Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Gt Dp&n Havr 8nek

Genetic Algorithms driven by MCTS

Department of Theoretical Computer Science lllathematical Logic

Supervisor of thenaste thesis:RNDr. Jan Hric

Study programmenformatics

SpecializationTheoretical Computer Science

Prague2015

| would like to thank my supervisé®NDr. Jan Hric, as it would be impossible to
finish this thesis without his consultations and advit@sould also like to thank the
entire MatFyz faculty for being the best computer science school in this republic.

| declare that | carried out thisasterthesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., th€opyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Iné. date. signature

N§zev QernSectei:ck® al goritmy S$S2zen® MCTS
Autor:Gt Dp&8n Havr 8§nek
KatedraKdt ®édtavteoreti ck® informati ky a r

Vedodicp!| opmmol\REBDr. JanHricKat edr a t enmatkgd i ck® i nf o
mat emati ck® | ogi ky

Abstrakt Ev ol ul| n?2 a genjestoiuc kt®e cahlngiokryi t mgvr gen
inspiracePo u ¢ 2seka j Segen2 nejrTznNjg2ch %l oh, s e
Vypo $&dakitt n2 mi met odami,poMatyomod CaNdimeetee Ca
Searchjez al og@ naz o,rak ake®pd &taRujkde nel ze danl
dr get cebh%plprGamBdiEvEn2 nen2 mogn®. Tato
spojen?2 tRchto dvou odlignilch pS2mijeupT dc
a implementuen a konkr ® n2m pS2padh: p(TBA) | ®mu
Soul 8§8stxsopr gcerejrTznNDj g2dre®& preastmewndry?2 hp a
porovng8vaj2c?2 r Bkh®sneakoll mp $i2ammk@dP oebo

nap S2 M laad vdigoritmem Na g emetoda s e uk 8§ malj ane npgRim
konkurencebBDehbpp§2ch visledkT potom dosal
skl asickTm evoluln2zm Segen2m TSP.n>o s|
kad®® jej?2 | 8spovamos eaen atodyas Dch nag?

Kl 2| ov:8osteve&arl o, MCTS, UCT, Evol ul n2z a

Title: Genetic Algorithms driven by MCTS
Author:Gt Dp8&n Havr 8nek

Department / InstituteDepartment of Theoretical Computer Science and
Mathematical Logic

Supervisor of thanasterthesis:RNDr. Jan Hri¢ Department of Theoretical
Computer Science and Mathematical Logic

Abstract:Evolutionary and genetic algorithms gme@blemsolvingmethods designed
according to a nature inspiration. They are used for solving hard problems that we
cannot solve by any efficient specialized algorithm. The Monte Carlo matitbds
derivationthe Monte Carlo Tree Search (MCT8&je based on samplimgndarealso
commonly used for too complex problems, where we are dealing with enormous
memory consumptioand it is impossible to perform a complete searching. The goal
of this thesis is to designgeneral problem solvingiethod that is built from thes$eo
completely different approachesl/e explain and implement the new method on one
example problem: the Traveling salesman problem (TSP). 8quam of this thesis
contains various tetss and experiments. We compackfferent settings and
parametrizations odur method. The best performing variant is then compared with
the classical evolutionary TSP solution or, for example, with greedy algorithms. Our
method shows competitive resuli$ie best results were achieved with the cooperation
of our method and thelassical evolutionary TSP solution. This union shows better
results than any of its pargseparately, which we find as a great success.

Keywords: Monte Carlo, MCTS, UCT, Evolutionalgorithms TSP

Contents

1o o L0111 o HO PSP TPPPPPP 1
Goal Of thIS tNESIS.......oi i e e e e e e 1

(@ 11 1] PSSO RRPPRRRP 2

1. Evolutionary and geetic algorithms...............ouuviiiiiiiicccccee e 4
1.1, InSpIration from NAtUIE...........uuuiiiiee e e eree e e e 4
1.1.1. EVOIULION tNEOIY....cceiiiiiiiiiieie e ereer e e e 4
1.1.2. The genome and the DNA..........ooumiiiiiiiiiiireeeee e eeeees 5

1.2. Evolutionary algorithms...........coooiiiiiiiiiiieee e 5
1.2.1. The algorithm.........coooiiiiiiiie e 6
1.2.2. Operatororiented implementation.............ccceeeeeeeevieeeeeieeee e, 4
1.2.3. Memetic algorithms, Lamarckian evolution, Baldwin effect.......... 7

2. Monte Carlo Tree S aArCh.........uuueeiiii e 9
2.1. The Monte Carlo OrgiNS..........ccoeeiiiiiiiiiieeee e 9
2.1.1. MoONte Carlo GQ.....coeeeeeeiiiiiiiiiiceeee e 9

2.2, Tree SEarChiNg........ooooiiiiiiiiiitireer e eeeese e e e e eeeas 10
2.3. Upper confidence bound for trees.............ooevvviiiiiicceeeeececce s 10
2.3.1. K-armed bandit problemy..............ooorriiiie e 11

PR B © O = (o] g { (=T F SRR 11

3. Model Problem... ... e ——- 13
3.1. Traveling salesman problem...........cccooeeiiiiiicceciiiiicie e eeeeee 13
3.2. Genetic solutions Of TSP......ccooi i 13
3.2.1. Fitness and environmental selection...............coooeiiiieee e 13
3.2.2. Representation of an individual..................coooviicecereieeeiiin, 14

4. MCTS operators for genetic algorithms...............eeveviiiieeciiiiiiiiiiieieeeeeeee. 16
4.1, UCB SEIECIOL.. ..ottt ieeettiie ettt ettt e e e e e e e est e e e e e e e e e e e e e e e e e e s aannnn 16
4.1.1. UCB Selector black box implementatian...............ccccoeevveeeevvnnnns 16
4.1.2. Alternative UCB selector initializatian..................eeeiiiiiceseeeennnnnns 17

4.2. The used individual representation...................uvvccceeieeeeeeiiviiiceenn, 18
4.3. Single allele OPeratorS...........oovvvviiiiiiiieeeeeeer e 18
4.3.1. Direct single allele selecting operator.................uvveeeiieemievvvvnnenne. 18
4.3.2. Repaired single allele selecting operatar..............cccovvvieeeeienennen. 19
4.3.3. Updating the inner data StruCtures...........cccoevviiiiieceeie e, 20

4.4, CoNditioNal OPEIALOrS.......uuuiiiiiiiiiiiiiiieieeeiitrr et e e e e e e e e e e e e e e 21
4.4.1. Direct conditional OPEratOr...........cccuuvvrmrrimriremiiiieiiieeeeeeeeeeeeeeeeas 21
4.4.2. Repaired conditional operator..............ceeeiiiiiiieemrcceiicee e, 22

4.5. Local trees searching OPeratQrS..............ueueeeeeeimemiuurerreeeereeeeeeeeeeeesanas 23

5.

451, The ACtUAI T ES. et 23

4.5.2. Chromosome eVvaluatiO..........cccuuiiieeeiiiiecceeeeee e eee s 24
4.5.3. TreeS @XPANSIAN......uuuuiiiriiiiieiiiieiaaarieereeerrreeeeeeeeaeeeesamareeeeaaeaeaaeans 25
A.5.4, TIEE SIZBuciiiiiii it enena bbbt as 26
4.5.5. Local trees operators implementation..............cccoevvvvieeeeeeeeeeeee, 27
4.5.6. Repaired local trees operator...........cooovviiiiiicccee e 28
4.5.7. Direct local trees OperatOr.........ccceeeeeeeeiiiiieeeiei e 29
4.6, SUMMAIY.c.uuiiiiiiieetiieeeete s ernmresn e eetaeeeet e e eeasamanseeeetaeeeesaneeeenneeesnnnes 29
The tests and MeaSUIrEMENIS. ..o 31
S0 I |V =1 g To o (o] (oo | Y/ 31
5.1.1. The algorithm run and results recording...........ccccceeeeeviieecnvnnnnnns 31
5.1.2. INPUEOALA......uuiiiiiiiiiiiiiii et 32
5.2. Basic UCB principle Settings..........cccovviviiiiiiiiieene e 33
5.2.1. Repairing Strategy......ccceeeeiiieeeeeeiiiiieeeiie e enne e e 33
5.2.2. EXploration CONSTANT.........ccoviiiiiiiiiiiiice e 36
5.2.3. UCB selector initialization...............cooeeiuriimmmnnessssiiivviveeeeeeeas 39
5.3. Basic settings in high level operatarS............oooeeeeeiiiieeeeiiiiieeeeeeeeee, 43
5.3.1. Repairing and selector initialization strategies.................ccceereueee 43
5.3.2. Exploration constant 0NCe MOKE.............ccuvvvvvvrimmmreeeeeeeriienn 45
5.3.3. Tree maturity threshold...........cccooeeeiiiiiiicceiiii e, 50
5.3.4. Tree Size lMiL.......iiiiiiieee e eeeeer e eaenaeees 52
5.4, CONCIUSION.....cii ittt rrer et eenenss b e e e e e e e eeaaaaaeeeeeann 53
Extensions and iMProveMENLS.ooovvviiiiiiimmmreeeeeeeeeee e eeenanees 54
6.1. Gain COMPULALION.....eiiiiiiiiiiiee e 54
6.1.1. NONINEAI QAIN.......covviiiiiiiiiiie e e e ereere e e e e 54
6.1.2. Preferthe seeninterval.............cccccuiiiiimmmniiiiiiiieeeee e 55
6.1.3. Prefer above average..........cccuuueriiiiiieeeiiiiiiiiiieeeee e e eeeeeeeees 55
6.1.4. IMpact MEASUIEMENT.......cccvuiiieiiiiee ettt eeenr e 56
6.2. Less strict eXxpansion POICY........oeeeeeiiiiiiiiiieeee e 59
6.3. Other approaches cooperatiosvolutionary computation................... 60
6.3.1. Evolutionary operators for TSP............oooovviiiiiiiceeeeeeen 6l
6.3.2. COOPEIALION......uuuiiieeieiitie e e ieeee et e et e e eeeee e e e e e e e e eenne 61
6.3.3. IMEASUING...ceeiiiiiiiieieee et 62
PerformanCe teSIS........uuuiiiii e 65
7.1. Various Problem SIZES.......cccceiiiiiii e 65
7.2, TiME COMPIEXITY...cciiiiiiiiiiiiiie e e e e e e e e e as 69

