Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Ondfej Kupka

Cider - An Event-driven Continuous
Integration Server

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Filip Zavoral, Ph.D.
Study programme: Computer Science

Specialization: Management of
Computer Systems

Prague 2014

I would like to express my gratitude to Filip Zavoral for many pieces of advice,
which helped me to carry out this thesis. I would also like to thank all the teachers
and fellow students that I met during my studies and who were inspiring and
motivating me to continue working.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ... date signature of the author

Néazev prace: Cider - An Event-driven Continuous Integration Server
Autor: Ondfej Kupka
Katedra: Katedra softwarového inzenyrstvi

Vedouci bakalaiské prace: RNDr. Filip Zavoral, PhD., Katedra softwarového
inzenyrstvi

Abstrakt: Profesiondlni vyvoj software vyzaduje robustni vyvojovy proces. Pfti
implementaci vybraného procesu je casto zapotiebi zintegrovat nékolik vyvojai-
skych nastroju ¢i sluzeb. Pi{ navrhu integrace je potieba rozhodnout predevsim
jak propojit dané sluzby tak, aby bylo celé feseni snadno spravovatelné a rozsititel-
né do budoucna. V této praci nejprve definujeme modelovy vyvojovy proces
zahrnujici audit kodu a automaticke testovani zmén. Poté navrhujeme, jak
systémy optimalné propojit pro dany proces. Reseni je zalozené na distribuci
udélosti mezi nastroji. To dovoluje nepropojovat systémy piimo a nechédva pros-
tor pro budouci rozsiteni. V dalsi casti prace se snazime implementovat zvolené
feSeni za pouziti existujicich systému. Protoze optimalni systém pro testovani
zmén nebyl nalezen, piichazime s vlastni implementaci.

Klicova slova: vyvoj software, integrace néstroju, automatické testovani zmén

Title: Cider - An Event-driven Continuous Integration Server

Author: Ondiej Kupka

Department: Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, PhD., Department of Software Engineering

Abstract: A solid workflow is necessary when developing software professionally.
Manual integration of multiple services has to be often performed when a custom
development process is chosen. It must be decided how to connect the tools to-
gether so that they are not tightly coupled so that the solution is scalable from
the administrative point of view. We present a model development workflow
incorporating code review and build automation. Then we propose how to inte-
grate the services in what we believe is the optimal way. The chosen approach is
based on the publish-subscribe communication pattern that makes the services
decoupled to some extent and also makes it simple to add more services in the
future. Having the optimal integration process outlined, we evaluate some of
the existing continuous integration servers that could be potentially used for the
chosen workflow. After finding no fitting system, we propose and implement a
build server that integrates seamlessly with other development tools.

Keywords: development workflow, event-driven integration, build automation

Contents

[1_Introduction 4
ey Cj_d 6

et Development Workflow 6

2.2 Modeling the Svstem of Integrated Serviced 9

Anatomy of the Patch Verification Phas
E 3.3 Anatomv of a Test Run o o oo 12

E 3.4 Testing Environment Managementl 12

ing Inbound Traffid 33

Mmmmimﬂ.aiﬁnm.lmpﬁm&mﬁam 33

4.6.1 The Communication Platform and

the Client Library 34
.62 Shared Communication Mediuml 35
[L7_The Agents Manager Implementatiod 37
4.8 Summarvl 38

Prototype lgglggﬁn;tatigﬂ 39
Bl Target Workflowl 39

5.2 Tareet Workflow Implementation 39

5.3 Continuous Integration Server Prototypd 40
n.4 MeéEa §é£§;5§§ 42

541 PubSubl 42
Hh.42 R PA . . 42
h.4.3 Logging 44
i 44
45
45
46
50

51
51
51
51
52
52
92
52
52

54

55

56

58
o8
o8

59
59
60

1. Introduction

When developing software, the act of writing code is just one of the stages in the
development pipeline, which represents the life cycle of a change that is happening
in the project. Feature or architecture planning can and should precede coding
and code review can be and often is one of the stages that follow. When the
change reaches the final stage of the pipeline, it is ready to be released.

The trend nowadays is to release often and to release fast so that new fea-
tures and bug fixes can be delivered to the client quickly. In other words, the
development pipeline is optimised for low latency and high throughput. That
requires superior process and tools so that the changes can be pushed through
the pipeline rapidly and repetitively without harming code quality. Techniques
such as automated testing, continuous integration and continuous deployment are
often incorporated to make such a process possible.

Continuous integration (CI) is a practice where developers integrate their
changes often, usually multiple times a day, to make the integration phase easier
or at least less painful by lowering the probability of large merge conflicts or
huge incompatible functional changes [7]. By exchanging code changes often, the
developers limit to what extent their development source trees can diverge.

To be able to use continuous integration efficiently, a new tool called continu-
ous integration server (CIS) is usually adopted. The task of this system is simple
- every time a code change is about to be integrated, the project is built and the
automated tests are run to give the developers quick feedback.

Going back to the notion of development pipeline, automated testing is again
just yet another stage in the pipeline and the continuous integration server is just
one of the services that are being used to govern the whole process. The list of
other services participating in the pipeline often includes an issue tracker, a code
hosting service and a code review system.

These services have to communicate with each other to make decisions. Since
the development process is often custom-made to fit the development team’s
needs, it may be impossible to adopt a complete solution. Then all the tools
have to be chosen one by one and integrated manually. This brings additional
requirements upon the components - they must not only fulfill their respective
roles perfectly, but they must be as well able to communicate with each other
seemlessly and flexibly enough so that any custom workflow can be easily imple-
mented. And this is where many current systems are not sufficient.

This lack of proper integration support is apparent in many continuous inte-
gration servers in use today as well. This is closely related to the original intended
role of these systems. While many continuous integration systems are trying to
embrace as much functionality as possible, supporting this idea by introducing
plugins, and thus making the system more or less extendable, we believe that
this is an anti-pattern and actually exactly the opposite is the right solution.
The continuous integration server should not and cannot be driving the whole
development process. It should support the process as much as possible, but only
where it fits its original purpose. For this reason we believe a continuous integra-
tion server should merely export functionality for other development tools that
are driving the process, such as the code review server. To be able to work in this

manner, the system must be naturally able to communicate with other compo-
nents as it is equally important to being able to run automated tests themselves.
The communication shall be event-based because that is a recognized mechanism
for making multiple components decoupled from each other.

Looking back at the development process as a whole and all the development
tools that govern it, it is apparent that the event-based communication pattern of
collecting events and reacting to them is not restricted to the continuous integra-
tion server only. It is a pattern that appears throughout all software development
services when custom integration is necessary. For this purpose a general commu-
nication platform is needed that can be used to handle action-reaction relations
between various development tools in a manageable manner that, as already men-
tioned, keeps the components as decoupled as possible.

The goal of this thesis is thus to design such a communication platform and
then use it to implement a proof-of-concept continuous integration server that
would seemlessly integrate with other development tools. Unlike many continuous
integration servers in use today, the proposed server shall completely hide its
internal structure and export its functionality as a service for other development
tools to use.

The following chapter contains the definition of the development workflow
that is to be used as the chosen exemplar development process. The workflow
is explained and analysed, which leads to the list of functional requirements for
both the development tools and the integration platform that is to be used to
interconnect the development services being used.

In the third chapter we evaluate some of the existing continuous integration
servers against the specified functional requirements.

In the fourth chapter we discuss the optimal development platform in more de-
tails. The architecture for the new continuous integration server as well as the in-
tegration platform is proposed. Interesting design and implementation challenges
and decisions are discussed.

The fifth chapter is focused on the prototype implementation of the proposed
solution. It is explained how to implement a real workflow using the communica-
tion platform primitives and the prototype CI server implementation. The whole
system is then benchmarked.

The thesis ends with a conclusion listing what was achieved and what can be
further improved.

2. Problem Definition and
Analysis

The services integration problem was outlined in the introduction. This chap-
ter contains the definition of a simple and clear development workflow, which is
then analyzed and the list of functional requirements is compiled for the contin-
uous integration server that takes part in that workflow as well as the services
integration platform as a whole.

2.1 Target Development Workflow

The workflow that was chosen as the model scenario is rather real and can be en-
countered in practice. Its main purpose is, however, to show what communication
patterns can be seen in the development tools. The workflow can be summarised
in the following way:

1. Developers work on the requested changes.

2. Once a developer is finished with his or her patch, he or she stages it for
code review and automated testing.

3. Once the patch is accepted by the reviewer and verified by the continuous
integration server, it is marked as ready to be released and it is merged into
the project source tree.

Now it is clear how the overall process looks like, but what is more important
is the actual data flow and exchange that is happening in the background between
the development services. In other words, what events happen in the system and
what actions are to be carried out to react to them? Table 2.1] lists the important
workflow events, Table then defines the actions that are to be taken upon
these events, Figure 2.l contains the flow diagram of the workflow.

There are some reactions listed in Table that were not mentioned before,
but it is not really important what these actions are. The patterns that they
express are much more important and that is what we will analyse later on.
Multiple events written in a single cell in Table means that all the events
must occur before the relevant action is triggered.

Table 2.1: Workflow events and their meanings

Event Description

patch.submitted | a new patch was submitted into the code review system
build.succeeded | the project was built successfully and the tests succeeded
build.failed the project failed to build or the automated tests failed
patch.accepted | the patch was accepted by the reviewer

patch.rejected | the patch was rejected by the reviewer

patch.merged the patch was merged into the project tree

Table 2.2: Desired reactions to various workflow events

Event

Action

patch

.submitted

Run automated tests to verify the
patch.

build.

succeeded

Annotate the patch in the code review
system so that the reviewer knows the
patch has been verified.

Upload the build artifacts into the arti-
facts store so that other developers can
access and use them.

build.

failed

Annotate the patch in the code review
system so that both the reviewer and
the author know the patch is not pass-
ing and that some alignments to the
code are necessary.

patch.

rejected

Notify the author of the patch that
some comments were added to his or
her patch and that it needs some align-
ments before it can be accepted.

build.
patch.

succeeded
accepted

Merge the patch into the relevant
source tree in the source code mana-
gement system.

patch

.merged

Rebuild all the projects that are de-
pending on the source tree that has just
changed.

Mark the relevant ticket as resolved in
the issue tracking system.

Deploy the updated branch into the
staging environment.

Figure 2.1: Workflow diagram

Developer inserts a patch

v

/patch.submitted/

\2

Run the tests

Y

Tests passed?

build.failed /

/ build.succeeded /

v

Review the code

Code accepted?

patch.rejected /

Accept the patch

v

/ patch.merged /

2.2 Modeling the System of Integrated Services

Once the workflow is defined, it must be implemented somehow. In our case we
would need to interlink the code review service and the continuous integration
service. To be able to easily think, speak and reason about this composite system,
it is useful to come up with some kind of abstract model that describes the
behaviour of the system in simple terms, yet accurately.

Assuming that all the events are happening and are being processed sequen-
tially, we can describe the whole system as a state machine. Let Sy, Sy,..., S, be
the sets of possible states of the development services being used. Then for the
state machine representing the whole system and its set of states S it must be
true that

SQSOX51X"'XS11

The state transition function can be defined using the chosen event-handling
actions, which naturally change the states of various components in the system.
It would be defined recursively using the changes imposed on particular com-
ponents in the same way the set of states is combined from the states of the
components.

Even though this way of describing the system may look artificial, it allows
us to express a few observations easily. Particularly the recursive way of defining
the system state has some interesting consequences, most importantly that there
is actually no global state directly shared between the component. The internal
component states compose the global system state and there is no state that exists
out of these local scopes. This leads to the observation that there is no need to
control these state transitions centrally as long as all the components get the same
complete information about what is happening in the system, which means that
no events are lost and they arrive into the components in the same order. This
guarantees that the local component state changes will always compose a correct
global state since all the components will make state transitions connected to the
same global change at the same time.

These observations are not particularly useful for analysing existing systems,
but they give us some hints on how a new system could be designed. If there
is an event-transporting middleware that provides the required semantics, the
rest can be implemented in some component-specific modules that also encap-
sulate the state relevant to that specific component (the components cannot be
stateless in general as apparent from Table - a patch is merged only after
build.succeeded and patch.accepted are detected, so certain history of events
that happened in the past must be kept in some cases).

For the sake of completeness it should be mentioned that going further and
pushing the event-distributing mechanism into the components is not desired.
As can be seen in Table 2.2 build.success event is important for the continu-
ous integration component itself as well as the code review component. Keeping
the routing information in the build server would be, however, a major mana-
gement and scaling issue, effectively breaking any encapsulation and isolation of
the system components.

2.3 Continuous Integration Server

We have shown how to describe the composite system of integrated development
tools using the notion of state machines. When an event is inserted into the sys-
tem, interested components can react to it somehow.

The same action-reaction relations can be found within continuous integration
servers as well. When a code change is inserted, multiple actions can be triggered.
When a project build is finished, notifications can be triggered or the whole
project deployed. From the global point of view, this is just another action-
reaction relation, although it is local to the CIS. The important point is, however,
that we cannot know in advance what events are only needed locally because there
can be other services added in the future that can be interested in these CI events.
This observation is used later.

We shall turn away from abstract descriptions now and discuss how the op-
timal continuous integration server and also the whole communication platform
should work and what the functional requirements are so that it can be really
used to implement the specified workflow.

2.3.1 Role of the Continuous Integration Server

First and foremost, we have to clearly describe the role of the server in the target
workflow to be able to identify the communication patterns and functionality the
server and the whole communication platform need to support not to keep adding
features that are actually redundant and already implemented in other parts of
the development stack.

Continuous integration servers, or actually any development services, can be
roughly divided into two groups by how they are approached and used - they
can act as standalone systems or they can be just services exporting some on-
demand functionality for other development tools to use. This seems like a very
raw distinction, but it is crucial. It heavily influences how much information
must be kept in the system and how much the system must know about its peer
development services. A standalone continuous integration server is usually inter-
nally organized around build jobs, which are basically some series of build steps
representing certain projects or project branches. When a project is supposed
to be tested, the relevant job is triggered and it assembles the project and runs
the tests, optionally showing some statistics like how often the job fails and what
was the last time it succeeded. On the other hand, when all that matters is to ve-
rify a patch posted into the code review system, all necessary input information
can come from the code review system and the continuous integration server can
simply return the test results, which are again stored in the code review system.
In this case the only data that needs to be kept in the continuous integration
server is more detailed data connected to the patch testing, e.g. the build and
testing output. The organization of projects is, however, kept in the code review
system, along with links into the continuous integration server. It also does not
make sense to generate some of the statistics the standalone servers organized
around jobs do since the patches are ariving randomly and they are not really
related to each other, they each have its own development pipeline. On the other
hand, if the whole system is inherently event-based, it is possible to just add

10

another component that collects events and generates these statistics.

