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Abstract

The use of statistical methods machine translationn recent years has led to
great improvements in these methods, and also the quaritataluation of re-
sults shows that they outperform rule-based systems indhltedf unlimited tex-
tual domains.

Nevertheless, statistical methods often produce erratsatie in contradiction
to the simplest linguistic knowledge, such as missing verbslid word order,
the incorrect choice of functional words, or constructitmet violate constraints
of agreement. Though translation models that transformragstf words in one
language into a string of words in another language, togettie language mod-
els based on surface-grams work well in local contexts, they are not capable
of handling grammatical rules with a larger scope. On theotiand,parsing
algorithmsthat give the syntactic structure of the sentences withivelst high
precision exist for many languages. The aim of this work esqolore possibilities
of making use of syntactical information—in our case theehef@ncy structure
used by the annotation scheme of fiague Dependency Treebank-in ma-
chine translation.

We will describe two approaches to this problem. The first isremn imple-
mentation of a&Czech-English machine translation systeombining thestatisti-
cal parsemwith rule-based transfesndgenerationthe second one is a proposal of
a newstatisticalmethod fortree-to-tree transductionshat would be able to han-
dle structural transformations in a larger context, anti¢bald be also combined
with explicit linguistic rules. We will show the appropreatess of the newly pro-
posed method on the task of learning tree transformatioris\ding alignments
between nodes of the corresponding trees.

The third goal of this work was to prepare the necessary datexjperiments
in structural machine translation. The existing algorighior statistical machine
translation require large amounts of unannotgtacillel texts while the parsing
algorithms need syntactically annotated data, knownesbanks Intuitively, the
statistical methods for machine translation, that maketisgntactic information,
require gparallel treebanko learn the transformations of the sentence structures.

As theannotation schemesre usually language-specific, such as in the case
of Czech and English, it is necessary to find out if it is pdgsib have a common
annotation scheme for both languages. And to find out if batktiag annota-
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tion schemes are compatible, so that we can automaticatlyecbthem into the
common one. We observe the most important differences leetwee annota-
tion schemes of therague Dependency Treebanland thePenn Treebank and
describe a newly created parallel treebank —Rhegue Czech-English Depen-
dency Treebank
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Chapter 1

Introduction

Machine translation is a very broad research field. It caralbegorized according
to many different criteria, such as the combination of sewad target languages,
similarity of the languages, the domain of translated tekis amount of possible
or required human interaction, or the technology used irtrédngslation system.
The aim of this work is to contribute to the research on CZesglish machine
translation in the field of fully automatic translation iretfree textual domain.
In the following text, | will concentrate on the possibiis of combining statisti-
cal methods with linguistic rules, and on using syntactforimation in machine
translation.

This chapter is introductory. Firstly, we offer a short oxnew of the machine
translation discipline from a historical perspective rthee describe the main ap-
proaches and methodologies used in the field. Finally, wadspsore time in-
troducing the most important statistical methods, andudising their advantages
and disadvantages for using them in Czech-English mactanslation.

In Chapter 2, we describe the process of creatindPtiague Czech-English
Dependency Treebank We start with two different annotation schemes — of the
Prague Dependency Treebanland thePenn Treebank compare them, and dis-
cuss the possibility of defining a common annotation scheWe.also describe
automatic procedures for converting the Penn Treebanktatowinto the depen-
dency style.

Chapter 3 describes the implementation of a Czech-Englathme transla-
tion. The system is a combination of a statistical parsersande-based transfer
and generation system.

Most of the commonly used statistical models for transtatwe based on
transformation of a string of words in one language into smgtof words in an-
other language, with language models that are usuallyiguilh surface:-grams.
These methods have a major disadvantage in that they angaisleaof handling
grammatical rules with a larger scope. In Chapter 4, we ptadetailed mathe-
matics of a new statistical model of tree-to-tree transgweleich was designed to
capture the linguistic information present in the depegédree.

Chapter 5 then describes two implementations: the first onamniodeling

13
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transformations between the two layers — analytical artdgeammatical — of an-
notation of Czech, the second one for transferring Czedogeammatical trees
into English analytical ones.

In Chapter 6 we conclude our experience in Czech-Englisthmadransla-
tion, and propose further directions in this topic.

1.1 A Short History of Machine Translation

Although the first ideas about mechanizing the process o$katéion can be traced
back to the seventeenth century, the real development eédsarch field started
in 1950s after the first computers were built. In 1947, Wavkeaver proposed the
use of computers for translating natural languages. In I8 in collaboration
with Georgetown University gave the first public demo of a hiae translation
(MT) system translating from Russian to English. The systised 250 words in
a vocabulary and 6 grammatical rules, nevertheless, it wasidered promising
and attracted massive funding of the MT research field fofdhewing decade.

In 1950s, the activities in the MT had concentrated on teditsl between
Russian and English, and the support and demand came dipteoia the mil-
itary. The main motivation was information gathering andesaing of large
amounts of scientific texts and technical documentatioa fetatively small num-
ber of experts, who could tolerate the low quality of the ot he precision of
the translation was not essential, since the purpose délatimg the documents
was to get the idea of the content in order to preselect netedacuments for
human translator.

A typical MT system was built around a translation dictionahe entries
usually had one or more possible translations. The traoslgrogram used a
word-to-word replacement in the first step (without using deeper syntacti-
cal analysis), then applied a set of rules for word order ghan As the system
developed, the size of the dictionary grew, and as did theesysf (usually ad
hoc written) rules. Later the systems were inspired by coptgary approaches
in formal linguistics (cf. Noam Chomsky published his Sytita Structures in
1957), these were mostly generative-transformationahgrars.

In spite of all the efforts and high expectations, there wasnajor break-
through reached, and the patience of the US funding ageneiest its end. In
1966, the Automatic Language Processing Advisory Comm(tt¢.PAC), an or-
ganization set up to evaluate the prospects of MT, consildéE as slower, less
accurate and twice as expensive as human translation awtuded that “there
is no immediate or predictable prospect of useful machiaestation”. Instead
of supporting further experiments with MT systems, the AlDPAecommended
funding of basic research in the field of natural languagkrtetogies.
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The research in the field of MT in the USA stopped for about ceeade, but
it did, however, continue in Canada and Europe. The demandglT systems
came from the industrial sector and also there were moreubayes of interest as
trade became multinational. The first commercially sudoésgstems appeared.
For example, the Meteo system for translating weather tegoym English to
French was developed at Montreal University at 1976, andystran, the most
successful MT system so far, was installed in 1976 to trémslacuments of the
Commission of the European Communities. A new market foapee MT sys-
tems appeared after microcomputers became available feoma use and after
the using of word processor became the dominant way of \grigrts.

The prevailing techniques at that time were rule-based. tidreslation pro-
cess used morphological, syntactic, and semantic anahgsian interlingua-like
representation, and a vice-versa sequence of tasks foragemeof the target
text. The theoretical description of natural language hdhaced since 1950
and the designer of a research system could choose from aenwhtompeting
formalisms.

At the beginning of the 1990s, the increasing performanceoaiputers al-
lowed for the use of statistical methods and large corpoendiie, a fully sta-
tistical system for MT was developed in IBM at the end of 1980l the results
were published in 1991 [Berger et al., 1994]. The system wasly statistical,
without using any linguistic knowledge, the statisticarslation models were
trained on a corpus of more that one million parallel sergsmmontaining English
and French transcriptions of speeches from the Canadidiarpant. Another
method invented at that time was an example-based appreaupailarge paral-
lel corpus of previously translated sentences [Nagao, [1%§#hart from research
systems, many practical systems were developed to assisspional translators,
such as electronic dictionaries, or translation memory.

1.2 Classification of Translation Systems

The ideal machine translation system would produce tréosakof a high quality

for any sort of text, and without any human interaction. N#waess, this goal
Is not achievable in practice. As there are many differaridiation tasks, there
are also various types of MT systems that suit them. An MTesystan be cate-
gorized according to several characteristics, such asdheanh of the translated
texts, the amount of user-interaction required for prodga@utput, or the quality
of translations. There are also several types of approacdess for constructing
the MT system. In the following, we will try to describe thengeal paradigms.
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1.2.1 Domain of Translated Text

One of the most important factors is the domain of the traedléexts. We can
consider translation of web pages as an example of a taskawithconstrained
domain The difficulties we have to face are obvious. First of alg thictionary.
Since the vocabulary is unlimited and the language is peemtnevolving, there
will always be unknown — “out-of-vocabulary” words or meags that will not be
translated by the system, and since the words may have mamimgs, for some
words it will not be possible to disambiguate the correct.ofAaother problem
is the impossibility to cover all (un)grammatical stru@sithat may occur in the
unlimited domain. Last but not least, the meaning of theese® may depend
on an outer context so that real world knowledge may be napes$s properly
understand and translate the sentence.

The task simplifies as the domain narrows. For example, wi@slating sci-
entific texts or technical documentation from one domaie,dhove mentioned
problems become easier. Since most of the authors of thetend to use a lim-
ited set of common words and terms specific to a domain, thabtdary can
be covered more successfully by a common translation diatipand a dictio-
nary specific to the domain. Another advantage is that teslogy is mostly
constructed to be unambiguous within the domain. Also thgesees are al-
ways grammatical, and the number of used grammatical agigins is smaller,
for example, sentences if®2person almost never occur in scientific texts. For
example, the English-Czech system A@Mutomaticky prekladaC anglictina —
ceStina) was designed to translate abstracts of scieatiiicles from the field of
metallurgy [Haji€, 1987].

1.2.2 User Interaction Based on Translation Purpose

As mentioned above, MT systems can produce translationgodd quality only
in highly constrained situations. Otherwise, a varying am@f user’s interaction
is necessary — based on the reason for using the MT systenhauesired level
of quality.

We can recognize two basic strategies of interactidaman-aided machine
translation(HAMT), where the translation process is performed by themree,
and the human interaction consists in pre-edition of thetnpost-edition of the
output, or interaction in the middle of the translation ms&Machine-aided hu-
man translatiofMAHT), where the human translates with help of tools rugnin
on the machine, such as translation memory (a databasewdpsdranslations),
automatic revisions of terminology, etc.

The choice of the method of interaction always depends opuhgose of the
translation. If the reason is &creendocuments, the quality of the output is not
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so important in this case, the main goal of the MT system isawide translation
to the reader (or a screening algorithm), who probably de¢&mow the source
language. The screening can be done with no costs. Relevantreints are then
sent to a professional human translator, who will probablymake any use of the
automatic translation result. The need for screening lispsésent, indeed there
are several working systems: SYSTRAN (for the main langt@ajes), ATLAS
Il (Japanese — English), or CAT (for accessing JapanesdBsea in English).

MAHT systems are suitable if a professional translator waatuse an MT
system for producing draft versionof the translation and postedit it into the fi-
nal version. In order to reduce the translation costs (e that is spent on the
translation), the MT system has to produce a high-qual@ftgdso that the costs of
corrections are lower than writing the translation fromasci. A tool commonly
used for this task is calledanslation memorylt is a database of source sentences
and their translations. When a new sentence has to be ti@shslae system tries
to find the most similar example in the database. If succkgsbitool offers the
previously used translation of the example. There are akfamtors that increase
the efficiency of using a translation memory: If the traresdiatext is a modifica-
tion of a previously translated document, such as in cas@afiidentations for
subsequent versions of the same product, if the translatiemory is large, or
if it is shared among several translators. The translatiemory is usually ca-
pable of handling small mismatches, such as numbers oforeysir changes of
proper names, but it cannot handle changes in grammaticedtste. Another
feature offered by translation memory is terminology dasise. The system uses
a terminological lexicon and checks that terms are traadlabnsistently. Some
systems are capable of finding new candidates for termigadod offer them to
the translator.

Translation companies usually divide the work among séveaaslators in
order to finish the contract as soon as possible. Translaima have to support
parallel processing of the translation: versioning of theuwnent, merging con-
current modifications, sharing the translation memory anehinological lexicon
among translators, who may work either on-line or off-liaed also tracking the
progress of the parallelized translation job.

1.2.3 Main Methodologies

MT systems can be either designed as bilingual (for a fixedgfdanguages), or
multilingual (for more language-pairs). Bilingual systenan be either unidirec-
tional (translating only in one direction), or bidirectadn

Figure 1.1 (often referred to as Vauquois’ triangle [Vaugub975]) shows the
three main processes taking part in translation: analysissfer, and generation.
Although the boundaries between them are not always shas@ useful map for
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Interlingua
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L1———TRANSFER———L2

Figure 1.1: Vauquois’ triangle

describing the architecture of an MT system. There are thase approaches to
MT: direct translation, interlingua, and transfer apptoac

Thedirect translatiormethod is the historically oldest approach. The core part
of the system is a bilingual translation dictionary and agpam for analyzing sen-
tences of the source language and generating sentencedangbt language. The
system is designed to be fully specific to the selected sande¢arget languages.
The main advantage of the direct approach is that the soangribge has to be
analyzed only to such a depth, which is sufficient for gemegathe target lan-
guage. Thus for close languages, this can be relativelyoshdFor example, the
systeméESiLKO [Haji€ et al., 2003] translates from Czech to Slovakngsonly
morphological analysis.

Theinterlinguaapproach is based on the assumption that the source language
sentences can be converted into interlingua — a certaindfigghtactico-semantic
representation, which is common to more languages, antrémsiations into tar-
get languages can be generated from this representatiogs.approach is more
suitable for multilingual translation systems. The tratish runs in two steps:
analysis and synthesis. The main advantage of the intedingpresentation is
that once the sentence is analyzed into a common reprasaniaitan be gener-
ated into all other languages, and the modules for analymjmgt can be specific
to a particular source language, as well as modules for géngroutput can be
specific to the target language. On the other hand, it is vifigudt to design
the interlingua, the resulting representation is speaifia selected combination
of languages, and adding a new language always increasesirtigexity of the
common representation.
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The transfer approach is a trade-off between the direct translation aed t
interlingua approach. The translation runs in three stapsilysis, transfer, and
synthesis. Apart from the interlingua approach, inputeecgs are analyzed into
a representation, which is still specific to the source laiggy and also the output
sentences are synthesized from a representation specthe target language.
The analytical and synthetical steps respectively handieatingual ambiguities
within the source and target languages. The transfer stepvies ambiguities
between the two languages, typically lexical issues.

1.3 Statistical Modeling in Machine Translation

1.3.1 IBM Models

At the beginning of 1990s, the computers became powerfuligmndo handle
statistical models of machine translation. The models wleseribed in [Brown
et al., 1993], and the first results from French to Englishglation experiment
were published in [Berger et al., 1994].

The first assumption of the statistical approach is that aglif&insentence
can be translated as any string of French wdrdsth a probabilityP(f | e), and
that the probability can be approximated by a statisticadehand learned from a
corpus of sentence-pairs.

The second assumption enables using the noisy-channeagtpiVe assume
(however wrongly) that a French native speaker first fortegléhe sentence as a
string of English worde and then, in a noisy-channel, converts it into a string of
French wordg. Given the strind’, the MT system tries to reconstruct the original
English sentence by taking sucte, for which theP(e | f) is the highest. Using
the Bayes’ theorem, we get

_ P(e)P(f|e)
P(e|f) = P(f) (1.2)
Since thef is fixed, we look for the English translation as for
é = argmax P(e)P(f | e). (1.2)

e

The Equation (1.2) combines the translation moBéf | e) with a language
modelP(e). In a figurative sense, it is similar to a human translato Vifst tries
to understand the French sentence, and then looks for dleuiaglish expres-
sion. The main advantage of this approach compared to nmgdile translation
directly asP(e | f) is that the translation model is designed to translate \Wwatl,
not to judge the well-formedness of sentences. In anothedsyat is trained to
concentrate its probability on such French translatioashive a correct number
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of correct words on roughly correct positions, but it is ne¢r able to distin-

guish grammatical sentences from ungrammatical ones,averdt often prefers

ill-formed sentences with repeating good words. That is Wigianguage model
has to be used for pruning ungrammatical hypotheses. Angghson is the train-
ing data. The translation model needs to learn from bilihgaaing data that are
very expensive, and it is not possible to obtain more thamariélion sentence-

pairs, for some languages even less. On the other handp i) language

model is trained on monolingual data, which is relativelgap and available in
high volumes. Thus the combination of a translation modeélalanguage models
can learn from much more data that a single model for diracisiation.

Now we are going to describe the details of the translatiodet® When
modeling such a complex process as the translation betweelahguages, it is
useful to name all operations that have to be performed wtarsforming the
source language into a target one. The “story” of the traioslas then divided
into several steps, each performing transformations oséimee type. The whole
probabilistic model is then expressed as a product of madéfese partial steps.

Figure 1.2 tells one of the possible stories of translatimgeaglish sentence
“Mary did not slap the green witchinto Spanish. In the first step, the translator
had to decide for each word, how many words would be necessargnslate it.
WordsMary, not, the green andwitch, would be translated each as one waildp
would be translated using three words (so it was rewritterle slap), while the
word did would not be translated at all (it was omitted). In the secsteg, the
translator decided how many new words yet have to be addedhattranslation.
In the third step, the translation dictionary was used tda@pEnglish words for
Spanish ones. Finally, the translator determines the finedwrder of the Spanish
sentencéMary no daba una bofetada a la bruja verde"The transformations
in steps 1 — 4 are calletkrtility, insertion translation andalignment In the
following we will will describe their probabilities in tersnof math.

Lete be an English sentence consisting wordse, . . ., ¢; andf be a French
sentence consisting oft words f1, ..., f,,. Intuitively, the alignment between
English and French words could be denoted by edges: eachhverd would
be connected with those English words, from which it 'wasnhoiSince there
may bel * m different edges, there a@&” possible alignmentswe must impose
reasonable restrictions on this. Lét= a4, ..., a,,, such a®) < «; < [ be the
alignment between French and English words. The interpetaf «; > 0 is that

in the context of statistical translation models, the sewentence (in terms of the noisy-
channel) is called English and markedand the foreign sentence (the output of the noisy-channel)
is usually marked af (and sometimes even callécench. Thus the mathematics remains consis-
tent even if the pair of languages is different from the Estgh French pair. Statistical translation
models are usually designed to be language-pair-indepénde

2For most of the sentences it is more than the estimated nuofperticles in the Universe.
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a French wordf; was generated from an English watd. If a; = 0, the French
word does not originate in any English word, because it wasried into the
sentence during translation. In another words, each Frenct has exactly one
connection — either with an English word, or with a zero naodkdating insertion.

In [Berger et al., 1994] they introduce a hierarchy of 5 mededm the sim-
plest to the most complex onéVlodel 1 expressed by Equation 1.3, estimates
the probability of translating English sentene@s Frenchf with using a fixed
alignmenta as

P(f,a|e) G H (fi | €a,)s (1.3)

wheree is a constant approximating the probablllty of choosing ldrggth of

the French sentencB(m | e), and thet(f; | e,,) is a translation probability —
the probability of translation English wokd; as the Frenclf;. The probability

P(f | e) can be then estimated as a sum over all possible alignments

! !
P(fle)=) - Z z+1mH (fi | €a,)- (1.4)
a1=0 Am =

Model 1 is a very rough approximation, since it is only baseddable of word-
to-word translation probabilities If we look at our “story” of translation from
Figure 1.2, we see that all other processes are almost ignsiree fertility and
insertion are modeled by a single constanand all possible word orders are
considered equal.

Model 2 goes into more detail by modeling tladignment probabilityof the
French word on positiori coming from an English word on positianand ap-
proximates it assuming that it depends only on the lengtlingtish and French
sentence$ andm, and the positions in these sentencesd;j. The alignment
probability is represented by a taklg | 7, m,[), such that for each triplg, m,
holds.

I
Z(z | 4, m,1) (1.5)
1=0

The form of Model 2 is

! l m

P(f | e) = Z . Z (l —:Um Ht(fj ‘ ea].),a(aj ‘j,m, l). (1.6)

Model 3 usesfertility—a probability of usings; French words for translating
e;, a set oftranslation probabilities(f | ¢;), and a set oflistortion probabilities
d(j | 1,m,l). Parameterg, andp; are used for modeling the insertions of e
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English source: [Mary|
(1) fertility: n(e; | e;
[Mary]|
(2) insertion:p®°
ry [slag

sap  [sp

[Mary] [Slap  [slap [NULL green

(3) translation:t(f; | ea,)

[Mary] [dabj g [bofetada @ [E]
(4) word order:a(j | a;, 1, m)
Spanish sentence Mary| bofetada @

Figure 1.2: A model of a process translating an English seetMary did not
slap the green witch"as a Spanish senten@dary no daba una bofetada a la
bruja verde.”

new word, they are non-negative and sum to 1. Fertilitieare functions of the
alignmentA. The formula for the model 3 is

Z Z (m ¢0) =200, 0

a1=0 am=0

l
X H oiln (¢ | e;) (1.7)

thme% (G | ajom, 1),

Models 4and5 improve the previously sketched approach by a finer modeling
of distortions, trying to better describe the movementsajér groups of words.

The parameters of the models have to be trained from a pazataus.

The above mentioned models became a common ground fotistdtieodel-
ing in machine translation. Apart from many partial improvents of the above
mentioned models, further research in the field has not Iroargy substantially
different approach.

The same approach was used in [Al-Onaizan et al., 1999] ildibg a Czech-
English machine translation system. Since the translatiodels are designed
as language independent, the general concept works fohéEaglish language
pair as well. On the other hand, there are typical imperdestcaused by specific
features of Czech. Firstly, Czech is more distant from Efgthan French. Fur-
themore, Czech is a highly inflective language, most of irgnatical functions
are expressed by specific suffixes. There are words that p@aaim more tham0
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different forms. This makes data sparseness even worsehCae choose word
order almost freely, as syntactic and semantic roles anesgpd by surface cases,
not by the word order and prepositional phrases as it is idi&ingThis is why
the distortion tables and fertilities do not work as wella€nglish-French case.
Czech is also a pro-drop language, which means that theciudfjthe sentence
is often not present. In [Al-Onaizan et al., 1999] they usethyntricks to adapt
the statistical model to the specifics of Czech, mostly dutire pre-processing
phase. Czech words ammmatizedall forms of one word replaced by a common
representative), and special tokens are inserted to Czeondang to the morpho-
logical information that was lost due to lemmatization. $hioe Czech becomes
more similar to English. For example, to compensate for tloedpop feature, if
there is no nominal phrase in nominative, gtetokenis inserted. To simulate
prepositional phrases as in English, tifetokenis inserted before each nominal
phrase in genitive, and many other.

1.3.2 Stochastic Inversion Transduction Grammars

Stochastic inversion transduction gramm&rgG) were firstly published in [Wu,
1997]. They were used for bracketing parallel texts—finadiogesponding gram-
matical structures—of the English-Chinese corpus of tapsons from Hong-
Kong’s parliament. Apart from the IBM models, this approaeds syntactically
motivated, trying to extract syntactic relations betweea telatively distant lan-
guages — English and Chinese. The main assumption of thisagpis that even
if the two corresponding sentences in two languages hatereiiit grammatical
structures, the syntactic roles can be still mapped oret-ITG is capable of
synchronous generation of the two sentences.

A simple transduction grammar (TG) (Lewis and Stearns, 1968) is a context-
free grammar (CFG) that generates two output streams inangulages. It can
be constructed as CFG, but in addition, its terminal symbal& to be marked by
one of the languages. Thus the rule— Bzx,y,Cz, generates terminalsandz
of the languagé,; on stream, and terminat of the languagé., on strean®. The
same rule can be also written using a convenience notatidn-asBz/yCz/e.

It is obvious, that simple transduction grammars can onhegae sentence-
pairs that share the same grammatical structure, the elféexs can only appear
in the number of terminals. A small extension of the formmalisan significantly
enlarge the set of generated sentence-pairs, while sijirgj in the subset of
context-free grammars. Anversion transduction grammar can be constructed
from a TG by allowing two possiblerientations of the production rulesstraight
andinverted. The straight orientation of the rule generates the rigirehside
constituents in left-to-right ordering in both languagesjle the inverted orien-
tation generates the; output in right-to-left ordering. The inverted orientatio
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S— NP VP

VP — RB VP

VP — VV PP

NP — Mary/Marie

RB — did/n’a not/pas
VV — slap/donne NN

NN — e/unee/gifle

PP— e/a NP

NP — the/la NN

NN — (green/verte witch/sorciére

Figure 1.3: An example of an inversion transduction grammenerating
sentence-pairMary did not slap the green witchand ‘Marie n’a pas donne
une giflea la sorciere verte”

is marked by operataf) around the right-hand-side of the rule. Figure 1.3 con-
tains an example of an inversion transduction grammar agur€&il.4 contains a
parse-tree for a sample sentence-pair.

It can be shown that for every ITG, there exists a gramma& in normal
form. It means that every production rule Gf has one of these forms:

S—e€fe
A — xly
A — X/e
A — ey
A — BC
A — (BC)

A stochastic inversion transduction grammar(SITG) is a transduction gram-
mar in normal form, and there is a probability assigned tdhveate, such that for
each nonterminal the sum of probabilities of all the rulleat tewrite this nonter-
minal is1. The translation model assigns a probability of synchrerganeration
of a sentence paile, f) as a sum of probabilities of all derivations @f, f). The
probabilities of particular rules are obtained by EM frora ffarallel corpus.
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S
NP VP
|
Mary
Marie RB VP
O
did not /\
nN'a pas vV PP
/\
slap NN € NP
donne a
€ € the (NN)

une gifle la Py

green witch
verte sorciere

Figure 1.4: An example of an inversion transduction grampaase-tree for a pair
of sentencesMary did not slap the green witch&nd ‘Marie n’a pas donne une
gifle a la sorcire verte”

Unlike the IBM approach, the translation process is not rfemtlas a noisy-
channel, instead it is based on a synchronous generatiootioldnguages. The
motivation for combining the translation model with a laage model is not
mathematical, but there are obvious practical reasong,feuch as the sparse-
ness of the bilingual training data, and the advantage ofgusihuge amount of
monolingual data.

