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Název práce: Multivariate extreme value models and their application in hydrol-
ogy

Autor: Lukáš Drápal
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Introduction

Present thesis deals with the multivariate extreme value theory. The extreme
value theory is a hot topic. As climate changes, extreme floods, droughts or heat
waves are more frequent. Governments want to know risks of these in order that
they could protect their citizens in a relevant matter. Insurance companies need
to calculate probabilities of such events so that they could price insurance policies.
Use of the extreme value theory is not limited to geographical applications. For
example, financial institutions need to manage a risk of a market crash as they
could lose in one day profit that has been acquired in years. The field has even
received attention of the public thanks to popular science books like The Black
Swan by Nassim Taleb.

The multivariate extreme value theory models occurrence of multiple extreme
events at a time. This is a challenging task as it is difficult to provide a flexible
dependence structure. One of common approaches is to model dependence with
copulas. In this thesis, we use a point process approach and we model dependence
with a spectral density or an exponent measure. However, a connecting link with
the approach via copulas is provided.

The thesis is structured as follows. The first chapter deals with the univariate
extreme value theory. Two approaches are introduced. The first models the
block maxima by the generalized extreme value distribution. The second models
threshold excesses by the generalized Pareto distribution. Then it is shown how
the task can be alternatively expressed in the point processes notion.

In Chapter 2 the multivariate extreme value theory is introduced. The chapter
starts with an introduction of copulas approach. Then the multivariate version
of convergence of block maxima is presented. It provides models of dependence
based on exponent measure or spectral density. A general principle of Coles and
Tawn (1991) how to provide a spectral density on a simplex is introduced. The
chapter ends with a description of asymptotically independent and asymptotically
dependent variables.

Chapter 3 contains the bulk of the thesis. It describes known parameter
models for asymptotically dependent variables. There are introduced three known
families of models – the logistic, Dirichlet and the pairwise beta. The principle
of constructing spectral measures introduced by Coles and Tawn (1991) is of a
limited practical use. Ballani and Schlather (2011) suggested a principle how
to construct a spectral density on a low dimensional simplex and extend it to
higher dimensions. This result is discussed in detail. Based on this result a
modification of the pairwise beta model is suggested. The new model provides
a higher flexibility as it provides a dependence structure that can more precisely
reflect the nature of data. The chapter ends with a description of Bayesian model
averaging technique. This provides a way how to combine spectral densities or
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can serve as a selection tool.
The gathered theory is applied in the last chapter. Data from nine hydrologi-

cal stations from northern Moravia are used for modelling. It is discussed whether
data should be fitted with models for asymptotically dependent and asymptoti-
cally independent variables. Models parameters are estimated via maximum like-
lihood technique. Models are compared via log-likelihood and Bayesian model
selection is applied. New variants of the pairwise beta model bring a substantial
improvement. The chapter ends with calculating exceedance probabilities.

Analysis was performed in statistical software R. Several packages for extreme
value analysis have been used. Spectral densities of new models are provided
along with functions that allow to generate random samples from these. In total
over 1000 lines of code can be find on the attached CD or downloaded from
http://artax.karlin.mff.cuni.cz/~drapall/multivariate/.
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Chapter 1

Univariate extreme value theory

Before we shall deal with the multivariate extreme value theory we shall review
the basic concepts of the univariate extreme value theory.

Let us suppose through out this chapter that X1, . . . , Xn, n ∈ N are inde-
pendent and identically distributed random samples from distribution F , with
expected values µ and finite variances σ2.

Behaviour of sample mean Xn is described by laws of large numbers. The cen-
tral limit theorem states the limiting distribution of difference between expected
value and sample mean.

Now suppose that the object of the interest is not the sample mean but maxi-
mum of X1, . . . , Xn. Does this maximum converge almost surely as described for
sample mean in Strong law of large numbers? Is there an equivalent to Central
limit theorem – can we describe its distribution? The univariate extreme value
theory deals with these kinds of questions.

1.1 Block maxima

We shall answer the question about a distribution of maxima. Let

Mn = max(X1, . . . , Xn).

It holds
P (Mn ≤ z) = P (X1 ≤ z, . . . , Xn ≤ z).

As X1, . . . , Xn are independent it follows

P (Mn ≤ z) = P (X1 ≤ z) · · ·P (Xn ≤ z) = (F (z))n.

As n approaches infinity we get

lim
n→∞

F n(z) =

{
0 if F (z) < 1,

1 if F (z) = 1.

This result has a very limited practical use. In 1928 Fisher and Tippett developed
a technique how to compensate the increase of n. In 1943 Gnedenko further
improved the result to the powerful form stated below.
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Theorem 1 (Fisher-Tippett-Gnedenko theorem). If there exists a sequence of
pairs (an > 0, bn ∈ R) and

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
F n(anX + bn) = G(x) (1.1)

then distribution function G is either degenerate or it belongs to one of the three
types

I : Λ(x) = exp

{
− exp

(
−x− b

a

)}
, x ∈ R,

II : Φα(x) =

{
0 if x < b,

exp{−
(
x−b
a

)−α} if x ≥ b.

III : Ψα(x) =

{
exp{−(−

(
x−b
a

)α
)} if x < b,

1 if x ≥ b.

where α > 0, a > 0 and b ∈ R.

Proof. See Gnedenko (1943).

k

Example 1. Let X1, X2, . . . be a sequence of independent unit Fréchet variables
with a distribution function

F (x) = exp{−1/x}, x > 0.

Put an = n, bn = 0 and fix z, then

lim
n→∞

P

(
Mn − bn
an

≤ z

)
= lim

n→∞
P (Mn ≤ nz)

= lim
n→∞

F n(nz)

= lim
n→∞

[exp{−1/(nz)}]n

= exp(−1/z).

Hence, the limiting distribution is again the unit Fréchet.

The three types from the Theorem 1 are called Gumbel, Fréchet and Weibull,
respectively. The three types can be combined into a single generalized extreme
value (GEV) distribution.

Definition 1. A distribution function

G(x) = exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ

+

}
,

where
(z)+ = max(z, 0)

is the generalized extreme value distribution function. A parameter µ is called a
location parameter, σ > 0 is a scale parameter and ξ is a shape parameter.
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How does GEV distribution relate to the three types? As ξ → 0 we get the
Gumbel distribution. For

ξ > 0, α =
1

ξ

we get the Fréchet distribution and for

ξ < 0, α = −1

ξ

we get the Weibull distribution. We shall denote Gξ a GEV distribution with a
given shape parameter ξ.

If the normalizing constants an, bn from Theorem 1 and the limit distribution
G in (1.1) is not degenerate we say that F is in the domain of attraction of
G, written as F ∈ D(G). Sufficient conditions for a distribution function F to
belong into the domain of attraction of the GEV distribution is formulated in
Theorem 2.

Theorem 2 (von Mises’ conditions). Let F be a non-degenerate distribution
function and let

x∗ := sup{x;F (x) < 1}.

(i) If

1. x∗ <∞

2. F ′′(x) exists

3. ∀x ≤ x∗ : F ′(x) > 0

4.

lim
x↑x∗

(
1− F (x)

F ′(x)

)′
= ξ,

then F is in the domain of attraction Gξ.
(ii) If

1. x∗ =∞

2. F ′(x) exists

3.

lim
x→∞

xF ′(x)

1− F (x)
=

1

ξ
, ξ > 0,

then F is in the domain of attraction Gξ.

Proof. See de Haan and Ferreira (2006, p. 15).

Necessary and sufficient conditions for domain attraction are formulated in
the following theorem.
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Theorem 3. Let F be a non-degenerate distribution function and let

x∗ := sup{x;F (x) < 1}.

Distribution function F is in the domain of attraction of Gξ if and only if

(i) for ξ = 0:

lim
t↑x∗

1− F (t+ xh(t))

1− F (t)
= exp(−x), x ∈ R,

where h is a suitable positive function.
(ii) for ξ > 0: x∗ =∞ and

lim
t→∞

1− F (tx)

1− F (t)
= x−1/ξ, x > 0.

(iii) for ξ < 0: x∗ <∞ and

lim
t↓0

1− F (x∗ − tx)

1− F (x∗ − t)
= x−1/ξ, x > 0.

Proof. See de Haan and Ferreira (2006, Chapter 1).

There exist various versions of mentioned necessary and sufficient conditions
for domain attraction. As univariate extreme value theory is not the primary
concern of this thesis we shall not include them. Interested reader can find them in
de Haan and Ferreira (2006, Chapter 1) along with other examples of normalizing
constants an, bn for selected distributions.

An important property of extreme value distributions is max-stability.

Definition 2. A distribution function F is max-stable if there are coefficients
(an, bn), n > 1 such that

P (max(X1, . . . , Xn) < anx+ bn) = F n(anx+ bn) = F (x).

This means that a max-stable function is invariant to taking a normalized
maximum over independent sample. The relationship with GEV distribution
functions is stated in the following theorem.

Theorem 4. The class of max-stable functions coincide with the class of extreme
value distribution functions.

Proof. See de Haan and Ferreira (2006, Remark 1.1.5).

The gathered extreme value theory can be used as follows. Let us say that we
have data of daily precipitation. We can take the annual maxima and use them
to estimate parameters of GEV distribution. This can be done via maximum
likelihood technique. Another approach is to estimate just ξ with Hill or Pickands
estimator – see de Haan and Ferreira (2006, Chapter 3). Given the parameters
of GEV distribution we can estimate return levels. In our case the 1

β
-year return

level equals to the 1− β quantile of GEV distribution.
The described technique is called the block maxima approach. The choice of

number of variables over which a maximum is computed exhibits a bias-variance
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trade-off. If a small number of observations is chosen, convergence to GEV distri-
bution might not hold. This would result in bias estimation. On the other hand, if
too large number of observations is chosen, estimation of GEV parameters would
depend on too few observations of maxima resulting in high variance.

The block maxima approach has a disadvantage – it uses only few values.
Could for example the second largest event also be relevant for parameter esti-
mation? Alternative approach via Peaks over thresholds (POT) takes into ac-
count all observations above a given threshold. It also offers a way to calculate
return levels in case when observation time is not recorded and thus block maxima
approach is not possible.

1.2 Peaks over thresholds (POT)

The core idea of the Peaks over thresholds method is summarized in the fol-
lowing theorem.

Theorem 5. Let distribution function F be in the domain of attraction of Gξ

and
x∗ = sup{x;F (x) < 1}.

As a high enough threshold t approaches x∗ conditional exceedances

(Xi − t|Xi > t)

follow distribution function

Hξ(x, σ, ξ) =


(

1−
(
1 + ξ x

σ

)−1/ξ
)

+
, x > 0, if ξ 6= 0

1− exp
(
−x
σ

)
, x > 0, if ξ = 0.

(1.2)

where σ > 0 and ξ ∈ R are respectively scale and shape parameters.

Proof. Only an outline of the proof is provided. For a more precise argument see
for example Pickands (1975). By the assumption of Theorem 1 for a large n it
holds

F n(x) ≈ exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ
}
,

where µ, σ > 0 and ξ ∈ R are parameters of GEV distribution. Applying loga-
rithm to both sides gives

n log (F (x)) ≈ −
(

1 + ξ
x− µ
σ

)−1/ξ

. (1.3)

For a large value x is F (x) sufficiently close to 1 and Taylor expansion

log (F (x)) ≈ F (x)− 1

holds. Substitution to (1.3) yields

1− F (u) ≈ 1

n

(
1 + ξ

u− µ
σ

)−1/ξ
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for a large u. Clearly, for y > 0,

1− F (u+ y) ≈ 1

n

(
1 + ξ

u+ y − µ
σ

)−1/ξ

. (1.4)

Hence,

P (X > u+ y|X > u) =
n−1

(
1 + ξ u+y−µ

σ

)−1/ξ

n−1
(
1 + ξ u−µ

σ

)−1/ξ

=

(
σ + ξ(u+ y − µ)

σ + ξ(u− µ)

)−1/ξ

=

(
1 +

ξy

σ + ξ(u− µ)

)−1/ξ

.