In our chosen development workflow it is clear that the continuous integration
server fits into the category of on-demand continuous integration as a service.
That implies a few important points for the required functionality:

1.

There is no need for any job management capabilities. All the static infor-
mation required for a patch to be tested comes along with that patch. This
will usually be the address of the repository the patch is supposed to be
tested against. The tests and other static information for the continuous
integration server are stored in the repository as well.

. Even though there is no need for build jobs, there still must be a way how

to pass configuration into the test runs. This can be for example a database
URL to be used for the tests. A good practice is to use environment vari-
ables for that, hence there must be a way how to define environment vari-
ables on per-project and per-environment basis.

The server must be able to listen for events happening in the code review
server and vice versa.

. There is no need for any complex user interface, the links contained in the

code review server can lead to static web pages containing the build output,
or the output can be streamed to the user directly from the CIS.

2.3.2 Anatomy of the Patch Verification Phase

Even though the overall process was outlines in Table 2.2 it makes sense to
describe what is happening between the code review server and the continuous
integration server more explicitly. The following list describes the process in more
details, also incorporating the observations from the previous section:

1.
2.

Once a new patch is submitted, patch.submitted is emitted.

The continuous integration server integration login detects the patch and
fetches it from the code review system. The patch contains information
that clearly identifies the source tree the patch belongs to. For Git source
code management system this would be the repository URL and the branch
(or in general any reference) to test against.

. Since the repository contains all required configuration for the verification

step, it can be scheduled and run. This configuration contains the definition
of the environment where to run the tests as well as the relative path within
the repository to the script that runs the tests. Testing environments are
discussed in section 2.3.4

Once the verification step is finished and its output saved, build.succeeded
or build.failed is emitted. This can be as well joined into build.finished
that contains the results. In any case, the event emitted contains the link
to where the build output and results can be viewed.

. The code review server integration logic detects that a verification run has

finished and it annotates the relevant patch accordingly.

11

2.3.3 Anatomy of a Test Run

In the previous section the test run step is mentioned without any details. That
is, however, exactly the phase the continuous integration server takes care of.
The server must go through the following steps:

1. Parse the patch.submitted event to get all the necessary information from
it, particularly where to find the relevant source code repository.

2. Fetch the environment definition from the repository. Find or create the
testing environment fitting the project requirements.

3. Use the environment to run the specified script. Keep saving the script
output as the script is being executed.

4. Generate a link where the output can be accessed and emit build.finished
event containing the link together with the build and test results.

2.3.4 Testing Environment Management

Even though the previous section describes what the CI server should be doing
in details, there is still one non-trivial task that has not been discussed. It is the
step where the required environment for the test run is found and set up.

From the project build and test run perspective, the build and testing scripts
must be run on a host that is running the right operating system, having the re-
quired development tools and dependencies pre-installed (if they cannot be in-
stalled automatically before the test run itself). This list of dependencies together
with the environment variables to be set for the relevant scripts forms the testing
environment definition.

From the CIS perspective, given such an environment definition, the system
must be able to find or create the right environment and run the relevant scripts
there with the specified environment variables set. The system must be able to
manage these environments somehow. This task is usually approached from the
following two sides (existing systems are discussed in Chapter [3)):

Constant set of persistent environments A set of persistent long-lived en-
vironments is kept in the system and the environments are reused for the
test runs. This approach has zero test run initialization overhead since the
environments are simply always there and they are not shut down ever. On
the other hand, the test runs may modify the environments in a non-trivial
way, thus making them diverge and potentially break if the test scripts are
not written carefully. Also to manage all required versions or various soft-
ware packages on a single system may be problematic. Last but not least,
this does not scale since the environments are added and removed manually.

Dynamic on-demand environments The testing environments can be as well
created and set up on the fly as needed. When a test run is requested,
a brand new environment is created and it is again destroyed after the test
run is finished. This scales well and potentially saves resources, but it makes
the system much more complex. The positive aspect is then that the test
runs are always executing in a clean undamaged environment.

12

The answer to the question of which approach is better is: it depends. But it is
still rather simple: the persistent set of environments may make sense only when
the number of environments is small and all the scripts potentially running there
are known not to cause any undesirable side effects. This approach, however,
allows some bad practices, such as basing the environments on manually set up
physical machines. This can work, but it brings management problems and if
no configuration management is in place, the machines can simple crash or burn
and the whole process of setting up the environments must be, again manually,
repeated. If virtualization together with proper configuration management is
used, this approach is safe and fine.

On the other hand, if virtualization and configuration management are being
used, we are only a small step from being able to implement the on-demand
approach, which is better in almost all aspects:

e The test runs are executed in clean environments, which is a requirement
if we want a solid reproducible test results. Build failures caused by un-
predictable build environment are very undesirable since they are bringing
chaos into the process in the form of false negative build results.

e Untrusted scripts can be run in the environments since the possible harmful
system modifications are not persisted in any way.

e Only the resources that are required at the moment are allocated.

e [t is easy to do load balancing, replace faulty hardware and so on since we
can decide where to place the environment every time it is requested.

The on-demand approach is, however, not for free:

e [t requires more initial configuration involving virtualization and configura-
tion management. Virtual machine or container images must be prepared
in advance. This, however, pays off in the long term.

e Following the previous point, it must be noted that the virtualization soft-
ware can be expensive in case there is no free alternative supporting the
target operating system that is to be virtualized. Mac OS X does not have
very good support in any free virtualization framework, especially because
even virtualized it must run on Apple hardware because of legal reasons.
This may be a reason to mix the persistent and on-demand approach to-
gether.

To summarize the points mentioned, there is in the end not much management
and resources overhead incorporated in the on-demand approach. On the other
hand, it brings many benefits in the way it enforces reusable environments and
good practices in general. Some kind of mixed approach where some environments
are on-demand and some are persistent can be implemented in case the target
platform is very difficult or impossible to virtualize. The optimal system should
support this.

There is one more interesting and not immediately apparent problem affecting
the persistent approach. It is easier to create desired environments than to find

13

existing ones complying to the requirements. If we want to use a pool of persistent
environments, we either have to hardcode what environments are to be used with
what projects, or we need some kind of survey service or protocol that can be
used to ask the existing environments if they comply or not.

The mixed approach could be implemented by having a pool of environments
where some of the environments would be a meta environments implementing the
ability to create new environments. These environments, when queried, would
answer positively if they are able to create an environment complying with the
requirements. The environments management system could then query all the
environmets and transparently use a persistent one or an on-demand one since
the interface would be the same.

2.3.5 Functional Requirements

To conclude this section, we present the final list of functional requirements that
define the optimal continuous integration server. What is not required is also
explicitly mentioned. The list is built on the ideas mentioned in the previous
sections and it is strongly influenced by the fact that we are not aiming for an
all-embracing continuous integration server, but rather for one that acts as a
flexible service for other development tools.

1. Server actions are triggered by events inserted into the system. Manual test
runs make no sense unless they follows a code change. So there must be
an interface that can be used to insert relevant events into the system, or
rather a way how to allow the server to pick events that are of interest.

2. The events can come from various development tools. The variety can be
great, so it should be easy to teach the system to accept new kinds of events
it has not encountered before.

3. The server itself holds very little configuration associated with the test
runs themselves. The static configuration is kept in the project repository
as a configuration file. The only dynamic configuration mechanism that
must be supported is to be able to define environment variables for the test
runs on per-project and per-environment basis.

4. The server must be able to find or create an environment where the tests can
be run and that complies with the requirements of that particular project.
Static environment assignment is fine, but the dynamic on-demand ap-
proach is preferred.

5. The test output and results must be accessible under a URL.

6. When a test run is finished, an event is emitted that contains the test results
as well as the address where the output can be accessed. The system should
not directly insert the event into other development tools, it should merely
emit it and let other systems handle it if they are interested.

7. The system supports test runs on multiple platforms, possibly Linux, Mac
OS X and Microsoft Windows.

14

To be able to use or construct an event-based continuous integration server
and implement the desired development workflow, there must be a medium that
makes it possible to transport and route events between the development tools.
The continuous integration server should not be implementing this functionality
since it is not bound to continuous integration in any way. It is a general action-
reaction concept present throughout the whole system of development tools that
makes it possible to decouple the components from each other to some extent.

2.4 Development Tools Integration Platform

Custom-made development process is often implemented using multiple deve-
lopment tools that interact with each other. Some of the tools help to manage
the whole process by keeping important data inside of them (for example the issue
tracker), some may only export functionality for other tools to use, like the con-
tinuous integration server as described in our workflow. What is then necessary
is a communication mechanism that can be used to integrate these tools together.
A proper communication pattern must be chosen for every scenario. The follow-
ing patterns are generally supported across the development tools in one way or
another:

Request-Reply One component uses the remote API of another component to
get necessary information or trigger an action in the target system, usually
synchronously, for example to get the list of active user accounts. There is
a single source and a single destination component. Remote APIs following
the REST paradigm [4] (using HTTP as the transport protocol) are very
common these days.

Publish-Subscribe One component publishes events and other components can
pick the events and data they are interested in. The communication is hap-
pening asynchronously, there is a single source component and potentially
multiple destination components. Webhook [12] is a mechanism that is
commonly used today. When an event happens in the system, an HTTP
POST request is sent to the designated URL with the event details in the
request body. The weakness of this approach is that some systems only
support a single destination URL, so the event distribution step must be
implemented manually. Webhook is actually only addressing the last mile
problem (how to get the event into another system). There must be a mid-
dleware that can collect these POST requests and distribute the events to
the subscribed components.

Each of these patterns has its own place. It cannot be said that one of them
is wrong, the patterns can be only used in a wrong way. Request-reply makes
perfect sense when a response is expected, but it should not be used to cast data
to other components, because that is what publish-subscribe pattern is there for.

This observation seems trivial, but it is actually very important for integra-
tion of multiple development tools that we are discussing here. Only when a
response is expected, a direct remote API call shall be issued. This simple rule
also makes the components less coupled together since the event-emitting compo-
nent does not have to know all the destination components. The components are

15

always somehow coupled together because they must understand each other’s da-
ta model, but using publish-subscribe makes other components observe the source
component rather than the source component being the active participant. This
is making the whole communication process more transparent and easier to man-
age since the listening components can be added and removed without the source
component knowing anything [2].

2.4.1 Functional Requirements

When we analyse the target workflow, it is apparent that all the communication
that happens there is of the publish-subscribe communication pattern - the con-
tinuous integration server observing the code review tool, the code review tool
then waiting for the build results. That means that the integration platform
should support the publish-subscribe pattern no matter what.

Request-reply, however, is also extremely common and should not be missing,
so we shall list it among the patterns that are to be supported as well.

At the end it must be noted, though, that we cannot simply list the require-
ments without mentioning the development tools themselves. There must be
some support implemented in the tools to be able to integrate them. Particularly
they must somehow emit events when something significant happens. It does not
really matter in what manner this is implemented. A remote API must be also
available so that the workflow integration logic can access the tools and actually
perform the actions requested. This is not required if the event handler can be
implemented as a plugin directly in that particular development tool.

2.5 Summary

In this chapter we defined the model software development workflow. Then we
discussed how the optimal continuous integration server should work so that
the chosen workflow can be easily implemented. Since the development tools
themselves are not floating in the void and they need to be integrated, we also
discussed how the communication platform should look like from a very high-
level perspective since it is a crucial part when integrating multile components
together. The platform is discussed in more details in Chapter @]

In the next chapter we are going to describe some of the existing continuous
integration servers and evaluate them against our list of requirements.

16

3. Existing Continuous
Integration Servers

In this section we evaluate some of the existing continuous integration servers
against the requirements, extending and updating previous research conducted
on this topic [9]. The following systems were chosen for their popularity and
compliance with our requirements (or lack thereof):

e Travis CI
e Drone
e Jenkins

e Buildbot

3.1 Travis CI

Although open sourced, Travis CI is primarily a hosted continuous integration
server specifically architected to work closely with repositories hosted on GitHub
[10]. All that is necessary to start using Travis is to sign up and activate relevant
GitHub repositories. Travis will install hooks to detect changes and trigger builds.
It requires the repository to contain a file called .travis.yml that holds all
configuration for Travis.

Travis is written in Ruby and it uses RabbitM(Q message broker to scale and
make the components decoupled from each other.

3.1.1 Travis CI Build Lifecycle

Travis uses .travis.yml contained in the source repository to set up the build.
There are, however, many services in the background that take care of build
scheduling, log streaming and other tasks. The whole lifecycle of a build including
the components communication looks as follows:

Listener The first component is listening to changes happening on GitHub.
When a change is detected, a message is pushed onto RabbitM(@Q for other
interested components that want to process that event.

Hub Another component collects and routes events to the interested compo-
nents. For example it communicates with the notifications component,
which takes care of sending notifications. The hub also enqueues build jobs
and enforces Quality of Services.

Worker This component is responsible for running builds in a clean environment.
It uses predefined virtual machines that are always rolled back after the
build is finished so that they can be reused. Build output is streamed into
the logging component, build events are pushed back to the hub.

17

Logs This component receives build output and streams it into the web interface
while at the same time the output is being saved into the database. When
the build is finished, the complete log is pushed to Amazon S3.

Web This is the web application where users can configure and watch their
projects being built.

3.1.2 Evaluting Travis CI

Considering our system requirements, the positive aspects of Travis CI are as
follows:

e .travis.yml is used to define the build configuration, including the envi-
ronment that is to be used. This file is a part of the project repository.

e Every build is run in a clean virtual machine, making the builds easily
repeatable without any undesirable side effects.

e The build output is accessible through the web interface.

e Linux and Mac OS X are among the supported build platforms right now,
Windows support is a work in progress. Travis CI is open sourced, so
theoretically it can be deployed on premises. Then the limitation of the
paid tier can be to some extent avoided for the price of a private system
deployment and administration.

e Travis CI supports webhooks and many other post-build notifications. These
can be used to emit events to be shared with other development tools.