7.2.1. Time spending per generation............cceeueeeeiiiiccceeeeeeeeeeee e 69

7.2.2. Actual performancCe............ooevuveuvuuinimmreeeeeeeiee e eeeennennnans 70

7.3. Special TSP tYPES...coiiii i eeeeeeeeeeeeeee e 2
(©0] o Tod 103 o] o PP PPRRPIN 75
Advices for potential USE...........cuvuviiiiiiiiiireeeeicr e D
FULUIE WOTK.. . eiiiiiiiiiiiie e o] D
BibIOGrapny.. ..o 77
LiSt Of MEASUIEMENTS......uiiiiiiiiiiiiiie e mene e eennnnnneeee d D
S o) T T = PSSP 80
LISt Of TADIES....ceeeeeeeeiee e e nnne e e e eeees 82
ABCHMENTS ... e 83
g 0] (=T L=] €= U1 o] o PP 83
VS solution Structure deSCrPLION.........uuuriiiieiiiieiieeeriiee e e e e 83

Implementation main classes inheritance diagram.................cccoeeeeeennnn. 85

Introduction

Computer science, from iteeginning deals with variety of problems and tries
to find their computational solution€omputer scientists develop algorithms and data
structures in order to deliver the fastest and the most efficient solving methods that
coud be put into practiceSince computers play a big role in our everyday lives and
the number of their applicatisnis growing every day, the number of problems
computer science is facimgntinues to rise.

Even though t he ¢ omp udordinmususlytherearestih r ma n c e
a lot of challenging problems and puzzl€kere are whole classes of problems that
we cannot solve with anefficient algorithm We oftenevendo not know whether the
efficient solution could exist. Another challenge is thsecofproblems thaare not as
complicated, but we are dealimgth giganticamount of input datdn the loth cases,
the computatiorusually require enormous time or memory resourcesr instance,
when a traveling salesman is planning his businessipeeddo visit 30 customers
but he wants to save asichfuel as possibldt is impossible @ find out which order
of the places is the optimal on®y going thru all the possibilitiesand seleehg the
best one Even if evaluating of one possibility takes one millisecond, the whole
enumeration will take aboy® p 11 years

The very complex othe very large problems gave rise to various approaches
that tries to find a pr aaqualitcaadthealgontimr o mi s e
feasibility. One of the compromisseeking method is the Monte Carlo Tree Search,
which was originally developed for the purpose of playing complex gaamesher,
and completely different, compromiseeking methodare the Evoluionary
algorithms.Theyweredesigned accordinipe naturaprocesses and it came as a very
general problem solving approach. Bottitidse different approache® are going to

introducehereunder

Goal of this thesis

The core of this paper is to invent problemsolving method that is a
combination of Evolutionary algorithms and Monte Carlo Tree Search. Our method is

designed as an ada for a genetic evolutionary algorithm. Therefore, it should be

1 Removableadditionalmodule

applicable oreveryproblem that can be solved by thengic evolutionary algorithm.
The method we are developing wisoimplement and test on one example problem:
Traveling salesman problerAll the implementation source codes and experiments

results are available on the attached CD (see é&ttgthmers).

Outline

In the first two chapters, wereview our working background:
EvolutionaryGenetic algorithms and Monte Carlo Tree Search. We explain the
principlesbehindthes approaches and we focus on the parts which our work is based
on. The third chaptemtroducesthe benchmark problem we have chosére
Traveling salesman problenihe third chapter also contains an overview of genetic
algorithm applications and we choose one of them as a baseline of our example
implementation.

The fourth chapter is th#agship of this paper. It describes the whole
mechanism of ounewly proposednethod.We divided our technique into three levels
according to the complexity of the inner system. On elesl, we have prepared two
different approachesbDirect and Repaired Therefore, each level contains two
independent functional modules. Of courak,of the six modules can be variously
parametrized or set. The fourth chapter introduces the techniques from the simplest
level one to the most complex level three. Every modwd&psained as an application
on the Traveling salesman problem and itlyfutorresponds with the attached
implementation.

In the fifth chapterwe perform variety of measurements in order to find out
the best parametrization and setting of our meth@dd. comment and explaire
experiments results. Already the first tests skiwat our method, with the right setting
andparameters, is able to converge and can return good results. At the end of the fifth
chapter,we select the better performing modules and inniket chapter,we try to
improve and extend therihe best improvenm turns out to be the cooperation of our
method and the classical evolutionary approaches for Traveling salesman problem.
This union of two different methods vyields better results than any of its parts
separately. That we consider agraatsucces®f this thesis.

The last (seventh) chapter tests thet vessions of our method witharious
inputs.Thisproves that the previous experimeneranot only a coincidencét shows
that the results are similar with the special classes of inputs as well prtbemance

experiments, where we test the techniques in a limited time, we prove that the
cooperation method is also the most practical version of them all.
At the end of thigpaper,we write some notes for the potential user of our

method. We also presesome ideas for the future research.

1. Evolutionary and geneticalgorithms

1.1. Inspiration from nature

Evolutionary algorithms are huge class of computer science approaches to
various types of problems. As the name suggests, evolutionary algorithms are based
on inspiration by nature. Of course, mainlybyolution theorytself and byEvolution

by nature selectioproposed by Charles Darwjt] in the 19" century.

1.1.1. Evolution theory

In brief, Evolution theorydescribes the development of all living (flora and
fauna) on the Earth. It observes thaist of thdiving organisns came into life thanks
to their parental organisms. What is more important, the child individual sheaeg
of its biological and physiobical properties with its parents.

The division into parents and children induagsnerationsas groupsof
individuals born in thesame era This is very simple and naturalprinciple
Nevertheless, the system of generations is very important in evolytialigarithms,
aswe will see few paragraphs bellow

Sharing the properties between parents and their children is balledity It
provides some kind similarity between an individual and each of its parents (no matter
what is the actual number of therhleredityis very important in theature selection
It claims thatevery generation is made up by individuals who are stronger, smarter
and generally better than theiarents aréor generally than their predecessors). This
should be ensured right through tiegure selectiofecause only the individuals that
have combination of properties good enough to survive, will have childies.
principle ofheredityprovidespreserving tk high qualityorganism properties.

There is one more important element in the evolution, which is also used in the
computer science applicatio®®nlyt he combi nat i o propaties t he
sometimess not enough for succeeding in life. The enumeen is changing all the
time: climatic conditions arehanging;surrounding flora and fauna is changimegc.

The second problem feow to build a stronger, smarter and better generation from the
finite set of propertieswvhich already turned out as the beshstellation (presuming
that there is no better combination of the given properties than the actual one).

Evolution theoryhas an answer tihnese problemsnutation Mutationis a change of

the individual s parti cul anal opterorprkmowny ge n e

factor. It brings a céince for individuals tacquirethetrait that have not appeared in
any generation yet. This new property can help the individwirvive in the changed

environment, beat the other or, on tomtrary die s@ner.

1.1.2. The genomeand the DNA

In the previoussubchapterwe have brought the not detailed overview of
evolution principle, which was very abstract and did not tell us anything about the
actual biological function of the living organisms or about theroduction. All we
understand at this point is that an individual consists of set of its properties, which
determine his whole life course and aneitated andsomehow recombined during
reproduction.

To implement the evolution principle as an algorithm wse another
inspiration from nature.The abstract set of properties, which determine the
i ndividual 6s [|if e, I's repr esemMhegehomey t he
contains all the specification of the organism physiological form, look, growth o
behavior (consequently) When the organism is developing, every step since the
reproduction isnfluencedby the genome information. The reproduction is the very
moment when the genoniself is built.

As it is usual in nature, the genome is not an atoemtity driving the
organi smds de thelldocentnry,the biologsishave eliscovered that
the genome is made up of parts called chromosomes. The chromosomes we can divide
into single genes, which are discrete units of heredity traits ansistayf DNA
information, which issimply coded by a sequencknucleobases paifg]. The count
of the nucleobasegariations is a finite number, so it is very analogicahtaov we
encode the information in our computers.

In this very simplified viewwhichwe have presented possible to simulate
the dynamic evolution just by using the genomes instead of the actual individuals

grown based othesegenomesThat is exactly the way the computer scienamisg

1.2. Evolutionaryalgorithms

In computersciencethereare a lot of problems that we cannot solby a
specialized efficient algorithm. These are either the problems of very high complexity
such asNP, PSPACE, #P or the otherevenmore complexcomplexity classe§3].

There are alsproblemsfor which we do not know any optimal solving algoritfan

all. In thesesituatiors, we usesuboptimal approximate algorithms or to incomplete
heuristic algorithms.

Evolutionary algorithms are mdyar of both of these groupsf algorithms for
hardto-solve problems.The base idea is to let the problem solution come up from
evolution process just like the nowadays organisms have developed from the
prehistoric ones.

In the implementation of evolution processe work with the candidate
solutions of the particular probleimthese are our individual$o make the evolution
happen, we need to know, haarreproduceand mutatethe individuals.The answer
is to create mencoded datatructure which will representhe particular solutions
the individuals. The evdution operations (reproduction anchutation) will be
processed just as change$ this code. This approach is the straightforward
implementation of the genome inspiratiofihe algorithms representing ggible
candidate solutionby the code, which is changing in order to get better and better
solution of the problem, are called Genetic algoritidls The term of Genetic
algorithms is usually used for Genetic algorithms driven by evolution. In other words,

Genetic algorithms are Evolutionary algorithms over genoepeesented individuals.

1.2.1. The algorithm
The evolutionary algorithm is simulating populatiof possible candidate
solutions, which should develop thru generationsamfoodanduseful result solution.
Evolutionary algorithm starts with the initial populattaand beginshe loop
of life:
1. Parental selection selects individuals who become eats of the next
generation.
2. Reproductiori creating new individuals based on their parents.
3. Mutation T nondeterministic slight changingndividuals in the new
generation.
4. Environmental selectionfight for survival wheraisuallyonly the individuals

of high quality will outlive.

1 The code of one concrete individiial t s figenomeod.

2The initial population is usually randomly generated.

This loopneals a terminating criterigrotherwise it would run endlessly. It is up to
the concrete implementation whether to stop after given number of generations or to
run until an individual better than the given limit apgeaarthe population.