The decoding algorithm and the results of a machine traoslaystem based
on SITGs were published in [Wu and Wong, 1998]. Some comralkesgstems
using this approach were introduced recently, offeringesheo-speech English-
Chinese translation of short phrases, and running on smaltes, such as PDASs.

The main advantage of this approach is that the operatiomvefsion allows
for learning grammatically different language-pairs,isas English and Chinese.
The grammars suit languages that both use, howbeit diffefigad word order-
ing. English is a SVO language, while Chinese is SOV. The Sép@roach was
not yet tested on Czech-English language pair, but we mayasthat the oper-
ation of inversion would not bring a significant advantagecs Czech is a free
word order language.
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| original sequence reordered sequendeP (reord| orig) |

NP VP

VP NP
VBD RB VP
VBD VP RB
VP VBD RB
RB VBD VP
RB VP VBD
VP RB VBD
VB NP

NP VB

DT JINN
DT NN JJ
NN DT JJ
JJ DT NN
JINN DT
NN JJ DT

NP VP

VBD RB VP

VB NP

DT JINN

Table 1.1:r-table

1.3.3 A Syntax-based Statistical Translation

A syntax-based statistical translation model [Yamada anigl, 2001] was in-
troduced in 2001, and a decoder [Yamada and Knight, 2002)@22The model
was tested on translations from Chinese to English. Thela#on system uses
a noisy-channel approach and combines the English to Ghinasslation prob-
ability with an English language model. Unlike the IBM apach, which models
channel operations transforming strings of words (fei, insertions, deletions,
word-to-word translations, and distortions), the syribased model describes the
transformation of an English parse-tree into a Chinesegstif words. The trans-
formation has three steps: reordering of tree constity@mésrtion of new con-
stituents, and translation of the English lexical inforioatinto Chinese.

An example of an English-Spanish translation process isgarg 1.5. The
first, reordering stepis between trees (a) and (b). Two child sequences are re-
ordered: the VP sequence VBD-RB-VP into RB-VBD-VP, and the3¢quence
DT-JJ-NN into DT-NN-JJ, other sequences of child nodes dahange. A non-
terminal withn child nodes has! possible reorderings. The probability of re-
ordering depends only on the sequence of the child nodes(rnibie parent node,
etc.). The probabilities are stored in the so-catl¢gble, see Table 1.1.
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(a) s
NP VP
|
Mary
VBD RB VP
| Ny
did not g NP
|
slap
DT JJ NN
| | |
the green witch
(b) s
NP VP
|
Mary
RB VBD VP
\ TN
not did g NP
T
I
S® bt NN W
| | |
the witch green
(¢) s

NP/\

VP
Mary /’\
VBD
|
did /’\

RB VP
|
not
una VB NP
e ]
slap a
DT NN JJ
| | |
the witch green
(d) s
NP VP
|
Mary
RB VBD VP
| |
no daba
una VB

la  bruja verde

Figure 1.5: An example of (a) a parse tree for the senteMagy did not slap the
green witch”, (b) reordered according to target word order, (c) afteetitisns of
words from a target language, (d) translated into a targejiage.
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parent TOPS S VP VP VP VP VP NP NP NP...
node S NP VP RB VBDVP VB NP DT NN JJ

P(node
P(left)
P(right)
word una a

P(word)

Table 1.2:n-tables

The next,insertionstep is displayed between trees (b) and (c) on Figure 1.5,
where the Spanish worghawas inserted as a left child of VP, aadvas inserted
as a right child of VB. In this step, each non-terminal of teerdered tree can
either stay the same, or a new word from the target languagkemserted either
to the left or right. The insertion probabilities depend ba tho-terminal node,
its parent, and the inserted target word. The insertionabitties are modeled
so-calledn — table, which has two parts. The first part models the probability
of inserting to the left or right, or no change for each pdssgair of node and
its parent. The second part models the insertion probigsilior particular target
words.

The last translationstep is similar to that of IBM models, it uses co-called
t-tableto model word-to-word translation probabilities. An Ersgliword can be
also translated as NULL, which corresponds to the deletidheoword.

The formal description of the model is as follows: Let the Estgparse tre€
consist of non-terminals,, . . . , €, and let the output foreign sentenicbe a string
of words fi, ..., f... LetR, N, andT be the operations of reordering, insertion
and translation. IE; is non-terminal, the operatiofy = (v;, p;, 7;) reorganizes
child nodes ot;, inserts nodes to the left or right of or leaves it the same. #;
is terminal, the operatiof} translates using a foreign word (or NULL).

The translation model assigns a probability of translatimg English parse
tree& as a foreign string of wordé

P(fl&)= >  P@O|E)

0:Str(6(e))=f

= > [Inw I NE) (o | Rt | T (),

0:Str(6(e))=f i=1

(1.8)

where, R, and7 reduces; to features significant for insertion, reordering and
translation.

In [Yamada and Knight, 2001] they use the model for Englistir€se data.
The model requires English data to be in a form of parse taae$ the Chinese
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part as a plain text. They use Collins’ parser [Collins et99] to automatically
parse the English part. The the EM algorithm is used to olgarameters of the
model.

1.4 Conclusion

We are interested in Czech-English machine translatiore 2y how to build a
translation system, is to collect language-pair-speaifiesand put them into the
framework that interprets them, another possibility is$e a statistical approach
and let the computer learn the rules from data. We understdas as unavoid-
able for achieving a good quality of translation, on the otiend, we are aware
of the fact that they are expensive, and also that a huge ambuules is barely
manageable. We believe that a good strategy in building madhanslation sys-
tem is to start with a statistical approach, and to fine-ttinsing linguistic rules.
Hence the design of the model must allow incorporating minies.

We have overviewed the major statistical approaches to macranslation
above. Although all of them are not specific to any language theey are more
suitable for languages with a constrained word order. Sipdeatures of Czech,
such as inflectiveness, free word order, and pro-drop, ltelse handled in a pre-
processing steps. What we are missing from the model is samdeok “native”
support for these phenomena. The goal of this work is to takeip bridging the

gap.
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Chapter 2

A Parallel Treebank

The research in the field of dependency-based machinedtemmshssumes exper-
iments with a parallel corpus of structurally annotatedeseces. The statistical
models we introduce in Chapters 4 and 5 need large amountsucfigally an-
notated data to learn the transformational patterns, dsaweln author of a rule-
based translation system wants to observe these phenomemaepresentative
corpus of examples in order to write the system of rules aéngexrs much of these
transformations as possible.

The Prague Czech-English Dependency TreebankPCEDT) is a project
of creating a Czech-English syntactically annotated perebrpus motivated by
needs of these experiments.

Since Czech is a language with relatively high degree of vawdr freedom,
and its sentences contain certain syntactic phenomerfaagsutiscontinuous con-
stituents (non-projective constructions), which canmosbraightforwardly han-
dled using the annotation scheme of the Penn Treebank [Eatcl., 1993, Lin-
guistic Data Consortium, 1999], based on phrase-stru¢tass, we decided to
adopt for the PCEDT the dependency-based annotation sabfdimeePrague De-
pendency Treebank — PDT [Linguistic Data Consortium, 200hg PDT is anno-
tated on three levels: morphological layer (lowest), atialpyer (middle) — sur-
face syntactic annotation, and tectogrammatical laygh@st) — level of linguistic
meaning. Dependency trees, representing the sentenceustras concentrated
around the verb and its valency, are used for the analytr@htectogrammatical
levels, as proposed by Functional Generative Descriptgall et al., 1986].

In Section 2.1, we describe the process of translating the Feeebank into
Czech. The Section 2.2 describes the automatic processhgaf Czech into
analytical representation and its automatic conversitmtectogrammatical rep-
resentation. The following Section 2.3 sketches the gépeoaedure for trans-
forming phrase topology of the Penn Treebank into depernyds&ingcture and de-
scribes the specific conversions into analytical and teatagatical representa-
tions. Section 2.5 briefly discusses some of the problemsamdtation from the
point of view of mutual compatibility of annotation schem&egction 2.6 gives an
overview of additional resources included in the PCEDT.

31
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2.1 English to Czech Translation of the Penn Treebank

There were two possible strategies how to build The PrageelGEnglish De-
pendency Treebank (PCEDT): either the parallel annotaifoaready existing
parallel texts, or the translation and annotation of antegssyntactically anno-
tated corpus. The choice of the Penn Treebank as the sourmgescwoas also
pragmatically motivated: firstly, it is a widely recognizadd used linguistic re-
source, and secondly, the translators were native speaké&sech, capable of
high quality translation into their native language.

The translators were asked to translate each English sendsra single Czech
sentence and to avoid unnecessary stylistic changes sfdtad sentences. The
translations are being revised on two levels, linguistid &ctual. About half
of the Penn Treebank has been translated so far (curren®2 sentences), the
project aims at translating the whole Wall Street Journelgfdhe Penn Treebank.

For the purpose of quantitative evaluation methods, sudkl&3 or BLEU,
for measuring performance of translation systems, we walex test set of 515
sentences and had them retranslated from Czech into Eglidldifferent trans-
lator offices, two of them from the Czech Republic and two anthfrom the
U.S.A.

2.2 Czech Data Processing

2.2.1 Morphological Tagging and Lemmatization

The Czech translations of the Penn Treebank were autorihatickenized and
morphologically tagged, each word form was assigned a basit — lemmaby
Haji¢ and Hladka [Haji¢ and Hladka, 1998] tagging tools

Analytical Parsing

The analytical parsing of Czech runs in two steps: the si@disdependency
parser, which creates the structure of a dependency trdea alassifier assign-
ing analytical functors. We carried out two parallel expernts with two parsers
available for Czech, parser | [HajiC et al., 1998] and palsgCharniak, 1999].

In the second step, we used a module for automatic analytioator assign-
ment [Zabokrtsky et al., 2002].

Conversion into Tectogrammatical Representation

During the tectogrammatical parsing of Czech, the analitree structure is con-
verted into the tectogrammatical one. These automatisfoamations are based
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on linguistic rules [Bohmova, 2001]. Subsequently,sgcammatical functors are
assigned by the C4.5 classifietgbokrtsky et al., 2002].

2.3 Analytical Representation of English

2.3.1 Automatic Conversion of the Penn Treebank into Analyital
Representation

The transformation algorithm from phrase-structure togglinto dependency
one, similar to transformations described by [Xia and PalrB@01], works as
follows:

e Terminal nodes of the phrase are converted to nodes of tlendepcy tree.

e Dependencies between nodes are established recursivle/robt node
of the dependency tree transformed from the head constitdienphrase
becomes the governing node. The root nodes of the depenttessytrans-
formed from the right and left siblings of the head constitusre attached
as the left and right children (dependent nodes) of the gwgmode, re-
spectively.

e Nodes representing traces are removed and their childesreattached to
the parent of the trace.
2.3.2 Preprocessing of the Penn Treebank
Several preprocessing steps preceded the transformatmbath analytical and
tectogrammatical representations.
Marking of Heads in English

The concept of the head of a phrase is important during tmsfisemation de-
scribed above. For marking head constituents in each phreesesed Jason Eis-
ner’s scripts ( [Eisner, 2001]).

Lemmatization of English

Czech is an inflective language, rich in morphology, thekeefemmatization (as-
signing base forms) is indispensable in almost any lingugiplication. Mostly

for reasons of symmetry with Czech data and compatibilithwhe dependency
annotation scheme, the English part was also automatieatignatized.
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We have learned the correspondence between pairs of warddod mor-
phological tag on one side and lemma on the other side fronnge leorpus of
English text [Linguistic Data Consortium, 1995] (365M werd.3M sentences)
automatically tagged by MXPOST tagger [Ratnaparkhi, 199&] lemmatized
by the morphatool [Minnen et al., 2001]. The Penn Treebank POS tags were
assigned manually, and this information makes an autorfeatimatization pro-
cedure more reliable.

Lemmatization procedure makes two attempts to find a lemma:

o first, it tries to find a triple with a matching word form and {{manually
assigned) POS;

o if it fails, it makes a second attempt with the word form cateéd to lower-
case.

If it fails in both attempts, then it chooses the given wordri@as the lemma.
For technical reasons, a unique identifier is assigned to te&en in this step.
Figure 2.1 contains an example of a lemmatized sentencawdgthed heads.

wsj_1700.mrg:5::
(S (NP™-SBJ (DT @the the)
(@NN @aim aim))
(@VvP (MD @would would)
(@QVP" (@VB @be be)
(S™-PRD (NP™-SBJ-1 (@-NONE- @ * *))
(@VP (TO @to to)
(@VP~ (@VB @end end)
(NP™ (@NP (DT @the the)
(NN @gquerrilla guerrilla)
(@NN @war war))
(PP (@IN @for for)
(NP™ (@NP (@NN @control control))
(PP (@IN @of of)
(NP™ (@NPR (@NNP @Cambodia Cambodia)))))))
(PP-MNR (@IN @by by)
(S-NOM (NP™-SBJ (@-NONE- @ *-1 *-1))
(@VP (@VBG @allowing allow)
(NP™ (DT @the the)
(@NPR (NNP @Khmer Khmer)
(@NNP @Rouge Rouge)))
(NP” (@NP (DT @a a)
(JJ @small small)
(@NN @share share))
(PP (@IN @of of)
Ca (NP™ (@NN @power power)))))))))))

Figure 2.1: Example of a lemmatized sentence with markedsed he aim
would be to end the guerrilla war for control of Cambodia bioaling the Khmer
Rouge a small share of powerTerminal nodes consist of a sequence of part-of-
speech, word form, lemma, and a unique id. The names of the dwsstituent
names start with @. (In the noun phraskmer Rougehe word Rougewas
marked as the head by mistake.)
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Unique Identification

For technical reasons, a unique identifier is assigned to €aatence and to each
token of the Penn Treebank.

2.3.3 English Analytical Dependency Trees

(@]
Sent. #1
AuxS
(@] (0}
struck .
Pred AuxK
(@] (@] (@]
earthquake / California killing
Obj AuxX  Adv
(@] (@] (@]
an Northern people
Atr Atr Obj
(0]
50

Atr
(@] (@]

more than
Atr AuxP

Figure 2.2: Analytical tree for the sentenckrni’'earthquake struck Northern Cal-
ifornia, killing more than 50 peoplé.

This section describes the automatic process of convdtim&enn Treebank
annotation into analytical representation.

The structural transformation works as described above. Because the han-
dling of coordination in PDT is different from the Penn Traek annotation style
and the output of Jason Eisner’s head assigning scriptseicase of a phrase con-
taining a coordinating conjunctiogg), we consider the rightmost as the head.
The treatment of apposition is a more difficult task, sinar¢hs no explicit an-
notation of this phenomenon in the Penn Treebank; constsued a noun phrase
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(@]
strike
PRED
(e} @) O
earthquake California kill
ACT PAT COMPL
(o] (e} (o]
northern &Cor; people
RSTR ACT PAT
(0]
50
RSTR
(o]
more
CPR

Figure 2.3: Tectogrammatical tree for the sentenfoe éarthquake struck North-
ern California, killing more than 50 people.

enclosed in commas or other delimiters (and not contaio@@re considered to
be in apposition and the rightmost delimiter becomes thd.hea

The information from both the phrase tree and the dependeeeys used for

theassignment of analytical functions

SBJ — Sb,

e The Penn Treebank function tag to analytical function magpsome func-
tion tags of a phrase tree correspond to analytic functiorenianalytical
tree and can be mapped to them:

{DTV, LGS, BNF, TPC, CLR} — Obj,
{ADV, DIR, EXT, LOC, MNR, PRP, TMP, PUT} — Adv.

Assignment of analytical functions using local context afale: for as-
signing analytical functions to the remaining nodes, werusss looking at
the current node, its parent and grandparent, taking intolat POS and
the phrase marker of the constituent in the original phreese headed by
the node. For example, the rule

mP0S = DT|mAF = Atr
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assigns the analytical functignr to every determiner, the rule
mP0S = MD|pP0S = VB|mAF = AuxV

assigns the function taguxV to a modal verb headed by a verb, etc. The
attributemP0S representing the POS of a node is obligatory for every rule.
The rules are examined primarily in the order of the longestiy of the
POS of the given node and secondarily in the order as theysted in the
rule file. The ordering of rules is important, since the firgtaming rule
found assigns the analytical function and the search igiuis

Specifics of the PDT and the Penn Treebanlannotation schemes, mainly
the markup of coordinations, appositions, and prepostiphrases are handled
separately:

e Coordinations and appositions: the analytical functicat thas originally
assigned to the head of a coordination or apposition is gated to its
child nodes by attaching the suffi€o or _Ap to them, and the head node
gets the analytical functiotoord or Apos, respectively.

e Prepositional phrases: the analytical function originatsigned to the
preposition node is propagated to its child and the prejpositode is la-
beledAuxP.

e Sentences in the PDT annotation style always contain a e fabeled
AuxS, which, as the only one in the dependency tree, does notspane to
any terminal of the phrase tree; the root node is insertedeath® original
root. While in the Penn Treebank the final punctuation is asttuent of
the sentence phrase, in the analytical tree it is moved uhgetechnical
sentence root node.

Compare the phrase structure and the analytical repréments a sample
sentence from the Penn Treebank in Figures 2.4 and 2.2.

2.4 English Tectogrammatical Dependency Trees

2.4.1 Automatic Conversion of Penn Treebank into Tectogramatical
Representation

The transformation of the Penn Treebank phrase trees ictiogiammatical rep-
resentation consists o#ructural transformation , and an assignment otecto-
grammatical functor and a set oframmatemesto each node.
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o}
S
¢} o o
NP-SBJ-1 VP
o o o o o o
An earthquake struck NP s S-ADV
DT NN VBD
o o o ¢}
Northern California NP-SBJ VP
JJ NNP
o o o
*-1 killing NP
-NONE- VBG
o ]
QP people
NNS
o o o
more than 50
JJR IN CD

Figure 2.4: Penn Treebank annotation of the sentedge éarthquake struck
Northern California, killing more than 50 peopfe.

[}
Sent. #1
o o
a .
Coord AuxK
e} Qo
zasahlo usmrtilo
Pred Pred
o o) o
zemétreseni Kalifornii vice
Sb Obj Adv
(e} o
severni nez
Atr AuxC
o
50
Adv
o
lidi
Atr

Figure 2.5: Analytical tree for the Czech translatidefretresen zasahlo severn
Kalifornii a usmrtilo vice n& 50 lid.”
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(o]
a
CONJ
and
(¢} o Q
zemétreseni zasahnout usmrtit
ACT PRED_CO PRED_CO
earthquake strike kill
o o
Kalifornie Clovek
PAT PAT
California man
[e] o
severni vice
RSTR EXT
northern more_than
o
50
CPR
50

Figure 2.6: Tectogrammatical tree for the Czech transidifenétesen zashlo
severf Kalifornii a usmrtilo vice n& 50 lid.”

S
o (e} o
NP-SBJ-1 VP
o o o o o [e]
Such loans  remain  ADJP-PRD S-ADV
JJ NNS VBP
o o o o
classified PP NP-SBJ VP
JJ
(¢] o o O o ¢}
as ADJP *1 costing NP NP
IN -NONE- VBG
(¢] o o (e] o
non-accruing the  bank QP Vi
JJ DT NN -NONE-
o o o
$ 10 million
$ Ch ¢CD

Figure 2.7: Penn Treebank annotation of the senteSceli loans remain classi-
fied as non-accruing, costing the ba#ik0 million.”
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At the beginning of the structural transformation, theialidependency tree
is created by a general transformation procedure as dedcabove. However,
functional (synsemantic) words, such as prepositionsciuation marks, deter-
miners, subordinating conjunctions, certain particlesileary and modal verbs
are handled differently. They are marked as “hidden” andrmtion about them
is stored in special attributes of their governing nodesh@y were to head a
phrase, the head of the other constituent became the gongerade in the depen-
dency tree).

The well-formedness of a tectogrammatical tree struceegeires the valency
frames to be complete: apart from nodes that are realizedrtace, there are sev-
eral types of “restored” nodes representing the non-redlmembers of valency
frames (cf. pro-drop property of Czech and verbal condemsatusing gerunds
and infinitives both in Czech and English). For a partial retauction of such
nodes, we can use traces, which allow us to establish cerdfer links, or re-
store general participants in the valency frames.

For the assignment of tectogrammatical functors, we camuigs taking into
consideration POS tags (eRRP — APP), function tags {J — RSTR, JJR — CPR,
etc.) and lemma (“not™ RHEM, “both” — RSTR).

Grammateme Assignment — morphological grammatemes énget degree
of comparison) are assigned to each node of the tectograoain@ee. The as-
signment of the morphological attributes is based on the Heeebank tags and
reflects basic morphological properties of the languagethAtmoment, there
are no automatic tools for the assignment of syntactic gratemes, which are
designed to capture detailed information about deep siottcucture.

The whole procedure is described in detail in [Ku€erovd @abokrtsky,
2002].

In order to gain a “gold standard” annotation, 1,257 serdgshave been anno-
tated manually (the 515 sentences from the test set are athemy. These data
are assigned morphological grammatemes (the full set afegdland syntactic
grammatemes, and the nodes are reordered according teféopt articulation
(information structure).

The quality of the automatic transformation procedure dieed above, based
on comparison with manually annotated trees, is about 6%rofhgly aimed de-
pendencies and 18% of wrongly assigned functors.

See Figure 2.3 for the manually annotated tectogrammagpaésentation of
the sample sentence.
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2.5 Problems of Dependency Annotation of English

The manual annotation of 1,257 English sentences on tectogatical level was,
to our knowledge, the first attempt of its kind, and was baspe@ally on the in-
structions for tectogrammatical annotation of Czech. Dyithe process of anno-
tation, we have experienced both phenomena that do not oc@zech and those
phenomena, whose counterparts in Czech occur rarely, @nefftine the guide-
lines for tectogrammatical annotation of Czech do not haldém thoroughly.
To mention just a few, among the former belongs the annatatiarticles, cer-
tain aspects of the system of verbal tenses, and phrasa.vArBpecimen of a
roughly corresponding phenomenon occurring both in CzexhEnglish is the
gerund. It is a very common means of condensation in Engbishits counter-
part in Czech (usually called transgressive) has fallerobuse and is nowadays
considered rather obsolete.

The guidelines for Czech require the transgressive to betated with the
functor COMPL. The reason why it is highly problematic to apply them stn&ig
forwardly also to the annotation of English, is that the Estgferund has a much
wider range of functions than the Czech transgressive. Enengl can be seen
as a means of condensing subordinated clauses with in pleraiverbial mean-
ing (as it is analyzed in the phrase-structure annotatioin@fPenn Treebank).
Since the range of functors with adverbial meaning is muclenfioe-grained,
we deem it inappropriate to mark the gerund clauses in such@esway on the
tectogrammatical level.

From the point of view of machine translation, the gerundstasctions pose
considerable difficulties because of the many syntactisiraations suitable as
their translations corresponding to their varied syntaitinctions.

We present two examples illustrating the issues mentiobedea Each ex-
ample consists of three figures, the first one presenting ¢m& Hreebank an-
notation of a (in the second case simplified) sentence fra@rPgnn Treebank,
the second one giving its tentative tectogrammatical sspr&ation (according to
the guidelines for Czech applied to English), and the thiné containing the
tectogrammatical representation of its translation ireech (cf. Figures 2.4, 2.3,
2.6, and Figures 2.7, 2.8, 2.9). Note that in neither of theéwamples the Czech
transgressive is used as the translation of the Englismdegaucoordination struc-
ture is used instead.

On the other hand, we have also experienced phenomena irslEmgiose
Penn Treebank style of annotation is insufficient for a ss&ite conversion into
dependency representation.

For example, the usage of constructions with nominal prefication is very
frequent in English, and the annotation of such noun phiasdten flat, grouping
together several constituents without reflecting finer agtnt and semantic rela-
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[e]

remain
PRED

o o Q

loan classify cost

ACT PAT COMPL
o o o o o [}
such &Cor;  non-accruing  &Cor;  bank $
RSTR ACT CPR ACT ADDR  PAT

o

million
RSTR

10
RSTR

Figure 2.8: Tectogrammatical tree for the senterfsach loans remain classified
as non-accruing, costing the bask0 million.”

