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Introduction

The problem of polar wander has a long history and has been studied mostly

with respect to the planet Earth (most cited monograph on this subject being

the work of Munk and MacDonald, 1960). The Earth has a very stable rotation,

with the true polar wander only 0.1◦ to 0.2◦ per million years1 and free wobble

causing the geographical poles to wander with radius of only about 10 meters

(e.g. Munk and MacDonald, 1960; Novotný, 1998).

For such a body, various approaches may be considered to solve the equations

governing the polar motion (the Liouville equations). We can classify them by

two criteria. Firstly by what version of the Liouville equations is employed -

either the linearized form, or the full, non-linear form. Secondly by the domain

in which the equations are solved - either directly in the time domain, or in the

Laplace domain.

Munk and MacDonald (1960) introduced the linearized Liouville equations

and used Love-number formalism to express inertia tensor components therein

appearing. The Liouville equations decouple into two: the so-called polar mo-

tion equation, governing the changes in direction of the rotation vector, and the

so-called LOD equation, governing the changes in its magnitude (and thus the

length of the day). On the right hand side appears the excitation function, which

represents various geophysical processes (e.g. winds, tides, melting of an icecap

...etc.) that cause the rotation vector to change. Munk and MacDonald (1960)

find it the principal task of the monograph to evaluate the excitation function

for certain processes and to find analytical solutions of the Liouville equations for

such functions. For zero excitation function, the polar motion equation gives the

free wobble (Chandler wobble) - circular motion of the geographical poles with a

period of around 430 days (for a rigid Earth it would be only about 305 days, the

difference given by elastic response of the Earth to the instaneous position of the

1True polar wander is measured from paleomagnetic data as motion of the paleomagnetic
reference frame relative to the hot-spot reference frame - e.g. Richards et al., 1997
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rotation vector). In more recent work, Martinec and Hagedoorn (2005) showed

that for certain processes - namely the postglacial rebound - the wobbling can

be removed from the solution of the polar motion equation by averaging over the

wobble period.

The Love numbers, used to describe rotational deformation of the Earth, are

traditionally computed in the Laplace domain using the normal modes technique

(Peltier, 1974; Wu and Peltier, 1982). Thus it is also convenient to seek the

solution of the Liouville equations in the Laplace domain. Wu and Peltier (1984)

solved the linearized Liouville equations in the Laplace domain, dropping its time

derivative terms to give rise to a theoretical discussion not to be clarified untill

Vermeersen and Sabadini (1996). This approximation filters the free wobble out

of the solution.

The Laplace transform approach provides an insight into the relevant time

scales of the problem. Ricard et al. (1993) used this advantage to develop an

approximation of the Liouville equations, which is suitable for studies of long-term

phenomena. They showed that for very slow processes (with typical time-scales

1-10 Ma) only few viscoelastic relaxation modes do not get completely relaxed

within a time step of change of the excitation function. The tidal and loading

Love numbers at play can thus be simplified with the use of their fluid limits.

For consistency with their approximation (referenced as quasi fluid behaviour -

by Lefftz, 1991) terms causing the free wobble are also neglected.

A short summary of the approaches mentioned above, namely the linearized

perturbation scheme by Munk and MacDonald (1960) and the method proposed

by Ricard et al. (1993) is given in Appendices A and B of this thesis. All of the

above mentioned techniques either make use of the linearized Liouville equations

(and thus are applicable only to bodies with high rotational stability) or use

the viscoelastic Love numbers, which are convenient only for simple models with

shperically symmetric viscosity structure. They also filter out the free wobble

and thus cannot explain its excitation or damping.
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The first task of this thesis is to develop a tool for computing rotational

deformation of an incompressible, viscoelastic, planet-sized body directly in the

time domain, allowing models with radially dependent density, viscosity and shear

modulus to be studied (with the possibility of considering a 3-D viscosity structure

in future). The second is to couple this computation with the the non-simplified

Liouville equations in order to predict changes in position and magnitude of the

rotation vector for chosen processes, even for bodies that do not have strong ro-

tational stability such as the Earth does2.

Chapter II focuses on the first step of this task. Spectral finite-difference

method is used to compute the deformation of a Maxwell viscoelastic body for

a prescribed position and magnitude of the rotation vector (i.e. for a given

centrifugal potential). The viscoelastic response is computed directly in the time

domain (e.g. Hanyk et al., 1996; Tobie et al., 2008). The desired output of this

computation is the inertia tensor (to be plugged into the Liouville equations), so

we only need to work with spherical harmonics of degree two, because the tensor

can be expressed as a combination of degree two coefficients of the gravitational

potential expansion using the MacCullagh formula3. The code is tested using the

isostatic compensation test. Long-term equatorial bulge is computed for three

models, including an Earth-like one. All the models used in the thesis have

viscoelastic mantle, fluid core and are spherically symmetric before deformation.

Chapter III deals with the non-linear Liouville equations. Basic numerical

methods are tested to solve the system of first order ordinary diferential equations.

Following integrators are tried: simple explicit Euler method, higher order explicit

Runge-Kutta and Bulirsch-Stoer methods, semi-implicit Rosenbrock and Bader-

Deuflhard methods. Since no approximation is made in the Liouville equation,

2”From geological and paleomagnetic observations, Runcorn (1984) and Shultz (1986) have
argued that the Moon and Mars, respectively, have changed their orientation with respect to
their axis of rotation. As a matter of fact, for example, some craters ar the Moon’s surface,
presently located near the pole, have some characteristics of elements placed in the past on the
lunar equator” - Lefftz et al., 1991

3Plus one additional piece of information is required, e.g. trace of the inertia tensor
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the free wobble is present in the solutions, appearing immidiately after a studied

process causes the principal axis of inertia to differ from the rotation axis. On

the one hand, this method allows to model the excitation and damping of the

free wobble. On the other hand, the set of equations become stiff4 and we are

forced to keep the time-step of integration just a small fraction of the free wobble

period. This problem remains no matter which numerical method is used, and

thus complicates computation of polar wander for complex models for processes

with time scales longer than 1 Ma.

One of the driving ideas behind this work is to find out whether current

computational capability does not prove the approximative methods redundant.

Solution of the non-linear Liouville equations gained by our simple approach,

which is to leave the equations as they are, should coincide with approximative

solutions for processes that fall within the application limits of the approximative

methods. It is shown in Chapter III that this is indeed the case. In addition,

excitation and changes of amplitude of the free wobble are present in the solution.

Also, the range of applicability of the method is broader than for the approxima-

tive methods.

In the first chapter, attention is shortly paid to the traditional derivation of

the Liouville equations. Then we develop an alternative derivation. Our approach

is based on evaluating the effect of fictious forces5, when the law of balance of

angular momentum is formulated in a non-inertial frame of reference. We hope

this derivation brings a new angle to understanding the equations and the various

approximations in which they are used. A separate section deals with choice of the

frame of reference, and thus also with the relative angular momentum, because

the Tisserand axes are chosen (i.e. zero relative angular momentum frame - Munk

and MacDonald, 1960).

4”stiffness occurs in a problem where there are two or more very different scales of the
independent variable on which the dependent variables are changing” - Press et al., 1986

5I.e. forces that act in a non-inertial reference frame, also called pseudo forces - e.g. Feyn-
man, 2006
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1. Governing equations

1.1 Traditional derivation of the Liouville equa-

tions

The standard way to derive the Liouville equations is to write the law of balance of

angular momentum in an inertial reference frame and then to transform all time

derivatives into a chosen, non-inertial frame of reference, which has rotational

motion relative to the inertial reference frame. The procedure is as follows (e.g.

Martinec, 2003):
(

d ~H

dt

)

inertial

= ~L, (1.1)

where ~H is the angular momentum of the body relative to some point and ~L is the

moment of external forces relative to that point. Next we use the Resal theorem

(e.g. Novotný, 1998) to transform the time derivative into a different reference

frame, which is moving relativly to the inertial reference frame, the rotational

part of their relative motion being described by ~ω

(

d ~H

dt

)

inertial

=

(

d ~H

dt

)

non−inertial

+ ~ω × ~H.

Together we get:
(

d ~H

dt

)

non−inertial

+ ~ω × ~H = ~L.

Next, the definition of angular momentum is used:

~H =

∫

~r ×
(

d~r

dt

)

inertial

ρ dv,
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where ρ stands for density and dv for volume element. The Resal theorem is

again applied:

~H =

∫

~r ×
[(

d~r

dt

)

non−inertial

+ (~ω × ~r)

]

ρ dv.

With help the of definition of the inertia tensor J =
∫

((~r · ~r)I − ~r ⊗ ~r)ρ dv we

get:

~H = J · ~ω +

∫

~r × ~vρ dv = J · ~ω + ~h,

where ~h, the relative angular momentum is simply the angular momentum mea-

sured in the chosen frame of reference. After plugging into (1.1), the Liouville

equation is obtained:

d

dt
(J · ~ω + ~h) + ~ω × (J · ~ω + ~h) = ~L

The physical meaning of ~ω1 is straightforward: The velocity of every point of our

chosen reference frame, when measured in the inertial reference frame, can be

expressed as ~v0 + ~ω × (~rp − ~r0) where ~v0 denotes the velocity of the origin of our

reference frame, ~r0 the position of its origin and ~rp the position of the point. The

origin of our reference frame is chosen to lie in the center of mass of the studied

body.

1.2 Alternative derivation of the Liouville equa-

tions

We developed an alternative derivation of the equations, that might provide

a somewhat different insight into the problem. The law of balance of angular

1~ω describes the relative motion of two reference frames and thus is not strictly a vector, for
its transformation properties are somewhat anomalous
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momentum is again formulated (e.g. Martinec, 2003):

d~h

dt
=

d

dt

∫

v(t)

~r × ~v ρ dv =

∮

s(t)

~r × ~t(~n) da+

∫

v(t)

~r × ~f ρ dv, (1.2)

but this time the law is applied directly in the chosen frame of reference (as the law

is valid in all frames of reference). In (1.2) v(t) denotes volume of the body, s(t) its

surface and ~t(~n) surface traction. In a non-inertial reference frame, however, the

so-called fictious forces have to be considered. The body forces appearing in the

second term on the right hand side of (1.2) can thus be separated into external

(e.g. gravitational force due to an external body), internal (e.g. gravitational

force due to the mass of the body itself) and fictious forces: ~f = ~fext + ~fint + ~ffic.

After denoting
∮

s(t)
~r × ~t(~n) da +

∫

v(t)
~r × ~fextρ dv = ~L, as the effect of external

body forces and boundary surface traction is clearly the momentum of external

forces, we get:

d~h

dt
= ~L+

∫

v(t)

~r × ~fint ρ dv +

∫

v(t)

~r × ~ffic ρ dv (1.3)

If only central internal forces (e.g. gravitational force) are considered, the term
∫

v(t)
~r × ~fintdv is equal to zero (e.g. Havránek, 2002). The complete list of fictious

forces is: −~ω× (~ω× ~r)− 2~ω× ~v − d~ω
dt

× ~r− d~v0

dt
− ~ω× ~v0, where ~v0 is the velocity

of the origin of the non-inertial referential frame relativ to the inertial reference

frame (e.g. Novotný, 1998). The last two forces are clearly homogeneous within

the body, and thus terms
∫

v(t)
~r × (−d~v0

dt
− ~ω × ~v0)ρ dv are equal to zero, if the

origin of the non-inertial reference frame lies in the center of mass of the body

(which is our case). We therefore have (besides ~L) contributions only from the

centrifugal, Corriolis and Euler forces on the right hand side of (1.3). To find

their role in the derivation, definition of the inertia tensor is recalled:

J =

∫

((~r · ~r)I − ~r ⊗ ~r) ρ dv

8



and Reynold’s transport theorem (e.g. Martinec, 2003) used to find its time

derivative:

dJ

dt
=

∫

v(t)

[

D

Dt
(~r · ~r) I − ~r ⊗ D~r

Dt
− D~r

Dt
⊗ ~r

]

ρ dv =

=

∫

v(t)

[2(~r · ~v)I− ~r ⊗ ~v − ~v ⊗ ~r] ρ dv.

