VLIV VYSOKORYCHLOSTNÍCH TRATÍ NA ZMĚNY DOSTUPNOSTI REGIONU PRAHY

IMPACT OF HIGH-SPEED-RAILS TO CHANGE THE ACCESSIBILITY OF PRAGUE REGION

Diplomová práce

Jakub Randák

Praha 2015

Vedoucí bakalářské práce: RNDr. Miroslav Marada, Ph.D.
Prohlašuji, že jsem předloženou bakalářskou práci vypracoval samostatně, pod vedením školitele RNDr. Miroslava Marady, Ph.D., a že jsem uvedl a řádně citoval všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 20. 6. 2015
VLIV VYSOKORYCHLOSTNÍCH TRATÍ NA ZMĚNY DOSTUPNOSTI REGIONU PRAHY

Abstrakt

Předkládaná diplomová práce si klade za cíl diskutovat regionální dopady vysokorychlostní železnice v obecných souvislostech a dále s důrazem na změny dostupnosti. Dále si klade za cíl komplexně popsat změny dostupnosti Prahy po vybudování systému vysokorychlostní železnice v Česku s ohledem na dvě možná trasování úseku Praha – Brno. V neposlední řadě se tato práce věnuje studiu potenciální dostupnosti obcí Česka po vybudování vysokorychlostních tratí v Čechách, na Moravě a ve Slezsku. Vysokorychlostní železnice bude významnou páteří veřejné dopravy v Česku, ale umožní též kapacitní napojení české železniční sítě na zbytek Evropy. Hlavním nástrojem vlastního výzkumu jsou analýzy dostupnosti v prostředí GIS.

Klíčová slova: vysokorychlostní železnice, Česko, Praha, regionální a lokální dopady, časová dostupnost, potenciální dostupnost

IMPACT OF HIGH-SPEED-RAILS TO CHANGE THE ACCESSIBILITY OF PRAGUE REGION

Abstract

The aim of this diploma thesis is to discuss regional impacts of the high-speed railways in the general context with the emphasis on the issue of accessibility changes. Furthermore, the thesis concentrates on comprehensively description of changes in availability of Prague after the high-speed rail system in Czechia will be constructed. In concern of this thesis is considering two possible traces between Prague and Brno. Finally, the thesis is devoted to a study of potential availability of Czech municipalities after finishing of high-speed rail system in Bohemia, Moravia and Silesia. High-speed railway will be an important backbone of the public transport in Czechia, in addition also the capacitive Czech railway network connection with the rest of Europe will be made. The main tools of the research of this thesis are the analyses of accessibility in GIS medium.

Key words: high-speed railway, Czechia, Prague, regional and local impacts, time accessibility, potentional accessibility
OBSAH

Přehled použitých zkratek ...7
Seznam tabulek ...8
Seznam obrázků ...9
Seznam grafů ..10
1 Úvod ..11
2 Obecná charakteristika ..14
 2.1 Význam vysokorychlostních tratí ..14
 2.2 Vysokorychlostní železnice ..15
 2.3 Historie vysokorychlostní železnice ve světě ..16
 2.4 Vysokorychlostní železnice v Česku ..19
 2.5 Koncepce tzv. Rychlých spojení v Česku ...21
3 Železnice jako jeden z faktorů regionálního rozvoje ..23
 3.1 Železnice a její vliv na regionální rozvoj ..23
 3.2 Přímé a nepřímé dopady ...23
 3.3 Makroregionální dopady ..25
 3.4 Mikroregionální dopady ...27
4 Analýzy dostupnosti ..33
 4.1 Dopravní dostupnost ..33
 4.2 Potenciální dostupnost ...36
5 Metodika ..38
 5.1 Tvorba mapového podkladu ...38
 5.2 Konstrukce network datasetu a síťové analýzy ..39
 5.3 Výpočet potenciální dostupnosti ...41
 5.4 Další zpracování a vizualizace dat ...44
6 Analýza změn časové dostupnosti ..46
 6.1 Změny v trasování VRT na území Středočeského kraje a Vysočiny ..46
 6.2 Změny časové dostupnosti Prahy ...48
 6.2.1 Dostupnost Prahy v současnosti ...48
 6.2.2 Dostupnost Prahy po vybudování VRT ve východní variantě ...51
 6.2.3 Dostupnost Prahy po vybudování VRT v jižní variantě ...52
 6.2.4 Srovnání časové dostupnosti pro východní a jižní variantu ..54
7 Analýza změn potenciální dostupnosti..58
 7.1 Změny potenciální dostupnosti...58
 7.2 Potenciální dostupnost obcí Česka po železnici v současnosti.................................58
 7.3 Potenciální dostupnost obcí Česka po vybudování VRT – regionální model61
 7.4 Potenciální dostupnost obcí Česka po vybudování VRT – dálkový model.................66
8 Závěr ..70

Seznam použité literatury...74

Přílohy ..78
Přehled použitých zkratek

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Vznesení</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČD</td>
<td>České dráhy, a.s.</td>
</tr>
<tr>
<td>EU</td>
<td>Evropská unie</td>
</tr>
<tr>
<td>GIS</td>
<td>Geografické informační systémy</td>
</tr>
<tr>
<td>IAD</td>
<td>Individuální automobilová doprava</td>
</tr>
<tr>
<td>MHD</td>
<td>Městská hromadná doprava</td>
</tr>
<tr>
<td>SŽDC</td>
<td>Správa železniční dopravní cesty, s. o.</td>
</tr>
<tr>
<td>TEN-T</td>
<td>Transevropská dopravní síť</td>
</tr>
<tr>
<td>VRT</td>
<td>Vysokorychlostní trať</td>
</tr>
</tbody>
</table>
SEZNAM TABULEK

Tab. 1 – Porovnání délky VRT ve světě v roce 2012 ...16
Tab. 2 – Stanovení parametru β pro jednotlivé hodnoty „halftime“ ..41
Tab. 3 – Srovnání jízdních dob pro vybrané relace...48
Tab. 4 – Srovnání jízdních dob pro vybrané relace (východní varianta)50
Tab. 5 – Srovnání jízdních dob pro vybrané relace (východní varianta)51
Tab. 6 – Srovnání změn časové dostupnosti u posuzovaných variant53
Tab. 7 – Změny časové dostupnosti Prahy z krajských měst u posuzovaných variant v hod55
Tab. 8 – Hodnota potenciální dostupnosti krajských měst a její změna62
Tab. 9 – Hodnota potenciální dostupnosti krajských měst a její změna (regionální model)65
Tab. 10 – Hodnota potenciální dostupnosti krajských měst a její změna (dálkový model)68
SEZNAM OBRÁZKŮ

Obr. 1 – Základní síť rychlých železničních spojení ve střední Evropě po roce 201520
Obr. 2 – Změna zonálního uspořádání v centru města po zavedení VRT..29
Obr. 3 – Nesprávné (2 uzly) a správné (jeden uzel) napojení linii a nenapojení linii37
Obr. 4 – Variantní trasování VRT na území Středočeského kraje a Vysočiny45
Obr. 5 – Časová dostupnost Prahy v roce 2015 ..47
Obr. 6 – Časová dostupnost Prahy po vybudování VRT (východní varianta).................................49
Obr. 7 – Časová dostupnost Prahy po vybudování VRT (jižní varianta)51
Obr. 8 – Změna časové dostupnosti (východní varianta) ..53
Obr. 9 – Změna časové dostupnosti (jižní varianta) ...54
Obr. 10 – Potenciální dostupnost obcí Česka v roce 2015 (regionální model)61
Obr. 11 – Potenciální dostupnost obcí Česka v roce 2015 (dálkový model)61
Obr. 12 – Potenciální dostupnost obcí Česka po výstavbě VRT ve východní variantě (regionální model)63
Obr. 13 – Potenciální dostupnost obcí Česka po výstavbě VRT v jižní variantě (regionální model)64
Obr. 14 – Potenciální dostupnost obcí Česka po výstavbě VRT ve východní variantě (dálkový model)66
Obr. 15 – Potenciální dostupnost obcí Česka po výstavbě VRT v jižní variantě (dálkový model)67
SEZNAM GRAFŮ

Graf 1 – Nárůst délky sítě VRT v Evropě v letech 1985 - 2009 ..17
Graf 2 – Vývoj cen pohonných hmot v letech 1994 - 2011 ...18
Graf 3 – Srovnání jízdních dob u jednotlivých druhů dopravy ..25
Graf 4 – Váhové křivky pro jednotlivé modely dostupnosti ...42
Kapitola 1

Úvod

Vysokorychlostní železnice prochází v současnosti velkým boomem a zvláště v zemích Evropské unie je její rozvoj významně podporován. Vzhledem k tomu, že se Česko nachází v prostoru střední Evropy a je tak pomyslnou spojnicí Východu a Západu, je i pro naše území vybudování systému vysokorychlostní železnice aktuálním tématem.

Systém vysokorychlostní železnice s sebou přináší kromě jiného rozličné regionální dopady a změny v oblastech, kterými tyto tratě procházejí, a dále pochopitelně i změny v časové dostupnosti jednotlivých středisek. V zemích, které systém VRT již nějakou dobu provozují, jsou regionální dopady známy a v dostupné odborné literatuře jsou tyto změny popsány. Kromě toho, že se dá předpokládat podobný efekt těchto tratí i na území Česka, dají se poměrně přesně modelovat i změny v časové a potenciální dostupnosti.

Části, která se konkrétně zabývá regionálními dopady, předchází obecný úvod do problematiky role železniční infrastruktury v regionálním rozvoji a také krátká pasáž věnovaná historii vysokorychlostní železnice v Evropě, ale i jinde ve světě. Pro zpracování této části jsem využil převážně česky psanou odbornou, ale i populárně
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

V další části pak diskutuji konkrétní témata týkající se dostupnosti území všeobecně. Tato je tedy věnována kromě problematiky časové dostupnosti, která je nejvýznamnějším dopadem vysokorychlostních tratí obecně, také studiu potenciální dostupnosti.

Na teoretickou část pak navazuje část analytická, které předcházelo několik krátkých informačních rozhovorů s Mgr. Janem Ilikem z oddělení koncepcí a rozvoje železniční dopravy na Ministerstvu dopravy ČR. Tyto rozhovory se zabývaly především obecnou charakteristikou VRT z pohledu ministerstva, a pomohly mi konkrétně nasměrovat cíle mé práce. Zde bych rád uvedl, že hlavním cílem této práce je z geografického pohledu (s ohledem na dostupnostní analýzy) porovnat dvě odlišná trasování VRT Praha – Brno na území Středočeského kraje a Vysočiny.

Ačkoliv jsou změny v časové dostupnosti po vybudování VRT v Česku rámcově prezentovány, nezohledňují však srovnání obou možných variant trasování (které jsou stále uvažovány). Dalšími nedostatkem těchto obecně dostupných změn dostupnosti je skutečnost, že se zabývají pouze jednotlivými středisky (krajskými městy) a nepočítají s celou železniční sítí Česka. Vysokorychlostní vlaky totiž (v podobě, jaká se v Česku plánuje) nemají sloužit pouze pro dálkovou dopravu a napojení Česka na evropskou síť vysokorychlostních tratí, ale mají umožnit vytvoření páteřní sítě rychlé železniční dopravy v Česku. Tato práce se tedy věnuje dostupnosti celého území tak, jak ještě nikdy nebyla prezentována.

Z těchto skutečností pak vyplývají konkrétní předpoklady, které se venují časové dostupnosti (a jejím změnám) převážně s dopadem na region Prahy:

1) Po vybudování VRT se zlepší vztah mezi Prahou a mezoregionálními centry (krajská města), tj. zlepší se časová dostupnost Prahy z těchto center a opačně. K největším časovým ziskům dojde ve vzdálených částech Česka (převážně Morava).
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

2) Po vybudování VRT se zlepší vztah mezi Prahou a centry nižšího řádu (okresní města), tj. zlepší se časová dostupnost Prahy z těchto center a opačně. K největším časovým ziskům dojde ve vzdálených částech Česka (převážně Morava).

Při vyhodnocování časové dostupnosti a potvrzování (resp. vyvracení) uvedených hypotéz jsem vždy samostatně hodnotil dvě varianty trasování VRT a výsledky jsem interpretoval na základě srovnání těchto variant.

Z hlediska změny dostupnosti však nejsou obvykle diskutovány změny v potenciální dostupnosti, tj. změny časové dostupnosti vážené konkrétním jevem. S ohledem na náročnost vlastních výpočtů potenciální dostupnosti jsem zvolil pro tuto analýzu počet obyvatel. Vzhledem k tomu, že analýzy potenciální dostupnosti vždy hodnotí všechny body (v mém případě obce ležící na železniční trati), stanovil jsem poslední hypotézu takto:

3) Z hlediska potenciální dostupnosti se po vybudování VRT maximalizuje zisk (zlepšení dostupnosti v absolutní hodnotě) u všech potenciálních center, přičemž vyšší zisk bude u jižní varianty z důvodu lepšího napojení Jihočeského kraje.

Při vyhodnocení potenciální dostupnosti jsem postupoval analogicky jako v případě časové dostupnosti – byly tedy vzájemně porovnány obě varianty trasování VRT.
Kapitola 2
Obecná charakteristika

2.1 Význam vysokorychlostních tratí

Diskuze o ekonomických přínosech vysokorychlostních tratí probíhá většinou v obecné rovině, a ačkoliv pro veškeré projekty, které Evropská unie spolufinancuje, jsou vyžadovány přesné studie proveditelnosti (feasibility study), je potřeba si uvědomit i sociální přínosy vysokorychlostních tratí na regiony, kterými prochází (Rus, Nombela 2005). Mezi tyto společenské přínosy pak patří převážně zlepšení časové dostupnosti, ale též přímě ekonomické dopady, jako jsou příchod zahraničních investorů, vybudování podpůrné infrastruktury, zlepšení mobility pracovní síly a krátkodobé zvýšení počtu pracovních míst.

Je tedy zcela evidentní, že rozhodnutí budovat vysokorychlostní tratě není vždy založeno na řádné hospodářské analýze. Investice do VRT tak záleží na místních podmínkách, jako jsou plánovaný regionální rozvoj, existence strategie regionů, použité technologie, přetížení ostatních druhů dopravy, přepravní prudy, poptávka apod. (Rus, Nombela 2005). Těžce ekonomicky vyčíslitelným přínosem vysokorychlostních tratí je
i zlepšení časové dostupnosti. To závisí na vhodném trasování a správném dopravním modelu, a ve své podstatě je nejmarkantnějším přínosem výstavby VRT.

Na zlepšení časové dostupnosti jsou pak navázány další sociální a ekonomické změny v regionu. Možnosti rozvoje jednotlivých regionů „jsou výrazně determinovány jejich postavením v dopravním systému (síti). Výhodná dopravní poloha určitého regionu může přispívat k jeho rozvoji, zatímco periferní poloha se z tohoto hlediska může jevit jako problematická. Přestože v ekonomických teoriích došlo všeobecně k poklesu významu dopravních faktorů (zejména dopravních nákladů), doprava stále platí za jeden z velmi významných lokalizačních faktorů v regionálním rozvoji“ (Kraft, Vančura 2009, s. 1). Výstavba vysokorychlostních tratí tak logicky může přispět ke zlepšení dopravní polohy periferních oblastí, ať už se jedná o okrajové oblasti států (oblast Českého lesa, jižní části Jihočeského kraje) nebo o vnitřní periferie (kraj Vysočina, Benešovsko apod.).

Jak jsem uvedl ve své bakalářské práci (Randák 2013), nejvýznamnější změnou související s výstavbou VRT z pohledu zástupců veřejné správy je jednoznačně zlepšení dopravní obslužnosti z hlediska zkrácení cestovních časů. V souvislosti s výstavbou VRT vnímají všichni respondenti provedeného šetření „jednoznačně časovou úsporu při cestování do Prahy nebo Brna“ (Hyský in Randák 2013, s. 47.). Z tohoto důvodu se v této práci věnuji modelům časové dostupnosti Prahy po vybudování VRT v Česku na základě několika prověřovaných variant.

2.2 Vysokorychlostní železnice

Vzhledem k zaměření této práce je nezbytné alespoň stručně definovat vysokorychlostní železnici jako takovou. K této problematice je však dostupná řada informačních zdrojů, zde proto uvádím jen ty, které jsou z hlediska této práce nejpodstatnější.

V přesných definicích VRT se autoři, resp. organizace různí. Někteří (např. Týfa) považují za VRT veškeré normálně rozchodné, alespoň dvoukolejné tratě, na nichž je rychlost 250 km/h a vyšší, od níž je odvozen poloměr všech výškových i směrových oblouků, který se však musí posoudit pro rychlost nejpomalejších vlaků. Někteří (Evropská komise 2001) je chápou jako zvlášť zvýšeně vybudované tratě pro rychlost alespoň 250 km/h či zvlášť modernizované tratě pro rychlost alespoň 200 km/h či zvlášť
modernizované tratě, které mají zvláštní charakteristiky v důsledku topografických, reliéfních nebo urbanistických omezení, jimiž musí být rychlost v každém jednotlivém případě přizpůsobena. Jiní (Mezinárodní železniční unie) je chápou jako systém tvořený infrastrukturou (tratě uzpůsobené na rychlost alespoň 250 km/h), kolejovými vozidly (s naklápěcím systémem nebo bez) a provozními podmínkami. S ohledem na skutečnost, že mnoho vysokorychlostních vlaků je také kompatibilní s konvenčním provozem, je termín vysokorychlostní železnice často chápán jako pohyb těchto vlaků na konvenčních tratích, ale při rychlostech nižších, než jsou povolné na nové infrastrukturě. V českém prostředí chápeme VRT jako samostatně budované tratě pro rychlosti alespoň 250 km/h.