@]
&Comma;
CONJ
O O
klasifikovat stat
PRED_CO PRED_CO
clasify cost
O o (©) o o o O
&Gen; /uvér nadale /vynasejici coz banka milién
ACT PAT THL EFF ACT PAT EXT
loan  still accruing which  bank million
o O o o
obdobny &Neg; 10 dolar
RSTR RHEM RSTR  MAT
such 10 dollar

Figure 2.9: Tectogrammatical tree for the Czech transidt@bdobre Uvery jsou
nadale klasifikoany jako nevyasejci, caz banku silo 10 million dolarti.”
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tions among them. See Figure 2.10 for an example of such aptwase. In fact,
the possible syntactic and especially semantic relatiebsden the members of
the noun phrase can be highly ambiguous, but when tranglstich a noun phrase
into Czech, we usually are not able to preserve the ambiguityare forced to
resolve it by choosing the realization of one of the read{efiFigure 2.11).
Sometimes we even may be forced to insert new words exgleibressing
the semantic relations within the nominal group. An exangblen English noun
phrase and the tectogrammatical representation of itsiCizenslation with an
inserted word “podnikajici” (‘operating’) can be foundkigures 2.12 and 2.13.

o
NP
O @) (@) @)
ADJP NN NN NNS
stock purchase rights
o ©) @)
JJ CC VBN

common and preferred

Figure 2.10: Penn Treebank annotation of the noun phiasarhon and preferred
stock purchase rights

2.6 Other Resources Included in PCEDT

2.6.1 Reader’s Digest Parallel Corpus

Reader’s Digest parallel corpus contains raw text in 53A@hed segments in
450 articles from the Reader’s Digest, years 1993-1996.Ciaeeh part is a free
translation of the English version. The final selection dad#as been done man-
ually, excluding articles whose translations significauiffer (in length, culture-
specific facts, etc.). Parallel segments on sentential lewee been aligned by
Dan Melamed’s aligning tool [Melamed, 1996]. The topology+1 (81%), 0-1
or 1-0 (2%), 1-2 or 2-1 (15%), 2—2 (1%), and others (1%).
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pravo
PAT
right

@)

nakup
PAT
purchase

CONJ
and

akcie akcie
PAT_CO PAT _CO
stock stock

(@) (@)

obycejny prioritni
RSTR RSTR
common preferred

Figure 2.11: Tectogrammatical tree for the Czech tramsiatpravo na rakup
obytejnych a prioritrich akci”.

NP

o o o e} o o) o o (e} o o o
DT NNP NNP NN NNS CC NN NNS NN CC NN NN
a San Francisco food products and building materials marketing and distribution

company

Figure 2.12: Penn Treebank annotation of the noun phia&ah Francisco food
products and building materials marketing and distributmompany.
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0}

spole¢nost
ACT
company

(¢} o] ]
sanfrancisky a podnikajici
RSTR CONJ RSTR
San_Francisco and operating
o o [e]
marketingovy distribuéni a
RSTR_CO RSTR_CO CONJ
marketing distribution and
[¢] [¢]
potravina materidl
LOC_CO LOC_CO
food_product material
[e]
stavebni
RSTR
building

Figure 2.13: Tectogrammatical tree for the Czech tramsidsanfrancisk mar-
ketingowa a distriblEni spol&€nost podnikdgi v potravirach a stavebith ma-
terialech.

2.6.2 Dictionaries

The PCEDT comprises also a translation dictionary comit@a three different
Czech-English manual dictionaries: two of them were doadéx form the Web
and one was extracted from Czech and English EuroWordNetsy-Eanslation
pairs were filtered and weighed taking into account the béitg of the source
dictionary, the frequencies of the translations in Czedh Bnglish monolingual
corpora, and the correspondence of the Czech and Englishdg®3-urthermore,
by training GIZA++ [Och and Ney, 2003] translation model twe training part
of the PCEDT extended by the manual dictionaries, we obdlagnprobabilistic
Czech-English dictionary, more sensitive to the domainradricial news specific
for the Wall Street Journal.

The resulting Czech-English probabilistic dictionary tns 46,150 entry-
translation pairs in its lemmatized version and 496,6738spai word forms in
the version where for each entry-translation pair all theegponding word form
pairs have been generated.

2.6.3 Tools
The following tools are a part of the PCEDT distribution:
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e SMT Quick Run is a package of scripts and instructions for building sta-
tistical machine translation system from the PCEDT or ameoparallel
corpus. The system uses models GIZA++ and ISI ReWrite dedGke-
mann et al., 2001].

e TrEd is a graphical editor and viewer of tree structures. Its nterdarchi-
tecture allows easy handling of diverse annotation scheittess been used
as the principal annotation environment for the PDT and PCED

o Netgraph is a multi-platform client-server application for browgimquery-
ing and viewing analytical and tectogrammatical depengéerees, either
over the Internet or locally.

2.7 Conclusion

Building a large-scale parallel treebank is a demandindjerhge. We have cre-
ated a parallel corpus for a pair of languages with a relgtiggferent typology,
Czech and English, and made an attempt to bridge betweerrgtadtic theories
commonly used for their description.

We are convinced that the PCEDT will be useful for furtherexkpents in
Czech-English machine translation. A certain disproporbetween the English
part converted from a manual annotation and the Czech piannatically parsed
from plain text corresponds to the real situation in Czealglish machine transla-
tion, where modules for transfer and generation have totadagsrors caused by
automatic analysis of the input language. Several inpubogtfor Czech (plain
text, analytical and tectogrammatical representatioogi-Butomatic and man-
ual) and a test set for quantitative evaluation can be usedrious experimental
settings, allowing to identify insufficiencies in analydisnsfer, and generation.



Chapter 3

Rule-based machine translation system
using tectogrammatical representation

In this chapter, we describe an attempt to develop a full imedinanslation based
on tectogrammatical dependency trees. The system is dekigitranslate a broad
domain of Wall Street Journal newspaper texts from Czechnigligh. The ap-
proach combines statistical methods for analyzing thecsolanguage and pro-
ducing its tectogrammatical representation, and a setles ffor lexical transfer
and generation into English. Results of the system wereighdd in Cmejrek
et al., 2003a].

The system works as follows. The Czech sentence is analytedts tecto-
grammatical representation using the same sequence sfagegready described
in Section 2.2. The lexical transfer step using a trangtadiictionary prepared
as listed in Section 3.1 then transforms the Czech tectagedioal trees into
so-calledCzenglishtrees as explained in Section 3.2. Section 3.3 describes the
rule-based generation of the English output. An examplesilting translations
is detailed in Section 3.4, and the BLEU evaluation of theselts can be found
in Section 3.5.

3.1 Czech-English Word-to-Word Translation Dictionaries

When constructing the translation dictionary for the MTteys, we have followed
two main criteria: first, the dictionary should cover as muolabulary as pos-
sible, and second, possible translation alternatives twalde organized in such a
way that translations specific to a given domain of text hagedr priority than
other translations. We have used several sources of dactemthat were avail-
able on the Internet, merged them and compiled a transldictionary sensitive
to the domain of Wall Street Journal.

3.1.1 Manual Dictionary Sources

There were three different sources of Czech-English madigtibnaries avail-
able, two of them were downloaded from the Web (WinGED, GNQL); and

47
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one was extracted from the Czech and English EuroWordNet d@tionary pa-
rameters in Table 3.1.

3.1.2 Dictionary Filtering

For a subsequent use of these dictionaries in a simple Gzeghish transfer of
tectogrammatical trees (see Section 3.2), a relativetyelamumber of possible
translations for each enfrhad to be filtered out. The aim of the filtering is to
exclude synonyms from the translation list, i.e. to choosegle representative
per meaning.

First, all dictionaries are converted into a unified XML fatand merged pre-
serving information about the source dictionary. Figute&ntains an example
of the format.

This merged dictionary, consisting of entry/translatiairp (Czech entries
and English translations in our case), is enriched with éflewing information:

e The word occurence frequency, as obtained from a large &ingionolin-
gual corpus [Linguistic Data Consortium, 1995], is addedlttranslations
of each entry. (See description of the corpus in Sectior2p.3.

e The Czech POS tag and stem are added to each entry using ttie \Gae
phological analyzer [Haji¢ and Hladkéa, 1998].

e The English POS tag is added to each translation. If thereore tthan one
English POS tag obtained from the English morphologicalyaea [Rat-
naparkhi, 1996], the English POS tag is “disambiguatedbediag to the
Czech POS in the corresponding entry/translation pair.

Then, the selection of the relevant translations for eadhy es done based
on the sum of the weights of the source dictionaries (seeodaty weights in
Table 3.1), the frequencies from English monolingual caapand the correspon-
dence of the Czech and English POS tags.

3.1.3 Scoring Translations Using GIZA++

To make the dictionary more sensitive to a given domain, Wwrgdinancial news
in our case, we used a parallel corpus consisting of theitigapart of the English-
Czech WSJ parallel corpus, extended by the parallel corpestoy/translation
pairs from the manual dictionary. We then created a protsibilCzech-English
dictionary by running a GIZA++ training (translation mosld—4, see [Och and

For example, the WinGED dictionary has 2.44 translationsgmry in average; excluding
1-1 entry/translation pairs, this number jumps to 4.51df&ions/entry.
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<TransDictionary src_lang="Cz" tgt_lang="En">

<Entry literal="vyber">
<WordSet>
<Word index="1">
<Form>vyber</Form>
<Lemma>vyber</Lemma>
<Tag>N</Tag>
</Word>
</WordSet>

<Translations>
<Translation literal="choice">
<WordSet>
<Word index="1">
<Form>choice</Form>
<Tag>N</Tag>
</Word>
</WordSet>
<Sources>
<Source src="EWN"/>
<Source src="GNU/FDL"/>
<Source src="GIZA++"/>
</Sources>
<Counts>
<Count src="WSJtrn">1189</Count>
</Counts>
<Probs>
<Prob src="GIZA++">0.404815</Prob>
</Probs>
<Selections>
<Selection src="DictSelect"/>
<Selection src="GIZA++Select"/>
<Selection src="FinalSelect"/>
</Selections>
</Translation>
<Translation literal="selection">
<WordSet>
<Word index="1">
<Form>selection</Form>
<Tag>N</Tag>
</Word>
</WordSet>
<Sources>

Figure 3.1: Sample of the XML format of merged Czech-Engfismual dictio-
naries.
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| dictionary | #entries| #transl | weight]

EuroWordNet| 12,052| 48,525 3
GNU/FDL 12,428| 17,462 2.5
WIinGED 16,296| 39,769 2
merged 33,028 87,955 —

Table 3.1: Dictionary parameters and weights

Ney, 2000]) on this corpus. As a result, the entry/transfapairs seen in the
parallel corpus of WSJ become more probable. For entrnglaéion pairs not
seen in the parallel text, the probability distribution argdranslations is uniform.
The translation is “GIZA++ selected” if its probability isgher than a threshold,
which is in our case set to 0.10.

The final selection contains translations selected by duthdictionary and
GIZA++ selectors. In addition, translations not coveredh®yoriginal dictionary
can be included into the final selection, if they were bothlgealiscovered in the
parallel corpus by GIZA++ training, and their probability significant (higher
than the most probable translation so far, in our case).

The translations from this final selection are then used entthnsfer. See a
sample of the dictionary in Figure 3.2.

3.2 Lexical Transfer

In lexical transfer, tectogrammatical trees automatyoaikated from Czech input
text are transferred into “English” tectogrammatical &re€he transfer procedure
itself is a lexical replacement of the tectogrammaticakebiasm attribute of au-
tosemantic nodedrfemma3 by its English equivalent found in the Czech-English
probabilistic dictionary.

Because of multiple translation possibilities, the ougdulicture is a forest of
“Czenglish” tectogrammatical trees represented in a phtiee format [Langk-
ilde, 2000]. Figure 3.3 contains an example of the “Czehglisctogrammatical
packed-tree.

For practical reasons such as time efficiency, the first exgens used just
a simplified implementation of the transfer, taking into @aoat only the most
probable translation. Also, 1-2 translations were handked-1, i.e. two words
for one trlemma attribute. Later experiments developethydotheses stored in
the packed tree and rescored them using-gmam language model.

You may see an example of a Czech tectogrammatical treethédexical
transfer step (Figure 3.5), and compare it to the originglish sentence in Fig-
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<e>zes ilit<t>V

[FSG]<tr>increase<trt>V<prob>0.327524
[FSG]<tr>reinforce<trt>V<prob>0.280199
[FSG]<tr>amplify<trt>V<prob>0.280198
[G]<tr>re-enforce<trt>V<prob>0.0560397
[G]<tr>reenforce<trt>V<prob>0.0560397

<e>vyber<t>N

[FSG]<tr>choice<trt>N<prob>0.404815
[FSG]<tr>selection<trt>N<prob>0.328721
[G]<tr>option<trt>N<prob>0.0579416
[G]<tr>digest<trt>N<prob>0.0547869
[G]<tr>compilation<trt>N<prob>0.0547869
[I<tr>alternative<trt>N<prob>0.0519888
[I<tr>sample<trt>N<prob>0.0469601

<e>selekce<t>N

[FSG]<tr>selection<trt>N<prob>0.542169
[FSG]<tr>choice<trt>N<prob>0.457831

Figure 3.2: Sample of the Czech-English probabilisticidiery used for the
transfer. [S]: dictionary weight selection, [G]: GIZA++lsetion, [F]: final selec-
tion.
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Algorithm 3.1 Translation equivalent replacement algorithm (for 1-1 dn#
entry-translation mapping).

for each Czech tectogrammatical tree (TGTee)
Start at the root
In the dictionary, find translation equivalents for "trlerarof this node
if there is only one translation
Add the appropriate TN-tags to this node, continue with §#&p
else
Change the current node into Qfde
for each child of the current node
Create a new IDnhode,
Set the parent of the child to this 1Bode
Create new WORDode for each translation variant,
set parents of the new nodes to the @&te.
If there is a multi-word translation, choose the head of thadlation
as the WORDnode and create nodes for other dependent nodes.

© ©® N o 0 ;& w0 N B

i
=4

i
=

12 for each ID.node created in step 8

13. set multiple parents to all WORDodes created in step 11
14. Backtrack to the next node in TGTree and continue with step 3
ure 3.4.

3.3 Rule-based Text Generation from English
Tectogrammatical Representation

When generating English text from the tectogrammaticabsgntation, two kinds
of operations (although often interfering) have to be panfed: lexical insertions
and transformations modifying word order.

Since only autosemantic (lexical) words are representédanectogramma-
tical structure of the sentence, a successful generatienglish plain-text output
needs the insertion of synsemantic (functional) wordsh{si&prepositions, aux-
iliary verbs, and articles). Unlike in Czech, where diffsreemantic roles are
expressed by different cases, English uses both prepuosiéiod word order to
convey this information.

In our implementation, the generation process consiste@fdllowing six
consecutive groups of generation tasks:

1. determining contextual boundness,

2. reordering of constituents,
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Original: Kaufman & Broad, a home building company, declined to idgrhie
institutional investors.

Czech: Kaufman & Broad, firma specializujici se na bytovou vybia odmitla
institucionalni investory jmenovat.

R1: Kaufman & Broad, a company specializing in housing develephrefused
to give the names of their corporate investors.

R2: Kaufman & Broad, a firm specializing in apartment buildingfused to list
institutional investors.

R3: Kaufman & Broad, a firm specializing in housing constructicefused to
name the institutional investors.

R4: Residential construction company Kaufman & Broad refugedame the
institutional investors.

Figure 3.4: A sample English sentence from WSJ, its Czecfslation, and four
reference retranslations.

3. generating verb forms,
4. inserting prepositions and articles,
5. generating morphological forms,

6. LM rescoring of multiple hypotheses.

In each of these task, the whole tectogrammatical treevsrsad while task
rules are applied. Considering the nature of the selected da. WSJ financial
news, our system is limited to declarative sentences only.

Determination of Contextual Boundness

Since neither the automatically created nor the manuatyt&ted tectogramma-
tical trees capture any topic—focus articulation (infotim@astructure), we use the
fact that Czech is a language with a relatively high degreeartl order freedom
and uses mainly the left to right ordering to express thermédion structure.
In written text, given information (contextually boundhtes to be placed at the
beginning of the sentence, while new information (contakytnon-bound) is ex-
pressed towards the end of the sentence. The degree of cooativgrdynamism
increases from left to right, and the boundary between thtextually bound
nodes on the left-hand side and the contextually non-bowad@s on the right-
hand side is the verb. We consider information structureetodzursive in the
dependency tree, and use it both for the reordering of domesitis in the English
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counterpart of the Czech sentence, and for determiningéfiriness of noun
phrases in English.

Reordering of Constituents

Unlike Czech, English is a language with a quite rigid SVOdavorder, therefore,

according to the sentence modality, verb complements ajushetd have to be
rearranged to conform to the constraints of English gramimahe basic case of
a simple declarative sentence, we first place the contdxtoalnd adjuncts, then
the subject, the verb, the verb complements (such as dinelcinairect objects),

and finally contextually non-bound adjuncts, always prasgrthe relative order

of constituents in each group. The functors in a tectograticaldree denote the
semantic role of nodes. So we can use the contextual bousidoesboundness
of ACTor (deep subject), PATient (deep object), or ADDRessnd realize the
most contextually bound node as the surface subject.

Generation of Verb Forms

According to the semantic role selected as the subject ovehe, the active or
passive voice of the verb is chosen. Categories such asdaedsaood are taken
over from the information stored in the Czech tectogrameaatiode. The person
is determined by agreement with the subject. Auxiliary genbeded to create a
complex verb form are inserted as separate children nodée ¢éxical verb.

Insertion of Prepositions and Articles

Establishing the correspondence between tectogramrfaincors and auxiliary
words is a complex task. In some cases, there is one predonsudace realiza-
tion of the functor, but, unfortunately, in other casesreéhare several possible
surface realizations, none of them significantly dominamigtly in cases of spa-
tial and temporal adjuncts). For deciding on the appropr&irface realization
of a preposition, both the original Czech preposition amd&hglish lexical word
being generated should be taken into account.

The task of generating articles in English is non-triviadl@hallenging due to
the absence of articles in Czech. The first hint about whatl@ghould be used
is the contextual boundness/non-boundness of a noun phArasalefinite article
is inserted when the noun phrase is either contextually thopastmodified, or
is premodified by a superlative adjective or an ordinal name®therwise, the
indefinite article is used.

An article may be prevented from being inserted altogetherase of un-
countable or proper nouns, or when the noun phrase is predatsd by some
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MT system BLEU —| BLEU -
devtest | evaltest
DBMT with parser | 0.1857 | 0.1634
DBMT with parser |l 0.1916 | 0.1705
DBMT on manually annotated trees 0.1974 | 0.1704
DBMT with parser Il, LM rescoring 0.1921 | 0.1705
DBMT on manually annotated trees, LM rescoring.1968 | 0.1731
GIZA++ & ReWrite — plain text 0.0971 | 0.0590
GIZA++ & ReWrite — lemmatized 0.2222 | 0.2017
MAGENTA WS’02 0.0640 | 0.0420
| Avg. BLEU score of human retranslations | — | 0.5560 |

Table 3.2: BLEU score of different MT systems

other means (such as possessive or demonstrative pronouns)

Generating Morphological Forms

When generating the surface word form, we are searchingigfwrohe table of
triples [word form, morphological tag, lemma] (see Sect®8.2) for the word
form corresponding to the given lemma and morphological 8wuld we fail to
find it, we generate the form using simple rules, e.g. attagbkuffix for plural,
etc. Also, the appropriate form of the indefinite articleatested according to the
immediately following word.

LM Rescoring of Multiple Hypotheses

We also built a system that develops multiple translatiopatiyeses at the same
time, and rescores them by a language model. We have expeedeith mul-
tiple variants of insertions of preposition and articlest #id not allow variants
of lexical nodes. The language model used for the rescoriag the trigram
LM with Good-Turing discounting and Katz back-off for smbotg. These were
trained with the 8 ILm language modeling toolkit [Stolcke, 2002] on thizmil-
lion words selected from the monolingual North American Néext Corpus of
the Wall Street Journal from years 1995 and 1996 [LinguiSata Consortium,
1995]2

2The Penn Treebank data are from other years.
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3.4 An Example

Figure 3.6 illustrates the whole process of translatingrapga Czech sentence
to English, starting from its manually annotated tectograatical representation
(Figure 3.5). The first line contains lemmas of the autoseimamrds of the sam-
ple sentence from Figure 3.4. The next line, labeled 0, shbeis word-to-word
translations. The remaining lines correspond to the génearateps described in
Section 3.3.

The order of nodes is used to determine their contextual droess (line 1,
contextually non-bound nodes are in italics). In line 2, toastituents are re-
ordered according to contextual boundness and their teotogatical functors.
The form of the complex verb is handled in step 3. On the next tprepositions
and articles are inserted. However, not every functor'sza@on can be recon-
structed easily, as can be seen in the case of the missinggitiep “in”. It is also
hard to decide whether a particular word was used in an uniablésense (see the
wrongly inserted indefinite article). The last line contaihe final morphological
realization of the sentence.

3.5 Evaluation of Results

We evaluated our translations with IBM’s BLEU evaluationtriegPapineni et al.,
2001], using the same evaluation method and referencensédtaons that were
used for evaluation at the HLT Workshop 2002 at CLSP [Hdjigle 2002]. We
used four reference retranslations of 490 sentencesséleom the WSJ sections
22, 23, and 24, which were themselves used as the fifth referdine evaluation
method used is to hold out each reference in turn and evaluag@ainst the re-
maining four, then averaging the five BLEU scores.

Table 3.2 shows final results of our system compared with GHZand MA-
GENTA's results.

The DBMT with parser | and parser Il experiments represealia&utomated
translation, while the DBMT experiment on manually annedarees uses Czech
tectogrammatical trees prepared by human annotators.

We can see that the experiments with rescoring using a lgegodel did
not bring any convincing improvement. In the case of mayuaiinotated trees,
the BLEU score was even worse. Since the lexical variabiag allowed only on
positions of prepositions and articles, it shows that tlxecé information about
the original Czech preposition is very important for a sssfel generation of the
English preposition. Nevertheless, experiments with Ligcoging of multiple
hypotheses should be evaluated also for multiple varidrgemantic words.

For the purposes of comparison, the GIZA++ statistical nrackranslation
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toolkit with the ReWrite decoder was customized to tramsfedm Czech to En-
glish, and two experiments with different configurationsrevperformed. The
first one takes Czech plain text as input, the second oneldataedrom lemma-
tized Czech. In addition, the word-to-word dictionary désed in Section 2.6.2
was added to the training data (every entry-translationgsone sentence pair).
The language model was trained on a large monolingual cdrposWall Street
Journal containing about 52M words. This corpus was seleicten the corpus
mentioned in Section 2.3.2.

All systems were evaluated against the same set of refesence

Both our experiments show a considerable improvement oVBGENTA'S
performance, they also score better than GIZA++/ReWra@éd on word forms.
We were still outperformed by GIZA++/ReWrite trained on Imas and making
use of a large language model.

3.6 Conclusion

This chapter describes a complete translation system fraaectiCplain text to

English plain text. Itintegrates the latest results in gtedl and tectogrammatical
parsing of Czech, experiments with existing word-to-woiatidnaries combined
with those automatically obtained from a parallel corpexidal transfer, and
simple rule-based generation from the tectogrammatipaésentation.

In spite of certain known shortcomings of state-of-theparsers of Czech, we
are convinced that the most significant improvement of ostesy can be achieved
by further refining and broadening the coverage of strutttaiasformations and
lexical insertions. We consider allowing multiple trarnisla possibilities even
for lexical words and using additional sources of inforroatielevant for surface
realization of tectogrammatical functors.



Chapter 4

Tree-to-Tree Transducer

The idea of &ynchronous Tree Substitution Grammaas first sketched in [Hajic
etal., 2002] and [Eisner, 2003]. A rule of such a grammar hasdrm of a pair of
so-calledittle treeswith aligned frontier nodeshat constrain both the positions,
where other little trees can attach, and their type. Thettydeee transformation
process covers the source tree by the source little tremstfre rule-set, the output
tree is then being constructed from the correspondingtttie trees.

This chapter defines the theory of such synchronous tredituios gram-
mars and elaborates on the mathematical details that weneubbshed yet. It
starts with the monolingual case, then extends it into tmelssonous case. We
also present algorithms for training the models on a corpysllel trees, and
the decoding algorithm necessary for producing transiatio

We are aware of that the new theory is quite complicated. ¢teroto help
the reader to understand the new concepts, we start withettteo8 4.1 giving an
informal overview of the theory, jumping into the middle bé&tproblem and trying
to explain it using a “common sense”. We hope that this figueatxplanation
makes the reading of the following pages easier.

4.1 Informal Motivation

Figure 4.1 contains an example of a tectogrammatical tre@ feample Czech
sentence and an analytical tree for its English equival@ihie Figure 4.2 then
contains both trees split into chunks. The chunk is usuailtypnéd by twolittle
treeswith filled (black) and empty (white) nodes.

The filled nodes are calladternal, the empty nodes are call&dntier nodes.
The frontier nodes are connected by bows. The bows can bed@dignment
matching or mapping and it always means the same thing.

The chunk of both trees with aligned frontier nodes isuke of the Syn-
chronous Tree Substitution Grammar

The meaning of the first rule in Figure 4.2 is that the Czedbrmovat ne-
spravre is translated as the Englisteere misinformed The alignment between
the frontier nodeP AT of the Czech tree and the frontier no8é of the English

61
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tree means that the frontier (white) nodes must be filledestme time by one
rule. In this example, it is the rukeedem < executiveslf a frontier node is not
aligned, it means that it is not translated in the other tree.

If we follow the vertical alignment of frontier nodes and teof the little trees
below them, we get the whole “parse tree”—in another wordsarefind a rule
that will be “plugged” into the aligned pair of frontier nogle

The last but not least, the frontier nodes are labeled witttagyical func-
tionst, we call it frontier state The Probabilistic Synchronous Tree Substitution
Grammarmodels the probability that a rule will be plugged into a giysir of
matching frontier nodes with a given frontier state.