Evolutionary algorithm is actually a stochastic searching algorithm.
Reproduction and mutation provide variability and the selections are driving the
searching towardshe optimal solution5].

1.2.2. Operator-oriented implementation
Thereare a lot of various ways how to implemein Evolutionary/Genetic
algorithm. The implementation can be very specific, targeted and optimized for
solving the one particular problerm our experiments, which are described few
chapters bellow, we have chosen very generic implementation aclagaratof
oriented.
The operateoriented schema simplifies the evolution life loop into two steps:
1. Apply the operators
2. Environmental selection
Here the newgenerationmaking logic is puinto operators, which can implement
various mutation, recombination, parental selection,Téte.operairs can be more or
less problenspecific; nevertheless, all of them hate be compatible with the
individual encodingThis approach is veryseful for experiments because we can
change or mix the operators and build the evolution process like \\dwad.is more,
we can test the operators separately to find out whether the particular operator helps to
find a good solution or not.
The environmental selecton, whi ch shoul d manage th

to meet the optimal solution, stays unchanged.

1.2.3. Memetic algorithms, Lamarckian evolution, Baldwin effect

Evolutionary algorithms are a general framework for problem solving. There
is a lotof papers that arintroducing many extensions or improvemehét us take a
look on idea calletVlemetic algorithm$6].

In principle, the Memetic algorithmsare combination of Evolutionary
computingand local search, which is ancomplete solving method itself. The
background inspiratiors cultural developmeriuilt thru generationdt should help

the individuals to live better lifeMemetic algorithmlets the individuals to learn

something beforeomes the environmental selectiA learned individual should then
pass the selection better.

The actual learningg made by the local seardin individual that is a product
of the evolution operators is then taken as a baseline for searching its vicinity in the
problem solutions spac The searching should be fast and simple. It should not
substitute the evolution operators, butly upgrade their results. If the quick search
does find a better individual than the origin, we have more possible ways how to deal
with that.

The Lamarckian[5] approach replaces the original individual with tetter
new searched one. This new specimen is going to fight in the environmental selection
and then, if it survivest will be processed by the operators irgteof the original
individual.

Another approach avoidsterferingthe evolution. It leaves the solutiguest
up to the operators. The only role of the searched better individualapresent the
or i gi n 6 dtispsed irestead of thé arigintine selection; therefore, the original
i ndi vidual has the quality of the best o
operators is stillused the originthi s change of the individu.
Baldwin effec{5].

Thegoal of this thesis is to create an approach that will combine Evolutionary
algorithms and Monte Carlo Tree Search. Our method, which we are going to

introduce hereunder, is very close to tlanarckian Memetic evolutiddea

2. Monte Carlo Tree Search

2.1. TheMonte Carlo origirs

The concept calleonte Carlois older thartheartificial intelligencefield of
science Monte Carlomethod is based on a pseudorandom simuladfca complex
processwhere thepseudorandom decisions respé&cown particdar probability
distributions Samples from this simulatipwhich has been rumanytimes are used
for determininghe processehavior{7].

Monte Carlomethod is used widely across mathensgptysics or computer
science.From numerical integration in mathematics to, ifmstance Monte Carlo
Markov chainstate probability distribution determinationartificial intelligencelt is
usedmostly forthe problemghataretoo complex ortoo hugesothe exact methods
would bevery inefficient.The derivation oMonte Carlomethod, which this thesis is

basedn, is a searching algorithionte Carlo Tree SeardfMCTS)

2.1.1. Monte Carlo Go

The first stegowards the MCTS, whicthis paper idbenefitingfrom, was the
use of theMonte Calo method for creating an artificial player for the game[&o
The game G@¢9] is known for itstoo high brancing factor forcompletesearching.

Due to this largemumber of game moves combinasahis very difficult tofind out,

in a reasonable tim&hat game results can come up from the current state (position).

As a consequencd is hard toevaluatethe particulargame statefor usage irsome
heuristis. Bernd Bg, g m abnoaght to lightan approach based on tiMonte Carlo

idea.He defines the quality of the actual state by the possible game ends that can result
from it. It is not possible to &tiently enumerate all the endind3r¢gmann deals with

this by sampling. He simulates sevegpat e ud or a n d o sequenceé & stapait s 0
leading to game endnd from these samples he computes the expected (average) score
for the given statelhe artificial player then moves to the state withliestsampled

score.

This approach is very successfuthe game Go; however, the most interesting
benefit of this method is that the sampling, which substitutes here the game positions
space searching, does not need any problem specific hevaissit Despite the fact
that the playout is driven by raowoh genertor, the result samplesanproduceuseful

information.

2.2. Tree searching

The system described above aims to game positions valuating. If we look at the
problem of artificial Go player morgenerally the strategy oévaluating possible
positions andtaking the bestlooking result is not very smart. Avery greedy
algorithm, it does not use amgpmplexproblem overview
Solution of this problenwas brought byrmupgraded algorithnthat is trying
to benefit more from the promising states and searfciiedbe game steps sequence as
a whole.This algorithm searches the tree representing the game states sihese in
steps
1. Go from the root node and by selecti@gvaysthe bestchild find the most
promising leaf node.
2. If this leaf node was already a fewnes attended, expand it (create child
nodes).
3. Do some playouts (fAsimulationsodo) from
4. Based on trédsdts ypdate thequdlity iGformation of the nodes in
thetreethapr ecede t he playouts (Abackpropa

Repeated X times
+—{ Selection | { Expansion | { Simulation | Backpropagation }J
B, Q ()
O 21\ ONe] 200
Eg O
One or more nodes One simulated The result of this game is
are created game is played backpropagated in the tree

The selection function is
applied recursively until
a leaf node is reached

Figurel Monte Carlo Tree Search outline frg0]

As this cycle repeats, the algorithm is building an asymmetric tree, in which the most
promising game strategy is growing deeji€).

2.3. Upper confidencéound fortrees

The MCTS algorithm as described above is a-besttsearcing algorithm. It
tries to get maximum of the most promising branch it knows. This is exactly the core

problem of many Al disciplineg.he questioms how to exploit tre bestknownoption

10

if we do not havea completemodel of the searched spadeis obvious that the
exploitation should be preceded by an exploratnmde, whichwould create as such
corresponding model as possible. Since the searched spacéarge to bestored in
computer memoryit yields a question wanto stop the exploration part and start the

exploitation.

2.3.1. K-armed bandit problem

One of the problems dealing with tegploration/exploitatiordilemmais the
K-armedbandit problem which is a plaything from the mathematical game theory
[11]. K-armed bandiis a set oD slot machines, where every slot machine takes one
coin for a play.After inserting the coin into the machine, the slot machine returns
random reward from its inner distribution. The task is to maximize the reward sum by
decidingwhich slot machine to play and in what order.

In 2002 was introduced a deterministic algorithm for dealiitly the K-armed
banditcalled UCB (later UCB1)12]. The UCB algorithm counts the total number of
triesO, the number of tries at the particular arrbs and the average gain of the
particular arm$. Once the UCB tries every arin (v g € p), it chooses the
am that maximizes thexpression

AOGT AD & L
where the®is exploration/exploitation constant originally set ¢ in the UCB
algorithm.

This strategy provides very good balance between the exploration and
exploitation modes. The maximized expression gives even bad options a chance when
the good oneweretried many times. It was also proved, that the régfethis method

is a logarithmial function[12].

2.3.2. UCB for trees

In 2006, the UCB was applied as the solution exploration/expldation
dilemmain MCTS [13]. The application is very straightforward. In every tree node
(that is ateady represented in memory) is located a bandit and each arm represents one

1 The average difference between the total gain of the optimal strategy and the total gain of our

strategy.

11

possiblenoveDur i ng t he MCTS cycle, the nodeds
strategy and the bagkopagated score is registered as the just obtained chosen arm
gain.

Whati s mor e, the authors of this idea
evaluating is completely independgrthis approach provides asymptotically the same
results as the neneuristic minimax algorithnfil4].

1 In the game Go the evaluating is, of course, not independent.

12

3. Model problem

In this thesis, we are trying to invent a new condeptsolving the problems
that are to complex ortoolarge. Our approach should be applicairieevery problem
that is solvable by genetic algorithi#s you will see in the next chapter, all we need
is to represent the individual from the population as a vegctmromosomedf finite
dimensionwhere every componef(allele)is defined by a finite domain. Wage also
ableto handle a mutual exclusion of values among the compagnehtsh we will
demonstratdy our frontend problem specific implementation

Although we want to bring a very generakthod for problem solution, we
needan instance, where the principles can be shdwerefore we have decided to
pick one particular sample probleifhe explanatio will be based o this example
The accompanyingmplementation or furthermore the research measuring and tests
will be also proceeded on the instance probl€he sample problem is the Traveling

salesman problem (TSP).

3.1. Traveling salesman problem

TSP isvery well known problemwhich is very simple to explain, but very
hard to solve. Not only is TSRP-complete[3], it also isstrongly NP-complete[3].
What is more, TSP cannot lgenerallysolved ly any poly-time approximation
algorithm with constant ratiometric error (unléds: NP of course)[3]. This makes
TSP a very toughndchallenging benchmark.

3.2. Geneticsolutions of TSP

As we declared above, to use our metfadsolving TSP, we need a genetic
representation for itSince we are using the operatorented evolution, we need to
decide the individual representation and prepare background for the environmental

selection.

3.2.1. Fitness and environmental selection
The environmental selection in most of the Eiplementations is based on
fitness function The fitness functionis an indicator which tells us, how good the

particular individualactuallyis (in the problem solution meanindh the TSP, there

! Evolutionary algorithm

13

is a veryclea fitness indicatarweight of the Hamiltonian cycle represented by the
actual individual.When implementing the environmental selection, we shaold
forget that the lower value is the better ofiéiis kind of fithess function produces
nominal numeric ogputs. Neverthelessve should go with the fact, that the outputs

are mutually comparahbleecause we use the simpleurnament selectiojb].

3.2.2. Representationof an individual

The individual representation needs an arbitrary decision to be madeafdere
a lot of various papers dealing with genetic TSP solution, which are vamaus
representation:

{1 Steps representatias the most straightforward. The chromosome is simply

a vector containing) numbers, whichrepresents the cities exactly as the
follow in the traveling salesman journgyence,the domain of every allele
is the set of the cities (hnumbgr8 (). However, the numbers must be

uniquei a permutation.

