0 – 50</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Prsty</td>
<td></td>
<td>MOP do Fl</td>
<td>N</td>
</tr>
<tr>
<td>Palec</td>
<td></td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Rozsahy pohybu v hlezenním kloubu ve všech směrech jsou omezeny o 5 stupňů v porovnání s LDK. DF, PF a IN se zvýšily o 15 stupňů. EV se zvýšila o stupňů 10. Pasivní pohyb byl zvýšen a hodnoty výstupního vyšetření byly jako u LDK.

U probanda došlo k celkovému posílení svalů PDK a tím ke zvýšení jistoty při chůzi. Hodnoty svalové síly DKK jsou uvedeny ve srovnávací tabulce č. 16.
Tab. č. 16 Srovnávací tabulka svalové síla svalů DKK probanda B

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyčelní kl.</td>
<td>Flexor</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td></td>
<td>4-</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(modifikace)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>4</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Rotátory</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>zevní</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotátory</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>vnitřní</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolenní kl.</td>
<td>Flexory</td>
<td>4-</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4-</td>
<td>4+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hlezenní kl.</td>
<td>M. triceps</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>surae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. soleus</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M.tibialis</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>anterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.tibialis</td>
<td>3+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>posterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mm. peronei</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Prsty</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abduktory</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Adduktory</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Palec</td>
<td>Flexory</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Extenzory</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Hodnota síly m. triceps surae, m. soleus, m. tibialis anterior a mm. peronei se zvýšila ze stupně 3 na stupeň 4. Síla m. tibialis posterior byla na stupni 5. Hodnota svalové síly m. gluteus maximus se zvýšila na stupeň 4+.

Po vybraní deseti procedur byla terapie ukončena a proband nastoupil do práce. Byl edukován o režimových opatřeních u ruptury AŠ. Vzhledem k přetrvájící poruše posturální stability, hornímu typu dýchání a svalovým dysbalancím na trupu, kterými se z časových důvodů nebylo možno více zabývat, bych navrhovala další terapii, kde by bylo vhodné zabývat se pohybovým aparátem jako celkem.

Cíle probanda a terapeuta byly z podstatné části splněny. Terapii považuji za přínosnou.

2.3.7 Dlouhodobý plán

DISKUSE

Přetření AŠ se v současné době objevuje stále častěji. Jako akutní uzavřená poranění se vyskytují většinou u mužů v produktivním věku, v souvislosti s častější sportovní aktivitou. Autoři se shodují na tom, že příčiny jsou multifaktoriální, kombinují se mezi sebou a hlavní důvod je sporný (Pastucha, 2014; Gallo, 2011; Maffulli et al, 2005; Chaloupka, 2001).

V anamnéze žádný z nich neuvádí předchozí bolestivost AŠ ani její dřívější léčbu.

Dle Koláře (2009) přetření nejčastěji nastává 2–5 cm nad úponem degenerativně změněné šlachy do patní kosti. Dle mé zkušenosti však lékaři v dokumentaci přesně místo ruptury neuvádějí. Domnívám se, že pokud nedojde k odložení části hrbolu patní kosti, je obecně myšleno přetření v tzv. kritickém místě minimálního prokrvení šlachy 2–5 cm nad jejím úponem. U žádného z mých pacientů nebylo upřesněno místo přetření, i když bylo u obou provedeno RTG a ultrazvukové vyšetření.

Kromě údajů z anamnézy, klinického obrazu a pomocných zobrazovacích metod,

Následná terapie ruptury je řešena konzervativně nebo operativně. U parciální ruptury se používá konzervativní léčba přiložením vysoké sádrové fixace nebo ortézy, se semiflexi kolena a s nohou v plantíflexi po dobu 6–8 týdnů (Pokorný, 2002). Proband A byl ošetřen sádrovou dlahou pouze pod koleno po dobu 6 týdnů.

