

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

ĠtŊp§n Havr§nek

Genetic Algorithms driven by MCTS

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. Jan Hric

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2015

I would like to thank my supervisor RNDr. Jan Hric, as it would be impossible to

finish this thesis without his consultations and advices. I would also like to thank the

entire MatFyz faculty for being the best computer science school in this republic.

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Iné...... date............ signature

N§zev pr§ce: Genetick® algoritmy Ś²zen® MCTS

Autor: ĠtŊp§n Havr§nek

Katedra / Đstav: Katedra teoretick® informatiky a matematick® logiky

Vedouc² diplomov® pr§ce: RNDr. Jan Hric, Katedra teoretick® informatiky a

matematick® logiky

Abstrakt: Evoluļn² a genetick® algoritmy jsou techniky navrģen® dle pŚ²rodn²

inspirace. Pouģ²vaj² se k Śeġen² nejrŢznŊjġ²ch ¼loh, se kterĨmi se neum²me efektivnŊ

vypoŚ§dat exaktn²mi metodami. Metoda Monte Carlo, potaģmo Monte Carlo Tree

Search, je zaloģena na vzorkov§n², a tak® se uplatŔuje tam, kde nelze danĨ probl®m

drģet celĨ v pamŊti a ¼pln® prohled§v§n² nen² moģn®. Tato pr§ce se zabĨv§ n§vrhem

spojen² tŊchto dvou odliġnĨch pŚ²stupŢ do jedn® obecn® metody. Tuto metodu ilustruje

a implementuje na konkr®tn²m pŚ²padŊ: probl®mu obchodn²ho cestuj²c²ho (TSP).

Souļ§st² pr§ce jsou i nejrŢznŊjġ² experimenty hledaj²c² vhodn® nastaven² parametrŢ,

porovn§vaj²c² rŢzn® varianty metody s klasickĨm evoluļn²m pŚ²stupem k TSP nebo

napŚ²klad hladovĨm algoritmem. Naġe metoda se uk§zala pŚinejmenġ²m

konkurenceschopn§. Nejlepġ²ch vĨsledkŢ potom dosahuje kooperace naġeho pŚ²stupu

s klasickĨm evoluļn²m Śeġen²m TSP. Tato spolupr§ce dosahuje vyġġ²ho vĨkonu neģ

kaģd§ jej² ļ§st samostatnŊ, coģ povaģujeme za ¼spŊch naġ² metody.

Kl²ļov§ slova: Monte Carlo, MCTS, UCT, Evoluļn² algoritmy, TSP

Title: Genetic Algorithms driven by MCTS

Author: ĠtŊp§n Havr§nek

Department / Institute: Department of Theoretical Computer Science and

Mathematical Logic

Supervisor of the master thesis: RNDr. Jan Hric, Department of Theoretical

Computer Science and Mathematical Logic

Abstract: Evolutionary and genetic algorithms are problem-solving methods designed

according to a nature inspiration. They are used for solving hard problems that we

cannot solve by any efficient specialized algorithm. The Monte Carlo method and its

derivation the Monte Carlo Tree Search (MCTS) are based on sampling and are also

commonly used for too complex problems, where we are dealing with enormous

memory consumption and it is impossible to perform a complete searching. The goal

of this thesis is to design a general problem solving method that is built from these two

completely different approaches. We explain and implement the new method on one

example problem: the Traveling salesman problem (TSP). Second part of this thesis

contains various tests and experiments. We compare different settings and

parametrizations of our method. The best performing variant is then compared with

the classical evolutionary TSP solution or, for example, with greedy algorithms. Our

method shows competitive results. The best results were achieved with the cooperation

of our method and the classical evolutionary TSP solution. This union shows better

results than any of its parts separately, which we find as a great success.

Keywords: Monte Carlo, MCTS, UCT, Evolutionary algorithms, TSP

Contents

Introduction .. 1

Goal of this thesis ... 1

Outline .. 2

1. Evolutionary and genetic algorithms ... 4

1.1. Inspiration from nature .. 4

1.1.1. Evolution theory ... 4

1.1.2. The genome and the DNA.. 5

1.2. Evolutionary algorithms .. 5

1.2.1. The algorithm ... 6

1.2.2. Operator-oriented implementation ... 7

1.2.3. Memetic algorithms, Lamarckian evolution, Baldwin effect 7

2. Monte Carlo Tree Search ... 9

2.1. The Monte Carlo origins ... 9

2.1.1. Monte Carlo Go ... 9

2.2. Tree searching ... 10

2.3. Upper confidence bound for trees ... 10

2.3.1. K-armed bandit problem .. 11

2.3.2. UCB for trees ... 11

3. Model problem ... 13

3.1. Traveling salesman problem.. 13

3.2. Genetic solutions of TSP ... 13

3.2.1. Fitness and environmental selection .. 13

3.2.2. Representation of an individual ... 14

4. MCTS operators for genetic algorithms ... 16

4.1. UCB Selector ... 16

4.1.1. UCB Selector black box implementation ... 16

4.1.2. Alternative UCB selector initialization .. 17

4.2. The used individual representation .. 18

4.3. Single allele operators ... 18

4.3.1. Direct single allele selecting operator .. 18

4.3.2. Repaired single allele selecting operator.. 19

4.3.3. Updating the inner data structures.. 20

4.4. Conditional operators .. 21

4.4.1. Direct conditional operator .. 21

4.4.2. Repaired conditional operator .. 22

4.5. Local trees searching operators ... 23

4.5.1. The actual trees .. 23

4.5.2. Chromosome evaluation... 24

4.5.3. Trees expansion .. 25

4.5.4. Tree size ... 26

4.5.5. Local trees operators implementation .. 27

4.5.6. Repaired local trees operator .. 28

4.5.7. Direct local trees operator .. 29

4.6. Summary ... 29

5. The tests and measurements ... 31

5.1. Methodology ... 31

5.1.1. The algorithm run and results recording .. 31

5.1.2. Input data .. 32

5.2. Basic UCB principle settings .. 33

5.2.1. Repairing strategy .. 33

5.2.2. Exploration constant... 36

5.2.3. UCB selector initialization ... 39

5.3. Basic settings in high level operators .. 43

5.3.1. Repairing and selector initialization strategies 43

5.3.2. Exploration constant once more ... 45

5.3.3. Tree maturity threshold .. 50

5.3.4. Tree size limit ... 52

5.4. Conclusion ... 53

6. Extensions and improvements ... 54

6.1. Gain computation .. 54

6.1.1. Nonlinear gain .. 54

6.1.2. Prefer the seen interval ... 55

6.1.3. Prefer above average .. 55

6.1.4. Impact measurement .. 56

6.2. Less strict expansion policy... 59

6.3. Other approaches cooperation ï evolutionary computation 60

6.3.1. Evolutionary operators for TSP ... 61

6.3.2. Cooperation .. 61

6.3.3. Measuring ... 62

7. Performance tests ... 65

7.1. Various problem sizes ... 65

7.2. Time complexity .. 69

7.2.1. Time spending per generation .. 69

7.2.2. Actual performance .. 70

7.3. Special TSP types .. 72

Conclusion ... 75

Advices for potential use .. 75

Future work .. 75

Bibliography ... 77

List of Measurements ... 79

List of Figures .. 80

List of Tables.. 82

Attachments.. 83

Implementation .. 83

VS solution structure description ... 83

Implementation main classes inheritance diagram .. 85

 1

Introduction

Computer science, from its beginning, deals with variety of problems and tries

to find their computational solutions. Computer scientists develop algorithms and data

structures in order to deliver the fastest and the most efficient solving methods that

could be put into practice. Since computers play a big role in our everyday lives and

the number of their applications is growing every day, the number of problems

computer science is facing continues to rise.

Even though the computersô performance increases continuously, there are still

a lot of challenging problems and puzzles. There are whole classes of problems that

we cannot solve with any efficient algorithm. We often even do not know whether the

efficient solution could exist. Another challenge is the case of problems that are not as

complicated, but we are dealing with gigantic amount of input data. In the both cases,

the computation usually requires enormous time or memory resources. For instance,

when a traveling salesman is planning his business trip, he needs to visit 30 customers

but he wants to save as much fuel as possible. It is impossible to find out which order

of the places is the optimal one, by going thru all the possibilities and selecting the

best one. Even if evaluating of one possibility takes one millisecond, the whole

enumeration will take about ψȢυ ρπ years.

The very complex or the very large problems gave rise to various approaches

that tries to find a practical compromise between the resultsô quality and the algorithm

feasibility. One of the compromise-seeking method is the Monte Carlo Tree Search,

which was originally developed for the purpose of playing complex games. Another,

and completely different, compromise-seeking method are the Evolutionary

algorithms. They were designed according the natural processes and it came as a very

general problem solving approach. Both of these different approaches we are going to

introduce hereunder.

Goal of this thesis

The core of this paper is to invent a problem-solving method that is a

combination of Evolutionary algorithms and Monte Carlo Tree Search. Our method is

designed as an add-in1 for a genetic evolutionary algorithm. Therefore, it should be

1 Removable additional module.

 2

applicable on every problem that can be solved by the genetic evolutionary algorithm.