Computing the limit

lim
ξ→0

(
1 +

ξy

σ + ξ(u− µ)

)−1/ξ

= exp
{
−y
σ

}
hints the shape of the distribution function for ξ = 0.

The distribution function (1.2) is called the generalized Pareto distribution.
The shape parameter ξ is the same as for GEV distribution in the block maxima
approach. As the proof suggests the relationship of scale parameter σ in the two
techniques is

σPOT = σGEV + ξ(t− µ).

Once a threshold is selected, parameters can be estimated via maximum likelihood
technique. These estimates are consistent if ξ > −1. Asymptotic normality holds
for ξ > −0, 5.

The Peaks over threshold technique can be used to represent a semi-parametric
extremal model. The excesses above a high threshold t follow generalized Pareto
distribution while empirical distribution function F̂ is used for values below u.
More precisely, supposing that t is high enough that Theorem 5 holds, extremal
model is the distribution function

F̃ =

{
F̂ (x), for x ≤ t

(1− pt) + pt

(
1−

(
1 + ξ̂

σ̂
(x− t)−1/ξ̂

))
, for x > t,

where pt = P (X1 > t).
The choice of a threshold t exhibits a bias-variance trade-off. Choosing t too

high results in estimation based on a small amount of data. This means that
estimated parameters shall have a high variance. On the other hand, choosing
t too low causes that the asymptotic distribution is not truly the generalized
Pareto. Hence, it is recommended to choose the lowest threshold for which the
Pareto hypothesis seems reliable.

One of the diagnostic tools used to detect where Pareto hypothesis is reliable
is the mean residual life plot. Its purpose is to observe whether there is a linear
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relationship between mean excesses and thresholds. To understand why this
should hold, suppose that excesses of X1 above t0 are Pareto with parameters ξ
and σ. Then, for t > t0 :

P (X1 − t > x|X1 > t)) =
P (X1 > x+ t|X1 > t0)

P (X1 > t|X1 > t0)

=
(1 + σ−1ξ(x− t0 + t))

−1/ξ

(1 + σ−1ξ(t− t0))−1/ξ

=

(
1 +

ξx

σ + ξ(t− t0)

)−1/ξ

.

This means that excesses above t > t0 have generalized Pareto distribution with
parameters σ+ ξ(t− t0) and ξ. The mean of generalized Pareto distribution with
parameters σ and ξ is

σ

1 + ξ

for ξ < 1, otherwise it is infinite. Thus, for any t > t0:

E(X1 − t|X1 > t) =
σ + ξ(t− t0)

1 + ξ
,

which is a linear function of t. This explains why mean excesses should de-
pend roughly linearly on thresholds when the distribution is truly the generalized
Pareto.

Estimation of return levels of Pareto distribution can be done as follows. Let

pt = P (X1 > t)

for a threshold t. Suppose that for variable of our interest

β = P (X1 > xβ)

holds xβ > t. This means

β = P (X1 > xβ|X1 ≤ t)(1− pt) + P (X1 > xβ|X1 > t)pt = P (X1 > xβ|X1 > t)pt.

Consequently,
β

pt
= P (X1 − t > xβ − t|X1 > t).

The return level is
xβ = yβ + t,

where yβ is the β
pt

-quantile of generalized Pareto distribution with the given pa-
rameters.

1.3 Point processes

Two ways of computation of return levels – via the block maxima and thresh-
old excesses were shown. We shall now provide a way of characterising these
two derived from point process theory. This is useful as it shows the extreme
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value theory from a different point of view. Moreover, the point process repre-
sentation will be used in the multivariate setting. As formal treatment of point
process theory is beyond the scope of this thesis we shall provide an informal
development.

Definition 3. Let A be a set and let N(A) be a non-negative integer-valued
random variables for each A ⊂ A such that N(A) is the number of points in the
set A. Let

Λ(A) = EN(A)

be called the intensity measure of the process. Assuming that A is of shape

A = [a1, x1]× · · · × [ak, xk] ⊂ Rk

and given that it exists, the derivative function

λ(x) =
∂Λ(A)

∂x1 · · · ∂xk

is called the intensity (density) function of the process.

In the modelling context, often A = R is time, N(A) then represent number
of occurrences of meteorological event of interest – thunderstorms for example.

A basic example of point process is the one-dimensional homogeneous Poisson
process.

Definition 4. Homogeneous Poisson process with parameter λ > 0 on A ⊂ R
satisfies:

(i) ∀A = [t1, t2] ⊂ A : N(A) ∼ Poisson (λ(t2 − t1));

(ii) ∀A,B ⊂ A, A ∩B = ∅ : N(A) and N(B) are independent random variables.

The corresponding intensity measure can be easily computed as a mean of
Poisson random variable

Λ([t1, t2]) = λ(t2 − t1).

Deriving yields intensity density function

λ(t) = λ.

A one-dimensional homogeneous Poisson process can be further generalized to a
multi-dimensional non-homogeneous Poisson process.

Definition 5. A point process on A ⊂ Rk is said to be a k-dimensional non-
homogeneous Poisson process with intensity density function λ(·) if

(i) ∀A ⊂ A : N(A) ∼ Poisson (Λ(A)),where

Λ(A) =

∫
A

λ(x) dx;

(ii) ∀A,B ⊂ A, A ∩B = ∅ : N(A) and N(B) are independent random variables.

11



To represent the extreme value behaviour via point processes a notion of
convergence is needed.

Definition 6. Let N1, N2, . . . be a sequence of point processes on A. The sequence
converges in distribution to a point process N denoted

Nn
d−→ N,

if for all m and all bounded sets A1, . . . , Am such that for their boundaries
B(Aj), j = 1, . . . ,m holds

P{N(B(Aj)) = 0} = 1, j = 1, . . . ,m,

the joint distribution of
(Nn(A1), . . . , Nn(Am))

converges in distribution to

(N(A1), . . . , N(Am)).

Theorem 6. Let X1, X2, . . . be a series of independent and identically distributed
random variables for which exist sequences of constants {an > 0} and {bn} such
that

P

(
Mn − bn
an

≤ z

)
→ G(z),

where G(z) is the GEV distribution function. Let

z∗ := sup{x;G(x) < 1}, z− := inf{x;G(x) > 0}.

The sequence of point processes

Nn =

{
i

n+ 1
,
Xi − bn
an

: i = 1, . . . , n

}
converges on regions of the form (0, 1) × [u,∞), for any u > z−, to a Poisson
process with intensity measure

Λ(A) = (t2 − t1)

(
1 + ξ

z − µ
σ

)−1/ξ

on A = [t1, t2]× [z, z∗).

Proof. Only an outline of the proof is provided. Let us consider a region A =
[0, 1] × (u,∞) for a sufficiently large value u. Then the probability that a point
from Nn falls into region A is

p := P

(
X1 − bn
an

> u

)
≈ 1

n

(
1 + ξ

u− µ
σ

)−1/ξ

,

where the approximation holds by (1.4). Since Xi, i = 1, . . . , n are mutually
independent, Nn(A) has binomial distribution with parameters (n, p). As n→∞
it holds p→ 0 and

np = n
1

n

(
1 + ξ

u− µ
σ

)−1/ξ

=

(
1 + ξ

u− µ
σ

)−1/ξ

.
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Thus the limiting distribution of Nn(A) as n→∞ is Poisson(Λ′(A)) with

Λ′(A) =

(
1 + ξ

u− µ
σ

)−1/ξ

.

The process is homogeneous in time direction which implies that for any region
of the form A = [t1, t2] × (u,∞), where [t1, t2] ⊂ [0, 1], the limiting distribution
of Nn(A) is also Poisson(Λ(A)) with

Λ(A) = (t2 − t1)

(
1 + ξ

u− µ
σ

)−1/ξ

.

The fact that the distributions of the N(A) on non-overlapping sets are indepen-
dent by construction completes the argument.
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Chapter 2

Multivariate extreme value
theory

In Chapter 1 we have summarized the basics of the univariate extreme value
theory. In this chapter, the theory is expanded into multiple dimensions. The
focus is on the dependence structure between extremes in different components as
isolating a single component would bring as back to the univariate extreme value
theory. Also, in some cases only the joint occurrence of extremes is the subject of
our interest. The event of interest does not have to be daily precipitation in an
individual hydrological station but whether a sum of daily precipitation in several
stations exceeds a certain level. Another example are air pollutant measurements:
it is likely that compound effects of high levels of multiple pollutants have more
severe impact on human health then effects resulting from high levels of the of
the individual pollutants. The issue of temporal dependence is not covered, the
dependence is understood as cross-sectional only.

Let
Xi = (Xi1, . . . , Xid), i = 1, . . . , n,

be independent and identically distributed random vectors of dimension d. Con-
sider the sample maximum for each component j = 1, . . . , d and create a new
random vector

Mn = (Mn1, . . . ,Mnd), where Mnj = max(X1j, . . . , Xnj).

Vector Mn is called the component-wise maxima. Note that the component-wise
maxima is usually not a part of the sample as the maxima in different components
typically occur at different times.

Weak convergence of a sequence of random vectors implies weak convergence of
each of its components. As in the univariate extreme value theory, if normalizing
constants for each components can be found, then Theorem 1 implies convergence

lim
n→∞

P

(
Mnj − bnj

anj
< x

)
= Gj(x), j = 1, . . . , d, (2.1)

where anj > 0 and Gj are GEV distributions functions.
However, weak convergence of each of d components in (2.1) is strictly weaker

than the joint convergence of the vector of normalized maxima. What is needed
in addition is a condition of the dependence structure of the common joint dis-
tribution of vectors Xi. One way to describe this dependence structure is via

14



copulas. Approach via copulas will not be used later in the thesis. However, it
is widely used and it is desirable to show its connection with the point processes
approach.

2.1 Copulas

Definition 7. Let (Y1, . . . , Yd) be a random vector with continuous margins. Then
the random vector

(U1, . . . , Ud) = (F (Y1), . . . , F (Yd))

has uniformly distributed marginals. The copula of (Y1, . . . , Yd) is the joint dis-
tribution function of (U1, . . . , Ud):

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud).

Let F be the joint distribution function of the random vectors Xi and C1 be
its copula. Then from definition of copula:

P (Xi ≤ x) = F (x) = C1(F1(x1), . . . , Fd(xd)). (2.2)

Let us assume throughout this section that F1, . . . , Fd are continuous. This pro-
vides uniqueness of copula C1 from equation (2.2) and it can be obtained as the
joint distribution function of random vector (F1(Xi1), . . . , Fd(Xid)).

Theorem 7. Let
H1, H2, . . .

be a sequence of d-variate distribution functions with marginal distributions

(H1
1 , . . . , H

1
d), (H2

1 , . . . , H
2
d), . . . .

Let
L1, L2, . . .

be a sequence of its copulas. Then the following statements are equivalent

(i) ∀x ∈ Rd : lim
n→∞

Hn d−→ H,

where H has continuous marginal distributions H1, . . . , Hd

(ii) ∀x ∈ Rd : lim
n→∞

Hn
i

d−→ Hi, i = 1, . . . , d and lim
n→∞

Ln = L,

where L is the copula corresponding to a distribution function H.

Proof. See Galambos (1987).

The intuition behind Theorem 7 is the following. Let Cn be the copula of the
vector of component-wise maxima Mn. Following (2.2) it holds

P (Mn ≤ x) = F n(x) = (C1(F1(x1), . . . , Fd(xd)))
n. (2.3)

Marginal distribution of F n(x) are F n
j (xj), j = 1, . . . , d, thus from definition of

Cn if follows

P (Mn ≤ x) = F n(x) = Cn(F n
1 (x1), . . . , F n

d (xd)). (2.4)
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Comparing (2.3) and (2.4) yields(
C1

(
u

1/n
1 , . . . , u

1/n
d

))n
= Cn(u1, . . . , ud), (u1, . . . , ud) ∈ [0, 1]d.

