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Abstract

Speech recognition has become a thriving field with many real-life applications. Voice

dialing in cell phones, voice control in embedded devices, speech-driven interactive

manuals and many other utilities rely on solid speech recognition software. We be-

lieve that research in speech recognition can boost performance of many applications

related to the area.

The thesis concentrates on automatic large-vocabulary continuous-speech recog-

nition of Czech. Czech differs from English in a few aspects. We focus on these

differences and propose new language-depended techniques. Namely rich morphology

is investigated and its impact on speech recognition is studied.

Out-of-vocabulary (OOV) words are identified as one of the major sources deteri-

orating recognition performace. New language modeling techniques are proposed to

alleviate the problem of OOV words.

The proposed language models are tested in speech recognition systems on diverse

speech corpora. The obtained results validate the original approach to language

modeling. Significant overall speech recognition improvement is observed.
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Chapter 1

Introduction

1.1 Motivation

Communication in natural language with electronic devices and software applications

has been an ultimate goal for speech scientist for many decades. Not until recently

became speech recognition systems part of everyday life.

Voice dialing has already been implemented in standard cell phones, so instead of

pressing tiny buttons on a small device, a user is invited to simply say whom he or she

wants to call. Usually the user has to record names or voice commands first. Later

on, when he says a name or a command the best match from the prerecorded list is

found and the number associated with the name is dialed or the command associated

with the sound is executed. All major cell phone producers include voice dialers into

some of their products.

Navigation systems are becoming an inherent part of luxury cars. In these systems,

driver specifies his destination and the navigation system displays the optimal route

and may even give a guidance during the trip. A speech system comes in handy when

selecting the destination. There is a tremendous number of cities, towns, villages,

streets and avenues the driver may choose from. Selecting the location from a never-

ending list by pressing keys is surely an annoying burden. Simply saying the address

is then clearly preferable. During the trip the driver may decide to change the destina-

tion or make a detour to visit some astonish landmarks. Clearly, modifying the route

15



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

in spoken words disturbs the driver less then deciphering information displayed on

embedded car display. Such a system has been developed by IBM and Honda Motor

Company. Honda now offers the voice-driven navigation system as the standard

equipment in some models, for example Acura RL is equipped with this system.

More technical details can be found at http://www.research.ibm.com

NASA has also found speech processing very helpful. Astronauts at orbit stations

have many diverse duties which include, for example, doing scientific experiment.

Since the variety of tasks is very wide, astronauts are provided with electronic or

printed manuals. It turned out that browsing the manuals while carring out as-

signments is impractical. Therefore a new voice-driven dialog system was developed

to communicate with the electronic guidelines. A user can browse the manual in

spontaneous speech and gets appropriate response. This system is nicely introduced

in [Rayner et al. (2005)].

Another application of speech recognition is a medical dictation system. For

doctors who have to type long medical reports, it is much faster to dictate a diagnosed

disease description and suggested treatment instead of wasting their time by type-

writing it, not mentioning that they are usually very bad typists. Such dictation

systems are being developed and tested by medical stuff at hospitals. Unfortunately,

current speech recognition systems are not 100% accurate, so human correction of the

generated speech transcription is inevitable. However such corrections can be done

by less educated people, thus saving time of doctors and consequently cutting cost of

whole medical treatment.

Speaking dialog systems can be also utilized at companies with large clientele.

Consider a client calling a big institution such as bank, telephone or insurance com-

pany for a particular piece of information. The phone call has to be redirected to the

right department. The current systems force the client to press keys on their phones to

navigate through a branching tree of possible divisions while listening to prerecorded,

often irritating, instructions. If a wrong button is accidentally pressed, the annoying

procedure has to be repeated from the beginning. When a dialog system is exploited,

the client can specify his or her needs spontaneously, and the system transfers the

16



CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

call accordingly. This kind of application has been usefully used at AT&T [Wright ,

Gorin, and Abella (1998)].

In automatic ticket reservation task, when booking concert tickets, airplane tick-

ets, use of a dialog system is desirable as well. The demanding job of telephone

operators whose only responsibility is to fill out a database according to a short

conversation can be replaced by an automatic system. A client then speaks to a

machine instead of a human being.

The task of audio indexing has drawn attention recently. There are large speech

corpora available which contain valuable information for many people of different

background. For instance, content of telephone conversations might be of interest or

finding a relevant audio segment in a business meeting recordings. So the task is to

find the relevant audio segment given key words or phrase. Obviously, manually tran-

scribing whole speech corpus and then running an information retrieval system is very

time-consuming and sometimes infeasible. Therefore, an automatic procedure which

would select the relevant audio portions is needed. See [Chelba and Acero (2005)] for

a viable indexing method.

Not all broad-casted TV programs nor movies are being subtitled nowadays.

The deaf would certainly welcome an automatic subtitling system. This task is

especially challenging due many factors which deteriorate recognition performance.

Severe background noise, loud background music, people talking at the same time,

unrestricted topic of conversations, all make speech recognition difficult to work at

high accuracy rates. Unfortunately, high accuracy is essential to practical usage of

such a system. Some experiments on automatic transcribing broadcasted ice-hockey

match and further analysis of the problem on Czech data was discussed in [Hajič and

Psutka (2003)].

The above mentioned applications indicate that speech recognition is a vital field

and that speech recognition is worth further research. Some of the applications can

handle erroneous recognition particularly those which do information retrieval on the

recognition output. Others are sensitive to speech recognition accuracy such as med-

ical dictation systems. Nevertheless in both cases boosting recognition performance

17



1.2. CZECH CHAPTER 1. INTRODUCTION

increases overall system performance. Therefore, we believe that effort put in speech

recognition research will bring even wider use of speech technologies.

1.2 Czech

The chief interest of this work is speech recognition of Czech language. Since Czech

differs from English in many aspects, we believe that developing language-specific

modifications can bring significant improvement which would not be possible with

standard English-like techniques.

The contrast between Czech and English from the point of view of speech recog-

nition lies in word order and morphology. While English has very strict rules on the

ordering of words in a sentence, Czech allows many word permutations. Intonation

and stress is crucial to understanding of the correct meaning in Czech. Morphology

of English as opposed to Czech is rather limited. Czech words get inflected into many

forms. Careful handling of these forms is therefore desired in speech recognition of

Czech.

We will further discuss issues of Czech in section 5.

1.3 Noisy Channel

After profound research which lasted several decades, the fundamental approach to

large-vocabulary continuous speech recognition has settled down to the Bayesian ap-

proach. We have adopted this modeling technique throughout our work too.

The task of speech recognition is to transcribe speech signal to text. That is, given

an acoustic evidence O = o1 . . . om, we are after the word sequence W = w1 . . . wn

which was uttered. Acoustic evidence O is a sequence of feature vectors or quantized

values obtained from acoustic signal by so-called front-end preprocessing. The feature

vectors should contain as much of relevant information for speech recognition as

possible.

Put formally, we are searching for the word sequence Ŵ which maximizes the

18



CHAPTER 1. INTRODUCTION 1.4. SIGNAL PREPROCESSING

conditional probability P (W |O) given the acoustic evince O.

Ŵ = arg max
W

P (W |O) (1.1)

Using the Bayes rule, this tremendous task can be decomposed into manageable

components.

P (W |O) =
P (O|W ) · P (W )

P (O)
(1.2)

We aim at finding the word sequence Ŵ that maximizes P (W |O). Since P (O)

does not influence the value of Ŵ , the denominator can be discarded and equation

1.2 can be rewritten as

Ŵ = arg max
W

P (O|W ) · P (W ) (1.3)

Formula 1.3 breaks down the problem into four basic components, the front-end

preprocessing which generates acoustic observation O from signal, the acoustic model

P (O|W ), the language model P(W) and the search involved in decoding of the word

sequence Ŵ . [Jelinek (1997)]

1.4 Signal Preprocessing

In the first phase of speech recognition process, speech signal is digitalized. Since

the raw data are not suitable as an input for a recognition system, feature vectors

are extracted using various signal processing techniques. Feature vectors should be

of low dimension to admit further modeling and should well represent speech in the

sense of keeping relevant information. In addition, they should be computationally

feasible, and should be affected as little as possible by environmental factors such as

background noise, recording device, speaker’s age, etc.

Among most popular features are Mel-Frequency Cepstral Coefficients (MFCC),

Perceptual Linear Predictive (PLP) coefficients and Linear Predictive Cepstral (LPC)

coefficients.

19



1.5. ACOUSTIC MODEL CHAPTER 1. INTRODUCTION

To record acoustic signal, it has to be sampled and quantized. The resulting

sequence of numbers is stored in a defined format like .wav or .ua. Sampling frequency

is usually 8KHz for telephone conversation, common dialogs are often sampled at

16KHz or 22KHz. The quantization is done with 8 or 16 bits per sample. When the

signal is recorded, it is ready for feature extraction, so-called parametrization. Short

time spectrum is computed on slices of length 25ms, Hamming window is applied to

get the slices. Slices overlap by 15 ms.

In case of MFCC, the short time spectrum is obtained and then the log is taken and

the features are warped according perceptually motivated Mel filter bank. Finally an

inverse discrete cosine transformation is taken. Adding singal energy, time derivatives

and second order time derivatives completes the MFCC feature representation.

PLP features are based on similar ideas as MFCC. They are also computed from

short time spectrum. In contrast to MFCC the use more psychophysically motivated

transformation and instead of Mel frequency filter bank they use Bark scale. How to

combine advantages of MFCC and PLP features was studied in [Hönig et al. (2005)].

A more general introduction written in Czech can be found in [Psutka (1995)].

1.5 Acoustic Model

Acoustic model expresses how much an acoustic sequence matches a given word in

terms of probability P (O|W ). Hidden Markov Models (HMMs)[Jelinek (1997)] are

predominant learning models in large-vocabulary speech recognition. However other

models such as neural networks, support vector machines and other large margin

discriminative techniques have been justified on smaller vocabularies, their use on

large scale has to be further studied.

HMM are very attractive for their capability of modeling variable-length input

sequences and their relatively easy training. An HMM can be viewed as a finite state

automaton A =< S, i, F, A, B >, where S is a set of states, i is the initial state, F is a

set of final states, A is transition probability distribution. A(i, j) assigns probability

to the arc leading from state i to state j. A must obey summing rule
∑

j∈S A(i, j) = 1.

20



CHAPTER 1. INTRODUCTION 1.5. ACOUSTIC MODEL

B(i, o) represents output distribution of observation o in state i. Output probability

is usually a mixture of Gaussians f(o).

f(o) =
1

(2π)N/2|Σ|1/2
exp(−

1

2
(o − µ)⊤Σ−1(o − µ))

f(o) is a multivariate Gaussian distribution with mean µ and covariance matrix Σ.

N is the dimension of observation vectors. For fast computation, covariance matrix

Σ is approximated by a diagonal matrix, off-diagonal values are set to 0. An example

of a simple HMM is depicted on figure 1-1.

B(1) B(2) B(3)
A(1, 2) A(2, 3)

A(1, 1) A(2, 2) A(3, 3)

Figure 1-1: HMM example. A(i, j) are transition probabilities from i to j. B(i)
represent output probability distribution for state i.

Given an HMM model for a particular word, we may ask a question what is the

probability of generating observation sequence O. Sequence O can be generated by

any sequence of states starting from state i and ending at F . Probability of O given

a particular state sequence s is just a multiplication of transition probabilities A(i, j)

and output probabilities B(i, o) along the path.

P (s, O|HMM) =
∏

i

A(i, i + 1)B(i + 1, oi+1)

The total probability P (O|HMM) of generating O is then sum over all paths which

generate O. Eventhough the number of paths is exponential in the number of states,

thanks to dynamic programming P (O|HMM) can be computed in polynomial time.

P (O|HMM) =
∑

s

P (s, O|HMM)

However for large HMMs, we need faster computation of P (O|HMM). A reasonable
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1.6. LANGUAGE MODEL CHAPTER 1. INTRODUCTION

approximation is to take just the most likely path of the model.

P (O|HMM) ≈ max
s

P (s, O|HMM)

Such approximation is referred to as Viterbi, the hidden assumption is that probability

of most likely path contributes to the total probability greatly and therefore we can

substitute the Viterbi estimate for the total probability.

A great advantage of HMMs is that they can be easily trained. A variant of

expectation-maximization algorithm so-called Baum-Welsh training can be used. This

estimation is based on maximum likelihood principle.

1.6 Language Model

In recognition of large-vocabulary spontaneous speech, language modeling plays a

substantial role. A language model suggests which words are likely to appear one

after another and assigns probability to any word sequence. This probability estimate

is important for further combining with other components of the speech recognition

system. Furthermore, based on the context, it can disambiguate between acoustically

similar words or homophones, for example check versus Czech which can be hardly

distinguished from acoustic evidence. Ideally, language modeling encompasses all

linguistic knowledge of the language starting from morphology, through syntax up to

semantics and pragmatics.

Language modeling is not only essential to speech recognition but also to other

research areas concerned with human interaction. Recognition of hand-written texts

or automatic machine translation are fields in which language models are employed.

1.7 Decoder

To obtain the word sequence which best matches acoustic observations, a huge space

of word sequences must be searched. The Viterbi search mentioned above works
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CHAPTER 1. INTRODUCTION 1.7. DECODER

according to recursion

P (oi+1
1 , sj) = max

k
P (oi

1, sk)A(k, j)B(j, oi+1)

Probability estimate of the whole sequence of observations oi+1
1 ending in state sj

is decomposed into shorter estimate P (oi
1, sk), transition weight A(k, j) and output

weight B(j, oi+1). The idea is that for each state at time i we keep track only of

the best predecessor state with its probability estimate. So, for each state at time

i we go through all states and search for the best predecessor at time (i − 1) and

compute P (oi+1
1 , sj). When we are done with the last observation oT we go through

all the states considered at time T and find the one with highest P (oT , sk). Starting

from the best final state we follow the stored link to the best predecessor, from the

the predecessor we follow the stored link to its predecessor an so on. Thus the best

sequence of states of the HMM generating observations oT
1 is deciphered. The overall

time complexity is O(TN2) where T is the number of observations and N is the

number of HMM states.

This implementation of Viterbi search does not work in real time for large-vocabulary

recognition, therefore some speed-up modifications must be introduced. One opti-

mization is to keep only K best states in time i, alternatively we can keep only the

states whose probability is competitive with the the best state at time i. The level of

competitiveness is given by some threshold. So states whose score

P (oi, sbest) − P (oi, sj) > threshold

are discarded. These modifications are referred to as Beam search.

Other graph search techniques have been investigated. A∗ search well-known from

the field of artificial intelligence can be employed or stack decoding as was described

in [Jelinek (1997)] can be used.