Motivated by these expressions, we regroup the terms

−
∫

v(t)

~r × (~ω × (~ω × ~r)) ρ dv −
∫

v(t)

~r × (2~ω × ~v) ρ dv −
∫

v(t)

~r × (
d~ω

dt
× ~r) ρ dv

as follows2:

d~h

dt
= ~L−

∫

v(t)

[

d~ω

dt
r2 − ~r(

d~ω

dt
· ~r)
]

ρ dv+

+ ~ω ×
∫

v(t)

~r(~ω · ~r) ρ dv −
∫

v(t)

[~r(~ω · ~v) − ~v(~r · ~ω)] ρ dv−

−
∫

v(t)

[2~ω(~r · ~v) − ~r(~v · ~ω) − ~v(~r · ~ω)] ρ dv =

= ~L−
(
∫

v(t)

[

r2I − ~r ⊗ ~r
]

ρ dv

)

· d~ω
dt

+

+ ~ω ×
(∫

v(t)

~r ⊗ ~r ρ dv

)

· ~ω − ~ω ×
∫

~r × ~v ρ dv−

−
(
∫

v(t)

[2(~r · ~v)I − ~r ⊗ ~v − ~v ⊗ ~r] ρ dv

)

· ~ω =

= ~L− d

dt
(J · ~ω) − ~ω × (J · ~ω + ~h).

After moving all terms except ~L to the left hand side, the desired Liouville equa-

tion is obtained:

d

dt
(J · ~ω + ~h) + ~ω × (J · ~ω + ~h) = ~L.

This derivation might rise certain doubts about the approximation to be made

in the next chapter, which is to neglect of the Corriolis and Euler forces in the

2Using ~A × ( ~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B) and adding 0 = ~r(~ω · ~v) − ~r(~ω · ~v)
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equations of motion (while keeping only the centrifugal force). However, these

forces are neglected only in the equations of motion, which are solved only to

obtain the inertia tensor components. Further discussion of this approximation

follows at the end of the next section.

1.3 The relative angular momentum

The frame of reference has not been chosen yet. The origin of it was placed in

the centre of mass of the studied body, but additional information is necessary.

In most of the problems in physics, the additional information would be given by

prescribing the motion of the reference frame relative to some inertial reference

frame. However, in the problem of polar wander the motion of the reference frame

is what we seek, and thus a different information must be given.

The necessity to choose a reference frame is obvious. The role of the relative

angular momentum ~h and the rotation vector ~ω in doing so might not be. For

example, the full set of equations for a viscous body inserted into an external

homogeneous gravity field3 is valid in all CM (center of mass) frames, and thus

can be solved for any prescribed ~ω(t). The relative angular momentum ~h(t) is

then output of the solution. The other possibility is to prescribe ~h(t), ~ω(t) being

output of the solution, which is what we do.

In the thesis the so-called Tisserand axes are chosen, i.e. ~h(t) is set to zero at

all times (Munk and MacDonald, 1960). The same choice is made by Ricard et

al. (1993) - ~h is not present in the equation (1) therein. Tisserand axes are also

chosen by Martinec and Hegedoorn (2005).

Three miscellaneous remarks follow. (i) It can be shown (Martinec, 2003) that

if the displacement field ~u(~r, t) is expanded into spherical harmonics, the value

of ~h(t) is determined solely by the coefficients of degree one of the expansion,

3By ”full set” we mean the following equations:
∇ · τ + ρ~fint − ρ~ω × ~ω × ~r − ρ~ω × ~v − ρ~̇ω × ~r = ρ

(

∂~v
∂t

+ ~v · ∇~v
)

∂ρ
∂t

+ ∇ · (ρ~v) = 0
τ = −pI + η(∇~v + ∇T~v)
d
dt

(J · ~ω + ~h) + ~ω × (J · ~ω + ~h) = ~L

10



and not even all of them are needed. Only the toroidal part of the vector field

gives non-zero contribution. By explicitely setting these coefficients equal to zero

in every time step, we get ~h(t) = 0. However, if no terms were neglected in the

equations of motion and the equations were coupled with the Liouville equations,

with ~h(t) = 0 prescribed in the Liouville equations, our resultant displacement

field should have toroidal coefficients on degree one equal to zero automatically,

of course.

(ii) The alternative derivation of the Liouville equation brings into question

the validity of our approximation (to be made in the following chapter), consist-

ing of neglecting the Corriolis and Euler force in the equations of motion. In this

thesis we adopt the approach to solve the full Liouville equations and simulta-

neously to neglect the Coriolis and Euler force in the field equations of motion

(which are solved only to get the inertia tensor components), hoping the resultant

inertia tensor does not differ substantially from the one we would obtain had we

included them. This approach is commonly used in the current literature (e.g.

Ricard et al., 1993; Martinec et al., 2005)4.

(iii) An interesting result is gained if the Liouville equations are re-derived,

following the procedure outlined in the previous section, but the Coriolis and

Euler forces are omitted. For zero moment of external forces (i.e. ~L = 0) the

following result is obtained: d~h
dt

= −~ω × (J · ~ω). Setting ~h(t) = 0 in this equation

leads to −~ω × (J · ~ω) = 0. Surprisingly, this equation is also used to predict

the polar wander by some authors (e.g. Lefftz, 1991 - this rough approximation

being discussed in Ricard et al., 1993. How they reached this approximation is

described in Appendix B).

4No matter whether the linearized or non-linear Liouville equations are used - both are the
full Liouville equations in this context - meaning the equations are derived as if all three fictious
forces were present. What are non-full Liouville equations in this context is explained in the
third remark.
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1.4 Moment of external forces

The tool developed in this thesis is designed for studies of planet-sized bodies,

especially planets and moons which are spinning and orbiting some much heavier

body. Since the gravitational potential of the orbited body (and possibly other

external masses) is not homogeneous, torques of various frequencies influence

the studied body. These effects are not in the centre of our attention and are

neglected all through setting ~L = 0.

Among possible future applications of the developed tool is to determine the

position of a certain body relative to the fixed stars (or some planet). If no ex-

ternal torques were present, this would be straightforward to extract from the

solution of the polar wander problem. Since the angular momentum to be con-

served in the inertial reference frame lies very close the rotation axis, the rotation

axis gives us directly the desired position of the studied body (in the first approx-

imation). Short period forced nutations have small amplitudes and do not affect

this possibility. However, the long period precession does and would need to be

accounted for in such application, if present.

The final form of the Liouville equations to be solved in the thesis is

d

dt
(J · ~ω) + ~ω × (J · ~ω) = 0. (1.4)
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2. Rotational deformation

2.1 Governing equations

The response of a Maxwell-type viscoelastic, hydrostatically prestressed body to a

disturbing potential is traditionally modeled with the use of various viscoelastic

Love numbers (comprehensive summary e.g. by Wu and Peltier, 1982). Love

numbers denoted by k describe the relationship between the disturbing potential

and gravitational potential of the deformed body. They are usually computed

in the Laplace domain using the normal modes technique described by Peltier

(1974). Lagrangian approach1 is traditionally used to formulate the equations of

motion.

In this thesis the equations of motion are formulated using the Eulerian ap-

proach and they are solved directly in the time domain (to follow e.g. Tobie et

al., 2008). This approach is more convenient for complex models and leaves the

possibility of involving a 3-D viscosity structure open. We briefly go through all

the standard approximations traditionally made (neglected forces and geometrical

linearization). The equations of motion read:

∇ · τ + ~f = ρ(
∂~v

∂t
+ ~v · ∇~v).

Among the body forces is the gravitational force ρ~g, which can be written as

(ρ0(r) + δρ(r, θ, φ))(~g0(r) + δ~g(r, θ, φ)), where ρ0(r) and ~g0(r) describe the hy-

drostatically prestressed initial state. The Cauchy stress tensor can be written

as τ = −p0I − δpI + D, where p0 is again the pressure in the initial state and

D stands for the deviatoric part of the stress tensor. Since we work in a non-

inertial reference frame, the fictious forces need to be involved. The full set of

1On the Eulerian and Lagrangian approach to continuum mechanics see e.g. Martinec, 2003
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field equations of motion for the body is:

−∇p0 −∇δp+ ∇ ·D + ρ0~g0 + ρ0δ~g + δρ~g0 + δρδ~g − ρ~ω × ~ω × ~r − ρ~ω × ~v−

− ρ
d~ω

dt
× ~r − ρ

d~v0

dt
− ρ~ω × ~v0 + ρ~fext = ρ

(

∂~v

∂t
+ ~v · ∇~v

)

Terms −∇p0 +ρ0~g0 cancel out because such is the condition for the initial hydro-

static equilibrium. Terms −d~v0

dt
−~ω×~v0 are equal to the acceleration of the origin

of the chosen reference frame, and thus cancel out with ~fext - gravity caused by

an external body (around which our body is orbiting) and which is considered to

be homogeneous within the body. Right-hand side ρ
(

∂~v
∂t

+ ~v · ∇~v
)

is omitted be-

cause only slow processes are considered, a step standard in geophysics2. Forces

−ρ~ω × ~v − ρd~ω
dt

× ~r are also assumed to be negligible, the Coriolis force for the

same reason as the previous term. The inconsistency that lies behind neglecting

these terms is discussed in section 1.3. Within the framework of this thesis, where

free wobbling is involved, especially the neglection of the Euler force should be

revised in future analysis. Finally, the term δρδ~g is neglected for it is obviously

small compared to other terms, e.g. δρ~g0. After approximations we get:

−∇δp+ ∇ ·D + ρ0δ~g + δρ~g0 − ρ~ω × ~ω × ~r = 0.

Our body is assumed to behave like a Maxwell-type viscoelastic mantle and fluid

core. For simplicity, we assume the body to be incompressible. In such case,

the density anomaly δρ(~r, t) can be evaluated via δρ(~r, t) := ρ(~r, t) − ρ0(r) =

ρ0(|~r − ~u(~r, t)|, t) − ρ0(r) = −~u(~r, t) · ∇ρ0(r) + O(u2). The O(u2) terms are ne-

glected in the Taylor series expansion due to geometrical linearization (only small

deformations are studied, with deformation gradient small compared to unity).

The centrifugal force can be expressed using the centrifugal potential ϕ =

2But quite disputable in the context of time scales of processes studied in the thesis - namely
the free wobble
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−1
2
ρ(ω2r2 − (~ω · ~r)2), where ρ(~r, t) can be replaced by ρ0(~r) due to geometri-

cal linearization, neglecting −1
2
δρ(ω2r2 − (~ω · ~r)2), which is small compared to

−1
2
ρ0(ω

2r2 − (~ω · ~r)2).