This provides explanation why not only a sequence of marginal distributions
should weakly converge but also a sequence of copulas should converge in order
that joint distribution weakly converges.

Copulas that arise as weak limits of Cn are called extreme-value copulas.

Definition 8. A copula C is called an extreme-value copula if there exists a
copula C1 such that

lim
n→∞

(
C1

(
u

1/n
1 , . . . , u

1/n
d

))n
= C(u1, . . . , ud). (2.5)

A copula C1 is said to be in the domain of attraction of C.

Extreme-value copulas arise as the class of possible limit copulas of vec-
tors Mn.

Convergence of copulas share some similarities with convergence of normalized
distribution functions in the univariate extreme value theory. Namely, the class
of extreme-value copulas coincides with the class of max-stable copulas.

Definition 9. A copula C is max-stable if for all u ∈ [0, 1]d and k = 1, 2, . . .

C(u) =
(
C(u

1/k
1 , . . . , u

1/k
d )
)k
.

Obviously, a max-stable copula is also an extreme-value copula, being in its
own domain of attraction. On the other hand, putting n = mk in equation (2.5)
for a fixed k yields

C(u1, . . . , ud) = lim
m→∞

(
C1

((
u

1/k
1

)1/m

, . . . ,
(
u

1/k
d

)1/m
)m)k

=
(
C(u

1/k
1 , . . . , u

1/k
d )
)k
.

Now we shall proceed to provide a bridge between copulas and other depen-
dence functions. Taking ui = exp{−xi} puts (2.5) into a form

lim
n→∞

(
C1

(
exp

{
−x1

n

}
, . . . , exp

{
−xd
n

}))n
= C(exp{−x1}, . . . , exp{−xd}).

Applying logarithm to both sides then yields

lim
n→∞

n log
(
C1

(
exp

{
−x1

n

}
, . . . , exp

{
−xd
n

}))
=log (C(exp{−x1}, . . . , exp{−xd})) .

Via Taylor expansion it is derived

lim
n→∞

n
(
−1 + C1

(
1− x1

n
, . . . , 1− xd

n

))
= log (C(exp{−x1}, . . . , exp{−xd})) .

Multiplying by −1 gives

lim
n→∞

n
(

1− C1

(
1− x1

n
, . . . , 1− xd

n

))
= − log (C(exp{−x1}, . . . , exp{−xd})) .
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Definition 10. Limit

`(x) = lim
n→∞

n
(

1− C1

(
1− x1

n
, . . . , 1− xd

n

))
,x ∈ [0,∞)d

is called the stable tail dependence function of C.

The stable tail dependence function contains probability that at least one
among the components exceeds its high quantile:

`(x) = lim
n→∞

n
(

1− C1

(
1− x1

n
, . . . , 1− xd

n

))
= lim

n→∞
n P

(
F1(X1) > 1− x1

n
or . . . or Fd(Xd) > 1− xd

n

)
. (2.6)

The probability in (2.6) contains the union of events Fj(Xj) > 1 − xj
n

, each
with probability xj/n, given 0 ≤ xj ≤ n. Complete dependence and complete
independence between the events provide bounds

max
(x1

n
, . . . ,

xd
n

)
≤ P

(
F1(X1) > 1− x1

n
or . . . or Fd(Xd) > 1− xd

n

)
≤ x1

n
+ · · ·+ xd

n
.

This leads to

max(x1, . . . , xd) ≤ `(x1, . . . , xd) ≤ x1 + · · ·+ xd.

The stable tail dependence function ` is homogeneous of order 1:

`(ax) = lim
n→∞

n
(

1− C1

(
1− ax1

n
, . . . , 1− axd

n

))
= lim

m→∞
am
(

1− C1

(
1− x1

m
, . . . , 1− xd

m

))
= a`(x), a > 0, x ∈ [0,∞)d.

Therefore it is sufficient to consider the restriction to the unit simplex

Sd−1 =
{

(ω1, . . . , ωd) ∈ [0, 1]d : ω1 + · · ·+ ωd = 1
}
.

Definition 11. The restriction of ` to Sd−1 is called the Pickands dependence
function D.

By homogenity,

`(x) = (x1 + · · ·+ xd)D(ω1, . . . , ωd), ωj =
xj

x1 + · · ·+ xd
.

Relationship between a stable tail dependence function and a copula from
Definition 10 can be rewritten as

C(u1, . . . , ud) = exp{−`(− log(u1), . . . ,− log(ud)},u ∈ (0, 1]d.

In the extreme value theory, it is often more useful to standardize to a different
distribution then the uniform. A frequent choice is the unit Fréchet distribution.
Then the relationship between a copula and a stable tail dependence function is
then of a form

C(e−1/x1 , . . . , e−1/xd) = exp {−`(1/x1, . . . , 1/xd)} , x ∈ (0,∞)d. (2.7)
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2.2 Block maxima

Now, let us abandon the approach via copulas for a while and let us go back
to the problem of block maxima. Suppose now that

Xij, i = 1, . . . , n

are unit Fréchet random variables with distribution function F for each
j = 1, . . . , d. This assumption is not restrictive as a suitable transformation
can be applied otherwise. From Example 1 we know that

lim
n→∞

P

(
Mn

n
≤ z

)
= exp(−1/z).

The result is even stronger: it holds not only for the limiting distribution but
also for all n due to max-stability:

P

(
Mn

n
≤ z

)
= P (Mn ≤ nz) = F n(nz) = F (z).

Hence, to obtain standard univariate results for margins, the rescaled vector

M∗
n = (M∗

n1, . . . ,M
∗
nd), where M∗

nj = max(X1j/n, . . . , Xnj/n). (2.8)

should be considered. The following theorem provides a multivariate version of
Theorem 1.

Theorem 8. Let
Xij, i = 1, . . . , n

be independent vectors with unit Fréchet marginal distributions for each
j = 1, . . . , d. Then following notation from (2.8) if

P (M∗
n1 ≤ x1, . . . ,M

∗
nd ≤ xd)

d−→ G(x1, . . . , xd). (2.9)

where G is a non-degenerate distribution function, G has the form

G(x1, . . . , xd) = exp{−V (x1, . . . , xd)}, x1 > 0, . . . , xd > 0 (2.10)

where

V (x1, . . . , xd) = d

∫
Sd−1

max
1≤j≤d

(
ωj
xj

)
dH(ω) (2.11)

and H is a positive finite measure on Sd−1 satisfying the mean constraint∫
Sd−1

ωj dH(ω) =
1

d
, j = 1, . . . , d. (2.12)

Proof. See Resnick (1987).

Function V from Theorem 8 is called an exponent measure and a measure H
is called a spectral measure. Note that the only constraint on a spectral measure
H is the condition (2.12).
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Exponent measure has a close connection with a copula with unit Fréchet
margins as in (2.7). From (2.7) and (2.10) it is noted that

V (x1, . . . , xn) = `(1/x1, . . . , 1/xd).

To understand the outline of proof of Theorem 8 observe that exponent mea-
sure V is homogeneous of order −1: from (2.11) it follows:

V (a−1x) = aV (x);

this is also a consequence of connection with `. Using this property in (2.10) gives

Gn(x) = (exp{−V (x)})n = exp{−nV (x)} = exp{−V (x/n)} = G(x/n).

This means that G possesses the multivariate version of max-stability property.
Then it is shown that the limit distribution in (2.9) must be max-stable and
that distributions of form (2.10) are the only ones that possess this property. To
understand why (2.12) must hold, let us introduce the point processes approach.

2.3 Point processes approach

Theorem 9. Let
Xij, i = 1, . . . , n

be independent vectors with unit Fréchet marginal distributions for each
j = 1, . . . , d that satisfy the convergence for component-wise maxima

P (M∗
n1 ≤ x1, . . . ,M

∗
nd ≤ xd)

d−→ G(x1, . . . , xd).

Let {Nn} be a sequence of point processes defined by

Nn = {(X11/n, . . . , X1d/n), . . . , (Xn1/n, . . . , Xnd/n)}, n ∈ N. (2.13)

Then
Nn

d−→ N

on regions bounded from the origin 0, where N is a non-homogenous Poisson
process on Rd

+\0. Moreover, the intensity function of N is

λ(dr, dω) =
d

r2
dr × dH(ω),

where

r =
d∑
i=1

xi, ωi =
xi
r
, i = 1, . . . , d

and H is related to G through (2.11) and (2.10).

Proof. See Resnick (1987).
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In Theorem 9 a transformation from Cartesian to pseudo-polar coordinates
was performed, in which r stands for ”distance” from the origin and ω provides
angle through point on simplex Sd−1. The spectral measure then determines the
angular spread of points in the limit Poisson process. When spectral measure
H is differentiable with a spectral density h, interpretation of the role that H
plays can be made explicit as follows. When extremes are near-independent then
large values occur typically only in one dimension, h(·) being concentrated near
simplex vertices. In case when dependence is very strong, h(·) is concentrated
around the simplex centre (1/d, . . . , 1/d).

Note also that a choice of divisor n in (2.13) is motivated by the normalizing
constant of unit Fréchet variables.

Now we shall proceed with finishing the outline of proof of Theorem 8. Note
that

P (M∗
n1 ≤ x1, . . . ,M

∗
nd ≤ xd) = P (Nn(A) = 0),

where Nn is the point process defined in (2.13) and

A = Rd
+\{(0, x1)× · · · × (0, xd)}. (2.14)

Thus, by Poisson processes limit

lim
n→∞

P (M∗
n1 ≤ x1, . . . ,M

∗
nd ≤ xd) = P (N(A) = 0) = exp{−Λ(A)}, (2.15)

where

Λ(A) =

∫
A

d

r2
dr × dH(ω)

=

∫
Sd

∫ ∞
r = min1≤j≤d

(
xj
ωj

) d

r2
dr × dH(ω)

= d

∫
Sd

max
1≤j≤d

(
ωj
xj

)
dH(ω). (2.16)

Putting (2.15) and (2.16) together yields (2.12). Note also that for a given
A in (2.14) the intensity measure Λ(A) coincides with the exponent measure
V (x1, . . . , xd), hence following (2.16) exponent measure V can be written as

V (x1, . . . , xd) = d

∫
Sd

max
1≤j≤d

(
ωj
xj

)
dH(ω). (2.17)

Now let us further describe the relationship between a spectral measure H
and an exponent measure V .

Theorem 10. If a spectral density h(ω) of spectral measure H(ω) exists then

h(ω1, . . . , ωd) = −1

d

∂

∂x1 . . . ∂xd
V (x1, . . . , xd)|x1=ω1,...,xd=ωd

for ω1 + · · ·+ ωd = 1.

Proof. See Coles and Tawn (1991).
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Theorem 10 has its more powerful form that states spectral densities on sub-
spaces of Sd−1. Let

Sj−1,c = {ω ∈ Sd−1 : ωk = 0, k /∈ c},

where
c = {i1, . . . , ij}, 1 ≤ j ≤ d.

This means that Sj−1,c is isomorphic to simplex Sj−1. If V is differentiable,
H has density hj,c on each of the subspaces Sj−1,c. The density hj,c describes
the dependence structure for events that are extreme only in components c =
{i1, . . . , ij}.

Theorem 11. Let V be a differentiable exponent measure and H corresponding
spectral measure with densities hj,c as above. Then for

c = {i1, . . . , im}, b =
m∑
j=1

xij , 1 ≤ m ≤ d

it holds
∂ V (x1, . . . , xd)

∂xi1 . . . ∂xim
= −d b−m−1 hm,c

(xi1
b
, . . . ,

xim
b

)
.

on {x ∈ Rd
+ : xr = 0 if r /∈ c}.

Proof. See Coles and Tawn (1991).