For futher computation acceleration, techniques like fast match are employed.

Input observations are quantized, so Gaussians are fed only with discrete values.

Therefore, Gaussians evaluation can be precomputed, and thus estimation of prob-
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ability of an observation at a given state reduces to a table look up. In addition,

states of an HMM (see fig. 1-1) can be merged to only single state. Probability of

an observation generated by this single state is defined as maximum over estimates

of the three original states. Fast match is intended for rough state elimination, full

search is run after fast-match, see [Huang , Acero, and Hon (2001)].

1.8 Text Organization

The text is organized as follows. Chapter 1 introduces the task of speech recognition,

gives an overview of the field and motivates the research. In chapter 2 language

modeling is described including smoothing, pruning and finite state representation.

Specifics of Czech from the point of view of speech recognition are characterized

in chapter 5. Chapter 6 specifies the acoustic data and text corpora exploited in

experiments. Chapter 7 presents the main contributions of the thesis. The drawn

conclusion are summarized in chapter 8.
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Chapter 2

Language Modeling

A language model is a crucial part of any large-vocabulary continuous speech recog-

nition system. It aims at predicting the next word given the previous utterance and

thus guiding a search procedure throughout a huge number of hypothesis. Formally,

a language model can be viewed as a probability distribution P (wi|w1, . . . , wi−1),

i.e. probability of a word wi given the previous words w1, . . . , wi−1, which are often

referred to as a history. To simplify the notation, w1, . . . , wi−1 is rewritten as wi−1
1 .

The conditional word distribution is estimated from a possibly large text corpus. A

straightforward method of distribution estimation is to follow the maximum likelihood

(ML) principle and to take the relative frequency of a word given its history as the

estimate.

P (wi|w
i−1
1 ) =

C(wi
1)

C(wi−1
1 )

(2.1)

C(wj
i ) refers to the number of occurrences of wj

i in a training corpus.

The direct ML estimate, however, turns out to be unfeasible. First, as sentence

length increases, the word sequence wi
1 is observed only few times in any text corpus.

This fact is in contrary with the ML presupposition which assumes that frequency

of modeled events is high. Thus, the ML estimate for bigger i is unreliable. One

possible solution to this problem is to group histories into classes according to some
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well-defined criterion φ, see [Manning and Schütze (2000)].

P (wi|w
i−1
1 ) =

C(φ(wi
1))

C(φ(wi−1
1 ))

(2.2)

This approach will be further discussed in the next section.

Second reason why formula 2.1 is impractical is that language model should assign

nonzero probability to any word sequence. Indeed, word sequences of zero probability

will never be recognized. But formula 2.1 assigns zero probability to all words wi

which have not been observed immediately after wi
1. This issue is solved by so-called

smoothing and will be discussed later on.

2.1 N-grams

The traditional approach to language modeling is to take only a few previous words

as the history, so-called n-grams. Despite their simplicity, they proved to be very

efficient and hard to beat. Much effort is needed to significantly outperform this

model. Probability of a word in an n-gram scheme is computed as

P (wi|w
i−1
1 ) =

C(wi
i−n+1)

C(wi−1
i−n+1)

(2.3)

In practice, n is set to a small number, say between 1 and 5. Of course, this model

has to be smoothed to incorporate unseen n-grams.

2.2 Smoothing

A language model has to assign nonzero probability to any word sequence, not only

to those observed in a training corpus. Assigning zero probability would result in

prohibiting such a sentence from being recognized even though it was actually ut-

tered. Smoothing is a way of redistributing probability mass to unseen events. Chen

[Chen and Goodman (1998)] gives an empirical evaluation of many current smoothing

techniques. We will briefly mention the most common smoothing methods.
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2.2.1 Laplace Smoothing

Laplace smoothing, sometimes called add-one smoothing, is one of the oldest and

easiest smoothing techniques. Zero events are avoided by adding 1 to each count.

The smoothed probability estimate is then

P (wi|w
i−1
i−n+1) =

C(wi
i−n+1) + 1∑

wj
(C(wi−1

i−n+1wj) + 1)
=

C(wi
i−n+1) + 1

C(wi−1
i−n+1) + V

(2.4)

where V denotes the vocabulary size.

2.2.2 Add-Lambda Smoothing

Laplace smoothing leaves too much of probability space to unseen events. To cir-

cumvent overestimation of unseen n-grams, Lidstone’s law can be applied. Instead of

adding one, some smaller value λ is used.

P (wi|w
i−1
i−n+1) =

C(wi
i−n+1) + λ∑

wj
C(wi−1

i−n+1wj) + λ
=

C(wi
i−n+1) + λ

C(wi−1
i−n+1) + λV

(2.5)

λ has to be tuned to optimize given objective function.

2.2.3 Good-Turing Discounting

Good-Turing [Good (1953)] discounting is based on the assumption of binomial dis-

tribution of events. Good-Turing takes adjusted counts r⋆ to compute probability

estimate as

P (w1 . . . wn) =
r⋆

N
(2.6)

where r⋆ is computed as

r⋆ = (r + 1)
E(nr+1)

E(nr)

n-gram count is denoted as r, nr refers to the number of n-grams which occurred r

times. For example, n1 is the number of n-grams which appeared once, while n0 is

the number of n-grams which haven’t appeared in the corpus at all. E() denotes the
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expected value and N is the total number of counts. Note that

N =

∞∑

r=1

rnr

For infrequent n-grams, E(nr) can be approximated by nr since many n-grams occur

only a few times resulting in high nr. For very frequent n-grams, it may happen that

nr−1 = 0 even if nr > 0. [Gale and Sampson (1995)] have proposed a simple and

effective algorithm for smoothing of nr. That counts are properly normalized in 2.6

can be readily checked.

N =
∞∑

r=1

rnr =
∞∑

r=0

(r + 1)nr+1 =
∞∑

r=0

r⋆nr

Probability mass left to unseen n-grams, n1/N , is distributed over them uniformly.

2.2.4 Katz Smoothing

Katz [Katz (1987)] extends Good-Turing estimates by treating large counts as reliable

estimates. Only counts smaller than a predefined threshold k are discounted and thus

saving some probability mass for unseen n-grams.

r⋆ =
(r + 1)nr+1

nr
− r

(k+1)nk+1

n1

1 − (k+1)nk+1

n1

for 1 ≤ r ≤ k (2.7)

Furthermore, [Katz (1987)] suggests to use statistics of shorter n-grams for unseen

events. For example, if a trigram w1w2w3 has zero count, conditional likelihood is

estimated from the bigram w2w3. Conditional probability PBO is computed as

PBO(wi|w
i−1
i−n+1) =





PML(wi|w
i−1
i−n+1) for r > k

PGT (wi|w
i−1
i−n+1) for 1 ≤ r < k

β(wi−1
i−n+1)PBO(wi|w

i−1
i−n+2) for r = 0

(2.8)

PML refers to the maximum likelihood estimate, PGT stands for the discounted esti-

mate derived from 2.7, the back-off weight β(wi−1
i−n+1) assures that probabilities add
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up to one.

2.2.5 Jelinek-Mercer Deleted Interpolation

[Jelinek and Mercer (1980)] linearly interpolates higher order n-grams with lower

order n-grams. Higher order n-grams are sparser and thus their estimates are less

reliable. Interpolation with lower order n-grams can yield better models. Interpolated

estimate PLI is computed from maximum likelihood estimates PML as

PLI(wi|w
i−1
i−n+1) = λ0

1

V
+ λ1

c(wi)∑
j c(wj)

+
n∑

k=2

λ(wi−1
i−k+1)PML(wi|w

i−1
i−k+1) (2.9)

Interpolation weights, so-called lambdas, must sum up to 1. In general, it is useful

to group lambdas into bins according to some tying criterion. [Bahl , Jelinek , and

Mercer (1983)] suggests partitioning according to C(wi−1
i−n+1). This idea is further

extended by [Chen and Goodman (1996)]. Lambdas can be directly calculated by

the expectation maximization algorithm [Dempster , Laird , and Rubin (1977)] which

is run on so-called held-out data. Held-out data should be as similar as possible to

the test data and must be different from the corpus on which PML was calculated.

If estimation of lambas is run on train data instead of held-out data, lambda of the

longest n-gram would be 1, the other lambdas would be zero.

2.2.6 Whitten-Bell Smoothing

Whitten-Bell smoothing [Bell , Cleaqry , and Witten (1990)], as well as Jelinek-Mercer

smoothing, interpolates maximum-likelihood estimates of n-grams of all orders. The

probability of Whitten-Bell smoothing PWB can be recursively computed as

PWB(wi|w
i−1
i−n+1) = λ(wi−1

i−n+1)PML(wi|w
i−1
i−n+1) + (1 − λ(wi−1

i−n+1))PWB(wi|w
i−1
i−n+2)

(2.10)
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It differs from Jelinek-Mercer in computation of the interpolation weights. It is based

on the number of unique words that follow the history denoted as N1+(wi−1
i−n+1•)

N1+(wi−1
i−n+1•) = |wi : c(wi−1

i−n+1wi) > 0| (2.11)

The smoothing coefficient of Whitten-Bell is defined as

1 − λ(wi−1
i−n+1) =

N1+(wi−1
i−n+1•)

N1+(wi−1
i−n+1•) +

∑
wi

c(wi
i−n+1)

(2.12)

2.2.7 Absolute Discounting

In absolute discounting, counts of high-order n-grams are discounted by a fixed value

D. The saved probability mass is then uniformly redistributed over unseen n-grams.

Kneser-Ney smoothing [Ney , Essen, and Kneser (1994)] is an implementation of

absolute discounting suggesting to set

D =
n1

n1 + 2n2

where n1 and n2 denote the total number of n-grams with exactly one or two counts,

respectively. Lambdas are set in such a way that probabilities sum up to 1.

PKN(wi|w
i−1
i−n+1) =

max{C(wi
i−n+1) − D, 0}∑

wi
C(wi

i−n+1)
+(1−λ(wi−1

i−n+1))PKN(wi|w
i−1
i−n+2) (2.13)

2.2.8 Modified Kneser-Kney Smoothing

[Chen and Goodman (1998)] extend Kneser-Kney smoothing by making constant D

dependent on n-gram count.

PMKN(wi|w
i−1
i−n+1) =

max{C(wi
i−n+1) − D(C(wi

i−n+1)), 0}∑
wi

C(wi
i−n+1)

+(1−λ(wi−1
i−n+1))PMKN(wi|w

i−1
i−n+2)

(2.14)
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D(C) =






0 if C = 0

1 − 2Y n2

n1
if C = 1

2 − 3Y n3

n2
if C = 2

3 − 4Y n4

n3
if C ≥ 3

(2.15)

Y = n1
n1

2n2

where ni denotes the total number of n-grams occurring exactly i times. Authors

experimentally justified that this method yields superior performance over above

mentioned methods.

2.3 Language Model Evaluation

In speech recognition, we are mainly interested in the word error rate (WER). How-

ever, other objective functions might be desired in application which the speech

recognition system is only a part of. In spoken document classification systems, for

instance, only key words are substantial, therefore accuracy of key words is measured

instead.

WER is defined as the number of mis-recognized words divided by length of the

corresponding transcriptions. Let w = w1, . . . , wn denote the sequence of words

which have been uttered and let ŵ = ŵ1, . . . , ŵm denote the recognized sequence.

An optimal alignment can be computed via dynamic programming. The optimal

alignment is an alignment with the lowest number of insertions i, deletions d and

substitutions s. WER is then calculated as

WER =
i + s + d

n

in the optimal alignment. WER reports how bad we are at decoding an utterance. A

measure which takes a positive perspective, accuracy (ACC), is computed as

ACC = 1 − WER
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WER is an ultimate measure of the performance of a speech recognition system as a

whole.

A speech recognition system can be designed to work in several stages. In the

first stage a rough recognition is carried out, while in later stages fine-tuned complex

models are employed. The output of the first stage is usually a big set of hypotheses

which are the subject of further processing. The generated set of hypotheses can

be either represented as a list of sentences or as a more effective structure so-called

lattice. A lattice a directed acyclic graph which have one starting node and one

final node, arcs are label with words. Each path through a lattice starting in the

starting node and ending in the final node corresponds to a hypothesis. To evaluate

the first stage of the recognition process, oracle accuracy is often calculated. The

oracle accuracy is defined as the accuracy of the hypothesis which has the highest

accuracy among all hypotheses stored in the lattices. Note that neither LM scores

nor acoustic model scores are taken in account.

oracle acc(lattice) = max{acc(hypi)|hypi ∈ lattice}

For fast language model comparison and tuning, perplexity is widely used as the

objective function. Perplexity comes from the field of information theory [Cover and

Thomas (1991)] and is closely related to the notion of entropy. Let X be a discrete

random variable with underlying probability distribution p and let X be the sample

space from which the data are drawn. Entropy of H(X) is defined as

H(X) = −
∑

x∈X

p(X = x) log2 P (X = x)

Roughly speaking, entropy measures uncertainty of a random variable. It attains

minimum at deterministic distributions. By a deterministic distribution is meant a

distribution which has one sure event x, p(X = x) = 1, and other events yi, p(X =

yi) = 0, impossible. Indeed, there is no uncertainty of outcome in such distributions.

Distributions which maximize entropy are uniform distributions. All events drawn
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from a uniform distribution are equally likely therefore it’s very difficult to predict

which event will be drawn next.

Cross-entropy, HC(p; pM), of the true probability distribution p and model prob-

ability distribution pM measures the average uncertainty if pM is used instead of the

true probability p. Cross-entropy, HC(p; pM) is computed as

HC(p; pM) = −
∑

x

p(x) log2 pM(x)

In context of language modeling, cross-entropy is evaluated as

HC(pM) = −
N∑

i=1

1

N
log2 pM(wi|w

i−1
1 )

where i runs through the text corpus of length N . A more intuitive measure, per-

plexity (PP), is often reported in the literature. A language model of perplexity x is

equivalent to a uniform language model on a vocabulary of size x. In other words, for

a language models of perplexity x, the average number of equiprobable words which

a decoder has to choose from is x.

PP = 2HC(pM )

Perplexity is a measure based on a text corpus only and therefore neglects acoustic

confusability of words. Thus optimizing perplexity may not lead to reduction in terms

of word error rate. Correlation of word error rate with accuracy has been investigated

by many authors. [Chen, Beeferman, and Rosenfeld (1998)] [Jelinek (1990)]

2.4 Finite-State Representation

An n-gram language model can be nicely represented in a finite-state framework.