On the other hand, Travis CI cannot be used to build arbitrary patches.
A build can be triggered only by pushing a Git branch to GitHub or by sending
a pull request. Travis CI is tightly coupled with GitHub in this respect and no
other input sources are available.

3.1.3 Summary

Travis CI was among the first systems that appeared on the market that brought
some very interesting new ideas into continuous integration. Particularly that
there is a single file in the repository that holds the build specification. The
important point is that the file also specifies the environment that is necessary to
be set up for the build to work, and Travis CI takes care of automatic environment
creation and disposal.

Considering how Travis CI can cooperate with other tools, there is no problem
with the build output. Build logs can be accessed and post-build notifications
can be sent out. The main issue is that it is closely bound to GitHub on the
input side. No build can be triggered without a branch being pushed to GitHub.
An additional layer of indirection would be needed here.

Travis CI cannot be easily used as a service for other development tools. It
was built to work with GitHub and GitHub only. It works nicely when GitHub
pull request mechanism is being used for code review, but if that is not the case,
there is no way to align Travis CI for custom needs right now.

18

3.2 Drone

Drone is a continuous integration server that appeared recently [1]. Tt is written in
Go and it utilizes a new container-based virtualization platform for Linux called
Docker. That means that only Linux is supported as the environment for building
and testing projects. There is a hosted edition of Drone as well as an open source
edition. We discuss the latter one here.

Drone itself is largely inspired by Travis CI, which was discussed in the previ-
ous section. It also expects a special file called .drone.yml to be present in the
repository. Again, that file defines what environment to use and what command
to run. A modern web inteface is available for Drone, which can be as well used
to configure the build, for example to specify some secret build parameters.

Unlike Travis CI, which uses virtual machines for build environments, Drone
uses container-based virtualization, which is much more lightweight and allows
Drone to allocate less resources faster [13]. The negative side is that Drone only
supports environments that can be run on Docker, which are basically only the
Linux distributions running a recent version of Linux. This can change in the fu-
ture since recently Docker introduced a plugin architecture that makes it possible
to implement drivers for other virtualization software.

3.2.1 Evaluating Drone

Facing our list of requirements, Drone certainly incorporates some interesting
practices:

e As with Travis CI, the configuration is saved in the repository. Environ-
mental variables can be defined in .drone.yml or in Drone’s web interface.

e The build environments correspond to Docker images, which are similar to
virtual machine images. Container-based virtualization is, however, much
more efficient than the traditional hypervisor-based one. The containers
share the operating system kernel, so running a container is about setting
up a sandbox for processes rather than booting another operating system.

e The build output can be accessed using a modern web interface.

e As with Travis CI, many kinds of post-build notifications are available,
including webhooks.

Unfortunately there are facts that are making Drone fail to comply with our
list of requirements. As with Travis CI, Drone as of now only supports certain
code hosting services - GitHub support is implemented, BitBucket and GitLab
support is a work in progress. As of now there is no general mechanism how to
add support for more input sources. It is, however, very likely that it will be
added in the future. Also the fact that Drone is built on top of Docker basically
puts a hard limit on what target build platforms are supported. In this case it is
only Linux, for now.

19

3.2.2 Summary

Drone takes the ideas behind Travis CI one step further by using Docker. If Linux
is the only platform that is to be supported, Drone is almost certainly a better
choice than Travis, also because it is very easily deployable. Since it is written in
Go, the whole system is just a single statically-linked executable.

Unfortunately Drone is affected by the same set of issues as Travis CI. It
can emit events when a build is finished, but on the input it is closely bound to
the code hosting service. As of now there is no general mechanism that can be
used to build and test arbitrary patches.

3.3 Jenkins

Jenkins is a continuous integration server written in Java [3]. It involves a single
master server with multiple build slaves, which can run on Windows, or over SSH
on any system that supports it. No additional setup is necessary.

The system itself is very simple to use, as it is to install. The user is pro-
vided a web interface to control all aspects of the system including build slaves
management and build jobs definition. Jenkins supports plugins and there are al-
ready many of them, implementing support for various build steps and post-build
actions. There is even a plugin for implementing whole development pipelines.

For defining jobs there is a per-job configuration page where it can be set
up how the job is triggered, what the build steps are, and what notifications to
send out once the job is finished. A job can be triggered manually by clicking,
by using the RESTful API or by polling the code hosting service. A few code
hosting services are supported explicitly so that the webhooks set there can be
directed to Jenkins to automatically trigger builds. Since Jenkins supports job
chaining, a job can be also triggered after another job is finished.

3.3.1 Evaluating Jenkins

The following list summarises and extends the list of positive features:
e Extremely simple to set up.
e Simple to define jobs using the web interface.
e Support for multiple platforms.

e [t contains many plugins to perform advanced operations or talk to other
services.

e [t contains a full-fledged web interface to manage the whole system, includ-
ing a RESTful interface. The user can also watch his or her jobs being
executed, having the output streamed into your browser.

e The configuration is stored in XML files. It is possible to easily generate all
the configuration and automate many management tasks using the RESTful

APL

20

e There are plugins for almost anything, including the Libvirt plugin, which
can be used to virtualize build slaves instead of using physical machines.

However, comparing Jenkins to our list of requirements, severe limitations
and incompatibilities are uncovered:

e Jenkins is not really event-based in the sense that it would be possible to
insert events into the system and let it react. There is some support for
GitHub post-receive hooks that can trigger jobs connected to the relevant
repository, but otherwise the rest of the development tools must know ex-
actly what jobs to trigger. There is no support for any indirection, all
you can do is to directly manipulate Jenkins internals by using the remote
API. This makes working with Jenkins exactly the opposite of the service-
oriented approach that we proposed. This can be to some extent mitigated
by using custom plugins.

e Jenkins configuration is based on build jobs, which are configured using
the web interface. The way Jenkins is configured supports bad manage-
ment practices. It is much easier to use the web interface than to commit
the scripts into the project repository, and also by using the web inter-
face the build jobs themselves are not under version control, which is very
desirable.

e The build slaves are managed very statically. Labels can be used to assign
build slaves to jobs, but that is all there is to it. There is no environment
creation or discovery really. There are, however, plugins that implement
libvirt-backed build slaves, so virtualization can be used to create reusable
environments when needed.

e Since Jenkins is not really event-based, no implicit event is triggered when
a job is finished. All desired post-build behaviour must be explicitly written
into Jenkins right into the build job.

Not counting the list of requirements, there are other points that are making
Jenkins less suitable as the solution we are seeking;:

e The system is not particularly stable and consistent. Every operation is
accompanied by the fear of breaking the whole system. One can see an
exception basically any time. The project issue tracker is full of bugs, but
they are fixed only occasionally and many issues have been open for years.

e The system is in general not very consistent in the way jobs are configured.
This is mostly because of the plugins, which can each work in a slightly
different way.

e Even though the web interface is rather powerful, it is extremely ugly in its
design and implementation and it is slow.

21

3.3.2 Summary

Jenkins is a user-friendly system to use, but all the positive aspects are completely
overrun by the amount of bugs and inconsistencies.

Facing our requirements, Jenkins is exactly the system we are not looking
for, even though it complies to some extent. It is the standalone continuous
integration server type built around the notion of build jobs. The system includes
a lot of functionality implemented through plugins, but it is not flexible at all.
Once simple system, perhaps, was pushed to its limits by the need for advanced
functionality that is was not built for. Job chaining looks like one of the features
that was added later and even though it looks powerfull, in reality it brings more
problems than it solves.

Jenkins is an unstable and inconsistent system bloated with enormous number
of plugins of variable quality that should be avoided when possible.

3.4 Buildbot

Buildbot is not a complete continuous integration server. It is a framework that
can be used to implement continuous integration processes for custom workflows
[11]. The core idea is that the system should not impose any restrictions on what
can be achived with it, the user should merely use the framework to implement
his or her own processes.

A Buildbot instance comprises of a build master and some number of build
slaves. The system contains the following core components [§]:

Builders Build jobs are called builders in Buildbot. They specify what build
steps are to be run and what build slaves can be used for that.

Schedulers There must be a component that tells builders when to run. This
is the role of schedulers. They bind events and builders together. An event
can be simply a timeout that periodically triggers a builder, or it can be a
new patch submitted into the code review system.

Change sources Components taking care of inserting code change events into
the system are called change sources. Almost any known source control
management repository can act as a change source.

Status targets To send out notifications after the build job is finished, various
status targets can be specified, including IRC bots, mailers and a simple
web interface.

The idea is then that the Buildbot user will specify his or her own builders,
schedulers, change sources and status targets, binding them all together in a
custom way to implement the desired workflow. The user can achieve this by
using Python programming language. Since Buildbot is written in Python, the
configuration is simply imported when Buildbot is started and becomes a part of
the build master program.

22

3.4.1 Evaluating Buildbot

Buildbot is very close to what we consider the optimal system:

e The system is indeed very flexible and there are no obstacles for implement-
ing a custom workflow.

e The system can accept events by using either existing or custom change
sources and schedulers.

e The system can emit events by using either existing or custom status tar-
gets.

e Many build steps, schedulers, change sources and status targets are already
implemented. All the user has to do is to import relevant Python module.

Even though this looks very good, there are unfortunately other requirements
that are not that simple to fulfill with Buildbot:

e The build steps cannot be defined in the project repository, the configu-
ration is done in Buildbot itself. This breaks an important principle - the
build scripts should be written by the person developing the project and
they should be kept as close to the sources as possible. This is a good prac-
tice. This could be implemented in Buildbot, but it would require at least
custom change source and scheduler since these are the components that
are binding things together. Buildbot was not really built to dynamically
decide what steps to take based on the contents of the source repository.
Build steps are defined in the builder factory statically and loaded when
Buildbot starts.

3.4.2 Summary

Buildbot offers a lot of flexibility. It can be plugged into any existing system
on both input and output by writing custom change sources and status targets.
The way Buildbot is configured is, however, not compatible with our require-
ments. The configuration cannot be simply committed into the project source
code repository. It would not make sense since the configuration contains all the
relations between Buildbot components, including what build slaves to use for
build steps execution. That is not something that should be committed into the
repository.

3.5 Other Continuous Integration Servers

We also considered two commercial systems - Atlassian Bamboo and Thought-
Works Go. They both include a mechanism for triggering plans (in case of Bam-
boo) or pipelines (in case of Go) remotely. For Bamboo either repository polling
or direct API call is available, Go can be just notified about a change and it will
detect what pipelines are affected.

So, it is possible to insert push events into these systems, but that is not the
issue here. These systems are very powerful and complex, but that is not what

23

Table 3.1: Comparison of the existing continuous integration servers

Listens for | Set of input | Emits events
events on input | events is exten- | when finished
sible

Travis CI | YES NO YES

Drone YES YES* YES

Jenkins | YES* YES* YES*

Buildbot | YES YES YES
Configuration in | Output accessi- | Support for de-
repository ble sired platforms

Travis CI | YES YES NO

Drone YES YES NO

Jenkins NO YES YES

Buildbot | NO YES YES

is requested. They fall into the standalone system type bucket and they do not
fit well into the idea of a large composite distributed system of smaller pieces
doing their job well and exposing pieces of functionality to each other. These
systems cannot be asked to simply build a random patch since their role is to
manage whole releases of software packages. So even if they incorporated the
functionality that is requested, the philosophical clash is too big. For this reason
we do not analyse these systems in more details here.

3.6 Summary

In this chapter we evaluated some of the existing continuous integration systems.
There were basically two major requirements - the optimal system should be able
to communicate with its surroundings using events, and it should not incorporate
too much functionality that is not necessary. In other words, what we were looking
for was a system that could be used as a service for other development tools.

What was concluded is that there is no continuous integration server that
would comply with all the requirements. All of the existing solutions that we
discussed always partly comply and partly fail. The results of our comparison are
shows in Table Bl Systems having YES* in particular feature column implement
the feature partially and/or extra efford is necessary to make it working. The
table can be summarized in the following way:

e Travis CI comes with a single file placed in the project repository that keeps
the build configuration, including the environment definition. Unfortunate-
ly, Travis CI is tightly coupled with GitHub and cannot be really extended
easily to accept other input events to start build jobs.

e Drone builds on the same ideas as Travis CI, just making the build process
more efficient by using containers instead of virtual machines. On the other
hand, since Drone is using Docker to manage the build environments, it can
use only Linux as the build environment for now. Drone has the same set

24

of disadvantages as Travis, although contributors actively work on making
it more general-purpose than Travis CI.

e Jenkins support multiple source code management systems and Linux, Mac
OS X and Windows. The configuration is, however, kept in Jenkins, and
it is very static. The system is unreliable and inconsistent because of the
plugins from various contributors.

e Buildbot has an interesting architecture of change sources, schedulers, builders
and status targets, which is nicely event-based. On the other hand, the
project build configuration must be kept within Buildbot.

Since no optimal existing solution was found, the next chapter contains our
proposal of how to design a new continuous integration server and the related
communication platform so that the chosen development workflow can be imple-
mented easily.

25

4. Designing the Optimal
Development Platform

As concluded in the previous chapter, there is no existing continuous integration
server fitting the requirements entirely. In this chapter we try to address that fact
by proposing a new system that would suit the chosen development workflow.

Our field of interest is not only a new continuous integration server, but also
the integration platform that is to be used to connect development tools together.

The following section discusses how the communication platform should work
in more details. Later on we discuss how to build the continuous integration
server to both comply with our requirements and fit into the new communication
framework.

4.1 Development Tools Integration Platform

In Chapter 2] we mentioned two basic communication patterns that are happen-
ing between the development tools - request-reply and publish-subscribe. These
are, however, very abstract patterns and even though they may be supported
in the tools that are being used, it is also important to know the implementa-
tion details, particularly if there are any communication protocols common to all
the development tools, which could be potentially reused for the integration step.