It has been noted that the only constraint on spectral measure H is (2.12).
This is the reason why no finite parametrization exists for this measure. The
following theorem summarizes how to obtain a spectral density from a wide range
of functions defined on a simplex.

Theorem 12. If h∗ is a positive function on Sd−1 with finite first moments, then

h(ω) := d(m · ω)−d−1

d∏
j=1

mj h
∗
(m1ω1

m · ω
, . . . ,

mdωd
m · ω

)
, (2.18)

where

mj =

∫
Sd−1

uj h
∗(u) du, j = 1, . . . , d (2.19)

satisfies constraint (2.12) and thus h(ω) is a spectral density of a valid measure
H.

Proof. See Coles and Tawn (1991).

Overview of known parametric models given by either exponent measure V (x)
or spectral density h(ω) is provided in Chapter 3.
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2.4 Asymptotic dependence measures

Let H be a spectral measure that concentrates 1
d

of its mass on each of simplex
Sd−1 vertices i.e on

ω = ej, j = 1, . . . , d,

where ej is a d-dimensional unit vector that has 1 in j-th dimension. Hence,
(2.12) is clearly satisfied and (2.6) gives

V (x1, . . . , xd) =
1

x1

+ · · ·+ 1

xd
.

and the corresponding extreme value distribution is

G(x1, . . . , xd) = exp

{
1

x1

+ · · ·+ 1

xd

}
= exp

{
1

x1

}
× · · · × exp

{
1

xd

}
.

This distribution corresponds to case when

Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ d

are independent variables. Of course, the fact that the limiting distribution is
the distribution corresponding to independent margins does not imply that the
margins are truly independent. For example, let (X1, . . . , Xd) be a d-variate
normal random vector where each pair of variables

Xij, 1 ≤ i < j ≤ d

has correlation coefficient ρij < 1. Then it can be shown (see Sibuya (1959))
that the limiting distribution is the one corresponding to independent variables.
However, data even at moderately extreme levels are likely to exhibit a strong
dependence, especially for ρ close to 1. Hence, models fitted to data are likely to
overestimate dependence in unobserved extreme levels.

The provided example shows the importance of determining whether the lim-
iting distribution is asymptotically independent or whether models for asymptotic
dependence as those in Chapter 3 should be used. Several measures have been
proposed to this purpose. First, Sibuya (1959) proposed a quite intuitive measure
for bivariate distributions:

χ = lim
u→1

P (FX1(X1) > u|FX2(X2) > u).

Defining also

χ(u) = 2− logP (FX(X) < u, FY (Y ) < u)

log(P (FX(X) < u)
, 0 < u < 1. (2.20)

It is straightforward to show that

χ = lim
u→1

χ(u).
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Figure 2.1: Asympotic indeependence (left) versus asymptotic perfect dependence
(right).

In general χ varies between 0 and 1. If χ = 1, data are perfectly asymptotically
depend. If χ = 0, data are asymptotically independent and difficulties described
above arise. The difference between these two is depicted on Figure 2.1 from
Segers (2012).

The function χ(u) can be empirically estimated for increasing u which provides
an exploratory tool to analyse strength of dependence; see Coles, Heffernan, and
Tawn (1999).

Dependence measure χ does not provide any measure of discrimination for
asymptotically independent variables. Another measure

χ̄ =
2 log(P (FX(X > u)))

log(P (FX(X) > u, FY (Y ) > u))
− 1

has been propose for these. Details can be found for example in Coles (2001,
Chapter 8.4).

As data that are analysed in Chapter 4 are asymptotically dependent we shall
restrict ourselves to this class.

Measure χ is suitable for analysing bivariate dependence. There is another
measure aiming to summarize the overall dependence in higher dimensions.

Definition 12. Suppose that Y is a d-variate extreme value random variable with
unit Fréchet marginal distributions and

Y (j), j = 1, . . . , n

are independent replicates of Y . Then there exists a real number 1 ≤ θA ≤ A for
all non-empty A ⊆ {1, . . . , d} such that

lim
n→∞

P

(
max
i∈A

max
j=1,...,n

Y
(j)
i /n ≤ y

)
= lim

n→∞

(
P

(
max
j=1,...,n

Y
(j)
i /n ≤ y

))θA
= exp{−θA/y};

the parameter θA is called extremal coefficient of the process for the set A.
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The extremal coefficient can be thought of as the effective number of inde-
pendent unit Fréchet random variables in the set {Yd, d ∈ A}. If θA = 1 then
variables corresponding to set A are perfectly asymptotically dependent. On the
other hand, θA = |A| implies asymptotic independence. Detailed properties of
extremal coefficient can be found in Schlather and Tawn (2003).
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Chapter 3

Parametric models

In this chapter known parametric models for asymptotically dependent vari-
ables are summarized. These are either given via an exponent function V (x) or
through a spectral density h(ω). For models that are used for modelling in Chap-
ter 4 an algorithm how to generate random samples is also provided. Emphasis
is given on recent result by Ballani and Schlather (2011).

3.1 Logistic family

Logistic model described by Gumbel (1960) defines the model through expo-
nent function

V (x) =

(
d∑
i=1

(xi)
−1/α

)α

, 0 ≤ α ≤ 1.

The model was further extended to model asymmetrical behaviours of subsets of
variables by Coles and Tawn (1991).

The asymmetric logistic model is defined through

V (x) =
∑
c∈C

{∑
i∈c

(
θi,c
xi

)rc}1/rc

,

where C is the set of all non-empty subsets of {1, . . . , d} and the parameters are
constrained by

∀c ∈ C : rc ≥ 1; if i /∈ c, θi,c = 0 else θi,c ≥ 0, i = 1, . . . , d and
∑
c∈C

θi,c = 1.

Spectral densities hj,c can be calculated through Theorem 11. Following its no-
tation it gives for ω ∈ Sj,c

hj,c(ω) =
1

d

{
j−1∏
k=1

(krc − 1)

}(∏
i∈c

θi,c

)rc (∏
i∈c

ωi

)−rc−1{∑
i∈c

(
θi,c
ωi

)rc}1/rc−j

.

(3.1)
Negative asymmetric logistic model was described by Joe (1990). Its exponent

function is

V (x) =
d∑
i=1

1

xi
−

∑
c∈C:|c|≥2

(−1)|c|

{∑
i∈c

(
θi,c
xi

)rc}1/rc
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with parameter constraints given by

∀c ∈ C : rc ≤ 0; if i /∈ c, θi,c = 0 else θi,c ≥ 0 and
∑
c∈C

(−1)|c|θi,c ≤ 1.

Again by Theorem 11 we get

hj,c(ω) =
∑

d∈C:c⊂d

(−1)|d|

d

{
j−1∏
k=1

(krc − 1)

}(∏
i∈c

θi,c

)rc(∏
i∈c

ωi

)−rc−1{∑
i∈c

(
θi,c
ωi

)rc}1/rc−j

.

The similarity of spectral density with the one of asymmetric logistic model (3.1)
is clear.

A parametric family of multivariate extreme value distribution is closed if its
exponent measure V (x) is closed. The family of asymmetric logistic models is
not closed (Tawn (1990)). On the other hand, the family of negative asymmetric
logistic models is closed, see Joe (1990).

Nested logistic model further generalizes the asymmetric logistic model. The
family of nested logistic models allows many kinds of parametrization, for details
see Tawn (1990). In Chapter 4 the following trivariate nested logistic model is
used for modelling:

V (x) = 2−α0

[(
x
−1

α0α12
1 + x

−1
α0α12
2

)α12

+

(
x
−1

α0α13
1 + x

−1
α0α13
3

)α13

+

(
x
−1

α0α23
2 + x

−1
α0α23
3

)α23
]α0

(3.2)
with

0 < α0, α12, α23, α13 < 1.

Theorem 10 can be applied to obtain spectral density h(ω) - see Sabourin et al.
(2013) for steps and exact form.

In logistic family, the dependence between a coordinates subset is a decreasing
function of the corresponding parameter. Here, α0 sets the overall dependence,
αij characterizes the additional pairwise dependence.

To understand how nested logistic model (3.2) can be generated let us review
the concept of stable distributions.

Definition 13. Let Z be a random variable with its independent copies Z(1), Z(2).
Then Z is said to be stable if for any constants a > 0, b > 0 the random variable

aZ(1) + bZ(2)

has the same distribution as

cZ + d, c > 0, d ∈ R.

If d = 0 for all choices of a, b the distribution of Z is said to be strictly stable.

The characteristic function of a stable random variable can be written as

ϕ(t;µ, c, α, β) = exp {itµ− |ct|α (1− iβ sgn(t)Φ)} ,

where

Φ =

{
tan
(
πα
2

)
, α 6= 1

− 2
π

log |t|, α = 1
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and 0 < α ≤ 2 is the stability parameter, −1 ≤ β ≤ 1 is the skewness parameter,
0 < c < ∞ is the scale parameter and −∞ < µ < ∞ is the location parameter.
When β = 0 the distribution is symmetric around µ and is referred to as a
symmetric alpha-stable distribution. A standardized stable random variable is
understood a such with c = 1 and µ = 0.

An example of a stable distribution is the normal distribution (α = 2, β = 0).
Another example is the Cauchy distribution (α = 1, β = 0).

The following algorithm generates random samples from model (3.2). It was
proposed by Stephenson (2003) and adapted by Sabourin et al. (2013).

1. Generate independently standardized symmetric α-stable variables
S, S12, S13, S23 with respective index α0, α12, α13, α23 ∈ (0, 1) and take ab-
solute value from these. Chambers, Mallows, and Struck (1976) provides a
following method for generating standardized symmetric α-stable variables.
Let Θ and W be independent with Θ uniformly distributed on

(
−π

2
, π

2

)
, W

being standard exponential. Then,

S =
sin(α0Θ)

(cos(Θ))1/α0

[
cos ((α0 − 1)Θ)

W

](1−α0)/α0

is a standardized symmetric α0-stable variable.

2. For i ∈ {1, 2, 3}:

(a) Simulate Ei,ij, Ei,ik from the standard exponential distribution.

(b) Set

Xi,ij :=

[(
S

2

)1/αij Sij
Ei,ij

]αijα0

, Xi,ik :=

[(
S

2

)1/αik Sik
Ei,ik

]αikα0

.

(3.3)

(c) Set
Xi = max(Xi,ij, Xi,ik).

3. Now
X = (X1, X2, X3)

has unit Fréchet margins and a multivariate distribution according to (3.2).

Now let us reason why the described algorithm works. Observe from (3.3)
that

Xi,ij|(S = s, Sij = sij)

are independent with distribution

P (Xi,ij ≤ xi|s, sij) = exp

{
−sij

(s
2

)1/αij
(

1

xi

)1/(α0αij)
}
.

Therefore, X has conditional distribution

P (X ≤ x|s, s12, s13, s23) =

exp

{
−

∑
1≤i<j≤3

sij

(s
2

)1/αij

((
1

xi

)1/(α0αij)

+

(
1

xj

)1/(α0αij)
)}

. (3.4)
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From a basic property of conditional expectation we get

P (X ≤ x) = EP (X ≤ x|s, s12, s13, s23). (3.5)

As S0, S12, S13 and S23 are independent combining (3.5) and (3.4) yields

P (X ≤ x) = I1 × I2 × I3,

where

I1 = E exp

{
−s12

(s
2

)1/α12

((
1

x1

)1/(α0α12)

+

(
1

x2

)1/(α0α12)
)}

.

and I2, I3 correspond to pairs {1, 3}, {2, 3}, respectively. Now is used a Laplace
transform property of positive α-stable variables:

E exp{−tS12} = exp{−tα12}.

Concretely, we get

I1 = exp

{
−s

2

((
1

x1

)1/(α0α12)

+

(
1

x2

)1/(α0α12)
)α12

}
.