Such representation is advantageous for future LM combination with the lexicon

and acoustic models. Use of finite-state machinery in natural language processing

is described in detail in [Mohri , Pereira, and Riley (2002)].
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A weighted finite-state automaton is defined as a tuple A = (Σ, Q, E, i, F, λ, ρ)

where Σ is an alphabet, which includes the empty symbol ǫ, Q is a set of states, i

denotes the initial state with the initial weight λ, F is the set of final states and ρ is

a weight function, which assigns a weight to each final state. E refers to a set of arcs.

An arc e = (p, n, s, w) starts in the state p and ends in the state n, accepts symbol s

with weight w. In addition, an arithmetics on weights has to specified. Two operation

are needed. One to combine weights along path ⊗, another to combine paths together

⊕. Formally, these operation must have the property of semi-ring. The most common

semi-rings in natural language processing are the so-called tropical and probabilistic

semi-ring. In the tropical semi-ring, weights represent negative log probabilities.

Weights along a path are summed (⊗ = +), and path weights are recombined by

taking the minimum (⊕ = min), which corresponds to the Viterbi decoding. In the

probabilistic semi-ring, weights represent actual probabilities, which are multiplied

along a path (⊗ = ·), paths are recombined by taking the sum (⊕ = +). Figure 2-1

1

2

3

4

5

a/0.6

a/0.2

b/0.3

b/0.7

b/1

A

1 2 3
a/0.9 b/0

B

1 2 3
a/0.8 b/1

C

Figure 2-1: An example of finite state automata. A is equivalent with B under
tropical semi-ring. Under probabilistic semi-ring A is equivalent with C.

displays an example of a weighted automaton A. If tropical semi-ring is considered,

automaton B is equivalent with A. Under probabilistic semi-ring, automaton C is

equivalent with A.

A finite-state representation of an n-gram model is straightforward. An example

of a trigram language model representation is displayed in Figure 2.4. The alphabet
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contains the vocabulary and the empty word ǫ. Weights are negative log probabilities.

Nodes represent history. By taking an arc, the history can be extended by one word,

keep the same length or shortened by one word. Consider the node representing his-

tory w1. There might be an arc leading to the node representing history w1, w2. Such

an arc would be then labeled with the word w2 and associated weight − log(P (w2|w1).

In this case the history is prolonged. From the node w1, w2 it is possible to back off

to the node w2 by taking the arc labeled with ǫ with weight β(w1, w2), which is the

back-off factor of formula 2.8. Arcs which do not extend history length lead among

nodes which represent history of length n − 1. There is an arc leading from node

w1, w2 to node w2, w2 labeled with with word w2 and probability − log(P (w2|w1, w2).

There are no arcs among back-off states which would keep the history length.

s

s, w2

s, w1

w2, w1

w2, w2

w1, w2

w2

w1

ǫ

w2/P (w2|s)

w1/P (w1|s)

w1/P (w2|w2)

w1/P (w1|w2)

w2/P (w2|w1)

w2/P (w2|w1, w2)

ǫ/β(w2, w2)

ǫ/β(w1, w2)

ǫ/β(w2, w1)

ǫ/β(w2)

ǫ/β(w1)

w2/P (w2)

w1/P (w1)

w2/P (w2|w2)

w1/P (w1|w2)

w2/P (w2|w1)
back-off states

Figure 2-2: A fragment of a trigram language model, s represents the sentence start.
Node labels denote implicit representation of history. To simplify the picture, weights
are probabilities instead of minus log probabilities.

Not only language models, but also pronunciation dictionaries can be represented

in the finite state framework. Weighted finite state transducers (WFST) are the

automata which can capture mappings of one regular language on another. WFST

T = (Σ, ∆, Q, E, i, F, λ, ρ) is defined as 8-tuple, Σ is the input alphabet, ∆ is the

output alphabet, Q is the set of states, i is the initial state, F is the set of final

35



2.4. FINITE-STATE CHAPTER 2. LANGUAGE MODELING

0

ANO/0.3 NE/0.6

NEVÍM/0.1

Figure 2-3: An example of a simple unigram language model.

states. λ is a function which assign some weight to the initial state, ρ is a function

which assigns some weight to the final states and can also output symbols of ∆. An

arc e = (p, n, i, o, w) of E leads from state p to state n, inputs symbol i ∈ Σ, outputs

symbol o ∈ ∆ with weight w. As in the case of WFA, a semi-ring has to be specified.

An example of a lexicon represented as a WFST is depicted on Figure 2-4.

0

1
a:eps

3

n:eps

2
n:eps

4
e:eps

8
o:ANO

9
eps:NE

5

v:eps

6
í:eps

7
m:NEVÍM

Figure 2-4: Example of a pronunciation lexicon represented as a finite state trans-
ducer.

2.4.1 Automata Combination

One of the main advantages of finite state representation is that models of different

levels can be combined. Operation which combines FSTs is called composition and

can be deemed an extension of classical FSA intersection algorithm. Consider two

WFST A and B. Let A map word u on v with weight c1, and B map word v on w

with weight c1. The composition C = A ◦ B of A an B maps word u directly on v

with weight c1 ⊗ c2.

A pronunciation lexicon L can be thus composed with language model G. Fig-

ure 2.4.1 displays a simple example of such composition. We will refer to the obtained

transducer as LG.

LG can be further composed with more fine-grained automata such as a mapping

from phones to triphones or a mapping from triphones to HMM states. There are

36



CHAPTER 2. LANGUAGE MODELING 2.4. FINITE-STATE

0/
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:e
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0

4

n
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n
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s/
0
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s/
0

3/
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:A
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O
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0
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0
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0
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E
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0
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0

n
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s/
0

Figure 2-5: Optimized composition of lexicon displayed on Fig 2-4 and language
model depicted on Figure 2-3.

techniques to optimize these transducers, e.g. determinization, minimization, weight

pushing an so on, aiming at reducing automaton size and shifting the weights, see

[Mohri , Pereira, and Riley (1996)].
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2.5 Language Model Pruning

As corpora suitable for language modeling grow large, memory consumption of LM

parameters increases beyond practical limits. To exploit all the available data for

estimation of a LM of feasible size, a pruning method is needed.

2.5.1 Cutoff Method

The cutoff method is the simplest method for reducing LM size. It is based on n-

gram frequency. For each n a threshold is set. If an n-gram has lower frequency

than the predefined threshold, it is discarded. This method follows the intuition that

infrequent n-grams are the least likely to be observed in the test data, in addition to

the fact that infrequent n-grams are not reliably estimated.

2.5.2 Weighted Difference

Weighted difference is a pruning method proposed by K. Seymore [Seymore and

Rosenfeld (1996)]. This pruning technique aims at removing arcs from the model in

such a way that the LM probability estimate would be as little affected as possible.

If the probability of an n-gram arc is very close to the back-off (n−1)-gram estimate,

there is no need to store the n-gram arc. The word sequence can be produced through

the back-off state with negligible influence on performance.

The pruning algorithm proceeds in two steps. Arcs are sorted by so-called weighted

difference factor

wdf = K · (log(original prob) − log(back-off prob))

where K denotes the Good-Turing discounted n-gram count. Arcs which have wdf

below certain threshold are discarded. The threshold is set in such a way that the

reduced LM meets the memory requirements.

Seymore reported slightly better performance in terms of word error rate as com-

pared to the cut-off method.
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2.5.3 Entropy-Based Pruning

Stolcke [Stolcke (1998)] suggested a more principal method for language model prun-

ing. Let p denote the original LM and p′ the pruned LM. His approach searches for

the p′ such that D(p||p′) is minimized. D(·||·) refers to the Kullback-Leibler distance,

which is defined as

D(p||p′) = −
∑

wi,hj

(p(wi, hj)[log p′(wi|hj) − log p(wi|hj)])

As in the Weighted Difference Method, pruning works in a greedy fashion. First,

arcs are sorted according to the criterion. Then a threshold is set and arcs which fall

below the threshold are pruned out.

In addition to arc removal, the Entropy-Based pruning recomputes the back-off

weights.

Experimental results showed that there is great overlap between the n-grams se-

lected by Weighted Difference method and the n-grams chosen by the Entropy-Based

pruning. In terms of WER, both methods perform about the same.
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Chapter 3

Advanced Models

3.1 Neural Networks

Neural networks have been tested as a novel approach to language modeling. Schwenk

[Schwenk and Gauvain (2004)] worked with fully connected multi-layer perceptron,

that is a forward network without any loops, see 3.1. On the input layer, words are

represented as boolean vectors. Word wi from a dictionary of size V is represented as

a vector of length V . All cells of the vector are set to 0 except for the i-th cell which

set to 1. A more compact representation is obtained by projecting these vectors to

P dimensional space, where P is chosen much smaller than V . The projection is a

simple multiplication of the input vector by a projection matrix. Size of a projection

matrix is V × P . So for history of length k we have k · P input values (instead of

k · P ) and k projection matrices.

Value of hidden state dj is computed as tanh applied to linear combination of its

inputs, that is

dj = tanh(Mj · c + bj)

where Mj is a combination matrix related to the state j, bj is a shift vector related

to the state j and c is vector of the output values of the previous layer (note that we

work with a fully connected multilayer network.)
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On the output layer the softmax is taken.

P (wi|history) =
exp(di)∑

j∈outputstates exp(dj)

Thus the probability of word wi is estimated. The number of the output states is of

the dictionary size V . So the network computes the conditional probability estimate

of each word in a single run.

Figure 3-1: Neural network as a language model. A forward multilayer fully-connected
network.

To train the network, correct output values for given inputs must be provided. A

training corpus comes in handy. For each n-gram wi+k+1
i , history wi+k

i is given to the

network input, the correct output is set to be 1 for the node representing wi+k+1, and

0 for the other output nodes. Neural networks can be trained by the back-propagation

algorithm, which is a gradient method. More sophisticated methods can be used for

training as well.

To make the whole approach computationally feasible, optimizations have to be

introduced. The size of the output layer can be shrunk from V to some moderate

value referred to as a shortlist. The authors shrunk the output layer to 2000 nodes,
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which covered 89% of probability estimates requested during testing. For the words

whose probability is not estimated via the network, standard back-off model was used.

So the probability of word wj was computed as

P (wj|hj) =





PNN(wj|hj)PS(hj) if wj ∈ shortlist

PB(wj |hj) else

PS(hj) =
∑

w∈shortlist PB(w|hj)

PNN () refers to the neural net probability estimate, PB() is the standard back-off

estimate. PS() a normalization factor which ensures that P() is a proper probability

distribution. In fact neural network redistributes probability mass assigned by the

back-off model to the words from the shortlist.

The authors have tested this approach on NIST R03 evaluation data, which are

transcriptions of conversational telephone speech in English, see http://www.nist.

gov/speech for detailed data description. The best result they achieved in terms of

accuracy was a reduction from 22% to 21.5%, relative perplexity reduction was about

9%.

Neural networks seem to be appealing from the theoretical point of view, never-

theless computational issues restrict their modeling power. Only a moderate number

of words can have its probability estimate computed. In addition, current implemen-

tations of neural network models are capable of handling histories of only about the

same size as standard n-grams. To summarize, we think that this model has to be

further improved to be worth employing in real-life applications.

3.2 Latent Semantic Analysis

Latent semantic analysis (LSA) was motivated by information retrieval approach to

word modeling. Words are viewed as points in continuous space of large dimension.

On a continuous space distances are naturally defined, standard transformations can

be performed and advanced techniques from other research fields can be adopted.

LSA requires that training corpus is segmented into documents. A document,
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understood as a set of sentences, should be semantically homogeneous, convey a

single idea. Assume we have N such documents, and an inventory of M words which

occurred in the documents. LSA builds a huge matrix A of dimension M × N . A

cell ai,j represents how word wi relates to document cj . Many functions have been

studied in the literature, one the most appropriate values for ai,j is

ai,j = (1 − ǫi)
κi,j

λj

κi,j is the number of times word wi occurs in document cj, λj is the total number

of words in the document cj , and ǫi denotes the normalized entropy of word wj over

the collection of documents

ǫi = −
1

logN

N∑

j=1

κi,j

τi
log

κi,j

τi

where τi =
∑

j κi,j.

ai,j can be understood as a weighted relative frequency of word wi in document cj .

The weight measures how important the word wi is. If word wi is very descriptive, is

observed in only in a few documents with high frequency, the entropy ǫi is small, and

thus the weight factor (1− ǫi) is close to 1, so the ai,j is high. However, if the word is

frequently observed in all documents, its normalized entropy would be close to 1, so

the weight (1 − ǫi) would be close to zero. To give an example, function words like

prepositions, conjunctions would get low ai,j even if they are frequent. Topic-specific

words, say ’algebra’ or ’logic’, should get high score if they are sufficiently observed.

In the next step, matrix A is decomposed into three matrices. The singular value

decomposition (SVD) is used.

A = USV T

Matrix U is of dimension M × R, V T is of dimension R × N . Both U and V T are

ortho-normal UT U = V T V = I. S is diagonal matrix (R × R), off-diagonal cells are

zero, diagonal values are eigen values of matrix A sorted in descending order. R is

rank of matrix A.
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Figure 3-2: Decomposition of word-document co-occurrence matrix A.

In the original matrix A, words were represented as horizontal vectors wi, the doc-

uments were represented as vertical vectors cj. Having done SVD, the representation

of words wi and documents cj is transformed

wi → ūi = uiS

cj → v̄j = vjS

ui vectors are row vectors of U , vj are column vectors of V T . The dimension of

new vectors is R. SVD can be optimized such that not all singular values would be

present in S. Only the biggest eigen values are kept, the small ones are discard. This

optimization drastically reduces size (R) of the new space. Representation of words

and documents is thus more compact. The step of selecting only biggest eigen values

is referred to as dimensionality reduction.

Having a unified representation for words and documents, we can define distance of

word from a document. Cosine distance has been appreciated in information retrieval.
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K(wi, cj) =
uiSvT

j

‖uiS1/2‖‖vjS1/2‖

K(wi, cj) is close 1 when word is relevant for document cj. If there is no corre-

spondence between word wi and document cj , K(wi, cj) should be close to zero.

In terms of language modeling, a document is just the word history. It may

happen that a particular word history was not observed as a document in training

data. Distance from unobserved documents is not defined. Therefore we need to add

the document representing the history into matrix V T . Fortunately, there is an easy

way to expand it on the fly. So the distance of word from even unobserved document

can be computed.

Cosine distance can be included into standard language models. [Bellegarda (2005)]

suggested to use

P (wi|w
i
1) =

Pn−gram(wi|w
i
1)K(wi, ci)

Pn−gram(wk|wi
1)K(wk, ci)

where Pn−gram(·) refers to a standard n-gram model, ci represents a document

composed of history of word Wi.

LSA is very attractive from the theoretical point of view. The prediction made

by LSA can be based on long word history. As a bag-of-words model, it neglects

syntax since the word order in the history is not reflected in the model. Nevertheless,

it attempts to model words with similar meaning to the history. In practice, no

dramatic WER reduction has been observed, see [Gildea and Hofmann (1999)].