The method we are developing we also implement and test on one example problem:

Traveling salesman problem. All the implementation source codes and experiments

results are available on the attached CD (see chap. Attachments).

Outline

In the first two chapters, we review our working background:

Evolutionary/Genetic algorithms and Monte Carlo Tree Search. We explain the

principles behind these approaches and we focus on the parts which our work is based

on. The third chapter introduces the benchmark problem we have chosen: the

Traveling salesman problem. The third chapter also contains an overview of genetic

algorithm applications and we choose one of them as a baseline of our example

implementation.

The fourth chapter is the flagship of this paper. It describes the whole

mechanism of our newly proposed method. We divided our technique into three levels

according to the complexity of the inner system. On every level, we have prepared two

different approaches: Direct and Repaired. Therefore, each level contains two

independent functional modules. Of course, all of the six modules can be variously

parametrized or set. The fourth chapter introduces the techniques from the simplest

level one to the most complex level three. Every module is explained as an application

on the Traveling salesman problem and it fully corresponds with the attached

implementation.

In the fifth chapter, we perform variety of measurements in order to find out

the best parametrization and setting of our method. We comment and explain the

experiments results. Already the first tests show that our method, with the right setting

and parameters, is able to converge and can return good results. At the end of the fifth

chapter, we select the better performing modules and in the next chapter, we try to

improve and extend them. The best improvement turns out to be the cooperation of our

method and the classical evolutionary approaches for Traveling salesman problem.

This union of two different methods yields better results than any of its parts

separately. That we consider as a great success of this thesis.

The last (seventh) chapter tests the best versions of our method with various

inputs. This proves that the previous experiments were not only a coincidence. It shows

that the results are similar with the special classes of inputs as well. In the performance

 3

experiments, where we test the techniques in a limited time, we prove that the

cooperation method is also the most practical version of them all.

At the end of this paper, we write some notes for the potential user of our

method. We also present some ideas for the future research.

 4

1. Evolutionary and genetic algorithms

1.1. Inspiration from nature

Evolutionary algorithms are huge class of computer science approaches to

various types of problems. As the name suggests, evolutionary algorithms are based

on inspiration by nature. Of course, mainly by Evolution theory itself and by Evolution

by nature selection proposed by Charles Darwin [1] in the 19th century.

1.1.1. Evolution theory

In brief, Evolution theory describes the development of all living (flora and

fauna) on the Earth. It observes that most of the living organisms came into life thanks

to their parental organisms. What is more important, the child individual shares many

of its biological and physiological properties with its parents.

The division into parents and children induces generations as groups of

individuals born in the same era. This is very simple and natural principle.

Nevertheless, the system of generations is very important in evolutionary algorithms,

as we will see few paragraphs bellow.

Sharing the properties between parents and their children is called heredity. It

provides some kind similarity between an individual and each of its parents (no matter

what is the actual number of them). Heredity is very important in the nature selection.

It claims that every generation is made up by individuals who are stronger, smarter

and generally better than their parents are (or generally than their predecessors). This

should be ensured right through the nature selection because only the individuals that

have combination of properties good enough to survive, will have children. The

principle of heredity provides preserving the high quality organism properties.

There is one more important element in the evolution, which is also used in the

computer science application. Only the combination of the parentsô properties

sometimes is not enough for succeeding in life. The environment is changing all the

time: climatic conditions are changing; surrounding flora and fauna is changing, etc.

The second problem is how to build a stronger, smarter and better generation from the

finite set of properties, which already turned out as the best constellation (presuming

that there is no better combination of the given properties than the actual one).

Evolution theory has an answer to these problems: mutation. Mutation is a change of

the individualôs particular property generally caused by an external, outer or unknown

 5

factor. It brings a chance for individuals to acquire the trait that have not appeared in

any generation yet. This new property can help the individual to survive in the changed

environment, beat the other or, on the contrary, die sooner.

1.1.2. The genome and the DNA

In the previous subchapter, we have brought the not detailed overview of

evolution principle, which was very abstract and did not tell us anything about the

actual biological function of the living organisms or about their reproduction. All we

understand at this point is that an individual consists of set of its properties, which

determine his whole life course and are mutated and somehow recombined during

reproduction.

To implement the evolution principle as an algorithm we use another

inspiration from nature. The abstract set of properties, which determine the

individualôs life, is represented by the individualôs genome information. The genome

contains all the specification of the organism physiological form, look, growth or

behavior (consequently). When the organism is developing, every step since the

reproduction is influenced by the genome information. The reproduction is the very

moment when the genome itself is built.

As it is usual in nature, the genome is not an atomic entity driving the

organismôs development. Since the 19th century, the biologists have discovered that

the genome is made up of parts called chromosomes. The chromosomes we can divide

into single genes, which are discrete units of heredity traits and consist of DNA

information, which is simply coded by a sequence of nucleobases pairs [2]. The count

of the nucleobase variations is a finite number, so it is very analogical to how we

encode the information in our computers.

In this very simplified view, which we have presented, is possible to simulate

the dynamic evolution just by using the genomes instead of the actual individuals

grown based on these genomes. That is exactly the way the computer science is going.

1.2. Evolutionary algorithms

In computer science, there are a lot of problems that we cannot solve by a

specialized efficient algorithm. These are either the problems of very high complexity,

such as NP, PSPACE, #P or the other even more complex complexity classes [3].

There are also problems for which we do not know any optimal solving algorithm at

 6

all. In these situations, we use suboptimal approximate algorithms or to incomplete

heuristic algorithms.

Evolutionary algorithms are member of both of these groups of algorithms for

hard-to-solve problems. The base idea is to let the problem solution come up from

evolution process just like the nowadays organisms have developed from the

prehistoric ones.

In the implementation of evolution process, we work with the candidate

solutions of the particular problem ï these are our individuals. To make the evolution

happen, we need to know, how to reproduce and mutate the individuals. The answer

is to create an encoded data structure, which will represent the particular solutions ï

the individuals. The evolution operations (reproduction and mutation) will be

processed just as changes of this code1. This approach is the straightforward

implementation of the genome inspiration. The algorithms representing possible

candidate solutions by the code, which is changing in order to get better and better

solution of the problem, are called Genetic algorithms [4]. The term of Genetic

algorithms is usually used for Genetic algorithms driven by evolution. In other words,

Genetic algorithms are Evolutionary algorithms over genome-represented individuals.

1.2.1. The algorithm

The evolutionary algorithm is simulating population of possible candidate

solutions, which should develop thru generations into a good and useful result solution.

Evolutionary algorithm starts with the initial population2 and begins the loop

of life:

1. Parental selection ï selects individuals who become parents of the next

generation.

2. Reproduction ï creating new individuals based on their parents.

3. Mutation ï nondeterministic slight changing individuals in the new

generation.

4. Environmental selection ï fight for survival where usually only the individuals

of high quality will outlive.

1 The code of one concrete individual ï its ñgenomeò.

2 The initial population is usually randomly generated.

 7

This loop needs a terminating criterion; otherwise, it would run endlessly. It is up to

the concrete implementation whether to stop after given number of generations or to

run until an individual better than the given limit appears in the population.

Evolutionary algorithm is actually a stochastic searching algorithm.

Reproduction and mutation provide variability and the selections are driving the

searching towards the optimal solution [5].

1.2.2. Operator-oriented implementation

There are a lot of various ways how to implement an Evolutionary/Genetic

algorithm. The implementation can be very specific, targeted and optimized for

solving the one particular problem. In our experiments, which are described few

chapters bellow, we have chosen very generic implementation schema: Operator-

oriented.

The operator-oriented schema simplifies the evolution life loop into two steps:

1. Apply the operators

2. Environmental selection

Here, the new generation making logic is put into operators, which can implement

various mutation, recombination, parental selection, etc. The operators can be more or

less problem-specific; nevertheless, all of them have to be compatible with the

individual encoding. This approach is very useful for experiments because we can

change or mix the operators and build the evolution process like Lego. What is more,

we can test the operators separately to find out whether the particular operator helps to

find a good solution or not.

The environmental selection, which should manage the ñoperatorsô productsò

to meet the optimal solution, stays unchanged.

1.2.3. Memetic algorithms, Lamarck ian evolution, Baldwin effect

Evolutionary algorithms are a general framework for problem solving. There

is a lot of papers that are introducing many extensions or improvements. Let us take a

look on idea called Memetic algorithms [6].

In principle, the Memetic algorithms are combination of Evolutionary

computing and local search, which is an incomplete solving method itself. The

background inspiration is cultural development built thru generations. It should help

the individuals to live better life. Memetic algorithm lets the individuals to learn

 8

something before comes the environmental selection. A learned individual should then

pass the selection better.

The actual learning is made by the local search. An individual that is a product

of the evolution operators is then taken as a baseline for searching its vicinity in the

problem solutions space. The searching should be fast and simple. It should not

substitute the evolution operators, but only upgrade their results. If the quick search

does find a better individual than the origin, we have more possible ways how to deal

with that.