Similar results for I2 and I3 give

P (X ≤ x) = exp

{
−s

2

∑
1≤i<j≤3

((
1

xi

)1/(α0αij)

+

(
1

xj

)1/(α0αij)
)αij}

.

Applying the Laplace transform property for s yields the desired distribution
function.

The angular components

ωi =
Xi

X1 +X2 +X3

, 1 ≤ i ≤ 3

follow immediately. By having a high threshold r0 and keeping only the angular
points for which X1 +X2 +X3 > r0 one obtains a sample on the simplex, approx-
imately following angular distribution with the spectral density corresponding to
exponent function (3.2).

For completeness, let us mention that Boldi (2004) proposed a version of
asymmetric logistic model that coincides with the classical one for d = 2 but
differs in higher dimensions. Its spectral density for the symmetric case is

h(ω) =
Γ(d− α)

Γ(1− α)

αd−1

d

∏
i=1

dω
−1/α−1
i

(
d∑
i=1

ω
−1/α
i

)α−d

and simulation is done via ratio of independent Gamma variables.
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3.2 Dirichlet family

Dirichlet model was developed in Coles and Tawn (1991) via Theorem 12.
Take

h∗(ω) =

{
d∏
j=1

Γ(αj)

}−1

Γ

(
d∑
i=1

αj

)
d∏
j=1

ω
αj−1
j , αj > 0, j = 1, . . . , d, ω ∈ Sd−1.

(3.6)
Calculating

mj =
αj∑d
j=1 αj

from (2.19) and substituting to (2.18) yields

h(ω) = d

d∏
j=1

αj
Γ(αj)

Γ
(∑d

j=1 αj + 1
)

(∑d
j=1 αjωj

)d+1

d∏
j=1

(
αjωj∑d
j=1 αjωj

)αj−1

,ω ∈ Sd−1

which is known as the Dirichlet model. The exponent measure V has no closed
form and has to be obtained by numerical integration of (2.17).

Dirichlet model allows for asymmetry between variables. The symmetric ver-
sion with

α = α1 = · · · = αd

allows total asymptotic independence by taking α → 0 and perfect asymptotic
dependence via α → ∞. This hints the interpretation of parameters: αi mea-
sures dependence between variable Xi and the remaining variables, higher values
meaning larger dependence.

Jarušková (2009) proposed that it can be generated from the Dirichlet model
as follows. First, a sample from Dirichlet probability distribution with the same
values of parameters as in the considered spectral density is generated. Angular
component is then obtained via the acceptance-rejection method.

Boldi and Davison (2007) explored a model where a mixture of Dirichlet den-
sities (3.6) is considered instead of a single one. They used the result of Dalal and
Hall Jr (1980) that a distribution of any random probability vector can be approx-
imated in the weak sence by a sequence of finite mixtures of Dirichlet distribution.
They found that this property carries over to distribution functions satisfying the
mean constraint (2.12), implying that any spectral distribution function may be
weakly approximated by a mixture of Dirichlet distributions that satisfies (2.12).
EM algorithm is used to fit mixture densities, for details see Boldi and Davison
(2007) and Boldi (2004).

A re-parametrization of Dirichlet mixture model has been done recently by
Sabourin and Naveau (2014) in order that the Bayesian model averaging proce-
dure that will be introduced later in this chapter could be performed.

29



3.3 The pairwise beta model

The pairwise beta model was described in Cooley, Davis, and Naveau (2010).
It is given via spectral density

h(ω|β0, {βi,j}1≤i<j≤d) =
∑

1≤i<j≤d

hij(ω|β0, βi,j), β0, βi,j > 0, (3.7)

where each spectral density hij is the following beta function:

hij(ω|β0, βi,j) = Kd(β0)ω2β0−1
ij (1− ωij)(d−2)β0−d+2 Γ(2βij)

Γ2(βi,j)
ω
βij−1

i/ij ω
βij−1

j/ij ,

where

ωij = ωi + ωj, ωi/ij =
ωi

ωi + ωj
and Kd(β0) =

2(d− 3)!

d(d− 1)

Γ(β0d+ 1)

Γ(2β0 + 1)Γ(β0(d− 2))
.

The exponent function V (x) is obtained via numerical integration of (2.17).
Parameter β0 characterizes the overall dependence between variables, larger

values meaning higher association. Parameter βij measures dependence between
i-th and j-th coordinates, again larger values mean higher association.

The pairwise beta model does not exhibit the exponent measure closure, see
Cooley et al. (2010).

Cooley et al. (2010) generated random samples from the model via acceptance-
rejection method. Jarušková (2009) generated samples through conditional beta
distribution. More precisely, when T has a beta distribution with parameters γ
and δ and the conditional distribution of X given T = t is a symmetric beta
distribution on [0, t] given by density

f(x|T = t) =
Γ(2βij)

Γ(βij)

(x
t

)βij−1 (
1− x

t

)βij−1 1

t
, x ∈ [0, t]

then the joint density of (X, Y = T −X) has a form

f(x, y) =
Γ(2βij)

Γ(βij)

Γ(γ + δ)

Γ(γ)Γ(δ)

(
x

x+ y

)βij−1(
y

x+ y

)βij−1

(x+ y)γ−2(1− x− y)δ−1

for
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+ y ≤ 1.

The simulation algorithm used in data analysis in Chapter 4 is described in
Sabourin et al. (2013) and is based on the same principle as the approach of
Jarušková (2009). The notation from the definition of pairwise beta model is
used, additionally it is defined

sij =
ω[−(i,j)]

1− ωij
with ω[−(i,j)] = (ω1, . . . , ωi−1, ωi+1, . . . , ωj−1, ωj+1, . . . , ωd).

Transformation
ω → (ωij, ωi/ij, sij)

is made. Its Jacobian is

Jij =
1

ωij(1− ωij)d−3
.
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Each beta function
hij((ωij, ωi/ij, sij)|β0, βi,j)

can be expressed in new coordinates as

hij((ωij, ωi/ij, sij)|β0, βi,j) ∝ ω2β0
ij (1− ωij)(d−2)β0−1ω

βij−1

i/ij (1− ωi/ij)βij−1Jij

which corresponds to two beta distributions and one uniform distribution on the
unit simplex of dimension d − 3. Hence, the algorithm can be summarized as
follows.

1. Choose uniformly a pair i < j.

2. Generate independently vector Rij according to beta distribution Be(2β0 +
1, (d− 2)β0), vector Wi/ij according to Be(βij, βij) and vector Sij according
to uniform Dirichlet distribution Dird−2(1, . . . , 1).

3. Define

ωi := RijWi/ij

ωj := Rij(1−Wi/ij)

ω[−(i,j)] := (1−Rij)Sij.

Figure 3.1 helps to visualize the pairwise beta model. It depicts a single h12

spectral density on a simplex S2. Parameters of the density are β0 = 1.4 and
β12 = 1.6. Parameter β0 sets the shape of density on the line from the vertex to
the middle of the opposite site. Parameter β12 sets the shape of lines parallel to
this site. The entire pairwise beta model is then build as a normalized sum of
these densities.

Figure 3.1: Scatter plot of pairwise beta density h12 with parameter β0 =
1.4, β12 = 1.6
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3.4 Construction principle

Theorem 12 is a powerful result that allows to construct a spectral density
from a wide range of functions on a simplex. However, it is very difficult to
propose a new meaningful class of functions that would model dependence of
variables on a simplex. Especially, if one wants this new class of functions to be
applicable to a simplex of a general dimension. This is the reason why only three
types of models – logistic family, Dirichlet family and pairwise beta model – have
been been introduced so far.

It seems easier to propose a function on a simplex of a low dimension and
then extend it to a simplex of a high dimension. This is actually what pairwise
beta model does – its symmetric beta density with parameter βi,j is a function on
two dimensional unit simplex: interval (0, 1). The following Theorem of Ballani
and Schlather (2011) provides conditions for extending a density on a simplex
to a simplex of a higher dimension. It also states necessary conditions for these
lower-dimensional densities. Note that in the pairwise beta model the only used
property of a symmetric beta density was its expectation 0.5.

Theorem 13. Let

2 ≤ k ≤ d− 2, 1 ≤ i1 < · · · < ik ≤ d and {ik+1, . . . , id} = {1, . . . , d}\{i1, . . . , ik}

and mk denote the vector

{1/k}k−1 = (1/k, . . . , 1/k)

of length k − 1. Let p be a probability density function on the parameter space

S̃k−1 = {ω ∈ [0,∞)k−1 : ‖ω‖1 ≤ 1}

with centre of mass mk and p̃ be a probability density function on the parameter
space S̃d−1 with centre of mass md−k. Furthermore, let q be a density function
on [0, 1] such that

Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)
=
k

d
, (3.8)

where

Mq(k, l) =

∫ 1

0

q(r) rk (1− r)l dr.

Then

hi1,...,ik(ω, p, p̃, q) =

=
1√
d

q(ωi1 + · · ·+ ωik)

Mq(k − 1, d− k − 1)
p

{
(ωi1 , . . . , ωik−1

)∑k
j=1 ωij

}
p̃

{
(ωik+1

, . . . , ωid−1
)

1−
∑k

j=1 ωij

}

is a valid spectral density on Sd−1.

Proof. Without loss of generality suppose

{i1, . . . , ik} = {1, . . . , k}.
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Let

r =
k∑
i=1

ωi.

The change of variables

θi =
ωi
r
, i = 1, . . . , k − 1,

ϕj =
ωk+j

1− r
, j = 1, . . . , d− k − 1

has Jacobian
rk−1(1− r)d−k−1.

Then∫
Sd−1

h1,...,k(ω, p, p̃, q) dω =

=

∫
S̃d−1

q(ω1 + · · ·ωk)
Mq(k − 1, d− k − 1)

p

{
(ωi1 , . . . , ωik−1

)∑k
j=1 ωij

}
p̃

{
(ωik+1

, . . . , ωid−1
)

1−
∑k

j=1 ωij

}
dω

=

∫ 1

0

∫
S̃k−1

∫
˜Sd−k−1

q(r)rk−1(1− r)d−k−1

Mq(k − 1, d− k − 1)
p(θ)p̃(ϕ) dϕdθdr

=

∫ 1

0

q(r)rk−1(1− r)d−k−1

Mq(k − 1, d− k − 1)
dr

=
Mq(k − 1, d− k − 1)

Mq(k − 1, d− k − 1)
= 1

Now, let us verify the constraint (2.12). For i = 1, . . . , k − 1 using the fact that
p has the centre of mass at mk we get∫

Sd−1

ωi h1,...,k(ω, p, p̃, q) dω =

=

∫
S̃d−1

ωi q(ω1 + · · ·ωk)
Mq(k − 1, d− k − 1)

p

{
(ωi1 , . . . , ωik−1

)∑k
j=1 ωij

}
p̃

{
(ωik+1

, . . . , ωid−1
)

1−
∑k

j=1 ωij

}
dω

=

∫ 1

0

∫
S̃k−1

∫
˜Sd−k−1

q(r)rk(1− r)d−k−1

Mq(k − 1, d− k − 1)
θip(θ)p̃(ϕ) dϕdθdr

=

∫ 1

0

q(r)rk(1− r)d−k−1

Mq(k − 1, d− k − 1)

1

k
dr

=
Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)
=
k

d

1

k
=

1

d

where we have used (3.8). For i = k realize that

ωk = r −
k−1∑
i=1

ωi

= r

(
1−

k−1∑
j=1

θi

)
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after change of variables. Then the same approach applies.
Similarly for i = k + 1 . . . , d− 1 we get∫
Sd−1

ωi h1,...,k(ω, p, p̃, q) dω =

∫ 1

0

q(r)rk−1(1− r)d−k

Mq(k − 1, d− k − 1)

1

d− k
dr

=
Mq(k − 1, d− k)

Mq(k − 1, d− k − 1)

1

d− k

=
Mq(k − 1, d− k − 1)−Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

1

d− k

=

(
1− k

d

)
1

d− k
=

1

d
.