Nedílnou a důležitou částí léčby je fyzioterapie. V případě konzervativního řešení ruptury začíná fyzioterapie až po sundání fixace, u operačního řešení probíhá od prvního dne po operaci. Domnívám se, že je přínosné, aby na začátku imobilizace končetiny byl pacient edukován o režimových opatřeních při ruptuře AŠ, o cvičení na doma a správném stereotypu chůze bez zátěže postižené končetiny. Podle mého názoru jsou tyto informace velice důležité pro dobrou psychickou kondici a následnou motivaci pacientů k další léčbě. Jsem přesvědčena, že obava probanda A z možné opakované ruptury při zatížení poraněné AŠ souvisí také s jeho nedostatečnou informovaností. I když během imobilizace navštěvoval rehabilitační zařízení, kde mu byla aplikována bezkontaktní elektroterapie typu DE pro podporu hojení AŠ, edukace u něho neproběhla. Proband B byl edukován v průběhu hospitalizace.
Některá zdravotnická zařízení mají vypracovány léčebné standardy fyzioterapie u ruptury AŠ, je znám metodický plán po sutuře AŠ (Berkson) a Kolář (2009) se fyzioterapií u ruptury AŠ zabývá také. Fyzioterapeut má k dispozici mnoho technik, jejichž volba záleží na vyhodnocení kineziologického rozboru, věku, na jiných nemocech pacienta, na jeho subjektivních pocitech apod.

Cíle terapie byly snížit bolest a otok, zlepšit mobilitu hlezna, obnovit funkci šlachy, zvýšit svalovou síly celého PDK se zaměřením na svaly lýtka a postupně zapojit končetinu do posturálních funkcí. Proto byla použita cílená kombinace měkkých a mobilizačních technik, metody svalové facilitace a inhibice, strečinku, posilovacích cvičení s použitím overballu, gymnallu a therabandu, prvůků PNF a senzomotorické stimulace s využitím labilních ploch. Byl proveden nácvik stereotypu chůze, stereotypu dýchání a ovlivnění posturální funkce bránice.

Dodržování zásad protiotokové terapie, míčkování a kryoterapie u obou probandů mělo pozitivní vliv na snížení otoku. Obvod přes nárt byl na konci terapie totožný s levou stranou u obou probandů. Obvod hlezna u obou probandů se během terapie zmenšil o 1 cm a v porovnání s obvodem levého hlezna přetrvával rozdíl 1 cm.

Postupným uvolněním měkkých tkání nohy a AŠ, u probanda B také jizvy, mobilizaci všech kloubů s omezením kloubní vůle, využitím metody PIR, AGR a aktivním pohybem došlo u obou probandů ke zlepšení hybnosti hlezna všemi směry pohybu a současně k uvolnění zkrácených svalů hlezna. Při výstupním vyšetření se goniometrickým měřením potvrdilo zlepšení DF u probanda A z původních -5
na hodnotu 15 stupňů, u probanda B z původních -5 na 10 stupňů. Hodnota PF se zlepšila u probanda A z 25 na 55 stupňů, u probanda B z 35 na 50 stupňů. V porovnání s hybností levého hlezna u obou probandůch cizí do DF i PF 5 stupňů. Ve směru do everze nastalo zlepšení pohybu z 5 na 15 stupňů u obou probandů, což u probanda A bylo o 5 stupňů méně než vlevo, u probanda B to byl plný rozsah pohybu.

Při pohybu do everze nastalo zlepšení u probanda A z 10 na hodnotu 40 stupňů, což byla stejná hodnota jako vlevo. U probanda B se zvýšila hybnost z hodnoty 20 na 35 stupňů, což bylo v porovnání s levým hleznem o 5 stupňů méně.

