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Abstract  

The present thesis focuses on exploration of the applicability of realized measures in 

volatility modeling and forecasting. We provide a first comprehensive study of jump 

variation impact on future volatility of Central and Eastern European stock markets. 

As a main workhorse, the recently proposed Realized Jump GARCH model, which 

enables a study of the impact of jump variation on future volatility forecasts, is used. 

In addition, we estimate Realized GARCH and heterogeneous autoregressive (HAR) 

models using one-minute and five-minute high frequency data.  We find that jumps 

are important for future volatility, but only to a limited extent due to the high level of 

information aggregation within the stock market index. Moreover, Realized (Jump) 

GARCH models outperform the standard GARCH model in terms of data fit and 

forecasting performance. Comparison of forecasts with HAR models reveals that 

Realized (Jump) GARCH models capture higher portion of volatility variation. 

Eventually, Realized Jump GARCH compared to other Realized GARCH models 

provides comparable or even better forecasting performance. 
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Abstrakt  

Tato diplomová práce se zabývá aplikací neparametrických odhadů realizované 

volatility při modelování a predikcích volatility. Analýza dopadu skoků v cenovém 

procesu na budoucí volatilitu na akciových trzích střední a východní Evropy je 

provedena pomocí Realized Jump GARCH modelu, který umožňuje analyzovat vliv 

skokové variace na budoucí volatilitu. Portfolio odhadovaných modelů dále zahrnuje 

Realized GARCH a HAR modely pro porovnání predikčních a odhadních vlastností. 

Výsledky analýzy naznačují, že skoková složka volatility není zanedbatelná. Zároveň 

je ale její vliv značně omezen. To může být způsobeno vysokou mírou informační 

agregace v rámci akciového indexu. Porovnání Realized (Jump) GARCH modelů se 

standardním GARCH modelem naznačuje, že zahrnutí odhadů realizované volatility 

implikuje lepší odhadní a predikční vlastnosti. Srovnání predikcí získaných použitím 

HAR modelů a Realized (Jump) GARCH modelů naznačuje, že Realized (Jump) 

GARCH modely mají lepší predikční vlastnosti především ve vyšší míře zachycené 

variability volatility. Porovnání predikcí Realized Jump GARCH modelu s ostatními 

Realized GARCH modely naznačuje, že jeho predikce jsou srovnatelné nebo mírně 

lepší.  
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1 Introduction 

Understanding volatility can be considered as one of the highest priorities of all 

financial practioners. As volatility measures riskiness of an asset over certain period 

of time, the ability to model it as well as to accurately forecast it has strinking 

implications for all market participants. Volatility as a measure of risk is simply 

needed for every day decision making, as well as an input for many asset-pricing 

models. Last but not least, volatility has strong implications for risk management.   

Recently, many different methodological approaches to volatility estimation were 

proposed thanks to increased availability of high-frequency data, which opened new 

perspectives for research. Andersen et al. (2001) proposed construction of an ex-post 

non-parametric measure of volatility - realized variance. Following works such as 

Barndorff-Nielsen et al. (2002), Andersen et al. (2003) investigated properties of 

realized variance and further enriched the theoretical backgrounds behind realized 

measures. Consequently, other realized measures were proposed to capture different 

components of volatility. Barndorff-Nielsen (2004, 2006) proposed construction of 

bipower variation - a realized measure of volatility robust to jumps in return process. 

As a consequence, the possibility to decompose volatility into continuous sample 

path and jump variation brought new perspectives to volatility research. The present 

thesis aims to contribute to this branch of research as we focus on inclusion of 

realized measures into the traditional Generalized Autoregressive Conditionally 

Heteroscedastic model (henceforth GARCH) and Heterogenous autoregressive model 

(henceforth HAR). The recently proposed Realized GARCH model by Hansen (2011) 

extends the GARCH framework and proposes inclusion of realized measures into 

standard GARCH operating on daily data. Baruník and Vácha (2012) enrich and 

further develop the former concept and embed decomposition of volatility into the 

Realized GARCH framework. Their Realized Jump GARCH model therefore 

incorporates measures of continuous sample path of volatility and jump variation into 

the Realized GARCH framework. HAR models, proposed by Corsi (2004), directly 

build on the usage of realized measures and provide a parsimonious and simple tool 

for volatility estimation. Extension of the HAR model proposed by Andersen et al. 

(2007) is based on inclusion of realized measures of continuous sample path of 

volatility and jump variation. Further and detailed literature review will be subject to 

the first two chapters, which aim to define and described realized measures and 

volatility models used in this thesis.  
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The major attention of this thesis is dedicated to the impact of jumps in price process 

to the future volatility of the stock market index. Recently, many studies have 

suggested strong implications of jumps in a single asset price process to its volatility. 

Naturally, the importance of jumps within a single asset price process is higher 

compared to the stock market index because indices are constructed as a weighted 

average of the constituent stocks. Therefore, the impact of information about 

individual jumps is very likely to be diminished on an aggregated level. On the other 

hand, arrival of information with macroeconomic nature can induce jumps in a larger 

portion of constituent stocks’ prices and be apparent even on the aggregate level. In 

other words, the role of jumps in price process of the stock market index remains 

unclear. All in all, this thesis aims to explore the role of jumps in aggregated 

information provided by the stock market index and determine whether accounting 

for the jump component of volatility improves its forecasting.  

To do so, the empirical part of this thesis offers insight into the applicability of 

realized measures and reveals the impact of volatility decomposition on its 

forecasting. To do so, we estimate following volatility models: GARCH(1,1), 

Realized GARCH(1,1) with various realized measures, Realized Jump GARCH(1,1), 

HAR-RV and HAR-CJ over a triplet of stock market indices of the Prague Stock 

Exchange, Warsaw Stock Exchange and Budapest Stock Exchange. We aim to find 

out if the inclusion of realized measures into the GARCH framework brings 

additional explanatory power to GARCH models. Consequently, comparison of out-

of-sample forecasts on a rolling basis of all estimated volatility models shows 

whether inclusion of realized measures into GARCH framework improves 

forecasting performance relative to standard GARCH(1,1) and whether forecasts by 

Realized GARCH  models  outperform forecasts provided by HAR models. 

Estimation of Realized Jump GARCH models then shows the impact of jumps in 

price process to future volatility of a stock market index and whether the 

decomposition of volatility brings improvement to the model fit and to its forecasting. 

Estimation results indicate that inclusion of realized measures into the GARCH 

framework improves the model fit and forecasting performance relative to standard 

GARCH models. Such results also suggest that jumps bring additional significant 

information about future volatility, but their impact is rather limited. Comparison of 

forecasting performance shows that even though the role of jumps in a price process 

is not so important, the forecast provided by the Realized Jump GARCH model is 

comparable or slightly better than forecasts of other Realized GARCH models. In 

comparison with the forecasting performance of HAR models, we can conclude that 



1. Introduction          3 

Realized GARCH and Realized Jump GARCH models outperform forecasts provided 

by HAR models, especially in the volume of variation of volatility captured. 

The present thesis is organized in following matter. Chapter 2 is dedicated to 

introduction of realized measures and to the theory behind them. It aims to introduce 

all realized measures used for the estimation of volatility models. Chapter 3 is 

dedicated to the description of volatility models. In the first part of this chapter, 

attention is paid to the group of GARCH models (GARCH, Realized GARCH and 

Realized Jump GARCH). Its second part focuses on HAR models (HAR-RV and 

HAR-CJ). Datasets used for the estimation of volatility models are described in 

chapter 4, and estimation results are presented and discussed within chapter 5. 

Finally, chapter 6 concludes and summarizes the results. 

 



 

2 Realized measures of volatility 

The aim of this chapter is to define and introduce the concept of quadratic variation 

as a representation of realized sample path variation of return process. After the 

initial price process setup, the major attention will be dedicated to the decomposition 

of return process which will allow a proper definition of the quadratic variation, the 

derivation of the realized variance measure and reveal rationale behind other realized 

measures. The guideline of this chapter is based on Andersen et al. (2010) with 

respect to work of Barndorff-Nielsen et al. (2002), Tankov (2004), Andersen et al. 

(2003, 2011), Protter (1992) and Back (1991). 

Asset returns are a key interest of every investor and many financial models have 

been developed in order to provide relevant information that would enable an 

investor to make qualified decisions. Many of these models are based on the discrete 

time setup. This framework enables an investor to calculate an expected return of a 

certain asset based on a suitable model. Very often, the investor’s expectations differ 

from the reality. Intuitively, expectations about the price of an asset will always 

include an error which occurs from improper specification of model or simply from 

unexpected events that appeared in the market. Consequently, return process can be 

decomposed into two basic components: predictable part (for simplicity, let’s assume 

the expected return) and innovations that oppose the predictable part (an error made 

by investor). Assuming continuous-time return process, frictionless and no-arbitrage 

opportunity condition, the relationship between expected return and innovations 

differs. Under the continuous setup, we can expect that the role of innovations 

increases significantly. This requires different methodological approaches to the 

modeling of return processes. 

 

2.1 Definition of price process  

The price process in present thesis is based on the univariate continuous logarithmic 

price process      which evolves over time interval      , where T is a finite integer. 

The price process is defined on probabilistic space        . An important part of its 

definition is the filtration  . It enables us to take the dynamic aspect of price process 

into account. The filtration   can be viewed as an information filter which ensures 

that pieces of information are revealed dynamically in the time. At time  ,         
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market participants don’t know what the price is at     and only possess 

information about the value of the price process at time   revealed by information   . 

Such process is called non-anticipating price process with respect to the information 

structure. Moreover, if the available information about the price process consists only 

of its past values, filtration of this price process is referred as natural.  

(Tankov, 2004, p.40).  

Eventually, the set of initial requirements for the price process should be completed 

with assumption of frictionless markets and no-arbitrage opportunities. The first 

named ensures that selling and buying can proceed without any costs: absence of 

transaction costs, no margin requirements or bid/ask spreads. The former implies that 

any zero investment trading strategy with a positive probability of gains must also 

have a positive probability of losses.  

Following definition of Andersen et al. (2010, p.70), we assume finite time period 

      and continuously compounded return over the time interval         as: 

                            (2.1) 

Usage of continuously compounded returns allows us to extend former definition and 

define cumulative return up the time   (return over the time period      ): 

                      (2.2) 

Former definitions imply the following relation between cumulative returns and 

period-by-period: 

                            (2.3) 

Due to the setting, which has been defined so far, price process needs to be restricted 

to remain strictly positive because the price process was logarithmically transformed. 

Thus, any violation of this restriction would imply that      and      wouldn’t be 

well defined over the time interval        Moreover, return process      has a finite 

and countable number of jumps and we assume price and return process to be square 

integrable. 

The inclusion of jumps into return process requires further definition of the return 

process because, due to their existence, process discontinuities are brought to play. 

Convenient tool for dealing with discontinuities is class of processes called càdlàg 

(resp. càglàd).
1
 Defining                                           we are 

                                                 

1
 Word càdlàg is an acronym for French “continu à droite, limite à gauche” meaning continuous from 

the right with limit from the left. Respectively, word càglàd is an acronym for French “continu à 

gauche, limite à droite” meaning continuous from the  left with limit from the right. 
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able to uniquely determine process for which            as càdlàg (right 

continuous with left limit) and càglàd (left continuous with right limit) for       

     for all        . The definition of these two processes has also an economic 

rationale behind. The continuity of the process implies whether the jump was 

predictable or not. Assuming càdlàg process, the jump at time   wasn’t forseeable 

from the previous sample path of the process. From that point of the view, the jump 

at time   was unpredictable. Conversely, in case of càglàd process, value of the 

process at time   could have been predicted based on observations made approaching 

time  . In the context of financial modeling, jumps are usually considered to be 

sources of uncertainty that unpredictably appear in the process. (Tankov, 2004, p. 38) 

Right from the definition of càdlàg, we can define jump in cumulative price and 

return process as: 

                       (2.4) 

Consequently, we can conclude that in the continuity points of the return process we 

have        . As previously stated, there is a countable number of jumps in the 

process. This means that continuity points must exist and that for arbitrarily chosen 

times   matching the continuity points, we have             . The importance 

of condition of countability of jumps is obvious. In case that there would be an 

infinite number of jumps, the price process would “explode”. For this reason, regular 

processes are defined on existence of instantaneous jump intensity. (Andersen, 2010, 

p.70) 

 

2.2 Return decomposition 

Having price and return process defined, attention can be finally dedicated to the 

decomposition of returns. The basic theoretical framework, discussed in Back (1991), 

uses a concept of (special) semimartingale of log-price process (under assumption of 

no-arbitrage, frictionless setting, finite-expected returns) and is further enriched by 

Protter (1992) who shows possibility of unique canonical return decomposition. 

Before we come up with a proposition that allows canonical return decomposition, 

let’s explain the role of martingales and semimartingales in this setting. Their 

definition and further usage are very beneficial, mainly for their suitability for 

stochastic integration. First of all, let us remind the definition of martingale following 

Tankov (2004, p.40).  
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Definition 1: Martingale 

A process             is called a martingale if for any         of the realized 

sequence, the process is adapted to the filtration    and has finite mean, and 

(for      , we have        
     .  

In other words, the best prediction of martingales future value is given by the present 

values of the process.  

Definition of semimartingale allows decomposition of the process into the sum of 

local martingales and adapted (non-anticipating) finite-variation process. Assuming 

that the finite variation process is predictable
2
, we talk about special semimartingale 

process. (Protter, 1992, p. 107) Semimartingales have beneficial properties for the 

purpose of stochastic integration because they remain stable under stochastic 

integration and smooth nonlinear transformation. For example, its associativity 

property ensures that stochastic integral with respect to semimartingale is still a 

semimartingale. (Tankov, 2004, p. 245). Definition of local martingale arises from 

Sampling theorem which suggests that a martingale stopped at a non-anticipating 

random time is still a martingale. Following Tankov (2004, p. 42), definition of local 

martingale is provided. 

Definition 2: Local martingale 

 A process             is a called a local martingale if there exists a sequence of 

stopping times      with      such that       
 
       

 is a martingale. 

Having all important features of theory of martingale and semimartingale introduced, 

we can finally come to the key return decomposition proposed by Protter (1992).  