The idea of tree-to-tree transductions is so general thantbe applied to
transformations between any two types of trees. In Czechngligh machine
translation, configurations transferring from Czech tteeBnglish trees can op-
erate either on the same analytical or tectogrammaticel,levthey can go diag-
onally, e.g. from the Czech tectogrammatical trees to thgdifimanalytical trees.
We can transform the trees in “Czenglish” tectogrammatigaitesentation to the
English analytical one. The tree-to-tree transductiongctalso be used for the
“parsing” step from the analytical to the tectogrammatregiresentation.

4.2 Tree-to-Tree Mappings

Our goal is to describe the transformations of sentencetstes that we may
observe during the process of translation between two kEgegi Comparing the
tectogrammatical tree for a sample Czech senteRodle jeho &zoru bylo vedein
UAL o financo@ni plivodr transakce nesj@vré informovano.’, with the analyt-
ical tree for its English translationAtcording to his opinion UAL’s executives
were misinformed about the financing of the original trarigac” in Figure 4.1,
we can find the corresponding groups of nodes (chunks) argblse of the mis-
matches that we observe:

1. The 2-1 match between tlieRE D (predicate) of the Czech sentenioe
formovat nespavre and its English counterpamtisinformed

2. the elision (a 1-0 match) of the generatédT" (actor) of the Czech sen-
tence,

3. the three 1-1 matchesr(« his; plivodn < original; veden < execu-
tives,

1But we could consider any reasonable labeling.
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4. the CzechU'RIT (criterium)nazorexpressed by the Englishdv (adver-
bial) phraseaccording to ... opiniorcan be either classified as a 1-3 match,
or we can say that the tectogrammatical funetde/7" forms the English
Adv subtreeAccording toand that the lemmaazormatches 1-1 witlopin-
ion,

5. the EFF (effect) financowani can be taken either as in a 1-3 match with
Auz P about the financingor we can think that the functdy F'F' generates
the Adv nodeaboutand the lemmd&nancowani generateshe financing

6. the PAT (patient)transakcegeneratesAuz P of the ... transactioror, in
two steps, the functoP AT gives birth toAuz P of, the lemmatransakce
translates tthe transactionand there is a 1-2 matttansakce— the trans-
action

Such an informal description of observed transformationeglexical, func-
tional, and structural information present in this tre@-pén the following, we
will have to proceed through several steps towards formakrthat capture all
three types of information.

We can split the tree pair into corresponding chunks and murtiiem as in
Figure 4.2. A translation rule is represented by a pair ofegponding chunks.
Filled nodes carry the lexical information; the other nodes marked by their
syntactical functions and can be substituted by other chwith the same syn-
tactical functiod. Finally, the dashed bows between unfilled nodes indicate th
the substitutions at these two nodes must proceed synastyno

For example, the rulé® formalizes our observation from item 1, i.e. that
the part of the Czech tectogrammatical treormovat nespavrg, preceded by
some subtrees AlC'T', CRIT, PAT, and EF F', will be translated by the part
of the English analytical treevere misinformedpreceded by some subtrees of
Adv and Sb, and followed by someluzP. Rule1 also specifies that the three
pairs of subtrees af' RIT and Adv, PAT andSb, and EF'F and Auz P will be
substituted at the same time, or in other words, that these @lesubtrees will be
translations of one another. Finally, tH€"T" node will not have any counterpart
in the English tree.

Rule 2 corresponds to the observation 2, i.e. the generated actmt itrans-
lated into English. This rule maps the Czech chunk to a speeaid chunk on the
English side.

The informal observation mentioned in item 4 is expressedulss3 and4.
Rule 3 says that functol”’ RI'T" should be translated asccording tg and rule

2The label with the syntactical function refers to both thdilled node and the substituting
chunk below it.
3See numbers above the root node of each chunk in the Figure 4.2
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4 dictates the synchronous translation of the actual lexrdarmationnazor <
opinion *

4.3 A Probabilistic Synchronous Tree Substitution Grammar

In this section, we describe the details of the probabilistodel of the transduc-
tion, the method of parameter estimation, and the decodguogithm.

In our formal description of the Synchronous Tree SubstituGrammar, we
stick to the symbolic markup used in [Haji€C et al., 2002 rieis 2003] where
possible.

We start with the definition of the non-synchronous Tree Sulti®n Gram-
mar, and then extend to the synchronous case. As an exanglgillise again
the same tree pair from Figure 4.1, as in the previous section

4.3.1 Non-synchronous Tree Substitution Grammar [ SG)

TheTree Substitution Grammar (7'SG) is defined as follows:

1. LetQ be the set oftates®, and letStart € Q be the name reserved for the
initial state.

2. Let L be the set ofabels on the nodes (words) and edges (grammatical
roles).

3. Letr be the set ofittle trees ¢ defined as tuple§/, V', E, 1, ¢, s), where

e IV is a set olhodes

e Vi C Visasubsetdhternal nodesand its complemenit’ = V-V
is a set offrontier nodes,

e F C VixVisasetofdirected edges that can start from internal nodes
only. The graphV, E') must form a directed and acyclic tree.

e The functions : V/ — (@ assigns drontier state to each frontier
node.

40ne could object that there is no mechanism that would pteéwam using rules first (sub-
stituting atC RIT and Adv frontier nodes of ruld), so that using rul@ would not be possible
any more, and the resulting sentence (missing the wacdsrding t9 would be ungrammatical.
This can be fixed by extending the set of syntactical funstierg. the unfilled Czech and English
nodes of rule could have label§' RIT’ and Adv’, respectively. An alternative way of fixing this
problem is to consider one larger rul&RI'T nazor«+ Adv According to ... opinion.

5In our example we use the grammatical roles from the PDT

5We can see that the tree representing the whole sentencdiesmyjih the definition of the
little tree with the empty set df /.
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Figure 4.1: The tree pair for the tectogrammatical reprediem of the Czech
sentence Podle jeho @zoru bylo vedenUAL o financoani plivodri transakce
nespavreé informowano” and the analytical representation of the corresponding
English translation According to his opinion UAL’s executives were misinformed
about the financing of the original transaction.
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e Letr € V be theroot node of the tree, and let theot state ¢ be
assigned to the roof.

e Let!: (VIUF) — L be a function assigning a label to each internal
node or edge.

4. Finally, the Tree Substitution Grammdi{G) is defined as the tuplg), L, 7).

For convenience, we will use the shorthang for the root state, and other
shortcuts for all other properties bk 7 using the same analogy.

Letd € V/ be a frontier node of, and?’ be a little tree such thats(d) = t'.q
— in other words, the frontier state @matches the root state 8f We may define
the operation osubstituting ¢ at d with ¢. The result of this operation is defined
as little tree:

SUBST(t,d,t') =(t.V Ut.V — {d},
tViut.ve,
t.E*Ut.E,
iUt .,

t.q,
t.sUt's—{{d,t'.q)}).

(4.1)

We obtaint. E* from ¢t. E, by “redirecting” the edge originally pointing tbto the
root of ¢'.

The process dderivation from the initial stateStart in theT'SG is described
by Algorithm 4.1:

Algorithm 4.1 The derivation process iASG.

Start with any little tree € T'SG, such that.q = Start.
while t. V1 #£ ()

selectd € t.V/

selectt’ such that.s(d) = t'.q

t:= SUBST(t,d,t")

o~ w NP

Line 4 of the algorithm hinted us to model the probabilitytdiition over all
possible little trees with root state Then the tree’ would be chosen with the
probabilityp(t' | q).

’If the rootr is a frontier node, we can considesuch thats(r) # q.
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Thus the probability of the derivatiopt® . . . t* starting fromt, and usingk
substitutions with little trees,, . . . , ¢, can be computed as:

k
plg,1% .., t*) = p(tolq) * [ [ p(# | 1-0) (4.2)

=1

The probabilisticI’SG does not requiré.s(d) to be the same &&g4.

4.3.2 Inside-outside Algorithm forT'SG

The probabilitieg(t | ¢) can be automatically obtained from a treebank using the
EM algorithm. By analogy with the measures and quantitiesldsr the training
of probabilistic context-free grammars [Jelinek, 1985¢ will define inside and
outside probabilities, expected counts, and state thetreration formula.

We say that “the tre¢ fits noded” if there is some derivation, in whick
substituteg at d and the result of the derivation 5. Note that the root state
of ¢ can be any of), since the nodes of the resulting tréedo not imply any
restrictions on states used during the derivation. Thusténation over all little
treest’ fitting d includes variants for alj € Q.

The probability that the grammarSG generates the trég from the state
Start is the sum of probabilities of all possible derivations, aad be computed
as theinside probability Gr..(Start) by the induction in Algorithm 4.2:

Algorithm 4.2 The inductive algorithm for computing inside probabilgie

for each node of T' in bottom-up order
for eachg € Q, let 5.(q) =0
for each little treg that fitsc, in asafe order

incrementS.(t.q) by p(t | t.q) - [1scevr Ba(t.s(d))

> woNoPE

The natural-language definition of the inside probabilityt.q) is the prob-
ability of generating the whole subtree bfrooted at node with the root state
g. The Algorithm 4.2 is an example of the well-known chartgiag approach. It
starts with the leaf nodes, their inside probabiliiés| ¢.q) are retrieved from the
probabilistic model. Then the algorithm traverses the imdgottom-up ordering
and collects inside probabilities for the nodes higher uihétree.

Line 3 must iterate the little trees insafe order The little trees with frontier
root nodes can be selected only after all other little tregl the internal root
node have been evaluated.

Theoutside probabilities «; .(¢) can be computed by the Algorithm 4.3:
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Algorithm 4.3 The inductive algorithm for computing outside probakeiti

for each little treg that fitsT'.r
for eachq € @
if ¢ = Startletas,(q) =1
elsea; (q) =0
for each node of T', in top-down order
for each little treg that fitsc
for eachd € t.V/
for eacht’ that fitsd

incrementoy (t'.q) by p(t' | t.s(d)) - avr(t-q) - [laer v r—q Ba (t-s(d.))

© ©® N o 0 ;& w0 D B

The natural definition of the outside probability(t.q) is the probability of
starting with the root staté'.q, generating all parts of the trée outside of the
subtree rooted at and generating any subtree rooted aftith the root state.q

Theexpected countC/(q, t) of a little treet used in the derivation ¢f can be
computed by Algorithm 4.4:

Algorithm 4.4 The algorithm for computing expected counts.
Initialize C'(_,-) =0
for each node of T’

for each little tree that fitsc

IncrementC(q, t) by p(t | ) - v (q) - [1gervr Ba(t-s(d))

> woNdoe

And finally, the re-estimation formula 4.3 fptt | ¢):

C(g,t)
P19 = 55 (4.3)
In each iteration, the EM algorithm first computes the ingidebabilities,
the outside probabilities, the expected counts, and fines the re-estimation
formula to obtain the new values oft | ¢). Iterations are repeated until the

p(t | ¢) converges.

4.3.3 Synchronous Tree Substitution Grammar

We can extend th&'SG to model the synchronous generation of a tree pait
(T1,Ty). For this we will join twoT'SGs, TSGy, = (@1, L1, 1) andTSGy =
(@2, Lo, 75), such thatl'SG,; generated; and T'SG, generateds, with some
restrictions on the operation of substitution.
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The synchronous tree substitution grammar(ST'SG) is a tuple(Q, L, 1),
where

1. Qis asetoynchronous root statesStart being as before a special initial
state®

2.L:L1XL2.

3. 7 = 1 X 1p is a set oflittle tree pairs. The little tree pairt is a tuple
(t1,t2,q,m,s), where the little trees; = (V}, V;f, E;, ;) have a common
synchronous root state
The alignment of frontier nodes is calledmatching, and is defined as a
1-to-1 correspondence (pairing) between subseﬁélfoand VQf , such that
unmatched frontier nodes are mappeddl. For 1-0 or 0-1 mappings, we
use the concept of aull tree that has empty sets of internal and frontier
node$. The functions : m — @ assigns common frontier states to pairs of
aligned frontier nodes.

The operatior6U BST (t, d, t') of substituting ¢ atd with ¢’ for aligned node
pairsd = (di, ds) is defined such that € m andt.s(d) = t'.q. The result of this
substitution is a little tree pair

SUBST(t,d,t") =(SUBST(t1,ds,t7),
SUBST (tg,ds, t5),
q, (4.4)
t.m U t'.m - (dl, dg),
t.s U t/.S — (dl, dg, t/q)>

The process oflerivation from the initial stateStart in ST'SG is described by
Algorithm 4.5:

Algorithm 4.5 The derivation process iIf7'SG.

Start with any little tree pait € T'SG, such that.q = Start.
while t.m # ()

selectd € t.m

selectt’ such that.s(d) = t'.q

t:= SUBST(t,d,t)

o & w0 DR

8For convenience, we may think 6f = Q; x Q», but generally, th&) can be any set of
synchronous root states.

9Note that the concept of theu!! little tree is compliant with the rest of the definitions, ept
from the root of thenull tree, and the root state of the little tree pair containingl tree. We
leave this up to our intuition.
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The formula 4.2 for computing the probability of the derigatcan be used
for the synchronous case as well.

4.3.4 Inside-outside Algorithm for ST SG

In order to train the probabilitieg(t | ¢) of the ST'SG, we have to rework the
Algorithms 4.2, 4.3, and 4.4 for the inside and outside pbdliges, and expected
counts, as well as the re-estimation Formula 4.3.

The definition of fitting has to be updated for the synchroncase: We say
thatt’ fits node paird, if ¢, fits d; fori = 1, 2.

The Algorithm 4.6 computes thmside probability (Gr..(Start), in other
words, the probability that th€7'SG generates a tree palf from the initial
symbolStart.

Algorithm 4.6 The inductive algorithm for computing inside probabilgiér
STSG.
for each nodey of 77, in bottom-up order
for each nodes of Ty, in bottom-up order
for eachg € Q, let 3., ,(¢) =0
for each little treg; that fitsc;
for each little treg that fitscy
for each probable matching of frontier nodes ot; andt,
constructt from ¢, t1, t2, andm

incrementBc(q) by p(t | t.q) - [1gem Ba(t-s(d))

© N o o M W N P

Lines 4 and 5 must iterate little trees fitting a node pair a safe order First,
we have to evaluate the pairs with thel! little tree, then the little tree pairs with
internal root nodes, and finally the little tree pairs withr@nttier root nodes.

The Algorithm 4.7 computes thrutside probability «; .(q):
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Algorithm 4.7 The inductive algorithm for computing outside probaleiifor
STSG.
for each node; of Ty, in top-down order
for each node; of Ts, in top-down order
for eachg € Q)
if g = Startleta.(q) =1
elsea.(q) =0
for each little tree that fitsc;
for each little tree that fitsc
for each probable matching of frontier nodeg; andts
constructt from ¢, t1, to, andm
for each pair of matching frontier nodgsc m

incrementa s (t.s(f)) by p(t | q) - cwr(q) - Taem—gpy Balt-s(d))

© ® N o a0 M 0 M PR

[N
=4

.
[

The expected counts(q, t) are computed using the Algorithm 4.8:

Algorithm 4.8 The algorithm for computing expected counts aF SG.
Initialize C'(_,-) =0

for each node; of T}

for each nodes of Th
for each little tree that fitsc;
for each little tree, that fitscy
for each probable matching of frontier nodes; andt,
constructt from g, t1, to, andm

IncrementC(q,t) by p(t | q) - av.r(q) - [ Laem Ba(t-s(d))

© N o 0o > w N P

Finally, the probabilities are re-estimated using Forndu8 but this time the
tree pairg andt’ iterate through all possiblg, ¢,, andm.

4.3.5 Decoding Algorithm for ST SG

Once we have trained the probabilitigg | ¢) on a parallel treebank, we can use
them for decoding. For a trég, we want to find its translatiof,. The decoding
process tries to cover thig by the left sides of rules, and take the resulting tree
on the right side as the result. In other words, find the mastgiole synchronous
derivation that generatés on the left hand side, and take the tfBegenerated
on the right hand side.

The most probable derivation is computed by a chart-paisiggrithm 4.9.
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Algorithm 4.9 The decoding algorithm fos7'SG.
for each node; = null, and there; € T1.V in bottom-up order
for eachg € Q let 3., (¢) = —o0
for each little tree; that fitsc; in asafeorder
while t=proposeNewRu(& //we have to try all possible, g, m, s
find maxp(t | t.q) - [14e,, Ba, (t-5(d)) and store the and3., (¢) in the chart

o »~ w NP

As opposed to computing the inside probabilities, we do awtlio fit nodes
of Ty, and therefore no restrictions are put on the choicg.offhat is also why
the inside probabilities are indexed byonly.

4.4 Conclusion

We have presented the details of the probabilistic Syndusiree Substitution
Grammars, a new method for learning tree-to-tree transfbams between non-
isomorphic trees. The level of details published here isetioknowledge—the
first of its kind.

In the following Chapter 5 we will try to show that the presshimethod is
appropriate, and that it is possible to implement a moddl| l[dens alignment
between trees representing the sentence structure.
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Chapter 5

Implementations of the Tree-to-Tree
Transducer

As written above, the&sT'SGs can be used to model transformations of tress of
any type. One always has to define the conversion algorittimees the current
tree format and the “computational” format of the tree: ilee set of states of the
frontier and root nodes, and node labels.

Asis usual, the ubiquitous limitations, such as speed, nmgrand data sparse-
ness are the main criteria for the implementation. To fit m&mory and in order
to perform in reasonable time, the allowed shapes of the hdee to beestricted
as well as the rule set has to peuned On the other handjnseerrules have to
be modeled using back-off scheme

The actual implementation of mapping, rule restrictiomanmg, and back-off
scheme are always highly specific to a given matter of modedss. In this sec-
tion, we describe our attempts to use the framework for ttasks: extraction of
mappings between tectogrammatical and analytical reptasen of Czech, and
for training the transfer from Czech tectogrammatical alwincal tree structures

ocitnout

2 / \6
agentura raz aQent‘ura\;\s‘e raz pred-1
ACT TWHEN Sb\ AuxT Adv AuxP
AOT AOT bankrot
ID Atr Adv

Figure 5.1: The tree pair for the tectogrammatical and ditalyrepresentations
of the Czech sentenceAgentura AOT seazem ocitla ped bankrotend.
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5.1 Creating the Set of Rules

The Figure 5.1 contains an example of the tectogrammatnchbaalytical repre-
sentations of the Czech sentenc&géntura AOT seazem ocitla ped bankroterh
Both trees were converted into the computational formatdifferences from the
PDT original are the following: The technical root nodes arudles of the fi-
nal punctuations were removed. The function labels arelathto nodes, not to
edges. The corresponding nodes are connected by dashe(blased on the PDT
annotation), and finally — all nodes are numbered by postéierng.

The ST SG describing the transformations between the tectograncalatnd
the analytical structures can be constructed as follows:

1. The set of frontier states will include all combinatiorigextogrammatical
and analytical functors, and the initial stéfe= {Start} U {TF x AF'}.

2. The set of labels will contain all pairs of tectogrammaltiand analytical
lemmas used in PDT (node labels), as well as pairs of fun{doige labels):
L={TLx ALY U{TF x AF}.

3. The set of rules is constructed by going through all trakespn the corpus,
all their nodes where a little tree can be rooted, all contimna of possible
shapes of the little tree-pairs, and all possible matchofgheir frontier
nodes:

(a) A little tree rooted in some nodeof the dependency tree is con-
structed as follows: Any continuous subtree rooted e&n be taken
as the set of internal nod&g, or VV* can be empty. The set of frontier
nodes)’/ contains all children of internal nodes, such that the chiid
themselves are not among internal nodésn vV = 0.

(b) In case of the empty set of internal nodess the only frontier node.
The functions assigns a pair of tectogrammatical and analytical func-
tions from the edges incoming into the pair of frontier ortronodes,
and the labeling assigns lemmas to nodes and syntactical functions
to edges.

(c) The matchingn of frontier nodes is chosen freely, or we can also im-
pose various constraints taking into consideration thgirmai annota-

INote that this setup does not allow derivations with “remaghifrontier states mentioned in
Footnote 4 in Chapter 4. To allow this, we have to considevailants of frontier and root states
s andgq. This is technically impossible in the general case, biltkiable for some specific cases,
e.g. if one of the little trees consists of just one frontiedar, we can assign a root stage
different from the frontier state of.
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tion of PDT, for example that matches present in the PDT atiowt
must be preserved in the rule.

4. Because all derivations have to begin with ftert state, we have to add
special rules with the root stateart. The rules have a form of a pair of
little trees, each consisting of one frontier node. The timrstate can be
any combination of syntactical functions that can possialgigur in the root
of the PDT trees.

5. Due to speed and memory limitations, we exclude trees natles having
more thart children from the training corpus.

6. Also the size of the little trees we substitute with, wal lmited to a maxi-
mum of2 internal nodes. Note that the sample rules given in the Eig.2
are still compliant with these constraints.

5.2 Finding a Back-off Scheme

There are two reasons why we always have to find suitable bficdlchemes: the
lack of generalization, and memory limitations. Even a#ipplying the above-
mentioned restrictions on the rules, the data is still spars

To better explain the seriousness of the problem we facesl@nhagine that
even the simplest shape of the synchronous rule — consistioige internal node
on both sides —is equivalent to th&able with entry-translation pairs used by IBM
models. In this case, the size of the dictionary is still ceable but the OOV
(out-of-vocabulary) rate is an issue. Moreover, we havedm ton structurally
annotated data, which is harder to find than a parallel cogpysain text, and
thus we are limited to roughly 20,000 sentence pairs coathin

When we consider more complex synchronous rules, the melnaitgtions
become crucial and the data sparseness severe.

On one hand, if we want to make use of the syntactic structueehave to
consider larger little trees with more nodes, but on therdtiaed, it is very hard
to find a more complex synchronous rule that repeats moredhea in training
data of abou®0, 000 tree-pairs. And it implies a problem during the decoding:
when a new tectogrammatical tree is being transformed memalytical one, the
most of the hypothesized more complex synchronous rulesodwimiseen for the
first time, and thus scored as unknown rules. Such a modeldwmitlgeneralize
at all.

Memory and time limitations are also a serious problem. AsTable 5.1
shows, the average number of observed little trees per agé thee is around
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| | Tectogrammatical trees Analytical trees|

Avg. nodes per sentenge 11.4 13.0
Avg. rules per node 3.9 3.9
Avg. rules per sentence 44.7 50.9
Total sentences 10,000 10,000
Total nodes 114,174 129,771
Total rules 446,696 509,084

Table 5.1: Non-synchronous rules statistics on Prague ikpey Treebank

50. The number of combinations of both sides grows with the sxjothe sen-
tence length. This number has to be multiplied by possilidmaients of frontier
nodes? This leads to tens of millions rules observed on a corpug)of00 sen-
tence pairs. If we represent one rule usind)0 bytes on average, we see that a
model with 10 million rules would use 1 GB of memory.

In the following, we will try to find experimentally, what parof information
can be omitted from the rules. We are looking for such ba¢krofdels that can
fit in memory, generalize observed phenomena and still caghe syntactical
relations between tree components. We feel that finding d baok-off scheme is
crucial to make the tree-to-tree models work, and that itbde done iteratively,
in many experiments.

Intuition tells us to divide the problem into parts, and titermodel these
parts separately. Roughly speaking, a synchronous rulsistsrof two (non-
synchronous) little trees and a mapping of their frontiede® Firstly we will
focus on single little trees and analyze the histogramsefdtructures for various
back-off models. Later, we will discuss how to aggregatespai little trees and
how to model mappings between their frontier nodes in orenadel the whole
synchronous rules.

5.2.1 Single Little Trees Back-off

We understand a single little tree as an object carryingetlypes of informa-
tion: the structure, the frontier states, and the lexicadrimation. Each of these
tree types can be represented using a certain level of detahe following, we
will experiment with various representations of singldditrees. Table 5.2 shows
counts of unique non-synchronous rules in tectogrammatioé analytical lay-

2t is hard to estimate the average numbers, but the expetinstiowed that there a0
million rule observations fot0, 000 sentence pairs. Most of them can be filtered by pruning.

3For comparison, the translation table used in GIZA modelsiéd on20, 000 sentence pairs
has around 00, 000 entry-translation pairs.
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ers of PDT. Figure 5.3 shows the histogram of single litée$r occurring in the
analytical part of the PDT.
Let us consider these levels of details:

e The structure

1.

The structure of the little tree can be fully represen&idce the little
trees are projective, a linearized form using bracketingrepresent
them.

In the next step, the brackets can be removed from theseptation
and the little tree becomes angram of nodes in the original word
order. However, it can be shown that if the number of intenuales

is already limited t@, and if the little trees are projective, this repre-
sentation is equivalent to the full representation.

The next step is to ignore the word order and to represetiittie tree
as a bag of nodes.

e The frontier state

1.

2.

The frontier states are fully represented by tectograticalsor ana-
lytical functors.

In order to reduce the number of functors, it is useful tegaeimilar

functors into a smaller number of classes. On the other hahdn

fine-tuning the system, we may split some functors into maremts
in order to model some syntactical phenomena better, epgopmagate
number from the morphological tag into the frontier stateider to

model agreement.

e The lexical information

1.

The full lexical information can be represented eitheti®word form
(or by the lemma and the morphological tag).

. In order to reduce the number of variations, the word foam loe re-

placed by its lemma, or by its morphological tag. It would E®ao0s-
sible to use syntactic-semantic classes of words [Browmn. e1292]
instead of word forms.

. Further on, the number of recognized positions in the imaqgical

tag can be reduced to the most basic ones, such as part ohspeec

. Finally, the lexical information can be ignored at all +wbrds are

mapped to one class. For tectogrammatical little trees hwoald keep
a special class for generated nodes.
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We look for a back-off model that uses some of the previousgntioned
approximations. Let us try the following combinations:

e The representation of treULL MODEL contains full information about
the rule: the tree structure, the lemma for each internaépadd the func-
tors for each frontier node.