3.3 Structured Language Model

Structured language model (SLM) builds on linguistic understanding of language, it

embraces morphology and syntax in a unified statistical framework. SLM can be

understood as a generalization of n-gram model. The key difference from the n-gram

model is that prediction is not necessarily driven by immediately preceding words but

in addition so-called heads of preceding phrases are considered. SLM constructs parse
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trees upon which prediction of the next word is made. To give a simple illustration

of the SLM motivation consider sentence The cat I told you about died. Bigram

language model would estimate probability of died given word about whereas SLM

would consider word cat as the history since it is the head of the preceding phrase.

Put formally, joint probability of word sequence W and parse tree T is computed

as

P (W, T ) =
n+1∏

k=1

[P (wk|Wk−1Tk−1) · P (tk|Wk−1Tk−1, wk) ·

Nk∏

i=1

P (pk
i |Wk−1Tk−1, wk, tk, p

k
1, . . . , p

k
i−1)]

Conditional word probability is then

PSLM(wk+1|Wk) =
∑

Tk∈Sk

P (wk+1|WkTk) · ρ(WkTk)

ρ(WkTk) = P (WkTk)/
∑

Tk∈Sk

P (WkTk)

where ρ(WkTk) assures proper normalization.

All train and test sentences used by SLM are augmented by start symbol (w0 =

〈start〉 ) and end symbol (wn+1 = 〈end〉.) Wk−1Tk−1 refers to word-parse (k-1) prefix,

wk is the word being predicted, tk is the tag being predicted, Nk is the number of

operations of parser, referred to as constructor, has to make at position k, pk
1, . . . , p

k
Nk

are the operations done by constructor at position k.

SLM decomposes into three basic probability distributions

P (wk|Wk−1Tk−1) = P (wk|h0, h−1)

P (tk|wk, Wk−1Tk−1) = P (tk|wk, h0, h−1)

P (pk
i |WkTk) = P (pk

i |h0, h−1)
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where h0, h−1 are preceding head words generated by constructor. Each of these

distributions is estimated by deleted interpolation. The model first generates word

wk given preceding head words. This step is referred to as word-predictor move. Note

that preceding head words may coincide with immediately preceding words. Then tag

tk is guessed given current word wk and preceding head words. This step is referred

to as tagger move. Finally partial parse trees are extended by constructor move.

Figure 3-3: Structured language model

Several issues have to be resolved to make SLM approach viable. The most

daunting part is the constructor. Number of parses grows exponentially with sentence

length. To cope with such tremendous number of trees, authors suggested using multi-

stack search algorithm, a concept similar to beam search. Due to memory limitations

pruning of unpromising trees must be employed too.

Grammar used for constructor is a context-free grammar. The grammar has to

be binarized, trees get a bit deeper, but the branching factor is limited to at most

two children per node. Headwords and nonterminal label are assigned to inner tree

nodes. Some experiments on binarization and head-word percolations are described

in [Xu, Chelba, and Jelinek (2001)].
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It has been demonstrated that SLM by itself is competitive with standard n-gram.

However when the models get interpolated the result outperforms individual models.

P (w|hist) = λ · PSLM(w|hist) + (1 − λ) · Pn−gram(w|hist)

SLM was used for rescoring n-best lists from first-pass recognition of WSJ DARPA’93

HUB1 data. The baseline model was 3-gram estimated on 50M words of WSJ, vo-

cabulary size was 20K words. The best achieved WER reduction was 10% relative

from 87% accuracy.

SLM is a promissing well-motivated approach. It can be potentially used in the

first-pass recognition as its prediction of next word is based only on the preceding

words and built structure. The major drawback is its complexity. Running SLM on

long sentences is still problematic, more optimization tricks are needed.

3.4 Discriminative Syntactic Language Model

Collins [Collins , Saraclar , and Roark (2005)] suggested to use syntax for language

modeling in a discriminative framework. The model is used for re-scoring sentences

generated by first-pass. First, each sentence from the n-best list is parsed. Then,

based on the parse and sentence words a new score is computed. The sentence of

highest score is labeled as the best hypothesis. The new best sentence is selected as

follows

W ∗ = arg max
W

(β log PLM(W ) + log PAM(A|W ) + 〈ᾱ, Φ(A, W )〉)

where log PLM(W ) is the baseline n-gram language model, β is language model scaling

factor, log PAM(A|W ) is acoustic score, 〈ᾱ, Φ(A, W )〉 refers to the new discriminative

model. Notation 〈·, ·〉 is used for the dot product. ᾱ is a real-valued vector of weights,

which are learned from a corpus. Φ(A, W ) represents feature vector. A feature can

be for example indication whether a particular grammar rule is present in parse tree,

or whether a particular bigram is present in sentence. To be more specific, feature
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vector at position say 10 is set to one if sentence parse includes rule VP → VB NP,

if such a rule does not appear in the parse the feature value is set to zero. This

model reduces to n-gram model if all the features indicate presence of words only. To

simplify notation, formula 3.4 can be rewritten as

W ∗ = arg max
W

〈ᾱ, Φ(A, W )〉

where score from the decoder can be set as the first value of feature vector

Φ1(A, W ) = β log PLM(W ) + log PAM(A|W )

and its weight ᾱ1 = 1.

To fully specify this model, features have to be enumerated and the training

algorithm for estimation of ᾱ must be described. Lets concentrate on the latter. ᾱ

can be estimated via so-called perceptron algorithm. Perceptron algorithm iteratively

goes through the training data. In each iteration (epoch) sentence by sentence is

evaluated. For each sentence (acoustic signal) Ai an n-best list is generated, denoted

as GEN(Ai). Among the sentences from GEN(Ai), two candidates deserve extra

attention, candidate with lowest WER, Yi, which we aim for and candidate which

is suggested as best by the current model Ŵi = arg maxW∈GEN(Ai)〈α, Φ(Ai, W )〉. If

the two candidate sentences differ Yi 6= Ŵi, weight vector α is updated. If the two

candidate sentences are equal, no update is made. Such behavior is often called

ultraconservative.

The algorithm is run until convergence is reached, or till changes in vector α are

small. Updates of α can be either done after each training sentence or after each

epoch. In the end, the final value of ᾱ is computed as average over all intermediate

values of α as updated during training. Lets denote αti the value of α after i-th

sentence in t-th epoch, ᾱ is computed as

ᾱ =
1

TD

∑

i,t

αit

50



CHAPTER 3. ADVANCED MODELS 3.4. DISCRIMINATIVE LM

Algorithm 1 Perceptron
α = 0
for t = 1 . . . T do ⊲ T number of iterations

for i = 1 . . .D do ⊲ D number of training sentences

Ŵi = arg maxWi∈GEN(Ai)〈α, Φ(Ai, Wi)〉 ⊲ Best sentence according to model

Yi = arg minWi∈GEN(Ai)
WER(Wi) ⊲ Best sentence according to transcriptions

if Ŵi 6= Yi then

α = α − Φ(Ai, Ŵi) + Φ(Ai, Yi)
end if

end for

end for

Averaging of parameters yields better performance. This fact has been experimentally

verified in several papers.
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Figure 3-4: Perceptron algorithm. Φ(·, ·) represent feature vectors extracted from
sentences. Hyperplane αi,t is updated to αi+1,t.

All sorts of features can be put in Φ(A, W ). Authors of [Collins , Saraclar , and

Roark (2005)] have worked with word features, in particular trigrams (wi−2, wi−1, w1).
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In addition to trigrams, they used mixed n-grams of words and part-of-speech tags

(ti−2, ti−1, ti), (ti−1, ti), (ti), (ti, wi) (3.1)

(ti−2, ti−1, wi) (3.2)

(ti−2, wi−2, ti−1, wi−1, ti, wi), (ti−2, ti−1, wi−1, ti, wi), (ti−1, wi−1, ti, wi), (ti−1, ti, wi)

(3.3)

t, w refer to tag and word, respectively at position identified by index. Next, features

from parse trees were included. These features include n-grams comprised of nonter-

minal nodes plus words. For example (VP,VB,NP,paint,house) indicates that in the

parse tree, there is a rule VP → VB NP such that word paint is head of VB subtree,

house is head of NP subtree.

Evaluation on Switchboard data with baseline WER of 37.1% showed interesting

results. Discriminatively trained model with only word features yielded WER reduc-

tion to 36.4%. Addition of mixed POS of type 3.1 to word features further reduced

WER to 36.1%. Including other mixed POS and word features did not improve the

resutls. The whole model trained with all features including syntax features yielded

WER of 36.0%, which is only 0.1% improvement over POS features.

We can conclude that re-scoring using perceptron algorithm brings significant im-

provement. However, only words and POS features proved to be beneficial. Syntactic

features within perceptron training framework in current implementation seem to be

futile.

3.5 Lattice Parsing

Parsing n-best lattices could in theory give better results over parsing n-best lists. A

lattice typically contains thousands of sentences whereas n-best lists have n candi-

dates, n is set to a only a few hundreds, sometimes more depending on time complexity

of rescoring algorithm. n-best list selection is based on an easy-to-evaluate score such

as total acoustic and language model score which is obtained from the recognition
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phase. This seems to be quite restrictive. When parsing lattices every sentence is

potentially considered by the parser. A more elaborate measure is used not only for

rescoring but also for hypothesis selection.

[Hall and Johnson (2004)] has tried to parse lattices. He adopted coarse-to-fine

approach. First stage serves as a rough search. Later stages use complex fine-tuned

models to select the best sentence.

In the first stage probabilistic bootom-up parser is used. Its main function is to

generate edges together with their category labales. To generate edges parser works

over word chunks and builds trees according to a given PCFG. As word chunks grow

larger, edges span larger word intervals. Since number of edges which could be added

is gigantic (note that number of parses for a sentence is exponential) some pruning

must be introduced. Improbable edges are not added into parse agenda. In addition

to threshold pruning, inside-outside pruning evaluates likelihood of whole trees. After

inside-outside pruning stage only the edges which are present in a probable parse are

preserved. In the next stage, elaborate parser computes probability of each parse

selected in previous stages. Authors used a lexicalized syntactic parser (Charniak

Parser) for the last stage parsing.

Results in speech recognition show that is approach is competitive with n-best

list rescoring. However no dramatic improvement was observed. The biggest problem

with rescoring lattice is that the number of parses of lattices is enormous. Therefore

heavy pruning must be employed. This pruning must done with simplified models to

be computationally feasible and thus all potential benefit of working on whole lattices

vanishes.
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Chapter 4

Thesis Goal

The goal of the thesis is to improve speech recognition of Czech in terms of WER or

oracle WER.

The research should investigate possible utilization of morphology in language

modeling. Designed language-specific modifications may be not applicable to English,

however, the ideas should carry over to other inflective languages.
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Chapter 5

Czech Language

In this section, we briefly outline the main characteristics of the Czech language from

the point of view of automatic large-vocabulary speech recognition. We also stress

the difference between Czech and English and demonstrate the contrast on a few

examples.

5.1 Inflection

Czech together with Polish, Slovak, Russian, French and many other languages be-

longs to the family of so-called inflective languages. An overview of topology of

languages is given in [Sgall (1998)]. Czech, especially, is distinguished by very large

degree of inflectionality. Auto-semantic words are inflected into many forms. A noun,

for example, is inflected into 14 forms, some of which may be homographic. Table

5.1 displays all forms of Czech word kniha, a book in English.

Not only nouns but also adjectives, pronouns, numerals and verbs are inflected in

Czech. Verbs in particular have very rich morphology. To demonstrate the richness of

morphology of Czech verbs, consider, for instance, the verb pracovat (to work). It has

more than 100 different word forms including archaic and colloquial forms. Leaving

colloquial and archaic forms aside, verb pracovat has more than 60 different forms.
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kniha (a book) singular plural
Nominative kniha knihy
Genitive knihy knih
Dative knize knihám
Accusative knihu knihy
Vocative kniho knihy
Locative knize knihách
Instrumental knihou knihami

Table 5.1: Word forms of Czech noun kniha (a book).

5.2 Word Order

Besides rich morphology, relative free word order is typical of Czech. Words can

be ordered in many ways and still form syntactically correct sentence. Semantics of

the sentence, however, may change depending not only on the word order but also

on the prosody. More details on this topic can be found in [Hajičová, Partee, and

Sgall (1998)]. To give an example of great variety of possible word orderings, consider

the Czech sentence Jan je stále veselý, which can be translated to English as John

is always cheerful. All permutations of this particular sentence generate valid Czech

sentences. To stress the large variety of word orderings, sentences are enumerated in

Tab. 5.2.

Jan je stále veselý. Veselý Jan je stále.
Jan je veselý stále. Veselý Jan stále je.
Jan stále je veselý. Veselý stále Jan je.
Jan stále veselý je. Veselý stále je Jan.
Jan veselý je stále. Veselý je stále Jan.
Jan veselý stále je. Veselý je Jan stále.
Je Jan stále veselý. Stále veselý je Jan.
Je Jan veselý stále. Stále veselý Jan je.
Je stále Jan veselý. Stále je Jan veselý.
Je stále veselý Jan. Stále je veselý Jan.
Je veselý Jan stále. Stále Jan je veselý.
Je veselý stále Jan. Stále Jan veselý je.

Table 5.2: Demonstration of free word order. All permutations of this particular
sentence are valid Czech sentences. The English translation is John is always cheerful.
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5.3 Colloquial Czech

In addition to rich morphology and relatively free word order, colloquial expressions

prevail in spoken Czech. Depending on the region, different variations of word forms

are popular with native Czech speakers. In Prague, for instance, endings ej and ý are

widespread. In Moravia ending é prevails. Table 5.3 shows the colloquial variations

of the adjective obrovský, which means huge in English.

nominative obrovský → obrovskej
genitive obrovského → obrovskýho
dative obrovskému → obrovskýmu
accussative obrovského → obrovskýho
vocative obrovský → obrovskej
locative obrovském → obrovským

obrovském → obrovskym
instrumental obrovským → obrovskym

Table 5.3: Colloquial transformation of adjective obrovský (huge). Only singular
masculine animate positive affirmative forms are displayed.

Taking into consideration all forms of adjective obrovský, there are 27 unique

colloquial forms in addition to 53 standard forms.

Not only endings vary in colloquial Czech. Some speakers like to add v at the

begging of words starting with o. Adjective obrovský is then transformed to vobrovský

as well as the other inflections of this word. Even superlative form nejobrovštěǰśı is

transformed to nejvobrovštěǰśı. This type of colloquial change effectively doubles the

number of forms which start with the letter o.
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Chapter 6

Data Description

This chapter describes both acoustic and text data exploited throughout the thesis.