Similarily, the potential Φ is introduced to express the self-gravity term ρ0δ~g.

The potential is defined as the solution to the Poisson equation ∇2Φ = 4πGδρ.

Final form of the equations to be solved is:

−∇δp + ∇ · D − (~u · ∇ρ0)~g0 − ρ0∇Φ − ρ0∇ϕ = 0.3

In this thesis we restrain to the study of a body with viscoelastic mantle and

fluid core. Maxwell-type viscoelasticity is simple to implement and yields both ef-

fects of crucial importance in the presented study: the instaneous elastic response

as well as the t → ∞ fluid limit. The amplitude of the instaneous response de-

termines the period of the free wobble and the relaxation time necessary to reach

the fluid limit is determining factor in the process of readjustment of the long-

term equatorial bulge, as shown in the next chapter. The Maxwell viscoelastic

rheology for an incompressible body may be written (e.g. Tobie et al., 2008):

D − µ(∇~u+ (∇~u)T ) = −µ
η

∫ t

0

Ddt′.

Since the viscosity is on the right hand side of the equation, which is numerically

computed from the previous time-step, it is possible to work with lateral variations

of viscosity. This reason is the motivation to solve the equations directly in the

time domain (e.g. Hanyk et al., 1996). The set of equations to be solved is thus

3The equation can be compared to the one traditionally solved (e.g. Wu and Peltier, 1982;
Legros and Lefftz, 1993), which is derived using the Lagrangian description of field quantities.
Transformed into our notation, the equations read: −∇δp+∇·D−(~u ·∇ρ0)~g0−ρ0∇Φ+∇(ρ0~u ·
~g0) = 0. The centrifugal potential, assumed to be constant, is included in the initial state here.
The only difference between the equations is thus the term ∇(ρ0~u · ~g0). Also formulation of
free surface boundary condition is different in Lagrangian formulation: τ rr = τ rθ = 0 instead
of τ · ~er = urρ0~g0. These two differences should cancel out to yield the same results in both
formulations.
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the following:

−∇δp+ ∇ · D − (~u · ∇ρ0)~g0 − ρ0∇Φ − ρ0∇ϕ = 0 (2.1)

∇ · ~u = 0 (2.2)

D − µ(∇~u+ (∇~u)T ) = −µ
η

∫ t

0

Ddt′ . (2.3)

The region of space selected to solve these field equations is a perfect spherical

shell of outer radius a. Thus we need to account for the effects of surface and

core-mantle topographies through boundary conditions. On the outer surface,

zero tangential component of traction is prescribed and the radial component is

set to equal out the pressure of surface topography:

(−δpI + D) · ~er = urρ0~g0
45 (2.4)

The situation is more complicated on the core-mantle boundary, for the fluid

core is assumed to have high density and thus its pressure must be taken into

consideration (contrary to the pressure of the outer atmosphere):

−(−δpI + D) · ~er = +ur∆ρCMB~g0 + pc~er

The sign on the left hand side is different from the one in (2.4) due to the opposite

sign of the outer normal to the surface. The pressure pc is caused by the centrifu-

gal potential as well as by the gravity potential induced by density anomalies. It

can be evaluated as ρcore(ϕ+ Φ), because the hydrostatic equilibrium is assumed

to hold at all times within the core: −∇pc = −ρcore∇(ϕ + Φ). The boundary

4The tangential component of traction is set to zero because ~g0||~er
5Our displacement field is the Eulerian description of displacement ⇒ ur(Ra, θ, φ) is not

exactly the height of surface topography (which is ur(rsurf (θ, φ), θ, φ)). Due to geometrical
linearization the difference is neglected.
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condition can therefore be written:

− (−δpI + D) · ~er = ur∆ρCMB~g0 + ρcore(ϕ+ Φ)~er (2.5)

2.2 Spectral finite-difference method

To solve the set of first order partial differential equations (2.1) - (2.5) we expand

all the laterally dependent quantities into complex spherical harmonics, spherical

vectors and spherical tensors:

Φ =
∞
∑

j=0

j
∑

m=−j

Φjm(r)Yjm(θ, φ), ϕ =
∞
∑

j=0

j
∑

m=−j

ϕjm(r)Yjm(θ, φ)

~u =
∞
∑

j=0

j
∑

m=−j

j+1
∑

k=|j−1|

uk
jm(r)~Y k

jm(θ, φ)

τ̄ = (−δpI+D) = −
∞
∑

j=0

j
∑

m=−j

δpjm(r)Yj,0
jm(θ, φ)+

∞
∑

j=0

j
∑

m=−j

j+2
∑

k=|j−2|

D
k,2
jm(r)Yk,2

jm(θ, φ)

Spherical harmonics used in the expansion are constructed as a product of the

orthogonal basis eimφ and the fully normalized associated Legendre functions

Plm(cos θ). Spherical vectors are constructed as a generalized product of spherical

harmonics Yjm and the cyclic basis ~eν . Spherical tensors are constructed as a

generalized product of spherical harmonics Yjm and specially prescribed tensor

basis eν,λ. Their full description and properties can be found in Varshalovich et

al. (1988).

In Appendix A of Golle et al. (2012) are selected out the relations relevant

to the particular set of equations we solve. The choice of the generalized spheri-

cal harmonics introduced by Jones (1985) - i.e. the choice of spherical harmonic

basis, is motivated by the fact that tensors are decomposed into isotropic, anti-

symmetric and deviatoric parts (which we already used in the expansion of τ̄ ,

where we omitted the antisymmetric part because τ̄ is symmetric) and vectors

are decomposed into spheroidal and toroidal parts.
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The equation of motion (2.1) is a vector equation and as such consists of

three equations, one for each of the three components, i.e. one for each of the

base vectors ~Y j−1
jm , ~Y

j
jm,

~Y
j+1
jm . To get these equations, relations for the divergence

of spherical tensors, radial part of spherical vectors and gradient of shperical

harmonics must be put into action. The divergence of the stress tensor equals

(Golle et al., 2012):

∇ · τ̄ =

∞
∑

j=0

j
∑

m=−j

{

~Y
j−1
jm

[√

j

3(2j + 1)

(

dδpjm

dr
+

(j + 1)δpjm

r

)

+

+

√

j − 1

2j − 1

(

dD
j−2,2
jm

dr
− j − 2

r
D

j−2,2
jm

)

−
√

(j + 1)(2j + 3)

6(2j − 1)(2j + 1)

(

dD
j,2
jm

dr
+

j + 1

r
D

j,2
jm

)

]

+

+~Y
j
jm

[

−
√

j − 1

2(2j + 1)

(

dD
j−1,2
jm

dr
− j − 1

r
D

j−1,2
jm

)

+

√

j + 2

2(2j + 1)

(

dD
j+1,2
jm

dr
+

j + 2

r
D

j+1,2
jm

)

]

+

+~Y
j+1
jm

[

−
√

j + 1

3(2j + 1)

(

dδpjm

dr
− jδpjm

r

)

+

√

j(2j − 1)

6(2j + 3)(2j + 1)

(

dD
j,2
jm

dr
− j

r
D

j,2
jm

)

−
√

j + 2

2j + 3

(

dD
j+2,2
jm

dr
+

j + 3

r
D

j+2,2
jm

)

]}

.

To evaluate the −(~u · ∇ρ0)~g0 = −ur(−dρ0

dr
)g0~er term, the following relations are

needed:

(ur)jm =

√

j

2j + 1
u

j−1
jm −

√

j + 1

2j + 1
u

j+1
jm

Yjm~er =

√

j

2j + 1
~Y

j−1
jm −

√

j + 1

2j + 1
~Y

j+1
jm .

Thus

−ur(−
dρ0

dr
)g0~er =

∞
∑

j=0

j
∑

m=−j

[(

− j

2j + 1
u

j−1
jm +

√

j(j + 1)

2j + 1
u

j+1
jm

)

(−dρ0

dr
)g0

~Y
j−1
jm +

+

(

√

j(j + 1)

2j + 1
u

j−1
jm − j + 1

2j + 1
u

j+1
jm

)

(−dρ0

dr
)g0

~Y
j+1
jm

]

.

The terms −ρ0∇Φ−ρ0∇ϕ are moved to the right hand side of the equation (2.1),
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because centrifugal potential is known (in this chapter) and the self-gravity term

is computed iteratively in the thesis (viz below).

ρ0∇(Φ + ϕ) =
∞
∑

j=0

j
∑

m=−j

[
√

j

2j + 1

(

d(Φ + ϕ)jm

dr
+
j + 1

r
(Φ + ϕ)jm

)

~Y
j−1
jm

−
√

j + 1

2j + 1

(

d(Φ + ϕ)jm

dr
− j

r
(Φ + ϕ)jm

)

~Y
j+1
jm

]

.

The incompressibility condition ∇ · ~u = 0 is a scalar equation:

0 =

∞
∑

j=0

j
∑

m=−j

[
√

j

2j + 1

(

du
j−1
jm

dr
+
j

r
u

j−1
jm

)

Yjm

−
√

j + 1

2j + 1

(

du
j+1
jm

dr
+
j + 2

r
u

j+1
jm

)

Yjm

]

.

Finally, the left hand side of (2.3) can be written (the tracelessness and symmetry

of ∇~u+ (∇~u)T is used):

2µ
√

5

∞
∑

j=0

j
∑

m=−j

{





√

j − 1







1 1 2

j j − 2 j − 1







(

du
j−1
jm

dr
+

j

r
u

j−1
jm

)



Y
j−2,2
jm −

−





√

j







1 1 2

j j − 1 j







(

du
j
jm

dr
+

j + 1

r
u

j
jm

)



Y
j−1,2
jm −

−





√

j







1 1 2

j j j − 1







(

du
j−1
jm

dr
− j − 1

r
u

j−1
jm

)



Y
j,2
jm+

+





√

j + 1







1 1 2

j j j + 1







(

du
j+1
jm

dr
+

j + 2

r
u

j+1
jm

)



Y
j,2
jm−

−





√

j + 1







1 1 2

j j + 1 j







(

du
j
jm

dr
− j

r
u

j
jm

)



Y
j+1,2
jm −

−





√

j + 2







1 1 2

j j + 2 j + 1







(

du
j+1
jm

dr
− j + 1

r
u

j+1
jm

)



Y
j+2,2
jm

}

−

−
∞
∑

j=0

j
∑

m=−j

j+2
∑

k=|j−2|

D
k,2
jmY

k,2
jm = 0,

where the {} brackets denote the 6-j Wigner symbols (Varshalovich et al., 1985).
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The integral on the right hand side of (2.3) is numerically evaluated from the

previous time step, the increment being µ(r)
η(r)

(Dk,2
jm(r))n(tn+1−tn). It is refereneced

as the memory term. The memory term is what drives the evolution in time.

Without it, instaneous elastic response is obtained.