FULL MODEL

Pred

ocitnout

AN

se
Sb Adv AuxP

The rule can be also represented in a linearized form
Pred — Sb se Adv ocithout AuzP.

We can see that the number of full little trees is in linearelation to the
number of sentences.

e The first and natural proposal is to ignore the lexical infation of the little
trees, and to work only with the structure and functions. fE#pgesentation
of w/o LEXICAL model contains the tree structure, the functors for each
frontier node, but the lemmas for internal nodes are stdpye

Pred

Sb Adv AuxP

The rule can be linearized, the lexical nodes are replaceuddmgholders?
Pred — Sb _ Adv _ Auz P

e Thew/o LEXICAL A back-off model ignores the structure and lexical in-
formation of internal nodes:
Pred — Sb Adv AuxP

There are no placeholders for internal nodes.

e The modeMORPHOLOGY is a half-way between keeping and ignoring
the lexical information of the internal nodes.

4Due to the limitation restricting the number of internal eedo2, the linearization does not
loose any structural information.
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Pred

// Vk
P
Sb Adv AuxP

e Another proposal is symmetric to the previous ones: in tipeagentation
of thew/o FUNCTIONS model, we store the tree structure and lemmas for
internal nodes, and omit the functors of frontier nodes.

Pred

se

The rule can be linearized, the frontier nodes are repreddiy placehold-
ers*:
Pred — _se_ocitnout _

e Thew/o FUNCTIONS A back-off model ignores the structure and func-
tional markup of the rule, and represents a little tree onhyitb lexical
information present in its internal nodes, i.e. tygrams. There are no
placeholders for frontier nodes:

Pred — se ocitnout

e The representation of the back-off mMo@aIRUCTURE combines the pre-
vious two approaches: it contains only the tree structeraphas and func-
tors are omitted.

Pred

When analyzing the Table 5.2, we may see that represengatmrtaining the
lexical information, i.e. models FULL MODEL, W/O FUNCTION&nd W/O
FUNCTIONS A, grow in the number of unique rules almost ligarith the size
of the training data. It means that within the range of thiming data in thousands
of sentence-pairs the OOV problem cannot be significantjyraved by adding
more data. The curves of the back-off models, which do natagoihe full lexical
information give us certain hope (though a little one) tiat growth would slow
down with more data. At least, the absolute numbers of unigles are lower, as
the Table 5.2 shows.
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5.2.2 Modeling Synchronous Rules

In order to model synchronous rules describing the transitions between Czech
tectogrammatical and analytical trees, we have to aggregptir of single little
trees and to definmappingbetween their frontier nodes. The mapping usually
strongly depends on the content of both little trees, sihaefines the pair of
frontier nodes at which we substitute by a correspondingreab. For example,
we can see that the probability of whether an analyticaltieomodeS® is aligned
either with a tectogrammaticalC'T" or PAT depends on whether the voice of the
governing node is active or passive.

Also the possible representations of the mapping is ag@kaanly for such a
back-off models that represent frontier nodes, and theiemmg.

We can consider an exact representation that can be obt&inednumber
the frontier nodes of the left little tree from left to rightom 1 to m, and the
frontier nodes of the right little tree frorh to n. For numbersc andy, where
1 <z <mandl <y < n, the symbol {—0) means deletion, (@3 means
insertion, and £—y) means synchronous substitution at frontier nodesd y.
This representation is applicable to back-off modld L MODEL , w/o LEXI-
CAL, w/o FUNCTIONS, STRUCTURE, w/o FUNCTIONS B, w/o LEXICAL
A, andw/o LEXICAL B .

If we rewrite the probability of a synchronous rule as:

p(t]q) =pti,ta | @)p(m | t1,t2,9) (5.1)

wherem can be any mapping of frontier nodgsandt,, we can experiment with
various approximations and ignore some parts of informgtresent irt,, t,, and

q. For example, we can ignore the root statnd the ordering of frontier nodes,
and model the probability of mapping aACT — Sb) - p(TW HEN — Adv) -
p(AuxzP — LOC).

5.2.3 Using a Translation Dictionary

The ST SG as defined in Chapter 4 does not contain any parametersd étettee

size of the little trees nor the number of derivation stes, any penalizations
of insertions and deletions. A practical implementatioradfaining algorithm
that has to deal with data sparseness, prune the rules witpriababilities, and
use back-off models ignoring most of the lexical informati@asily runs into
difficulties. To overcome this drawback, we had to add a Istiariscoring function
to the probabilistic model. Let us have a closer look at thud jam:

e Asthe first, there is a problem resulting from the fact thatrtitodels taking
into account lexical information cannot be used for theimmoey require-
ments and data sparseness. This would cause problems theidgcoding,
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since the scoring of hypotheses would not reflect lexic&a. Intuitively,
some additional rescoring based on translation dictioeagms necessary
to bring back the lexical criteria to the model.

e As the second, it is obvious that a rule consisting of sméittée trees has
a higher chance to occur more frequently than a larger riies i$ also the
case of rules with frontier nodes alignedrtall. A practical implementa-
tion of the training algorithm tends to prefer small rulesutes containing
larger little trees. It also prefers rules with insertiomsl aeletions to rules
with mutually aligned frontier nodes. On the other hand,rittwgivation for
ST SG was to capture syntactic phenomena, it means to have largsran
both sides with aligned frontier nodes. The lexical scofingction should
favor larger little trees and suppress deletions.

We have experimented with two variants of scoring functiooth of them
were based on a translation dictionary:

1. The scoring function is computed as follows: The lexiofbimatior? from
internal noded/; andV. is respectively collected into “Frencffi"and “En-
glish” e sentences, and they are rescored by

l l m
score = Z Z pl,mHt(fj | €q,)- (5.2)
j=1

a1=0 =0

Since the number of internal nodes is restricted td, the Equation 5.2 is a
simplified version of IBM model 1 from Equation 1.4. The pasteryp, ,,
gives us the way to introduce compensations for various reustf internal
nodes on both sides.

2. The second version is simpler. We sum the probabilitied entry-translation

pairs
score = Z Z t(file:) (5.3)

This version does not have any parameter for balancingrdifteule sizes
as in the previous case. The sum of probabilities alreadyrises larger
rules.

SHere we mean the full lexical information, not the back-effresentation.
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5.3 Pruning the Rules

It is obvious, that most of the observed rules do not have iagyistic sense, and
that we are interested only in a little fraction of them.

For the reasons of efficiency and memory limitations, thgdgruning of the
huge space of possible rules is necessary, but still we neusble to consider
rules, which are capable of doing the structural transféiona

The current implementation is restricted to trees with sodaving max. 6
child nodes, and we deal with rules consisting of a pair télirees with has 0-2
internal nodes each.

5.3.1 Using PDT Links

We may use the fact that the tectogrammatical and the acallytodes are in the
PDT linked together. We can design a heuristic pruning neebased on the links
between the nodes, so that we do not have to evaluate evelyircation of little
trees on both sides.

Here is a list of rules we have experimented with:

e Discard rules, where an internal node of one little tree iFfligned with
a node outside of the other little tree.

e Discard rules, where an internal node is PDT-aligned witloatfer node.
This rule should not be applied neither to hidden nor gerdrabdes.

e If there is a PDT-alignment between two frontier nodes of rile, then
discard all rules that do not align these two nodes.

¢ Discard rules that “do not make any progress”, such as ruesisting of
one frontier node on both sidés.

5.3.2 Threshold for Expected Counts

Another possible pruning criterionlisw A —a simple threshold for the increment
of the expected count. When the Algorithm 4.8 computes tipeeed counts of
synchronous rules, the new rule is added into the model 8iokthe algorithm)
only if its increment of the expected count is higher tham A.

5This a reasonable restriction of the grammar similar towkolg CFG rules of typel — A.
Since we do not allow renaming the frontier state, we do ne¢ paoblem with rulesd — B that
could bring in cycles.
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5.3.3 Lazy Pruning

When the size (number of rules) of the whole model exceedfitasholdnmax model _size ,
the global pruning can be triggered in order to reduce theainside to some re-
quired limit. The pruning throws away the least probablesul

5.3.4 Pruning by Non-synchronous Rules

It is possible to count all non-synchronous little treeshe training data (It was
possible to keep all of them in memory), and to impoeeasynch _threshold

for the frequency of the non-synchronous little trees. Tientraining algorithm
evaluates only synchronous rules that consist of non-sgnchus trees with fre-
guency higher than the threshold.

5.4 Computational Aspects

Memory and speed are the crucial limitations. The succeggedtatistical model
depends on the number of rules that fit into memory and on the spent for
accessing the rules. Here we describe some optimizatiomaweimplemented.

5.4.1 Representation of the Synchronous Rules

Itis necessary to use a memory-efficient representatiomes$r The synchronous
rules are stored in a serialized form similar to examples2n Bach back-off rep-
resentation of the same rule has different serializatidnve Jerializations are keys
for accessing the probability(¢ | ¢). The model is stored in a form of TreeMap
structure (TRIE), which allows for efficient memory usage &ast insertions.

5.4.2 Synchronous Rule Iterators

When iterating the rules observed in the sentence pair, @@ uspresentation of
rules, which is optimized for speed. There are two functitiea that have the
strongest influence on performance:

1. findNextRule() —a method for finding the next synchronous rule. The
method iterates the tree-pair in both prefix or postfix ortgriraversing
through all possible combinations of little trees and atigmts of their fron-
tier nodes.

2. getSerialization() —amethod for serializing the current synchronous
rule (both little trees and alignment of frontier nodes).
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When profiling and optimizing the computation, we found dwattmost of the
processor’s time is spent on string operations due to s&tains of synchronous
rules. Since the right hand side of the synchronous rulatgesrthrough the whole
variety of non-synchronous little trees all over again faclke possible left hand
side (as the inner of the two nested loops), we have decideddioe the serial-
izations of the little trees for each sentence pair. Thibnegue speeded up the
computation 5 times.

5.5 Training

The training of the tree-to-tree transducer model is amiitez procedure. There
are two models used in each iteration: Twoaring models used for computing
inside and outside probabilities, and expected countstlaew models used
for storing and incrementing the expected counts. Aftenthele traversal of
the training portion of the data, the expected counts ard tsee-estimate the
probabilities.

One iteration of EM algorithm visits all sentence pairs frima training cor-
pus. Upon entering each sentence pair, each tree is labgleddxes in postfix
order. Then thehartis created to store the data needed by algorithms 4.6, 4.7,
and 4.8 — inside, outside probabilities, optionally alse Yiterbi probability and
the Viterbi rule. The chart is @-dimensional array, the data for a given pair of
nodes is stored on position defined by the postfix indexes tf bodes. The
probabilities are stored as logarithms.

5.6 Transformations between the Tectogrammatical and
Analytical Representations in PDT

The transformations between the two layers of structunabtation of the Prague
Dependency Treebank seem to be one of the easier tasks 87 1h&": the trees
are annotated manually on both analytical and tectograrmahdévels, so the
data are as clean as possible. Also the annotation procésse \the analytical
trees are sequentially modified into the tectogrammaticaspgives us the reason
to believe that the structures are more similar than if theyencreated by two
independent annotation processes, and that they are eversmmlar than if they
originated in two sources, such as in translation task. B\ee the nodes of the
tectogrammatical trees contain links to the analyticalasoithey come from, and

If we allow “renaming” frontier states, then the chart beesna3 dimensional array — one
additional dimension for the frontier/root state.
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this information can be also used for pruning the rules, andnitial estimation
of rule probabilities.

The probabilistic translation dictionatyf|e) maps tectogrammatical lemmas
to analytical ones and was created from the PDT as relativets®f all pairs of
tectogrammatical and analytical nodes.

The resulting tree-to-tree alignments presented in Appehd were obtained
by the following sequence of steps:

1.

Czech tectogrammatical-to-analytical “translationctidnary was created
by traversing the whole PDT and using links between tectogratical and
analytical nodes.

A set of non-synchronous rules occurring more than ondéertraining
data was collected for the purposes of pruning.

An initial iteration was run with scoring model with unifa probabilities.
These probabilities were rescored by the heuristics 5.8thas the “trans-
lation” dictionary.

. A simple smoothing of back-off models was applied. Thekbait models

were tested on00 sentence pairs from held-out data for a seA gfarame-
ters, and the winning was used in the second iteration.

. The second iteration was run with the model trained in fit&al iteration.

Viterbi alignments were traced during the computation gfde probabili-
ties.

The following setup has been used:

e The size of the training data was, 000 sentence pairs. After applying the

restrictions for the maximum number of children per node tthining data
shrunk tol3, 910 sentence pairs.

¢ The following back-off schemes were usédNEARIZED , MORPHOL-

OGY, W/O LEXICAL , andSTRUCTURE.

e The MORPHOLOGY back-off model used a reduction of the full posi-

tional morphological tag to three positions. The reducti@mt as follows:

— The tag was initially set te--
— The first position of the tag was always copied from the oagiag.
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— If the word was noun or adjective, the case and number wepeces
tively copied to positions 2 and 3. If the word was verb, thespe
and number were copied.

e The pruning by the PDT links was not applied.

e Due to the pruning by non-synchronous rules the model coulttd mem-
ory for the whole training data, thus the lazy pruning wasaplied.

One iteration took approximately 12 hours.

5.7 Transfer between Czech Tectogrammatical and English
Analytical Representations in PCEDT

Training alignments between the Czech tectogrammatichEarglish analytical
representations is a great challenge, sinceSth8G has to model two processes:
the transfer between the two languages and the transition freeper level of
representation to a shallower one.

The experiments were carried out on the PCEDT corpus. Regtiee-to-tree
alignments were obtained by almost the same method as ldedani Section 5.6,
the differences were the following:

e The training data were the fir80, 000 sentence pairs from the training sec-
tion of the PCEDT. After applying the restrictions for thexitaum number
of children per node, the training data shrunk 30002 sentence pairs.

e A parallel corpus of plain text was extracted from the PCEDIE Czech
part contained tectogrammatical lemmas prepended witlfirdteposition
of the morphological tag, i.e. the POS; the English part@iowid analytical
lemmas prepended by the first position of the analytical imoiqgical tag.

e A probabilistic dictionaryt(f|e) was trained on these data using GIZA++
[Och and Ney, 2000]. Figure 5.4 contains a sample from tlusadiary.

e The following back-off schemes were useédNEARIZED , MORPHOL-
OGY, W/O LEXICAL , andSTRUCTURE.
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Czech entry English translationt(e | ¢)

V—chodit N-Tigers 0.0487005
V—chodit N—nomination 0.0807828
V—chodit R—forth 0.121751
V—chodit V-refer 0.207133
V—chodit V-shuttle 0.243414
V—chodit V-walk 0.298218
V—choditse N-stereo 1
V—chovatse V-act 0.310038
V—chovatse V-behave 0.299106
V—chovatse V-live 0.140955
V—chovatse V-perform 0.113101
V—chovatse V-treat 0.136801
V—chrlit V-spew 1

Figure 5.4: An example of the Czech — English probabilisiitionary.

5.8 Transfer between Czech and English Analytical
Representations in PCEDT

Experiments training alignments between the Czech andginghalytical repre-
sentations were carried out to compare the behavior a$Th€G implementation
on a different type of data. On one hand, the transfer is donth® same levels
of representation, and we may expect that there is a cemaupgf constructions
common to both languages, which uses the same tree structuttee other hand,
the layers are relatively shallow, so there will be also ttieepgroup of construc-
tions using very different tree structures. It will be irgsting to compare the
resulting alignments with those extracted in experimestdbed in Section 5.7.

e The experiments were carried out on the same portion of PC&Dii Sec-
tion 5.7. The training set dt0, 000 sentence pairs shrunk id, 530 after
applying the restrictions for the maximum number of chitdper node.

e A parallel corpus of plain text for GIZA++ extraction of thewhslation dic-
tionary consisted of analytical lemmas. The Czech lemmas meepended
with three positions copied by the same way as describedatiddes.6, the
English lemmas were prepended only with the first positiothefmorpho-
logical tag.

e It is interesting that the computation process did not fit ienmory when
the same back-off and pruning schemes as in Sections 5.6 .Zndebe
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Czech Czech ana{ English
tecto- Iytical trees | analytical
gramma- trees
tical trees
Avg. nodes per sentengel4.9 19.1 19.9
Avg. rules per node 3.9 3.9 3.9
Avg. rules per sentence 58.5 75.5128 78.79
Total sentences 10,000 10,000 10,000
Total nodes 148,835 191,282 199,475
Total rules 585,340 755,128 787,900

Table 5.2: Non-synchronous rules statistics on PraguelCEeglish Dependency
Treebank

used. The process allocated about three times as much mesanythe
tectogrammatical-to-analytical experiment. The expi@mais that train-
ing on analytical tree pairs generates about tree times nubgeobserva-
tions than observing tectogrammatical-to-analyticalpa&.g. the same (the
first) sentence pair generatggbt, 983 rules for the analytical trees, but only
214, 451 rules for the tectogrammatical-to-analytical pair.

To explain this disproportion, it may be useful to comparel@a 5.1 and 5.2.
They show that the data in PDT are different from those in PCEDhe
PCEDT sentences are longer on average, and also the ragictofjtamma-
tical nodes to analytical onesi8% in PCEDT, while in PDT it i88%. The
number of non-synchronous tree pairs grows with the squiaserence
lengths, and yet it must be multiplied by the possible alignta to get the
number of synchronous rules. That is why the model grows sidIsa

Thus only theN/O LEXICAL , andSTRUCTURE models could be used.

5.9 Evaluation of Results

The results of the alignment method were evaluated manudllye resulting
Viterbi alignments for the firsR0 tree pairs were examined. The training algo-
rithm automatically records the Viterbi alignment in thenfoof the ETEXsources
that can be compiled and visually evaluated in GSview. Exampf the Viterbi
alignments are in Appendix A.

One of the conclusions from the experiments we have carugdsdhat the
data is extremely sparse. We realized that the highest sunside probabilities
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of the held-out data is fak, which multiplies the simplest mod8TRUCTURE
by 0.95, while the other models do not influence the score almost.at al
Another experience we have gained is about the absoluterierme of the
lexical rescoring. If the lexical rescoring is turned offetmethod does not work
at all, the system aligns trees usimg0 and0-n rules.
We can also say that the limitation £0 2 internal nodes is not so severe, and
that most of the tree pairs can be correctly aligned with@sérestrictions.

5.9.1 Evaluation of Czech Tectogrammatical-to-AnalytichAlignments

The task of finding alignments between tectogrammatical aaradytical repre-
sentations for the same Czech sentence works well, and ethaignments are
correct. Nevertheless, there are some transformationsanaot be handled by
the STSG, such as in Figure A.2: The nodes for waéh& are misaligned, be-
cause there is no mechanism3di'SG that would model this transformation. Due
to the restricted number of internal nodes, the naée®f andbyt cannot be in the
same synchronous rule. Nor any kind of “late binding” is floles If we consider
a rule that has a frontier node on position of the tectogranicalaén®r, then it
must be aligned either with some frontier node of the anzdytittle tree, or with
null.

5.9.2 Evaluation of Czech-English Alignments

Figure A.3 contains a pair of the tectogrammatical tree her €zech sentence
“Asociace uvedlaze domad poptavka v &fi stoupla o 8,8 %."and an analytical
tree for the English senten€&he association said domestic demand grew 8.8%
in September” We can see that the Czech tree fiasodes, while the English
one hasl0, three nodes were addeitire, 8.8, andin. There is also one structural
change: the CzeclhOCation zafi depends on thelC'Tor, while the English
adverbial phrasen Septembedepends on th&redicate. Figure A.4 presents the
Viterbi alignment. We can see that rules on lines 3, 4, andélleansertions of
these extra nodes, while the rule on line 2 handles the chafrtbe tree structure.
Table A.2 contains the computational chart. The first twaigois identify the
node pair in which the synchronous rule is rooted. The falh@ahree columns
contain in sequence the inside probability, the outsideabdity, and the Viterbi
probability. The last column is occupied by the Viterbi rule

Although the results seem to be very promising, the spadetfmovements is
still huge, e.g. Figure A.6 contains Viterbi alignment fengence paitPoptavka
trvale stou@ za podpory prospétbitelsie viadn politiky, Fekl mlui asociace.”
and “Demand has been growing consistently under the encouragémf pro-
consumption government policies, an association spokesaid.”. The3™? syn-
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chronous rule rooted at nod&sand 12 represents wrong alignment, since the
internal structurestoupatis wrongly mapped tte grow as well as thé&'h rule
insertsconsistentlyand the7'h rule mapstrvale to have Better solution would
be either to majtrvale to consistentlyand to inserbhave When inspecting the
reasons that caused this mismatch, we found that the eatrglation paitrvale-
consistentlyvas not found in the translation dictionary. Here is ourriptetation

of what happened: The relation of leaf nodes W#&sodes 1, 2, and 6) to(nodes

1, 2, 3, 4, 11). Since the Viterbi probabilities of synchroasubstitution at (1 -
1) and at(6 - 11) gave a good score (see the chart in Table Be5yYiterbi align-
ment had to solvd nodes, which were lexically unmatchedvale, consistently
have andbe It “had to pay” deletion of one of the nodbave beor consistently
anyway, and to align the remainirgnodes either as internal — within the same
rule — or as one substitution dy1 synchronous rule. Since there were no other
clues, it wrongly selectedonsistentlyfor deletion.

If we had a better lexical rescoring that would prefer theetieh of be and
have(e.g. using some fertility table), then the problem couldehbeen fixed.
Also a better modeling of the mapping of frontier nodes thatild for example
prefer the paifl’ H L- Adv would help.

For comparison, the alignment between the analytical fiethe same sen-
tence pair on Figure A.10 is corrétThe reason is that the ratio of leaved ifl,
2,7,8)1t05 (1, 2, 3, 4, 11), and that there atgoairs of frontier nodes with good
Viterbi scores. Thus there is no need to delete rm®y (0-1) rule, it can be done
automatically. The Viterbi alignment decided to aligmale with consistentlybe-
cause of the back-off model/o LEXICAL , which contains rule4dv — _)(Adv
— ).

Since the purpose of these experiments was to show that tdelrabsyn-
chronous tree-to-tree transductions can be implementedowsider this method
of evaluation appropriate. On the other hand, we are veryhnaweare of the
importance of a quantitative evaluation and we discussassipilities in Sec-
tion 5.10.

5.10 Proposed Further Directions of Research

The idea ofST'SG is unexplored, these experiments have shown promising re-
sults, but they still have to be considered preliminary. Ohthe reasons is that
the implementation of th&7'SG computational framework is very basic, and
that many other experiments still have to be carried out. tA@oreason is that
this approach was not yet applied to some practical problenthis section we

8We made sure that there is no ptirale - consistentlyn the translation dictionary as in the
previous case of the TR - AR alignment.
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list both—possible ways that could improve this method, ahdt of areas where
using ST SG could help.

5.10.1 Preprocessing the Input

When inspecting the Viterbi alignments, we have realized thany of the wrong
alignments were caused by arror in the translation dictionary Most of these
errors come from the input that was not normalized enougth &3 numbers,
symbols, or proper names. We believe that most of thesesaraor be fixed by an
improvedpreprocessing of the inputormalizationandcanonicalization
Another problem is th@unctuation As the first, punctuation increases the

number of child nodes, and most of the tree pairs were exdltrden the training
data just because of the punctuation. Moreover, punctuaieo increases the
data sparsenegsTherefore some special handling of punctuation is unavwéda

5.10.2 Quantitative Evaluation of Results

One of the drawbacks of the evaluation based on Viterbi algmis is that it is
very difficult to implement any quantitative evaluation imad. Nevertheless, we
can see two ways to achieve this.

One possibility is to manually annotate the data (add linksveen nodes)
and to impose a heuristic scoring function that would eualtize matching little
trees'® The drawback of this approach is that it is hard to define thrdydoe-
tween the good rules and bad rules. Imposing a scoring fametithout having
in mind could easily result in misleading interpretationsasults.

Another way is to apply th&T'SG approach on some existing problem and
the evaluation metrics for that problem. For example to engnt a new MT
system, or improve some part of it, and to use BLEU score.

5.10.3 Improving the Back-off Scheme

The data is so sparse that even the most generalized bacokeotil STRUC-
TURE does not stop growing aftéf, 000 sentence pairs, as Figure 5.2 shows. It
IS necessary to develop new methods approximating probebibf unseen rules
based on similarity with known rules. These methods can therestatistical or
heuristic.

9For example, two clauses separated by dash form one ruléhaisdme two clauses separated
by colon form a different rule
10again, here we could reuse the links between tectogramaiatied analytical nodes in the
PDT.
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5.10.4 Filtering out Low-confidence Matches

Since the shape of little trees that we take into considmras limited, it may
happen very often that the correct alignment does not egistlse the structure
of both trees is so different. Table A.5 shows that wrong imedéchave consid-
erably lower Viterbi score. It would be useful (and hopefuibt very difficult)
to implement a confidence scoring method based on Vitertbhghitities in the
chart. The confidence score could be used to detect thatigrera procedure
experiences problems on a given tree pair, or on a giveneibirhese pairs of
trees or their subtrees could be excluded from the training.

The pairs of trees or subtrees where the alignment failsdcloelthe hint for
extending the set of allowed shapes of little trees.