For i = d it holds

ωk = 1− r −
d−1∑
i=k+1

ωi

= (1− r)

(
1−

k−1∑
j=1

θi

)
.

and again we get ∫
Sd−1

ωi h1,...,k(ω, p, p̃, q) dω =
1

d

Although the proof was quite technical it points out a way how to obtain an
intuitive understanding of the construction principle. First, compute the distance

r =
k∑
i=1

ωi.

In three dimensional simplex – triangle – this would be a distance from one of
the vertices. Density q(r) captures the dependence of spectral density on the
distance r. Densities p and p̃ then set dependence structures for fixed r.

Theorem 13 provides a way how to make a valid spectral density on a high
dimensional simplex via lower dimensional densities. However, as in the pairwise
beta model it is desirable to make a mixture of these in order that all lower-
dimensional simplexes of a given size are included. This is made explicit in the
following Corollary.

Corollary 1. Let 2 ≤ k ≤ d− 2. For all

1 ≤ i1 < · · · < ik ≤ d

let pi1,...,ik be a probability density function on the parameter space S̃k−1 with the
centre of mass mk and

p̃ik+1,...,id , {ik+1, . . . , id} = {1, . . . , d}\{i1, . . . , ik}
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be a probability density function on the parameter space S̃d−k−1 with the centre of
mass md−k. Let qi1,...,ik be a density function on [0, 1] such that (3.8) is satisfied.
Then

h(ω, pi1,...,ik , p̃ik+1,...,id , qi1,...,ik) =

=
1√
d

1(
d
k

) ∑
1≤i1<...<ik≤d

qi1,...,ik(ωi1 + · · ·+ ωik)

Mqi1,...,ik
(k − 1, d− k − 1)

pi1,...,ik

{
(ωi1 , . . . , ωik−1

)∑k
j=1 ωij

}
×

× p̃ik+1,...,id

{
(ωik+1

, . . . , ωid−1
)

1−
∑k

j=1 ωij

}

is a valid spectral density on Sd−1. The constraint (3.8) is not needed when q
does not depend on indices i1, . . . , id.

Proof. Let us verify that the constraint (2.12) is satisfied.
If constraint (3.8) holds it follows from the proof of Theorem 13 that∫

Sd−1

ωj h(ω, pi1,...,ik , p̃ik+1,...,id , qi1,...,ik) =
1

d
, j ∈ {i1, . . . , id}

and hence the result clearly holds.
If constraint (3.8) does not hold and q does not depend on indices i1, . . . , ik

then following proof of Theorem 13 we have∫
Sd−1

ωj h(ω, pi1,...,ik , p̃ik+1,...,id , q) =
Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

1

k
, j ∈ {i1, . . . , ik}.

Similarly, for j ∈ {ik+1, . . . , id}∫
Sd−1

ωj h(ω, pi1,...,ik , p̃ik+1,...,id , q) =

(
1− Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

)
1

d− k

Now calculating the sum via counting the cases when j is or is not included
in {i1, . . . , ik} gives

1(
d
k

) ∑
1≤i1<...<ik≤d

ωj h(ω, pi1,...,ik , p̃ik+1,...,id , q) =
1(
d
k

)×
×
[(
d− 1

k − 1

)
1

k

Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)
+

(
d− 1

k

)
1

d− k

(
1− Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

)]
=

1(
d
k

) [ (d− 1)!

k!(d− k)!

Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)
+

(d− 1)!

k!(d− k)!

(
1− Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

)]
=

1

d

and the proof is complete.

Note. Defining pi1 ≡ 1, p̃id ≡ 1, Corollary 1 allows for k = 1 and k = d − 1,
respectively.
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Corollary 1 is easily interpretable. If condition (3.8) holds then the centre of
each spectral density is such that it is satisfies the constraint (2.12). However, if
q does not depend on indices i1, . . . , ik each individual centre of mass does not
have to satisfy (2.12) as summing over all densities averages this out. Result in
Corollary 1 can be made even little stronger: q can depend on indices i1, . . . , ik
as long as

Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)

remains fixed.
Let us illustrate Theorem 13 on an example.

Example 2. One may obtain a model similar to the pairwise beta model in the
following fashion. Let q(r) be of a form

q(r) =
1

B(a, b)
ra−1(1− r)b−1, 0 ≤ r ≤ 1.

Then we have

Mq(k, d− k − 1) =

∫ 1

0

ra+k(1− r)b+d−k−1 dr =
Γ(a+ k)Γ(b+ d− k − 1)

Γ(a+ b+ d− 1)
.

In order that (3.8) holds we need

Mq(k, d− k − 1)

Mq(k − 1, d− k − 1)
=
k

d

a+ k − 1

a+ b+ d− 2
=
k

d
.

This implies

b =
(d− k)a− d+ 2k

k
.

Choosing
a = k(α− 1) + 1

gives
b = (d− k)(α− 1) + 1.

This gives

q(r) = q(r;α) =
1

B(kα− k + 1, α(d− k)− d+ k + 1)
rk(α−1)(1− r)(d−k)(α−1)

which for k = 2 gives exponents different but quite similar to those of the pairwise
beta model. In the pairwise beta model density q is

q(r) =
1

B(2α, (α− 1)(d− 2) + 1)
r2α−1(1− r)(d−2)(α−1)

and the constraint (3.8) is not satisfied. Also, density q does not depend on the
indices i, j. Corollary 1 justifies why pairwise beta model provides a valid spectral
density.
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Ballani and Schlather (2011) provide also new models constructed via Theo-
rem 13. One of them is the pairwise exponential model.

Example 3. Let

fu(t; b) =
1

cu(b)

(
1

2
−
∣∣∣∣12 − t

∣∣∣∣)u−1

exp

{
b

(
1

2
−
∣∣∣∣12 − t

∣∣∣∣)} 1[0,1](t),

where cu(b) is a normalizing constant such that fu(t; b) is a probability density
function on [0, 1]. This is possible for all u > 0 and b ∈ R. If u ∈ N then the
constant cu(b) even has a closed form. For instance

c1(b) = 2
exp{b/2} − 1

b
.

As fu(t; b) is symmetric around 1/2 it has expectation 1/2 and hence is a possible
choice for pi1,i2 in case k = 2. The pairwise beta density from the pairwise beta
model can be replaced with the density f1(t; b). Using Corollary 1 and keeping

q(r) = q(r;α) =
1

B(kα− k + 1, α(d− k)− d+ k + 1)
rk(α−1)(1− r)(d−k)(α−1)

and p̃ the uniform distribution provides model

h(ω, α, (bij)1≤i<j≤d) =
(d− 3)!(

d
2

) Γ(αd+ 1)

Γ(2α + 1)Γ(α(d− 2))
×

×
∑

1≤i<j≤d

(ωi + ωj)
2α−1(1− ωi − ωj)(α−1)(d−2)f1

(
ωi

ωi + ωj
; bij

)
.

The parameter α measures the overall dependence between variables, bij measures
dependence between variables i, j. As in pairwise beta model, larger parameter
values indicate higher association.

This model is also modified into a weighted exponential model. In similar
fashion is modified Dirichlet model into a new weighted Dirichlet model. For
details see Ballani and Schlather (2011).

3.5 Variants of the pairwise beta model

In this section more properties of the pairwise model are discussed and variants
of the model are suggested.

A disadvantage of the pairwise beta model is that parameters βij do not work
independently: adjusting a single βij parameter affects the level of dependence
among all pairs of components. The reason is simply the additive nature of the
model. This property is shared also by all models constructed via Corollary 1 as
these are all additive models.

A model that allows to capture various dependence structures is desirable.
Beta distribution provides a wide range of dependence possibilities and thus, it is
a good choice. However, there are restrictions on model parameters that decrease
this flexibility. The restriction that the distribution modelling the relationship
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between i-th and j-th variable has expectation 0.5 implying symmetric beta dis-
tribution is not overly demanding – a symmetric beta distribution can still model
both the case when variables show a high and very low level of association at
extreme levels.

Density q from Theorem 13 is in the pairwise beta model the beta distribution
with parameters (2β0, (d−2)β0−d+3). The influence of density q is tremendous
– it captures the overall dependence of parameters and hence, it sets the overall
shape of the model. However, the imposition of relationship between the two
shape parameters decreases a lot of the flexibility of the beta distribution. This
is illustrated on Figure 3.2 for case when d = 3.
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Figure 3.2: Beta density with parameters (2β0, β0)

From the Figure 3.2 it is clear that in such a setting beta distribution looses
a lot of its flexibility. Its mean is 2/3 and thus it cannot provide a model where
observations are located mostly near a simplex vertex – in a situation where the
overall dependence is low. This requirement was probably originally meant in
order that each spectral density hij satisfies the limit constraint (2.12). However,
due to the Corollary 1 this is not needed.

In order that (3.8) holds, Ballani and Schlather (2011) suggest for k = 2, d = 3
a beta distribution with parameters (2β0−1, β0). This limits the parameter space
to β0 > 0.5. As Figure 3.3 shows such a distribution is able to put emphasis on
observations near vertex. However, it cannot capture well a linearly descending
dependence.

We suggest three variants of the pairwise beta model. First, as density q(r)
has a great influence on the model structure we suggest to model both parameters
(α1, α2) of beta distribution. We called this the double pairwise beta model. The
model is more flexible at the cost of increased number of parameters. To provide a
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model with the same number of parameters we suggest to fix one of the parameters
at a constant value. The model with q(r) as beta distribution with parameter
(α1, 1) we call the left pairwise beta model. This model with parameter (1, α2) we
call the right pairwise beta model.

The Figure 3.4 shows possible beta distribution densities of the right pairwise
beta model for different parameter choices. Observe that the mean value is not
limited and that it allows a linearly descending densities.

For double pairwise beta model following Corollary 1 we have

Mq(k − 1, d− k − 1) =

∫ 1

0

1

B(α1, α2)
xα1−1+k−1(1− x)α2−1+d−k−1

=
B(α1 + k − 1, α2 + d− k − 1)

B(α1, α2)
.

Combining with

q(ωi + ωj) =
1

B(α1, α2)
(ωi + ωj)

α1−1(1− ωi − ωj)α2−1

we get

q(ωi + ωj)

Mq(k − 1, d− k − 1)
=

(1− ωi − ωj)α2−1

B(α1 + k − 1, α2 + d− k − 1)
(ωi + ωj)

α1−1.

As k = 2 and p is the symmetric pairwise beta distribution and p̃ is the uniform
distribution we get:

h(ω|α1, α2, {βij}1≤i<j≤d) =
∑

1≤i<j≤d

hij(ω|α1, α2, βij), α1, α2, βij > 0, (3.9)

where each spectral density hij is:

hij(ω|α1, α2, βi,j) = Kd(α1, α2)
2(d− 3)!

d(d− 1)
ωα1−1
ij (1− ωij)α2−1 Γ(2βij)

Γ2(βij)
ω
βij−1

i/ij ω
βij−1

j/ij ,

where

ωij = ωi + ωj, ωi/ij =
ωi

ωi + ωj
and Kd(α1, α2) =

1

B(α1 + 1, α2 + d− 3)
.

Similarly for the left pairwise beta model we get sum as in (3.9), where

hij(ω|α1, βi,j) = Kd(α1)
2(d− 3)!

d(d− 1)
ωα1−1
ij

Γ(2βij)

Γ2(βij)
ω
βij−1

i/ij ω
βij−1

j/ij , (3.10)

where

ωij = ωi + ωj, ωi/ij =
ωi

ωi + ωj
and Kd(α1) =

1

B(α1 + 1, d− 2)
.

For the right pairwise beta model we have

hij(ω|α2, βi,j) = Kd(α2)
2(d− 3)!

d(d− 1)
(1− ωij)α2−1 Γ(2βij)

Γ2(βij)
ω
βij−1

i/ij ω
βij−1

j/ij , (3.11)
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Figure 3.3: Beta density with parameters (2β0 − 1, β0)
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where

ωij = ωi + ωj, ωi/ij =
ωi

ωi + ωj
and Kd(α2) =

1

B(2, α2 + d− 3)
.