After plugging all of the above relations into the equations (2.1) - (2.3) we get,

for each degree j and order m, a linear system of nine first order ordinary diferen-

tial equations for the unknown quantities uj−1
jm , u

j
jm, u

j+1
jm , δpjm, D

j−2,2
jm , D

j−1,2
jm , D

j,2
jm,

D
j+1,2
jm , D

j+2,2
jm . In fact, most of the steps already taken were motivated by the

final goal to obtain a linear set of ordinary differential equations. First of all,

orthogonal base was chosen for the expansion of laterally dependent quantities6.

Next, the orthogonal base was chosen to be the spherical harmonics, which are

eigenfunctions of the diferential operators appearing in the equations. Finally,

approximations were made so no products nor squares of laterally dependent

quantities appear in the equations. The set of ordinary differential equations can

be formulated as follows:

1

r
A(r, j)x(r, j,m) + B(j)

dx(r, j,m)

dr
= y(r, j,m), (2.6)

where we divided the rheological equations by µ(r). Inspection of the matrices

gives an important result, which originally motivated the choice of generalized

spherical harmonics introduced by Jones (1985): the equations decouple into a set

for six unknowns uj−1
jm , u

j+1
jm , δpjm, D

j−2,2
jm , D

j,2
jm, D

j+2,2
jm and a separate set for three

unknowns uj
jm, D

j−1,2
jm , D

j+1,2
jm . Since there is no toroidal force on the right hand

side of (2.1), the latter set is identically zero and will be further disregarded. After

omitting the corresponding lines and columns of A and B we get the following

form of the matrices (Wj1,j2,j3 denoting the Wigner 6-j symbols7):

6scalar products of the equations with the base spherical vectors (equation of motion),
spherical tensors (rheology) and spherical harmonics (incompressibility condition) are taken to
gain a separate set of equations for each j and m. The vector equation of motion being also
broken into three equations and the rheology tensor equation being broken into six equations

7e.g. Wj,j,j+1 =

{

1 1 2
j j j + 1

}
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A(r, j) =















































































− j
2j+1(−dρ0

dr
)g0(r)

√
j(j+1)

2j+1 (−dρ0

dr
)g0(r) −

√

j
3(2j+1) (j + 1) −

√

j−1
2j−1(j − 2) −

√

(j+1)(2j+3)
6(2j−1)(2j+1) (j + 1) 0

√
j(j+1)

2j+1 (−dρ0

dr )g0(r) − j+1
2j+1(−dρ0

dr )g0(r) −
√

j+1
3(2j+1)j 0 −

√

j(2j−1)
6(2j+3)(2j+1) j −

√

j+2
2j+3(j + 3)

−
√

j
2j+1(j − 1) −

√

j+1
2j+1(j + 2) 0 0 0 0

2
√

5(j − 1)jWj,j−2,j−1 0 0
−r

µ(r)
0 0

2
√

5j(j − 1)Wj,j,j−1 2
√

5(j + 1)(j + 2)Wj,j,j+1 0 0
−r

µ(r)
0

0 2
√

5(j + 2)(j + 1)Wj,j+2,j+1 0 0 0
−r

µ(r)














































































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B(j) =















































































0 0 −
√

j
3(2j+1)

√

j−1
2j−1 −

√

(j+1)(2j+3)
6(2j−1)(2j+1) 0

0 0
√

j+1
3(2j+1) 0

√

j(2j−1)
6(2j+3)(2j+1) −

√

j+2
2j+3

√

j
2j+1 −

√

j+1
2j+1 0 0 0 0

2
√

5(j − 1)Wj,j−2,j−1 0 0 0 0 0

−2
√

5jWj,j,j−1 2
√

5(j + 1)Wj,j,j+1 0 0 0 0

0 −2
√

5(j + 2)Wj,j+2,j+1 0 0 0 0














































































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The independece of A and B on the order number m should be noticed, a

result of symmetries of the involved spherical harmonics. The unknowns are orga-

nized into the vector x(r, j,m) = (uj−1
jm , u

j+1
jm , δpjm, D

j−2
jm , D

j
jm, D

j+2
jm ). Right-hand

side y(r, j,m) contains gradient of the centrifugal potential ϕ and gradient of the

gravitational potential Φ (which is the gravitational potential of the deformed

body minus the gravitational potential in the initial state) in its first two compo-

nents. In the last three components the −1
η

∫ t

0
Ddt′8 is present, which is further

referenced as the memory term.

While the memory term is straightforward to evaluate from the previous time

step, the increment equal to µ(r)
η(r)

(Dk,2
jm(r))n(tn+1−tn), the centrifugal and Φ poten-

tials are less trivial to compute. The centrifugal potential ϕ = −1
2
ρ0(ω

2r2−(~ω·~r)2)

was introduced above. Now it is expanded into spherical harmonics. Since the

degree two coefficients of the expansion can be found in e.g. Lefftz et al. (1991)9,

we follow a backward procedure, stating the coefficients first:

−ϕ20 =
1

3

√

π

5
(ω2

1 + ω2
2 − 2ω2

3)r
2, −ϕ21 =

√

2π

15
(ω1ω3 − iω2ω3)r

2

−ϕ22 =

√

π

30
(ω2

2 − ω2
1 + 2iω1ω2)r

2,

where the minus sign comes from the fact that in this thesis the definition of

centrifugal acceleration is chosen to be −∇ϕ, and not ∇ϕ. Since the potential is

a real function, the remaining degree two coefficients are gained by using ϕj−m =

8the equations are divided by µ
9Only for different kind of spherical harmonics. The expansion given in Lefftz et al., 1991, is

however not complete, as proven below, for the zero degree contribution is not given in equation
(13) on page 24
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(−1)mϕ∗
jm. Let us sum up the degree two expansion:

−ϕ̃ : = −
2
∑

m=−2

ϕ2mY2m =
1

3

√

π

5
(ω2

1 + ω2
2 − 2ω2

3)
1

4

√

5

π
(3 cos2 θ − 1)r2+

+ 2Re

{

2π

15
(ω1ω3 − iω2ω3)

−1

2

15

2π
sin θ cos θeiφ

}

+ 2Re

{√

π

30
(ω2

2 − ω2
1 + 2iω1ω2)

1

4

√

15

2π
sin2 θei2φ

}

r2 =

=

(

−1

2
ω1ω2 sin2 θ sin 2φ − ω2ω3 sin θ cos θ sin φ − ω1ω3 sin θ cos θ cosφ

− 1

2
ω2

1 sin2 θ cos2 φ +
1

4
ω2

1 sin2 θ − 1

2
ω2

2 sin2 θ sin2 φ +
1

4
ω2

1 sin2 θ−

− 1

2
ω2

3 cos2 θ +
1

4
ω2

1 cos2 θ +
1

4
ω2

2 cos2 θ − 1

12
ω2

1 − 1

12
ω2

2 +
1

6
ω2

3

)

r2 =

= −1

2
(~ω · ~r)2 + (

1

4
ω2

1 +
1

4
ω2

2 − 1

12
ω2

1 − 1

12
ω2

2 +
1

6
ω2

3)r
2 =

1

6
ω2r2 − 1

2
(~ω · ~r)2

To get the negative of the centrifugal potential −ϕ = 1
2
ρ0(ω

2r2 − (~ω ·~r)2), ad-

ditional term - 1
3
ω2r2 - must be added. Since the term is not laterally dependent,

it is simply
√
π 2

3
ω2r2Y00 and thus ϕ00 = −√

π 2
3
ω2r2. An interesting coincidence

can be observed. As stated above (and shown below), only the degree two coeffi-

cients of the gravitational potential and the trace of the inertia tensor are needed

for computation of all the six components of the tensor of inertia. Here it is

shown that all the components of centrifugal potential have effect on the tensor

of inertia. The degree two coefficients causing deformation that produces degree

two coefficients of the gravitational potential and the degree zero coefficient af-

fecting the trace of the inertia tensor. However, in our case the studied body is

incompressible and thus the radially symmetric, purely radial force −∇(ϕ00Y00)

causes no deformation (i.e. does not change the trace of the inertia tensor of the

initial state).

To solve the system of ODEs (2.6) the finite difference scheme proposed by

Gerya and Yuen (2003) is implemented. The method is chosen for its stability
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properties and it is a variation of the staggered grid technique. The modeled

region (i.e. spherical shell) is divided into layers of constant thicknesses and the

unknown quantites are separated: u
j−1
jm , u

j+1
jm are placed on the middles of the

layers and δpjm, D
k,2
jm are placed on the boundaries of the layers. A four layer

model is characterized by the following scheme.

(δp
jm )

1 ,(D k,2
jm )

1

(u
j−

1

jm

)1,
(u

j+
1

jm
)1

(u
j−

1

jm

)2,
(u

j+
1

jm
)2

(δp
jm )

2 ,(D k,2
jm )

2

5

4

4

3

3

2

2

1

1

The number of unknowns for an N layered model is 4N (δpjm, D
j−2,2
jm , D

j,2
jm, D

j+2,2
jm

on each boundary) plus 2N + 2 (uj−1
jm , u

j+1
jm on each centre). All the quantities

are assumed to be continuous, linear by parts, with jumps of their first deriva-

tives on the boundaries (respectively centres for uj−1
jm (r), uj+1

jm (r)). The equa-

tions of motion, which contain the derivatives of δpjm(r), Dk,2
jm(r) are evaluated

on the centres of the layers (where δpjm(r), Dk,2
jm(r) are smooth) and the remain-

ing equations, which contain the derivatives of uj−1
jm (r), uj+1

jm (r) are evaluated on

the layer boundaries (where uj−1
jm (r), uj+1

jm (r) are smooth). The number of equa-

tions is thus 6N − 2 (3N rheological equations, N continuity equations, 2(N − 1)

equations of motion), which is 4 less than the number of unknowns. To com-

plete the system of linear equations boundary conditions are necessary. The

artificial centres above and below the outer boundaries of the spherical shell
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are designed for this purpose. For example, zero displacement boundary condi-

tion on the outer surface ~u(Ra) = 0 would be implemented simply by putting

(uj−1
jm )1 = −(uj−1

jm )2, (uj+1
jm )1 = −(uj+1

jm )2. Before we implement boundary con-

ditions (2.4) - (2.5), attention si paid to the ”self-gravity” term ρ0∇Φ.