It also renders acoustic models and used front-ends.

6.1 Lidové Noviny

Lidovké Noviny (LN) is a 5-year collection of Czech daily newspaper Lidové Noviny,

spanning the period of 1991-1995. LN newspaper covers actual domestic and world-

wide events including politics, economy, culture, entertainment and sport.

We preprocessed the collection to obtain a clean text suitable for language model

estimation. Numerals were transcribed into text, sentence boundaries were marked,

tables were excluded. It contains about 33 mil. tokens, 650k types and 2.3 mil.

sentences. This corpus is available at [Hajič et al. (2001)]. LN was collected by the

Institute of Czech National Corpus.

6.2 CZBN

Acoustic speech corpus, Czech Broadcast News (CZBN), consists of 26 hours of

Czech radio (Český Rozhlas, channels 1, 2 and 3) and TV (Czech TV and Prima

TV) broadcast news. Sport news, weather forecasts and traffic announcement were

excluded from the corpus. 22 hours serves as the training set.
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The signal was sampled at 22.05 kHz with 16-bit resolution. HTK toolkit [Young (1999)]

was utilized for acoustic feature extraction and acoustic model training. Mel-Frequency

Cepstral Coefficients were used as acoustic features. Each vector consists of 12 cep-

stral coefficients plus energy and corresponding delta and delta-delta coefficients.

Cepstral mean subtraction was applied to all feature vectors on a per utterance ba-

sis. Triphone acoustic models are based on continuous density HMMs. Probability

distributions are mixtures of 12 Gaussians. States of the models are tied using broad

acoustic classes yielding 5438 states and 18352 different triphones. The speech corpus

was recorded and parametrized at the University of West Bohemia, Czech Republic

and is available for the public at [Radová et al. (2004)].

6.3 MALACH

The Malach corpus contains testimonies of survivors of the World War II Holocaust.

Personal stories of more 52,000 Holocaust witnesses have been recorded in 32 lan-

guages. Testimonies are spontaneously spoken with assistance of a trained moderator.

The Czech portion of this huge database has been used in experiments of this thesis.

The Czech portion exhibits many difficulties encountered when recognizing Czech

speech. Colloquial forms, ungrammatical forms and foreign words are present in the

recordings. A detailed description of the Czech portion of the Malach corpus can be

found in [Psutka et al. (2003)].

For acoustic model training, 336 testimonies were exploited totaling 84 hours of

speech. Test set is formed by 10 testimonies of 23 hours. Audio stream was sampled

at 44KHz, 16bit resolution. PLP features were used to parametrize the signal at a

rate of 100 frames per second. Cross-word tied-mixture acoustic models had 6000

states and 94k Gaussian mixtures. Models were trained at the University of Western

Bohemia.
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Chapter 7

Fighting OOV

Word forms are the most common recognition units used in current speech recognition

systems. Word forms are also the most natural choice since the desired output of

most speech recognition systems is a word sequence. Nevertheless, other recognition

units might yield superior performance. This chapter discusses several alternative

approaches to choosing recognition units and proposes other techniques to reduce

impact of out-of-vocabulary (OOV) words.

7.1 Previous Work

Having in mind excessive vocabulary grow of inflective languages, it might be bene-

ficial to use sub-word units. Use of sub-word units leads to higher text coverage and

consequently might yield lower word error rates. Several decomposition algorithms

have been suggested, both rule-based and automatic. An example of rule-based

approach is to decompose words into stems and endings. An automatic approach

to decomposition of words into sub-word units is to take an objective function, e.g.

perplexity, and derive the sub-word units which maximize the predefined criterion.

Both approaches are briefly overviewed below. Note that these methods are applied

in the first phase of the recognition process.
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7.1.1 Stems and Endings

A morphology-driven method suggested by [Byrne et al. (2001)] and elaborated in

[Ircing (2004)] is to split words into stems and endings, so-called morphemes,

wi = stemi + endingi

Morphemes make up a new vocabulary. To employ this new vocabulary in a recog-

nition system, each word in the text corpus is substituted by its morphemes. So,

the corpus looks like stem1, ending1, stem2, ending2, . . . . Based on this morpheme

corpus, a language model is estimated. In case of trigram language model, probability

of a morpheme given its history is computed as

P (mi|mi−2, mi−1) =





P (stemi|stemi, endingi−1) if i-th morph is a stem

P (endingi|endingi−1, stemi) if i-th morph is an ending

The decoder output is, of course, a sequence of stems and endings. To reconstruct

the word sequence, stems and endings are simply concatenated. To distinguish stems

from endings, marker symbols are added to each morpheme in such a way that only

pairs (stem, ending) are concatenated to a word form.

Anyhow appealing the motivation of this approach might seem, it has a major

drawback. Stems are predicted from both stems and endings although endings of

previous words are almost of no use in the estimation of the current stem. Further-

more, prediction of a stem in a trigram model is only based on information of the

previous word (its stem and ending), no information of the second previous word is

present which is in a sharp contrast to a word form trigram LM. This deteriorates

performance possibly boosted by higher text coverage. Indeed, little improvement

was gained by applying this model.
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7.1.2 Automatically Derived Units

An alternative to use of linguistically-motivated morphological units is to derive the

sub-word units in an automatic fashion.

Whittaker [Whittaker , Thong , and Moreno (2001)] suggested to break words into

phone sequences of length l. The procedure iterates over l and selects the units which

substantially increase log-likelihood of the training data. An n-gram model based

on these units is estimated and decoder run. Sub-words of generated lattices were

converted to words using confusion networks. Experiments were done on English.

Siivola [Siivola et al. (2003)] experimented with an related measure on Finnish.

His cost function consisted of two parts which were to be added together. The first

part corresponded to unigram likelihood of the training corpus. The second part

handled morph length. The longer morph, the higher cost. Working with morphs

lead to dramatical decrease in OOV and subsequently in WER reduction. It is worth

noting that initial OOV was very high (20%), so WER reduction was expected.

7.2 Inclusion of Rare Words

In this section we propose a simple but effective method for OOV reduction. We aim

at adding rare words into LM while keeping the modeling power of word n-grams.

7.2.1 Idea

Language models used in first pass of current speech recognition systems are usually

built in the following way. First, a text corpus is acquired. In case of broadcast

news, a newspaper collection or news transcriptions are a good source. Second, most

frequent words are picked out to form a dictionary. Dictionary size is typically in

tens of thousand words. For English, for example, dictionaries of size of 60k words

sufficiently cover common domains. Of course, for recognition of entries listed in the

Yellow pages, such limited dictionaries are clearly inappropriate. Third, an n-gram

language model is estimated. In case of Katz back-off model, the conditional bigram
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word probability is estimated as

P1(wi|wi−1) =





P̃ (wi|wi−1) if C(wi−1, wi) > k

BO(wi−1) · P̃ (wi) otherwise
(7.1)

where P̃ represents a smoothed probability distribution, BO() stands for the back-off

weight, and C(.) denotes the count of its argument. Back-off model can be also nicely

viewed as a finite state automaton as depicted in Figure 7-1.

w1 w2

bo

w2/P̃ (w2|w1)

ǫ/BO(w1) w2/P̃ (w2)

Figure 7-1: A fragment of a bigram back-off model represented as a finite-state au-
tomaton.

To alleviate the problem of a high OOV, we suggest to gather supplementary

words and add them into the model in the following way.

P (wi|wi−1) =





P1(wi|wi−1) wi ∈ D

BO(wi−1) · Q(wi) wi ∈ S
(7.2)

P1() refers to the regular back-off model, D denotes the regular dictionary from which

the back-off model was estimated, S is the supplementary dictionary which does not

overlap with D.

Several sources can be exploited to obtain supplementary dictionaries. Morphol-

ogy tools can derive words which are close to those observed in corpus. In such a case,

Q(wi) can be set as a constant function and estimated on held-out data to maximize

recognition accuracy.

Q(wi) = const for wi generated by morphology (7.3)

Having prior domain knowledge, new words which are expected to appear in audio
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recordings might be collected and added into S. Consider an example of transcribing

an ice-hockey tournament. Names of new players are desirable in the vocabulary.

Another source of S are the words which fell below the selection threshold of D.

In large corpora, there are hundreds of thousands words which are omitted from the

estimated language model. We suggest to put them into S. As it turned out, unigram

probability of these words is very low, so it is suitable to increase their score to make

them competitive with other words in D during recognition. Q(wi) is then computed

as

Q(wi) = shift · f(wi) (7.4)

where f(wi) refers to the relative frequency of wi in a given corpus, shift denotes a

shifting factor which should be tuned on some held-out data.

w1 w2

bo

w2/P̃ (w2|w1)

ǫ/BO(w1) w2/P̃ (w2)

v1/Q(v1) v2/Q(v2)

Figure 7-2: A fragment of a bigram back-off model injected by a supplementary
dictionary

Note that the probability of a word given its history is no longer proper probability.

It does not add up to one. We decided not to normalize the model for two reasons.

First, we used a decoder which searches for the best path under Viterbi approximation,

so there’s no need for normalization. Second, normalization would have involved

recomputing all back-off model weights and could also enforce retuning of the language

model scaling factor. To rule out any variation which re-tuning of the scaling factor

could bring, we decided not to normalize the new model.

In finite-state representation, injection of a new dictionary was implemented as

depicted in 7-2. Supplementary words form a loop in the back-off state.
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7.2.2 Experiments

We have evaluated our approach on two corpora, Czech Broadcast News and the

Czech portion of MALACH data.

CZBN

As a LM training corpus we exploited a collection of newspaper articles from the

Lidové Noviny (LN) newspaper. Its vocabulary contains more 650k word forms.

OOV rates are displayed in Table 7.1.

Dict. size OOV
60k 8.27%
80k 6.92%
124k 5.20%
371k 2.23%
658k 1.63%

Table 7.1: OOV rate of transcriptions of the test data. Dictionaries contained most
frequent words.

As can be readily observed, moderate-size vocabularies don’t sufficiently cover

the test data transcriptions. Therefore they are one of the major sources of poor

recognition performance.

The baseline language model was estimated from 60k most frequent words. It was

a bigram Katz back-off model with Knesser-Ney smoothing pruned by the entropy-

based method.

As the supplementary dictionary we took the rest of words from the LN corpus.

To learn the impact of injection of infrequent words, we carried out two experiments.

First, we built a uniform loop which was injected into the back-off model. The

uniform distribution was tuned on the held-out data. Tuning of this constant is

displayed in Table 7.2.

Second, we took relative frequencies multiplied by a shift coefficient as the injected

model scores. This shift coefficient was again tuned on held-out data as shown in Table

7.3.
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Uniform scale Acc
12 81.11%
11 81.32%
10 81.60%
9 79.00%

Table 7.2: Tuning of uniform distribution on the held-out set. Acc denotes accuracy.

Unigram shift Acc
no shift 80.48%
e3 81.46%
e4 82.09%
e5 81.25%

Table 7.3: Tuning of the shift coefficient of unigram model on the held-out set.

Then, we took the best parameters and used them for recognition of the test

data. Recognition results are depicted in Figure 7.4. The injection of supplementary

words helped to increase both recognition accuracy and oracle accuracy. Injection

of shifted unigram model brought relative improvement of 13.6%, 3.96% absolute,

in terms of accuracy over the 60k baseline model. Uniform injection brought also

moderate improvement, despite its simplicity. Indeed, we observed more than 10%

relative, 3.05% absolute, improvement in terms of accuracy over the 60k baseline. In

terms of oracle accuracy, unigram injection brought more than 30% relative, 4.87%

absolute, improvement.

Model Acc OAcc
Baseline 60k 70.83% 84.10%
Baseline 80k 72.56% 85.69%
60k + Uniform injection 73.88% 88.90%
60k + Unigram injection 74.79% 88.97%

Table 7.4: Evaluation on 2500 test sentences. OAcc stands for the oracle accuracy.

It’s worthwhile to mention the model size, since it could be argued that the im-

provement was achieved by an enormous increase of the model. We decided to measure

the model size using two factors. The disk space occupied by the language model

and the disk space taken up by the so-called CLG. By CLG we mean a transducer

which maps triphones to words augmented with the model scores. This transducer
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Model CLG size G size
Baseline 60k 399MB 106MB
60k + Uniform 405MB 115MB
60k + Unigram 405MB 115MB
Baseline 80k 441MB 116MB

Table 7.5: Model size comparison measured in disk space. G denotes a language model
compiled as a finite-state automaton. CLG denotes transducer mapping triphones to
words augmented with model scores.

represents the search space investigated during recognition. Table 7.5 summarizes

the sizes of the evaluated models.

Injection of supplementary words increased the model size only slightly. To see

the difference in the size of the injected models and the traditionally built ones, we

constructed a model of 80k most frequent words and pruned with the same threshold

as the 60k LM. Not only did this 80k model give worse recognition results, but it also

proved to be bigger.

MALACH data

The baseline language model was estimated from transcriptions of the survivors’ tes-

timonies. We worked with the standardized version of the transcriptions. To obtain

a supplementary vocabulary, we used Czech morphology tools [Hajič and Vidová-

Hladká (1998)]. Out of 41k words we generated 416k words which were the inflected

forms of the observed words in the corpus. Note that we posed restrictions on the

generation procedure to avoid obsolete, archaic and uncommon expressions. To do

so, we ran a Czech tagger on the transcriptions and thus obtained a list of all mor-

phological tags of observed forms. The morphological generation was then confined

to this set of tags.

Since there is no corpus to train unigram scores of generated words on, we set the

LM score of the generated forms to a constant.

The transcriptions (TR) are not the only source of text data in the MALACH

project. [Psutka et al. (2004)] searched the Czech National Corpus (CNC) for sen-

tences which are similar to the transcriptions. This additional corpus contains almost
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Corpus: w1, w2, w3 . . .

Tagged corpus: (w1, t1), (w2, t2), (w3, t3), . . .

Word form dictionary F Tag dictionary T

Expanded word form dictionary

tagging

gather forms gather tags

Generate other forms
from F restricted to T

Figure 7-3: Generation of new (unseen) word forms from corpus.

16 million words, 330k types. CNC vocabulary overlaps to a large extent TR vocab-

ulary. This fact is not surprising since the selection criterion was based on a lemma

unigram probability. Table 7.6 summarizes OOV rates of several dictionaries.

Dictionary
OOV

Name Size
TR41k 41k 5.07 %
TR41k + Morph416k 416k 2.74 %
TR41k + CNC60k 79k 3.04 %
TR41k + CNC100k 114k 2.62 %
TR41k + CNC160k 171k 2.25%
TR41k + CNC329k 337k 1.76 %
All together 630k 1.46 %

Table 7.6: OOV for several dictionaries. TR, CNC denote the transcriptions, the
Czech National Corpus, respectively. Morph refers to the dictionary generated by
the morphology tools from from TR. Numbers in the dictionary names represent the
dictionary size.