The double, the left and the right pairwise beta models share many prop-
erties with the original pairwise beta model. The exponent measure V (x) can
be obtained only via numerical integration of (2.17). Models do not exhibit the
exponent measure closure; disadvantages of an additive model are still present.
Simulation from these models can be done as in the original pairwise beta model;
one just sets Rij parameters according to the chosen model.

Clearly, the interpretation of parameters is different. In the original pairwise
beta model the mean was constant. The choice of β0 affected only variance. With
a high variance the distribution was less distributed around the centre of mass of
a simplex, meaning a lower overall dependence.

Now, the obtained distribution function more reflects the way how observa-
tions are truly distributed. The level of association is not that obvious as in the
original model, but conclusions based on a value of the mean and the variance
can provide in-depth diagnostics.

One can calculate the mean of the distribution as

α1

α1 + α2

.

The closer is the mean to the simplex centre of mass k/d, the higher is the overall
dependence between parameters. If the mean is higher than k/d this implies that
there is a high overall dependence of a subset of variables, but extremes typically
do not occur jointly in all stations. If the mean is lower then k/d it indicates that
there is often only an extreme event only in one of stations.

Interpretation of variance

α1α2

(α1 + α2)2(α1 + α2 + 1)

is the same as in the original model – higher variance indicates lower overall
dependence.

During our research we have considered also other shapes of density q. For
example, we considered q(r) as a linearly increasing or decreasing up to c ∈ (0, 1]
and then remaining constant. The exact form of the spectral density was then
obtained via Corollary 1. These models were able to outperform the original
pairwise beta model. However, they seemed dull in comparison with the double,
left or right pairwise beta model. As these models did not bring a fundamental
improvement or idea and as we view the beta distribution with arbitrary parame-
ters as a better and more flexible way to model dependence, we have not included
these models.

3.6 Bayesian model selection

Several parametric models have been introduced in this chapter. All of them
provide a way how to fulfil the constraint (2.12). As constraint (2.12) does not
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imply any parametric form, the list of models is not complete. But even con-
sidering only models that were introduced so far, it seems like a Herculean task
to provide guidelines how to choose between the models based on something else
than their performance.

Provided models are predictive in their nature. In practice, the criterion
is how well models fit available data. Methods that have the same number of
parameters can be compared via maximum likelihood, i.e maximizing function∑

i

log(hi(ω)).

Comparing models with different number of parameters is more difficult, measures
such as Akaike information criterion (AIC) or Bayesian information criterion
(BIC) that penalize the number of parameters are used.

Each model fitted a different shape of the parameter function. Hence, it might
be better not to choose one model, but to blend models together. Combining
models not only provides a shape of a function that could not be obtained by
each individual model, but blended models can also provide better predictions.
What exactly is suggested to be blended?

If a random vector Mj follows a max-stable distribution Gj(x) = exp(−V (x))
with unit Fréchet margins, then the averaged distribution

G(x) = p1G1(x) + · · ·+ pJGJ(x),
J∑
j=1

pj = 1

in general is not max-stable anymore. However, averaging spectral measures

p1H1(·) + · · ·+ pJHJ(·),
J∑
j=1

pj = 1

proves a valid spectral measure. Clearly, as each spectral density satisfies the
constraint (2.12), the constraint (2.12) holds also for the averaged measure.

One would like to find a mixture of spectral measures that is based on their
performance – in the Bayesian setting it is typically the Bayesian Information
Criterion (BIC). A tool for that provides Bayesian model averaging applied by
Sabourin et al. (2013). Bayesian model averaging can recommend a mixture of
spectral densities or if enough data is provided and differences between models are
high, it can serve as a selection tool. Below is given a brief summary of Bayesian
model averaging in the context of spectral densities. For general information
about Bayesian model averaging the reader is refered to Hoeting et al. (1999)
or Marin and Robert (2007), the latter concentrated more on Bayesian decision
making.

Now, suppose that we have M spectral density models such that each model

Mm = {hm(·|θm), θm ∈ Θm}

has a finite dimensional parameter space Θm. Let the statistical model M̃ be a
disjoint union of individual models. This means that the parameter space Θ̃ is
the disjoint union

Θ̃ =
M⊔
m=1

Θm.
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Each parameter space Θm is endowed with a prior probability measure πm.
Measure πm expresses the statistician’s beliefs about θm e.g. arising from expert
knowledge. In the Bayesian model averaging framework there is also needed an
a priori weight pm of each model Mm. The set of weights

(p1, . . . , pM),
M∑
i=1

pi = 1

is typically set uniform

pm =
1

m
, m = 1, . . . ,M

for the lack of expert knowledge. Putting this together, on M̃ we get prior
distribution

π̃

(
M⊔
m=1

Bm

)
=

M∑
m=1

pmπm(Bm),

for any collection of measurable sets

(B1, . . . , BM), Bm ⊂ Θm, m = 1, . . . ,M.

In Chapter 4 it is described how a sample of excesses

W = (W1, . . . ,Wn)

is obtained. Common density estimator, a Posterior predictive density averages
density estimates produced in separate bayesian models. In the disjoint union
model it is defined as

h̃(ω|W) =
M∑
m=1

pm(W)

∫
Θm

hm(ω|θm) d(πm|W)(θm), (3.12)

where
πm|W

is the posterior distribution restricted toMm and pm(W) is the posterior weight
of Mm.

A posterior weight pm(W) is proportional to a marginal likelihood Lm(W) of
an observed angular sample in each model Mm multiplied by the corresponding
prior model weight:

pm(W) =
pmLm(W)

p1L1(W) + · · ·+ pMLM(W)
,

where

Lm(W) =

∫
Θm

hm(W|θm) d(πm)(θm). (3.13)

In practice, for high dimensional parameter spaces, the main hurdle lies in es-
timating the parameter (3.13). It is done either by Monte-Carlo methods or
asymptotic approximations from which the BIC is derived, see Kass and Raftery
(1995).
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Inside each single model, a Metropolis-Hastings algorithm is used to produce
a posterior sample θm,1, . . . , θm,N . This sample is used to approximate each term

h̃m(ω) =

∫
Θm

hm(ω|θm) d(πm|W)(θm)

from (3.12) through

h̃m(ω) =
1

N

N∑
t=1

hm(ω|θm,t).

In the Chapter 4 it is made explicit how Bayesian model averaging was used
for modelling.
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Chapter 4

Hydrological data application

In this chapter the gathered theory is used to build multivariate extreme value
models for hydrological data. First, the modelling technique is described. Then
data description follows along with models comparison. All models were build
using the statistical software R and can be find on the attached CD or downloaded
from http://artax.karlin.mff.cuni.cz/~drapall/multivariate/.

Data used for modelling consist of daily precipitation values from nine hydro-
logical stations in northern Moravia, Czech Republic.

4.1 Modelling

The first step in the modelling is the estimation of marginal distribution in
order that it can be transformed to unit Fréchet. Above a subjectively chosen
threshold it is assumed that the inference from Theorem 5 holds and that an
excess can be modelled by the generalized Pareto distribution. For observations
below this threshold it is assumed that the empirical distribution function pro-
vides a good estimate. This means that observations

Xij, i = 1, . . . , n, j = 1, . . . , d

are transformed to unit Fréchet for each j = 1, . . . , d via

Zij =


[
log
(
F̃j(Xij)

)]−1

for Xij ≤ qj(0.95),[
log

(
1− 0.95

(
1 + ξ̂j

Xij − qj(0.95)

σ̂j

)−1/ξ̂j

+

)]−1

for Xij ≥ qj(0.95),

(4.1)
where F̃j is the empirical distribution function of

Xij, i = 1, . . . , n,

qj(0.95) is its 95% quantile and ξ̂j, σ̂j are respectively estimated scale and shape
parameter of the generalized Pareto distribution estimated from top 5% ofXij, i =
1, . . . , n via the maximum likelihood technique.

In our model we picked a subset of stations of size p = 3 to be used for
modelling. The corresponding unit Fréchet variables

Zij, j = 1, . . . , p
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are transformed into a radial component Ri and angular components ωij:

Ri =

p∑
j=1

Zij, ωij =
Zij
Ri

, j = 1, . . . , p, i = 1, . . . n.

Only those angular components ωij for which the corresponding radial component
Ri exceeds a certain threshold r0 are kept. The mean residual excess plot is used
to choose threshold r0. From these data coefficients of models were estimated via
maximum likelihood approach.

There are two families of models – the pairwise beta family and the nested
logistic model (3.2) – for which the Bayesian model averaging was applied. None
of these models is part of the exponential family. Hence, there are no obvious
uninformative or invariant prior choices. As we would like to use the normal
distribution as a prior, the parameter space is transformed to obtain an uncon-
strained one. For the pairwise beta model the log transform is used(

β
′

0, {βij}
′

1≤i<j≤p

)
= (log(β0), {log(βij)}1≤i<j≤p) .

For the nested logistic model the logit transform was chosen

(
α
′

0, {αij}
′

1≤i<j≤p

)
=

(
log

(
α0

1− α0

)
,

{
log

(
αij

1− αij

)}
1≤i<j≤p

)
.

Then, parameters in each model are assumed to be normally distributed with
mean 0 and standard deviation 3 and a priori mutually independent. Sabourin
et al. (2013) showed on simulated data that this prior specification does not
introduce a strong bias in estimates.

4.2 Exploratory analysis

The data of daily precipitation from nine hydrological stations were provided
by Czech Hydro-Meteorolgoical Institute and used previously by Jarušková (2009)
whose approach is followed. The nine stations are Heřmanovice (HE), Karlovice
(KA), Krnov (KR), Lichnov (LI), Opava (OP), Praděd (PR), Rejv́ız (RE), Vidly
(VI) and Albrechtice - Žáry (ZI) and their location is depicted on Figure 4.1 from
Jarušková (2009).

Data were measured from Janurary 1, 1960 to February 6, 2005. Records have
missing values, ranging from over a month to almost 7 and half year in total. This
is more than in the dataset used by Jarušková (2009) – unfortunately, we were
unable to obtain the exact dataset.

To get a basic idea about the data, let us count the length of records for each
site, number of days with positive precipitation, quantiles of these and attained
maximum, see table 4.1.

A basic measure of dependence is correlation. The table 4.2 shows correlation
coefficients between all pairs of sites for days with positive precipitation. As for
each pair were considered days with positive precipitation on these two sites,
correlation coefficients are based on different sets of data. Sites with correlation
coefficient greater than 0.7 are connected with a line on Figure 4.1.
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Station
No. of
observations

No. of
positive
observations

0.90
quantile

0.95
quantile

0.99
quantile Maximum

HE 15221 6911 13.2 20.3 41.2 196.5
KA 16407 6547 12.7 17.8 31.0 124.2
KR 16194 6304 11.3 16.8 30.2 59.2
LI 16437 6581 11.2 16.3 28.8 110.0
OP 16108 6419 11.0 16.2 31.1 62.0
PR 13758 7368 14.1 20.2 37.8 139.4
RE 14730 6459 15.8 23.6 43.3 214.2
VI 15098 7934 15.2 21.4 40.5 199.3
ZY 16347 7962 11.2 16.8 30.4 125.0

Table 4.1: Number of all observations, number of positive observations, 0.90, 0.95
and 0.99 quantile of positive observations and maximum for each site

KA KR LI OP PR RE VI ZY

HE 0.70 0.59 0.57 0.56 0.68 0.83 0.75 0.74
KA 0.66 0.65 0.59 0.68 0.70 0.73 0.78
KR 0.76 0.74 0.55 0.61 0.57 0.78
LI 0.72 0.50 0.56 0.55 0.70

OP 0.50 0.57 0.55 0.67
PR 0.69 0.81 0.68
RE 0.73 0.76
VI 0.72

Table 4.2: Correlation coefficients between pairs of sites for days with positive
precipitation.