Proposition 1: Return decomposition 

Any arbitrage-free logarithmic price process subject to the regularity conditions 

outlined above may be uniquely represented as 

                                          , (2.5) 

where      is a predictable and finite-variation process,      is a local martingale 

that may be further decomposed into      , a continuous sample path, infinite-

variation local martingale component and      , a compensated jump martingale. 

We may normalize that initial conditions such that all components may be assumed to 

                                                 

2
 For example, càglàd process which is left continuous process whose value at time   is also known in 

a fraction of a moment before  . 
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have initial conditions normalized such that                   , which 

implies that           . (Andersen, 2010, p. 71) 

Such decomposition of returns into predictable finite variation process and local 

martingale can create an illusion that jumps arise in the process only through the 

compensated jump martingale   . This setting also enables to introduce jumps in the 

predictable mean component.
3
 For the purpose of following discussion, let’s allow 

decomposition of mean predictable process      into continuous process       and 

pure jump process        

Following discussion should clarify why the martingale components contribute to the 

innovations of the return process more than the predictable mean process. First of all, 

let’s compare the influence of continuous terms       and       . In case that the 

variation of       would be higher than the variation of        over small time 

intervals, investor could easily perfectly diversify his portfolio, thanks to law of large 

numbers, simply by creating many long positions in risky asset over any time 

intervals. The perfect diversification would be ensured because martingale 

component is from the definition uncorrelated. Preserving risk-return relationship and 

no-arbitrage condition, it is implied that the impact of       is exceeded by       . 

No-arbitrage condition also explains why the role predictable jump       is always 

accompanied by existence of jump in the martingale       . The predictable jump 

can be explained as arrival of expected information in the market. If there weren’t 

any concurrent jump in the       , investors could simply expoit this jump by 

creating an offsetting position without any risk.  Moreover, if we assume continuous 

framework and uncertainty about the exact timing of the information arrival into the 

market, the role of this predictable jump diminishes even more. (Andersen, 2010, 

p.72) Based on the intuitions above we can come with consequential proposition to 

Proposition 1 based on Andersen (2003, p.583):  

Proposition 2 

The predictable jumps are associated with genuine jump risk in the sense that 

if        , then 

                                    (2.6) 

Where          for      and           for    . 

 

                                                 

3
 For further details see Andersen (2003, 2010). 



2. Realized measures of volatility        9 

2.3 Quadratic variation and notional volatility 

One of the base stones of theory of volatility is the concept of the quadratic variation. 

In this section, quadratic variation process will be defined and its main properties will 

be discussed. Then the concept of quadratic variation will be introduced.  

Definition 3: Quadratic variation process 

Let      denote any (special) semimartingale. The unique quadratic variation 

process,               , associated with      is formally defined as 

                          
 

 
         , (2.7) 

where the stochastic integral of the adapted càglàd process,      , with respect to 

the càdlàg semimartingale,     , is well defined. (Andersen, 2010, p.75) 

Based on this definition we can conclude main properties of this process. We get that 

       is an increasing process. The jumps in the process are concurrently caused by 

jumps in the    process (            ). Moreover, if   is continuous and has 

paths of finite variation then        . (Tankov, 2004, p.264) 

Barndorff-Nielsen (2002, p.463) show important simplification implied by 

assumption that predictable finite variation process      is continuous. Based on 

Jacod and Shiryaev (1987) and decomposition of semimartingale, it is shown that 

quadratic variation process is robust to “smooth”       processes. 

Eventually, it shows out that the martingale component is the key interest from the 

perspective of the quadratic variation process. Unfortunately, martingale requires us 

to have excess to continuous data. In reality, these data aren’t available. For this 

reason, we will focus on a discrete setting and define quadratic variation of return 

process        ; also average or notional volatility; over certain period of time. If 

we choose this time interval small enough we can get a close approximation of 

continuous setting. Based on Andersen (2010, 2003) we define quadratic variation of 

return process as follows: 

Definition 4: Quadratic variation 

Let    be a semi-martingale return process. Assuming that there are no predictable 

jumps in the return process, the quadratic variation         of over time 

interval                , is: 

                                                 

       

 (2.8) 

                                                 

       

 (2.9) 
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The quadratic variation over time interval         can be understood as an 

increment to the quadratic variation process. Andersen (2010) uses the term notional 

volatility to express the variation of the process over a small time interval. The 

equation (2.9)
 
in Definition 4 suggests that the quadratic variation measures the 

variability of squared returns process. This has wide application in finance because it 

enables us to construct a model-free nonparametric ex-post estimate of the return 

variation - Realized variance. The large popularity of this concept is mainly caused 

by its simplicity and also by increased availability of high frequency data. The 

concept of realized variance will be subject of next section. Last remark will be 

dedicated to the Martingale representation theorem (Protter, 1992) which creates an 

important notional interconnection between conventional stochastic differential 

equations and abstract integral representations for continuous sample path 

semimartingales. Before the quadratic variation was defined, it had been suggested 

that the continuous setting has certain limitation due to the continuous data 

unavailability. The usage of high frequency data brings us close to the continuous 

setting. For this reason, literature assumes the continuous setting, thus stochastic 

differential equations are preferred way of describing the corresponding diffusion 

process. The Proposition 3 than creates an equivalency of the integral representation 

to the standard stochastic differential equation representation of the price process 

given by: 

                             , (2.10) 

where      is an integrable, predictable, and finite-variation stochastic process, spot 

volatility process      is strictly positive càdlàg and square integrable and      

denotes a standard Brownian motion. 

Proposition 3: Martingale representation theorem 

For any univariate, square-integrable, continuous sample path, logarithmic price 

process, which is not locally riskless, there exists a representation such that for all 

     , 

 
                             

 

   

          

 

   

  (2.11) 

Where      is an integrable, predictable, and finite-variation stochastic process, 

     is strictly positive càdlàg stochastic process satisfying 

 

          

 

   

       (2.12) 

and      is a standard Brownian motion. (Andersen, 2010, p.79)  
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Therefore, if we assume that the price process is within the class of continuous 

sample path semimartingale, Proposition 3 allows us to conclude that the quadratic 

variation       (increment of quadratic variation process) equals to 

 
              

 

   

  (2.13) 

Under the condition of no jumps in price process, the quadratic variation coincides 

with the definition of integrated variance defined in the equation (2.14). 

 
              

 

   

 (2.14) 

The equivalence of quadratic variation and of integrated variance no longer holds 

after inclusion of jumps into the price process. This topic will be subject of our 

interest in chapter 2.5. 

 

2.4 Realized variance 

Definition 4 through equation (2.9) shows that the realized sample-path variation 

process of the squared return process is measured by quadratic variation. Assuming 

that the mean process is smooth (doesn’t include any predictable jumps), Definition 4 

reveals the leading role of innovations to the return process for quadratic variation 

and outlines a possibility to construct a realized measure of the quadratic variation: 

summation of squared returns over a time interval. (Andersen, 2003, p.585) The 

construction of these ex-post measures of volatility has long tradition in finance, for 

example Poterba and Summers (1986) or French et al. (1987). Throughout the time, 

the construction of realized measures has changed significantly. Availability of high-

frequency data allowed the shift from the daily returns to intra-day returns and 

opened new perspectives for the research. Interconnection between quadratic 

variation and realized sample-path variability is given by Proposition 4. 

Proposition 4 

Let a sequence of partitions of      ,     , be given by               

       such that                       for    . Then, for          

   
   

                         
 

   
         

where              and the convergence is uniform in probability.  

(Andersen, 2010, p. 75) 
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Proposition 4 in other words suggests that the quadratic variation can be 

approximated by summation of squared high frequency returns. Such measure is in 

literature referred as the realized variance.  

Definition 5: Realized variance 

The realized variance over        , for        , is defined by 

                              
       . (2.15) 

Andersen (2010, p. 109) 

In other words, realized variance over time interval         equals to the sum of   

squared returns with scaling frequency    . In fact, it is second, uncentered sample 

moment of the return process. Sometimes, realized variance is in the literature 

referred as the realized volatility. In present thesis, the realized volatility denotes the 

square root of the realized variance. Therefore, we will refer to realized measures of 

volatility as to square-root of realized measures of variance. 

Following paragraphs will be dedicated to important properties of the realized 

variance. Many studies have been dedicated to the issues of distribution of realized 

variance (for example Barndorff-Nielson (2002), Andersen at al. (2001)). They prove 

that although the concept of the realized variance is simple and easily interpretable, it 

has certain limitations arising from the usage of high-frequency data. The key feature 

of realized variance is its convergence in probability to quadratic variation as    . 

This property holds for all semimartingale processes. (Barndorff-Nielsen, 2002, p. 

463) This enables us to assume that          is a suitable estimator of      . Following 

two propositions will be dedicated to the important properties of unbiasness and 

consistency. 

Proposition 5 

If the return process is square-integrable and       , then for any value of     

and      

                     
                 

                  
  , (2.16) 

where         denotes the expected ex-ante volatility. (Andersen, 2010, p.110) 

Proposition 6 

The realized variance provides a consistent nonparametric measure of the quadratic 

variation (notional volatility), 

     
   

              ,             (2.17) 

where the convergence is uniform in probability. (Andersen, 2010, p. 111) 
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Proposition 5 states that ex-post realized variance is an unbiased estimator of 

expected ex-ante volatility (ex-ante variance of the return process). The Proposition 6 

shows that in the limit for increasingly finely sampled returns, the realized variance is 

a consistent estimator of the quadratic variation. This convergence is also ensured by 

the semimartingale theory. 

Moreover, combination of Proposition 5 and Proposition 6 allow us to construct the 

conditional expectations of the quadratic variation (conditional return variance) based 

on ex-post realized volatility measure which, consequently, helps us to specify the 

distribution of return process. Adopting the SDE setting given by equation (2.10) we 

have: 

                             , (2.18) 

where processes      and       denote the conditional mean and the conditional 

volatility of the return, respectively. If we further assume that the price process is 

square-integrable arbitrage-free process with continuous sample path and 

that                     are mutually independent, then        is normally 

distributed conditional on the cumulative drift                
 

   
 and the 

quadratic variation                 
 

   
: 

                      
                   (2.19) 

Such mixed Gaussian distribution enables the return process to have features that are 

observed in the real-world data. For example, extreme return observations or 

volatility clustering caused by the persistence in the quadratic variation. On the other 

hand, in the real world, the quadratic variation is unobservable which raises the 

question of applicability of such mixed distribution. Fortunately, the realized variance 

provides a consistent estimate of the quadratic variation. Andersen (2008, p.8) 

Furthermore, literature suggests that the usage of mixed Gaussian distribution is more 

problematic due to the violation of its assumptions. First, between some classes of 

assets the correlation between concurrent return and volatility innovations was 

observed. Second, the assumption of continuity of the price process is far too 

restrictive. (Andersen, 2003, p.592) Although we have so far neglected the jumps in 

the price process, it must be noted that they have economic rationale. They can 

signify the sudden unexpected arrival of the information to the market. Also, the 

occurrence of jumps in the price process has been reported by several studies. For 

example Andersen, Benzoni, Lund (2002, p.1278) find that models that didn’t 

incorporate failed to accommodate the prominent features of the daily S&P 500. 
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Moreover, they find that inclusion of these features into stochastic volatility jump 

diffusion model brought significant improvement of results. 

All in all, it seems that the setting which assumed the price process to have 

continuous sample path is too restrictive and ignoring the jumps in the price process 

could lead to important biases of analysis. Therefore, following section will bring 

insight into challenges implied by jumps in the price process.  

 

2.5 Bipower variation 

The aim of this chapter is to introduce the concept of the bipower variation proposed 

by Barndorff-Nielsen (2004) and define a consistent measure of the integrated 

volatility that will further allow us to determine the jump component in the quadratic 

variation.  

As we have discussed, the omission of jump in the price process is too restrictive as 

some studies have reported their existence. For this reason, we suggest to redefine the 

return process in (2.10) and include jumps in the mean process. 

                                     , (2.20) 

where   is Poisson process which is uncorrelated with   . The Poisson process has 

positive and finite jump intensity                  . This definition ensures that 

there is only finite number of jumps in the return process. Scaling factor      then 

determines the magnitude of jump in the time of occurrence    (Andersen, 2008, p.9) 

Under the setting given by equation (2.20), we come to the conclusion that the 

integrated variance no longer equals to the quadratic variation. Consequently, the 

quadratic variation needs to be further decomposed into the integrated variance 

component and into the jump variation. Then we can rewrite the quadratic variation 

over time interval         as the sum of diffusive integrated variance and a sum of 

squared jumps. 

 
                

 

   

    

       

               

       

    (2.21) 

Based on Proposition 6, the realized variance is a consistent estimator of the 

quadratic variation even after inclusion of jumps. In order to subtract the jump 

variation, we need a consistent measure of integrated variance. The concept of 
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bipower variation was proposed by Barndorff-Nielsen (2004) and allows construction 

of consistent estimator of integrated variance. 

Definition 6: Realized bipower variation 

For        , the realized bipower variation over time interval         is 

 
             

          
  

 
 
 

 
          

      

 
 
 

 
  

 

   

  (2.22) 

where              
  

 

 
      

  
 

 
 

 with          and   denotes gamma function. 

Term 
 

 
 denotes scaling frequency. For    , we have     

 

 
. (Andersen, 2008, p.9) 

Barndorff-Nielsen (2004) shows that the realized bipower variation provides a 

consistent measure of the integrated variance. In case of zero jumps in the return 

process, he shows that the realized bipower variation provides the same results as the 

realized variance. When jumps in the mean process are present, they prove that the 

realized bipower variation is robust to jumps and consistently measures the integrated 

variance. Moreover they show that the consistency of both realized measures enables 

to estimate the contribution of jumps variation to the quadratic variation. Formally, 

we have: 

                  
   
                   

       

    (2.23) 

Andersen (2011, p.178) provides another version of the bipower variation robust to 

microstructure noise. Therefore we decided to use following version instead.  

Definition 7: Realized bipower variation (by Andersen (2011) 

For        , the realized bipower variation over time interval         is 

 
             

  
 

   
        

  

 
 
 

 
          

      

 
 
 

 
  

 

   

  (2.24) 

where              
  

 

 
      

  
 

 
 

 with          and   denotes gamma function. 