We estimated several language models. The baseline models are pruned bigram

back-off models with Knesser-Ney smoothing. The baseline accuracy of the model
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built solely from transcriptions was 62.65%. We injected constant loop of morpholog-

ical variants into this model. In terms of text coverage, this action reduced OOV from

5.07% to 2.74%. In terms of recognition accuracy, we observed a relative improvement

of 3.5%.

Model Acc OAcc
TR41k 62.65% 85.60%
TR41k + Uniform Morph 63.94% 87.52%
TR41k + CNC 100k 65.53% 88.05%
TR41k + CNC 100k + Inj 66.33% 89.21%
TR41k + CNC 160k 65.81% 88.35%

Table 7.7: Accuracy and oracle accuracy for baseline and injected models. Uni-
form Morph refers to the constant loop of the morphology-generated words. CNC nk
refers to n most frequent words of CNC. Inj denotes the loop of the rest of words of
the CNC corpus and the morphology-generated words.

In the next experiment we took as the baseline LM a linear interpolation of the

LM built from transcriptions and a model estimated from the CNC corpus. Into this

model, we injected a unigram loop of all the available words. That is the rest of

words from the CNC corpus with unigram scores and words provided by morphology

which were not already in the model. Table 7.7 summarizes the achieved accuracy

and oracle accuracy. Given the fact that the injection only slightly reduced the OOV

rate, a small reduction of 2.3% matched our expectations.

model CLG G
TR41k 38MB 5.6MB
TR41k + Morph 54MB 11MB
TR41k + CNC 100k 283MB 53MB
TR41k + CNC 100k + Inj 307MB 61MB
TR41k + CNC 160k 312MB 59MB

Table 7.8: Disk usage of tested models. G refers to a language model, CLG de-
notes triphone-to-word transducer. CNC and Morph refer to a LM estimated from
transcriptions and the Czech National Corpus, respectively. Morph represents the
loop of words generated by morphology. Inj is a loop of all words from CNC which
were not included in CNC language model, Inj contains also words generated by the
morphology.

To learn how the injection affected model size, we measured size of the language

model automaton and the optimized triphone-to-word transducer. As in the case
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of the LN corpus, injection increased the model size only moderately. Sizes of the

models are shown in Table 7.8.

7.3 LG Substitution

7.3.1 Motivation

In this section we propose a strategy to reduce impact of OOV in the second pass.

First-pass models have to be heavily pruned to meet memory limitations. In addition,

they are built of restricted dictionaries. Therefore, it would be interesting to see

whether we could improve on the firs-pass lattices in terms of accuracy and oracle

accuracy by employing bigger models in the second pass.

Consider an utterance containing OOV words. Since a decoder can not recognize

unknown words, acoustically similar words are output instead. On the word level,

the hypothesis looks very unlike the utterance. However, on the phone level, the

hypothesis and the utterance might differ only slightly. When looking on the whole

phone lattice, the optimal path can be very close to the phone transcription of the

utterance.

Consider the utterance VYSÍLÁME ZPRÁVY. Since the word VYSÍLÁME was

not in the lexicon, the best hypothesis produced by decoder was VYSÍLÁ NE-

SPRÁVNÝ. Nevertheless, the word sequence VYSÍLÁ MEZ PRÁVY was in the

generated lattice as well. Note that on the phone level, this hypothesis matches

the utterance.

utterance VYSÍLÁME ZPRÁVY

best first-pass output VYSÍLÁ NESPRÁVNÝ

k-best first-pass output VYSÍLÁ MEZ PRÁVY

Table 7.9: Example of output after first pass. Word VYSÍLÁME was an OOV word.
k-best hypothesis phone sequence matches the utterance phone sequence up to pauses
between words.
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7.3.2 Algorithm

The proposed idea is to concatenate phones along paths in generated lattices by uti-

lizing a huge dictionary and a language model. The algorithm works in the following

way.

1. Remove current LM

First pass lattices are labeled with words and a language model score. Before

we get rid of word labels, we have to remove language model score. Leaving the

LM score in the lattice would deteriorate performance, since we are planning to

add a new LM. Score of the two LM models together would dominate acoustic

score and thus lead to suboptimal solution.

2. Project to phones

Phone lattices can be obtained from word lattices by utilizing pronunciation

lexicons. Words are simply transcribed into all their pronunciations. Another

possibility is to take acoustic evidence into account. Our decoder outputs

triphone-to-word mappings. So we can use triphone lattices and convert them

to phone lattices. We decided to take the latter alternative because it does not

enlarge generated lattices and keeps only those phones which were chosen by

the decoder.

3. Handle silence models

The phone lattices contain silence phones, which indicate word boundaries.

Consecutive words are delimited by these silence phones. Since we want allow

concatenation of phones across word boundaries, we have to get rid of the silence

models. This can be done by composition of the phone lattice with the model

depicted on Fig 3. It maps the silence phone to the empty symbol. Since

pronunciation of each word is followed by a silence model, we have to add an

optional silence at every position. Composition with automaton depicted on

Figure 3 will do the job.

4. Compose with new LG
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0

sil : ǫx : x

Figure 7-4: An automaton which
removes silence phones.

0

ǫ : silx : x

Figure 7-5: An automaton which
optionally adds silence phones.

Now, we want to try out all possible concatenations of phones along all paths.

The straightforward approach of listing all phone sequences in a lattice and

combing with pronunciation lexicon is computationally infeasible. There are

too many paths stored in a lattice to be listed. The solution is to create an

automaton which would map phones to words (LG) as was introduced in chap-

ter 2.4.1. This automaton encodes not only the mapping but also a language

model score. Phone lattice is composed with LG and projected to the output

side. Thus a word lattice is obtained.

7.3.3 Results

The proposed method was tested on the CZBN corpus. We experimented with two

fist-pass models. Model 60k bi was a bigram back-off model estimated on a 60k

dictionary. Model 60k bi inj was also a bigram model estimated from 60k words. In

addition, it had a unigram loop added into the back-off state containing the rest of

words of a 658k dictionary. These models were utilized in the first pass.

To observe whether lexicon substitution can be of any benefit, we built two mod-

els. G tri 658 was a trigram back-off language model estimated from 658k words.

LG tri 658 denotes the same language model extended by the corresponding lexicon.

First we substituted the language model only (G tri 658). Then we tried to substitute

the language model together with lexicon (LG tri 658). In this case, phones were

recombined along paths. Table 7.3.3 depicts achieved results.

Consider baseline model 60k bi. The accuracy was 70.83%. When rescored by the

trigram model, accuracy went up to 71.77%. LG substitution yeilded further accuracy
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Model Acc OAcc Rescored by Acc OAcc

60k bi 70.83% 84.10%
G tri 658 71.77% 84.10%
LG tri 658 72.95% 85.09%

60k bi inj 74.79% 88.97%
G tri 658 76.60% 88.93%
LG tri 658 76.61% 88.84%

Table 7.10: Results of G and LG substitution. 60k bi is built of 60k words, 60k bi inj
contains 658k words. G means re-scoring by a language model only, LG denotes re-
scoring by phone recombination along lattice paths and LM substitution. The new
LM was estimated from 658k words.

increase to 72.95%. This 4.2% relative improvement over simple LM substitution was

due phone recombination. The baseline model consisted of only 60k words, the re-

scoring lexicon was by an order of magnitude bigger. So, recombination of phones

along lattice paths created words which were not present in the first-pass lattice.

Oracle error rate was also improved. The relative improvement was 6.3%.

Lets concentrate on the 60k bi inj model. It already contained all 658k words.

Substitution of LM brought some improvement, but further phone recombination was

of no use. That phone recombination was not beneficial was expected. All relevant

words were chosen in the first pass, the second pass model had no further words to

offer.

To conclude this experiment, we can say that phone recombination is beneficial

when the models used in the second pass are bigger so that they serve additional

relevant words. On the other hand, if the model used in the re-scoring pass contains

the same words, phone recombination does not bring any improvement.

7.4 Lemma as Recognition Unit

7.4.1 Motivation

In this section we propose to use lemmas as the recognition units for ASR of Czech.

The use of lemmas is advantageous for three reasons. First, a lemmatized dictio-

nary achieves much better text coverage. This obvious property is displayed on Fig.

7.4.1. To achieve 8.20% OOV rate, a 64k word-form dictionary is needed, while the
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lemmatized dictionary has only 13k entries. Viewed from another perspective, if we

fix dictionary size to 64k, OOV of word-form dictionary is 8.20%, while lemmatized

dictionary of the same size yields 3.11% OOV. This is a huge reduction in vocabulary

size. OOV was computed on transcriptions of the CZBN corpus. Dictionaries were

comprised of N most frequent forms, lemmas of the LN corpus, lemmatized LN

corpus, respectively.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 16  32  64  128  256  512

O
O

V

Vocabulary size (k Words)

lemmatized dictionary
word-form dictionary

Figure 7-6: Comparison of OOV rates for word form and lemmatized dictionary.

Second, n-gram model based on lemmas is more robust. Frequencies of lemmas are

higher than frequencies of word forms, therefore more reliable estimates are obtained.

Third, recognition based on lemmas admits only word forms which exist in lan-

guage. This fact is in contrast with morpheme based methods where morphemes

follow each other without regard to linguistic plausibility. Only in re-scoring phase,

invalid morph sequences get pruned out.

7.4.2 Recognition Scheme

The lemma-based recognition process works in two steps:

1. First pass

77



7.4. LEMMA AS RECOGNITION UNIT CHAPTER 7. FIGHTING OOV

Assume the vocabulary comprised of the N most frequent lemmas of a training

corpus. The pronunciation lexicon lists pronunciations of every lemma. List

of pronunciation of a lemma can be either pronunciations of all lemma’s forms

as defined by morphology, or pronunciations of only those forms which were

observed in the corpus. The lexicon obtained by the latter approach is smaller

since not all forms of a lemma are actually seen in a real corpus.

Based on the described vocabulary and lexicon, a recognition network (CLG)

is estimated and recognition run.

2. Second pass

In the second pass, LG gets substituted as described in section 7.3. The first

pass is intended to provide phone lattice while in the second pass phones of the

lattice are recombined into word forms. Language model used in this stage is a

huge word form n-gram model.

The suggested scheme can be further generalized. Instead of lemmatizing every

word form, only a certain group, e.g. nouns, can be lemmatized. Pronunciation

lexicon would then contain pronunciations of non-nouns, and for noun lemma entries

a list of pronunciations of all corresponding word forms. More abstractly the process

of lemmatization can be viewed as a substitution of a group of word forms by an

abstract unit - a class. So, in the first pass, classes are recognized. In the second

pass, phones of generated lattices are recombined and thus word lattice obtained.

The natural question is how to evaluate firs-pass lattices. Word error rate can not

be computed since we do not have the words yet. Lemma error rate is a bit tricky.

Transcriptions can not be lemmatized deterministically therefore the evaluation would

be affected by this randomness.

We propose to measure the oracle phone error rate. That is to find the phone

sequence which best matches the phone transcription of the utterance and compute

the error rate on it.
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7.4.3 Experiments

The approach was tested on the CZBN corpus. LN was used to estimate language

models. To evaluate the benefits of the lemma-based recognition we built several

language models and pronunciations lexicons. All language models were bigram back-

off models with Knesser-Ney smoothing. The following three lemma language models

were built.

• LML62 comprised the 62k most frequent lemmas of the LN. Note that there were

309 different lemmas in the corpus. Bigram pruning yielded 2.2M of bigrams.

• LML35 consists of the 35k most frequent lemmas. Number of bigrams stored

in the model was 2.2M.

• LML13 was estimated from 13k most frequent lemmas. 1.6M bigrams were kept

in the model. When we lemmatized top 62k word forms, the number of lemmas

was also 13k.

Pronunciation lexicons :

• LexL371 is a lemma pronunciation dictionary. Pronunciation listed for lem-

mas in this dictionary are pronunciations of the top 371k word forms. List of

pronunciations of a lemma does not contain all pronunciations of all correspond-

ing forms, but only pronunciations of those forms which are among 371k top

frequent words.

• LexL62 is a lemma pronunciation dictionary. It was built in the same way as

LexL371. Pronunciations listed in dictionary are restricted to pronunciations

of the 62k most frequent forms.

• LexW371 is a word form pronunciation dictionary comprised of pronunciations

of top 371k word forms.

• LexW62 is a word form pronunciation dictionary which contains pronunciations

of top 62k word forms.
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First Pass Second Pass
LM Lexicon OPhER Avg Nodes LM Lexicon WER OWER
LMW62 LexW62 2.34 4144 LMW371 LexW371 24.57 10.09
LML62 LexL371 1.68 3952 LMW371 LexW371 21.22 7.93
LML35 LexL371 1.99 3399 LMW371 LexW371 22.14 8.85
LML13 LexL371 2.58 4158 LMW371 LexW371 26.25 12.04
LML13 LexL62 2.85 3956 LMW371 LexW371 27.63 13.35

Table 7.11: Results of lemma-based recognition. OWER is the oracle word error rate,
OPhER stands for the oracle phone error rate, and Avg Nodes indicates the average
number of nodes in a phone lattice

Word error rate of the baseline 62k-word model was 27.72%, the OWER was

12.65%. When re-scored by the 371k model, the WER decreased to 24.57%. This

is the value we compare the other models to. Pure lemmatization of the 62k model

corresponds to the last model displayed on Table 7.4.3. The WER deteriorated to

27.63%. We conjecture that the deterioration was due to the fact that by merging

frequent forms into lemmas we lost information of morphological agreement of suc-

ceeding forms. Even the huge pronunciation lexicon LexL371 did not help to match

the baseline. An explanation behind this result is that frequent lemmas have most of

their forms already listed in LexL62 so addition of other forms through LexL371 is

not that advantageous.

The lemmatized model comprised of 62k lemmas yielded substantial improvement.

WER decreased to 21.22% which is 16.6% relative improvement over the baseline.

Note that vocabulary size remained the same as in the baseline model. Only the

pronunciation model was enlarged.

Lemmatized 35k model also outperformed the baseline. Vocabulary size of this

model is half size of the baseline vocabulary. The improvement over the baseline is

due to huge pronunciation lexicon. Improvement in terms of oracle word error rate

follow the same pattern as word error rate.

To conclude this section, we can say that if we fix vocabulary size, substantial im-

provement can be gained by extending pronunciation lexicon. Lemma-based language

models are coarser than form-based models and by themself perform worse. Never-

theless, when boosting pronunciation lexicon in suggested lemma-based approach,
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substantial gains in term of WER and oracle WER can be achieved depending on

OOV rates.
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Chapter 8

Conclusion

Large-vocabulary continuous speech recognition of Czech has been intensively studied

in this thesis. The whole field of speech recognition has been briefly overviewed.