A subject of our interest is the dependence between extreme events which may
or may not coincide with the general dependence. Hence, we are interested in ex-
tremal dependence indices χ(u) from (2.20). Table 4.3 shows indices χ(0.975) cal-
culated for each pair of stations using function taildep from R package extRemes
available from CRAN. Quantile 0.975 was chosen as it is high enough and it still
provides enough data to calculate from. However, it still measures association at
moderate extreme level not the limiting behaviour itself.

In Chapter 2 it has been mentioned that plotting χ(u) for values of u close
to 1 can serve as a diagnostic tool of asymptotic dependence. Later on, stations
HE, ZY and LI will be included into a single model. Therefore we have chosen to
plot χ(u) for these three stations. Figure 4.2 depicts values of χ(u) for different
quantiles for stations HE and ZY. The value of χ(u) is decreasing. However, it
seems that as u → 1 it would still be above 0. A similar behaviour exhibits the
pair HE and LI.

On the other hand, the pair LI and ZY exhibits quite different behaviour
as shown on Figure 4.3. Here, χ(u) reaches 0 which corresponds to asymptotic
independence. It is shown later that this pair of stations exhibits the highest
association of the three stations.

Estimator χ(u) has the disadvantage that only values of u very close to 1
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Figure 4.1: The location of the nine Moravian hydrological stations.

KA KR LI OP PR RE VI ZY

HE 0.52 0.44 0.40 0.42 0.48 0.67 0.55 0.56
KA 0.48 0.49 0.43 0.46 0.51 0.52 0.60
KR 0.63 0.57 0.38 0.46 0.42 0.60
LI 0.59 0.35 0.42 0.41 0.55

OP 0.36 0.41 0.38 0.51
PR 0.47 0.57 0.46
RE 0.50 0.57
VI 0.51

Table 4.3: Dependence parameter χ(0.975) for each of pair of sites

determine the asymptotic dependence. For such u the estimate is based on little
data. The fact that two pairs of stations suggest different asymptotic behaviour
means that it is not clear which models should be chosen – a reasoning both
for the asymptotic dependence and the asymptotic independence can be found.
Due to the described characteristics of estimator χ(u) this is quite common in
the extreme value analysis. For example, for Leeds air pollution data (dataset
winterdat in R package BMAmevt) Cooley et al. (2010) and Boldi and Davison
(2007) suggested models of asymptotic dependence while Heffernan and Tawn
(2004) study focused on conditional distribution that allows also independence
at extreme levels.

It seems that the data could be a mixture of both asymptotically dependent
and independent data. This could arise as a consequence of two types of extreme
precipitation: one that occurs just locally and the other associated with a weather
front. In this work models of asymptotic dependence are used as both approaches
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seem applicable and the focus of the thesis are models of asymptotic dependence.
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Figure 4.2: Estimator χ(u) at different quantiles for station HE and ZY
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Figure 4.3: Estimator χ(u) at different quantiles for station LI and ZY
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4.3 Transformed data

Estimated coefficients of Generalized Pareto distribution via maximum likeli-
hood are shown in Table 4.4.

Station Threshold Scale Shape

HE 12.40 9.18 0.24
KA 11.40 6.61 0.18
KR 9.70 7.78 -0.05
LI 9.50 7.49 0.04

OP 9.30 7.80 0.02
PR 14.61 8.43 0.22
RE 14.40 10.12 0.21
VI 15.60 8.80 0.20
ZY 11.00 7.90 0.08

Table 4.4: Threshold values and parameters of GPD fitted to excesses above
threshold for each site

A trivariate model has been built for stations HE-ZY-LI as these represent
the region: HE is in the highlands, LI is in the lowlands and ZY is located in the
slope.

To chose a radial threshold, a mean residual excess plot was computed – see
Figure 4.4. Function mrl.plot from R package ismev was used to produced the
plot. The lines were added manually – red line shows the linear relationship
between threshold excess and threshold, blue line states the threshold. This way
threshold exp{4.2} is chosen as a minimum value for which a linear relationship
holds.

The angular components for those observations whose radial component is
higher then the threshold are shown in Figure 4.5. The scatter plot 4.5 shows
that there is a strong tail dependence between stations ZY and LI and a little
weaker tail dependence between stations HE and ZY. It also seems that there
is almost none tail association between stations HE and LI. The observed pair
dependences corresponds to conclusions based on the location of stations.

4.4 Models comparison

There were two families of models fitted to data from stations HE, ZY and
LI – nested logistic (3.2) and pairwise beta with its original version (3.7), double
(3.9), right (3.11) and left (3.10) modifications. All of these models allow Bayesian
model selection.

Table 4.5 shows obtained parameters for models from the pairwise beta family
via the maximum likelihood technique and obtained log-likelihood∑

i

log(hi(ω)).

Function maxLikelihood from package BMAmevt was used to compute these. It
calls function optim from stats package with method "L-BFGS-B" which is a
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Figure 4.4: Mean residual plot of excesses for radial component of stations HE,
ZY and LI on logarithmic scale
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Figure 4.5: Angular components of excesses above threshold for stations HE, ZY
and LI
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quasi-Newton method. As initial parameters can affect obtained parameters,
multiple runs were performed to obtain truly the best set of parameters. Table
4.6 shows obtained parameters and likelihood for the nested logistic model (3.2).

model α1 α2 β0 βHE,ZY βHE,LI βLI,ZY log-likelihood

Original — — 1.03 1.06 0.56 5.04 546.7
Double 0.20 1.11 — 3.76 0.92 4.30 644.5

Left 0.14 1 — 3.84 0.93 4.40 643.4
Right 1 2.15 — 3.10 0.93 3.47 597.9

Table 4.5: Parameters of variants of pairwise beta model and their log-likelihood

model α0 αHE,ZY αHE,LI αLI,ZY log-likelihood

Nested Logistic 0.60 0.79 1.00 0.77 664.2

Table 4.6: Nested logistic model parameters and its log-likelihood

Comparing obtained log-likelihoods from table 4.5 proofs that new pairwise
beta models bring a substantial improvement. The log-likelihood of the nested
logistic model from table 4.6 makes it still preferable to pairwise beta models.
However, unlike likelihood of the original pairwise beta model, the log-likelihood
of new models is comparable to the one of nested logistic model.

It is not only the log-likelihood that makes new models preferable to the
original pairwise beta model. The original beta distribution’s beta density q(r)
depending on β0 is not flexible enough to reflect that lots of observations are
located near a simplex vertex. In order to compensate for this, it estimates
coefficient βHE,LI very low so that it can allocate enough mass to these points.
Thus, it underestimates the dependence between HE and LI. On the other hand,
it overestimates the coefficient βLI,ZY compared to the coefficient βHE,ZY . The
dependence between LI and ZY is bigger than between HE and ZY. However, as
Figure 4.5 shows and estimated coefficients of the nested logistic model suggest,
dependence between these two pairs of stations is of similar order.

New pairwise beta models are able to capture that dependence between LI, ZY
is only a little higher compared to dependence between HE and ZY. Coefficient
βHE,LI does not overly underestimate dependence between HE and LI. Recall that
an estimate of a parameter depends on other parameter values. To conclude: set
of parameters of new pairwise beta models seem to better reflect dependence
between stations.

If one insists that a four parameter model should be used, picking the better
of the right and the left pairwise beta model could be an option measured merely
by the log-likelihood. However, as we will see later, for making predictions it is
better to use the double pairwise beta model. The left pairwise beta model’s log-
likelihood is very close to the one of the double pairwise beta model as estimated
α2 in double pairwise beta model is close to 1. Although α1 = 1 is not an ideal
choice in this problem, the right beta model still clearly outperforms the original
one.
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On Figures 4.6, 4.7, 4.8, 4.9 and 4.10 are shown contour plots of the original,
the double, the left and the right pairwise beta model and of the nested logistic
model, respectively. The inflexibility of the original pairwise beta model is ob-
vious. Plots for the left and the double pairwise beta model are very similar as
so they are their parameters. The right pairwise beta model exhibits the same
structure as these two.

To compare models the Bayesian model selection procedure was applied. Us-
ing function posteriorWeights from R package BMAmevt we have compared
nested logistic separately with pairwise beta models that have the same num-
ber of parameters: with the left, the right and the original model. In all cases
almost entire weight was assigned to the nested logistic model. The order as-
signed to a pairwise beta model differed: ranging from 10−9 for the left pairwise
beta model to 10−54 for the original pairwise beta model. We conclude that the
nested logistic model should be used to model this dataset.
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Figure 4.6: Contour plot of original pairwise beta model for stations HE, ZY and
LI
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Figure 4.7: Contour plot of double pairwise beta model for stations HE, ZY and
LI
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Figure 4.8: Contour plot of left pairwise beta model for stations HE, ZY and LI
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Figure 4.9: Contour plot of right pairwise beta model for stations HE, ZY and
LI
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Figure 4.10: Contour plot of nested logistic model for stations HE, ZY and LI
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Suppose that we would like to estimate exceedance probabilities, i.e. values of
survival function, for large arguments x1, x2, x3. For X1, X2 and X3 transformed
to unit Fréchet variables Z1, Z2, Z3 via (4.1) it approximately holds

P (X1 < x1 ∩X2 < x2 ∩X3 < x3) ≈ P (Z1 < z1 ∩ Z2 < z2 ∩ Z3 < z3)

where x1, x2, x3 were transformed to z1, z2, z3 via (4.1) as well. The nested logistic
model has a closed form of the exponent measure V (x). Thus V (x) is used to
estimate exceedance probabilities. The pairwise beta family does not share such a
property. Hence, we have generated samples from a pairwise beta model and used
Monte Carlo approximation. Table 4.7 shows calculated exceedance probabilities.
Values x1, x2, x3 have been chosen the same as in Jarušková (2009). However,
data used in our analysis are slightly different. Also a different radial threshold
was picked. There has been added a three parameters pairwise beta distribution
from Jarušková (2009) for reference. This is the original pairwise beta with fixed
β0 = 1. The three parameters are those estimated by Jarušková (2009).

x1 x2 x3
Nested
logistic

Double
PB

Left
PB

Right
PB

Original
PB

Three
parameters
PB

75.00 83.30 34.50 48.72 21.25 16.97 41.77 48.57 49.47
108.90 50.90 51.10 141.23 46.47 37.29 104.57 127.55 139.45
196.50 125.00 51.90 3.15 1.25 1.02 2.63 3.13 3.25
133.30 57.00 20.00 104.54 37.46 29.90 81.16 100.85 112.68
80.90 57.70 110.00 1.35 0.92 0.76 1.35 1.36 1.35
53.70 25.50 61.00 114.07 57.16 45.04 107.36 113.32 116.49

Table 4.7: Three-dimensional survival function for nested logistic and pairwise
beta models for HE-ZY-LI. All probabilities have to be multiplied by 10−6

As the three parameters pairwise beta model gives similar predictions, it seems
that the choice of the threshold has not much affected parameters estimation.
All models of Jarušková (2009) gave similar predictions. However, this is not the
case here. None of those models was flexible enough to assign weight both to
observations near the centre of mass of the simplex and to those near a simplex
vertex. New pairwise beta models do this which results in decreased estimates
of exceedance probabilities. However, the question whether the double pairwise
beta model underestimates or other models overestimate excess probability is
open. Exceedance probabilities of the left, the right and the double pairwise beta
model differ quite a bit. Imposition of fixed parameter can have a great influence
on the final structure. Thus, we recommend to use the double pairwise beta
model.

It has been noted that data may be a mixture of asymptotically independent
and asymptotically dependent data. To obtain the most reliable estimate of
excess probabilities, we would suggest to model the data as such a mixture.
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