The increment of the gravitational potential caused by deformation of the

body can be split into its internal and external parts ∇Φ(r) = ∇Φe(r) +∇Φi(r),

the external part due to the density anomaly enclosed in the sphere of radius

r and the internal part due to the density anomaly outside such sphere. These

components can be computed as follows (e.g. Matas, 1995):

− Φe
jm(r) =

4πGr

2j + 1

∫ r

RCMB

(

r′

r

)j+2

δρjmdr
′ , r > r′ (2.7)

− Φi
jm(r) =

4πGr

2j + 1

∫ Ra

r

( r

r′

)j−1

δρjmdr
′ , r′ > r (2.8)

For a piecewise continuous function δρjm = −~ujm ·∇ρ0 the integrals are computed

as follows, rci
denoting radius of the ith center:

−
(

2j + 1

4πGrci

)

Φe
jm(rci

) =

=

∫ rci

RCMB

(−~ujm · ∇ρ0)

(

r′

rci

)j+2

dr′ =

N
∑

k=i

∫ rck

rck+1

(ur)jm

ρ0,k+1 − ρ0,k

dr

(

r′

rci

)j+2

dr′ =

=
N
∑

k=i

∫ rck

rck+1

(

(ur,k)jm + ∆(ur,k)jm

r′ − rck

rck+1
− rck

)

∆ρ0,k

dr

(

r′

rci

)j+2

dr′ =

=

N
∑

k=i

[

1

j + 3

(

(ur,k)jm + ∆(ur,k)jm

rck

drk

)

∆ρ0,k

drk

r′
j+3

r
j+2
ci

− ∆(ur,k)jm

j + 4

∆ρ0,k

dr2
k

r′
j+4

r
j+2
ci

]rck

rck+1

=

=

N
∑

k=i

[

1

j + 3

(

(ur,k)jm + ∆(ur,k)jm

rck

drk

)

∆ρ0,k

drk

rck

j+3 − rck+1

j+3

r
j+2
ci

−

− ∆(ur,k)jm

j + 4

∆ρ0,k

dr2
k

rck

j+4 − rck+1

j+4

r
j+2
ci

]

,

where notation ∆(ur,k)jm := (ur,k+1)jm − (ur,k)jm, ∆ρ0,k := ρ0,k+1 − ρ0,k is
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introduced. To deal with the lowermost half-layer consistently with the others,

ρ0,N+1 was set to the density at CMB and rcN+1
was put equal to rCMB. Since

the thickness of the lowermost half-layer is half the thickness of the other layers,

the lower index k next to dr was introduced, meaning 2drN = dr, drk 6=N =

dr. The expression for gravitational potential due to outer mass can be derived

analogically. For j = 2 we get:

−
(

2j + 1

4πGrci

)

Φi
jm(rci

) =

i−1
∑

k=1

[(

(ur,k)jm + ∆(ur,k)jm

rck

drk

)

∆ρ0,k

drk

·

· log

(

rck

rck+1

)

rj−1
ci

− ∆(ur,k)jm

3 − j

∆ρ0,k

dr2
k

rj−1
ci

(rck
− rck+1

)

]

.

So far only the density anomalies within a perfect spherical shell were taken

into account. Since the studied body has deformed boundaries, the gravitational

increment due to the surface topographies must also be evaluated (this contribu-

tion being in fact the major one; for a model with homogeneous density it is the

only one). Again, we distinguish external part, due to the CMB topography, and

in internal part, due to the surface topography10

−Φe,topo
jm (r) =

4πGr

2j + 1
∆ρCMBt

CMB
jm

(

rCMB

rci

)j+2

(2.9)

−Φi,topo
jm (r) =

4πGr

2j + 1
∆ρsurf t

surf
jm

(

rci

rsurf

)j−1

, (2.10)

where ∆ρCMB, ∆ρsurf denotes the density jumps and t is the height of topogra-

phies, which is simply the radial part of the displacement field ur
11. To compute

this term, the displacement field (i.e. the unknowns) is required. In this thesis

the term is thus computed iteratively, the gravitational potential being computed

from the displacement field gained in the previous iteration (zero Φ considered

in the first step). The advantage of this procedure is that the matrix A remains

10the internal part denoting contribution due to outside mass, the outer surface being always
outside for points within the shell

11the geometrical linearization is used, viz footnote following the discussion of boundary
conditions
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band-diagonal (see below). The main disadvantage being the increase of the com-

putational time needed, since it is as many times larger as many iterations are

needed. The alternative procedure is to define a new unknown Φ and to include

the ’self-gravity’ term directly in the matrix A. Since the factorization of A is to

be done only once, this procedure would most likely demand less computational

time12.

Now we have all the expressions needed to transform the set of ODEs (2.6)13

into a linear problem:

A x = y. (2.11)

To do so, we simply replace all the variables by either their values (e.g. (uj−1
jm )i =

u
j−1
jm (rci

)) or their averages (e.g. 1
2
((uj−1

jm )i + (uj−1
jm )i+1)) - depending on whether

their value is demanded on a layer boundary or on a layer center. All the deriva-

tives are replaced with finite differences, e.g.
(uj−1

jm )i−(uj−1

jm )i+1

dri
.

The equations of motion, when written on the inner centres of the layered

model, give us 2N−2 rows of the matrix A. The rheological and incompressibility

equations are written on all the layer boundaries, providing additional 4N rows

of A. When all the equations are arranged from surface to CMB, e.g. according

their depth, matrix A becomes band diagonal. So far only 6N − 2 rows were

formed, and thus 4 more are needed, because the number of unknowns is 6N +2.

The boundary conditions are the remaining rows, surface BC being the first two

rows and CMB boundary conditions being the last two rows of A.

To get the elements of A due to boundary conditions, following relations are

12The reason it is not used in this thesis is purely the simplicity of the iterative approach,
making it easier to implement the self-gravity term

13where r is the independent variable of the unknows
u

j−1
jm (r), uj+1

jm (r), δpjm(r), Dj−2
jm (r), Dj

jm(r), Dj+2
jm (r)
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employed:

τ̄ · ~er =

∞
∑

j=0

j
∑

m=−j

{

~Y
j−1
jm

[√

j

3(2j + 1)
δpjm +

√

j − 1

2j − 1
D

j−2,2
jm −

√

(j + 1)(2j + 3)

6(2j − 1)(2j + 1)
D

j,2
jm

]

+~Y
j+1
jm

[

−
√

j + 1

3(2j + 1)
δpjm +

√

j(2j − 1)

6(2j + 3)(2j + 1)
D

j,2
jm −

√

j + 2

2j + 3

)

D
j+2,2
jm

]}

−urρ0g0~er =

∞
∑

j=0

j
∑

m=−j

[(

− j

2j + 1
u

j−1
jm +

√

j(j + 1)

2j + 1
u

j+1
jm

)

ρ0g0
~Y

j−1
jm +

+

(

√

j(j + 1)

2j + 1
u

j−1
jm − j + 1

2j + 1
u

j+1
jm

)

ρ0g0
~Y

j+1
jm

]

.

The rotational deformation si computed in order to evaluate components of

the tensor of inertia J. The definition of these, when spherical coordinates r, θ, φ

are used in the integrand, is (e.g. Novotný, 1998):

Jxx =
∫

v(t)
(sin2 θ sin2 φ+ cos2 θ)r2ρdv, Jyy =

∫

v(t)
(sin2 θ cos2 φ+ cos2 θ)r2ρdv

Jzz =
∫

v(t)
(1 − cos2 θ)r2ρdv, Jxy = −

∫

v(t)
sin2 θ cosφ sinφ r2ρdv

Jxz = −
∫

v(t)
sin θ cosφ cosφ r2ρdv, Jyz = −

∫

v(t)
sin θ cosφ sinφ r2ρdv

It is integrated over the entire volume, with element dv being r2drdΩ. After

decomposing the laterally dependent functions in the integrands into shperical

harmonics it is possible to immidiately integrate over dΩ, since ρ can also be

expanded into spherical harmonics and the orthogonality properties employed.

After following such procedure, equations can be re-written:
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Jxx =
2

3

√

π

5

∫

v(t)

r4ρ20dv +
4

3

√
π

∫

v(t)

r4ρ00dv −
√

2π

15

∫

v(t)

2Re(ρ22)r
4dv

Jyy =
2

3

√

π

5

∫

v(t)

r4ρ20dv +
4

3

√
π

∫

v(t)

r4ρ00dv +

√

2π

15

∫

v(t)

2Re(ρ22)r
4dv

Jzz = −4

3

√

π

5

∫

v(t)

r4ρ20dv +
4

3

√
π

∫

v(t)

r4ρ00dv

Jxy =

√

2π

15

∫

v(t)

2Im(ρ22)r
4dv, Jxz =

√

2π

15

∫

v(t)

2Re(ρ21)r
4dv

Jyz = −
√

2π

15

∫

v(t)

2Im(ρ21)r
4dv

Since ρ2i = δρ2i
14, these integrals are closely related to the integrals (2.7) and

(2.8). By comparing, the following relationship between tensor of intertia and

gravitational potential is obtained (usually referenced as the MacCullagh formu-

lae):

Jxx = I0 +
√

π
5

K
3
Φ20 −

√

2π
15
KΦ22, Jyy = I0 +

√

π
5

K
3
Φ20 +

√

2π
15
KΦ22

Jzz = I0 − 2
√

π
5

K
3
Φ20, Jxy = K

√

2π
15

Im(Φ22)

Jxz = K
√

2π
15

Re(Φ21), Jyz = −K
√

2π
15

Im(Φ21)

(2.12)

where notation I0 := 8
3
π
∫

v(t)
r4ρ0dv, K =

5r3
surf

2πG
was introduced.

2.3 Computer modelling

To solve the linear problem (2.11) a Fortran code is developed. Its main function

is to compose the matrix A. For a model with N layers, A is an (6N +2)× (6N +

2) band-diagonal matrix. Very efficient solvers have been developed for band-

diagonal matrices, here we use the procedure bandec from Numerical Recipes

14and ρ00 = δρ0
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(Press et al., 1992) and procedures from the MKL library. Factorization of A is

done only once, and then solutions for different right-hand sides are sought. Right-

hand side y changes in every time step as the memory term −µ

η

∫ t

0
Ddt′ evolves,

the increment needed to get the new value equal to µ(r)
η(r)

(Dk,2
jm(r))n(tn+1 − tn).

To test the code it is convenient to check the isostatic compensation limit. As

described in Wu and Peltier(1982), the response of viscoelastic body to surface

loading is as follows: First, elastic response is observed, induced topography only

partially supporting the load, stress being induced within the body. In the t→ ∞

limit, the induced topography fully compensates the load, stress being again zero

within the body.

The load chosen here is an artificial topography, composed of material with

density equal to the surface density of the studied model. Load is implemented

through the boundary condition (2.4), which is modified:

(−δpI + D) · ~er = urρ0~g0 + tloadρ0~g0

The value of (tload)20 was set to an arbitrary value of 1253 meters. First,

homogeneous model was tested. Parameters of the model are chosen as follows:

density set equal to 4000 kg/m3, shear modulus set to 7×1010 Pa and viscosity has

the value 1 × 1021 Pa s. This model is further referenced as model A, number of

layers is 40. Resulting (ur)20 and component of stress D2,2
20 are shown in figures 2.1

and 2.215. Displacements of the outer surface, middle layer and CMB boundary

are shown. The deformation is driven only by the surface loading, zero centrifugal

potential is assumed in the test. Contribution of artificial topography to Φi,topo
jm is

taken into account through replacing tsurf
jm by tsurf

jm + tload
jm in (2.9). Load is applied

at time t = 0.

All considered models have fluid inner core. The only parameters of the core

relevant to our study are its total mass (for computing gravity), moment of inertia

15Similar results (regarding the features described below) are gained no matter what degree
and order of spherical harmonics is taken
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and density at the surface of the core (in order to determine the density jump

at CMB). These parameters are set to 1.4490353 × 1023 kg, 8.1888636 × 1036

kg m2 and 10029 kg/m3 respectively. These values are derived from the PREM

model (Dziewonsky and Anderson, 1981) and are used in all the studied models

throughout the thesis.