Special attention has been paid to language modeling. Some of the most attractive

modeling techniques have been described.

OOV words have been identified as one the main culprits of limited speech recog-

nition performance. Several techniques have been suggested to overcome the obstacles

posed be OOV words. The proposed methods try to include word forms which would

usually not be in the dictionary. The rare words are not considered because they do

not appear in corpus often enough or they do not appear at all. Morphology tools

come handy to generate the unobserved forms. Three techniques have been proposed.

First, inclusion of rare words proved to be beneficial. On the CZBN data, the im-

provement over 3% absolute in terms of WER, and over 4% abolute in terms of oracle

WER was observed. On more challenging MALACH data, moderate improvement

was observed. Furthermore, memory requirements needed for the inclusion increased

only slightly.

Second, LG substitution gave interesting insights into rescoring with expanded

dictionary. As it turned out, words not used in the first recognition phase can be

successfully employed in the rescoring phase. Indeed, dramatic improvement in terms

of oracle WER was observed. Nevertheless, if there are no extra words left for second

phase, which were not used in the first phase, no improvement should be expected.
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CHAPTER 8. CONCLUSION

Third, lemmas were investigated as recognition units in the first pass. Depending

on the data, this approach can either deteriorate or boost performance. If corpus for

language model training is small, substantial gains can be achieved.

To summarize, original techniques to speech recognition of Czech have been de-

signed, implemented and tested on real data sets. Achieved recognition improvement

experimentally validated correctness of the underlying ideas.
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APPENDIX A. SAMPLE LATTICE
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Figure A-2: Word lattice of uterrance VYSÍLÁME ZPRÁVY
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Appendix B

CZBN Sample Sentences

A list of sample sentences is presented below. The sample sentences are part of the

CZBN collection, see chapter 6. Each sentence is displayed in one table, src indicates

the unique sentence id. Sentence labeled as True is a hand-made transcription of

acoustic signal. Sentence label as 60k is oracle best output which was obtained with

the baseline 60k bigram model. Sentence labeled as Expand is oracle best output

generated by expanded model comprised of 658k word forms with uniform injection,

see chapter 7.2.2.

src 040719nn0165730.lab

True STÁLE VYSOKÝ POČET ČESKÝCH ROMŮ ŽÁDAJÍCÍCH O AZYL TO
JE PODLE MINISTRA KAVANA TEN PRAVÝ DŮVOD PROČ KANADA
NEHODLÁ ZRUŠIT VÍZOVOU

60k STÁLE VYSOKÝ POČET ČESKÝCH ROMŮ ŽÁDAJÍCÍ H O AZYL TO JE
PODLE MINISTRA PRAVÝ DŮVOD PROČ KANADA NEHODLÁ ZRUŠIT
VÍZA

Expand STÁLE VYSOKÝ POČET ČESKÝCH ROMŮ ŽÁDAJÍCÍCH O AZYL TO JE
PODLE MINISTRA PRAVÝ DŮVOD PROČ KANADA NEHODLÁ ZRUŠIT
VÍZOVOU
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src 040719nn0230881.lab

True MINISTR KAVAN DNES NEVYLOUČIL MOŽNOST ŽE ODPOVĚDÍ BUDE
ZAVEDENÍ VÍZ PRO KANAĎANY

60k MINISTR DNES NEVYLOUČIL MOŽNOST ŽE ODPOVĚDÍ BUDE ZAVE-
DENÍ VÍZ PRO KANAĎANÉ

Expand MINISTR DNES NEVYLOUČIL MOŽNOST ŽE ODPOVĚDÍ BUDE ZAVE-
DENÍ VÍZ PRO KANAĎANY

src 040719nn0401066.lab

True A ŠÉF VÁM ŘEKNE ZA TŘI ROKY BUDETE MÍT CUKROVKU

60k A ŠÉF ŘEKNE ZA TŘI ROKY BUDETE MÍT

Expand A ŠÉF ŘEKNE ZA TŘI ROKY BUDETE MÍT CUKROVKU

src 040806rn0229022.lab

True KUBÁNSKÝ UPRCHLÍK ELIÁN GONZÁLEZ SE VRÁTÍ KE SVÉMU
OTCI UŽ PŘÍŠTÍ TÝDEN

60k LOŇSKÝ UPRCHLÍK VYJÁDŘIT ZNALEC Z NICH KE SVÉMU OTCI UŽ
PŘÍŠTÍ TÝDEN

Expand BÁŇSKÝ UPRCHLÍKY ELIA GONZÁLEZ SE VRÁTÍ KE SVÉMU OTCI
UŽ PŘÍŠTÍ TÝDEN

src 040808rn0078108.lab

True MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF
ROZPUŠTĚNÉ KOSOVSKÉ OSVOBOZENECKÉ ARMÁDY HAŠIM
TADŽI A UMÍRNĚNÝ KOSOVSKO ALBÁNSKÝ PŘEDÁK IBRAHIM
RUGOVA

60k MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF ROZPUŠTĚN
JAKO SOF SKÉ OSVOBOZENECKÉ ARMÁDY NAŠIM STAČÍ A
UMÍRNĚNÝ VKUSU SKLADBA Z KÝČE DÁM IBRAHIM DROGOVÁ

Expand MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF
ROZPUŠTĚNÉ KOSOVSKÉ OSVOBOZENECKÉ ARMÁDY NAŠIM
STAČÍ A UMÍRNĚNÝ KOSOVSKÝCH ALBÁNSKÝ PŘEDÁK IBRAHIM
DVOUGÓLOVÉ
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APPENDIX B. CZBN SAMPLE SENTENCES

src 040808rn0088879.lab

True NA ROZVODNĚNÝCH VÝCHODOSLOVENSKÝCH TOCÍCH JE STÁLE
KRITICKÁ SITUACE

60k NA ROZVOJ JINÝCH VÝCHODOSLOVENSKÉ CÍTÍM STÁLE KRITICKÁ
SITUACE

Expand NA ROZVOD NĚMÝCH VÝCHODOSLOVENSKÝCH TOCÍCH JE STÁLE
KRITICKÁ SITUACE

src 040808rn0078108.lab

True MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF
ROZPUŠTĚNÉ KOSOVSKÉ OSVOBOZENECKÉ ARMÁDY HAŠIM
TADŽI A UMÍRNĚNÝ KOSOVSKO ALBÁNSKÝ PŘEDÁK IBRAHIM
RUGOVA

60k MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF ROZPUŠTĚN
JAKO SOF SKÉ OSVOBOZENECKÉ ARMÁDY NAŠIM STAČÍ A
UMÍRNĚNÝ VKUSU SKLADBA Z KÝČE DÁM IBRAHIM DROGOVÁ

Expand MEZI ÚČASTNÍKY JSOU TAKÉ BÝVALÝ POLITICKÝ ŠÉF
ROZPUŠTĚNÉ KOSOVSKÉ OSVOBOZENECKÉ ARMÁDY NAŠIM
STAČÍ A UMÍRNĚNÝ KOSOVSKÝCH ALBÁNSKÝ PŘEDÁK IBRAHIM
DVOUGÓLOVÉ

src 040808rn0088879.lab

True NA ROZVODNĚNÝCH VÝCHODOSLOVENSKÝCH TOCÍCH JE STÁLE
KRITICKÁ SITUACE

60k NA ROZVOJ JINÝCH VÝCHODOSLOVENSKÉ CÍTÍM STÁLE KRITICKÁ
SITUACE

Expand NA ROZVOD NĚMÝCH VÝCHODOSLOVENSKÝCH TOCÍCH JE STÁLE
KRITICKÁ SITUACE

src 041923pn0412154.lab

True SOUD ROZHODL ŽE KUBÁNSKÝ TROSEČNÍK ELIÁN GONZÁLEZ
ZŮSTANE AŽ DO KONCE ODVOLACÍHO ŘÍZENÍ VE SPOJENÝCH
STÁTECH

60k SOUD ROZHODL ŽE KUBÁNSKÝ OSVĚDČÍ JEN KONSTELACE
ZŮSTANE AŽ DO KONCE ODVOLACÍHO ŘÍZENÍ VE SPOJENÝCH
STÁTECH

Expand SOUD ROZHODL ŽE KUBÁNSKÝ TROSEČNÍK DORIAN GONZÁLEZ
ZŮSTANE AŽ DO KONCE ODVOLACÍHO ŘÍZENÍ VE SPOJENÝCH
STÁTECH
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src 041918rn1207017.lab

True AKCE CIHLA MÁ VELMI KONKRÉTNÍ CÍL SHROMÁŽDIT
PROSTŘEDKY NA REKONSTRUKCI DOMU NA SLAPECH

60k AKCE JSI MÁ VELMI KONKRÉTNÍ CÍL SHROMÁŽDIT PROSTŘEDKY
NA REKONSTRUKCI DOMU NA SLADKÁ

Expand AKCE SI MÁ VELMI KONKRÉTNÍ CÍL SHROMÁŽDIT PROSTŘEDKY
NA REKONSTRUKCI DOMU NA SLAPECH

src 041918rn1100167.lab

True JAK ŘEKL NAŠEMU REPORTÉROVI JANU MIŠURCOVI PETR
BLAŽEK Z DOPRAVNÍCH PODNIKŮ PRAHA V METROPOLI SE O
NĚKOLIK SET KORUN POKUTA ZVÝŠÍ OD PRVNÍHO ČERVENCE

60k JAK ŘEKL NAŠEMU REPORTÉRŮ JIMŽ BY PETR BLAŽEK Z DO-
PRAVNÍCH PODNIKŮ PRAHA V METROPOLI SE O NĚKOLIK SET
KORUN POKUD ZVÝŠÍ OD PRVNÍHO ČERVENCE

Expand JAK ŘEKL NAŠEMU REPORTÉROVI JENOM ŽUP SCUDY PETR
BLAŽEK Z DOPRAVNÍCH PODNIKŮ PRAHA V METROPOLI SE O
NĚKOLIK SET KORUN POKUD ZVÝŠÍ OD PRVNÍHO ČERVENCE

src 041918rn0842849.lab

True DETAILY MÁ NAŠE ZPRAVODAJKA RENATA HAVRANOVÁ

60k DETAILY MÁ NAŠE ZPRAVODAJKA NOVÁ

Expand DETAILY MÁ NAŠE ZPRAVODAJKA RENATA HAVRANŮ

src 041823pn0604401.lab

True ZÍTRA SE OČEKÁVÁ KULMINACE POVODŇOVÉ VLNY V SZOLNOKU
A V DALŠÍCH OBLASTECH SMĚREM K SZEGEDU

60k ZÍTRA SE OČEKÁVÁ UMĚLCE POVODŇOVÉ VLNY V SOUMRAKU A
V DALŠÍCH OBLASTECH SMĚREM K SEDĚT U

Expand ZÍTRA SE OČEKÁVÁ KULMINACE POVODŇOVÉ VLNY V SALÓNU A
V DALŠÍCH OBLASTECH SMĚREM K SEDADLŮM

src 041818rn0093479.lab

True PŘED NAŠÍM ZASTUPITELSTVÍM V HAVANĚ PROTESTOVALI PROTI
REZOLUCI TISÍCE KUBÁNCŮ

60k PŘED NAŠÍM ZASTUPITELSTVÍ V HAVANĚ PROTESTOVALI PROTI
REZOLUCI TISÍCE DÁRCŮ

Expand PŘED NAŠÍM ZASTUPITELSTVÍM V HAVANĚ PROTESTOVALI PROTI
REZOLUCI TISÍCE DÁRCŮ
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src 041810pn0014495.lab

True TATO NORMA MÁ DO URČITÉ MÍRY POSÍLIT POSTAVENÍ
ZAMĚSTNANCŮ A SLADIT ČESKÉ PRÁVO S LEGISLATIVOU
EVROPSKÉ UNIE

60k TATO NORMA MÁ DO URČITÉ MÍRY POSÍLIT POSTAVENÍ
ZAMĚSTNANCŮ A SLADIT ČESKY POSLEDNĚ S VÝZVOU EVROPSKÉ
UNIE

Expand TATO NORMA MÁ DO URČITÉ MÍRY POSÍLIT POSTAVENÍ
ZAMĚSTNANCŮ A SLADIT ČESKÝ TRENTU S LEGISLATIVOU
EVROPSKÉ UNIE
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Appendix C

Malach Sample Sentences

A few sample sentences from the MALACH corpus are displayed below. Transcrip-

tions produced by annotators are marked as True. One best automatic transcriptions

are labeled as One, oracle best transcriptions are labeled as Oracle. Setting of the

recognition system is described in table 7.6, line 2. Language model is based on

transcription plus morphology generated forms.

src 16379 01 00143.lab

True JESTLI TO ŘEKL NEBO NE ALE JÁ UŽ SEM O NĚM NESLYŠEL NIKDY
AŽ SEM HO POTOM PO VÁLCE JEDNOU ZAHLÉDL

One JESTLI TO ŘEKL NEBO NE ALE JÁ UŽ SEM O NĚM NESLYŠELI KDY
AŽ SEM HO POTOM PO VÁLCE JEDNOU ZA ALE

Oracle JESTLI TO ŘEKL NEBO NE ALE JÁ UŽ SEM O NĚM NESLYŠELI NIKDY
AŽ SEM HO POTOM PO VÁLCE JEDNOU ZAHLÉDL

src 16379 06 00020.lab

True JÁ SEM NEVĚDĚL KDO TO JE PROTOŽE JÁ SEM V NĚMČINĚ SI TO
NEUMĚL PŘELOŽIT ŽE ŠPERBR JE JESTŘÁB

One JÁ SEM NEVĚDĚL KDO TO JE PROTOŽE JÁ SEM V NĚMČINĚ SI TO
NEUMĚL PŘELOŽIT JEŽKA DOBRÝ A STAL

Oracle JÁ SEM NEVĚDĚL KDO TO JE PROTOŽE JÁ SEM V NĚMČINĚ SI TO
NEUMĚL PŘELOŽIT ŽE ŠKAREDOVÉ JE JISTA
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src 16379 07 00055.lab