The Lamarckian [5] approach replaces the original individual with the better

new searched one. This new specimen is going to fight in the environmental selection

and then, if it survives, it will be processed by the operators instead of the original

individual.

Another approach avoids interfering the evolution. It leaves the solution quest

up to the operators. The only role of the searched better individual is to represent the

originôs potential. It is used instead of the origin in the selection; therefore, the original

individual has the quality of the best of its ñneighborsò. However, in the subsequent

operators is still used the origin. This change of the individualôs potential is called the

Baldwin effect [5].

The goal of this thesis is to create an approach that will combine Evolutionary

algorithms and Monte Carlo Tree Search. Our method, which we are going to

introduce hereunder, is very close to the Lamarckian Memetic evolution idea.

 9

2. Monte Carlo Tree Search

2.1. The Monte Carlo origins

The concept called Monte Carlo is older than the artificial intelligence field of

science. Monte Carlo method is based on a pseudorandom simulation of a complex

process where the pseudorandom decisions respect known particular probability

distributions. Samples from this simulation, which has been run many times, are used

for determining the process behavior [7].

Monte Carlo method is used widely across mathematics, physics or computer

science. From numerical integration in mathematics to, for instance, Monte Carlo

Markov chain state probability distribution determination in artificial intelligence. It is

used mostly for the problems that are too complex or too huge so the exact methods

would be very inefficient. The derivation of Monte Carlo method, which this thesis is

based on, is a searching algorithm Monte Carlo Tree Search (MCTS)

2.1.1. Monte Carlo Go

The first step towards the MCTS, which this paper is benefiting from, was the

use of the Monte Carlo method for creating an artificial player for the game Go [8].

The game Go [9] is known for its too high branching factor for complete searching.

Due to this large number of game moves combinations it is very difficult to find out,

in a reasonable time, what game results can come up from the current state (position).

As a consequence, it is hard to evaluate the particular game states for usage in some

heuristics. Bernd Br¿gmann brought to light an approach based on the Monte Carlo

idea. He defines the quality of the actual state by the possible game ends that can result

from it. It is not possible to efficiently enumerate all the endings. Br¿gmann deals with

this by sampling. He simulates several pseudorandom ñplayoutsò (sequence of steps

leading to game end) and from these samples he computes the expected (average) score

for the given state. The artificial player then moves to the state with the best-sampled

score.

This approach is very successful in the game Go; however, the most interesting

benefit of this method is that the sampling, which substitutes here the game positions

space searching, does not need any problem specific heuristics at all. Despite the fact

that the playout is driven by random generator, the result samples can produce useful

information.

 10

2.2. Tree searching

The system described above aims to game positions valuating. If we look at the

problem of artificial Go player more generally, the strategy of evaluating possible

positions and taking the best-looking result is not very smart. As every greedy

algorithm, it does not use any complex problem overview.

Solution of this problem was brought by an upgraded algorithm that is trying

to benefit more from the promising states and searches for the game steps sequence as

a whole. This algorithm searches the tree representing the game states space in these

steps:

1. Go from the root node and by selecting always the best child find the most

promising leaf node.

2. If this leaf node was already a few times attended, expand it (create child

nodes).

3. Do some playouts (ñsimulationsò) from the current node.

4. Based on the playoutsô results, update the quality information of the nodes in

the tree that precede the playouts (ñbackpropagationò).

Figure 1 Monte Carlo Tree Search outline from [10]

As this cycle repeats, the algorithm is building an asymmetric tree, in which the most

promising game strategy is growing deeper [10].

2.3. Upper confidence bound for trees

The MCTS algorithm as described above is a best-first searching algorithm. It

tries to get maximum of the most promising branch it knows. This is exactly the core

problem of many AI disciplines. The question is how to exploit the best-known option

 11

if we do not have a complete model of the searched space. It is obvious that the

exploitation should be preceded by an exploration mode, which would create as such

corresponding model as possible. Since the searched space is too large to be stored in

computer memory, it yields a question when to stop the exploration part and start the

exploitation.

2.3.1. K-armed bandit problem

One of the problems dealing with the exploration/exploitation dilemma is the

K-armed bandit problem, which is a plaything from the mathematical game theory

[11]. K-armed bandit is a set of ὑ slot machines, where every slot machine takes one

coin for a play. After inserting the coin into the machine, the slot machine returns

random reward from its inner distribution. The task is to maximize the reward sum by

deciding which slot machine to play and in what order.

In 2002 was introduced a deterministic algorithm for dealing with the K-armed

bandit called UCB (later UCB1) [12]. The UCB algorithm counts the total number of

tries ὔ, the number of tries at the particular arms ὲ and the average gain of the

particular arms ‘. Once the UCB tries every arm (ᶅ ɴ ȟȣȟ ὲ ρ), it chooses the

arm that maximizes the expression

ÁÒÇÍÁØ‘ ὧ
ÌÏÇὔ

ὲ

where the ὧ is exploration/exploitation constant originally set to Ѝς in the UCB

algorithm.

This strategy provides very good balance between the exploration and

exploitation modes. The maximized expression gives even bad options a chance when

the good ones were tried many times. It was also proved, that the regret1 of this method

is a logarithmical function [12].

2.3.2. UCB for trees

In 2006, the UCB was applied as the solution of exploration/exploitation

dilemma in MCTS [13]. The application is very straightforward. In every tree node

(that is already represented in memory) is located a bandit and each arm represents one

1 The average difference between the total gain of the optimal strategy and the total gain of our

strategy.

 12

possible move. During the MCTS cycle, the nodeôs successor is chosen using the UCB

strategy and the back propagated score is registered as the just obtained chosen arm

gain.

What is more, the authors of this idea proved that if the nodes successorsô

evaluating is completely independent1, this approach provides asymptotically the same

results as the non-heuristic minimax algorithm [14].

1 In the game Go the evaluating is, of course, not independent.

 13

3. Model problem

In this thesis, we are trying to invent a new concept for solving the problems

that are too complex or too large. Our approach should be applicable on every problem

that is solvable by genetic algorithm. As you will see in the next chapter, all we need

is to represent the individual from the population as a vector (chromosome) of finite

dimension where every component (allele) is defined by a finite domain. We are also

able to handle a mutual exclusion of values among the components, which we will

demonstrate by our front-end problem specific implementation.

Although we want to bring a very general method for problem solution, we

need an instance, where the principles can be shown. Therefore, we have decided to

pick one particular sample problem. The explanation will be based on this example.

The accompanying implementation or furthermore the research measuring and tests

will be also proceeded on the instance problem. The sample problem is the Traveling

salesman problem (TSP).

3.1. Traveling salesman problem

TSP is very well known problem, which is very simple to explain, but very

hard to solve. Not only is TSP NP-complete [3], it also is strongly NP-complete [3].

What is more, TSP cannot be generally solved by any poly-time approximation

algorithm with constant ratiometric error (unless P = NP of course) [3]. This makes

TSP a very tough and challenging benchmark.

3.2. Genetic solutions of TSP

As we declared above, to use our method for solving TSP, we need a genetic

representation for it. Since we are using the operator-oriented evolution, we need to

decide the individual representation and prepare background for the environmental

selection.

3.2.1. Fitness and environmental selection

The environmental selection in most of the EA1 implementations is based on

fitness function. The fitness function is an indicator which tells us, how good the

particular individual actually is (in the problem solution meaning). In the TSP, there

1 Evolutionary algorithm

 14

is a very clear fitness indicator: weight of the Hamiltonian cycle represented by the

actual individual. When implementing the environmental selection, we should not

forget that the lower value is the better one. This kind of fitness function produces

nominal numeric outputs. Nevertheless, we should go with the fact, that the outputs

are mutually comparable, because we use the simple Tournament selection [5].

3.2.2. Representation of an individual

The individual representation needs an arbitrary decision to be made. There are

a lot of various papers dealing with genetic TSP solution, which are using various

representation:

¶ Steps representation is the most straightforward. The chromosome is simply

a vector containing ὔ numbers, which represents the cities exactly as the

follow in the traveling salesman journey. Hence, the domain of every allele

is the set of the cities (numbers ρȣ ὔ). However, the numbers must be

unique ï a permutation.

¶ Edge/adjacency representation [15] also uses permutations of length ὔ, but

the meaning is different. The number Ὥ at the position Ὦ means that there is

the edge ὮȟὭ used in the result Hamiltonian cycle. It is important to work

carefully with this representation because not every permutation represents a

Hamiltonian cycle. After selecting edges specified by the chromosome, there

could occur several separated cycles in the graph.

¶ Buffer/ordinal representation [15] is the trickiest one. It keeps the cities

ordered in imaginary buffer. The chromosome is also a long ὔ and it also

represents the cities as they follow in the result journey. The first number in

the chromosome points into the buffer and selects the first city of the journey.