Term 
 

 
 denotes scaling frequency. For    , we have     

 

 
. (Andersen, 2008, p.9) 

The availability of a consistent estimator of the integrated variance can also enable us 

to test whether there are jumps in the price process. Based on Barndorff-Nielsen 

(2006), many jump detection test has been published. Andersen (2011, p. 178) 

proposes indicator test based on the joint asymptotic distribution of the jump 

variation. Assuming the regulatory conditions and null hypothesis of no within-day 
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jumps, the test statistic    defined by equation (2.25) is asymptotically standard 

normally distributed. Therefore, the test statistic    can be used to test the null 

hypothesis of no within-day jumps. 

 
   

                 
        

   
 

 
 
 
     

 

 
      

    

   
     
  

, (2.25) 

where         

 

   
 

   
         

      

 
 
 

 
  

 

 
       

      

 
 
 

 
  

 

  
          

  

 
 
 

 
  

 

 
. 

The    statistic can be further used to measure the contribution of jump variation to 

the overall quadratic variation of the return process. The measure is given by 

equation (2.26). 

                                  , (2.26) 

where      denotes the indicator function and    reffers to the critical value of the 

normal distribution. Similarly, the measure of the integrated variance is defined as  

                                         , (2.27) 

(Andersen, 2011, p. 178) 

 

2.6 Effect of microstructure noise 

In previous chapters, we came to conclusion that the realized variance estimator is a 

consistent measure of the quadratic variation. Unfortunately, the usage of high-

frequency data brings other troublesome complications which need to be taken into 

account. Although high-frequency data enable us to approach close to the continuity 

setting, the data are still discrete and thus, discretization error is inevitable. Moreover, 

high-frequency sampling, when constructing realized measures, can lead to 

misleading and highly biased results due to the effect of microstructure noise. 

Extremely short time intervals can induce spurious autocorrelation. (Andersen, 2008, 

p.10) Especially from the intra-day data perspective, there is large span of 

microstructure effects that have important implications for the construction of 

realized measures. First, the volatility clusters are observed during the intraday 

trading. Second, intraday volatility is determined by behavioral aspects of trading. 

For example, in the global markets it can be observed that volatility varies depending 

on the activity of different regions of the world. Third, high-frequency returns are 

usually negatively correlated and the magnitude of this correlations increases with the 
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sampling frequency. Moreover, when sampling frequency is high, spurious 

relationships can occur between returns of two assets that are independent (this is 

referred as non-synchronous trading effect). Last but not least, when the sampling 

frequency is high, the bid-ask spread effect comes into play.  (Bai, Russell and Tiao, 

2000, p.6) To sum up, literature suggests that the realized variance estimator is not 

robust to the sampling frequency. In other words, the construction of the realized 

measures and the choice of the sampling interval play a crucial role especially from 

the perspective of the sampling frequency and microstructure noise. The shorter 

interval we choose, the issue of microstructure noise becomes more pronounced. 

(Zhang, 2005. p. 1395) 

Andersen (2000, p. 106) developed a tool which helps to determine the effect of the 

microstructure noise called Volatility signature plot. The idea is based on the plot of 

the estimates of realized variance as the function of the sampling frequency. In case, 

that the microstructure noise effect is absent, the plot should look like a horizontal 

line which doesn’t distort from the average of the realized volatility estimator. 

Authors find that in the case of a liquid asset, the high sampling frequencies imply 

that the values of realized variances exceed the average. With the growing width of 

the sampling interval, the values diminish and stabilize around the values of K=20 

(sampling interval is 20 minutes). Authors note that explanation can be found in 

negative serial correlation in returns (the presence of bid-ask spread). In case of less 

liquid assets, the values of the realized variance for high-frequencies are below the 

average. With the growing sampling interval, the values of the realized variance 

estimators increase and stabilize around the value of K=15 (15 minutes sampling 

interval). Literature suggests that the optimal sampling frequency lies in the interval 

from 5 minutes to 40 minutes. (Andersen, 2008, p.10) 

Zhang (2005) proposes an alternative measure which enables the usage of all 

available data called the Two-scale realized variance. The estimator is based on the 

quantification and further correction of the microstructure bias. The estimator is 

given by following definition: 

Definition 8: Two-scale realized variance 

For        , the Two-scale realized variance over time interval         is 

 
                 

       
 

  

 
      

     (2.28) 

where       
    is realized variance estimated over all available data in interval        and 

      
       

 is an average of realized variances estimated over   subgrids of average size 

   
 

 
. Zhang (2005, p.1395) 
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Subgrids   are the subsamples of the available data in interval         and they are 

constructed on the following logic. Let’s assume 5 minutes sampling frequency. The 

first subsample contains first observation and then, every five minutes, an observation 

is added. The second subsample contains the second observation and then, following 

the previous logic, every five minutes, an additional observation is taken, etc.  

The two-scale realized variance estimator got its name because of the two time scales 

which are used to construct the estimator. The first term in equation (2.28) covers the 

slow scale meaning that the dataset is divided into subgrids as described above. The 

second term covers the fast time (high-frequency) scale which includes all the 

available data. The two-scale realized variance is a consistent and asymptotic 

estimator of the quadratic variation of return process with rate of convergence      . 

Moreover, authors provide the theory to an optimal choice of number of subgrids   

so that the total asymptotic variance is minimized. (Zhang, 2005, p.1397) 

 

 

 

 

 

 



 

3 Volatility models 

Modeling and forecasting of asset volatility is certainly crucial for all agents in 

financial markets. Volatility can be viewed as a measure of risk and its understanding 

is naturally important for all market participants. The investigation of relation 

between risk and return has a very long tradition in economic literature and its 

implications are tremendous. Markowitz (1952) and Tobin (1958), for example, 

associated the risk with the variance in the value of a portfolio. Another example is 

the CAPM theory which explains the direct trade-off between the expected return and 

risk. Ability to estimate and forecast volatility has wide implications to risk-

management and option pricing models. These estimates are required as an input for 

many pricing formulas, such as Black-Scholes formula for derivation of the prices of 

traded options, or for value-at-risk model. In other words, ability to predict the future 

volatility precisely is indeed important.  

The simplest definition of volatility would explain it as the standard deviation of 

returns over some historical period. Usage of this ‘historical’ volatility is indeed 

problematic because it gives only a constant value. Observing many historical 

financial series of returns, one can directly see that volatility is not constant over the 

time and that more dynamic approach is needed. Moreover, the usage of historical 

volatility brings other issues which need to be resolved such as what is the optimal 

length of the historical sample. 

In order to avoid these problematic features, various approaches to volatility 

modeling and estimation were developed. In this thesis, two basic groups of models 

are estimated and compared. One group of models perceives the volatility as an 

unobserved variable and uses the concept of conditional variance in order to analyze 

the latent volatility. This group is represented by large (G)ARCH family of models 

which in recent years became popular for its wide applicability and especially for the 

ability to accommodate important features that are common to many financial series.  

The other group of models is based on realized measures (HAR models).  
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3.1 ARCH models 

The Autoregressive Conditionally Heteroscedastic model (ARCH) was first proposed 

by Engel (1982). Its derivation was motivated by Milton Friedman´s conjecture 

(1972) that the unpredictability of inflation was a primary cause of business cycle. He 

argued that the high uncertainty about future price levels restricted entrepreneurs 

from investing and that this would lead the economy into recession. Perception of 

dynamic development of uncertainty led directly to the problem of heteroskedasticity 

and introduction of ARCH model. Unfortunately, the macroeconomic application 

didn’t confirm this effect on the U.S. and U.K. data but in both cases, the presence of 

ARCH residuals was reported. This opened new possibilities for modeling in finance, 

where the relationship between the risk and return was of primary importance. 

(Engel, 2003, p.327) 

It has been noted that ARCH models enable us to model volatility. It is indeed an 

important feature because stylized facts about financial time series aren’t in 

accordance with classical assumptions of econometric estimation. First, the observed 

volatility isn’t constant but changes over time. Moreover, it can be observed that the 

level of volatility changes dynamically and periods of low volatility as well as the 

periods of high volatility can be observed. This phenomenon is frequently referred as 

volatility clustering (volatility pooling). It is also apparent that the volatility performs 

certain persistence. The large returns are often followed by other large returns which 

sustain the increased level of volatility for some time. These volatility clusters can be 

explained as arrivals of new information to the market. Each newly arrived piece of 

information requires immediate reaction of investors who revalue their assets and 

adjust their positions to new changes. As information very often come in bunches, the 

volatility clustering occurs. Another explanation arises from the similar background: 

newly arrived information requires immediate reaction but various market players 

may evaluate its value differently. Following their investment strategy, investors may 

eventually become unsure about their own estimates and revise them assuming that 

their models are outperformed. Herd behavior can result into over or undervaluation 

of assets which will later result into consequent adjustment which result in periods of 

high volatility, volatility clusters.  

Second, volatility tends to asymmetrically react to different news. This leverage 

effect frequently refers to the fact that volatility reacts much stronger to bad news. 

(Engel, 2003, p.330) Third, financial return series exhibit leptokurtic distributions 

with fat tails and excess peakedness at mean. (Brooks 2008, p.380)  
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To sum up, financial return series show that the volatility isn’t constant over time and 

needs to be further modeled and ARCH models offered a possible solution through 

the concept of conditional variance which allows the conditional variance of error 

term depend on its previous values of squared errors (ARCH residuals). Following 

Brooks (2008), the conditional variance of error term    is denoted as    and can be 

formally expressed as: 

                                      

                 
 
              

(3.29) 

Assuming that        , we get 

                       
              . (3.30) 

The ARCH setting enables us to also specify the conditional mean which can be 

represented by ARMA models or simply by constant. Accounting for these two 

features, the ARCH(q) model of return process consists of mean and variance 

equation and can be represented by following specification: 

Model 1: ARCH(q) 

         

         

             
 

 

   

 

(3.31) 

where    stands for return ,               and  coefficients in variance equation are 

restricted to non-negative values; that is                  . 

Such specification ensures that the conditional variance remains positive. Non-

negativity of ARCH coefficients is indeed an important feature as any variance 

estimate providing negative value would be misleading. If this condition didn’t hold 

and some of the ARCH coefficients were negative, a very large shock could 

eventually translate into negative conditional variance.  

It is also obvious that the model deals with the volatility clustering. Simply, large past 

shocks translate into larger volatility now. Although ARCH model ment a 

breakthrough in financial series modeling it should be noted that it has certain 

weaknesses. It remains unclear what is the optimal number of lags included into 

model. Often, the model requires inclusion of many lags in order to capture the 

dependence in the conditional variance. Such model is no longer parsimonious and 

with no clear economic interpretation. Moreover, inclusion of too many parameters 

can eventually break the non-negativity constraint of ARCH coefficients. 
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Generalization of ARCH model by Tim Bollerslev (1986) brought solution to some 

of these problems. (Brooks, 2008, p.392) 

 

3.2 GARCH models 

As well as the ARCH model, the GARCH uses the concept of the conditional 

variance. Its own estimate from previous period is added to the variance equation. 

This means that the estimate of conditional variance is a weighted average of three 

components.  First, it depends on the constant which stands for the long-run average 

variance; second, on the estimate of the conditional variance from the previous 

period; third, on the error from the previous period. The former can be understood as 

an information correction: the piece of information that was missing when the 

previous forecast was made. (Engel, 2003, p.328) Assuming previous setting with 

zero conditional mean (   ), the GARCH(p,q) is specified as Model 2. 

Model 2: GARCH(p,q) 

          

             
 

 

   

        

 

   

 
(3.32) 

where    stands for return ,               ,                              

     for              and           
         
    assumimng      for     

and      for    . 

The popular version of GARCH(p,q) model is restricted to       and is known 

as GARCH(1,1). The model is specified as Model 3. 

Model 3: GARCH(1,1) 

          

            
         

(3.33) 

where   stands for return ,               ,              and        . 

Non-negativity of coefficients and the restriction that their sum must be lower than 

one ensure that the model is stationary and that volatility tends to reverse back to 

unconditional variance which in case of GARCH(1,1) equals to         
  

         
. 

(Bollerslev 1986, p. 311) This feature helps to explain the volatility clusters and 

volatility persistence and enables the passage from periods of high volatility to the 

periods with relatively low volatility through the mechanism of mean reversion. 
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GARCH models gained wide popularity for their simplicity and for their easy 

interpretation. It can be shown, that GARCH model can represent a restricted infinite 

order ARCH model.
4
 An important property of the GARCH model, as well as of the 

ARCH model, is that it implies features of leptokurtic distribution through its higher 

moments (excess kurtosis). (Milhoj (1984), Bollerslev (1986, p. 313)) It is also 

argued that the GARCH model doesn’t capture all of the leptokurtosis in the 

unconditional distribution of returns. Thanks to this problem, the residuals of the 

GARCH model don’t necessarily have to be normally distributed. This has certain 

implications for the estimation of models as the normality is assumed. As a 

consequence, the standard error estimates are inappropriate and different variance-

covariance matrix (robust to non-normality) must be used. For this purpose Quasi-

maximum likelihood method is used. (Brooks, 2008, p. 399) 

As mentioned before, the estimation of coefficients is done through the 

maximalization of log-likelihood function given by following equation: 

 
           

                    

 

  

 (3.34) 

Assuming the Gaussian specification of    of GARCH(1,1) specified as Model 3, we 

get following form of log-likelihood function. 

 
                           

  
 

  
 

 

   

 (3.35) 

GARCH models earned high popularity for their simplicity and ability to 

accommodate many stylized fact of financial time-series. Last but not least, they offer 

a very flexible framework which enables to adapt the original setting and capture 

various features of time-series. As result of this, family of GARCH models has grown 

significantly in last years. For example, the TGARCH deals with the impact of the 

asymmetric information on volatility; the IGARCH deals with the unit-root variance 

(coefficient        ). One of the new applications of GARCH models is 

Realized GARCH model proposed by Hansen (2011) which is one of the key 

interests of this thesis. 