U všech zkrácených svalů na končetinách obou probandů, kromě flexorů kolenního kloubu oboustranně a u probanda B P m. ilipsoas, došlo ke snížení hodnoty ze stupně 1 na stupeň 0. U obou probandů shodně přetrvávala zkrácení prvního stupně m. quadraus lumborum a m. SCM vpravo, a oboustranně zkrácení všech částí m. pectoralis major a m.trapezius.

Vlivem zařazení cvičení na posílení svalů s využitím therabandu, cvičením v uzavřeném pohybovém řetězci, analytickým posilováním, použitím metody PNF a prvků senzomotorické stimulace došlo ke zlepšení svalové síly celé PDK. Také byl pozitivně ovlivněn svalový tonus a trofika oslabených svalů, rovněž se zlepšily neideální pohybové stereotypy DKK. Svalová síla m. triceps surae a m. soleus se zvýšila ze stupně 3 na stupeň 4 u obou probandů. Ostatní běrcové svaly jsou ohodnoceny stupněm 4/4+. Rovněž síla m. gluteus maximus, m.gluteus medius a m. quadriceps femoris se zvýšila u obou probandů na stupeň 4+.

Antropometrickým měřením byla potvrzena změna obvodů stehna a lýtka PDK, kdy u obou probandů došlo k navýšení hodnot. U probanda A přes stehno bylo naměřeno zvýšení o 2 cm a v porovnání s levou stranou zůstal rozdíl -1 cm. U probanda B došlo ke zvýšení o 1 cm a ve srovnání s levou stranou je rozdíl -1 (-1,5) cm. Také naměřená hodnota obvodu přes lýtka u obou probandů byla vyšší o 1,5 cm, ale při porovnání s levou stranou byl ještě rozdíl -2 cm.

Významný vliv na funkci šlachy, postavení chodidla a na nastavení celé PDK mělo provádění metodiky senzomotorické stimulace s podporou kineziotapou AŠ. Oba probandi zvládli nastavení chodidla v tzv. „malé noze“ a cvičení na nestabilních plochách typu pěnové podložky, bosu, posturomed. Zlepšením propriocepe a nácvikem správného stereotypu chůze před zrcadlem s postupným zatěžováním postižené končetiny se u obou probandů změnilo postavení a zatěžování chodidla při chůzi. U probanda A se tak obava z opakované ruptury poškozené šlachy postupně ztrácela a výstupní vyšetření na dvou
váhává potvrdilo u obou výraznější zatěžování PDK téměř na polovinu váhy trupu z původní třetinové zátěže.

Stereotyp chůze obou probandů při výstupním vyšetření byl podobný, s napadáním na PDK a s bolestí při odrazu. Oba probandí svedli chůzi po patách. Chůzi po schodech zvládli střídavě s přídržením se zábradlí. Chůzi po špičkách nezvládli. Stoj na špičkách lze u obou, i opakovaně, ale při srovnání s druhostrannou patou bylo její zvednutí ve výponu o ¼ méně.

Při vyšetření reflexů Achillovy šlachy nedošlo k žádné změně, u obou probandů přetrvávala hyporeflexie.

Při výstupním zhodnocení pohyblivosti páteře, hlubokého stabilizačního systému a dechového stereotypu došlo ke zlepšení u obou probandů, ale výsledek ještě nebyl ideální a bylo by vhodné ve cvičení pokračovat.

Z oblasti fyzikální terapie lze doporučit v akutní fázi kryoterapii a v průběhu imobilizace aplikaci bezkontaktní elektroléčby pro podporu hojení šlachy. V době po sundání fixace jsou vhodné procedury s analgetickým, myorelaxačním, antiedematozním a trofotropním účinkem (DD proudy, TENS, klidová galvanizace, ultrasonoterapie), pro relaxaci svalů DKK pak vířivá koupel. Na oblast jizvy se osvědčilo aplikovat laser nebo biopampu (Poděbradský et al, 2009; Capko, 1998). U probanda A byla aplikována bezkontaktní elektroléčba přes sádrovou fixaci typu DE v počtu 10x, po sundání fixace pak DD proudy a vířivá koupel. U probanda B byla během hospitalizace aplikována kryoterapie, během ambulantní fyzioterapie pak bezkontaktní elektroléčba typu DE a vířivá koupel v počtu 10x. V domácím prostředí, v době, kdy nebyl nalezen kineziotap, používala biolampu. Domnívám se, že k vzhledu k hypotrofii pravého m. quadriceps femoris u obou probandů, by byla vhodná aplikace elektrogymnostiky, která však nebyla lékařem indikována.