The city is then removed from the buffer. The remaining cities are shifted in

order to fill the empty gap. The buffer actually works as a ñrandom access

stackò. The second number from the chromosome again points into the buffer

and this repeats until there is at least one city in the buffer. As a consequence,

the domain of the Ὥth allele are the numbers ρȣ ὔ Ὥ ρ. Furthermore,

every set of number satisfying the domain conditions are a valid

representation of Hamiltonian cycle.

Even though all the representations have their pros and cons for using them in

genetic algorithms, we have chosen the edge representation. The edge representation

 15

is the best analogy to the nature genetics. That is because every allele has its own

meaning (selects the edge that will be used for continuing from the corresponding

vertex). On the contrary, steps or buffer representations does not provide any particular

meaning to the allele until the whole chromosome is known. Hence, these

representations would necessitate very large knowledge of the context for deciding the

one allele. This could require creating very complex combinations, which could not be

very friendly for genetic algorithm or MCTS.

 16

4. MCTS operators for genetic algorithms

The aim of this paper is to create an approach that is combining two algorithms

from different AI1 fields of computer science. To do that we have decided to use the

operator-oriented EA2 design as a framework. The entire logic inspired by MCTS will

be always encapsulated in several operators, which are modules for usage in the

framework. Therefore, our operators can be combined with each other and, what is

more important, with the traditional operators.

Our operators fall within the category of Memetic algorithms. We use the

Lamarckian evolution idea and try to create very smart operators that do not use any

problem-specific heuristic, but benefit from the MCTS research results.

We are going to present three levels of our idea. Each level will contain two

implemented approaches to dealing with the chromosome inner system3:

1. Direct operator restricts its inner logic to keep the chromosome valid.

2. Repaired operator has free hand to manipulate the chromosome, as it wants to.

Afterwards the chromosome is repaired to be valid.

4.1. UCB Selector

4.1.1. UCB Selector black box implementation

The UCB selector is a simple unit implementing exactly the Upper Confidence

Bound selecting method. Each instance of this class is parametrized by the

ñexplorationò constant and by the number of options that are available to select from.

The UCB selector is used as a ñblack boxò providing these functions:

¶ Select() , which simply evaluates the formula (the single components are

explained in the chapter 2.3.1)

ὥὶὫάὥὼ‘ ὧ
ÌÏÇὔ

ὲ

and returns the maximal argument Ὧ, which represents one of the available

options. The actual implementation also contains even more overloads of this

method allowing us to specify a particular subset of available options to be

1 Artificial intelligence

2 Evolutionary algorithm

3 Unique permutation representing one Hamiltonian cycle

 17

selected from. In that case the ὥὶὫάὥὼ formula chooses the Ὧ only from the

given subset. In the situation that at least one of the available options was not

selected yet (ὲ π), this unselected option will be returned instead of

evaluation of the formula. If there is more than one not-selected option, one

of them is selected randomly.

¶ RegisterGain(k, gain) updates the internal records. It increments the

stored number of attempts of the Ὧth option ὲ and updates its average

gain ‘. It also increments the global number of all attempts ὔ. The

registered gain is always a number from the interval πȟρ.

4.1.2. Alternative UCB selector initialization

The UCB selector implementation described above brings a mechanism, which

automatically balances between exploration and exploitation and tries to identify the

best option from the available set. However, this mechanism has a special beginning.

Due to the not-selected options protection, there is performed a ñselect-eachò loop

across all the options at the beginning. That is because all the option counters are zeros

at the beginning, and the UCB selector refuses to perform the UCB-selection until all

the counters are at least one.

The UCB selector itself is the base and key building block. The UCB selector

will be present in all the operators that we are going to present in this chapter. We are

little bit afraid that the ñselect-eachò loop, which is needed to be accomplished before

the UCB-selecting begins, will confuse, break or slow down the mechanisms we are

planning to implement. Therefore, we present an alternative way of the UCB selector

implementation. The difference is only in the inner data structures initialization. In the

original version, the option counters are initialized with zeros and the average option

gains are initialized right at the moment when the first gain is registered for the

particular option. While in the alternative version, the counters are initialized with ones

and the average gains are all equally initialized with a constant Ὣ.

This alternative constant initialization omits the need of the ñselect-eachò loop

and still does not break the selector principle (the average gains still converge to their

true values).

What of the two UCB selection initialization is better and what value for the

constant Ὣ should be used we are going to find out experimentally in the chapter 5.

 18

4.2. The used individual representation

Even though the TSP solution can be represented variously, all the below

described UCB/MCTS inspired operators use the edge representation. This

representation is a simple array of immediate successors of the vertices. Number Ὥ at

the Ὦth position in the array means that edge ὮȟὭ is used in the TSP solution.

4.3. Single allele operators

The level one operators are based on the idea of searching zero-deep trees

rooted in the alleles (where the allele is one particular position in the successors array

and the chromosome is the whole array). We present two different implementations of

this principle. Both of them use the same base structure.

The operator is initialized with an array full of instances of the UCB selector

units. The length of this array is exactly the same as the number of vertices in the TSP

graph (number of towns). Hence, this array of UCB selectors has exactly the same

length as the successors array coding the TSP solution. Each selector corresponds to

the particular vertex in the graph and selects the vertexôs successor in the Hamiltonian

cycle. That is why all the selectors in the array are initialized with the same number of

given options ï the number of vertices in the TSP graph.

Not every combination of options returned by the selectors is a valid solution

of TSP. Furthermore, the returned vector might not be a valid permutation at all,

because values can repeat. Therefore, we present the two specific implementations

based on this idea but providing valid solutions of TSP ï Hamiltonian cycles. There

will always be a direct and a repaired version of a chromosome filling mechanism.

These two versions we are going to introduce in the following subchapters.

4.3.1. Direct single allele selecting operator

The first implementation of the level one operator is the direct single allele

selecting operator. This operator works with the selectorôs allowed options sets to

directly provide a vector which will be a valid solution itself.

During the solution creating process, the operator builds the Hamiltonian cycle

step by step. It starts at a randomly chosen vertex. All vertices except this starting

vertex are now in the allowed options set. We use the starting vertexôs selector to tell

us which one of the allowed options will be the selected succeeding vertex. The result

successor is removed from the allowed options set and we repeat this procedure, now

 19

with the result successor instead of the starting vertex. This process repeats until the

allowed options set is empty. At this point, the only possible successor will be exactly

the starting vertex chosen at the beginning.

UCB UCBUCB UCB

Figure 2 Single allele selecting operator schema. Every allele has its own corresponding UCB selector which

determines the allele evaluation.

4.3.2. Repaired single allele selecting operator

The second implementation of the level one operator works a little bit

differently. The TSP solution creating routine works in three steps:

1. Use the UCB selectors to generate an arbitrary array of vertices.

2. Repair this array to be a valid permutation (even with more cycles).

3. Decompose the permutation into separated cycles and join them into one

Hamiltonian cycle.

While the first step is clear, there are more than one possible ways how to

perform the second step. The task is to convert the list of numbers with repetition into

list of unique numbers.

In the array, we identify the numbers (vertex successors) that are appearing

more than once. These repeating successors we remove from the array. It is not

necessary to remove all the occurrences of the particular repeating number. The

number has to appear exactly once in the final array; therefore, we leave unchanged

always one of the appearances of each repeating number. Of course, we do not know

the optimal position where the number occurrence shall stay, thus we choose it

randomly. The rest positions from where the repeating successors were taken out

represent the vertices that have no selected successor at this time. We will call them

the empty predecessors. And finally, there could be numbers which didnôt appear in

the former array at all. These are called the currently unused successors.

The empty predecessors and the unused successors should be now somehow

connected together to provide a valid permutation ï the array of successors where

every vertex has a unique successor. We present two possible approaches how to do

that:

 20

a) Connect them randomly. For every empty predecessor will be the successor

chosen randomly. Of course without repeating.

b) Use the UCB selectors again. Every empty predecessor still has its own

corresponding selector. The unused successors become now the allowed

options set. Going across the empty predecessors in random order, we let the

selector to choose the successor from the available options and then exclude

the chosen successor from the available options for the next iteration.

After choosing one or the other strategy, we have a valid permutation and the

reparation step two is complete.

4.3.3. Updating the inner data structures

The level one operator would have no chance of success without continual

updating its inner data structures ï without learning. No matter if it is the direct or the

repaired implementation, there is the array of UCB selectors inside. These selectors

need to be updated to provide better results next time.

The gain that will be showed to the selectors (via RegisterGain function) is

universal for all the UCB selectors stored in the array. That is because only a fully

filled array of successors, representing Hamiltonian cycle, generates a particular

solution of TSP. We cannot rate one used edge separately because it is not obvious

whether using this edge leads to the optimal solution or not.

The gain of one particular chromosome, which is solution of TSP, is actually

its fitness value. Since the UCB selector allows only number from interval πȟρ, the

fitness value has to be transformed. The fitness value of the TSP solution is simply the

weight of the result path. The lower fitness is better. The gain value is a different case:

greater value is better.