{1 Edgeadjacencyepresentatiofil5] also uses permutations of length but

the meaning is different. The numki@at the positiomeans that there is

the edge "@Q used in the result Hamiltonian cycleis importantto work
carefully with this representation because not every permutation represents a
Hamiltonian cycle. After selecting edggsecifiedby the chromosoméhere

could occur several separated cycles in the graph.

1 Buffer/ordinal representatiofil5] is the trickiest one. It keeps the cities

ordered in imaginary buffer. The chromosome is al$éong 0 and it also
represents the cities as they follow in the result journey. The first number in
the chromosome points into the buffer aneésts the first city of the journey.

The city is then removed from the bufféhe remaining cities are shifted in
order to fill the empty gap. The buffer actually works @ssamdom access
staclo. The second numbé&om the chromosomagain points into the buffer

and this repeats until there is at least one city in the buffer. As a consequence,
the domain of thé&h allele are the numbep8 0 "Q p . Furthermore

every set of number satisfying the domain conditions are a valid

repreentation of Hamiltonian cycle.

Even thogh all the representations have their pros and cons for using them in

genetic algorithms, we hawdhosen the edge representation. The edge representation

14

is the best analogy to the nature genefltsat is because ewy allele has its own
meaning (selects thedge thatwill be used for continuing from the corresponding
vertex). On the contrary, steps or buffer representations does not provide any particular
meaning to the allele until the whole chromosome is knownncele these
representations woultecessitatgery large knowledge of the context for deciding the
one allée. This could require creatingry complex combinations, which could not be

very friendly for genetic algorithm or MCTS.

15

4. MCTS operators for geneticalgorithms

The aim of this paper is to createapproach thas combining two algorithms
from differentAl? fields of computer scienc@o do that wehave decided to use the
operatoforiented EA& design as a frameworkhe entire logic inspired by MCTSilv
be always encapsulated severaloperators, whichare modules for usagein the
framework.Therefore, our operators can be combined with each other and, what is
more important, with the traditional operators.

Our operators fall within the category ofeldhetic algorithms. We use the
Lamarckian evolution idea and try ¢oeatevery smart operators that do not use any
problemspecific heuristic, but benefit from the MCTS research results.

We are going to present three levels of our idea. Each level withiootwo
implemented approaches to dealing with the chromosome inner 8ystem

1. Direct operator restricts its inner logic to keep the chromosome valid.
2. Repairedoperator has free hand to manipulatedm®mosomeas it wants to.

Afterwardsthe chromosome iepaired to be valid.
4.1. UCB Selector

4.1.1. UCB Selector black box implementation
TheUCB <=lectoris a simpleunitimplementing exactly thepperConfidence
Bound selecting method. Each instance of this class is parametrized by the
Aexpl or at i on ohe cumipesdf agptiohs thatrare availgble to select from.
TheUCB selectorisused as & b | a ¢ brovidiogdh@sdunctions
1 Select() , whichsimply evaluates théormula (the single componentare

explained in the chapt@r3.])

and returns thenaximal argumentQ which represents one of the available
options.The actual implementation also contains even more overloads of this
method allowing us to specify a particular subset of available options to be

I Artificial intelligence
2 Evolutionary algorithm

3 Uniquepermutation representing one Hamiltonian cycle

16

selected from. In that case td "Qd fidrcaula chooses th@only from the
given subset. In the situati that at least one of the available optimas not
selected yetg), this unselected option will be returned instead of
evaluation of the formuldf there is more than one nselected option, one

of them is selected randomly.

1 RegisterGain(k, gain) updates the internal records. It increments the
stored number of attempts of tf@h option¢ and updates its average
gain‘ . It also increments the global number of all atteriptsThe

registered gain is always a number from the intemdl .

4.1.2. Alternative UCB selector initialization

TheUCB selectorimplementation described above brirgsiechanism, which
automatically balances between exploration and exploitation and tries to identify the
best option from the available set. However, thechanism has a special begng.
Due to the noselected options protectipthereisp er f or seleae acc h | oo p
across all the options at the beginning. That is because all the option counters are zeros
at the beginningand theUCB selectorrefusego perform the UCBselection until all
the countesare at least one.

The UCB selectoritself is the base and key building block. THEB selector
will be present in all the operatdisatwe are going to present in this chapwWwe are
little bit afraidt h a t seleceeacim o6 | oop, which is needed
the UCBselecting begins, will confuse, break or slow down the mechanisms we are
planning to implement. Therefqree present an alternative way of tH€B selector
implementation. Thdifference is only in the inner data structures initializatiorthe
original version the option counters are initialized with zerand the average option
gains are initialized right at the moment when the first gain is registered for the
particular opion. While in the alternative versigthe counters are initialized with ones
and the average gains are all equally initialized with a con§lant

This alternative constantselecteathal | papi
and still does not breake selector principle (the average gains still converge to their
true values).

What of the twdUCB selectioninitialization is better and what value for the

constantQshould be usede are going to find out experimentally in the chapter

17

4.2. The used individual representation

Even though the TSP solutiatan be represented varioushll the below
described UCB/MCTS inspired operators use the edge representatitims T
representation is a simple array of immediate successors of the vertices. Natnber

the @ position in the array means that edg&Q is used in the TSP solution.

4.3. Single allele operators

The levelone operators are based on the idea of seagchaeredeep trees
rooted in the alleles (where the allele is one particular position in the successors array
and the chromosome is the whole array). We present two different implementations of
this principle. Both of them usthe same base structure.

The qerator is initialized with an array full of instances of héB selector
units The length of this array is exactly the same as the number of vertices in the TSP
graph (number of towns). Hence, this arrayu@B selectorshas exactly the same
length as the successors array coding the TSP solution. Each selector corresponds to
the particular vertex in the graplnand s
cycle. That is why all the selectors in the array are lia@d with the same number of
given optiong the number of vertices in the TSP graph.

Not every combination of options returned by the selectors is a valid solution
of TSP.Furthermore the returned vector might not be a valid permutation at all,
becausevalues can repeat. Therefpmee present the two specific implementations
based on this idea but providing valid solutions of TSfamiltorian cycles.There
will always be adirect and arepairedversion of a chromosome filling mechanism.

These two versios we are going to introduce in the following subchapters.

4.3.1. Direct single allele selecting operator

The first implementation of the levehe operator is thalirect single allele
selecting operator Thi s oper at or wallowedoptionstddto t he s
directly provide a vector which will be a valid solution itself.

During the solution creating procefise operator builds the Hamiltiam cycle
step by step. It starts at a randomly chosen vertex. All vertices except this starting
vertex are now itheallowed optionsset We use the starting ve
us which one of thallowed optionswvill be the selected succeeding vertex. The result

successor is removed from tAkowed options sednd we repeat this procedure, now

18

with the resul successor instead of the starting vertex. This process repeats until the
allowed options sas empty. At thigoint,the only possible successor will be exactly

the starting vertex chosen at the beginning.

13 1 1 1
ucCB uUCB ucCB ucCB
1111 [111 1.1 e

Figure2 Singleallele selecting operatschemaEveryallele has its own correspondibiCB selectomhich
determines the allele evaluation.

4.3.2. Repaired single allele selecting operator
The second implementation of the levahe operator worksa little bit
differently. TheTSP solution creating routine works in three steps:
1. Use theUCB selectorsto generate an arbitrary array of vertices.
2. Repairthis array to be a valid permutation (even with more cycles).
3. Decompose the permutation into separated cycles and join them ®to on
Hamiltonian cycle.

While the first step is clear, there are mtinan onepossible ways how to
perform the second step. The task is to convert the list of numbers with repetition into
list of uniqgue numbers.

In the array, we identify the numbers (vertesuccessors) that are appearing
more than onceThese repeating successaove remove from the arrayt is not
necessary to remove all the occurrences of the particular repeating number. The
number has to appear exactly once in the final array; thereferegave unchanged
always one of the appearances of each repeating number. Of course, we do not know
the optimal position where the number occurrence shall stay, thus we choose it
randomly. The rest positions from where the repeating successogge takenout
represent the vertices that have no selected successor at this time. We will call them
theempty predecessors And finally, there could be
the former array at all. These ar@ledthe currently unused successors

The empty predecessoend theunused successostiould be now somehow
connected together to provide a valid permutafiahe array of successors where
every vertex has a unique successor. We present two possible approaches how to do
that:

19

a) Connectthem randorty. For everyempty predecesswvill be the successor
choserrandomly. Of course without repeating.

b) Use theUCB selectorsagain. Everyempty predecessatill has its own
correspondingselector The unused successotsecome now theallowed
options setGoing across thempty predecessons randomorder,we let the
selector to choose the successor from the available options and then exclude
the chosen successor from the available options for the next iteration.

After choosing one or the other strategye have a valid permutation and the

reparatiorstep two is complete.

4.3.3. Updating the inner data structures

The levelone operator would have no chance @afccess without continual
updating its inner data structuriesvithout learning. No matter if it is thdirector the
repairedimplementation, there is the array WCB selectorsinside. These selectors
need to be updated to providetter result®iext time.

The gainthatwill be showed to the selectors (\ReegisterGain function) is
universal for all thdJCB selectorsstored in the array. That is because only a fully
filled array of successors, representing Hamidorcycle, generates a particular
solution of TSP. We cannot rate one used edge separately because it is not obvious
whether using this edge leatb the optimal solution or not.

The gain of one particular chromosome, which is solution of TSP, is actually
its fitness value. Since théCB selectorallows only number from intervarip , the
fitness value has to be transformed. The fitness valtreedfSP solution is simply the
weight of the result path. The lower fitness is better. The gain value is a different case:
greater value is better.

Fortunately the fitness value can be converted into a gain value relatively
straightly using a linear trafsmation:

s "QQ0o0 € Qi i
Qw Qep

where thed is simple the upper bound estimate for the fitness function. This estimate
expresses weight of the worst possible solution of the TSP. We simply use sum of
weights of the) heavier edges in the graphhere(is the number of vertices in the
graph.