2.3 Historie vysokorychlostní železnice ve světě

Za kolébku vysokorychlostní železnice je tradicičně považováno Německo, kde byla pomyslná vysokorychlostní hranice na železnici překročena již v roce 1903, kdy pokusný elektrický vůz společnosti AEG překonal rychlost 210 km/h (Pokorný 2012). Následující období první poloviny 20. století však bylo pouze ve znamení zkušebních a testovacích jízd a nejednalo se tolik o urychlení dopravy, jako spíš o symbol pokroku a boj o prvenství v železničním strojírenství. Koncem 30. let 20. století však již byly vlaky, dosahující v dlouhých úsecích rychlostí přes 160 km/h, běžně zejména v Německu, Velké Británii a Francii. Systematicky se vývoji vysokorychlostních vlaků a vůbec systému VRT začalo věnovat Japonsko od 30. let 20. století jako symbol pokroku a uvolňující se izolace. Práce však byly kvůli druhé světové válce přerušeny, a tak se lidé mohli prvním vlakem na VRT Tokaido Šinkansen projet až 1. října 1964 u příležitosti konání olympijských her v Tokiu. Trať byla navržena na rychlost 250 km/h, nicméně jízdní rychlost se pohybovala kolem 210 km/h (Týfa 2012).

V první polovině 70. let 20. století zařadil vývoj prvního vlaku TGV (Train á grande vitesse – vlak o vysoké rychlosti) mezi země budující VRT i Francii. Vlaky TGV měly být původně pohoněny plynovou turbinou, ale během energetické krize v roce 1973 se tyto turbíny staly nehospodárnými a proto byl celý projekt přepracován na elektrický pohon. Dne 27. září 1981 tak na trať LGV (Ligne á grande vitesse) Sud-Est mezi Paříží a Lyonem vyjel první vysokorychlostní vlak (Šlegr a kol. 2012b)

Velice dynamickým vývojem procházel i vznik VRT v rozvinutých státech jihovýchodní a východní Asie, kdy se v roce 2004 první tratí mezi Soulem a městy Tedžon a Tegu objevuje na mapě vysokorychlostních tratí Jižní Korea a v roce 2007 Tchaj-wan a Čínská lidová republika (Týfa 2012). Boom VRT v Číně udělal z této země jednoho z největších provozovatelů vysokorychlostních vlaků světa. Z tabulky č. 1 je patrná velikost světové sítě VRT a její plánované rozšíření. Nárůst délky VRT sítě v Evropě lze vyčíst z grafů č. 1 na str. 17.
Tab. č. 1 – Porovnání délky VRT ve světě v roce 2012

<table>
<thead>
<tr>
<th>Země</th>
<th>Maximální rychlost (km/h)</th>
<th>V provozu (km)</th>
<th>Ve výstavbe (km)</th>
<th>Naplánováno (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgie</td>
<td>300</td>
<td>209</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Francie</td>
<td>320</td>
<td>1896</td>
<td>210</td>
<td>2616</td>
</tr>
<tr>
<td>Německo</td>
<td>300</td>
<td>1285</td>
<td>378</td>
<td>670</td>
</tr>
<tr>
<td>Itálie</td>
<td>300</td>
<td>923</td>
<td>0</td>
<td>395</td>
</tr>
<tr>
<td>Nizozemko</td>
<td>300</td>
<td>120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polsko</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>712</td>
</tr>
<tr>
<td>Portugalsko</td>
<td>350</td>
<td>0</td>
<td>0</td>
<td>1006</td>
</tr>
<tr>
<td>Rusko</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Španělsko</td>
<td>300</td>
<td>2056</td>
<td>1767</td>
<td>1702</td>
</tr>
<tr>
<td>Švédsko</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>250</td>
<td>35</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>Velká Británie</td>
<td>300</td>
<td>113</td>
<td>0</td>
<td>204</td>
</tr>
<tr>
<td>Evropa celkem</td>
<td></td>
<td>6637</td>
<td>2427</td>
<td>8705</td>
</tr>
<tr>
<td>Čína</td>
<td>350</td>
<td>4079</td>
<td>6154</td>
<td>2901</td>
</tr>
<tr>
<td>Taiwan</td>
<td>300</td>
<td>345</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indie</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>495</td>
</tr>
<tr>
<td>Írán</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>475</td>
</tr>
<tr>
<td>Japonsko</td>
<td>300</td>
<td>2534</td>
<td>508</td>
<td>583</td>
</tr>
<tr>
<td>Saúdská Arábie</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>550</td>
</tr>
<tr>
<td>Jižní Korea</td>
<td>300</td>
<td>412</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turecko</td>
<td>250</td>
<td>235</td>
<td>510</td>
<td>1679</td>
</tr>
<tr>
<td>Asie celkem</td>
<td></td>
<td>7605</td>
<td>7172</td>
<td>6683</td>
</tr>
<tr>
<td>USA</td>
<td>240</td>
<td>362</td>
<td>0</td>
<td>900</td>
</tr>
<tr>
<td>Argentina</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>315</td>
</tr>
<tr>
<td>Brazilie</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>511</td>
</tr>
<tr>
<td>Amerika celkem</td>
<td></td>
<td>362</td>
<td>0</td>
<td>1726</td>
</tr>
<tr>
<td>Maroko</td>
<td>300</td>
<td>0</td>
<td>200</td>
<td>480</td>
</tr>
<tr>
<td>Afrika celkem</td>
<td></td>
<td>0</td>
<td>200</td>
<td>480</td>
</tr>
</tbody>
</table>

Zdroj: Centrum pro efektivní dopravu, o.s. (CEDOP), 2012.

Z dlouhodobého hlediska se plánuje výstavba vysokorychlostních tratí v Česku, Polsku, Portugalsku a Švédsku. Mimo Evropu pak v Indii, Íránu, Saúdské Arábii, Maroku, Argentině a Brazílii (Týfa 2012). Celkem zajímavým evropským projektem je vstup čínských investorů do projektu vysokorychlostní tratě spojující Budapešť s Bélehradem. Tento projekt zapadá do plánu Číny vytvořit z řeckého přístavu Pireus jedno z center dovozu jejího zboží do Evropy a potřebuje tak kvalitní spojení Balkánského poloostrova se střední a západní Evropou.
Graf č. 1 – Nárůst délky sítě VRT v Evropě v letech 1985 - 2009

2.4 Vysokorychlostní železnice v Česku

Objektivně zhodnotit potenciál VRT v Česku není cílem této práce a z geografického pohledu na problematiku to ani není možné. Hodnocení vhodnosti konkrétního řešení VRT v Česku se musí ujmout dopravní inženýři a ekonomové ve spojení s geografií a významně bude též záležet na dopravní strategii Vlády České republiky. Jediným jasným vodítkem jsou stoupající ceny pohonných hmot (OECD, 2006), které ve střednědobém horizontu mohou rapidně zvýšovat náklady na přepravu letadly a automobilů a Česká republika si proto musí jasně stanovit, kterým směrem se vydá (viz graf č. 2 na str. 18). Nebudu se tedy zabývat potenciálem výstavby VRT v České republice, nýbrž se pokusím nastínit různé faktory ovlivňující zavedení tohoto systému na naše území.

V první řadě je důležité uvědomit si, že se Česko nachází v prostoru střední Evropy a pomyslně vytváří bariéru, ale též spojnicí Západu s Východem (zejména mezi Berlínem a Vídní, resp. Budapeští). Tím pádem by mělo těžit ze své polohy. Napojení České republiky na systém VRT v západní Evropě je tedy z dopravního a ekonomického hlediska naprostou nutností. Pokud tedy budeme neustále váhávat a nebudem mít jasně stanovenou koncepci s ohledem na okolní státy (v současnosti hlavně s Německem a Rakouskem, nicméně i Polskem a Slovenskem), „může to mit výrazné dopady na naší konkurenceschopnost a atraktivitu pro investory, turisty nebo i vědecké kapacity. Kvalita spojení je při jejich rozhodování důležitá a železnice bude hrát v tomto ohledu v Evropě stále významnější roli“ (Šťáhlavský 2013, s. 51).
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

Graf č. 2 - Vývoj cen pohonných hmot v letech 1994 - 2011

Česko je sice kvalitně napojené na celý svět prostřednictvím mezinárodního letiště v Praze-Ružyni, kvalitní železniční spojení je však pro cesty na středně dlouhé vzdálenosti (především s ohledem na čas strávený na letišti) výhodné. Evropská unie navíc vnímá železnici jako jeden z nejdůležitějších faktorů mobility a z tohoto důvodu je důležité, aby bylo Česko schopné prosadit své plány a také co nejrychleji připravit a realizovat výstavbu prvních úseků VRT (v současnosti se jedná o úseky Praha – Litoměřice, Brno – Přerov a Brno – Vranovice). Dalším významným faktem je i skutečnost, že převážně v německy mluvících zemích se vysokorychlostní tratě masivně rozvíjejí a po dokončení VRT Lipsko – Norimberk bude trasa z Berlína do Vídně mějící Česko časově srovnatelná, ne-li kratší. Pochopitelně se v této souvislosti jedná i o nemalé finanční prostředky z fondů EU, o které by se mohla České republika připravit (Šťáhlavský 2013).

K nejpopulárnějším mýtům, týkajícím se provozu VRT, patří „konstatování, že rychlovlaky jsou určeny hlavně pro mezistátní dopravu a nepomáhají regionům, kterými vedou“ (Šťáhlavský 2013, s. 48). Podíváme-li se na srovnatelně velké země, jako jsou Švýcarsko nebo Rakousko, zjistíme, že jejich páteřní železnice zajišťují v první řadě dopravu vnitrostátní a až druhotně jsou konstruovány pro dopravu mezinárodní (Šťáhlavský 2013). Země větší, jako třeba Německo nebo Itálie, provozují své vysokorychlostní železnice taktéž hlavně z důvodu spojení hlavních měst a konkrétně

Itálie v současnosti staví své tratě pouze pro dopravu vnitrostátní, nikoliv mezistátní (Šťáhlavský 2013). Napojení italského systému na Rakousko, Švýcarsko a Francii je plánováno až v dlouhodobém horizontu, nicméně v tomto případě hrají roli i fyzickogeografické podmínky.

Je tedy zcela evidentní, že pro rozvoj veřejné osobní dopravy jsou VRT pro Česko naprosto klíčové. Důležitou roli zde hraje i skutečnost, že Česko funguje ve středoevropském prostoru jako tranzitní země a měla by tím pádem ze své polohy těžit. Dovolují si zde krátké zamyšlení nad tím, zda může hrát VRT klíčovou roli i v nákladní dopravě. Pokud totiž dojde k uvolnění kapacity páteřních tratí v Česku z důvodu převedení dálkové dopravy na VRT, vytvoří se dostatečná kapacita pro nákladní dopravu na těchto tratích. Při vybudování kvalitní podpůrné infrastruktury by se dalo uvažovat o vytvoření systému RoLa, kdy jsou kamiony přepravovány po železnici. Tento systém funguje dobře například v sousedním Rakousku, nicméně krátkodobě se i u nás používal v relacích České Budějovice – Villach a Lovosice – Drážďany (Hlavní parametry VRT 2010). Je jasné, že podobný systém je šetrnější k životnímu prostředí a omezuje emise výfukových plynů na páteřních silničních tazích.

2.5 Koncepce tzv. Rychlých spojení v Česku

Aktuálně počítá strategie Ministerstva dopravy s tím, že vysokorychlostní vlaky a VRT nebudou vytvářet pouze napojení Česka na okolní země, „ale jejich hlavním posláním bude tvořit páteř veřejné dopravy Čech, Moravy a Slezska“ (Šlegr a kol. 2012d). Nehovoří se tak přímo o vysokorychlostních tratích (neboť tento termín s sebou přináší velké předsudky převážně vzhledem k fungování VRT v okolních státech), ale namísto tohoto se používá termín tzv. Rychlých spojení, který je chápán poměrně široce (Šlegr a kol. 2012d). Koncepce rychlých spojení nechápe nové tratě jen jako infrastrukturu vybudovanou pro vysokorychlostní jednotky, ale jako síť tratí pro všechny dálkové a regionální vlaky, které budou tyto tratě využívat třeba jen v části své trasy.

Tato práce diskutuje různá možná trasování vysokorychlostních tratí na území Česka hlavně s ohledem na časovou dostupnost. Nicméně bych zde rád prezentoval aktuální představu o síti VRT v Česku. Ta na našem území vytvoří tzv. Středoevropský kříž (Šlegr a kol. 2012d), v jehož středu se bude nacházet Praha. V této podobě je na
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

našem území navrženo pět Rychlých spojení (RS1 – RS5) s několika možnými variantami a s odbočkami.

Obr. č. 1 – Základní síť rychlých železničních spojení ve střední Evropě po roce 2015

![Zdroj: Centrum pro efektivní dopravu, o.s. (CEDOP), 2012.](image-url)
Kapitola 3
Železnice jako jeden z faktorů regionálního rozvoje

3.1 Železnice a její vliv na regionální rozvoj

Analyzovat regionální dopady vysokorychlostní železnice je poměrně náročné, neboť se nedá se stoprocentní pravděpodobností prokázat, zda dané dopady vznikly pouze za přispění tohoto systému (Sands 1993). Je prokázáno, že k výrazným socioekonomickým změnám dochází se zlepšováním dopravní infrastruktury.

Názory na roli dopravní infrastruktury v regionálním rozvoji se mezi ekonomy a geografy různí. Někteří (např. Siccardi) považují infrastrukturu za klíčovou podmínku pro ekonomický a regionální rozvoj, jiní (např. Huddleston, Pangotra) ji chápou jako nutnou, nikoliv za jedinou a postačující podmínku tohoto rozvoje (Rephann 1993 cit. in Marada a kol. 2006). V důsledku těchto rozdílných názorů jsou dopravní infrastruktuře přisuzovány jak čistě pozitivní, tak i negativní vlivy na regionální rozvoj (Gauthier 1970 cit. in Marada a kol. 2006). V české literatuře převažuje názor, že regionální dopady dopravní infrastruktury jsou téměř vždy pozitivní, oproti tomu v anglosaské literatuře se již můžeme setkat s relativně kritickým pohledem (Marada a kol. 2006).

V České republice je obvyklé rozdělovat regionální dopady na přímé (primární), které vyplývají přímo z podstaty výstavby a provozu vysokorychlostní tratě a nepřímé (sekundární), které vyplývají z přímých dopadů, nízkém podle dalších autorů, např. Sands (1993), lze rozdělit regionální dopady na makro efekty a regionální efekty.

3.2 Přímé a nepřímé dopady

Podle Bruinsmy a Rietvelda (1998 cit. in Marada a kol. 2006) je možné vlivy dopravní infrastruktury na regionální rozvoj rozdělit na přímé a nepřímé. Mezi přímé vlivy podle těchto autorů patří vlivy vznikající využíváním dané komunikace, tj. nárůst
Zaměstnanost, rozvoj stavebnictví, úspory paliva, z nichž vychází i zlepšení životního prostředí, dále zlepšení časové dostupnosti a jiné (Marada a kol. 2006). Mezi přímé vlivy však mohou patřit i negativní vlivy, jako je např. koncentrace škodlivých látek v dotčených regionech, nárůst hlukové zátěže z nově vybudované dálnice či z letiště apod.

Je tedy zcela evidentní, že výstavba vysokorychlostních tratí má celou škálu přímých a nepřímých dopadů, které mohou jak pozitivně, tak negativně ovlivňovat jak ekonomiku, tak i objemy dopravy a životní prostředí. Otázkou zůstává, nakolik se dají dané efekty předpovídat.

Z řady historických pramenů můžeme doložit, že se železnice stala hlavní tepnou těch oblastí, které spojila (Kunc, Krylová 2006). Tento fakt je však ovlivněn řadou faktorů, mezi které patří jednak masivní industrializace, vynález parního stroje a hlavně pak chybějící adekvátní alternativa k železnicí. Samozřejmě se nedá předpokládat, že bude mít rozvoj železnice podobné efekty jako v době jejich vzniku (tedy v 19. století), nicméně je zcela evidentní, že kvalitní železniční spojení má velký význam na rozvoj regionu.

S ohledem na historické souvislosti je však signifikantní, že železnice způsobuje velké regionální rozdíly a to hlavně ve vztahu velkých měst a regionů. Železnice totiž
byla vždy přivedena do významných sídel, či do aglomerací, přispěla k jejich jak ekonomickému, tak populačnímu růstu a tím pádem vytvořila zázemí pro další rozvoj infrastruktury (Kunc, Krylová 2006). Tímto se vytváří bludný kruh, kdy paradoxně nejvíce (z hlediska infrastruktury) rozvinuté oblasti potřebují další rozvoj, který je silně vázán na socioekonomický vývoj regionu. Proto je třeba posilovat a modernizovat dopravní infrastrukturu velkých sídelních celků a napojovat je moderním způsobem na zbytek celoevropské dopravní sítě.