Considering request-reply, most of the current tools support some kind of
remote API, most commonly using HT'TP as the transport protocol and follow-
ing the REST API design paradigm. In this paradigm, and considering HTTP,
the target system resources are represented as URIs and HTTP methods rep-
resent certain resource-specific actions. From the design point of view, such an
API is perfectly fine. What is less fine is the protocol being used. HTTP was
not made to support any kind of asynchronous RPC , which is the natural way
how to implement any well-performing request-reply communication between any
number of permanently connected components. The right way would be to es-
tablish a long-lived connection, send requests and wait for the (possibly partial)
replies to come as the requests are being fulfilled. This is, however, not how
HTTP works. Even when the TCP connection is reused, since there is no re-
quest identifier contained in the HTTP protocol itself, the replies must come in
the same order as the requests were sent so that the sender can pair replies and
requests correctly. This means that a time-consuming request can block all other
requests in the queue. The solution then is not to reuse connections, which makes
the whole communication much slower since a new TCP connection is needed for
every request. So, a better way how to implement request-reply communication
pattern is to use a transport and a protocol that truly supports asynchronous
communication, and that is how the optimal platform should work.

For publish-subscribe, the situation is a bit more complicated and varied,
but when a development tool supports some kind of post-action hooks, it most
commonly supports webhooks as mentioned in Chapter That means that a
URL can be specified in the system and an HTTP POST request is sent to
that URL every time an important event happens in the system. The request

26

body then contains the event details. This is fine, but naturally there must be
an HTTP server that can process such requests. On the other hand, taking Gerrit
code review system as an example, the events there can be streamed over an SSH
connection. This means that there is not really any single way how all the tools
are publishing events.

As also mentioned in Chapter 2] webhook is a technology to solve the last
mile problem, in other words, how to deliver a payload to another system for
processing. After having an event inserted into the system, it must be routed to
the components that are interested in it so that these components can react to
the events happening in the system.

So, there is no single technology that is supported across all the tools that
can be used to transport requests or events. Moreover, the event distribution and
handling part of publish-subscribe represents the custom integration step, so it
must be build from scratch in any case. Appropriate technologies must be chosen
to take care of this.

4.1.1 Managing Inter-Component Communication

There is still one question that remains unanswered: How to manage the com-
munication between the components? How to form this large composite system
of interconnected development tools?

Having the components access each other directly is not a viable solution.
This is not only a clear design and management anti-pattern, but considering
webhooks as an example, there is often just a single target URL to be notified
of the change, but multiple tools can be interested in the event, so at least for
publish-subscribe, we clearly need an extra level of indirection that can be only
achieved using a common shared communication medium that links all the tools
together.

Considering request-reply, the situation is actually simpler here since what
we are talking about is a direct peer-to-peer communication that does not really
have to be governed by any intermediary. On the other hand, if we are already
forced to incorporate a shared communication medium, incorporating request-
reply there allows for advanced request routing and automatic resource discovery
so that the components being integrated do not have to know each other’s address
in advance.

Accepting a common communication medium opens a couple of new questions:

1. How to plug the development tools into the communication platform?

2. How to route data between the components? In other words, how to address
the components and how to deliver the data?

Considering the first point, there is no access mechanism that is common to
all the development tools, although some are more common than other. This
means that every development tool must be wrapped in some kind of connector
component that represents the relevant tool in the system and translates the
protocol of the communication platform into the protocol of the tool itself.

The second point is a bit more complex. We have to distinguish the publish-
subscribe and request-reply pattern. The former pattern is basically a broadcast-
ing pattern where every event has one sender and multiple receivers, so there is

27

not much to discuss since the pattern is well understood. It can be implemented
by having the components subscribe for an identifier that represents certain event
type and by doing so they register to receive a copy of the event matching the
identifier every time it is emitted.

While publish-subscribe is a fire-and-forget kind of communication where no
data is returned to the emitting component, request-reply requires a bit more
sophisticated routing since the request must be delivered to exactly one compo-
nent, which is the one that exports the requested functionality. Once the request
is fulfilled, the response must be routed back to the requester.

The following list summarizes and also slightly extends the ideas contained in
this so far rather abstract section:

e The system consists of multiple development tools.

e These tools need to communicate in a way that is clear and manageable.
Only a common shared communication platform provides this.

e There is a need for publish-subscribe communication pattern where a com-
ponent should be able to subcribe for particular event type to start receiving
all the events of the given type.

e There may be a need for request-reply communication pattern, although
not really present in our target workflow. Components should be able to
export functionality under specified names and other components should
be able to access it remotely. The communication should be asynchronous,
which means that there is no need to wait for the reply before another
request can be sent.

e Since there is no communication protocol common to all the components,
every component must be represented by a connector, or agent, that trans-
lates the platform protocols into the protocols being used by the relevant
component. This is not tied specifically to any communication pattern,
both publish-subscribe and request-reply need these connectors. The agents
thus serve as facades that contain the event handling logic and translate
the exported methods into the API calls of the relevant component.

Keeping this idea of interconnected agents talking to each other using one of
the communication patterns, we shall now discuss how the optimal continuous
integration server could be implemented to integrate well with the platform. This
may give us more hints on what the exact communication semantics are supposed
to be.

4.2 Continuous Integration Server

The communication platform has been described from a high level perspective.
It is a set of agents representing the development tools, or in general any func-
tionality. Every agent can emit events, subscribe for events, export methods to
be called remotely as well as call remote methods exported by other agents.

28

In this section we describe how the target workflow, and particularly the con-
tinuos integration server, could be implemented using these primitives. We will li-
mit ourselves to the communication between the code review system and the con-
tinuous integration server to make things simpler since that is enough to represent
the communication patterns that are present in the system.

As specified in Table[2.2], this is the communication that is happening between
the two given components:

e On patch.submitted, trigger a build in the continuous integration server.

e On build.succeeded or build.failed, put a comment into the code re-
view system.

e On build.succeeded and patch.accepted, merge the patch into the rel-
evant project source tree.

On patch.submitted, the CI server must go through the following steps:

1. Fetch the relevant build configuration file from the repository the patch is
targeting.

2. Find a fitting build environment and enqueue the build request.

3. Once the build is finished, save the output and make it publicly accessible
under a URL.

4. Emit build.succeeded or build.failed event.

As mentioned many times, the build configuration file should contain the test
environment definition as well as the name of the script that is to be run. To
make the prototype system simple and implementable in a reasonable amount of
time, let us state here that the environment definition is just a label, a string that
identifies target persistent build environment, which can be a physical or virtual
machine. The label could be macosx109 to run the build script on Mac OS X
10.9, or any other user-defined string.

For simplicity, let us assume that all the environments of the same label are
the same in terms of their capabilities and installed software, and all the build
dependencies are pre-installed. This is a rather strong assumption, but many
small or even larger companies could and probably would use the system in this
way, especially if they have some kind of exotic system requirements. Anyway,
what this assumption means is that if the build configuration file says that the
testing script is supposed to run in the environment labeled macosx109, in can
be run in any environment matching this label.

Trying to reuse the communication platform, we propose to simply use the
environment label as the method name in RPC calls. In other words, every
build slave should export a method for every environment label that the build
slave is tagged with. Calling one of these methods remotely effectively enqueues
the build request for the given environment. Since we required the request-
reply communication to be asynchronous, it does not really matter how long the
request spends just waiting for being executed since idling is not blocking any
other pending requests.

29

This architecture has one obvious benefit - the communication platform is
reused for a large part of what the continuous integration server needs to imple-
ment - testing environments discovery, management and build requests queueing
and routing. It, however, puts some additional requirements on the communi-
cation platform implementation, particularly the request-reply pattern. Since
a standard feature of current systems is to see build output being streamed into
the browser, the request-reply subsystem should allow live output streaming so
that the build slaves can stream output to the agent requesting the build.

So, a more detailed sequence of steps that the continuous integration server
must go through is as follows:

1. Fetch the relevant build configuration file from the repository the patch is
targeting. Read the environment label from the configuration file.

2. Ask the platform to execute a remote call, the method being generated
from the environment label. There are two method arguments required,
one being the patch that is being tested since by definition it also contains
the relevant source code repository address and revision. This is enough
for the build slave to be able to clearly identify and generate the source
tree to be tested. The rest can be again read from the sources. The other
argument is the set of additional environment variables to be used for the
test run.

3. As the output is being streamed back, stream it to the user so that he or
she can see the progress. This step is optional but generally desired by the
users.

4. Once the build is finished, save the output and make it publicly accessible
under a URL.

5. Emit build.succeeded or build.failed event containing the URL of the
relevant build output.

4.3 Communication Platform Architecture

While discussing how to implement a new continuous integration server in a way
that would make it integrate nicely with the proposed communication platform,
a few more requirements appeared, particularly associated with the request-reply
pattern. The full picture, which contains the proposed architecture for the com-
munication platform, is following:

e The system consists of multiple development tools or in general any com-
ponents that need to communicate together using either publish-subcribe
or request-reply pattern.

e These components are either native in the way that they are directly plugged
into the communication platform, or there are some agent or connector
components that translate the protocols supported by the tools into the
protocols being used by the communication platform itself.

30

Figure 4.1: The communication platform

Communication platform

/

Agent
Host A
External service Native service -
in the cloud agent + service
together
Host B

e For publish-subscribe, every event is associated with an event type string
that other components can use to subscribe to the relevant event stream.
As soon as the component is subscribed, it starts receiving the requested
events, which are coming in the same order they were emitted.

e For request-reply, components export methods under specified names. Other
components can call these methods remotely by the given name and the
communication platform takes care of routing the requests to the relevant
components. Live output or progress streaming must be supported in the
direction from the receiver to the sender.

e To support multiple build environments, the system must be able to go
distributed in the way that the agents, being native or not, can be scattered
across multiple machines.

The ideas are illustrated in Figure [4.l

4.4 Managing The Agent Components

The previous section gave us a very clear overview of how the platform works.
What has not been discussed in more details, however, are the agent components.
What are they, actually”? Before answering this question, we must first understand
precisely how they are supposed to work.

31

As we already know, every agent is a standalone component that either rep-
resents a development tool in the system or just implements some other useful
functionality that is needed. As mentioned in the continuous integration section,
is must be possible to scatter agents across multiple machines. This implies that
they must be somehow separated from each other, and it should be possible to
manage them in a way that they can be added, started, stopped, upgraded and
removed from the system independently. Some other nice-to-have features could
be:

e The agents can be implemented in various programming languages. This
is not really a requirement, but every programming language is usually
good for solving particular group of problems. And there are also personal
preferences of every developer.

e [s is possible to run the agents somehow sandboxed so that they cannot
harm each other. This is useful in case the whole system is offered as
a service, even if the client is just another development team.

The most obvious solution is to use standalone processes for agents. This fits
the requirements perfectly. Operating system processes bring the best security
and robustness. The system can be set up in a way that the agents cannot reach
each other directly, only via the communication platform. If one of the agents
crashes, others are not influenced. Untrusted agents can be potentially run in the
system.

On the other hand, this solution is not without any drawbacks:

e Even inter-process communication is still less safe than in-process one, not
to mention the situation when networking is involved. Making the system
distributed inevitably brings a lot of complexity because various pieces can
crash, connections can be dropped and so on.

e There is a need for some kind of agent manager and supervisor. It would
be a management nightmare to manually manage potentially tens of pro-
cesses connected to the communication platform. A process supervisor is
necessary that would take care of starting and shutting down all the agent
components.

e The configuration is also a bit more problematic when the system consists
of multiple processes. A good practice is to use environment variables to
pass configuration to the agent processes. These environments should be
managed by the agent supervisor.

To make the overall idea clear, we need to think about the communication
platform and the agent supervisor as forming a platform provided as a service to
the agents. This agent-hosting platform is described in the following list, which
is rather detailed and also contains some implementation details that we believe
must be clearly stated here:

e Every agent is represented by a source code repository, which contains the
agent program sources. An agent can be installed into the system by in-
serting the repository address.

32

e The agent repository must contain scripts defining how to assemble the
executable representing the agent so that the supervisor can start the agent.

e Agents are configured through environment variables. Every agent reposi-
tory contains a configuration file containing the definition of the variables
that must be set before the agent can be started. To make it clear, the
agent will be started only after all the required variables have been set.
The way how this is achieved depends on the supervisor implementation.
There could be a command line utility for agent management much like
the utilities almost every cloud provider provides.

e [t is possible to view statuses of all the installed agents.

e Although the supervisor component and the communication platform are
independent in a way, every agent is expected to use a client library to
plug into the communication platform so that all the platform services are
available as functions in the given programming language and all the inter-
nals are hidden from the library user, the agent developer. The supervisor
should use environment variables to pass necessary data to the client library
so that it can auto-configure itself and connect to the platform.

e The supervisor can be requested to stop an agent, in which case a signal
is sent to the relevant process. The process is killed if the signal is not
processed correctly or fast enough.

e Naturally the agents can be deleted from the system, in which case all the
relevant persistent data is erased.

The whole platform as a service is built on foundations similar to many com-
mercial platforms. We are just operating on a much smaller scale, potentially
on just a single machine, the main goal being to make the agent management as
simple and pleasant for the user as possible.

4.5 Routing Inbound Traffic

Having the system consisting of many small pieces, each of them potentially being
a server receiving requests from external sources, it is also necessary to take care
of routing these requests to the appropriate agents. It is necessary to implement a
dynamic reverse proxy server in case of HI'TP, but in general it may be necessary
to route any inbound network connection. The listening addresses could be set as
special environment variables generated dynamically when the agent is installed
and passed into the agents on startup.

This has not been implemented in the prototype system, so a standalone
reverse proxy must be deployed and configured manually for now. This is slightly
inconvenient, but it is planned to be implemented in the future.

4.6 Communication Platform Implementation

In this section we describe how the ideas presented earlier in this chapter can be
put into practice. What needs to be implemented is:

33

e the communication platform that the agents can use to exchange data,
e the client library that can be used by the agents to plug into the platform,
e the agent supervisor, and

e the command line utility that can be used to command the supervisor.