Fortunately, the fitness value can be converted into a gain value relatively

straightly using a linear transformation:

ὫὥὭὲρ
ὪὭὸὲὩίί

ό

where the ό is simple the upper bound estimate for the fitness function. This estimate

expresses weight of the worst possible solution of the TSP. We simply use sum of

weights of the ὔ heavier edges in the graph, where ὔ is the number of vertices in the

graph.

The redistribution of the gain value is quite intuitive. We go through the

chromosome (successors array). For each allele, we register the gain for the option that

 21

is used. After this process, every UCB selector has exactly one more registered

attempt.

The truth is that in case of the repaired operator some selectors might register

a different option than they have returned as a recommended selection initially. In

other words, the UCB selector selects option Ὧ, but the gain is registered for option ὰ,

which has replaced the option Ὧ during the repairing process. Although this is not a

standard usage of the UCB principle, it will not violate the selectorôs principle. The

option Ὧ could not be used in the result solution. On the other hand, keeping in secret

the gain of the finally chosen option ὰ would not improve the operator at all. The

registered gain helps to rate this particular option ὰ and changes its probability of being

selected next time.

4.4. Conditional operators

The level two operators ï the conditional operators ï introduce the first attempt

to bring the idea of dependency between alleles in the chromosome. They are based

on searching trees of constant depth.

The level one operators were based on the principle that every vertex has its

own selector, which is trying to choose the best succeeding vertex in the result

Hamiltonian cycle. Whereas the conditional idea tells us that the decision of the

particular selector may be better if the selector considers the result selection of another

(generally) selector. This brings some context into the selectorôs decision.

Naturally, you can imagine various approaches how to implement this idea. We

present our two different implementations.

4.4.1. Direct conditional operator

Like the direct level one operator, the direct conditional operator produces a

valid TSP solution literally directly. The main goal of the implementation is providing

the dependency between the selectors and their choices. This operator, like the level

one operators, goes step by step and builds the Hamiltonian cycle. In contrast with the

level one operators, while deciding the successor for a particular vertex, the

conditional operator considers even the predecessor of the current particular vertex.

The direct conditional operator contains an array full of UCB selector

collections. The length of this array again equals the number of the vertices in the

graph (ὔ). Each collection in the array can contain up to ὔ UCB selectors too. Every

 22

record (every UCB selector) in the collection is marked by a vertex in order to provide

the selector conditionally. Altogether, while deciding the next step of the Hamiltonian

cycle, the vertexôs successor will be selected by a selector that will be chosen from the

collection corresponding to the current vertex and the key for choosing from the

collection will be the predecessor of the current vertex.

Of course, the first decided vertex cannot be solved conditionally because its

predecessor ï the last selected vertex ï is unknown at the moment. Therefore, the

starting vertex is fixed and it has only one general corresponding selector instead of

collection of selectors.

This operator uses the available options set in the exactly same way as the level

one operator did. Thus, the result chromosome is array of vertex successors coding a

valid TSP solution. The gain value of the result, computed from the fitness value

equally to the level one operator, is registered again ὔ times. For each vertex, only the

used selector from the corresponding collection will register the gain value and it will

be credited to the option that was actually selected ï the chosen successor.

4.4.2. Repaired conditional operator

The repaired conditional operator contains similar inner data structures as the

direct one. However, it works with the conditional selecting more abstractly and

generally. This operator creates the dependencies between alleles in chromosome

based on the position in chromosome. The allele is influenced by its neighbor one. To

be concrete, every allele affects the allele on right side. Except the last one.

This repaired operator works in the same three steps as the level one repaired

operator. In the first step, it builds the array of numbers ï potential array of successors.

It goes sequentially thru the array from the left to the right and every position is filled

by the value chosen by the selector. At this phase, there is no restriction like ñavailable

option setò used ï all options are available. The selector for the particular position is

chosen from the corresponding collection and the key, used for the choice, is the value

filled in the left neighbor allele.

The second ï repairing ï step can be proceed in the random way, which is

exactly the same as in the level one implementation. However, we can take the

advantage of the selectors again. After creating the list of empty predecessors and list

of unused successors, we take the empty predecessors from the list in the increasing

order (increasing order of chromosome array indices). It is obvious that the allele left

 23

from the first empty predecessor is already filled. If it would not be, it would be the

first empty predecessor itself. Hence, we can choose the right UCB selector from the

corresponding collection for the allele that is the first empty predecessor. This selector

is used to select a successor for the current empty predecessor, but only from the list

of unused successors. The selected successor is removed from the unused successors

list and we can continue repeating this procedure with the next empty predecessor. At

the end of this loop we have got a valid permutation stored in the vertex successor

array. The third step is again exactly the same as in the level one operator.

Figure 3 shows the schematic arrangement of the repaired conditional

operator. Every allele has more corresponding UCB selectors. The previous allele

chooses which one is used (green arrows). In the case of the direct variant, the green

causality arrows would not always go to the right neighbor. They would respect the

order determined by the constructed Hamiltonian cycle.

UCB
UCB UCB UCB

Figure 3 Repaired conditional operator schema.

4.5. Local trees searching operators

The idea of allele value selection that is based on the previously selected value

can be even more generalized. While deciding the value for the current allele, we can

consider more than one previously chosen value. The number of considered values

should not be constant. Therefore, the mechanism can fluently grow while learning

from the gain feedbacks. This brings us from the trees of constant depth to the trees of

dynamic depth.

4.5.1. The actual trees

Since the depth of the trees has to be dynamic, we should start with a very small

tree depth. The lowest depth of tree is, in general, one ï only the root node and no

edges at all. Using the trees with only a root node, we actually represent the same

principle as the single allele selecting operators ï the level one technique. Every allele

has exactly one corresponding UCB selector, which is responsible for the values. The

 24

only difference is that in the level three operators the UCB selector is encapsulated

into a tree node, which is also a root node of the tree at this moment.

After the process of chromosome evaluation (all alleles have proper values),

there is performed as well the phase when the UCB selectors ï the trees ï receive the

actual gain of the particular chromosome. At this moment, the selected option counters

are incremented. After this increment, it is time for the tree expansion, which is applied

sequentially to all the trees. According to the used tree expansion policy, we choose

the concrete tree nodes and the concrete options that should be expanded right now.

We create new edges from the current node (containing the expanded option) into

newly built nodes representing new UCB selectors, which are going to correspond with

the next alleles. Moreover, these new UCB selectors are used only conditionally. They

depend on the values selected for the previous alleles ï by nodes above in the tree

(nodes lying on the path from the root node into the current node).

The tree expansion described in the previous paragraph brings the analogy with

the level two operators ï the conditional ones. More than that, we can build the

dependency chains as long as we want. Every dependency chain of UCB selectors is

actually the path from the root node into a leaf node in one of our local trees.

4.5.2. Chromosome evaluation

In the previous text, we intentionally skipped the part when the actual

chromosome is filled by concrete values. This procedure is not difficult at all if the

inner data structures in the operator are clearly described. Inside the operator, there are

the local trees, which everyoneôs root corresponds exactly to one allele in the

chromosome. Some of the trees are only single root nodes without any additional

subtrees, and the other trees are partially expanded but potentially asymmetric.

We start the chromosome evaluation process at the first allele. The

corresponding local tree is asked not only for one value, but also for a sequence of

values. The sequence of values is generated by going thru the tree from the root node

to one of the leaf nodes. Every entered tree node contains an UCB selector inside. This

selector is asked for the preferred (selected) option, which will be the actual next value

in the result sequence. Then we look if the current node contains an expanded subtree

for the selected option. If there is an edge expanding this option, then the process

continues recursively by going along this edge. Otherwise, the selected option is the

last value in the sequence and the query ends.

 25

The generated sequence of values is the result of a decision process based on

the UCT principle. Every value in the sequence was selected with regard to the

preceding values. The first value from the sequence is filled into the allele that

corresponds to the root node where the query started. The next value in the sequence

we put into the next allele and analogically we fill the other succeeding alleles until

we spend all the values in the sequence.

If there still remains any farther unfilled allele, we just take the tree

corresponding to this allele and query it for another sequence of values. By repeating

this procedure, we certainly fill the entire chromosome even whether all the local trees

are only single root nodes, or whether there is a fully expanded tree, which would fill

all the alleles by one query.

It is obvious that not all of the local trees are used for the chromosome

evaluation. However, the alleles that were not filled by the corresponding root node

were actually filled by a deeper and more specialized node, which takes more account

of the context.

4.5.3. Trees expansion

Until this time, we brought to light how the trees are used and when the tree

node should be expanded. Nevertheless, the expansion itself was not fully clarified yet.

First, we need to decide when a particular selectable option in a particular tree

node should get its own edge leading to a new node. To determine this we use a simple

mechanism of maturity threshold, which is commonly used in the Monte Carlo Tree

Search. The maturity threshold is a constant number. We define that the option whose

counter inside the UCB selector exceeds the maturity threshold shall be expanded.