Vliv železnice v budoucnu se tak dá předpokládat hlavně v oblastech, kde bude železniční doprava tvořit základ dopravního systému, tedy v oblastech, kudy povedou navrhované trasy VRT a v oblastech velkých měst (Praha, Brno a Ostrava). Tímto se dojde k „posílení rozvojového potenciálu a konkurenceschopnosti větších středisek i k jejich vyššemu zapojení do nadnárodního regionálního systému“ (Marada a kol. 2006), nicméně zlepší se i napojení okrajových oblastí republiky a vnitřních periferií na sídelní systém Česka. Z tohoto hlediska je dobré uvažovat na území Česka o VRT jako o součásti vnitrostátního systému a neprojektovat tyto tratě jen pro potřeby dálkových vysokorychlostních vlaků, ale umožnit použití v části VRT i regionálním či meziregionálním spojů přesně tak, jak uvažuje koncept Rychlých spojení. Dá se ale předpokládat, že zvyšující se koncentrace aktivit bude podporovat růst hlavních center a toto vyvolá potřebu větších kontaktů se zázemím těchto center (Marada a kol. 2006). V této souvislosti dojde tedy k nárůstu osobní i nákladní dopravy a dá se tedy předpokládat i zvýšení potenciálu železnice. Jak již bylo uvedeno výše, VRT tratě pak mohou paradoxně zlepšit i dopravní obslužnost a časovou dostupnost zázemí velkých center, neboť dojde k uvolnění kapacity stávajících tratí jak pro nákladní, tak i pro osobní regionální dopravu.

3.3 Makroregionální dopady

Mezi makroregionální dopady vysokorychlostní železnice patří v první řadě zlepšení dopravní obslužnosti (zejména z hlediska časové dostupnosti), které je pochopitelné vzhledem k tomu, že se železnice jako taková buduje pro potřeby rychlé a efektivní přepravy osob a zboží. Tento dopad popisují některé obsáhlé studie (např. Sands 1993, Gutiérrez 2001 nebo Chen, Hall 2012) a je vnímán jako jednoznačně pozitivní a přínosný pro všechny dotčené oblasti lidské činnosti. Nicméně (dle Sandse 1993) se objevují i negativní sekundární regionální dopady vyplývající ze zlepšování dopravní

Vzhledem ke zlepšení dopravní obslužnosti (čehož je dosahováno hlavně zkrácením intervalu spojů) dochází i k relativnímu zmenšování vzdálenosti mezi jednotlivými sídly. Jednoznačným příkladem budí vysokorychlostní trať spojující Madrid a Barcelonu. Na tomto úseku došlo ke zkrácení jízdních dob z původních 5 h 28 min na stávajících 2 h 40 min a došlo tak ke zkrácení jízdních dob o téměř 52 % (Gutiérrez 2001).

Pochopitelným dopadem vysokorychlostní železnice je i zvýšení kvality cestování obecně nasazením moderních vozidel (tento efekt bude pravděpodobně zvlášť markantní v Česku, respektive zemích východního bloku) či zrušení přestupů mezi jednotlivými systémy (např. v relaci Paříž – Londýn, kde bylo nutné přestupovat vždy z vlaku na trajekt a obráceně, cestující proto volili jako jednodušší alternativu leteckou dopravu, dnes je možné díky tunelu pod kanálem La Manche absolvovat celou cestu bez přestupu.). Zajímavým dopadem je i posílení image. Tento jev je obecně prezentován hlavně v Japonsku, které chtělo v době budování systému vysokorychlostní železnice posílit svoji image v očích Západu jako země kvality a hlavně přesnosti, kde vlaky jezdí načas (Sands 1993).

Jako jeden v současnosti z nejvýznamnějších makroregionálních dopadů výstavby vysokorychlostní železnice lze vnímat nástup VRT jako konkurence letecké dopravě. V souvislosti s růstem cen pohonných hmot a se snahou o snižování energetické náročnosti dopravy a také se snahou o ekologičtější způsoby dopravy, se stává vysokorychlostní železnice rovnocennou alternativou letecké dopravě. Při překonávání vzdáleností od 100 do 500 km se vysokorychlostní železnice stává nejvýhodnějším druhem dopravy (viz graf č. 3 na straně č. 24) (Rus a kol. 2009). Z tohoto důvodu lze tedy mluvit o omezování letecké dopravy (např. v relaci Madrid – Barcelona převzala železnice naprostou většinu přepravních výkonů).

Tento efekt je nejdůležitějším v makroregionálním měřítku, neboť z důvodů omezování letecké dopravy si Evropská komise stanovila vysokorychlostní železnicí jako páteř veřejné dopravy, kterou zanesla do tzv. Bílé knihy dopravní politiky z roku

Graf č. 3 - Srovnání jízdních dob u jednotlivých druhů dopravy

Jen pro představu uvádím, že například v Rakousku je elektrifikováno 60 % všech tratí (podíl obnovitelných zdrojů energie na celkovém objemu spotřeby je zde 80 %) a ve Švýcarsku dokonce téměř 75 % (podíl obnovitelných zdrojů je zde 62 %).

Vysokorychlostní tratě produkují 8x méně toxinů než osobní automobilová doprava a 30x méně toxinů než nákladní automobilová doprava, přičemž tyto nejsou produkovány podle tratě, ale v místě výroby elektrické energie (High speed Europe 2010)

Další významným dopadem výstavby vysokorychlostní železnice je vyšší spolehlivost železniční dopravy. Vzhledem k tomu, že síť vysokorychlostních železnic je navrhována jako provozně oddělený systém tratí, nepřenášejí se na ní vlivy ostatních druhů dopravy. Vysokorychlostní vlaky jsou vždy provozovány jako naprosto prioritní, a proto se na ně nepřenášejí zpoždění ostatních spojů. Tratě se navrhují bez jakýchkoliv
úrovňových křížení, tím pádem nedochází k vzájemnému omezování s dalšími druhy dopravy (silniční, městská apod.). Navíc se při výstavbě těchto tratí používají nejmodernější technologie a kladě se důraz na co nejvyšší míru bezpečnosti. Z tohoto důvodu se řadí vysokorychlostní železnice (a železnice obecně) mezi nejbezpečnější způsoby dopravy, přičemž jsou až 16x bezpečnější než automobilová doprava (High speed Europe 2010).

3.4 Mikroregionální dopady

V dostupné literatuře zabývající se regionálními dopady vysokorychlostní železnice je diskutována řada mikroregionálních dopadů. Tyto vycházejí z primárních dopadů, nejvíce ze zlepšení dopravní obslužnosti a zkrácení jízdních dob. Je zajímavé, že v lokalitách dotčených výstavbou vysokorychlostních tratí se v některých případech počítalo s významnými socioekonomickými změnami, ke kterým však nedošlo.

Jistě významným regionálním dopadem je výstavba tratí jako taková spojená s potřebou kvalifikované pracovní síly. Podle různých empirických studií každý milion korun investovaný do výstavby vytvoří v průměru 3 nová pracovní místa, což se pozitivně projeví na zaměstnanosti v daném regionu (Kaplan 2013). V případě výstavby vysokorychlostní trati v České republice po dobu 15 let a investice 13 miliard korun ročně (dle Ministerstva dopravy ČR je cena VRT Praha – Brno – Ostrava odhadována na 190 miliard Kč) by takto bylo ročně vytvořeno či udržováno 39 000 pracovních míst (Kaplan 2013). Pro zajímavost zmíním, že stavebnictví se na tvorbě HDP ČR podílí ze 14 % (Český statistický úřad 2013).

Dalším dopadem, který se obtížně vyčísluje, je změna regionální ekonomiky oblastí, přes něž tratě procházejí. „U obchodních cestujících lze ekonomické příhony rychlé železnice vypočítat jako mz dové náklady na čas strávený navíc při pomalejším cestování autem. Pro denně dojíždějící do zaměstnání jsou důležité výdaje za jízdné. Ekonomický přínos by byl zejména pro zaměstnance s vyššími příjmy, kdy lze odhadovat jak snížení nákladů na denní dojíždění oproti automobilové dopravě tak možnost nižších nákladů na bydlení v místech dále vzdálených od center Prahy nebo Brna. Při předpokladu denního dojíždění cca do 100 km by se takto otevřely nové pracovní příležitosti občanům Jihlavská a Olomoucká. Nepřízný dopad rychlého spojení Prahy, Brna a Ostravy by byl také ve vyšším propojení služeb a obchodu těchto center a tím celkověm
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

zvýšení konkurenceschopnosti ČR. Nové vysokorychlostní tratě by zároveň uvolnily současné přetížené železniční koridory v okolí velkých měst pro příměstskou dopravu, u které by došlo ke zrychlení a tím zhodnocení ušetřeného času." (Kaplan 2013).

Významnou změnou související s vysokorychlostní železnici je změna rozmístění obyvatelstva a ekonomických aktivit v regionu. Toto se stalo v Japonsku, ve kterém došlo převážně ke koncentraci obyvatelstva v oblastech se stanicí VRT a naopak k rozptýlení v oblastech nedotčených Šikansenem. Tato změna však není plně prokazatelná, neboť ve stejně době docházelo v Japonsku též k výstavbě dálniční infrastruktury a nikoliv jen zavedení systému Šinkansen (Sands 1993). Na základě dalších studií však došlo k potvrzení, že zvýšení koncentrace obyvatelstva je z velké míry způsobeno přítomností stanice Šinkansen v dané oblasti (Nakamura, Takayuki 1989). Tyto studie vedly k závěru, že pro hospodářský růst v regionu a zvýšení koncentrace obyvatelstva jsou potřebné tři faktory – vysoký výskyt služeb (převážně bankovnictví a obchodní služby, ale též dostatečně velký trh s nemovitostmi), dostatečné možnosti pro vysokoškolské vzdělávání (přítomnost univerzit) a dobrá dopravní dostupnost do stanice Šinkansenu (Sands 1993).

Vysokorychlostní železnice taktéž může hrát významnou roli při rozhodování společnosti kam přesunout své sídlo, resp. kde koncentrovat své výrobní aktivity. Konkrétním případem budiž společnost Waterman, jež prodává své psací potřeby po
celém světě. Tato společnost přemístila své sídlo z Paříže do Nantes po zavedení systému TGV, a to navzdory skutečnosti, že výstavba nového sídla stála ekvivalent dvouletého nájmu v Paříži. Její výrobní závod se již v Nantes nacházel a vedení společnosti argumentovalo, že po zavedení vysokorychlostních vlaků může své obchodní aktivity v Paříži i jinde vykonávat prostřednictvím vlaků TGV. Další firmy, jako například Sonye du Val d’Electricite (společnost vyrábějící transformátory) uvažovaly o přemístění svých sídel a výrobních závodů mimo Paříž, přičemž uvažovaly pouze o lokacích napojených na systém TGV (Sands 1993). Tato skutečnost může být pro dotčené oblasti významná z finančního hlediska, neboť tyto společnosti v místě svého sídla odvádějí daně.

Na druhou stranu v regionu Rhône-Alps docházelo k obavám, že se velké firmy, které zde měly pouze filiály, přesunou do Paříže, pokud budou ostatní regiony dobře dostupné systémem TGV. K tomuto však nedošlo (Sands 1993). Zde je důležité zmínit, že (dle Sandse 1993) se žádné podniky nesnažily přiblížit konkrétním linkám TGV, ale rozhodovaly se podle konkrétního trhu a komplexně podle dopravní obslužnosti (dtto Japonsko). Nedá se tedy stoprocentně určit, zda pouze systém TGV, nebo jeho kombinace s jinými druhy dopravy (například dálnice), hraje významnou roli v migraci firem a v socioekonomických změnách regionů.

Poměrně specifickým regionálním, resp. lokálním dopadem je samo přivedení vysokorychlostní tratě do měst, ve kterých se železniční stanice (jako místo potkávání lidí s vysokým provozem) může stát významným městotvorným prvkem. Konkrétně v Lyonu například dochází ke koncentraci firem kolem stanice TGV, v Kasselu se zase město snaží svými aktivitami zatrazvit lokalitu nové stanice, která se nachází mimo centrum města (Sands 1993). Město Nantes připravilo projekt na zatrazivnění lokality.
Quartier Champ-de-Mars-Madeleine a k naplnění tohoto cíle si vybralo stanici vysokorychlostní železnice, kterou nechalo do této části města přivést. Vhodnou kotlinou přiměla společnost Beurre (výrobce sušenek), aby své sídlo přemístila z původního nehezkého průmyslového areálu do nových kancelářských budov, čímž otevřela původní brownfield k revitalizaci a vybudování rezidenčních projektů. Sama asanace původní čtvrť s sebou přináší podporu ekonomiky a město svojí politikou zlepšuje podmínky pro život v této čtvrti (Audic 1992, David 1991 in Sands 1993). Díky vysokorychlostní železnici je tato čtvrť nyní vhodná k bydlení i pro osoby, které nepracují přímo v Nantes, ale dojíždí za prací. Ačkoliv tak byla železnice dříve významnou bariérou v městském prostředí, dostala nyní možnost spoluvytvářet nová moderní centra měst (Evropská komise 2009). Tato změna je znázorněna na obrázku č. 3. Ačkoliv podobná změna nemusí vždy nastat, dá se předpokládat (i s ohledem na rozhovory v mé bakalářské práci), že se o to místní samosprávy v případě realizace VRT v Česku pokusí.

\textit{Obr. č. 2 – Změna zonálního uspořádání v centru města po zavedení systému VRT}

\textit{Zdroj: High-Speed Europe, a sustainable link between citizens. Evropská komise, 2010.}

Podobné dopady se daejí (dle Sandse 1993) vypozorovat i v jiných lokalitách – např. ve výše zmíněném Kasselu, kde se město samo snaží nabídnout levné parcely v okolí stanice ICE investorům, čímž vytváří nepřímo nová pracovní místa a přetváří nevzhlednou čtvrť. Jedním z dalších plánů je přemístění univerzity do oblasti, kde se nachází stanice ICE, aby byla lépe dostupná studentům přijíždějícím do Kasselu za studiem. Na druhou stranu je v Německu vypozorován nárůst cen nájmů v okolí stanic ICE až o 20 %. I sami investoři však vykazují vyšší zájem o lokality obsluhované ICE a
ve čtvrtích, kde se nachází stanice vysokorychlostní železnice je patrný nárůst
maloobchodních služeb, hotelů a kanceláří.

Dalším výrazným dopadem vysokorychlostní železnice na regiony, kterými
prochází, jsou změny ve fyzickogeografickém prostředí. Železnice jako liniová stavba
s sebou přináší fenomén bariéry v krajině (Romportl 2007), dále koncentrace hlukové
zátěže včetně jejího zvýšení, které má zesílené negativní dopady v určitých lokalitách
(blízkost osídlení, přerušení cest, migrace apod., nicméně těmto dopadům se předchází
výstavbou ekoduktů a vhodnými protihlukovými úpravami jako je snížení hlučnosti
vozidel, výstavba protihlukových stěn, protihluková konstrukce železničního svršku,
protihlukové úpravy na dotčených objektech – výměny oken apod. – a další) a
v neposlední řadě přesuny materiálu v krajině při výstavbě umělých staveb (mostů,
tunelů, náspů a zářezů).

V našich podmínkách se dá očekávat celá řada regionálních dopadů
vypozorovaných na srovnatelných systémech v zahraničí. V první řadě je očekávaná
(Kodet, Hyský in Randák 2013) změna zaměstnanosti spolu se změnou rozmístění
obyvatelstva a ekonomických aktivit, dále změny v cestovním ruchu, ale také změny
v městských centrech v okolí stanic VRT.
Kapitola 4
Analýzy dostupnosti

4.1 Dopravní dostupnost

Dopravní dostupnost je v sociální geografii poměrně složitě definovatelná, ačkoliv z hlediska dopravní geografie se jedná o jeden z nejvýznamnějších projevů změn v dopravní sítě.

Dopravní dostupnost je jednou ze základních charakteristik ekonomiky regionu a může též přispívat k hodnocení postavení regionu na trhu práce. Kvalitní dopravní dostupnost pak má své nezastupitelné postavení i při vykonávání ekonomicky nezhodnocujících činností lidského života, jako je dostupnost zdravotnictví, školství a kulturních institucí, ale také rozvoj cestovního ruchu apod. „Dopravní dostupnost spolu s hustotou zalidnění má vliv na efektivitu obsloužení území a obyvatel“ (Maier a kol. 2007, s. 6).

Jednoduše můžeme dopravní dostupnost chápat, jako lehkost nebo náročnost dosáhnutí místa nebo služby z ostatních míst, kterou můžeme měřit překonanou vzdáleností, vynaloženými cestovními náklady nebo časem trvání cesty (Clark 1990). Právě v dopravní geografii se nejčastěji můžeme setkat s vyjádřením dopravní dostupnosti na základě času potřebného k překonání oné vzdálenosti. Pojem dostupnosti se obyčejně vztahuje ke koncepci blízkosti dvou bodů v prostoru, k jednoduchosti prostorových interakcí, anebo k potenciálu kontaktů s různými typy služeb a funkcí (Michniak 2002). Dostupnost můžeme tedy chápat také jako šanci nebo možnost umožňující využití různých druhů činností osobou obývající určitý prostor (Taylor 1997).

Studiu dostupností je pak nejen v geografii věnována velká pozornost. Může být „definována jako snadnost dosažení určitého místa v prostoru“ (Giuliano 1995 in
Hudeček a kol. 2011, s. 1) nebo také jako „potenciál přiležitostí pro interakci v prostoru“ (Hansen 1959 in Hudeček a kol. 2011, s. 1). Nejčastěji se dnes sleduje dostupnost periferních oblastí do jádrových oblastí ať již pomocí veřejné nebo individuální dopravy.

