Title: Study of diffractive processes at the ATLAS Experiment

Author: Vlastimil Kůs

Department: Institute of Particle and Nuclear Physics

Supervisor: Mgr. Marek Taševský, Ph.D.

Institute of Physics of the Academy of Sciences of the CR, v.v.i.

Abstract: A data sample of pp collisions corresponding to an integrated luminosity of 6.75 nb⁻¹ was collected at $\sqrt{s}=7$ TeV using the ATLAS detector at the Large Hadron Collider. Collision events with at least two jets with $p_T>20$ GeV are used to measure the differential cross section of the diffractive dijet production as a function of the rapidity gap size $\Delta \eta^F$, the largest forward region extending from $|\eta|=4.8$ devoid of particle activity above threshold momentum cuts, and an estimator of the fractional momentum loss of the scattered proton assuming the single diffractive dissociation $(pp\to pX)$, $\tilde{\xi}^\pm$. Comparisons with various Monte Carlo models reveal that though the region of small $\tilde{\xi}^\pm$ and large rapidity gaps is dominated by diffraction, a contribution form non-diffractive events cannot be neglected. The rapidity gap survival probability is estimated based on data to Monte Carlo comparisons in the $-3.2 < \log_{10} \tilde{\xi}^\pm < -2.5$ region of the $\tilde{\xi}^\pm$ distribution with the $\Delta \eta^F > 2$ requirement.