 

                                                 

4
 For further details see Brooks (2008, p. 393) 
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3.3 Realized GARCH  

Realized GARCH models are a natural extension of GARCH models. The 

embedment of realized measures into the GARCH framework offers a great 

possibility of model improvement as the realized measures contain much more 

information about volatility than the squared daily returns traditionally used in the 

variance equation of the (G)ARCH models. As a consequence of low information 

content derived only from the squared daily returns, GARCH models suffer from 

inability to accommodate rapid changes of volatility. In other words, the GARCH 

models, due to the slow adjustment of conditional variance, require a long period to 

adjust to the new level of volatility. As the availability of high frequency data 

increased in past years, the inclusion of realized measures of volatility was a natural 

step. Before formulation of the Realized GARCH model, several models based on 

realized measures were designed. For example, Engle (2002) proposed the GARCH-

X model which treated realized measures as exogenous variable. Following Hansen 

(2011), the Realized GARCH(1,1) with linear specification is specified as Model 4. 

Model 4: Realized GARCH (1,1) with linear specification 

          

                  

                  

(3.36) 

where    is the return,    is realized measure of volatility,                

             
   with    and    mutually independent,                 with 

                        and       is leverage function. 

The Realized GARCH(1,1) consists of three equations. First two equations very 

closely remind the GARCH framework. The first one stands for the mean equation. 

As the conditional mean is assumed to be zero, returns are determined directly by the 

conditional volatility and    . The second GARCH equation includes the realized 

measure such as realized variance or bipower variation. As discussed before, this 

feature is very important as the realized measures include more information about 

daily volatility than the daily squared returns. Of course, this framework also enables 

to transform realized measures. For the Realized GARCH(1,1) and the Realized Jump 

GARCH(1,1) we will restrict ourselves to usage of realized measures of volatility 

estimators. For example, to estimate the Realized GARCH(1,1) we will use the 

realized volatility, the square-root of bipower variation, ect.   

The third equation is called measurement equation and allows the realized measure to 

be interpreted as the measure of conditional variance. If    is a consistent measure of 

integrated variance, the measurement equation then illustrates close relationship 
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between the realized measure and the conditional variance: simply because the 

integrated variance can be perceived as the conditional variance plus random 

innovation. The measurement equation also enables us to overcome a possible 

measurement bias caused by different time spans of the conditional variance and the 

realized measure. The conditional variance (in case of close-to-close returns) covers 

period of 24 hours meanwhile the realized measure covers only the daily trading 

hours. Assuming that the time spans mismatch, the coefficient    is expected to be 

smaller than one. Another important feature of the measurement equation is the 

leverage function because it captures the dependence between returns and future 

volatility. Its inclusion enables asymmetric reaction of volatility to negative shocks in 

returns which followingly, through the realized measure, translates into higher levels 

of the conditional variance. For the purpose of this thesis, we restrict ourselves to the 

simple log-linear specification of the Realized GARCH(1,1) with Gaussian 

innovations which is given by following specification. 

Model 5: Realized GARCH (1,1) with log-linear specification 

          

                                    

                              
     

(3.37) 

where    is the return,    is realized measure of volatility,                

             
   with    and    mutually independent,                 with 

                        and          
  is leverage function. 

One of the attractive features of log-linear specification is (as Hansen (2011) shows) 

that it preserves the ARMA structure (each variable from Model 5 can be expressed 

as the ARMA model). This property is shared with G(ARCH) models which implies 

that the GARCH nomenclature is in case of Realized GARCH appropriate. Moreover, 

logarithmic specification has an obvious advantage that it ensures the positive levels 

of conditional variance. Also, existence of zero returns doesn’t cause any 

specification problems as they don’t enter the GARCH equation. Last but not least, 

The Realized GARCH specification induces flexible stochastic volatility structure. 

This is obvious if the measurement equation is plugged into the GARCH equation. 

We get: 

                                       (3.38) 

where        ;       . 

This result implies that the future level of conditional variance is determined by its 

previous value, the leverage effect and additional stochastic component given by 
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In Hansen (2011), the Quasi-maximum likelihood analysis of the Realized GARCH 

specification is provided including asymptotic properties of the quasi-maximum 

likelihood estimator (QMLE) which is used for the parametric estimation. The 

structure of QMLE is similar to the GARCH framework but requires additional 

inclusion of realized measures through the factorization of joint conditional density. 

The log-likelihood function is given by 

 
               

                      

 

   

 (3.39) 

Because the standard GARCH model doesn’t include the realized measures, the 

factorization of the joint conditional density is needed in order to be able to compare 

the Realized GARCH model to the standard GARCH. We get 

                                       (3.40) 

Then the partial log-likelihood                    
 
    can be used for the 

comparison with the standard GARCH models. Supposing Gaussian specification for 

   and   , the joint likelihood is split into sum                      where: 

 
      

 

 
                  

  
 

  
 

 

   

 

        
 

 
                

   
  

 

  
 
 

 

   

 

(3.41) 

(For further details see Hansen 2011). 

To conclude, the Realized GARCH offers a very flexible and general framework that 

brings significant improvements to the GARCH models. It enables the usage of 

different realized measures and can be further generalized to the Realized 

GARCH(p,q) specification. Moreover, this framework offers a possibility of multi-

period forecasts thanks to the full description of dynamic properties of realized 

measures. Furthermore, the analysis of skewness and kurtosis of cumulative returns 

produced by the Realized GARCH provided by Hansen (2011) suggests that Realized 

GARCH can produce very strong and persistent skewness and kurtosis. 

 

3.4 Realized Jump GARCH  

The Realized GARCH framework enables to incorporate realized measures into the 

GARCH model. In the first chapter which was dedicated to the realized measures, we 

introduced a methodological approach which enabled us to decompose the volatility 

into its integrated and jump part. Referring to equation (2.23), The realized variance 
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provides us with a consistent measure of the quadratic variation. The bipower 

variation, on the other hand, provides a measure of the integrated variance robust to 

jumps. Following the methodology proposed by Barndorff-Nielsen (2006), we are 

able to decompose the volatility process into integrated and jump variation through 

the test statistic    (equation (2.25)). Consequently, being equipped with measures of 

integrated and jump variation, their inclusion into the Realized Jump GARCH seems 

as a natural step. The Realized Jump GARCH model was proposed in Baruník and 

Vácha (2012). The basic idea is to incorporate the measures of the integrated 

variation and the jump variation into the variance equation. Although authors used 

this framework within wavelet decomposition analysis, their approach is suitable for 

the purpose of this thesis as well. The Realized Jump GARCH model can be 

formalized as an extended version of Model 5. 

Model 6: Realized Jump GARCH(1,1) with log-linear specification 

          

                                                 
   

                              
     

(3.42) 

where    is the return,    is a realized measure of integrated variation given by (2.27), 

  
 
 is a realized measure of jump variation given by equation (2.26)

5
,     and    are 

ussumed to be mutually independent and                               
  . 

If the estimation of the Realized Jump GARCH model results with significant 

coefficients then the jumps have a significant impact on future volatility. The 

estimation of this model is done via QMLE.   

Taking the existence of jumps in return process into account, adjustment to the 

original return series has to be performed. Fleming and Paye (2010) focus on the 

problem of distribution of returns. If the returns follow pure diffusion process given 

by equation (2.10) (there are no jumps present), then 
  

    
       . Essencially, in 

this setting, the integrated variance equals the realized variance and provides a 

measure of the quadratic variation process. If we on the other hand assume the 

existence of jumps in the returns, the integrated variance provides only “a part of the 

story” as the jump variation isn’t captured. This is indeed an important finding for the 

estimation of the Realized Jump GARCH model because we assume              . 

                                                 

5
 Both measures are constructed from series of bipower variation and realized variance. As we noted 

before, we restricted ourselves to usage of realized measures of volatility (squared-root of realized 

measure of variance). Therefore in case of Realized Jump GARCH (1,1), both series     (integrated 

variance) and      
 

(jump variation) need to be transformed by square-root. 
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Therefore, the presence of jumps in the return process could significantly violate this 

assumption.  

Andersen (2010b) provides methodology to subtract the jumps from the return 

process. The framework is based on the asymptotic distribution theory in Barndorff-

Nielsen (2006) presented in part 2.5. The test statistic    enables us to find the jump 

contribution to the overall variation of a certain trading day. If the contribution is 

non-zero, we are sure that there are jumps present in the return process of that day. 

As jumps are usually associated to an extreme development in the return process, the 

maximum return can be considered as a jump. If we subtract this return from the 

daily returns, the test statistic    over remaining subset from the previous step should 

suggest zero contribution of the jump variation. If we still reject the null hypothesis, 

we must repeat this procedure sequentially until the testing suggests that there are no 

more jumps in the daily returns series. Eventually, we arrive with the sum of daily 

jumps and we are able to create series of adjusted returns. Following Andersen 

(2010b, p.224), we can formalize previous section followingly. Assuming that there 

is J jumps during day t with T observations, jumps are defined as: 

            
,    for                  (3.43) 

where    denotes the exact interval of the intra-day return associated with the i-th 

jump      . Jump-adjusted daily retun     is therefore given by:  

              
 
   ,                 (3.44) 

 

3.5 HAR models 

In previous sections, we have described the family of GARCH models based on the 

concept of the conditional variance. These models have been often criticized for their 

inability to replicate the main features of financial data or for their difficult 

estimation. As an opposition to these models, Corsi (2004) suggests a different 

approach: the construction of proxy of latent volatility (realized measure of volatility) 

which enables a creation of simple conditional volatility model – The Heterogenous 

Autoregressive model of the Realized Volatility (HAR-RV).  

The basic notion of this model was inspired by the Heterogenous market Hypothesis 

Müller et al. (1993) arising from an empirical observation of positive correlation 

between the volatility and the market presence: the more traders active within the 

market, the larger volatility. That directly contradicts to the assumption of 

homogenous market framework because identical traders would be more likely agree 

on the true price of an asset. The more traders would be active, the lower the 
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volatility would be: simply because of the fact that the consensus about the true price 

of an asset would be reached faster. Therefore the homogenous market hypothesis 

implies that negative correlation between the volatility and market presence. 

Consequently, rejecting the homogenous market hypothesis, the heterogeneity of 

market is proposed. This also suggests that different market participants have 

different investment horizons. In other words, different groups of agents have 

different trading strategies, different risk profiles and therefore different investment 

horizons. Market players, in other words, operate under different dealing frequencies. 

For example, market makers and intraday speculators operate on higher frequencies 

than pension fund. Naturally, their reaction to news and price developments differs. 

All in all, volatility can be decomposed into different components: short-term 

covering the daily frequencies, medium-term covering weekly frequencies and long-

term with characteristic time of one or more months. (Corsi, 2004, p.8) 

Moreover, the heterogeneous market framework enables to study interactions 

between volatility within different time horizons. It is empirically observed that 

volatility over longer time-span influences short-term volatility and that there is a 

certain hierarchic relationship of volatility which has a clear economic interpretation. 

Short-time traders are directly influenced by the long-time volatility because it 

reveals long-run trends which help them to form expectations about future. Any 

change in the long run volatility therefore means revision of these expectations and 

adjustments to trader’s positions. In other words, the current volatility is closely 

determined by the changes in volatility over longer time horizons. Converse 

relationship is negligible. Long-term strategies are not likely to be changed by the 

short-term turbulences. (Corsi, 2004, p.9) Accepting the notion of the heterogonous 

market framework and the hierarchical structure of volatility, proposition of the HAR 

models seems to be natural. Following the definition of models is based on Corsi 

(2004). 

 

3.6 HAR-RV model 

Let’s define partial volatility     
   

 as volatility generated by a certain market 

component. The model is structured as a hierarchical process where at each level of 

the cascade the future partial volatility depends on historical observed volatility 

within the same time scale as well as on the partial volatility at the higher scale of the 

cascade (longer horizon). Moreover, let’s assume three components of the model: the 

partial volatilities respective to time horizons of one day    
   

, one week     
   

and one 
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month    
   

  Furthemore, let’s assume that the return process is determined directly 

by the highest frequency component in the cascade with    
   

    
   

 the daily 

integrated volatility. Then we have 

       
      (3.45) 

where    is assumed to be NID(0,1). 

Incorporating ideas from previous paragraphs, we can formalize the model as 

“AR(1)” where partial volatility process (unobserved) depends on previous 

experienced values of realized volatility at the same time scale. Moreover it also 

includes expectation about the future values of volatility at higher level of the cascade 

(longer term partial volatilities). Therefore we get a system of three equations: 

       
   

             
   

       
   

 

      
   

             
   

              
   

        
   

 

      
   

             
   

              
   

        
   

 

(3.46) 

(3.47) 

(3.48) 

where    
   

    
   

 and    
   

 are respectively monthly, weekly and daily ex-post 

observed realized volatility measures defined as an average of daily realized 

volatilities constructed in following matter: 

 
   

   
 

 

 
    

   
      

   
        

   
  

   
   

 
 

  
    

   
      

   
         

   
  

(3.49) 

and      
   

,      
   

 and      
   

 are contemporaneously and serially independent zero 

mean nuisance with appropriately truncated left tail so the positivity of partial 

volatility is ensured. Substituting into equation (3.48), we get following equation 

which can be viewed as three factor stochastic volatility model where each factor 

stands for the past realized volatility viewed from different frequencies. 

      
   

          
   

        
   

        
   

       
   

 (3.50) 

Moreover, realized volatility can be treated as a measure of latent volatility process. 

Therefore we can specify it by following equation: 

      
   

      
   

      
   

 (3.51) 

where      
   

stands for latent daily volatility measurement error.  

Equation (3.51) enables us to eventually obtain functional form for time series model 

in terms of realized volatilities by substituting into equation (3.50). Eventually, we 

define the HAR-RV model. 
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Model 6: HAR-RV  

      
   

          
   

        
   

        
   

      (3.52) 

where            
   

      
   

. 

Eventually, we obtained a parsimonious model which is easily estimated by OLS 

method and which has a clear economic interpretation. Andersen (2007) addresses 

the issue of adjustment of standard errors due to the serial correlation of error term. 

They propose usage of Bartlett/Newey-West heteroskedasticity consistent covariance 

matrix estimator with 5 lags. This approach is also applied in the present thesis. 