Poněkud jinak vnímají dopravní dostupnost Ritsema a de Jong (1996), kteří tvrdí, že se jedná o přijatelnost úsilí a námahy pro dosažení určitého cíle. Pojem dostupnost však v určitém smyslu znamená nejen schopnost dosáhnout určitého bodu v prostoru, ale též schopnost být dosažitelný, a tak v sobě tento pojem zahrnuje i jistou míru proximity (vzájemné blízkosti) dvou bodů. „Jedná se také o schopnost dopravního systému poskytnout rychlý ani levný způsob překonání vzdálenosti mezi místy. Dostupnost se definuje jako vlastnost místa týkající se překonání vzdálenosti mezi místy.“ (Michniak 2002, s. 6). Může také vyjadřovat relativní postavení místa v prostoru (Ingram 1971), nebo míru síly a rozsahu geografických vztahů mezi obyvateli a jejich sociálně-ekonomickými aktivitami (Shen 1998).

Při studiu dopravní dostupnosti je potřeba definovat základní pojmy. Prvním z nich je subjekt dostupnosti (osoba, skupina osob, obyvatelé určitého teritoria), který se nachází na určitém místě. Dalším prvkem dopravní dostupnosti je objekt dostupnosti – náš předem stanovený cíl (přiležitost, aktivita, služba), jehož dostupnost chceme zjistit. Subjekt a objekt dostupnosti jsou v prostoru oddělené, zjišťujeme tedy překonání vzdálenosti mezi nimi. Třetím prvkem je přepravní prvek, který představuje spojení mezi subjektem a objektem a umožní tedy uvedenou vzdálenost překonat. Tento prvek obsahuje konkrétní dopravní systém (silniční síť, železniční síť apod.) a také proměnnou vzdálenosti definovanou v daném dopravním systému (Michniak 2002).

Subjektem dostupnosti, který chce využít určité služby a uskutečnit své předem stanovené aktivity, může být jeden člověk, skupina osob, případně všichni obyvatelé určitého území. V takovém případě hovoříme o pohledu na dopravní dostupnost ze strany subjektu. Dopravní systém pak bývá, jak jsem již naznačil výše, reprezentován sítí komunikací (silničních, železničních, chodníky, vodních cest). Při vlastních výpočtech dostupnosti můžeme uvažovat podle způsobu výpočtu buď unimodální (jeden způsob), multimodální (rychlejší z více způsobů) nebo intermodální (více způsobů) dostupnost (Michniak 2002).

Před širokým uplatňováním geografických informačních systémů byla tvorba analýz dostupností velice náročnou činností. Hlavně časová náročnost byla vzhledem k očekávaným výsledkům neúnosná (Hůrský 1978). Tyto analýzy byly dříve prováděny pomocí výpočtů na základě dat z jízdních řádů.

„Dnes není problémem při využití síťových analýz, tedy procesů využívajících síť uzlů, jejich spojnic a dalších vlastností celého systému, analyzovat časovou dostupnost i pro rozsáhlá území. Naopak je tento proces méně náročný, než sledování dostupností veřejné dopravy využívající jízdní řád“ (Hudeček a kol. 2011, s. 1). Využití analýz dostupnosti je poměrně široké. Nejčastěji se využívají při analýzách regionálního rozvoje (Gutiérrez a kol. 1996), při zjišťování vzájemného kontaktu mezi středisky (Spence a kol. 1994), při analýzách rozvoje měst (Gielesse 1998) nebo pro logistické analýzy dopravy (Voženílek a kol. 2009 in Hudeček a kol. 2011). Zajímavým pohledem na význam analýz dostupnosti může být i historický pohled. „Důkladným výzkumem zkracování vzdáleností v prostoru společně s analýzou souviselých jevů v historii je možné predikovat další vývoj v budoucnosti a určovat tak nástroje a postupy pro trvalé udržitelný rozvoj území“ (Hudeček a kol. 2011, s. 2). K logickým výstupům z těchto analýz pak patří i kartograficky znázorněné dostupnosti do posuzovaných regionálních center. Velký potenciál mají také analýzy dostupnosti při projektování velkých dopravních staveb, jakými jsou právě vysokorychlostní tratě, pro názornost časových úspor po vybudování těchto staveb. Výstupy z těchto analýz jsou pak snadno čitelné i pro laickou veřejnost.
4.2 Potenciální dostupnost

Vzhledem k tomu, že dostupnost je problematikou různých zainteresovaných stran (doprava, územní plánování, marketing apod.), nemusí vždy nutně pracovat pouze s časovým rozměrem. Dostupnost tedy může zahrnovat i rozměry prostorové – sociální, či ekonomické, jako je populáční velikost, míra nezaměstnanosti apod. (Salze a kol. 2011). Právě proto je poměrně populárním přístupem zkoumání tzv. potenciální dostupnosti. Tou můžeme například rozumět „Jaká je dostupnost konkrétního podniku potenciálním zaměstnancem?“ (van Wee a kol. 2001, s. 3). Obecně se dá totiž předpokládat, že mezi potenciální zaměstnance dané firmy budou zařazeni pouze lidé v určité časové dostupnosti (např. 30 minut). Nicméně, vzhledem k tomu, že nemůžeme uvažovat pouze časový rozměr dojížďky do zaměstnání, ale i atraktivitu dané pracovní příležitosti nebo míru nezaměstnanosti regionu, je do výpočtů dostupnosti nutné tyto skutečnosti zahrnout. V daném případě pak pracujeme s tzv. potenciální dostupností.

Základní služby, jako jsou obchody, banky, pošty, zdravotnická zařízení, ale také pracovní příležitosti, jsou těžce dostupné z venkovských, resp. periferních oblastí, než ve velkých městech. Někteří lidé tak mohou být dvakrát znevýhodněni – jednak nemají na výběr mezi více druhy srovnatelných služeb (či pracovních příležitostí), navíc žijí od dané služby daleko (Haynes a kol. 2003). Právě s ohledem na atraktivitu daných služeb, nemůžeme v takovém případě uvažovat pouze s časovým rozměrem. Proto do výzkumu dopravní dostupnosti zahrnujeme také potenciál dané služby či pracovní příležitosti.

Zjednodušeně řečeno, z pohledu potenciální dostupnosti je ze dvou srovnatelných druhů služeb (či pracovních příležitostí) atraktivní pouze ta v kratší časové dostupnosti. Potenciál \(P_i \) je pro danou službu dán vzorcem:

\[
P_i = \sum_{j=1}^{N} a_j f(T_{ij})
\]

kde \(a_j \) je atraktivita služby v místě \(j \), \(T_{ij} \) je doba cestování, vzdálenosti nebo náklady potřebné k překonání vzdálenosti \(i-j \) a \(f(T_{ij}) \) je funkce vzdálenosti (Haynes a kol. 2003). Pokud jako funkci vzdálenosti použijeme exponenciální funkci, pak platí:

\[
f(T_{ij}) = \exp(-\beta T_{ij})
\]
Kapitola 5
Metodika

5.1 Tvorba mapového podkladu

Stěžejním podkladem vedle jízdního řádu je mapový podklad. Pro tuto práci jsem využil veřejně dostupný mapový podklad železniční sítě Česka z geodatabáze ArcČR 500 verze 2.0 od firmy ARCDATA Praha, s. r. o. s aktualizací železniční sítě pro rok 2001, který však bylo potřeba patřičně upravit.

V první řadě bylo potřeba odstranit ty železniční tratě, které jsou v daném podkladu zaneseny, ačkoliv je na nich dnes zastavena železniční doprava (např. železniční trať Protivec – Bochov). Dále bylo potřeba odstranit další drážní systémy, které fakticky nejsou železniční tratí (např. lanová dráha na Ještěd, vlečky apod.).

Jako podklad pro trasování VRT byly využity materiály, které mi poskytlo Ministerstvo dopravy ČR a dále Zásady územního rozvoje jednotlivých krajů. Na základě těchto podkladů bylo potřeba digitalizovat konkrétní vysokorychlostní tratě a zanést je do dříve použité geodatabáze ArcČR 500.
Jednotlivé mapové podklady bylo potřeba na základě stávající databáze ArcČR 500 georeferencovat do systému S-JTSK. Počet vlivocích bodů byl zvolen tak, aby podkladová mapa co nejvíce odpovídala stávající vrstvě.

Do digitální databáze tak byly pro další tvorbu modelu dostupnosti postupně doplněny plánované úseky VRT:

1) Praha – Litoměřice – Ústí nad Labem – státní hranice se SRN
2) Praha – Beroun – Plzeň – Domažlice – státní hranice se SRN
3) Praha – Benešov – Jihlava – Brno pro trasování jižním směrem
4) Praha – Kolin – Jihlava – Brno pro trasování východním směrem
5) Brno – Břeclav – státní hranice se Slovenskem a Rakouskem
6) Brno – Přerov – Ostrava – státní hranice s Polskem

Při vlastní digitalizaci jednotlivých tratí bylo nutné dávat velký pozor na jejich zapojení do stávajícího mapového podkladu, aby nedošlo k chybám výpočtům při tvorbě modelů dostupnosti (viz obr. 3).

Obr. č. 3 – Nesprávné (2 uzly) a správné (jeden uzel) napojení linii a nenapojení linii (bez uzlu – jejich vedení „přes sebe“).

5.2 Konstrukce network datasetu a síťové analýzy

Základem pro výpočet dostupností je tzv. model dostupnosti. Ten je charakterizován datovou sadou (v prostředí GIS tzv. dataset) digitálních vektorových dat, reprezentující dopravní síť (v tomto případě železniční) a obsahující mimo uzly také adekvátně
zvolené atributy – průměrné rychlosti, a tedy čas potřebný k překonání dané vzdálenosti. Tyto atributy umožní konkrétnímu softwaru, aby postupným načítáním náročnosti cesty v jednotlivých úsecích v konečném výsledku nalezl např. nejkratší cestu či sestrojil izochrony (Hudeček a kol. 2011).

Výhodou tvorby modelu dostupnosti je jeho variabilnost pro různé destinace - jednou sestavený model dostupnosti pak může sloužit pro analýzy dostupnosti jakéhokoliv místa v síti (nebo více míst najednou).

Ještě před spuštěním samotné síťové analýzy bylo tedy potřeba vytvořit tzv. Network Dataset. Ten obsahuje veškeré železniční tratě (resp. jejich úseky) a jejich uzly (konce tratí nebo úseků a jejich křížení).

Každý úsek železniční trati měl v atributové tabulce vypočítán konkrétní čas potřebný k projetí úseku buď osobním vlakem nebo rychlíkem nebo vlakem vyšší kvality. Zde jsem vždy zhodnotil typ tratě a čas potřebný pro projetí daného úseku tak reprezentuje nejrychlejší možné spojení dle jízdního řádu. Pro páteřní tratě byl tedy čas vypočítán (a posléze upraven dle reálných jízdních dob z jízdního řádu) pro vlaky kategorie IC/EC, pro regionální tratě pak pro vlaky kategorie Os. Pro VRT pak byly použity plánované rychlosti převzaté z materiálů Ministerstva dopravy ČR.

Pro vlastní síťovou analýzu jsem využil nástroj Network Analyst v prostředí ArcGIS. Tato funkce vypočítá v závislosti na čase potřebném k projetí daného úseku časovou dostupnost mezi Prahou (pro kterou byla celá analýza zpracována) a všemi ostatními železničními stanicemi v síti. Výsledkem však nejsou pouze informace pro jednotlivé body – stanice, nicméně prostředí ArcGIS vytvoří polygony se stejnou časovou dostupností (např. do 30 min, 30-60 min, 60-90 min apod.) v celém území. Zde bych rád podotknul, že se vždy jedná o prostý čas strávený na cestě vlakem – časy přestupů mezi jednotlivými tratěmi a čas pobytu vlaku ve stanici (byť je zohledněn při úpravě jízdní doby vycházející z jízdního řádu) nejsou v této analýze zohledněny. Do výpočtů by ani nebylo správné údaj o čase přestupu mezi jednotlivými vlaky zahrnovat, neboť tento se může ze změnou koncepcie vlakové dopravy či s úpravou poloh jednotlivých vlaků v rámci jízdního řádu měnit.

Postupně jsem vytvořil tři síťové analýzy pro odlišnou železniční síť. První analýza má za cíl popsat výchozí (tedy současný) stav časové dostupnosti na české železniční

Výsledkem všech tří analýz jsou mapy polygonů, reprezentující časovou dostupnost v 30 minutových intervalůch pro celé území Česka. Tyto polygony pak vysvětlují časovou dostupnost ze všech bodů na železniční síti do Prahy. Podobnou siťovou analýzu je možné zpracovat i pro jiné středisko nebo i více středisek najednou (např. krajská města), to ale není cílem této práce. Rád bych zde podotknul, že čas potřebný k dosažení konkrétního bodu v železniční sítě z Prahy platí shodně i opačně pro dosažení Prahy z jakéhokoli místa v síti. Zde pouze záleží na formulaci naší výzkumné otázky – tedy zda zkoumáme dostupnost do centra nebo z centra.

5.3 Výpočet potenciální dostupnosti

Pro výpočet potenciální dostupnosti všech obcí v Česku prostřednictvím železniční dopravy na základě počtu obyvatel a potenciálních pracovních příležitostí byl použit
Tomášem Matternem předem vytvořený skript výpočtu potenciální akcesibility pro zadané bodové vrstvy i (origins), j (destinations) podle zadaného vzorce

$$A_i = \sum_j Weight_j^a \times \exp(-\beta \times TravelTime_{i,j})$$

Tento parametr určuje potenciální význam lokality v závislosti na určené váze, kterou může představovat například počet obyvatel, či počet jiných funkčních zařízení (nemocnice, školy,...) a také v závislosti na cestovním čase vzhledem k ostatním lokalitám. V tomto konkrétním případě vážíme potenciální význam počtem.

Pro vlastní výpočet potenciální dostupnosti byly použity tyto vstupy:

1) Origins – jedná se o bodovou vrstvu, ke které počítáme potenciální dostupnost. Tou je v tomto konkrétním případu bodová vrstva obcí Česka z geodatabáze ArcČR 500 verze 2.0 od firmy ARCDATA Praha, s. r. o. S ohledem na skutečnost, že do každé obce Česka nevede železniční trať, byly vybrány pouze obce železnici obsluhované.

2) Destinations – jedná se o bodovou vrstvu, pro kterou počítáme potenciální dostupnost. Tou je v tomto konkrétním případu bodová vrstva obcí Česka z geodatabáze ArcČR 500 verze 2.0 od firmy ARCDATA Praha, s. r. o. Vrstva byla opět upravena s ohledem na trasování železnice.

4) Impedance – jedná se o atribut dopravní sítě – tedy čas, nicméně v jiných případech se dá počítat i s cenou, vzdáleností a podobně.

5) Weight – jedná se o atribut vrstvy Destinations, který představuje váhu, která je následně brána ve vzorcích pro výpočet – v tomto případě počet obyvatel

Výstupem z této analýzy je nový atribut (v atributové tabulce bodové vrstvy), který představuje hodnotu potenciální akcesibility a je možné ho použít pro následnou vizualizaci tohoto jevu.

Pro vlastní výpočet potenciální dostupnosti je naprosto klíčové stanovení hodnoty parametru β, který ovlivňuje to, jakým poměrem bude započten parametr $weight$, tedy
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

v našem případě počet obyvatel. Hodnota parametru β se volí s ohledem na zvolený model dostupnosti (dálkový, regionální) a je stanovena dle následujícího vztahu:

$$\beta = \frac{\ln(f(TT_{i,j}))}{TT_{i,j}}$$

Pak je možné vypočítat hodnotu β tak, aby veškeré obce v určité časové vzdálenosti (např. 15, 30, 45 minut) byly svojí vahou započteny přesně z 50 %. To umožňuje zohlednit položku těchto bodů (obcí) v rámci dopravní sítě. Zjednodušeně řečeno: body, které se v regionálním modelu budou nacházet v časové vzdálenosti do 30 minut (tzv. halftime) budou započteny hodnotou svojí váhy více než obce, které se v rámci sítě budou nacházet v časové vzdálenosti více než 30 minut. Tento výpočet tedy zohledňuje fakt, že lidé na kratší vzdálenosti cestují více než na delší vzdálenosti. V případě, že aplikujeme dálkový model, budou svojí vahou započteny z 50 % obce ve vzdálenosti přesně 60 minut. Přepočet dalších bodů v rámci celé sítě je analogický regionálnímu modelu. V této práci uvažuji pouze regionální a dálkový model, který počítá s hodnotou „halftime“ 30 resp. 60 minut.

Tab. č. 2 – Stanovení parametru β pro jednotlivé hodnoty „halftime“

<table>
<thead>
<tr>
<th>Halftime hodnota $TT_{i,j}$ (minuty)</th>
<th>β parametr</th>
<th>$TT_{i,j}$ (minuty) když $f(c_{i,j})$ odpovídá 0.75</th>
<th>0.25</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.138629</td>
<td>2.1</td>
<td>10.0</td>
<td>16.6</td>
</tr>
<tr>
<td>10</td>
<td>0.069315</td>
<td>4.2</td>
<td>20.0</td>
<td>33.2</td>
</tr>
<tr>
<td>15</td>
<td>0.046210</td>
<td>6.2</td>
<td>30.0</td>
<td>49.8</td>
</tr>
<tr>
<td>20</td>
<td>0.034657</td>
<td>8.3</td>
<td>40.0</td>
<td>66.4</td>
</tr>
<tr>
<td>30</td>
<td>0.023105</td>
<td>12.5</td>
<td>60.0</td>
<td>99.7</td>
</tr>
<tr>
<td>45</td>
<td>0.015403</td>
<td>18.7</td>
<td>90.0</td>
<td>149.5</td>
</tr>
<tr>
<td>60</td>
<td>0.011552</td>
<td>24.9</td>
<td>120.0</td>
<td>199.3</td>
</tr>
</tbody>
</table>

Zdroj: Spiekerman (2012)
Z tabulky č. 2 vyplývá, že „halftime“ hodnotu 20 minut, tedy destinace vzdálené od sebe přesně 20 minut cestovní doby bude vážená 50 % své hodnoty a bude ji odpovídat hodnota $\beta = 0,034657$. Použití této hodnoty parametru β bude znamenat, že cíle vzdálené 8,3 minuty od daného bodu budou vážené 75 % své hodnoty a cíle vzdálené 66,4 minuty budou vážené pouze 10 % své hodnoty. Graf č. 4 pak ukazuje výsledné váhové křivky pro 7 různých hodnot „halftime“, resp. hodnot β.