5.10.5 Integration of Manually Defined Rules

This approach also opens a space for combining manuallyatefiules with the
statistically extracted ones. These manually defined mwikbkave the same form
as the synchronous rules. It is possible either to store themthe scoring model
and to use them during the training process, or to use themgliire decoding.

Since the number of the manually defined rules will be is realte, it is not
necessary to apply the restrictions used for the statilstieatracted rules. The
manual rules can have more internal nodes and thus they odtelraore complex
structural changes.

5.10.6 Training on Plain Text

The experiments described above use PCEDT as training @laeaCzech trees
are created fully automatically from the plain text, butEreglish part is converted
from the structurally annotated Penn Treebank.

The next step would be to use a statistical parser of Engligate the En-
glish analytical trees automatically, and to train the mingnt on plain text. This
would open a perspective for training on more data, such éseo@zech-English
Reader’s Digest Corpus and Prague Tribune.

5.10.7 Decoding

The main motivation of the research $7'SG's was to build an MT system. The
Algorithm 4.9 describes the decoder, which is the heart ohsusystem. Line 4
of the decoding algorithm is crucial. It supposes a mechamiich proposes
hypothesesf synchronous rules.

Let’s think of the functionality of such a proposer. It hasofter all possible
rules such that the left little tree ts. The easiest part of the task is to offer hy-
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potheses that have already been seen. They can be derivethieqrobabilistic
model model. But this does not suffice at all, since the datpasse and the good
rule will be most probably unknown. Moreover, as we know frim experi-
ments with alignment, it is not realistic to keep rules withl fexical information
in the model because of the memory limitations. Thus we haegeme up with a
mechanism that overgenerates the list of possible rulesdb@as some heuristics.

5.10.8 Aligning Templates

The technique oéligning templatesnodel was introduced by [Och, 2002], it is
also referenced gshrase-basedhodel, e.g. in [Koehn et al., 2003]. Apart from
the standard IBM models that alloivn mappings only, the aligning templates
allow for m-n mappings. In another words, they try to find phrasal trammsiat—
subsequences of possibly more than one word in both semsteMost often used
approach starts with modeling thhen translations in both directions. The result-
ing alignments are then combined, using various methodsdbas intersection
and union of both unidirectional mappings.

We see one of the possible advantages of using the treeda¥tappings in
improving the training phase of aligning templates.

The method of aligning templates is based on modeling toamsdtions of
strings of words. The integration of tree-to-tree mappwwgsild require parsing
of both input streams, and we believe that the knowledgeso$éimtence structure
and its alignment would improve the quality of the extracégning templates.

5.11 Conclusion

The goal of the experiments described in this chapter wasaw ghat it is possible

to implement and train statistical model 8#'SG. Three experiments with ex-
tracting alignment have been implemented: Czech tectagitinal-to-analytical

alignment, Czech tectogrammatical to English analytitighanent, and Czech-
English analytical alignment. All of these experiments dn@hown promising

results, since most of the alignments are correct. On ther dthnd, the results
still have to be considered preliminary. A method of quaititie evaluation is

missing, but we have discussed the possible implemensatibit. The space for

improvements is huge, several ways of further research stgggested as well as
a candidates where the application of the new approach gaihdsome improve-

ment.
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Chapter 6

Conclusions

Let us briefly summarize the most important contributionthesf work to the body
of research in the field of machine translation.

e We have implemented, and—to our knowledge—for the first puoigished
the mathematical details of a new method for learning nomaphic tree-
to-tree transformations based on probabilistic Synchueriee Substitu-
tion Grammars [Eisner, 2003, Haji€ et al., 2002].

e We have applied this new method in three configurations: @tlzrecto-
grammatical-to-analytical tree pairs, Czech tectogratiwalto English an-
alytical tree pairs, and on Czech-English analytical traiesp

e \We have presented tree-to-tree alignments resulting fibtnese three im-
plementations. Although the results are still preliminangy can be con-
sidered very promising and there is a hope that they coulddugpsome
existing methods, such as the approach of aligning tengp[&eh, 2002]
used for decoding.

e We propose several directions of further research in oémprove the
method, as well as towards the implementation of the decodach is
necessary for a full-scale machine translation systentbaséhe presented
new method.

¢ In order to make these experiments possible, it was negessduuild a
large parallel corpus of Czech and English trees. The alth®made sig-
nificant contribution to th®rague Czech-English Dependency Treebank
especially on conversions of Penn Treebank format intoyéinal represen-
tation, and the integration of existing techniques of theeaatic analysis
of Czech for building the Czech part of the PCEDT.

e A baseline rule-based system for Czech-English machimslaton. The
system uses a statistical parser and rule-based conversioobtain the
Czech tectogrammatical representation of the sentenes,applies a set
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of rules performing the transfer and the generation intcstivéace English
sentence.

e Almost all partial results except Chapters 4 and 5 have bebélighed at
well recognized conferences abroad. For example, the vadalted to the
PCEDT corpus was published a£rhejrek et al., 2004&mejrek et al.,
2005, Curin et al., 2004a], the and the rule-based MT sysigs been pub-
lished as Cmejrek et al., 2003a].

We hope that the ideas sketched in this work will be furtherettgped and
bring some improvement in the field of machine translation.



Appendix A

Examples of Tree-to-Tree Alignments

A.1 Tree-to-Tree Alignment between Tectogrammatical and
Analytical Representations of Czech

Results of the automatic alignment between Czech tectagedival and analyti-
cal trees are presented here. For each sentence pair tleatatesn contains the
original tree pair, the Viterbi allgnment and the comploml chart.

11
—Xtémef —Pdesitka e —X—Pvypo—Pvseche - -
RHEM DIR1 - TWHEIPAT ACT h

9
D-A1SvypcP-vsechen
Adv Pnom Sh
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/ B

—Scelni N7Psubjekt

RSTR T N/ lr\

C7Pobaz N2Ssoustati
A\r Atr

P
A2Scelni
Atr

Figure A.1: A pair of tectogrammatical and analytical trew<Czech sentenc&
temer tfi destek smluv upravigich vztahy mezi gima subjekty celho soushti
jsou okarité vypoeditelre vSechny”
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Figure A.2: Viterbi alignment of little trees for a pair ottt®grammatical and ana-
lytical trees for the Czech sentert@et én# tfi destek smluv upravigich vztahy
mezi oléma subjekty celho soushti jsou okanzité vypoeditelré vSechny!
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nodes inside outside Viterbi rule
-1.7665 -18.421 -4.539 (RSTR— (I-Xtfi ))(NullSyntFunc— (FNullSyntFunc ))()
-4.539 -11.897  -4.539 (RSTR— (I-Xtfi ))(AuxZ— (ID—témé&¥ ))()
-3.265 -9.750 -3.2659 (RSTR— (I-Xt i ))(Atr —((ID-tem&¥ )IC2Ptii'3))()
-4.539 -44.255  -4.539 (RSTR— (I-Xfi ))(Atr— (IC7Poba‘2 ))()
-4.539 -50.82 -4.539 (RSTR— (I-Xtfi ))(Atr— (IA2Scelni ))()
-5.919 -47.032  -5.919 (RSTR— (I-Xfi ))(Atr— ((IA2Scelni ) IN2Ssoustati ))()
-15.638  -36.595  -16.737 (RSTR—(FRSTR ))(Atr— ((IC7Poba‘2 )IN7Psubjekt (FAtr )))((1-1))
-9.212 -41.872 -9.212 (APP— ((I-Scelni )I-Ssoustati ))(AuxZ— (ID-téméf ))()
-10.80 -40.702 -10.811 (APP— ((I-Scelni )I-Ssoustati ))(Atr— ((ID-témér )IC2PtFi‘3 ))()
-10.812 -19.528 -10.814 (APP—((I-Scelni )I-Ssoustati ))(Atr— (IC7Poba‘2 ))()
-2.2163 -15.904 -2.216 (APP— ((I-Scelni )I-Ssoustati ))(Atr— (IA2Scelni ))()
-0.9114 -12.388 -1.1750 (APP—((I-Scelni )I-Ssousati ))(Atr —((IA2Scelni )IN2Ssouséti ))()
-9.81 -11.858 -11.811 (APP— ((FRSTR )I-Ssoustati ))(Atr— ((FAtr )IN7Psubjekt ((FAtr )IN2Ssoustati )))((0-1)(1-2))
-14.897 -11.87 -17.41 (APP— (FAPP ))(AuxP— (IR-mezi-1 ((FAtr )IN7Psubjekt (FAtr ))))((0-1)(1-2))

1376 -37.17  -15263  (ACT—((I-Xoba )l-Psubjekt (FAPP )))(Atr— ((FAUXZ )IC2Pfi‘3 ))((1-1))
12218  -16518  -15.003  (ACT—((I-Xoba )l-Psubjekt (FAPP )))(Atr—(IC7Poba'2 ))((1-0))

-8.257 -21.17 -8.266 (ACT—s((I-Xoba )I-Psubjekt (FAPP )))(Atr— (FAtr ))((1-1))

-4.184 -15.824  -7.042 (ACT—((FRSTR )I-Psubjekt (FRSTR )I-Ssoustati )))(Atr—s ((FAtr )IN2Ssoustati ))((2-1)(1-0))
-3.735 -9.334 -4.460 (ACT — ((I-Xoba )I-Psubjekt (FAPP )))(Atr — ((IC7Poba‘2 )IN7Psubjekt (FAtr )))((1-1))

71518  -8.62 -7.734 (ACT—((FRSTR )I-Psubjekt (FAPP )))(AuxP— (IR-mezi-1 ((FAtr )IN7Psubjekt (FAtr ))))((2-2)(1-1))
10531  -8.059 -11.264 (ACT— (FACT ))(Obj— (IN4Pvztah (IR-mezi-1 (FAtr ))))((1-1))

-7.414 32505  -9.827 (PAT— (I-Pvztah (I—Rcp )(FACT )))(Atr— (FAtr ))((1-1))

-5.072 -23.8 -8.603 (PAT— (I-Pvztah (I—Rcp )(FACT )))(Atr— (FAtr ))((1-1))

-3.963 -15.234  -6.021 (PAT— (I-Pvztah (I—Rcp )(FACT )))(Atr— (FAtr ))((1-1))

-4.73 -10.49 -6.016 (PAT— (I-Pvztah (I—Rcp )(FACT )))(AuxP— (IR-mezi-1 (FAtr )))((1-1))

-4.476 -8.713 -5.800 (PAT — (I-Pvztah (I—Rcp )(FACT )))(Obj — (IN4Pvztah (IR-mezi-1 (FAr ))))((1-1))

-7.918 10579  -9.078 (PAT— (I-Pvztah (I—Rcp )(FACT )))(Atr— (IA2Pupravuijici (IN4Pvztah (FAUXP ))))((1-1))

o

41191 -12.299  -12.825  (PAT—(I-Pvztah (—Rcp )(FACT )))(Atr— (IN2Psmlouva (IA2Pupravuijici (FObj ))))((1-1))
11631 -3458  -14.464  (RSTR—(I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Atr— (FAtr ))((2-1)(1-0))

7591 27139 -13.240  (RSTR—(I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Atr— (FAtr ))((2-1)(1-0))

-6.641  -17.350  -10.658  (RSTR—(I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Atr— (FAtr ))((2-1)(1-0))

6966  -14.246  -10.556  (RSTR—(I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(AuxP— (IR-mezi-1 (FAtr )))((2-1)(1-0))
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-5.316 -10.581 -8.850 (RSTR— (I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Obj— (IN4Pvztah (IR-mezi-1 (FAtr ))))((2-1)(1-0))
-5.361 -9.23 -7.411 (RSTR— (I-Pupravuijici (FPAT )))(Atr — (IA2Pupravujici (FObj )))((1-1))

10 -6.079 -8.10 -7.41 (RSTR— (I-Pupravujici (FPAT )))(Atr— (IN2Psmlouva (IA2Pupravujici (FObj ))))((1-1))

11 -23.0 -7.819 -24.750 (RSTR— (I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Adv— ((FAtr )IN2Pdesitka (IN2Psmlouva (FAtr ))))((2-2)(1-1))

12 -19.573  -8.280 -23.107 (RSTR—(FRSTR ))(AuxP — (IR-z-1 ((FAtr )IN2Pdesitka (FAtr ))))((0-1)(1-2))

13 -14.613  -54.17 -23.062 (RSTR— (I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Adv— (FAdv ))((2-1)(1-0))

14  -14.614  -52.70 -23.062 (RSTR— (I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Pnom— (FPnom ))((2-1)(1-0))
9 15 -14.602  -53.95 -22.878 (RSTR— (I-Pupravujici (I-Pvztah (FPAT )(FACT ))))(Sb— (FSb ))((2-0)(1-1))
1 7 -10.550  -34.29 -14.359 (DIR1— ((I-Xtfi )I-Pdesitka (FMAT )))(AuxP— (IR-mezi-1 (FAtr )))((1-1))
1 8 -9.706 -26.785  -14.220 (DIR1— ((I-Xtfi )I-Pdesitka (FMAT )))(Obj— (FObj ))((1-1))
11 9 -8.912 -23.523 -11.696 (DIR1—((I-Xtfi )|-Pdesitka (FMAT )))(Atr— (FAtr ))((1-1))
11 10 -8.034 -15.968 -11.389 (DIR1—((I-Xtfi )|-Pdesitka (FMAT )))(Atr— (FAtr ))((1-1))
11 11 -9.342 -4.637 -12.309 (DIR1—((FRSTR )I-Pdesitka (I-Psmlouva (FRSTR ))))(Adv—((FAtr)IN2Pdesitka (IN2Psmlouva (FAtr ))))((2-2)(1-1))
11 12 -10.419 -2.98 -12.516 (DIR1—((FRSTR )I-Pdesitka (FMAT )))(AuxP— (IR-z-1 ((FAtr )IN2Pdesitka (FAtr ))))((2-2)(1-1))
11 13 -14.7 -48.86 -26.790 (DIR1—((I-Xtfi )|-Pdesitka (FMAT )))(Adv— (FAdv ))((1-1))
11 14 -14.462 -47.6 -25.58 (DIR1—((I-Xtfi )|-Pdesitka (FMAT )))(Pnom— (FPnom ))((1-1))
12 8 -23.918 -40.609 -28.43 (TWHEN— (FTWHEN ))(Obj— (IN4Pvztah (IR-mezi-1 (FAtr ))))((1-1))
12 9 -30.912 -39.9 -37.86 (TWHEN— (I-Xokam?zité ))(Atr— (IA2Pupravujici (IN4Pvztah (FAuxP ))))((0-1))
12 10 -33.12 -29.79 -39.25 (TWHEN— (I-Xokam?zité ))(Atr— (IN2Psmlouva (IA2Pupravujici (FObj ))))((0-1))
12 11 -48.19 -21.68 -59.50 (TWHEN— (I-Xokamzité ))(Adv— ((FAtr )IN2Pdesitka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
12 12 -44.89 -16.804  -54.947 (TWHEN— (FTWHEN ))(AuxP— (IR-z-1 ((FAtr )IN2Pdesitka (FAr ))))((0-1)(1-2))
12 13 -0.001 -13.059  -0.001 (TWHEN — (I-Xokamzit& ))(Adv— (ID—okamzit& ))()
12 14 -10.815 -15.717 -10.816 (TWHEN— (I-Xokamzité ))(Pnom— (IA1Svypovéditelny ))()
12 15  -10.814  -17.01 -10.816 (TWHEN— (I-Xokamzit& ))(Sb— (IP-vSechen ))()
12 16 -57.81 -24.61 -71.23 (TWHEN— (FTWHEN ))(Pred— ((FAuxP )IV3Pbyt (FAdv )(IA1Svypovéditelny )(FSb )))((0-3)(0-1)(1-2))
13 9 -30.707 -38.37 -37.86 (PAT— (I-Pvypovéditelny ))(Atr— (IA2Pupravujici (IN4Pvztah (FAuxP ))))((0-1))
13 10 -32.91 -28.25 -39.25 (PAT— (I-Pvypovéditelny ))(Atr— (IN2Psmlouva (IA2Pupravujici (FObj ))))((0-1))
13 11 -47.85 -20.14 -59.50 (PAT— (I-Pvypovéditelny ))(Adv— ((FAtr )IN2Pdesitka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
13 12 -44.5 -15.262 -54.947 (PAT — (FPAT ))(AuxP — (IR-z-1 ((FAtr )IN2Pdesitka (FAtr ))))((0-1)(1-2))
13 13 -10.815 -15.717 -10.816 (PAT — (I-Pvypovéditelny ))(Adv— (ID—okamZité ))()
13 14 -1.6103 -11.863 -1.6103 (PAT — (I-Pvypovéditelny ))(Pnom— (IA1Svypovéditelny ))()
13 15 -10.670 -15.408 -10.673 (PAT — (I-Pvypoveditelny ))(Sb— (IP-vSechen ))()
13 16 -58.033 -24.02 -72.84 (PAT — (FPAT ))(Pred— ((FAuxP )IV3Pbyt (ID-okamzité )(FPnom )(FSb )))((0-3)(0-1)(1-2))
14 11 -47.52 -20.68 -59.50 (ACT—(I-PvSechen ))(Adv— ((FAtr )IN2Pdesitka (IN2Psmlouva (FAtr ))))((0-2)(0-1))
14 12 -44.222 -16.49 -54.947 (ACT—(FACT ))(AuxP— (IR-z-1 ((FAtr )IN2Pdesitka (FAtr ))))((0-1)(1-2))
14 13 -10.599 -17.018 -10.600 (ACT—(I-PvSechen ))(Adv— (ID-okamZité ))()
14 14 -10.815 -15.40 -10.816 (ACT— (I-PvSechen ))(Pnom— (IA1Svypovéditelny ))()
14 15  -0.3096 -12.781  -0.30968  (ACT —(I-Pviechen ))(Sb-(IP-véechen ))()
14 16  -57.30 -24.433 717 (ACT— (FACT ))(Pred— ((FAUxP )IV3Pbyt (FAdv )(IA1Svypovéditelny )(FSb )))((0-2)(0-1)(1-3))
15 0 -28.132  -62.59 -54.34 (PRED— ((FRHEM )(FDIR1 )I-Xbyt (FTWHEN )(I-Pvypovéditelny )(FACT )))(NullSyntFunc— (FNullSyntFunc ))((4-0)(3-0)(2-0)(1-0))
15 1 -29.658  -65.66 -50.66 (PRED— ((FRHEM )(FDIR1 )I-Xbyt (FTWHEN )(I-Pvypovéditelny )(FACT )))(AuxZ— (FAUXZ ))((4-0)(3-0)(2-0)(1-1))
15 13 -24611 -56.44 -45.13 (PRED— ((FRHEM )(FDIR1 )I-Xbyt (FTWHEN )(I-Pvypovéditelny )(FACT )))(Adv— (FAdv ))((4-0)(3-1)(2-0)(1-0))
15 14  -2557 -56.03 -46.51 (PRED— ((FRHEM )(FDIR1 )I-Xbyt (FTWHEN )(FPAT )(I-PvSechen )))(Pnom—s (FPnom ))((4-1)(3-0)(2-0)(1-0))
15 15  -24736  -56.61 -45.21 (PRED— ((FRHEM )(FDIR1 )I-Xbyt (FTWHEN )(I-Pvypovéditelny )(FACT )))(Sb— (FSb ))((4-1)(3-0)(2-0)(1-0))
15 16  -12.97 0.0 -17.20 (PRED— ((I-Xtém&¥ )(FDIR1 )I-Xbyt (FTWHEN )(FPAT )(FACT )))(Pred — ((IR—z-1 (FAdv ))IV3Pbyt (FAdv )(FPnom )(FSb )))((4-3)(32)(2-

1)(1-4)

Table A.1: Computational chart with Viterbi probabilitiésr a pair of tecto-
grammatical and analytical trees for the Czech sentén¢én# tii destek sm-
luv upravujcich vztahy mezi @gma subjekty celho sousiti jsou okaniitée vy-
poweditelre vSechny’
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A.2 Tree-to-Tree Alignment between Czech Tectogrammatida
and English Analytical Representations

Results of the automatic alignment between Czech tectagedioal and English

analytical trees are presented here. The tree structuieessults of an automatic
annotation procedures, thus may contain errors. For eatlrse pair the presen-
tation contains the original tree pair, the Viterbi alignmmhand the computational

chart.
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ACT '/ 272
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10@
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Pred
2 9
N-association V—grow
Sb Obj
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3 s/ 7\0
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Atr Atr Adv

Figure A.3: A tree pair for Czech senteri@esociace uvedlaze domaci poptavka
v zafi stoupla o 8,8 %.” and English sentenc&’he association said domestic

demand grew 8.8% in September”
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Figure A.4: Viterbi alignment of little trees for sentencaifd’Asociace uvedla,

s s

ze donadi poptavka v afi stoupla o 8,8 %."and“The association said domestic

demand grew 8.8% in September”
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-9.428
-0.21480
-0.5326
-10.810
-9.428
-30.171
-39.993
-30.845
-30.842
-30.839
-22.15
-13.281
-21.63
-21.638
-22.370
-22.325
-3.7231
-16.516

-41.663
-41.66
-33.549
-32.97
-24.099
-32.455
-32.45
-33.18
-33.14
-14.540
-8.002

rule

(NullSyntFunc— (FNullSyntFunc ))(Atr— (ID—the ))()

(NullSyntFunc— (FNullSyntFunc ))(Sb— ((ID-the )IN-association ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IJ-domestic ))()

(NullSyntFunc— (FNullSyntFunc ))(Sb— ((IJ-domestic )IN—demand ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (1C-8.8))()

(NullSyntFunc— (FNullSyntFunc ))(Adv— ((IC-8.8 )IN-% ))()

(NullSyntFunc— (FNullSyntFunc ))(Adv— (IN-September ))()

(NullSyntFunc— (FNullSyntFunc ))(AuxP— (ll—in (IN-September )))()

(NullsyntFunc— (FNullSyntFunc ))(Obj— ((FSb )IV-grow ((FAtr )IN-% )(FAuxP )))((0-3)(0-2)(0-1))
(NullsyntFunc— (FNullSyntFunc ))(Pred — ((FSb )IV-say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(0-1))
(ACT— (IN—-asociace ))(NullSyntFunc— (FNullSyntFunc ))()

(ACT— (IN-asociace ))(Atr— (ID-the ))()

(ACT —(IN—asociace ))(Sb-((ID-the )IN—association ))()

(ACT— (IN-asociace ))(Atr— (IJ-domestic ))()

(ACT— (IN—-asociace ))(Sb— ((IJ-domestic )IN-demand ))()

(ACT— (IN-asociace ))(Atr—(IC-8.8))()

(ACT— (IN—-asociace ))(Adv— ((IC-8.8 )IN-% ))()

(ACT— (IN-asociace ))(Adv— (IN-September ))()

(ACT— (IN—asociace ))(AuxP— (ll-in (IN-September )))()

(ACT—(FACT ))(Obj—(((FAtr )IN—-demand )IV—grow (FAdv )(FAuxP )))((0-3)(0-2)(1-1))
(ACT—(FACT ))(Pred— ((FSb )IV=say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(1-1))
(RSTR— (IA—domaci ))(NullSyntFunc— (FNullSyntFunc ))()

(RSTR— (IA—domaci ))(Atr— (ID-the ))()

(RSTR— (IA—domaci ))(Sb— ((ID-the )IN—association ))()

(RSTR— (IA—domaci ))(Atr — (IJ-domestic ))()

(RSTR— (IA—domaéci ))(Sb—((IJ-domestic )IN-demand ))()

(RSTR—(IA—domaci ))(Atr—(1C-8.8))()

(RSTR— (IA—domaci ))(Adv—((IC-8.8 )IN-% ))()

(RSTR—(IA—domaci ))(Adv— (IN-September ))()

(RSTR— (IA—domaci ))(AuxP—(ll—in (IN-September )))()

(RSTR—(FRSTR ))(Obj— ((FSb )IV-grow ((FAtr )IN-% )(FAuxP )))((0-3)(0-2)(1-1))
(RSTR—(FRSTR ))(Pred— ((FSb )IV-say ((FSb )IV-grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-1)(1-2))
(LOC— (IN—zéf1 ))(NullSyntFunc— (FNullSyntFunc ))()

(LOC— (IN—zéfi ))(Atr—(ID-the ))()

(LOC—(IN-zafi))(Sb— ((ID—the )IN-association ))()

(LOC— (IN-zafi))(Atr— (1J-domestic ))()

(LOC—(IN-zafi))(Sb— ((I3-domestic )IN—demand ))()

(LOC— (IN—zafi ))(Atr—(1C-8.8))()

(LOC— (IN-zafi ))(Adv—((1C-8.8 )IN-% ))()

(LOC— (IN-zafi ))(Adv— (IN-September ))()

(LOC — (IN-zafi ))(AuxP — (ll-in (IN-September )))()

(LOC—(FLOC ))(Obj— ((FSb )IV—grow ((FAtr )IN=% )(FAuxP )))((0-3)(0-1)(1-2))
(LOC—(FLOC))(Pred— ((FSb )IV-say ((FSb )IV-grow (FAdv )(FAuxP ))))((0-3)(0-2)(0-1)(1-4))
(ACT—((IA—domaci )IN—poptavka (FLOC )))(NullSyntFunc— (FNullSyntFunc ))((1-0))

(ACT— ((IA-doméci )IN—-poptavka (FLOC )))(Atr— (ID-the ))((1-0))

(ACT—((IA—domaci )IN—poptavka (FLOC )))(Sb— ((ID-the )IN—association ))((1-0))