Figure 2.1: Evolution of (ur)20 for model A
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Figure 2.2: Evolution of (D2,2)20 for model A
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The model responds in the desired way: induced topography is exactly −1253m

in the t → ∞ limit and all the components of stress go to zero within the en-
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tire body16. For a homogeneous model, the −(~u · ∇ρ0)~g0 term in the equation

of motion is identically zero within the body and thus non-zero displacement

throughout the mantle is observed even in the t → ∞ limit. Only the inner

boundary (CMB) restores its initial zero deformation state, for both δp and D go

to zero, and thus the boundary condition −(−δpI + D) · ~er = +urρ0~g0 + ρcoreΦ~er

demands uCMB
r go to zero, as Φ also goes to zero when usurf

r goes to −1253m.

Qualitatively different response is observed when the model does not have

homogeneous density and thus −(~u ·∇ρ0)~g0 is a non-zero force in the equation of

motion. In a model with density increasing with depth, this force acts against the

deformation of inner layers17. The viscous limit of such model is thus different

from the previous one, deformation being concentrated only in the neighbourhood

of the body’s surface. Response of an inhomogeneous model to loading (tload)20 =

1253 m is shown in figures 2.3 and 2.4. The model’s density linearly increases from

its surface value 4000 kg/m3 to 8000 kg/m3 at the CMB. Remaining parameters

are the same as for the homogeneous model, i.e. µ = 7×1010 Pa and η = 1×1021

Pa s. This 40-layer model is further referenced as model B.

Important difference between the response of a homogeneous model and the

response of a model with density gradient is in the time needed for the body to

relax. Although only models with continuous density profiles are considered (and

thus no relaxation normal modes are excited due to inner density discontinuities),

the loading Love numbers corresponding to both models have very different evo-

lution in time. While less than 30 thousand years is sufficiently long for the

homogeneous model to reach a state with almost perfect relaxation (deviatoric

components of the stress tensor being less than 1 Pa, surface displacement being

16figure 2.2 shows only the D2,2 component. The remaining components, including δp, also
have zero limit as t → ∞

17this property is of major importance when deformation due to centrifugal potential is
studied, for it prohibits the displacement field within the body from diverging. Without this
term, centrifugal force causes the inner layers of the body to deform many times more then
the outer boundaries → omitting this term in the equation of motion for such model leads to
completely wrong results.
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Figure 2.3: Evolution of (ur)20 for model B
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Figure 2.4: Evolution of (D2,2)20 for model B
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−1253 m with precission to micrometers), more than 107 years is needed for the

inhomogeneous model to reach the isostatic limit, significant deformation still

taking place after 300 thousand years.

Finally, a complex model with chosen density, viscosity and shear modulus

profiles is submitted to the isostatic compensation test. Model characteristics

are depicted in figure 2.5, model is further referenced as model C. The number
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of layers is again 40. It is an Earth-like model, parameters taken from PREM,

viscosity chosen arbitrarily. However, a simplification is made: the model’s den-

sity profile is chosen to be continuous. Dicontinuities, present in the real Earth’s

mantle due to phase transitions, would have to be dealt with in a similar way

boundary conditions deal with density jumps at the boundaries. However, this

is not done in the thesis and only continuous profiles are considered. Results of

the isostatic test for this model are shown in figure 2.6.

Figure 2.5: Parameters of model C
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Figure 2.6: Evolution of (ur)20 for model C
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Figure 2.7: Evolution of (D2,2)20 for model C
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Once the code is tested to give proper response of various models to surface

loading, the response to centrifugal potential may be computed. At time t = 0

the body is suddenly assumed to rotate with angular velocity ~ω = (0, 0, 2π
86400

) rad

s−1, i.e. approximatly the Earth’s angular velocity, and appropriate centrifugal

force is put into action. Radial components of the resulting displacement fields

for models A,B,C are shown in figures 2.8 to 2.10.

Figure 2.8: Evolution of (ur)20 for model A
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Two basic tests may again be performed to check the corectness of the results.
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Figure 2.9: Evolution of (ur)20 for model B
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Figure 2.10: Evolution of (ur)20 for model C
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First is that the deviatoric part of the stress tensor goes to zero in the t → ∞,

i.e. viscous limit. Second concerns the shape of the deformed body, which must

be identical with an equipotential of the disturbing potential in the t→ ∞ limit

for the state to be stationary. The disturbing potential is the sum of Φ and ϕ.

The height of the equipotential above the surface of the referential sphere can be

expressed using the Taylor series expansion of the overall gravity potential, and
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replacing its exact gradient with g0
18. The condition to be satisfied can thus be

written19

Φ2m + ϕ2m = (ur)2mg0. (2.13)

Both tests are satisfied only with limited accuracy by the gained results, the

equation (2.13) being satisfied to the precission of meters in the t → ∞ limit

and the deviatoric part of the stress tenzor remaining above 104Pa. However,

the accuracy increases as the number of layers of the model is increased20, which

implies it can be explained as error due to discretization in r.

18i.e. adopting the Brun theorem
19It can be viewed also directly from the governing equations 2.1 and 2.4. If we consider

the uppermost layer to be homogeneous, and the deviatoric part of the stress tensor to be zero
in the stationary state, equation 2.1 reads ∇(δp + ρ0Φ + ρ0ϕ) = 0. Therefore δp + ρ0Φ +
ρ0ϕ is constant in the uppermost layer. For the degree two coefficients the equation reads
δp2m + ρ0Φ2m + ρ0ϕ2m = 0. Boundary condition on the hand reads δp2m = (ur)2m ∗ g0. After
eliminating δp2m from these two equations we get the discussed condition

20approximately by factor of 10 when the number of layers is doubled from 40 to 80
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3. Polar wander

So far the studied process was relaxation of the body when subjected to a dis-

turbing potential. For centrifugal potential with ~ω = (0, 0, ω3), as was the case

in chapter two1, the resulting tensor of inertia has main axis with the largest

moment of inertia parallel to the x3 axis, i.e. parallel to ~ω. The two remaining

main axes lie perpendicular to ~ω. In such case, the −~ω × (J · ~ω) term is zero in

the Liouville equation (1.4). The evolution of ~ω(t) is then determined solely by

the d
dt

(J · ~ω) term, i.e. only ω3 changes, as the main moment of inertia changes

due to increasing flattening as the body relaxes.

In this chapter the term −~ω × (J · ~ω) is activated by two model processes.

First we simply deflect the rotation axis from its equilibrium position and then

observe the induced free wobble. This non-physical process is studied in order

to compare the numerical methods employed to solve the equation (1.4). Second

studied process is more physical: the inertia tensor is modified by adding term

Jextra, which corresponds to adding some extra mass, e.g. on top of the surface

of the body. The amount of extra mass is increased from zero to prescribed

value within prescribed period of time. However, deformation due to e.g. surface

loading is not computed - the value of Jextra is steadilly increased and then left

constant2.

3.1 Initial state

In order to separate the studied process from relaxation of the body, described

in Chapter II, the body must be in rotational equilibrium when the process is

started. Equilibrium is reached by setting ~ω to a prescribed value and then

1however, the position of ω could have been chosen arbitrarily to get qualitatively same
results, of course

2This simplification could easily be rid of be actually prescribing a certain surface load.
However, the effect of induced deformation could complicate the results, which is not desired.
The simplest possible process which involves extra mass located somewhere on the body is
sought
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evolving for the time needed for the body to relax. It makes no practical difference

whether ~ω is held constant or whether Liouville equation is solved simultaneously

to decrease |~ω| as the body’s flattening increases.

A noticable simplification is made throughout this chapter. Only model A

is considered and self-gravity term −ρ0∇Φ is turned off in the equations of mo-

tion. This term is computed iteratively, with around 15 iterations needed when

the term is computed from scratch in every time step. Omitting this term does

not change the results qualitatively, it changes them only quantitavily and can

thus be disregarded in this study. The simplifications allow for the results of this

chapter to be easily reproduced within hours of computational time, yet do not

bring any significant qualitative3 change.

For the purpose of solving the Liouville equation the most important descrip-

tion of rotational relaxation is through the tidal Love number. The Love number

approach is not adopted in the thesis, therefore Love numbers do not have to be

computed. However, as described in equation (3.9) in Appendix B, the rotational

deformation could be determined solely through convolution with the degree two

tidal Love number, so certain attention to it is convenient. The tidal Love num-

bers are defined as ratios between the coefficients of spectral decomposition of

gravitational potential induced by redistribution of mass due to deformation, i.e.

Φjm, and coefficients of spectral decomposition of the disturbing potential that

causes the deformation, i.e. ϕjm (e.g. Wu and Peltier, 1981). The definition

assumes ϕjm to be multiple of the Dirac delta function in the time domain. Here

we compute response to multiple of the Heaviside step function, i.e. ϕ20 is set

to prescribed value at time t = 0 and then held constant (coefficient of degree

two and order zero is chosen because that is the only non-zero coefficient when

3The effect of self-gravity is, however, rather significant on the degree two of the spectral
decomposition. The importance of self-gravity decreases substantially as the characteristic
spatial scale of density anomalies decreases (i.e. the degree of spectral decomposition coefficients
increases). We work on the degree two, where the effect is the largest, increasing deformation
approximately by a factor of 2
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~ω = (0, 0, ω3)). Figure 3.1 shows the evolution of Φ20(t)
ϕ20(t)

for models A,B,C and for

model A with self-gravity turned off, referenced as model D.

Figure 3.1: Evolution of Φ20(t)
ϕ20(t)

for models A,B,C,D
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Important limits are the t = 0 limit and the t → ∞ limit. The first one

describs the instaneous, elastic response of the body, i.e. kT
2,e , the latter describs

the viscous (fluid) response, i.e. kT
2,f . In the Appendix A it is shown that

σCh :=
C −A

A

kf − kT
2

kf

Ω

defines the frequency of the free wobble in the linearized version of the Liouville

equation. For model C, i.e. Earth-like model, the computed values are4 kT
2,e =

0.28708, kT
2,f = 0.97769, σCh = 1.8205 · 10−7. This value leads to free wobble

period of 400 days, which differs from the observed value of around 433 days

substantially. The discrepancy lies rather in incorrect value of C−A
A

5, than in

incorrect value of
kf−kT

2

kf
. Presumably, it could be explained be the existence of

solid inner core, avoided in our study, or by the improper implementation of

4error estimates are not performed, the number of valid digits is chosen arbitrarily to 5
5The equilibrium value of A

C−A
is around 282 for model C, i.e. the Euler period is 282 days

instead of 305 days which we get for the observed values of C and A.
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density discontinuities within the mantle.

3.2 Numerical methods

The Liouville equations (1.4) can be written as:

− J · d~ω
dt

=
dJ

dt
· ~ω + ~ω × (J · ~ω), (3.1)

which is a set of three non-linear, ordinary differential equations for the three

components of ~ω. The time evolution of ~ω is fully determined by J, where J(t)

depends on the entire time evolution of ~ω(t), i.e. it is a functional6. In order to

solve the set of ODEs (3.1), we need to be able to evaluate J for given ~ω(t), which

is done in the following manner: The memory terms at time tn, i.e. components

4,5,6 of y in (2.6) hold information about the deformation of the body at time tn.