It is important to understand that the first two points are related purely to
the data exchange functionality while the last two points are tied to the agent ma-
nagement. The communication platform is the core component of the system and
is naturally always enabled, which, however, does not have to be necessarily the
case for the management part. This is closely related to how powerful the agent
supervisor is. For the initial system prototype we decided to only implement
a supervisor that can handle local processes, i.e. the supervisor cannot control
processes running on other hosts. So if the system only consists of agents that
are running on different hosts, the agent supervisor functionality can be simply
disabled, so it should be treated as an optional system component. This fact will
be used later in this chapter.

This section does not mention the new continuous integration server at all
since the optimal CI server as proposed in the previous chapter is just a set of
agent components talking to each other using the request-reply service. The im-
plementation of the proposed CIS is then just about implementing the agents
while the communication between the build master and build slaves is entirely
handled by the request-reply service. This will be described later.

4.6.1 The Communication Platform and
the Client Library

To understand better what these agent components are and how they can be
used, the following list describes how the target workflow functionality can be
split into four agent components so that the concerns in the system are nicely
separated:

1. The whole process is started by detecting a new patch being uploaded in-
to the code review system, hence there shall be an agent collecting the
code review events and emitting them as native platform events using the
publish-subscribe subsystem.

2. The code review events shall be processed by another agent, which should
be triggering the builds using request-reply. This agent also takes care of
saving the build output and publishing it online. When a build is finished,
this agent emits the event representing the result and containing the output
URL. Traditionally, this agent is called build master.

3. There must be agents processing the build requests and streaming the out-
put back. Traditionally, these agents are called build slaves.

4. The last step of the process is the code review request annotation, so there
shall be an agent reacting to the build events and annotating the patches.

34

From the implementation point of view, the most important point is to decide
what is common to all these agents and what differs. In other words, what
functionality to include in the core system and what functionality to split away
into modules that can be changed for various scenarios? There are two orthogonal
axis that split the communication platform functionality:

Services First of all, every agent can decide what communication pattern it
needs. It can be the publish-subscribe subsystem, the request-reply sub-
system, or some other subsystem that implements some useful communi-
cation functionality useful for multiple agents. We decided to call these
components services, so there would be the publish-subscribe service or the
request-reply (RPC) service.

Service transports Every agent can choose different transport and protocol
to be used to connect to the desired service. There might be different
transports fitting different scenarios. In case the agents are scattered across
Internet, a transport supporting encryption may become handy. On the
other hand, if the agents are running on the same machine, some form of
inter-process communication can be used.

These observations lead to a layered system architecture as depicted in Fi-
gure 2] Note that even though it is not visible on the scheme, the platform
client library is also split according to the services and transports being used.
The difference lies in the fact that while the shared medium must expose all the
transports necessary for every service, the agent just chooses a single transport
to be used for given service to plug into the platform.

Figure 4.2: The layered architecture of the communication platform

Request-Reply Publish-Subscribe w

1 |

N

4.6.2 Shared Communication Medium

It has not been decided or said what this shared communication medium depicted
in Figure actually is, unlike the agent components, which are defined to be
operating system processes using the client library to plug into the communication
platform. The client library, because of the layered architecture, hides the way the
agent is connected to the platform, so theoretically the communication medium
can be anything that can be used to interconnect all the agents requesting the
same service.

35

There is immense number of ways how to approach this communication medi-
um. It can be centralized or distributed, it can bring various high availability
guarantees and so on. Since we only need to implement the necessary services
that can be used by the agents, and there are no other requirements such as the
system being fault tolerant, we aim for the simplest solution possible. The main
goal of the system is to approach continuous integration and workflow manage-
ment differently, fault tolerance is really just an implementation detail which we
do not discuss here.

So, the simplest way how to implement the medium is again to put all the
functionality into a single operating system process and structure the application
according to the layered schema presented in Figure[4.2l It must be noted, though,
that this broker component is not the process itself, but rather a thread running
there. The reson for this is explaned later, in Section [4.7]

Internally the broker component can be split into three parts:

Service exchanges Service erchange is a component that represents particu-
lar service inside of the broker component and implements the behaviour
specific for that particular service. For example, the RPC service exchange
would be keeping the mapping of what agent exported what methods, which
would be then used as the routing table when a request is received from
one of the agents and the exchange is supposed to choose where to forward
it. Request-Reply or Publish-Subscribe from Figure are the service ex-
changes.

Service endpoints Service endpoints export certain service functionality over
particular protocols. The task of the service endpoint is to abstract away
particular wire protocol out of the relevant exchange. In Figure[dL.2] there is
an endpoint exporting publish-subscribe over WebSocket (denoted as WS
under Publish-Subscribe), another one doing the same using ZeroMQ as
the transport (denoted as ZMQ). The exchange just communicates with all
its endpoints over the same service-specific interface, and it knows nothing
about how the data is being transported to the agents. It only has to know
what agent is reachable through what endpoint.

Endpoints supervisor Service endpoints are started by the endpoints super-
visor component, which knows actually nothing about the communication
happening in the broker component. It is just a supervisor, or container,
for the service endpoints. The registered endpoints are started at the bro-
ker startup, and they are also restarted in case they crash if that is not
happening too often. Following the same logic, stopping the broker means
that all the running endpoints are stopped.

What might be surprising is that the real broker component structure does not
strictly follow the schema as presented in Figure[4.2l The supervisor runs service
endpoints, not services. But this is only there to pull the common functionality
out of the services. Instead of having each service run its endpoints, the endpoints
are registered with the supervisor object and started at once. The exchanges are
then actually just common contexts (data structures) that are shared between
the endpoints of the same service.

36

Figure 4.3: The communication platform

Process

The broker component

The agent
supervisor

RPC service exchange Some other exchange
1/ |
Local agent In-process
transport
IPC WebSocket
transport || transport

Remote agent

4.7 The Agents Manager Implementation

As mentioned at the beginning of Section[4.6] the agent management functionality
should be treated as an optional component which may not be needed for every
scenario.

The approach we propose is to implement the agents supervisor as an agent
as well and use a special in-process transport to connect to the broker. This
has multiple advantages and some interesting implications. Firstly, this makes
the system management easier by keeping the number of processes to just one,
but it also has some interesting consequences. Clearly it is simple to disable
the management component by simply not starting the agent. More interesting
is, however, that since the agent supervisor is connected to the broker, it can use
all the services available, most importantly the RPC service. Exporting special
management RPC methods means that there can be agents in the system that
are able to start and stop other agents by calling these methods. There can
be a web interface or a command line utility just using these management calls
transparently to manage the whole platform.

Such a command line utility was actually implemented. It is just a short-lived
agent that connects to the RPC service endpoint, performs a single management
call and disconnects. More about the utility can be found in Appendix

The complete system architecture, including the special management agent,
is depicted in Figure A3l

37

4.8 Summary

We started this chapter by describing on what basis the communication platform
shall work and how it can be used to integrate various development tools. Every
tool shall be represented by its agent component that facilitates the commu-
nication with other components. We came up with how the optimal continuous
integration server can be implemented using the given communication primitives,
by using agents only.

Analysing the agent components more closely, we described them as operating
system processes that use client libraries to plug into the communication platform.
A need for a supervisor and manager for these processes arose, which together
with the communication platform forms a specialized platform that is provided as
a service to the agents much like various cloud providers provide their application
platforms as a service to their customers.

The optimal communication platform architecture was proposed. It is rather
simple, but that is actually its greatest strength. The service exchanges represent
the communication patterns we found necessary, but it can be any service that
all agents can benefit from. The endpoints associated with the exchanges are just
objects implementing particular interface that the relevant exchange requires,
but what the endpoints really do is encapsulated and completely hidden from
the exchanges. The actual connection between the endpoint and its associated
agents can be in-process, inter-process or inter-host and using all sorts of custom
protocols.

The fact that the endpoints hide what the connected agents really are is
very powerful and it can be used to implement both the agent supervisor and the
continuous integration build slaves using the same mechanism. For the supervisor,
all that is necessary is to create an agent using an in-process transport and run
the agent in the same process as the broker component, making it export various
management calls via the RPC service. Various agent management interfaces can
be implemented, using the same RPC mechanism to manage installed agents.
There can be a web application or a command line utility and they can both
connect to the broker to execute management calls since the functionality is
simply exported under certain method names.

In the next chapter we describe how we implemented a real development
workflow using the prototype system implementation and we evaluate the results.

38

5. Prototype Implementation

In the previous chapter we proposed how to design and implement the optimal
communication platform and CI server so that the solution is flexible and can
be used to integrate development tools in an easy and manageable way. In this
chapter we describe how these two components can be used to implement a real
workflow and we describe the system implementation in more details. The chapter
ends with a simple performance evaluation.

5.1 Target Workflow

The workflow is very similar to the exemplar scenario that is described in Sec-
tion 2.1 it just uses a real code hosting service, namely GitHub. The goal is to
use the system prototype to build, test and annotate pull requests on GitHub.
It is a three-step process:

1. collect the relevant GitHub pull request events,
2. build and test the change introduced by the pull request, and

3. annotate the pull request with the build result.

5.2 Target Workflow Implementation

To separate the three concerns mentioned above, the functionality is split into
three agents accordingly (illustrated in Figure [5.)):

e The first agent is a simple one. It just receives webhooks from GitHub and
converts them into native publish-subscribe service events. The events are
labeled as github.pull_request. To split this functionality into a separate
agent makes sense since we cannot know in advance what other agents are
interested in these GitHub events. In our case it is just a single agent, but
this way makes it possible to add other subscribers later. The publishing
code is also in just a single instance in the whole system.

e The second agent is the most complex one. Its purpose is to generate build
requests and save the build output. As mentioned before, all necessary da-
ta is saved in the repository, in this case in a YAML file. The file specifies
the testing environment (which is a string label), what script to run in this
environment (relative to the repository root) and what additional environ-
ment variables to set for the script. This step naturally uses the project
revision that matches the pull request. Once the configuration file is fetched
from GitHub, it is used to create a build request. The request is then dis-
patched to the CI server subsystem. Since the CI server is implemented on
top of the RPC service of the communication platform, this basically means
that the right method name matching the requested environment must be
generated and the method must be called with the right arguments. As
the build is proceeding, the output is being streamed into this agent and

39

Figure 5.1: The target workflow implementation

Build slave

The GitHub
—>| The build agent > annotating —> GitHub

agent

The GitHub

1 ~
GitHub ~ 7| collector agent

Redis

it is buffered until the build is finished. Then the output is saved into
the database (Redis) and the build result is emitted as an event. The event
contains a URL that can be used to access the build output online. For
this purpose a simple web server is running inside of this agent to serve
the output from the database.

e The last agent is very simple again. It annotates the relevant pull re-
quest according to the build result. The build output URL is included in
the annotation so that people can check the output in case the build failed.
The build status functionality is split into a separate agent again because
other agents in the system can be interested in the build result events, for
example to send emails to the developers who broke the build.

5.3 Continuous Integration Server Prototype

To be able to use the system and develop custom agents, one must understand
clearly what components build up the whole platform and how they communicate.
The point of this section is to describe the prototype and explain how it can be
used.

From the highest perspective there are two projects involved:

e the communication framework, code name Meeko, and

e the continuous integration server, code name Cider.

Meeko contains the communication platform, i.e. the broker and the agent
supervisor components as well as the client libraries for various programming
languages that are to be used to implement agent components. A command line
utility to control the agents running on Meeko is also included in the project.

Cider is the continuous integration server built on top of Meeko.

40

Both projects were implemented using the Go programming language [5].
This language was chosen for its great support for concurrent programming and
programming against interfaces.

Now to understand how these two projects are related to each other exact-
ly, the following list contains all the executable programs that are included in
the prototype (two-word names are subcommands of the executable denoted by
the first word):

meekod This program is the communication platform and it contains the com-
munication broker and the agent supervisor, which is an agent itself, just
using a special in-process transport to connect to the broker. The usage is
explained and documented in Appendix

meeko This is the command line utility for managing agents. It is a short-lived
agent that connects to the broker and sends a single management request,
then disconnects and exits. The usage is explained and documented in
Appendix

cider master This subcommand of the CI server executable actually contains
the same functionality as meekod, it is there just for comfort so that a sin-
gle executable can be be used to start all the CI server components. See
Appendix [E] for more information.

cider slave The build slave component can be started by invoking this sub-
command. It accepts various parameters, for example the address where
the RPC service WebSocket endpoint is listening, or what the access token
is. See Appendix [El for more information.

cider build A build request can be sent by invoking this subcommand. It is
mainly for testing purposes so that the CI server users can trigger builds
from their consoles and see the output being streamed back. See Appendix
[E] for more information.

Now there is a single Git repository for every executable, but the common
functionality is factored out into a few libraries:

meeko This repository contains the packages implementing the broker compo-
nent and the supervisor component. The broker component is further split
into multiple packages representing various services and their endpoints. It
is used in meekod and cider master.

go-meeko This is the Go programming language client library. It is as well split
into packages implementing various services and their transports. This
library is being used in meeko, cider slave and cider build.

More about Cider administration can be found in Appendix [El How to write
Meeko agents using go-meeko is explained in Appendix [F]

41

5.4 Meeko Services

Meeko follows the proposed layered architecture of service exchanges and end-
points. To make the system usable, three services were implemented:

PubSub This is the publish-subscribe service already mentioned many times.
The agents can subscribe for various event kinds that other agents emit.

RPC This is the service that Cider is heavily depending on. It enables agents
to export functions identified by a string name that other agents can call.

Logging The last service is mainly for management purposes. It can and should
be used by the agents for storing log records. The records are streamed into
the broker where they can be stored and introspected centrally in a unified
way.

Let us discuss each of these services separately.

5.4.1 PubSub

The PubSub service takes care of distributing events among interested parties.
Every event consists of two parts - the event kind and the event object itself.
The event kind is just a string identifying the event type and it must be specified
for every event because that is the identifier that other agents use to subscribe for
events. Every agent can publish events by calling relevant service client method,
and subscribe for events emitted by other agents by specifying the event kind
prefix and the callback that is to be used to process incoming events matching
the prefix. That means that if the event kind of github is specified, the client
will subscribe for github.push, github.pull_request as well as all other events
matching the prefix and the same callback will be used to handle the incoming
events.