\textit{Graf č. 4 – Váhové křivky pro jednotlivé modely dostupnosti}

\begin{center}
\includegraphics[width=0.8\textwidth]{graf_4.png}
\end{center}

\textit{Zdroj:} Spiekerman (2012)

\section{5.4 Další zpracování a vizualizace dat}

K dalšímu zpracování a vizualizaci dat jsem využil výstupy z programu ArcGIS verze 10.1 – pro potřeby interpretace výsledků a názorné prezentace výsledků jsem využil mapové výstupy v kombinaci s přehlednými grafy vytvořenými v MS Excel.

Hlavními výstupy z výpočtů časové dostupnosti byly jednak tři základní mapy reprezentující časovou dostupnost v jednotlivých fázích nebo variantách trasování: první mapa zachycuje časovou dostupnost Prahy z celého území Česka v současnosti (při existenci tranzitních železničních koridorů), další mapa pak zachycuje časovou dostupnost Prahy ve variantě východního trasování RS1 a poslední mapa prezentuje dostupnost Prahy ve variantě jižního trasování RS1. S ohledem na to, že z grafického hlediska mi mapové výstupy z prostředí ArcGIS nevyhovují, byla potřeba je patřičně vizuálně upravit v programech Adobe Photoshop, Adobe Illustrator a Adobe InDesign.
Pro lepší interpretaci výsledků pak každou z map doplňují tabulky, které srovnávají jednotlivé varianty se silniční dopravou a s výchozím stavem.

Pro srovnání dvou uvažovaných variant jsem ještě v prostředí ArcGis vytvořil další dvě mapy, které zachycují změny v časové dostupnosti pro obě varianty mezi výchozím a cílovým stavem. Tyto mapové výstupy nejlépe popisují přínos jednotlivých variant. Obě mapy jsem opět upravil pro jejich nevyhovující vizuální podobu a doplnil vhodnými tabulkami srovnávajícími obě varianty.

Pro vizualizaci výstupů z analýz potenciální dostupnosti jsem stejně jako v předchozím případu využil mapové výstupy z programu ArcGIS (náležitě upravené v Adobe Photoshopu, Illustratoru a InDesignu), které vyjadřují hodnotu (míru) potenciální akcesibility pro obce Česka jednotlivě. Zde je jen důležité zmínit, že tyto údaje je možné prezentovat pouze za obce ležící na konkrétní železniční trati a tudíž nejsou tato data dostupná za celé území jako v případě časové dostupnosti. Takto jsou prezentovány 4 mapové výstupy – pro každou variantu trasování zvláště a navíc reprezentující jiný dopravní model (viz výše). Mapové výstupy jsou pak pro názornost opět doplněny přehlednými tabulkami zpracovanými v MS Excel.
Kapitola 6

Analýza změn časové dostupnosti

6.1 Změny v trasování VRT na území Středočeského kraje a Vysočiny

Trasy rychlých spojení jsou na našem území sledovány de facto stále tytéž již od počátku myšlenky VRT v Česku. Významný rozdíl v pohledu geografů a dopravních inženýrů však panuje v trasování rychlého spojení RS1 na území Středočeského kraje a Vysočiny. V původních představách měla vysokorychlostní trať spojující Prahu s Brnem vycházet z Prahy východním směrem a v oblasti Běchovice - Klánovice opouštět území Prahy. Dále měla pokračovat ve směru I. a III. tranzitního koridoru do Kolína a až zde se stáčet k jihozápadu, z jihu obcházet Havlíčkův Brod a u Jihlavy se blížit k dálnici D1. Podle této pak měla směřovat do Brna (viz obrázek č. 3).

Obr. č. 4 – Varianta trasování VRT na území Středočeského kraje a Vysočiny

Vzhledem k výše uvedeným nedostatkům a navíc vzhledem k podmínkám, které si kraj Vysočina během projednávání trasování VRT stanovil (trasa co nejblíže dálnici D1 a zastavování alespoň části vlaků v Jihlavě) bylo navrženo nové trasování (viz obrázek č. 4). Trať vychází nově z Prahy jihovýchodním směrem ve směru Hostivař – Uhříněves, severně obchází Benešov a v jihovýchodním směru pokračuje kolem Vlašimi přes odbočnou stanici Pelhřimov – Humpolec (napojení Havlíčkova Brodu) směrem na Jihlavu. Jihlava je napojena dvěma sjezdy (jedním ve směru Praha – Třebíč, druhým ve směru Jindřichův Hradec – Brno) do současné železniční stanice Jihlava-město. Dále trať jako u původní varianty již kopíruje trasu dálnice D1 a
Toto trasování je pro kraj Vysočina již přijatelné, a proto je tato varianta sledována jako jediná. Jediným problémem může být projednávání trasování v prostoru mezi dálnicí a Jihlavou (Dvořák 2013 in Randák 2013), kdy se zdá, že pokud nebude trať stavěna jako veřejně prospěšná stavba a nebude direktně nařízený zábor pozemků (Kodet 2013 in Randák 2013), budou se dotčené obce bouřit.

I přes uvedené skutečnosti je dnes stav takový, že jsou zatím územně chráněny obě varianty a výsledné trasování bude vybráno až na základě dalšího prověření obou tras. I z toho důvodu jsou v této práci vždy diskutovány obě varianty.

6.2 Změny časové dostupnosti Prahy

Pomocí modelů dostupnosti byla sledována časová dostupnost celého území Česka do Prahy pro tři varianty – současný stav respektujiící téměř dokončenou sít’ tranzitních železničních koridorů, dále stav po vybudování VRT s variantním vedením říjním směrem (směr Benešov – Vlašim) a naposledy stav po vybudování VRT s variantním vedením říjním východním směrem (směr Kolín – Havlíčkův Brod). Vzhledem k problematice výzkumu však lze celou problematiku otočit a výsledky pak interpretovat i jako dostupnost Česka „z“ Prahy.

Významným problémem při vytváření modelů pro stav s VRT bylo vlastní trasování (proto jsem hodnotil dvě varianty trasování) a nastavení hodnoty času pro projetů daného úseku, neboť tyto hodnoty jsou sice veřejně dostupné, nicméně se jedná o teoretickou jízdní dobu, která nemusí odpovídat realitě.

6.2.1 Dostupnost Prahy v současnosti

Výsledky z modelu časové dostupnosti v současnosti (tedy s téměř dokončenou sítí tranzitních železničních koridorů) názorně prezentuje obrázek č. 5. Tento stav je z hlediska rychlé dostupnosti výhodný prakticky pouze pro sídla napojená na železniční koridory (resp. pro sídla v jejich okolí) a to ještě zdaleka ne ve všech případech. Zde je
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

49

totiž důležité si uvědomit, jakým způsobem jsou koridory modernizovány. Na jedné straně jsou zde tratě (110, 270, 330), které jsou (nebo byly) budovány jako konvenční tratě pro standardní rychlost 160 km/h (s lokálními omezeními). To umožňují převážně rozsáhlé přeložky (Česká Třebová – Zábřeh na Moravě aj.) anebo fakt, že trať neprochází složitým terénem (Břeclav – Přerov aj.). Na druhé straně jsou zde tratě (nebo jejich části), které jsou budovány jako konvenční tratě s předpokládaným provozem vozů s naklápěcí skříní, které umožňují průjezdy oblouky v členitém terénu vyšší rychlostí v porovnání s konvenčními vlaky (Plzeň – Cheb aj.). Podotýkám, že v době vzniku této práce disponuje těmito vozy pouze státní dopravce v počtu 7 kusů a nasazuje je navíc převážně na vlaky mezi Prahou a Ostravou. V neposlední řadě jsou v české železniční sítě zastoupeny i úseky, které jsou optimalizovány v původní stopě bez zvyšování traťové rychlosti s ohledem na budoucí trasování rychlých spojení (Praha – Beroun, Praha – Benešov apod.). Tyto úseky jsou dnes největším kapacitním problémem celé sítě a současně se jedná o úseky s největším negativním dopadem na časovou dostupnost.

Obr. č. 5 – Časová dostupnost Prahy v roce 2015

Zdroj: Jízdní řád (2015), vlastní tvorba
Oblasti s nejhorší časovou dostupností jsou v tomto stavu (jak už bylo uvedeno výše) periferní oblasti z hlediska postavení v železniční síti, jako jsou Chebsko, Karlovarsko, jižní část Jihočeského kraje, Podkrkonoší, Zlinsko, Valašsko a jiné. Výsledky této analýzy také zřetelně prezentují periferie vzhledem k Praze – oblasti, které mají nevýhodnou polohu z hlediska železniční sítě. Tyto oblasti jsou reprezentované převážně jihovýchodní částí kraje Vysočina. Dále se jedná např. o oblast Strakonicka nebo o západ Olomouckého kraje. Vypočtené a skutečné jízdní doby vybraných měst a jejich srovnání se silniční dopravou poskytuje tabulka č. 3.

Z uvedené tabulky jasně vyplývá, že současný stav naprosto nerespektuje představu o moderní rychlé dopravě splňující nároky cestování 21. století, navíc prakticky veškeré hodnoty časové dostupnosti (s výjimkou Ostravy) silně pokulhávají za individuální automobilovou dopravou.

<table>
<thead>
<tr>
<th>Relace</th>
<th>Vlakem dnes</th>
<th>Vlakem dnes dle modelu</th>
<th>Autem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha - Brno</td>
<td>2:37</td>
<td>2:20</td>
<td>1:57</td>
</tr>
<tr>
<td>Praha - Ostrava</td>
<td>3:08</td>
<td>3:10</td>
<td>3:21</td>
</tr>
<tr>
<td>Praha - Plzeň</td>
<td>1:36</td>
<td>1:40</td>
<td>1:05</td>
</tr>
<tr>
<td>Praha – České Budějovice</td>
<td>2:29</td>
<td>2:20</td>
<td>1:45</td>
</tr>
<tr>
<td>Praha – Jihlava</td>
<td>2:43</td>
<td>2:50</td>
<td>1:17</td>
</tr>
<tr>
<td>Praha – Cheb</td>
<td>3:12</td>
<td>3:10</td>
<td>2:08</td>
</tr>
<tr>
<td>Praha – Karlovy Vary</td>
<td>3:16</td>
<td>3:00</td>
<td>1:39</td>
</tr>
</tbody>
</table>

Zdroj: Jízdní řád (2015), Google maps (2015), vlastní tvorba

Nicméně, zde je třeba zmínit, že hodnoty časové dostupnosti pro automobilovou dopravu jsou poněkud zkresleny, protože nereflektují mimořádnosti a zvýšenou hustotu silniční dopravy. Již jen výsledky této analýzy jasně vypovídají o skutečnosti, že Česko potřebuje kvalitní železniční infrastrukturu (VRT), která bude tvořit páteřní systém veřejné dopravy.

6.2.2 Dostupnost Prahy po vybudování VRT ve východní variantě

Výsledky z modelu dostupnosti pro tento stav reprezentuje obrázek č. 6. V případě realizace výstavby RS1 východním směrem dojde k výraznému zlepšení časové
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

dostupnosti v periferních oblastech – převážně v oblasti jihozápadní části Plzeňského kraje, na Karlovarsku, dále ve východních Čechách a pochopitelně i v oblastech, k jejichž obsluze mají VRT sloužit primárně – na Ústecku, na Brněnsku, v centrální části kraje Vysočina a ve východní části Středočeského kraje. Srovnání hodnot současné časové dostupnosti a očekávané teoretické dostupnosti nabízí tabulka č. 4.

Je však důležité si uvědomit, že daný model časové dostupnosti je pouze teoretický a nezohledňuje konkrétní přepravní vazby (přestupy, návaznosti vlaků), které závisí na konkrétním dopravním konceptu. Dá se též předpokládat snížení počtu vlaků na páteřní trase železničních koridorů mezi Prahou a Českou Třebovou, neboť většina dálkových vlaků bude s nejvyšší pravděpodobností převedena na RS1.

Obr. č. 6 – Časová dostupnost Prahy po vybudování VRT (východní varianta)

Zdroj: Jízdní řád (2015), vlastní tvorba

V případě této varianty nejvíce získá z hlediska časové dostupnosti Kolín a Hradec Králové. Je však třeba si uvědomit, že obě uvedená města však mají dnes konkurenceschopnou (v případě Kolína vysoce konkurenceschopnou) jízdní dobu vlaku oproti automobilové dopravě a s ohledem na dobudovanou dálniční sít’ směrem do
východních Čech se nedá počítat se změnou časové dostupnosti automobilovou dopravou.

Tab. č. 4 – Srovnání jízdních dob pro vybrané relace (východní varianta)

<table>
<thead>
<tr>
<th>Relace</th>
<th>Vlakem dnes</th>
<th>Vlakem dle modelu</th>
<th>Autem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha - Brno</td>
<td>2:37</td>
<td>0:55</td>
<td>1:57</td>
</tr>
<tr>
<td>Praha - Ostrava</td>
<td>3:08</td>
<td>2:10</td>
<td>3:21</td>
</tr>
<tr>
<td>Praha - Plzeň</td>
<td>1:36</td>
<td>0:45</td>
<td>1:05</td>
</tr>
<tr>
<td>Praha – České Budějovice</td>
<td>2:29</td>
<td>2:20</td>
<td>1:45</td>
</tr>
<tr>
<td>Praha – Jihlava</td>
<td>2:43</td>
<td>0:45</td>
<td>1:17</td>
</tr>
<tr>
<td>Praha – Kolin</td>
<td>0:42</td>
<td>0:25</td>
<td>0:53</td>
</tr>
<tr>
<td>Praha – Karlovy Vary</td>
<td>3:16</td>
<td>2:00</td>
<td>1:39</td>
</tr>
<tr>
<td>Praha – Zlín</td>
<td>3:57</td>
<td>2:00</td>
<td>2:47</td>
</tr>
<tr>
<td>Praha – Hradec Králové</td>
<td>1:40</td>
<td>1:10</td>
<td>1:14</td>
</tr>
</tbody>
</table>

Zdroj: Jízdní řád (2015), Google maps (2015), vlastní tvorba

Významnou nevýhodou tohoto trasování je zhoršení obsloužení oblasti jižní části Středočeského kraje a nenapojení jižní části III. tranzitního koridoru u Benešova na kapacitní rychlou trať. Proto i z uvedené tabulky vyplývá, že se časová dostupnost Jihočeského kraje a vlastních Českých Budějovic nezmění.

Rád bych zde ještě uvedl, že významné zkrácení jízdních dob v relacích Praha – Brno, Praha – Ústí nad Labem a Praha – Plzeň je logické s ohledem na význam a trasování rychlých spojení a není třeba se jimi detailně zabývat.

6.2.3 Dostupnost Prahy po vybudování VRT v jižní variantě

Výsledky z modelu dostupnosti pro tento stav reprezentuje obrázek č. 7. V případě realizace výstavby RS1 jižním směrem dojde k výraznému zlepšení časové dostupnosti taktéž v periferních oblastech – v tomto případě kromě jihozápadu Plzeňského kraje, také v rozsáhlé oblasti Jihočeského a v jižní části Středočeského kraje a dále taktéž jako v předchozí variantě na Ústecku a poměrně výrazně i v širší oblasti středu a jihovýchodu kraje Vysočina. Tyto změny názorně prezentuje tabulka č. 5.
Obr. č. 7 – Časová dostupnost Prahy po vybudování VRT (jižní varianta)

Zdroj: Jízdní řád (2015), vlastní tvorba

Tab. č. 5 – Srovnání jízdních dob pro vybrané relace (jižní varianta)

<table>
<thead>
<tr>
<th>Relace</th>
<th>Vlakem dnes</th>
<th>Vlakem dle modelu</th>
<th>Autem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha - Brno</td>
<td>2:37</td>
<td>0:55</td>
<td>1:57</td>
</tr>
<tr>
<td>Praha - Ostrava</td>
<td>3:08</td>
<td>2:10</td>
<td>3:21</td>
</tr>
<tr>
<td>Praha - Plzeň</td>
<td>1:36</td>
<td>0:45</td>
<td>1:05</td>
</tr>
<tr>
<td>Praha – České Budějovice</td>
<td>2:29</td>
<td>1:25</td>
<td>1:45</td>
</tr>
<tr>
<td>Praha – Jihlava</td>
<td>2:43</td>
<td>0:45</td>
<td>1:17</td>
</tr>
<tr>
<td>Praha – Kolin</td>
<td>0:42</td>
<td>0:40</td>
<td>0:53</td>
</tr>
<tr>
<td>Praha – Karlovy Vary</td>
<td>3:16</td>
<td>2:00</td>
<td>1:39</td>
</tr>
<tr>
<td>Praha – Zlín</td>
<td>3:57</td>
<td>2:00</td>
<td>2:47</td>
</tr>
<tr>
<td>Praha – Hradec Králové</td>
<td>1:40</td>
<td>1:15</td>
<td>1:14</td>
</tr>
</tbody>
</table>

Zdroj: Jízdní řád (2015), Google maps (2015), vlastní tvorba

Z uvedené tabulky jasně vyplývá, že největší změna v dostupnosti se bude opravdu týkat hlavně Jihočeského kraje, oproti tomu dostupnost Kolína a Hradce Králové se
prakticky nezmění. K tomuto tématu je důležité také zmínit, že v projektech plánovaných k realizaci ve střednědobém horizontu je těž optimalizace traťového úseku Praha – Lysá nad Labem na rychlost až 140 km/h, na který navazuje úsek Lysá nad Labem – Velký Osek, který již dnes umožňuje osobním vlakům rychlost 120 km/h a na tento úsek navazuje optimalizace traťového úseku Velký Osek – Hradec Králové s předpokládaným zvýšením rychlosti na 100 – 120 km/h a s plánovanou přeložkou mějející pomalý úsek této trati u Velkého Oseku. Tyto stavby sebou přinesou významné zkrácení jízdních dob v relaci Praha – Hradec Králové až k systémovému času 1:00 hod a napomohou též lepšímu napojení Kolína. Další plánovanou stavbou v dlouhodobém horizontu je nová železniční trať Praha – Poříčany – Kolín přibližně kopírující trasu dálnice D11, která umožní nové komfortní rychlé napojení nejen Kolína, ale též východních Čech a Pardubicka na metropolitní region Prahy.