The redistribution of the gain value is quite intuitive. We go through the

chromosome (successors artdgr each allelewe register the gain for the option that

20

is used. After thigprocess,every UCB seledor has exactly one more registered
attempt.

The truth is that in case of tmepairedoperator some selectors might register
a different option than they have returned as a recommended selection initially.
other words, th&JCB selectorselects optioQQ but the gain is registered for optian
which has replaced the opti@during the repairing procesalthough this is not a
standard usage of théCB principle, it will not violate the selectdbrs p r.iTheci pl e
optionQcould not be used in the dssolution. On the other hand, keepingsecret
the gain of the finally chosen optiorwould not improve the operator at all. The
registered gain helps to rate this particular optiand changes its probaltyliof being

selected next time.

4.4. Conditional operators

The leveltwo operatorg theconditional operator$ introduce the first attempt
to bring the idea of dependency between alleles in the chromosome. They are based
on searching trees of constant depth.
The leveloneoperators were bad on the principle that every vertex has its
own selector, which is trying to choose the best succeeding vertex in the result
Hamiltonan cycle. Whereas theonditional idea tells us that the decision of the
particular selector may be better if the selecbnsiders the result selection of another
(generally)selectorThis bringssomec ont ext i nto the selector
Naturally,you can imagine various approaches how to implement this idea. We

presenburtwo different implementations.

4.4.1. Direct conditional operator
Like thedirect level one operatoy the direct conditional operatoproduces a
valid TSP solution literally directly. The magwoalof the implementation igroviding
the dependency between the selectors and their choices. This operatbe lieel
oneoperatorsgoes step by step and builds the Hamiétogycle. In contrast with the
level one operatorswhile deciding the successor for a particular vertex, the
conditionaloperator considers even the predecessor of the current particular vertex.
The direct conditional operatorcontains an array full otJCB selector
collections. The length of this array again equals the number of the vertices in the

graph (). Each collectin in the array can contain uptioUCB selectorstoo. Every

21

record (everyJCB lecto)) in the collection is marked by a vertex in order to provide
the selector conditionally. Altogether, while deciding the next step of the Haiariton
cycl e, $dueessorewill besseldrted by a selettatwill be chosen from the
collection corresponding to the current vertex and the key for choosing from the
collection will be the predecessor of the current vertex.

Of course, the first decided vertex cannotsbb/ed conditionally because its
predecessor the last selected vertéxis unknown at the moment. Therefore, the
starting vertex is fixed and it has only one general corresponding selector instead of
collection of selectors.

This operator uses the aable options set in the exactly same way as the level
oneoperator did. Thus, the result chromosome is array of vertex successors coding a
valid TSP solution. The gain value of the result, computed from the fitness value
equally to the levebneoperatorjs registered agaiih times. For eackiertex,only the
used selector from the corresponding collection will register the gain value and it will
be credited to the option that was actually selecté@ chosen successor.

4.4.2. Repaired conditional operator

Therepaired conditional operatarontains similar inner data structures as the
direct one. However, it works with theonditional selecting more abstractly and
generally. This operator creates the dependencies between alleles in chromosome
based on the poditin in chromosome. The allele is influenced by its neighbor one. To
be concrete, every allele affects the allele on right side. Except the last one.

This repairedoperator works in the same three steps as the deezkpaired
operator. In the firsttep,it builds the array of numberspotential array of successors.

It goes sequentially thru the array from the left to the rightesedypositionis filled

by the value chosen by the selector. At
options et 0 T all sptiacths are availabl@ he selector for thparticularposition is
chosen from the corresponding collection and the key, used for the choice, is the value
filled in the left neighbor allele.

The second repairingi step can be proceed ihet random way, which is
exactly the same as in the lewahe implementation. However, we can take the
advantage of the selectors again. After creating the listnpty predecessoasd list
of unused successgorae take thempty predecessofsom the lig in the increasing

order (increasing order of chromosome array indices). It is obvious that the allele left

22

from the firstempty predecessas already filled. If it would not be, it would be the

first empty predecessdaself. Hence we can choose theght UCB selectorfrom the
corresponding collection for the allele that is the Brsipty predecessorhis selector

is used to select a successor for the cuesnity predecessobut only from the list

of unused successorshe selected successor is mmd from theunused successors

list and we can continue repeating this procedure with theemepty predecessoAt

the end of this loop we have got a valid permutation stored in the vertex successor
array.The third step is again exactly the same abkerleveloneoperator.

Figure 3 shows the schematic arrangement of teeaired conditional
operator. Every allele has more correspondib§B selectorsThe previousallele
chooses which one is used (green arrowshhe case of thdirect variant, the green
causality arrows would natlways go to the right neighbor. They would respect the

order determined by the constructed Hamiltonian cycle.

o | | & |

ucs ucB ucB uCB

I Qg Uirel Wl

Figure3 Repaired conditional operatachema.

4.5. Local trees searching operators

The idea of allele value selection that is basethe previously selected value
can be even more generalized. While deciding the value for the current allele, we can
consder more than one previously chosen value. The number of considered values
should not be constant. Therefore, the mechanism can fluently grow while learning
from the gain feedbacks. This brings us from the trees of com>it to the trees of
dynamicdepth

4.5.1. The actual trees

Since the deptbf the trees has to be dynamiee should start with a very small
tree depth. The lowest depth of tree is, in general,jooily the root node and no
edges at all. Using the trees with only a root node, we actueghgsent the same
principle as thaingle allele selecting operatorghe levelonetechnique. Every allele

has exactly one correspondib§B selector, which is responsible for the values. The

23

only difference is that in the levéireeoperators th&JCB selectoris encapsulated
into a tree node, which is also a root node of the tree at this moment.

After the process of chromosome evaluation (all alleles have proper values)
there is performed as well the phase wherli8® selectorsi the treeg receive the
actual gain of the particular chromosome. At th@mentthe selected option counters
are incremented. After thiscrementijt is time for the tree expansion, which is applied
sequentially to all the trees. According to thedusee expansion policy, we choose
the concrete tree nodes ath@ concreteoptionsthat should be expanded right now.

We create new edges from the current node (containing the expanded option) into
newly built nodes representing n&IZB selectors which ae going to correspond with

the next allels. Moreover, these neldCB selectorsare used only conditionally. They
depend on the valseselected for the previous allslé by nodes above in the tree
(nodes lyingonthe path from the root node into the catraode)

The tree expansion described in the previous paragraph brings the analogy with
the leveltwo operatorsi the conditional ones.More than that, we can build the
dependency chains as long as we want. Every dependency chiiBatlectorsis

actudly the path from the root node into a leaf node in one ofanal trees

4.5.2. Chromosome evaluation

In the previous textwe intentionally skipped the part when the actual
chromosome is filled bgoncretevalues. This procedure is not difficult at all if the
inner data structures in the operator are clearly descligde the operatpthereare
the local trees which everyoneb6s root correspon
chromosome. Some of the trees are only single root nodes without any additional
sulirees, and the other trees are partially expandepdientiallyasymmetric.

We start he chromosome evaluation process at the first allele. The
correspondindocal treeis asked not onlyor one value, bualsofor a sequence of
values. The sequence of values is generated by going thru the tree from the root node
to one of the leaf nodes. Every entered tree node contaSBeelectorinside. This
selector is asked for the preferred (selected) option, whitbewvihe actual next value
in the result sequence. Then we look if the current node contains an expanded subtree
for the selected option. If there is an edge expanding this option, then the process
continues recursively by going along this edge. Othepviseselected option is the

last value in the sequence and the query ends.

24

The generated sequence of values is the result of a decision process based on
the UCT principle. Every value in the sequence was selected with regard to the
precedingvalues. The ifst value from the sequence is filled into the alltlat
corresponds to the root node where the query started. The next value in the sequence
we put into the next allele and analogically we fill the other succeeding alleles until
we spendall the valuesn the sequence.

If there still remains any farther unfilled allele, we just take the tree
corresponding to this allele and query it for another sequence of values. By repeating
this procedurgwe certainly fill the entire chromosome even whether alldbal trees
are only single root nodes, or whether there is a fully expanded tree, which would fill
all the alleles by one query.

It is obvious that not all of théocal treesare used for the chromosome
evaluation. However, thalleles thatwere not filled by the corresponding root node
were actually filled by @eeper and morgpecialized node, which takes more account

of the context.

4.5.3. Trees expansion

Until this timg we brought to light how the trees are used and when the tree
node should be expanded. Metheless, the expansion itself was not fully clarified yet.

First,we need to decide when a particular selectable option in a particular tree
node should get its own edge leading to a new node. To determine this we use a simple
mechanism omaturity thre$iold, which is commonly used in the Mon@arlo Tree
Search. Thenaturity thresholds a constant number. We define that the option whose
counter inside th&)CB selectorexceeds thenaturity thresholdshall be expanded.

When the decision of option expansis made, a new tree nodereated. The
simplest way to create a new node is to instantiate a cledd@®&mselectorand put it
inside the node. This fresh new node should learn all the information about the gains
of various available options. Howayeve already have another notleat already
contains some learned knowledge about the options and their average gains for the
current allele. This versed node is the root node ofaite treethat corresponds to
the current allele. This knowledge is also gendrait is independent on the
chromosome context. Therefore, we can reuse this knowledge in our new context
dependent node. To do that, we simply copy the inner data from the otigiial

selectorin the root node (of the tree corresponding to the current allele) and use it as

25

a base set in the n@WCB selector. As a consequence, the newly created node already
knowsthe gain distribution of its optioristhis general knowledge is taken fnche
original root nodeSince this moment, the newly created tree nodebgiteshajng
this generaknowledgeinto a context specifiovhich might be different
Copying theUCB selectorinner data is not the only thing that is done while
creating new ade during the expansion process. The newly created node will as well
keep a reference (pointer) to its origiode This reference will allow us to perform a
better expansion on this node in the future. When an ofédierthis node with
reference is goig to be expanded, the future child node will not be created as a clone
of some root node. The origin for the copying will be the child node, of the referenced
node, which is denoted by the same opfia@f course, this child nod#oes not need
to exist.In that case, the corresponding root node will be used as an origin instead.
The above described strategy, which tell us how to choose the origin node
during the expansion, will let us to exploit the best information that is currently
available for the auent allele. Not only do we copy the already learned statistics for
this allele, but this origin node also depends on the context whaciuaslly ashorter
versionof our current context. By cloning this origin noaee actually prolong the

context, whech will produce a more specialized decision node.