Výstupní vyšetření obou kazuistik ukazují pozitivní výsledky subjektivního vnímání a objektivního hodnocení probandů, kteří absolvovali fyzioterapii po ruptuře AŠ. Po deseti proběhlých terapiích došlo ke zlepšení ve všech aspektech. Oba probandi zvolené metody dobře tolerovali, a jsou si vědomi důležitosti pokračovat ve cvičení dále.
ZÁVĚR

Omezení motorické funkce, porucha propriocepcie a vadný stereotyp chůze spolu s bolestí mají pro pacienty po ruptuře Achillovy šlachy výrazný dopad na jejich funkční stav.

Fyzioterapie, jako součást komplexní péče u pacientů po ruptuře Achillovy šlachy, má velký vliv na zkvalitnění života pacienta po přetření šlachy. Po chirurgické léčbě a imobilizaci je navazující fyzioterapie jednou z nejdůležitějších částí léčby.

Cílem této práce bylo porovnat teoretické poznatky s kazuistikou probandů v mé praxi a zjistit, zda rozdílný způsob ošetření přetřené Achillovy šlachy má vliv na výsledný funkční stav pacienta po ukončené fyzioterapii. Z mé práce vyplnul, že teoretické poznatky se ve většině případů shodují s údaji uvedenými ve vypracovaných kazuistikách. Při porovnávání stavu mezi oběma probandy nebyly nalezeny rozdíly, naopak podobnost mezi nimi byla výrazná. Domnívala jsem se, že výhodou konzervativní léčby u probanda A s částečnou rupturou, bude rychlejší postup úpravy poškozené šlachy. Ale výsledky stavu obou probandů tuto domněnku nepotvrdily. Roli v tom může hrát probandovo psychické rozpoložení a subjektivní vnímání poškození. Zároveň je třeba zdůraznit, že posuzovaný vzorek dvou probandů není dostatečnou objektivní hodnotou.
ABSTRAKT

Autor: Gabriela Wolfová

Název práce: Fyzioterapie u pacientů po ruptuře Achillovy šlachy

Vedoucí práce: Mgr. Bohumila Horká

Počet stran: 92

Počet příloh: 3

Rok obhajoby: 2015

Klíčová slova: ruptura Achillovy šlachy, fyzioterapie, senzomotorika

Bakalářská práce shrnuje poznatky o problematice poranění Achillovy šlachy s následnou fyzioterapií.

Obecná část obsahuje základní informace o svalově kloubním aparátu nohy a rozvíjí téma Achillova šlachy. Zabývá se etiopatogenezí poranění, diagnostikou a léčbou ruptury Achillovy šlachy. Uvádí možnosti, metody a vybrané techniky následné fyzioterapie, která je hlavní náplní.

Praktická část zpracovává kazuistiky dvou probandů s poraněním Achillovy šlachy léčených konzervativně a operativním způsobem.
ABSTRACT

Author: Gabriela Wolfová

Title: Physiotherapy in patients after Achilles tendon rupture

Supervisor: Mgr. Bohumila Horká

Number of the pages: 92

Number of attachments: 3

The year of presentation: 2015

Key words: rupture of the Achilles tendon, physiotherapy, sensomotor

The Bachelor thesis summarizes facts concerning injuries of Achilles tendon and subsequent physiotherapy.