S ohledem na tyto skutečnosti je důležité si uvědomit, že z hlediska časové dostupnosti hrají významnou roli změny této veličiny převážně v oblastech Jihočeského a jižní části Středočeského kraje, které nemají vypracovaný žádný alternativní plán napojení na kapacitní železniční trať v případě nerealizace jižní varianty RS1.

6.2.4 Srovnání časové dostupnosti pro východní a jižní variantu

Srovnání dvou mnou posuzovaných variant přehledně dokládají obrázky č. 8 a 9. Je zcela evidentní, že globální změna časové dostupnosti v rámci Česka nastane v obou uvedených případech – zlepšení (tj. zkrácení časové dostupnosti Prahy) v případě varianty východní (tj. RS1 ve směru Kolín) nastane na 37 112 km², což je přibližně 47 % území Česka, přičemž zkrácení časové dostupnosti o více než 1 hodinu nastane na území o rozloze 5 246 km², které zabírá přibližně 6,6 % území Česka. V případě jižní varianty (tj. trasování RS1 ve směru Benešov) dojde ke zkrácení časové dostupnosti na území 41 656 km², což odpovídá přibližně 52,8 % celkové území a zkrácení časové dostupnosti o více než 1 hodinu pak nastane na ploše o rozloze 9 790 km², které zabírá přibližně 12,4% území Česka (viz tabulka č. 6). Tyto hodnoty podporují z hlediska trasování RS1 jižní variantu směrem na Benešov a Vlašim.
Tab. č. 6 – Srovnání změn časové dostupnosti u posuzovaných variant

<table>
<thead>
<tr>
<th>Varianta</th>
<th>Zkrácení absolutně km²</th>
<th>%</th>
<th>Zkrácení o více než 30 min km²</th>
<th>%</th>
<th>Zkrácení o více než 1 hodinu km²</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Východní</td>
<td>37 112</td>
<td>47</td>
<td>15 689</td>
<td>19,9</td>
<td>5 246</td>
<td>6,6</td>
</tr>
<tr>
<td>Jižní</td>
<td>41 656</td>
<td>52,8</td>
<td>20 079</td>
<td>25,5</td>
<td>9 790</td>
<td>12,4</td>
</tr>
</tbody>
</table>

Zdroj: analýzy dostupnosti, vlastní tvorba

Obr. č. 8 – Změna časové dostupnosti (východní varianta)

Zdroj: analýzy dostupnosti, vlastní tvorba

Pro lepší vizualizaci a názornost slouží následující obrázky. Obrázek č. 7 reprezentuje změnu časové dostupnosti mezi výchozím stavem, tedy současností, kdy jsou téměř dokončené tranzitní železniční koridory, a finální podobou Rychlých spojení, přičemž uvažuje východní trasování RS 1 ve směru Praha – Kolín – Jihlava – Brno. Z obrázku jasně vyplývá, že zlepšení časové dostupnosti se týká hlavně území západu Čech a jižní Moravy a dále území Vysočiny. Další zlepšení (zkrácení časové dostupnosti) se pak týká prakticky pouze oblasti východních Čech a Podkrkonoší a pochopitelně i oblasti středního Polabí (Kolín a okolí). Jak již jsem uvedl výše, zkrácení jízdních dob v oblasti Polabí a východních Čech však není tak markantní v porovnání s výchozím stavem (viz tabulka č. 4, str. 50).
Obrázek č. 9 pak reprezentuje změnu časové dostupnosti mezi výchozím stavem a finální podobou Rychlých spojení, nicméně v této variantě uvažuje jižní trasování RS 1 ve směru Praha – Benešov – Jihlava – Brno.

Obr. č. 9 – Změna časové dostupnosti (jižní varianta)

![Mapa změn časové dostupnosti](image)

Zdroj: analýzy dostupnosti, vlastní tvorba

Ve vztahu k regionálním centrům se časová dostupnost Prahy projeví i v absolutní hodnotě časové úspory. Změny časové dostupnosti Prahy pro mezoregionální centra (krajská města) prezentuje tabulka č. 7, která srovnává výchozí stav s tranzitními koridory a obě varianty trasování RS1.
Změny časové dostupnosti Prahy z krajských měst u posuzovaných variant v hod

<table>
<thead>
<tr>
<th>Město</th>
<th>Dnes</th>
<th>Východní varianta</th>
<th>Jižní varianta</th>
<th>Rozdíl východní varianta</th>
<th>Rozdíl jižní varianta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plzeň</td>
<td>1:40</td>
<td>0:45</td>
<td>0:45</td>
<td>0:55</td>
<td>0:55</td>
</tr>
<tr>
<td>Karlovy Vary</td>
<td>2:40</td>
<td>2:00</td>
<td>2:00</td>
<td>2:00</td>
<td>2:00</td>
</tr>
<tr>
<td>České Budějovice</td>
<td>2:10</td>
<td>2:10</td>
<td>1:25</td>
<td>0:00</td>
<td>0:45</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>1:00</td>
<td>0:40</td>
<td>0:40</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Liberec</td>
<td>2:25</td>
<td>2:15</td>
<td>2:15</td>
<td>2:15</td>
<td>2:15</td>
</tr>
<tr>
<td>Hradec Králové</td>
<td>1:40</td>
<td>1:10</td>
<td>1:40</td>
<td>0:30</td>
<td>0:30</td>
</tr>
<tr>
<td>Pardubice</td>
<td>1:00</td>
<td>0:45</td>
<td>1:00</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Jihlava</td>
<td>2:00</td>
<td>0:45</td>
<td>0:45</td>
<td>1:15</td>
<td>1:15</td>
</tr>
<tr>
<td>Brno</td>
<td>2:40</td>
<td>0:55</td>
<td>0:55</td>
<td>1:45</td>
<td>1:45</td>
</tr>
<tr>
<td>Zlín</td>
<td>3:30</td>
<td>2:00</td>
<td>2:00</td>
<td>1:30</td>
<td>2:30</td>
</tr>
<tr>
<td>Olomouc</td>
<td>2:10</td>
<td>1:30</td>
<td>1:30</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Ostrava</td>
<td>3:10</td>
<td>2:10</td>
<td>2:10</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>krajská města celkem</td>
<td></td>
<td></td>
<td></td>
<td>9:00</td>
<td>9:00</td>
</tr>
</tbody>
</table>

Zdroj: analýzy dostupnosti, vlastní tvorba

Z uvedené tabulky jasně vyplývá, že při posuzování časové dostupnosti Prahy z krajských měst, dojde v absolutní hodnotě ke stejnému zlepšení (tj. zkrácení času) u obou zkoumaných variant. Jak již bylo uvedeno výše, v případě východní varianty nejvíce získají Hradec Králové a Pardubice, v případě jižní varianty pak významně České Budějovice.

Změny časové dostupnosti Prahy z center nižšího řádu (okresní města) pak prezentuje tabulka v příloze č. 1. Z té jasně vyplývá, že při posuzování dostupnosti Prahy z okresních měst dojde opět ke zlepšení u obou variant, nicméně v případě jižní varianty je nárůst zlepšení vyšší než v případě východní varianty. V případě východní varianty dojde v absolutní hodnotě ke zlepšení dostupnosti Prahy z okresních měst o 40 hod a 40 min, v případě jižní varianty pak o 45 hod a 20 min. Největší časové zisky mají v případě jižní varianty okresy Jihočeského kraje, v případě východní varianty pak okresy kraje Pardubického a Královéhradeckého. U obou posuzovaných variant mají pak největší časové zisky z Prahy nejvíce vzdálená centra krajů Plzeňského, Jihomoravského, Zlínského a Moravskoslezského. Pro představu o změně časové
dostupnosti v dalších centrech slouží výše uvedená tabulka č. 6 a obrázky č. 8 a 9. Z hlediska prosté časové dostupnosti je tedy vhodnější variantou k realizaci jižní trasování RS 1, neboť zlepší časovou dostupnost na větším území Česka.
Kapitola 7

Analýza změn potenciální dostupnosti

7.1 Změny potenciální dostupnosti

Pomocí modelů potenciální dostupnosti byl sledován stav časové dostupnosti vážené počtem obyvatel obcí celého území Česka pro tři varianty – současný stav respektující téměř dokončenou síť tranzitních železničních koridorů, dále stav po vybudování VRT s variantním vedením RS1 jižním směrem (směr Benešov – Vlašim) a naposledy stav po vybudování VRT s variantním vedením RS1 východním směrem (směr Kolín – Havlíčkův Brod). Modely byly pro každou variantu vytvořeny na základě odlišného konceptu dopravní obsluhy. První model vždy uvažoval tzv. regionální systém obsluhy území, přičemž limitní časovou vzdáleností pro dané výpočty bylo 30 minut jízdy vlaku (sídla v dosahu 30 minut přispívají do hodnoty potenciální dostupnosti právě polovinou své váhy). Druhý model pak uvažoval tzv. dálkový systém obsluhy území, přičemž limitní časovou vzdáleností pro dané výpočty bylo 60 minut jízdy vlaku. Tyto hodnoty byly stanoveny s ohledem na vzdálenost Jihlavy (cca 45 – 60 minut) a také s ohledem na skutečnost, že lidé cestují nejčastěji do časové vzdálenosti 30 minut. Oproti prostým výpočtům časové dostupnosti prezentují výsledky z těchto analýz vzájemnou potenciální dostupnost všech obcí v rámci celé železniční sítě a nejedná se tedy pouze o dostupnost do hlavního města nebo naopak.

Hodnoty časové dostupnosti, se kterou GIS pracuje, byly využity z modelů prosté časové dostupnosti. Odpadnou tak problémy při tvorbě network datasetu, nicméně je třeba při interpretaci výsledků vzít v úvahu hodnoty časové dostupnosti využívané při výpočtech. Tyto hodnoty jsou stejně jako v případě analýz časové dostupnosti částečně teoretické, neboť neuvážují dobu čekání vlaku ve stanici, čas na přestup apod. S ohledem na skutečnost, že pro všechny výpočty potenciální dostupnosti byl použit
stejný network dataset, který jsem pouze modifikoval z hlediska jiného trasování VRT (resp. tranzitních koridorů), jedná se o srovnatelné výsledky, neboť drobné zkreslení bude u všech 6 modelů stejné.

Zde bych rád ještě uvedl, že hodnoty potenciální dostupnosti ve výpočtech nabývají hodnot v řádech deseti milionů, pro vizualizaci a prezentaci v tabulkách jsem všechny výsledky vydělil číslem 1 000, aby byly výsledky jednoduše porovnatelné a v tabulkách přehledné. Vzhledem k tomu, že výpočty potenciální dostupnosti jsou přímo vázané na konkrétní body ležící na dopravní síti (v tomto případě železniční), nejedná se oproti výpočtům časové dostupnosti o výsledky za celé Česko, ale pouze za obce mající železniční stanici nebo zastávku.

7.2 Potenciální dostupnost obcí Česka po železnici v současnosti

Výsledky z modelu potenciální dostupnosti v současnosti (tedy s téměř dokončenou sítí tranzitních železničních koridorů), který uvažuje tzv. regionální dopravní model, názorně prezentuje obrázek č. 10. 100% hodnotou použitou při vizualizaci výsledků je průměrný potenciál všech obcí – 80 354. V případě, kdy za některé obce nejsou data, jedná se o obce, které nemají železniční stanici nebo zastávku.

Z tohoto obrázku jasně vyplývá, že v případě regionálního modelu dosahují nejvyšších hodnot potenciální dostupnosti obce v zázemí Prahy a Praha jako taková. Vysoké hodnoty potenciální dostupnosti Prahy ve všech modelech jsou vyvolány její relativně centrální polohou v rámci dopravní sítě. Obce v zázemí Prahy pak logicky dosahují vyšších hodnot potenciální dostupnosti právě z důvodů vysoké populacní velikosti Prahy, ale také z důvodu své geografické blízkosti k hlavnímu městu. Tyto výsledky odpovídají také skutečnosti, že cestující na kratší vzdálenosti cestují více, než cestující na delší vzdálenosti – s rostoucí vzdáleností, resp. časem klesá chuť cestovat.

Obrázek č. 11 názorně prezentuje výsledky z modelu potenciální dostupnosti v současnosti (podobně jako obr. č. 10), nicméně uvažuje s tzv. dálkovým modelem dostupnosti. Tento model počítá s rychlejší dálkovou dopravou – hodnotou 50 % své populacní velikosti pak jsou započteny obce (resp. železniční stanice) vzdálené od sebe 60 minut jízdy vlakem.
Obr. č. 10 – Potenciální dostupnost obcí Česka v roce 2015 (regionální model)

Zdroj: analýzy dostupnosti, vlastní tvorba

Obr. č. 11 – Potenciální dostupnost obcí Česka v roce 2015 (dálkový model)

Zdroj: analýzy dostupnosti, vlastní tvorba
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

Z tohoto modelu vyplývá, že v případě rychlejší dálkové dopravy získají na atraktivitě obce ve větší vzdálenosti od Prahy – rozsáhlé oblasti severovýchodu Středočeského kraje, ale těž oblast Benešovska a dále, z hlediska své polohy v dopravní síti a populační velikosti o Plzeň a obce v jejím zázemí a Brno. Zajímavým jevem je, že se prakticky nemění potenciální dostupnost Ostravy – k tomu dochází především proto, že se z hlediska české železniční sítě nachází ve významně excentrické poloze vůči dalším populačně velkým městům Česka.

Tab. č. 8 – Hodnota potenciální dostupnosti krajských měst a její změna

<table>
<thead>
<tr>
<th>Město</th>
<th>Potenciální dostupnost – regionální model</th>
<th>Potenciální dostupnost – dálkový model</th>
<th>Nárůst potenciálu o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha</td>
<td>82 124,23</td>
<td>82 849,16</td>
<td>0,87 %</td>
</tr>
<tr>
<td>Plzeň</td>
<td>81 312,67</td>
<td>82 384,74</td>
<td>1,32 %</td>
</tr>
<tr>
<td>Karlovy Vary</td>
<td>78 540,41</td>
<td>80 992,00</td>
<td>3,12 %</td>
</tr>
<tr>
<td>České Budějovice</td>
<td>78 550,65</td>
<td>81 141,20</td>
<td>3,30 %</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>80 501,89</td>
<td>82 030,83</td>
<td>1,89 %</td>
</tr>
<tr>
<td>Liberec</td>
<td>79 492,65</td>
<td>81 357,02</td>
<td>2,35 %</td>
</tr>
<tr>
<td>Hradec Králové</td>
<td>80 591,91</td>
<td>82 011,54</td>
<td>1,76 %</td>
</tr>
<tr>
<td>Pardubice</td>
<td>81 051,36</td>
<td>82 269,64</td>
<td>1,50 %</td>
</tr>
<tr>
<td>Jihlava</td>
<td>79 396,74</td>
<td>81 404,25</td>
<td>2,58 %</td>
</tr>
<tr>
<td>Brno</td>
<td>80 878,07</td>
<td>82 298,58</td>
<td>1,75 %</td>
</tr>
<tr>
<td>Zlín</td>
<td>79 363,48</td>
<td>81 475,80</td>
<td>2,66 %</td>
</tr>
<tr>
<td>Olomouc</td>
<td>79 629,44</td>
<td>81 438,17</td>
<td>2,27 %</td>
</tr>
<tr>
<td>Ostrava</td>
<td>79 188,89</td>
<td>80 312,55</td>
<td>1,41 %</td>
</tr>
</tbody>
</table>

Zdroj: analýzy dostupnosti, vlastní tvorba

Z uvedené tabulky a map na obrázcích č. 10 a 11 vyplývá, že v případě dálkového modelu se nejvíce projeví změna potenciální dostupnosti u Českých Budějovic a Karlových Varů, vzhledem k tomu, že v takovém případě tzv. dosáhnou na populačně
velkou Prahu. Nejméně se změna potenciální dostupnosti projeví v případě Prahy, neboť ta těží ze své polohy ve všech zkoumaných modelech.

7.3 Potenciální dostupnost obcí Česka po výstavbě VRT – regionální model

Výsledky z modelů potenciální dostupnosti po dostavbě VRT ve východní a jižní variantě, který uvažuje tzv. regionální dopravní model, názorně prezentují obrázky č. 12 a 13. 100% hodnotou použitou při vizualizaci výsledků je průměrný potenciál všech obcí – 80 354. V případě, kdy za některé obce nejsou data, jedná se o obce, které nemají železniční stanici nebo zastávku.