4.5.4. Tree size

The previouslydescribed mechanism gives us a set of trees, which every one
of them gradually grows. Theoretically, every tree can expandaifiadl size and
symmetric form. The fully expanded tree describes and evaluates all the possible
chromosome variations. This full expansion would of course spend exponential
memory space for each tree. Since we are developing fast incomplete heuristdé; metho
we have to avoid huge trees. To satisfy this requirement, we will use tree pruning and
stricter expansion policy.

To perform an expansion of a particular option inside some tree notievee
needed this optionbs ¢ o which & called maturgyx c e e d
threshold This was the only condition for expansion. To keep reasonable tree sizes
but still let the trees to expatiie successfldranches, we add one maa@ndition that
has to be satisfied. The candidate ogii@verage gain (inside th¢éCB Selectorhas
to be greater or equal than a third quartile value of all the average gains stored in the

26

selector. In other words, for expansidme option has to be tried and it hastmow
good results.

Despite the strict ggansion policy, the trees can still grow larger than we want.
For instancean option that seemed to be gdoeforeis not actually good at the
moment. Nevertheless, the option has been already expanded. The whole subtree under
this option will be probablyever used already. It should be cut off.

To know when to do the pruning, we prescribe a tree size limit. This simply
will be the maximal number of the nodes in ¢owal tree Every time this limit is
exceeded, one whokubtree is going to be cut offhe dropped subtree should be
rooted intheworstratednodein the tree. We could seek the tree for the node with the
lowest gain of all. However, this would take very long time and the whole tree should
be searchednstead of the systematic searching,rather use an incomplete heuristic
to quickly find a bad node.

Our implementation of théree limit complianceas inspired by the SMA*
algorithm[16], which deals with a very similar tagkit searches a graph using a
limited set of expanded verticeBecause the SMA* algorithm needs to add only one
more node every iteration, it gets by with cutting only one tree leaf. It drops the leaf
with the worst utility function value. Dropping the leaf means that the SMA* algorithm
omitsthe paths that are begging with the prefix represented by thd hedfis exactly
what we want to dodrop off the node which represents an option sequence prefix of
very poor quality.

The poor sequence prefix we sagkedily First, we calculate the number of
nodes that have to be cut off to fall below the size libiit)(We start at the root node
of the tree. From the roeinde,we go deep into the tree choosing always the worst
expanded optiorJsingthese stepsye locate a nodihatis larger than the needed size
Y0 and its worst child subtree is not large enotghally, this located node is cut off.

The reader has certainly made an observation during the previous paragraph:
there can be no subtree lying under the worst optighe roonode thasatisfiesthe
YU size conditionIn this case, the worst subtree of the root node is sioytlgff and

the searching process is repeated again.

4.5.5. Local trees operators implementation
We have described yet an abstract mechanisiocaf trees which are filling

a generic chromosome and are consuming its quality feedback information. What has

27

been not introduced untilowis how to use this principle to produce solutions for our
prototype casé the TSP. As well as ithe level one andevel two operators, we
introduce two different approaches: tiepairedoperator and thdirectone.
The main part that was not explained inlteal treesmechanisnis the alleles
ordering. Nevertheless, the actual ordering was already explicitlyoysexpressions
l i ke 6the next all el ebd or dacditeeesfoperatert al |
needs some linear ordering of the chromosome alleles. When we select an option for
a particular allele and continue in the tree to the next nodetated by this option,

the linear ordering is telling us to which allele the succeeding node corresponds.

4.5.6. Repaired local trees operator

The repaired operator implements thelocal trees principle quite
straightforwardly. It uses the allele ordering exactly as they are located in the
chromosome. The first allele is the first item in the chromosome array and the next
allele is always the left neighbor one. This approach is very analogotiset
conditional repaired operator

The rest implementation of thhepaired local trees operatds similar to the
otherrepairedoperators from previous chaptersvéry freely fills the chromosome
in the first step and then the result is repaired at@lid TSP solution. Like in the
previousrepaired operators, théocal treescan be used for the repairs as well. The
UCB selectorcan select from restrictedlowed options setven when it is inside some
node in a tree.

Figure 4 visualizes the schematic arrangement of iiyeaired local trees
operator. The green arrows are the inner tree edges, which determine the concrete
contextspecificUCB selectofor the paricular allele. The blue arrows show the origin

node used for the new node creation during the expansion.

28

o & & 1

ucCB
111 il Jror] el
UCB UCB
\\VTTTT 1l1r
ucB
1171 ucCB
1111
ucCB
TTTI

Figure4 Repaired local trees operatschema.

4.5.7. Direct local trees operator

Thedirect operator extends ttdirect conditional operatoifrom the levekwo
implementation. The actual allele ordering depends on the values filled in the
chromosomé on the selected options. The first allele is again the most left allele in
the chromosome array. However, the next alleietermined by the option selected
for the current allele. The next allele will be thitele thatis representing the vertex
succeeding theertex that is represent&y the current allele. As a consequence, the
chromosome is filled by values in the exaader as the result Hamilt@m cycle goes
thru the TSP graph. This is, again, very analogous to the ditest operators
implementations.

The main difference between thepaired local trees operat@nd thisdirect
one is that in theepairedoperatorall the child nodes of some node do correspond to
the same allele. On the contrary, in theect operator each child node corresponds to

another allele.

4.6. Summary

In this chapter, we have introduced six variants of the M{i§Bired operators
for solving tre TSP in Evolutionary algorithm. The core element of all of the operators
is a gadget calledlCB selector EveryUCB selectorcorresponds with one and only
one particular allele in the chromosome. On the other hand, one allele eamdize/
than one corrgondingUCB selectorsWhen it is asked to, tHdCB selectochooses

the right option for the particular allele. The six variants of the operators we divide

29

into three levels by the complexity of usage of heB selectorsEach level then
contains two appaches for solving the inner chromosome constraifitsclarify the

terminology, the following table brings the overview of our operators:

Maximal Minimal
. Max.
Constrains number of number of
Level X : Name context
solving variant UCB UCB
length
selectors selectors
One Direct Single Allele 5 5 -
Repaired Selecting
Direct . . " " "
Two Repaired Conditional | 0 0O p| O U p p
Direct . " .
Three Repaired Local Trees 0O O© 0 o p

Tablel MCTS-inspired operators summary
0 ...inputgraph size

0....the chosen tree size limit

All the repairedoperators can be alparametrized by the chosegpairing strategy
The variants arehe UCB-repairedand therandomly repaireqboth explained in
chapter4.3.2.

1 The chromosome has to represent only valid Hamiltonian cycle.

30

5. The tests andmeasurements

Our MCTS operators, as we have introduced them, do have plenty of various
parameters and settings. In thdkapter,we are going to compareehaviorand
qualitativeresults according to the different parametrizatidri|an we are going to

measure the operatégserformance iproducingthe TSP solutions.
5.1. Methodology

5.1.1. The algorithm run and results recording

Each experiment will be executed as evolutionaryalgorithm. There will
alwaysbe the population of individuals (chromosomes), which willain every
generatiomaffected by theisedoperators. At the end of the generation there can be
performed some type of an environmental selectir the operator charactsiic
measuring we want to see only the development made by the operator, so if the
selection is not mentioned in the measuring specification, there is no selection
performed The particular setting of thevolutionaryalgorithm will differ in various
experments. During the evolutioary algorithm run, all the fitness values of each
individual will be recorded.

The recorded fitness values will be reported in a various graphical charts. The
usedtypes of charts, which visualize one evolutionary algorithm aua going to be
these

1 Box plot. The box plotchartshows the statistical information about every
generation. Every box plot record shows the maximum and the minimum, the

first and the third quartile and the mean and median values.

1 Lines of thebestfound solution. The continuous line expresses the progress

of the best solution found yet.

1 Lines of the best in generationThis chart shows the best fithess value in
each generation record.
All these three types visualize the fitness value (vertical axis)ndéepge on the
generation number (horizontal axis).
For the purpose of comparing the performance of different solving medineds
going to beexecuted multipléat least fiveyuns of the evolutionary algorithm, whose

records are going to be averaged and visualized as

31

1 Averaged bkest histogram This chart shows all the fitness values of the best
individuals in every generation sorted from the worst fitness to the best
fitness.The vertical axis again shows the fitness value. The horizontal axis
shows the number of averaged samples, which is equal to the generations
count, but the order may not be the same.

Each chart figure is going to have its title where the particular typgkeo€thart is

denoted.
In the case that there is a large set of measured records améittspace for

onedata pointepresenting one generatiaould be too smallonly subset of allhe

data pointds shown. This is made simpleuniform sampling. Fomstancegvery

tenth generation idrawn This data sampling will be maintained mainly for the box

plot charts because they need more space for figuring one generation
Fromeachmeasuring, onlpne ora few charts will appear in this text. The rest

of the experimentsd outputs can be found

5.1.2. Input data
For the purpose of testing we haleveloped several TSP instances generators.
Each of the generator is able to create TSP input (@ledengraph) of the desired size
0 and other parameters. The generapoosiucethese graph categories:
! Random graph consists of verticesand the distance between every two

vertices is chosen randomly from the desired interval.

{ Triangle unequal graph also contain0 vertices. The vertices are put into
the 2D space and the distance between them are computedchgean

metric. Thereforetheses graphs satisfy the triangle inequality condition.

1 Grid graph is generated from points in 2D space too. These points are
situated on a regular square grid of desired width and haight'Q 0).
The distances are also calculated ugtnglideanmetric.
All the generatedraphs that will be used in the following exipsentswill be
saved and attached to this thesis on the CD. Thanks to this, our measuring will be
potentially repeatable.
The random graph is the most general input of TFEhce,we are going to
use this typef graphf or t he oper at o resizatiotests.alkeiresr and

types of input we are going to use in the performance and verification measurements.

32

In the first tests (behavior and parametrizatiovg are going to intentionally
use very large number of generatigh®000)in every run. Theeason ighat we do
not know the best operatorsdéd settings anc
if the convergencwill appear very late or not at all.