When the decision of option expansion is made, a new tree node is created. The

simplest way to create a new node is to instantiate a clear new UCB selector and put it

inside the node. This fresh new node should learn all the information about the gains

of various available options. However, we already have another node that already

contains some learned knowledge about the options and their average gains for the

current allele. This versed node is the root node of the local tree that corresponds to

the current allele. This knowledge is also general ï it is independent on the

chromosome context. Therefore, we can reuse this knowledge in our new context-

dependent node. To do that, we simply copy the inner data from the original UCB

selector in the root node (of the tree corresponding to the current allele) and use it as

 26

a base set in the new UCB selector. As a consequence, the newly created node already

knows the gain distribution of its options ï this general knowledge is taken from the

original root node. Since this moment, the newly created tree node will be reshaping

this general knowledge into a context specific, which might be different.

Copying the UCB selector inner data is not the only thing that is done while

creating new node during the expansion process. The newly created node will as well

keep a reference (pointer) to its origin node. This reference will allow us to perform a

better expansion on this node in the future. When an option Ὥ in this node with

reference is going to be expanded, the future child node will not be created as a clone

of some root node. The origin for the copying will be the child node, of the referenced

node, which is denoted by the same option Ὥ. Of course, this child node does not need

to exist. In that case, the corresponding root node will be used as an origin instead.

The above described strategy, which tell us how to choose the origin node

during the expansion, will let us to exploit the best information that is currently

available for the current allele. Not only do we copy the already learned statistics for

this allele, but this origin node also depends on the context which is actually a shorter

version of our current context. By cloning this origin node, we actually prolong the

context, which will produce a more specialized decision node.

4.5.4. Tree size

The previously described mechanism gives us a set of trees, which every one

of them gradually grows. Theoretically, every tree can expand into a full size and

symmetric form. The fully expanded tree describes and evaluates all the possible

chromosome variations. This full expansion would of course spend exponential

memory space for each tree. Since we are developing fast incomplete heuristic method,

we have to avoid huge trees. To satisfy this requirement, we will use tree pruning and

stricter expansion policy.

To perform an expansion of a particular option inside some tree node, we have

needed this optionôs counter to exceed a given limit, which is called maturity

threshold. This was the only condition for expansion. To keep reasonable tree sizes

but still let the trees to expand the successful branches, we add one more condition that

has to be satisfied. The candidate optionôs average gain (inside the UCB Selector) has

to be greater or equal than a third quartile value of all the average gains stored in the

 27

selector. In other words, for expansion, the option has to be tried and it has to show

good results.

Despite the strict expansion policy, the trees can still grow larger than we want.

For instance, an option that seemed to be good before is not actually good at the

moment. Nevertheless, the option has been already expanded. The whole subtree under

this option will be probably never used already. It should be cut off.

To know when to do the pruning, we prescribe a tree size limit. This simply

will be the maximal number of the nodes in one local tree. Every time this limit is

exceeded, one whole subtree is going to be cut off. The dropped subtree should be

rooted in the worst rated node in the tree. We could seek the tree for the node with the

lowest gain of all. However, this would take very long time and the whole tree should

be searched. Instead of the systematic searching, we rather use an incomplete heuristic

to quickly find a bad node.

Our implementation of the tree limit compliance is inspired by the SMA*

algorithm [16], which deals with a very similar task ï it searches a graph using a

limited set of expanded vertices. Because the SMA* algorithm needs to add only one

more node every iteration, it gets by with cutting only one tree leaf. It drops the leaf

with the worst utility function value. Dropping the leaf means that the SMA* algorithm

omits the paths that are begging with the prefix represented by the leaf. That is exactly

what we want to do: drop off the node which represents an option sequence prefix of

very poor quality.

The poor sequence prefix we seek greedily. First, we calculate the number of

nodes that have to be cut off to fall below the size limit (Ўὔ). We start at the root node

of the tree. From the root node, we go deep into the tree choosing always the worst

expanded option. Using these steps, we locate a node that is larger than the needed size

Ўὔ and its worst child subtree is not large enough. Finally, this located node is cut off.

The reader has certainly made an observation during the previous paragraph:

there can be no subtree lying under the worst option in the root node that satisfies the

Ўὔ size condition. In this case, the worst subtree of the root node is simply cut off and

the searching process is repeated again.

4.5.5. Local trees operators implementation

We have described yet an abstract mechanism of local trees, which are filling

a generic chromosome and are consuming its quality feedback information. What has

 28

been not introduced until now is how to use this principle to produce solutions for our

prototype case ï the TSP. As well as in the level one and level two operators, we

introduce two different approaches: the repaired operator and the direct one.

The main part that was not explained in the local trees mechanism is the alleles

ordering. Nevertheless, the actual ordering was already explicitly used by expressions

like óthe next alleleô or óthe first alleleô. In other words, the actual local trees operator

needs some linear ordering of the chromosome alleles. When we select an option for

a particular allele and continue in the tree to the next node annotated by this option,

the linear ordering is telling us to which allele the succeeding node corresponds.

4.5.6. Repaired local trees operator

The repaired operator implements the local trees principle quite

straightforwardly. It uses the allele ordering exactly as they are located in the

chromosome. The first allele is the first item in the chromosome array and the next

allele is always the left neighbor one. This approach is very analogous to the

conditional repaired operator.

The rest implementation of the repaired local trees operator is similar to the

other repaired operators from previous chapters. It very freely fills the chromosome

in the first step and then the result is repaired into a valid TSP solution. Like in the

previous repaired operators, the local trees can be used for the repairs as well. The

UCB selector can select from restricted allowed options set even when it is inside some

node in a tree.

Figure 4 visualizes the schematic arrangement of the repaired local trees

operator. The green arrows are the inner tree edges, which determine the concrete

context-specific UCB selector for the particular allele. The blue arrows show the origin

node used for the new node creation during the expansion.

 29

UCB UCB UCB UCB

UCB

UCB

UCB

UCB

UCB

Figure 4 Repaired local trees operator schema.

4.5.7. Direct local trees operator

The direct operator extends the direct conditional operator from the level two

implementation. The actual allele ordering depends on the values filled in the

chromosome ï on the selected options. The first allele is again the most left allele in

the chromosome array. However, the next allele is determined by the option selected

for the current allele. The next allele will be the allele that is representing the vertex

succeeding the vertex that is represented by the current allele. As a consequence, the

chromosome is filled by values in the exact order as the result Hamiltonian cycle goes

thru the TSP graph. This is, again, very analogous to the other direct operators

implementations.

The main difference between the repaired local trees operator and this direct

one is that in the repaired operator all the child nodes of some node do correspond to

the same allele. On the contrary, in the direct operator each child node corresponds to

another allele.

4.6. Summary

In this chapter, we have introduced six variants of the MCTS-inspired operators

for solving the TSP in Evolutionary algorithm. The core element of all of the operators

is a gadget called UCB selector. Every UCB selector corresponds with one and only

one particular allele in the chromosome. On the other hand, one allele can have more

than one corresponding UCB selectors. When it is asked to, the UCB selector chooses

the right option for the particular allele. The six variants of the operators we divide

 30

into three levels by the complexity of usage of the UCB selectors. Each level then

contains two approaches for solving the inner chromosome constraints1. To clarify the

terminology, the following table brings the overview of our operators:

Level
Constrains

solving variant
Name

Maximal

number of

UCB

selectors

Minimal

number of

UCB

selectors

Max.

context

length

One
Direct Single Allele

Selecting
ὔ ὔ π

Repaired

Two
Direct

Conditional ὔ ὔ ρ ὔ ὔ ρ ρ
Repaired

Three
Direct

Local Trees ὔ ὸ ὔ ὸ ρ
Repaired

Table 1 MCTS-inspired operators summary

ὔ ... input graph size

ὸ the chosen tree size limit

All the repaired operators can be also parametrized by the chosen repairing strategy.

The variants are: the UCB-repaired and the randomly repaired (both explained in

chapter 4.3.2).

1 The chromosome has to represent only valid Hamiltonian cycle.

 31

5. The tests and measurements

Our MCTS operators, as we have introduced them, do have plenty of various

parameters and settings. In this chapter, we are going to compare behavior and

qualitative results according to the different parametrizations. Than we are going to

measure the operatorsô performance in producing the TSP solutions.

5.1. Methodology

5.1.1. The algorithm run and results recording

Each experiment will be executed as an evolutionary algorithm. There will

always be the population of individuals (chromosomes), which will be within every

generation affected by the used operators. At the end of the generation there can be

performed some type of an environmental selection. For the operator characteristic

measuring we want to see only the development made by the operator, so if the

selection is not mentioned in the measuring specification, there is no selection

performed. The particular setting of the evolutionary algorithm will differ in various

experiments. During the evolutionary algorithm run, all the fitness values of each

individual will be recorded.

The recorded fitness values will be reported in a various graphical charts. The

used types of charts, which visualize one evolutionary algorithm run, are going to be

these:

¶ Box plot. The box plot chart shows the statistical information about every

generation. Every box plot record shows the maximum and the minimum, the

first and the third quartile and the mean and median values.