 

3.7 HAR-RV-CJ model 

Natural extension of the HAR-RV model is to account for existence of jumps. Here 

we can rely again on the methodology proposed by Barndorff-Nielsen (2006) 

presented in section 2.5. Usage of the realized variance and the bipower variation 

enables us to decompose the quadratic variation into its jump and the integrated 

component through the construction of test statistic   . Following the notation of 

section 2.5, we construct following series. 

 
  
   

 
 

 
   

   
     

   
       

   
  

  
   

 
 

 
   

   
     

   
       

   
  

  
   

 
 

  
   

   
     

   
        

   
  

  
   

 
 

  
   

   
     

   
        

   
  

(3.53) 

Andersen (2007) suggested usage of these series as explanatory variables and 

proposed the HAR-CJ model defined as Model 7.  

Model 7: HAR-RV-CJ 

      
   

     
   

  
   

   
   

  
   

   
   

  
   

   
   

  
   

   
   

  
   

   
   

  
   

      
(3.54) 

Framework of HAR models enables us to use various measures of volatility and their 

transformation. Original version by Corsi (2004) suggests usage of realized measures 

of variance. Andersen (2007) proposes HAR models which use realized measures of 

volatility (square-root of the realized measure of variance) as well as logarithmic 

transformation of realized measures of variance. In this thesis, we restrict ourselves to 

the former logarithmic specification. Although this specification has less clear 

economic interpretation, it ensures that the estimated volatility remains strictly non-



3. Volatility models         32 

negative. This becomes an important issue especially in Model 7. Sufficiently large 

jump variation could cause problems with the non-negativity constraint of estimated 

values. Following two models represent logarithmic specification used in this thesis. 

Model 8: Logarithmic HAR-RV  

          
   

               
   

             
   

 

            
   

       
(3.55) 

 

Model 9: Logarithmic HAR-RV-CJ  

           
   

      
   

       
   

    
   

       
   

    
   

      
   

 

   
   

        
   

    
   

        
   

 

   
   

        
   

       

(3.56) 

 

3.8 Evaluation of forecasts 

Being equipped with a set of different volatility models, a measure to evaluate their 

performance is needed. In this thesis, we rely on usage of two main approaches, 

Mincer-Zarnowitz regressions (1969) and Diebold and Mariano test (1995).  

First, let’s briefly describe the Mincer-Zarnowitz regression which takes following 

form: 

     
   

      
     

    (3.57) 

where     
   

 refers to the integrated volatility provided by m-th measure volatility 

(square root of volatility estimator: Realized variance, Bipower variation, Two-scale 

Realized variance, C) and   
     

stands for 1–day ahead forecast of     
   

 provided by 

k-th model based on m-th realized measure.  

The Mincer-Zarnowitz regression is based on a simple idea that if a model provides 

unbiased and efficient forecast, the intercept is zero and insignificant and the 

coefficient   equals to one.   of regression refers to the amount of volatility 

variation captured forecast. 

Diebold and Mariano test (1995) evaluates two forecasts comparing respective 

expected losses associated with forecasts and assessing if their difference 

significantly differs. To further describe this idea; let’s assume two forecasts     
   

    
   of time-series      with associated errors   

     
     and   

     
    . 
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Moreover, let function      be a loss function specified as        .
6
 

Consequently, to test if the expected losses significantly differ, we test under null 

hypothesis that the expected losses associated with each forecast are equal. Formally 

written, we test following null hypothesis against an alternative: 

           
          

    

         
          

    
(3.58) 

An asymptotic test is constructed using loss differential defined as the difference 

between two loss functions. Test statistic   is then defined as  

 
  

  

    
 

 

 
(3.59) 

where    is mean sample loss differential,    
  is estimate long-run variance given by  

   
         

 
    with                . Test statistic   is asymptotically 

distributed with N(0,1). 

In this thesis, we used quadratic specification of the loss function. From this 

perspective, Diebold and Mariano test actually compares Mean Square Errors (MSE) 

of forecasts and assesses if their difference is statistically significant. Moreover, the 

sign of the test statistic suggests which forecast provides higher MSE. 

To conclude this chapter, Table 3.1 provides overview of models and respective 

volatility measures. RV refers to the Realized Variance, BP to the Bipower variation, 

TSRV to the Two-scale realized variance, C to the integrated component of volatility 

and J to its Jump part. We recall the notation presented in first chapter: the realized 

measures of variance are expressed in capital letters and realized measures of 

volatility (squared-root of realized measures of variance) in lower-case.  

 

 

 

 

 

                                                 

6
 Usage of Diebold and Mariano test enables different specifications of loss function: for example 

absolute value. In this thesis we restrict ourselves to usage of        . 
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Table 3.1: Volatility models and respective volatility measures 

Model Equations 
Volatility 

measures 

GARCH(1,1)  
         

            
         

- 

Realized 

GARCH(1,1)  

         

                                    

                              
     

rv, bp, tsrv 

Realized Jump 

GARCH (1,1) 

         

                                                 
 

  

                              
     

c, j 

HAR-RV 
         

   
               

   
             

   
 

            
   

       
RV 

HAR-RV-CJ 

          
   

      
   

       
   

    
   

       
   

 

   
   

      
   

    
   

        
   

 

   
   

        
   

    
   

        
   

 

      

C, J 

 

 



 

4 Data description 

Having fully described the theoretical background of realized measures and having 

introduced the set of models used in this thesis; our attention shall be dedicated to the 

description of our dataset. This thesis focuses on the estimation of volatility over the 

triplet of Central and Eastern Europe stock market indices of the Prague Stock 

Exchange, the Warsaw Stock Exchange and the Budapest Stock Exchange: PX index, 

WIG 20 Index and BUX Index respectively. Our dataset contains one-minute and 

five-minute high frequency data. 

The title of this thesis suggests our interest in finding whether the decomposition of 

volatility improves its forecasting. Baruník and Vácha (2012) extended the Realized 

GARCH framework with the decomposition of volatility into the integrated variance 

and the jump variation. Using the dataset consisting of currency futures (GBP, CHF, 

EUR), they show that accounting for jumps existence is very important and that the 

decomposition of volatility improves its forecasting. Our dataset on the other hand 

contains three stock market indices; therefore, we are dealing with a high level of 

information aggregation. The prices changes of constituent stocks are likely to 

contain jumps. As stock market indices are constructed over the portfolio of 

constituent shares, it is possible that these individual jumps will not be apparent on an 

aggregate level. Therefore, significance of jumps in aggregated information (market 

stock index) would be indeed an interesting finding. Following sections of this 

chapter will be dedicated to description of datasets respective to indices used in this 

thesis. Before we do so, let’s pay shortly our attention to description of main features 

of high frequency data and to challenges that their usage provides.  

 

4.1 High frequency data 

Thanks to better performance of computers and advances in data storing, the high 

frequency data became a key interest of economic community. They provide an 

excellent opportunity to gain more information from the daily time-series. On the 

other hand, their usage offers challenges to the econometricians as their application 

requires special treatment. In this thesis, we don’t need to deal with these issues as 

your dataset has been filtered and “adjusted” by the data provider. 

(www.tickdata.com) Therefore, in this section reasons for this special treatment will 

http://www.tickdata.com/
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be discussed briefly. Following paragraphs are prevailingly based on the paper High 

Frequency Data Filtering by Thomas N. Falkenberry (2002).
7
  

High frequency data contain information about every trade made on the stock market. 

The usage of every tick (data point) is problematic for many reasons. First, the data 

contain errors caused by the data processing such as decimal errors, loses of portion 

of number, etc. Many of these errors are caused by human factor. Falkenberry (2002) 

suggests that the more liquid stock (in terms of market capitalization) the higher 

presence of errors is. Simply larger volume of transaction translates into higher 

occurrence of these technical errors. Second, different securities have different 

frequencies of ticks. Naturally, the frequency of the most highly traded assets is 

higher. Moreover, it appears that the tick frequency varies within the day. Third, bid-

ask bounce leaves us with noisy data which cause large systematic bias which can 

lead to misleading results of analysis. All these problems imply the need for the 

filtration of the data and their adjustment.  

Filtration has many different aspects that need to be taken into account. First, 

filtration can be done through the identification of “bad” ticks. This task can often be 

very easy as bad ticks appear as outliers within the plot of the series. On the other 

hand, treating certain ticks as “bad” can be rather subjective with respect to the 

trading frequency of the traders.  Simply, the main objective of such a filter is to 

create a clean series which would preserve the statistical features of real-time data 

and would enable the analysis of series. The challenge of this task can be found in the 

degree of filtration. If the data are filtered too loosely, the data might still not be 

usable. On the other hand, over scrubbing data would remove important information 

and leave us with rather useless dataset. All in all, it is clear that existence of optimal 

filter is negligible as identification of the bad ticks is rather subjective. Therefore the 

design of the filter must match the trading profile and trading frequency of the trader. 

Also, the data filtration needs to account for seasonal differences in tick frequency 

which varies during the day and also across assets. Fortunately, our dataset contains 

“clean” series of one-minute and five-minute data and doesn’t imply the need to 

resolve issues sketched above.  

 

                                                 

7
 This paper is freely accessible on the webpage of the provider. 
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4.2 PX Index 

The PX index (henceforth PX) is a free-float capitalization-weighted index of the 

Prague Stock Exchange currently constituted of 14 most liquid stocks traded. The 

history of the Prague Stock Exchange indices starts in 1994 when PX 50 was 

founded. This index was calculated based on 50 most important stocks traded. Later 

in 2006, this index was renamed and transformed into PX index. Currently, 

constituents of PX are represented by stocks of banking institutions (40%) and 

companies operating within sector of electric utilities (20%) and insurance 

corporations (19%).
8
  

Our dataset contains one-minute and five-minute high-frequency data covering period 

from 2.1.2008 to 25.2.2014 which enables us to report about the current development 

of volatility on the Prague Stock Exchange. Throughout the data set, the number of 

the daily observations differs. The period from 2.1.2008 to 1.2.2011 provides us with 

usual 79 daily five-minute observations and 393 one-minute observations as the daily 

trading hours start at 9:30 and finish at 16:00
9
. On 1.2.2011 the trading hours were 

extended to 9:15 – 16:20. Therefore, the usual number of daily observations climbed 

up to 86 and 429 respectively. In our dataset, the number of the daily observations 

changes due to unusual events (for example due to 31
st
 December). For the sake of 

conservativeness, we decided to drop these observations as we argue that calculation 

of realized measures within these days could bring misleading outcomes. Therefore 

every day which contains less than 90% of usual daily observations is dropped. In 

case of PX, threshold value for minimal number daily five-minute observations is set 

to 71 which decrease the number of days in our dataset from 1537 to 1532. As noted 

before, our dataset contains “clean” data which don’t require any special treatment. 

Therefore, we are able to construct the series of daily realized measures.  

First, the dataset is split into cells with daily price observations. From every set of 

daily five-minute and one-minute prices, logarithmic returns are computed. Let’s 

denote       the intraday logarithmic return over time interval  . Calculating      

    
  

    
   we get series of intraday five and one minutes logarithmic returns (h=5min 

and h=1 respectively) from daily prices   . The daily return    is constructed as an 

                                                 

8
 http://www.bcpp.cz/ 

9 
The covered trading period of one-minute data covers approximately the same time span as five-

minute data. Usually, 1 minute data are provided with additional 2-3 observations prior the starting 

time of five-minute data. 
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open-to-close logarithmic return calculated as the sum of intraday logarithmic 

returns.
10

 Calculation of logarithmic returns finally enables us to construct realized 

measures described in Chapter 2: series of the  daily realized variance (    , bipower 

variation (     and two-scale realized variance (       and tripower quadricity. 

Following the methodology presented in section 2.5, we are able to construct series of 

the continuous sample path of volatility     (integrated variance) and the jump 

variation   . To calculate these series, the level of confidence (alfa) was set to 95%. 

For the purpose of the estimation of the Realized Jump GARCH model, the sum of 

intraday jumps needs to be calculated. The procedure is done sequentially through the 

calculation of test statistic   .
11

 Series of intraday jumps enables us to construct 

adjusted daily returns which are used as in input to the Realized Jump GARCH 

estimation. Figure 4.1 presents QQ plot of daily returns and adjusted returns. It 

proves that the procedure to obtain the sum of intraday jumps is important. It shows 

that standardization after accounting for intraday jumps matches the standard normal 

quantiles more closely. Moreover, it also shows that returns standardized by realized 

volatility are approximately normal. 

Figure 4.1 QQ plot: Comparison of daily returns and adjusted returns PX 

Source: Authors computations. 

                                                 

10
 The filtration procedure which eliminates days with insufficient number of intraday observation 

doesn’t cause any difficulties for construction of daily returns series. As open-to-close daily returns are 

computed as a sum in intraday log-return, for every daily realized measure we are left with respective 

daily open-to-close return. 

11
 Procedure is in detail described in section 3.4. 
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To complete the data description, Table 4.1 provides reader with descriptive statistics 

of variables used for estimation of models. 

Table 4.1: Descriptive statistics of PX 

Notation of variables:       five-minute logarithmic returns;    : daily logarithmic returns,   
   

  daily 

adjusted logarithmic returns;      Realized variance;       Bipower variation;        Two-scale 

realized variance;     Continuous sample path of volatility (integrated variance);     Jump variation. 

 
          

   
                      

Mean  -4,43E-06 -1,05E-03 -9,53E-04 7,48E-05 5,72E-05 3,40E-05 6,21E-05 1,26E-05 

Std. dev  0,002 0,012 0,011 1,27E-04 1,05E-04 5,53E-05 1,11E-04 3,44E-05 

Skewness -5,061 -1,281 -1,166 7,107 7,138 7,027 6,559 11,212 

Kurtosis 970,00 14,94 12,84 72,81 70,04 71,61 58,46 195,79 

Min -0,149 -0,123 -0,084 4,40E-06 2,44E-06 1,85E-06 2,44E-06 0 

Max 0,090 0,060 0,050 1,83E-03 1,41E-03 7,71E-04 1,41E-03 7,72E-04 

Obs. 127747 1532 1532 1532 1532 1532 1532 1532 

Source: Author’s computations. 