Obr. č. 12 – Potenciální dostupnost obcí Česka po výstavbě VRT ve východní variantě (regionální model)

Zdroj: analýzy dostupnosti, vlastní tvorba
V případě regionálního modelu, který z hlediska populační velikosti nejvíce zohledňuje obce vzdálené do 30 minut časové dostupnosti, nejvíce získají v případě východní varianty RS1 obce na severovýchod od Prahy, ale také poměrně významná oblast západu Pardubického kraje a jižní části kraje Královéhradeckého. Významně se změní potenciální dostupnost Plzně, která v obou variantách získá kvalitní a rychlé spojení s Prahou, jehož existence se promítne právě i v regionálním modelu.

Obr. č. 13 – Potenciální dostupnost obcí Česka po výstavbě VRT v jižní variantě (regionální model)

Zdroj: analýzy dostupnosti, vlastní tvorba

V případě aplikace regionálního modelu na železniční síť zahrnující i RS 1 v jižní variantě mají pak oproti východní variantě největší zisky potenciálu dostupnosti oblasti České Sibiře a jižní oblasti Jihočeského kraje. V této variantě se neprojeví markantní nárůst potenciálu dostupnosti u obcí ve východních Čechách.

Z tabulky č. 9 na následující straně pak jasně vyplývají změny v potenciální dostupnosti pro všechny krajská města Česka. V případě východní varianty RS 1 je nevětší změna potenciálu dostupnosti u měst Pardubice a Hradec Králové a pochopitelně i u měst v současnosti hůře dostupných – Zlín a Jihlava. V případě jižní varianty RS 1 se pak změna nejvíce projeví u Českých Budějovic a stejně tak jako v případě východní varianty u Zlína a Jihlavy. Regionální model obsluhy nejvíce
nahrává ve východní variantě Karlovním Varům, v jižní variantě pak Českým Budějovicím.

Tab. č. 9 – Hodnota potenciální dostupnosti krajských měst a její změna (regionální model)

<table>
<thead>
<tr>
<th>Město</th>
<th>Potenciální dostupnost – regionální model (výchozí stav)</th>
<th>Potenciální dostupnost – regionální model (vých. varianta)</th>
<th>Změna potenciálů</th>
<th>Potenciální dostupnost – regionální model (jižní varianta)</th>
<th>Změna potenciálů</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha</td>
<td>82 124,23</td>
<td>82 741,12</td>
<td>0,75 %</td>
<td>82 738,11</td>
<td>0,74 %</td>
</tr>
<tr>
<td>Plzeň</td>
<td>81 312,67</td>
<td>82 411,54</td>
<td>1,35 %</td>
<td>82 359,90</td>
<td>1,28 %</td>
</tr>
<tr>
<td>Karlovy Vary</td>
<td>78 540,41</td>
<td>79 926,00</td>
<td>1,76 %</td>
<td>79 123,55</td>
<td>0,74 %</td>
</tr>
<tr>
<td>České Budějovice</td>
<td>78 550,65</td>
<td>79 441,17</td>
<td>1,13 %</td>
<td>80 562,72</td>
<td>2,56 %</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>80 501,89</td>
<td>81 110,88</td>
<td>0,75 %</td>
<td>81 024,12</td>
<td>0,64 %</td>
</tr>
<tr>
<td>Liberec</td>
<td>79 492,65</td>
<td>80 377,82</td>
<td>1,11 %</td>
<td>80 564,45</td>
<td>1,11 %</td>
</tr>
<tr>
<td>Hradec Králové</td>
<td>80 591,91</td>
<td>82 618,24</td>
<td>2,51 %</td>
<td>81 788,13</td>
<td>1,48 %</td>
</tr>
<tr>
<td>Pardubice</td>
<td>81 051,36</td>
<td>82 599,24</td>
<td>1,90 %</td>
<td>82 034,11</td>
<td>1,21 %</td>
</tr>
<tr>
<td>Jihlava</td>
<td>79 396,74</td>
<td>81 704,26</td>
<td>2,90 %</td>
<td>81 653,87</td>
<td>2,84 %</td>
</tr>
<tr>
<td>Brno</td>
<td>80 878,07</td>
<td>82 235,98</td>
<td>1,67 %</td>
<td>82 171,99</td>
<td>1,59 %</td>
</tr>
<tr>
<td>Zlín</td>
<td>79 363,48</td>
<td>81 485,12</td>
<td>2,67 %</td>
<td>81 451,92</td>
<td>2,63 %</td>
</tr>
<tr>
<td>Olomouc</td>
<td>79 629,44</td>
<td>81 338,15</td>
<td>2,14 %</td>
<td>81 293,51</td>
<td>2,09 %</td>
</tr>
<tr>
<td>Ostrava</td>
<td>79 188,89</td>
<td>80 362,62</td>
<td>1,48 %</td>
<td>80 259,18</td>
<td>1,35 %</td>
</tr>
</tbody>
</table>

Zdroj: analýzy dostupnosti, vlastní tvorba

Celková změna potenciálu za všechny posuzované obce v případě východní varianty je z hodnoty 132 855 112,81 na hodnotu 134 967 575,21, což znamená nárůst potenciálu o 1,59 %. V případě jižní varianty je změna z hodnoty 132 855 112,81 na hodnotu 134 249 520,78, což znamená nárůst potenciálu o 1,05 %. Z hlediska změny potenciálu dostupnosti se tak jako výhodnější varianty při aplikaci regionálního modelu jeví východní trasování RS 1, která zvýšuje dostupnost v rámci tradičního jádra osídlení v severní „polovině“ Čech.
7.4 Potenciální dostupnost obcí Česka po výstavbě VRT – dálkový model

Výsledky z modelů potenciální dostupnosti po dostavbě VRT ve východní a jižní variantě, který uvažuje tzv. dálkový dopravní model, názorně prezentují obrázky č. 14 a 15. 100% hodnotou použitou při vizualizaci výsledků je průměrný potenciál všech obcí – 80 354. V případě, kdy za některé obce nejsou data, jedná se o obce, které nemají železniční stanici nebo zastávku.

Obr. č. 14 – Potenciální dostupnost obcí Česka po výstavbě VRT ve východní variantě (dálkový model)

Zdroj: analýzy dostupnosti, vlastní tvorba

V případě aplikace dálkového modelu, který z hlediska populační velikosti nejvíce zohledňuje obce vzdálené do 60 minut časové dostupnosti od sebe, nejvíce získají v případě východní varianty RS1 obce na severovýchod od Prahy, ale také poměrně významná oblast západu Pardubického kraje a jižní části kraje Královéhradeckého. Významně se změní potenciální dostupnost Plzně, která v obou variantách získá kvalitní a rychlé spojení s Prahou, jehož existence se promítne právě i v regionálním modelu.
Dále se významně projeví nárůst potenciálu dostupnosti u Brna a obcí v jeho zázemí, oproti tomu se významně sníží potenciál u obcí Jihočeského kraje.

Obr. č. 15 – Potenciální dostupnost obcí Česka po výstavbě VRT v jižní variantě (dálkový model)

Zdroj: analýzy dostupnosti, vlastní tvorba

Při aplikaci dálkového modelu na železniční síť zahrnující i RS 1 v jižní variantě mají pak oproti východní variantě největší zisky potenciálu dostupnosti oblasti České Sibiře a jižní oblasti Jihočeského kraje. Vzroste také potenciální dostupnost Plzně, projeví se nárůst potenciálu dostupnosti u Brna a obcí v jeho zázemí. V této variantě se neprojeví markantní nárůst potenciálu dostupnosti u obcí ve východních Čechách.

Z tabulky č. 10 na následující straně pak jasně vyplývají změny v potenciální dostupnosti pro všechny krajská města Česka. V případě východní varianty RS 1 stejně jako u regionálního modelu je nevětší změna potenciálu dostupnosti u měst Pardubice a Hradec Králové a pochopitelně i u měst v současnosti hůře dostupných – Zlín a Jihlava. V případě jižní varianty RS 1 se pak změna nejvíce projeví v Českých Budějovicích a stejně tak jako v případě východní varianty u Zlína a Jihlav. Dálkový model nejvíce nahrává v délce variantě Hradci Králové, který se tak stane snáze dostupný z oblasti jižní Moravy, v jižní variantě Českým Budějovicím, neboť se zlepší jejich dostupnost z celého Česka.
Tab. č. 10 – Hodnota potenciální dostupnosti krajských měst a její změna (dálkový model)

<table>
<thead>
<tr>
<th>Město</th>
<th>Potenciální dostupnost – dálkový model (výchozí stav)</th>
<th>Potenciální dostupnost – dálkový model (vých. varianta)</th>
<th>Změna potenciálu o</th>
<th>Potenciální dostupnost – dálkový model (jižní varianta)</th>
<th>Změna potenciálu o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha</td>
<td>82 849,16</td>
<td>83 531,72</td>
<td>0,82 %</td>
<td>83 448,19</td>
<td>0,72 %</td>
</tr>
<tr>
<td>Plzeň</td>
<td>82 384,74</td>
<td>83 499,54</td>
<td>1,35 %</td>
<td>83 458,79</td>
<td>1,30 %</td>
</tr>
<tr>
<td>Karlovy Vary</td>
<td>80 992,00</td>
<td>81 826,30</td>
<td>1,03 %</td>
<td>81 823,25</td>
<td>1,02 %</td>
</tr>
<tr>
<td>České Budějovice</td>
<td>81 141,20</td>
<td>82 200,67</td>
<td>1,30 %</td>
<td>83 202,32</td>
<td>2,54 %</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>82 030,83</td>
<td>82 965,85</td>
<td>1,13 %</td>
<td>82 824,82</td>
<td>0,97 %</td>
</tr>
<tr>
<td>Liberec</td>
<td>81 357,02</td>
<td>82 390,52</td>
<td>1,27 %</td>
<td>82 241,51</td>
<td>1,09 %</td>
</tr>
<tr>
<td>Hradec Králové</td>
<td>82 011,54</td>
<td>83 781,26</td>
<td>2,15 %</td>
<td>82 848,37</td>
<td>1,02 %</td>
</tr>
<tr>
<td>Pardubice</td>
<td>82 269,64</td>
<td>83 891,28</td>
<td>1,97 %</td>
<td>83 139,10</td>
<td>1,06 %</td>
</tr>
<tr>
<td>Jihlava</td>
<td>81 404,25</td>
<td>83 144,76</td>
<td>2,14 %</td>
<td>83 231,78</td>
<td>2,24 %</td>
</tr>
<tr>
<td>Brno</td>
<td>82 298,58</td>
<td>83 635,18</td>
<td>1,62 %</td>
<td>83 471,39</td>
<td>1,43 %</td>
</tr>
<tr>
<td>Zlín</td>
<td>81 475,80</td>
<td>83 281,12</td>
<td>2,21 %</td>
<td>83 151,27</td>
<td>2,06 %</td>
</tr>
<tr>
<td>Olomouc</td>
<td>81 438,17</td>
<td>83 289,95</td>
<td>2,27 %</td>
<td>83 213,01</td>
<td>2,18 %</td>
</tr>
<tr>
<td>Ostrava</td>
<td>80 312,55</td>
<td>81 442,02</td>
<td>1,41 %</td>
<td>81 339,98</td>
<td>1,28 %</td>
</tr>
</tbody>
</table>

Zdroj: analyzy dostupnosti, vlastní tvorba

Celková změna potenciálu za všechny posuzované obce v případě jižní varianty je z hodnoty 135 515 582,28 na hodnotu 138 054 138,04, což znamená nárůst potenciálu o 1,87 %. V případě jižní varianty je změna z hodnoty 135 515 582,28 na hodnotu 137 658 182,57, což znamená nárůst potenciálu o 1,58 %. Z hlediska změny potenciálu dostupnosti se tak jako výhodnější varianta při aplikaci dálkového modelu jeví východní trasování RS 1.

Jak vyplývá z obrázku č. 14 a 15, dojde v případě jižní varianty u dálkového modelu k výraznějšímu zvýšení počtu obcí s nadprůměrnou hodnotou potenciálu dostupnosti než u varianty východní (65 % obcí s nadprůměrnou hodnotou potenciálu u východní varianty, 73 % obcí u jižní varianty). Z tohoto úhlu pohledu se pak jeví jako výhodnější jižní varianta trasování RS 1.
Kapitola 8
Závěr

Cílem této práce bylo diskutovat rozličné regionální dopady související s výstavbou a provozem vysokorychlostní železnice a dále popsat a prezentovat změny časové dostupnosti Prahy a potenciální dostupnosti obcí Česka. S ohledem na skutečnost, že se realizace VRT v Česku plánuje až ve střednědobém horizontu (dílčí úseky se mají realizovat do roku 2030), regionální dopady nebyly v Česku ve větší míře dosud diskutovány. Nejvýznamnějším regionálním přínosem VRT je změna časové dostupnosti a i z tohoto důvodu se jí zabývala podstatná část této práce. Samotné téma časové dostupnosti je pak doplněno o analýzu změn potenciální dostupnosti.

V první, teoretické, části této práce jsem stručně nastínil historický vývoj výstavby vysokorychlostních železničních systémů na světě a vyzdvihl roli železniční infrastruktury v regionálním rozvoji. Pro zpracování této části jsem využil převážně českou odbornou, ale i populárně naučnou železniční literaturu. Dále jsem se pokusil představit významné regionální dopady související s vysokorychlostní železnicí vyzkoumané v zemích, které systém VRT již nějakou dobu provozuji. Dá se totiž obecně předpokládat, že podobné dopady s sebou přinesou výstavba takového systému v České republice, neboť chování obyvatelstva a změny v podnikatelském prostředí bývají v rozvinutých zemích analogické. Pro zpracování této části jsem použil odbornou převážně cizojazyčnou literaturu. Mezi nejčastěji diskutované regionální dopady patří (kromě zlepšení dopravní obslužnosti) převážně změny v rozístění obyvatelstva a změny podnikatelského prostředí. Krátkou část jsem věnoval fenoménu revitalizace okolí stanic VRT, který je, převážně v zahraniční literatuře, těž hojně zmíněn.
Na teoretickou část navazuje část analytická, která je rozdělena do dvou kapitol. První se věnuje prosté časové dostupnosti. Dostupnost je jednou ze základních charakteristik ekonomiky regionu a může též přispívat k hodnocení postavení regionu na trhu práce. Kvalitní dopravní dostupnost pak má své nezastupitelné postavení i při vykonávání ekonomicky nezhodnocujících činností lidského života, jako je dostupnost zdravotnictví, školství a kulturních institucí, ale také rozvoj cestovního ruchu apod. Ze všech uvedených důvodů je proto důležité se studiem dostupnosti zabývat a při vyhodnocování vhodnosti trasování VRT na území Česka je tedy důležité věnovat pozornost změnám časové dostupnosti.

Pro tvorbu modelů dostupnosti jsem využil funkcí network datasetu a síťové analýzy v programu ArcGIS. Pro tyto modely však bylo nejprve nutné správně modifikovat mapový podklad (např. odstranit nevyužívané úseky, zkontrolovat topologii, ověřit správné napojení uzlů v síti apod.). Analýzy časové dostupnosti Prahy byly vytvořeny pro tři varianty trasování – první varianta byla analýzou stávajícího stavu (s vybudovanou sítí tranzitních železničních koridorů), druhou variantou byla síť zahrnující VRT v Česku, přičemž trasování RS 1 Praha – Brno bylo uvažováno východním směrem přes Kolín a třetí, poslední, variantou byla síť zahrnující VRT v Česku, přičemž trasování RS 1 Praha – Brno bylo uvažováno jižním směrem přes Benešov. Pro druhou a třetí variantu pak byla navíc vytvořena mapa srovnání změn časové dostupnosti pro celé území a dále byl vyčíslen objem změn časové dostupnosti ve formě rozlohy území, na kterém dojde k nejvýznamnější změně.

Změny časové dostupnosti jsou v dostupné literatuře stále prezentovány pouze za jednotlivá střediska – nejčastěji krajská města, tato práci se však věnuje dostupnosti celého území tak, jak ještě nikdy nebyla prezentována.

Na základě výsledků z modelů časové dostupnosti vyplývají odpovědi na předem stanovené předpoklady, které se věnují časové dostupnosti (a jejím změnám) převážně s dopadem na region Prahy:

1) Po vybudování VRT se zlepší vztah mezi Prahou a mezoregionálními centry (krajská města), tj. zlepší se časová dostupnost Prahy z těchto center a opačně. K největším časovým ziskům dojde ve vzdálených částech Česka (převážně Morava).
Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

Tento předpoklad se potvrdil – při součtu časových úspor za všechna krajská města dojde k jednoznačnému zlepšení časové dostupnosti Prahy z těchto středisek (a opačně). K největším časovým úsporám došlo v nejvzdálenějších krajských městech Česka – ve Zlíně, Ostravě, Brnu, ale logicky také v Jihlavě, která se dnes nachází na železniční periferii a přímým napojením na VRT se dostane do centra dění.

2) Po vybudování VRT se zlepší vztah mezi Prahou a centry nižšího řádu (okresní města), tj. zlepší se časová dostupnost Prahy z těchto center a opačně. K největším časovým ziskům dojde ve vzdálených částech Česka (převážně Morava).