The general section contains basic information about the leg musculoskeletal articular system and develops the theme of Achilles tendon. It deals with ethiopathogenesis injury, diagnosis and treatment of Achilles tendon ruptures.

Options, methods and chosen techniques of subsequent physiotherapy, which is the main focus, are presented in the Bachelor thesis.

The practical part handles with causalities of two cases with Achilles tendon injuries treated conservatively and with surgical operation.
POUŽITÁ LITERATURA A PRAMENY

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>arteria</td>
</tr>
<tr>
<td>ABD</td>
<td>abdukcje</td>
</tr>
<tr>
<td>ADL</td>
<td>aktivity každodenního života (activities of daily living)</td>
</tr>
<tr>
<td>AGR</td>
<td>antigravitační terapie</td>
</tr>
<tr>
<td>art.</td>
<td>artikulatio</td>
</tr>
<tr>
<td>AŠ</td>
<td>Achilova šlachta</td>
</tr>
<tr>
<td>C</td>
<td>cervicalis</td>
</tr>
<tr>
<td>CTh</td>
<td>cervicothorakální</td>
</tr>
<tr>
<td>DD CP</td>
<td>druh DD proudů, courant modulé en courtes périodes</td>
</tr>
<tr>
<td>DD DF</td>
<td>druh DD proudů, diphasé fixe</td>
</tr>
<tr>
<td>DD LP</td>
<td>druh DD proudů, courant modulé en longues périodes</td>
</tr>
<tr>
<td>DD</td>
<td>diadynamické proudy</td>
</tr>
<tr>
<td>DE</td>
<td>distanční elektroterapie</td>
</tr>
<tr>
<td>DF</td>
<td>dorzální flexe</td>
</tr>
<tr>
<td>DK (K)</td>
<td>dolní končetina (y)</td>
</tr>
<tr>
<td>EV</td>
<td>everze</td>
</tr>
<tr>
<td>EXT</td>
<td>extenze</td>
</tr>
<tr>
<td>F</td>
<td>frontální</td>
</tr>
<tr>
<td>FB</td>
<td>francouzské berle</td>
</tr>
<tr>
<td>HAZ</td>
<td>hyperalgická kožní zóna</td>
</tr>
<tr>
<td>HSSP</td>
<td>hluboký stabilizační systém páteře</td>
</tr>
<tr>
<td>IN</td>
<td>inverze</td>
</tr>
<tr>
<td>kl.</td>
<td>kloub</td>
</tr>
<tr>
<td>L</td>
<td>levý</td>
</tr>
<tr>
<td>LDK</td>
<td>levá dolní končetina</td>
</tr>
<tr>
<td>LF</td>
<td>lateroflexe</td>
</tr>
<tr>
<td>m., mm.</td>
<td>mutulus, musculi</td>
</tr>
<tr>
<td>MET</td>
<td>muscle energy therapy</td>
</tr>
<tr>
<td>MT</td>
<td>metatarzální</td>
</tr>
<tr>
<td>n., nn.</td>
<td>nervus, nervi</td>
</tr>
</tbody>
</table>
NZZ
nestátní zdravotnické zařízení
obj.
objektivně (í)
P
pravý
PDK
pravá dolní končetina
PF
plantární flexe
PHK
pravá horní končetina
PIR
postizometrická relaxce
PNF
proprioceptivní neuromuskulární facilitace
R
rotace
RTG
rentgenový
S
sagitální
SCM
sternocleidomastoideus
SET
cvičení v závěsu (sling exercise therapy)
SFTR
název metody, který je odvozen z tělesných rovin (sagitální, frontální, transverzální, rotace)
SI
sakroiliakální
SIAS
spina iliaca anterior superior
SIPS
spina iliaca posterior superior
ST
svalový test
subj.
subjektivně (í)
TENS
transkutální elektrická neurostimulace
Th
thorakální
ThL
thorakolumbální
TrP
spoušťový bod (trigger points)
VAS
vizuální analogová škála (Visual analogue scale)
SEZNAM OBRÁZKŮ