Figure 4.2 depicts the plot of the realized variance and its further decomposition into 

the integrated variance and the jump variation. The plot of realized variance shows 

high levels of volatility in year 2008. Turbulences caused by financial crises are 

clearly visible. Another period of higher volatility can be seen in year 2011 which 

reflects the consequences of the European debt crisis. It must be noted that in terms 

of magnitude of the volatility increase, the crisis of 2011 didn’t live up to the large 

volatility levels of year 2008.  

Plot of the integrated variance (continuous part of RV) shows the close relationship 

between the integrated variance and the realized variance. It is apparent that the 

integrated variance dominantly contributes to the total variation. As this feature is 

similar across all three indices, we decided to publish only plots of the integrated 

variance and the jump component in case of WIG and BUX. 

The plot of jump contribution to the total variation suggests that the jumps are more 

likely to appear during the periods of higher volatility. Jumps occurred on 773 trading 

days which accounts for 50,46%. In addition for the purpose of estimation, the last 

step is to standardize every series by its standard deviation. 
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Figure 4.2: Plot of Realized variance and its components for PX 

 

Source: Author’s computations. 

 

4.3 WIG 20 Index 

The WIG 20 Index (henceforth WIG) is a capitalization-weighted index which is 

composed by 20 the most liquid stocks traded on the Warsaw Stock Exchange. WIG 

has been calculated since year 1994 and is based on prices of constituent shares. 

Their inclusion is restricted by the rule that no more than 5 companies from the single 

exchange sector can be represented.
12
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 http://www.gpw.pl/ 
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Our dataset includes one-minute and five-minute high frequency data covering the 

period from 2.1.2008 to 30.6.2011. Unfortunately, in case of WIG, dataset covering 

the same time span as PX and BUX isn’t provided by the data provider. Therefore, 

we decided to estimate the model on the shorter time span. The dataset includes 

records of trading prices between 9:35 and 16:10
13

 which provides us with usual 80 

observations (five-minute data) and 399 observations (one-minute data) a day. As in 

case of PX, the number of daily observations differs through the dataset which 

requires us to remove days with insufficient number of observations. To exclude 

these days the threshold minimum number of observations was set to minimum of 72 

daily five-minute observations. This elimination procedure decreased the number of 

days in our dataset from 878 days to 874.  

Figure 4.3 QQ plot: Comparison of daily returns and adjusted returns WIG 

  

Source: Authors computations. 

The calculation of time-series of realized measures is done in the same way as in case 

of PX. We will rely on the description provided in previous chapter and restrict 

ourselves to only comment on the main features of the data. Figure 4.3 shows 

comparison of QQ plots showing the effect of jumps extraction from the return 

process. As well as in case of PX, we can see that the adjusted daily returns provide 

better fit to the quantiles of normal distribution. The improvement can be seen 

especially in the left tail of the distribution.  

 

 

                                                 

13
 The covered trading period of one-minute data covers approximately the same time span as five-

minute data. Usually, the 1 minute data are provided with additional 3 observations prior the starting 

time of five-minute data. 
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Table 4.2: Descriptive statistics of WIG 

Notation of variables:       five-minute logarithmic returns;    : daily logarithmic returns,   
   

  daily 

adjusted logarithmic returns;      Realized variance;       Bipower variation;        Two-scale 

realized variance;     Continuous sample path of volatility (integrated variance);     Jump variation. 

 
          

   
                      

Mean  -2,99E-06 -7,90E-04 -5,37E-04 1,84E-04 1,57E-04 9,19E-05 1,70E-04 1,38E-05 

Std. dev  0,002 0,015 0,014 2,47E-04 2,15E-04 1,15E-04 2,43E-04 3,60E-05 

Skewness -0,428 -0,122 -0,083 5,044 5,072 5,199 5,391 3,899 

Kurtosis 92,670 6,507 7,123 39,086 38,562 44,638 43,006 21,821 

Min -0,055 -0,082 -0,082 1,18E-05 1,08E-05 5,43E-06 1,18E-05 0 

Max 0,052 0,064 0,064 2,69E-03 2,32E-03 1,42E-03 2,69E-03 3,18E-04 

Obs. 7,01E+04 874 874 874 874 874 874 874 

Source: Author’s computations. 

 

Figure 4.4: Plot of components of total variation for WIG 

 

Source: Author’s computations. 

To complete the data description, Table 4.2 provides reader with descriptive statistics 

of variables used for estimation of models. Figure 4.4 shows the decomposition of 

total variation given by the realized variance into the integrated variance and the 

jump variation. The volatility of WIG develops in similar ways as PX. The period of 

the highest volatility is located around the end of 2008 and the beginning of 2009. As 

in the case of PX, high volatility can be dedicated to the implications of global 

financial crisis. The difference can be found in the jump variation process. Its 

magnitude doesn’t seem to increase during periods of high volatility levels as in case 
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of PX. Jumps don’t show any clear pattern and don’t seem to follow the same 

development as integrated variance: its development seems to be rather stochastic. 

Jump variation can be observed on 211 days which contributes to 24,14% of the total 

number of days in the dataset. Based on these findings, we can expect that the models 

accounting for existence of jumps could bring less clear results in terms of 

contribution of jumps then in case of PX. 

 

4.4 BUX Index 

Last index in our dataset is the Hungarian BUX index (henceforth BUX) calculated at 

The Budapest Stock Exchange since 1991. It is constructed as a capitalization-

weighted index adjusted for free float. It records the performance of largely traded 

stocks which means that underlying constituent stocks vary. The maximum number 

of included stock is 25 and 58% of shares account the domestic equity.
14

 

The dataset includes price records from 2.1.2008 to 25.2.2014 which accounts for 

1527 trading days. Between 2.1.2008 and 2.12.2010 the dataset includes daily price 

records covering trading period 9:05-16:30 for 5 minute data.
15

 This leaves us with 

usual 90 and 449 daily five-minute and one-minute daily price records respectively. 

On 2.12.2010 the trading hours were extended by 30 minutes which extends the 

trading period covered in our dataset to 9:05-17:00. This increases the usual number 

of daily records to 96 (five-minute) and 479 (one-minute) observations. As in 

previous case, the number of daily observation varies which requires us to enforce the 

same filtration procedure as described before. We decided to set 81 daily five-minute 

observations as our threshold value to eliminate the days with insufficient number 

daily observations. This leaves us with 1523 trading days in our sample.  

 

 

 

                                                 

14
 http://bse.hu 

15
 The covered trading period of one-minute data covers approximately the same time span as five-

minute data. Usually, the 1 minute data are provided with additional 3 observations prior the starting 

time of 5 minute data. 
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Figure 4.5 Realized measures over whole dataset BUX 

  

Source: Author’s computations. 

Having prepared the data, estimation of realized measures and daily open-to-close 

returns follows as in previous cases. The construction of realized measures of the 

BUX index revealed that the series of realized measures includes an outlier 

observation: 10.10.2008. Figure 4.5 offers detailed analysis of this problem. Its left 

plot shows the plot of the realized variance calculated over the whole unfiltered 

sample. The maximum value of the realized variance in our sample took place on 

10.10.2008. Its value clearly and remarkably exceeds all other values of the realized 

variance. It equals to 0.0095. To offer suitable comparison, if we remove this daily 

observation, the maximum value of realized variance equals 0.004. This would 

suggest that this trading day experienced very high levels of volatility. The right part 

of Figure 4.5 reveals opposite. The average absolute logarithmic returns resulting 

from intraday trading were quite low with exception of two exceptionally large 

returns which took place right after the opening of trading. Existence of these two 

observations then causes that the daily realized variance provides misleading 

information about the daily volatility level. Therefore, we decided to remove this 

daily observation form our dataset as an outlier which leaves us with the final number 

of daily observations equal to 1522. 

Figure 4.6 QQ plot: Comparison of daily returns and adjusted returns BUX 

   

Source: Authors computations. 
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Figure 4.6 shows consequences of the construction of adjusted daily returns. In 

contrast to QQ plots of previous indices, we cannot graphically distinguish significant 

improvement. This can be caused by relatively low numbers of jumps within the 

series. The estimation of test statistic    leaves us with 279 days which have 

significant jump contribution (18,33% of all days in our datasample). 

Table 4.3: Descriptive statistics of BUX 

Notation of variables:       five-minute logarithmic returns;    : daily logarithmic returns,   
   

  daily 

adjusted logarithmic returns;      Realized variance;       Bipower variation;        Two-scale 

realized variance;     Continuous sample path of volatility (integrated variance);     Jump variation. 

 
          

   
                      

Mean  -2,69E-06 -9,61E-04 -8,28E-04 1,75E-04 1,54E-04 8,85E-05 1,65E-04 1,04E-05 

Std. dev  0,002 0,015 0,014 2,57E-04 2,20E-04 1,23E-04 2,32E-04 6,51E-05 

Skewness -1,069 -0,450 -0,429 6,832 6,312 7,174 6,156 22,399 

Kurtosis 219,176 7,570 7,672 72,250 61,950 78,804 58,548 643,016 

Min -0,096 -0,103 -0,103 1,90E-05 1,65E-05 1,25E-05 1,65E-05 0 

Max 0,069 0,067 0,067 0,004 0,003 0,002 0,003 0,002 

Obs. 141981 1522 1522 1522 1522 1522 1522 1522 

Source: Author’s computations. 

 

Figure 4.7: Plot of components of total variation for BUX 

 

  

 

Source: Authors computations. 
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For the completeness of the data description, Table 4.3 provides descriptive statistics 

of variables used for estimation of models. Figure 4.7 shows the decomposition of 

total variation given by the realized variance into the integrated variance and the 

jump variation. It suggests similar findings as in previous cases. We can see large 

levels of volatility in late 2008 and beginning of 2009. In 2011, consequences of the 

European debt crises are observable in volatility cluster covering the second half of 

year. The jump variation component seems to have significant impact on the 

volatility, especially in periods of high volatility. As a consequence, we can expect 

the significant role of jumps resulting in significant coefficients of estimated 

volatility models. 



 

5 Discussion of estimation results 

Eventually, attention of last chapter is dedicated to the description of estimation 

results. But before we do so, let’s briefly remind what the main motivations of this 

thesis are. First, the main focus of this thesis is nested in volatility estimation and 

exploration of applicability of two main groups of volatility models: GARCH and 

HAR models and their forecasting performance.  

Second, we claim that realized measures are very important for understanding 

volatility, its estimation and its forecasting. Therefore, this thesis aims to test, if 

inclusion of realized measures of volatility into the GARCH framework brings 

additional significant information and if this information contributes to the 

improvement of forecasting.  

Third, theory behind realized measures allows us to decompose volatility into its 

continuous sample path component (integrated variance) and the jump variation. 

Following the motivation behind the title of this thesis, we ask whether the volatility 

decomposition brings improvements to fits of volatility models and whether it 

improves their forecasting performance. In other words, we want to explore if the 

coefficient of jump component is significant. Furthermore, methodology of the 

volatility decomposition proposed by Barndorff-Nielsen (2006) is applicable within 

both, the Realized GARCH and the HAR, frameworks. Therefore, we aim to find out 

if and to which extent inclusion of measures of the jump variation into volatility 

models brings improvement to their forecasting.  

Fourth, we would like to determine the impact of jumps in a price process of a stock 

market index on its future volatility. The role of jumps in a single asset price process 

has been investigated in recent years, and its existence and importance has been 

confirmed by various studies. Naturally, jumps in a return process of a single asset 

are more apparent compared to the jumps in a return series of an index which is 

constructed as a weighted average of constituent stock. Simply jumps in individual 

shares can be too small to be apparent on an aggregate level. On the other hand, large 

portion of constituent shares can commonly reflect arrival of new information 

relevant for their prices in similar way. Therefore jumps can occur and they are likely 

to be apparent even on the aggregate level. For this reasons, jumps are likely to have 

significant but limited influence of on the volatility of stock market index. 
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To conclude, in following sections of this chapter, we present results of the 

parametric estimation of volatility models presented in Table 3.1: GARCH, the 

Realized GARCH(1,1), the Realized Jump GARCH, the HAR-RV and the HAR-RV-

CJ.
16

 GARCH(1,1) model is estimated as a benchmark model. The Realized GARCH 

models then enable us to find out if inclusion of realized measures into the GARCH 

framework improves the model fit and its forecasting performance. Eventually, 

having estimated the Realized Jump GARCH model we find an answer to question 

whether jumps matter. Last but not least, HAR-RV and HAR-RV-CJ models are 

estimated in order to provide a benchmark to forecasting performance of the GARCH 

models.  

Following text is divided into three sections covering the estimation over three stock 

market indices: PX, WIG and BUX. For each dataset, we provide a reader with a 

complex table which enables direct comparison of estimated models and their 

forecasting performance. In upper panel, estimated values of coefficients are 

presented with standard errors and respective values of t-statistics. Notation of 

coefficients follows the convention used in Table 3.1. For each model nested in the 

GARCH framework, the value of log-likelihood and partial log-likelihood is 

provided. HAR models are provided with the value of   . The lower panel contains 

the comparison of out-of-sample forecast - results of Mincer and Zamarowitz test and 

values of Mean Square Errors of forecast. 

The computations were done using software MATLAB and MFE Toolbox by Kevin 

Sheppard. The estimation of Realized (Jump) GARCH model was performed using 

code  provided by J. Baruník which was originally used in Baruník and Vácha 

(2012). 

 

5.1 PX Index 

5.1.1 GARCH models 

Results of estimation are presented in Table 5.2. First, our attention shall be dedicated 

to group of GARCH models. The GARCH(1,1) is estimated as a benchmark model. 

We can see that the coefficients of the model are highly significant and we can 

observe high dependence of the current conditional volatility on its past estimates. 

                                                 

16
 Table 3.1 also includes detailed information about specification of model and about the 

transformation of realized measures. 
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The Realized GARCH(1,1) models’ coefficients are significant in all cases. It 

suggests that inclusion of realized measures into the model captures additional 

information about the conditional volatility. As mentioned before, this finding arises 

from the fact that the  GARCH(1,1) captures volatility only from the daily data. 

Clearly, the information about intraday volatility is not in this case negligible. 