From the nature of publish-subscribe, this service works in the fire and forget
way. The producers just emit events and the system takes care of delivering
the copies to all the interested parties. To prevent a slow consumer blocking
the whole system it can happen that a slow agent misses some events in extreme
cases. It can detect that it missed some events since every event has a sequence
number associated with it that is incremented on every emit of that particular
event kind. During the subscribe action, the client receives the current list of
sequence numbers matching the event kind prefix that it is subscribing for, then
it keeps checking that no gaps were detected, and if there are any, it can emit
errors if it is configured to do so. This way of implementing publish-subscribe is
not generally very scalable because it is necessary to keep the sequence numbers
on a single place, but since there is the broker component right now that is shared,
it can be used for this purpose for now.

5.4.2 RPC

The RPC service makes it possible for one agent to export some functionality
as methods that are given names. Other agents connected to the same Meeko
instance can then call these methods remotely.

42

The RPC implementation offers some advanced functionality. It is not just
the regular request-response pattern:

e The implementation is fully asynchronous. No need to wait for the response

before sending another request.

Standard and error output can be streamed life from the agent handling
the request to the requester. This is very useful in case a user is supposed
to see some progress. This is actually what meeko uses when calling one of
the management methods. Meeko itself is sending the output to the console,
meeko knows nothing about the data that is actually shown to the user.

The handling agent can send progress signals to the requester. These can
be used to just signal that the handling agent is still alive, but in general
they can be used for anything. The semantics must be defined in every
method’s documentation.

The requester can interrupt the method handler by sending an interrupt.
It depends on the method how the signal is processed, but in general the
handler should be listening for this signal and terminate as soon as possible.
In case the handler spawns a process, it should terminate the process and
return.

So, the typical RPC call goes through the following phrases:

1.

An agent registers a method under certain name with the broker. This hap-
pens by giving the method name and implementation to the client library.
The library then sends a message to the broker, which registers the method
in its routing table. To be precise, the RPC exchange registers the method
in its routing table. From now on other agents can call this method remote-

ly.

. An agent decides to call a registered method. It generates the RPC method

name and arguments and passes these to the client library, which takes
care of all the work. The requester can also enable life streaming and
progress signals. Once the request is sent, the requester can either keep
doing something or just block until the response is available.

. The request is forwarded to the broker, which chooses what agent will take

care of the request. Right now the routing is handled in the round-robin way;,
so if there are multiple agents exporting the same method, the exchange
just rotates around the list of available receiving agents. Once the handling
agent is chosen, the request is forwarded, which means passing the request
to the right service transport endpoint that the agent is connected to.

. The registered method handler is invoked in the handling agent by the client

library. Once finished (which can happen as a result of the interrupt signal),
the request is resolved with a return code and a return value. Both is passed
back to the requester which can check the return code and use the return
value for its purposes. Zero return code generally means success, other
return codes are method-specific and must be documented. The return
value is a single MessagePack-encoded object, but the client libraries should
takes care of marshalling automatically.

43

5.4.3 Logging

The Logging service takes care of collecting log records from the agents so that
the records can be viewed or watched as they are being sent or saved for later
introspection in case something goes wrong. Every log record is assigned a log
level, which can be one of trace, debug, info, warn, error or critical.

This service is a must since there is not really any other way how to administer
logs in a clear way. To have every agent saving the logs into its workspace is
not the right solution since every agent could use a different location and format.
Having the log management central also allows for some interesting use cases, like
a web application allowing to browse the logs or watch the log records as they are
happening. meeko watch subcommand uses the Logging service to stream logs
into the console.

Concerning meeko watch, it is actually the exchange that allows for log stream-
ing. The service itself defines only the interface for uploading log records in
the direction from the agents. The service exchange then implements what is
supposed to happen with the log records, e.g. they can be persisted somehow.
The default exchange is not persisting log records, but allows to subscribe for
particular agent’s log stream much like the agents can subscribe for events using
the PubSub service.

5.5 Cider Internals

Cider is a continuous integration server built on top of Meeko. The build master
node is actually the Meeko broker, with the WebSocket RPC transport enabled.
The transport is secured by requiring an access token to be specified during the
WebSocket handshake. The build slaves are then implemented as Meeko agents,
using the WebSocket transport to connect to the build master. They are expected
to run on different hosts than the master itself, hence the access token.

After connecting to the build master, every build slave exports certain RPC
methods that can be called by other agents connected to the same Meeko instance
to trigger a build on that particular build slave. The method name consists of

e A common constant application prefix, here it is cider.

e The environment label. Slave labels are specified manually for every build
slave and they denote the environment the slave represents. It can be
windows7, macosx, linux and so on.

e A build runner that is available on the given build slave. Build runners
are in general programs that can run scripts, like Shell on Unixes and Pow-
erShell on Windows. The runners are not configured manually, they are
detected by the build slave on start. There are four implemented runners:
bash, node, powershell and cmd.

The final list of RPC methods is generated by doing Cartesian product on
the set of labels and available runners. The set of labels always includes any.
The RPC methods exported are then in the form of cider.LABEL.RUNNER, for
example cider.windows7.powershell. So the meaning of these RPC methods

44

is that the build slave is requested to run certain script on the host where it is
running, that is why there is the runner part of the method name. The method
name contains enough information to find not only the right build slave, but
also the right program to use to run the chosen script. But actually the runner
part of the method name is there to prevent invalid combinations, like running
a PowerShell script on a Linux build slave. It is making the routing part trivial.

Anyway, concerning the build requests, there are a few additional arguments
that are necessary, namely:

e the source code repository that is hosting the script to be triggered and
that is expected to host the project sources that are to be tested,

e the relative path of the script within the repository, and

e the list of environment variables that will be defined during the script exe-
cution.

Now the information that the system needs to run the build is complete. The
request can be routed to the right build slave, which then knows what repository
to download, what script to run and what environment to set for the script.

5.6 Testing Projects Using Cider

Even though cider build makes it possible to specify all necessary build con-
figuration on the command line, there is still need for keeping the relevant data
in the repository to be able to implement the chosen workflow. The builds are
happening on the server asynchronously when GitHub pull requests are opened.
For this purpose there must be a special file present in the top-level directory
of the project repository, which is called cider.yml. To make the life of the
developers easier, cider build also understands this file and always check for it
in the current working directory. This makes it possible to omit large number of
command line flags in case the project is already set up to include cider.yml.

The configuration file is described together with other configuration options
in Appendix [E]

5.7 Benchmarking Meeko and Cider

We have implemented a simple benchmark to see if Cider and Meeko perform
well enough to be able to handle multiple concurrent builds at once, streaming
all the build output to the requesters at the same time.

The benchmark runs the build master component and a single build slave
locally in their own threads within the benchmark process, connecting them via
WebSocket using a local TCP connection. The testing package from the Go
standard library is being used to run the benchmark.

The benchmark can be run in multiple modes. The modes enable different
subsets of what is happening during the build process to be able to see what slows
down the system the most. The available modes are:

noop Do not clone the repository, do not run any script, just return success.

45

noop-+tstream Do not clone the repository, do not run any script, but stream
some non-trivial output back to the requester.

discard Clone the repository, run the script, but do not stream the output back.
stream Clone the repository, run the script and stream the output back.

redis Clone the repository, run the script, buffer the output, then save it into
Redis when the build is finished.

files Clone the repository, run the script, buffer the output, then save in into a
file on the disk.

The number of OS threads that Go runtime uses internally can be also set for
the benchmark, the default being just one thread. This does not mean that only
a single Go thread (goroutine) can run and block other threads, it just means
that all the Go threads share a single OS thread. Go does asynchronous I/0 in
the background.

Before every benchmark run, a Git repository is created in a temporary di-
rectory. This repository contains a generated Bash script that just prints 10
000 lines of text (each 21 characters long) and exits. This repository is used as
the project repository that is cloned during the builds. It is deleted again when
the benchmark is finished. Since the build slave uses the Git branch name to gen-
erate local directory path where to clone the repository and checkout the branch,
enough branches are created in the repository so that there are no clashes during
the benchmark. In this way, all the builds can run concurrently without locking
each other out.

5.7.1 Benchmark Results

The benchmark was run on MacBook Pro (early 2011), CPU 2.7 GHz Intel Core
i7 (4 CPUs), 4 GB 1333 MHz DDR3 RAM, disk 5400 rpm, running Mac OS X
Lion 10.7.5. Every mode was run 5 times, all the collected data is listed in Table
.11 - Table 5.12L The first output column shows how many requests were fired,
the second column shows how much time it took to complete a single build on
average.

Table 5.1: Benchmark: 1 thread, noop mode

10000 | 116141 ns/op
10000 | 118318 ns/op
10000 | 117466 ns/op
10000 | 117672 ns/op
10000 | 119870 ns/op

avg | 117893 ns/op

46

Table 5.2: Benchmark: 1 thread, noop-+stream mode

500 | 5568584 ns/op
500 | 5656427 ns/op
500 | 5588431 ns/op
500 | 5683269 ns/op
500 | 5536331 ns/op
avg | 5606608 ns/op

Table 5.3: Benchmark: 1 thread, discard mode

50 | 66049025 ns/op
20 | 124588994 ns/op
50 | 72269828 ns/op
20 | 83775819 ns/op
10 | 134034625 ns/op
avg | 96143658 ns/op

Table 5.4: Benchmark: 1 thread, stream mode

50 | 55566140 ns/op
20 | 50753613 ns/op
10 | 106343609 ns/op
20 | 87325214 ns/op
50 | 67271365 ns/op
avg | 73451988 ns/op

Table 5.5: Benchmark: 1 thread, redis mode

50 | 91469290 ns/op
50 | 89834287 ns/op
50 | 74857127 ns/op
50 | 61327816 ns/op
50 | 56668844 ns/op
avg | 74831472 ns/op

Table 5.6: Benchmark: 1 thread, files mode

10 | 105338329 ns/op
10 | 118421312 ns/op
50 | 59483523 ns/op
50 | 64875806 ns/op
10 | 120911117 ns/op
avg | 93806017 ns/op

47

Table 5.7: Benchmark: 4 threads, noop mode

20000 | 73202 ns/op
20000 | 71841 ns/op
20000 | 72978 ns/op
20000 | 72959 ns/op
20000 | 73456 ns/op

avg | 72887 ns/op

Table 5.8: Benchmark: 4 threads, noop+stream mode

500 | 3982016 ns/op
500 | 3989970 ns/op
500 | 4028983 ns/op
500 | 4000035 ns/op
500 | 3987918 ns/op
avg | 3997784 ns/op

Table 5.9: Benchmark: 4 threads, discard mode

50 | 60953392 ns/op
50 | 74873721 ns/op
50 | 80092564 ns/op
20 | 68473920 ns/op
20 | 61124403 ns/op
avg | 69103600 ns/op

Table 5.10: Benchmark: 4 threads, stream mode

20 | 89590665 ns/op
50 | 62025025 ns/op
50 | 65817256 ns/op
50 | 73712222 ns/op
20 | 90325548 ns/op
avg | 76294143 ns/op

Table 5.11: Benchmark: 4 threads, redis mode

50 | 67857096 ns/op
50 | 69941030 ns/op
50 | 71235698 ns/op
50 | 58204349 ns/op
50 | 68735020 ns/op
avg | 67194638 ns/op

48

Table 5.12: Benchmark: 4 threads, files mode

10 | 106588232 ns/op
20 | 91778911 ns/op
20 | 70745534 ns/op
20 | 92100082 ns/op
10 | 141744087 ns/op
avg | 100591369 ns/op

Table 5.13: Benchmark results summary

benchmark mode | threads | builds per second
noop 1 8482.23
noop 4 13719.88
noop-stream 1 178.36
noop-+stream 4 250.14
discard 1 10.40
discard 4 14.47
stream 1 13.61
stream 4 13.11
redis 1 13.36
redis 4 14.88
files 1 10.66
files 4 9.94

The results are summarized in Table[5.13l There are two major declines visible
in the table, one is from noop to noop+stream, the other one is from noop-+stream
to discard and in general all other modes. This can be easily explained.

When we move from noop to noop-+stream, it means that the repository
is still not being cloned, no script is being executed, but each build generates
200 000 visible characters (in this case 210 000 bytes when we include the newline
characters). Counting 250 builds per second, that is 50 MB of output streamed
every second.

Changing from any noop mode to a mode involving cloning of a Git repository
means that the disk must be accessed quite a lot. On top of it, the build slave
and the repository resided on the same physical disk during this benchmark.
All the cloning modes also start the build script, which means that a new Bash
process is spawned for every build request.

The differences between the modes that are cloning are not clear. One would
expect the discard mode to be definitely faster than the files mode, but that
has not been measured. Saving the data into Redis also does not bring any
measurable overhead compared to the stream mode. This means that the initial
operation of cloning and starting a new process that happens at the beginning of
every build is so expensive that in the end it does not matter what happens with
the output.

49

Considering the differences implied by the number of threads Go runtime is
allowed to use under the hood, we can see that the noop modes are gaining the
most from multi-threading. This is because these modes are CPU bound while
the other modes are I/O bound and the disk is the limiting factor there.

5.8 Summary

In this chapter we presented how the prototype communication platform and CI
server were implemented and then used to handle a workflow incorporating real
development tools. We split the functionality into multiple agents, each imple-
menting part of the requested functionality. This leads into very desirable sepa-
ration of concerts where very little code has to be duplicated between the agents.
If there are agents that need to integrate with particular system, it is enough to
implement a single agent collecting the data. All other agents can then access
the data using the communication platform and they do not care how the data
was inserted.

In the second part of this chapter we showed the results of a simple local
benchmark. Running locally, the communication platform could handle around
50 MB of data per second over the WebSocket transport. This is definitely
enough for Cider to work without any problems. In a production deployment,
the cost of all the communication would be more expensive due to the build slaves
being scattered across multiple hosts. The build scripts would also spend most
of the time doing some useful work, not just generating a lot of build output.
In a real deployment, the network and the disks will become bottlenecks much
faster than the communication platform logic itself.

50

6. Conclusion

The initial goal of this thesis was to implement a continuous integration serv-
er that would be easy to integrate with other software development tools being
used. We proposed and implemented a general communication platform that can
be used to integrate any number of development tools in a scalable way from
the administrative point of view [6]. Pieces of functionality that do not need to
be coupled together are represented by standalone processes, which can be man-
aged independently. We then used this communication platform to implement
the desired continuous integration server.