This deformation depends on the time evolution of ~ω form time 0 to tn. To get

the value of J(~ω(t)), where t > tn, ~ω(t) is used to compute the force term ρ0∇ϕ,

i.e. the component 1 of y, and the new values of memory terms are computed

as Mk(t) = Mk(tn) + µ(r)
η(r)

(Dk,2
jm(r, tn))(t− tn). The self-gravity term ρ0∇Φ, which

adds to components 1,2 of y is computed iteratively. Thus we gained y(t) and

the set of equations (2.11) can be solved to get the desired value of J(t) from

(2.12). The value of dJ
dt

is computed simply as J(t)−J(tn)
t−tn

.

The above described procedure defines the coupling of the Liouville equation

with the set of equations (2.6). The last step, necessary in order to employ

standard numerical integrators, is to solve (3.1) for d~ω
dt

when −J(t) and the right

hand side of (3.1) are known (i.e. computed by the procedure described above).

It is a linear problem with J being a 3 × 3 symmetric, positive definite matrix,

solved by the Dsytrf, Dsytrs routines from the MKL library.

6Since J is symmetric positive definite tensor, the equations 3.1 could formally be written

as d~ω
dt

= −J(~ω(t)) ·
(

dJ(~ω(t))
dt

· ~ω + ~ω × (J(~ω(t)) · ~ω)
)

= f(~ω(t)). This is different from the

traditional form of ODEs, d~ω
dt

= f(~ω, t) because the right hand side in the latter case is a
function of ~ω and t, i.e. a function of four independet variables, not a functional. However, this
difference is not an obstacle for numerical integrators of the set of ODEs, as explained below.
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Several methods are tested to solve the equations (3.1). Three explicit: Euler

method, fifth order Cash-Karp Runge-Kutta method, Bulirsch-Stoer method and

two semi-implicit: Rosenbrock method and Bader-Deuflhard method. All the

methods are described and subroutines provided in Numerical recipes for Fortran,

Press et al. (1992). The Jacobian matrix, i.e. the partial derivatives of f(y, t)

in the formulation dy

dt
= f(y, t), that needs to be supplied when semi-implicit

methods are implemented, is computed by numerical differencing.

The main obstacle to be encountered seems to be that once the term ~ω ×

(J · ~ω) is activated, the rotation axis starts to wobble and the equations become

stiff7. The typical problem of stiff set of equations is the following: ”This is

the generic disease of stiff equations: we are required to follow the variation in

the solution on the shortest length scale to maintain stability of the integration,

even though accuracy requirements allow a much larger stepsize.” - Press et al.

(1992). However, this is not our case. Our stepsize has to be a small fraction

of the free wobble period, because ~ω undergoes significant motion during the

wobble and accuracy therefore demands the motion to be followed closely (i.e.

accuracy requires to follow the shortest time scale in our case, not stability).

The real problem is that high accuracy demands stepsize to be a fraction of

the free wobble period, while the processes that induce polar motion which we

wish to study take place on a completely different time scale - it is a problem of

computational time.

To test the numerical methods and to demonstrate how accuracy is lost when

stepsize is too large a non-physical process is selected. The body is rotated for

time sufficient for it to reach equilibrium and then the rotation axis is suddenly

deflected by a small angel, i.e. ~ω is set to ~ω = (0, sin(α)ω3, cos(α)ω3) where ω3

is the equilibrium value. The evolution of ω1 when simple Euler method is used

with time step around 1
300

of the free wobble period is shown in figure 3.2.

7”As soon as one deals with more than one first-order differential equation, the possibility
of a stiff set of equations arises. Stiffness occurs in a problem where there are two or more very
different scales of the independent variable on which the dependent variables are changing” -
Press et al. (1992)
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Figure 3.2: Divergence of ω1(t) for large stepsize
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While the precission of the Euler method is determined by the size of the

stepsize, the remaining methods have adaptative stepsize control. They make

an estimate of the error for every attemted time step and allow the step only if

the estimate is below prescribed value ∆0
8. Several choices of ∆0 may be made.

We set ∆0(i) = ε(|ω(i)| + |hdω(i)
dt

|), where h is the suggested stepsize and index

i = 1, 2, 3 denotes components of the vector ∆0. This choice leads to constant

fractional errors except for when ω(i) crosses near zero (equation 16.2.8 in Press et

al., 1992)9. For sufficiently small value of ε high precission solutions are obtained

and thus all the methods yield the same result. Figure 3.3 shows evolution of ω1

when computed by all the tested methods with ε = 10−10, the curves are identical.

For computational reasons we divided the equation 3.1 by two scaling factors

to work with normalized ~̄ω = (m1, m2, m3) := ~ω
Ω0

and J̄, where Ω0 is defined as

|~ω| in the equilibrium. In the figures below mi is used instead of ωi to describe

the rotation vector, m3 has different meaning than in the notation introduced in

Appendix A.

For the test depicted in 3.3, stepsize of the Euler method was chosen approx-

imately 3 × 10−7 of the free wobble period to have extremly high accuracy for

referential purposes10. Though all the methods yield the same results, the compu-

8If not, the suggested time step is shortened. If the error estimate is much smaller than ∆0

the next suggested time step is prolonged.
9Since accumulation of error is a problem in tracing the wobble, the choice ∆0(i) = ε|hdω(i)

dt
|

should also be thoroughly tested. It is not done in the thesis
10The time needed to evolve 100 years was 22500 seconds
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Figure 3.3: m1(t) computed by different methods with high precission
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tational time needed to reach them varies substantially. To ilustrate the different

behavior of the methods, computational times for ε = 10−10 and tfinal = 100

years are shown in table 3.1.

Table 3.1: Computational time for a test case

Method Computational time

Runge-Kutta 753 s
Bulirsch-Stoer 21303 s
Rosenbrock 12140 s

Bader and Deuflhard 976 s

The comparison of the methods based on computational times needed for

given ε and tfinal is not complete, because the error estimates computed by the

methods themselves are general estimates, regardless of the problem at hand.

Therefore, for a given problem, especially for atypical one in which the error

tends to accumulate in one direction (it pushes the rotation axis away from the

center of the wobble, as shown in figure 3.2), the actual error accumulated by

different methods may vary, even though ε is set the same. For this reason, detail

analysis of accuracy is necessary. However, it is left for further development. The

reason why the methods strongly vary in the demanded computational time is of

rather technical background, related to how exactly the Liouville equations are

coupled with the equations of motion. The fact that semi-implicit methods do

not dominate over embedded Runge-Kutta method is also left unexamined.
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3.3 Artificial loading

Following process is studied in the final section: artificial increment Jextra(t) is

added to J(t), Jextra(t) linearly increasing from time tstart to time tend and then

held constant. The components of Jextra(tend) are chosen to be:

Jextra =













cos2(π
4
) 0 − sin2(π

4
)

0 1 0

− sin2(π
4
) 0 sin2(π

4
)













r2
0ME , (3.2)

which corresponds to mass ME located at (r0,
π
4
, 0). It can be seen directly from

the definition of J for ρ = MEδ(r0,
π
4
, 0). This extra mass is not incorporated

into the equations of motion (2.1), which means that it causes no deformation of

the body. For example, if the extra mass was on surface of the body, no isostatic

compensation would occur.

This artificial process is designed to test the developed tool in two key aspects.

Its purpose is to explore the method’s ability to predict polar wander for long-

term phenomena (e.g. millions of years) and to reconstruct the results obtained

by previous authors using methods described in Appendices A and B.

To compare the results with equation (3.7) from Appendix A, it is important to

realize that its derivation followed directly from averaging the solution of (3.5)11,

which means that variations in the inertia tensor arising from instaneous elastic

rotational deformation, given by equation (3.8), need to be included when the

excitation function Ψ is evaluated. In the presented case, the equation (3.6) thus

becomes:

ψ1 =
1

(C − A)
(jR

13 + jextra
13 ) =

1

(C −A)
jextra
13 +

kT
2

kf

m1.

After substituting into (3.7) we get the final form of the linearized equation, to

11In fact, Martinec and Hagedoorn (2005) averaged the solution over the Euler period - 2π
σr

- which is not the true period of the free wobble for the Earth. The reason for this slight
inconsistency is closely related to the fact argumented below: variations in the inertia tensor
arising from instaneous elastic rotational deformation, given by equation (3.8), are not extracted
from excitation function Ψ before averaging
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be compared with the results gained by the method developed in this thesis:

(

1 −
kT

2,e

kT
2,f

)

m̄1(t) =
1

(C −A)
jextra
13 (t) (3.3)

In other words, the equation m̄(t) = Ψ̄(t) modifies to
(

1 − kT
2,e

kT
2,f

)

m̄(t) = Ψ̃(t),

where Ψ̃(t) is excitation function from which elastic rotational deformation is

extracted - in our case it is determined fully by the knowledge of Jextra.

Figure 3.4 shows evolution of m1(t) computed from equation (3.3) and m1(t)

computed by our method12. Mass ME was set equal to 1010 kg, r0 was set equal

to rsurf . The process started at time tstart = 10 years and the increasing of extra

mass was stopped at tend = 100 years.

Figure 3.4: 150 year evolution of m1(t) for artificial loading process
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Several phenomena may be observed in figure 3.4. Small wobble is exited,

maintaining constant amplitude. In fact, though not mentioned in the respective

commentary, figure 3.3 shows small damping of the wobble. The ability to show

excitation and damping of the free wobble is one of the main advantages of the

method developed in the thesis and should be thoroughly analyzed in future work.

The comparison with solution of the linearized Liouville equation seems to

have passed the test. The most obvious discrepancy between the two solutions

is after the time tend: while the linearized equation gives constant m1(t) once

12Namely Runge-Kutta with ε = 10−7 - for this process the values of ε need to be set
differently from the process studied in previous section
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jextra
13 (t) becomes constant, the m1(t) resulting from our code continues to evolve

towards lower values. The explanation lies in the fact that the linearized version

of the Liouville equation does not allow for the readjustment of the long-term

equatorial bulge to take place.

On the other hand, in the second method described in Appendix B, developed

by Ricard et al. (1993), the readjustment of long-term equatorial bulge is the key

factor in determining the polar wander. The solution of their equation (3.10) is

not reproduced in the thesis, so only qualitative aspects of the solutions can be

compared. Common feature of the results presented by Ricard et al. (1993) is

that the rotation axis moves towards a negative geoid anomaly to end up in the

center of it eventually. We try to reconstruct this aspect of the solution.

The studied effect can briefly be explained as follows: the extra mass13 shifts

the main axis of inertia away from the equilibrium position, in the direction

away from the extra mass. This causes the rotation axis to wobble around the

new position, and after some time the long-term equatorial bulge readjusts itself,

shifting the main axis of inertia further away from the extra mass. This process

continues untill the extra mass is located on the equator, i.e. as far from the

rotation axis as possible, maximizing its contribution to the largest moment of

inertia. The time needed for the long-term equatorial bulge to readjust plays

crucial role in determining the time it takes for the extra mass to move to the

equator.

Figure 3.5 shows longtime evolution of m1 and m3. Clearly, the effect de-

scribed above has taken place, since the final position of the rotation vector is

as expected - the extra mass lies on the equator. Parameters of the process,

i.e. ME , r0, tstart, tend were set equal to: ME = 1019 kg, r0 = rsurf , tstart = 10

years, tend = 100 years. Large value of ME explains why the time needed for the

rotational axis to settle is much shorter than observed in Ricard et al. (1993) for

13i.e. positive geoid anomaly. If dynamic topography is taken into consideration, crucial is
whether its contribution to geoid is stronger or weaker than the contribution of the mass itself.
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sinking slabs. In future work, the results should be compared with the curves de-

picted in Ricard et al. (1993). In order to do so, appropriate value of ME , i.e. ME

that gives the same geoid anomaly as the studied sinking slab, and comparable

body model must be chosen.