The graph sizé& will be used veryfrequentlyin measuring specificationsr
the followingtext. It is necessary to remember that this parameter determines a lot of
mechanisms in our operators. Thei s : the graph vertices ¢
chromosome length, the potential size of one allele dontlaénnhumber ofUCB
selectorsin the single allele operator the number ofocal treesin the local trees

operatoror the number of potential optionsany UCB selector

5.2. Basic UCB principlesetting

The very first thingwe have decided to measuigthe basic settings of the
actual UCB principleThe UCB principle occurs in every type and every level of our
operatorsTo get the best performance from our operators, we have to tune the basic
shared parameters first.

The impact of the basic shared pasders will be measured on the simplest
level of our operator the levelone, thesingle allele selecting operatorgpresented

in chapter.3.

5.2.1. Repairing strategy

At all the levels of the implementatidhatwe have introduced alwag®ntain
two different approaches for solving the TSey are the direct and therepaired
operatorsLet usfocus on theepairedapproactatthis momentTherepairedoperator
fills the chromosome in two phases. It absolutely freely uses the UCB principle and
then it performs some repairs to provide a valid TSP solutMmalready proposed
two types of repairingtrategiesthe random one and the UCB one, which again uses
thetechnique of the particular level.

We will comparethesetwo approaches on a real TSP instance. The better

repairing strategy we will then use in the followiegts.

33

Measuring 1 Repairing strategies
TSP instance: Random 15
Number ofgenerations: 10000
Population size: @
UCB exploration constaniic
OperatorsRepaired single allele selecting
Repairing strategies: UCB, Random

1150

o C N 111 , s I‘
I \LMH L I
I

LJ IL‘L‘J JlJIA T T llll T IR

610,8

476

0 2000 4000 6000 8000 10000

Il Random [Ucb

Figure5 Measuringl Repairing strategieis Box plot

The results of the repairing strategies test showthliearandom repairing provides
much wider variance dahe fitness values in one generatiddn the othehand,the
UCB repairing keeps out of the actually bad values and generally produces less
variance.

This result is not surprising at alfhe fact that the random postprocessing
would generate the bad solutions as well as the good solutievisient However it
seems like the UCB repairing is too conservative in this configuratinally is not
able to createa better solution than the random repairing. Higure 5 there is
observable that the UCB repairing sticks at the same best sokdtion it has foungd
and does not explore the solution space enough to find a better chromédsome.
consequence, the random approach did meet better solutions than the UCB bne. Tha
is also olious from the following figure showing theestfoundsolutions in the same

experiment run as is shown in thigureb.

34

669

615,2

561,4

507,6

453,8 _\—

L]

400
0 2000 4000 6000 8000 10000

= Random = Ucb

Figure6 Measuringl Repairing strategies The kest found solution
Using this base configuration, the randoméypaired approach seems to be
generally better. This will be demstrated by the histogram chart made from multiple

experiments of the same configuration.

774

694.2 \%‘\

614.4

__IL

454.8

375

0 2000 4000 6000 8000 10000

—— Random =—— Ucb

Figure7 Measuringl Repairing strategieis Avg. hisibgram of the best in generation

35

5.2.2. Exploration constant

The core of all the operators we have introduced is the UCB principle. The
@i "Qa expression always selects the option with the best optimistic perspective.
Inside thed 1 "Qafosriula,there is a parametéy whichdetermines the ratio between
exploration and exploitatiothigher values cause more exploratidgt us see how
this parameter inside the selecting expression impactetieng for solution.

We are going to do this experent using the levedne operatorsHowever,
there could occur a misinformation caused by the difference betweelirébeand
therepairedoperators. To prevent thgsde effectwe will test the various values of
the exploration constant on theect operators only. Then we will test the impact of
cooperation of the selected exploration constants with the two types of the operators.

Measuring 2 Exploration constant in direct operators

TSP instance: Random 15

Number of geerations: 10000

Population size: 40

UCB exploration constaat0.10, 0.50, 1.00, 1.41, 2.00, 4.00, 10.00, 100.00
Opeator. Direct single allele selecting

692

602.2 bl AA AIM \ th.Al || A .MH.A AA nh

ST

Al |
4226 \ll nl

332.8 "_\'T'ﬁl\l\v\;vf\ l U Wl
0 VV\/WLW I -

0 2000 4000 6000 8000 10000

243

- 010 =— 050 =—1.00 141 =200 =—4.00 10.00 = 100.00

Figure8 Measuring2 Exploration constant idirectoperators The kest ingeneration
The Figure 8 clearly shows how théJCB selectorsreact to the various
exploration constantThe values thatare lower than one generate very constant
development of the best chromosome in the generation. It is observable that they stick
to the good values that thepawat the beginning othe evaluation. The exploration
mode is totally suppressed.

36

On the other hand, the greater valyesdndp 1t i our experimentdbviously
omit the exploitation part. Despite the fact that the exploration sometimesehyts
promising chromosomet)e greger valueshowno signs of systematmonvergence
at all

To the winning position aspire the values chosen from the intes8alft 8t 1T
In theseparticular measuring results shown kigure 8, there is ondine, whose
progression shows all the excellent attributeis the exploration constant valite .
This setting of the exploration constant does not have a constant invasaldgiment
of the best chromosome. What is more, Wigeline does not have a wavering
progression, but it shows tlsowly gradual convergence to the better valldsese
attributes show that not only does the exploration constant provideraechanism
thatcan explorefor better solutionsbut it is also able to exploit the chromosomes
giving good gain values.

One more thing that should be pointed out abouMbasuring2 Exploration
constant in direct operatoiis that when we have repeated the same measuring several
times, not always was the best valueltitge Neverthelesshe division into the three
groups of the only exploiting, the only exploring ané tralanced, was always the

same.

723

626.4 K

e N
S

336.6 T —_—

240

0 2000 4000 6000 8000 10000

- 0.10 =— 050 =—1.00 141 =200 =—4.00 10.00 = 100.00

Figure9 Measuring2 Exploration constant idirectoperatord Avg. histogram of the best in generation

37

The astute reader will notice that in tieect operators in théeasuring2
Exploration constant in direct operatolst a better fithess values than tlepaired
operators in thdeasuringl Repairing strategiesTo find out what impact does the
exploration constant have on trepaired operators and if it differs from theirect
operator, we have chosen the most interesting exploration constant values a tested
them against the both types of operators.

Measuring 3 Exploration constant
TSP instance: Random 15
Number of generations: 10000
Populationsize: 40
UCB exploration constant4:00,1.41,2.00, 4.00
Operator: Direct single allele selectjigandomly repairedingle allele selecting

754

653.8 b M”‘

" W V vvw ™

453.4 l ,

M

TN R YN T A

353.2 t -%%Vﬂlvmu/\m Y A T
|

T oy

253
0 2000 4000 6000 8000 10000
= Direct 1.00 = Direct 1.41 = Direct 2.00 Direct 4.00 = Repaired 4.00
— Repaired 1.00 = Repaired 1.41 = Repaired 2.00

Figure10 Measuring3 Exploration constarit The best irgeneration

This comparison, as shows the figure above, does not change the hypothesis
that thedirect operators are more powerful. None of the tested exploration constants
did bring therepairedopemrtor into the competitive resultd/hat is more interesting
is that unlike thedirect operators, there is no obvious impact of the different
exploration constant on the fitness value progression. Allepairedlines waverin

the similar variancand all therepairedhistograms are completely the same.

38

788

676 \
\
\
\
564 —
452
——
340 Se——
\"\
228 !
0 2000 4000 6000 8000 10000
= Direct 1.00 = Direct 1.41 = Direct 2.00 Direct 4.00 = Repaired 4.00
= Repaired 1.00 Repaired 1.41 —— Repaired 2.00

Figurell Measuring3 Exploration constarit Avg. histogram of the best in generation

The unstable characteristic of ttepairedoperators is probably caused by the
repairing oncept itself. Th&JCB selectorsnaybe do not have enougppmrtunity to
exploit the learned gains. Theectoperators have a better perspective about the built
context inside the evaluated chromosome. The context irditbet operators is
represented by the available options set. Whereas nepagredoperabrs, this form
of context is used only in the repairing phase and only at &/ selectorsHence

the context is not distributed as wiselyin thedirect operators.

5.2.3. UCB selector initialization

The original idea how to implement th&CB selectodealing with the not tried
options (options whose counters are zeros), was that this not tried options are selected
preferentiallyin arandom order. Térewe were a little bit afraid of what effect will
bring this selecteach loop across all the option@escribed in chapted.l1.?.
Therefore, we introduced an alternative solution for the not tried options. This
alternative is the constant gain initialization tbe UCB selector the UCB selector
starts with all the option counters at number one (instead of zero) and the average gains
at the specified constaif?

The actual effect of the different initializing methods and the various constants
“Qwe will find outin the two experiments beloWue to the fact that the average gain

is part of the®i "Qda dewision formula which is influenced by the exploration

39

constant, we decided to do this experiments with two of the -geddrming
exploration constants.

As the chart containing 16 different configurations would be a little bit chaotic,
we split this measuring into two separated experimients divide thedirectand the
repairedoperators.

Measuring 4 UCB selector initializing in direct operators
TSP instance: Random 15
Number of generations: 10000
Population size: 40
UCB exploration constants:d0, 4.00
UCB initialization: all opts at first, 0.1, 0.5, 0.9
Operator: Direct single allele selecting

684

594.4

504.8

415.2 ‘
\&\
L
\ — PL& _
— — —
325.6 —
236 {
0 2000 4000 6000 8000 10000

= AllOptsFirst/1.00 = 0.50/1.00 = AllOptsFirst/4.00 0.50/4.00 = 0.90/4.00
=— 0.10/1.00 0.90/1.00 = 0.10/4.00

Figure12 Measuringd UCB selectoinitializing in directoperatord Avg. histogram of the best in generation

The direct operators have shown that the choEECB selectorinitialization
strategy does not matter a Idhere is no obvious winning or losing strategy in the
Figurel2 We also cannot declare thatthe strafegyl | opti ons at fir si
better or worse than the constant initialization.

Altogether theUCB selectoinitialization is not as important as it could seem.
At least in thedirect operatorsLet us see, if there is any difference in thpaired
operators.