(ACT— ((IA-doméci )IN—-poptavka (FLOC )))(Atr— (IJ-domestic ))((1-0))

(ACT—((FRSTR )IN—poptavka (IN-z&fi )))(Sb— ((FAtr )IN-demand ))((1-1))

(ACT— ((IA-doméci )IN—poptavka (FLOC )))(Atr— (IC-8.8))((1-0))

(ACT— ((IA-doméci )IN—-poptavka (FLOC )))(Adv— ((IC-8.8 )IN-% ))((1-0))

(ACT—((FRSTR )IN—poptavka (IN-zé&fi )))(Adv— (IN-September ))((1-0))

(ACT—((FRSTR )IN—poptavka (IN-zé&fi )))(AuxP — (ll-in (IN-September )))((1-0))
(ACT—((FRSTR )IN—poptavka (FLOC )))(Obj— (((FAtr )IN—-demand )IV—grow (FAdv )(FAuxP )))((0-1)(2-2)(1-3))
(ACT—((FRSTR )IN-poptavka (FLOC )))(Pred— ((FSb )IV=say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-3)(0-1)(2-4)(1-2))
(RSTR—(I1C-8,8))(NullSyntFunc— (FNullSyntFunc ))()

(RSTR—(IC-8,8))(Atr— (ID-the ))()

(RSTR—(IC-8,8 ))(Sb—((ID-the )IN—association ))()

(RSTR—(IC-8,8 ))(Atr— (1J-domestic ))()

(RSTR—(IC-8,8))(Sb—((1J-domestic )IN-demand ))()

(RSTR—(IC-8,8 ))(Atr— (IC-8.8))()

(RSTR—(IC-8,8))(Adv— ((IC-8.8)IN-% ))()

(RSTR—(IC-8,8 ))(Adv— (IN-September ))()

(RSTR—(1C-8,8 ))(AuxP— (ll-in (IN-September )))()

(RSTR—(FRSTR ))(Obj— ((FSb )IV-grow ((FAtr )IN-% )(FAuxP )))((0-2)(0-1)(1-3))
(RSTR—(FRSTR ))(Pred— ((FSb )IV-say ((FSb )IV-grow (FAdv )(FAuxP ))))((0-4)(0-2)(0-1)(1-3))
(???—((FACT )IV-stoupnout (IC-8,8 )))(NullSyntFunc— (FNullSyntFunc ))((1-0))
(???—((FACT )IV-stoupnout (IC-8,8 )))(Atr— (FAtr ))((1-1))

(???—((FACT )IV-stoupnout (IC-8,8 )))(Sb— ((FAtr )IN—association ))((1-1))

(???—((FACT )IV-stoupnout (IC-8,8 )))(Atr— (FAtr ))((1-1))

(?2?— ((FACT )IV=stoupnout (IC-8,8 )))(Sb— (FSb ))((1-1))

(?2?— ((FACT )IV=stoupnout (IC-8,8 )))(Atr— (IC—-8.8 ))((1-0))

(?2?— ((FACT )IV=stoupnout (IC-8,8 )))(Adv— ((IC—8.8 )IN-% ))((1-0))

(???—((FACT )IV-stoupnout (IC-8,8 )))(Adv— (FAdv ))((1-1))

(???—((FACT )IV-stoupnout (IC-8,8 )))(AuxP— (FAuxP ))((1-1))

(???7—(((FRSTR )IN—poptavka (FLOC ))IV-stoupnout (FRSTR )))(Obj — (((FAtr )IN—-demand )IV—grow (FAdv )(FAuxP )))((3-2)(2-3)(1
(???—(((FRSTR )IN—poptavka (FLOC ))IV-stoupnout (FRSTR )))(Pred— ((FSb )IV-say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-1)(3-4
2)(1-3))

(PRED—((IN—asociace )IV-uvést (F??? )))(NullSyntFunc— (FNullSyntFunc ))((1-0))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Atr— (FAtr ))((1-1))

(PRED—((IN—asociace )IV-uvést (F??? )))(Sb— ((FAtr )IN-association ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Atr— (FAtr ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Sb— (FSb ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Atr— (FAtr ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Adv— ((FAtr )IN-% ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Adv—(FAdv ))((1-1))

(PRED— ((IN—asociace )IV-uveést (F??? )))(AuxP— (FAuxP ))((1-1))

(PRED— ((IN—asociace )IV-uvést (F??? )))(Obj— (FObj ))((1-1))

(PRED—((FACT )IV-uv ést (F??? )))(Pred—((FSb )IV-say (FObj )))((2-2)(1-1))

Table A.2: Computational chart with Viterbi probabilities sentence paitAso-

s s

ciace uvedlaze donmad poptavka v &fi stoupla o 8,8 %."and“The association
said domestic demand grew 8.8% in September”
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Figure A.5: A tree pair for Czech sententloptavka trvale stoug@ za pod-
pory prospotebitelsie viadn politiky, fekl mluwi asociace.” and English sen-
tence"Demand has been growing consistently under the encouragéwf pro-
consumption government policies, an association spokesiaid.”
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PAT ACT
ACT Sb
'@ 16
N-mluvgi N-spokesman
8 14’15
PAT D-an Atr
PAT Obj
7 120
V-stoupat V—grow
10)2 6 203 4O
ACT THL COND Sb AuxV V-be Adv AuxP
PAT Atr
8@ 159
N-asociace N-association
NullSyntFunc Adv
0@ 4
NullSyntFunc R—consistently
COND AuxP
60" 1@
COND I-under
10
Adv
THL AuxV
2@ 2@
D-trvale V-have
ACT Sb
1@
N—poptavka N-demand
COND Adv
6@ 100
N—podpora N-encouragement
5 5 9
APP D-the AuxP
APP AuxP
5@ Q@
N-politika |—of
. : 8
RSTIRSTR N—policy
6 7
Atr  Atr
RSTR Atr
@ '@
A-vladni N-government

RSTR
3@
A-prospotebitelsky

Atr
@
N-pro-consumption

Figure A.6: Viterbi alignment of little trees for sentencaip“Poptavka tr-
vale stou@ za podpory prospéebitelsie viadn politiky, fekl mluti asociace.”
and“Demand has been growing consistently under the encouragémf pro-
consumption government policies, an association spokesand.”
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10
10
10
10
10

~N o

3

o

12

13
14
15
12
13
14
15
16
17

13
14
15
16
17

13
14
15
16
17

-7.8105
-7.129
-7.133
-6.9695
-7.125
-7.002
-15.481
-96.0
-6.599
-1.7390
-9.440
-10.734
-10.80
-108.32
-6.595
-10.81
-9.207
-9.432
-10.816
-9.432
-9.430
-10.810
-9.430
-0.20037
-9.406
-9.553
-18.94
-10.810
-9.430
-9.406
-0.5395
-9.664
-19.01
-28.284
-8.028
-8.3
-0.6765
-2.660
-13.474
-21.248
-17.5
-2.656
-2.661
-12.781
-20.214
-52.22

-23.30
-23.302
-19.373
-18.68
-11.796
-15.805

-39.471

-36.66
-36.69
-36.69
-71.85
-10.813
-10.815
-2.707
-10.025
-92.80
-7.983
-10.638
-10.511
-2.4056
-4.602
-86.39
-48.714

-46.516
-51.38
-51.39
-46.097
-38.53
-45.728

-44.37
-38.25
-38.22
-38.27
-37.96
-45.093
-48.23
-51.42
-49.253
-43.2
-43.79
-43.76
-43.83
-45.888
-44.82
-43.34
-38.0
-38.0
-38.12
-45.77
-66.31
-66.45
-53.17
-44.47
-51.14
-51.83
-44.20
-66.45
-53.07
-51.143
-44.13
-51.83
-44.20
-38.019
-59.54
-57.66
-50.70
-42.636
-34.65
-27.218
-60.31
-50.877
-42.78
-33.074
-25.248
-19.28

-67.7
-82.80
-63.821
-55.141
-46.003
-37.404

-6.256

-75.02
-80.21
-82.84
-39.84
-54.552
-43.05
-43.053
-41.130
-44.7
-56.43
-55.02
-51.903
-51.90
-41.13
-43.981
-95.70

-89.47
-94.39
-91.74
-91.74
-80.96
0.0

-10.113
-9.432
-9.436
-9.272
-9.428
-9.305
-20.12
-119.57
-9.432
-1.7390
-9.44
-10.734
-10.802
-110.4
-9.429
-10.816
-9.207
-9.433
-10.816
-9.433
-9.430
-10.810
-9.430
-0.20037
-9.406
-10.915
-20.32
-10.810
-9.430
-9.406
-0.5395
-11.254
-20.662
-31.480
-10.913
-11.252
-1.4428
-2.661
-13.479
-22.90
-20.66
-2.661
-2.6616
-13.47
-22.689
-60.778

-29.421
-29.421
-22.90
-22.90
-14.711
-15.989

-47.264

-49.668
-49.668
-49.668
-88.6
-10.814
-10.816
-2.7073
-12.135
-111.5
-10.817
-10.639
-10.512
-2.405
-4.631
-104.08
-69.92

-62.07
-69.74
-69.61
-61.5

-54.29
-53.55

(NullSyntFunc— (FNullSyntFunc ))(Sb— (IN—demand ))()

(NullSyntFunc— (FNullSyntFunc ))(AuxV— (IV=have ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IV-be ))()

(NullSyntFunc— (FNullSyntFunc ))(Adv — (IR—consistently ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (ID-the ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IN—pro-consumption ))()

(NullSyntFunc— (FNullSyntFunc ))(Sb— ((ID—an )(FAtr )IN-spokesman ))((0-1))

(NullSyntFunc— (FNullSyntFunc ))(Pred— ((FObj )(I,—, )(FSb )IV-say ))((0-2)(0-1))

(ACT— (IN—poptavka ))(NullSyntFunc— (FNullSyntFunc ))()

(ACT —(IN—poptavka ))(Sb— (IN-demand ))()

(ACT— (IN—poptavka ))(AuxV— (IV-have ))()

(ACT— (IN—poptavka ))(Atr— (IV-be ))()

(ACT— (IN—poptavka ))(Adv— (IR—consistently ))()

(ACT—(FACT ))(Pred—((FObj )(I,—, )(FSb )IV—say ))((0-2)(1-1))

(THL— (ID-trvale ))(NullSyntFunc— (FNullSyntFunc ))()

(THL— (ID—trvale ))(Sb— (IN—demand ))()

(THL —(ID—trvale ))(AuxV — (IV-have))()

(THL— (ID—trvale ))(Atr— (IV=be ))()

(THL— (ID—trvale ))(Adv— (IR—consistently ))()

(THL— (ID—trvale ))(Atr— (ID—the ))()

(RSTR— (IA—prospotiebitelsky ))(Atr— (IV-be ))()

(RSTR— (IA—prospotiebitelsky ))(Adv— (IR—consistently ))()

(RSTR— (IA—prospotiebitelsky ))(Atr— (ID-the ))()

(RSTR— (IA—prospotrebitelsky ))(Atr — (IN-pro-consumption ))()

(RSTR— (IA—prospotiebitelsky ))(Atr— (IN—government ))()

(RSTR— (IA—prospotiebitelsky ))(Atr— ((IN—pro-consumption )(FAtr )IN—policy ))((0-1))
(RSTR—(FRSTR ))(AuxP— (ll-of ((FAtr )(FAtr )IN—policy )))((0-2)(1-1))

(RSTR—(IA-vladni ))(Adv— (IR—consistently ))()

(RSTR— (IA-vladni ))(Atr— (ID-the ))()

(RSTR— (IA—vladni ))(Atr— (IN—pro-consumption ))()

(RSTR— (IA-vl adni))(Atr —(IN—government ))()

(RSTR— (IA—vladni ))(Atr— ((FAtr )(IN-government )IN—policy ))((0-1))

(RSTR—(FRSTR ))(AuxP— (ll-of ((FAtr )(FAtr )IN—policy )))((0-1)(1-2))

(RSTR—(FRSTR ))(Adv— ((ID-the )IN—encouragement (FAuxP )))((1-1))

(APP— ((IA—prospotfebitelsky )(FRSTR )IN—politika ))(Atr— (IN—pro-consumption ))((1-0))
(APP—((FRSTR )(IA-vladni )IN—politika ))(Atr— (IN—government ))((1-0))

(APP— ((FRSTR )(IA—vladni )IN—politika ))(Atr— ((FAtr )(IN—government )IN—policy ))((1-1))
(APP—((FRSTR )(FRSTR )IN—politika ))(AuxP — (II—-of ((FAtr )(FAtr )IN—policy )))((2-2)(1-1))

(APP— (FAPP ))(Adv— ((ID-the )IN—encouragement (FAuxP )))((1-1))

(APP— (FAPP ))(AuxP— (ll—under ((FAtr )IN—encouragement (FAuxP ))))((0-1)(1-2))

(COND— (IN—podpora ((FRSTR )(FRSTR )IN—politika )))(Atr— (FAtr ))((2-1)(1-0))

(COND— (IN—podpora ((FRSTR )(FRSTR )IN—politika ))) (Atr— ((FAtr )(FAtr )IN—policy ))((2-2)(1-1))
(COND— (IN—podpora ((FRSTR )(FRSTR )IN—politika )))(AuxP— (Il—of ((FAtr )(FAtr )IN—policy )))((2-2)(1-1))
(COND— (IN—podpora (FAPP )))(Adv— ((ID-the )IN—encouragement (FAuxP )))((1-1))

(COND— (FCOND ))(AuxP— (ll-~under (FAdVv )))((1-1))

(COND— (IN—podpora (FAPP )))(Obj— ((FSb )(IV-have )(FAtr )IV-grow (FAdv )(FAuxP )))((0-3)(0-2)(0-1)(1-
4))

(COND— (IN—podpora ((FRSTR )(FRSTR )IN—politika ))) (AuxX—(l,—, ))((2-0)(1-0))

(COND— (IN—podpora ((FRSTR )(FRSTR )IN—politika )))(Atr— (ID—an ))((2-0)(1-0))

(PAT — ((IN—poptavka )(FTHL )IV-stoupat (FCOND )))(Atr— (FAtr ))((2-1)(1-0))

(PAT— ((IN—poptavka )(FTHL )IV-stoupat (FCOND )))(AuxP— (ll-of (FAtr )))((2-1)(1-0))

(PAT — ((FACT )(ID—trvale )IV-stoupat (FCOND )))(Adv— ((ID-the )IN—encouragement (FAuxP )))((2-1)(1-0))
(PAT—((FACT )(ID-trvale )IV-stoupat (FCOND )))(AuxP— (ll-under ((FAtr )IN—encouragement (FAuxP
N((2-2)(1-1))

(PAT —((FACT )(FTHL )IV-stoupat (FCOND )))(Obj — ((FSb )(FAuxV )(IV-be )IV—grow (FAdv )(FAuxP )))((0-
3)(3-4)(2-2)(1-1))

(PAT— ((IN—poptavka )(FTHL )IV-stoupat (FCOND )))(AuxX—(l,—, ))((2-0)(1-0))

(PAT— ((IN—poptavka )(FTHL )IV-stoupat (FCOND )))(Atr— (ID—an ))((2-0)(1-0))

(PAT— ((IN—poptavka )(FTHL )IV-stoupat (FCOND )))(Atr— (IN—association ))((2-0)(1-0))

(PAT— (IN—-asociace ))(Obj— ((IN-demand )(FAuxV )(FAtr )IV—grow (FAdv )(FAuxP )))((0-4)(0-3)(0-2)(0-1))
(PAT— (IN—asociace ))(AuxX—(l,—, ))()

(PAT— (IN—asociace ))(Atr—(ID-an))()

(PAT —(IN—-asociace ))(Atr— (IN—association ))()

(PAT — (IN—asociace ))(Sb—((FAtr )(IN-association )IN-spokesman ))((0-1))

(PAT — (FPAT ))(Pred—((FObj )(I,—, )(FSb )IV=say ))((0-1)(1-2))

(ACT— (IN-mluvé&i (IN-asociace )))(NullSyntFunc— (FNullSyntFunc ))()

(ACT— (IN-mluv€i (IN-asociace )))(AuxX—(1,—, ))()

(ACT— (IN-mluvei (IN-asociace )))(Atr—(ID-an ))()

(ACT— (IN-mluvei (IN-asociace )))(Atr— (IN—association ))()

(ACT — (IN-mluv &i (FPAT )))(Sb— ((ID—an )(FAtr )IN—spokesman ))((1-1))

(ACT—(FACT ))(Pred— ((FObj )(I,—, )(FSb )IV=say ))((0-1)(1-2))

(PRED— (((FACT )(FTHL )IV—stoupat (FCOND ))IV-fici (FACT )))(NullSyntFunc— (FNullSyntFunc ))((4-0)(3-
0)(2-0)(1-0))

(PRED— ((FPAT )IV-fici (IN-mluv¢i (FPAT ))))(Sb— (FSb ))((2-0)(1-1))

(PRED— (((FACT )(FTHL )IV=stoupat (FCOND ))IV=Fici (FACT )))(AuxX— (FAuxX ))((4-0)(3-0)(2-0)(1-1))
(PRED— (((FACT )(FTHL )IV—stoupat (FCOND ))IV-fici (FACT )))(Atr— (FAtr ))((4-0)(3-0)(2-0)(1-1))
(PRED— (((FACT )(FTHL )IV—stoupat (FCOND ))IV-fici (FACT )))(Atr— (FAtr ))((4-0)(3-0)(2-0)(1-1))
(PRED— ((FPAT )IV=Fici (IN-mluv¢i (FPAT ))))(Sb— ((FAtr )(FAtr )IN-spokesman ))((2-2)(1-1))

(PRED— ((FPAT )IV—fici (FACT )))(Pred — ((FObj )(I,—, )(FSb )IV=say ))((2-2)(1-1))

Table A.3: Computational chart with Viterbi probabilitidsr sentence pair
“Poptavka trvale stou@ za podpory prospétbitelstée viadn politiky, ekl mlui
asociace.”and“Demand has been growing consistently under the encouragém
of pro-consumption government policies, an associati@kepman said.”
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A.3 Tree-to-Tree Alignment between Analytical
Representations of Czech and English

Results of the automatic alignment between Czech and Enghalytical trees

are presented here. The tree structures are results of @maiit annotation pro-

cedures, thus may contain errors. For each sentence pairgbentation contains
the original tree pair, the Viterbi alignment and the conagionhal chart.

128 170
VXSFici V-say
Pred Pred
9 h 12| 13| 16/
V3Sstoup N1SmluvEi V-grow = N-spokesman
Obj S| Obj AuxX Sh
1 2./ 7\. @ 10 1@ 2 3./ 4\.11 14§ 15
N1Spo|D-trvale R-za-1 zZ-, N2Sasociace N-denV-havV-be R-consi I-under CN-association
Sbh Adv AuxP AuxX Atr Sh AuxV Atr Adv AuxP Atr Atr
6 10|
N2Spodpora N—-encouragement
Adv Adv
5 5/ 9\.
N2Spolitika D-the |—of
Atr Atr AuxP
3 4 8
A2Sprosp A2Svladn®y N-policy
Atr - Atr Atr
6 7
N-pro-(N—government
Atr - Atr

Figure A.7: A tree pair for Czech senterféesociace uvedlaze dormaci poptvka
v zafi stoupla o 8,8 %.” and English sentenc&’he association said domestic
demand grew 8.8% in September”
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Pred Pred
12 100
VXWuvést V-say

_Ze\ e Sb Obj
O/ 10
AuxX Adv
Adv Obj
°@
VXWstoupnout V-grow
NlSpoptavka AuxP e N-demand Adv AuxP
J x 3
Atr AuxP Atr
AuxX NullSyntFunc
2@ 0@
Z-, NullSyntFunc
Sh Sb
1@ 2
N1Sasociace N-association
1
D-the
AuxP AuxP
5@ 8@
R-v-1 I-in
4 7
N6Szari N-September
Atr Atr
el J @
Al1Sdomaci J-domestic
AuxP Adv
@ @
R-o0-1 N-%
8 5
C-8,8 Cc-8.8
7
AuxG

AuxG NullSyntFunc
® 0@
Z-& perctNullSyntFunc

Figure A.8: Viterbi alignment of little trees for sentencaird’Asociace uvedla,

A

Ze dormad poptavka v afi stoupla o 8,8 %."and“The association said domestic
demand grew 8.8% in September”
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0 1 -6.947 -21.671 -9.43 (NullSyntFunc— (FNullSyntFunc ))(Atr— (ID-the ))()

0 2 -8.301 -23.347 -10.787 (NullSyntFunc— (FNullSyntFunc ))(Sb—((ID-the )IN—-association ))()

0 8 -7.627 -21.597 -10.112 (NullSyntFunc— (FNullSyntFunc ))(AuxP— (ll—in (IN-September )))()

0 9 -31.390 -37.38 -41.02 (NullSyntFunc— (FNullSyntFunc ))(Obj— ((FSb )IV-grow ((FAtr )IN-% )(FAuxP )))((0-3)(0-2)(0-1))

0 10 -42.3 -51.668 -53.329 (NullSyntFunc— (FNullSyntFunc ))(Pred— ((FSb )IV—say ((FSb )IV-grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-
2)(0-1))

1 0 -7.137 -21.850 -9.440 (Sb—(IN1Sasociace ))(NullSyntFunc— (FNullSyntFunc ))()

1 1 -9.793 -19.725 -9.793 (Sb— (IN1Sasociace ))(Atr— (ID-the ))()

1 2 -2.266 -19.743 -2.2663 (Sb—(IN1Sasociace ))(Sb-((ID-the )IN-association ))()

1 3 -10.815 -55.79 -10.815 (Sb—(IN1Sasociace ))(Atr— (IJ-domestic ))()

1 4 -10.814 -44.97 -10.814 (Sb—(IN1Sasociace ))(Sb— ((IJ-domestic )IN-demand ))()

1 5 -10.815 -53.73 -10.815 (Sb— (IN1Sasociace ))(Atr— (IC-8.8))()

1 6 -10.81 -42.921  -10.814 (Sb— (IN1Sasociace ))(Adv— ((1IC-8.8 )IN-% ))()

1 7 -10.816 -54.8 -10.816 (Sb—(IN1Sasociace ))(Adv— (IN-September ))()

1 8 -10.814 -44.04 -10.814 (Sb—(IN1Sasociace ))(AuxP— (ll-in (IN-September )))()

1 9 -39.04 -37.644  -41.02 (Sb— (IN1Sasociace ))(Obj— ((FSb )IV—grow ((FAtr )IN=% )(FAuxP )))((0-3)(0-2)(0-1))

1 10  -44.806 -49.99 -44.80 (Sb— (FSb ))(Pred— ((FSb )IV=say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-4)(0-3)(0-2)(1-1))

2 0 -6.906 -15.12 -9.209 (AuxX —(1Z—, ))(NullSyntFunc — (FNullSyntFunc))()

2 1 -9.207 -19.974 -9.207 (AuxX—(1Z—, ))(Atr—(ID-the ))()

2 2 -10.76 -19.99 -10.768 (AuxX—(1Z—, ))(Sb—((ID-the )IN—association ))()

3 0 -7.382 -25.28 -9.685 (Atr— (IA1Sdomaci ))(NullSyntFunc— (FNullSyntFunc ))()

3 1 -9.513 -53.59 -9.513 (Atr— (IA1Sdomaci ))(Atr— (ID-the ))()

3 2 -10.805 -42.86 -10.805 (Atr— (IA1Sdomaci ))(Sb—s ((ID-the )IN—association ))()

3 3 -0.3364 -21.768 -0.3364 (Atr — (IA1Sdomaci ))(Atr — (IJ-domestic ))()

3 4 -1.6303 -22.764 -1.630 (Atr— (IA1Sdomaci ))(Sb— ((IJ-domestic )IN-demand ))()

3 5 -9.513 -32.75 -9.513 (Atr— (IA1Sdomaci ))(Atr—(1C-8.8))()

3 6 -10.489 -30.60 -10.490 (Atr— (IA1Sdomaci ))(Adv— ((IC—8.8 )IN-% ))()

3 7 -10.815 -30.802  -10.815 (Atr— (IA1Sdomaci ))(Adv— (IN-September ))()

5 3 -9.438 -23.028  -9.439 (AuxP — (IR-v-1 (IN6SZzafi )))(Atr— (IJ-domestic ))()

5 4 -9.51 -31.475 -9.514 (AuxP — (IR-v-1 (IN6Szafi )))(Sb— ((I3-domestic )IN-demand ))()

5 5 -9.448 -33.374  -9.448 (AuxP— (IR-v-1 (IN6SZaFi )))(Atr— (1C-8.8))()

5 6 -10.80 -30.085  -10.810 (AuxP — (IR-v-1 (IN6SZzafi )))(Adv— ((IC-8.8 )IN-% ))()

5 7 -1.615 -24.2 -1.6155 (AuxP— (IR-v-1 (IN6SZzaFi )))(Adv— (IN-September ))()

5 8 -1.071 -20.959  -1.1625 (AUXP— (IR—v-1 (IN6SZaFi )))(AuxP — (ll—in (IN-September )))()

5 9 -22.171 -40.82 -25.398 (AuxP — (IR—v-1 (FAtr )))(Obj— ((FSb )IV=grow (FAdv )(Il-in (FAdv ))))((0-2)(0-1)(1-3))

5 10 -38.81 -51.644 -44.37 (AuxP— (FAuxP ))(Pred—((FSb )IV—say ((FSb )IV—-grow (FAdv )(FAuxP ))))((0-3)(0-2)(0-1)(1-4))