¶ Lines of the best-found solution. The continuous line expresses the progress

of the best solution found yet.

¶ Lines of the best in generation. This chart shows the best fitness value in

each generation record.

All these three types visualize the fitness value (vertical axis) depending on the

generation number (horizontal axis).

For the purpose of comparing the performance of different solving methods are

going to be executed multiple (at least five) runs of the evolutionary algorithm, whose

records are going to be averaged and visualized as:

 32

¶ Averaged best histogram. This chart shows all the fitness values of the best

individuals in every generation sorted from the worst fitness to the best

fitness. The vertical axis again shows the fitness value. The horizontal axis

shows the number of averaged samples, which is equal to the generations

count, but the order may not be the same.

Each chart figure is going to have its title where the particular type of the chart is

denoted.

In the case that there is a large set of measured records and the chart space for

one data point representing one generation would be too small, only subset of all the

data points is shown. This is made by simple uniform sampling. For instance, every

tenth generation is drawn. This data sampling will be maintained mainly for the box

plot charts because they need more space for figuring one generation.

From each measuring, only one or a few charts will appear in this text. The rest

of the experimentsô outputs can be found on the attached CD.

5.1.2. Input data

For the purpose of testing we have developed several TSP instances generators.

Each of the generator is able to create TSP input (a complete graph) of the desired size

ὔ and other parameters. The generators produce these graph categories:

¶ Random graph consists of ὔ vertices and the distance between every two

vertices is chosen randomly from the desired interval.

¶ Triangle unequal graph also contain ὔ vertices. The vertices are put into

the 2D space and the distance between them are computed by Euclidean

metric. Therefore, theses graphs satisfy the triangle inequality condition.

¶ Grid graph is generated from points in 2D space too. These points are

situated on a regular square grid of desired width and height (ύ Ὤ ὔ).

The distances are also calculated using Euclidean metric.

All the generated graphs that will be used in the following experiments will be

saved and attached to this thesis on the CD. Thanks to this, our measuring will be

potentially repeatable.

The random graph is the most general input of TSP. Hence, we are going to

use this type of graph for the operatorsô behavior and parametrization tests. The rest

types of input we are going to use in the performance and verification measurements.

 33

In the first tests (behavior and parametrization), we are going to intentionally

use very large number of generations (10000) in every run. The reason is that we do

not know the best operatorsô settings and we want to observe their characteristics even

if the convergence will appear very late or not at all.

The graph size ὔ will be used very frequently in measuring specifications or

the following text. It is necessary to remember that this parameter determines a lot of

mechanisms in our operators. The ὔ is: the graph vertices count, the individualôs

chromosome length, the potential size of one allele domain, the number of UCB

selectors in the single allele operator, the number of local trees in the local trees

operator or the number of potential options in any UCB selector.

5.2. Basic UCB principle settings

The very first thing, we have decided to measure, is the basic settings of the

actual UCB principle. The UCB principle occurs in every type and every level of our

operators. To get the best performance from our operators, we have to tune the basic

shared parameters first.

The impact of the basic shared parameters will be measured on the simplest

level of our operators ï the level one, the single allele selecting operators represented

in chapter 4.3.

5.2.1. Repairing strategy

At all the levels of the implementation that we have introduced always contain

two different approaches for solving the TSP. They are the direct and the repaired

operators. Let us focus on the repaired approach at this moment. The repaired operator

fills the chromosome in two phases. It absolutely freely uses the UCB principle and

then it performs some repairs to provide a valid TSP solution. We already proposed

two types of repairing strategies: the random one and the UCB one, which again uses

the technique of the particular level.

We will compare these two approaches on a real TSP instance. The better

repairing strategy we will then use in the following tests.

 34

Measuring 1 Repairing strategies

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constant: Ѝς
Operators: Repaired single allele selecting

Repairing strategies: UCB, Random

Figure 5 Measuring 1 Repairing strategies ï Box plot

The results of the repairing strategies test show that the random repairing provides

much wider variance of the fitness values in one generation. On the other hand, the

UCB repairing keeps out of the actually bad values and generally produces less

variance.

This result is not surprising at all. The fact that the random postprocessing

would generate the bad solutions as well as the good solutions is evident. However, it

seems like the UCB repairing is too conservative in this configuration. It finally is not

able to create a better solution than the random repairing. In Figure 5 there is

observable that the UCB repairing sticks at the same best solution which it has found,

and does not explore the solution space enough to find a better chromosome. As a

consequence, the random approach did meet better solutions than the UCB one. That

is also obvious from the following figure showing the best-found solutions in the same

experiment run as is shown in the Figure 5.

 35

Figure 6 Measuring 1 Repairing strategies ï The best found solution

Using this base configuration, the randomly repaired approach seems to be

generally better. This will be demonstrated by the histogram chart made from multiple

experiments of the same configuration.

Figure 7 Measuring 1 Repairing strategies ï Avg. histogram of the best in generation

 36

5.2.2. Exploration constant

The core of all the operators we have introduced is the UCB principle. The

ὥὶὫάὥὼ expression always selects the option with the best optimistic perspective.

Inside the ὥὶὫάὥὼformula, there is a parameter ὧ, which determines the ratio between

exploration and exploitation (higher values cause more exploration). Let us see how

this parameter inside the selecting expression impacts the seeking for solution.

We are going to do this experiment using the level one operators. However,

there could occur a misinformation caused by the difference between the direct and

the repaired operators. To prevent this side effect, we will test the various values of

the exploration constant on the direct operators only. Then we will test the impact of

cooperation of the selected exploration constants with the two types of the operators.

Measuring 2 Exploration constant in direct operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 0.10, 0.50, 1.00, 1.41, 2.00, 4.00, 10.00, 100.00

Operator: Direct single allele selecting

Figure 8 Measuring 2 Exploration constant in direct operators ï The best in generation

The Figure 8 clearly shows how the UCB selectors react to the various

exploration constant. The values that are lower than one generate very constant

development of the best chromosome in the generation. It is observable that they stick

to the good values that they saw at the beginning of the evaluation. The exploration

mode is totally suppressed.

 37

On the other hand, the greater values (ρπ and ρππ in our experiment) obviously

omit the exploitation part. Despite the fact that the exploration sometimes hits very

promising chromosomes, the greater values show no signs of systematic convergence

at all.

To the winning position aspire the values chosen from the interval ρȢππȟτȢππ.

In these particular measuring results shown in Figure 8, there is one line, whose

progression shows all the excellent attributes. It is the exploration constant value Ѝς.

This setting of the exploration constant does not have a constant invariant development

of the best chromosome. What is more, the Ѝς line does not have a wavering

progression, but it shows the slowly gradual convergence to the better values. These

attributes show that not only does the Ѝς exploration constant provide a mechanism

that can explore for better solutions, but it is also able to exploit the chromosomes

giving good gain values.

One more thing that should be pointed out about the Measuring 2 Exploration

constant in direct operators is that when we have repeated the same measuring several

times, not always was the best value the Ѝς. Nevertheless, the division into the three

groups of the only exploiting, the only exploring and the balanced, was always the

same.

Figure 9 Measuring 2 Exploration constant in direct operators ï Avg. histogram of the best in generation

 38

The astute reader will notice that in the direct operators in the Measuring 2

Exploration constant in direct operators hit a better fitness values than the repaired

operators in the Measuring 1 Repairing strategies. To find out what impact does the

exploration constant have on the repaired operators and if it differs from the direct

operator, we have chosen the most interesting exploration constant values a tested

them against the both types of operators.

Measuring 3 Exploration constant

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 1.00, 1.41, 2.00, 4.00

Operator: Direct single allele selecting, Randomly repaired single allele selecting

Figure 10 Measuring 3 Exploration constant ï The best in generation

This comparison, as shows the figure above, does not change the hypothesis

that the direct operators are more powerful. None of the tested exploration constants

did bring the repaired operator into the competitive results. What is more interesting

is that unlike the direct operators, there is no obvious impact of the different

exploration constant on the fitness value progression. All the repaired lines waver in

the similar variance and all the repaired histograms are completely the same.

 39

Figure 11 Measuring 3 Exploration constant ï Avg. histogram of the best in generation

The unstable characteristic of the repaired operators is probably caused by the

repairing concept itself. The UCB selectors maybe do not have enough opportunity to

exploit the learned gains. The direct operators have a better perspective about the built

context inside the evaluated chromosome. The context in the direct operators is

represented by the available options set. Whereas in the repaired operators, this form

of context is used only in the repairing phase and only at a few UCB selectors. Hence

the context is not distributed as wisely as in the direct operators.

5.2.3. UCB selector initialization

The original idea how to implement the UCB selector dealing with the not tried

options (options whose counters are zeros), was that this not tried options are selected

preferentially in a random order. There we were a little bit afraid of what effect will

bring this select-each loop across all the options (described in chapter 4.1.2).

Therefore, we introduced an alternative solution for the not tried options. This

alternative is the constant gain initialization for the UCB selector: the UCB selector

starts with all the option counters at number one (instead of zero) and the average gains

at the specified constant Ὣ.