True VPRAVO MŮJ TATÍNEK VLEVO MOJE MAMINKA UPROSTŘED
STRÝC BEDŘICH REDLICH

One VPRAVO MŮJ TATÍNEK VLEVO MOJE MAMINKA UPROSTŘED
STRÝC BYL ZŘÍZENÝ

Oracle VPRAVO MŮJ TATÍNEK VLEVO MOJE MAMINKA UPROSTŘED
STRÝC BEDŘICH NE

src 25819 02 00069.lab

True TEN MĚ ZACHRÁNIL TENKRÁT ŽIVOT PONĚVADŽ BYCH BÝVALA
MUSELA HNED DO TRANSPORT

One TEN NEZACHRÁNIL TENKRÁT ŽILO PRO NÁS BYLO MUSELA NAD
DO TRANSPORTU

Oracle TEN MĚ ZACHRÁNIL TENKRÁT ŽIVOT NABITÉHO MUSELA HNED
DO TRANSPORT

src 25819 02 00137.lab

True JÁ SEM ŘEKLA PROSÍM VÁS JÁ MÁM V TOMHLE PENÍZE NO SAMO
DOUFALA SEM ŽE MĚ POMŮŽE JO

One A CELKEM TO SVAZAMA V TOMHLE PENÍZ ANO SAMOTKU DO-
UFALA SEM ŽE MĚ TOMU ŽE JO

Oracle JÁ SEM TAM PROSÍM VÁS JÁ MÁM V TOMHLE PENÍZE NO SAMOTKU
DOUFALA SEM ŽE MĚ POMŮŽE JO

src 25819 03 00126.lab

True A JÁ SEM TAM JÁ ŠLA DOMŮ A NATREFILA SEM TAM MUŽE

One A JÁ SEM TAM NAŠLA DOMU A NA PROSILA SEM TAM BOHUŽEL

Oracle A JÁ SEM TAM JÁ ŠLA DOMŮ A NAKRESLILA SEM TAM MUŽE

src 25819 03 00152.lab

Oracle A JÁ SEM TAM JÁ ŠLA DOMŮ A NAKRESLILA SEM TAM MUŽE

True CHYTLI MĚ CO TAM DĚLÁM JAK SE ŽE SEM JÁ SEM ŘÍKALA NE-
JSEM ŽÁDNÁ NĚMKYNĚ JÁ SEM PŘE UTEKLA Z TEREZÍNA

One CHYTLI MĚ TO TAM DĚLÁM JÁ SEM ŽE SEM TAM JSME KAMENY
SEM ŠLA MAMINKY NĚCO PŘES UTEKLA Z TEREZÍNA
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src 25819 04 00096.lab

True A KDYŽ SEM HO VIDĚLA TAK SEM ŘEKLA S TÍM CHCI MÍT DÍTĚ

One A TY SAMO VIDĚLA TAK SEM SE PROSTĚ BYTIM VIDÍTĚ

Oracle A TY SEM O VIDĚLA TAK SEM ŘEKLA S TÍM CHCI MÍT DÍTĚ

src 26127 02 00067.lab

True JÁ NEMĚLA ANI ZDÁNÍ PROTOŽE JÁ SEM BYLA V PRAZE
NAROZENÁ VYCHOVANÁ JÁ SEM V ŽIVOTĚ HRÁBĚ NEVIDĚLA
NATOŽ ABYCH VĚDĚLA CO SE S NIMI DĚLÁ

One JÁ NEMĚLA ANI ZDÁNÍ TAKŽE JÁ SEM BYLA V PRAZE NAROZENÁ
VYCHOVANÁ JÁ SEM ŽIVOTĚ HRABĚ NEVIDĚLA NATOŽ ABYCH
VĚDĚLA CO SE S NIMI DĚLALA

Oracle JÁ NEMĚLA ANI ZDÁNÍ PROTOŽE SEM BYLA V PRAZE NAROZENÁ
VYCHOVANÁ JÁ SEM V ŽIVOTĚ RÁDA NEVIDĚLA NATOŽ ABYCH
VĚDĚLA CO SE S NIMI DĚLÁ

src 26127 02 00141.lab

True POKUSILY JSTE SE NĚKDE SEHNAT NĚJAKÉ JÍDLO POTAJÍ UKRÁST

One POKUSIL JSTE SE NĚKDE SEHNALA NĚJAKÉ JÍDLO PANÍ BYLA

Oracle POKUSILY JSTE SE NĚKDE SEHNAT NĚJAKÉ JÍDLO POKOJI BYLA

src 26171 01 00128.lab

True NO TO BYLO TAKÉ HOROROVÝ SAMOZŘEJMĚ VŠECHNO TEN RO-
ZLOUČENÍ SE ZNÁMÝMI PROSTĚ PŘED TÍM UŽ SE ODEVZDALI TO
UŽ NEVÍM ROK PŘED TÍM NEBO KDY VEŠKERÝ ZLATO A STŘÍBRO
A VŠECHNO SE HLÁSILO A TO SE ODEVZDÁVALO A POTOM SE
SMĚLO VZÍT PADESÁT KILO NA OSOBU SEBOU NO TAK BRALI JSME
VOBLÍKÁNÍ

One NO TO BYLO TAKÉ HOLOHLAVÝ SAMOZŘEJMĚ VŠECHNO RO-
ZLOUČENÍ SE ZNÁMÝMI PROSTĚ PŘED TÍM UŽ SE ODEVZDALI
TO UŽ NEVÍM ROK DĚTI NEBO KDY VEŠKERÝ ZLATO A STŘÍBRA
VŠECHNO SE HLÁSILA TO SE ODEVZDÁVALO A POTOM SE SMĚLO
VZÍT PADESÁT KILO NA OSOBU SE VÁM TAKÉ BRALI JSME
OBLÉKLA NÍ

Oracle NO TO BYLO TAKÉ HOLOHLAVÝ SAMOZŘEJMĚ VŠECHNO RO-
ZLOUČENÍ SE ZNÁMÝMI PROSTĚ PŘED TÍM UŽ SE ODEVZDALI
TO UŽ NEVÍM ROK PŘED TÍM NEBO KDY VEŠKERÝ ZLATO A
STŘÍBRO A VŠECHNO SE HLÁSILO TO SE ODEVZDÁVALO A POTOM
SE SMĚLO VZÍT PADESÁT KILO NA OSOBU SEBOU NO TAK BRALI
JSME OBLÉKLA ANI
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src 26171 02 00078.lab

True BYLY ROZTRHANÝ PROSTĚ NĚJAKÝ STARÝ HADRY ALE MĚ TO
BYLO ÚPLNĚ JEDNO ŽÁDNÝ PRÁDLO ŽÁDNÝ KALHOTKY POD TO
NIC A JAKÝSI DŘEVÁKY JÁ SEM V TOM NEUMĚLA CHODIT BYLO
TO VELKÝ KLAPALO TO A TO BYLO VŠECHNO

One BYLO STRANĚ PROSTĚ A TY STARÝ HADRY ANI TO BYLO ÚPLNĚ
JEDNO ŽÁDNÝ PRÁDLO ŽÁDNÝ KALHOTY POPELNICE A JAKÝSI
DŘEVÁKY JÁ SEM TO MĚ MĚLA CHODÍ BYLO TO VELKÝ KAPALO
TO A TO BYLO VŠECHNO

Oracle BYL STRANY PROSTĚ TY STARÝ HADRY ALE MĚ TO BYLO ÚPLNĚ
JEDNO ŽÁDNÝ PRÁDLO ŽÁDNÝ KALHOTY POD TEN NIC A JAKÝSI
DŘEVÁKY JÁ SEM V TOM NEUMĚLA CHODIT BYLO TO VELKÝ KLA-
PALO TO A TO BYLO VŠECHNO

src 26171 03 00031.lab

True PROTOŽE JÁ KDYŽ SEM VIDĚLA JÁ PROSTĚ JÁ SEM DO DNESKA
TAKOVÁ VŽDYCKY SEM KDYŽ SEM VIDĚLA NĚCO ŽE NĚMCI
DĚLALI STRAŠNÝ VĚCI

One TO JÁ KDYŽ SEM VIDĚLA NÁM PROSTĚ JÁ SEM DO DNESKA
TAKOVÁ VŽDYCKY SE VELICE VIDĚLA NĚCO ŽE NĚMCI DĚLALI
STRAŠNÝ VĚCI

Oracle JÁ KDYŽ SEM VIDĚLA JÁ PROSTĚ JÁ SEM DO DNESKA TAKOVÁ
VŽDYCKY SEM KTERÝ SEM VIDĚLA NĚCO ŽE NĚMCI DĚLALI
STRAŠNÝ VĚCI

src 26171 03 00071.lab

True A TA PODLAHA POD TÍM SI PŘEDSTAVTE TAKHLE DEJME TOMU
ŠTVERCOVOU MÍSTNOST S BETONOVOU PODLAHOU A POD TĚMA
SPRCHAMI BYL JAKOBY KRUH A TAM TO BYLO SNÍŽENÝ

One A TA PODLAHA POD TÍM SI PŘEDSTAVTE TAK TEN DEJME TOMU
ČTVERCOVÝ MÍSTNOST A Z BETONOVOU PODLAHO POD TĚMI
SPRCHAMI BYL TAKOVÝ KLUK A TAM TO BYLO SNÍŽENI

Oracle A TA PODLAHA POD TÍM SI PŘEDSTAVTE TAKHLE DEJME TOMU
ČTVERCOVÝ MÍSTNOST S BETONOVOU PODLAHO A POD TĚMA
SPRCHAMI BYL JAKOBY KRUH A TAM TO BYLO SNÍŽENI
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src 26797 03 00207.lab

True V ARMÁDĚ JO TEN BYL ZAGITOVÁN DO RUDÉ ARMÁDY PROŠEL S
NIMI NĚJAKÝ NĚJAKÝ AKCE TEDA ŽE TAKÉ ŽE A POTOM KDYŽ SE
TVOŘILA TA NAŠE JEDNOTKA TAK SI ZAŽÁDAL O PŘELOŽENÍ

One NORMÁLNÍHO NEMUSELA GIDEON RUDÉ ARMÁDY PROŠEL S NIMI
NĚJAKÝ NĚJAKÝ AKCE TEDA ŽE TAKÉ ŽE A POTOM KDYŽ SEM
POŘÁD TA NAŠE JEDNOTKA TAK SI ZAŽÁDAL O PŘILOŽENI

Oracle V ARMÁDĚ JO BYL MUSELI DO RUDÉ ARMÁDY PROŠEL S NIMI
NĚJAKÝ NĚJAKÝ AKCE TEDA ŽE TAKÉ ŽE A POTOM KDYŽ SE
TVOŘILA TA NAŠE JEDNOTKA TAK SI ZAŽÁDAL O PŘELOŽENÍ

src 26797 05 00058.lab

True TEHDY JEŠTĚ NE TO DĚLALI VŠECHNO JEŠTĚ V CIVILU A TEPRVE
POTOM KDYŽ PŘIŠLA TA SKUPINA TĚCH DEVADESÁTI LIDÍ Z
TĚCH OLEÁNEK TO BYL VLASTNĚ TEN ZÁKLAD TÉ ARMÁDY A
TA SKUPINA VZNIKLA TÍM ZPŮSOBEM ŽE EXISTOVAL HNE JEŠTĚ
PŘED VÁ PŘED VYPUKNUTÍM SOVĚTSK NĚMECKO POLSKÉ VÁLKY
EXISTOVALA ORGANIZACE UPRCHLÝCH DŮSTOJNÍKŮ A VOJÁKŮ V
KRAKOVĚ KTEŘÍ UPRCHLI Z PROTEKTORÁTU ŽE

One TEHDY JEŠTĚ NE TO JE VŠECHNO JEŠTĚ TŘÍDILO A TEPRVE
POTOM KDYŽ PŘIŠLA TA SKUPINA TĚCH DEVADESÁTI LIDI Z
TĚCH POLÁNEK TO BYL VLASTNĚ TEN ZÁKLAD TÉ ARMÁDY A
TA SKUPINA PŘÍKAZY ZPŮSOBEM ŽE EXISTOVAL JEŠTĚ PŘED
VÁLKOU PŘED VYPUKNUTÍM SOVĚTSKOU NĚMECKO POLSKÉ
VÁLKY EXISTOVALO ORGANIZACE UPRCHLÍKY DŮSTOJNÍKŮ O
VOJÁKŮ V KRAKOVĚ KTEŘÍ UTEKLI Z PROTEKTORÁTU ŽE

Oracle TEHDY JEŠTĚ NE TO VŠECHNO JEŠTĚ V CIVILU A TEPRVE PO-
TOM KDYŽ PŘIŠLA TA SKUPINA TĚCH DEVADESÁTI LIDÍ Z TĚCH
POLÁNEK TO BYL VLASTNĚ TEN ZÁKLAD TÉ ARMÁDY A TA
SKUPINA VZNIKLA TÍM ZPŮSOBEM ŽE EXISTOVAL JEŠTĚ PŘED
VÁLKOU PŘED VYPUKNUTÍM SLOVENSKO NĚMECKO POLSKÉ
VÁLKY EXISTOVALA ORGANIZACE UPRCHLÝCH DŮSTOJNÍKŮ A
VOJÁKŮ V KRAKOVĚ KTEŘÍ UPRCHLI Z PROTEKTORÁTU ŽE
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src 26797 06 00161.lab

True TAM JSME BYLI TERČEM A TAM NÁM TO FIČELO KOLEM HLAVY
JO TY KULKY PROTOŽE TAM TO BYLA ROVINA TAM SE NEBYLO
KAM SKRÝT NORMÁLNĚ TEN MINOMETČÍK ŽE JO MÁ U TOHO MI-
NOMETU NĚJAKÝ OKOP TAKÉ ŽE UDĚLANÝ ŽE TAM TO NEBYLO
MOŽNÝ PROSTĚ PROTOŽE ANI TEN OKOP PRO MINOMET NEBYL
ŽE NO TAKŽE ASI TAKHLE

One TAM JSME BYLI TERČEM A TAM NÁM TO SLYŠELO KOLEM HLAVNĚ
JO TY KŮRKY KLID A TO BYLO JAKO SE NEBYLO KAM JSTE VY-
DOVÁDĚNY ULICI ŽE JO NO V TOM ŽIVOTĚ NĚJAKÝ OKOUKL TAKÉ
ŽE UDĚLANÝ ŽE TAM TO NEBYLO MOŽNÝ PROSTĚ BYLA JINDE
OKO POLOVINU NEBYL NO TAKŽE ASI TAKHLE

Oracle TAM JSME BYLI TERČEM A TAM NÁM TO SIČOVA KOLEM HLAVY JO
TY KULKY TO BYLA TÁBOROVÉHO TAM SE NEBYLO KAM SKRÝT
NORMÁLNĚ TEN VEDOUCÍ ŽE JO NO U TOHO MÉHO NĚJAKÝ OK-
OUKL TAKÉ ŽE UDĚLANÝ ŽE TAM TO NEBYLO MOŽNÝ PROSTĚ TEN
NAJDE OKUPOVANÉMU NEBYL ŽE NO TAKŽE ASI TAKHLE
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