6.1 Logical System Architecture

The way of integrating multiple development tools as proposed in this thesis
turned out to work well. Splitting independent functionality into various agent
processes not only makes the system scale from the administrative perspective,
but it also supports good practices when planning how to integrate chosen sys-
tems. The agent components are just black boxes and it does not matter what
programming language they are written in or what libraries they use internally.
The only thing that matters is the interface they export to be accessible by other
agents. The agents can be even replaced independently and the remaining agents
won’t even notice provided the interface remains the same.

6.2 Communication Platfrom Flexibility

The layered system architecture turned out to be very flexible, allowing for va-
rious scenarios to be addressed easily. In our case, the development tools agents
together with the agent supervisor as one scenario, and the continuous integration
system as another use case, these were both implemented on top of the commu-
nication platform without any issues. The immense number of combinations of
various communication patterns (services) together with various transport pro-
tocols (service transports) allowed us to spread agents taking care of various as-
pects of the whole system across processes, hosts, but also within a single process
using a special in-process transport. Abstracting the communication patterns
into standalone services also makes it simple to add new services in the future
without touching existing code base.

6.3 Ease of Use and Administration

Having the system consisting of multiple independent agents directly leads to
good development practices. Every agent effectively works as a black box that
may but does not have to be exporting some functionality for other agents to
use. Designing a system on top of this platform then boils down to designing
the interfaces, the way how the agents are going to communicate.

From the administrative point of view, the agents can be handled indepen-
dently. It is possible to add, configure, start, stop and remove agents separately

51

using the command line utility implemented as a part of the management sub-
system (as long as these agents run on the same host as the platform broker
process).

6.4 Chosen Programming Language

The chosen system architecture was easily implementable using Go as the pro-
gramming language since interfaces are first-class citizens there. All that was
necessary was to define interfaces for all the services and then implement neces-
sary exchanges and endpoints accordingly.

6.5 Robustness

Splitting the agents into processes turned out to be a robust solution, especially
when the system is extended to run agents sandboxed. In this way the agents can-
not harm each other, one can receive a segmentation violation signal and be killed
while another component is still running fine. Using agent processes, the system
can be also extended and potentially scaled at run time since the agents are re-
ally managed separately. This all makes it possible to offer the communication
platform as a hosted service in the future.

6.6 Performance

The benchmark presented in Section [.7.1] clearly showed that Meeko is capa-
ble of distributing the data between interested agents fast enough (the simple
benchmark showed 50 MB/s). Also it must be noted that the benchmark used
the WebSocket transport, which is not optimal for inter-process communication.
When using Meeko to integrate development tools, the agents are all run locally
and supervised by Meeko. A more fitting transport can be then used for that use
case, e.g. Unix domain sockets. That would speed up the communication a bit.

6.7 Limitations

We have not found any real limitations of the system as of now that would prevent
it from handling the scenarios it was built for. The implementation is, however,
very young and it needs further care to be stabilized and ready for production.
The agent supervisor is only capable or running agents on the same host and the
reverse proxy component to route inbound connections automatically is missing.

6.8 Future Work

Considering the communication platform, the core system has been implemented,
but it needs further care to be ready for production. Also only very basic service
exchanges have been implemented and they need to be improved and extended
for production use as well.

52

From the platform agents perspective, only the client library for Go exists as
of now. To give the platform users more freedom, more client libraries should be
implemented for various programming languages.

The prototype continuous integration server implemented as a part of this
thesis also lacks some functionality for production use. For example there is no
administration and monitoring interface really. It is not possible to see what
build slaves are connected.

All these issues will be addressed in the future releases of Meeko and Cider.

53

Bibliography

1]

RS

Brad Rydzewski. Drone Documentation. URL: http://drone.readthedocs.or
g/en/latest/ (visited on 04/24/2014).

Patrick Th. Eugster et al. The many faces of Publish/Subscribe. 2003.

John Ferguson. Jenkins: The Definitive Guide - Continuous integration for
the masses. O'Reilly, 2011.

Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern
Web Architecture”. In: ACM Transactions on Internet Technology (TOIT)
2.2 (May 2002), pp. 115-150.

Golang.org. The Go Programming Language. May 2014. URL: http://golan
g.org (visited on 05/19/2014).

Ondrej Kupka and Filip Zavoral. “Cider - An Event-driven Continuous
Integration Server”. In: COMPSAC 2014 : IEEE 38th Annual International
Computers, Software € Applications Conference (2014). to appear.

Martin Fowler. Continuous Integration. May 2006. URL: http://martinfow
ler.com/articles/continuousIntegration.html (visited on 02/10/2014).

Buildbot Team Members. Buildbot - Introduction. URL: http://docs.buildb
ot.net/0.8.8 /manual/introduction.html (visited on 02/10/2014).

Ondrej Kupka. Choosing a Build Server for a Small Business. Jan. 2013.
URL: http://tchap.wikidot.com/blog:1 (visited on 02/10/2014).

Travis-Cl.org. Travis CI Documentation. 2014. URL: http://docs.travis-ci.
com (visited on 04/24/2014).

Brian Warner and Dustin J. Mitchell. Buildbot - The Continuous Integration
Framework. 2014. URL: http://buildbot.net (visited on 02/10/2014).

Wikipedia. Webhook — Wikipedia, The Free Encyclopedia. URL: http://ht
tp://en.wikipedia.org/wiki/Webhook (visited on 04/24/2014).

Miguel G. Xavier et al. “Performance Evaluation of Container-based Virtu-
alization for High Performance Computing Environments”. In: 21st Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Processing (2013), pp. 233-240.

54

http://drone.readthedocs.org/en/latest/
http://golang.org
http://martinfowler.com/articles/continuousIntegration.html
http://docs.buildbot.net/0.8.8/manual/introduction.html
http://tchap.wikidot.com/blog:1
http://docs.travis-ci.com
http://buildbot.net
http://http://en.wikipedia.org/wiki/Webhook

Appendices

55

A. Contents of the Attached CD

The enclosed CD contains the source code of Meeko, Cider, the workflow imple-
mentation and the thesis itself. The directory structure is following:

CD
/thesis
/src
/img
/build
/src
/github.com
/meeko
/meekod
/broker
/services
/exchanges
/transports
/supervisor
/implementations
/exec
/daemon
/meeko
/go-meeko
/meeko
/services
/transports
/agent
/meeko-contrib
/meeko-collector-github
/cider
/cider
/master
/slave
/build
/benchmark
/cider-example
/cider-plugins
/cider-github-trigger
/cider-github-status

the CD root directory
the thesis sources

the LaTeX sources

the images

the generated thesis PDF
the programs sources

Meeko PaaS

Meeko executable

the broker component

the service definitions
service exchanges
service endpoints

the supervisor component

the processes supervisor
meekod and cider master logic
the command line utility

the Go client library

various service clients
service transports
helper for writing agents

the workflow collector agent

Cider executable

the build master subcommand
the build slave subcommand
the build trigger subcommand
the benchmark executable

a Cider-compatible repo

the workflow build agent
the workflow status agent

The source code of all Meeko and Cider packages as well as the required 3rd-
party packages can be found in /src. Since all the programs are written in the
Go programming language, Appendix [Bl describes how to build Go packages.

The source code is hosted on GitHub and can be viewed online. The structure
is the same as mentioned above, i.e. the sources are placed under the following
accounts: meeko, meeko-contrib, cider and cider-plugins.

Generated source code documentation can be viewed using the godoc tool
that comes with the Go distribution, it is not present on the CD. All that is
necessary is to set GOPATH as described in Appendix [B], then run

$ godoc -http=localhost:6060

and open the web browser and navigate to localhost:6060. This is the idio-
matic way how to browse generated documentation in Go. The documentation
can be also browsed online using godoc.org. All that is necessary is to insert
the package import path, e.g. github.com/meeko/go-meeko.

o7

B. Building Go Packages

The programs attached on the CD are all written in Go and have been tested
to build successfully against Go 1.2. Having the right Go compiler installed is
the only requirement, all necessary packages are present on the CD in /src. The
compiler version can be checked by running go version.

B.1 Go Workspaces

Every Go project lives in a workspace, which is a directory having particular
directory structure. To tell Go where the current active workspace is, GOPATH
environment variable must be set to point to the chosen directory. In every
Go workspace there are three subdirectories:

e The src subdirectory contains all necessary Go packages, which incorpo-
rates the project packages and 3rd-party dependencies. When a package is
present in $GOPATH/src/a/b/c, its import path within Go is "a/b/c".

e The pkg subdirectory contains the packages compiled into object files.

e The bin subdirectory contains installed executable packages. Any exe-
cutable package can be installed by running go install in its main direc-
tory. It is practical to add $GOPATH/bin into PATH.

When GOPATH is set properly, go build can be invoked in a package directory
to build the package, or go install can be invoked to install the package. Go
creates statically-linked executables, so the executables can be just copied to an-
other machine and it will work out of the box, provided it is the same architecture
and operating system.

B.2 Building the Attached Packages

The /src directory on the attached CD is actually exactly the src directory that
is a part of every Go workspace. Since every Go workspace must be placed on
a writable medium, the directory must be copied out of the CD onto the hard
drive. Then GOPATH must be set and the packages can be assembled using the go
command.

The CD contains the following executable packages:

e /src/github.com/meeko/meekod is the integration platform.

e /src/github.com/meeko/meeko is the management utility.

e /src/github.com/cider/cider is the CI server.

e /src/github.com/cider/cider/benchmark is the CI server benchmark.

There are also some agent packages, which are executable as well, but these
are not supposed to be run by the user manually. Cider takes care of compiling
and running them.

o8

C. The meekod Command Usage

meekod represents Meeko PaaS and can be used to start the broker components
together with the agent supervisor component in a single process. Although it
is written in Go, which is multiplatform, only Unix-like operating systems are
supported as of now.

C.1 Configuration File

The only way how to configure meekod right now is to use a configuration file,
then point meekod to it using -config command line flag. It is planned to also
support configuration using environment variables.

The configuration file is a YAML file with the following structure:

broker: // the broker component
endpoints:
rpc: // the RPC service endpoints
zeromq: // ZeroMQ endpoint string for the ROUTER socket

websocket: // WebSocket endpoint
address: // network address to bind (HOST:PORT)

token: // access token to authenticate remote agents
heartbeat_period: // must be Go time.Duration string
pubsub: // the PubSub service endpoints
zeromq: // ZeroMQ endpoint
router: // ZeroMQ endpoint string for the ROUTER socket
pub: // ZeroMQ endpoint string for the PUB socket
logging: // the Logging service endpoints
zeromq: // ZeroMQ endpoint string for the PULL socket
supervisor: // the agent supervisor component
workspace: // the directory to use for cloning agent sources
mongodb_url: // the URL of a MongoDB instance;
// format [user:pwd@lhost[:port][/database]
token: // the management token

What must be present in the configuration file is governed by the flags that
are passed to meekod:

-disable_supervisor Do not start the agent supervisor.

-disable_ipc Do not initialise the ZeroMQ service endpoints that are being used
for local communication.

Unless the supervisor is disabled, the supervisor section must be present in
the configuration file. MongoDB is being used by the supervisor to keep agent
data, so it must be installed in case the supervisor is enabled. Git is also required
for cloning of the agent repositories.

Unless the local inter-process communication is disabled, all the zeromq keys
must be set to the relevant endpoint strings.

An example of the meekod configuration file can be found in the meekod
source directory.

99

C.2 Environment Variables

MEEKOD_CONFIG can be used instead of the -config flag

MEEKOD _DISABLE_SUPERVISOR. can be used instead of the -disable_supervisor
flag (any non-empty value evaluates to true)

MEEKOD _DISABLE _LOCAL_ENDPOINTS can be used instead of the
-disable_ipc flag (any non-empty value evaluates to true)

MEEKOD_VERBOSE can be used instead of the -verbose flag (any non-
empty value evaluates to true)

60

D. The meeko Command Usage

Meeko agents are managed using some special built-in RPC calls over the RPC
service. The agent exporting these management methods actually resides in
the same process as the broker component (at least concerning meekod) and
it uses a special in-process transport to connect to the RPC service. All the ma-
nagement calls require a token that is always passed as one of the arguments so
that not every agent connected to the RPC service can execute these management
calls.

A command line utility that can be used to execute the management methods
can be found in /src/github. com/meeko/meeko on the attached CD. It is simply
a wrapped Meeko agent that connects to the broker, executes a single manage-
ment call and exits. Each management call is implemented as a subcommand of
meeko.

Before describing the available management calls, it should be noted that
the utility expects a YAML configuration file in the user’s home directory called
.mkrc. In case the user needs to connect to multiple Meeko instances, the config-
uration file path can be specified using the —~config command line flag. The Web-
Socket transport is used to connected to the RPC service so that the connection
can be established to a remote host. The configuration file is structured in the
following way:

endpoint_address: // URL of the endpoint, starting with ws(s)://.
// Both host and port must be specified.

access_token: // the WebSocket endpoint access token

management_token: // the Meeko supervisor management token

What follows is the list of available management commands. Every command
corresponds to certain meeko subcommand. install can be executed by running
meeko install. meeko exits with a non-zero exit status if the RPC call fails for
some reason. More detailed subcommand help including the available command
line flags can be viewed by running meeko <command> -h.

install Calling Meeko.Agent.Install method, this command installs the rele-
vant agent by its repository URL. The URL scheme specifies the source
code version system and transport, for example git+https:// tells Meeko
to clone using Git over HTTPS, git+file:// asks Meeko to clone a lo-
cal repository. git+ssh:// is also supported, but the Meeko administrator
must make sure Meeko uses an SSH key that can be used to clone requested
repositories without any blocking. The user must specify the agent alias
that is then used across management calls to identify particular agent in-
stance.

upgrade Calling Meeko.Agent.Upgrade method, this command upgrades the
requested agents. The agent is specified by its alias. That means that the
sources are updates and the agent is restarted.

list Calling Meeko.Agent.List method, this command returns the list of in-
stalled agents together with some basic info.