6 8 -10.595 -21.557 -11.98 (Sb—((IA1Sdomaci )IN1Spoptavka (FAuxP )))(AuxP— (FAuxP ))((1-1))

6 9 -11.71 -30.044 -14.13 (Sb—((FAtr )IN1Spoptavka (FAuxP )))(Obj— (((FAtr )IN-demand )IV-grow (FAdv )(FAuxP )))((0-1)(2-2)(1-3))

6 10 -29.66 -40.86 -34.38 (Sb—(FSb ))(Pred— (((FAtr )IN—association )IV-say (FObj )))((0-2)(1-1))

7 0 -6.906 -15.275 -9.209 (AuxG — (1Z-& percnt; ))(NullSyntFunc — (FNullSyntFunc))()

7 1 -9.430 -42.781 -9.431 (AuxG— (1Z-& percnt; ))(Atr— (ID-the ))()

7 2 -10.813 -43.45 -10.814 (AuxG— (1Z-& percnt; ))(Sb— ((ID-the )IN—association ))()

7 3 -9.207 -34.24 -9.207 (AuxG— (1Z-& percnt; ))(Atr— (1J-domestic ))()

7 4 -10.813 -35.17 -10.814 (AuxG — (1Z-& percnt; ))(Sb— ((I3-domestic )IN—-demand ))()

7 5 -9.430 -24.50 -9.431 (AuxG — (1Z-& percnt; ))(Atr— (1C-8.8))()

7 6 -0.01035  -24.54 -0.010485  (AuxG— (IZ—& percnt; ))(Adv— ((1IC—8.8 )IN-% ))()

9 5 -8.373 -17.002  -10.730 (AuxP— (IR-0-1 (IC-8,8 (FAUXG ))))(Atr— (IC-8.8))((1-0))

9 6 -8.316 -13.727  -10.797 (AuxP— (IR-0-1 (IC-8,8 (FAUXG ))))(Adv— ((IC-8.8 )IN-% ))((1-0))

9 7 -17.50 -25.54 -20.02 (AuxP— (IR-0-1 (IC-8,8 (FAUXG ))))(Adv— (IN-September ))((1-0))

9 8 -17.447 -22.99 -20.019 (AuxP — (IR—0-1 (IC—8,8 (FAUXG ))))(AuxP— (ll-in (IN-September )))((1-0))

9 9 -20.27 -35.26 -25.632 (AuxP — (IR—0-1 (IC—8,8 (FAUXG ))))(Obj— (((FAtr )IN—demand )IV—grow (FAdv )(FAuxP )))((0-3)(0-2)(1-1))

9 10  -30.854 -43.897  -37.78 (AuxP — (IR—0-1 (IC-8,8 (FAUXG ))))(Pred— ((FSb )IV=say ((FSb )IV—grow (FAdv )(FAuxP ))))((0-4)(0-2)(0-
1)(1-3))

10 5 -26.765 -29.817 -31.374 (Adv— ((FSb )IVXWstoupnout (IR—0-1 (FAdV ))))(Atr— (FAtr ))((2-1)(1-0))

10 6 -26.253 -21.008 -31.371 (Adv—((FSb )IVXWstoupnout (IR—o-1 (FAdV ))))(Adv— ((FAtr )IN-% ))((2-1)(1-0))

10 7 -31.66 -30.116 -34.060 (Adv— ((FSb )IVXWstoupnout (IR—0-1 (FAdV ))))(Adv— (FAdv ))((2-0)(1-1))

10 8 -29.746 -22.2 -33.607 (Adv— ((FSb )IVXWstoupnout (IR—0-1 (FAdV ))))(AuxP— (FAuxP ))((2-0)(1-1))

10 9 -11.283 -10.72 -13.954 (Adv— (((FAtr )IN1Spoptavka (FAuxP ))IVXWstoupnout (FAuxP )))(Obj — (((FAtr )IN-demand )IV—grow
(FAdv )(FAuxP )))((3-2)(2-3)(1-1))

10 10 -23.070 -21.59 -27.956 (Adv— (((FAtr )IN1Spoptavka (FAuxP ))IVXWstoupnout (FAuxP )))(Pred— ((FSb )IV-say ((FSb )IV-grow
(FAdv )(FAuxP ))))((0-1)(3-4)(2-2)(1-3))

11 0 -40.962 -28.130 -52.48 (AuxC—((1Z—, )13-ze (FAdv )))(NullSyntFunc— (FNullSyntFunc ))((1-0))

1 1 -36.577 -32.65 -45.80 (AuXC —((1Z—, )IJ-ze (FAdv )))(Atr— (ID-the ))((1-0))

1 2 -36.577 -25.866  -45.80 (AuxC—((1Z—, )IJ-Ze (FAdv )))(Sb— ((ID-the )IN-association ))((1-0))

11 3 -38.62 -30.12 -43.311 (AUXC —((1Z—, )IJ-2ze (FAdv )))(Atr— (FAtr ))((1-1))

12 6 -46.14 -35.05 -51.53 (Pred— ((IN1Sasociace )IVXWuvést (FAuxC )))(Adv— (FAdv ))((1-1))

12 7 -51.013 -44.80 -54.222 (Pred— ((IN1Sasociace )IVXWuvést (FAUXC )))(Adv— (FAdv ))((1-1))

12 8 -49.851 -35.75 -54.21 (Pred—((IN1Sasociace )IVXWuvést (FAuxC )))(AuxP— (ll-in (FAdv )))((1-1))

12 9 -32.53 417535  -35.23 (Pred— ((IN1Sasociace )IVXWuvést (FAUXC )))(Obj— (FObj ))((1-1))

12 10 -22.007 0.0 -27.005 (Pred—((FSb )IVXWuv ést ((FAuxX )IJ-ze (FAdv ))))(Pred— ((FSb )IV-say (FObj )))((3-2)(2-0)(1-1))

Table A.4: Computational chart with Viterbi probabilititess sentence paitAso-

ciace uvedlaze domad poptavka v afi stoupla o 8,8 %.”and“The association
said domestic demand grew 8.8% in September”
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VXStici
Pred

11

9
V3Sstoup: N1Smluvei
Obj Sh,
/ \ ° L

1 2 7 8
N1SpoD-trvale R-za-1 Z-, N2Sasociace
Sb Adv AuxP AuxX Atr

6
N2Spodpora
Adv

5
N2$pohlika
Atr

3@ 4
A2Sprosp A2Svladnly
Atr  Atr

113

178

\(—say
Pred
12) 13 16/

V-grow — N-spokesman

Obj AuxX Sb
1@ 2 3./ kll 14@ 15|

N-denV-havV-be R-consil-under CN-association
Sb AuxV Atr Adv AuxP Atr  Atr

10|
N-encouragement

Adv
5 9
D-the I—of
Atr AuxP
8
N-policy
Atr
6! 7
N-—pro-(N-government
Atr Atr

Figure A.9: A tree pair for Czech sentent®optavka trvale stoug@ za pod-
pory prospotebitelsie viadn politiky, fekl mluvi asociace.” and English sen-
tence"Demand has been growing consistently under the encouragéwf pro-
consumption government policies, an association spokesaid.”
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Obj
Sb Sh
11 16
N1Smluvei N-spokesman
10 14 ) 15
Atr D-an Atr
Obj Obj
o 120
V3Sstoup: V-grow
3 7 15203 4011
Sb Adv AuxP AuxX Sb AuxV V-be Adv AuxP
Atr Atr
109 15@
N2Sasociace N-association
AuxX AuxV
@ 2@
Z-, V-have
AuxP AuxP
7 1@
R-za-1 I-under
6 10|
N2Spodpora N-encouragement
5 5 9
Atr Atr AuxP
Adv Adv
2@
D-trvale R—consistently
Sh Sh
1@ 1@
N1Spoptavka N-demand
NullSyntFunc Atr
@ 5
NullSyntFunc D-the
Atr AuxP
5@ Q@
N2Spolitika |—of
340 8
Atr  Atr N—policy
6 7
Atr  Atr
Atr Atr
“@ '@
A2Svladni N-government
Atr Atr
3@ @
A2Sprospotiebitelsky N-pro-consumption

Figure A.10: Viterbi alignment of little trees for senterngair “Poptavka trvale
stoup za podpory prospéebitelsie viadn politiky, fekl mlu\i asociace.” and
English sentencEDemand has been growing consistently under the encourage-
ment of pro-consumption government policies, an assotigpokesman said.”
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3

n.om\:msom\:mmAmm\lmmbw\lmmbwmwl\n—\o»—-\lmmbwr\n-

NNSNNNOOOUOOUOORABRRARDRMRARNWWWWWWWNNNNNNRPRPPOOOOOOOO

10
11
12
8
9
10
11
12
7 13
7 17
8 0
8 1
8 2
8 3
8 4
8 5
8 6
9 10
9 11
9 12
9 13
9 14
9 15
10 12
10 13
10 14
10 15
10 16
10 17
11 0
11 13
11 14
11 15
11 16
11 17
12 0
12 1
12 14
12 15
12 16
12 17

-6.732
-6.947
-6.947
-6.724
-6.947
-6.848
-6.848
-93.3
-6.607
-1.7701
-9.916
-10.815
-9.45
-10.816
-9.207
-10.816
-3.2746
-10.81
-9.51
-10.815
-9.51
-0.3073
-9.513
-9.599
-19.06
-10.815
-9.513
-5.30
-0.7889
-9.838
-19.258
-28.47
-8.388
-8.876
-0.8113
-2.856
-13.671
-21.448
-53.78
-11.476
-10.324
-12.96
-19.089
-50.06

-24.891
-76.89
-6.376
-9.439
-9.225
-9.430
-9.265
-9.20
-9.43
-32.04

-33.79
-37.704

-37.08
-42.62
-44.636
-69.47
-9.433
-9.513
-1.727
-10.071
-90.28
-7.978
-10.119
-10.790
-3.0090
-3.5656
-82.
-56.15

-53.83
-57.76

-53.92

-45.031
-43.29

-43.78
-37.10
-36.863
-37.200
-35.78
-42.92
-42.434
-58.88
-47.39
-41.20
-41.30
-41.09
-35.19
-35.17
-35.31
-60.683
-74.58
-74.58
-74.11
-74.37
-53.20
-42.239
-46.61
-50.45
-44.325
-74.37
-52.96
-48.53
-41.758
-50.42
-44.32
-43.814
-56.6
-53.94
-48.05
-40.37
-33.55
-34.901
-29.839
-49.34
-41.43
-31.631
-24.119
-19.02

-69.21
-38.01
-41.70
-41.725
-35.24
-35.19
-35.38
-60.673
-74.68
-43.691

-35.51

-5.595

-71.93
-77.43
-80.93
-44.6
-52.62
-41.541
-41.583
-39.7
-52.73
-54.73
-53.28
-50.48
-50.49
-39.73
-51.80
-93.21

-87.91
-89.46

-89.47

-78.71
0.0

-9.217
-9.432
-9.4
-9.209
-9.43
-9.333
-9.333
-119.38
-9.440
-1.7701
-9.916
-10.815
-9.45
-10.816
-9.207
-10.816
-3.2746
-10.816
-9.513
-10.815
-9.513
-0.3073
-9.513
-10.943
-20.458
-10.815
-9.513
-5.304
-0.788
-11.42
-20.940
-31.67
-11.125
-11.606
-1.5279
-2.8586
-13.67
-23.10
-61.78
-12.345
-11.269
-13.66
-21.803
-60.478

-31.069
-91.44
-9.209
-9.43
-9.225
-9.430
-9.266
-9.207
-9.430
-40.466

-40.23

-44.97

-51.839
-65.77
-60.39
-88.40
-9.433
-9.513
-1.7273
-12.462
-111.69
-10.812
-10.1
-10.793
-3.0091
-3.578
-102.80
-80.81

-72.06
-76.03

-73.01

-59.340
-50.58

(NullSyntFunc— (FNullSyntFunc ))(Sb— (IN—demand ))()

(NullSyntFunc— (FNullSyntFunc ))(AuxV— (IV-have ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IV-be ))()

(NullSyntFunc— (FNullSyntFunc ))(Adv— (IR—consistently ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr — (ID-the ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IN—pro-consumption ))()

(NullSyntFunc— (FNullSyntFunc ))(Atr— (IN-government ))()

(NullSyntFunc— (FNullSyntFunc ))(Pred— ((FObj )(I,—, )(FSb )IV-=say ))((0-2)(0-1))

(Sb— (IN1Spoptavka ))(NullSyntFunc— (FNullSyntFunc ))()

(Sb—(IN1Spoptavka ))(Sb— (IN-demand ))()

(Sb— (IN1Spoptavka ))(AuxV— (IV-have ))()

(Sb— (IN1Spoptavka ))(Atr— (IV-be ))()

(Adv— (ID-trvale ))(AuxV— (IV-have ))()

(Adv— (ID-trvale ))(Atr—(IV-be ))()

(Adv— (ID-trvale ))(Adv — (IR—consistently ))()

(Adv— (ID-trvale ))(Atr— (ID-the ))()

(Adv— (ID—trvale ))(Atr— (IN—pro-consumption ))()

(Adv— (ID-trvale ))(Atr— (IN—government))()

(Atr— (IA2Sprospotiebitelsky ))(Atr— (IV=be ))()

(Atr— (IA2Sprospotrebitelsky ))(Adv— (IR—consistently ))()

(Atr— (IA2Sprospotiebitelsky ))(Atr— (ID-the ))()

(Atr — (IA2Sprospotrebitelsky ))(Atr — (IN—pro-consumption ))()

(Atr— (IA2Sprospotrebitelsky ))(Atr— (IN-government ))()

(Atr— (IA2Sprospotiebitelsky ))(Atr— ((IN—pro-consumption )(FAtr )IN—policy ))((0-1))

(Atr— (FAtr ))(AuxP — (I1-of ((FAtr )(FAtr )IN—policy )))((0-2)(1-1))

(Atr— (1A2Svladni ))(Adv— (IR—consistently ))()

(Atr— (IA2Svladni ))(Atr— (ID-the ))()

(Atr— (1A2Svladni ))(Atr— (IN-pro-consumption ))()

(Atr —(IA2Svladni ))(Atr — (IN—government ))()

(Atr—(IA2Svladni ))(Atr— ((FAtr )(IN—government )IN—policy ))((0-1))

(Atr— (FAtr ))(AuxP— (I1—of ((FAtr )(FAtr )IN—policy )))((0-1)(1-2))

(Atr— (FAtr ))(Adv— ((FAtr )IN—encouragement (Il-of (FAtr ))))((0-1)(1-2))

(Atr— ((FAtr )(IA2Svladni )IN2Spolitika )) (Atr— (FAtr ))((1-1))

(Atr—((IA2Sprospottebitelsky )(FAtr )IN2Spolitika ))(Atr— (FAtr ))((1-1))

(Atr—((FAtr )(IA2Svladni )IN2Spolitika ))(Atr— ((FAtr )(IN—government )IN—policy ))((1-1))

(Atr — ((FAtr )(FAtr )IN2Spolitika ))(AuxP — (l1-of ((FAtr )(FAtr )IN—policy )))((2-2)(1-1))

(Atr— (FAtr ))(Adv— ((ID-the )IN—encouragement (FAuxP )))((1-1))

(Atr— (FAtr ))(AuxP— (Il-under ((FAtr )IN—encouragement (FAuxP ))))((0-1)(1-2))

(Atr— (FAtr ))(Obj— ((FSb )(FAuxV )(IV-be )IV—grow (FAdv )(FAuxP )))((0-3)(0-2)(0-1)(1-4))

(AuxP— (IR-za-1 (IN2Spodpora (FAtr ))))(Atr— (FAtr ))((1-1))

(AuxP— (IR-za-1 (IN2Spodpora (FAtr ))))(AuxP — (ll—of (FAtr )))((1-1))

(AuxP—(IR-za-1 (IN2Spodpora (FAtr ))))(Adv— ((ID-the )IN—encouragement (FAuxP )))((1-1))
(AuxP— (IR-za-1 (IN2Spodpora (FAtr ))))(AuxP— (lI-under ((FAtr )IN—encouragement (FAuxP ))))((0-1)(1-2))
(AuxP—(IR-za-1 (FAdv )))(Obj— ((FSb )(FAuxV )(FAtr )IV—grow (FAdv )(ll-under (FAdv ))))((0-4)(0-3)(0-
2)(0-1)(1-5))

(AuxP—(IR-za-1 (IN2Spodpora (FAtr ))))(AuxX— (FAuxX))((1-1))

(AuxP— (FAuxP ))(Pred— ((FObj )(I,-, )(FSb )IV-say ))((0-2)(1-1))

(AuxX—(1Z—, ))(NullSyntFunc— (FNullSyntFunc ))()

(AuxX—(1Z—, ))(Sb— (IN-demand ))()

(AuxX —(1Z—, ))(AuxV — (IV-have))()

(AuxX—(1Z-, ))(Atr—(IV-be ))()

(AuxX— (12—, ))(Adv— (IR—consistently ))()

(AuxX—(1Z—, ))(Atr— (ID-the ))()

(AuxX— (1Z—-, ))(Atr— (IN—pro-consumption ))()

(Obj—((FSb )(FAdv )IV3Sstoupat (IR-za-1 (FAdv ))(FAuxX )))(Adv— ((FAtr )IN—encouragement (ll—of (FAtr
M)((4-2)(3-1)(2-0)(1-0))

(Obj—((FSb )(FAdv )IV3Sstoupat (IR-za-1 (FAdv ))(FAuxX )))(AuxP— (ll-under ((FAtr )IN—encouragement
(FAuxP ))))((4-2)(3-1)(2-0)(1-0))

(Obj —((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Obj— ((FSb )(FAuxV )(IV-be )IV-grow (FAdv )(FAuxP
N)((4-2)(3-4)(2-3)(1-1))

(Obj—((IN1Spoptavka )(FAdv )IV3Sstoupat (FAUxP )(FAuxX )))(AuxX— (FAuxX))((3-1)(2-0)(1-0))
(Obj—((IN1Spoptavka )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Atr— (FAtr ))((3-0)(2-1)(1-0))
(Obj—((IN1Spoptavka )(FAdv )IV3Sstoupat (FAuxP )(FAuxX )))(Atr— (FAtr ))((3-0)(2-1)(1-0))

(Atr— (IN2Sasociace ))(Obj— ((FSb )(FAuxV )(IV-be )IV—grow (FAdv )(FAuxP )))((0-4)(0-3)(0-2)(0-1))
(Atr— (IN2Sasociace ))(AuxX—(l,—,))()

(Atr— (IN2Sasociace ))(Atr— (ID-an ))()

(Atr —(IN2Sasociace ))(At— (IN—association ))()

(Atr—(IN2Sasociace ))(Sb— ((FAtr )(IN—association )IN—spokesman ))((0-1))

(Atr— (FAtr ))(Pred— ((FObj )(I,—, )(FSb )IV=say ))((0-1)(1-2))

(Sb—(IN1Smluvci (IN2Sasociace )))(NullSyntFunc— (FNullSyntFunc ))()

(Sb—(IN1Smluvci (IN2Sasociace )))(AuxX—(l,—,))()

(Sb—(IN1Smluvci (IN2Sasociace )))(Atr— (ID-an ))()

(Sb—(IN1Smluvci (IN2Sasociace )))(Atr— (IN—association ))()

(Sb—(IN1Smluvci (FAtr )))(Sb—((ID—an )(FAtr )IN-spokesman ))((1-1))

(Sb—(FSb ))(Pred— ((FObj )(I,—, )(FSb )IV=say ))((0-1)(1-2))

(Pred—(((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSFici (FSb )))(NullSyntFunc— (FNullSyntFunc
))((5-0)(4-0)(3-0)(2-0)(1-0))

(Pred— ((FObj )IVXStici (IN1Smluvci (FAtr ))))(Sb—(FSb ))((2-0)(1-1))

(Pred—(((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSFici (FSb )))(Atr— (FAtr ))((5-0)(4-1)(3-0)(2-0)(1-

0))
(Pred— (((FSb )(FAdv )IV3Sstoupat (FAuxP )(FAuxX ))IVXSFici (FSh )))(Atr— (FAtr ))((5-0)(4-0)(3-0)(2-0)(1-
1))

(Pred— ((FObj )IVXSFici (IN1SmIuvéi (FAtr ))))(Sb— ((FAtr )(FAtr )IN-spokesman ))((2-2)(1-1))
(Pred— ((FObj )IVXS fici (FSb )))(Pred—s ((FObj )(I,—, )(FSb )IV-say ))((2-2)(1-1))

Table A.5: Computational chart with Viterbi probabilitidsr sentence pair
“Poptavka trvale stou@ za podpory prospétbitelsté viadn politiky, Fekl mlui
asociace.” and English sentencbemand has been growing consistently un-
der the encouragement of pro-consumption governmentipslian association
spokesman said.”
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Appendix B

Implementation details

The framework for experiments with dependency tree stredbas been imple-
mented in Java and is available as a library. This appendfypsummarizes the
most important features of the framework.

B.1 A Java Framework for Tree Transformations

The Java framework supports operations with many typeseefstranalytical
tectogrammaticalphrase structures of Penn Treebaplkcked-tree representaion
of tectogrammatical tree€ollins’ trees, andCharniak’s treeg

B.1.1 Installation

The framework can be installed from the CVS located at UFAlth® current
directory...myDir  using:
...myDir>cvs -d/home/CVSROOT/cmejrek checkout CETGTran slation

And built using:
...myDir>cd CETGTranslation

...myDir/CETGTranslation>ant jar
The resulting jar is then created as:
...myDir/CETGTranslation/dist/ CETGTranslation.jar

B.1.2 Basic Tree Operations

Basic tree operations are: loading and serialization efstfeom and to thests
format, accessing child nodes, as well as iterations irouarbrderings, such as
prefix postfix breadth-first or depth-first This functionality is accessible through
theNodelnterface.java

!Resulting from the Collins’ parser
2Resulting from the Charniak’s parser.
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B.1.3 Implementation of PDT-Specific Trees

PDT-specific features are accessible through the followitegfaces.

Analytical Trees

The functionality specific to the analytical trees is acit#sshrough theARN-
odelnterface.javaThe interface enables manipulation with values speciftb¢o
analytical representation, such fmsm, lemma morphological tag afun word
order (r), word order of the parent nodg), etc.

Tectogrammatical Trees

The functionality specific to the tectogrammatical treeadsessible through the
TRNodelnterface.java he interface enables manipulation with tectogrammhtica
attributes, such aglemma functor, tectogrammatical morphoogical tagppic-
focus articulationdeep word orderetc.

Packed Tectogrammatical Trees

The functionality specific to the packed-tree represematised for transferring
tectogrammatical trees is accessible throughrtamsferNodelnterface.javd he
packed-tree representation anables to store variante dfebstructures.

B.2 Penn Treebank Trees

The functionality specific to Penn Treebank trees is acbksshroughWSJIN-
odelnterface.javaThe inteface enables manipulation with specific featuféisen
phrase-structure used in Penn Treebank, sudbras lemma WSJ POS tagor
nonterminal

B.2.1 Custom Tree-Convertors

Many convertors from various formats into PDT style of amtioh have been
implemented.

Penn Treebank to Analytical Trees

ClassWSJToATSTreeConverter.javaplements a convertor from the Penn Tree-
bank style of annotation into analytical trees.



B.2. Penn Treebank Trees 119

Integration of Charniak’s Parser

ClassConvertEugeneCharniakTreeTOCSTS,jawaverts the output format of the
Charniak’s parset o Czech into the analytical represeamtati

Integration of Collins’ Parser

ClassCollinsTreeToATSTreeConverter.jasanverts output format of the Collins’
parser for Czech into analytical representation.

B.2.2 DBMT system: Rule-based MT

The rule-based MT system described in Chapter 3 is implesddntclass
RANLPO3GenerationFromTGTTransfer.java

B.2.3 Implementation of Tree-to-Tree Transducer

The framework for STSG modeling has been implemented astlaengine.java
The engine can be run with the following parameters:

e -| CETGTPathPrefix
Prefix to the working directory, where all model files and otlerking file
will be stored.

e -properties propertyfile

o -f listof files
List of pairs of files with parallel trees. The files should taon the output
of thensgmlsparser run orcsts  trees.

e -| log file
The name of the main log file.

e -d debugLevel
Debug level of the mai logger.

e -L loggername logfile log level
Enables to define different files and levels of logging fofedént types of
logging. Known loggers ardatexLT for IATeXlogs of synchronous rules,
andmodelSimple for textual representation of the probabilistic model of
the STSG.

e -D dictionary
Probabilistic translation dictionary to be imported.
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-modelFN modelPrefix
Prefix of the model file.

-iteration iteration
Number of the current iteration.

-startFromSentence first. sentence
-sentences last.sentence

-countNonSynchronous
Turns on counting the non-synchronous rules.

-observeSynchronous
Turns on observing synchronous rules. This is the trainargy p

-createTrDict
Creates translation dictionary from the PDT links betwepalgical and
tectogrammatical nodes.

-bm backoffModel lambda
Sets) for the selected backoff model.

-sumlinsideProbs
Turns on computing the sum of inside probabilities (for ea#ihg different
A).

-saveNewModel
The resulting trained model will be saved.

-prepareGIZATrainingData
Prepares the parallel corpus of plain text for GIZA++ tragi

-generateLatex
Turns on additional logging of little trees iIn#®EX.y

-traceViterbi
Turns on tracing Viterbi alignments during the computatdmside prob-
abilities.
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