Při zkoumání časových úspor jsem posuzoval dvě variantní trasování RS 1 mezi Prahou a Brnem – ve východní variantě přes Kolín a v jižní variantě přes Benešov. Při srovnání obou variant jsem dospěl k závěru, že z hlediska změny časové dostupnosti je výhodnější jižní varianta. V případě jižní varianty se dotkne změna časové dostupnosti až 52,8 % území Česka, v případě východní varianty „pouze“ 47 % území. Navíc je nutné si uvědomit, že jižní varianta podstatně zlepší napojení jižní části Středočeského kraje a kraje Jihočeského na Prahu a zbytek české železniční sítě, východní varianta by sice částečně zlepšila časovou dostupnost východních Čech, nicméně nebylo by dosaženo tak markantní časové úspory jako v případě jihočeského území Čech.

Další kapitola analytické části se věnuje studiu změn potenciální dostupnosti. Potenciální dostupnost ve vztahu k vysokorychlostní železnici v Česku nebyla ještě nikdy prezentována. Potenciální dostupnost je důležitou mezí potenciální zaměstnané určité firmy budou zařazeny pouze lidé v určité časové dostupnosti (např. 30 minut), a proto nemůžeme uvažovat pouze časový rozměr dojížďky do zaměstnání, ale i atraktivitu dané pracovní příležitosti nebo míru nezaměstnanosti regionu. V daném případě je do výpočtů dostupnosti nutné tyto skutečnosti zahrnout, pracujeme s tzv. potenciální dostupností.
V mých analýzách potenciální dostupnosti jsem využíval jako váhu časové dostupnosti počet obyvatel jako základní příklad. Při výpočtech potenciální dostupnosti se dají do výpočtů zahrnovat rozličné hodnoty, které mohou reprezentovat potenciál pracovních příležitostí, přítomnost konkrétních služeb apod. Modely potenciální dostupnosti oproti časové dostupnosti vždy počítají se všemi body v síti (v mém případě se všemi obcemi ležícími na železniční trati). Z toho vyplývající hypotéza se potvrdila pouze částečně:

3) Z hlediska potenciální dostupnosti se po vybudování VRT maximalizuje zisk (zlepšení dostupnosti v absolutní hodnotě) u všech potenciálních center, přičemž vyšší zisk bude u jižní varianty z důvodu lepšího napojení Jihočeského kraje. Globálně se maximalizoval zisk u všech potenciálních center ve všech 4 variantách výpočtů. Pro tuto problematiku jsem vytvořil 4 modely potenciální dostupnosti – pro každou variantu trasování dva modely, které uvažují regionální a dálkový charakter obsloužení území. Dále jsem zpracoval model potenciální dostupnosti pro regionální i dálkový model obsluhy v současnosti. Srovnáním výsledků z jednotlivých modelů obslužnosti vyšlo najevo, že se v každém případě maximalizuje zisk u všech okresních měst i u středisek nižšího řádu. K vyššímu zisku však došlo u východní varianty, neboť ta obsluží populačně poměrně bohatou oblast východních Čech, města Pardubice a Hradec Králové jsou navíc lépe postaveny z hlediska dopravní sítě než excentricky položené České Budějovice. Při pohledu na změnu v počtu obcí s nadprůměrnou hodnotou potenciálu dostupnosti se však u dálkové varianty (která se z pohledu VRT jeví jako podstatnější, neboť umožní napojení krajských měst na páteřní systém obsluhy území) jeví jako výdělečnejší jižní varianty (73 % obcí s nadprůměrným potenciálem).

S ohledem na skutečnost, že se v případě všech mých analýz jedná o modelování v prostředí gis a výsledky jsou nepatrně zkreslené (nezahrnují dobu čekání vlaku ve stanici, čas na přestup apod.), je důležité zohlednit i pohled do reality železniční dopravy v Česku. Jižní Čechy jsou dnes z hlediska kapacitní dopravy špatně napojeny a modernizace III. tranzitního koridoru počítá s napojením na VRT u Benešova. Tento fakt společně s výsledky všech modelů dostupnosti pak hovoří pro trasování RS 1 jižní variantou kolem Benešova a Vlašimi.
Jak vyplývá z diskutované literatury a z výsledků této i mé bakalářské práce, je změna dostupnosti území nejvýznamnějším regionálním dopadem vysokorychlostních tratí. Projevuje se v rozličných sférách lidské činnosti – od prostorových změn rozmístění obyvatelstva přes podporu a rozvoj ekonomiky až po změny v cestovním ruchu. Při posuzování vhodného trasování VRT na území Česka je tedy důležité se tomuto tématu podrobně věnovat.
Seznam použité literatury

Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

ŠLEGR, P. a kol. (2012a): Rychlá železnice i v České republice. Centrum pro efektivní dopravu, o.s. (CEDOP), Praha, 246 s.

Jakub Randák: Vliv vysokorychlostních tratí na změny dostupnosti regionu Prahy

WARAKOMSKA, K. (1992): Zagadnienie dostępności w geografii transportu. Przegląd geograficzny, č. 64, s. 67-76.

High-Speed Europe, a sustainable link between citizens. Evropská komise, Luxembourg, 22 s.

Oil Price Developments: Drivers, Economic Consequences and Policy Responses. OECD Economic Outlook, č. 76, s. 1-29.

Internetové zdroje

BRITISH PETROLEUM, Oil prices [online], [cit. 12.5.2015]. Dostupné z www: http://www.bp.com/extendedsectiongenericarticle.do?categoryId=9041229&contentId=7075080

CENTRUM PRO EFEKTIVNÍ DOPRAVU, Základní síť vysokorychlostních tratí ve středí Evropě [online], [cit. 12.5.2015]. Dostupné z www: http://www.cedop.info/category/dokumenty/

FAKULTA DOPRAVNÍ ČVUT: Multimodální přepravní systémy [online], [cit. 12.5.2015]. Dostupné z www: http://www.fd.cvut.cz/projects/k612x1mp/rola.html

INTERNATIONAL UNION OF RAILWAYS, General Definition of Highspeed [online], [cit. 12.5.2015]. Dostupné z www: http://www.uic.org/spip.php?article971

Příloha

Příloha č. 1 - Změny časové dostupnosti Prahy z okresních měst u posuzovaných variant v hod

<table>
<thead>
<tr>
<th>Kraj</th>
<th>Okresní město</th>
<th>Dnes</th>
<th>Východní varianta</th>
<th>Jižní varianta</th>
<th>Rozdíl - východní varianta</th>
<th>Rozdíl - jižní varianta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jihočeský</td>
<td>České Budějovice</td>
<td>2:10</td>
<td>2:10</td>
<td>1:25</td>
<td>0:00</td>
<td>0:45</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Český Krumlov</td>
<td>3:00</td>
<td>3:00</td>
<td>1:55</td>
<td>0:00</td>
<td>1:05</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Jindřichův Hradec</td>
<td>2:10</td>
<td>2:10</td>
<td>1:20</td>
<td>0:00</td>
<td>0:50</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Písek</td>
<td>2:20</td>
<td>2:20</td>
<td>2:00</td>
<td>0:00</td>
<td>0:20</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Prachatice</td>
<td>3:00</td>
<td>3:00</td>
<td>2:10</td>
<td>0:00</td>
<td>0:50</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Strakonice</td>
<td>2:20</td>
<td>2:20</td>
<td>2:00</td>
<td>0:00</td>
<td>0:20</td>
</tr>
<tr>
<td>Jihočeský</td>
<td>Tábor</td>
<td>1:30</td>
<td>1:30</td>
<td>0:50</td>
<td>0:00</td>
<td>0:40</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Blansko</td>
<td>2:20</td>
<td>1:20</td>
<td>1:20</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Brno</td>
<td>2:40</td>
<td>0:55</td>
<td>0:55</td>
<td>1:45</td>
<td>1:45</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Břeclav</td>
<td>3:10</td>
<td>1:20</td>
<td>1:20</td>
<td>1:50</td>
<td>1:50</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Hodonín</td>
<td>3:30</td>
<td>1:40</td>
<td>1:40</td>
<td>1:50</td>
<td>1:50</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Vyškov</td>
<td>2:55</td>
<td>1:15</td>
<td>1:15</td>
<td>1:40</td>
<td>1:40</td>
</tr>
<tr>
<td>Jihomoravský</td>
<td>Znojmo</td>
<td>3:20</td>
<td>2:10</td>
<td>2:10</td>
<td>1:10</td>
<td>1:10</td>
</tr>
<tr>
<td>Karlovarský</td>
<td>Cheb</td>
<td>3:10</td>
<td>2:00</td>
<td>2:00</td>
<td>1:10</td>
<td>1:10</td>
</tr>
<tr>
<td>Karlovarský</td>
<td>Karlovy Vary</td>
<td>2:40</td>
<td>2:00</td>
<td>2:00</td>
<td>0:40</td>
<td>0:40</td>
</tr>
<tr>
<td>Karlovarský</td>
<td>Sokolov</td>
<td>2:55</td>
<td>2:20</td>
<td>2:15</td>
<td>0:40</td>
<td>0:40</td>
</tr>
<tr>
<td>Královéhradecký</td>
<td>Hradec Králové</td>
<td>1:40</td>
<td>1:10</td>
<td>1:40</td>
<td>0:30</td>
<td>0:00</td>
</tr>
<tr>
<td>Královéhradecký</td>
<td>Jičín</td>
<td>1:30</td>
<td>1:30</td>
<td>1:30</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>Královéhradecký</td>
<td>Náchod</td>
<td>1:55</td>
<td>1:45</td>
<td>1:55</td>
<td>0:10</td>
<td>0:00</td>
</tr>
<tr>
<td>Královéhradecký</td>
<td>Rychnov nad K.</td>
<td>1:55</td>
<td>1:45</td>
<td>1:55</td>
<td>0:10</td>
<td>0:00</td>
</tr>
<tr>
<td>Královéhradecký</td>
<td>Trutnov</td>
<td>2:15</td>
<td>2:05</td>
<td>2:15</td>
<td>0:10</td>
<td>0:00</td>
</tr>
<tr>
<td>Liberecký</td>
<td>Česká Lípa</td>
<td>2:00</td>
<td>1:50</td>
<td>1:50</td>
<td>0:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Liberecký</td>
<td>Jablonec nad Nis.</td>
<td>2:30</td>
<td>2:20</td>
<td>2:20</td>
<td>0:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Liberecký</td>
<td>Liberec</td>
<td>2:25</td>
<td>2:15</td>
<td>2:15</td>
<td>0:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Liberecký</td>
<td>Semily</td>
<td>1:55</td>
<td>1:55</td>
<td>1:55</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>Kraj</td>
<td>Okresní město</td>
<td>Dnes</td>
<td>Východní varianta</td>
<td>Jižní varianta</td>
<td>Rozdíl - východní varianta</td>
<td>Rozdíl - jižní varianta</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Bruntál</td>
<td>3:15</td>
<td>3:00</td>
<td>3:00</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Frýdek - Místek</td>
<td>3:40</td>
<td>2:40</td>
<td>2:40</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Karviná</td>
<td>3:30</td>
<td>2:30</td>
<td>2:30</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Nový Jičín</td>
<td>3:10</td>
<td>2:10</td>
<td>2:10</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Opava</td>
<td>3:40</td>
<td>2:40</td>
<td>2:40</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Moravskoslezský</td>
<td>Ostrava</td>
<td>3:10</td>
<td>2:10</td>
<td>2:10</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Olomoucký</td>
<td>Jeseník</td>
<td>2:55</td>
<td>2:30</td>
<td>2:30</td>
<td>0:25</td>
<td>0:25</td>
</tr>
<tr>
<td>Olomoucký</td>
<td>Olomouc</td>
<td>2:10</td>
<td>1:30</td>
<td>1:30</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Olomoucký</td>
<td>Prostějov</td>
<td>2:05</td>
<td>1:25</td>
<td>1:25</td>
<td>0:40</td>
<td>0:40</td>
</tr>
<tr>
<td>Olomoucký</td>
<td>Přerov</td>
<td>3:00</td>
<td>1:30</td>
<td>1:30</td>
<td>1:30</td>
<td>1:30</td>
</tr>
<tr>
<td>Olomoucký</td>
<td>Šumperk</td>
<td>2:20</td>
<td>2:00</td>
<td>2:00</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Pardubický</td>
<td>Chrudim</td>
<td>1:15</td>
<td>1:00</td>
<td>1:00</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Pardubický</td>
<td>Pardubice</td>
<td>1:00</td>
<td>0:45</td>
<td>1:00</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Pardubický</td>
<td>Svitavy</td>
<td>2:00</td>
<td>1:50</td>
<td>1:50</td>
<td>0:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Pardubický</td>
<td>Ústí nad Orlicí</td>
<td>1:45</td>
<td>1:30</td>
<td>1:30</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Plzeňský</td>
<td>Domažlice</td>
<td>2:10</td>
<td>1:05</td>
<td>1:05</td>
<td>0:05</td>
<td>0:05</td>
</tr>
<tr>
<td>Plzeňský</td>
<td>Klatovy</td>
<td>2:10</td>
<td>1:20</td>
<td>1:20</td>
<td>0:50</td>
<td>0:50</td>
</tr>
<tr>
<td>Plzeňský</td>
<td>Plzeň</td>
<td>1:40</td>
<td>0:45</td>
<td>0:45</td>
<td>0:55</td>
<td>0:55</td>
</tr>
<tr>
<td>Plzeňský</td>
<td>Rokycany</td>
<td>1:30</td>
<td>0:40</td>
<td>0:40</td>
<td>0:50</td>
<td>0:50</td>
</tr>
<tr>
<td>Plzeňský</td>
<td>Tachov</td>
<td>2:30</td>
<td>2:00</td>
<td>2:00</td>
<td>0:30</td>
<td>0:30</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Benešov</td>
<td>1:00</td>
<td>1:00</td>
<td>0:35</td>
<td>0:00</td>
<td>0:25</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Beroun</td>
<td>1:00</td>
<td>0:30</td>
<td>0:30</td>
<td>0:30</td>
<td>0:30</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Kladno</td>
<td>0:50</td>
<td>0:50</td>
<td>0:50</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Kolin</td>
<td>0:50</td>
<td>0:25</td>
<td>0:50</td>
<td>0:25</td>
<td>0:00</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Kutná Hora</td>
<td>1:10</td>
<td>0:40</td>
<td>1:10</td>
<td>0:30</td>
<td>0:00</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Mělník</td>
<td>1:00</td>
<td>0:45</td>
<td>0:45</td>
<td>0:15</td>
<td>0:15</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Mladá Boleslav</td>
<td>1:20</td>
<td>1:00</td>
<td>1:00</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Nymburk</td>
<td>1:00</td>
<td>1:00</td>
<td>1:00</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Příbram</td>
<td>1:25</td>
<td>1:00</td>
<td>1:00</td>
<td>0:25</td>
<td>0:25</td>
</tr>
<tr>
<td>Středočeský</td>
<td>Rakovník</td>
<td>1:20</td>
<td>1:20</td>
<td>1:20</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Děčín</td>
<td>1:20</td>
<td>0:55</td>
<td>0:55</td>
<td>0:25</td>
<td>0:25</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Chomutov</td>
<td>1:50</td>
<td>1:30</td>
<td>1:30</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Litoměřice</td>
<td>1:00</td>
<td>0:35</td>
<td>0:35</td>
<td>0:25</td>
<td>0:25</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Louny</td>
<td>1:20</td>
<td>1:10</td>
<td>1:10</td>
<td>0:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Most</td>
<td>1:40</td>
<td>1:20</td>
<td>1:20</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Teplice</td>
<td>1:20</td>
<td>1:00</td>
<td>1:00</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Ústecký</td>
<td>Ústí nad Labem</td>
<td>1:00</td>
<td>0:40</td>
<td>0:40</td>
<td>0:20</td>
<td>0:20</td>
</tr>
<tr>
<td>Vysočina</td>
<td>Havlíčkův Brod</td>
<td>1:50</td>
<td>0:50</td>
<td>0:50</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Kraj</td>
<td>Okresní město</td>
<td>Dnes</td>
<td>Východní varianta</td>
<td>Jižní varianta</td>
<td>Rozdíl - východní varianta</td>
<td>Rozdíl - jižní varianta</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Vysočina</td>
<td>Jihlava</td>
<td>2:00</td>
<td>0:45</td>
<td>0:45</td>
<td>1:15</td>
<td>1:15</td>
</tr>
<tr>
<td>Vysočina</td>
<td>Pelhřimov</td>
<td>2:00</td>
<td>1:40</td>
<td>1:20</td>
<td>0:20</td>
<td>0:40</td>
</tr>
<tr>
<td>Vysočina</td>
<td>Třebíč</td>
<td>2:20</td>
<td>1:15</td>
<td>1:15</td>
<td>1:05</td>
<td>1:05</td>
</tr>
<tr>
<td>Vysočina</td>
<td>Žďár nad Sázavou</td>
<td>2:15</td>
<td>1:15</td>
<td>1:15</td>
<td>1:00</td>
<td>1:00</td>
</tr>
<tr>
<td>Zlínský</td>
<td>Kroměříž</td>
<td>3:10</td>
<td>1:50</td>
<td>1:50</td>
<td>1:20</td>
<td>1:20</td>
</tr>
<tr>
<td>Zlínský</td>
<td>Uherské Hradiště</td>
<td>3:25</td>
<td>2:00</td>
<td>2:00</td>
<td>1:25</td>
<td>1:25</td>
</tr>
<tr>
<td>Zlínský</td>
<td>Vsetín</td>
<td>3:40</td>
<td>2:20</td>
<td>2:20</td>
<td>1:20</td>
<td>1:20</td>
</tr>
<tr>
<td>Zlínský</td>
<td>Zlín</td>
<td>3:30</td>
<td>2:00</td>
<td>2:00</td>
<td>0:00</td>
<td>1:30</td>
</tr>
</tbody>
</table>

Zdroj: analýzy dostupnosti, vlastní tvorba