Therefore, inclusion of realized measures brings additional information about 

intraday volatility and can be considered as beneficial. To provide benchmark 

between different realized measures, the Realized GARCH models were estimated 

using    (realized volatility),     (square-root of bipower variation) and      (two 

scale realized volatility). Suitable comparison to the GARCH(1,1) is provided by the 

values of partial log-likelihood function denoted as     . Compared to the 

GARCH(1,1), the Realized GARCH models provide comparably better fit. The best 

obtained result is given by the Realized GARCH using the square-root of bipower 

variation as realized measure. Also, significance of coefficients τ1 and τ2 shows that 

inclusion of the leverage function into the measurement equation provides additional 

explanatory power to the model. 

Summary of the Realized Jump GARCH estimation is presented in column (5). As in 

previous case, we can see that the coefficients of realized measures are significant. 

Interestingly, the coefficient of the jump variation is significant as well. This is a very 

interesting result as we are estimating model on the stock market index where jumps 

are likely to be less apparent compared to a single asset. In other words, it seems that 

jumps aren’t negligible in volatility modeling. Compared to the benchmark 

GARCH(1,1), the improvement of the model fit is clearly obvious as the value of 

partial log-likelihood function is the highest among all GARCH models. 

Despite the fact that coefficients of realized measures are similar across all models, 

values of log-likelihoods        vary among specifications with different realized 

measures. Amongst all GARCH models, the values are approximately around similar 

levels which would suggest that Realized Jump GARCH, doesn’t bring significant 

improvement to the data fit. On the other hand, this can be caused by the fact, that the 

role of jumps in PX index volatility matter but isn’t crucial due to the aggregation of 

information within stock market index. To confirm the usefulness of the Realized 

Jump GARCH specification we need to look at forecasting performance. 

Out-of-sample forecasting was done on the basis of rolling sample starting on 24.10. 

2012. To evaluate these forecasts, Mincer-Zarnowitz test, Mean Square Errors (MSE) 

and the Diebold and Mariano test were used. The results suggest that the Realized 

GARCH (using    ) and the Realized Jump GARCH provide best forecasting in 
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terms of coefficients and R
2
 which means that they can capture the largest portion of 

volatility variation. MSE are significantly smaller compared to the standard 

GARCH(1,1). Comparison between the Realized GARCH and the Realized Jump 

GARCH models in terms of MSE shows that their differences are statistically 

insignificant. (Table 5.1) 

 

5.1.2 HAR models 

The summary of estimation of the HAR-RV and the HAR-RV-CJ with logarithmic 

specification is presented in column 6 and 7 of Table 5.2. In case of the HAR-RV 

model, we can see that coefficients of all investing horizons (daily, weekly and 

monthly) are significant and that the largest weight which determines the current 

volatility is attributed to the coefficient      (weekly average realized variance). 

HAR-RV-CJ model shows similar pattern. The measures representing the continuous 

sample path of volatility are significant for all time horizons. The coefficients of 

measures representing the contribution of the jump variation are insignificant with 

exception of weekly jump variation average (  
   

). These findings suggest the 

importance of weekly investment horizon. In terms of increase in   , estimation of 

the HAR-RV-CJ provides only 1,12% increase. The estimation of HAR models 

supports finding from the previous section that jumps matter but only to limited 

extent.  

Table 5.1 Diebold and Mariano test statistics PX 
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GARCH – rv   46,89 52,86 30,13 44,58 45,10 45,69 

Realized GARCH – bpv -46,89   0,00 -0,98 -0,59 5,96 6,22 

Realized GARCH – tsrv -52,86 0,00   -1,00 -0,73 6,61 6,95 

Realized GARCH -30,13 0,98 1,00   0,80 4,43 4,51 

Realized Jump GARCH -44,58 0,59 0,73 -0,80   6,74 7,05 

HAR-RV -45,10 -5,96 -6,61 -4,43 -6,74   1,24 

HAR-RV-CJ -45,69 -6,22 -6,95 -4,51 -7,05 -1,24   

Source: Authors computations. 

The forecasting performance of HAR models provides worse outcomes compared to 

GARCH forecasts. Although they provide lower values of MSE, the variation 
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captured by the forecast (in terms of    of Mincer-Zarnowitz regression) is 

significantly lower.  

Figure 5.1 presents the comparison of out-of-sample forecasting performance of 

selected models: the GARCH(1,1), the Realized Jump GARCH and the HAR-RV-CJ 

compared to observed measure of volatility – the realized volatility. We can see that 

the least accurate fit is provided by the GARCH(1,1). As the model was estimated 

over the period of structural shifts, such as recent financial crisis, the estimated 

parameters show high levels of volatility persistence which therefore results into the 

volatility over prediction in after crisis period. Although the HAR-RV-CJ forecast 

captures the main trend; it fails to accommodate steep changes in volatility and 

doesn’t capture the variation of volatility to a larger extent. This finding is quite 

natural considering the high values of coefficients of weekly and monthly averages of 

realized variance. Realized Jump GARCH on the other hand captures the variation 

significantly better although its forecasts are slightly upwards shifted. 

Figure 5.1 Comparison of out-of-sample forecasting performances PX 

 
Source: Authors computations. 
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Table 5.2 Summary of model estimations PX 

The upper part of the table includes results of in-sample estimation. Each model is presented with realized measures used. The summary of 

estimation presents coefficient values, robust standard errors and values of t-statistic. The lower part of the table contains evaluation of out-of-

sample forecasts (Mincer-Zarnowitz test and Mean Square Errors). 

  GARCH    Realized GARCH   Realized GARCH   Realized GARCH   Realized Jump GARCH   HAR-RV   HAR-RV-CJ 

 
      

 
rv 
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tsrv 

 
c,j 
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coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

α0 0,019 0,004 4,86 
 

0,191 0,020 9,79 
 

0,200 0,024 8,51 
 

0,175 0,019 9,01 
 

0,200 0,024 8,50 
        α1 0,119 0,013 9,08 

                        β 0,863 0,012 73,95 
 

0,675 0,024 28,57 
 

0,658 0,049 13,53 
 

0,673 0,027 24,66 
 

0,619 0,027 22,82 
        γ 

    
0,626 0,047 13,42 

 
0,613 0,071 8,60 

 
0,643 0,056 11,45 

 
0,695 0,048 14,43 

        γJ 

                
0,114 0,033 3,42 

        ξ 

    
-0,327 0,015 -21,45 

 
-0,355 0,017 -21,33 

 
-0,293 0,015 -19,48 

 
-0,363 0,017 -21,43 

        φ 

    
0,470 0,017 27,22 

 
0,503 0,017 30,09 

 
0,460 0,016 28,68 

 
0,482 0,017 28,90 

        τ1 

    
-0,015 0,007 -2,27 

 
-0,020 0,007 -2,71 

 
-0,015 0,007 -2,19 

 
-0,022 0,007 -3,01 

        τ2 

    
0,062 0,004 16,26 

 
0,060 0,006 10,74 

 
0,055 0,004 14,17 

 
0,054 0,004 15,26 

        c 
                    

-0,185 0,031 -5,91 
 

-0,305 0,070 -4,34 

β
(d)

 

                    
0,280 0,036 7,79 

    β
(w)

 

                    
0,391 0,050 7,76 

    β(m) 

                    
0,227 0,050 4,54 

    βC
(d)

 

                        
0,296 0,033 8,87 

βC
(w)

 

                        
0,313 0,049 6,39 

βC
(m)

 

                        
0,176 0,055 3,22 

βJ
(d)

 

                        
-0,065 0,068 -0,95 

βJ
(w)

 

                        
0,246 0,097 2,54 

βJ
(m)

 

                        
0,155 0,123 1,26 

l(r)  -1885,4 
   

-1873,3 
   

-1870,5 
   

-1877,0 
   

-1857,1 
          l(r,x)  

    
-1900,9 

   
-1952,6 

   
-1889,1 

   
-1990,7 

          R2                                         59,40%       60,68%     

Mincer and Zarnowitz test 

α -0,119 
   

0,210 
   

0,119 
   

0,243 
   

0,156 
   

0,362 
   

0,340 
  β 0,519 

   
0,475 

   
0,560 

   
0,474 

   
0,518 

   
0,423 

   
0,458 

  R2 9,53%       12,35%       21,92%       9,90%       19,93%       4,13%       4,11%     

MSE 0,643       0,077       0,078       0,089       0,079       0,028       0,028     

Source: Authors computations. 
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5.2 WIG 20 Index 

5.2.1 GARCH models 

The summary of estimation results of the Warsaw stock market index WIG is 

presented in Table 5.4. Discussion of results will be done in similar way as in case of 

PX; therefore, we will first focus on the results of GARCH models. First, the 

GARCH(1,1) model was estimated in order to provide benchmark for other types of 

GARCH models. As in previous case, GARCH and ARCH coefficients are 

significant revealing strong dependence in conditional variance. The estimation of the 

Realized GARCH models shows that the inclusion of realized measures into the 

GARCH framework provides additional significant information. For all three realized 

measures, we obtained significant   coefficients and their value was approximately 

the same. The values of partial log-likelihoods show that the Realized GARCH 

models fit the data better than the standard GARCH(1,1). In all three specifications, 

significant coefficients of leverage function show the asymmetric reaction of 

volatility to negative shocks. 

The Realized Jump GARCH provides additional information about the contribution 

of the jump variation to the conditional variance. As in case of PX, value of the 

coefficient of the realized measure of jump variation is significant. This again 

suggests the importance of jumps in volatility modeling. As in previous case, values 

of log-likelihood function don’t show improvement of fit by the Realized Jump 

GARCH. Possible explanation can be found in percentage of days with occurring 

jumps which is significantly lower than in the case of the PX Index. This finding 

even reinforces conclusions resulting from the case of PX Index. Jumps provide 

significant information which has due to the high level of information aggregation 

limited implications.  

Lower panel of Table 5.4 provides the evaluation of out-of-sample forecasts 

calculated on the basis of rolling samples starting on 14.2.2011. Forecasting 

performances of the Realized GARCH models and of the Realized Jump GARCH 

model follow similar pattern as in case of the PX Index. Again,    of Mincer-

Zarnowitz test is the highest for the Realized Jump GARCH. Similarly, values of 

coefficients suggest that the Realized Jump GARCH provides the best forecast. 

Evaluation in terms of MSE suggests that forecasts of the Realized GARCH models 

and the Realized Jump GARCH outperform those of the standard GARCH(1,1). MSE 

of the Realized GARCH and the Realized Jump GARCH forecasts are similar 

although MSE of the Realized GARCH specification with      are signicantly lower 

(in terms of Diebold-Mariano test statistic – presented in Table 5.3). But on the other 
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hand, the volume of variation captured by the Realized Jump GARCH is significantly 

higher compared to the specification with     , therefore we suggest that the 

Realized Jump GARCH provides the best forecasts compared to other GARCH based 

models.  

Table 5.3 Diebold and Mariano test statistics WIG 

Diebold - Mariano 
test statistics:    
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GARCH    62,66 61,28 58,32 57,03 59,35 59,31 

Realized GARCH -62,66   -0,91 2,77 0,08 4,91 4,89 

Realized GARCH -61,28 0,91   3,13 0,43 5,31 5,30 

Realized GARCH -58,32 -2,77 -3,13   -3,73 3,27 3,24 

Realized Jump GARCH -57,03 -0,08 -0,43 3,73   5,39 5,49 

HAR-RV -59,35 -4,91 -5,31 -3,27 -5,39   -0,17 

HAR-RV-CJ -59,31 -4,89 -5,30 -3,24 -5,49 0,17   

 Source: Authors computations. 

 

5.2.2 HAR models 

The summary of estimation of HAR-RV and HAR-RV-CJ models with logarithmic 

specification is presented in column 6 and 7 of Table 5.4. In case of the HAR-RV 

model, we can see similar results as in case of the PX Index: all coefficients are 

significant. The largest weight is attributed to the weekly average realized variance. 

The estimation of the HAR-RV-CJ model provides significant coefficients for the 

continuous sample path of volatility in all investment horizons. Interestingly, the 

significant coefficients are obtained also for daily and weekly jump variation 

component. The decomposition of volatility increases    only by 0,13%. This 

suggests similar results as in case of the GARCH models estimation. Jumps provide 

significant information about future volatility but its implications are rather limited. 

The out-of-sample forecast was done in the same way as in case of PX starting on 

8.2.2011. The comparison favors the performance of Realized GARCH models to 

HAR models. In terms of    of Mincer-Zarnowitz test, Realized GARCH models and 

the Realized Jump GARCH model outperform both specifications of HAR models. 

Figure 5.2 provides comparison of forecasting performances of the GARCH(1,1), the 

Realized Jump GARCH and the HAR-RV-CJ with respect to the observed measure 

of volatility –the realized volatility. As the forecast period is shorter due to the shorter 

available dataset, the superiority of the Realized Jump GARCH is graphically less 

obvious. Generally, we can say the Realized Jump GARCH model captures more of 
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variation of volatility compared to HAR models and significantly better than the 

standard GARCH(1,1) model.  

Figure 5.2 Comparison of out-of-sample forecasting performances WIG 

 Source: Authors computations. 
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Table 5.4 Summary of model estimations WIG 

The upper part of the table includes results of in-sample estimation. Each model is presented with realized measures used. The summary of 

estimation presents coefficient values, robust standard errors and values of t-statistic. The lower part of the table contains evaluation of out-of-

sample forecasts (Mincer-Zarnowitz test and Mean Square Errors). 