61

remove Calling Meeko.Agent.Remove method, this command removes the re-
quested agent from system. The agent is again specified by its alias.

info Calling Meeko.Agent.Info method, this command prints the description of
the requested agent, including its variable description and the values of the
variables as set. Basically it pretty-prints the agent’s database record.

env Calling Meeko.Agent.Env method, this command prints the current agent
environment that will be passed to the agent when it is started.

set Calling Meeko.Agent.Set method, this command can be used to set a vari-
able for the chosen agent.

unset Calling Meeko.Agent.Unset method, this command unsets certain agent
variable.

start Calling Meeko.Agent.Start method, this command starts the chosen agent.

stop Calling Meeko.Agent.Stop method, this command stops or later kills the
chosen agent.

restart Calling Meeko.Agent.Restart method, this call basically chains
Meeko.Agent.Stop and Meeko.Agent.Start again.

status Calling Meeko.Agent.Status method, this command returns the list of
applications with their current statuses, which can be stopped, running,
killed or crashed. If an agent alias is specified, only that agent’s status
is returned.

watch Calling Meeko.Agent.Watch method, this command streams the agent’s
Logging service output to the console as the records are emitted by the
agent.

D.1 Meeko Usage Example

Having the system set up, what follows is the sequence of commands and output
that shows how to install and run the GitHub collector agent that was imple-
mented as a part of this thesis:

$ meeko install \\
git+https://github.com/meeko-contrib/meeko-collector-github \\
as gh-collector

>>> Creating the agent workspace ... OK

>>> Cloning the agent repository ...

Cloning into ’/var/lib/meeko/workspace/gh-collector/_stage’...

<< 0K

>>> Reading agent.json ... OK

>>> Validating agent.json ... 0K

>>> Moving files into place ... OK

>>> Running the install hook ...

+ godep go install -v

62

github.
github.
github.
github.
github.
github.
github.
.com/dmotylev/nutrition
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
.com/meeko-contrib/meeko-collector-github

github

github
<< OK

com/meeko-contrib/go-meeko-webhook-receiver/receiver/server
com/meeko/go-meeko/meeko/services
com/meeko/go-meeko/meeko/services/logging

com/cihub/seelog

com/tchap/go-patricia/patricia
com/meeko/go-meeko/meeko/services/pubsub
com/meeko/go-meeko/meeko/services/rpc

com/pebbe/zmq3
com/meeko/go-meeko/meeko/transports/zmq3/logging
com/meeko/go-meeko/meeko/transports/zmq3/loop
com/ugorji/go/codec
com/meeko/go-meeko/meeko/utils/codecs
com/meeko/go-meeko/meeko/transports/zmq3/pubsub
com/meeko/go-meeko/meeko/transports/zmq3/rpc
com/meeko/go-meeko/agent
com/meeko-contrib/go-meeko-webhook-receiver/receiver
com/meeko-contrib/meeko-collector-github/handler

>>> Inserting the agent database record ... OK

Success

$ meeko info gh-collector

Alias: gh-collector

Name: meeko-collector-github

Version: 0.0.1

Description: Meeko collector for GitHub events
Repository: git+https://github.com/meeko-contrib/(...)
Variables:

Name: LISTEN_ADDRESS

Usage: TCP network address to listen on; (...)
Type: string

Value: unset

Name: ACCESS_TOKEN

Usage: token to be used for hooks authentication
Type: string

Value: unset

Listen on localhost because we are behind Nginx.
$ meeko set LISTEN_ADDRESS for gh-collector to localhost:8888

Success

$ meeko set -ask ACCESS_TOKEN for gh-collector

Insert

Success

the value of ACCESS_TOKEN:

63

$ meeko start -watch gh-collector

>>> Streaming logs for agent gh-collector
[INFO] Logging service initialised

[INFO] PubSub service initialised

[INFO] RPC service initialised

[INFO] Forwarding github.issues
...

64

E. The cider Command Usage

This is the executable that can be used for starting all components of the Cider
continuous integration server. The functionality is divided into three subcom-
mands:

cider master This subcommand starts the build master. It is actually the same
thing as invoking meekod, so the way how to configure this subcommand is
explained in Appendix [Cl

cider slave This subcommand starts the build slave. The configuration is ex-
plained below.

cider build This subcommand can be used to trigger a build of the chosen
project repository. The configuration is explained below.

E.1 Build Slave Configuration

To configure cider slave, there are two options right now:

e cnvironment variables

e command line flags

E.1.1 Environment Variables

The following environment variables can be used, their meaning is the same as
their flag counterparts as specified in the next subsection:

CIDER_MASTER_URL
CIDER_MASTER_TOKEN
CIDER _SLAVE_IDENTITY
CIDER_SLAVE_LABELS
CIDER_SLAVE WORKSPACE

E.1.2 Command Line Flags

The following flags are accepted by cider slave:
-master the build master WebSocket endpoint URL
-token the build master WebSocket access token
-identity a unique build master identifier

-labels a list of environment labels, comma-separated

65

-workspace the directory to use for project workspaces
-executors number of jobs to run in parallel
-verbose print more verbose output

-debug print debug output

Flags have the highest priority and overwrite any other configuration.

E.2 Build Trigger Configuration

cider build can be used to enqueue a build request in Cider and see the build
output being streamed back into the console. It can be also configured using a
configuration file, command line flags or environment variables. Since this file is
expected to be committed in a repository, the access token cannot be specified
in the configuration file. An environment variable or command line flag must be
used for that.

E.2.1 Configuration File
It is a YAML file again:

master:
url: // the master URL, schema and port must be there!
// example: wss://cider.example.com:443/connect
slave:
label: // the chosen environment label,
// ’any’ is always valid and available
repository:
url: // the repository URL as in mk install,
// e.g. git+ssh://git@github.com/foo/bar#branchA
script:
path: // relative path to the script that is to be run
runner: // the script runner,
// one of node, cmd, powershell, bash
env: // list of env variables that will be set
- FOO=BAR
- BAZ=TOOR

When cider build is run, it is expecting this file named as cider.yml to be
in the current working directory. The same configuration file is being used by the
prototype workflow, it is expecting this file to be placed in the top-level directory
of the repository and to be also called cider.yml. In case the file is found, all
the parameters must be supplied as command line flags or environment variables.

66

E.2.2 Environment Variables

Where not mentioned explicitly, the meaning of the following variables is the
same as their flag counterparts mentioned in the next subsection.

CIDER_MASTER_URL
CIDER_MASTER_TOKEN
CIDER_SLAVE_LABEL

CIDER _REPOSITORY_URL
CIDER_SCRIPT_PATH
CIDER_SCRIPT_RUNNER

CIDER _SCRIPT_ENYV key - equivalent to -env key=...

E.2.3 Command Line Flags

The following flags can be used to overwrite the relevant values from the config
file, or set the values in case the config file is not being used:

-master
-token
-slave
-runner
-repository
-script

-env The format is KEY=VALUE, can be specified multiple times on the command
line.

67

F. Implementing Custom Meeko
Agents

To understand how a Meeko agent can be implemented, the agent life cycle in
Meeko must be explained in more details. Every Meeko agent goes through the
following phases, or jumps between them:

Installation Meeko exports a management call where it accepts a source code
management repository path and it is able to download the agent sources
from there. Every agent has a workspace assigned and the repository is
downloaded into the src subdirectory in the workspace. Once download-
ed, Meeko looks for .meeko/agent.json within the repository, which is
the agent metadata file that describes the agent, most importantly telling
Meeko what variables must be set before the agent can be started. The struc-
ture of this file is described at the end of this appendix. Meeko then looks for
an executable script located at .meeko/hooks/install within the reposito-
ry and executes that script. The goal of the script is to create an executable
in $WORKSPACE/bin that represents the agent. It can be any executable as
long as it is named after the agent, hence the whole process is completely
language agnostic. If the script succeeds, Meeko saves the agent metadata
into the database, creating the agent record, which is nothing more than
agent. json, just having the variable values filled it. These values can be
set using the management calls and they are exported as environment vari-
ables for the agent executable when Meeko is requested to start the agent.
That is the only way how an agent can be configured.

Starting Once the agent is installed in Meeko, it can be started, provided that
all the required variables are set. These are specified in agent.json and
Meeko will not start the agent until all the compulsory variables are assigned
values. Once the values are specified, the agent can be started. Meeko looks
for $WORKSPACE/bin/AGENT_NAME and starts that executable, exporting the
arguments as environment variables.

Stopping The agent can be stopped, naturally. Currently this means that
SIGTERM signal is sent to the agent process. If that is not enough,
SIGKILL is sent after certain time period.

Upgrade The agent can be upgraded, which means that the sources are updated
and .meeko/hooks/upgrade script is run. This script’s goal is again to
create a new executable placed in the right directory. Then the agent is
restarted if running so that the new executable is loaded.

Removal Once the agent is not needed any more, it can be removed from the
system. That means that its workspace is deleted and the database record
is dropped.

68

Now that it is more clear how an agent is managed from outside, let us look
at the same steps from the agent’s point of view:

Installation Every agent is represented by a single source code repository. That
repository must include .meeko directory in the top level directory. A
file called agent.json in that directory specifies certain metadata like
the agent name, version and arguments. Its structure is defined in the
meekod/supervisor/data package. Then there are two scripts that are to
be placed into .meeko/hooks. It is install and upgrade, which are run
during the install and upgrade management commands. Their goal is to
create or re-create the executable representing the agent, and place that
executable into $BINDIR/$AGENT where BINDIR is a variable containing the
path of the directory where Meeko expects the agent executable to be. It
is exported for the hook scripts. AGENT is then the name of the agent
being installed as inserted in agent. json.
cider-plugins/cider-github-status/.meeko directory on the attached
CD contains a real world example. The scripts there, however, are very sim-
ple, because the whole mechanism is compatible with how Go commands
build and install executables and all the steps happen automatically in case
the agent is written in Go.

Starting When Meeko is asked to start the application, it looks for its exe-
cutable, which is then used to start the process representing the agent. All
the compulsory variables from agent. json must be set using the manage-
ment calls before the relevant agent can be started. When the variables are
set, Meeko starts the process with all the variables exported as environment
variables.

Stopping When Meeko is asked to stop an agent, it first sends SIGTERM to
the agent, and if the agent process does not terminate in time, which is now
by default 5 seconds, it receives SIGKILL and is terminated immediately.

Upgrade Running upgrade just means that the agent sources are updated, the
executable is rebuilt and if everything is fine and the agent is running, it is
restarted to start using the new executable.

Besides containing the metadata directory, the agent is of course expected to

use the client library to plug into the communication platform. It can implement
any kind of functionality, it is just an executable program after all.

69

F.1 Agent Metadata File
{

"name": string
"version": string
"description": string
"clone_dir": string
"vars": {
VARIABLE_NAME: {
"usage": string
"type": "string" | "integer" | "float64" |
"boolean" | "duration"
"secret": bool
"optional": bool
}
b
b

In this schema, VARIABLE_NAME represents a variable that will be exported for
the agent when meeko start is called.

clone_dir allows agents to be cloned into a custom subdirectory of their
workspace. This is useful particularly for agents written in Go since they of-
ten need to be cloned according to the import paths they use, which can be
github.com/foo/bar.

70

G. Supported Meeko Service
Endpoints and Protocols

The following Meeko service endpoints are available:

e RPC service

— ZeroMQ 3.x transport
— WebSocket transport

— In-process transport
e PubSub service

— ZeroMQ 3.x transport

— In-process transport
e Logging service

— ZeroMQ 3.x transport

Local agents are expected to use the ZeroM(Q 3.x IPC transport, necessary
environment variables are exported into the agent’s environment so that the client
library can configure itself automatically.

Remote agents are expected to use the WebSocket transport, which is for now
only available for the RPC service so that Cider could be implemented.

We do not document the exact low-level protocols here, because every end-
point uses internally a protocol of its own that is specific to that particular service
and endpoint. These protocols are not really important unless the task is to im-
plement a new client library. The agents themselves know nothing about the
underlying protocols since they always use a finished and working client library
that completely hides all the unnecessary complexity.

71

	Introduction
	Problem Definition and Analysis
	Target Development Workflow
	Modeling the System of Integrated Services
	Continuous Integration Server
	Role of the Continuous Integration Server
	Anatomy of the Patch Verification Phase
	Anatomy of a Test Run
	Testing Environment Management
	Functional Requirements

	Development Tools Integration Platform
	Functional Requirements

	Summary

	Existing Continuous Integration Servers
	Travis CI
	Travis CI Build Lifecycle
	Evaluting Travis CI
	Summary

	Drone
	Evaluating Drone
	Summary

	Jenkins
	Evaluating Jenkins
	Summary

	Buildbot
	Evaluating Buildbot
	Summary

	Other Continuous Integration Servers
	Summary

	Designing the Optimal Development Platform
	Development Tools Integration Platform
	Managing Inter-Component Communication

	Continuous Integration Server
	Communication Platform Architecture
	Managing The Agent Components
	Routing Inbound Traffic
	Communication Platform Implementation
	The Communication Platform and the Client Library
	Shared Communication Medium

	The Agents Manager Implementation
	Summary

	Prototype Implementation
	Target Workflow
	Target Workflow Implementation
	Continuous Integration Server Prototype
	Meeko Services
	PubSub
	RPC
	Logging

	Cider Internals
	Testing Projects Using Cider
	Benchmarking Meeko and Cider
	Benchmark Results

	Summary

	Conclusion
	Logical System Architecture
	Communication Platfrom Flexibility
	Ease of Use and Administration
	Chosen Programming Language
	Robustness
	Performance
	Limitations
	Future Work

	Bibliography
	Appendices
	Appendix Contents of the Attached CD
	Appendix Building Go Packages
	Go Workspaces
	Building the Attached Packages

	Appendix The meekod Command Usage
	Configuration File
	Environment Variables

	Appendix The meeko Command Usage
	Meeko Usage Example

	Appendix The cider Command Usage
	Build Slave Configuration
	Environment Variables
	Command Line Flags

	Build Trigger Configuration
	Configuration File
	Environment Variables
	Command Line Flags

	Appendix Implementing Custom Meeko Agents
	Agent Metadata File

	Appendix Supported Meeko Service Endpoints and Protocols