40

Measuring 5 UCB selector initializing in randomly repaired operators
TSP instance: Random 15
Number of generations: 10000
Population size: 40
UCB exploration constants:d0, 4.00
UCB initialization: allopts at first, 0.1, 0.5, 0.9
Operator: Randomly repaired single allele selecting

837

738.8 K

\

542.4

4442

346
0 2000 4000 6000 8000 10000
—— AllOptsFirst/1.00 = 0.50/1.00 —— AllOptsFirst/4.00 0.50/4.00 —— 0.90/4.00
— 0.10/1.00 0.90/1.00 —— 0.10/4.00

Figure13 Measurings UCB selectoinitializing in randomlyrepaired operatoiis Avg. histogram of the best in
generation

If we have declared that in theirect operators the UCB initialization
constantQmakes no important effect, here in ttepaired operatorsghe constaniQ
makes no effect at all'here is absolutely no difference between the curves showing
the development of the various consta®On the contrarythere is an obvious
difference between theonstant initialization and thell option at first denoted
AOAF, strategy. The constant approach clearly dominates the AOAF.

The reason why the AOAF initialization strategy worsens onlyré¢ipaired
operatorscould be again in theepaired principle. In the random repair procedure,
there is no mechanism for satisfyingh e f al | options must be
random ending of the solution building process can cause that evd@Bhselectors
already have plenty of information about most of the options, they still have tb sele
from the rest of theptions thaivas not tried yetHowever, this enforced selection is
broken in the repairing steps a consequencéhe cycle of wrong selectigrcan

repeainfinitely.

41

To confirm the hypothesis from the previous paragraph, we run the same
experiment on the UCB repaired operators.

Measuring 6 UCB selector initializing in UCB-repaired operators
TSP instance: Random 15
Number of generations: 10000
Population size: 40
UCB exploration constants: 1.00,00
UCB initialization: all opts at first, 0.1, 0.5, 0.9
Operator: UCBrepaired single allele selecting

825
772.4 L%EE__
1

719.8—E “L‘_lﬁ - ﬂ_ﬂ—| !
667.2 =) L;;\%i

614.6
562
0 2000 4000 6000 8000 10000
— AllOptsFirst/1.00 =—— 0.50/1.00 —— AllOptsFirst/4.00 0.50/4.00 —— 0.90/4.00
— 0.10/1.00 0.90/1.00 —— 0.10/4.00

Figure1l4 Measuringé UCB selectoinitializing in UCB-repaired operatoiis Avg. histogram of the best
in generation

Observation made ifigure 14 goes with our hypothesis. Even though the
UCB-repairedoperators are generally worse, the AOAF initialization does not have
the same impact on them as it has onrdrelomly repaired operatorshe reason
why theUCB-repairedoperators can deal with the AOAF initialization is because the
all options at firstprinciple is applied even at the repairing phase (the repairing is done
by theUCB selectors

The conclusion of the experiments with théB selectoinitialization is touse
an arbitrary constarf In the very first experiments in which the initialization strategy
was not even mentioned, there wesedthe constant initialization witf2 1@ 1

Hence, the experiments do not need to be repeated anlitbiter UCB selector
initialization.

42

5.3. Basic setting highlevel operators

In the previoushapter5.2, there were done sevedperimentabout various
parameters, configurations aselttings of thenethodshatwe are introducing in this
paper.Some of the results were predictable and some werértbis subchaptenve
are going to seehether the results that were observed at the level one operators, will
differ orbe the same ithe case of the level two and level three operditons chapters
4.4and4.5.

The higher level operators also bring new parameters which should impact their

behavior These parameters we are going to observe in this subchaptetl

5.3.1. Repairing and selector initialization strategies
Thetests made otherepaired mgleallele selecting operatosrought to light
some interestingbservations
1 The random repairing is more powerful than the systematic UCB repairing

strategy.

1 The chosen selector initialization strategymsre or lessrrelevant in the
UCB repairing, but ithas changedhe behavior of theandomly repaired
operators
These observations atide generally worse results of thiepaired operators
we have explained by the absenceh&fcontext information for the particul&fCB
selector Nevertheless, the higher level operators do use more of the context
information in evaluating the chromosome. Let us see how the described behavior will
change in the higher levetpairedoperators.

43

Measuring 7 Repairing and UCB initializing strategies in higher level operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constant: 2.00

UCB initialization: all opts at first, 0.5

Operators: Randomly repaired conditional and ltesds, UCBrepaired conditional and local trees
Local trees maturity threshold: 5

Local trees size limit: N

846
743.4 E
\ T
640.8 = \\
\ \\\)
538.2 \
435.6
333
0 2000 4000 6000 8000 10000
—— Cond/AOAF/Ucb —— Cond/0.50/Ucb —— Tree/AOAF/Ucb Tree/0.50/Ucb
=— Cond/AOAF/Rand Cond/0.50/Rand = Tree/AOAF/Rand = Tree/0.50/Rand

Figurel5 Measuring7 Repairingand UCB initializing strategies in higher level operaiofs/g. histogram
of the besin generation

TheMeasuring 7 Repairing and UCB initializing strategies in higher level
operatorsbrings a veryontradictoryresult.If the reader looks only at tleenditional
operators it is obvious that the context information, which is provided by the
conditionalmechanism, helps arnlde AOAF initialization does not corrupt the results
of the random repairing On the contrary, in théocal trees operatotsthere isa
downgrade of theandomly repairedsersion using the AOAF initialization. In other
words, while theandomly repairedevel three operators react the same \aayhe
level onesthe level two operators do not.

Thelocal trees operator®llow the results othesingle allele operatorin the
other views as well:

1 The UCB-repaired versions showmuch worse convergence than the

randomly repaired

44

1 The AOAF initialization strategy downgradesly the randomly repaired

version.

In contrast, theonditionaloperatorshave a very unusual behavior:

1 The AOAFinitialization doesot impact theandomly repairedversion.

1 TheUCB-repairedversion with AOAF initialization is the best in trestire

experiment.

Theseextraordinary results can seem tojbst a coincidence; however, they
are not.We did repeat this measuring multiple times and the resultsegswere
described were stabl@here could be a plenty @Xxplanations for theonditional
operator® behavior. Maybe the constellation of context of length one plus the other
parameters is the ideal setting of théB-repairedoperator. On the other hdymaybe
the experimented parameters are adivantageoudor the repaired bcal trees
operator. We do not have any logical explanation at this moment; nevertheless, we

will try to figure out some reason by other experiments.

5.3.2. Exploration constant once more

Our first experiment on level two and level three operators has brought
confusing results. The most worrying fastthat thdocal trees operatorshow less
performance than theonditional operators which areusing a shorter context
information.

We did some experiments aside and these have pointed out the problem. At the
beginning of this experiments chapter, we have declared that the basic configuration
of the base principles will be measured on the level one operators. Than we have
decided, thathe bestdetectedsetting will be used in the higher level operators. The
presumption that the common parameters for all the levels can be set equally is wrong.

The most core parameter of althe exploration constaintbreaks it already.

45

Measuring 8 Exploration constant in Direct local trees operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constast0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00
UCB initialization: 05

OperatorsDirect local trees

Local trees maturity threshold: 5

Local trees size limit: N

758
651.6 k
\

\
545.2

\\
438.8 \ \
332.4 \ \

226
0 2000 4000 6000 8000 10000

—_— 0 —02 —04 0.7 —1 ——4 10 —— 100

Figurel6 Measuringd Exploration constant iDirect local trees operators Avg. histogram of the best in
generation

It is obvious that in the case of tHecal trees operatorshe effect of the
exploration constant is slightly shifted/hile in thesingle allele selecting operators
the optimal interval was declared @ft , thelocal trees operatora/ork good with a
little lower values.The reasonable exploration constant should be around the
interval T@p8t. To see how the exploration constant affects the particular

exploratian/exploitation development, let us see one concrete experiment run.

46

723

|

626.8 i |

IR
530.6-gHH L UL Rl
434.4 --
338.2 n AM ‘w\

242
0 2000 4000 6000 8000 10000

—_—() =——(02 =——(04 ——07 =——1 =—1Y 10 = 100

Figurel7 Measuringd Exploration constant iDirect local trees operators The best found solution

As you can see, the exploration constant value one laghthatdoes provide
a systematic convergence. The higher values seem to explore a lot, but do no
exploitation at all.The user of oudirect local treesoperatorshould also take into
account thehreatof the premature convergenceherefore, we would prefer to not
use the exp. constant such lowr&@sdespite the best development in our experiment.
To be complete with the exploration constamhichturned out to be the key
parameterwe should do the experiment with ttepairedoperator and with the level

two operators.

47

Measuring 9 Exploration constant in Repaired local trees operators

TSP instance: Random 15

Numberof generations: 10000

Population size: 40

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00
UCB initialization: 0.5

Operators: Randomly repaired local trees, U@Baired local trees

Local trees maturity threshold: 5

Local treessize limit: N°

840

742.6

645.2 —

547.8

450.4

353
0 2000 4000 6000 8000 10000

= Rand/0 ucCB/0.2 Rand/0.7 == UCB/1 = Rand/10 Rand/100
— UCB/0 = Rand/0.4 = UCB/0.7 = Rand/4 ucB/10 ucB/100
— Rand/0.2 —— UCB/0.4 Rand/1 — UCB/4

Figure18 Measuringd Exploration constant iRepaired local trees operatorsAvg. histogram othe best
in generation

While in thedirectversion the exploration constant does matter, imgpaired
does notThe UCB-repairedversion again does not produce good solutions at all and
therandomly repaired operatordo not depethon the actual value of the exploration

constant. The development of the ba#paired versions is more like a random

searching than a systematical approach. That should be the reason why the exploration

constant has no impact in here.

48

Measuring 10 Exploration constant in Conditional operators
TSP instance: Random 15
Number of generations: 10000
Population size: 40
UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00
UCB initialization: 0.5
OperatorsAll conditionali Direct, Randomly repaired, UCGEepaired

757
657.8 1
\
\
558.6
459.4
L
360.2 — ! e
S — _\\Hl—‘__
1
261
0 2000 4000 6000 8000 10000
—0 —8 02 —04 07 —1 —4 10 —— 100

Figure19 MeasuringlO Exploration constant i€onditionaloperators directversioni Avg. histogram othe
bestin generation

Figure20 MeasuringlO Exploration constant ionditionaloperators repairedversioni Avg. histogram ofhe
bestin generation

49