The actual effect of the different initializing methods and the various constants

Ὣ we will find out in the two experiments below. Due to the fact that the average gain

is part of the ὥὶὫάὥὼ decision formula which is influenced by the exploration

 40

constant, we decided to do this experiments with two of the good-performing

exploration constants.

As the chart containing 16 different configurations would be a little bit chaotic,

we split this measuring into two separated experiments ï we divide the direct and the

repaired operators.

Measuring 4 UCB selector initializing in direct operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 1.00, 4.00

UCB initialization: all opts at first, 0.1, 0.5, 0.9

Operator: Direct single allele selecting

Figure 12 Measuring 4 UCB selector initializing in direct operators ï Avg. histogram of the best in generation

The direct operators have shown that the chosen UCB selector initialization

strategy does not matter a lot. There is no obvious winning or losing strategy in the

Figure 12. We also cannot declare that the strategy ñAll options at firstò is significantly

better or worse than the constant initialization.

Altogether, the UCB selector initialization is not as important as it could seem.

At least in the direct operators. Let us see, if there is any difference in the repaired

operators.

 41

Measuring 5 UCB selector initializing in randomly repaired operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 1.00, 4.00

UCB initialization: all opts at first, 0.1, 0.5, 0.9

Operator: Randomly repaired single allele selecting

Figure 13 Measuring 5 UCB selector initializing in randomly repaired operators ï Avg. histogram of the best in

generation

If we have declared that in the direct operators the UCB initialization

constant Ὣ makes no important effect, here in the repaired operators the constant Ὣ

makes no effect at all. There is absolutely no difference between the curves showing

the development of the various constants Ὣ. On the contrary, there is an obvious

difference between the constant initialization and the all option at first, denoted

AOAF, strategy. The constant approach clearly dominates the AOAF.

The reason why the AOAF initialization strategy worsens only the repaired

operators could be again in the repaired principle. In the random repair procedure,

there is no mechanism for satisfying the ñall options must be triedò requirement. The

random ending of the solution building process can cause that even the UCB selectors

already have plenty of information about most of the options, they still have to select

from the rest of the options that was not tried yet. However, this enforced selection is

broken in the repairing step. As a consequence, the cycle of wrong selections can

repeat infinitely.

 42

To confirm the hypothesis from the previous paragraph, we run the same

experiment on the UCB repaired operators.

Measuring 6 UCB selector initializing in UCB-repaired operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 1.00, 4.00

UCB initialization: all opts at first, 0.1, 0.5, 0.9

Operator: UCB-repaired single allele selecting

Figure 14 Measuring 6 UCB selector initializing in UCB-repaired operators ï Avg. histogram of the best

in generation

Observation made in Figure 14 goes with our hypothesis. Even though the

UCB-repaired operators are generally worse, the AOAF initialization does not have

the same impact on them as it has on the randomly repaired operators. The reason

why the UCB-repaired operators can deal with the AOAF initialization is because the

all options at first principle is applied even at the repairing phase (the repairing is done

by the UCB selectors).

The conclusion of the experiments with the UCB selector initialization is to use

an arbitrary constant Ὣ. In the very first experiments in which the initialization strategy

was not even mentioned, there was used the constant initialization with Ὣ πȢυπ.

Hence, the experiments do not need to be repeated with a better UCB selector

initialization.

 43

5.3. Basic settings in high level operators

In the previous chapter 5.2, there were done several experiments about various

parameters, configurations and settings of the methods that we are introducing in this

paper. Some of the results were predictable and some were not. In this subchapter, we

are going to see whether the results that were observed at the level one operators, will

differ or be the same in the case of the level two and level three operators from chapters

4.4 and 4.5.

The higher level operators also bring new parameters which should impact their

behavior. These parameters we are going to observe in this subchapter as well.

5.3.1. Repairing and selector initialization strategies

The tests made on the repaired single allele selecting operators brought to light

some interesting observations:

¶ The random repairing is more powerful than the systematic UCB repairing

strategy.

¶ The chosen selector initialization strategy is more or less irrelevant in the

UCB repairing, but it has changed the behavior of the randomly repaired

operators.

These observations and the generally worse results of the repaired operators

we have explained by the absence of the context information for the particular UCB

selector. Nevertheless, the higher level operators do use more of the context

information in evaluating the chromosome. Let us see how the described behavior will

change in the higher level repaired operators.

 44

Measuring 7 Repairing and UCB initializing strategies in higher level operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constant: 2.00

UCB initialization: all opts at first, 0.5

Operators: Randomly repaired conditional and local trees, UCB-repaired conditional and local trees

Local trees maturity threshold: 5

Local trees size limit: N5

Figure 15 Measuring 7 Repairing and UCB initializing strategies in higher level operators ï Avg. histogram

of the best in generation

The Measuring 7 Repairing and UCB initializing strategies in higher level

operators brings a very contradictory result. If the reader looks only at the conditional

operators, it is obvious that the context information, which is provided by the

conditional mechanism, helps and the AOAF initialization does not corrupt the results

of the random repairing. On the contrary, in the local trees operators, there is a

downgrade of the randomly repaired version using the AOAF initialization. In other

words, while the randomly repaired level three operators react the same way as the

level ones, the level two operators do not.

The local trees operators follow the results of the single allele operators in the

other views as well:

¶ The UCB-repaired versions show much worse convergence than the

randomly repaired.

 45

¶ The AOAF initialization strategy downgrades only the randomly repaired

version.

In contrast, the conditional operators have a very unusual behavior:

¶ The AOAF initialization does not impact the randomly repaired version.

¶ The UCB-repaired version with AOAF initialization is the best in this entire

experiment.

These extraordinary results can seem to be just a coincidence; however, they

are not. We did repeat this measuring multiple times and the results as they were

described were stable. There could be a plenty of explanations for the conditional

operatorsô behavior. Maybe the constellation of context of length one plus the other

parameters is the ideal setting of the UCB-repaired operator. On the other hand, maybe

the experimented parameters are not advantageous for the repaired local trees

operator. We do not have any logical explanation at this moment; nevertheless, we

will try to figure out some reason by other experiments.

5.3.2. Exploration constant once more

Our first experiment on level two and level three operators has brought

confusing results. The most worrying fact is that the local trees operators show less

performance than the conditional operators, which are using a shorter context

information.

We did some experiments aside and these have pointed out the problem. At the

beginning of this experiments chapter, we have declared that the basic configuration

of the base principles will be measured on the level one operators. Than we have

decided, that the best-detected setting will be used in the higher level operators. The

presumption that the common parameters for all the levels can be set equally is wrong.

The most core parameter of all ï the exploration constant ï breaks it already.

 46

Measuring 8 Exploration constant in Direct local trees operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00

UCB initialization: 0.5

Operators: Direct local trees

Local trees maturity threshold: 5

Local trees size limit: N5

Figure 16 Measuring 8 Exploration constant in Direct local trees operators ï Avg. histogram of the best in

generation

It is obvious that in the case of the local trees operators the effect of the

exploration constant is slightly shifted. While in the single allele selecting operators

the optimal interval was declared as ρȟτ, the local trees operators work good with a

little lower values. The reasonable exploration constant should be around the

interval πȢτȟρȢπ. To see how the exploration constant affects the particular

exploration/exploitation development, let us see one concrete experiment run.

 47

Figure 17 Measuring 8 Exploration constant in Direct local trees operators ï The best found solution

As you can see, the exploration constant value one is the last that does provide

a systematic convergence. The higher values seem to explore a lot, but do no

exploitation at all. The user of our direct local trees operator should also take into

account the threat of the premature convergence. Therefore, we would prefer to not

use the exp. constant such low as πȢςȢ despite the best development in our experiment.

To be complete with the exploration constant, which turned out to be the key

parameter, we should do the experiment with the repaired operator and with the level

two operators.

 48

Measuring 9 Exploration constant in Repaired local trees operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00

UCB initialization: 0.5

Operators: Randomly repaired local trees, UCB-repaired local trees

Local trees maturity threshold: 5

Local trees size limit: N5

Figure 18 Measuring 9 Exploration constant in Repaired local trees operators ï Avg. histogram of the best

in generation

While in the direct version the exploration constant does matter, in the repaired

does not. The UCB-repaired version again does not produce good solutions at all and

the randomly repaired operators do not depend on the actual value of the exploration

constant. The development of the both repaired versions is more like a random

searching than a systematical approach. That should be the reason why the exploration

constant has no impact in here.

 49

Measuring 10 Exploration constant in Conditional operators

TSP instance: Random 15

Number of generations: 10000

Population size: 40

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00

UCB initialization: 0.5

Operators: All conditional ï Direct, Randomly repaired, UCB-repaired

Figure 19 Measuring 10 Exploration constant in Conditional operators, direct version ï Avg. histogram of the

best in generation

Figure 20 Measuring 10 Exploration constant in Conditional operators, repaired version ï Avg. histogram of the

best in generation