  GARCH    Realized GARCH   Realized GARCH   Realized GARCH   Realized Jump GARCH   HAR-RV   HAR-RV-CJ 

 
      

 
rv 

 
bpv 

 
tsrv 

 
c,j 

 
RV 

 
C,J 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

α0 0,000 0,001 0,00 
 

0,122 0,021 5,88 
 

0,143 0,024 5,86 
 

0,091 0,021 4,38 
 

0,132 0,025 5,30 
        α1 0,043 0,006 6,89 

                        Β 0,957 0,005 177,14 
 

0,684 0,028 24,07 
 

0,671 0,030 22,45 
 

0,691 0,023 30,60 
 

0,644 0,033 19,61 
        Γ 

    
0,632 0,061 10,32 

 
0,672 0,065 10,34 

 
0,654 0,061 10,78 

 
0,698 0,067 10,43 

        γJ 

                
0,119 0,038 3,12 

        Ξ 

    
-0,207 0,021 -9,73 

 
-0,226 0,023 -9,93 

 
-0,153 0,021 -7,21 

 
-0,238 0,023 -10,45 

        φ 

    
0,476 0,022 21,54 

 
0,465 0,022 21,23 

 
0,449 0,023 19,36 

 
0,476 0,022 21,97 

        τ1 

    
-0,019 0,008 -2,48 

 
-0,021 0,008 -2,75 

 
-0,028 0,008 -3,31 

 
-0,022 0,008 -2,78 

        τ2 

    
0,060 0,005 11,59 

 
0,055 0,005 10,19 

 
0,048 0,005 9,83 

 
0,059 0,005 11,39 

        C 
                    

-0,110 0,023 -4,81 
 

-0,152 0,045 -3,39 

β
(d)

 

                    
0,218 0,048 4,52 

    β
(w)

 

                    
0,577 0,071 8,13 

    β(m) 

                    
0,156 0,046 3,43 

    βC
(d)

 

                        
0,206 0,046 4,45 

βC
(w)

 

                        
0,549 0,071 7,79 

βC
(m)

 

                        
0,153 0,051 3,02 

βJ
(d)

 

                        
0,099 0,042 2,38 

βJ
(w)

 

                        
0,177 0,075 2,37 

βJ
(m)

 

                        
0,041 0,092 0,44 

l(r)  -1076,8 
   

-1068,1 
   

-1067,6 
   

-1068,0 
   

-1058,6 
          l(r,x)  

    
-982,1 

   
-995,0 

   
-944,5 

   
-986,1 

          R2                                         75,75%       75,88%     

Mincer and Zarnowitz test 

α -0,578 
   

0,121 
   

0,131 
   

0,188 
   

0,115 
   

0,246 
   

0,237 
  Β 0,761 

   
0,530 

   
0,511 

   
0,460 

   
0,528 

   
0,255 

   
0,276 

  R2 10,56%       19,40%       17,78%       10,39%       20,14%       2,44%       2,93%     

MSE 0,762       0,012       0,012       0,008       0,013       0,004       0,004     

Source: Authors computations. 
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5.3 BUX Index 

5.3.1 GARCH models 

Last index that was included in our dataset is the Hungarian BUX. Upper panel of 

Table 5.6 contains the summary of estimation results. The estimates of coefficients of 

the benchmark model GARCH(1,1) presented in first column are highly significant. 

As in previous cases, value of beta coefficient shows strong influence of past estimate 

of the conditional variance in estimating its current levels. The estimation of the 

Realized GARCH models results in significant coefficients for all realized measures. 

Values of coefficients are approximately the same. We can also see that compared to 

the GARCH(1,1), coefficient of lagged conditional variance   decreases. This change 

is caused by the fact that realized measure of volatility provides additional 

explanatory power relevant for derivation of current level of the conditional variance. 

The Realized GARCH models also account for higher values of partial log-likelihood 

function for all three specifications.  

Estimation of coefficients of the Realized Jump GARCH suggests significant role of 

jumps, as the coefficient   is significant. As in case of WIG, the number of the days 

with occurring jumps is quite low. This could be one of the reasons why, also in case 

of BUX, log-likelihood function doesn’t bring in case of the Realized Jump GARCH 

significant improvement of the model fit. 

Table 5.5 Diebold and Mariano test statistics BUX 

Diebold-Mariano 
test statistics:    
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GARCH    76,40 73,57 71,09 69,03 72,28 72,20 

Realized GARCH - RV -76,40   0,46 2,13 -0,41 5,87 5,80 

Realized GARCH - BPV -73,57 -0,46   1,80 -0,50 5,28 5,21 
Realized GARCH – 
TSRV -71,09 -2,13 -1,80   -4,93 5,29 5,23 

Realized Jump GARCH -69,03 0,41 0,50 4,93   9,68 9,63 

HAR-RV -72,28 -5,87 -5,28 -5,29 -9,68   -0,83 

HAR-RV-CJ -72,20 -5,80 -5,21 -5,23 -9,63 0,83   

Source: Authors computations. 

Lower panel of Table 5.6 contains evaluation of out-of-sample forecasts constructed 

on rolling sample basis starting on 4.12.2012. In terms of Mincer-Zarnowitz test, 

results suggest that the Realized Jump GARCH outperforms other GARCH models in 

terms of    but also in terms of other coefficients. MSE of forecasts suggest that the 

GARCH(1,1) is outperformed by both Realized GARCH and Realized Jump GARCH 
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models. Differences between MSE of Realized GARCH and Realized Jump GARCH 

models are similar although MSE of specification with      is significantly lower. 

(Table 5.5) Although forecasting performance of Realized GARCH models and the 

Realized Jump GARCH model is comparable, it seems that accounting for jumps has 

some beneficial effect on forecasting. 

 

5.3.2 HAR models 

The estimation of the HAR-RV model provides us with significant coefficients for all 

time horizons. Compared to previous indices, the largest contribution of current 

volatility is given by the short-term horizon – the daily lagged realized variance. 

Coefficients of the HAR-RV-CJ model suggest interesting result. Meanwhile the 

coefficient of the continuous sample path of volatility are highly significant, 

coefficients of the jump variation are insignificant. As mentioned previously, the 

number of days in our dataset, when jumps occurred, is compared to other indices 

quite small. Also, the decomposition of volatility doesn’t increase    of regression 

which suggests that volatility decomposition for purpose of HAR modeling doesn’t 

provide improvement of the model.  

Lower panel of Table 5.6 shows evaluation of forecasts and suggests similar findings 

as in case of previous indices. The Realized Jump GARCH model outperforms the 

GARCH(1,1) and the HAR-RV-CJ especially in terms of variation of volatility it 

captures. Although the forecast is slightly upwards shifted, it accommodates changes 

in volatility quite well. The HAR-RV-CJ on the other hand rather “smoothes” the 

time-series and fails to accommodate the fast changes in volatility levels. 

Figure 5.3 Comparison of out-of-sample forecasting performances BUX 

 

Source: Authors computations. 
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Table 5.6 Summary of model estimations BUX 

The upper part of the table includes results of in-sample estimation. Each model is presented with realized measures used. The summary of 

estimation presents coefficient values, robust standard errors and values of t-statistic. The lower part of the table contains evaluation of out-of- 

sample forecasts (Mincer-Zarnowitz test and Mean Square Errors). 

  GARCH    Realized GARCH   Realized GARCH   Realized GARCH   Realized Jump GARCH   HAR-RV   HAR-RV-CJ 

 
      

 
rv 

 
bpv 

 
tsrv 

 
c,j 

 
RV 

 
C,J 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

 
coeff. s.e. t-stat 

α0 0,011 0,003 3,79 
 

0,194 0,023 8,49 
 

0,170 0,020 8,54 
 

0,177 0,084 2,11 
 

0,160 0,023 7,08 
        α1 0,076 0,008 9,83 

                        β 0,913 0,009 98,49 
 

0,549 0,031 17,97 
 

0,574 0,026 22,37 
 

0,537 0,108 4,95 
 

0,552 0,030 18,21 
        γ 

    
0,868 0,066 13,12 

 
0,815 0,037 21,93 

 
0,955 0,315 3,03 

 
0,840 0,060 14,08 

        γJ 

                
0,126 0,032 3,99 

        ξ 

    
-0,243 0,016 -15,35 

 
-0,227 0,017 -13,20 

 
-0,203 0,027 -7,43 

 
-0,226 0,017 -13,39 

        φ 

    
0,468 0,021 22,68 

 
0,471 0,021 22,85 

 
0,437 0,052 8,49 

 
0,476 0,019 25,35 

        τ1 

    
-0,029 0,006 -5,28 

 
-0,028 0,006 -4,65 

 
-0,028 0,005 -5,57 

 
-0,027 0,005 -5,18 

        τ2 

    
0,053 0,004 14,58 

 
0,052 0,004 13,61 

 
0,044 0,004 12,25 

 
0,052 0,004 14,31 

        c 
                    

-0,108 0,024 -4,46 
 

-0,190 0,032 -5,91 

β
(d)

 

                    
0,389 0,040 9,62 

    β
(w)

 

                    
0,295 0,051 5,78 

    β(m) 

                    
0,238 0,039 6,10 

    βC
(d)

 

                        
0,364 0,041 8,97 

βC
(w)

 

                        
0,310 0,054 5,73 

βC
(m)

 

                        
0,219 0,042 5,22 

βJ
(d)

 

                        
0,039 0,052 0,75 

βJ
(w)

 

                        
0,069 0,100 0,69 

βJ
(m)

 

                        
0,081 0,094 0,85 

l(r)  -1940,6 
   

-1916,3 
   

-1916,6 
   

-1922,9 
   

-1925,8 
          l(r,x)  

    
-1632,1 

   
-1686,8 

   
-1547,7 

   
-1688,3 

          R2                                         68,22%       68,18%     

Mincer and Zarnowitz test 

α -0,336 
   

0,190 
   

0,197 
   

0,246 
   

0,175 
   

0,243 
   

0,251 
  β 0,615 

   
0,484 

   
0,484 

   
0,455 

   
0,515 

   
0,516 

   
0,500 

  R2 12,38%       15,52%       14,02%       14,38%       15,75%       9,38%       9,12%     

MSE 0,750       0,032       0,031       0,025       0,033       0,012       0,012     

Source: Authors computations. 



 

6 Conclusion  

The present thesis focuses on application of realized measures of volatility in 

volatility model estimation and volatility forecasting in case of three Central and 

Eastern Europe stock market indices: PX Index (Prague Stock Exchange), WIG 20 

Index (Warsaw Stock Exchange) and BUX (Budapest Stock Exchange). Our dataset 

includes high-frequency one-minute and five-minute data, which allows investigation 

of the applicability of various realized measures in different groups of volatility 

models: GARCH models and HAR models.  

The main motivation of this thesis was to explore the impact of jumps in price 

process to the future volatility of the stock market index. Despite the fact that many 

studies have confirmed the importance of jumps in a price process to the future 

volatility of a single asset, in the case of the stock market index, the role of jumps 

remains unclear. The natural expectation would suggest that the role of jumps in 

aggregated information (stock market index) would be lower relative to the single 

asset, as the individual jumps may not be apparent on the aggregate level. On the 

other hand, arrivals of new information with macroeconomic nature could induce 

jumps in large portion of constituent stocks and be apparent even on an aggregate 

level. To sum up, the aim of this thesis is to find out whether jumps in a price process 

of the stock market index have an impact on its future volatility and whether 

accounting for the jump component of volatility improves its forecasting.  

In previous chapters, theoretical backgrounds of realized measures were presented. 

After the initial price process setup, the primary attention was dedicated to 

decomposition of return process, which allowed proper definition of quadratic 

variation and derivation of realized variance - realized measure, which enabled us to 

construct ex-post non-parametric estimates of volatility. Initial framework which 

assumed continuous sample path of price process was further extended and 

discontinuities caused by jumps were taken into account. Such approach enabled us 

to extend the portfolio of realized measures used in this thesis with bipower variation 

- realized measure robust to jumps. The former concept together with methodology 

proposed by Barndorff-Nielsen and Sheppard (2006) then enabled us to statistically 

distinguish the continuous part and jump component of volatility.  

The primary attention was dedicated to the applicability of realized measures within 

GARCH and HAR frameworks. GARCH models offer a very popular and flexible 
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framework that has been recently extended by Hansen (2011), who proposed the 

Realized GARCH framework. This modification enables inclusion of different 

realized measures into the standard GARCH framework. Baruník and Vácha (2012) 

further develop the former concept and introduce the Realized Jump GARCH model, 

which enables incorporation of both measures of integrated variance and jump 

variation. HAR models proposed by Corsi (2004) directly build on the usage of 

realized measures and explain the current level of volatility by volatilities over 

different time horizons (daily, weekly and monthly). This basic HAR framework was 

extended by Andersen (2007), who incorporated decomposition of volatility into its 

continuous sample path of volatility and jump component. 

Eventually, estimation of the portfolio of volatility models enabled us to answer the 

question proposed in the title of this thesis: Can decomposition of volatility improve 

its forecasting? Before we give a clear answer, we will briefly discuss estimation 

results and comment on them. First, estimation of Realized GARCH models shows 

significant improvement in all aspects of estimation compared to standard 

GARCH(1,1). Our expectation that inclusion of realized measures into the GARCH 

framework extends explanatory power and goodness of fit was confirmed across all 

data samples. Moreover, estimation of Realized Jump GARCH revealed, also across 

all datasets, significant coefficients of realized measures of jump variation. This 

finding is indeed interesting, as the price process of index suffers from a higher level 

of information aggregation that would suggest rather low importance of jumps. 

Although the significance of coefficients suggests that jumps significantly contribute 

to the volatility of stock indices, in terms of goodness of fit the message remains 

unclear.  

Estimation of HAR-RV and HAR-RV-CJ provided similar findings. In the case of 

PX Index and WIG 20 Index, jump components were significant. In case of BUX, 

these coefficients were insignificant. This suggests similar findings to those sketched 

above. Jumps matter, but only to a certain extent.  

Comparison of an out-of-sample volatility forecast revealed that forecasting 

performance of Realized GARCH and Realized Jump GARCH models is superior to 

forecasts provided by HAR-RV and HAR-RV-CJ models. Generally, Realized 

(Jump) GARCH models are able to explain more of volatility variation and 

accommodate moves in volatility levels. HAR models, on the other hand, fail to do 

so. Although their forecasts capture the main volatility trends, they fail to 

accommodate steep changes in volatility and do not capture the variation of volatility 

to a larger extent. We claim that this finding is quite natural considering the high 
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values of coefficients of weekly and monthly averages of realized variance, which 

imply the impossibility to accommodate fast changes in volatility levels.  

To provide a reader with an answer from the title of this thesis: Can decomposition of 

volatility improve its forecasting? Based on evidence from three Central and Eastern 

Europe stock market indices, we can conclude that decomposition of volatility brings 

certain improvement to its forecasting using Realized Jump GARCH models. On the 

other hand, these improvements are rather small, and Realized Jump GARCH 

provides comparable or only slightly better forecasts than Realized GARCH models.  
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