Obr. č. 1: Achillova šlacha (Heikura, 2011) 13
Obr. č. 2 Strukturální zvláštnosti AŠ (Dungl et al., 2005) 14
Obr č. 3 Ruptury podle klinického nálezu (Dungl et al, 2005) 18
SEZNAM TABULEK

Tab. č. 1 Antropometrické míry probanda A 37
Tab. č. 2 Goniometrické vyšetření DKK probanda A 38
Tab. č. 3 Vyšetření zkrácených svalů DKK probanda A 38
Tab. č. 4 Svalová síla svalů DKK probanda A 39
Tab. č. 5 Srovnávací tabulka antropometrického měření probanda A 48
Tab. č. 6 Srovnávací tabulka goniometrického vyšetření DKK probanda A 49
Tab. č. 7 Srovnávací tabulka vyšetření zkrácených svalů DKK probanda A 49
Tab. č. 8: Srovnávací tabulka svalové síly svalů DKK probanda A 50
Tab. č. 9 Antropometrické míry probanda B 56
Tab. č. 10 Goniometrické vyšetření DKK probanda B 57
Tab. č. 11 Vyšetření zkrácených svalů DKK probanda B 57
Tab. č. 12 Svalová síla svalů DKK probanda B 58
Tab. č. 13 Srovnávací tabulka antropometrického měření probanda B 68
Tab. č. 14 Srovnávací tabulka vyšetření zkrácených svalů DKK probanda B 68
Tab. č. 15: Srovnávací tabulka goniometrického vyšetření DKK probanda B 69
Tab. č. 16: Srovnávací tabulka svalové síly svalů DKK probanda B 70
SEZNAM PŘÍLOH

Příloha 1 – Informovaný souhlas
Příloha 2 – Obrazová příloha
Příloha 3 – Obrazová příloha ke kazuistice
PŘÍLOHA 1 - INFORMOVANÝ SOUHLAS

V souladu se Zákonem o péči o zdraví lidu (§ 23 odst. 2 zákona č.20/1966 Sb.) a Úmluvou o lidských právech a biomedicině č. 96/2001, Vás žádám o souhlas k vyšetření a následné terapii. Dále Vás žádám o souhlas s uveřejněním výsledků terapie v rámci bakalářské práce na LFHK. Osobní data v této studii nebudou uvedena.

Prohlašuji a svým dále uvedeným vlastnoručním podpisem potvrzuji, že odborný pracovník, který mi poskytl poučení, mi osobně vysvětlil vše, co je obsahem tohoto písemného informovaného souhlasu, a měl jsem možnost klást mu otázky, na které mi řádně odpověděl.

Prohlašuji, že jsem shora uvedenému poučení plně porozuměl a výslovně souhlasím s provedením vyšetření a následnou terapií.

Souhlasím s uveřejněním výsledků terapie v rámci studie.

Datum:………………………………………

Osoba, která provedla poučení:……………………………………

Podpis osoby, která provedla poučení:……………………………………

Vlastnoruční podpis pacienta:……………………………………

89
Thompsonovův test (Filan, 2013, s. 8)

Otevřená sutura dle Bunnela (Filan, 2013, s. 13)
PŘÍLOHA 3 – OBRAZOVÁ PŘÍLOHA KE KAZUISTICE

Stoj na podloţce BIRK
(zdroj vlastní)

Přední půlkrok na podloţku BIRK
(zdroj vlastní)

Stoj na podloţce z paměťové pěny
(zdroj vlastní)

Zadní půlkrok na podloţce z paměťové pěny
(zdroj vlastní)
Stoj na PDK na bosu
(zdroj vlastní)

Podřep na bosu
(zdroj vlastní)

Bipedální stoj na kulové úseči
(zdroj vlastní)

Využíte cvičební pomůcky
(zdroj vlastní)