Figure 3.5: Long-term evolution of m1(t),m3(t) for artificial loading process
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Since only simplified model was used to compute the polar wander, important

question that immidiately arises is whether the method could be applied to predict

the long-term polar wander for complex models. The time needed to compute the

results depicted in figure 3.4 was around 8000 seconds on a 3.2GHz processor. For

the same model, only with the self-gravity term not excluded from the equation

of motion, the necessary computational time would be multiplied by the number

of iterations needed to compute the self-gravity term, which is around 10. That

means that for simple models the method is capable of computing the polar

wander even for millions of years. However, the cost to involve self-gravity into the

equations is quite high. It would be convenient to replace the iterative procedure

by implementing self-gravity through changing the components of A in (2.11).

Some of the properties of A would be destroyed, but the computational time

would still probably decrease substantially.

The artifical loading process was computed also for model C with 10 iterations

used to compute the self-gravity term. It takes around 4000 s to evolve 10000

years. This gives computational time around 100 hours to evolve a million years,

i.e. the method can be used for long term prediction of polar wander even for
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complex models, though it is on the edge of computational capability. Detail

analysis of accuracy of the obtained solutions is left for future development, as

well as analysis of the changes of the free wobble amplitude.
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Conclusion

Theoretical background of the Liouville equation is analyzed in the first part

of the thesis. It provides alternative derivation of the equation, with approach

based on evaluating the effect of fictious forces in the law of balance of angular

momentum, when formulated in a non-inertial frame of reference. It explains

how Coriolis, Euler and centrifugal forces are related to the terms in the Liouville

equation. Also, the relation between the relative angular momentum and acting

forces in the equation of motion is explained.

Two topics are further examined in the thesis. Computation of rotational de-

formation of a viscoelastic body is the first one of them. It is studied in Chapter

II. Eulerian approach is used to formulate the set of governing field equations,

geometrical linearization and other traditional geophysical approximations are

employed. The equations are solved directly in the time domain and the stud-

ied body is assumed to have incompressible, viscoelastic mantle and fluid core.

Deformation of inhomogeneous models with radially dependent density, viscosity

and shear modulus is computed.

The studied process in Chapter II is reaching of the rotational equilibrium, i.e.

reaching the state in which the body rotates with constant angular velocity and

deviatoric part of the stress tensor is zero. This state is reached for three chosen

models: a homogeneous body, body with simple density profile and an Earth-like

model. The equilibrium is used as initial state for processes studied in the third

chapter. Before that, the developed code is checked using isostatic compensation

test, in which the body is subjected to surface loading. The response in the

t → ∞ is such as to compensate the load by the induced topography, deviatoric

part of the stress tensor being again zero.

The key topic of the thesis is finding numerical solution of the non-linear

Liouville equations. The equations are solved in the time domain, where they

can easily be coupled with equations for rotational deformation. Basic numerical
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methods are tested. It is shown that even the fifth order embedded Runga-

Kutta integrator (i.e. often the first choice for integrating ODEs) is capable of

computing polar wander for homogeneous model for millions of years. Long-term

polar wander prediction for complex models also seems to be possible within

weeks of computation, but was not performed in the thesis because of the time

necessary to do so.

A specific non-physical process is chosen to compare the solution of the non-

simplified Liouville equation with solutions reached by approximative methods

developed by previous authors. Comparison with solution of the linearized Li-

ouville equation is conducted quantitatively. The solutions coincide on average.

Comparison with the method developed by Ricard et al. (1993) is carried out

only qualitatively, both solutions show the same features on average.

Two tasks seem important in order to complete the present work. First is

detail analysis of accuracy of the solutions gained by the implemented numerical

methods. At this moment, it is not clear what is the computational time needed

for a specified physical process for a chosen model of the planet-sized body. Sec-

ond task is thorough comparison with the approximative methods, performed for

various processes. This would allow us to see where actually lie the applicational

limits of the approximative methods. Answer to both these questiones is only

outlined in the thesis. However, the results seem promising.

The main disadvatage of the developed method are high computational de-

mands for complex models. The approximative methods dominate in this respect

when solving problems which fall within their applicational limits. On the other

hand, the developed tool has two advantages. First is that no specific conditions

are required for the solution to be valid, since no approximation is made in formu-

lating the Liouville equation. Second is that the solution contains phenomenom

which is filtered out by the approximative methods - the free wobble of the rota-

tional axis. Excitation and damping of the amplitude of the free wobble can thus

be measured when analyzing the numerical solution.
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Appendix A - The linearized

Liouville equations

Munk and MacDonald (1960) proposed the following perturbation scheme (no-

tation used in the following equations is slightly modified from the one used in

Munk and MacDonald):

J11 = A + j11 J22 = A+ j22 J33 = C + j33

J12 = j12 J13 = j13 J23 = j23

ω1 = Ωm1 ω2 = Ωm2 ω3 = Ω(1 +m3)

If we neglect the products and squares of
jij

C
, mi,

hi

ΩC
, as they are small dimen-

sionless numbers (for the case of the Earth), the Liouville equations decouple into

two:

i
ṁ

σr

+ m = Φ, ṁ3 = φ̇3. (3.4)

The first one is called the polar motion (PM) equation, the second length of day

(LOD) equation, for that is what they govern. Complex notation was introduced:

m = m1 + im2, Φ = φ1 + iφ2, and the excitation functions φ1, φ2, φ3 have the

following definition:

Ω2(C −A)φ1 = Ω2j13 + Ωj̇23 + Ωh1 + ḣ2 − L2

Ω2(C −A)φ2 = Ω2j23 + Ωj̇13 + Ωh2 + ḣ1 − L1

Ω2Cφ3 = −Ω2j33 − Ωh3 − Ω
∫ t

0
L3dt

The excitation function has to be computed for the studied process (e.g. loading,

winds) in order to determine its effect on polar wander. The equation 3.4 can

also be written in the form:

i
ṁ

σr

+ m = Ψ − i

Ω
Ψ̇ +

L

(C − A)Ω2
, (3.5)
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where angular excitation function Ψ = ψ1 + iψ2 is defined

ψ1 =
1

(C − A)Ω
(Ωj13 + h1), ψ2 =

1

(C −A)Ω
(Ωj23 + h2) (3.6)

and complex notation L = L1+iL2 was introduced (e.g. Martinec and Hagedoorn,

2005).

Martinec and Hagedoorn (2005) showed by direct averaging of the solution of

the equation that for the case of GIA (glacial isostatic adjustment) the equation

can be written (no external torque assumed, ~h(t) set to zero):

m̄(t) = Ψ̄(t), (3.7)

where barred quantities denote the average over 2π
σr

. Analogous step - neglecting

the time derivatives in i ṁ

σCh
+m = Ψ− i

Ω
Ψ̇+ L

(C−A)Ω2 was done by Wu and Peltier

(1984) while solving the equation in the Laplace domain.

In the scheme above, long-term rotational deformation (the equatorial bulge)

was already accounted for, as C,A,A are used in 3.3 (C,A,A being the princi-

pal moments of inertia for zero m1, m2, m3). The instaneous elastic response to

centrifugal potential that causes instaneous, slight readjustment of the equatorial

bulge, can be expressed (again neglecting the squares and products of mi):

jR
11 = jR

22 = −2kT
2

3kf
(C − A)m3, jR

33 =
4kT

2

3kf
(C −A)m3

jR
13 =

kT
2

kf
(C −A)m1, jR

23 =
kT
2

kf
(C − A)m2

(3.8)

When computing the period of the free wobble, excitation function due to

solely the elastic rotational deformation is considered, and equation the PM equa-

tion (3.4) becomes:

iṁ + σChm = Φ,
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where the Chandler frequency σCh has simple relation to the Euler frequency σr:

σr :=
C − A

A
Ω, σCh := σr

kf − kT
2

kf

.
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Appendix B - The quasi-fluid

approximation

The above described perturbation scheme is convenient only ”as long as the poles

of figure and rotation do not wander too far from the reference pole” 14. Also,

since only the elastic response to motion of the rotation pole was considered,

the linearized equation is not capable of accounting for the readjustment of the

long-term equatorial bulge. A more general method, which accounts for this

readjustment, was developed by Ricard et al., 1993. For the case of no external

torque, they proceed as follows. First, Tisserand’s axes are chosen:

d

dt
(J · ~ω) + ~ω × (J · ~ω) = 0

Next, the inertia tensor is evaluated with the use of the viscoelastic tidal Love

numbers. The driving process is surface loading, described by Cij(t) (the method

is designed to study the post glacial rebound):

Jij(t) = Iδij +
kT

2 (t)a5

3G
∗ [ωi(t)ωj(t) −

1

3
ω2(t)δij] + [δ(t) + kL

2 (t)] ∗ Cij(t) (3.9)

a being the radius of the Earth, δij the Kronecker symbol, G the gravity constant

and ∗ denoting the time convolution. The viscoelastic Love numbers used in this

expression are traditionally computed in the Laplace domain, using the normal

modes technique proposed by Peltier (1974). They can generally be written as

follows:

k(s) = ke +
M
∑

i=1

ki

s− si

,

where M is the number of relaxation modes, −1
si

their relaxation times and ki their

amplitudes. The main trick involves realizing that for sufficiently slow process

14Munk and MacDonald, 1960
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most of the tidal and loading relaxation modes get fully relaxed within a time-step

on which the excitation function changes. For the tidal and loading viscoelastic

Love numbers the authors, under these conditions, get (s denoting the Laplace

transform variable):

kT (s) = kT
f (−T1s), kL(t) = kL

f +
kL

M1

sM1

esM1t

where T = 1
kT

f

∑M

i=1
kT

i

s2
i

, kf denotes the fluid limit (t → ∞, i.e., s = 0) and M1

stands for the relaxation mode caused by the 670km depth chemical discontinuity.

After substitution of these expressions into (3.9) and after neglecting the terms in

ω̈ and ω̇2 - important step, though not discussed in Ricard et al., 1993 (a possible

explanation of this step can be found in Lefftz et al., 1991), we finally get:

Aij(~ω)ω̇j +Bij(~ω,E, Ė)ωj = 0 (3.10)

where

A =
kT

f T1a
5

3G













3GI
kT

f
T1a5 ω2ω3 −ω2ω2

−ω2ω3
3GI

kT
f

T1a5 ω2ω1

ω2ω2 −ω2ω1
3GI

kT
f

T1a5













B =













Ė11 Σ3 −Σ2

−Σ3 Ė22 Σ1

Σ2 −Σ1 Ė33













Σk := Ekiωi, Eij(t) is obtained by convolving Cij(t) with δ(t) + kL(t). ”As the

diagonal terms of A are smaller than the non-diagonal terms, a further approxi-

mation could be to neglect them (Lefftz 1991)” 15. Neglecting the diagonal terms

of A is equivalent to solving J·~ω = α~ω, i.e. equation equivalent to the one derived

at the end of section 1.3: −~ω × (J · ~ω) = 0

15Ricard et al., 1993
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